Powered by Deep Web Technologies
Note: This page contains sample records for the topic "dg technologies pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Zhonghuite PV Technology Co | Open Energy Information  

Open Energy Info (EERE)

Zhonghuite PV Technology Co Jump to: navigation, search Name Zhonghuite PV Technology Co Place Jiangxi Province, China Sector Solar Product Jiangxi-based solar project developer....

2

Beijing Sunpu Solar PV Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Sunpu Solar PV Technology Co Ltd Jump to: navigation, search Name Beijing Sunpu Solar PV Technology Co Ltd Place Beijing, Beijing Municipality, China Zip 100083 Sector Solar...

3

2012 SG Peer Review - Integrated, Automated DG Technologies Demonstrat...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for boiler flue gas heat recovery - Advancing energy storage technologies - New Flywheel storage technology * Total Cost - 1,806K * 100 kW of Wind, 100 kW of waste heat...

4

Solar America Initiative (SAI) PV Technology Incubator Program: Preprint  

DOE Green Energy (OSTI)

The SAI PV Technology Incubator Program is designed to accelerate technologies/prodesses that have successfully demonstrated a proof-of-concept/process in a laboratory.

Keyes, B.; Symko-Davies, M.; Mitchell, R.; Ullal H.; von Roedern, B.; Greene, L.; Stephens, S.

2008-05-01T23:59:59.000Z

5

Role of Polycrystalline Thin-Film PV Technologies in Competitive PV Module Markets: Preprint  

DOE Green Energy (OSTI)

This paper discusses the developments in thin-film PV technologies and provides an outlook on future commercial module efficiencies achievable based on today's knowledge about champion cell performance.

von Roedern, B.; Ullal, H. S.

2008-05-01T23:59:59.000Z

6

PV-TONS: A photovoltaic technology ontology system for the design of PV-systems  

Science Conference Proceedings (OSTI)

The impacts of climate change, the increasing demand for energy and the diminishing fossil fuel resources have resulted in the development and use of a large number of renewable energy technologies in building development. These technologies are generating ... Keywords: Climate change, Ontology, PV-system, Renewable energy, Semantic Web

F. H. Abanda; J. H. M. Tah; D. Duce

2013-04-01T23:59:59.000Z

7

Review of PV Inverter Technology Cost and Performance Projections  

DOE Green Energy (OSTI)

The National Renewable Energy Laboratory (NREL) has a major responsibility in the implementation of the U.S. Department of Energy's (DOE's) Solar Energy Technologies Program. Sandia National Laboratories (SNL) has a major role in supporting inverter development, characterization, standards, certifications, and verifications. The Solar Energy Technologies Program recently published a Multiyear Technical Plan, which establishes a goal of reducing the Levelized Energy Cost (LEC) for photovoltaic (PV) systems to $0.06/kWh by 2020. The Multiyear Technical Plan estimates that, in order to meet the PV system goal, PV inverter prices will need to decline to $0.25-0.30 Wp by 2020. DOE determined the need to conduct a rigorous review of the PV Program's technical and economic targets, including the target set for PV inverters. NREL requested that Navigant Consulting Inc.(NCI) conduct a review of historical and projected cost and performance improvements for PV inverters, including identification of critical barriers identified and the approaches government might use to address them.

Navigant Consulting Inc.

2006-01-01T23:59:59.000Z

8

Review of PV Inverter Technology Cost and Performance Projections  

SciTech Connect

The National Renewable Energy Laboratory (NREL) has a major responsibility in the implementation of the U.S. Department of Energy's (DOE's) Solar Energy Technologies Program. Sandia National Laboratories (SNL) has a major role in supporting inverter development, characterization, standards, certifications, and verifications. The Solar Energy Technologies Program recently published a Multiyear Technical Plan, which establishes a goal of reducing the Levelized Energy Cost (LEC) for photovoltaic (PV) systems to $0.06/kWh by 2020. The Multiyear Technical Plan estimates that, in order to meet the PV system goal, PV inverter prices will need to decline to $0.25-0.30 Wp by 2020. DOE determined the need to conduct a rigorous review of the PV Program's technical and economic targets, including the target set for PV inverters. NREL requested that Navigant Consulting Inc.(NCI) conduct a review of historical and projected cost and performance improvements for PV inverters, including identification of critical barriers identified and the approaches government might use to address them.

Navigant Consulting Inc.

2006-01-01T23:59:59.000Z

9

Shanghai JTU PV Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

JTU PV Technology Co Ltd JTU PV Technology Co Ltd Jump to: navigation, search Name Shanghai JTU PV Technology Co Ltd Place Shanghai, Shanghai Municipality, China Zip 200240 Sector Solar Product Spun off from Shanghai Jiaotong University, the company manufactures control systems and testing equipments for solar water heaters. Coordinates 31.247709°, 121.472618° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.247709,"lon":121.472618,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

10

Zhejiang Cineng PV Science Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Cineng PV Science Technology Co Ltd Cineng PV Science Technology Co Ltd Jump to: navigation, search Name Zhejiang Cineng PV Science & Technology Co Ltd Place Cixi, Zhejiang Province, China Sector Solar Product A Chinese tandem thin-film solar cell manufacturer Coordinates 30.168501°, 121.235023° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.168501,"lon":121.235023,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

11

Toward integrated PV panels and power electronics using printing technologies  

SciTech Connect

In this paper, we review the latest developments in the area of printing technologies with an emphasis on the fabrication of control-embedded photovoltaics (PV) with on-board active and passive devices. We also review the use of power converters and maximum power point tracking (MPPT) circuits with PV panels. Our focus is on the investigation of the simplest implementations of such circuits in view of their integration with solar cells using printing technologies. We see this concept as potentially enabling toward further cost reduction. Besides a discussion as to feasibility, we shall also present some projections and guidelines toward possible integration. (author)

Ababei, Cristinel; Yuvarajan, Subbaraya [Electrical and Computer Engineering Department, North Dakota State University, Fargo, ND 58108 (United States); Schulz, Douglas L. [Center for Nanoscale Science and Engineering, North Dakota State University, Fargo, ND 58102 (United States)

2010-07-15T23:59:59.000Z

12

Practical Issues when Selecting PV Technologies (Presentation)  

DOE Green Energy (OSTI)

Presentation highlighting practical considerations for photovoltaic technologies and strategies for future reductions in cost and increases in efficiency.

Kurtz, S.

2010-09-09T23:59:59.000Z

13

Lessons Learned from the Photovoltaic Manufacturing Technology/PV Manufacturing R&D and Thin Film PV Partnership Projects  

DOE Green Energy (OSTI)

As the U.S. Department of Energy's (DOE's) Solar Energy Technologies Program initiates new cost-shared solar energy R&D under the Solar America Initiative (SAI), it is useful to analyze the experience gained from cost-shared R&D projects that have been funded through the program to date. This report summarizes lessons learned from two DOE-sponsored photovoltaic (PV) projects: the Photovoltaic Manufacturing Technology/PV Manufacturing R&D (PVMaT/PVMR&D) project and the Thin-Film PV Partnership project. During the past 10-15 years, these two projects have invested roughly $330 million of government resources in cost-shared R&D and leveraged another $190 million in private-sector PV R&D investments. Following a description of key findings and brief descriptions of the PVMaT/PVMR&D and Thin-Film PV Partnership projects, this report presents lessons learned from the projects.

Margolis, R.; Mitchell, R.; Zweibel, K.

2006-09-01T23:59:59.000Z

14

PV FAQs: What Is the Energy Payback for PV? Solar Energy Technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

energy is clean, abundant, reliable, and affordable Reaping the environmental benefits of solar energy requires spending energy to make the PV system. But as this graphic shows,...

15

PV Supply Chain and Cross-Cutting Technologies: Upcoming Funding Opportunity  

DOE Green Energy (OSTI)

Summarizes the Solar Program's upcoming funding opportunity, called PV Supply Chain and Cross-Cutting Technologies, which is expected to be open by the end of October 2008.

Not Available

2008-10-01T23:59:59.000Z

16

Technology and Climate Trends in PV Module Degradation (Presentation)  

DOE Green Energy (OSTI)

To sustain the commercial success of photovoltaic (PV) technology it is vital to know how power output decreases with time. Unfortunately, it can take years to accurately measure the long-term degradation of new products, but past experience on older products can provide a basis for prediction of degradation rates of new products. An extensive search resulted in more than 2000 reported degradation rates with more than 1100 reported rates that include some or all IV parameters. In this presentation we discuss how the details of the degradation data give clues about the degradation mechanisms and how they depend on technology and climate zones as well as how they affect current and voltage differently. The largest contributor to maximum power decline for crystalline Si technologies is short circuit current (or maximum current) degradation and to a lesser degree loss in fill factor. Thin-film technologies are characterized by a much higher contribution from fill factor particularly for humid climates. Crystalline Si technologies in hot & humid climates also display a higher probability to show a mixture of losses (not just short circuit current losses) compared to other climates. The distribution for the module I-V parameters (electrical mismatch) was found to change with field exposure. The distributions not only widened but also developed a tail at the lower end, skewing the distribution.

Jordan, D.; Wohlgemuth, J.; Kurtz, S.

2012-10-01T23:59:59.000Z

17

Technology and Climate Trends in PV Module Degradation: Preprint  

DOE Green Energy (OSTI)

To sustain the commercial success of photovoltaic (PV) technology it is vital to know how power output decreases with time. Unfortunately, it can take years to accurately measure the long-term degradation of new products, but past experience on older products can provide a basis for prediction of degradation rates of new products. An extensive search resulted in more than 2000 reported degradation rates with more than 1100 reported rates that include some or all IV parameters. In this paper we discuss how the details of the degradation data give clues about the degradation mechanisms and how they depend on technology and climate zones as well as how they affect current and voltage differently. The largest contributor to maximum power decline for crystalline Si technologies is short circuit current (or maximum current) degradation and to a lesser degree loss in fill factor. Thin-film technologies are characterized by a much higher contribution from fill factor particularly for humid climates. Crystalline Si technologies in hot & humid climates also display a higher probability to show a mixture of losses (not just short circuit current losses) compared to other climates. The distribution for the module I-V parameters (electrical mismatch) was found to change with field exposure. The distributions not only widened but also developed a tail at the lower end, skewing the distribution.

Jordan, D. C.; Wohlgemuth, J. H.; Kurtz, S. R.

2012-10-01T23:59:59.000Z

18

New GE Plant to Produce Thin Film PV Solar Panels Based on NREL Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New GE Plant to Produce Thin Film PV Solar Panels Based on NREL New GE Plant to Produce Thin Film PV Solar Panels Based on NREL Technology New GE Plant to Produce Thin Film PV Solar Panels Based on NREL Technology April 22, 2011 - 10:17am Addthis Photo courtesy of General Electric Photo courtesy of General Electric Minh Le Minh Le Program Manager, Solar Program Earlier this month, General Electric announced plans to enter the global marketplace for solar photovoltaic (PV) panels in a big way - and to do it, they will be using technology pioneered at the Department of Energy's National Renewable Energy Lab (NREL). The record-breaking Cadmium-Telluride (CdTe) thin film photovoltaic technology GE has chosen for its solar panels was originally developed more than a decade ago by a team of scientists led by NREL's Xuanzhi Wu, and

19

Updating Technical Screens for PV Interconnection: Preprint  

DOE Green Energy (OSTI)

Solar photovoltaics (PV) is the dominant type of distributed generation (DG) technology interconnected to electric distribution systems in the United States, and deployment of PV systems continues to increase rapidly. Considering the rapid growth and widespread deployment of PV systems in United States electric distribution grids, it is important that interconnection procedures be as streamlined as possible to avoid unnecessary interconnection studies, costs, and delays. Because many PV interconnection applications involve high penetration scenarios, the process needs to allow for a sufficiently rigorous technical evaluation to identify and address possible system impacts. Existing interconnection procedures are designed to balance the need for efficiency and technical rigor for all DG. However, there is an implicit expectation that those procedures will be updated over time in order to remain relevant with respect to evolving standards, technology, and practical experience. Modifications to interconnection screens and procedures must focus on maintaining or improving safety and reliability, as well as accurately allocating costs and improving expediency of the interconnection process. This paper evaluates the origins and usefulness of the capacity penetration screen, offers potential short-term solutions which could effectively allow fast-track interconnection to many PV system applications, and considers longer-term solutions for increasing PV deployment levels in a safe and reliable manner while reducing or eliminating the emphasis on the penetration screen.

Coddington, M.; Ellis, A.; Lynn, K.; Razon, A.; Key, T.; Kroposki, B.; Mather, B.; Hill, R.; Nicole, K.; Smith, J.

2012-08-01T23:59:59.000Z

20

Long-Term Modeling of Solar Energy: Analysis of Concentrating Solar Power (CSP) and PV Technologies  

DOE Green Energy (OSTI)

This report presents an overview of research conducted on solar energy technologies and their implementation in the ObjECTS framework. The topics covered include financing assumptions and selected issues related to the integration of concentrating thermal solar power (CSP) and photovoltaics PV technologies into the electric grid. A review of methodologies for calculating the levelized energy cost of capital-intensive technologies is presented, along with sensitivity tests illustrating how the cost of a solar plant would vary depending on financing assumptions. An analysis of the integration of a hybrid concentrating thermal solar power (CSP) system into the electric system is conducted. Finally a failure statistics analysis for PV plants illustrates the central role of solar irradiance uncertainty in determining PV grid integration characteristics.

Zhang, Yabei; Smith, Steven J.

2007-08-16T23:59:59.000Z

Note: This page contains sample records for the topic "dg technologies pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Progress of the PV Technology Incubator Project Towards an Enhanced U.S. Manufacturing Base  

SciTech Connect

In this paper, we report on the major accomplishments of the U.S. Department of Energy's (DOE) Solar Energy Technologies Program (SETP) Photovoltaic (PV) Technology Incubator project. The Incubator project facilitates a company's transition from developing a solar cell or PV module prototype to pilot- and large-scale U.S. manufacturing. The project targets small businesses that have demonstrated proof-of-concept devices or processes in the laboratory. Their success supports U.S. Secretary of Energy Steven Chu's SunShot Initiative, which seeks to achieve PV technologies that are cost-competitive without subsidies at large scale with fossil-based energy sources by the end of this decade. The Incubator Project has enhanced U.S. PV manufacturing capacity and created more than 1200 clean energy jobs, resulting in an increase in American economic competitiveness. The investment raised to date by these PV Incubator companies as a result of DOE's $ 59 million investment total nearly $ 1.3 billion.

Ullal, H.; Mitchell, R.; Keyes, B.; VanSant, K.; Von Roedern, B.; Symko-Davies, M.; Kane, V.

2011-01-01T23:59:59.000Z

22

Report to California Energy Commission on route to scale-up of polymer based PV: Funding suggestions for research and technology  

E-Print Network (OSTI)

production potential for solar vent pre- heating, PV, and wind technologies. #12;6 These facilities should for a solar PV system in this report, has many near-ideal areas in which to implement a PV system solar resource, and excellent incentives, a government-owned PV system provides a reasonable payback

Islam, M. Saif

23

Technology Overview: Concentrator PV 2010 Boot Camp (CPV) (Presentation)  

DOE Green Energy (OSTI)

The presentation introduces the various types of CPV technologies and provides a status report of today's CPV companies. Six different architectures of multijunction cells are shown to near or surpass 40% in efficiency. The design space for CPV is quite complex, which is a curse for those trying to narrow it down for the first prototype, but a blessing for those who want multiple pathways for product improvement in coming years.

Kurtz, S.; Bett, A.; Hartsoch, N.

2010-10-11T23:59:59.000Z

24

DG Whitefield Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Sign Up Search Page Edit with form History Facebook icon Twitter icon DG Whitefield Biomass Facility Jump to: navigation, search Name DG Whitefield Biomass Facility Facility DG...

25

Grid-Competitive Residential and Commercial Fully Automated PV Systems Technology: Final technical Report, August 2011  

DOE Green Energy (OSTI)

Under DOE's Technology Pathway Partnership program, SunPower Corporation developed turn-key, high-efficiency residential and commercial systems that are cost effective. Key program objectives include a reduction in LCOE values to 9-12 cents/kWh and 13-18 cents/kWh respectively for the commercial and residential markets. Target LCOE values for the commercial ground, commercial roof, and residential markets are 10, 11, and 13 cents/kWh. For this effort, SunPower collaborated with a variety of suppliers and partners to complete the tasks below. Subcontractors included: Solaicx, SiGen, Ribbon Technology, Dow Corning, Xantrex, Tigo Energy, and Solar Bridge. SunPower's TPP addressed nearly the complete PV value chain: from ingot growth through system deployment. Throughout the award period of performance, SunPower has made progress toward achieving these reduced costs through the development of 20%+ efficient modules, increased cell efficiency through the understanding of loss mechanisms and improved manufacturing technologies, novel module development, automated design tools and techniques, and reduced system development and installation time. Based on an LCOE assessment using NREL's Solar Advisor Model, SunPower achieved the 2010 target range, as well as progress toward 2015 targets.

Brown, Katie E.; Cousins, Peter; Culligan, Matt; Jonathan Botkin; DeGraaff, David; Bunea, Gabriella; Rose, Douglas; Bourne, Ben; Koehler, Oliver

2011-08-26T23:59:59.000Z

26

Efficiency and Throughput Advances in Continuous Roll-to-Roll a-Si Alloy PV Manufacturing Technology: Final Subcontract Report, 22 June 1998 -- 5 October 2001  

DOE Green Energy (OSTI)

This report describes a roll-to-roll triple-junction amorphous silicon alloy PV manufacturing technology developed and commercialized by Energy Conversion Devices (ECD) and United Solar Systems. This low material cost, roll-to-roll production technology has the economies of scale needed to meet the cost goals necessary for widespread use of PV. ECD has developed and built six generations of a-Si production equipment, including the present 5 MW United Solar manufacturing plant in Troy, Michigan. ECD is now designing and building a new 25-MW facility, also in Michigan. United Solar holds the world's record for amorphous silicon PV conversion efficiency, and manufactures and markets a wide range of PV products, including flexible portable modules, power modules, and innovative building-integrated PV (BIPV) shingle and metal-roofing modules that take advantage of this lightweight, rugged, and flexible PV technology. All of United Solar's power and BIPV products are approved by Underwriters Laboratories and carry a 10-year warranty. In this PVMaT 5A subcontract, ECD and United Solar are addressing issues to reduce the cost and improve the manufacturing technology for the ECD/United Solar PV module manufacturing process. ECD and United Solar identified five technology development areas that would reduce the module manufacturing cost in the present 5-MW production facility, and also be applicable to future larger-scale manufacturing facilities.

Ellison, T.

2002-04-01T23:59:59.000Z

27

Developing Market Opportunities for Flexible Rooftop Applications of PV Using Flexible CIGS Technology: Market Considerations  

SciTech Connect

There has been a recent upsurge in developments for building-integrated phototovoltaics (BiPV) roof top materials based on CIGS. Several new companies have increased their presence and are looking to bring products to market for this application in 2011. For roof-top application, there are significant key requirements beyond just having good conversion efficiency. Other attributes include lightweight, as well as moisture-proof, and fully functionally reliable. The companies bringing these new BIPV/BAPV products need to ensure functionality with a rigorous series of tests, and have an extensive set of 'torture' tests to validate the capability. There is a convergence of form, aesthetics, and physics to ensure that the CIGS BiPV deliver on their promises. This article will cover the developments in this segment of the BiPV market and delve into the specific tests and measurements needed to characterize the products. The potential market sizes are evaluated and the technical considerations developed.

Sabnani, L.; Skumanich, A.; Ryabova, E.; Noufi, R.

2011-01-01T23:59:59.000Z

28

Large-Scale PV Integration Study  

DOE Green Energy (OSTI)

This research effort evaluates the impact of large-scale photovoltaic (PV) and distributed generation (DG) output on NV Energys electric grid system in southern Nevada. It analyzes the ability of NV Energys generation to accommodate increasing amounts of utility-scale PV and DG, and the resulting cost of integrating variable renewable resources. The study was jointly funded by the United States Department of Energy and NV Energy, and conducted by a project team comprised of industry experts and research scientists from Navigant Consulting Inc., Sandia National Laboratories, Pacific Northwest National Laboratory and NV Energy.

Lu, Shuai; Etingov, Pavel V.; Diao, Ruisheng; Ma, Jian; Samaan, Nader A.; Makarov, Yuri V.; Guo, Xinxin; Hafen, Ryan P.; Jin, Chunlian; Kirkham, Harold; Shlatz, Eugene; Frantzis, Lisa; McClive, Timothy; Karlson, Gregory; Acharya, Dhruv; Ellis, Abraham; Stein, Joshua; Hansen, Clifford; Chadliev, Vladimir; Smart, Michael; Salgo, Richard; Sorensen, Rahn; Allen, Barbara; Idelchik, Boris

2011-07-29T23:59:59.000Z

29

World Renewable Energy Congress 2011 Sweden Photovoltaic Technology (PV) 8-11 May 2011, Linkping, Sweden  

E-Print Network (OSTI)

. Life cycle inventories are based on manufacturers' data combined with additional calculations, in addition to modules manufacturing process energy inputs. Keywords: Environmental impacts, LCA, PV installations, modules manufacturing electricity use and its corresponding fuel hal-00668178,version1-9Feb2012

Paris-Sud XI, Université de

30

SMA Solar Technology AG 24.07.2012 Wirtschaftlichkeit von PV Hybridsystemen  

E-Print Network (OSTI)

is being applied to develop low-cost micro- concentrators for PV modules. Solar Codes and StandardsThe National Solar Thermal Test Facility at Sandia Sandia National Laboratories conducts research and development (R&D) in solar power, including photovoltaics and concentrating solar power, to strengthen the U

Noé, Reinhold

31

21-kW Thin-Film PV Technology Validation -- An NREL/Solar Energy Centre of India MOU Cooperative Project  

SciTech Connect

This paper summarizes findings during a one-week (27-31 October 2003) site visit to the Thin-Film Technology Test Bed at India's Solar Energy Centre (SEC) near New Delhi. The U.S. and Indian governments signed a Memorandum of Understanding in March 2000 to undertake a 50-50 cost-shared 21-kW thin-film PV technology validation project to evaluate the performance of thin-film photovoltaic (PV) modules under Indian climatic conditions. This project benefits Indian researchers by giving them experience with cost-effective PV materials, and it benefits the United States because data will be sent to the appropriate U.S. thin-film PV manufacturers for evaluation and analysis. During the visit, NREL personnel engaged in technical discussions regarding thin-film PV technologies with Ministry of Non-Conventional Energy Sources engineers and scientists. Issues included inspecting the newly constructed arrays, discussing better methods of electrically loading the PV arrays, taking I-V traces, and gathering baseline I-V data.

McNutt, P. F.; Ullal, H. S.

2005-01-01T23:59:59.000Z

32

21-kW Thin-Film PV Technology Validation -- An NREL/Solar Energy Centre of India MOU Cooperative Project  

DOE Green Energy (OSTI)

This paper summarizes findings during a one-week (27-31 October 2003) site visit to the Thin-Film Technology Test Bed at India's Solar Energy Centre (SEC) near New Delhi. The U.S. and Indian governments signed a Memorandum of Understanding in March 2000 to undertake a 50-50 cost-shared 21-kW thin-film PV technology validation project to evaluate the performance of thin-film photovoltaic (PV) modules under Indian climatic conditions. This project benefits Indian researchers by giving them experience with cost-effective PV materials, and it benefits the United States because data will be sent to the appropriate U.S. thin-film PV manufacturers for evaluation and analysis. During the visit, NREL personnel engaged in technical discussions regarding thin-film PV technologies with Ministry of Non-Conventional Energy Sources engineers and scientists. Issues included inspecting the newly constructed arrays, discussing better methods of electrically loading the PV arrays, taking I-V traces, and gathering baseline I-V data.

McNutt, P. F.; Ullal, H. S.

2005-01-01T23:59:59.000Z

33

DG Energy Solutions | Open Energy Information  

Open Energy Info (EERE)

92101 Product Develops owns and operates industrial, commercial and institutional cogeneration plants from 2-50MW. References DG Energy Solutions1 LinkedIn Connections...

34

Realisation of the full potential of PV Extract of report from workgroup 4 in EU's PV Technology Platform by Peter Ahm.  

E-Print Network (OSTI)

. Realisation of the full potential of PV as an important and integral part of our energy supply exploitation and to continue to innovate as the industry moves towards being a major contributor to energy of the use of energy from renewable sources recognises this (box right)2 . This chapter considers

35

Evaluation of the Performance of the PVUSA Rating Methodology Applied to Dual Junction PV Technology: Preprint (Revised)  

DOE Green Energy (OSTI)

The PVUSA (Photovoltaics for Utility Scale Applications) project in the 1990's developed a rating methodology for PV performance evaluation which has become popular, and even incorporated into concentrating PV rating standards This report apply that method to rack-mounted dual-junction PV system, and produces a system rating.

Myers, D. R.

2009-07-01T23:59:59.000Z

36

Pv =PYv  

Science Conference Proceedings (OSTI)

... Where pv is partial pressure of vapor, yv is mole fraction of vapor, and P ... Therefore, the organic compound should be stored in the liquid form in the ...

2011-10-04T23:59:59.000Z

37

PV | OpenEI  

Open Energy Info (EERE)

PV PV Dataset Summary Description This dataset is from the report Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature (J. Macknick, R. Newmark, G. Heath and K.C. Hallett) and provides estimates of operational water withdrawal and water consumption factors for electricity generating technologies in the United States. Estimates of water factors were collected from published primary literature and were not modified except for unit conversions. Source National Renewable Energy Laboratory Date Released August 28th, 2012 (2 years ago) Date Updated Unknown Keywords coal consumption csp factors geothermal PV renewable energy technologies Water wind withdrawal Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon Operational water consumption and withdrawal factors for electricity generating technologies (xlsx, 77.7 KiB)

38

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network (OSTI)

and installed DG equipment (PV, solar thermal, natural gas5. a low storage, PV, and solar thermal price run; and 6. aenergy sources such as PV or solar thermal. However, this

Stadler, Michael

2008-01-01T23:59:59.000Z

39

2008 Solar Technologies Market Report  

E-Print Network (OSTI)

Global, average PV module prices, all PV technologies, 1980Global, average PV module prices, all PV technologies, 1980to mid-1980s. The price of PV by 1987 was approximately $

Price, S.

2010-01-01T23:59:59.000Z

40

PV and PV/hybrid products for buildings  

DOE Green Energy (OSTI)

Residential, commercial, and industrial buildings combined are the largest consumers of electricity in the United States and represent a significant opportunity for photovoltaic (PV) and PV/hybrid systems. The U.S. Department of Energy (DOE) is conducting a phased research and product development program, Building Opportunities in the United States for Photovoltaics (PV:BONUS), focused on this market sector. The purpose of the program is to develop technologies and foster business arrangements integrating cost-effective PV or hybrid products into buildings. The first phase was completed in 1996 and a second solicitation, PV:BONUS2, was initiated during 1997. These projects are resulting in a variety of building-integrated products. This paper summarizes the recent progress of the seven firms and collaborative teams currently participating in PV:BONUS2 and outlines planned work for the final phase of their work.

Thomas, H. P.; Hayter, S. J.; Martin, R. L., Pierce, L. K.

2000-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "dg technologies pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

PV Cz silicon manufacturing technology improvements. Annual subcontract report, 1 April 1992--31 March 1993  

DOE Green Energy (OSTI)

This report describes work performed under a 3-year contract to demonstrate significant cost reductions and improvements in manufacturing technology. The work focused on near-term projects for implementation in the Siemens Solar Industries Czochralski (Cz) manufacturing facility in Camarillo, California. The work was undertaken to increase the commercial viability and volume of photovoltaic manufacturing by evaluating the most significant cost categories and then lowering the cost of each item through experimentation, materials refinement, and better industrial engineering. The initial phase of the program concentrated on the areas of crystal growth; wafer technology; and environmental, safety, and health issues.

Jester, T. [Siemens Solar Industries, Camarillo, CA (United States)

1994-01-01T23:59:59.000Z

42

Overview of PV balance-of-systems technology: Experience and guidelines for utility ties in the United States of America  

DOE Green Energy (OSTI)

The U.S. National Photovoltaic Program began in 1975 by supporting the development of terrestrial PV modules and hardware associated with grid-connected PV systems. Early PV-system demonstration programs were also supported and cost shared by the U.S. Department of Energy (DOE). A wide variety of PV systems were deployed, usually with utility participation. The early demonstration projects provided, and continue to provide, valuable PV system experience to utilities, designers and suppliers. As a result of experience gained, several important milestones in codes and standards pertaining to the design, installation and operation of photovoltaic (PV) systems have been completed. These code and standard activities were conducted through collaboration of participants from all sectors of the PV industry, utilities and the US DOE National Photovoltaic Program. Codes and standards that have been proposed, written, or modified include changes and additions for the 1999 National Electric Code{reg_sign} (NEC{reg_sign}), standards for fire and personnel safety, system testing, field acceptance, component qualification, and utility interconnection. Project authorization requests with the Institute of Electrical and Electronic Engineers (IEEE) have resulted in standards for component qualification and were further adapted for standards used to list PV modules and balance-of-system components. Industry collaboration with Underwriter Laboratories, Inc., with the American Society for Testing and Materials, and through critical input and review for international standards with the International Electrotechnical Commission have resulted in new and revised domestic and international standards for PV applications. Activities related to work on codes and standards through the International Energy Agency are also being supported by the PV industry and the US DOE. The paper shows relationships between activities in standards writing.

Bower, W. [Sandia National Labs., Albuquerque, NM (United States); Whitaker, C. [Endecon Engineering, San Ramon, CA (United States)

1997-10-01T23:59:59.000Z

43

Project factsheet for EC DG RTD brochure  

E-Print Network (OSTI)

The European Commission DG Research brochure contains project factsheets for FP7 funded Integrated Activities projects. Each factsheet is one page (recto-verso) detailing the general aims and scope of the project. The factsheets are directed at the general public.

Koutchouk, J P

2009-01-01T23:59:59.000Z

44

PV FAQs: What's New in Concentrating PV?  

DOE Green Energy (OSTI)

This publication, one in a series of PV FAQs, addresses concentrating PV: what it is, how it works, the challenges it faces, recent breakthroughs, and its future direction.

Not Available

2005-02-01T23:59:59.000Z

45

Energy 101: Solar PV | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar PV Solar PV Energy 101: Solar PV Addthis Below is the text version for the Energy 101: Solar PV video. The video opens with "Energy 101: Solar PV." This is followed by a timelapse shot of a city skyline as day turns to night. All right, we all know that the sun's energy creates heat and light, but it can also be converted to make electricity...and lots of it. The video shows images of building roofs, with and without solar photovoltaic panels. The words "Solar Photovoltaics (PV) appear onscreen over an image of a photovoltaic panel. One technology is called solar photovoltaics, or PV for short. Various images of solar panels appear onscreen, followed by images of photovoltaic manufacturing processes. You've probably seen PV panels around for years... but recent advancements

46

NREL PV working with industry, 1st Quarter 1999  

SciTech Connect

This issue of PV Working with Industry profiles the participants in the Photovoltaic Manufacturing Technology (PVMaT) project.

Moon, S.

1999-05-20T23:59:59.000Z

47

EFG Technology and Diagnostic R&D for Large-Scale PV Manufacturing: Annual Subcontract Report, 1 July 2003--30 June 2004  

DOE Green Energy (OSTI)

The objective of this subcontract over its duration was to carry out R&D to advance RWE Schott Solar Inc. (formerly ASE Americas)--''RSSI''--manufacturing technology, processes and capabilities of wafer, cell, and module manufacturing lines, which will help configure them for scaling up of EFG ribbon technology to the 50-100 MW PV factory level. The basic EFG technology principles have already been established and are being demonstrated on the scale of 10-20 MW manufacturing lines. By the successful completion of this effort, RSSI is planning to reduce overhead costs of production and of direct, variable manufacturing costs with the scale up of EFG processes and equipment currently in use. To achieve these objectives, RSSI needs to maintain or enhance yield, quality, process control, and throughput relative to present levels throughout the three areas of wafer, cell, and module manufacture.

Kalejs, J.; Aurora, P.; Bathey, B.; Cao, J.; Gonsiorawski, R; Heath, B.; Kubasti, J.; Mackintosh, B.; Ouellette, M.; Rosenblum. M.; Southimath, S.; Xavier, G.

2005-01-01T23:59:59.000Z

48

Energy 101: Solar PV | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar PV Solar PV Energy 101: Solar PV Addthis Description Solar photovoltaic (PV) systems can generate clean, cost-effective power anywhere the sun shines. This video shows how a PV panel converts the energy of the sun into renewable electricity to power homes and businesses. Duration 2:01 Topic Solar Energy Economy Credit Energy Department Video MR. : All right, we all know that the sun's energy creates heat and light. But it can also be converted to make electricity, and lots of it. One technology is called solar photovoltaics or PV for short. You've probably seen PV panels around for years, but recent advancements have greatly improved their efficiency and electrical output. Enough energy from the sun hits the earth every hour to power the planet for an

49

Kenmos PV | Open Energy Information  

Open Energy Info (EERE)

Kenmos PV Kenmos PV Jump to: navigation, search Name Kenmos PV Place Tainan, Taiwan Sector Solar Product Solar business unit of Kenmos Technology which was set up in Sep 2007, to produce thin film PV cells. Coordinates 22.99721°, 120.180862° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":22.99721,"lon":120.180862,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

50

Solar PV Market Update, October 2013  

Science Conference Proceedings (OSTI)

Volume 7 of EPRIs quarterly Solar PV Market Update provides continued insight into some of the front line trends that are afoot throughout the photovoltaic segment. Like previous Updates, it synthesizes primary and secondary data from multiple sources in an effort to highlight economic, policy, and technology developments that are likely to impact utility solar PV investment and planning efforts.This report investigates some of the recent PV market and policy developments that ...

2013-10-15T23:59:59.000Z

51

Voltage Stability Analysis with High Distributed Generation (DG) Penetration.  

E-Print Network (OSTI)

??Interest in Distributed Generation (DG) in power system networks has been growing rapidly. This increase can be explained by factors such as environmental concerns, the (more)

Al-Abri, Rashid

2012-01-01T23:59:59.000Z

52

EFG Technology and Diagnostic R&D for Large-Scale PV Manufacturing; Final Subcontract Report, 1 March 2002 - 31 March 2005  

DOE Green Energy (OSTI)

The objective of this subcontract was to carry out R&D to advance the technology, processes, and performance of RWE Schott-Solar's wafer, cell, and module manufacturing lines, and help configure these lines for scaling up of edge-defined, film-fed growth (EFG) ribbon technology to the 50-100 MW PV factory level. EFG ribbon manufacturing continued to expand during this subcontract period and now has reached a capacity of 40 MW. EFG wafer products were diversified over this time period. In addition to 10 cm x 10 cm and 10 cm x 15 cm wafer areas, which were the standard products at the beginning of this program, R&D has focused on new EFG technology to extend production to 12.5 cm x 12.5 cm EFG wafers. Cell and module production also has continued to expand in Billerica. A new 12-MW cell line was installed and brought on line in 2003. R&D on this subcontract improved cell yield and throughput, and optimized the cell performance, with special emphasis on work to speed up wafer transfer, hence enhancing throughput. Improvements of wafer transfer processes during this program have raised cell line capacity from 12 MW to over 18 MW. Optimization of module manufacturing processes was carried out on new equipment installed during a manufacturing upgrade in Billerica to a 12-MW capacity to improve yield and reliability of products.

Kalejs, J.; Aurora, P.; Bathey, B.; Cao, J.; Doedderlein, J.; Gonsiorawski, R.; Heath, B.; Kubasti, J.; Mackintosh, B.; Ouellette, M.; Rosenblum, M.; Southimath, S.; Xavier, G.

2005-10-01T23:59:59.000Z

53

November 21, 2000 PV Lesson Plan 2 Solar Electric Arrays  

E-Print Network (OSTI)

on innovations in technology that drive PV industry growth. The NCPV is directed to use U.S. national laboratories and universities to accelerate PV as a viable energy option in the United States. #12;Sustainable generations to meet their own needs. ­ UN Bruntland Commission Our Focus: Making PV More Sustainable

Oregon, University of

54

solar PV | OpenEI  

Open Energy Info (EERE)

PV PV Dataset Summary Description This dataset highlights trends in financing terms for U.S. renewable energy projects that closed financing between Q3 2009 and Q3 2010. Information tracked includes debt interest rates, equity returns, financial structure applied, PPA duration, and other information. NREL's Renewable Energy Finance Tracking Initiative (REFTI) tracks renewable energy project financing terms by technology and project size. The intelligence gathered is intended to reveal industry trends and to inform input assumptions for models. Source NREL Date Released March 27th, 2011 (3 years ago) Date Updated Unknown Keywords biomass financial geothermal project finance solar PV wind onshore Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon RE Project Finance Trends Q3 2009 - Q3 2010 (xlsx, 309.2 KiB)

55

The Value of Distributed Generation (DG) under Different Tariff Structures  

Open Energy Info (EERE)

The Value of Distributed Generation (DG) under Different Tariff Structures The Value of Distributed Generation (DG) under Different Tariff Structures Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Value of Distributed Generation (DG) under Different Tariff Structures Focus Area: Renewable Energy Topics: Socio-Economic Website: eetd.lbl.gov/ea/emp/reports/60589.pdf Equivalent URI: cleanenergysolutions.org/content/value-distributed-generation-dg-under Language: English Policies: "Regulations,Financial Incentives" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. Regulations: Utility/Electricity Service Costs This report examines the standby tariff structures recently implemented in New York as a result of utilities feelings toward distributed generation

56

Stabilized PV system  

DOE Patents (OSTI)

A stabilized PV system comprises an array of photovoltaic (PV) assemblies mounted to a support surface. Each PV assembly comprises a PV module and a support assembly securing the PV module to a position overlying the support surface. The array of modules is circumscribed by a continuous, belt-like perimeter assembly. Cross strapping, extending above, below or through the array, or some combination of above, below and through the array, secures a first position along the perimeter assembly to at least a second position along the perimeter assembly thereby stabilizing the array against wind uplift forces. The first and second positions may be on opposite sides on the array.

Dinwoodie, Thomas L. (Piedmont, CA)

2002-12-17T23:59:59.000Z

57

Solar PV Market Update: Volume 1 - Spring  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) Solar PV Market Update provides a snapshot of photovoltaic (PV) market information, along with brief EPRI analyses, to inform EPRI members about economic-, policy-, and technology-related developments in the segment. Delivered on a quarterly basis, the document synthesizes data reporting gleaned from a variety of primary and secondary sources, highlighting specific industry issuesincluding market outlooks, equipment cost and pricing trends, system design and e...

2012-05-21T23:59:59.000Z

58

Development of Large High-Voltage PV Modules with Improved Reliability and Lower Cost: Final Subcontract Report, 1 April 2006--31 August 2007  

DOE Green Energy (OSTI)

The overall objective was to provide NREL with technical results that enhance its capability to improve PV manufacturing technology by developing a PV module with specified characteristics.

Wohlgemuth, J.

2009-05-01T23:59:59.000Z

59

Sunshine PV | Open Energy Information  

Open Energy Info (EERE)

Sunshine PV Jump to: navigation, search Name Sunshine PV Place Taiwan Sector Solar Product Taiwan-based subsidiary of Solartech Energy and thin-film PV module supplier. References...

60

NanoPV Corporation | Open Energy Information  

Open Energy Info (EERE)

NanoPV Corporation NanoPV Corporation Jump to: navigation, search Name NanoPV Corporation Place Ewing, New Jersey Zip 8618 Product A New Jersey-based thin film PV cell producer and technology provider. Coordinates 36.638474°, -83.428453° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.638474,"lon":-83.428453,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "dg technologies pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

CdTe PV: Real and Perceived EHS Risks  

DOE Green Energy (OSTI)

As CdTe photovoltaics reached commercialization, questions have been raised about potential cadmium emissions from CdTe PV modules. Some have attacked the CdTe PV technology as unavoidably polluting the environment, and made comparisons of hypothetical emissions from PV modules to cadmium emissions from coal fired power plants. This paper gives an overview of the technical issues pertinent to these questions and further explores the potential of EHS risks during production, use and decommissioning of CdTe PV modules. The following issues are discussed: (a) The physical and toxicological properties of CdTe, (b) comparisons of Cd use in CdTe PV with its use in other technologies and products, and the (c) the possibility of CdTe releases from PV modules.

Fthenakis, V.; Zweibel, K.

2003-05-01T23:59:59.000Z

62

DOE Request for Information (RFI) DE-FOA-0000153 PV Manufacturing Initiative: Summary Report, February 2010  

DOE Green Energy (OSTI)

This document sums up results of the PV Manufacturing Request for Information (RFI), DE-FOA-0000153, which supports the PV Manufacturing Initiative, launched by DOE Solar Energy Technologies Program.

Not Available

2010-02-01T23:59:59.000Z

63

PV performance modeling workshop summary report.  

DOE Green Energy (OSTI)

During the development of a solar photovoltaic (PV) energy project, predicting expected energy production from a system is a key part of understanding system value. System energy production is a function of the system design and location, the mounting configuration, the power conversion system, and the module technology, as well as the solar resource. Even if all other variables are held constant, annual energy yield (kWh/kWp) will vary among module technologies because of differences in response to low-light levels and temperature. A number of PV system performance models have been developed and are in use, but little has been published on validation of these models or the accuracy and uncertainty of their output. With support from the U.S. Department of Energy's Solar Energy Technologies Program, Sandia National Laboratories organized a PV Performance Modeling Workshop in Albuquerque, New Mexico, September 22-23, 2010. The workshop was intended to address the current state of PV system models, develop a path forward for establishing best practices on PV system performance modeling, and set the stage for standardization of testing and validation procedures for models and input parameters. This report summarizes discussions and presentations from the workshop, as well as examines opportunities for collaborative efforts to develop objective comparisons between models and across sites and applications.

Stein, Joshua S.; Tasca, Coryne Adelle (SRA International, Inc., Fairfax, VA); Cameron, Christopher P.

2011-05-01T23:59:59.000Z

64

Quantify Degradation Rates and Mechanisms of PV Modules and Systems Installed in Florida Through Comprehensive Experimental and Theoretical Analysis (Poster)  

Science Conference Proceedings (OSTI)

The economic viability of photovoltaic (PV) technologies is inextricably tied to both the electrical performance and degradation rate of the PV systems, which are the generators of electrical power in PV systems. Over the past 15 years, performance data have been collected on numerous PV systems installed throughout the state of Florida and will be presented.

Sorloaica-Hickman, N.; Davis, K.; Kurtz, S.; Jordan, D.

2011-02-01T23:59:59.000Z

65

Grid integrated distributed PV (GridPV).  

SciTech Connect

This manual provides the documentation of the MATLAB toolbox of functions for using OpenDSS to simulate the impact of solar energy on the distribution system. The majority of the functions are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in the OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feeder on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions. Each function in the toolbox is documented with the function use syntax, full description, function input list, function output list, example use, and example output.

Reno, Matthew J.; Coogan, Kyle [Georgia Institute of Technology, Atlanta, GA

2013-08-01T23:59:59.000Z

66

Report on PV Test Sites and Test Prepared for the  

E-Print Network (OSTI)

Report on PV Test Sites and Test Protocols Prepared for the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Under Cooperative Agreement No. DE-FC26-06NT42847 Hawai`i Distributed Energy Resource Technologies for Energy Security Revised Task 8 Deliverable PV Test Sites and Test

67

DG Fairhaven Power Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Fairhaven Power Biomass Facility Fairhaven Power Biomass Facility Jump to: navigation, search Name DG Fairhaven Power Biomass Facility Facility DG Fairhaven Power Sector Biomass Owner Marubeni Sustainable Energy Location Eureka, California Coordinates 40.8020712°, -124.1636729° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.8020712,"lon":-124.1636729,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

68

DOE High Performance Concentrator PV Project  

DOE Green Energy (OSTI)

Much in demand are next-generation photovoltaic (PV) technologies that can be used economically to make a large-scale impact on world electricity production. The U.S. Department of Energy (DOE) initiated the High-Performance Photovoltaic (HiPerf PV) Project to substantially increase the viability of PV for cost-competitive applications so that PV can contribute significantly to both our energy supply and environment. To accomplish such results, the National Center for Photovoltaics (NCPV) directs in-house and subcontracted research in high-performance polycrystalline thin-film and multijunction concentrator devices with the goal of enabling progress of high-efficiency technologies toward commercial-prototype products. We will describe the details of the subcontractor and in-house progress in exploring and accelerating pathways of III-V multijunction concentrator solar cells and systems toward their long-term goals. By 2020, we anticipate that this project will have demonstrated 33% system efficiency and a system price of $1.00/Wp for concentrator PV systems using III-V multijunction solar cells with efficiencies over 41%.

McConnell, R.; Symko-Davies, M.

2005-08-01T23:59:59.000Z

69

Learning curves for environmental technology and their importance for climate policy analysis  

E-Print Network (OSTI)

DG. Dynamics of energy technologies and global change.CO. Experience curves for energy technology policy. Paris,o f technologies, including energy technologies [3-7]. Cost

Rubin, Edward S.; Taylor, Margaret R; Yeh, Sonia; Hounshell, David A.

2007-01-01T23:59:59.000Z

70

Optimal Design of Hybrid Energy System with PV/ Wind Turbine/ Storage: A Case Study  

E-Print Network (OSTI)

Optimal Design of Hybrid Energy System with PV/ Wind Turbine/ Storage: A Case Study Rui Huang development of photovoltaic (PV), wind turbine and battery technologies, hybrid energy system has received of the hybrid energy system that consists of PV arrays, wind turbines and battery storage and use that to define

Low, Steven H.

71

Strategic Sequencing for State Distributed PV Policies: A Quantitative Analysis of Policy Impacts and Interactions  

DOE Green Energy (OSTI)

State and local policymakers show increasing interest in spurring the development of customer-sited distributed generation (DG), in particular solar photovoltaic (PV) markets. Prompted by that interest, this analysis examines the use of state policy as a tool to support the development of a robust private investment market. This analysis builds on previous studies that focus on government subsidies to reduce installation costs of individual projects and provides an evaluation of the impacts of policies on stimulating private market development.

Doris, E.; Krasko, V.A.

2012-10-01T23:59:59.000Z

72

Open PV Project: Unlocking PV Installation Data (Brochure)  

SciTech Connect

This brochure summarizes the Open PV Project, a collaborative effort of government, industry, and the public to compile a comprehensive database of PV installations in the United States. The brochure outlines the purpose and history of the project as well as the main capabilities and benefits of the online Open PV tool. The brochure also introduces how features of the tool are used, and it describes the sources and characteristics of Open PV's data and data collection processes.

Not Available

2012-04-01T23:59:59.000Z

73

Photovoltaic Technology Incubator Awards  

SciTech Connect

This factsheet gives an overview of the Photovoltaic (PV) Technology Incubator Awards and the Solar America Initiative (SAI).

2007-06-01T23:59:59.000Z

74

PV System Performance and Standards  

DOE Green Energy (OSTI)

This paper presents a brief overview of the status and accomplishments during fiscal year (FY) 2005 of the Photovoltaic (PV) System Performance and Standards Subtask, which is part of the PV Systems Engineering Project (a joint NREL-Sandia project).

Osterwald, C. R.

2005-11-01T23:59:59.000Z

75

Blanc, I., Beloin-Saint-Pierre, D., Payet, J., Jacquin, P., Adra, N., Mayer, D., Espace-PV: key sensitive parameters for environmental impacts of grid-connected PV systems with LCA , In Proceedings of the 23rd  

E-Print Network (OSTI)

of Philadelphia uses an 85 kW rooftop PV installation. (Mercury Solar Solutions/ PIX 18064) #12;Solar Powering technologies fall into these main categories: photovoltaics (PV), concentrating solar power (CSP), solar water heating (SWH), and solar space heating and cooling.1 PV and CSP technologies produce electricity; SWH

Paris-Sud XI, Université de

76

Thermal and Electrical Performance Evaluation of PV/T Collectors in UAE.  

E-Print Network (OSTI)

?? Photovoltaic Thermal/Hybrid collectors are an emerging technology that combines PV and solar thermal collectors by producing heat and electricity simultaneously. In this paper, thermal (more)

Kaya, Mustafa

2013-01-01T23:59:59.000Z

77

NREL: Jobs and Economic Competitiveness - Solar PV Manufacturing Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar PV Manufacturing Cost Analysis Solar PV Manufacturing Cost Analysis Between 2000 and 2010 global shipments of PV cells/modules grew 53% (compound annual growth rate [CAGR]). At the same time, the U.S. market share has slipped from 30% to 7% (30% CAGR) while China/Taiwan has grown from <2% to 54% (115% CAGR) to become the leader in global production. NREL's manufacturing cost analysis has focused on understanding the regional competitiveness of solar PV manufacturing specifically: What factors have led to China's dramatic growth in PV? Is it sustainable? Can the US compete? NREL's manufacturing cost analysis studies show that: U.S. incentives to strengthen access to capital for investment in innovative solar technologies could offset China's current advantage U.S. incentives are dwarfed by the scale of Chinese incentives

78

Status of High Performance PV: Polycrystalline Thin-Film Tandems  

DOE Green Energy (OSTI)

The High-Performance Photovoltaic (HiPerf PV) Project was initiated by the U.S. Department of Energy to substantially increase the viability of photovoltaics (PV) for cost-competitive applications so that PV can contribute significantly to our energy supply and our environment. The HiPerf PV Project aims at exploring the ultimate performance limits of existing PV technologies, approximately doubling their sunlight-to-electricity conversion efficiencies during its course. This work includes bringing thin-film cells and modules toward 25% and 20% efficiencies, respectively, and developing multijunction concentrator cells and modules able to convert more than one-third of the sun's energy to electricity (i.e., 33% efficiency). This paper will address recent accomplishments of the NREL in-house research effort involving polycrystalline thin-film tandems, as well as the research efforts under way in the subcontracted area.

Symko-Davies, M.

2005-02-01T23:59:59.000Z

79

Ambiental PV | Open Energy Information  

Open Energy Info (EERE)

Ambiental PV Ambiental PV Jump to: navigation, search Name Ambiental PV Place Bahia, Brazil Zip 40140-380 Sector Carbon Product Bahia-based carbon consultancy firm. References Ambiental PV[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Ambiental PV is a company located in Bahia, Brazil . References ↑ "Ambiental PV" Retrieved from "http://en.openei.org/w/index.php?title=Ambiental_PV&oldid=342095" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 186306960

80

Production techniques of PV's and polycrystalline PV performance analyses for permanent resistive load  

Science Conference Proceedings (OSTI)

Photovoltaic (PV) panels which are used to convert solar energy to electrical energy one of the fastest growing source on energy sector. Their efficiencies are increasing day by day with new technologies. Photovoltaic's average efficiencies are still ... Keywords: D.C. loads, energy consumption, photovoltaic, production techniques

Safak Sa?lam; Gkhan Koyi?it; Nevzat Onat

2009-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "dg technologies pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

U.S. Department of Energy PV Roadmaps | Open Energy Information  

Open Energy Info (EERE)

PV Roadmaps PV Roadmaps Jump to: navigation, search Logo: U.S. Department of Energy PV Roadmaps Name U.S. Department of Energy PV Roadmaps Agency/Company /Organization United States Department of Energy Sector Energy Focus Area Solar Resource Type Publications, Guide/manual Website http://www1.eere.energy.gov/so References U.S. Department of Energy PV Roadmaps[1] Abstract Ten photovoltaic (PV) technology roadmaps were developed in 2007 by staff at the National Renewable Energy Laboratory (NREL), Sandia National Laboratories, U.S. Department of Energy (DOE), and experts from universities and private industry. "Ten photovoltaic (PV) technology roadmaps were developed in 2007 by staff at the National Renewable Energy Laboratory (NREL), Sandia National Laboratories, U.S. Department of Energy (DOE), and experts from

82

Going Solar in Record Time with Plug-and-Play PV | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Going Solar in Record Time with Plug-and-Play PV Going Solar in Record Time with Plug-and-Play PV Going Solar in Record Time with Plug-and-Play PV April 24, 2012 - 6:10pm Addthis A plug-and-play PV system is envisioned as a consumer friendly solar technology that uses an automatic detection system to initiate communication between the solar energy system and the utility when plugged into a PV-ready circuit. | Photo by iStock. A plug-and-play PV system is envisioned as a consumer friendly solar technology that uses an automatic detection system to initiate communication between the solar energy system and the utility when plugged into a PV-ready circuit. | Photo by iStock. Kevin Lynn Systems Integration Lead, SunShot Initiative What does this project do? The Energy Department is investing up to $5 million this year to

83

DG Demonetz Validierung (Smart Grid Project) | Open Energy Information  

Open Energy Info (EERE)

Demonetz Validierung (Smart Grid Project) Demonetz Validierung (Smart Grid Project) Jump to: navigation, search Project Name DG Demonetz Validierung Country Austria Headquarters Location Salzburg, Austria Coordinates 47.80949°, 13.05501° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.80949,"lon":13.05501,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

84

Efficiency and throughput advances in continuous roll-to-roll a-Si alloy PV manufacturing technology: Annual technical progress report: 22 June 1998--21 June 1999  

DOE Green Energy (OSTI)

This document reports on work performed by Energy Conversion Devices, Inc. (ECD) during Phase 1 of this subcontract. During this period, ECD researchers: (1) Completed design and construction of new, improved substrate heater; (2) Tested and verified improved performance of the new substrate heater in the pilot machine; (3) Verified improved performance of the new substrate heater in the production machine; (4) Designed and bench-tested a new infrared temperature sensor; (5) Installed a prototype new infrared temperature sensor in the production machine for evaluation; (6) Designed a new rolling thermocouple temperature sensor; (7) Designed and bench-tested a reflectometer for the backreflector deposition machine; (8) Designed and bench-tested in-line non-contacting cell diagnostic sensor and PV capacitive diagnostic system; (9) Installed the in-line cell diagnostic sensor in the 5-MW a-Si deposition machine for evaluation; (10) Demonstrated a new low-cost zinc metal process in the pilot back reflector machine; and (11) Fully tested a new cathode design for improved uniformity.

Izu, M.

1999-11-09T23:59:59.000Z

85

Assessment of Rooftop and Building-Integrated PV Systems for Distributed Generation  

Science Conference Proceedings (OSTI)

Photovoltaics (PV) is the technology of solar cells -- solid-state devices that directly, silently, and cleanly convert solar energy into electricity. Although commercially available for many years, PV technology has only recently become sufficiently affordable and efficient to be a practical alternative or supplement to conventional grid power. PV devices are commonly mounted on a structure's rooftop, but are increasingly integrated into building components such as siding, glass, or roof tiles. This rep...

2003-03-04T23:59:59.000Z

86

Modelling Versions in Collaborative Work School of Computing, Staffordshire University, Stafford ST18 0DG, UK.  

E-Print Network (OSTI)

, Stafford ST18 0DG, UK. Email: A.J.Dix@soc.staffs.ac.uk Tom Rodden and Ian Sommerville Cooperative Systems

Dix, Alan

87

Characterizing Shading Losses on Partially Shaded PV Systems (Presentation)  

DOE Green Energy (OSTI)

Presentation on shaded PV power loss, practical issues with modeling shaded PV, and methods of implementing partially shaded PV modeling.

Deline, C.

2010-09-23T23:59:59.000Z

88

Outdoor PV Degradation Comparison  

DOE Green Energy (OSTI)

As photovoltaic (PV) penetration of the power grid increases, it becomes vital to know how decreased power output; may affect cost over time. In order to predict power delivery, the decline or degradation rates must be determined; accurately. At the Performance and Energy Rating Testbed (PERT) at the Outdoor Test Facility (OTF) at the; National Renewable Energy Laboratory (NREL) more than 40 modules from more than 10 different manufacturers; were compared for their long-term outdoor stability. Because it can accommodate a large variety of modules in a; limited footprint the PERT system is ideally suited to compare modules side-by-side under the same conditions.

Jordan, D. C.; Smith, R. M.; Osterwald, C. R.; Gelak, E.; Kurtz, S. R.

2011-02-01T23:59:59.000Z

89

PV FAQs: What Is the Energy Payback for PV?  

DOE Green Energy (OSTI)

How long does a PV system have to operate to recover the energy-and the associated generation of pollution and CO2- that went into making the system? Energy paybacks for rooftop systems range from 1 to 4 years, depending on the system. Based on models and real data, the idea that PV cannot pay back its energy investment is simply a myth.

Not Available

2004-01-01T23:59:59.000Z

90

Integrating High Penetrations of PV into Southern California: Year 2 Project Update; Preprint  

DOE Green Energy (OSTI)

Southern California Edison (SCE) is well into a five-year project to install a total of 500 MW of distributed photovoltaic (PV) energy within its utility service territory. Typical installations to date are 1-3 MW peak rooftop PV systems that interconnect to medium-voltage urban distribution circuits or larger (5 MW peak) ground-mounted systems that connect to medium-voltage rural distribution circuits. Some of the PV system interconnections have resulted in distribution circuits that have a significant amount of PV generation compared to customer load, resulting in high-penetration PV integration scenarios. The National Renewable Energy Laboratory (NREL) and SCE have assembled a team of distribution modeling, resource assessment, and PV inverter technology experts in order to investigate a few of the high-penetration PV distribution circuits. Currently, the distribution circuits being studied include an urban circuit with a PV penetration of approximately 46% and a rural circuit with a PV penetration of approximately 60%. In both cases, power flow on the circuit reverses direction, compared to traditional circuit operation, during periods of high PV power production and low circuit loading. Research efforts during year two of the five-year project were focused on modeling the distribution system level impacts of high-penetration PV integrations, the development and installation of distribution circuit data acquisition equipment appropriate for quantifying the impacts of high-penetration PV integrations, and investigating high-penetration PV impact mitigation strategies. This paper outlines these research efforts and discusses the following activities in more detail: the development of a quasi-static time-series test feeder for evaluating high-penetration PV integration modeling tools; the advanced inverter functions being investigated for deployment in the project's field demonstration and a power hardware-in-loop test of a 500-kW PV inverter implementing a limited set of advanced inverter functions.

Mather, B.; Neal, R.

2012-08-01T23:59:59.000Z

91

Blocking diodes and fuses in low-voltage PV systems  

DOE Green Energy (OSTI)

Instructions and labels supplied with listed PV modules and the requirements of the National Electrical Code (NEC) dictate that a series fuse shall be used to protect the module against backfeed currents. Few of the hundreds of thousands of low-voltage (12, 24, and 48-volt) stand-alone photovoltaic (PV) power systems use series fuses on each module or string of modules. Tests and simulations at the Southwest Technology Development Institute (TDI) and at Sandia National Laboratories (SNL) have established that the absence of these fuses can pose significant fire and safety hazards even on 12-volt PV systems. If the system has sufficient backfeed voltage and current, it is possible that a ground fault in the wiring or inside a module can result in the destruction of a PV module.

Wiles, J.C. [New Mexico State Univ., Las Cruces, NM (United States). Southwest Technology Development Inst.; King, D.L. [Sandia National Labs., Albuquerque, NM (United States). Photovoltaic Systems R and D

1997-11-01T23:59:59.000Z

92

New codes and standards for utility - interconnection of AC PV modules  

DOE Green Energy (OSTI)

Photovoltaic (PV) modules that provide only ac power give new dimensions to the use of, and utility interface of, PV systems because all of the dc issues are virtually eliminated. These AC PV modules offer the important advantage that customers may now purchase a PV system without hiring a design engineer. A qualified electrician will be able to install a complete PV system that performs as expected and meets local electrical codes. Simple installations of additional AC PV modules will be possible once the proper branch circuit wiring and protection have been installed. Codes and standards are currently being written to address the utility-interconnect issues for AC PV modules and other interactive inverters. An industry-supported Task Group has recently written and submitted proposals for changes to bring Article 690 of the 1999 National Electrical Code{reg_sign} (NEC{reg_sign}) up to the state-of-the-art for PV devices such as AC PV modules. This paper summarizes the proposed code changes and standards related to the evolving AC PV module technology in the United States. Topics such as the need for dedicated branch circuits for AC PV modules in residential applications are discussed and analyzed. Requirements for limiting the number of AC modules on a branch circuit and the listing requirements that make safe installations are discussed. Coordination of all standards activities for AC module installations, the building-integrated perspectives, and utility-interface issues is discussed.

Bower, W.

1997-10-01T23:59:59.000Z

93

Technology support for high-throughput processing of thin-film CdTe PV modules: Annual technical report, Phase 1, 1 April 1998--31 March 1999  

DOE Green Energy (OSTI)

This report describes work performed by First Solar, L.L.C., during Phase 1 of this 3-year subcontract. The research effort of this subcontract is divided into four areas: (1) process and equipment development, (2) efficiency improvement, (3) characterization and analysis, and (4) environmental, health, and safety. As part of the process development effort, the output of the pilot-production facility was increased. More than 6,200 8-ft{sup 2} CdS/CdTe plates were produced during Phase 1--more than double the total number produced prior to Phase 1. This increase in pilot-production rate was accomplished without a loss in the PV conversion efficiency: the average total-area AM1.5 efficiency of sub-modules produced during the reporting period was 6.4%. Several measurement techniques, such as large-area measurement of CdS thickness, were developed to aid process improvement, and the vapor-transport deposition method was refined. CdTe thickness uniformity and reproducibility were improved. From a population of more than 1,100 plates, the mean standard deviation within a plate was 7.3% and the standard deviation of individual-plate averages was 6.8%. As part of the efficiency-improvement task, research was done on devices with thin-CdS and buffer layers. A cell with 13.9% efficiency was produced on a high-quality substrate, and higher than 12% efficiency was achieved with a cell with no CdS layer. A number of experiments were performed as part of the characterization and analysis task. The temperature dependence of CdTe modules was investigated; the power output was found to be relatively insensitive (<5%) to temperature in the 25 to 50 C range. As part of the characterization and analysis task, considerable effort was also given to reliability verification and improvement. The most carefully monitored array, located at the NREL, was found to have unchanged power output within the margin of error of measurement (5%) after 5 years in the field. The first round of National CdTe Team stability tests were concluded. One back-contact formulation resulted in cells that increased in efficiency as a result of 9,700 hours of light soaking. As part of the environmental, health, and safety task, an emissions survey was performed for the pilot-production facility. For production of 360 modules/day, it was predicted that the cadmium emissions would be only 0.015% of the level that would require any permitting; however, methanol emissions may require permitting if anticipated process changes are not implemented. Process improvements in edge delete, CdS material preparation, waste compaction, CdCl{sub 2}-vapor collection, and wastewater treatment were made, resulting in reduced costs, reduced emissions, and improved operator safety.

Rose, D.H.; Powell, R.C.; Grecu, D.; Jayamaha, U.; Hanak, J.J.; Bohland, J.; Smigielski, K.; Dorer, G.L.

1999-10-25T23:59:59.000Z

94

PV Module Reliability R&D Project Overview  

DOE Green Energy (OSTI)

The DOE Solar Energy Technologies Program includes a sub-key activity entitled ''Photovoltaic Module Reliability R&D''. This activity has been in existence for several years to help ensure that the PV technologies that advance to the commercial module stage have acceptable service lifetimes and annual performance degradation rates. The long-term (2020) goal, as stated in the Solar Program Multi-Year Technical Plan [1], is to assist industry with the development of PV systems that have 30-year service lifetimes and 1% annual performance degradation rates. The corresponding module service lifetimes and annual performance degradation rate would have to be 30 years lifetime and approximately 0.5% (or less, depending on the type of PV system) annual performance degradation. Reaching this goal is critical to achieving the PV technology Levelized Energy Cost Targets, as listed and described in the Solar Program Multi-Year Technical Plan. This paper is an overview of the Module Reliability R&D sub-key activity. More details and the major results and accomplishments are covered in the papers presented in the PV Module Reliability Session of the DOE Solar Energy Technology Review Meeting, October 25-28, 2004, in Denver, Colorado.

Hulstrom, R. L.

2005-01-01T23:59:59.000Z

95

DOE Solar Energy Technologies Program TPP Final Report - A Value Chain Partnership to Accelerate U.S. PV Industry Growth, GE Global Research  

DOE Green Energy (OSTI)

General Electrics (GE) DOE Solar Energy Technologies TPP program encompassesd development in critical areas of the photovoltaic value chain that affected the LCOE for systems in the U.S. This was a complete view across the value chain, from materials to rooftops, to identify opportunities for cost reductions in order to realize the Department of Energys cost targets for 2010 and 2015. GE identified a number of strategic partners with proven leadership in their respective technology areas to accelerate along the path to commercialization. GE targeted both residential and commercial rooftop scale systems. To achieve these goals, General Electric and its partners investigated three photovoltaic pathways that included bifacial high-efficiency silicon cells and modules, low-cost multicrystalline silicon cells and modules and flexible thin film modules. In addition to these technologies, the balance of system for residential and commercial installations were also investigated. Innovative system installation strategies were pursed as an additional avenue for cost reduction.

Todd Tolliver; Danielle Merfeld; Charles Korman; James Rand; Tom McNulty; Neil Johnson; Dennis Coyle

2009-07-31T23:59:59.000Z

96

High Penetration of Photovoltaic (PV) Systems into the Distribution Grid, Workshop Report, February 24-25, 2009  

DOE Green Energy (OSTI)

Outcomes from the EERE Solar Energy Technologies Program workshop on high penetration of photovoltaic (PV) systems into the distribution grid, Feb. 24-25, 2009, Ontario, Calif.

Not Available

2009-06-01T23:59:59.000Z

97

PV FAQs: What is the Energy Payback for PV?  

DOE Green Energy (OSTI)

How long does a PV system have to operate to recover the energy--and the associated generation of pollution and CO{sub 2}--that went into making the system? Energy paybacks for rooftop systems range from 1 to 4 years, depending on the system. Based on models and real data, the idea that PV cannot pay back its energy investment is simply a myth.

Not Available

2004-12-01T23:59:59.000Z

98

How Can We Make PV Modules Safer?: Preprint  

SciTech Connect

Safety is a prime concern for the photovoltaics (PV) industry. As a technology deployed on residential and commercial buildings, it is critical that PV not cause damage to the buildings nor harm the occupants. Many of the PV systems on buildings are of sufficiently high voltage (300 to 600 Volts dc) that they may present potential hazards. These PV systems must be safe in terms of mechanical damage (nothing falls on someone), shock hazard (no risk of electrical shock when touching an exposed circuit element), and fire (the modules neither cause nor promote a fire). The present safety standards (IEC 61730 and UL 1703) do a good job of providing for design rules and test requirements for mechanical, shock, and spread of flame dangers. However, neither standard addresses the issue of electrical arcing within a module that can cause a fire. To make PV modules, they must be designed, built, and installed with an emphasis on minimizing the potential for open circuits and ground faults. This paper provides recommendations on redundant connection designs, robust mounting methods, and changes to the safety standards to yield safer PV modules.

Wohlgemuth, J. H.; Kurtz, S. R.

2012-06-01T23:59:59.000Z

99

A standardized approach to PV system performance model validation.  

DOE Green Energy (OSTI)

PV performance models are used to predict how much energy a PV system will produce at a given location and subject to prescribed weather conditions. These models are commonly used by project developers to choose between module technologies and array designs (e.g., fixed tilt vs. tracking) for a given site or to choose between different geographic locations, and are used by the financial community to establish project viability. Available models can differ significantly in their underlying mathematical formulations and assumptions and in the options available to the analyst for setting up a simulation. Some models lack complete documentation and transparency, which can result in confusion on how to properly set up, run, and document a simulation. Furthermore, the quality and associated uncertainty of the available data upon which these models rely (e.g., irradiance, module parameters, etc.) is often quite variable and frequently undefined. For these reasons, many project developers and other industry users of these simulation tools have expressed concerns related to the confidence they place in PV performance model results. To address this problem, we propose a standardized method for the validation of PV system-level performance models and a set of guidelines for setting up these models and reporting results. This paper describes the basic elements for a standardized model validation process adapted especially for PV performance models, suggests a framework to implement the process, and presents an example of its application to a number of available PV performance models.

Stein, Joshua S.; Jester, Terry (Hudson Clean Energy Partners); Posbic, Jean (BP Solar); Kimber, Adrianne (First Solar); Cameron, Christopher P.; Bourne, Benjamin (SunPower Corporation)

2010-10-01T23:59:59.000Z

100

A policy letter. DG-GRID Improving distribution network regulation for enhancing the share of sustainable distributed generation in Europe  

E-Print Network (OSTI)

A policy letter. DG-GRID Improving distribution network regulation for enhancing the share-generation of electricity and heat (CHP). This drives the growth of distributed generation (DG) ­ generators connected to the distribution network ­ to significant levels. The DG-GRID project1 carried out by nine European universities

Note: This page contains sample records for the topic "dg technologies pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

PSCAD Modules Representing PV Generator  

SciTech Connect

Photovoltaic power plants (PVPs) have been growing in size, and the installation time is very short. With the cost of photovoltaic (PV) panels dropping in recent years, it can be predicted that in the next 10 years the contribution of PVPs to the total number of renewable energy power plants will grow significantly. In this project, the National Renewable Energy Laboratory (NREL) developed a dynamic modeling of the modules to be used as building blocks to develop simulation models of single PV arrays, expanded to include Maximum Power Point Tracker (MPPT), expanded to include PV inverter, or expanded to cover an entire PVP. The focus of the investigation and complexity of the simulation determines the components that must be included in the simulation. The development of the PV inverter was covered in detail, including the control diagrams. Both the current-regulated voltage source inverter and the current-regulated current source inverter were developed in PSCAD. Various operations of the PV inverters were simulated under normal and abnormal conditions. Symmetrical and unsymmetrical faults were simulated, presented, and discussed. Both the three-phase analysis and the symmetrical component analysis were included to clarify the understanding of unsymmetrical faults. The dynamic model validation was based on the testing data provided by SCE. Testing was conducted at SCE with the focus on the grid interface behavior of the PV inverter under different faults and disturbances. The dynamic model validation covers both the symmetrical and unsymmetrical faults.

Muljadi, E.; Singh, M.; Gevorgian, V.

2013-08-01T23:59:59.000Z

102

Distributed Generation as Combined Heat and Power (DG-CHP) (New...  

Open Energy Info (EERE)

Edit with form History Share this page on Facebook icon Twitter icon Distributed Generation as Combined Heat and Power (DG-CHP) (New York) This is the approved revision of...

103

Decade of PV Industry R and D Advances in Silicon Module Manufacturing  

DOE Green Energy (OSTI)

The US Photovoltaic (PV) industry has made significant technical advances in crystalline silicon (Si) module manufacturing through the PV Manufacturing R and D Project during the past decade. Funded Si technologies in this project have been Czochralski, cast polycrystalline, edge-defined film-fed growth (EFG) ribbon, string ribbon, and Si-film. Specific R and D Si module-manufacturing categories that have shown technical growth and will be discussed are in crystal growth and processing, wafering, cell fabrication, and module manufacturing. These R and D advancements since 1992 have contributed to a 30% decrease in PV manufacturing costs and stimulated a sevenfold increase in PV production capacity.

Symko-Davis, M.; Mitchell, R.L.; Witt, C.E.; Thomas, H.P. [National Renewable Energy Laboratory; King, R. [U.S. Department of Energy; Ruby, D.S. [Sandia National Laboratories

2001-01-18T23:59:59.000Z

104

Pyranometers and Reference Cells: Part 2: What Makes the Most Sense for PV Power Plants?; Preprint  

DOE Green Energy (OSTI)

As described in Part 1 of this two-part series, thermopile pyranometers and photovoltaic (PV) reference cells can both be used to measure irradiance; however, there are subtle differences between the data that are obtained. This two-part article explores some implications of uncertainty and subtleties of accurately measuring PV efficiency in the field. Part 2 of the series shows how reference cells can be used to more confidently predict PV performance, but how this could best be accomplished if historic irradiance data could be available in PV-technology-specific formats.

Meydbray, J.; Riley, E.; Dunn, L.; Emery, K.; Kurtz, S.

2012-10-01T23:59:59.000Z

105

Technology support for initiation of high-throughput processing of thin-film CdTe PV modules. Phase 1 technical report, March 14, 1995--March 13, 1996  

DOE Green Energy (OSTI)

Progress has been made in the important areas of stability, advanced deposition techniques, efficiency, the back contact, no-contact film diagnostics (photoluminescence) and Cd waste control. The progress in stability has been in both the demonstration of devices maintaining at least 90% of the initial efficiency for over 19,000 hours of continuous light soak and the development of methods which can accurately predict long term behavior based on the first 5,000--10,000 hours of life. Experiments were conducted to determine if device behavior could be accelerated with thermal or voltage stresses. Notable achievements in deposition technology include depositing CdTe on a 3,600 cm{sup 2} substrate at 600 torr and designing and fabricating a new deposition feed system with a remote semiconductor source. The efficiency has been increased on small area devices to 13.3% by decreasing the thickness of the CdS and of the glass substrate. Work also focused on using a high resistivity SnO{sub 2} buffer layer between the TCO and thin CdS to help preserve the open-circuit voltage while increasing the current-density. The back contacting process has been simplified by replacing the wet post-deposition etch with a vapor Te deposition step on small area devices. Results show that the devices perform comparably in efficiency but better in stability under light-soaking and open-circuit conditions. Preliminary studies of the correlation between CdS photoluminescence after the chloride treatment and the final device efficiency have shown a positive correlation which may be applicable for in-line quality control. The final area of progress was through the successful demonstration of preventing at least 99.9% of all incoming Cd from leaving in an uncontrolled manner through the land, air or water.

Sasala, R.; Powell, R.; Dorer, G. [Solar Cells, Inc., Toledo, OH (United States)

1996-06-01T23:59:59.000Z

106

PV Standards Work: Photovoltaic System and Component Certification, Test Facility Accreditation, and Solar Photovoltaic Energy Systems International Standards  

DOE Green Energy (OSTI)

This paper discusses efforts led by two companies (PowerMark Corporation and Sunset Technologies Inc.) to support both U.S. domestic and international photovoltaic (PV) system and component certification and test facility accreditation programs and the operation of the International Electrotechnical Commission (IEC) Technical Committee 82 (TC-82) Photovoltaic Energy Systems. International and national PV certification/accreditation programs are successfully facilitating entry of only the highest quality PV products into the marketplace. Standards also continue to be a cornerstone for assuring global PV product conformity assessment, reducing non-tariff trade barriers, and ultimately improving PV products while lowering cost.

Basso, T. S.; Chalmers, S.; Barikmo, H. O.

2005-11-01T23:59:59.000Z

107

Plant performance for PV1 and PV2: SMUD (Sacramento Municipal Utility District) PV2, Final report 2, April 1986-March 1987  

SciTech Connect

The Sacramento Municipal Utility Distric (SMUD) photovoltaic project is a phased installation of a 100 megawatt central station photovoltaic (PV) power plant that is being constructed adjacent to the Rancho Seco Nuclear Generating Station, 30 miles southeast of Sacramento, California. SMUD, with cofunding from the U.S. Department of Energy (DOE) and the California State Department of Enrgy has designed, procured, installed, and operated two 1,000 kilowatt power generating plants (PV1 and PV2) as the first two phases of the project (Figure No. 1). PV1 deferred for budgetary reasons and to evaluate new PV technologies. Long-range load projections for the SMUD service area indicate theneed for new peaking power generation. Plans prior to the initiation of this project included coal-fired, hydroelectric and geothermal power plants. Environmental and permitting constraints within California introduced considerable uncertainty into the timing and cost of other generation options. This projectwas, therefore, initiated to proide an economic and technical basis for future electrical generation using solar energy. Ther performance data presented herein was measured, stored, and reduced by the onsite plant control and data acquisition computer.

Collier, D.

1988-03-01T23:59:59.000Z

108

Carmanah Technologies Corporation | Open Energy Information  

Open Energy Info (EERE)

Canadian manufacturer of solar balance of systems (mounts, converters, inverters), battery chargers, and distributor of PV modules. References Carmanah Technologies...

109

OpenEI - PV  

Open Energy Info (EERE)

48/0 en Operational water 48/0 en Operational water consumption and withdrawal factors for electricity generating technologies http://en.openei.org/datasets/node/969 This dataset is from the report Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature (J. Macknick, R. Newmark, G. Heath and K.C. Hallett) and provides estimates of operational water withdrawal and water consumption factors for electricity generating technologies in the United States. Estimates of water factors were collected from published primary literature and were not modified except for unit conversions.

License

110

PV FAQs: How Much Land Will PV Need to Supply Our Electricity?  

DOE Green Energy (OSTI)

This PV FAQ fact sheet answers the question ''How much land will PV need to supply our electricity?'' The answer is that PV could supply our electricity with little visible impact on our landscape.

Not Available

2004-01-01T23:59:59.000Z

111

Low Cost High Concentration PV Systems for Utility Power Generation Amonix,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Amonix, Inc. Amonix, Inc. Low Cost High Concentration PV Systems for Utility Power Generation Amonix, Inc. A series of brief fact sheet on various topics including:Low Cost High Concentration PV Systems for Utility Power Generation,High Efficiency Concentrating Photovoltaic Power System,Reaching Grid Parity Using BP Solar Crystalline Silicon Technology, Fully Integrated Building Science Solutions for Residential and Commercial Photovoltaic Energy Generation,A Value Chain Partnership to Accelerate U.S. Photovoltaic Industry Growth,AC Module PV System,Flexible Organic Polymer-Based PV For Building Integrated Commercial Applications,Flexable Integrated PV System,Delivering Grid-Parity Solar Electricity On Flat Commercial Rooftops,Fully Automated Systems Technology, Concentrating Solar Panels: Bringing the Highest Power and Lowest Cost to

112

IAEI NEWS January.February 2008 www.iaei.org ground-fault protection for pv systems  

E-Print Network (OSTI)

technologies which do not require transmission, such as photovoltaic (PV) generation in urban areas efficiency and clean distributed generating technologies, including PV in urban areas. But even optimistic, geothermal, solar and wind energy development. CREZ identification respected areas specified by RETI

Johnson, Eric E.

113

Amp-hour counting control for PV hybrid power systems  

SciTech Connect

The performance of an amp-hour (Ah) counting battery charge control algorithm has been defined and tested using the Digital Solar Technologies MPR-9400 microprocessor based PV hybrid charge controller. This work included extensive field testing of the charge algorithm on flooded lead-antimony and valve regulated lead-acid (VRLA) batteries. The test results after one-year have demonstrated that PV charge utilization, battery charge control, and battery state of charge (SOC) has been significantly improved by providing maximum charge to the batteries while limiting battery overcharge to manufacturers specifications during variable solar resource and load periods.

Hund, T.D. [Sandia National Labs., Albuquerque, NM (United States); Thompson, B. [Biri Systems, Ithaca, NY (United States)

1997-06-01T23:59:59.000Z

114

NREL: Photovoltaics Research - PV News  

NLE Websites -- All DOE Office Websites (Extended Search)

PV News PV News The National Renewable Energy Laboratory Photovoltaic (PV) Research Program highlights latest research and news accomplishments from the laboratory on this page. Subscribe to the RSS feed RSS . Learn about RSS. November 8, 2013 New Solar Cell Is More Efficient, Less Costly Innovation by NREL and First Solar acquisition TetraSun wins a 2013 R&D 100 Award. November 6, 2013 NREL's Energy Systems Integration Facility Garners LEED® Platinum The Energy Systems Integration Facility (ESIF) on the campus of the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) in Golden, Colo., has earned a LEED® Platinum designation for new construction from the U.S. Green Building Council (USGBC), a non-profit organization dedicated to sustainable building design and construction.

115

PV Industry and Technology in China  

Science Conference Proceedings (OSTI)

Presently, China relies too much on fossil fuels. China's ... energy in total primary energy consumption to 10% by 2010, and to raise this share to 15% by 2020.

116

Comparison of Pyranometers vs. PV Reference Cells for Evaluation of PV Array Performance  

DOE Green Energy (OSTI)

As the photovoltaics (PV) industry has grown, the need for accurately monitoring the solar resource of PV power plants has increased. Historically, the PV industry has relied on thermopile pyranometers for irradiance measurements, and a large body of historical irradiance data taken with pyranometers exists. However, interest in PV reference devices is increasing. In this paper, we discuss why PV reference devices are better suited for PV applications, and estimate the typical uncertainties in irradiance measurements made with both pyranometers and PV reference devices. We assert that the quantity of interest in monitoring a PV power plant is the equivalent irradiance under the IEC 60904-3 reference solar spectrum that would produce the same electrical response in the PV array as the incident solar radiation. For PV-plant monitoring applications, we find the uncertainties in irradiance measurements of this type to be on the order of +/-5% for thermopile pyranometers and +/-2.4% for PV reference devices.

Dunn, L.; Gostein, M.; Emery, K.

2012-09-01T23:59:59.000Z

117

PV Cell and Module Calibration Activities at NREL  

DOE Green Energy (OSTI)

The performance of PV cells and modules with respect to standard reference conditions is a key indicator of progress of a given technology. This task provides the U.S. terrestrial PV community with the most accurate measurements that are technically possible in a timely fashion. The international module certification and accreditation program PVGap requires certification laboratories to maintain their calibration traceability path to groups like this one. The politics of a "world record" efficiency requires that an independent laboratory perform these measurements for credibility. Most manufacturers base their module peak watt rating upon standards and reference cells calibrated under this task. This task has been involved in reconciling disputes between manufacturers and their cell suppliers in terms of expected versus actual performance. This task has also served as a resource to the PV community for consultation on solar simulation, current versus voltage measurement instrumentation, measurement procedures and measurement artifacts.

Emery, K.; Anderberg, A.; Kiehl, J.; Mack, C.; Moriarty, T.; Ottoson, L.; Rummel, S.

2005-11-01T23:59:59.000Z

118

DG & ES Strategic Intelligence Update newsletters 1 - 4  

Science Conference Proceedings (OSTI)

Distributed generation and energy storage technologies add value to a wide range of applications within the electric utility enterprise. Energy storage at megawatt-hour scales can be used to enable generators to better follow load and stabilize transmission voltage and frequency. Both distributed generation and energy storage systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage e...

2009-01-01T23:59:59.000Z

119

Improving grid reliability through integration of distributed PV and energy storage  

Science Conference Proceedings (OSTI)

Several emerging technologies, namely, high penetration grid-connected distributed photovoltaics (PV), energy storage, and smart grid have seen tremendous growth in recent years. Because of their interconnected nature, the deployed systems are fairly ...

Guohui Yuan

2012-01-01T23:59:59.000Z

120

innovati nEncapsulation Advancements Extend Life of Thin-Film PV  

E-Print Network (OSTI)

. In addition to improved performance and reliability, this PTMO technology could make flexible thin-film technology. In addition to developing the PTMO coating technology, NREL also holds the world record--20%--for science of CIGS technology, NREL helps the PV industry accelerate manufacturing capacity

Note: This page contains sample records for the topic "dg technologies pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

City of Sunset Valley- PV Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

The City of Sunset Valley offers rebates to local homeowners who install photovoltaic (PV) systems on their properties. The local rebate acts as an add-on to the PV rebates that are offered by...

122

PV Frontogenesis and Upper-Tropospheric Fronts  

Science Conference Proceedings (OSTI)

Upper-tropospheric fronts and frontogenesis are viewed from a potental vorticity (PV) perspective. The rudiments of this approach are to regard such a front as a zone of strong PV gradient on isentropic surfaces, and to treat the accompanying ...

H. C. Davies; A. M. Rossa

1998-06-01T23:59:59.000Z

123

Variability of PV on Distribution Systems  

Science Conference Proceedings (OSTI)

In 2010, the Electric Power Research Institute (EPRI) along with several utilities began collecting high-resolution monitoring data on distributed solar photovoltaic (PV) systems throughout the United States. Included in these monitoring data are single-module PV systems distributed along selected feeders as well as several larger PV systems (up to 1.4 MW). Utilizing data from these sites, this report focuses specifically on examining the measured variability of solar PV distributed throughout a ...

2012-12-13T23:59:59.000Z

124

PV AND GRID RELIABILITY: AVAILABILITY OF PV POWER DURING CAPACITY SHORTFALLS  

E-Print Network (OSTI)

PV AND GRID RELIABILITY: AVAILABILITY OF PV POWER DURING CAPACITY SHORTFALLS Richard Perez reliability benefits, is to look at PV availability during instances of major grid stress and supply shortfall of these events and show that PV+end-use load control could be 100% reliable with only a minimal end-use impact. 2

Perez, Richard R.

125

November 21, 2000 PV Lesson Plan 3 PV Array Generating Electricity  

E-Print Network (OSTI)

November 21, 2000 PV Lesson Plan 3 ­ PV Array Generating Electricity Prepared for the Oregon in Arrays: Solar Cells Generating Electricity Lesson Plan Content: In this lesson, students will learn about electricity. Objectives: Students will learn to use a tool called PV WATTS to calculate the output of PV

Oregon, University of

126

PV ENERGY ROI Tracks Efficiency Gains  

E-Print Network (OSTI)

PV ENERGY ROI Tracks Efficiency Gains the state of PV today E nergy payback time (EPBT) is the time it takes for a photovoltaic (PV) system to produce all the energy used through- out its life cycle. A short EPBT corre- sponds to a high energy return on energy invest- ment

127

California Solar Initiative - PV Incentives | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PV Incentives California Solar Initiative - PV Incentives Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Low-Income Residential...

128

Program on Technology Innovation: Distributed Photovoltaic Power Applications for Utilities  

Science Conference Proceedings (OSTI)

Emerging PV technology brings significant opportunities for many stakeholders including electric utilities, electric customers, energy-service providers and PV equipment vendors. The opportunities for utilities range from owning and deploying various PV generation resources and related products to incentivizing other owners to install PV systems and technology that provide benefits to the power system. This technical update describes PV power system concepts that utilities may want to consider as they pl...

2009-12-30T23:59:59.000Z

129

Ballast-mounted PV arrays: Phase 2 final report  

DOE Green Energy (OSTI)

The expansive flat rooftops of industrial and commercial buildings across America offer the largest, most secure, and potentially least-cost real estate opportunity to install massive amounts of solar photovoltaic generation in the building sector. Unfortunately, mechanical penetration of roofing membranes is very expensive and perceived by building owners and operators to increase the likelihood of leaking. In response Ascension Technology has pioneered the development of low-cost ballasted approaches for mounting PV arrays. Recently, however, we have experienced our first two instances in which strong winds have moved our arrays on rooftops and heightened our interest, and the PV industries' need, to develop zero-penetration mounting techniques that are more secure, yet remain low in cost. In this PV BONUS project, Ascension Technology and its partners addressed wind loading on solar panels and the suitability of using frictional forces between ballast trays and roofing materials to resist PV arrays sliding on rooftops. The primary goal of the project is to capture the potential cost savings made possible by ballast-mounting by showing under what conditions it can satisfy wind loading concerns. A secondary goal is to address a more geographically constrained concern regarding withstanding seismic forces.

Edward C. Kern

2000-03-01T23:59:59.000Z

130

Ballast-mounted PV arrays: Phase 2 final report  

SciTech Connect

The expansive flat rooftops of industrial and commercial buildings across America offer the largest, most secure, and potentially least-cost real estate opportunity to install massive amounts of solar photovoltaic generation in the building sector. Unfortunately, mechanical penetration of roofing membranes is very expensive and perceived by building owners and operators to increase the likelihood of leaking. In response Ascension Technology has pioneered the development of low-cost ballasted approaches for mounting PV arrays. Recently, however, we have experienced our first two instances in which strong winds have moved our arrays on rooftops and heightened our interest, and the PV industries' need, to develop zero-penetration mounting techniques that are more secure, yet remain low in cost. In this PV BONUS project, Ascension Technology and its partners addressed wind loading on solar panels and the suitability of using frictional forces between ballast trays and roofing materials to resist PV arrays sliding on rooftops. The primary goal of the project is to capture the potential cost savings made possible by ballast-mounting by showing under what conditions it can satisfy wind loading concerns. A secondary goal is to address a more geographically constrained concern regarding withstanding seismic forces.

Edward C. Kern

2000-03-01T23:59:59.000Z

131

Direct Use of Solar Photovoltaic (PV) Energy  

Science Conference Proceedings (OSTI)

PV-DC refers to the direct use of photovoltaic (PV) energy in an appliance or other equipment without a grid connection. Most (over 90) of the new deployments of PV solar panels connect to the ac electric grid and do not use dc energy directly. These grid-connected PV systems use an electronic inverter to convert the dc array output to ac power for interfacing with the grid. However, with double-digit growth in all types of PV applications, the direct use of solar for powering end-use loads needs to be m...

2010-12-31T23:59:59.000Z

132

Advanced Green Technologies | Open Energy Information  

Open Energy Info (EERE)

Advanced Green Technologies Place Fort Lauderdale, Florida Zip 33311 Product Advanced Green Technologies is a US-based distributor of PV systems. It is owned by Advanced Roofing...

133

Austrian Enviro Technologies | Open Energy Information  

Open Energy Info (EERE)

Zip A-2372 Product Austria and Spain-based PV system installer and manufacturer of gasification technology. References Austrian Enviro Technologies1 LinkedIn Connections...

134

Technological assessment of light-trapping technology for thin-film Si solar cell  

E-Print Network (OSTI)

The proposed light trapping technology of Distributed Bragg Reflector (DBR) with Diffraction Grating (DG) and Anti-Reflection Coating (ARC) for thin film Si solar cell was analyzed from the technology, market, and ...

Susantyoko, Rahmat Agung

2009-01-01T23:59:59.000Z

135

Innovations in Wind and Solar PV Financing  

DOE Green Energy (OSTI)

There is growing national interest in renewable energy development based on the economic, environmental, and security benefits that these resources provide. Historically, greater development of our domestic renewable energy resources has faced a number of hurdles, primarily related to cost, regulation, and financing. With the recent sustained increase in the costs and associated volatility of fossil fuels, the economics of renewable energy technologies have become increasingly attractive to investors, both large and small. As a result, new entrants are investing in renewable energy and new business models are emerging. This study surveys some of the current issues related to wind and solar photovoltaic (PV) energy project financing in the electric power industry, and identifies both barriers to and opportunities for increased investment.

Cory, K.; Coughlin, J.; Jenkin, T.; Pater, J.; Swezey, B.

2008-02-01T23:59:59.000Z

136

Creating dynamic equivalent PV circuit models with impedance spectroscopy for arc-fault modeling.  

Science Conference Proceedings (OSTI)

Article 690.11 in the 2011 National Electrical Code{reg_sign} (NEC{reg_sign}) requires new photovoltaic (PV) systems on or penetrating a building to include a listed arc fault protection device. Currently there is little experimental or empirical research into the behavior of the arcing frequencies through PV components despite the potential for modules and other PV components to filter or attenuate arcing signatures that could render the arc detector ineffective. To model AC arcing signal propagation along PV strings, the well-studied DC diode models were found to inadequately capture the behavior of high frequency arcing signals. Instead dynamic equivalent circuit models of PV modules were required to describe the impedance for alternating currents in modules. The nonlinearities present in PV cells resulting from irradiance, temperature, frequency, and bias voltage variations make modeling these systems challenging. Linearized dynamic equivalent circuits were created for multiple PV module manufacturers and module technologies. The equivalent resistances and capacitances for the modules were determined using impedance spectroscopy with no bias voltage and no irradiance. The equivalent circuit model was employed to evaluate modules having irradiance conditions that could not be measured directly with the instrumentation. Although there was a wide range of circuit component values, the complex impedance model does not predict filtering of arc fault frequencies in PV strings for any irradiance level. Experimental results with no irradiance agree with the model and show nearly no attenuation for 1 Hz to 100 kHz input frequencies.

Johnson, Jay Dean; Kuszmaul, Scott S.; Strauch, Jason E.; Schoenwald, David Alan

2011-06-01T23:59:59.000Z

137

PEV-based Reactive Power Compensation for Wind DG Units: A Stackelberg Game Approach  

E-Print Network (OSTI)

turbine's inductive load to ensure a stable voltage profile in the system. Since reactive power can only from the load centers, DG units will speed up the revolution of providing power on site with little unit. Reactive power compensa- tion is needed since the load is not pure resistive and may include

Wu, Chenye

138

Investigating the electric power distribution system (EPDS) bus voltage in the presence of distributed generation (DG)  

Science Conference Proceedings (OSTI)

This paper investigates the Electric Power Distribution System (EPDS) bus voltage in the presence of Distributed Generation (DG). Distribution Company's (Discos) planner endeavor to develop new planning strategies for their network in order to serve ... Keywords: PSCAD, distributed generation, electric power distribution system, islanding, power quality, voltage stability

Hasham Khan; Mohammad Ahmad Choudhry; Tahir Mahmood; Aamir Hanif

2006-04-01T23:59:59.000Z

139

A robust SN-DG-approximation for radiation transport in optically thick and diffusive regimes  

Science Conference Proceedings (OSTI)

We introduce a new discontinuous Galerkin (DG) method with reduced upwind stabilization for the linear Boltzmann equation applied to particle transport. The asymptotic analysis demonstrates that the new formulation does not suffer from the limitations ... Keywords: Discontinuous Galerkin, Radiation transport, Thick diffusion limit, Upwind technique

J. C. Ragusa; J. -L. Guermond; G. Kanschat

2012-02-01T23:59:59.000Z

140

Development of a Visual Inspection Checklist for Evaluation of Fielded PV Module Condition (Presentation)  

SciTech Connect

A visual inspection checklist for the evaluation of fielded photovoltaic (PV) modules has been developed to facilitate collection of data describing the field performance of PV modules. The proposed inspection checklist consists of 14 sections, each documenting the appearance or properties of a part of the module. This tool has been evaluated through the inspection of over 60 PV modules produced by more than 20 manufacturers and fielded at two different sites for varying periods of time. Aggregated data from a single data collection tool such as this checklist has the potential to enable longitudinal studies of module condition over time, technology evolution, and field location for the enhancement of module reliability models.

Packard, C. E; Wohlgemuth, J. H.; Kurtz, S. R.

2012-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "dg technologies pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Silicon Oxynitride Thin Film Barriers for PV Packaging (Poster)  

DOE Green Energy (OSTI)

Dielectric, adhesion-promoting, moisture barriers comprised of silicon oxynitride thin film materials (SiOxNy with various material stoichiometric compositions x,y) were applied to: 1) bare and pre-coated soda-lime silicate glass (coated with transparent conductive oxide SnO2:F and/or aluminum), and polymer substrates (polyethylene terephthalate, PET, or polyethylene napthalate, PEN); plus 2) pre- deposited photovoltaic (PV) cells and mini-modules consisting of amorphous silicon (a-Si) and copper indium gallium diselenide (CIGS) thin-film PV technologies. We used plasma enhanced chemical vapor deposition (PECVD) process with dilute silane, nitrogen, and nitrous oxide/oxygen gas mixtures in a low-power (< or = 10 milliW per cm2) RF discharge at ~ 0.2 Torr pressure, and low substrate temperatures < or = 100(degrees)C, over deposition areas ~ 1000 cm2. Barrier properties of the resulting PV cells and coated-glass packaging structures were studied with subsequent stressing in damp-heat exposure at 85(degrees)C/85% RH. Preliminary results on PV cells and coated glass indicate the palpable benefits of the barriers in mitigating moisture intrusion and degradation of the underlying structures using SiOxNy coatings with thicknesses in the range of 100-200 nm.

del Cueto, J. A.; Glick, S. H.; Terwilliger, K. M.; Jorgensen, G. J.; Pankow, J. W.; Keyes, B. M.; Gedvilas, L. M.; Pern, F. J.

2006-10-03T23:59:59.000Z

142

Fault Current Contribution from Single-Phase PV Inverters  

DOE Green Energy (OSTI)

A significant increase in photovoltaic (PV) system installations is expected to come on line in the near future and as the penetration level of PV increases, the effect of PV may no longer be considered minimal. One of the most important attributions of additional PV is what effect this may have on protection systems. Protection engineers design protection systems to safely eliminate faults from the electric power system. One of the new technologies recently introduced into the electric power system are distributed energy resources (DER). Currently, inverter-based DER contributes very little to the power balance on all but a few utility distribution systems. As DER become prevalent in the distribution system, equipment rating capability and coordination of protection systems merit a closer investigation. A collaborative research effort between the National Renewable Energy Laboratory (NREL) and Southern California Edison (SCE) involved laboratory short-circuit testing single-phase (240 VAC) residential type (between 1.5 and 7kW) inverters. This paper will reveal test results obtained from these short-circuit tests.

Keller, J.; Kroposki, B.; Bravo, R.; Robles, S.

2011-01-01T23:59:59.000Z

143

Energy and Catalysis Technologies I  

Science Conference Proceedings (OSTI)

Mar 1, 2011 ... Polymer based photovoltaic (PV) technology is an exciting solar-electric conversion paradigm due to high extinction coefficient of polymers and...

144

Definition: PV array | Open Energy Information  

Open Energy Info (EERE)

PV array PV array Jump to: navigation, search Dictionary.png PV array An interconnected system of PV modules that function as a single electricity-producing unit. In smaller systems, an array can consist of a single module.[1][2] View on Wikipedia Wikipedia Definition A Photovoltaic system (informally, PV system) is an arrangement of components designed to supply usable electric power for a variety of purposes, using the Sun (or, less commonly, other light sources) as the power source. PV systems may be built in various configurations: Off-grid without battery (Array-direct) Off-grid with battery storage for DC-only appliances Off-grid with battery storage for AC & DC appliances Grid-tie without battery Grid-tie with battery storage A photovoltaic array (also called a solar array) consists of multiple photovoltaic modules, casually

145

PV output smoothing with energy storage.  

SciTech Connect

This report describes an algorithm, implemented in Matlab/Simulink, designed to reduce the variability of photovoltaic (PV) power output by using a battery. The purpose of the battery is to add power to the PV output (or subtract) to smooth out the high frequency components of the PV power that that occur during periods with transient cloud shadows on the PV array. The control system is challenged with the task of reducing short-term PV output variability while avoiding overworking the battery both in terms of capacity and ramp capability. The algorithm proposed by Sandia is purposely very simple to facilitate implementation in a real-time controller. The control structure has two additional inputs to which the battery can respond. For example, the battery could respond to PV variability, load variability or area control error (ACE) or a combination of the three.

Ellis, Abraham; Schoenwald, David Alan

2012-03-01T23:59:59.000Z

146

dg cover  

NLE Websites -- All DOE Office Websites (Extended Search)

Real Property Desk Guide Real Property Desk Guide Table of Contents Chapter 1-- Purpose of Desk Guide ................................................................... 1-1 Chapter 2-- Introduction..................................................................................... 2-1 Chapter 3-- Planning Policy................................................................................ 3-1 Chapter 4-- Real Estate Function....................................................................... 4-1 Chapter 5-- Acquisition of Interests in Real Property ..................................... 5-1 Chapter 6-- Acquisition of Leased Space through the General Services .Administration ...............................................................................

147

dg cover  

Office of Legacy Management (LM)

on Armed Services and the approval of the President, pursuant to 10 U.S.C. 7431(a). Oil Shale Conversion Facilities Section 19 of the Federal Non-Nuclear En- ergy Research and...

148

Ensuring Quality of PV Modules: Preprint  

SciTech Connect

Photovoltaic (PV) customers need to have confidence in the PV modules they purchase. Currently, no test can quantify a module's lifetime with confidence, but stress tests are routinely used to differentiate PV product designs. We suggest that the industry would be strengthened by using the wisdom of the community to develop a single set of tests that will help customers quantify confidence in PV products. This paper evaluates the need for quality assurance (QA) standards and suggests a path for creating these. Two types of standards are needed: 1) QA of the module design and 2) QA of the manufacturing process.

Kurtz, S.; Wohlgemuth, J.; Hacke, P.; Kempe, M.; Sample, T.; Yamamichi, M.; Kondo, M.; Doi, T.; Otani, K.; Amano, J.

2011-07-01T23:59:59.000Z

149

Polysilicon in Photovoltaics: Market Conditions & Competing PV ...  

Science Conference Proceedings (OSTI)

That data, along with projections regarding the growth in installed PV capacity, are used to predict demand the solar industry will place on materials used in...

150

Innovations in Wind and Solar PV Financing  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovations in Wind and Solar PV Financing K. Cory, J. Coughlin, and T. Jenkin National Renewable Energy Laboratory J. Pater Summit Blue B. Swezey Applied Materials Technical...

151

Low Cost Nanomaterials for PV Devices  

Impact: Low-cost solution for solar energy (Expand to lighting, batteries, etc) Low-cost Nanomaterials for PV Devices . Title: Slide 1 Author: Donna ...

152

PV Fact Sheets Argument B1Some people state that "The external costs of PV electricity  

E-Print Network (OSTI)

University: Solar Cells Lecture 9: PV Systems Several types of operating modes · Centralized power plant or wanted Montana State University: Solar Cells Lecture 9: PV Systems 2 Residential Side Mounted Montana State University: Solar Cells Lecture 9: PV Systems 3 Could have future issues when the tree matures

153

File:PUCT DG Interconnection Manual.pdf | Open Energy Information  

Open Energy Info (EERE)

PUCT DG Interconnection Manual.pdf PUCT DG Interconnection Manual.pdf Jump to: navigation, search File File history File usage Metadata File:PUCT DG Interconnection Manual.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Go to page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 Go! next page → next page → Full resolution ‎(1,275 × 1,650 pixels, file size: 2.02 MB, MIME type: application/pdf, 114 pages) File history Click on a date/time to view the file as it appeared at that time.

154

Analysis and Design of Smart PV Module  

E-Print Network (OSTI)

This thesis explores the design of a smart photovoltaic (PV) module- a PV module in which PV cells in close proximity are electrically grouped to form a pixel and are connected to dc-dc converter blocks which reside embedded in the back pane of the module. An auto-connected flyback converter topology processing less than full power is used to provide high gain and perform maximum power point tracking (MPPT). These dc-dc converters interface with cascaded H-bridge inverter modules operating on feed forward control for dc-link voltage ripple rejection. By means of feed forward control, a significant reduction in dc link capacitance is achieved by enduring higher dc link ripple voltages. The dc link electrolytic capacitors are replaced with film capacitors thus offering an improvement in the reliability of the smart PV module. The proposed configuration is capable of producing 120V/ 240V AC voltage. The PV module now becomes a smart AC module by virtue of embedded intelligence to selectively actuate the individual dc-dc converters and control the output AC voltages directly, thus becoming a true plug and power energy system. Such a concept is ideal for curved surfaces such as building integrated PV (BIPV) system applications where gradients of insolation and temperature cause not only variations from PV module-to-PV module but from group-to-group of cells within the module itself. A detailed analysis along with simulation and experimental results confirm the feasibility of the proposed system.

Mazumdar, Poornima

2012-12-01T23:59:59.000Z

155

PV Testing Group Photovoltaic Cell Data Compilation  

E-Print Network (OSTI)

PV Testing Group Photovoltaic Cell Data Compilation National Renewable Energy Laboratory 4/2/2010 ______________________________________ Page 1 *NREL Photovoltaic Cell Data Compilation Calibration Conducted For: Kaitlyn VanSant (for Solasta Contact: Paul Ciszek (303) 384-6647 Paul.Ciszek@nrel.gov #12;PV Testing Group Photovoltaic Cell Data

Burns, Michael J.

156

PV based solar insolation measuring device  

Science Conference Proceedings (OSTI)

The aim of the project is to develop mathematical model of the relationship between incoming solar insolation and PV module output current and temperature. Solar insolation need to be measured in order to optimize the design of solar electricity generating system (SEGS). PV module sizing

Balbir Singh Mahinder Singh; Nor Athirah Zainal

2012-01-01T23:59:59.000Z

157

Solar Resource and PV Systems Performance  

E-Print Network (OSTI)

Solar Resource and PV Systems Performance at Selected Test Sites Prepared for the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Under Cooperative Agreement No. DE-FC26-06NT Subtask 11.1 Deliverables 2 and 4: Report on Solar Resource and PV Systems Performance at Selected Test

158

PV FAQs: Does the world have enough materials for PV to help address climate change?  

DOE Green Energy (OSTI)

In the ongoing discussion of what needs to be done to stabilize atmospheric CO2 by mid-century (Hoffert 1998), one possible option would be to add about 10-20 terawatts (trillion watts, or TW) of photovoltaics (PV) in place of conventional sources. PV would help because, unlike burning fossil fuels, it produces no CO2. However, 10-20 TW is an enormous amount of energy. In peak Watts, the way PV installations are generally rated, it is about 50-100 TWpeak (TWp) of PV. Would we have enough materials to make this much PV? As we explain in this PV FAQ, we think our planet has enough feedstock materials for PV to meet the ''TW challenge.''

Not Available

2005-06-01T23:59:59.000Z

159

Progress in High-Performance PV: Polycrystalline Thin-Film Tandem Cells  

DOE Green Energy (OSTI)

The High-Performance Photovoltaic (HiPerf PV) Project was initiated by the U.S. Department of Energy to substantially increase the viability of PV for cost-competitive applications. The goal is that PV will contribute significantly to the U.S. and world energy supply and environmental enhancement in the 21st century. The HiPerf PV Project aims at exploring the ultimate performance limits of existing PV technologies, approximately doubling their sunlight-to-electricity conversion efficiencies during its course, to accelerate and enhance their impact in the marketplace. To accomplish this, the National Center for Photovoltaics (NCPV) directs in-house and subcontracted research in high-performance polycrystalline thin-film and multijunction concentrator devices. This paper will describe progress of the subcontractor and in-house R&D on critical pathways for a PV technology having a high potential to reach cost-competitiveness goals: 25%-efficient, low-cost polycrystalline thin-film tandems for large-area, flat-plate modules.

Symko-Davies, M.

2004-08-01T23:59:59.000Z

160

Technology support for initiation of high-throughput processing of thin-film CdTe PV modules. Phase 3 final technical report, 14 March 1997--1 April 1998  

SciTech Connect

Thin-film PV devices based on cadmium telluride have been identified as one of the candidates for high-performance, low-cost source of renewable electrical energy. Roadblocks to their becoming a part of the booming PV market growth have been a low rate of production and high manufacturing cost caused by several rate-limiting process steps. Solar Cells Inc. has focused on the development of manufacturing processes that will lead to high volume and low-cost manufacturing of solar cells and on increasing the performance of the present product. The process research in Phase 3 was concentrated on further refinement of a newly developed vapor transport deposition (VTD) process and its implementation into the manufacturing line. This development included subsystems for glass substrate transport, continuous feed of source materials, generation of source vapors, and uniform deposition of the semiconductor layers. As a result of this R and D effort, the VTD process has now achieved a status in which linear coating speeds in excess of 8 ft/min have been achieved for the semiconductor, equal to about two modules per minute, or 144 kW per 24 hour day. The process has been implemented in a production line, which is capable of round-the-clock continuous production of coated substrates 120 cm x 60 cm in size at a rate of 1 module every four minutes, equal to 18 kW/day. Currently the system cycle time is limited by the rate of glass introduction into the system and glass heating, but not by the rate of the semiconductor deposition. A new SCI record efficiency of 14.1% has been achieved for the cells.

Powell, R.C.; Dorer, G.L.; Jayamaha, U.; Hanak, J.J. [Solar Cells, Inc., Toledo, OH (United States)

1998-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "dg technologies pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

PV Strom | Open Energy Information  

Open Energy Info (EERE)

Strom Strom Jump to: navigation, search Name PV Strom Place Kirchheim, Germany Zip 74366 Sector Biomass, Hydro, Renewable Energy, Solar, Wind energy Product Germany-based renewable energy project developer, focused mainly on solar, but also active in wind, hydro and biomass generation. Coordinates 50.881988°, 11.019413° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":50.881988,"lon":11.019413,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

162

Low Cost High Concentration PV Systems for Utility Power Generation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home Low Cost High Concentration PV Systems for Utility Power Generation Low Cost High Concentration PV Systems for Utility Power Generation An...

163

Low Cost High Concentration PV Systems for Utility Power Generation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home Low Cost High Concentration PV Systems for Utility Power Generation Amonix, Inc. Low Cost High Concentration PV Systems for Utility Power...

164

Arima Photovoltaic And Optical Corp Arima PV | Open Energy Information  

Open Energy Info (EERE)

Photovoltaic And Optical Corp Arima PV Jump to: navigation, search Name Arima Photovoltaic And Optical Corp (Arima PV) Place Taipei, Taiwan Product Once a maker of computers, the...

165

Photovoltaic (PV) Pricing Trends: Historical, Recent, and Near...  

NLE Websites -- All DOE Office Websites (Extended Search)

Photovoltaic (PV) Pricing Trends: Historical, Recent, and Near-Term Projections Title Photovoltaic (PV) Pricing Trends: Historical, Recent, and Near-Term Projections Publication...

166

New York City - Property Tax Abatement for Photovoltaic (PV)...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Property Tax Abatement for Photovoltaic (PV) Equipment Expenditures New York City - Property Tax Abatement for Photovoltaic (PV) Equipment Expenditures Eligibility Commercial...

167

Turlock Irrigation District - PV Rebate | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Turlock Irrigation District - PV Rebate Turlock Irrigation District - PV Rebate Eligibility Commercial Residential Savings For Solar Buying & Making Electricity Maximum Rebate 50%...

168

Department of Veterans Affairs, FONSI - Rooftop solar PV power...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rooftop solar PV power at Calverton National Cemetery Department of Veterans Affairs, FONSI - Rooftop solar PV power at Calverton National Cemetery An Environmental Assessment (EA)...

169

Maricopa Assn. of Governments - PV and Solar Domestic Water Heating...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assn. of Governments - PV and Solar Domestic Water Heating Permitting Standards Maricopa Assn. of Governments - PV and Solar Domestic Water Heating Permitting Standards Eligibility...

170

CPS Energy - Solar PV Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sites Power Marketing Administration Other Agencies You are here Home Savings CPS Energy - Solar PV Rebate Program CPS Energy - Solar PV Rebate Program Eligibility...

171

ESS 2012 Peer Review - PV Plus Storage for Simultaneous Voltage...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Meter *Advancing Automation and Sophistication Firmed PV Production *Automated cloud forecast retrieval A t t d PV Automated Shifting - 612 Summer Schedule (Afternoon Peak)...

172

Science and Technology Perspectives on R&D Partnerships (Presentation)  

DOE Green Energy (OSTI)

Description of capabilities of the National Center for Photovoltaics, its focus on PV technology innovations that drive PV industry growth, and methods employed for collaborating with universities and industry.

Raffaelle, R. P.

2009-11-01T23:59:59.000Z

173

Analysis of concentrating PV-T systems for the commercial/industrial sector. Volume III. Technical issues and design guidance  

DOE Green Energy (OSTI)

This report provide appropriate guidance for addressing the major technical issues associated with the design and installation of a photovoltaic-thermal (PV-T) system. Nomographs are presented for developing preliminary sizing and costing, and issues associated with specific components and the overall design of the electrical and mechanical system are discussed. SAND82-7157/2 presents a review of current PV-T technology and operating systems and a study of potential PV-T applications. Detailed PV-T system designs for three selected applications and the results of a trade-off study for these applications are presented in SAND82-7157/4. A summary of the major results of this entire study and conclusions concerning PV-T systems and applications is presented in SAND82-7157/1.

Schwinkendorf, W.E.

1984-09-01T23:59:59.000Z

174

Terawatt Challenge for Thin-Film PV  

DOE Green Energy (OSTI)

The evolution of PV into one of the world's largest industries is not going to happen without major unforeseen problems. However, this study attempts to address the obvious ones, so that we can put aside the mythology of PV (for example, that it is only ''boutique power'' or that one must pave the world with it to be useful) and get on with changing the world's energy infrastructure. With the years of rapid market growth now under way in PV, the author is sure this will not be the last effort to understand the real potential and pitfalls of meeting the Challenge.

Zweibel, K.

2005-08-01T23:59:59.000Z

175

Jebel Ali Hotel PV lighting systems  

SciTech Connect

A large stand-alone PV lighting project was installed in June 1983 at the Jebel Ali Hotel in Dubai, United Arab Emirates. A high mast lighting system provides illumination for a 130 meter diameter traffic roundabout. The high mast system is powered by a 15 kilowatt peak array of Mobil Solar ribbon PV modules. Along the 700 meter access road leading to the hotel entrance, twenty-one PV powered streetlights provide low-level lighting. Each streetlight consists of a 20 watt fluorescent tube powered by two 35 Wp modules. Operation of both systems is completely automatic. Design, installation, and operating experience to date are reviewed.

Ellis, M.

1984-05-01T23:59:59.000Z

176

Power Quality Impacts of Distributed Generation: Survey of Distributed Generation Technologies  

Science Conference Proceedings (OSTI)

With the advent of deregulation, distributed generation (DG) will play an increasing role in electric distribution systems. Various new types of DG technologies, such as microturbines and fuel cells, now are being developed in addition to the more traditional solar and wind power. A common belief among developers is that DG will improve the local power quality. This potential for better quality is cited as one of the attributes that add value to the installation of distributed generators. In some cases, ...

2000-11-08T23:59:59.000Z

177

Jiangxi Solar PV Corp JSPV aka Solar PV Corporation | Open Energy  

Open Energy Info (EERE)

Solar PV Corp JSPV aka Solar PV Corporation Solar PV Corp JSPV aka Solar PV Corporation Jump to: navigation, search Name Jiangxi Solar PV Corp (JSPV, aka Solar PV Corporation ) Place Xinyu, Jiangxi Province, China Zip 338004 Sector Solar Product Xinyu-based producer of solar cells Coordinates 27.804001°, 114.923317° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.804001,"lon":114.923317,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

178

Solar Photovoltaics Research and Technology: The Revolution ...  

Science Conference Proceedings (OSTI)

Moreover, technology progress and ownership for next-generation solar PV mandates a ... Dislocations in Si-Doped LEC GaAs Revisited: A Spectrum Image

179

Polycrystalline Thin Film Solar Cell Technologies: Preprint  

DOE Green Energy (OSTI)

Rapid progress is being made by CdTe and CIGS-based thin-film PV technologies in entering commercial markets.

Ullal, H. S.

2008-12-01T23:59:59.000Z

180

Application of the DG-1199 methodology to the ESBWR and ABWR.  

SciTech Connect

Appendix A-5 of Draft Regulatory Guide DG-1199 'Alternative Radiological Source Term for Evaluating Design Basis Accidents at Nuclear Power Reactors' provides guidance - applicable to RADTRAD MSIV leakage models - for scaling containment aerosol concentration to the expected steam dome concentration in order to preserve the simplified use of the Accident Source Term (AST) in assessing containment performance under assumed design basis accident (DBA) conditions. In this study Economic and Safe Boiling Water Reactor (ESBWR) and Advanced Boiling Water Reactor (ABWR) RADTRAD models are developed using the DG-1199, Appendix A-5 guidance. The models were run using RADTRAD v3.03. Low Population Zone (LPZ), control room (CR), and worst-case 2-hr Exclusion Area Boundary (EAB) doses were calculated and compared to the relevant accident dose criteria in 10 CFR 50.67. For the ESBWR, the dose results were all lower than the MSIV leakage doses calculated by General Electric/Hitachi (GEH) in their licensing technical report. There are no comparable ABWR MSIV leakage doses, however, it should be noted that the ABWR doses are lower than the ESBWR doses. In addition, sensitivity cases were evaluated to ascertain the influence/importance of key input parameters/features of the models.

Kalinich, Donald A.; Gauntt, Randall O.; Walton, Fotini

2010-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "dg technologies pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Definition: PV module | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: PV module Jump to: navigation, search Dictionary.png PV module A unit comprised of several PV cells, and the principal unit of a PV array; it is intended to generate direct current power under un-concentrated sunlight.[1][2] View on Wikipedia Wikipedia Definition A solar panel is a set of solar photovoltaic modules electrically connected and mounted on a supporting structure. A photovoltaic module is a packaged, connected assembly of photovoltaic cells. The solar module can be used as a component of a larger photovoltaic system to generate and supply electricity in commercial and residential applications. Each module is rated by its DC output power under standard test conditions (STC), and

182

Generation PV Inc | Open Energy Information  

Open Energy Info (EERE)

Generation PV Inc. Generation PV Inc. Place Markham, Ontario, Canada Zip L6E 1A9 Sector Wind energy Product Ontario-based Generation PV distributes and installs PV modules and wind turbines made by outside equipment makers, for industrial, residental and wholesale customers. Coordinates 38.9028°, -78.001804° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.9028,"lon":-78.001804,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

183

PV1 model verification and validation  

E-Print Network (OSTI)

The purpose of this document is 1) to describe, in detail, the theoretic foundation on which PV1 is based, 2) indicate the manner in which its theoretical foundation has been translated into a practical, useful tool for ...

Fuller, Frank H.

1981-01-01T23:59:59.000Z

184

PV Power Plants Conference USA 2012  

Energy.gov (U.S. Department of Energy (DOE))

The 4th PV Power Plants conference will cover relevant topics for successful project development and sustainable business. This year's event will have an additional focus on certain distributed...

185

PV Module Reliability Research (Fact Sheet)  

DOE Green Energy (OSTI)

This National Center for Photovoltaics sheet describes the capabilities of its PV module reliability research. The scope and core competencies and capabilities are discussed and recent publications are listed.

Not Available

2013-06-01T23:59:59.000Z

186

Austin Energy- Commercial PV Incentive Program  

Energy.gov (U.S. Department of Energy (DOE))

Austin Energy, a municipal utility, offers a production incentive to its commercial and multi-family residential customers for electricity generated by qualifying photovoltaic (PV) systems of up to...

187

Austin Energy- Residential Solar PV Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Austin Energy's Solar Rebate Program offers a $1.50 per watt incentive to eligible residential who install photovoltaic (PV) systems on their homes. Rebates are limited to $15,000 per home...

188

China PV Business and Applications Evaluation  

DOE Green Energy (OSTI)

This report provides an overview of photovoltaics (PV) business and applications in China. Although more than 70 million people in China are without access to grid electricity, many of the unelectrified regions benefit from considerable renewable resources, including good solar insolation. Current annual PV sales are still modest, however, and are estimated to be between 2.0 and 2.5 megawatts. This and other significant PV data, including information regarding the current status of key aspects of Chinese businesses, markets, and distribution channels, are included in the report. Detailed company profiles of Chinese business organizations and summaries of visits made to these companies (as well as to more remote sites in Inner Mongolia to examine PV usage by the end-use customer) in September-October 1998 are also presented.

Sherring, Chris (Sherring Energy Associates)

1999-08-30T23:59:59.000Z

189

pv land use | OpenEI Community  

Open Energy Info (EERE)

pv land use pv land use Home Rosborne318's picture Submitted by Rosborne318(5) Member 2 December, 2013 - 11:06 Request for Information Renewable Energy Generation/Production Shreveport Airport Authority - Response Deadline 2 January 2014 pv land use Solar solar land use Solar Power The Shreveport Airport Authority intends to issue a Request for Proposal (RFP) at some future time for renewable energy generation opportunities on Shreveport Airport property. Files: application/pdf icon solar_rfi_complete.pdf Sfomail's picture Submitted by Sfomail(48) Member 25 June, 2013 - 12:10 Solar Land Use Data on OpenEI acres csp land use how much land land requirements pv land use solar land use square miles I'm happy to announce that a new report on Solar+Land+Use was just released by the National+Renewable+Energy+Laboratory. You can find a brief summary

190

Formulating a simplified equivalent representation of distribution circuits for PV impact studies.  

SciTech Connect

With an increasing number of Distributed Generation (DG) being connected on the distribution system, a method for simplifying the complexity of the distribution system to an equivalent representation of the feeder is advantageous for streamlining the interconnection study process. The general characteristics of the system can be retained while reducing the modeling effort required. This report presents a method of simplifying feeders to only specified buses-of-interest. These buses-of-interest can be potential PV interconnection locations or buses where engineers want to verify a certain power quality. The equations and methodology are presented with mathematical proofs of the equivalence of the circuit reduction method. An example 15-bus feeder is shown with the parameters and intermediate example reduction steps to simplify the circuit to 4 buses. The reduced feeder is simulated using PowerWorld Simulator to validate that those buses operate with the same characteristics as the original circuit. Validation of the method is also performed for snapshot and time-series simulations with variable load and solar energy output data to validate the equivalent performance of the reduced circuit with the interconnection of PV.

Reno, Matthew J.; Broderick, Robert Joseph; Grijalva, Santiago [Georgia Institute of Technology, Atlanta, GA

2013-04-01T23:59:59.000Z

191

PV array simulator development and validation.  

Science Conference Proceedings (OSTI)

The ability to harvest all available energy from a photovoltaic (PV) array is essential if new system developments are to meet levelized cost of energy targets and achieve grid parity with conventional centralized utility power. Therefore, exercising maximum power point tracking (MPPT) algorithms, dynamic irradiance condition operation and startup and shutdown routines and evaluating inverter performance with various PV module fill-factor characteristics must be performed with a repeatable, reliable PV source. Sandia National Laboratories is collaborating with Ametek Programmable Power to develop and demonstrate a multi-port TerraSAS PV array simulator. The simulator will replicate challenging PV module profiles, enabling the evaluation of inverter performance through analyses of the parameters listed above. Energy harvest algorithms have traditionally implemented methods that successfully utilize available energy. However, the quantification of energy capture has always been difficult to conduct, specifically when characterizing the inverter performance under non-reproducible dynamic irradiance conditions. Theoretical models of the MPPT algorithms can simulate capture effectiveness, but full validation requires a DC source with representative field effects. The DC source being developed by Ametek and validated by Sandia is a fully integrated system that can simulate an IV curve from the Solar Advisor Model (SAM) module data base. The PV simulator allows the user to change the fill factor by programming the maximum power point voltage and current parameters and the open circuit voltage and short circuit current. The integrated PV simulator can incorporate captured irradiance and module temperature data files for playback, and scripted profiles can be generated to validate new emerging hardware embedded with existing and evolving MPPT algorithms. Since the simulator has multiple independent outputs, it also has the flexibility to evaluate an inverter with multiple MPPT DC inputs. The flexibility of the PV simulator enables the validation of the inverter's capability to handle vastly different array configurations.

Kuszmaul, Scott S.; Gonzalez, Sigifredo; Lucca, Roberto (Ametek Programmable Power, San Diego, CA); Deuel, Don (Ametek Programmable Power, San Diego, CA)

2010-06-01T23:59:59.000Z

192

Challenges in Integrating Renewable Technologies  

E-Print Network (OSTI)

PV, solar thermal, and wave. Breakthroughs are also needed in large-scale energy storage technologies reliability and econ- omy. The challenges of integrating high penetrations of renewable energy technologies

193

Pioneering NREL research has been instrumental in developing cadmium telluride (CdTe) and other thin-film photovoltaic (PV) technologies to the point where they are poised to take off  

E-Print Network (OSTI)

offset the cost of additional manufacturing capacity. In addition, NREL's new Science and Technology near-term manufacturing, building the knowledge and technology base for future manufacturing on. PIX 16735 Thin-Film Manufacturing Process Gives Edge to Photovoltaic Start-Up Abound Solar

194

The Effect of PV Array Size and Battery Size on the Economics of PV/Diesel/Battery Hybrid RAPS Systems  

E-Print Network (OSTI)

The Effect of PV Array Size and Battery Size on the Economics of PV/Diesel/Battery Hybrid RAPS WA 6150 Abstract This paper focuses on pv/diesel/battery hybrid RAPS systems meeting loads above 50 kWh per day. The effect of varying the size of the pv array and the battery bank in such systems on both

195

Hybrid photovoltaic/thermal (PV/T) solar systems simulation with Simulink/Matlab  

Science Conference Proceedings (OSTI)

The purpose of this work consists in thermodynamic modeling of hybrid photovoltaic-thermal (PV/T) solar systems, pursuing a modular strategy approach provided by Simulink/Matlab. PV/T solar systems are a recently emerging solar technology that allows for the simultaneous conversion of solar energy into both electricity and heat. This type of technology present some interesting advantages over the conventional ''side-by-side'' thermal and PV solar systems, such as higher combined electrical/thermal energy outputs per unit area, and a more uniform and aesthetical pleasant roof area. Despite the fact that early research on PV/T systems can be traced back to the seventies, only recently it has gained a renewed impetus. In this work, parametric studies and annual transient simulations of PV/T systems are undertaken in Simulink/Matlab. The obtained results show an average annual solar fraction of 67%, and a global overall efficiency of 24% (i.e. 15% thermal and 9% electrical), for a typical four-person single-family residence in Lisbon, with p-Si cells, and a collector area of 6 m{sup 2}. A sensitivity analysis performed on the PV/T collector suggests that the most important variable that should be addressed to improve thermal performance is the photovoltaic (PV) module emittance. Based on those results, some additional improvements are proposed, such as the use of vacuum, or a noble gas at low-pressure, to allow for the removal of PV cells encapsulation without air oxidation and degradation, and thus reducing the PV module emittance. Preliminary results show that this option allows for an 8% increase on optical thermal efficiency, and a substantial reduction of thermal losses, suggesting the possibility of working at higher fluid temperatures. The higher working temperatures negative effect in electrical efficiency was negligible, due to compensation by improved optical properties. The simulation results are compared with experimental data obtained from other authors and perform reasonably well. The Simulink modeling platform has been mainly used worldwide on simulation of control systems, digital signal processing and electric circuits, but there are very few examples of application to solar energy systems modeling. This work uses the modular environment of Simulink/Matlab to model individual PV/T system components, and to assemble the entire installation layout. The results show that the modular approach strategy provided by Matlab/Simulink environment is applicable to solar systems modeling, providing good code scalability, faster developing time, and simpler integration with external computational tools, when compared with traditional imperative-oriented programming languages. (author)

da Silva, R.M.; Fernandes, J.L.M. [Department of Mechanical Engineering, Instituto Superior Tecnico, Lisbon (Portugal)

2010-12-15T23:59:59.000Z

196

Modeling High-Penetration PV for Distribution Analysis  

Science Conference Proceedings (OSTI)

The number of new solar PV interconnections to the distribution system has increased exponentially in recent years. The total installed capacity of PV worldwide increased from 20,000 to 40,000 during 2010. In some areas distribution planners are inundated with interconnection requests for both small-scale residential PV as well as larger, commercial, and centralized PV systems. Many utility companies that have not traditionally experienced a lot of distributed PV requests have within the past few years s...

2011-12-30T23:59:59.000Z

197

Renewable Energy Technology Guide  

Science Conference Proceedings (OSTI)

First published in 2000 as the Renewable Energy Technical Assessment GuideTAG-RE, the Electric Power Research Institute's (EPRI's) annual Renewable Energy Technology Guide provides a consistent basis for evaluating the economic feasibility of renewable generation technologies. These technologies include wind, solar photovoltaic (PV), solar thermal, biomass, municipal solid waste, geothermal, and emerging ocean energy conversion technologies.

2011-12-22T23:59:59.000Z

198

Global PV Grid Parity Global PV grid parity and market potential  

Open Energy Info (EERE)

Global PV Grid Parity Global PV grid parity and market potential. Data is courtesy of Sean Ong.
2012-04-13T20:55:49Z 2012-06-06T21:02:36Z I am submitting data from...

199

DG Demonet Smart LV Grid (Smart Grid Project) | Open Energy Information  

Open Energy Info (EERE)

Demonet Smart LV Grid (Smart Grid Project) Demonet Smart LV Grid (Smart Grid Project) Jump to: navigation, search Project Name DG Demonet Smart LV Grid Country Austria Coordinates 47.516232°, 14.550072° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.516232,"lon":14.550072,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

200

Installation, Operation, and Maintenance Costs for Distributed Generation Technologies  

Science Conference Proceedings (OSTI)

Distributed generation (DG) is a broad term that encompasses both mature and emerging onsite power generation technologies with power output as small as 1 kW and as large as 20 MW. While the equipment or purchase cost of a DG system is very important, installation, operation, and maintenance (IOM) costs also are significant and often overlooked. This report reviews IOM costs for both mature and emerging DG technologies. Some equipment cost data is included for reference, but is not the focus of this repo...

2003-02-03T23:59:59.000Z

Note: This page contains sample records for the topic "dg technologies pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

A 20-SUN HYBRID PV-THERMAL LINEAR MICRO-CONCENTRATOR SYSTEM FOR URBAN ROOFTOP APPLICATIONS  

E-Print Network (OSTI)

factor satisfies aesthetic demands for general rooftop solar technologies, and is a marked departure fromA 20-SUN HYBRID PV-THERMAL LINEAR MICRO-CONCENTRATOR SYSTEM FOR URBAN ROOFTOP APPLICATIONS D Walter has been developed specifically for urban rooftop environments. The light- weight, low-profile form

202

Photovoltaic (PV) Pricing Trends: Historical, Recent, and Near-Term Projections  

Science Conference Proceedings (OSTI)

This report helps to clarify the confusion surrounding different estimates of system pricing by distinguishing between past, current, and near-term projected estimates. It also discusses the different methodologies and factors that impact the estimated price of a PV system, such as system size, location, technology, and reporting methods.These factors, including timing, can have a significant impact on system pricing.

Feldman, D.; Barbose, G.; Margolis, R.; Wiser, R.; Darghouth, N.; Goodrich, A.

2012-11-01T23:59:59.000Z

203

Teksun PV Manufacturing Inc | Open Energy Information  

Open Energy Info (EERE)

Teksun PV Manufacturing Inc Teksun PV Manufacturing Inc Jump to: navigation, search Logo: Teksun PV Manufacturing Inc Name Teksun PV Manufacturing Inc Address 401 Congress Ave Place Austin, Texas Zip 78701 Sector Solar Product Plan to manufacture large scale PV panels for utility scale solar power parks Website http://www.teksunpv.com/ Coordinates 30.266402°, -97.742959° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.266402,"lon":-97.742959,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

204

The Open PV Project | Open Energy Information  

Open Energy Info (EERE)

The Open PV Project The Open PV Project (Redirected from OpenPV) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Open PV Project Agency/Company /Organization: NREL Sector: Energy Focus Area: Solar, - Solar PV Topics: Background analysis, Market analysis Resource Type: Dataset, Online calculator, Software/modeling tools User Interface: Website Website: openpv.nrel.gov/about Country: United States Web Application Link: openpv.nrel.gov/ Cost: Free OpenEI Keyword(s): Featured UN Region: Northern America Coordinates: 37.09024°, -95.712891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.09024,"lon":-95.712891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

205

The Open PV Project | Open Energy Information  

Open Energy Info (EERE)

The Open PV Project The Open PV Project (Redirected from Open PV) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Open PV Project Agency/Company /Organization: NREL Sector: Energy Focus Area: Solar, - Solar PV Topics: Background analysis, Market analysis Resource Type: Dataset, Online calculator, Software/modeling tools User Interface: Website Website: openpv.nrel.gov/about Country: United States Web Application Link: openpv.nrel.gov/ Cost: Free OpenEI Keyword(s): Featured UN Region: Northern America Coordinates: 37.09024°, -95.712891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.09024,"lon":-95.712891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

206

Designing PV Incentive Programs to Promote System Performance: A Review of Current Practice  

E-Print Network (OSTI)

2006. Celentano, Ron. 2005. SDF Solar PV Grant Program inSolar Rewards Program Solar PV Rebate Program (Small PVSolar Electric Program Solar PV Grant Program ** Residential

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

207

Analyzing and simulating the variability of solar irradiance and solar PV powerplants  

E-Print Network (OSTI)

WVM) for Solar PV Power Plants .. 73funding from the DOE High Solar PV Penetration grant 10DE-Variability Model (WVM) for Solar PV Power Plants 2012

Lave, Matthew S.

2012-01-01T23:59:59.000Z

208

Do PV Systems Increase Residential Selling Prices If So, How Can Practitioners Estimate This Increase?  

E-Print Network (OSTI)

and federal policymakers. Solar PV investments are sizable,investment in PV and thereby slow solar deployment. Statenew home solar homes, the been sufficient to the PV systems.

Hoen, Ben

2013-01-01T23:59:59.000Z

209

Solar Thermal/PV | OpenEI  

Open Energy Info (EERE)

Thermal/PV Thermal/PV Dataset Summary Description Provides annual consumption (in quadrillion Btu) of renewable energy by energy use sector (residential, commercial, industrial, transportation and electricity) and by energy source (e.g. solar, biofuel) for 2004 through 2008. Original sources for data are cited on spreadsheet. Also available from: www.eia.gov/cneaf/solar.renewables/page/trends/table1_2.xls Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords annual energy consumption biodiesel Biofuels biomass energy use by sector ethanol geothermal Hydroelectric Conventional Landfill Gas MSW Biogenic Other Biomass renewable energy Solar Thermal/PV Waste wind Wood and Derived Fuels Data application/vnd.ms-excel icon RE Consumption by Energy Use Sector, Excel file (xls, 32.8 KiB)

210

PV Powered Inc | Open Energy Information  

Open Energy Info (EERE)

PV Powered Inc PV Powered Inc Place Bend, Oregon Zip 97702 Product Oregon-based manufacturer of inverters for PV systems. Coordinates 44.05766°, -121.315549° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.05766,"lon":-121.315549,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

211

Gansu PV Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Gansu PV Co Ltd Gansu PV Co Ltd Place Lanzhou, Gansu Province, China Zip 730000 Sector Solar Product Gansu PV Co Ltd is active in manufacturing, installing and servicing SHS and small portable solar lighting systems. Coordinates 36.059299°, 103.756279° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.059299,"lon":103.756279,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

212

Updating Interconnection Screens for PV System Integration  

DOE Green Energy (OSTI)

This white paper evaluates the origins and usefulness of the capacity penetration screen, offer short-term solutions which could effectively allow fast-track interconnection to many PV system applications, and considers longer-term solutions for increasing PV deployment levels in a safe and reliable manner while reducing or eliminating the emphasis on the penetration screen. Short-term and longer-term alternatives approaches are offered as examples; however, specific modifications to screening procedures should be discussed with stakeholders and must ultimately be adopted by state and federal regulatory bodies.

Coddington, M.; Mather, B.; Kroposki, B.; Lynn, K.; Razon, A.; Ellis, A.; Hill, R.; Key, T.; Nicole, K.; Smith, J.

2012-02-01T23:59:59.000Z

213

Solar PV Manufacturing Cost Model Group: Installed Solar PV System Prices (Presentation)  

SciTech Connect

EERE's Solar Energy Technologies Program is charged with leading the Secretary's SunShot Initiative to reduce the cost of electricity from solar by 75% to be cost competitive with conventional energy sources without subsidy by the end of the decade. As part of this Initiative, the program has funded the National Renewable Energy Laboratory (NREL) to develop module manufacturing and solar PV system installation cost models to ensure that the program's cost reduction targets are carefully aligned with current and near term industry costs. The NREL cost analysis team has leveraged the laboratories' extensive experience in the areas of project finance and deployment, as well as industry partnerships, to develop cost models that mirror the project cost analysis tools used by project managers at leading U.S. installers. The cost models are constructed through a "bottoms-up" assessment of each major cost element, beginning with the system's bill of materials, labor requirements (type and hours) by component, site-specific charges, and soft costs. In addition to the relevant engineering, procurement, and construction costs, the models also consider all relevant costs to an installer, including labor burdens and overhead rates, supply chain costs, and overhead and materials inventory costs, and assume market-specific profits.

Goodrich, A. C.; Woodhouse, M.; James, T.

2011-02-01T23:59:59.000Z

214

Solar PV Manufacturing Cost Model Group: Installed Solar PV System Prices (Presentation)  

DOE Green Energy (OSTI)

EERE's Solar Energy Technologies Program is charged with leading the Secretary's SunShot Initiative to reduce the cost of electricity from solar by 75% to be cost competitive with conventional energy sources without subsidy by the end of the decade. As part of this Initiative, the program has funded the National Renewable Energy Laboratory (NREL) to develop module manufacturing and solar PV system installation cost models to ensure that the program's cost reduction targets are carefully aligned with current and near term industry costs. The NREL cost analysis team has leveraged the laboratories' extensive experience in the areas of project finance and deployment, as well as industry partnerships, to develop cost models that mirror the project cost analysis tools used by project managers at leading U.S. installers. The cost models are constructed through a "bottoms-up" assessment of each major cost element, beginning with the system's bill of materials, labor requirements (type and hours) by component, site-specific charges, and soft costs. In addition to the relevant engineering, procurement, and construction costs, the models also consider all relevant costs to an installer, including labor burdens and overhead rates, supply chain costs, and overhead and materials inventory costs, and assume market-specific profits.

Goodrich, A. C.; Woodhouse, M.; James, T.

2011-02-01T23:59:59.000Z

215

Berkeley Lab Facilitates 18.6-megawatt PV facility at Army's Fort  

NLE Websites -- All DOE Office Websites (Extended Search)

Berkeley Lab Facilitates 18.6-megawatt PV facility at Army's Fort Berkeley Lab Facilitates 18.6-megawatt PV facility at Army's Fort Detrick, Maryland December 2013 The Army, on Friday November 29, announced a notice of intent to award a contract to build an 18.6-megawatt solar photovoltaic (PV) facility at Fort Detrick, in Frederick, Maryland. This action will help the service meet its goal of deploying one gigawatt of renewable energy by 2025. The selected contractor is Framingham, Mass.-based Ameresco. Lawrence Berkeley National Laboratory (Berkeley Lab), through its Environmental Energy Technologies Division, provided essential technical services, over a span of two years, to make this project happen. Supported by the Federal Energy Management Program, Berkeley Lab renewable power expert Gerald Robinson provided the Army, Fort Detrick staff, its Energy

216

Analysis of the Impacts of Distribution-Connected PV Using High-Speed Data Sets: Preprint  

DOE Green Energy (OSTI)

This paper, presented at the IEEE Green Technologies Conference 2013, utilizes information from high resolution data acquisition systems developed at the National Renewable Energy Laboratory and deployed on a high-penetration PV distribution system to analyze the variability of different electrical parameters. High-resolution solar irradiance data is also available in the same area which is used to characterize the available resource and how it affects the electrical characteristics of the study circuit. This paper takes a data-driven look at the variability caused by load and compares those results against times when significant PV production is present. Comparisons between the variability in system load and the variability of distributed PV generation are made.

Bank, J.; Mather, B.

2013-03-01T23:59:59.000Z

217

Investigation of Synergy Between Electrochemical Capacitors, Flywheels, and Batteries in Hybrid Energy Storage for PV Systems  

DOE Green Energy (OSTI)

This report describes the results of a study that investigated the synergy between electrochemical capacitors (ECs) and flywheels, in combination with each other and with batteries, as energy storage subsystems in photovoltaic (PV) systems. EC and flywheel technologies are described and the potential advantages and disadvantages of each in PV energy storage subsystems are discussed. Seven applications for PV energy storage subsystems are described along with the potential market for each of these applications. A spreadsheet model, which used the net present value method, was used to analyze and compare the costs over time of various system configurations based on flywheel models. It appears that a synergistic relationship exists between ECS and flywheels. Further investigation is recommended to quantify the performance and economic tradeoffs of this synergy and its effect on overall system costs.

Miller, John; Sibley, Lewis, B.; Wohlgemuth, John

1999-06-01T23:59:59.000Z

218

Utility-scale grid-tied PV inverter reliability workshop summary report.  

DOE Green Energy (OSTI)

A key to the long-term success of the photovoltaic (PV) industry is confidence in the reliability of PV systems. Inverters are the most commonly noted cause of PV system incidents triggered in the field. While not all of these incidents are reliability-related or even necessarily failures, they still result in a loss of generated power. With support from the U.S. Department of Energy's Solar Energy Technologies Program, Sandia National Laboratories organized a Utility-Scale Grid-Tied Inverter Reliability Workshop in Albuquerque, New Mexico, January 27-28, 2011. The workshop addressed the reliability of large (100-kilowatt+) grid-tied inverters and the implications when such inverters fail, evaluated inverter codes and standards, and provided discussion about opportunities to enhance inverter reliability. This report summarizes discussions and presentations from the workshop and identifies opportunities for future efforts.

Granata, Jennifer E.; Quintana, Michael A.; Tasca, Coryne Adelle (SRA International, Inc., Fairfax, VA); Atcitty, Stanley

2011-07-01T23:59:59.000Z

219

Development of a Visual Inspection Data Collection Tool for Evaluation of Fielded PV Module Condition  

DOE Green Energy (OSTI)

A visual inspection data collection tool for the evaluation of fielded photovoltaic (PV) modules has been developed to facilitate describing the condition of PV modules with regard to field performance. The proposed data collection tool consists of 14 sections, each documenting the appearance or properties of a part of the module. This report instructs on how to use the collection tool and defines each attribute to ensure reliable and valid data collection. This tool has been evaluated through the inspection of over 60 PV modules produced by more than 20 manufacturers and fielded at two different sites for varying periods of time. Aggregated data from such a single data collection tool has the potential to enable longitudinal studies of module condition over time, technology evolution, and field location for the enhancement of module reliability models.

Packard, C. E.; Wohlgemuth, J. H.; Kurtz, S. R.

2012-08-01T23:59:59.000Z

220

Utility-scale grid-tied PV inverter reliability workshop summary report.  

SciTech Connect

A key to the long-term success of the photovoltaic (PV) industry is confidence in the reliability of PV systems. Inverters are the most commonly noted cause of PV system incidents triggered in the field. While not all of these incidents are reliability-related or even necessarily failures, they still result in a loss of generated power. With support from the U.S. Department of Energy's Solar Energy Technologies Program, Sandia National Laboratories organized a Utility-Scale Grid-Tied Inverter Reliability Workshop in Albuquerque, New Mexico, January 27-28, 2011. The workshop addressed the reliability of large (100-kilowatt+) grid-tied inverters and the implications when such inverters fail, evaluated inverter codes and standards, and provided discussion about opportunities to enhance inverter reliability. This report summarizes discussions and presentations from the workshop and identifies opportunities for future efforts.

Granata, Jennifer E.; Quintana, Michael A.; Tasca, Coryne Adelle (SRA International, Inc., Fairfax, VA); Atcitty, Stanley

2011-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "dg technologies pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Advanced, High-Reliability, System-Integrated 500kW PV Inverter Development: Final Subcontract Report, 29 September 2005 - 31 May 2008  

DOE Green Energy (OSTI)

Xantrex Technology accomplished subcontract goals of reducing parts cost, weight, and size of its 500-kW inverter by 25% compared to state-of-the-art PV inverters, while extending reliability by 25%.

West, R.

2008-08-01T23:59:59.000Z

222

Modular Power Converters for PV Applications  

DOE Green Energy (OSTI)

This report describes technical opportunities to serve as parts of a technological roadmap for Shoals Technologies Group in power electronics for PV applications. There are many different power converter circuits that can be used for solar inverter applications. The present applications do not take advantage of the potential for using common modules. We envision that the development of a power electronics module could enable higher reliability by being durable and flexible. Modules would have fault current limiting features and detection circuits such that they can limit the current through the module from external faults and can identify and isolate internal faults such that the remaining modules can continue to operate with only minimal disturbance to the utility or customer. Development of a reliable, efficient, low-cost, power electronics module will be a key enabling technology for harnessing more power from solar panels and enable plug and play operation. Power electronics for computer power supplies, communication equipment, and transportation have all targeted reliability and modularity as key requirements and have begun concerted efforts to replace monolithic components with collections of common smart modules. This is happening on several levels including (1) device level with intelligent control, (2) functional module level, and (3) system module. This same effort is needed in power electronics for solar applications. Development of modular units will result in standard power electronic converters that will have a lower installed and operating cost for the overall system. These units will lead to increased adaptability and flexibility of solar inverters. Incorporating autonomous fault current limiting and reconfiguration capabilities into the modules and having redundant modules will lead to a durable converter that can withstand the rigors of solar power generation for more than 30 years. Our vision for the technology roadmap is that there is no need for detailed design of new power converters for each new application or installation. One set of modules and controllers can be pre-developed and the only design question would be how many modules need to be in series or parallel for the specific power requirement. Then, a designer can put the modules together and add the intelligent reconfigurable controller. The controller determines how many modules are connected, but it might also ask for user input for the specific application during setup. The modules include protection against faults and can reset it, if necessary. In case of a power device failure, the controller reconfigures itself to continue limited operation until repair which might be as simple as taking the faulty module out and inserting a new module. The result is cost savings in design, maintenance, repair, and a grid that is more reliable and available. This concept would be a perfect fit for the recently announced funding opportunity announcement (DE-FOA-0000653) on Plug and Play Photovoltaics.

Ozpineci, Burak [ORNL; Tolbert, Leon M [ORNL

2012-05-01T23:59:59.000Z

223

The transition to renewables: Can PV provide an answer to the peak oil and climate change challenges?  

E-Print Network (OSTI)

turbines, fuel cells and hydro power could be used. A report by the US National Renewable Energy Laboratory Keywords: Photovoltaics Embodied energy World energy demand a b s t r a c t This paper explores energy that silicon PV technology is the only technology that will or can be adopted, but as the embodied energy

Ito, Garrett

224

Federal Tax Incentives for PV: Potential Implications for Program Design  

E-Print Network (OSTI)

on Federal ITC Section 48 Resource: PV, CSP, solar heating/25D Resource: PV and solar water heating used in dwellingcooling, solar lighting (no pool heating, and no passive

Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

225

Pioneer Valley Photovoltaics Cooperative aka PV Squared | Open Energy  

Open Energy Info (EERE)

Photovoltaics Cooperative aka PV Squared Photovoltaics Cooperative aka PV Squared Jump to: navigation, search Name Pioneer Valley Photovoltaics Cooperative (aka PV Squared) Place New Britain, Connecticut Zip 6051 Sector Solar Product Solar PV system installer. References Pioneer Valley Photovoltaics Cooperative (aka PV Squared)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Pioneer Valley Photovoltaics Cooperative (aka PV Squared) is a company located in New Britain, Connecticut . References ↑ "Pioneer Valley Photovoltaics Cooperative (aka PV Squared)" Retrieved from "http://en.openei.org/w/index.php?title=Pioneer_Valley_Photovoltaics_Cooperative_aka_PV_Squared&oldid=349764"

226

Federal Tax Incentives for PV: Potential Implications for Program Design  

E-Print Network (OSTI)

than purchase price In cases where PV programs providethe purchase price in an arms-length transaction Most PVprice, the grant is still considered to be from the PV

Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

227

Loan Guarantees for Three California PV Solar Plants Expected...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Loan Guarantees for Three California PV Solar Plants Expected to Create 1,400 Jobs Loan Guarantees for Three California PV Solar Plants Expected to Create 1,400 Jobs June 30, 2011...

228

Austin Energy - Residential Solar PV Rebate Program (Texas) ...  

Open Energy Info (EERE)

for the fiscal year ending September 30, 2004. For 2005, 2,000,000 was budgeted for solar PV rebates and 500,000 for PV installations on municipal buildings. For 2006, the...

229

NREL PV System Performance and Standards Technical Progress  

DOE Green Energy (OSTI)

This paper presents a brief overview of the status and accomplishments during Fiscal Year (FY)2004 of the Photovoltaic (PV) System Performance & Standards Subtask, which is part of PV Systems Engineering Project (a joint NREL-Sandia project).

Osterwald, C. R.

2005-01-01T23:59:59.000Z

230

The Open PV Project | Open Energy Information  

Open Energy Info (EERE)

The Open PV Project The Open PV Project Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Open PV Project Agency/Company /Organization: NREL Sector: Energy Focus Area: Solar, - Solar PV Topics: Background analysis, Market analysis Resource Type: Dataset, Online calculator, Software/modeling tools User Interface: Website Website: openpv.nrel.gov/about Country: United States Web Application Link: openpv.nrel.gov/ Cost: Free OpenEI Keyword(s): Featured UN Region: Northern America Coordinates: 37.09024°, -95.712891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.09024,"lon":-95.712891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

231

PV Odds & Ends by John Wiles  

E-Print Network (OSTI)

are installed in a manner that meets the re- quirements of the National Electrical Code (NEC­NFPA 70). However the PV installer because NEC Section 110.3(B) requires that the instructions and labels on listed members), users, NFPA Code-Making Panel members, IBEW, laboratories, government agen- cies, universities

Johnson, Eric E.

232

All Solar PV | Open Energy Information  

Open Energy Info (EERE)

All Solar PV All Solar PV Jump to: navigation, search Logo: All Solar PV Name All Solar PV Address 1407-4-105 Century East,Daliushu Road Place Beijing, China Sector Solar Product Solar Energy Products Year founded 2004 Phone number 86-010-52006592 Website http://www.allsolarpv.com/ Coordinates 39.904667°, 116.408198° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.904667,"lon":116.408198,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

233

Rooftop PV Data for Better Energy Prediction Models  

Science Conference Proceedings (OSTI)

... New generations of photovoltaic (PV) roofing products utilize designs that ... Finally, the researchers are taking solar radiation measurements at the ...

2011-04-26T23:59:59.000Z

234

Incentives as a Tool for Stimulating PV Market Growth  

SciTech Connect

This paper summarizes several studies analyzing consumer incentives for the grid-tied domestic photovoltaic (PV) market.

Herig, C.

2000-01-01T23:59:59.000Z

235

Power Systems Engineering Research Center Modeling, Analysis and Deployment of High PV  

E-Print Network (OSTI)

and about 125 rooftop residential PV systems and two large scale PV systems. The total installed PV capacity electronics and grid integration of renew- able resources mainly solar PV and wind. Dr. Ayyanar received

Van Veen, Barry D.

236

Commercialization of PV-powered pumping systems for use in utility PV service programs. Final report  

DOE Green Energy (OSTI)

The project described in this report was a commercialization effort focused on cost-effective remote water pumping systems for use in utility-based photovoltaic (PV) service programs. The project combined a commercialization strategy tailored specifically for electric utilities with the development of a PV-powered pumping system that operates conventional ac pumps rather than relying on the more expensive and less reliable PV pumps on the market. By combining these two attributes, a project goal was established of creating sustained utility purchases of 250 PV-powered water pumping systems per year. The results of each of these tasks are presented in two parts contained in this Final Summary Report. The first part summarizes the results of the Photovoltaic Services Network (PSN) as a new business venture, while the second part summarizes the results of the Golden Photon system installations. Specifically, results and photographs from each of the system installations are presented in this latter part.

NONE

1997-03-01T23:59:59.000Z

237

Flat-Plate Photovoltaic Performance Testing at the Solar Technology Acceleration Center (SolarTAC)  

Science Conference Proceedings (OSTI)

The flat-plate photovoltaic (PV) performance testing project at the Solar Technology Acceleration Center (SolarTAC) is a multi-year, data-driven effort to provide unbiased field testing of a variety of commercial-scale solar PV systems under different environmental and seasonal conditions. Its core aim is to assess and characterize the operation of both well-established as well as less mature PV module technologies to ultimately inform future PV product investment decisions by electric utilities and ...

2013-10-30T23:59:59.000Z

238

Interconnecting PV on New York City's Secondary Network  

E-Print Network (OSTI)

66 IAEI NEWS January.February 2007 www.iaei.org inspectors demand more answers Perspectives on PV A series of articles on photovoltaic (PV) power systems and the National Electrical Code Inspectors DemandPVsystemorinspectingsuchasystem, therearemanynewfeaturesthatareworthquestioning.Herearesome of the questions that inspectors have raised via e-mail, telephone calls, andduringmyPV

239

November 21, 2000 PV Lesson Plan 2 Sample Questions & Answers  

E-Print Network (OSTI)

to include the effects of shadowing on solar PV the multilayer perceptrons feed forward network and the back for the neural network is received by In real operating conditions, solar PV arrays are connected measurement to predict the shadow effects on the solar PV arrays for long term assumed linearly proportional to solar

Oregon, University of

240

High Resolution PV Power Modeling for Distribution Circuit Analysis  

DOE Green Energy (OSTI)

NREL has contracted with Clean Power Research to provide 1-minute simulation datasets of PV systems located at three high penetration distribution feeders in the service territory of Southern California Edison (SCE): Porterville, Palmdale, and Fontana, California. The resulting PV simulations will be used to separately model the electrical circuits to determine the impacts of PV on circuit operations.

Norris, B. L.; Dise, J. H.

2013-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "dg technologies pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Distribution System Analysis Tools for Studying High Penetration of PV  

E-Print Network (OSTI)

Distribution System Analysis Tools for Studying High Penetration of PV with Grid Support Features Electric Energy System #12;#12;Distribution System Analysis Tools for Studying High Penetration of PV project titled "Distribution System Analysis Tools for Studying High Penetration of PV with Grid Support

242

PV Crystalox Solar AG formerly PV Silicon AG | Open Energy Information  

Open Energy Info (EERE)

PV Crystalox Solar AG formerly PV Silicon AG PV Crystalox Solar AG formerly PV Silicon AG Jump to: navigation, search Name PV Crystalox Solar AG (formerly PV Silicon AG) Place Abingdon, England, United Kingdom Zip OX14 4SE Sector Solar Product UK-based manufacturer of multicrystalline ingots and wafers to the solar industry; as of early 2009, to output solar-grade polysilicon. Coordinates 36.71049°, -81.975194° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.71049,"lon":-81.975194,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

243

Atsun Solar Electric Technology Co Ang Li Tiansheng | Open Energy...  

Open Energy Info (EERE)

Co (Ang Li Tiansheng) Place Zaozhuang, Shandong Province, China Product Chinese PV cell and module maker. References Atsun Solar Electric Technology Co (Ang Li Tiansheng)1...

244

STATEMENT OF CONSIDERATIONS REQUEST BY XANTREX TECHNOLOGY, INCORPORATE...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The purpose of the subcontract encompasses the development of improved photovoltaic (PV) manufacturing processes and products while reducing costs and providing a technology...

245

Application of USNRC NUREG/CR-6661 and draft DG-1108 to evolutionary and advanced reactor designs  

Science Conference Proceedings (OSTI)

For the seismic design of evolutionary and advanced nuclear reactor power plants, there are definite financial advantages in the application of USNRC NUREG/CR-6661 and draft Regulatory Guide DG-1108. NUREG/CR-6661, 'Benchmark Program for the Evaluation of Methods to Analyze Non-Classically Damped Coupled Systems', was by Brookhaven National Laboratory (BNL) for the USNRC, and Draft Regulatory Guide DG-1108 is the proposed revision to the current Regulatory Guide (RG) 1.92, Revision 1, 'Combining Modal Responses and Spatial Components in Seismic Response Analysis'. The draft Regulatory Guide DG-1108 is available at http://members.cox.net/apolloconsulting, which also provides a link to the USNRC ADAMS site to search for NUREG/CR-6661 in text file or image file. The draft Regulatory Guide DG-1108 removes unnecessary conservatism in the modal combinations for closely spaced modes in seismic response spectrum analysis. Its application will be very helpful in coupled seismic analysis for structures and heavy equipment to reduce seismic responses and in piping system seismic design. In the NUREG/CR-6661 benchmark program, which investigated coupled seismic analysis of structures and equipment or piping systems with different damping values, three of the four participants applied the complex mode solution method to handle different damping values for structures, equipment, and piping systems. The fourth participant applied the classical normal mode method with equivalent weighted damping values to handle differences in structural, equipment, and piping system damping values. Coupled analysis will reduce the equipment responses when equipment, or piping system and structure are in or close to resonance. However, this reduction in responses occurs only if the realistic DG-1108 modal response combination method is applied, because closely spaced modes will be produced when structure and equipment or piping systems are in or close to resonance. Otherwise, the conservatism in the current Regulatory Guide 1.92, Revision 1, will overshadow the advantage of coupled analysis. All four participants applied the realistic modal combination method of DG-1108. Consequently, more realistic and reduced responses were obtained. (authors)

Chang 'Apollo', Chen [Apollo Consulting, Inc., Surprise, AZ 85374-4605 (United States)

2006-07-01T23:59:59.000Z

246

Twin Creeks Technologies | Open Energy Information  

Open Energy Info (EERE)

Technologies Place San Jose, California Zip 95134 Product California-based silicon-based thin-film PV startup in stealth mode. References Twin Creeks Technologies1 LinkedIn...

247

On-grid PV implementation program. Phase I report, August 1994--January 1995  

Science Conference Proceedings (OSTI)

Southern California Edison Company (Edison) is finalizing a Cooperative Agreement with the U.S. Department of Energy (DOE) to develop high value On-Grid applications for electricity from Photovoltaics (PV). Edison`s efforts are the result of Edison`s long-standing commitment to the pursuit of Renewable Energy. Edison has been a world leader in the development and use of PV. As the technology becomes more commercial, Edison has been actively seeking more applications for PV. After strenuous effort, Edison has now received approval to offer off-grid PV packages within its service territory. In addition, Edison has been very interested in finding high-value on-grid PV applications that may have the potential to become cost effective as PV applications increase and prices decline. Such high-value applications at Edison and other utilities will accelerate the price reductions, which in turn will increase the number of cost-effective applications, driving towards a market competitive with traditional sources of energy. Edison`s efforts build upon the work done by Pacific Gas & Electric (PG&E) at their Kerman substation, but goes much further than that effort. Edison submitted its original proposal to the DOE on June 30, 1993. A revised proposal was submitted on February 1, 1994, in response to a letter from the DOE`s Director of Solar Energy, Robert H. Annan. In a letter dated March 30, 1994, from Paul K. Kearns, Head of Contracting Activity for the DOE`s Golden Field Office, the DOE conditionally approved certain pre-award contract costs. The Cooperative Agreement with DOE was executed on August 16, 1994.

NONE

1994-11-29T23:59:59.000Z

248

Value Proposition for High Lifetime (p-type) and Thin Silicon Materials in Solar PV Applications: Preprint  

DOE Green Energy (OSTI)

Most silicon PV road maps forecast a continued reduction in wafer thickness, despite rapid declines in the primary incentive for doing so -- polysilicon feedstock price. Another common feature of most silicon-technology forecasts is the quest for ever-higher device performance at the lowest possible costs. The authors present data from device-performance and manufacturing- and system-installation cost models to quantitatively establish the incentives for manufacturers to pursue advanced (thin) wafer and (high efficiency) cell technologies, in an age of reduced feedstock prices. This analysis exhaustively considers the value proposition for high lifetime (p-type) silicon materials across the entire c-Si PV supply chain.

Goodrich, A.; Woodhouse, M.; Hacke, P.

2012-06-01T23:59:59.000Z

249

Photovoltaic Resources and Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Photovoltaic Resources and Technologies Photovoltaic Resources and Technologies Photovoltaic Resources and Technologies October 7, 2013 - 9:22am Addthis Graphic of the eTraining logo Training Available Selecting, Implementing, and Funding Photovoltaic Systems in Federal Facilities: Learn how to select, implement, and fund a photovoltaic system by taking this FEMP eTraining course. This page provides a brief overview of photovoltaic (PV) technologies supplemented by specific information to apply PV within the Federal sector. Overview Photovoltaic cells convert sunlight into electricity. Systems typically include a PV module or array made of individual PV cells installed on or near a building or other structure. A power inverter converts the direct current (DC) electricity produced by the PV cells to alternative current

250

Technologies  

Technologies Materials. Aggregate Spray for Air Particulate; Actuators Made From Nanoporous Materials; Ceramic Filters; Energy Absorbing Material; Diode Arrays for ...

251

Technologies  

Science & Technology. Weapons & Complex Integration. News Center. News Center. Around the Lab. Contacts. For Reporters. Livermore Lab Report. ...

252

Technologies  

Technologies Energy. Advanced Carbon Aerogels for Energy Applications; Distributed Automated Demand Response; Electrostatic Generator/Motor; Modular Electromechanical ...

253

Technologies  

Technologies Energy, Utilities, & Power Systems. Advanced Carbon Aerogels for Energy Applications; Distributed Automated Demand Response; Electrostatic Generator/Motor

254

Technologies  

Technologies Research Tools. Cell-Free Assembly of NanoLipoprotein Particles; Chemical Prism; Lawrence Livermore Microbial Detection Array (LLMDA) ...

255

Photovoltaic energy program overview, fiscal year 1991. Programs in utility technologies  

SciTech Connect

The Photovoltaics Program Plan, FY 1991--FY 1995 builds on the accomplishments of the past 5 years and broadens the scope of program activities for the future. The previous plan emphasized materials and PV cell research. Under the balanced new plan, the PV Program continues its commitment to strategic research and development (R&D) into PV materials and processes, while also beginning work on PV systems and helping the PV industry encourage new markets for photovoltaics. A major challenge for the program is to assist the US PV industry in laying the foundation for at least 1000 MW of installed PV capacity in the United States and 500 MW internationally by 2000. As part of the new plan, the program expanded the scope of its activities in 1991. The PV Program is now addressing many new aspects of developing and commercializing photovoltaics. It is expanding activities with the US PV industry through the PV Manufacturing Technology (PVMaT) project, designed to address US manufacturers` immediate problems; providing technical assistance to potential end users such as electric utilities; and the program is turning its attention to encouraging new markets for PV. In 1991, for example, the PV Program initiated a new project with the PV industry to encourage a domestic market for PV applications in buildings and began cooperative ventures to support other countries such as Mexico to use PV in their rural electrification programs. This report reviews some of the development, fabrication and manufacturing advances in photovoltaics this year.

1992-02-01T23:59:59.000Z

256

PV Solar Planet | Open Energy Information  

Open Energy Info (EERE)

Planet Planet Jump to: navigation, search Logo: PV Solar Planet Name PV Solar Planet Address 5856 S. Garland Way Place Littleton, Colorado Zip 80123 Sector Solar Product Sales of solar laminate Website http://www.pvsolarplanet.com/ Coordinates 39.610743°, -105.105245° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.610743,"lon":-105.105245,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

257

Materials Testing for PV Module Encapsulation  

DOE Green Energy (OSTI)

Important physical properties of materials used in PV module packaging are presented. High-moisture-barrier, high-resistivity, adhesion-promoting coatings on polyethyl-ene terephthalate (PET) films have been fabricated and characterized for use in PV module application and com-pared to standard polymer backsheet materials. Ethylene vinyl acetate (EVA) and an encapsulant replacement for EVA are studied for their water vapor transmission rate (WVTR) and adhesion properties. WVTR, at test conditions up to 85C/100% relative humidity (RH), and adhesion val-ues are measured before and after filtered xenon arc lamp ultraviolet (UV) exposure and damp heat exposure at 85C/85% RH. Water ingress is quantified by weight gain and embedded humidity sensors.

Jorgensen, G.; Terwilliger, K.; Glick, S.; Pern, J.; McMahon, T.

2003-05-01T23:59:59.000Z

258

PVMaT cost reductions in the EFG high volume PV manufacturing line: Annual report, 5 August 1998--4 August 1999[PhotoVoltaic Manufacturing Technology, Edge-defined Film-fed Growth  

DOE Green Energy (OSTI)

This report describes work performed by ASE Americas researchers during the first year of this Photovoltaic Manufacturing Technology 5A2 program. Significant accomplishments in each of three task are as follows. Task 1--Manufacturing Systems: Researchers completed key node analysis, started statistical process control (SPC) charting, carried out design-of-experiment (DoE) matrices on the cell line to optimize efficiencies, performed a capacity and bottleneck study, prepared a baseline chemical waste analysis report, and completed writing of more than 50% of documentation and statistical sections of ISO 9000 procedures. A highlight of this task is that cell efficiencies in manufacturing were increased by 0.4%--0.5% absolute, to an average in excess of 14.2%, with the help of DoE and SPC methods. Task 2--Low-Cost Processes: Researchers designed, constructed, and tested a 50-cm-diameter, edge-defined, film-fed growth (EFG) cylinder crystal growth system to successfully produce thin cylinders up to 1.2 meters in length; completed a model for heat transfer; successfully deployed new nozzle designs and used them with a laser wafer-cutting system with the potential to decrease cutting labor costs by 75% and capital costs by 2X; achieved laser-cutting speeds of up to 8X and evaluation of this system is proceeding in production; identified laser-cutting conditions that reduce damage for both Q-switched Nd:YAG and copper-vapor lasers with the help of a breakthrough in fundamental understanding of cutting with these short-pulse-length lasers; and found that bulk EFG material lifetimes are optimized when co-firing of silicon nitride and aluminum is carried out with rapid thermal processing (RTP). Task 3--Flexible Manufacturing: Researchers improved large-volume manufacturing of 10-cm {times} 15-cm EFG wafers by developing laser-cutting fixtures, adapting carriers and fabricating adjustable racks for etching and rinsing facilities, and installing a high-speed data collection net work; initiated fracture studies to develop methods to reduce wafer breakage; and started a module field studies program to collect data on field failures to help identify potential manufacturing problems. New encapsulants, which cure at room temperature, are being tested to improve flexibility and provide higher yields for thin wafers in lamination.

Bathey, B.; Brown, B.; Cao, J.; Ebers, S.; Gonsiorawski, R.; Heath, B.; Kalejs, J.; Kardauskas, M.; Mackintosh, B.; Ouellette, M.; Piwczyk, B.; Rosenblum, M.; Southimath, B.

1999-11-16T23:59:59.000Z

259

Microsoft Word - PV Report v20.doc  

Gasoline and Diesel Fuel Update (EIA)

A A EIA Task Order No. DE-DT0000804, Subtask 3 Photovoltaic (PV) Cost and Performance Characteristics for Residential and Commercial Applications Final Report August 2010 Prepared for: Office of Integrated Analysis and Forecasting U.S. Energy Information Administration Prepared by: ICF International Contact: Robert Kwartin T: (703) 934-3586 E: rkwartin@icfi.com ii Table of Contents Executive Summary ...................................................................................................................... v 1. Introduction ...........................................................................................................................1 1.1 Objective ....................................................................................................................1

260

An Optimization and Assessment on DG adoption in Japanese Prototype Buildings  

E-Print Network (OSTI)

DER technologies, Japanese energy tariffs, and prototypicalnatural gas tariffs, and hourly end-use energy loads, such

Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida, Masaru

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dg technologies pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Development of a dispatchable PV peak shaving system. Final report on PV:BONUS Phase 2 activities  

DOE Green Energy (OSTI)

In July 1993, the Delmarva Power and Light Company (now Conectiv, Inc.) was awarded a contract for the development of a Dispatchable Photovoltaic Peak Shaving System under the US Department of Energy PV:BONUS Program. The rationale for the dispatchable PV peak shaving system is based on the coincidence between the solar resource and the electrical load in question. Where poor coincidence exists, a PV array by itself does little to offset peak demands. However, with the addition of a relatively small amount of energy storage, the energy from the PV array can be managed and the value of the PV system increases substantially. In Phase 2, Delmarva Power continued the refinement of the system deployed in Phase 1. Four additional dispatchable PV peak shaving systems were installed for extended testing and evaluation at sites in Delaware, Maryland, Wisconsin and North Carolina. A second type of system that can be used to provide back-up power as well as peak shaving was also developed in Phase 2. This PV-UPS system used a packaging approach nearly identical to the PV peak shaving system, although there were significant differences in the design of the power electronics and control systems. Conceptually, the PV-UPS system builds upon the idea of adding value to PV systems by increasing functionality. A prototype of the PV-UPS system was installed in Delaware for evaluation near the end of the contract period.

Ferguson, W.D. [Conectiv, Inc., Wilmington, DE (United States); Nigro, R.M. [Applied Energy Group, Inc., Hauppauge, NY (United States)

1999-01-20T23:59:59.000Z

262

PV Manufacturing R&D Project -- Trends in the U.S. PV Industry  

DOE Green Energy (OSTI)

To foster continued growth in the U.S. photovoltaic (PV) industry, the U.S. Department of Energy initiated the PV Manufacturing R&D (PVMR&D) Project--a partnership with U.S. PV industry participants to perform cost-shared manufacturing research and development. Throughout FY 2004, PVMR&D managed fourteen subcontracts across the industry. The impact of PVMR&D is quantified by reductions in direct module manufacturing costs, scale-up of existing PV production capacity, and accrual of cost savings to the public and industry. An analysis of public and industry investment shows that both recaptured funds by mid-1998 based on estimated manufacturing cost savings from PVMR&D participation. Since project inception, total PV manufacturing capacity has increased from 14 MW to 201 MW at the close of 2003, while direct manufacturing costs declined from $5.55/W to $2.49/W. These results demonstrate continued progress toward the overriding goals of the PVMR&D project.

Brown, K. E.; Mitchell, R. L.; Bower, W. I.; King, R.

2005-01-01T23:59:59.000Z

263

Analysis of concentrating PV-T systems for the commercial/industrial sector. Volume II. PV-T state-of-the-art survey and site/application pair selection and analysis  

DOE Green Energy (OSTI)

As part of a project to develop feasibility assessments, design procedures, and reference designs for total energy systems that could use actively cooled concentrating photovoltaic collectors, a survey was conducted to provide an overview of available photovoltaic-thermal (PV-T) technology. General issues associated with the design and installation of a PV-T system are identified. Electrical and thermal efficiencies for the line-focus Fresnel, the linear parabolic trough, and the point-focus Fresnel collectors are specified as a function of operating temperature, ambient temperature, and insolation. For current PV-T technologies, the line-focus Fresnel collector proved to have the highest thermal and electrical efficiencies, lowest array cost, and lowest land area requirement. But a separate feasibility analysis involving 11 site/application pairs showed that for most applications, the cost of the photovoltaic portion of a PV-T system is not recovered through the displacement of an electrical load, and use of a thermal-only system to displace the thermal load would be a more economical alternative. PV-T systems are not feasible for applications that have a small thermal load, a large steam requirement, or a high load return temperature. SAND82-7157/3 identifies the technical issues involved in designing a photovoltaic-thermal system and provides guidance for resolving such issues. Detailed PV-T system designs for three selected applications and the results of a trade-off study for these applications are presented in SAND82-7157/4. A summary of the major results of this entire study and conclusions concerning PV-T systems and applications is presented in SAND82-7157/1.

Schwinkendorf, W.E.

1984-09-01T23:59:59.000Z

264

Development of a low-cost integrated 20-kW ac solar tracking sub- array for grid-connected PV power system applications. Phase 1, Annual technical report, 11 July 1995--31 July 1996  

DOE Green Energy (OSTI)

The overall goal of this effort is to reduce the installed cost of utility scale grid connected photovoltaic power systems. The focus of the effort is on ``BOS`` (Balance-Of-System) component manufacturing technology, which essentially involves all PV power system engineering, manufacturing, assembly and construction tasks from the receipt of a PV module to the deliver of grid connected electricity.

Stern, M.; West, R.; Fourer, G.; Whalen, W.; Van Loo, M.; Duran, G. [Utility Power Group, Chatsworth, CA (United States)

1997-06-01T23:59:59.000Z

265

FPGA Based Sinusoidal Pulse Width Modulated Waveform Generation for Solar (PV) Rural Home Power Inverter  

E-Print Network (OSTI)

With the increasing concern about global environmental protection and energy demand due to rapid growth of population in developing countries and the diminishing trend of resources of conventional grid supply, the need to produce freely available pollution free natural energy such as solar/wind energy has been drawing increasing interest in every corner of the world. In an effort to utilize these energies effectively through Power converter, a great deal of research is being carried out by different researchers / scientist and engineers at different places in the world to meet the increasing demand of load. The study presents methodology to integrate solar (PV) energy (which is freely available in every corner of the world) with grid source and supplement the existing grid power in rural houses during its cut off or restricted supply period. In order to get consistency in supply a DG is also added as a standby source in the proposed integration of network. The software using novel Direct PWM modulation strate...

Singh, S N

2010-01-01T23:59:59.000Z

266

PV Installation Labor Market Analysis and PV JEDI Tool Developments (Presentation), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

PV Installation Labor Market Analysis PV Installation Labor Market Analysis and PV JEDI Tool Developments Barry Friedman NREL Strategic Energy Analysis Center May 16, 2012 World Renewable Energy Forum Denver, Colorado NREL/PR-6A20-55130 NATIONAL RENEWABLE ENERGY LABORATORY Disclaimer 2 DISCLAIMER AGREEMENT These information ("Data") are provided by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy LLC ("Alliance") for the U.S. Department of Energy (the "DOE"). It is recognized that disclosure of these Data is provided under the following conditions and warnings: (1) these Data have been prepared for reference purposes only; (2) these Data consist of forecasts, estimates or assumptions made on a best-

267

Experimental investigation and modeling of a direct-coupled PV/T air collector  

Science Conference Proceedings (OSTI)

Photovoltaic/thermal (PV/T) systems refer to the integration of photovoltaic and solar thermal technologies into one single system, in that both useful heat energy and electricity are produced. The impetus of this paper is to model a direct-coupled PV/T air collector which is designed, built, and tested at a geographic location of Kerman, Iran. In this system, a thin aluminum sheet suspended at the middle of air channel is used to increase the heat exchange surface and consequently improve heat extraction from PV panels. This PV/T system is tested in natural convection and forced convection (with two, four and eight fans operating) and its unsteady results are presented in with and without glass cover cases. A theoretical model is developed and validated against experimental data, where good agreement between the measured values and those calculated by the simulation model were achieved. Comparisons are made between electrical performance of the different modes of operation, and it is concluded that there is an optimum number of fans for achieving maximum electrical efficiency. Also, results show that setting glass cover on photovoltaic panels leads to an increase in thermal efficiency and decrease in electrical efficiency of the system. (author)

Shahsavar, A.; Ameri, M. [Department of Mechanical Engineering, Faculty of Engineering, Shahid Bahonar University, Kerman (Iran, Islamic Republic of); Energy and Environmental Engineering Research Center, Shahid Bahonar University, Kerman (Iran, Islamic Republic of)

2010-11-15T23:59:59.000Z

268

Technologies  

High Performance Computing (HPC) Technologies; Industrial Partnerships Office P.O. Box 808, L-795 Livermore, CA 94551 Phone: (925) 422-6416 Fax: (925) ...

269

Application of Soft-switching Technology in the Photovoltaic Array Simulator  

Science Conference Proceedings (OSTI)

The PV array simulator is the analog DC input device which is indispensable in the development and debugging of the solar PV grid-connected inverter. As the inverter switching frequency becomes larger and larger, the simulator as the analog input also ... Keywords: PV array simulator, Soft-switching technology, Zero-voltage zero-current switching phase-shifted full-bridge circuit

Chen Ya-ai, Shi Yu-teng

2012-07-01T23:59:59.000Z

270

Real Power and Reactive Power Control of a Three-Phase Single-Stage-PV System and PV voltage Stability  

Science Conference Proceedings (OSTI)

Grid-connected photovoltaic (PV) systems with power electronic interfaces can provide both real and reactive power to meet power system needs with appropriate control algorithms. This paper presents the control algorithm design for a three-phase single-stage grid-connected PV inverter to achieve either maximum power point tracking (MPPT) or a certain amount of real power injection, as well as the voltage/var control. The switching between MPPT control mode and a certain amount of real power control mode is automatic and seamless. Without the DC-to-DC booster stage, PV DC voltage stability is an important issue in the control design especially when the PV inverter is operating at maximum power point (MPP) with voltage/var control. The PV DC voltage collapse phenomenon and its reason are discussed. The method based on dynamic correction of the PV inverter output is proposed to ensure PV DC voltage stability. Simulation results of the single-stage PV system during system disturbances and fast solar irradiation changes confirm that the proposed control algorithm for single-stage PV inverters can provide appropriate real and reactive power services and ensure PV DC voltage stability during dynamic system operation and atmospheric conditions.

Li, Huijuan [ORNL; Xu, Yan [ORNL; Adhikari, Sarina [ORNL; Rizy, D Tom [ORNL; Li, Fangxing [ORNL; Irminger, Philip [ORNL

2012-01-01T23:59:59.000Z

271

Gulf Power - Solar PV Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gulf Power - Solar PV Program Gulf Power - Solar PV Program Gulf Power - Solar PV Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate $10,000/installation Program Info State Florida Program Type Utility Rebate Program Rebate Amount $2/watt Provider Energy Efficiency '''''All funding has currently been reserved and new applications are no longer being accepted. See Gulf Power's [http://www.gulfpower.com/renewable/solarElectricity.asp Solar PV] web site for more information.''''' Gulf Power offers a Solar PV rebate to residential and commercial customers. Gulf Power will provide a $2/watt rebate with a $10,000 per system maximum. In addition, Gulf Power has a Solar for Schools program, providing capital funding for PV systems. Gulf Power has worked with the Florida Solar Energy

272

Community Renewable Energy Webinar: Developing PV Projects | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Community Renewable Energy Webinar: Developing PV Projects Community Renewable Energy Webinar: Developing PV Projects Community Renewable Energy Webinar: Developing PV Projects January 15, 2013 1:00PM MST Webinar This webinar will take place from 1-2:15 p.m. Mountain Standard Time. It will provide information on how the cities of Tucson, Arizona, and Minneapolis, Minnesota, utilized requests for proposals (RFPs) and power purchase agreements (PPAs) to develop photovoltaic (PV) projects. The webinar will feature two presentations, highlighted below. RFIs, RFPs, and RFQs for PV: Finding the Right Solar Contractors for Your Community Choosing vendors for solar projects requires a careful look since you may well be dealing with them for 20 years ... or more. The City of Tucson will highlight its experiences with city-owned PV projects as well as a PPA

273

Training on PV Systems: Design, Construction, Operation and Maintenance |  

Open Energy Info (EERE)

Training on PV Systems: Design, Construction, Operation and Maintenance Training on PV Systems: Design, Construction, Operation and Maintenance Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Training on PV Systems: Design, Construction, Operation and Maintenance Agency/Company /Organization: Leonardo Energy Sector: Energy Focus Area: Renewable Energy, Solar Website: www.leonardo-energy.org/node/5948 Training on PV Systems: Design, Construction, Operation and Maintenance Screenshot References: PV Training [1] Overview "A free series of six webinars will be delivered to provide the required knowledge to design a high performance photovoltaic (PV) installation, entering into economic evaluation and project cash-flow. Additionally, very practical aspects such as the construction, start-up, quality management and testing will be reviewed. Plant operation is described in detail, with

274

Testing to Support Improvements to PV Components and Systems  

DOE Green Energy (OSTI)

The National Photovoltaic (PV) Program is sponsored by the US Department of Energy and includes a PV Manufacturing Research and Development (R and D) project conducted with industry. This project includes advancements in PV components to improve reliability, reduce costs, and develop integrated PV systems. Participants submit prototypes, pre-production hardware products, and examples of the resulting final products for a range of tests conducted at several national laboratories, independent testing laboratories, and recognized listing agencies. The purpose of this testing is to use the results to assist industry in determining a product's performance and reliability, and to identify areas for potential improvement. This paper briefly describes the PV Manufacturing R and D project, participants in the area of PV systems, balance of systems, and components, and several examples of the different types of product and performance testing used to support and confirm product performance.

THOMAS,H.; KROPOSKI,B.; WITT,C.; BOWER,WARD I.; BONN,RUSSELL H.; GINN,JERRY W.; GONZALEZ,SIGIFREDO

2000-07-15T23:59:59.000Z

275

Testing to Support Improvements to PV Components and Systems  

SciTech Connect

The National Photovoltaic (PV) Program is sponsored by the US Department of Energy and includes a PV Manufacturing Research and Development (R and D) project conducted with industry. This project includes advancements in PV components to improve reliability, reduce costs, and develop integrated PV systems. Participants submit prototypes, pre-production hardware products, and examples of the resulting final products for a range of tests conducted at several national laboratories, independent testing laboratories, and recognized listing agencies. The purpose of this testing is to use the results to assist industry in determining a product's performance and reliability, and to identify areas for potential improvement. This paper briefly describes the PV Manufacturing R and D project, participants in the area of PV systems, balance of systems, and components, and several examples of the different types of product and performance testing used to support and confirm product performance.

THOMAS,H.; KROPOSKI,B.; WITT,C.; BOWER,WARD I.; BONN,RUSSELL H.; GINN,JERRY W.; GONZALEZ,SIGIFREDO

2000-07-15T23:59:59.000Z

276

Comparison of Raindrop Size Distribution Measurements by a Joss-Waldvogel Disdrometer, a PMS 2DG Spectrometer, and a POSS Doppler Radar  

Science Conference Proceedings (OSTI)

Three techniques for the measurement of raindrop size distributions are compared using data from a Joss-Waldvogel disdrometer (JWD), a Particle Measuring Systems 2DG spectrometer (PMS), and an Atmospheric Environment Service (AES) Precipitation ...

B. E. Sheppard; P. I. Joe

1994-08-01T23:59:59.000Z

277

NREL: Power Technologies Energy Data Book - Calculators: PV Area...  

NLE Websites -- All DOE Office Websites (Extended Search)

Databook Home More Search Options Search Site Map Featured Links Biomass Energy Data Book Buildings Energy Data Book Hydrogen Energy Data Book Transportation Energy Data Book...

278

Progress in amorphous silicon PV technology: An update  

DOE Green Energy (OSTI)

To reach the 15% stabilized efficiency goal for amorphous silicon (a-Si) modules by the year 2005, the National Renewable Energy Laboratory has established four research teams. The teams -- with members from industry, universities, and NREL -- have been in operation for 2.5 years now. Consensus has been reached that a triple-junction a-Si structure is needed to reach the efficiency goal. Performance parameter goals for the overall structure and the three component cells have been formulated. All four teams have generated their own development plans. Individual team progress relative to the plans is reported.

Luft, W.; Branz, H.M. [National Renewable Energy Lab., Golden, CO (United States); Dalal, V.L. [Iowa State Univ., Ames, IA (United States); Hegedus, S.S. [Delaware Univ., Newark, DE (United States). Inst. of Energy Conversion; Schiff, E.A. [Syracuse Univ., NY (United States)

1995-07-01T23:59:59.000Z

279

Materials availability for thin film (TF) PV technologies development  

E-Print Network (OSTI)

of Indium Tin Oxide (ITO) in Liquid Crystal Displays (LCD) manufacturing, which accounts for more than 50 is used to produce Indium Tin Oxide (ITO), a transparent conductive layer used in LCD screens, and also in the area. #12;21 6 Conclusions Ambitious goals for renewable energy and generous support regimes in many

280

Updated April 2010 Reliability Concerns Associated with PV Technologies  

E-Print Network (OSTI)

stress H/M/H IR Camera; Hot/humid vs. damp heat CIS Cell layer integrity ­ contact stability H/H/H Mo Flexible roofing products Cell­to-cell interconnect (discrete cells) H/M/H IR Camera; Hot/humid vs. damp it periodically. 1.0 Wafer Silicon 1.1 Cracked cells (bonding processes, strain, etc.) [1-4] 1.2 Solder joint

Note: This page contains sample records for the topic "dg technologies pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Energy Technology (Solid State Lighting, PV, Thermoelectrics, etc)  

Science Conference Proceedings (OSTI)

May 25, 2010... Lincoln Laboratory, Lexington, MA, USA; Rajaram Bhat, Corning Inc ... Andreea Boca1; Diane Larrabee1; Richard King1; Peter Hebert1;...

282

PV Conversion Technologies, Session: OPV, Sensitized, Seed (Presentation)  

DOE Green Energy (OSTI)

The NREL Sensitized Solar Cell (SSC) Core Program supports the Solar America Initiative by: (1) targeting new devices and processes for commercialization by 2015 that are less expensive, more efficient, highly reliable, and environmentally benign; (2) collaborating with DOE OS/BES to conduct basic research targeting breakthroughs in key areas, such as ultra-high efficiency and/or ultra-low cost materials and devices.

Frank, A. J.

2008-04-01T23:59:59.000Z

283

Ultra Accelerated Testing of PV Module Components  

DOE Green Energy (OSTI)

Using concentrated natural sunlight at the NREL High Flux Solar Furnace, we have exposed several materials to acceleration factors of up to 400 times the normal outdoor UV exposure dose. This accelerated rate allows the exposure of materials such that a year of outdoor exposure can be simulated in about 5 hours. We have studied the solarization of cerium containing glass, the degradation of ethylene vinyl acetate laminated between borosilicate glass, and the yellowing of standard polystyrene test coupons. The first two candidates are of interest to the photovoltaics (PV) program, and the last candidate material is a widely used dosimeter for ultra violet (UV) exposure in accelerated weathering chambers

Pitts, J. R.; King, D. E.; Bingham, C.; Czanderna, A. W.

1998-10-28T23:59:59.000Z

284

Maricopa Assn. of Governments - PV and Solar Domestic Water Heating...  

Open Energy Info (EERE)

is in addition to the existing standards for residential and commercial PV systems. Local solar installers have reported that being able to refer permitting officials to these MAG...

285

Aspen Solar Pioneer Program - PV Production Incentive (Colorado...  

Open Energy Info (EERE)

Page Edit with form History Share this page on Facebook icon Twitter icon Aspen Solar Pioneer Program - PV Production Incentive (Colorado) This is the approved revision...

286

Instrumentation for Evaluating PV System Performance Losses from Snow: Preprint  

DOE Green Energy (OSTI)

Describes the use of a pyranometer with a heater and a digital camera to determine losses related to snow for PV systems located at National Renewable Energy Laboratory.

Marion, B.; Rodriguez, J.; Pruett, J.

2009-04-01T23:59:59.000Z

287

PV integration in the Bonneville Power Administration balancing authority area.  

E-Print Network (OSTI)

??In this study I investigate the accuracy and necessity of the Bonneville Power Administration (BPA) PV integration tariff, which was instituted in 2011. Note that, (more)

Schumaker, Adam

2012-01-01T23:59:59.000Z

288

Novel Control and Harmonics Impact of PV Solar Farms.  

E-Print Network (OSTI)

??This thesis presents a novel application of Photovoltaic (PV) solar system inverter, both during night and day, as a dynamic reactive power compensator STATCOM. This (more)

Das, Byomakesh

2012-01-01T23:59:59.000Z

289

NREL: News - NREL Releases New Roadmap to Reducing Solar PV ...  

NLE Websites -- All DOE Office Websites (Extended Search)

113 NREL Releases New Roadmap to Reducing Solar PV "Soft Costs" by 2020 September 25, 2013 The Energy Department's (DOE) National Renewable Energy Laboratory (NREL) recently issued...

290

PHOTOVOLTAIC POWER SYSTEMS PROGRAMME Pico Solar PV Systems for Remote  

E-Print Network (OSTI)

A new generation of small PV systems for lighting and communication Report IEA-PVPS T9-12:2012INTERNATIONAL ENERGY AGENCY

unknown authors

2013-01-01T23:59:59.000Z

291

Overview of the PV Module Model in PVWatts (Presentation)  

DOE Green Energy (OSTI)

Overview of the PV module model. PVWatts module power estimates were compared with those using the Sandia model for three modules and data sets.

Marion, B.

2010-09-22T23:59:59.000Z

292

Large-scale Solar PV Investment Planning Studies.  

E-Print Network (OSTI)

??In the pursuit of a cleaner and sustainable environment, solar photovoltaic (PV) power has been established as the fastest growing alternative energy source in the (more)

Muneer, Wajid

2011-01-01T23:59:59.000Z

293

CPS Energy - Solar PV Rebate Program (Texas) | Open Energy Information  

Open Energy Info (EERE)

Energy Commission (CEC) website. Warranties: Installer 1 year, PV Module 20 years, Inverter 5 years Expiration Date STEP extends through 2020, annual program year expiration...

294

Building Energy Software Tools Directory: PV*SOL  

NLE Websites -- All DOE Office Websites (Extended Search)

testing all the relevant physical parameters, the program automatically selects the inverter and PV array configuration. This dynamic simulation program was developed for...

295

CEFIA - Residential Solar PV Rebate Program (Connecticut) | Open...  

Open Energy Info (EERE)

project. Factors considered in calculating the rebate include: PV panel selection, inverter efficiency, system orientation and tilt, and shading on the site. Participation by...

296

CCEF - Affordable Housing Initiative Solar PV Rebate Program...  

Open Energy Info (EERE)

project. Factors considered in calculating the rebate include: PV panel selection, inverter efficiency, system orientation and tilt, and shading on the site. For multi-family...

297

Long-Term Performance of the SERF PV Systems  

SciTech Connect

This paper provides the changes in performance ratings of two photovoltaic (PV) systems located on the roof of the Solar Energy Research Facility (SERF) building at the National Renewable Energy Laboratory (NREL) in Golden, Colorado. For the period of May 1994 to April 2002, the performance rating of the two PV systems decreased at the rate of 1% per year. Most of the changes in performance rating are attributed to changes in the performance of the PV arrays. But about a fifth of the observed changes were from the inverter not tracking the peak-power as effectively as the PV arrays aged.

Marion, B.; Adelstein, J.

2003-05-01T23:59:59.000Z

298

Most new residential solar PV projects in California ...  

U.S. Energy Information Administration (EIA)

weather; gasoline; capacity; exports; ... The solar leasing company will also usually own the renewable energy certificates (RECs) generated by the PV ...

299

Estimating Rooftop Suitability for PV: A Review of Methods, Patents...  

NLE Websites -- All DOE Office Websites (Extended Search)

assumed to be distributed throughout Puerto Rico in proportion to the population. Using solar resource data for Puerto Rico, temperature and weather data for Puerto Rico, and PV...

300

Technolog  

NLE Websites -- All DOE Office Websites (Extended Search)

Research in Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow Sandia National Laboratories' fundamental science and technology research leads to greater understanding of how and why things work and is intrinsic to technological advances. Basic research that challenges scientific assumptions enables the nation to push scientific boundaries. Innovations and breakthroughs produced at Sandia allow it to tackle critical issues, from maintaining the safety, security and effectiveness of the nation's nuclear weapons and preventing domestic and interna- tional terrorism to finding innovative clean energy solutions, develop- ing cutting-edge nanotechnology and moving the latest advances to the marketplace. Sandia's expertise includes:

Note: This page contains sample records for the topic "dg technologies pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Dynamic Model Validation of PV Inverters under Short-Circuit Conditions  

Science Conference Proceedings (OSTI)

Photovoltaic (PV) modules have dramatically decreased in price in the past few years, spurring the expansion of PV deployment. Residential and commercial rooftop installations are connected to the distribution network, large-scale installation PV power ... Keywords: photovoltaic, PV, dynamic model, validation, solar PV inverter, renewables

E. Muljadi, M. Singh, R. Bravo, V. Gevorgian

2013-04-01T23:59:59.000Z

302

Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Computers and the internet play an increasingly larger role in the lives of students. In this activity, students must use various web sites to locate specific pieces of...

303

LBNL-6484E Exploring California PV Home Premiums Ben Hoen, Geoffrey T. Klise, Joshua Graff-Zivin, Mark  

NLE Websites -- All DOE Office Websites (Extended Search)

484E 484E Exploring California PV Home Premiums Ben Hoen, Geoffrey T. Klise, Joshua Graff-Zivin, Mark Thayer, Joachim Seel and Ryan Wiser Environmental Energy Technologies Division December 2013 Download from: http://emp.lbl.gov/publications/exploring-california-pv-home-premiums This research builds on work published in 2011 entitled "An Analysis of the Effects of Residential Photovoltaic Energy Systems on Home Sales Prices in California," LBNL- 4476E, which can be downloaded here: http://eetd.lbl.gov/ea/emp/reports/lbnl-

304

The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California  

E-Print Network (OSTI)

12 Figure 5. Distribution of PV Electricity Generation byFigure 6. Distribution of PV Electricity Generation by MPR-Figure 5. Distribution of PV Electricity Generation by

Darghouth, Naim

2010-01-01T23:59:59.000Z

305

Renewable Energy Technology Guide - 2012  

Science Conference Proceedings (OSTI)

First published in 2000 as the Renewable Energy Technical Assessment GuideTAG-RE, the Electric Power Research Institutes (EPRIs) annual Renewable Energy Technology Guide provides a consistent basis for evaluating the economic feasibility of renewable generation technologies. These technologies include wind, solar photovoltaic (PV), solar thermal, biomass, municipal solid waste, geothermal, and emerging ocean energy conversion ...

2012-12-20T23:59:59.000Z

306

Renewable Energy Technology Guide: 2010  

Science Conference Proceedings (OSTI)

First published in 2000 as the Renewable Energy Technical Assessment GuideTAG-RE, the annual Electric Power Research Institute (EPRI) Renewable Energy Technology Guide provides a consistent basis for evaluating the economic feasibility of renewable generation technologies, including wind, solar photovoltaic (PV), solar thermal, biomass, geothermal, and emerging ocean energy conversion technologies.

2010-12-31T23:59:59.000Z

307

Oxynitride Thin Film Barriers for PV Packaging  

DOE Green Energy (OSTI)

Dielectric thin-film barrier and adhesion-promoting layers consisting of silicon oxynitride materials (SiOxNy, with various stoichiometry) were investigated. For process development, films were applied to glass (TCO, conductive SnO2:F; or soda-lime), polymer (PET, polyethylene terephthalate), aluminized soda-lime glass, or PV cell (a-Si, CIGS) substrates. Design strategy employed de-minimus hazard criteria to facilitate industrial adoption and reduce implementation costs for PV manufacturers or suppliers. A restricted process window was explored using dilute compressed gases (3% silane, 14% nitrous oxide, 23% oxygen) in nitrogen (or former mixtures, and 11.45% oxygen mix in helium and/or 99.999% helium dilution) with a worst-case flammable and non-corrosive hazard classification. Method employed low radio frequency (RF) power, less than or equal to 3 milliwatts per cm2, and low substrate temperatures, less than or equal to 100 deg C, over deposition areas less than or equal to 1000 cm2. Select material properties for barrier film thickness (profilometer), composition (XPS/FTIR), optical (refractive index, %T and %R), mechanical peel strength and WVTR barrier performance are presented.

Glick, S. H.; delCueto, J. A.; Terwilliger, K. M.; Jorgensen, G. J.; Pankow, J. W.; Keyes, B. M.; Gedvilas, L. M.; Pern, F. J.

2005-11-01T23:59:59.000Z

308

FTIR Laboratory in Support of the PV Program  

DOE Green Energy (OSTI)

The Fourier Transform Infrared Spectroscopy (FTIR) Laboratory supports the Solar Energy Technologies Program through the measurement and characterization of solar energy-related materials and devices. The FTIR technique is a fast, accurate, and reliable method for studying molecular structure and composition. This ability to identify atomic species and their bonding environment is a powerful combination that finds use in many research and development efforts. A brief overview of the technical approach used is contained in Section 2 of this report. Because of its versatility and accessibility, the FTIR Laboratory is a valuable contributor to the Solar Energy Technologies Program. The laboratory provides support for, and collaborates with, several in-house programs as well as our industry and university partners. By the end of FY 2004, the FTIR Laboratory performed over 1100 measurements on PV-related materials. These contributions resulted in conference and workshop presentations and several peer-reviewed publications. A brief summary of a few of these efforts is contained in Section 3 of this report.

Keyes, B. M.; Gedvilas, L. M.; Bhattacharya, R.; Xu, Y.; Li, X.; Wang, Q.

2005-01-01T23:59:59.000Z

309

Market Assessment of Residential Grid-Tied PV Systems in Colorado  

DOE Green Energy (OSTI)

This report presents research done in response to a decision by the Colorado Governor's Office of Energy Conservation and Management (OEC) and Colorado utility companies to consider making residential grid-tied photovoltaic (PV) systems available in Colorado. The idea was to locate homeowners willing to pay the costs of grid-tied PV (GPV) systems without batteries-$8,000 or $12,000 for a 2- or 3-kilowatt (kW) system, respectively, in 1996. These costs represented two-thirds of the actual installed cost of $6 per watt at that time and assumed the remainder would be subsidized. The National Renewable Energy Laboratory (NREL) and OEC partnered to conduct a market assessment for GPV technology in Colorado. The study encompassed both qualitative and quantitative phases. The market assessment concluded that a market for residential GPV systems exists in Colorado today. That market is substantial enough for companies to successfully market PV systems to Colorado homeowners. These homeo wners appear ready to learn more, inform themselves, and actively purchase GPV systems. The present situation is highly advantageous to Colorado's institutions-primarily its state government and its utility companies, and also its homebuilders-if they are ready to move forward on GPV technology.

Farhar, B.; Coburn, T.

2000-09-29T23:59:59.000Z

310

A Market Assessment of Residential Grid-Tied PV Systems in Colorado: Executive Summary  

DOE Green Energy (OSTI)

This is the Executive Summary of a report that presents research done in response to a decision by the Colorado Governor's Office of Energy Conservation and Management (OEC) and Colorado utility companies to consider making residential grid-tied photovoltaic (PV) systems available in Colorado. The idea was to locate homeowners willing to pay the costs of grid-tied PV (GPV) systems without batteries--$8,000 or $12,000 for a 2- or 3-kilowatt (kW) system, respectively, in 1996. These costs represented two-thirds of the actual installed cost of $6 per watt at that time and assumed the remainder would be subsidized. The National Renewable Energy Laboratory (NREL) and OEC partnered to conduct a market assessment for GPV technology in Colorado. The study encompassed both qualitative and quantitative phases. The market assessment concluded that a market for residential GPV systems exists in Colorado today. That market is substantial enough for companies to successfully market PV systems to Colorado homeowners. These homeowners appear ready to learn more, inform themselves, and actively purchase GPV systems. The present situation is highly advantageous to Colorado's institutions--primarily its state government and its utility companies, and also its homebuilders--if they are ready to move forward on GPV technology.

Farhar, B.; Coburn, T.

2000-09-13T23:59:59.000Z

311

Design, fabrication, and certification of advanced modular PV power systems. Final technical progress report  

DOE Green Energy (OSTI)

Solar Electric Specialties Company (SES) has completed a two and a half year effort under the auspices of the US Department of Energy (DOE) PVMaT (Photovoltaic Manufacturing Technology) project. Under Phase 4A1 of the project for Product Driven System and Component Technology, the SES contract ``Design, Fabrication and Certification of Advanced Modular PV Power Systems`` had the goal to reduce installed system life cycle costs through development of certified (Underwriters Laboratories or other listing) and standardized prototype products for two of the product lines, MAPPS{trademark} (Modular Autonomous PV Power Supply) and Photogensets{trademark}. MAPPS are small DC systems consisting of Photovoltaic modules, batteries and a charge controller and producing up to about a thousand watt-hours per day. Photogensets are stand-alone AC systems incorporating a generator as backup for the PV in addition to a DC-AC inverter and battery charger. The program tasks for the two-year contract consisted of designing and fabricating prototypes of both a MAPPS and a Photogenset to meet agency listing requirements using modular concepts that would support development of families of products, submitting the prototypes for listing, and performing functionality testing at Sandia and NREL. Both prototypes were candidates for UL (Underwriters Laboratories) listing. The MAPPS was also a candidate for FM (Factory Mutual) approval for hazardous (incendiary gases) locations.

Lambarski, T.; Minyard, G. [Solar Electric Specialties Co., Willits, CA (United States)

1998-10-01T23:59:59.000Z

312

Market Assessment of Residential Grid-Tied PV Systems in Colorado  

SciTech Connect

This report presents research done in response to a decision by the Colorado Governor's Office of Energy Conservation and Management (OEC) and Colorado utility companies to consider making residential grid-tied photovoltaic (PV) systems available in Colorado. The idea was to locate homeowners willing to pay the costs of grid-tied PV (GPV) systems without batteries-$8,000 or $12,000 for a 2- or 3-kilowatt (kW) system, respectively, in 1996. These costs represented two-thirds of the actual installed cost of $6 per watt at that time and assumed the remainder would be subsidized. The National Renewable Energy Laboratory (NREL) and OEC partnered to conduct a market assessment for GPV technology in Colorado. The study encompassed both qualitative and quantitative phases. The market assessment concluded that a market for residential GPV systems exists in Colorado today. That market is substantial enough for companies to successfully market PV systems to Colorado homeowners. These homeo wners appear ready to learn more, inform themselves, and actively purchase GPV systems. The present situation is highly advantageous to Colorado's institutions-primarily its state government and its utility companies, and also its homebuilders-if they are ready to move forward on GPV technology.

Farhar, B.; Coburn, T.

2000-09-29T23:59:59.000Z

313

Strategic Sequencing for State Distributed PV Policies: Program Overviews (Fact Sheet), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

report finds report finds that through strategic policy implementation, governments can successfully support renewable energy even in times when funding is limited. p r o g r a m o v e r v i e w s Strategic Sequencing for State Distributed PV Policies New analysis report aims to help state officials and policymakers expand markets for solar technologies and ultimately reduce the cost of installed solar nationwide In recent years, state and local policymakers have shown increasing interest in developing renewable energy markets to promote local economic development, increase energy security, and reduce the environmental impact of electricity production. The National Renewable Energy Laboratory's Strategic Sequencing for State Distributed PV Policies: A Quantitative Analysis of

314

Supply Curves for Solar PV-Generated Electricity for the United States  

DOE Green Energy (OSTI)

Energy supply curves attempt to estimate the relationship between the cost of an energy resource and the amount of energy available at or below that cost. In general, an energy supply curve is a series of step functions with each step representing a particular group or category of energy resource. The length of the step indicates how much of that resource is deployable or accessible at a given cost. Energy supply curves have been generated for a number of renewable energy sources including biomass fuels and geothermal, as well as conservation technologies. Generating a supply curve for solar photovoltaics (PV) has particular challenges due to the nature of the resource. The United States has a massive solar resource base -- many orders of magnitude greater than the total consumption of energy. In this report, we examine several possible methods for generating PV supply curves based exclusively on rooftop deployment.

Denholm, P.; Margolis, R.

2008-11-01T23:59:59.000Z

315

Do PV Systems Increase Residential Selling Prices If So, How Can Practitioners Estimate This Increase?  

E-Print Network (OSTI)

3% of the total sales price of non-PV homes. In the absenceModels Fig. 1: CA PV home sale price premiums expressed inthe selling prices of 329 homes with PV installed in the San

Hoen, Ben

2013-01-01T23:59:59.000Z

316

New Berkeley Lab Report Tracks a Decade of PV Installed Cost Trends  

E-Print Network (OSTI)

upward pressure on PV module prices. As discussed below,and utility PV programs. Unlike module prices, which arePV installations may benefit from economies of scale, through price

Barbose, Galen

2009-01-01T23:59:59.000Z

317

The Economic Value of PV and Net Metering to Residential Customers in California  

E-Print Network (OSTI)

for some or all PV production at prices based on the statesnet excess PV generation is compensated at a price equal toexcess PV production would be compensated at a price less

Darghouth, Naim

2010-01-01T23:59:59.000Z

318

Step-Stress Accelerated Degradation Testing (SSADT) for Photovoltaic (PV) Devices and Cells (Presentation)  

DOE Green Energy (OSTI)

Presentation on step-stress accelerated degradation testing (SSADT) for photovoltaics (PV). Developed are a step-stress degradation test (SSADT) for PV reliability tests and a lifetime prediction model for PV products.

Lee, J.; Elmore, R.; Suh, C.; Jones, W.

2010-10-01T23:59:59.000Z

319

U.S. Aims for Zero-Energy: Support for PV on New Homes  

E-Print Network (OSTI)

a market segment for solar photovoltaic (PV) adoption, newProgram +$0.25/W NYSERDA Solar Electric PV Incentive Programprogram for PV in new homes, dubbed the Solar Advantage

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

320

The Economic Value of PV and Net Metering to Residential Customers in California  

E-Print Network (OSTI)

a Substantial Benefit of Solar PV, The Electricity Journal,2008. MRW & Associates. Solar PV and Retail Rate Design,and the Economics of Solar PV: Could Mandatory Time-of- Use

Darghouth, Naim

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dg technologies pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

AEP SWEPCO - SMART Source Solar PV Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AEP SWEPCO - SMART Source Solar PV Program AEP SWEPCO - SMART Source Solar PV Program AEP SWEPCO - SMART Source Solar PV Program < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: $15,000 Non-residential: $30,000 Program Info Start Date 08/01/2009 State Texas Program Type Utility Rebate Program Rebate Amount Residential: $1.50/watt DC Non-residential: $1.20/watt DC Provider Smart Source PV Program Southwestern Electric Power Company (SWEPCO) offers rebates to customers that install photovoltaic (PV) systems on homes. Rebates may be assigned to the customer, a service provider, or a third party. Rebates are offered at a rate of $1.50 per watt (DC) for residential installations and $1.20 per watt (DC) for non-residential installations. The maximum per project and per customer rebate for residential systems is

322

Ukiah Utilities - PV Buydown Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ukiah Utilities - PV Buydown Program Ukiah Utilities - PV Buydown Program Ukiah Utilities - PV Buydown Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: 7,000; Commercial: 20,000 Program Info State California Program Type Utility Rebate Program Rebate Amount Incentive Rate for systems installed between 7/1/12 and 6/30/13: $1.40/watt AC; incentive may be reduced based on expected performance Provider City of Ukiah Through Ukiah Utilities' PV Buydown Program, residential and commercial customers are eligible for a $1.40-per-watt AC rebate on qualifying grid-connected PV systems up to a maximum system size of 1 MW. In keeping with SB1, the incentive level will decrease annually on July 1 over the 10 year life of the program. Rebates are available on a first come, first

323

TekSun PV Manufacturing Inc | Open Energy Information  

Open Energy Info (EERE)

TekSun PV Manufacturing Inc TekSun PV Manufacturing Inc Jump to: navigation, search Name TekSun PV Manufacturing Inc Place Austin, Texas Zip 78701 Product US-based installer of PV systems; rportedly planning to buy a 120MW amorphous silicon PV manufacturing line from Applied Materials. Coordinates 30.267605°, -97.742984° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.267605,"lon":-97.742984,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

324

City of Healdsburg - PV Incentive Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Healdsburg - PV Incentive Program Healdsburg - PV Incentive Program City of Healdsburg - PV Incentive Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: $3,280 Commercial: $15,600 Program Info State California Program Type Utility Rebate Program Rebate Amount Residential: $0.82/watt AC Commercial: $0.78/watt AC Provider City of Healdsburg Through the City of Healdsburg's PV Buy-down Program, residential and commercial customers are eligible for rebate on qualifying grid-connected PV systems. In keeping with SB1, (the California Solar Initiative mandating that utilities put into place programs to assure that 3000 megawatts (MW) of solar installations on homes is in place within 10 years) the incentive level will decrease annually over the 10 year life of the program. The

325

IID Energy - PV Solutions Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PV Solutions Rebate Program PV Solutions Rebate Program IID Energy - PV Solutions Rebate Program < Back Eligibility Commercial Industrial Local Government Nonprofit Residential State Government Savings Category Solar Buying & Making Electricity Maximum Rebate PBI Incentive max: 550,000 for the 5-year period (110,000/year) Program Info State California Program Type Utility Rebate Program Rebate Amount 2013 program is closed Provider Imperial Irrigation District '''''IID accepted applications for the 2013 PV Solutions Program from Jan. 2, 2013 - Jan. 31, 2013. Winners were determined via lottery. The program is now closed for the remainder of 2013, but another funding round is expected in 2014. ''''' Through the PV Solutions Rebate Program, Imperial Irrigation District (IID) provides rebates to its residential and commercial customers who install

326

City of Palo Alto Utilities - PV Partners | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PV Partners PV Partners City of Palo Alto Utilities - PV Partners < Back Eligibility Commercial Local Government Nonprofit Residential Schools Savings Category Solar Buying & Making Electricity Maximum Rebate Incentives available for first 1 MW Program Info Start Date July 2007 State California Program Type Utility Rebate Program Rebate Amount Systems Systems 30 kW and larger: Performance-based incentive (PBI), based on actual monthly energy produced (kWh) for 60 month term. For current rebate levels, visit the program website below. Provider City of Palo Alto Utilities The City of Palo Alto Utilities (CPAU) PV Partners Program offers incentives to customers that install qualifying PV systems. The program, which has a budget of approximately $13 million over 10 years, is divided

327

AEP Texas Central Company - SMART Source Solar PV Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Central Company - SMART Source Solar PV Rebate Program Central Company - SMART Source Solar PV Rebate Program AEP Texas Central Company - SMART Source Solar PV Rebate Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit Residential Schools State Government Tribal Government Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: $15,000 Non-residential: $31,2500 Program Info Start Date 08/01/2009 State Texas Program Type Utility Rebate Program Rebate Amount Residential: $1.50/W DC Non-residential: $1.25/W DC Provider Smart Source PV Program American Electric Power Texas Central Company (AEP-TCC) offers rebates to customers that install photovoltaic (PV) systems on homes or other buildings. Customers of all rate classes are eligible to participate in the

328

Gainesville Regional Utilities - Solar-Electric (PV) System Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gainesville Regional Utilities - Solar-Electric (PV) System Rebate Gainesville Regional Utilities - Solar-Electric (PV) System Rebate Program Gainesville Regional Utilities - Solar-Electric (PV) System Rebate Program < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Maximum Rebate $5,000 Program Info Start Date 10/1/2010 State Florida Program Type Utility Rebate Program Rebate Amount Solar window of 80% or more: $1.00/watt Provider Gainesville Regional Utilities '''''NOTE: Application targets for fiscal year 2013 have been met for the GRU Solar PV Rebate Program. The next round of applications are scheduled to open on October 1, 2013 pending approval of the GRU budget by the Gainesville City Commission.''''' Gainesville Regional Utilities (GRU) offers its customers a rebate to install photovoltaic (PV) systems. Systems with solar windows of 80% or

329

Codes, standards, and PV power systems. A 1996 status report  

SciTech Connect

As photovoltaic (PV) electrical power systems gain increasing acceptance for both off-grid and utility-interactive applications, the safety, durability, and performance of these systems gains in importance. Local and state jurisdictions in many areas of the country require that all electrical power systems be installed in compliance with the requirements of the National Electrical Code{reg_sign} (NEC{reg_sign}). Utilities and governmental agencies are now requiring that PV installations and components also meet a number of Institute of Electrical and Electronic Engineers (IEEE) standards. PV installers are working more closely with licensed electricians and electrical contractors who are familiar with existing local codes and installation practices. PV manufacturers, utilities, balance of systems manufacturers, and standards representatives have come together to address safety and code related issues for future PV installations. This paper addresses why compliance with the accepted codes and standards is needed and how it is being achieved.

Wiles, J

1996-06-01T23:59:59.000Z

330

Building Energy Software Tools Directory: PV*SOL  

NLE Websites -- All DOE Office Websites (Extended Search)

PV*SOL PV*SOL PV*SOL logo. PV*SOL Pro is a program for the design and simulation of grid-connected and off-grid photovoltaic systems. You can create your system using a wide range of modules (including thin-film and crystalline) and the program determines the size of the system with the roof layout tool. After testing all the relevant physical parameters, the program automatically selects the inverter and PV array configuration. This dynamic simulation program was developed for engineers, designers, installers, roofing specialists, and electrical contractors or building technicians. Screen Shots Keywords photovoltaic systems simulation, planning and design software, grid-connected systems, stand-alone systems Validation/Testing N/A Expertise Required No special expertise or training needed.

331

An Optimization and Assessment on DG Adoption in Japanese Prototype Buildings  

E-Print Network (OSTI)

The Japanese Ministry of Economy, Trade and Industry (METI) is setting a new Long-Term Energy Supply and Demand, Chris Marnay, Ryan Firestone, Weijun Gao, and Masaru Nishida Environmental Energy Technologies Division in this report was funded by the Office of Electricity Delivery and Energy Reliability, Distributed Energy

332

Analytical Improvements in PV Degradation Rate Determination  

DOE Green Energy (OSTI)

As photovoltaic (PV) penetration of the power grid increases, it becomes vital to know how decreased power output may affect cost over time. In order to predict power delivery, the decline or degradation rates must be determined accurately. For non-spectrally corrected data several complete seasonal cycles (typically 3-5 years) are required to obtain reasonably accurate degradation rates. In a rapidly evolving industry such a time span is often unacceptable and the need exists to determine degradation rates accurately in a shorter period of time. Occurrence of outliers and data shifts are two examples of analytical problems leading to greater uncertainty and therefore to longer observation times. In this paper we compare three methodologies of data analysis for robustness in the presence of outliers, data shifts and shorter measurement time periods.

Jordan, D. C.; Kurtz, S. R.

2011-02-01T23:59:59.000Z

333

Electrochemical Approaches to PV Busbar Application  

DOE Green Energy (OSTI)

Busbars are an integral component of any thin-film photovoltaic module and must be easy and quick to apply by PV manufacturers, as well as provide long-term reliability in deployed modules. Potential reliability issues include loss of adhesion and delamination, chemical instability under current collection conditions (electromigration or corrosion), compatibility of material and application method with subsequent encapsulation steps. Several new and novel busbar materials and application methods have been explored, including adhering metal busbars with various one- and two-part conductive epoxies or conductive adhesive films, ultrasonic bonding of metal busbar strips, and bonding of busbar strips using low-temperature solders. The most promising approach to date has been the direct application of metal busbars via various electrochemical techniques, which offers a variety of distinct advantages.

Pankow, J. W.

2005-01-01T23:59:59.000Z

334

Designing PV Incentive Programs to Promote Performance: A Review of Current Practice in the U.S.  

E-Print Network (OSTI)

20] Celentano R. SDF Solar PV Grant Program in Southeasternin this paper, SDFs Solar PV Grant Program has severalSolar Rewards Program Solar PV Rebate Program (Small PV

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2008-01-01T23:59:59.000Z

335

Do PV Systems Increase Residential Selling Prices If So, How Can Practitioners Estimate This Increase?  

E-Print Network (OSTI)

of the Effects of Photovoltaic Energy Systems on Residentialmarginal impacts of photovoltaic (PV) energy systems on homeThe market for photovoltaic (PV) energy systems is expanding

Hoen, Ben

2013-01-01T23:59:59.000Z

336

Linkage to Previous International PV Module QA Task Force Workshops; Proposal for Rating System (Presentation)  

DOE Green Energy (OSTI)

This presentation gives the historical background of the creation of the International PV QA Task Force as an introduction to the PV Module Reliability Workshop.

Kurtz, S.; Wohlgemuth, J.; Sample, T.; Yamamichi, M.; Kondo, M.

2013-05-01T23:59:59.000Z

337

Black Hills Energy - On-Site Solar PV Rebate Program | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- On-Site Solar PV Rebate Program Black Hills Energy - On-Site Solar PV Rebate Program Eligibility Commercial Fed. Government General PublicConsumer Industrial Local Government...

338

Designing PV Incentive Programs to Promote System Performance: A Review of Current Practice  

E-Print Network (OSTI)

PV system components and installations meet minimum industry standards related to safety, reliability, andPV Systems Rated Output Modules Inverters Systems (grid-connected) Product Reliability

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

339

Contrel Technology Corp | Open Energy Information  

Open Energy Info (EERE)

Corp Place Tainan, Taiwan Zip 744 Sector Solar Product Taiwan-based LCD and thin-film solar PV manufacturing and testing equipment maker. References Contrel Technology Corp1...

340

Status of Molten Carbonate Fuel Cell Technology  

Science Conference Proceedings (OSTI)

Fuel cell technology development and commercialization continues to be a major thrust in the alternative energy sector of distributed generation (DG). Second generation, molten carbonate fuel cell technology (MCFC) is now entering a critical commercialization phase. Given recent MCFC developments and advances in other distributed generation technologies, an assessment and update on the prospects for MCFC power systems is needed to guide future utility investments.

2003-01-22T23:59:59.000Z

Note: This page contains sample records for the topic "dg technologies pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Forecasting technology costs via the Learning Curve - Myth or Magic?  

E-Print Network (OSTI)

is generally considered to be traditional fossil fuel power stations, hence making a further assumption that such a value for cost can be forecasted). In situations where niche markets exist (for example solar PV electricity for remote areas or hand held... Solar PV provides a good example of the use and dangers of using experience curves to forecast future costs of an energy technology. It is a good example since solar PV modules are generally accessed by an international market allowing for worldwide...

Alberth, Stephan

342

Optimal Solar PV Arrays Integration for Distributed Generation  

SciTech Connect

Solar photovoltaic (PV) systems hold great potential for distributed energy generation by installing PV panels on rooftops of residential and commercial buildings. Yet challenges arise along with the variability and non-dispatchability of the PV systems that affect the stability of the grid and the economics of the PV system. This paper investigates the integration of PV arrays for distributed generation applications by identifying a combination of buildings that will maximize solar energy output and minimize system variability. Particularly, we propose mean-variance optimization models to choose suitable rooftops for PV integration based on Markowitz mean-variance portfolio selection model. We further introduce quantity and cardinality constraints to result in a mixed integer quadratic programming problem. Case studies based on real data are presented. An efficient frontier is obtained for sample data that allows decision makers to choose a desired solar energy generation level with a comfortable variability tolerance level. Sensitivity analysis is conducted to show the tradeoffs between solar PV energy generation potential and variability.

Omitaomu, Olufemi A [ORNL; Li, Xueping [University of Tennessee, Knoxville (UTK)

2012-01-01T23:59:59.000Z

343

Kauai Island Utility Co-op (KIUC) PV integration study.  

DOE Green Energy (OSTI)

This report investigates the effects that increased distributed photovoltaic (PV) generation would have on the Kauai Island Utility Co-op (KIUC) system operating requirements. The study focused on determining reserve requirements needed to mitigate the impact of PV variability on system frequency, and the impact on operating costs. Scenarios of 5-MW, 10-MW, and 15-MW nameplate capacity of PV generation plants distributed across the Kauai Island were considered in this study. The analysis required synthesis of the PV solar resource data and modeling of the KIUC system inertia. Based on the results, some findings and conclusions could be drawn, including that the selection of units identified as marginal resources that are used for load following will change; PV penetration will displace energy generated by existing conventional units, thus reducing overall fuel consumption; PV penetration at any deployment level is not likely to reduce system peak load; and increasing PV penetration has little effect on load-following reserves. The study was performed by EnerNex under contract from Sandia National Laboratories with cooperation from KIUC.

Ellis, Abraham; Mousseau, Tom (Knoxville, TN)

2011-08-01T23:59:59.000Z

344

Identifying Critical Pathways to High-Performance PV: Preprint  

DOE Green Energy (OSTI)

This conference paper describes the High-Performance Photovoltaic (HiPerf PV)Project was initiated by the U.S. Department of Energy to substantially increase the viability of photovoltaics (PV) for cost-competitive applications so that PV can contribute significantly to our energy supply and our environment in the 21st century. To accomplish this, the NCPV directs in-house and subcontracted research in high-performance polycrystalline thin-film and multijunction concentrator devices. Details of the subcontractor and in-house progress will be described toward identifying critical pathways of 25% polycrystalline thin-film tandem cells and developing multijunction concentrator modules to 33%.

Symko-Davies, M.; Noufi, R.; Kurtz, S.

2002-05-01T23:59:59.000Z

345

PV Validation and Bankability Workshop: San Jose, California  

Science Conference Proceedings (OSTI)

This report is a collaboration between Sandia National Laboratories, the National Renewable Energy Laboratory, and the Florida Solar Energy Center (FSEC). The report provides feedback from the U.S. Department of Energy's (DOE) Solar Program PV Validation and Bankability Workshop in San Jose, California on August 31, 2011. It focuses on the current state of PV in the United States, private funding to fund U.S. PV industry growth, roles and functions of the regional test center program, and ways to improve the current validation and bankability practices.

Granata, J.; Howard, J.

2011-12-01T23:59:59.000Z

346

Design, Fabrication, and Certification of Advanced Modular PV Power Systems Final Technical Progress Report  

DOE Green Energy (OSTI)

This report describes the overall accomplishments and benefits of Solar Electric Specialties Co. (SES) under this Photovoltaic Manufacturing Technology (PVMaT) subcontract. SES addressed design issues related to their modular autonomous PV power supply (MAPPS) and a mobile photogenset. MAPPS investigations included gel-cell batteries mounted horizontally; redesign of the SES power supply; modified battery enclosure for increased safety and reduced cost; programmable, interactive battery charge controllers; and UL and FM listings. The photogenset systems incorporate generators, battery storage, and PV panels for a mobile power supply. The unit includes automatic oil-change systems for the propane generators, collapsible array mounts for the PV enclosure, and internal stowage of the arrays. Standardizing the products resulted in product lines of MAPPS and Photogensets that can be produced more economically and with shorter lead times, while increasing product quality and reliability. Product assembly and quality control have also been improved and streamlined with the development of standardized assembly processes and QC testing procedures. SES offers the UL-listed MAPPS at about the same price as its previous non-standardized, unlisted products.

Lambarski, T.; Minyard, G. (Solar Electric Specialties Co., Willits, California)

1998-10-06T23:59:59.000Z

347

An Optimization and Assessment on DG adoption in JapanesePrototype Buildings  

SciTech Connect

This research investigates a method of choosing economicallyoptimal DER, expanding on prior studies at the Berkeley Lab using the DERdesign optimization program, the Distributed Energy Resources CustomerAdoption Model (DER-CAM). DER-CAM finds the optimal combination ofinstalled equipment from available DER technologies, given prevailingutility tariffs, site electrical and thermal loads, and a menu ofavailable equipment. It provides a global optimization, albeit idealized,that shows how the site energy load scan be served at minimum cost byselection and operation of on-site generation, heat recovery, andcooling. Five prototype Japanese commercial buildings are examined andDER-CAM applied to select thee conomically optimal DER system for each.The five building types are office, hospital, hotel, retail, and sportsfacility. Based on the optimization results, energy and emissionreductions are evaluated. Furthermore, a Japan-U.S. comparison study ofpolicy, technology, and utility tariffs relevant to DER installation ispresented. Significant decreases in fuel consumption, carbon emissions,and energy costs were seen in the DER-CAM results. Savings were mostnoticeable in the sports facility, followed by the hospital, hotel, andoffice building.

Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida,Masaru

2005-11-30T23:59:59.000Z

348

Photovoltaic manufacturing technology  

DOE Green Energy (OSTI)

This report identifies steps leading to manufacturing large volumes of low-cost, large-area photovoltaic (PV) modules. Both crystalline silicon and amorphous silicon technologies were studied. Cost reductions for each step were estimated and compared to Solarex Corporation's manufacturing costs. A cost model, a simple version of the SAMICS methodology developed by the Jet Propulsion Laboratory (JPL), projected PV selling prices. Actual costs of materials, labor, product yield, etc., were used in the cost model. The JPL cost model compared potential ways of lowering costs. Solarex identified the most difficult technical challenges that, if overcome, would reduce costs. Preliminary research plans were developed to solve the technical problems. 13 refs.

Wohlgemuth, J.H.; Whitehouse, D.; Wiedeman, S.; Catalano, A.W.; Oswald, R. (Solarex Corp., Frederick, MD (United States))

1991-12-01T23:59:59.000Z

349

2010 Solar Technologies Market Report  

DOE Green Energy (OSTI)

The U.S. Department of Energy (DOE) 2010 Solar Technologies Market Report details the market conditions and trends for photovoltaic (PV) and concentrating solar power (CSP) technologies. Produced by the National Renewable Energy Laboratory (NREL), the report provides a comprehensive overview of the solar electricity market and identifies successes and trends within the market from both global and national perspectives.

Not Available

2011-11-01T23:59:59.000Z

350

Program on Technology Innovation: Identification of Embedded Applications for New and Emerging Distributed Generation Technologies  

Science Conference Proceedings (OSTI)

Novel distributed generation (DG) technologies hold the potential of serving the needs of a variety of end-use applications, both existing as well as emerging. This report describes some of the emerging end-use applications and evaluates their potential for integration with distributed generation applications. The analysis addresses their value in terms of modularity, environmental friendliness, and favorable production economics.

2006-11-16T23:59:59.000Z

351

SMUD - Non-Residential PV Incentive Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Non-Residential PV Incentive Program Non-Residential PV Incentive Program SMUD - Non-Residential PV Incentive Program < Back Eligibility Commercial Industrial Nonprofit Savings Category Solar Buying & Making Electricity Maximum Rebate $650,000 for up-front incentives at current $0.65/W incentive level. Program Info State California Program Type Utility Rebate Program Rebate Amount Expected Performance Based Incentive (for systems up to 1 MW): 0.65/watt AC; incentive adjusted based on expected performance Performance Based Incentive: 0.10/kWh for 5 years or 0.06/kWh for 10 years Incentives are decreased for systems > 1 MW Provider Sacramento Municipal Utility District SMUD offers cash incentives to commercial, industrial, and non-profit customers who install solar photovoltaic (PV) systems. Customers have the

352

City of Lompoc Utilities - PV Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PV Rebate Program PV Rebate Program City of Lompoc Utilities - PV Rebate Program < Back Eligibility Commercial Nonprofit Residential Savings Category Solar Buying & Making Electricity Maximum Rebate 50% the system cost, up to $50,000 Program Info Funding Source utility surcharge State California Program Type Utility Rebate Program Rebate Amount $2.00 per watt Provider Customer Service City of Lompoc Utilities provides rebates to its electric customers who purchase and install photovoltaic (PV) systems. The rebate is $2.00 per watt-AC. The incentive amount may not exceed 50% the cost of the system, up to a maximum of $50,000. To qualify for the rebate the system must meet all the criteria as defined by the Lompoc City Electric interconnection agreement for self-generating electric systems and the requirements set forth by the California Energy

353

Maricopa Assn. of Governments - PV and Solar Domestic Water Heating  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maricopa Assn. of Governments - PV and Solar Domestic Water Heating Maricopa Assn. of Governments - PV and Solar Domestic Water Heating Permitting Standards Maricopa Assn. of Governments - PV and Solar Domestic Water Heating Permitting Standards < Back Eligibility Commercial Construction Installer/Contractor Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Program Info State Arizona Program Type Solar/Wind Permitting Standards Provider Maricopa Association of Governments In an effort to promote uniformity, the Maricopa Association of Governments (MAG) approved standard procedures for securing necessary electrical/building permits for residential (single-family) and commercial PV systems. These procedures are a part of the MAG Building Code Standards. The standards address requirements for the solar installation, plans,

354

PV Manufacturing R&D Accomplishments and Status  

DOE Green Energy (OSTI)

The U.S. Department of Energy (DOE) PV Manufacturing Research and Development Project has worked for 11 years in partnership with the U.S. photovoltaic industry to reduce manufacturing costs while significantly scaling up production capacity. Over this period, the PV Manufacturing R&D Project has issued seven solicitations for partnerships that have resulted in over 50 cost-shared R&D subcontracts that addressed the cost and capacity goals of the Project, including 10 that are currently active. The previous and current contracts have typically focused on addressing Project goals in one of two areas: module manufacturing and balance-of-systems (BOS)/systems work. The majority of the DOE investment has been targeted toward module manufacturing. The partnerships have resulted in a significant and measurable increase in PV module/systems production capacity, a decrease in PV manufacturing costs, and a subsequent return on the joint public and private investments facilitated by the Project.

Mooney, D.; Mitchell, R.; Witt, E.; King, R.; Ruby, D.

2003-11-01T23:59:59.000Z

355

Austin Energy - Residential Solar PV Rebate Program | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

offers a 1.50 per watt incentive to eligible residential who install photovoltaic (PV) systems on their homes. Rebates are limited to 15,000 per home installation and...

356

Progress Energy Florida - SunSense Commercial PV Incentive Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Progress Energy Florida - SunSense Commercial PV Incentive Program Progress Energy Florida - SunSense Commercial PV Incentive Program Progress Energy Florida - SunSense Commercial PV Incentive Program < Back Eligibility Commercial Savings Category Solar Buying & Making Electricity Maximum Rebate 130,000 per participant Program Info Start Date 03/15/2011 State Florida Program Type Utility Rebate Program Rebate Amount First 10 kW: 2/watt 11 kW - 50 kW: 1.50/watt 51 kW - 100 kW: 1/watt Provider Business Customer Service '''''Progress Energy Florida will begin accepting applications at 10:00 a.m. October 1, 2012, for customers to apply for the 2013 rebates.''''' In March 2011, Progress Energy Florida began offering incentives to commercial customers who install photovoltaic (PV) systems. Incentive rates are based on a tiered structure:

357

PvXchange GmbH | Open Energy Information  

Open Energy Info (EERE)

PvXchange GmbH PvXchange GmbH Jump to: navigation, search Name pvXchange GmbH Place Berlin, Germany Zip 10963 Sector Services Product A German platform for PV module spot trades. Also provides data on spot prices and offers consulting services. Coordinates 52.516074°, 13.376987° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":52.516074,"lon":13.376987,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

358

Lassen Municipal Utility District - PV Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lassen Municipal Utility District - PV Rebate Program Lassen Municipal Utility District - PV Rebate Program Lassen Municipal Utility District - PV Rebate Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: $5,000 or 50% of system cost, whichever is less Commercial: $23,000 or 50% of system cost, whichever is less. Program Info State California Program Type Utility Rebate Program Rebate Amount Residential: $3.00/W-AC Commercial: $2.10/W-AC Provider Lassen Municipal Utility District Lassen Municipal Utility District (LMUD) is providing incentives for its customers to purchase solar electric photovoltaic (PV) systems. Rebate levels will decrease annually over the life of the program. Through June 30, 2014, rebates of $3.00 per watt-AC up to $5,000 are available for

359

Pacific Power - PV Rebate Program (California) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pacific Power - PV Rebate Program (California) Pacific Power - PV Rebate Program (California) Pacific Power - PV Rebate Program (California) < Back Eligibility Agricultural Commercial Fed. Government Industrial Residential Schools State Government Savings Category Solar Buying & Making Electricity Maximum Rebate Commercial: $90,000 Tax-exempt Entities: $277,500 Program Info Start Date 07/01/2011 Expiration Date 07/1/2015 State California Program Type Utility Rebate Program Rebate Amount Incentives may be adjusted based on expected performance. Incentive amounts below are current as of 12/14/12. See program website for current status. Residential: $1.13/W CEC-AC Commercial: $0.36/W CEC-AC Tax-exempt Entities: $1.11/W CEC-AC Pacific Power is providing rebates to their customers who install photovoltaic (PV) systems on their homes and facilities. These rebates step

360

Merced Irrigation District - PV Buydown Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Merced Irrigation District - PV Buydown Program Merced Irrigation District - PV Buydown Program Merced Irrigation District - PV Buydown Program < Back Eligibility Commercial Nonprofit Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: 8,400 Commercial: $70,000 Program Info State California Program Type Utility Rebate Program Rebate Amount 2.80/W AC, adjusted based on expected performance Provider Merced Irrigation District Merced Irrigation District (MID) offers its residential, commercial and non-profit customers a rebate for installing solar electric photovoltaic (PV) systems on their homes and offices. The rebate is $2.80 per watt (adjusted based on the expected performance of the system) with a maximum of $8,400 for residential systems and $70,000 for non-residential systems.

Note: This page contains sample records for the topic "dg technologies pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Riverside Public Utilities - Non-Residential PV Incentive Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Non-Residential PV Incentive Program Non-Residential PV Incentive Program Riverside Public Utilities - Non-Residential PV Incentive Program < Back Eligibility Commercial Savings Category Solar Buying & Making Electricity Maximum Rebate Whichever is less: 50% of project cost or specific dollar limits which vary according to the rate schedule of the applicant Program Info State California Program Type Utility Rebate Program Rebate Amount Program is currently on hold. See below for more information. Provider Riverside Public Utilities '''''Note: Funding for this program has been exhausted for the remainder of the fiscal year. The program is scheduled to reopen on July 1, 2014.''''' The non-residential photovoltaic (PV) rebate program provides financial incentives for Riverside Public Utilities' business customers to install

362

Community Renewable Energy Success Stories Webinar: Developing PV Projects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Developing PV Developing PV Projects with RFPs and PPAs (text version) Community Renewable Energy Success Stories Webinar: Developing PV Projects with RFPs and PPAs (text version) Below is the text version of the webinar titled "Developing PV Projects with RFPS and PPAS," originally presented on January 15, 2013. Operator: The broadcast is now starting. All attendees are in listen-only mode. Sarah Busche: Good afternoon, everyone, and welcome to today's webinar sponsored by the U.S. Department of Energy (DOE). I'm Sarah Busche and here with me is Devin Egan. We're broadcasting live from the National Renewable Energy Laboratory (NREL) just outside of Denver, Colorado, in Golden, and we're going to give everyone a few more minutes to call in and log on, but during that time

363

Lodi Electric Utility - PV Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lodi Electric Utility - PV Rebate Program Lodi Electric Utility - PV Rebate Program Lodi Electric Utility - PV Rebate Program < Back Eligibility Commercial Industrial Local Government Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: $7,000 Non-residential: $40,000 Program Info Expiration Date January 1, 2018 State California Program Type Utility Rebate Program Rebate Amount 2013 Program Year: $1.94/W AC Incentives will be adjusted based on expected performance Provider Customer Programs Lodi Electric Utility offers rebates to its residential, commercial, industrial and municipal customers who install photovoltaic (PV) systems. The rebate program is funded with approximately $6 million to support systems installed between January 1, 2008 and January 1, 2018. The total

364

Hercules Municipal Utility - PV Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hercules Municipal Utility - PV Rebate Program Hercules Municipal Utility - PV Rebate Program Hercules Municipal Utility - PV Rebate Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Systems 10 kW or less: 10,000 Program Info State California Program Type Utility Rebate Program Rebate Amount '''2012:''' Systems up to 10 kW: 2.25/watt AC Systems larger than 10 kW: 0.17/kWh for 5 years'''''' Provider Hercules Municipal Utility '''''Note: This program has been temporarily suspended. Contact the utility for more information.''''' Hercules Municipal Utility offers a $2.25-per-watt AC rebate (2012 rebate level) to its residential and commercial customers who purchase and install solar photovoltaic (PV) systems smaller than 10 kilowatts (kW). Systems 10

365

SMUD - PV Residential Retrofit Buy-Down | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PV Residential Retrofit Buy-Down PV Residential Retrofit Buy-Down SMUD - PV Residential Retrofit Buy-Down < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Maximum Rebate No maximum limit Program Info State California Program Type Utility Rebate Program Rebate Amount $0.20/watt AC. Incentive is adjusted based on expected performance. The incentive can be paid directly to the customer or to the installer. Provider Sacramento Municipal Utility District SMUD offers an incentive of $0.20 per watt (W) AC to residential customers who install grid-connected photovoltaic (PV) systems. Customers do not have to contract directly with SMUD-approved contractors for the purchase and installation of the system, however this is recommended. All systems must be permitted and installed by B, C-10, or C-46 contractors. The incentive

366

The Potential of Securitization in Solar PV Finance  

NLE Websites -- All DOE Office Websites (Extended Search)

The Potential of Securitization in Solar PV Finance Travis Lowder and Michael Mendelsohn Technical Report NRELTP-6A20-60230 December 2013 NREL is a national laboratory of the U.S....

367

Residential, Commercial, and Utility-Scale Photovoltaic (PV)...  

NLE Websites -- All DOE Office Websites (Extended Search)

beginning. Reducing those initial capital costs is crucial to reducing the cost of solar electricity. In addition to module price, many factors contribute to the price of a PV...

368

Interconnecting PV on New York City's Secondary Network Distribution System  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) has teamed with cities across the country through the Solar America Cities (SAC) partnership program to help reduce barriers and accelerate implementation of solar energy. The New York City SAC team is a partnership between the City University of New York (CUNY), the New York City Mayor s Office of Long-term Planning and Sustainability, and the New York City Economic Development Corporation (NYCEDC).The New York City SAC team is working with DOE s National Renewable Energy Laboratory (NREL) and Con Edison, the local utility, to develop a roadmap for photovoltaic (PV) installations in the five boroughs. The city set a goal to increase its installed PV capacity from1.1 MW in 2005 to 8.1 MW by 2015 (the maximum allowed in 2005). A key barrier to reaching this goal, however, is the complexity of the interconnection process with the local utility. Unique challenges are associated with connecting distributed PV systems to secondary network distribution systems (simplified to ???¢????????networks???¢??????? in this report). Although most areas of the country use simpler radial distribution systems to distribute electricity, larger metropolitan areas like New York City typically use networks to increase reliability in large load centers. Unlike the radial distribution system, where each customer receives power through a single line, a network uses a grid of interconnected lines to deliver power to each customer through several parallel circuits and sources. This redundancy improves reliability, but it also requires more complicated coordination and protection schemes that can be disrupted by energy exported from distributed PV systems. Currently, Con Edison studies each potential PV system in New York City to evaluate the system s impact on the network, but this is time consuming for utility engineers and may delay the customer s project or add cost for larger installations. City leaders would like to streamline this process to facilitate faster, simpler, and less expensive distributed PV system interconnections. To assess ways to improve the interconnection process, NREL conducted a four-part study with support from DOE. The NREL team then compiled the final reports from each study into this report. In Section 1???¢????????PV Deployment Analysis for New York City???¢????????we analyze the technical potential for rooftop PV systems in the city. This analysis evaluates potential PV power production in ten Con Edison networks of various locations and building densities (ranging from high density apartments to lower density single family homes). Next, we compare the potential power production to network loads to determine where and when PV generation is most likely to exceed network load and disrupt network protection schemes. The results of this analysis may assist Con Edison in evaluating future PV interconnection applications and in planning future network protection system upgrades. This analysis may also assist other utilities interconnecting PV systems to networks by defining a method for assessing the technical potential of PV in the network and its impact on network loads. Section 2???¢????????A Briefing for Policy Makers on Connecting PV to a Network Grid???¢????????presents an overview intended for nontechnical stakeholders. This section describes the issues associated with interconnecting PV systems to networks, along with possible solutions. Section 3???¢????????Technical Review of Concerns and Solutions to PV Interconnection in New Y

K. Anderson; M. Coddington; K. Burman; S. Hayter; B. Kroposki; and A. Watson

2009-11-30T23:59:59.000Z

369

Perspective on International PV Challenge & Opportunities for Rural Development  

DOE Green Energy (OSTI)

International market opportunities for the sale and deployment of photovoltaic (PV) systems abound and will continue to out-pace domestic, grid-connected opportunities for the foreseeable future.

Taylor, R. W.

2000-01-01T23:59:59.000Z

370

Pallets of PV: Communities Purchase Solar and Drive Down Costs...  

Open Energy Info (EERE)

Pallets of PV: Communities Purchase Solar and Drive Down Costs Together Home > Groups > OpenEI Community Central Graham7781's picture Submitted by Graham7781(1982) Super...

371

DOE Solar Decathlon: 2005 Feature Article - Today's PV: Functional...  

NLE Websites -- All DOE Office Websites (Extended Search)

day and a lovely view from the outside by night. (Credit: Chris Gunn, Solar Decathlon) Solar Decathlon 2005 Today's PV: Functional and Beautiful Most of us have updated our...

372

Instrumentation for Evaluating PV System Performance Losses from Snow  

DOE Green Energy (OSTI)

When designing a photovoltaic (PV) system for northern climates, the prospective installation should be evaluated with respect to the potentially detrimental effects of snow preventing solar radiation from reaching the PV cells. The extent to which snow impacts performance is difficult to determine because snow events also increase the uncertainty of the solar radiation measurement, and the presence of snow needs to be distinguished from other events that can affect performance. This paper describes two instruments useful for evaluating PV system performance losses from the presence of snow: (1) a pyranometer with a heater to prevent buildup of ice and snow, and (2) a digital camera for remote retrieval of images to determine the presence of snow on the PV array.

Marion, B.; Rodriguez, J.; Pruett, J.

2009-01-01T23:59:59.000Z

373

City of Sunset Valley - PV Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Amount 1.00W up to 3,000 W The City of Sunset Valley offers rebates to local homeowners who install photovoltaic (PV) systems on their properties. The local rebate acts as...

374

Solar PV Jobs and Economic Development Impact Model Webinar  

Energy.gov (U.S. Department of Energy (DOE))

Join the DOE SunShot Initiative, in conjunction with the National Renewable Energy Laboratory, for a webinar on August 21, 2013, at 2-3 p.m. EST highlighting the Scenario Solar PV Jobs and Economic...

375

Optimal Perturbations in the Eady Model: Resonance versus PV Unshielding  

Science Conference Proceedings (OSTI)

Using a nonmodal decomposition technique based on the potential vorticity (PV) perspective, the optimal perturbation or singular vector (SV) of the Eady model without upper rigid lid is studied for a kinetic energy norm. Special emphasis is put ...

H. de Vries; J. D. Opsteegh

2005-02-01T23:59:59.000Z

376

Potential Vorticity (PV) Thinking in Operations: The Utility of Nonconservation  

Science Conference Proceedings (OSTI)

The use of the potential vorticity (PV) framework by operational forecasters is advocated through case examples that demonstrate its utility for interpreting and evaluating numerical weather prediction (NWP) model output for weather systems ...

Michael J. Brennan; Gary M. Lackmann; Kelly M. Mahoney

2008-02-01T23:59:59.000Z

377

Full Steam Ahead for PV in US Homes?  

Science Conference Proceedings (OSTI)

In October 2008, the United States Congress extended both the residential and commercial solar investment tax credits (ITCs) for an unprecedented eight years, lifted the $2,000 cap on the residential credit, removed the prohibition on utility use of the commercial credit, and eliminated restrictions on the use of both credits in conjunction with the Alternative Minimum Tax. These significant changes, which apply to systems placed in service on or after January 1, 2009, will increase the value of the solar credits for residential system owners in particular, and are likely--in conjunction with state, local, and utility rebate programs targeting solar--to spur significant growth in residential, commercial, and utility-scale photovoltaic (PV) installations in the years ahead. This article focuses specifically on the residential credit, describing three areas in which removal of the $2,000 cap on the residential ITC will have significant implications for PV rebate program administrators, PV system owners, and the PV industry.

Bolinger, Mark A; Barbose, Galen; Wiser, Ryan

2009-01-15T23:59:59.000Z

378

Most new residential solar PV projects in California program ...  

U.S. Energy Information Administration (EIA)

In 2012 and 2013, more than two ... leasing company, as the PV system's ... having someone else build and maintain the system by having to share some of the available ...

379

Tucson's Solar Experience: Developing PV with RFPs and PPAs  

Energy.gov (U.S. Department of Energy (DOE))

This presentation was given January 15, 2013, by Bruce Plenk, Solar Coordinator for the City of Tucson, Arizona, as part of the CommRE Developing PV Projects With RFPs and PPAs webinar.

380

Interconnecting PV on New York City's Secondary Network Distribution System  

DOE Green Energy (OSTI)

This study describes technical assistance provided by NREL to help New York City and Con Edison improve the interconnection of distributed PV systems on a secondary network distribution system.

Anderson, K.; Coddington, M.; Burman, K.; Hayter, S.; Kroposki, B.; Watson, A.

2009-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "dg technologies pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Taunton Municipal Lighting Plant- Residential PV Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Customers of Taunton Municipal Lighting Plant (TMLP) may be eligible for $2.00/watt rebate on solar photovoltaic (PV) installations. The minimum system size eligible for this rebate is 1 kilowatt ...

382

Impact of PV forecasts uncertainty in batteries management in microgrids  

E-Print Network (OSTI)

Impact of PV forecasts uncertainty in batteries management in microgrids Andrea Michiorri Arthur-based battery schedule optimisation in microgrids in presence of network constraints. We examine a specific case

Recanati, Catherine

383

Colton Public Utilities - PV Rebate Program (California) | Open...  

Open Energy Info (EERE)

of more than 10% of the system's rated output. 5 year or better warranty on the inverter. Must comply with California Energy Commission Standards for PV systems and all...

384

Plumas-Sierra REC - PV Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PV Rebate Program PV Rebate Program Plumas-Sierra REC - PV Rebate Program < Back Eligibility Agricultural Commercial Industrial Nonprofit Residential Savings Category Solar Buying & Making Electricity Maximum Rebate $6,000 for residential; $12,000 for small commercial, agricultural and non-profit applications; $20,000 for large commercial and industrial applications Program Info State California Program Type Utility Rebate Program Rebate Amount 2012 rebate level: $2.09/watt (AC) Incentives will be adjusted based on expected performance. Provider Plumas-Sierra REC Plumas-Sierra REC offers an incentive for its customers to install photovoltaic (PV) systems on homes and businesses. Rebates are available for qualifying systems between one kilowatt (kW) and 25 kW; the rebate amount is based on the installed capacity. The rebate level will decreases

385

Riverside Public Utilities - Residential PV Incentive Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PV Incentive Program PV Incentive Program Riverside Public Utilities - Residential PV Incentive Program < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Maximum Rebate 13,000 or 50% of project cost, whichever is less Program Info State California Program Type Utility Rebate Program Rebate Amount Program is on hold Provider Riverside Public Utilities '''''Note: Funding for this program has been exhausted for the remainder of the fiscal year. The program is scheduled to reopen on July 1, 2014. ''''' The Residential Photovoltaic (PV) System rebate program provides incentives to Riverside Public Utilities customers who purchase and install qualifying photovoltaic systems on their homes. For Fiscal Year 2013, the rebate amount was $2.00 per watt AC and cannot exceed 50% of the total system cost

386

Giant Leap Forward Toward Quality Assurance of PV Modules (Presentation)  

DOE Green Energy (OSTI)

The presentation describes the composition of and motivation for the International PV QA Task Force, then describes the presentations and discussion that occurred at the workshop on Feb. 29th, 2012.

Kurtz, S.; Wohlgemuth, J.; Sample, T.; Yamamichi, M.

2012-03-01T23:59:59.000Z

387

A Monolithic Microconcentrator Receiver For A Hybrid PV?Thermal System: Preliminary Performance  

Science Conference Proceedings (OSTI)

An innovative hybrid PV?thermal microconcentrator (MCT) system is being jointly developed by Chromasun Inc.

D. Walter; V. Everett; M. Vivar; J. Harvey; R. Van Scheppingen; S. Surve; J. Muric?Nesic; A. Blakers

2010-01-01T23:59:59.000Z

388

Keywords: Photovoltaic System, fault-tolerance, recon-figurable PV panel  

E-Print Network (OSTI)

1 Keywords: Photovoltaic System, fault-tolerance, recon- figurable PV panel Photovoltaic (PV plants, and satellites. The output power of a PV cell (also called solar cell) is dependent on the solar irradiance level and temperature. Figure 1 shows PV cell output current-voltage and power

Pedram, Massoud

389

Modeling and Simulation of Solar PV Arrays under Changing Illumination Conditions  

E-Print Network (OSTI)

from the solar cell. PV has widespread use in niche markets such as consumer electronics, remote area onto a small number of highly efficient solar cells. PV systems mounted on house roofs can be used. Hybrid PV/thermal micro concentrator systems on building roofs are being developed to provide solar PV

Lehman, Brad

390

NREL: Learning - Solar Photovoltaic Technology Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Photovoltaic Technology Basics Solar Photovoltaic Technology Basics Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player This video provides an overview of NREL's research in solar photovoltaic technology. Text Version Solar cells, also called photovoltaic (PV) cells by scientists, convert sunlight directly into electricity. PV gets its name from the process of converting light (photons) to electricity (voltage), which is called the PV effect. The PV effect was discovered in 1954, when scientists at Bell Telephone discovered that silicon (an element found in sand) created an electric charge when exposed to sunlight. Soon solar cells were being used to power space satellites and smaller items like calculators and watches. Today, thousands of people power their homes and businesses with individual

391

Solar PV Market Update, Volume 4: Q4 2012  

Science Conference Proceedings (OSTI)

Volume 4 of EPRIs quarterly Solar PV Market Update provides continued insight into some of the front line trends that are afoot throughout the photovoltaic segment. Like previous Updates, it synthesizes primary as well as secondary data from multiple sources in an effort to highlight both macro and micro industry developments that are likely to impact utility solar PV investment and planning efforts. Specifically, this report discusses the increasing impact of balance-of-system (BOS) ...

2012-12-31T23:59:59.000Z

392

Advanced Metering Infrastructure (AMI) for Distributed Solar (PV) Integration  

Science Conference Proceedings (OSTI)

This report summarizes the findings from a survey on two-way communication with distributed photovoltaic (PV) generation. The survey focused specifically on exploring how advanced metering infrastructure might be used as the communication means for the integration of residential PV systems. This investigation is one of several data-gathering projects in the Electric Power Research Institutes (EPRIs) Renewables Integration program (P174). Together, these projects and the data they provide will lay the ...

2009-09-09T23:59:59.000Z

393

Clustered PV Installation Program (Massachusetts) | Open Energy...  

Open Energy Info (EERE)

Residential Eligible Technologies Photovoltaics Active Incentive No Implementing Sector StateTerritory Energy Category Renewable Energy Incentive Programs Amount Varies by...

394

CCEF - Commercial, Industrial, Institutional PV Grant Program...  

Open Energy Info (EERE)

Institutional Eligible Technologies Photovoltaics Active Incentive No Implementing Sector StateTerritory Energy Category Renewable Energy Incentive Programs Amount 5 Watt; 5.75...

395

Energy 101: Solar PV | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Backstage at the Daily Show The Future of Biofuels The Climate Challenge... and What's at Stake Sec. Chu Announces the First Auto Loans for Advanced Technologies...

396

Building integrated PV for commercial and institutional structures, a sourcebook for architects  

Science Conference Proceedings (OSTI)

This sourcebook on building-integrated photovoltaics (BIPV) is intended for architects and designers interested in learning more about today's sustainable solar buildings. The booklet includes 16 design briefs describing actual structures; they illustrate how electricity-generating BIPV products (such as special roofing systems, vertical-wall systems, skylights, and awnings, all of which contain PV cells, modules, and films) can be integrated successfully into many different kinds of buildings. It also contains basic information about BIPV technologies, an overview of US product development activities and development programs, descriptions of major software design tools, and a bibliography.

Eiffert, P.; Kiss, G.

2000-02-14T23:59:59.000Z

397

Continuing Developments in PV Risk Management: Strategies, Solutions, and Implications  

Science Conference Proceedings (OSTI)

As the PV industry matures, successful risk management practices will become more imperative to ensure investor confidence, control costs, and facilitate further growth. This report discusses several key aspects of risk management during the commercial- and utility-scale project life cycle, from identification of risks, to the process of mitigating and allocating those risks among project parties, to transferring those risks through insurance. The report also explores novel techniques in PV risk management, options to offload risks onto the capital markets, and innovative insurance policies (namely warranty policies) that address risks unique to the PV sector. One of the major justifications for robust risk management in the PV industry is the cost-reduction opportunities it affords. If the PV industry can demonstrate the capability to successfully manage its risks, thereby inspiring confidence in financiers, it may be able to obtain a lower cost of capital in future transactions. A lower cost of capital translates to a lower cost of energy, which will in turn enhance PV?s competitiveness at a time when it will have to rely less on subsidies to support its market penetration.

Lowder, T.; Mendelsohn, M.; Speer, B.; Hill, R.

2013-02-01T23:59:59.000Z

398

Integrating High Penetrations of PV into Southern California  

Science Conference Proceedings (OSTI)

California regulators recently approved a plan proposed by Southern California Edison (SCE) to install 500 MW of distributed photovoltaic (PV) energy in its utility service territory over the next 5 years. The installations will include 250 MW of utility-owned solar and 250 MW of independently owned solar. SCE expects that the majority of these systems will be commercial-scale rooftop PV systems connected at various points in the distribution system. Each of the SCE rooftop PV systems will typically have a rating of 1-3 MW. To understand the impact of high-penetration PV on the distribution grid, the National Renewable Energy Laboratory (NREL) and SCE brought together a team of experts in resource assessment, distribution modeling, and planning to help analyze the impacts of adding high penetration of PV into the distribution system. Through modeling and simulation, laboratory testing, and field demonstrations, the team will address the issues identified in the analysis by fully examining the challenges, developing solutions, and transitioning those solutions to the field for large-scale deployment. This paper gives an update on the project and discusses technical results of integrating a large number of distributed PV systems into the grid.

Kroposki, B.; Mather, B.; Hasper-Tuttle, J.; Neal, R.; Katiraei, F.; Yazdani, A.; Aguero, J. R.; Hoff, T. E.; Norris, B. L.; Parkins, A.; Seguin, R.; Schauder, C.

2011-01-01T23:59:59.000Z

399

High Penetration PV Deployment in the Arizona Public Service System  

DOE Green Energy (OSTI)

In an effort to better understand the impacts of high penetrations of photovoltaic (PV) generators on distribution systems, Arizona Public Service (APS) and its partners have begun work on a multi-year project to develop the tools and knowledgebase needed to safely and reliably integrate high penetrations of utility and residential scale PV. Building upon the APS Community Power Project - Flagstaff Pilot, this project will analyze the impact of PV on a representative feeder in northeast Flagstaff. To quantify and catalog the effects of the estimated 1.5 MW of PV that will be installed on the feeder (both smaller units at homes as well as large, centrally located systems), high-speed weather and electrical data acquisition systems and digital 'smart' meters are being designed and installed to facilitate monitoring and to build and validate comprehensive, high-resolution models of the distribution system. These models will be used to analyze the impacts of the PV on distribution circuit protection systems (including anti-islanding), predict voltage regulation and phase balance issues, and develop volt/var control schemes. The goal of this paper is to provide insight and lessons learned on the early stages of high penetration PV deployment. Primarily focusing on modeling and data acquisition, this paper describes the overall project, early results, and plans for future phases of the project.

Narang, D.; Hambrick, J.

2011-01-01T23:59:59.000Z

400

UNEP Collaborating Centre on Energy and Environment Renewable Energy Technologies  

E-Print Network (OSTI)

systems (SIPHS) · PV Electric (for remote area) * · PV- Pumps · Large scale biogas systems * · Cotton, but potential exists. - Large Scale Biogas Systems ­ Financial: High capital costs, no financing facilities: · biomass fired dryers, sawdust briquetting, sawdust stoves and biogas* - Solar Technologies: · solar crop

Note: This page contains sample records for the topic "dg technologies pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Lightweight PV Inverters: Dual Bi-Directional IGBTs Modules Enables Breakthrough PV Inverter Using Current Modulation Topology  

Science Conference Proceedings (OSTI)

Solar ADEPT Project: PV inverters convert DC power generated by modules into usable AC power. IPCs initial 30kW 94lb. PV inverter reduces the weight of comparable 30kW PV inverters by 90%reducing the cost of materials, manufacturing, shipping, and installation. With ARPA-E support, new bi-directional silicon power switches will be developed, commercialized, and utilized in IPCs next-generation PV inverter. With these components, IPC will produce 100kW inverters that weight less than 100lb., reducing the weight of conventional 3,000lb. 100kW inverters by more than 95%. The new power switches will cut IPCs $/W manufacturing cost in half, as well as further reduce indirect shipping and installation costs.

None

2012-01-30T23:59:59.000Z

402

NREL: Energy Analysis - Solar Technology Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Technology Analysis Solar Technology Analysis NREL conducts analysis to support research and development done by the Solar Energy Technologies Program in three major technology areas: concentrating solar power; solar electricity, also known as photovoltaics or PV; and solar heating and lighting. For example, in the area of photovoltaics, EERE's systems modeling and analysis activity rigorously assesses the performance, reliability, installed costs, and levelized energy costs (LECs) of a wide variety of flat-plate PV system configurations and applications. R&D goals, which are supported by solar technology analysis, include: Investigating the steps needed to improve the impact of PV technologies in the marketplace through technical R&D, market analyses, and value and policy analyses

403

Overview and Challenges of Thin Film Solar Electric Technologies  

DOE Green Energy (OSTI)

In this paper, we report on the significant progress made worldwide by thin-film solar cells, namely, amorphous silicon (a-Si), cadmium telluride (CdTe), and copper indium gallium diselenide (CIGS). Thin-film photovoltaic (PV) technology status is also discussed in detail. In addition, R&D and technology challenges in all three areas are elucidated. The worldwide estimated projection for thin-film PV technology production capacity announcements are estimated at more than 5000 MW by 2010.

Ullal, H. S.

2008-12-01T23:59:59.000Z

404

Development of A Fully Integrated PV System for Residential Applications: PVMaT5a Final Report, 18 December 2001  

DOE Green Energy (OSTI)

This report describes both the Utility Power Group (UPG), a wholly owned subsidiary of Kyocera Solar, Inc., and Xantrex Technology Inc., have designed, assembled, and tested a new photovoltaic (PV) power system for residential rooftops to meet the goal of a readily manufacturable product that will increase US domestic PV power system production and installed capacity, by reducing the total installed cost and increasing the reliability of residential rooftop mounted PV power systems. A new factory pre-fabricated PV array system was developed, and 80 have been installed on the residential rooftops using standard metal parts. The direct material and labor cost of the array installation has been reduced to $3.79 per square foot for a 2400W installation. A modular, maintenance free, battery-based Power Unit and Energy Storage Unit (power conditioning and control) have also been developed. The design, fabrication, and testing have been completed for two prototypes of this system. These products have been evaluated for their structural integrity, electrical performance, reliability, cost, and manufacturability. The direct material and labor cost of the Power Unit has been reduced to $0.34 per watt. The 13 kW-hr Energy Storage Unit (ESU) has been UL listed.

Oatman, J.; West, R.

2002-10-01T23:59:59.000Z

405

Energy 101: Solar PV | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Faces of the Recovery Act: 1366 Technologies Home Energy Assessments The Kill-a-Watt Competition at University of Central Florida Faces of the Recovery Act: Sun Catalytix Investing...

406

Economic analysis of PV hybrid power system: Pinnacles National Monument  

DOE Green Energy (OSTI)

PV hybrid electric power systems can offer an economically competitive alternative to engine generator (genset) systems in many off-grid applications. Besides the obvious `green` advantages of producing less noise and emissions, the PV hybrid can, in some cases, offer a lower life-cycle cost (LCC) then the genset. This paper evaluates the LCC of the 9.6 kWp PV hybrid power system installed by the National Park Services (NPS) at Pinnacles National Monument, CA. NPS motivation for installation of this hybrid was not based on economics, but rather the need to replace two aging diesel gensets with an alternative that would be quieter, fuel efficient, and more in keeping with new NPS emphasis on sustainable design and operations. In fact, economic analysis shows a lower 20-year LCC for the installed PV hybrid than for simple replacement of the two gensets. The analysis projects are net savings by the PV hybrid system of $83,561 and over 162,000 gallons of propane when compared with the genset-only system. This net savings is independent of the costs associated with environmental emissions. The effects of including emissions costs, according to NPS guidelines, is also discussed. 5 refs., 2 figs., 3 tabs.

Rosenthal, A.; Durand, S. [Southwest Technology Development Institute, Las Cruces, NM (United States); Thomas, M.; Post, H. [Sandia National Labs., Albuquerque, NM (United States)

1997-11-01T23:59:59.000Z

407

Electricity Rate Structures and the Economics of Solar PV: Could Mandatory Time-of-Use Rates Undermine Californias Solar Photovoltaic Subsidies?  

E-Print Network (OSTI)

that the real price of power that solar PV replaces issolar PV power the di?erence between the amortized cost of the PV power and price

Borenstein, Severin

2007-01-01T23:59:59.000Z

408

Thin Film CIGS and CdTe Photovoltaic Technologies: Commercialization, Critical Issues, and Applications; Preprint  

DOE Green Energy (OSTI)

We report here on the major commercialization aspects of thin-film photovoltaic (PV) technologies based on CIGS and CdTe (a-Si and thin-Si are also reported for completeness on the status of thin-film PV). Worldwide silicon (Si) based PV technologies continues to dominate at more than 94% of the market share, with the share of thin-film PV at less than 6%. However, the market share for thin-film PV in the United States continues to grow rapidly over the past several years and in CY 2006, they had a substantial contribution of about 44%, compared to less than 10% in CY 2003. In CY 2007, thin-film PV market share is expected to surpass that of Si technology in the United States. Worldwide estimated projections for CY 2010 are that thin-film PV production capacity will be more than 3700 MW. A 40-MW thin-film CdTe solar field is currently being installed in Saxony, Germany, and will be completed in early CY 2009. The total project cost is Euro 130 million, which equates to an installed PV system price of Euro 3.25/-watt averaged over the entire solar project. This is the lowest price for any installed PV system in the world today. Critical research, development, and technology issues for thin-film CIGS and CdTe are also elucidated in this paper.

Ullal, H. S.; von Roedern, B.

2007-09-01T23:59:59.000Z

409

Long Island Power Authority - PV Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PV Rebate Program PV Rebate Program Long Island Power Authority - PV Rebate Program < Back Eligibility Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Solar Buying & Making Electricity Maximum Rebate Residential (general customer-owned): Lesser of 50% of installed cost or $18,600; Residential (third-party owned): Lesser of 50% of installed cost or $17,200; Residential (non-profit owned): Lesser of 50% of installed costs or $22,500; Commercial: Lesser of 50% of installed cost or $145,000; Gov't, Schools, Nonprofits: Lesser of 65% of installed cost or $225,000 Program Info Funding Source LIPA Efficiency Long Island Program Start Date 2000 State New York Program Type Utility Rebate Program Rebate Amount

410

New York City - Property Tax Abatement for Photovoltaic (PV) Equipment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Property Tax Abatement for Photovoltaic (PV) Property Tax Abatement for Photovoltaic (PV) Equipment Expenditures New York City - Property Tax Abatement for Photovoltaic (PV) Equipment Expenditures < Back Eligibility Commercial Industrial Institutional Multi-Family Residential Nonprofit Residential Schools Savings Category Solar Buying & Making Electricity Maximum Rebate $62,500 annually or the amount of real property taxes owed during a year Program Info Start Date 08/05/2008 State New York Program Type Property Tax Incentive Rebate Amount Installed from August 5, 2008 to December 31, 2010: 8.75% of system expenditures per year for 4 years (total of 35%); Installed from January 1, 2011 to December 31, 2012: 5% of system expenditures per year for 4 years (total of 20%); Installed from January 1, 2013 to December 31, 2014: 2.5% of system

411

Massachusetts Middle School Goes Local for PV Solar Energy System |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Middle School Goes Local for PV Solar Energy System Middle School Goes Local for PV Solar Energy System Massachusetts Middle School Goes Local for PV Solar Energy System August 13, 2010 - 11:00am Addthis New 26 kW solar energy system to be part of curriculum at Norton Middle School. | Photo courtesy of Norton Public Schools New 26 kW solar energy system to be part of curriculum at Norton Middle School. | Photo courtesy of Norton Public Schools Lindsay Gsell What are the key facts? Using Recovery Act Funding, Norton Middle School installed a 126 panel solar system. The school expects to save $6,000 in energy costs each year. Materials for solar system came from local Massachusetts companies. When the school buses pull up to Norton Middle School this year, students will see more than just their friends and teachers, they'll get a view of

412

Anaheim Public Utilities - PV Buydown Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Anaheim Public Utilities - PV Buydown Program Anaheim Public Utilities - PV Buydown Program Anaheim Public Utilities - PV Buydown Program < Back Eligibility Commercial Low-Income Residential Residential Savings Category Solar Buying & Making Electricity Maximum Rebate The incentives are based on the customer's most recent 12-month electricity usage. Program Info State California Program Type Utility Rebate Program Rebate Amount Program is currently closed. Rebate reservation period will reopen in January 2014. Provider Anaheim Public Utilities '''''This Program is currently closed. Rebate reservation period will reopen in January 2014. The summary below describes the program as it existed for Fiscal Year 2012 - 2013. See the web site above for more information. ''''' Anaheim Public Utilities offers a rebate to its residential and business

413

Incorporating Aggregated PV Systems into the Power Grid | Open Energy  

Open Energy Info (EERE)

Incorporating Aggregated PV Systems into the Power Grid Incorporating Aggregated PV Systems into the Power Grid Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Spain Installed Wind Capacity Website Focus Area: Renewable Energy Topics: Market Analysis Website: www.gwec.net/index.php?id=131 Equivalent URI: cleanenergysolutions.org/content/spain-installed-wind-capacity-website Language: English Policies: Regulations Regulations: Feed-in Tariffs This website presents an overview of total installed wind energy capacity in Spain per year from 2000 to 2010. The page also presents the main market developments from 2010; a policy summary; a discussion of the revision in feed-in tariffs in 2010; and a future market outlook. References Retrieved from "http://en.openei.org/w/index.php?title=Incorporating_Aggregated_PV_Systems_into_the_Power_Grid&oldid=514463

414

City of San Diego RFP for Power Purchase (PV)  

NLE Websites -- All DOE Office Websites (Extended Search)

City of San Diego City of San Diego Environmental Services Department Energy Conservation and Management Division Request for Proposal For Power Purchase of Renewable Energy (Photovoltaics) For City Facilities The City of San Diego is seeking a firm, or a team of firms, to provide cost effective solar photovoltaic electric generating systems at eight City sites. The City intends to enter into power purchase agreement(s) for terms up to twenty years with solar PV developer(s) at these sites. The developers may also be asked to assist the City with identifying implementing solar PV projects at other sites depending upon the success of the initial program. The City evaluated twenty four facilities that appear to have potential of accommodating solar PV systems ranging in size from 30 kilowatts to 1

415

CPS Energy - Solar PV Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CPS Energy - Solar PV Rebate Program CPS Energy - Solar PV Rebate Program CPS Energy - Solar PV Rebate Program < Back Eligibility Commercial Industrial Institutional Multi-Family Residential Nonprofit Residential Schools Savings Category Solar Buying & Making Electricity Maximum Rebate $25,000 for Residential $80,000 for Schools and Commercial using local installer $100,000 for Commercial not using local installer Program Info Expiration Date STEP extends through 2020, annual program year expiration dates may apply State Texas Program Type Utility Rebate Program Rebate Amount Schools (public and private): $2.00/W for first 25 kW; $1.30/W for any additional capacity Residential using local installer: $1.60/W for first 25 kW Residential not using local installer:$1.30/W for first 25 kW Commercial using local installer: $1.60/W for first 25 kW; $1.30/W for any

416

Tucson's Solar Experience: Developing PV with RFPs and PPAs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tucson's Solar Experience: Tucson's Solar Experience: Developing PV with RFPs and PPAs Bruce Plenk Solar Coordinator City of Tucson Office of Conservation and Sustainable Development DOE EERE- January 15, 2013 Developing PV Projects with RFPs and PPAs Tucson's Solar Investment (1999- 2008) * $960,000 cumulative solar investment with City general funds. * Over $200,000 leveraged from solar grants & utility rebates. * Bus shelter solar funded through advertising. * System size range: 3 kW- 64 kW (plus some solar hot water systems). * 220 kW total installed on 8 City sites. DOE EERE- January 15, 2013 Developing PV Projects with RFPs and PPAs Pre-RFP Decisions: site selection Plan A * Property owner selects sites; vendor determines details and

417

Progress Energy Carolinas - SunSense Residential PV Incentive Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Progress Energy Carolinas - SunSense Residential PV Incentive Program Progress Energy Carolinas - SunSense Residential PV Incentive Program < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Program Info State North Carolina Program Type Utility Rebate Program Rebate Amount Program is fully subscribed for 2013 $500 per kilowatt AC, plus a monthly bill credit of $4.50 per kW Provider Progress Energy Carolinas '''''Note: This program is budgeted to support a total of 1 MW of residential systems per year. The program is now fully subscribed for 2013. New applications will be accepted starting January 1, 2014. ''''' Progress Energy is offering incentives for their residential customers to install photovoltaics (PV) systems on their homes through their SunSense

418

Tianfu PV Guangxian Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Tianfu PV Guangxian Co Ltd Tianfu PV Guangxian Co Ltd Jump to: navigation, search Name Tianfu PV Guangxian Co Ltd Place Shihezi, Xinjiang Autonomous Region, China Sector Solar Product Chinese company who planned to produce flexiable a-Si thin-film solar cells but the project finanly abandoned. Coordinates 44.299709°, 86.03791° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.299709,"lon":86.03791,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

419

Massachusetts Middle School Goes Local for PV Solar Energy System |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Massachusetts Middle School Goes Local for PV Solar Energy System Massachusetts Middle School Goes Local for PV Solar Energy System Massachusetts Middle School Goes Local for PV Solar Energy System August 13, 2010 - 11:00am Addthis New 26 kW solar energy system to be part of curriculum at Norton Middle School. | Photo courtesy of Norton Public Schools New 26 kW solar energy system to be part of curriculum at Norton Middle School. | Photo courtesy of Norton Public Schools Lindsay Gsell What are the key facts? Using Recovery Act Funding, Norton Middle School installed a 126 panel solar system. The school expects to save $6,000 in energy costs each year. Materials for solar system came from local Massachusetts companies. When the school buses pull up to Norton Middle School this year, students will see more than just their friends and teachers, they'll get a view of

420

Solar capabilities : promoting, technological learning in South Africa's photovoltaic supply industry  

E-Print Network (OSTI)

I explore the mechanisms through which technological capabilities have been built in the market for photovoltaic (PV) module and balance of system (BOS) manufacture in South Africa. Drawing on the literature on technology ...

Wright, Janelle N., 1978-

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dg technologies pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Time series power flow analysis for distribution connected PV generation.  

SciTech Connect

Distributed photovoltaic (PV) projects must go through an interconnection study process before connecting to the distribution grid. These studies are intended to identify the likely impacts and mitigation alternatives. In the majority of the cases, system impacts can be ruled out or mitigation can be identified without an involved study, through a screening process or a simple supplemental review study. For some proposed projects, expensive and time-consuming interconnection studies are required. The challenges to performing the studies are twofold. First, every study scenario is potentially unique, as the studies are often highly specific to the amount of PV generation capacity that varies greatly from feeder to feeder and is often unevenly distributed along the same feeder. This can cause location-specific impacts and mitigations. The second challenge is the inherent variability in PV power output which can interact with feeder operation in complex ways, by affecting the operation of voltage regulation and protection devices. The typical simulation tools and methods in use today for distribution system planning are often not adequate to accurately assess these potential impacts. This report demonstrates how quasi-static time series (QSTS) simulation and high time-resolution data can be used to assess the potential impacts in a more comprehensive manner. The QSTS simulations are applied to a set of sample feeders with high PV deployment to illustrate the usefulness of the approach. The report describes methods that can help determine how PV affects distribution system operations. The simulation results are focused on enhancing the understanding of the underlying technical issues. The examples also highlight the steps needed to perform QSTS simulation and describe the data needed to drive the simulations. The goal of this report is to make the methodology of time series power flow analysis readily accessible to utilities and others responsible for evaluating potential PV impacts.

Broderick, Robert Joseph; Quiroz, Jimmy Edward; Ellis, Abraham; Reno, Matthew J. [Georgia Institute of Technology, Atlanta, GA; Smith, Jeff [Electric Power Research Institute, Knoxville, TN; Dugan, Roger [Electric Power Research Institute, Knoxville, TN

2013-01-01T23:59:59.000Z

422

Final PV module degradation-analysis report  

DOE Green Energy (OSTI)

Visual and electrical degradation analyses were performed on 47 modules from: the Natural Bridges National Monument (NBNM) in Utah; Massachusetts Institute of Technology (MIT) in Cambridge, Massachusetts; and the University of Nebraska at Mead, Nebraska. Such problems as discoloration, cracking, scratches, and electrical degradation were detected. (LEW)

Themelis, M P

1982-06-01T23:59:59.000Z

423

PV cell and module performance measurement capabilities at NREL  

DOE Green Energy (OSTI)

The Photovoltaic (PV) Cell and Module Performance Characterization team at NREL supports the entire photovoltaic community by providing: secondary calibrations of photovoltaic cells and modules; efficiency measurements with respect to a given set of standard reporting conditions; verification of contract efficiency milestones; and current versus voltage (I-V) measurements under various conditions of temperature, spectral irradiance, and total irradiance. Support is also provided to in-house programs in device fabrication, module stability, module reliability, PV systems evaluations, and alternative rating methods by performing baseline testing, specialized measurements and other assistance when required. The I-V and spectral responsivity equipment used to accomplish these tasks are described in this paper.

Rummel, S.; Emery, K.; Field, H.; Moriarty, T.; Anderberg, A.; Dunlavy, D.; Ottoson, L.

1998-09-01T23:59:59.000Z

424

Outdoor PV Module Degradation of Current-Voltage Parameters: Preprint  

DOE Green Energy (OSTI)

Photovoltaic (PV) module degradation rate analysis quantifies the loss of PV power output over time and is useful for estimating the impact of degradation on the cost of energy. An understanding of the degradation of all current-voltage (I-V) parameters helps to determine the cause of the degradation and also gives useful information for the design of the system. This study reports on data collected from 12 distinct mono- and poly-crystalline modules deployed at the National Renewable Energy Laboratory (NREL) in Golden, Colorado. Most modules investigated showed < 0.5%/year decrease in maximum power due to short-circuit current decline.

Smith, R. M.; Jordan, D. C.; Kurtz, S. R.

2012-04-01T23:59:59.000Z

425

Microturbines: Technology and End-Use PQ Application Issues  

Science Conference Proceedings (OSTI)

Distributed generation (DG) is predicted to play an increasing role in the electric power system of the near future. One of the recent developments in DG technologies has been the advent of microturbines. Microturbines are small (typically 15-300 kW), high-speed generator power plants that can operate on a variety of fuels, including natural gas, diesel, gasoline, propane, kerosene, or other similar high-energy fossil fuels. Microturbines are also well suited to operate on lower grade (lower energy) fuel...

2001-09-12T23:59:59.000Z

426

PV Inverter Products Manufacturing and Design Improvements for Cost Reduction and Performance Enhancements: Final Subcontract Report, November 2003 (Revised)  

SciTech Connect

The specific objectives of this subcontracted development work by Xantrex Technology Inc. were to: (1) Capture the newest digital signal processor (DSP) technology to create high-impact,''next generation'' power conversion equipment for the PV industry; (2) Create a common resource base for three PV product lines. This standardized approach to both hardware and software control platforms will provide significant market advantage over foreign competition; (3) Achieve cost reductions through increased volume of common components, reduced assembly labor, and the higher efficiency of producing more products with fewer design, manufacturing, and production test variations; (4) Increase PV inverter product reliability. Reduce inverter size, weight and conversion losses. The contract goals were to achieve an overall cost reduction of 10% to 20% for the three inverters and with no compromise in performance. The cost of the 10-kW inverter was reduced by 56%, and the cost of the 25-kW inverter was reduced by 53%. The 2.5-kW inverter has no basis for comparison, but should benefit equally from this design approach. Not only were the contract cost reduction goals exceeded by a wide margin, but the performance and reliability of the products were also enhanced. The conversion efficiency improvement, as reflected in the 50% conversion loss reduction, adds significant value in renewable energy applications. The size and weight reductions also add value by providing less cumbersome product solutions for system designers.

West, R.

2004-04-01T23:59:59.000Z

427

DOE Solar Energy Technologies Program: Overview and Highlights  

DOE Green Energy (OSTI)

A non-technical overview of the U.S. Department of Energy's Solar Energy Technologies Program, including sections on photovoltaics (PV), concentrating solar power, and solar heating and lighting R&D.

Not Available

2006-05-01T23:59:59.000Z

428

Bosch Solar Sustainable Energy Technologies JV | Open Energy...  

Open Energy Info (EERE)

JV Jump to: navigation, search Name Bosch Solar & Sustainable Energy Technologies JV Place Ontario, Canada Product Canada-based JV to distribute thin-film PV systems in the Ontario...

429

2008 Solar Technologies Market Report | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » 2008 Solar Technologies Market Report Jump to: navigation, search Tool Summary Name: 2008 Solar Technologies Market Report Agency/Company /Organization: United States Department of Energy Sector: Energy Focus Area: Renewable Energy, Solar, - Concentrating Solar Power, - Solar PV Topics: Market analysis, Resource assessment Resource Type: Publications Website: www1.eere.energy.gov/solar/pdfs/46025.pdf Cost: Free 2008 Solar Technologies Market Report Screenshot References: 2008 Solar Technologies Market Report[1] Logo: 2008 Solar Technologies Market Report "The focus of this report is the U.S. solar electricity market, including photovoltaic (PV) and concentrating solar power (CSP) technologies. The

430

The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California  

E-Print Network (OSTI)

be incorporated into the price paid for PV generation underbe incorporated into the price paid for PV generation under4. MPR-Based Prices for Monthly Excess PV Generation under

Darghouth, Naim

2010-01-01T23:59:59.000Z

431

The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California  

E-Print Network (OSTI)

metering, the average price paid for PV generation under thecredits some or all PV production at prices based on thethe average MPR-based price at a 25% PV-to-load ratio and $

Darghouth, Naim R.

2012-01-01T23:59:59.000Z

432

The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California  

E-Print Network (OSTI)

Pricing Beneficial to Solar PV in New York City? PreparedSubstantial Benefit of Solar PV. The Electricity Journal,36: MRW & Associates. 2007. Solar PV and Retail Rate Design.

Darghouth, Naim

2010-01-01T23:59:59.000Z

433

Berkeley Program Offers New Option for Financing Residential PV Systems  

Science Conference Proceedings (OSTI)

Readily accessible credit has often been cited as a necessary ingredient to open up the market for residential photovoltaic (PV) systems. Though financing does not reduce the high up-front cost of PV, by spreading that cost over some portion of the system's life, financing can certainly make PV systems more affordable. As a result, a number of states have, in the past, set up special residential loan programs targeting the installation of renewable energy systems and/or energy-efficiency improvements and often featuring low interest rates, longer terms and no-hassle application requirements. Historically, these loan programs have had mixed success (particularly for PV), for a variety of reasons, including a historical lack of homeowner interest in PV, a lack of program awareness, a reduced appeal in a low-interest-rate environment, and a tendency for early PV adopters to be wealthy and not in need of financing. Some of these barriers have begun to fade. Most notably, homeowner interest in PV has grown in some states, particularly those that offer solar rebates. The passage of the Energy Policy Act of 2005 (EPAct 2005), however, introduced one additional roadblock to the success of low-interest PV loan programs: a residential solar investment tax credit (ITC), subject to the Federal government's 'anti-double-dipping' rules. Specifically, the residential solar ITC--equal to 30% of the system's tax basis, capped at $2000--will be reduced or offset if the system also benefits from what is known as 'subsidized energy financing', which is likely to include most government-sponsored low-interest loan programs. Within this context, it has been interesting to note the recent flurry of announcements from a number of U.S cities concerning a new type of PV financing program. Led by the city of Berkeley, Calif., these cities propose to offer their residents the ability to finance the installation of a PV system using increased property tax assessments, rather than a more-traditional credit vehicle, to recover both system and administrative costs. This approach has a number of features that should appeal to PV owners, including long-term, fixed-cost, attractive financing; loans that are tied to the tax capacity of the property rather than to the owner's credit standing; a repayment obligation that transfers along with the sale of the property; and a potential ability to deduct the repayment obligation from federal taxable income as part of the local property tax deduction. For these reasons, Berkeley's program, which was first announced on October 23, 2007, has received considerable nationwide attention in both the trade and general press. Since the announcement, cities from throughout California and the broader U.S. have expressed keen interest in the possibility of replicating this type of program. In California alone, the cities of Santa Cruz, Santa Monica and Palm Desert are all reportedly considering similar programs, while the city of San Francisco has recently announced its own program, portions of which closely parallel Berkeley's approach. In addition, a bill (AB 811) that would authorize all cities in California, not just charter cities like Berkeley, to create this type of program was approved by the California General Assembly on January 29 and is currently under consideration in the State Senate. A similar bill in Colorado (HB 1350) was signed into law on May 28. Elsewhere, the city of Tucson, Arizona has also considered this financing approach.

Bolinger, Mark A

2008-07-06T23:59:59.000Z

434

Southern Company Photovoltaic Evaluation in Atlanta: Analysis of Field Data from Seven 4-kW PV Systems at Georgia Power Headquarters During 20102012  

Science Conference Proceedings (OSTI)

Seven photovoltaic (PV) power systems using different module technologies were installed on the rooftop of Georgia Powers headquarters in Atlanta. This report describes the output performance of these small-scale systems (about 4 kW each) relative to the available solar resource at the site. The main objective of this evaluation has been to assess performance characteristics of commercially available module technologies in a southeastern U.S. climate. To ensure a reliable comparison, all ...

2013-01-28T23:59:59.000Z

435

Dynamic Model Validation of PV Inverters Under Short-Circuit Conditions: Preprint  

SciTech Connect

Photovoltaic (PV) modules have dramatically decreased in price in the past few years, spurring the expansion of photovoltaic deployment. Residential and commercial rooftop installations are connected to the distribution network; large-scale installation PV power plants (PVPs) have benefited from tax incentives and the low cost of PV modules. As the level penetration of PV generation increases, the impact on power system reliability will also be greater. Utility power system planners must consider the role of PV generation in power systems more realistically by representing PV generation in dynamic stability analyses. Dynamic models of PV inverters have been developed in the positive sequence representation. NREL has developed a PV inverter dynamic model in PSCAD/EMTDC. This paper validates the dynamic model with an actual hardware bench test conducted by Southern California Edison's Distributed Energy Resources laboratory. All the fault combinations -- symmetrical and unsymmetrical -- were performed in the laboratory. We compare the simulation results with the bench test results.

Muljadi, E.; Singh, M.; Bravo, R.; Gevorgian, V.

2013-03-01T23:59:59.000Z

436

205 kW Photovoltaic (PV) System Installed on the U.S. Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

205 kW Photovoltaic (PV) System Installed on the U.S. Department of Energy's Forrestal Building 205 kW Photovoltaic (PV) System Installed on the U.S. Department of Energy's...

437

Interline photovoltaic (I-PV) power plants for voltage unbalance compensation  

E-Print Network (OSTI)

This paper proposes a stationary-frame control method for voltage unbalance compensation using Interline Photovoltaic (I-PV) power system. I-PV power systems are controlled to compensate voltage unbalance autonomously. The ...

Moawwad, Ahmed

438

Designing PV Incentive Programs to Promote System Performance: A Review of Current Practice  

E-Print Network (OSTI)

Clean Energy Group), Mike Taylor Designing PV IncentiveClean Energy States Alliance C ASE S TUDIES OF S TATE S UPPORT FOR R ENEWABLE E NERGY Designing PV Incentive

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

439

Why Are Residential PV Prices in Germany So Much Lower Than in...  

NLE Websites -- All DOE Office Websites (Extended Search)

Why Are Residential PV Prices in Germany So Much Lower Than in the United States? A Scoping Analysis Title Why Are Residential PV Prices in Germany So Much Lower Than in the United...

440

Designing PV Incentive Programs to Promote System Performance: A Review of Current Practice  

E-Print Network (OSTI)

Utility District (SMUD) Xcel Energy Connecticut Clean EnergyCA LADWP CA SMUD CO Xcel CT CCEF Small PV ProgramCA LADWP CA SMUD CO Xcel CT CCEF Small PV Program

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dg technologies pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

ELEG620: Solar Electric Systems University of Delaware, ECE Spring 2008 C. Honsberg PV System Components  

E-Print Network (OSTI)

· Batteries required if (1) load profile solar radiation profile and (2) to mitigate effect of variability · PV System components: ­ PV Modules ­ Batteries ­ Power Conditioning ­ Loads ­ Balance of systems #12

Honsberg, Christiana

442

Interline Photovoltaic (I-PV) power system - A novel concept of power flow control and management  

E-Print Network (OSTI)

This paper presents a new system configuration for a large-scale Photovoltaic (PV) power system with multi-line transmission/distribution networks. A PV power plant is reconfigured in a way that two adjacent power system ...

Khadkikar, Vinod

443

BATTERY-POWERED, ELECTRIC-DRIVE VEHICLES PROVIDING BUFFER STORAGE FOR PV CAPACITY VALUE  

E-Print Network (OSTI)

installed over 1.5 MW of rooftop PV [2]. These systems generate value primarily through the energy produced and the intermittent nature of the solar resource create challenges to realizing the capacity value of PV installations

Perez, Richard R.

444

New Berkeley Lab Report Tracks a Decade of PV Installed Cost Trends  

E-Print Network (OSTI)

of PV Installed Cost Trends Galen Barbose, Carla Peterman,fill this need by summarizing trends in the installed cost (the broader geographical trends in the U.S. PV market, the

Barbose, Galen

2009-01-01T23:59:59.000Z

445

A software tool for optimal sizing of PV systems in Malaysia  

Science Conference Proceedings (OSTI)

This paper presents a MATLAB based user friendly software tool called as PV. MY for optimal sizing of photovoltaic (PV) systems. The software has the capabilities of predicting themetrological variables such as solar energy, ambient temperature and wind ...

Tamer Khatib; Azah Mohamed; K. Sopian

2012-01-01T23:59:59.000Z

446

Exploring the Economic Value of EPAct 2005's PV Tax Credits  

NLE Websites -- All DOE Office Websites (Extended Search)

provide to PV system purchasers? And what implications might they hold for stateutility PV grant programs? Using a generic (i.e., non-state-specific) cash flow model, this report...

447

Climatically Diverse Data Set for Flat-Plate PV Module Model Validations (Presentation)  

SciTech Connect

Photovoltaic (PV) module I-V curves were measured at Florida, Colorado, and Oregon locations to provide data for the validation and development of models used for predicting the performance of PV modules.

Marion, B.

2013-05-01T23:59:59.000Z

448

Dynamic Model Validation of PV Inverters Under Short-Circuit Conditions: Preprint  

SciTech Connect

Photovoltaic (PV) modules have dramatically decreased in price in the past few years, spurring the expansion of photovoltaic deployment. Residential and commercial rooftop installations are connected to the distribution network; large-scale installation PV power plants (PVPs) have benefited from tax incentives and the low cost of PV modules. As the level penetration of PV generation increases, the impact on power system reliability will also be greater. Utility power system planners must consider the role of PV generation in power systems more realistically by representing PV generation in dynamic stability analyses. Dynamic models of PV inverters have been developed in the positive sequence representation. NREL has developed a PV inverter dynamic model in PSCAD/EMTDC. This paper validates the dynamic model with an actual hardware bench test conducted by Southern California Edison's Distributed Energy Resources laboratory. All the fault combinations -- symmetrical and unsymmetrical -- were performed in the laboratory. We compare the simulation results with the bench test results.

Muljadi, E.; Singh, M.; Bravo, R.; Gevorgian, V.

2013-03-01T23:59:59.000Z

449

Stichting Triodos PV Partners defunct | Open Energy Information  

Open Energy Info (EERE)

Stichting Triodos PV Partners defunct Stichting Triodos PV Partners defunct Jump to: navigation, search Name Stichting Triodos PV Partners - defunct Place Arlington, Virginia Zip 22209 Product Stichting Triodos PV Partners, a JV Triodos Bank Group, Environmental Enterprises Assistance Fund, & Global Transition Consulting, was wound up and the management of the SDC fund was transferred back to Triodos. Coordinates 43.337585°, -89.379449° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.337585,"lon":-89.379449,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

450

Energy Analysis Department Designing PV Incentive Programs to  

E-Print Network (OSTI)

Energy Analysis Department Designing PV Incentive Programs to Promote Performance: A Review to undersized wiring) Maintenance Cleaning, tree-trimming Repair/replacement of failed components #12;Energy of Current Practice Galen Barbose, Ryan Wiser, Mark Bolinger Lawrence Berkeley National Laboratory #12;Energy

451

Rural electrification cooperative model (Solar-PV) in Madhya Pradesh  

Science Conference Proceedings (OSTI)

In order to speed up the development of energy supply, involving the local population can be one of the main drivers for the success story of rural electrification. The local community involvement could be crystallised in the form of a cooperative model, ... Keywords: cooperative, electrification, model, renewable energy sources, rural, solar-PV, town

Najib Altawell; Tariq Muneer

2011-12-01T23:59:59.000Z

452

Opportunities and Challenges for Power Electronics in PV Modules (Presentation)  

DOE Green Energy (OSTI)

The presentation describes the value of adding DC converters and other power electronics to modules to improve their output even when shading or bad cells would otherwise decrease the module output. The presentation was part of a workshop sponsored by ARPA-E exploring the opportunities for power electronics to support PV applications.

Kurtz, S.; Deline, C.; Wohlgemuth, J.; Marion, B.; Granata, J.

2011-02-01T23:59:59.000Z

453

Integration of PV modules in existing Romanian buildings  

Science Conference Proceedings (OSTI)

The paper is based on an on-going national research project focused on the promotion of new architectural concepts i.e. BIPV systems, which include active solar systems (PV generators) and solar tunnels. The advantages of using the distributed solar ...

S. Fara; D. Finta; M. Iancu; L. Fara; A. M. Dabija; E. Tulcan-Paulescu

2010-05-01T23:59:59.000Z

454

An overview of NREL's PV solar radiation research task activities and results  

SciTech Connect

This paper presents an overview of the recent activities and results of the Photovoltaics (PV) Solar Radiation Research task of NREL's PV Advanced Research and Development (PVAR D) Project. Topics covered include the Atmospheric Optical Calibration System (AOCS) and instrumentation systems for monitoring and characterizing the solar irradiance available to PV systems. Both types of instrumentation systems and activities are required for a thorough understanding of PV device performance and design.

Hulstrom, R.L.; Cannon, T.W.; Stoffel, T.; Riordan, C.J. (National Renewable Energy Laboratory (NREL), 1617 Cole Blvd., Golden, Colorado 80401 (United States))

1992-12-01T23:59:59.000Z

455

Designing PV Incentive Programs to Promote Performance: A Review of Current Practice  

E-Print Network (OSTI)

for interconnection or net metering, or by lawmakers andof PV metering (separate from net metering of the facilitys

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2007-01-01T23:59:59.000Z

456

MANUFACTURER OF THE FIRST 100% ROOM TEMPERATURE nc-Si SOLAR PV ...  

Nanoparticle quantum conf. Monolithic printed layers. Sintering min. ~400 C. PV Effic.: 5 19%. Economic Advantages ...

457

Rooftop PV system. PV:BONUS Phase 3B, final technical report  

SciTech Connect

Under the PV:BONUS Program, ECD and United Solar developed, demonstrated and commercialized two new lightweight, flexible BIPV modules specifically designed as replacements for conventional asphalt shingles and standing seam metal roofing. These modules can be economically and aesthetically integrated into new residential and commercial buildings, and can be used to address the even larger roofing-replacement market. An important design feature of these modules, which minimizes the installation and balance-of-system costs, is their ability to be installed by conventional roofing contractors without special training. The modules are fabricated from high-efficiency, triple-junction spectrum-splitting a-Si alloy solar cells developed by ECD and United Solar. These cells are produced on thin, flexible stainless steel substrates and encapsulated with polymer materials. The Phase 3 program began in August 1995. The principal tasks and goals of this program, which have all been successfully completed by ECD and United Solar, are described in the body and appendices of this report.

1998-11-01T23:59:59.000Z

458

Junction Evolution During Fabrication of CdS/CdTe Thin-film PV Solar Cells (Presentation)  

DOE Green Energy (OSTI)

Discussion of the formation of CdTe thin-film PV junctions and optimization of CdTe thin-film PV solar cells.

Gessert, T. A.

2010-09-01T23:59:59.000Z

459

Designing PV Incentive Programs to Promote Performance: A Review of Current Practice in the U.S.  

E-Print Network (OSTI)

Connected PV Systems Rated Output Product Reliability SafetyPV system components and installations meet minimum industry standards related to safety, reliability, and

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2008-01-01T23:59:59.000Z

460

Economic Analysis of a Brackish Water Photovoltaic-Operated (BWRO-PV) Desalination System: Preprint  

DOE Green Energy (OSTI)

The photovoltaic (PV)-powered reverse-osmosis (RO) desalination system is considered one of the most promising technologies in producing fresh water from both brackish and sea water, especially for small systems located in remote areas. We analyze the economic viability of a small PV-operated RO system with a capacity of 5 m3/day used to desalinate brackish water of 4000 ppm total dissolve solids, which is proposed to be installed in a remote area of the Babylon governorate in the middle of Iraq; this area possesses excellent insolation throughout the year. Our analysis predicts very good economic and environmental benefits of using this system. The lowest cost of fresh water achieved from using this system is US $3.98/ m3, which is very reasonable compared with the water cost reported by small-sized desalination plants installed in rural areas in other parts of the world. Our analysis shows that using this small system will prevent the release annually of 8,170 kg of CO2, 20.2 kg of CO, 2.23 kg of CH, 1.52 kg of particulate matter, 16.41 kg of SO2, and 180 kg of NOx.

Al-Karaghouli, A.; Kazmerski, L. L.

2010-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "dg technologies pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

The levelized cost of energy for distributed PV : a parametric study.  

Science Conference Proceedings (OSTI)

The maturation of distributed solar PV as an energy source requires that the technology no longer compete on module efficiency and manufacturing cost ($/Wp) alone. Solar PV must yield sufficient energy (kWh) at a competitive cost (c/kWh) to justify its system investment and ongoing maintenance costs. These metrics vary as a function of system design and interactions between parameters, such as efficiency and area-related installation costs. The calculation of levelized cost of energy includes energy production and costs throughout the life of the system. The life of the system and its components, the rate at which performance degrades, and operation and maintenance requirements all affect the cost of energy. Cost of energy is also affected by project financing and incentives. In this paper, the impact of changes in parameters such as efficiency and in assumptions about operating and maintenance costs, degradation rate and system life, system design, and financing will be examined in the context of levelized cost of energy.

Goodrich, Alan C. (National Renewable Energy Laboratory); Cameron, Christopher P.

2010-06-01T23:59:59.000Z

462

Common Mode Voltage in case of Transformerless PV Inverters Connected to the Grid  

E-Print Network (OSTI)

through the parasitic capacitance of the PV panels, can reach very high values. A common-mode model based grid connected PV system with the modeled parasitic capacitances, marked with grey lines, presentCommon Mode Voltage in case of Transformerless PV Inverters Connected to the Grid T. KEREKES* R

Kerekes, Tamas

463

PMMA Acrylic in a Stress-Response Framework for PV Materials  

E-Print Network (OSTI)

PMMA Acrylic in a Stress-Response Framework for PV Materials Laura S. Bruckman Materials Science, VuGraph 2 Motivation: Lifetime & Degradation Science for Photovoltaics Need scientific basis for PV, components, systems for PV · System lifetime performance Determine degradation modes, mechanisms and rates

Rollins, Andrew M.

464

Path Forward in PV Research: News from Robert J. Davis, Ph.D.  

E-Print Network (OSTI)

, business, tax issues, nor reliability If PV will hit $1/Wp as it appears it will, how long will thosePath Forward in PV Research: News from BAPVC Robert J. Davis, Ph.D. Co-Director, Wright Center Trends in PV What is affordable solar durability? Right: Picosun SunALE R-150 atomic layer deposition

Rollins, Andrew M.

465

A methodology for optimal sizing of autonomous hybrid PV/wind system  

E-Print Network (OSTI)

system reliability requirements, with the lowest value of levelised cost of energy. Modelling a hybrid PV mathematical models for characterizing PV module, wind generator and battery are proposed. The second step of the hybrid PV/wind system are the reliable power supply of the consumer under varying atmospheric conditions

Paris-Sud XI, Université de

466

THERMOMECHANICS OF PV MODULES INCLUDING THE VISCOELASTICITY OF EVA Ulrich Eitner1,  

E-Print Network (OSTI)

in the cell distance is 170µm. Keywords: PV module, Encapsulation, Simulation, Reliability, Mechanics 1THERMOMECHANICS OF PV MODULES INCLUDING THE VISCOELASTICITY OF EVA Ulrich Eitner1, *, Matthias by a comparison to displacement experiments where the thermomechanical deformation of solar cells in a PV laminate

467

The Impact of Retail Rate Structures on the Economics of Customer-Sited PV: A Study of Commercial Installations in California  

E-Print Network (OSTI)

the PV production profile, increases with the price ratio.off-peak prices. Customers who plan to install PV systems (

Wiser, Ryan; Mills, Andrew; Barbose, Galen; Golove, William

2008-01-01T23:59:59.000Z

468

2008 Solar Technologies Market Report  

E-Print Network (OSTI)

J. (2006). Long Term Reliability of PV Modules. Frederick,3.4 discusses PV module reliability. Sections 3.5 and 3.6PV Module Reliability ..

Price, S.

2010-01-01T23:59:59.000Z

469

2008 Solar Technologies Market Report  

E-Print Network (OSTI)

Supply Curves for Rooftop Solar PV Generated Electricity forare all privately owned solar PV production companies.demand projections for solar PV modules by location. Global

Price, S.

2010-01-01T23:59:59.000Z

470

Innovative Approaches to Low Cost Module Manufacturing of String Ribbon Si PV Modules: First Annual Report, 27 September 2002--31 March 2003  

DOE Green Energy (OSTI)

This report describes Evergreen Solar, Inc., String Ribbon Si PV technology resulting in an advanced generation of crystalline silicon PV module manufacturing technology applied to a virtually continuous, fully integrated manufacturing line. General objectives for this first year (or Phase I) are listed here, followed by the principal accomplishments for each of these objectives: (1) scale-up of a production-worthy method for doping feedstock; (2) development of a multiple-ribbon growth system (Project Gemini); (3) development of wrap-around contacts for making monolithic modules; (4) accelerated testing of small-size (25 W) monolithic modules; (5) development of an in-line production machine to form solar cell contacts using Evergreen's unique contact printing technology.

Hanoka, J. I.

2004-05-01T23:59:59.000Z

471

SunShot Initiative: Regional Test Centers for Solar Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Regional Test Centers for Solar Technologies Regional Test Centers for Solar Technologies Get the Adobe Flash Player to see this video. Text Alternative At the Regional Test Centers (RTCs) throughout the United States, DOE provides photovoltaic (PV) and concentrating photovoltaic (CPV) validation testing and systems monitoring for businesses and other industry stakeholders. The primary mission of the RTCs is to develop standards and guidelines for validating the performance and operation of PV modules and systems. The RTCs also serve as test beds for large-scale systems and provide independent validation of PV performance and reliability. By establishing the technical basis for bankability, the RTCs serve to increase investor confidence in PV technologies. These efforts support the SunShot Initiative's goal to increase the penetration of large-scale solar energy systems to enable solar-generated power to account for 15% to 18% of America's electricity generation by 2030.

472

Sensitivity of Rooftop PV Projections in the SunShot Vision Study to Market Assumptions  

Science Conference Proceedings (OSTI)

The SunShot Vision Study explored the potential growth of solar markets if solar prices decreased by about 75% from 2010 to 2020. The SolarDS model was used to simulate rooftop PV demand for this study, based on several PV market assumptions--future electricity rates, customer access to financing, and others--in addition to the SunShot PV price projections. This paper finds that modeled PV demand is highly sensitive to several non-price market assumptions, particularly PV financing parameters.

Drury, E.; Denholm, P.; Margolis, R.

2013-01-01T23:59:59.000Z

473

Solar Photovoltaic Economic Development: Building and Growing a Local PV Industry, August 2011 (Book)  

DOE Green Energy (OSTI)

The U.S. photovoltaic (PV) industry is forecast to grow, and it represents an opportunity for economic development and job creation in communities throughout the United States. This report helps U.S. cities evaluate economic opportunities in the PV industry. It serves as a guide for local economic development offices in evaluating their community?s competitiveness in the solar PV industry, assessing the viability of solar PV development goals, and developing strategies for recruiting and retaining PV companies to their areas.

Not Available

2011-08-01T23:59:59.000Z

474

Program on Technology Innovation: Very High Efficiency Photovoltaics Research, 2009 Update  

Science Conference Proceedings (OSTI)

This is the second interim annual summary report on the collaborative activities of CNRS and EDF RD to advance the state of high-efficiency photovoltaics (PV). This activity is principally concerned with basic research to enhance longer-term prospects of very high efficiency PV, but it also includes possible nearer-term outcomes of improved conversion efficiency for existing technologies.

2010-02-19T23:59:59.000Z

475

Cost analysis methodology: Photovoltaic Manufacturing Technology Project  

DOE Green Energy (OSTI)

This report describes work done under Phase 1 of the Photovoltaic Manufacturing Technology (PVMaT) Project. PVMaT is a five-year project to support the translation of research and development in PV technology into the marketplace. PVMaT, conceived as a DOE/industry partnership, seeks to advanced PV manufacturing technologies, reduce PV module production costs, increase module performance, and expand US commercial production capacities. Under PVMaT, manufacturers will propose specific manufacturing process improvements that may contribute to the goals of the project, which is to lessen the cost, thus hastening entry into the larger scale, grid-connected applications. Phase 1 of the PVMaT project is to identify obstacles and problems associated with manufacturing processes. This report describes the cost analysis methodology required under Phase 1 that will allow subcontractors to be ranked and evaluated during Phase 2.

Whisnant, R.A. (Research Triangle Inst., Research Triangle Park, NC (United States))

1992-09-01T23:59:59.000Z

476

NREL: Energy Analysis - Energy Technology Cost and Performance Data for  

NLE Websites -- All DOE Office Websites (Extended Search)

Bookmark and Share Bookmark and Share Energy Technology Cost and Performance Data for Distributed Generation Transparent Cost Database Button Recent cost estimates for distributed generation (DG) renewable energy technologies are available across capital costs, operations and maintenance (O&M) costs, and levelized cost of energy (LCOE). Use the tabs below to navigate the charts. The LCOE tab provides a simple calculator for both utility-scale and DG technologies that compares the combination of capital costs, O&M, performance, and fuel costs. If you are seeking utility-scale technology cost and performance estimates, please visit the Transparent Cost Database website for NREL's information regarding vehicles, biofuels, and electricity generation. Capital Cost (September 2013 Update)

477

Overview of the Photovoltaic Manufacturing Technology (PVMaT) project  

SciTech Connect

The Photovoltaic Manufacturing Technology (PVMaT) project is a historic government/industry photovoltaic (PV) manufacturing R&D partnership composed of joint efforts between the federal government (through the US Department of Energy) and members of the US PV industry. The project`s ultimate goal is to ensure that the US industry retains and extends its world leadership role in the manufacture and commercial development of PV components and systems. PVMaT is designed to do this by helping the US PV industry improve manufacturing processes, accelerate manufacturing cost reductions for PV modules, improve commercial product performance, and lay the groundwork for a substantial scale-up of US-based PV manufacturing capacities. Phase 1 of the project, the problem identification phase, was completed in early 1991. Phase 2, the problem solution phase, which addresses process-specific problems of specific manufacturers, is now underway with an expected duration of 5 years. Phase 3 addresses R&D problems that are relatively common to a number of PV companies or the PV industry as a whole. These ``generic`` problem areas are being addressed through a teamed research approach.

Witt, C.E.; Mitchell, R.L.; Mooney, G.D.

1993-08-01T23:59:59.000Z

478

2008 Solar Technologies Market Report  

SciTech Connect

The focus of this report is the U.S. solar electricity market, including photovoltaic (PV) and concentrating solar power (CSP) technologies. The report is organized into five chapters. Chapter 1 provides an overview of global and U.S. installation trends. Chapter 2 presents production and shipment data, material and supply chain issues, and solar industry employment trends. Chapter 3 presents cost, price, and performance trends. Chapter 4 discusses policy and market drivers such as recently passed federal legislation, state and local policies, and developments in project financing. Chapter 5 provides data on private investment trends and near-term market forecasts. Highlights of this report include: (1) The global PV industry has seen impressive growth rates in cell/module production during the past decade, with a 10-year compound annual growth rate (CAGR) of 46% and a 5-year CAGR of 56% through 2008. (2) Thin-film PV technologies have grown faster than crystalline silicon over the past 5 years, with a 10-year CAGR of 47% and a 5-year CAGR of 87% for thin-film shipments through 2008. (3) Global installed PV capacity increased by 6.0 GW in 2008, a 152% increase over 2.4 GW installed in 2007. (4) The United States installed 0.34 GW of PV capacity in 2008, a 63% increase over 0.21 GW in 2007. (5) Global average PV module prices dropped 23% from $4.75/W in 1998 to $3.65/W in 2008. (6) Federal legislation, including the Emergency Economic Stabilization Act of 2008 (EESA, October 2008) and the American Recovery and Reinvestment Act (ARRA, February 2009), is providing unprecedented levels of support for the U.S. solar industry. (7) In 2008, global private-sector investment in solar energy technology topped $16 billion, including almost $4 billion invested in the United States. (8) Solar PV market forecasts made in early 2009 anticipate global PV production and demand to increase fourfold between 2008 and 2012, reaching roughly 20 GW of production and demand by 2012. (9) Globally, about 13 GW of CSP was announced or proposed through 2015, based on forecasts made in mid-2009. Regional market shares for the 13 GW are about 51% in the United States, 33% in Spain, 8% in the Middle East and North Africa, and 8% in Australasia, Europe, and South Africa. Of the 6.5-GW project pipeline in the United States, 4.3 GW have power purchase agreements (PPAs). The PPAs comprise 41% parabolic trough, 40% power tower, and 19% dish-engine systems.

Price, S.; Margolis, R.; Barbose, G.; Bartlett, J.; Cory, K.; Couture, T.; DeCesaro, J.; Denholm, P.; Drury, E.; Frickel, M.; Hemmeline, C.; Mendelsohn, T.; Ong, S.; Pak, A.; Poole, L.; Peterman, C.; Schwabe, P.; Soni, A.; Speer, B.; Wiser, R.; Zuboy, J.; James, T.

2010-01-01T23:59:59.000Z

479

technologies | OpenEI  

Open Energy Info (EERE)

technologies technologies Dataset Summary Description This dataset is from the report Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature (J. Macknick, R. Newmark, G. Heath and K.C. Hallett) and provides estimates of operational water withdrawal and water consumption factors for electricity generating technologies in the United States. Estimates of water factors were collected from published primary literature and were not modified except for unit conversions. Source National Renewable Energy Laboratory Date Released August 28th, 2012 (2 years ago) Date Updated Unknown Keywords coal consumption csp factors geothermal PV renewable energy technologies Water wind withdrawal Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon Operational water consumption and withdrawal factors for electricity generating technologies (xlsx, 77.7 KiB)

480

NREL Mesa Top PV System | Open Energy Information  

Open Energy Info (EERE)

NREL Mesa Top PV System NREL Mesa Top PV System Jump to: navigation, search Name NREL Mesa Top PV System Facility National Renewable Energy Laboratory Sector Solar Facility Type Photovoltaic Owner SunEdison Solar Developer SunEdison Solar Energy Purchaser National Renewable Energy Laboratory Address 15500 Denver West Parkway Location Golden, CO Coordinates 39.744550202°, -105.174608231° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.744550202,"lon":-105.174608231,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "dg technologies pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Rooftop PV system. Final technical progress report, Phase II  

SciTech Connect

Under this four-year PV:BONUS Program, ECD and United Solar are developing and demonstrating two new lightweight flexible building integrated Photovoltaic (BIPV) modules specifically designed as exact replacements for conventional asphalt shingles and standing seam metal roofing. These modules can be economically and aesthetically integrated into new residential and commercial buildings, and address the even larger roofing replacement market. The modules are designed to be installed by roofing contractors without special training which minimizes the installation and balance of system costs. The modules will be fabricated from high-efficiency, multiple-junction a-Si alloy solar cells developed by ECD and United Solar. Under the Phase I Program, which ended in March 1994, we developed two different concept designs for rooftop PV modules: (1) the United Solar overlapping (asphalt shingle replacement) shingle-type modules and (2) the ECD metal roof-type modules. We also developed a plan for fabricating, testing and demonstrating these modules. Candidate demonstration sites for our rooftop PV modules were identified and preliminary engineering designs for these demonstrations were developed; a marketing study plan was also developed. The major objectives of the Phase II Program, which started in June 1994 was (1) to develop, test, and qualify these new rooftop modules; (2) to develop mechanical and electrical engineering specifications for the demonstration projects; and (3) to develop a marketing/commercialization plan.

1995-08-01T23:59:59.000Z

482

PNM - Performance-Based Solar PV Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PNM - Performance-Based Solar PV Program PNM - Performance-Based Solar PV Program PNM - Performance-Based Solar PV Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate None specified Program Info Start Date 3/1/2006 State New Mexico Program Type Performance-Based Incentive Rebate Amount ''These prices will step down over time as certain MW goals are met Prices below are current as of 09/19/2012; see program website for current prices'' Systems up to 10 kW: $0.04/kWh for RECs >10 kW up to 100 kW: $0.05/kWh for RECs >100 kW up to 1 MW: $0.02/kWh for RECs 1 MW+: Fully subscribed Provider PNM In March 2006, PNM initiated a renewable energy credit (REC) purchase program as part of its plan to comply with [http://www.dsireusa.org/library/includes/incentive2.cfm?Incentive_Code=N...

483

Performance of a multifunctional PV/T hybrid solar window  

Science Conference Proceedings (OSTI)

A building-integrated multifunctional PV/T solar window has been developed and evaluated. It is constructed of PV cells laminated on solar absorbers placed in a window behind the glazing. To reduce the cost of the solar electricity, tiltable reflectors have been introduced in the construction to focus radiation onto the solar cells. The reflectors render the possibility of controlling the amount of radiation transmitted into the building. The insulated reflectors also reduce the thermal losses through the window. A model for simulation of the electric and hot water production was developed. The model can perform yearly energy simulations where different features such as shading of the cells or effects of the glazing can be included or excluded. The simulation can be run with the reflectors in an active, up right, position or in a passive, horizontal, position. The simulation program was calibrated against measurements on a prototype solar window placed in Lund in the south of Sweden and against a solar window built into a single family house, Solgaarden, in Aelvkarleoe in the central part of Sweden. The results from the simulation shows that the solar window annually produces about 35% more electric energy per unit cell area compared to a vertical flat PV module. (author)

Davidsson, Henrik; Perers, Bengt; Karlsson, Bjoern [Energy and Building Design, Lund University, P.O. Box 118, SE 221 00 Lund (Sweden)

2010-03-15T23:59:59.000Z

484

Measurement uncertainty analysis techniques applied to PV performance measurements  

DOE Green Energy (OSTI)

The purpose of this presentation is to provide a brief introduction to measurement uncertainty analysis, outline how it is done, and illustrate uncertainty analysis with examples drawn from the PV field, with particular emphasis toward its use in PV performance measurements. The uncertainty information we know and state concerning a PV performance measurement or a module test result determines, to a significant extent, the value and quality of that result. What is measurement uncertainty analysis It is an outgrowth of what has commonly been called error analysis. But uncertainty analysis, a more recent development, gives greater insight into measurement processes and tests, experiments, or calibration results. Uncertainty analysis gives us an estimate of the I interval about a measured value or an experiment's final result within which we believe the true value of that quantity will lie. Why should we take the time to perform an uncertainty analysis A rigorous measurement uncertainty analysis: Increases the credibility and value of research results; allows comparisons of results from different labs; helps improve experiment design and identifies where changes are needed to achieve stated objectives (through use of the pre-test analysis); plays a significant role in validating measurements and experimental results, and in demonstrating (through the post-test analysis) that valid data have been acquired; reduces the risk of making erroneous decisions; demonstrates quality assurance and quality control measures have been accomplished; define Valid Data as data having known and documented paths of: Origin, including theory; measurements; traceability to measurement standards; computations; uncertainty analysis of results.

Wells, C.

1992-10-01T23:59:59.000Z

485

Stochastic PV performance/reliability model : preview of alpha version.  

DOE Green Energy (OSTI)

Problem Statement: (1) Uncertainties in PV system performance and reliability impact business decisions - Project cost and financing estimates, Pricing service contracts and guarantees, Developing deployment and O&M strategies; (2) Understanding and reducing these uncertainties will help make the PV industry more competitive (3) Performance has typically been estimated without much attention to reliability of components; and (4) Tools are needed to assess all inputs to the value proposition (e.g., LCOE, cash flow, reputation, etc.). Goals and objectives are: (1) Develop a stochastic simulation model (in GoldSim) that can represent PV system performance as a function of system design, weather, reliability, and O&M policies; (2) Evaluate performance for an example system to quantify sources of uncertainty and identify dominant parameters via a sensitivity study; and (3) Example System - 1 inverter, 225 kW DC Array latitude tilt (90 strings of 12 modules {l_brace}1080 modules{r_brace}), Weather from Tucumcari, NM (TMY2 with annual uncertainty).

Stein, Joshua S.; Miller, Steven P.

2010-03-01T23:59:59.000Z

486

Research on advanced photovoltaic manufacturing technology  

DOE Green Energy (OSTI)

This report outlines opportunities for significantly advancing the scale and economy of high-volume manufacturing of high-efficiency photovoltaic (PV) modules. We propose to pursue a concurrent effort to advance existing crystalline silicon module manufacturing technology and to implement thin film CuInSe{sub 2} (CIS) module manufacturing. This combination of commercial-scale manufacturing of high-efficiency crystalline silicon modules and of pilot-scale manufacturing of low-cost thin film CIS technology will support continued, rapid growth of the US PV industry.

Jester, T.; Eberspacher, C. (Siemens Solar Industries, Camarillo, CA (United States))

1991-11-01T23:59:59.000Z

487

Development of a low-cost integrated 20-kW-AC solar tracking subarray for grid-connected PV power system applications. Final technical report  

DOE Green Energy (OSTI)

This report chronicles Utility Power Group's (UPG) successful two-year Photovoltaic Manufacturing Technology (PVMaT) Phase 4A1 work effort which began in July, 1995. During this period, UPG completed design, fabrication, testing and demonstration of a modular and fully integrated 15-kW-ac, solar tracking PV power system sub-array. The two key and innovative components which were developed are a Modular Panel which optimizes factory assembly of PV modules into a large area, field-deployable, structurally-integrated PV panel, and an Integrated Power Processing Unit which combines all dc and ac power collection, conversion and control functions within a single, field-deployable structurally-integrated electrical enclosure. These two key sub-array elements, when combined with a number of other electrical, mechanical, and structural components, create a low-cost and high-performance PV power system. This system, or sub-array, can be deployed in individual units, or paralleled with any number of other sub-arrays, to construct multi-megawatt P fields. 21 figs.

Stern, M.; Duran, G.; Fourer, G.; Mackamul, K.; Whalen, W.; Loo, M. van; West, R. [Utility Power Group, Chatsworth, CA (US)

1998-06-01T23:59:59.000Z

488

NREL PV Projects - FUPWG Meeting: "Going Coastal for Energy Efficiency"  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PV Projects PV Projects FUPWG Meeting: "Going Costal for Energy Efficiency" Bob Westby, NREL FEMP Program Manager and Sustainable NREL Lead April 14-16, 2008 Contents * Mesa Top PV project - CO/utility incentive program - Deal structure/agreements * NREL Phase II proposed projects * Proposal evaluation considerations * Evaluation tools Mesa Top PV Project Mesa Top PV Project * 750 kWdc (1,200,000 kWh) one-axis tracking PV system - Grid connected (NREL "side of the meter") - Milestones  Agreements: January 2008  Operation: August 2008 Solar Rewards Program * CO statute requires solar resource acquisitions by IOU of 20% renewables by 2020 (4% solar "carve out") * Xcel acquisitions made through RFP (bid) process - Selection based on SO-REC* price

489

Photovoltaics (PV) as an Eligible Measure in Residential PACE Programs: Benefits and Challenges (Fact Sheet)  

Science Conference Proceedings (OSTI)

Property Assessed Clean Energy (PACE) financing is one of several new financial models broadening access to clean energy by addressing the barrier of initial capital cost. The majority of the PACE programs in the market today include PV as an eligible measure. PV appeals to homeowners as a way to reduce utility bills, self-generate sustainable power, increase energy independence and demonstrate a commitment to the environment. If substantial state incentives for PV exist, PV projects can be economic under PACE, especially when partnered with good net metering policies. At the same time, PV is expensive relative to other eligible measures with a return on investment horizon that might exceed program targets. This fact sheet reviews the benefits and potential challenges of including PV in PACE programs.

Coughlin, J.

2010-06-01T23:59:59.000Z

490

Designing PV Incentive Programs to Promote Performance: A Reviewof Current Practice  

SciTech Connect

Increasing levels of financial support for customer-sited photovoltaic (PV) systems, provided through publicly-funded incentive programs, has heightened concerns about the long-term performance of these systems. Given the barriers that customers face to ensuring that their PV systems perform well, and the responsibility that PV incentive programs bear to ensure that public funds are prudently spent, these programs should, and often do, play a critical role in ensuring that PV systems receiving incentives perform well. To provide a point of reference for assessing the current state of the art, and to inform program design efforts going forward, we examine the approaches to encouraging PV system performance used by 32 prominent PV incentive programs in the U.S. We identify eight general strategies or groups of related strategies that these programs have used to address performance issues, and highlight important differences in the implementation of these strategies among programs.

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2007-06-01T23:59:59.000Z

491

January 15, 2013: Developing PV Projects with RFPs and PPAs | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 15, 2013: Developing PV Projects with RFPs and PPAs January 15, 2013: Developing PV Projects with RFPs and PPAs January 15, 2013: Developing PV Projects with RFPs and PPAs This webinar was held January 15, 2013, and provided information on how the cities of Tucson, Arizona, and Minneapolis, Minnesota, utilized requests for proposals (RFPs) and power purchase agreements (PPAs) to develop photovoltaic (PV) projects. Download the presentations below, watch the webinar (WMV 200 MB), or view the text version. RFIs, RFPs, and RFQs for PV: Finding the Right Solar Contractors for Your Community Choosing vendors for solar projects requires a careful look since you may well be dealing with them for 20 years ... or more. The City of Tucson highlighted its experiences with city-owned PV projects as well as a PPA project while discussing some potential pitfalls along the way.

492

Renewable Energy Technology GuideRETG: 2009  

Science Conference Proceedings (OSTI)

First published in 2000, the annual Renewable Energy Technical Assessment GuideTAG-RE (now called the Renewable Energy Technology Guide) provides a consistent basis for evaluating the economic feasibility of renewable generation technologies, including wind, solar photovoltaic (PV), solar thermal, biomass, geothermal, and emerging ocean energy conversion technologies. The 2009 update is based on the 2008 edition of the Electric Power Research Institute (EPRI) TAG-RE, published in December 2008.

2010-06-01T23:59:59.000Z

493

Technology Updates  

Science Conference Proceedings (OSTI)

... aimed at development of a flat panel like microconcentrator PV modules, ATP ... of hybrid electric vehicles are blimbing but, unless the prices of such ...

2011-10-19T23:59:59.000Z

494

PV Reliability Operations and Maintenance (PVROM) Database Initiative: 2013 Project Report  

Science Conference Proceedings (OSTI)

To fill a major knowledge gap, EPRI and Sandia National Laboratories are jointly engaged in a multi-year research effort to examine photovoltaic (PV) plant reliability performance obtained through documented field data. Findings and analyses, derived from the PV Reliability Operations Maintenance (PVROM) database, are intended to inform industry best practices around the optimal operations and maintenance (O&M) of solar assets.Currently being populated with initial PV plant ...

2013-12-23T23:59:59.000Z

495