Powered by Deep Web Technologies
Note: This page contains sample records for the topic "dg technologies demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

NREL: Technology Deployment - New DG Collaborative Brings Utilities...  

NLE Websites -- All DOE Office Websites (Extended Search)

New DG Collaborative Brings Utilities and Energy Industry Professionals Together on Interconnection Issues Sponsors U.S. DOE SunShot Initiative Key Partners Solar Electric Power...

2

New Technology Demonstration Program  

E-Print Network (OSTI)

New Technology Demonstration Program Technical Brief FEMPFederal Energy Management Program Tom for saving energy in refrigerated walk-in coolers, and to evaluate the potential for this technology in Federal facilities. The focus of this study was on a single manufacturer of the technology, Nevada Energy

3

Technology Demonstrations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Demonstrations Demonstrations Technology Demonstrations Efficient new building technologies can help meet our country's energy goals, stimulate U.S. manufacturing, create jobs, and improve the environment. However, many high-performing technologies are not readily adopted in the marketplace due to lack of information about their real-world performance. To address this gap in information, the DOE frequently supports demonstrations to assess technologies' energy performance, installation procedures, operations, and maintenance characteristics. The information from these demonstrations helps consumers make more informed decisions and helps U.S. manufacturers validate the performance of their products. Frequently Asked Questions How does DOE prioritize demonstration projects?

4

Meeting DG's  

ScienceCinema (OSTI)

Le DG J.Adams commente les 3 thèmes de la réunion: 1.) le prochain DG du Cern (qui sera H.Schopper) 2.) le LEP 3.) les conclusions du comité des finances concernant salaires, allocations etc. Discussion entre le DG J.Adams, Mons.Ullmann, chef du personel et l'auditoire

None

2011-04-25T23:59:59.000Z

5

Offsite demonstrations for MWLID technologies  

SciTech Connect

The goal of the Offsite Demonstration Project for Mixed Waste Landfill Integrated Demonstration (MWLID)-developed environmental site characterization and remediation technologies is to facilitate the transfer, use, and commercialization of these technologies to the public and private sector. The meet this goal, the project identified environmental restoration needs of mixed waste and/or hazardous waste landfill owners (Native American, municipal, DOE, and DoD); documenting potential demonstration sites and the contaminants present at each site; assessing the environmental regulations that would effect demonstration activities; and evaluating site suitability for demonstrating MWLID technologies at the tribal and municipal sites identified. Eighteen landfill sites within a 40.2-km radius of Sandia National Laboratories are listed on the CERCLIS Site/Event Listing for the state of New Mexico. Seventeen are not located within DOE or DoD facilities and are potential offsite MWLID technology demonstration sites. Two of the seventeen CERCLIS sites, one on Native American land and one on municipal land, were evaluated and identified as potential candidates for off-site demonstrations of MWLID-developed technologies. Contaminants potentially present on site include chromium waste, household/commercial hazardous waste, volatile organic compounds, and petroleum products. MWLID characterization technologies applicable to these sites include Magnetometer Towed Array, Cross-borehole Electromagnetic Imaging, SitePlanner {trademark}/PLUME, Hybrid Directional Drilling, Seamist{trademark}/Vadose Zone Monitoring, Stripping Analyses, and x-ray Fluorescence Spectroscopy for Heavy Metals.

Williams, C. [Sandia National Labs., Albuquerque, NM (United States); Gruebel, R. [Tech. Reps., Inc., Albuquerque, NM (United States)

1995-04-01T23:59:59.000Z

6

Clean Coal Technology Demonstration Program  

Energy.gov (U.S. Department of Energy (DOE))

The Office of Fossil Energy’s Clean Coal Technology Demonstration Program (1986-1993) laid the foundation for effective technologies now in use that have helped significantly lower emissions of sulfur dioxide (SO2), nitrogen oxides (NOx) and airborne particulates (PM10).

7

DG's Meeting  

ScienceCinema (OSTI)

Exposés du DG H.Schopper, Blackburne et du président du comité des finances concernant le budget, salaires, pensions etc...avec discussion et questions

None

2011-04-25T23:59:59.000Z

8

Daemen Alternative Energy/Geothermal Technologies Demonstration...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Daemen Alternative EnergyGeothermal Technologies Demonstration Program Erie County Daemen Alternative EnergyGeothermal Technologies Demonstration Program Erie County Project...

9

Demonstrating and Deploying Integrated Retrofit Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Demonstrating and Deploying Integrated Retrofit Technologies and Solutions - 2014 BTO Peer Review Demonstrating and Deploying Integrated Retrofit Technologies and Solutions - 2014...

10

EM Engineering & Technology Roadmap and Major Technology Demonstration...  

Office of Environmental Management (EM)

Steven L. Krahn Director, Waste Processing Office of Engineering and Technology April 2008 EM Engineering & Technology Roadmap and Major Technology Demonstrations Introduction ...

11

Buried waste integrated demonstration technology integration process  

SciTech Connect

A Technology integration Process was developed for the Idaho National Energy Laboratories (INEL) Buried Waste Integrated Demonstration (BWID) Program to facilitate the transfer of technology and knowledge from industry, universities, and other Federal agencies into the BWID; to successfully transfer demonstrated technology and knowledge from the BWID to industry, universities, and other Federal agencies; and to share demonstrated technologies and knowledge between Integrated Demonstrations and other Department of Energy (DOE) spread throughout the DOE Complex. This document also details specific methods and tools for integrating and transferring technologies into or out of the BWID program. The document provides background on the BWID program and technology development needs, demonstrates the direction of technology transfer, illustrates current processes for this transfer, and lists points of contact for prospective participants in the BWID technology transfer efforts. The Technology Integration Process was prepared to ensure compliance with the requirements of DOE`s Office of Technology Development (OTD).

Ferguson, J.S.; Ferguson, J.E.

1992-04-01T23:59:59.000Z

12

Buried waste integrated demonstration technology integration process  

SciTech Connect

A Technology integration Process was developed for the Idaho National Energy Laboratories (INEL) Buried Waste Integrated Demonstration (BWID) Program to facilitate the transfer of technology and knowledge from industry, universities, and other Federal agencies into the BWID; to successfully transfer demonstrated technology and knowledge from the BWID to industry, universities, and other Federal agencies; and to share demonstrated technologies and knowledge between Integrated Demonstrations and other Department of Energy (DOE) spread throughout the DOE Complex. This document also details specific methods and tools for integrating and transferring technologies into or out of the BWID program. The document provides background on the BWID program and technology development needs, demonstrates the direction of technology transfer, illustrates current processes for this transfer, and lists points of contact for prospective participants in the BWID technology transfer efforts. The Technology Integration Process was prepared to ensure compliance with the requirements of DOE's Office of Technology Development (OTD).

Ferguson, J.S.; Ferguson, J.E.

1992-04-01T23:59:59.000Z

13

Government-sponsored demonstrations of new technologies  

Science Journals Connector (OSTI)

...435959 CONTR . MANSFIELD, E, ECONOMICS TECHNOLOGI ( 1968 ). NELSON...North Carolina; a water desalination demonstration plant built...D Chicago expressway o Desalination (Pt. Loma) LO o Fish protein...1974); E. Mansfield, The Economics of Technological Change...

WS Baer; LL Johnson; EW Merrow

1977-05-27T23:59:59.000Z

14

Oak Ridge City Center Technology Demonstration Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oak Ridge City Center Technology Demonstration Project David Thrash, Principal Investigator Oak Ridge City Center, LLC Track Name May 18, 2010 This presentation does not contain...

15

Joint Capability Technology Demonstration (JCTD) Industry Day...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Capability Technology Demonstration Industry Day Presentations Partnering with Utilities for Energy Efficiency & Security 2010 Smart Grid Peer Review Day Two Morning Presentations...

16

Daemen Alternative Energy/Geothermal Technologies Demonstration...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Daemen Alternative EnergyGeothermal Technologies Demonstration Program Erie County Robert C. Beiswanger, Jr. Daemen College May 20, 2010 This presentation does not contain any...

17

SPIDERS Joint Capability Technology Demonstration Industry Day...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Demonstration Industry Day May 2, 2014 - 1:15pm Addthis An image of a patch with a spider on it. The Smart Power Infrastructure Demonstration for Energy...

18

Decision support software technology demonstration plan  

SciTech Connect

The performance evaluation of innovative and alternative environmental technologies is an integral part of the US Environmental Protection Agency's (EPA) mission. Early efforts focused on evaluating technologies that supported the implementation of the Clean Air and Clean Water Acts. In 1986 the Agency began to demonstrate and evaluate the cost and performance of remediation and monitoring technologies under the Superfund Innovative Technology Evaluation (SITE) program (in response to the mandate in the Superfund Amendments and Reauthorization Act of 1986 (SARA)). In 1990, the US Technology Policy was announced. This policy placed a renewed emphasis on making the best use of technology in achieving the national goals of improved quality of life for all Americans, continued economic growth, and national security. In the spirit of the technology policy, the Agency began to direct a portion of its resources toward the promotion, recognition, acceptance, and use of US-developed innovative environmental technologies both domestically and abroad. Decision Support Software (DSS) packages integrate environmental data and simulation models into a framework for making site characterization, monitoring, and cleanup decisions. To limit the scope which will be addressed in this demonstration, three endpoints have been selected for evaluation: Visualization; Sample Optimization; and Cost/Benefit Analysis. Five topics are covered in this report: the objectives of the demonstration; the elements of the demonstration plan; an overview of the Site Characterization and Monitoring Technology Pilot; an overview of the technology verification process; and the purpose of this demonstration plan.

SULLIVAN,T.; ARMSTRONG,A.

1998-09-01T23:59:59.000Z

19

Los Alamos Team Demonstrates Bottle Scanner Technology  

SciTech Connect

Los Alamos scientists are demonstrating a Nuclear Magnetic Resonance Imaging (NMR) technology that may provide a breakthrough for screening liquids at airport security. By adding low-power X-ray data to the NMR mix, scientists believe they have unlocked a new detection technology. Funded in part by the Department of Homeland Security's Science and Technology Directorate, the new technology is called MagRay.

Espy, Michelle; Schultz, Larry

2014-05-06T23:59:59.000Z

20

Los Alamos Team Demonstrates Bottle Scanner Technology  

ScienceCinema (OSTI)

Los Alamos scientists are demonstrating a Nuclear Magnetic Resonance Imaging (NMR) technology that may provide a breakthrough for screening liquids at airport security. By adding low-power X-ray data to the NMR mix, scientists believe they have unlocked a new detection technology. Funded in part by the Department of Homeland Security's Science and Technology Directorate, the new technology is called MagRay.

Espy, Michelle; Schultz, Larry

2014-06-02T23:59:59.000Z

Note: This page contains sample records for the topic "dg technologies demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Technoclimat- Green Technologies Demonstration Program (Quebec, Canada)  

Energy.gov (U.S. Department of Energy (DOE))

The Green technologies demonstration program aiming to reduce greenhouse gas emissions is a product of Measure 20 of the 2006-2012 Climate Change Action Plan (CCAP). This CCAP measure encourages...

22

Environmental management technology demonstration and commercialization  

SciTech Connect

The Energy & Environmental Research Center (EERC), a contract-supported organization focused on technology research, development, demonstration, and commercialization (RDD&C), is entering its second year of a Cooperative Agreement with the U.S. Department of Energy (DOE) Morgantown Energy Technology Center (METC) to facilitate the development, demonstration, and commercialization of innovative environmental management (EM) technologies in support of the activities of DOE`s Office of Environmental Science and Technology (EM-50) under DOE`s EM Program. This paper reviews the concept and approach of the program under the METC-EERC EM Cooperative Agreement and profiles the role the program is playing in the commercialization of five EM technologies.

Daly, D.J.; Erickson, T.A.; Groenewold, G.H. [and others

1995-12-31T23:59:59.000Z

23

U.S. Offshore Wind Advanced Technology Demonstration Projects...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Offshore Wind Advanced Technology Demonstration Projects Public Meeting Transcript for Offshore Wind Demonstrations U.S. Offshore Wind Advanced Technology Demonstration Projects...

24

Off site demonstrations for MWLID technologies  

SciTech Connect

Open demonstrations of technologies developed by the Office of Technology Development`s (QTD`s) Mixed Waste Landfill Integrated Demonstration (MWLID) should facilitate regulatory acceptance and speed the transfer and commercialization of these technologies. The purpose of the present project is to identify the environmental restoration needs of hazardous waste and/or mixed waste landfill owners within a 25-mile radius of Sandia National Laboratories (SNL). Most municipal landfills that operated prior to the mid-1980s accepted household/commercial hazardous waste and medical waste that included low-level radioactive waste. The locations of hazardous and/or mixed waste landfills within the State of New Mexico were. identified using federal, state, municipal and Native American tribal environmental records. The records reviewed included the US Environmental Protection Agency (EPA) Superfund Program CERCLIS Event/Site listing (which includes tribal records), the New Mexico Environment Department (NMED), Solid Waste Bureau mixed waste landfill database, and the City of Albuquerque Environmental Health Department landfill database. Tribal envirorunental records are controlled by each tribal government, so each tribal environmental officer and governor was contacted to obtain release of specific site data beyond what is available in the CERCLIS listings.

Williams, C. [Sandia National Labs., Albuquerque, NM (United States); Gruebel, R. [Tech Reps, Inc., Albuquerque, NM (United States)

1995-04-01T23:59:59.000Z

25

The Southern California Conversion Technology Demonstration Project | Open  

Open Energy Info (EERE)

The Southern California Conversion Technology Demonstration Project The Southern California Conversion Technology Demonstration Project Jump to: navigation, search Tool Summary Name: The Southern California Conversion Technology Demonstration Project Agency/Company /Organization: The Southern California Conversion Technology Demonstration Project Sector: Energy, Land Focus Area: - Waste to Energy Phase: Create a Vision Resource Type: Publications User Interface: Website Website: www.socalconversion.org/resources.html Cost: Free The Southern California Conversion Technology Demonstration Project website is focused on a specific conversion technology demonstration project in L. A. County. Overview The Southern California Conversion Technology Demonstration Project website is focused on a specific conversion technology demonstration project in L.

26

Technology and System Level Demonstration of Highly Efficient...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks Technology and System Level Demonstration of Highly Efficient and Clean,...

27

Technology and System Level Demonstration of Highly Efficient...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Merit Review 2014: Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks Technology and System Level Demonstration of Highly...

28

Cummins SuperTruck Program - Technology Demonstration of Highly...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

SuperTruck Program - Technology Demonstration of Highly Efficient Clean, Diesel Powered Class 8 Trucks Cummins SuperTruck Program - Technology Demonstration of Highly Efficient...

29

Oak Ridge City Center Technology Demonstration Project | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oak Ridge City Center Technology Demonstration Project Oak Ridge City Center Technology Demonstration Project Project objectives: To broaden market understanding of large-scale...

30

Advancing Technology Readiness: Wave Energy Testing and Demonstration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advancing Technology Readiness: Wave Energy Testing and Demonstration Advancing Technology Readiness: Wave Energy Testing and Demonstration March 6, 2014 - 1:23pm Addthis Northwest...

31

Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity 2012 DOE Hydrogen...

32

Demonstrated Petroleum Reduction Using Oil Bypass Filter Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Demonstrated Petroleum Reduction Using Oil Bypass Filter Technology on Heavy and Light Vehicles Demonstrated Petroleum Reduction Using Oil Bypass Filter Technology on Heavy and...

33

Integrated, Automated Distributed Generation Technologies Demonstration  

SciTech Connect

The purpose of the NETL Project was to develop a diverse combination of distributed renewable generation technologies and controls and demonstrate how the renewable generation could help manage substation peak demand at the ATK Promontory plant site. The Promontory plant site is located in the northwestern Utah desert approximately 25 miles west of Brigham City, Utah. The plant encompasses 20,000 acres and has over 500 buildings. The ATK Promontory plant primarily manufactures solid propellant rocket motors for both commercial and government launch systems. The original project objectives focused on distributed generation; a 100 kW (kilowatt) wind turbine, a 100 kW new technology waste heat generation unit, a 500 kW energy storage system, and an intelligent system-wide automation system to monitor and control the renewable energy devices then release the stored energy during the peak demand time. The original goal was to reduce peak demand from the electrical utility company, Rocky Mountain Power (RMP), by 3.4%. For a period of time we also sought to integrate our energy storage requirements with a flywheel storage system (500 kW) proposed for the Promontory/RMP Substation. Ultimately the flywheel storage system could not meet our project timetable, so the storage requirement was switched to a battery storage system (300 kW.) A secondary objective was to design/install a bi-directional customer/utility gateway application for real-time visibility and communications between RMP, and ATK. This objective was not achieved because of technical issues with RMP, ATK Information Technology Department’s stringent requirements based on being a rocket motor manufacturing facility, and budget constraints. Of the original objectives, the following were achieved: • Installation of a 100 kW wind turbine. • Installation of a 300 kW battery storage system. • Integrated control system installed to offset electrical demand by releasing stored energy from renewable sources during peak hours of the day. Control system also monitors the wind turbine and battery storage system health, power output, and issues critical alarms. Of the original objectives, the following were not achieved: • 100 kW new technology waste heat generation unit. • Bi-directional customer/utility gateway for real time visibility and communications between RMP and ATK. • 3.4% reduction in peak demand. 1.7% reduction in peak demand was realized instead.

Jensen, Kevin

2014-09-30T23:59:59.000Z

34

Fuel Cell Technologies Office: National Hydrogen Learning Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

National Hydrogen National Hydrogen Learning Demonstration Status Webinar (Text Version) to someone by E-mail Share Fuel Cell Technologies Office: National Hydrogen Learning Demonstration Status Webinar (Text Version) on Facebook Tweet about Fuel Cell Technologies Office: National Hydrogen Learning Demonstration Status Webinar (Text Version) on Twitter Bookmark Fuel Cell Technologies Office: National Hydrogen Learning Demonstration Status Webinar (Text Version) on Google Bookmark Fuel Cell Technologies Office: National Hydrogen Learning Demonstration Status Webinar (Text Version) on Delicious Rank Fuel Cell Technologies Office: National Hydrogen Learning Demonstration Status Webinar (Text Version) on Digg Find More places to share Fuel Cell Technologies Office: National Hydrogen Learning Demonstration Status Webinar (Text Version) on

35

Cummins SuperTruck Program - Technology and System Level Demonstration...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cummins SuperTruck Program - Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks Cummins SuperTruck Program - Technology and...

36

Joint Capability Technology Demonstration (JCTD) Industry Day Agenda  

Energy.gov (U.S. Department of Energy (DOE))

Agenda outlines the activities of the 2014 Smart Power Infrastructure Demonstration for Energy Reliability and Security (SPIDERS) Joint Capability Technology Demonstration (JCTD) Industry Day in Fort Carson, Colorado.

37

Frequently Asked Questions About the Technology Demonstration GATEWAY Program  

Energy.gov (U.S. Department of Energy (DOE))

This page addresses many of the questions about the DOE Solid-State Lighting Technology Demonstration GATEWAY program raised by potential eligible participants, such as manufacturers, demonstration...

38

SPIDERS Joint Capability Technology Demonstration Industry Day Presentations  

Energy.gov (U.S. Department of Energy (DOE))

Presentations from the SPIDERS Joint Capability Technology Demonstration Industry Day, which occurred on April 22, 2014, at Fort Carson, Colorado.

39

Demonstration and Field Test of airjacket technology  

SciTech Connect

There are approximately 600,000 paint spray workers in the United States applying paints and coatings with some type of sprayer. Approximately 5% of these spray workers are in the South Coast Air Quality Management District (SCAQMD). These spray workers apply paints or other coatings to products such as bridges, houses, automobiles, wood and metal furniture, and other consumer and industrial products. The materials being sprayed include exterior and interior paints, lacquers, primers, shellacs, stains and varnishes. Our experimental findings indicate that the Airjacket does not significantly reduce the exposure of spray workers to paint fumes during HVLP spraying. The difference between ideal and actual spray paint procedures influence the mechanisms driving spray workers exposures to paint fumes and influence the viability of the Airjacket technology. In the ideal procedure, for which the Airjacket was conceived, the spray worker's exposure to paint fumes is due largely to the formation of a recirculating eddy between the spray worker and the object painted. The Airjacket ejects air to diminish and ventilate this eddy. In actual practice, exposures may result largely from directing paint upstream and from the bounce-back of the air/paint jet of the object being painted. The Airjacket, would not be expected to dramatically reduce exposures to paint fumes when the paint is not directed downstream or when the bounce-back of paint on the object creates a cloud of paint aerosols around the spray worker.

Faulkner, D.; Fisk, W.J.; Gadgil, A.J.; Sullivan, D.P.

1998-06-01T23:59:59.000Z

40

Hot demonstrations of nuclear-waste processing technologies  

Science Journals Connector (OSTI)

Several types of nuclear-waste-treatment technologies are currently being demonstrated at Argonne National Laboratory-West, ranging from complex,...

H. F. McFarlane; K. M. Goff; F. S. Felicione; C. C. Dwight; D. B. Barber

1997-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "dg technologies demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Demonstration of Air-Power-Assist (APA) Engine Technology for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combustion and Direct Energy Recovery in Heavy Duty Application Demonstration of Air-Power-Assist (APA) Engine Technology for Clean Combustion and Direct Energy Recovery in...

42

Clean Coal Technology Demonstration Program: Program Update 1998  

SciTech Connect

Annual report on the Clean Coal Technology Demonstration Program (CCT Program). The report address the role of the CCT Program, implementation, funding and costs, accomplishments, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.

Assistant Secretary for Fossil Energy

1999-03-01T23:59:59.000Z

43

Clean Coal Technology Demonstration Program: Program Update 2001  

SciTech Connect

Annual report on the Clean Coal Technology Demonstration Program (CCT Program). The report address the role of the CCT Program, implementation, funding and costs, accomplishments, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results. Also includes Power Plant Improvement Initiative Projects.

Assistant Secretary for Fossil Energy

2002-07-30T23:59:59.000Z

44

Clean Coal Technology Demonstration Program: Program Update 1999  

SciTech Connect

Annual report on the Clean Coal Technology Demonstration Program (CCT Program). The report address the role of the CCT Program, implementation, funding and costs, accomplishments, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.

Assistant Secretary for Fossil Energy

2000-04-01T23:59:59.000Z

45

Clean Coal Technology Demonstration Program: Program Update 2000  

SciTech Connect

Annual report on the Clean Coal Technology Demonstration Program (CCT Program). The report address the role of the CCT Program, implementation, funding and costs, accomplishments, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.

Assistant Secretary for Fossil Energy

2001-04-01T23:59:59.000Z

46

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 4  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 Environmental Control Technologies - Combined SO2 /NOx Control Technologies Milliken Clean Coal Technology Demonstration Project - Project Brief [PDF-342KB] New York State Electric & Gas Corporation, Lansing, NY PROGRAM PUBLICATIONS Final Reports Milliken Clean Coal Technology Demonstration Project, Project Performance and Economics Report, Final Report (Apr 1999) Volume 1 [PDF-12.4MB] Volume 2 [PDF-15.7MB] CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports Milliken Clean Coal Technology Demonstration Project, Project Performance Summary [PDF-1.4MB] (Nov 2002) Milliken Clean Coal Demonstration Project: A DOE Assessment [PDF-1.1MB] (Aug 2001) Advanced Technologies for the Control of Sulfur Dioxide Emissions from Coal-Fired Boilers, Topical Report No.12 [PDF-1.28MB] (June 1999)

47

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 3  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 Environmental Control Technologies - SO2 Control Technologies 10-MW Demonstration of Gas Suspension Absorption - Project Brief [PDF-342KB] Airpol, Inc., West Paducah, KY PROGRAM PUBLICATIONS Final Reports Clean Coal Technology III: 10-MW Demonstration of Gas Suspension Absorption, Final Project Performance and Economics Report [PDF-8.2MB] ((June 1995) CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports 10-MW Demonstration of Gas Suspension Absorption, Project Performance Summary [PDF-2.0MB] ((June 1999) The Removal of SO2 Using Gas Suspension Absorption Technology Demonstration Project - A DOE Assessment (Sept 1996) [PDF-212KB] SO2 Removal Using Gas Suspension Absorption Technology, Topical Report No. 4 [PDF-680KB] (Apr 1995)

48

DOE-Supported Coal Cleaning Technology Succeeds in Commercial Demonstration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Supported Coal Cleaning Technology Succeeds in Commercial Supported Coal Cleaning Technology Succeeds in Commercial Demonstration DOE-Supported Coal Cleaning Technology Succeeds in Commercial Demonstration January 4, 2011 - 12:00pm Addthis Washington, DC - A novel technology that could help release some of the currently unusable energy in an estimated 2 billion tons of U.S. coal waste has been successfully demonstrated by a Department of Energy (DOE) supported project. The full-scale test of the advanced hyperbaric centrifuge technology at a Jim Walter Resources Inc. coal-cleaning plant in Alabama resulted in the successful reduction of moisture from ultrafine coal waste. The test builds on an eight-year cooperative effort between the Office of Fossil Energy's (FE) National Energy Technology Laboratory (NETL) and the Virginia

49

Residential Energy Efficiency Demonstration: Hawaii and Guam Energy Improvement Technology Demonstration Project  

SciTech Connect

In order to meet its energy goals, the Department of Defense (DOD) has partnered with the Department of Energy (DOE) to rapidly demonstrate and deploy cost-effective renewable energy and energy-efficiency technologies. The scope of this project was to demonstrate tools and technologies to reduce energy use in military housing, with particular emphasis on measuring and reducing loads related to consumer electronics (commonly referred to as 'plug loads'), hot water, and whole-house cooling.

Earle, L.; Sparn, B.; Rutter, A.; Briggs, D.

2014-03-01T23:59:59.000Z

50

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 Environmental Control Technologies - NOx Control Technologies Demonstration of Selective Catalytic Reduction Technology for the Control of NOx Emissions from High-Sulfur Coal-Fired Boilers - Project Brief [PDF-247KB] Southern Company Services, Pensacola, FL PROGRAM PUBLICATIONS Final Reports Innovative Clean Coal Technologies (ICCT) Demonstration of Selective Catalytic Reduction (SCR) Technology for the Control of Nitrogen Oxide (NOx) Emissions from High-Sulfur Coal-Fired Boilers Volume 1, Final Report [PDF-29MB] (Oct 1996) Volume 2, Appendices A-N [PDF-20.2MB] (Oct 1996) Volume 3, Appendices O-T [PDF-17.9MB] (Oct 1996) CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports Demonstration Of Selective Catalytic Reduction For The Control Of NOx Emissions From High-Sulfur Coal-Fired Boilers, Project Performance Summary [PDF-1.1MB] (Nov 2002)

51

Portfolio evaluation of advanced coal technology : research, development, and demonstration  

E-Print Network (OSTI)

This paper evaluates the advanced coal technology research, development and demonstration programs at the U.S. Department of Energy since the 1970s. The evaluation is conducted from a portfolio point of view and derives ...

Naga-Jones, Ayaka

2005-01-01T23:59:59.000Z

52

EIS-0146: Programmatic for Clean Coal Technology Demonstration Program  

Energy.gov (U.S. Department of Energy (DOE))

This programmatic environmental impact statement assesses the environmental impacts of continuing the Clean Coal Technology Demonstration Program involving the selection, for cost-shared federal funding, of one or more clean coal projects proposed by the private sector.

53

Computer Simulation Technology and Demonstration S. Schafrik & M. Karmis  

E-Print Network (OSTI)

Computer Simulation Technology and Demonstration S. Schafrik & M. Karmis Virginia Center for Coal constraints. A user- friendly visual simulation computer tool for the Windows environment is demonstrated INTRODUCTION Imitating the operations of real-life systems or proc- esses is the main purpose of computer

54

Innovative DOE Technology Demonstrates Potential for Significant Increases  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovative DOE Technology Demonstrates Potential for Significant Innovative DOE Technology Demonstrates Potential for Significant Increases in Safe and Responsible Production from Depleted U.S. Oil Fields Innovative DOE Technology Demonstrates Potential for Significant Increases in Safe and Responsible Production from Depleted U.S. Oil Fields April 25, 2012 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy announced today that an innovative technology has successfully improved oil recovery at a 106-year old Illinois field by more than 300 percent. This method of extraction could help pull as many as 130 million additional barrels of oil from the depleted field, which is past peak production using traditional drilling. "The Energy Department is making critical investments in innovations today that are helping the U.S. find and develop every available source of

55

Innovative DOE Technology Demonstrates Potential for Significant Increases  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovative DOE Technology Demonstrates Potential for Significant Innovative DOE Technology Demonstrates Potential for Significant Increases in Safe and Responsible Production from Depleted U.S. Oil Fields Innovative DOE Technology Demonstrates Potential for Significant Increases in Safe and Responsible Production from Depleted U.S. Oil Fields April 25, 2012 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy announced today that an innovative technology has successfully improved oil recovery at a 106-year old Illinois field by more than 300 percent. This method of extraction could help pull as many as 130 million additional barrels of oil from the depleted field, which is past peak production using traditional drilling. "The Energy Department is making critical investments in innovations today that are helping the U.S. find and develop every available source of

56

DOE-Sponsored Project Begins Demonstrating CCUS Technology in Alabama |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Begins Demonstrating CCUS Technology in Project Begins Demonstrating CCUS Technology in Alabama DOE-Sponsored Project Begins Demonstrating CCUS Technology in Alabama August 22, 2012 - 1:00pm Addthis Washington, DC - Carbon dioxide (CO2) injection has begun at the world's first fully integrated coal power and geologic storage project in southwest Alabama, with the goals of assessing integration of the technologies involved and laying the foundation for future use of CO2 for enhanced oil recovery (EOR). The "Anthropogenic Test"--conducted by the Southeast Regional Carbon Sequestration Partnership (SECARB), one of seven partnerships in DOE's Regional Carbon Sequestration Partnerships program--uses CO2 from a newly constructed post-combustion CO2-capture facility at Alabama Power's 2,657-megawatt Barry Electric Generating Plant (Plant Barry). It will help

57

NETL: Mercury Emissions Control Technologies - Demonstration of Mer-Cure  

NLE Websites -- All DOE Office Websites (Extended Search)

Demonstration of Mer-Cure Technology for Enhanced Mercury Control Demonstration of Mer-Cure Technology for Enhanced Mercury Control ALSTOM Power, Inc. – U.S. Power Plant Laboratories (ALSTOM-PPL) proposes herein a consortium-based program to demonstrate ALSTOM-PPL's Mer-Cure™ technology – a novel, sorbent-based (Mer-Clean™ ) mercury control technology in coal-fired boilers. The program objective is (i) to demonstrate at a full scale greater than 90% mercury capture based on baseline mercury level (ii) at a cost significantly less than 50% of the $60,000/lb of mercury removed. The proposed full-scale demonstration program is to perform two- to six-month test campaigns in three independent host sites with various boiler configurations over a two-year period. The demonstration program will include a two- to four-week short-term field test followed by two- to six-month long-term demonstration for each of the three selected sites.

58

Meeting DG-Staff Association  

ScienceCinema (OSTI)

Discussion avec le DG J.Adams et Mons.Ullmann, concernant les problèmes liés aux conditions de travail, horaires (44h), salaire, allocations, indemnisations, allocations etc.

None

2011-04-25T23:59:59.000Z

59

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 2  

NLE Websites -- All DOE Office Websites (Extended Search)

Combined SO2 / NOx Control Technologies Combined SO2 / NOx Control Technologies SNOX(tm) Flue Gas Cleaning Demonstration Project - Project Brief [PDF-359KB] ABB Environmental Systems, Niles, OH PROGRAM PUBLICATIONS Final Reports Final Report Volume II: Project Performance and Economics [PDF-10.2MB] (July 1996) CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports ABB Environmental Systems SNOX(tm) Flue Gas Cleaning Demonstration Project, Project Performance Summary [PDF-450KB] (June 1999) SNOX(tm) Flue Gas Cleaning Demonstration Project: A DOE Assessment [PDF-185KB] (June 2000) Technologies for the Combined Control of Sulfur Dioxide and Nitrogen Oxides Emissions from Coal-Fired Boilers, Topical Report No. 13 [PDF-500KB] (May 1999) Design Reports Final Report Volume I: Public Design [PDF-3.9MB] (July 1996)

60

Topic Area 1: Technology Demonstration Projects | Open Energy Information  

Open Energy Info (EERE)

1: Technology Demonstration Projects 1: Technology Demonstration Projects Jump to: navigation, search Geothermal ARRA Funded Projects for Topic Area 1: Technology Demonstration Projects Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":false,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

Note: This page contains sample records for the topic "dg technologies demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 Environmental Control Technologies - SO2 Control Technologies Demonstration of Innovative Applications of Technology for the CT-121 FGD Process - Project Brief [PDF-265KB] Southern Company Services, Newnan, GA PROGRAM PUBLICATIONS Final Reports Demonstration of Innovative Applications of Technology for the CT-121 FGD Process, Final Report (Jan 1997) Volume 1, Executive Summary [PDF-4.6MB] Volume 2, Operation [PDF-32.8MB] Volume 2 Appendices [PDF-6.3MB] Volume 3, Equipment Vol 3a, Materials and Maintenance [PDF-34.6MB] Vol 3b, Instrumentation and Control [PDF-1.2MB] Vol 3c, Materials Test & Evaluation Program [PDF-28.2MB] Volume 4, Gypsum Stacking &Byproduct Evaluation [PDF-11.3MB] Volume 5, Environmental Monitoring Plan [PDF-3MB] Volume 5 Appendices [PDF-5.8MB]

62

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 3  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Control Technologies - Combined SO2/NOx Control Technologies Environmental Control Technologies - Combined SO2/NOx Control Technologies Commercial Demonstration of the NOXSO SO2/NOx Removal Flue Gas Cleanup System - Project Brief [PDF-188KB] NOXSO Corporation - Alcoa Warrick Power Station, Hammond, IN Program Publications Final Reports Not Available Annual/Quarterly Technical Reports Commercial Demonstration of the NOXSO SO2/NOx Removal Flue Gas Cleanup System Quarterly Technical Progress Reports Report No. 16. December 1994 - February 1995 [PDF-2.3MB] Report No. 15. (Sept - November 1994 [PDF-2.0MB] Report No. 14. June - August 1994 [PDF-2.8MB] Report No. 13. March - May 1994 [PDF-2.4MB] Report No. 12. December 1993 - February 1994 [PDF-3.0MB] Report No. 11. (Sept - November 1993 [PDF-3.3MB] Report No. 10. June - August 1993 [PDF-3.8MB]

63

Automated Demand Response Technology Demonstration Project for Small and  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Demonstration Project for Small and Technology Demonstration Project for Small and Medium Commercial Buildings Title Automated Demand Response Technology Demonstration Project for Small and Medium Commercial Buildings Publication Type Report LBNL Report Number LBNL-4982E Year of Publication 2011 Authors Page, Janie, Sila Kiliccote, Junqiao Han Dudley, Mary Ann Piette, Albert K. Chiu, Bashar Kellow, Edward Koch, and Paul Lipkin Date Published 07/2011 Publisher CEC/LBNL Keywords demand response, emerging technologies, market sectors, medium commercial business, openadr, small commercial, small commercial business, technologies Abstract Small and medium commercial customers in California make up about 20-25% of electric peak load in California. With the roll out of smart meters to this customer group, which enable granular measurement of electricity consumption, the investor-owned utilities will offer dynamic prices as default tariffs by the end of 2011. Pacific Gas and Electric Company, which successfully deployed Automated Demand Response (AutoDR) Programs to its large commercial and industrial customers, started investigating the same infrastructures application to the small and medium commercial customers. This project aims to identify available technologies suitable for automating demand response for small-medium commercial buildings; to validate the extent to which that technology does what it claims to be able to do; and determine the extent to which customers find the technology useful for DR purpose. Ten sites, enabled by eight vendors, participated in at least four test AutoDR events per site in the summer of 2010. The results showed that while existing technology can reliably receive OpenADR signals and translate them into pre-programmed response strategies, it is likely that better levels of load sheds could be obtained than what is reported here if better understanding of the building systems were developed and the DR response strategies had been carefully designed and optimized for each site.

64

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 2  

NLE Websites -- All DOE Office Websites (Extended Search)

NOx Control Technologies NOx Control Technologies 180-MWe Demonstration of Advanced Tangentially-Fired Combustion Techniques for the Reduction of NOx Emissions from Coal-Fired Boilers - Project Brief [PDF-280KB] Southern Company Services, Inc., Lynn Haven, FL PROGRAM PUBLICATIONS Final Reports 180-MWe Demonstration of Advanced Tangentially-Fired Combustion Techniques for the Reduction of Nitrogen Oxide (NOx) Emissions from Coal-Fired Boilers, Final Report and Key Project Findings [PDF-4.6MB] (Feb 1994) CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports 180-MWe Demonstration of Advanced Tangentially Fired Combustion Techniques for the Reduction of NOx Emissions, Project Performance Summary [PDF-1.9MB] (June 1999) The Advanced Tangentially Fired Combustion Techniques for the Reduction of Nitrogen Oxides (NOx) Emissions From Coal-Fired Boilers Demonstration Project: A DOE Assessment [PDF-243KB] (Mar 2000)

65

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 3  

NLE Websites -- All DOE Office Websites (Extended Search)

Full-Scale Demonstration of Low-NOx Cell Burner Retrofit - Project Brief [PDF-294KB] Full-Scale Demonstration of Low-NOx Cell Burner Retrofit - Project Brief [PDF-294KB] The Babcock & Wilcox Company, Aberdeen, OH PROGRAM PUBLICATIONS Final Reports Full-Scale Demonstration of Low-NOx Cell Burner Retrofit, Final Report [PDF-3.6MB] (July 1994) CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports Full-Scale Demonstration of Low-NOx Cell Burner Retrofit, Project Performance Summary [PDF-1.18MB] (June 1999) Full-Scale Demonstration of Low-NOx Cell Burner Retrofit: A DOE Assessment [PDF-1.1MB] (Nov 2000) Reducing Emissions of Nitrogen Oxides via Low-NOx Burner Technologies, Topical Report No. 5 [PDF-825KB] (Sept 1996) Design Reports Full-Scale Demonstration of Low-NOx Cell Burner Retrofit, Public Design Report [PDF-2.68MB] (Aug 1991)

66

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 2  

NLE Websites -- All DOE Office Websites (Extended Search)

SOx-NOx-Rox Box(tm) Flue Gas Cleanup Demonstration Project - Project Brief [PDF-317KB] SOx-NOx-Rox Box(tm) Flue Gas Cleanup Demonstration Project - Project Brief [PDF-317KB] The Babcock & Wilcox Co., Dilles Bottom, OH PROGRAM PUBLICATIONS Final Reports SOx-NOx-Rox Box(tm) Flue Gas Cleanup Demonstration Final Report [PDF-27.5MB] (Sept 1995) CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports SOx-NOx-Rox Box(tm) Flue Gas Cleanup Demonstration: A DOE Assessment [PDF-296KB] (Dec 2000) SOx-NOx-Rox Box(tm) Flue Gas Cleanup Demonstration Project, Project Performance Summary [PDF-1.4MB] (June 1999) Technologies for the Combined Control of Sulfur Dioxide and Nitrogen Oxides Emissions from Coal-Fired Boilers, Topical Report No. 13 [PDF-500KB] (May 1999) Design Reports 5 MWe SNRBT Demonstration Facility: Detailed Design Report [PDF-4.5MB] (Nov 1992)

67

Apply: Commercial Building Technology Demonstrations (DE-FOA-0001084)  

Energy.gov (U.S. Department of Energy (DOE))

Closed Deadline: May 19, 2014 DOE seeks to fund demonstration and deployment activities for technologies that are ready for market adoption but that may be underutilized due to market barriers including perception of risk, gaps in information and data on performance as well as cost.

68

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 2  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Flue Gas Desulfurization Demonstration Project - Project Brief [PDF-250KB] Advanced Flue Gas Desulfurization Demonstration Project - Project Brief [PDF-250KB] Pure Air on the Lake L.P., Chesterton, IN PROGRAM PUBLICATIONS Final Reports Advanced Flue Gas Desulfurization (AFGD) Demonstration Project, Final Technical Report, Volume II: Project Performance and Economics [PDF-25MB] (Apr 1996) CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports Advanced Flue Gas Desulfurization (AFGD) Demonstration Project: A DOE Assessment [PDF-235KB] (Aug 2001) Advanced Flue Gas Desulfurization Demonstration Project, Project Performance Summary [PDF-1.96MB] (June 1999) Advanced Technologies for the Control of Sulfur Dioxide Emissions from Coal-Fired Boilers, Topical Report No.12 [PDF-1.28MB] (June 1999) Design Reports

69

Automated Demand Response Technologies and Demonstration in New York City  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies and Demonstration in New York City Technologies and Demonstration in New York City using OpenADR Title Automated Demand Response Technologies and Demonstration in New York City using OpenADR Publication Type Report LBNL Report Number LBNL-6470E Year of Publication 2013 Authors Kim, Joyce Jihyun, Sila Kiliccote, and Rongxin Yin Date Published 09/2013 Publisher LBNL/NYSERDA Abstract Demand response (DR) - allowing customers to respond to reliability requests and market prices by changing electricity use from their normal consumption pattern - continues to be seen as an attractive means of demand-side management and a fundamental smart-grid improvement that links supply and demand. Since October 2011, the Demand Response Research Center at Lawrence Berkeley National Laboratory and New York State Energy Research and Development Authority have conducted a demonstration project enabling Automated Demand Response (Auto-DR) in large commercial buildings located in New York City using Open Automated Demand Response (OpenADR) communication protocols. In particular, this project focuses on demonstrating how OpenADR can automate and simplify interactions between buildings and various stakeholders in New York State including the independent system operator, utilities, retail energy providers, and curtailment service providers. In this paper, we present methods to automate control strategies via building management systems to provide event-driven demand response, price response and demand management based on OpenADR signals. We also present cost control opportunities under day-ahead hourly pricing for large customers and Auto-DR control strategies developed for demonstration buildings. Lastly, we discuss the communication architecture and Auto-DR system designed for the demonstration project to automate price response and DR participation.

70

Demonstration of Advanced Filtration Technologies: Developing Energy-rebate  

NLE Websites -- All DOE Office Websites (Extended Search)

Demonstration of Advanced Filtration Technologies: Developing Energy-rebate Demonstration of Advanced Filtration Technologies: Developing Energy-rebate Criteria through Performing Standard Laboratory Tests and Statistical Analyses Title Demonstration of Advanced Filtration Technologies: Developing Energy-rebate Criteria through Performing Standard Laboratory Tests and Statistical Analyses Publication Type Report LBNL Report Number LBNL-61684 Year of Publication 2007 Authors Xu, Tengfang T., and Duo Wang Call Number LBNL-61684 Abstract Fan-filter unit systems are used for re-circulating clean air in cleanrooms are gaining popularity in California as well as in the rest of the world. Under normal operation, fan-filter units require high power demand, typically ranging from 100 to 300 W per square meter of cleanroom floor area (or approximately 10-30 W/ft2). Operating 7 by 24, they normally consume significant electric energy, while providing required contamination control for cleanrooms in various industries. Previous studies focused on development of a standard test procedure for fan-filter units. This project is to improve the methods, and develop new information to demonstrate the methods can be used to assist the industries to apply more energy-efficient fan-filter units in cleanrooms.

71

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 2  

NLE Websites -- All DOE Office Websites (Extended Search)

NOx Control Technologies NOx Control Technologies Demonstration of Coal Reburning for Cyclone Boiler NOx Control - Project Brief [PDF-320KB] The Babcock & Wilcox Company, Cassville, WI Program Publications Final Reports Demonstration of Coal Reburning for Cyclone Boiler NOx Control, Final Project Report [PDF-14.4MB] (Feb 1994) Appendices 1 - 5 [PDF-2.6MB] (Feb 1994) Appendix 1: Small Boiler Simulator Description Appendix 2: Statement of Work by Task and Subtask Appendix 3: Evaluation of Reburning for NOx Control from Lignite-Fired Cyclone Boilers Appendix 4: Nelson Dewey In-Furnace gas Species and Temperature Measurements Appendix 5: Balance of Plant Details Appendix 6: Test Report - Nelson Dewey Cyclone Reburn Optimization and Performance Environmental Tests [PDF-6.2MB] (Feb 1994)

72

Clean coal technologies: Research, development, and demonstration program plan  

SciTech Connect

The US Department of Energy, Office of Fossil Energy, has structured an integrated program for research, development, and demonstration of clean coal technologies that will enable the nation to use its plentiful domestic coal resources while meeting environmental quality requirements. The program provides the basis for making coal a low-cost, environmentally sound energy choice for electric power generation and fuels production. These programs are briefly described.

Not Available

1993-12-01T23:59:59.000Z

73

Daemen Alternative Energy/Geothermal Technologies Demonstration Program Erie County  

NLE Websites -- All DOE Office Websites (Extended Search)

US DOE Geothermal Program US DOE Geothermal Program eere.energy.gov Public Service of Colorado Ponnequin Wind Farm Geothermal Technologies Program 2010 Peer Review Daemen Alternative Energy/Geothermal Technologies Demonstration Program Erie County Robert C. Beiswanger, Jr. Daemen College May 20, 2010 This presentation does not contain any proprietary confidential, or otherwise restricted information. Insert photo of your choice 2 | US DOE Geothermal Program eere.energy.gov DAEMEN COLLEGE Open Loop, Geo-exchange System Geothermal Technologies Program 2010 Peer Review May 20, 2010 3 | US DOE Geothermal Program eere.energy.gov DAEMEN COLLEGE Open Loop, Geo-exchange System Principal Investigators Robert C. Beiswanger Jr. Vice President for Business Affairs and Treasurer Dr. Edwin G. Clausen Vice President for Academic Affairs and Dean of the College

74

Simulator platform for fast reactor operation and safety technology demonstration  

SciTech Connect

A simulator platform for visualization and demonstration of innovative concepts in fast reactor technology is described. The objective is to make more accessible the workings of fast reactor technology innovations and to do so in a human factors environment that uses state-of-the art visualization technologies. In this work the computer codes in use at Argonne National Laboratory (ANL) for the design of fast reactor systems are being integrated to run on this platform. This includes linking reactor systems codes with mechanical structures codes and using advanced graphics to depict the thermo-hydraulic-structure interactions that give rise to an inherently safe response to upsets. It also includes visualization of mechanical systems operation including advanced concepts that make use of robotics for operations, in-service inspection, and maintenance.

Vilim, R. B.; Park, Y. S.; Grandy, C.; Belch, H.; Dworzanski, P.; Misterka, J. (Nuclear Engineering Division)

2012-07-30T23:59:59.000Z

75

Demonstration of Advanced Technologies for Multi-Load Washers in Hospitality and Healthcare – Wastewater Recycling Technology  

SciTech Connect

The objective of this demonstration project was to evaluate market-ready retrofit technologies for reducing the energy and water use of multi-load washers in healthcare and hospitality facilities. Specifically, this project evaluated laundry wastewater recycling technology in the hospitality sector and ozone laundry technology in both the healthcare and hospitality sectors. This report documents the demonstration of a wastewater recycling system installed in the Grand Hyatt Seattle.

Boyd, Brian K.; Parker, Graham B.; Petersen, Joseph M.; Sullivan, Greg; Goetzler, W.; Foley, K. J.; Sutherland, T. A.

2014-08-14T23:59:59.000Z

76

Hanford Tanks Initiative fiscal year 1997 retrieval technology demonstrations  

SciTech Connect

The Hanford Tanks Initiative was established in 1996 to address a range of retrieval and closure issues associated with radioactive and hazardous waste stored in Hanford`s single shell tanks (SSTs). One of HTI`s retrieval goals is to ``Successfully demonstrate technology(s) that provide expanded capabilities beyond past practice sluicing and are extensible to retrieve waste from other SSTS.`` Specifically, HTI is to address ``Alternative technologies to past practice sluicing`` ... that can ... ``successfully remove the hard heel from a sluiced tank or to remove waste from a leaking SST`` (HTI Mission Analysis). During fiscal year 1997, the project contracted with seven commercial vendor teams to demonstrate retrieval technologies using waste simulants. These tests were conducted in two series: three integrated tests (IT) were completed in January 1997, and four more comprehensive Alternative Technology Retrieval Demonstrations (ARTD) were completed in July 1997. The goal of this testing was to address issues to minimize the risk, uncertainties, and ultimately the overall cost of removing waste from the SSTS. Retrieval technologies can be separated into three tracks based on how the tools would be deployed in the tank: globally (e.g., sluicing) or using vehicles or robotic manipulators. Accordingly, the HTI tests included an advanced sluicer (Track 1: global systems), two different vehicles (Track 2: vehicle based systems), and three unique manipulators (Track 3: arm-based systems), each deploying a wide range of dislodging tools and conveyance systems. Each industry team produced a system description as envisioned for actual retrieval and a list of issues that could prevent using the described system; defined the tests to resolve the issues; performed the test; and reported the results, lessons learned, and state of issue resolution. These test reports are cited in this document, listed in the reference section, and summarized in the appendices. This report analyzes the retrieval testing issues and describes what has been learned and issues that need further resolution. As such, it can serve as a guide to additional testing that must be performed before the systems are used in-tank. The major issues discussed are tank access, deployment, mining strategy, waste retrieval, liquid scavenging (liquid usage), maneuverability, positioning, static and dynamic performance, remote operations, reliability, availability, maintenance, tank safety, and cost.

Berglin, E.J.

1998-02-05T23:59:59.000Z

77

FY 2009 Progress: Process Monitoring Technology Demonstration at PNNL  

SciTech Connect

Pacific Northwest National Laboratory (PNNL) is developing and demonstrating three technologies designed to assist in the monitoring of reprocessing facilities in near-real time. These technologies include 1) a multi-isotope process monitor (MIP), 2) a spectroscopy-based monitor that uses UV-Vis-NIR (ultraviolet-visible-near infrared) and Raman spectrometers, and 3) an electrochemically modulated separations approach (EMS). The MIP monitor uses gamma spectroscopy and pattern recognition software to identify off-normal conditions in process streams. The UV-Vis-NIR and Raman spectroscopic monitoring continuously measures chemical compositions of the process streams including actinide metal ions (uranium, plutonium, neptunium), selected fission products, and major cold flow sheet chemicals. The EMS approach provides an on-line means for separating and concentrating elements of interest out of complex matrices prior to detection via nondestructive assay by gamma spectroscopy or destructive analysis with mass spectrometry. A general overview of the technologies and ongoing demonstration results are described in this report.

Arrigo, Leah M.; Christensen, Ronald N.; Fraga, Carlos G.; Liezers, Martin; Peper, Shane M.; Thomas, Elizabeth M.; Bryan, Samuel A.; Douglas, Matthew; Laspe, Amy R.; Lines, Amanda M.; Peterson, James M.; Ward, Rebecca M.; Casella, Amanda J.; Duckworth, Douglas C.; Levitskaia, Tatiana G.; Orton, Christopher R.; Schwantes, Jon M.

2009-12-01T23:59:59.000Z

78

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 5  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 Reports on Withdrawn & Terminated Projects Warren Station Externally Fired Combined-Cycle Demo. Project - (There is no Project Brief for this project) Pennsylvania Electric Company PROGRAM PUBLICATIONS Comprehensive Report to Congress Comprehensive Report to Congress on the Clean Coal Technology Program: Warren Station EFCC Demonstration Project (June 1994) U.S. Department of Energy report DOE/FE-0316P. (Available from NTIS as DE94017288) PAPERS AND PRESENTATIONS Externally Fired Combined Cycle: An Effective Coal-Fueled Technology for Repowering and New Generation (Mar 1995) L.E. Stoddard et al., (Black and Veatch), 20th International Technical Conference on Coal Utilization and Fuels Systems. U.S. Department of Energy Report CONF-950313-2 and DOE/MC/31327-95/C0451 (Available from NTIS as DE95012295).

79

DEMONSTRATION OF ELECTROCHEMICAL REMEDIATION TECHNOLOGIES-INDUCED COMPLEXATION  

SciTech Connect

The Project Team is submitting this Topical Report on the results of its bench-scale demonstration of ElectroChemical Remediation Technologies (ECRTs) and in particular the Induced Complexation (ECRTs-IC) process for remediation of mercury contaminated soils at DOE Complex sites. ECRTs is an innovative, in-situ, geophysically based soil remediation technology with over 50 successful commercial site applications involving remediation of over two million metric tons of contaminated soils. ECRTs-IC has been successfully used to remediate 220 cu m of mercury-contaminated sediments in the Union Canal, Scotland. In that operation, ECRTs-IC reduced sediment total mercury levels from an average of 243 mg/kg to 6 mg/kg in 26 days of operation. The clean up objective was to achieve an average total mercury level in the sediment of 20 mg/kg.

Barry L. Burks

2002-12-01T23:59:59.000Z

80

Scale-Up and Demonstration of Fly Ash Ozonation Technology  

SciTech Connect

The disposal of fly ash from the combustion of coal has become increasingly important. When the fly ash does not meet the required specification for the product or market intended, it is necessary to beneficiate it to achieve the desired quality. This project, conducted at PPL's Montour SES, is the first near full-scale ({approx}10 ton/day), demonstration of ash ozonation technology. Bituminous and sub bituminous ashes, including two ash samples that contained activated carbon, were treated during the project. Results from the tests were very promising. The ashes were successfully treated with ozone, yielding concrete-suitable ash quality. Preliminary process cost estimates indicate that capital and operating costs to treat unburned carbon are competitive with other commercial ash beneficiation technologies at a fraction of the cost of lost sales and/or ash disposal costs. This is the final technical report under DOE Cooperative Agreement No.: DE-FC26-03NT41730.

Rui Afonso; R. Hurt; I. Kulaots

2006-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "dg technologies demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 3  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 Advanced Electric Power Generation - Fluidized Bed Combustion McIntosh Unit 4A PCFB Demonstration Project - Project Brief [PDF-186KB] Lakeland Department of Electric & Water, Lakeland, FL PROGRAM PUBLICATIONS Annual/Quarterly Technical Reports Pressurized Circulating Fluidized Bed (PCFB) Repowering Project, Annual Report, January - December 1993 (Apr 1994) -- Not Available Pressurized Circulating Fluidized Bed (PCFB) Repowering Project, Annual Report, August 1991 - December 1992 (Apr 1993) -- Not Available Interim Reports Karhula Hot Gas Cleanup Test Results (June 1994) -- Not Available PCFB Repowering Project 80 MW Plant Description (May 1994) -- Not Available Comprehensive Report to Congress Comprehensive Report to Congress on the Clean Coal Technology Progam: Pressurized Circulating Fluidized Bed Demonstration Project (June 1991) -- Not Available

82

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 5  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 Advanced Electric Power Generation - Advanced Combustion Systems Clean Coal Diesel Demonstration Project - Project Brief [PDF-57KB] Arthur D. Little, Inc., Fairbanks, AK PROGRAM PUBLICATIONS Final Reports Not Available CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports Clean Coal Diesel Demonstration Project: A DOE Assessment [PDF-590KB] (July 2007) Annual/Quarterly Technical Reports Coal Diesel Combined-Cycle Project, Annual Report [PDF-2.7MB] (June 1998) January 1996 - January 1997 Interim Reports Coal-Fueled Diesel System for Stationary Power Applications - Technology Development Topical Report [PDF-9.5 MB] (Aug 1995) Final Report [PDF-12.4 MB] March 1988 - June 1994 (Oct 1995) Environmental Reports Environmental Assessment - Coal-Fired Diesel Generator [PDF-4.2MB] (May 1997)

83

Automated Demand Response Technologies and Demonstration in New York City using OpenADR  

E-Print Network (OSTI)

and G. Heffner. “Do enabling technologies affect customerAutomated Demand Response Technologies and Demonstration inof Standards and Technology (NIST) along with organizations

Kim, Joyce Jihyun

2014-01-01T23:59:59.000Z

84

The Purpose and Value of Successful Technology Demonstrations Â… The Energy Independence and Security Act of 2007 Demonstrations  

NLE Websites -- All DOE Office Websites (Extended Search)

Purpose and Value of Successful Technology Demonstrations - The Energy Purpose and Value of Successful Technology Demonstrations - The Energy Independence and Security Act of 2007 Demonstrations by Steve Bossart, NETL Senior Management and Technical Advisor, and Steve Pullins, Team Leader, DOE/NETL Modern Grid Strategy Our industry has piloted many, many technologies, but truly deployed few. Can we say that we completely understand the value of a single technology piloted in a couple different utilities? Or, must we integrate this technology with other technologies in a real-world environment to discover those additional values and benefits that go beyond its solo application? When we survey the industry for technology penetration, we find a sad picture....many solo pilots, but little evidence of integrated advanced technologies. The reasons are simple and clear.

85

Clean Coal Technology Demonstration Program. Program update 1995  

SciTech Connect

This document describes activities of the U.S. Clean Coal Technology Program for the time of 1985-1995. Various clean coal technologies are described.

NONE

1996-04-01T23:59:59.000Z

86

Apply: Commercial Building Technology Demonstrations (DE-FOA...  

Office of Environmental Management (EM)

Technologies (BENEFIT) - 2014 (DE-FOA-0001027) Energy Savings Through Improved Mechanical Systems and Building Envelope Technologies (DE-FOA-0000621) Commercial Building...

87

"INTERNATIONAL ENVIRONMENTAL TECHNOLOGY IDENTIFICATION, DEVELOPMENT, DEMONSTRATION, DEPLOYMENT AND EXCHANGE"  

E-Print Network (OSTI)

Energy Technology Laboratory (NETL) in Morgantown, West Virginia. NETL provided both technical and fiscal

Hazen, Terry

88

Underground Storage Tank Integrated Demonstration (UST-ID). Technology summary  

SciTech Connect

The DOE complex currently has 332 underground storage tanks (USTs) that have been used to process and store radioactive and chemical mixed waste generated from weapon materials production. Very little of the over 100 million gallons of high-level and low-level radioactive liquid waste has been treated and disposed of in final form. Two waste storage tank design types are prevalent across the DOE complex: single-shell wall and double-shell wall designs. They are made of stainless steel, concrete, and concrete with carbon steel liners, and their capacities vary from 5000 gallons (19 m{sup 3}) to 10{sup 6} gallons (3785 m{sup 3}). The tanks have an overburden layer of soil ranging from a few feet to tens of feet. Responding to the need for remediation of tank waste, driven by Federal Facility Compliance Agreements (FFCAs) at all participating sites, the Underground Storage Tank Integrated Demonstration (UST-ID) Program was created by the US DOE Office of Technology Development in February 1991. Its mission is to focus the development, testing, and evaluation of remediation technologies within a system architecture to characterize, retrieve, treat to concentrate, and dispose of radioactive waste stored in USTs at DOE facilities. The ultimate goal is to provide safe and cost-effective solutions that are acceptable to the public and the regulators. The UST-ID has focused on five DOE locations: the Hanford Site, which is the host site, in Richland, Washington; the Fernald Site in Fernald, Ohio; the Idaho National Engineering Laboratory near Idaho Falls, Idaho; the Oak Ridge Reservation in Oak Ridge, Tennessee, and the Savannah River Site in Savannah River, South Carolina.

Not Available

1994-02-01T23:59:59.000Z

89

Achieving and Demonstrating Vehicle Technologies Engine Fuel Efficiency Milestones  

Energy.gov (U.S. Department of Energy (DOE))

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

90

Advancing Technology Readiness: Wave Energy Testing and Demonstration  

Office of Energy Efficiency and Renewable Energy (EERE)

EERE’s support enabled Northwest Energy Innovations to verify the functionality of its Wave Energy Technology—New Zealand (WET-NZ) device.

91

Cummins SuperTruck Program - Technology and System Level Demonstration...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for Block and Head - Thermal Barrier Coatings for Reduced Heat Transfer * Trailer Aerodynamic Devices that are Functional * Engine Sensor Technologies 4 Innovation You Can...

92

Achieving and Demonstrating Vehicle Technologies Engine Fuel Efficiency Milestones  

Energy.gov (U.S. Department of Energy (DOE))

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

93

Oregon: Advancing Technology Readiness: Wave Energy Testing and Demonstration  

Office of Energy Efficiency and Renewable Energy (EERE)

EERE’s support enabled Northwest Energy Innovations to verify the functionality of its Wave Energy Technology—New Zealand (WET-NZ) device.

94

Post-Shred Materials Recovery Technology Development and Demonstration  

Energy.gov (U.S. Department of Energy (DOE))

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

95

Post-Shred Materials Recovery Technology Development and Demonstration  

Energy.gov (U.S. Department of Energy (DOE))

Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland.

96

E-Print Network 3.0 - advanced technologies demonstrated Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering 9 Enterprise: Exploration Systems TTHHEEMMEESS Summary: technologies. The Exploration Systems Enterprise is responsible for developing and demonstrating the...

97

E-Print Network 3.0 - advanced technology demonstration Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering 9 Enterprise: Exploration Systems TTHHEEMMEESS Summary: technologies. The Exploration Systems Enterprise is responsible for developing and demonstrating the...

98

The Purpose and Value of Successful Technology Demonstrations...  

NLE Websites -- All DOE Office Websites (Extended Search)

Act of 2007 Demonstrations by Steve Bossart, NETL Senior Management and Technical Advisor, and Steve Pullins, Team Leader, DOENETL Modern Grid Strategy Our industry has...

99

Open Automated Demand Response Dynamic Pricing Technologies and Demonstration  

E-Print Network (OSTI)

Goodin. 2009. “Open Automated Demand Response Communicationsin Demand Response for Wholesale Ancillary Services. ” InOpen Automated Demand Response Demonstration Project. LBNL-

Ghatikar, Girish

2010-01-01T23:59:59.000Z

100

Distributed Energy Technology Simulator: Microturbine Demonstration, October 2001  

Energy.gov (U.S. Department of Energy (DOE))

results of a demonstration of a microturbine simulator used to mimic the behavior of a distributed energy resource on an electrical system

Note: This page contains sample records for the topic "dg technologies demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Post-Shred Materials Recovery Technology Development and Demonstration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. lm29jody.pdf More Documents & Publications Post-Shred Materials Recovery Technology...

102

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Advanced Electric Power Generation - Fluidized Bed Combustion JEA Large-Scale CFB Combustion Demonstration Project - Project Brief [PDF-169KB] JEA, Jacksonville, FL PROGRAM PUBLICATIONS Final Reports Final Technical Report for the JEA Large-Scale CFB Combustion Demonstration Project [PDF-438KB](July 2005) CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports JEA Large-Scale CFB Combustion Demonstration Project: A DOE Assessment [PDF-177KB] (Nov 2005) The JEA Large-Scale CFB Combustion Demonstration Project, Topical Report No.22 [PDF-2.1MB] (Mar 2003) Design Reports Detailed Public Design Report for the JEA Large-Scale CFB Combustion Demonstration Project [PDF-2.5MB] (June 2003) Appendices 4, 5, and 6: Major Equipment List,

103

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 5  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 Advanced Electric Power Generation - Integrated Gasification Combined Cycle Kentucky Pioneer IGCC Demonstration Project - Project Brief [PDF-80KB] Kentucky Pioneer Energy, L.L.C.; Trapp, Clark County, KY PROGRAM PUBLICATIONS Final Report Kentucky Pioneer Energy LLC Integrated Gasification Combined Cycle Project: 2 MW Fuel Cell Demonstration [PDF-3.2MB] (Apr 2006) Design Reports Kentucky Pioneer Energy IGCC CCT Demonstration Project, 2 MW Fuel Cell Demonstration, Basis of Design [PDF-696KB] (May 2002) Environmental Reports Kentucky Pioneer Integrated Gasification Combined Cycle Demonstration Project: Final Environmental Impact Statement, [PDF-5.7MB] (Nov 2002) Appendices A-C and E [PDF-965KB] Appendix D, Pages 1-40 [PDF-5.2MB] Appendix D, Pages 41-71 [PDF-4.3MB]

104

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 1  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Coal Conversion Process Demonstration - Project Brief [PDF-192KB] Advanced Coal Conversion Process Demonstration - Project Brief [PDF-192KB] Rosebud SynCoal Partnership, Colstrip, MT PROGRAM PUBLICATIONS Final Reports Advanced Coal Conversion Process Demonstration Final Technical Report [PDF-362KB] (Sept 2004) Annual/Quarterly Technical Reports Advanced Coal Conversion Process Demonstration Annual Technical Progress Reports January - December 1991 [PDF-920KB] January - December 1992 [PDF-2.9MB] January - December 1993 [PDF-3.3MB] January - December 1995 [PDF-2.9MB] January - December 1996 [PDF-250KB] January - December 1997 [PDF-264KB] January - December 1998 [PDF-188KB] January - December 1999 [PDF-212KB] January - December 2000 [PDF-231KB] Advanced Coal Conversion Process Demonstration Quarterly Technical Progress Reports

105

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 Industrial Applications Cement Kiln Flue Gas Recovery Scrubber - Project Brief [PDF-247KB] Passamaquoddy Technology Limited Partnership, Thomaston, ME Program Publications Final Reports Passamaquoddy Technology Recovery Scrubber(tm) Final Report, Volume 1 [PDF-5.4MB] (Feb 1994) Final Report, Volume 2 and Appendices A - M [PDF-10.4MB] (Feb 1994) CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports Cement Kiln Flue Gas Recovery Scrubber Project: A DOE Assessment [PDF-246KB] (Nov 2001) Cement Kiln Flue Gas Recovery Scrubber, Project Performance Summary [PDF-2MB] (June 1999) Design Reports Passamaquoddy Technology Recovery Scrubber(tm) Public Design Report (Oct 1993) [PDF-2.7MB) Interim Reports Interim Technical Report [PDF-973KB] (Mar 1992)

106

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 3  

NLE Websites -- All DOE Office Websites (Extended Search)

Indirect Liquefaction Indirect Liquefaction Commercial-Scale Demonstration of the Liquid-Phase Methanol (LPMEOH(tm)) Process - Project Brief [PDF-282KB] Air Products Liquid Phase Conversion Company, L.P., Kingsport, TN PROGRAM PUBLICATIONS Final Reports Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOH(tm)) Process, Final Report [PDF-3.5MB] (June 2003) Annual/Quarterly Technical Reports Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOH(tm)) Process, Technical Progress Reports No. 34, October - December 2002 [PDF-448KB] No. 33, July - September 2002 [PDF-116KB] No. 32, April - June 2002 [PDF-148KB] No. 31, January - March 2002 [PDF-156KB] No. 30, October - December 2001 [PDF-141KB] No. 29, July - September 2001 [PDF-129KB] No. 28, April - June 2001 [PDF-154KB]

107

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Industrial Applications Advanced Cyclone Combustor with Internal Sulfur, Nitrogen, and Ash Control - Project Brief [PDF-302KB] Coal Tech Corp., Williamsport, PA PROGRAM PUBLICATIONS Final Reports Demonstration of an Advanced Cyclone Coal Combustor with Internal Sulfur Nitrogen, and Ash Control for the Conversion of a 23-MMBtu/Hour Oil Fired Boiler to Pulverized Coal (Aug 1991) Volume 1: Final Technical Report [PDF-5.9MB] Appendixes I through VI [PDF-8.9MB] CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports The Coal Tech Advanced Cyclone Combustor Demonstration Project -- A DOE Assessment [PDF-234KB] (May 1993) Environmental Reports Annual Environmental Report for The Demonstration of an Advanced Cyclone Coal Combustor, with Internal Sulfur, Nitrogen, and Ash Control for the Conversion of a 23 MMBtu/Hour Boiler to Coal [PDF-812KB] (Sept 1987)

108

NETL: Mercury Emissions Control Technologies - Field Demonstration of  

NLE Websites -- All DOE Office Websites (Extended Search)

Field Demonstration of Enhanced Sorbent Injection for Mercury Control Field Demonstration of Enhanced Sorbent Injection for Mercury Control ALSTOM will test their proprietary activated carbon-based sorbent which promotes oxidation and capture of mercury via preparation with chemical additives. ALSTOM proposes to test the sorbents at three utilities burning different coals, PacificCorpÂ’s Dave Johnston (PRB), Basin ElectricÂ’s Leland Olds (North Dakota Lignite) and Reliant EnergyÂ’s Portland Unit (bituminous). Other project partners include Energy and Environmental Research Center, North Dakota Industrial Commission and Minnkota Power who will be a non-host utility participant. Upon completion of this two year project, ALSTOM will demonstrate the capability of controlling mercury emissions from units equipped with electrostatic precipitators, a configuration representing approximately 75% of the existing units.

109

RM12-2703 Advanced Rooftop Unit Control Retrofit Kit Field Demonstration: Hawaii and Guam Energy Improvement Technology Demonstration Project  

SciTech Connect

As part of its overall strategy to meet its energy goals, the Naval Facilities Engineering Command (NAVFAC) partnered with U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to rapidly demonstrate and deploy cost-effective renewable energy and energy efficiency technologies. This was one of several demonstrations of new and underutilized commercial energy efficiency technologies. The consistent year-round demand for air conditioning and dehumidification in Hawaii provides an advantageous demonstration location for advanced rooftop control (ARC) retrofit kits to packaged rooftop units (RTUs). This report summarizes the field demonstration of ARCs installed on nine RTUs serving a 70,000-ft2 exchange store (large retail) and two RTUs, each serving small office buildings located on Joint Base Pearl Harbor-Hickam (JBPHH).

Doebber, I.; Dean, J.; Dominick, J.; Holland, G.

2014-03-01T23:59:59.000Z

110

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 3  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 Environmental Control Technologies - SO2 Control Technologies Confined Zone Dispersion Flue Gas Desulfurization Demo. - Project Brief [PDF-296KB] Bechtel Corp., Seward, PA PROGRAM PUBLICATIONS Final Reports Confined Zone Dispersion Project, Final Technical Report [PDF-7.8MB] ((June 1994) CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports Confined Zone Dispersion Project: A DOE Assessment [PDF-178KB] (Nov 1999) Design Reports Confined Zone Dispersion Project, Public Design Report (Oct 1993) U.S. Department of Energy report DOE/PC/90456-T10 Cover page through Section 3.5.3 [PDF-6.3 MB] (Oct 1993) Section 3.6 through a portion of Appendix C [PDF-6.1 MB] (Oct 1993) Balance of Appendix C [PDF-5.7 MB] (Oct 1993) Interim Reports

111

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Environmental Control Technologies - Combined SO2 / NOx Control Technologies Enhancing the Use of Coals by Gas Reburning and Sorbent Injection - Project Brief [PDF-328KB] Energy and Environmental Research Inc., Springfield/Hennepin, IL PROGRAM PUBLICATIONS Final Reports Enhancing the Use of Coals by Gas Reburning and Sorbent Injection Volume 1: Program Overview, Part A-Final Public Design Report, Part B-Project Performance and Economics [PDF-17MB] (Feb 1997) Volume 2: Gas Reburning-Sorbent injection at Hennepin Unit 1 [PDF-12MB] (Mar 1996) Volume 3: Gas Reburning-Sorbent Injection at Edwards Unit 1 [PDF-3.8MB] (Mar 1996) Volume 4: Gas Reburning-Sorbent Injection at Lakeside Unit 7 [PDF-21.9MB] (Mar1996) Volume 5: Guideline Manual [PDF-6.9MB] (Sept 1998)

112

Alternate retrieval technology demonstrations program - test report (ARD Environmental, Inc.)  

SciTech Connect

A prototype vehicle, control system, and waste and water scavenging system were designed and fabricated with essentially the full capabilities of the vehicle system proposed by ARD Environmental. A test tank mockup, including riser and decontamination chamber were designed and fabricated, and approximately 830 cubic feet of six varieties of waste simulants poured. The tests were performed by ARD Environmental personnel at its site in Laurel, Maryland, from 4/22/97 through 5/2/97. The capabilities tested were deployment and retrieval, extended mobility and productivity, the ability to operate the system using video viewing only, retrieval after simulated failure, and retrieval and decontamination. Testing commenced with deployment of the vehicle into the tank. Deployment was accomplished using a crane and auxiliary winch to position the vehicle and lower it through the decontamination chamber, into the 36`` diameter x 6` high riser, and touch down on the waste field in the tank. The initial mobility tests were conducted immediately after deployment, prior to sluicing, as the waste field exhibited the greatest amount of variation at this time. This test demonstrated the ability of the vehicle to maneuver over the simulated waste field, and the ability of the operator to work with only video viewing available. In addition, the ability of the vehicle to right itself after being turned on its side was demonstrated. The production rate was evaluated daily through the testing period by measuring the surface and estimating the amount of material removed. The test demonstrated the ability of the vehicle to reduce the waste surface using 400 psi (nominal) water jets, scavenge water and material from the work area, and move to any location, even in the relatively confined space of the 20` diameter test tank. In addition, the ability to sluice to a remote scavenging module was demonstrated. The failure mode test demonstrated the ability to retrieve a stuck vehicle by pulling on the tether, even if the vehicle wheels were locked or the vehicle was on its side. Line pull required to retrieve the vehicle was measured, and side load on the riser calculated from the line pull and line angles. Finally, the decontamination test demonstrated the ability to effectively clean the umbilical and vehicle. The issues addressed and resolved during the testing were: Feasibility of deploying a vehicle- based system, mobility, production rate and limitation of water in the tank during sluicing, mining strategy, operator efficiency, vehicle recovery, and decontamination. Water usage and waste removal rates were used to estimate the time and water usage requirements for cleaning a Hanford SST.

Berglin, E.J.

1997-07-31T23:59:59.000Z

113

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 3  

NLE Websites -- All DOE Office Websites (Extended Search)

Mild Gasification Mild Gasification ENCOAL® Mild Coal Gasification Project - Project Brief [PDF-279KB] ENCOAL Corporation, Gillette, WY PROGRAM PUBLICATIONS Final Reports ENCOAL Mild Coal Gasification Project Final Reports [PDF-6.8MB] (Sept 1997) (Includes the following 3 reports) ENCOAL Project Final Report [PDF-460KB] (Sept 1997) Final Design Modifications Report [PDF-5.2MB] (Sept 1997) Commercial Plant Feasibility Study [PDF-1MB] (Sept 1997) Annual/Quarterly Technical Reports ENCOAL Mild Coal Gasification Project Annual Report, October 1994 - September 1995 [PDF-2.6MB] (Jan 1996) ENCOAL Mild Coal Gasification Demonstration Project, Annual Report, October 1993-September 1994 [PDF-1.5MB] (Mar 1995) ENCOAL Mild Coal Gasification Demonstration Project, Annual Report [PDF-1.6MB] (Oct 1993)

114

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 3  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Applications Industrial Applications Blast Furnace Granular-Coal Injection System Demonstration Project - Project Brief [PDF-314KB] Bethlehem Steel Corp., Burns Harbor, IN PROGRAM PUBLICATIONS Final Reports Blast Furnace Granular Coal Injection System Demonstration Project, Project Performance and Economics, Final Report Vol. 2 [PDF-3.8MB] (Oct 1999) Annual/Quarterly Technical Reports Blast Furnace Granular Coal Injection Project, Annual Reports January - December 1998 [PDF-1.7MB] January - December 1997 [PDF-1.7MB] January - December 1996 [PDF-1.7MB] January - December 1995 [PDF-2.6MB] January - December 1994 [PDF-2MB] (July 1995) January - December 1993[PDF-1.5MB] (June 1994) CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports

115

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 3  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of Gas Reburning and Low-NOx Burners on a Wall-Fired Boiler - Project Brief [PDF-252KB] Evaluation of Gas Reburning and Low-NOx Burners on a Wall-Fired Boiler - Project Brief [PDF-252KB] Energy and Environmental Research Corp., Denver, CO PROGRAM PUBLICATIONS Final Reports Evaluation of Gas Reburning and Low NOx Burners on a Wall-Fired Boiler: Performance and Economics Report, Gas Reburning-Low NOx Burner System, Cherokee Station Unit No. 3, Final Report [PDF-17.2MB] (July 1998) CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports Evaluation of Gas Reburning and Low-NOx Burners on a Wall-Fired Boiler: A DOE Assessment [PDF-309KB] (Feb 2001) Reburning Technologies for the Control of Nitrogen Oxides Emissions from Coal-Fired Boilers, Topical Report No.14 [PDF-1.2MB] ((May 1999) Reduction of NOx and SO2 Using Gas Reburning, Sorbent Injection, and Integrated Technologies, Topical Report No. 3 [PDF-1MB] ((Sept 1993)

116

Commercial Demonstration of Wood Recovery, Recycling, and Value Adding Technologies  

SciTech Connect

This commercial demonstration project demonstrated the technical feasibility of converting low-value, underutilized and waste stream solid wood fiber material into higher valued products. With a growing need to increase product/production yield and reduce waste in most sawmills, few recovery operations and practically no data existed to support the viability of recovery operations. Prior to our efforts, most all in the forest products industry believed that recovery was difficult, extremely labor intensive, not cost effective, and that recovered products had low value and were difficult to sell. This project provided an opportunity for many within the industry to see through demonstration that converting waste stream material into higher valued products does in fact offer a solution. Our work, supported by the U.S. Department of Energy, throughout the project aimed to demonstrate a reasonable approach to reducing the millions of recoverable solid wood fiber tons that are annually treated as and converted into low value chips, mulch and fuel. Consequently sawmills continue to suffer from reduced availability of forest resources, higher raw material costs, growing waste disposal problems, increased global competition, and more pressure to operate in an Environmentally Friendly manner. It is our belief (based upon the experience of this project) that the successful mainstreaming of the recovery concept would assist in alleviating this burden as well as provide for a realistically achievable economic benefit to those who would seriously pursue the concept and tap into the rapidly growing ''GREEN'' building marketplace. Ultimately, with participation and aggressive pursuit of the recovery concept, the public would benefit in that: (1) Landfill/disposal waste volume could be reduced adding greater life to existing municipal landfill sites thereby minimizing the need to prematurely license and open added facilities. Also, there would be a cost avoidance benefit associated to what would have been the added municipal (community) management costs involved with maintaining closed landfills. (2) With greater quantities of recovered material being returned to and integrated into manufacturing and the marketplace, reduced demand upon virgin wood sources could help lead the way to promoting improved relations and environmental balance between producers and consumers further expanding the value of our natural resource without adding environmental burden.

Auburn Machinery, Inc.

2004-07-15T23:59:59.000Z

117

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan  

Energy.gov (U.S. Department of Energy (DOE))

The Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan describes the goals, objectives, technical targets, tasks, and schedules for all activities within the Fuel Cell Technologies Office.

118

Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Technical Plan  

Energy.gov (U.S. Department of Energy (DOE))

The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025.

119

Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Table of Contents  

Energy.gov (U.S. Department of Energy (DOE))

The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025.

120

Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Benefits  

Energy.gov (U.S. Department of Energy (DOE))

The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025.

Note: This page contains sample records for the topic "dg technologies demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan  

Energy.gov (U.S. Department of Energy (DOE))

The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025.

122

Northwest Open Automated Demand Response Technology Demonstration Project  

SciTech Connect

The Lawrence Berkeley National Laboratory (LBNL) Demand Response Research Center (DRRC) demonstrated and evaluated open automated demand response (OpenADR) communication infrastructure to reduce winter morning and summer afternoon peak electricity demand in commercial buildings the Seattle area. LBNL performed this demonstration for the Bonneville Power Administration (BPA) in the Seattle City Light (SCL) service territory at five sites: Seattle Municipal Tower, Seattle University, McKinstry, and two Target stores. This report describes the process and results of the demonstration. OpenADR is an information exchange model that uses a client-server architecture to automate demand-response (DR) programs. These field tests evaluated the feasibility of deploying fully automated DR during both winter and summer peak periods. DR savings were evaluated for several building systems and control strategies. This project studied DR during hot summer afternoons and cold winter mornings, both periods when electricity demand is typically high. This is the DRRC project team's first experience using automation for year-round DR resources and evaluating the flexibility of commercial buildings end-use loads to participate in DR in dual-peaking climates. The lessons learned contribute to understanding end-use loads that are suitable for dispatch at different times of the year. The project was funded by BPA and SCL. BPA is a U.S. Department of Energy agency headquartered in Portland, Oregon and serving the Pacific Northwest. BPA operates an electricity transmission system and markets wholesale electrical power at cost from federal dams, one non-federal nuclear plant, and other non-federal hydroelectric and wind energy generation facilities. Created by the citizens of Seattle in 1902, SCL is the second-largest municipal utility in America. SCL purchases approximately 40% of its electricity and the majority of its transmission from BPA through a preference contract. SCL also provides ancillary services within its own balancing authority. The relationship between BPA and SCL creates a unique opportunity to create DR programs that address both BPA's and SCL's markets simultaneously. Although simultaneously addressing both market could significantly increase the value of DR programs for BPA, SCL, and the end user, establishing program parameters that maximize this value is challenging because of complex contractual arrangements and the absence of a central Independent System Operator or Regional Transmission Organization in the northwest.

Kiliccote, Sila; Piette, Mary Ann; Dudley, Junqiao

2010-03-17T23:59:59.000Z

123

Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Section 3.6 Technology Validation  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Validation Technology Validation Multi-Year Research, Development and Demonstration Plan Page 3.6 - 1 3.6 Technology Validation The Technology Validation sub-program tests, demonstrates, and validates hydrogen (production, delivery, storage) and fuel cell systems and their integrated components in real-world environments. Feedback provided to the DOE hydrogen and fuel cell research and development (RD&D) projects, industry partners, and end users helps determine the additional RD&D required to move the technologies forward or to determine whether the technologies are ready for commercialization. Evaluations conducted include the following: * Applications - transportation; primary power; combined heat and power (CHP); combined

124

D&D Toolbox Project - Technology Demonstration of Fixatives Applied to Hot  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project - Technology Demonstration of Fixatives Applied Project - Technology Demonstration of Fixatives Applied to Hot Cell Facilities via Remote Sprayer Platforms D&D Toolbox Project - Technology Demonstration of Fixatives Applied to Hot Cell Facilities via Remote Sprayer Platforms Many facilities slated for D&D across the DOE complex pose hazards (radiological, chemical, and structural) which prevent the use of traditional manual techniques. D&D Toolbox Project - Technology Demonstration of Fixatives Applied to Hot Cell Facilities via Remote Sprayer Platforms More Documents & Publications Demonstration of Fixatives to Control Contamination and Accelerate D&D Demonstration of DeconGel (TM) at the Oak Ridge National Laboratory Building 2026 D&D Toolbox Project - Technology Demonstration of Fixatives Applied to Hot Cell Facilities via Remote Sprayer Platforms

125

Demonstration of Recessed Downlight Technologies: Power and Illumination Assessment  

SciTech Connect

Solid state lighting (SSL), specifically light-emitting diodes (LED), has been advancing at a rapid pace, and there are presently multiple products available that serve as direct replacements for traditional luminaires. In this demonstration, conventional recessed lights in a conference room were used to compare conventional incandescent A-lamps, incandescent reflector R-lamps, dimming compact fluorescent lamps (CFL), to an LED replacement product. The primary focus during the study was on light delivered to the task plane as provided by the power required by the lighting system. Vertical illuminance, dimming range, and color shift are also important indicators of lighting quality and are discussed in the report. The results clearly showed that LEDs, with dimming-capable drivers, are much more efficient than incandescent and CFLs. Further, LEDs provide much smoother and consistent dimming than dimmable CFLs. On the potential negative side, it is important that the dimming switch be identified as compatible with the LED driver. A wide variety of dimmer switches are capable of dimming LEDs down to 15% of full light output, while select others can be capable of dimming LEDs down to 5%. In addition, LEDs can be intensive light sources, which can result in uncomfortable glare in some applications and to some occupants. Higher ceiling (9-foot or greater) or non-specular reflectors can act to alleviate the potential for glare.

Parker, Steven A.; Beeson, Tracy A.

2009-11-20T23:59:59.000Z

126

DESTRUCTION TECHNOLOGY DEMONSTRATION FOR ORGANICS IN TRANSURANIC WASTE  

SciTech Connect

General Atomics (GA) has recently completed a Phase I program for the development of a two-step alternative to incineration for the destruction of organics in transuranic wastes at the Savannah River Site. This process is known as thermal desorption-supercritical water oxidation, or TD-SCWO. The GA TD process uses heat to volatilize and transport organics from the waste material for subsequent treatment by SCWO. SCWO oxidizes organics in a steam medium at elevated temperatures and pressures in a manner that achieves excellent destruction efficiencies and compliance with all environmental requirements without the need for complex pollution-abatement equipment. This application of TD-SCWO is focused on a full-scale batch process for 55-gallon drums of mixed transuranic waste at the Savannah River Site. The Phase I reduced-scale test results show that the process operates as intended on surrogate waste matrices chosen to be representative of Savannah River Site transuranic mixed wastes. It provides a high degree of hydrogen removal and full containment of the radionuclide surrogate, with minimal requirements for pre-treatment and post-treatment. Other test objectives were to verify that the process produces no dioxins or furans, and meets all applicable regulatory criteria for retention of toxic metals, particulate, and criteria pollutants, while meeting WIPP/WAC and TRUPACT-II requirements. Thermal desorption of surrogate SRS mixed wastes at 500 psi and 1000 F met all tested requirements for WIPP/WAC and TRUPACT-II. SCWO of the desorbed surrogate organic materials at 500 psi and 1500 F also appears to meet all requirements for a nonincineration alternative, although >99.99% DRE for chlorinated solvents has not yet been demonstrated.

Mike Spritzer

2003-02-01T23:59:59.000Z

127

Small Scale SOFC Demonstration Using Bio-Based and Fossil Fuels - Technology Management, Inc.  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Scale SOFC Demonstration Using Small Scale SOFC Demonstration Using Bio-based and Fossil Fuels-Technology Management, Inc. Background In this congressionally directed project, Technology Management, Inc. (TMI) will develop and demonstrate a residential scale prototype solid oxide fuel cell (SOFC) system at end-user sites. These small-scale systems would operate continuously on either conventional or renewable biofuels, producing cost effective, uninterruptible

128

{open_quotes}A status report on the Clean Coal Technology Demonstration Program{close_quotes}  

SciTech Connect

The Clean Coal Technology Demonstration Program (also referred to as the CCT Program) is a government and industry co-funded technology development effort to demonstrate a new generation of innovative coal utilization processes in a series of large-scale {open_quotes}showcase{close_quotes} facilities built across the country. The program takes the most promising, advanced coal-based technologies and moves them into the commercial marketplace through demonstration. These demonstrations are on a scale large enough to generate all the data, from design, construction and operation, that are necessary for the private sector to judge commercial potential and make informed, confident decisions on commercial readiness. The projects in the program are demonstrating technologies capable of being applied to the U.S. coal resource base and encompass advanced electric power generation systems, high-performance pollution control devices, coal processing for clean fuels and industrial applications.

Miller, C.L.; Uthus, D. [Clean Coal Technology Program, Washington, DC (United States); Huber, D.; Hoppe, J. [Burns and Roe Enterprises, Inc., Fairfax, VA (United States)

1993-12-31T23:59:59.000Z

129

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Section 3.6 Technology Validation  

Energy.gov (U.S. Department of Energy (DOE))

Technology Validation technical plan section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated July 2013. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

130

Demonstrated Petroleum Reduction Using Oil Bypass Filter Technology on Heavy and Light Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Demonstrated Petroleum Demonstrated Petroleum Reduction Using Oil Bypass Filter Technology on Heavy and Light Vehicles James Francfort (PI) Timothy Murphy Larry Zirker Oil Bypass Filter Technology Evaluation * Funded by the U.S. Department of Energy's FreedomCAR & Vehicle Technologies Program * Performed by Idaho National Engineering and Environmental Laboratory (INEEL) Fleet Operations * Goal - Support DOE's efforts to reduce petroleum consumption & ensure the energy security of the United States Oil Bypass Filter Technology Evaluation * Objectives - Test the concept of using oil bypass filters to minimize engine oil changes & the generation of waste oils - Demonstration the economics of oil bypass filter systems - Estimate potential engine oil saving from bypass filter technologies that can be achieved by INEEL,

131

Reducing Plug Loads in Office Spaces: Hawaii and Guam Energy Improvement Technology Demonstration Project  

SciTech Connect

As part of its overall strategy to meet its energy goals, the Naval Facilities Engineering Command (NAVFAC) partnered with the Department of Energy's National Renewable Energy Laboratory (NREL) to rapidly demonstrate and deploy cost-effective renewable energy and energy efficiency technologies. This project was one of several demonstrations of new or underutilized commercial energy technologies. The common goal was to demonstrate and measure the performance and economic benefit of the system while monitoring any ancillary impacts to related standards of service and operation and maintenance (O&M) practices. In short, demonstrations at naval facilities simultaneously evaluate the benefits and compatibility of the technology with the U.S. Department of Defense (DOD) mission, and with NAVFAC's design, construction, operations, and maintenance practices, in particular. This project demonstrated the performance of commercially available advanced power strips (APSs) for plug load energy reductions in building A4 at Joint Base Pearl Harbor-Hickam (JBPHH), Hawaii.

Sheppy, M.; Metzger, I.; Cutler, D.; Holland, G.; Hanada, A.

2014-01-01T23:59:59.000Z

132

LED Lamp Project Lights the Way to Flicker-Free Replacement Jade Sky Technologies and UC Davis's California Lighting Technology Center demonstrate the  

E-Print Network (OSTI)

, 2014 ­ Jade Sky Technologies ("JST"), a clean-tech start-up manufacturer of LED Technologies and UC Davis's California Lighting Technology Center demonstrate the lighting Specification. JST collaborated with UC Davis's California Lighting Technology Center

California at Davis, University of

133

Clean Coal Power Initiative Round 1 Demonstration Projects Applying Advanced Technologies to Lower Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

7 JUNE 2012 7 JUNE 2012 Clean Coal Power Initiative Round 1 Demonstration Projects Applying Advanced Technologies to Lower Emissions and Improve Efficiency 2 Cover Photos: * Top left: Great River Energy's Coal Creek Station * Top right: We Energy's Presque Isle Power Plant * Bottom: Dynegy's Baldwin Energy Complex A report on three projects conducted under separate cooperative agreements between the U.S. Department of Energy and: * Great River Energy * NeuCo. , Inc. * WeEnergies 3 Executive Summary 4 Clean Coal Technology Demonstration Program 5 CCPI Program 6 Demonstration of Integrated Optimization Software at

134

Waste-to-Energy: Hawaii and Guam Energy Improvement Technology Demonstration Project  

SciTech Connect

The National Renewable Energy Laboratory (NREL) and the U.S. Navy have worked together to demonstrate new or leading-edge commercial energy technologies whose deployment will support the U.S. Department of Defense (DOD) in meeting its energy efficiency and renewable energy goals while enhancing installation energy security. This is consistent with the 2010 Quadrennial Defense Review report1 that encourages the use of 'military installations as a test bed to demonstrate and create a market for innovative energy efficiency and renewable energy technologies coming out of the private sector and DOD and Department of Energy laboratories,' as well as the July 2010 memorandum of understanding between DOD and the U.S. Department of Energy (DOE) that documents the intent to 'maximize DOD access to DOE technical expertise and assistance through cooperation in the deployment and pilot testing of emerging energy technologies.' As part of this joint initiative, a promising waste-to-energy (WTE) technology was selected for demonstration at the Hickam Commissary aboard the Joint Base Pearl Harbor-Hickam (JBPHH), Hawaii. The WTE technology chosen is called high-energy densification waste-to-energy conversion (HEDWEC). HEDWEC technology is the result of significant U.S. Army investment in the development of WTE technology for forward operating bases.

Davis, J.; Gelman, R.; Tomberlin, G.; Bain, R.

2014-03-01T23:59:59.000Z

135

Arid sites stakeholder participation in evaluating innovative technologies: VOC-Arid Site Integrated Demonstration  

SciTech Connect

Developing and deploying innovative environmental cleanup technologies is an important goal for the U.S. Department of Energy (DOE), which faces challenging remediation problems at contaminated sites throughout the United States. Achieving meaningful, constructive stakeholder involvement in cleanup programs, with the aim of ultimate acceptance of remediation decisions, is critical to meeting those challenges. DOE`s Office of Technology Development sponsors research and demonstration of new technologies, including, in the past, the Volatile Organic Compounds Arid Site Integrated Demonstration (VOC-Arid ID), hosted at the Hanford Site in Washington State. The purpose of the VOC-Arid ID has been to develop and demonstrate new technologies for remediating carbon tetrachloride and other VOC contamination in soils and ground water. In October 1994 the VOC-Arid ID became a part of the Contaminant Plume Containment and Remediation Focus Area (Plume Focus Area). The VOC Arid ID`s purpose of involving stakeholders in evaluating innovative technologies will now be carried on in the Plume Focus Area in cooperation with Site Technology Coordination Groups and Site Specific Advisory Boards. DOE`s goal is to demonstrate promising technologies once and deploy those that are successful across the DOE complex. Achieving that goal requires that the technologies be acceptable to the groups and individuals with a stake in DOE facility cleanup. Such stakeholders include groups and individuals with an interest in cleanup, including regulatory agencies, Native American tribes, environmental and civic interest groups, public officials, environmental technology users, and private citizens. This report documents the results of the stakeholder involvement program, which is an integral part of the VOC-Arid ID.

Peterson, T.S.; McCabe, G.H.; Brockbank, B.R. [and others

1995-05-01T23:59:59.000Z

136

Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery Technology (October 2012)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

East Penn Manufacturing East Penn Manufacturing American Recovery and Reinvestment Act (ARRA) Grid-Scale Energy Storage Demonstration Using UltraBattery ® Technology Demonstrating new lead-acid battery and capacitor energy storage technology to improve grid performance East Penn Manufacturing, through its subsidiary Ecoult, has designed and constructed an energy storage facility consisting of an array of UltraBattery ® modules integrated in a turnkey battery energy storage system. The UltraBattery ® technology is a significant breakthrough in lead-acid energy storage technology. It is a hybrid device containing both an ultracapacitor and a battery in a common electrolyte, providing significant advantages over traditional energy storage devices. The system is selling up to 3 MW of frequency regulation to PJM Interconnection's grid.

137

Arid site characterization and technology assessment: Volatile Organic Compounds-Arid Integrated Demonstration  

SciTech Connect

The US Department of Energy`s (DOE`s) Volatile Organic Compounds-Arid Integrated Demonstration (VOC-Arid ID) program was initiated in March 1991 to evaluate technologies for all phases of remediation of VOCs in soils and groundwater at DOE arid/semiarid sites. The primary site for field demonstrations under the VOC-Arid ID program is the Hanford Site. The purpose of this report is to describe (1) the bases for technologies currently under evaluation in the VOC-Arid ID program; (2) the types of subsurface contamination at DOE arid/semiarid sites; and (3) the areas of potential common technology interests based on perceived technology needs at other DOE sites. This report was compiled by Pacific Northwest Laboratory in response to DOE`s Office of Technology Development`s mission to carry out an aggressive program to accelerate the development and implementation of new and existing technologies to meet a 30-year goal set by DOE in June 1989 to clean up all of its sites and to bring all sites into compliance with current and future environmental regulations. A key component of this program is the development of technologies that are better, faster, safer, and cheaper than those technologies currently available. Included in this report are an evaluation of technologies currently (fiscal year 1993) being pursued at the Hanford Site under the auspices of the VOC-Arid ID program, an assessment of subsurface contaminants at arid/semiarid sites, a summarization of technologies under consideration at other DOE sites, a discussion of areas of potential common technology interests, and the conclusions. Also included are a summary of the extent of contamination at the DOE arid/semiarid sites under consideration and a bibliography of source documents from which this report was prepared.

Riley, R.G.

1993-06-01T23:59:59.000Z

138

Mixed Waste Focus Area alternative oxidation technologies development and demonstration program  

SciTech Connect

The Mixed Waste Focus Area (MWFA) is currently supporting the development and demonstration of several alternative oxidation technology (AOT) processes for treatment of combustible mixed low-level wastes. The impetus for this support derives from regulatory and political hurdles frequently encountered by traditional thermal techniques, primarily incinerators. AOTs have been defined as technologies that destroy organic material without using open-flame reactions. Whether thermal or nonthermal, the processes have the potential advantages of relatively low-volume gaseous emissions, generation of few or no dioxin/furan compounds, and operation at low enough temperatures that metals (except mercury) and most radionuclides are not volatilized. Technology development and demonstration are needed to confirm and realize the potential of AOTs and to compare them on an equal basis with their fully demonstrated thermal counterparts. AOTs include both thermal and nonthermal processes that oxidize organic wastes but operate under significantly different physical and chemical conditions than incinerators. Nonthermal processes currently being studied include Delphi DETOX and acid digestion at the Savannah River Site, and direct chemical oxidation at Lawrence Livermore National Laboratory. All three technologies are at advanced stages of development or are entering the demonstration phase. Nonflame thermal processes include catalytic chemical oxidation, which is being developed and deployed at Lawrence Berkeley National Laboratory, and team reforming, a commercial process being supported by Department of Energy. Related technologies include two low-flow, secondary oxidation processes (Phoenix and Thermatrix units) that have been tested at MSE, Inc., in Butte, Montana. Although testing is complete on some AOT technologies, most require additional support to complete some or all of the identified development objectives. Brief descriptions, status, and planned paths forward for each of the technologies are presented.

Borduin, L.C. [Los Alamos National Lab., NM (United States); Fewell, T.; Gombert, D.; Priebe, S. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States)

1998-07-01T23:59:59.000Z

139

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Appendix C: Hydrogen Quality  

Energy.gov (U.S. Department of Energy (DOE))

Appendix C: Hydrogen Quality section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated February 2012. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

140

Demonstrating and Deploying Integrated Retrofit Technologies and Solutions- 2014 BTO Peer Review  

Energy.gov (U.S. Department of Energy (DOE))

Presenter: Mark Stutman, Consortium for Building Energy Innovation The Penn State Consortium for Building Energy Innovation focuses on the development, demonstration, and deployment of energy-saving technologies and solutions that can achieve 50% energy reduction in small- and medium-sized commercial buildings (SMSCBs).

Note: This page contains sample records for the topic "dg technologies demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Technology needs for remediation: Hanford and other DOE sites. Buried Waste Integrated Demonstration Program  

SciTech Connect

Technologies are being developed under the Buried Waste Integrated Demonstration (BWID) program to facilitate remediation of the US Department of Energy`s (DOE) buried and stored low-level radioactive, transuranic (TRU), and mixed radioactive and hazardous buried wastes. The BWID program is being coordinated by the Idaho National Engineering Laboratory (INEL) in southeastern Idaho, a DOE site that has large volumes of buried radioactive wastes. The program is currently focusing its efforts on the problems at INEL`s Subsurface Disposal Area (SDA) of the Radioactive Waste Management Complex (RWMC). As specific technologies are successfully demonstrated, they will be available for transfer to applications at other DOE buried waste sites. The purpose of this study is to present buried waste technology needs that have been identified for DOE sites other than INEL.

Stapp, D.C.

1993-01-01T23:59:59.000Z

142

Explosive ordinance disposal technology demonstration using the telerobotic small emplacement excavator  

SciTech Connect

The small emplacement excavator (SEE) is a ruggedized military vehicle with backhoe and front loader used by the US Army for explosive ordinance disposal (EOD), combat engineer, and general utility excavation activities. In order to evaluate the feasibility of removing personnel from the vehicle during the high risk EOD excavation tasks a development and demonstration project was initiated to evaluate performance capabilities of the SEE under telerobotic control. This feasibility study was performed at the request of the Ordinance Missile and Munitions Center and School (OMMCS) at the Redstone Arsenal to help define requirements for further joint service development activities. Development of a telerobotic SEE (TSEE) was performed by the Oak Ridge National Laboratory (ORNL) in a project funded jointly by the US Army Project Manager for Ammunition Logistics (PM-AMMOLOG) and the Department of Energy (DOE) Office of Technology Development (OTD) Robotics Technology Development Program (RTDP). A technology demonstration of the TSEE was conducted at McKinley Range, Redstone Arsenal, Huntsville, Alabama, on September 13--17, 1993. The primary objective of the demonstration was to evaluate and demonstrate the feasibility of remote EOD. During the demonstration, approximately 40 EOD specialists were instructed on telerobotic operation of the TSEE and then were asked to complete a series of simulated EOD tasks. Upon completion of the tasks, participants completed an evaluation of the system including human factors performance data.

Burks, B.L.; Killough, S.M.; Thompson, D.H.; Dinkins, M.A. [Oak Ridge National Lab., TN (United States). Robotics & Process Systems Div.

1994-06-01T23:59:59.000Z

143

FY94 Office of Technology Development Mixed Waste Operations Robotics Demonstration  

SciTech Connect

The Department of Energy (DOE) Office of Technology Development (OTD) develops technologies to help solve waste management and environmental problems at DOE sites. The OTD includes the Robotics Technology Development Program (RTDP) and the Mixed Waste Integrated Program (MWIP). Together these programs will provide technologies for DOE mixed waste cleanup projects. Mixed waste contains both radioactive and hazardous constituents. DOE sites currently store over 240,000 cubic meters of low level mixed waste and cleanup activities will generate several hundred thousand more cubic meters. Federal and state regulations require that this waste must be processed before final disposal. The OTD RTDP Mixed Waste Operations (MWO) team held several robotic demonstrations at the Savannah River Site (SRS) during November of 1993. Over 330 representatives from DOE, Government Contractors, industry, and universities attended. The MWO team includes: Fernald Environmental Management Project (FEMP), Idaho National Engineering Laboratory (INEL), Lawrence Livermore National Laboratory (LLNL), Oak Ridge National Engineering Laboratory (ORNL), Sandia National Laboratory (SNL), and Savannah River Technology Center (SRTC). SRTC is the lead site for MWO and provides the technical coordinator. The primary demonstration objective was to show that robotic technologies can make DOE waste facilities run better, faster, more cost effective, and safer. To meet the primary objective, the demonstrations successfully showed the following remote waste drum processing activities: non-destructive drum examination, drum transportation, drum opening, removing waste from a drum, characterize and sort waste items, scarify metal waste, and inspect stored drums. To further meet the primary objective, the demonstrations successfully showed the following remote waste box processing activities: swing free crane control, workcell modeling, and torch standoff control.

Kriikku, E.M.

1994-08-30T23:59:59.000Z

144

Fermilab Project X nuclear energy application: Accelerator, spallation target and transmutation technology demonstration  

SciTech Connect

The recent paper 'Accelerator and Target Technology for Accelerator Driven Transmutation and Energy Production' and report 'Accelerators for America's Future' have endorsed the idea that the next generation particle accelerators would enable technological breakthrough needed for nuclear energy applications, including transmutation of waste. In the Fall of 2009 Fermilab sponsored a workshop on Application of High Intensity Proton Accelerators to explore in detail the use of the Superconducting Radio Frequency (SRF) accelerator technology for Nuclear Energy Applications. High intensity Continuous Wave (CW) beam from the Superconducting Radio Frequency (SRF) Linac (Project-X) at beam energy between 1-2 GeV will provide an unprecedented experimental and demonstration facility in the United States for much needed nuclear energy Research and Development. We propose to carry out an experimental program to demonstrate the reliability of the accelerator technology, Lead-Bismuth spallation target technology and a transmutation experiment of spent nuclear fuel. We also suggest that this facility could be used for other Nuclear Energy applications.

Gohar, Yousry; /Argonne; Johnson, David; Johnson, Todd; Mishra, Shekhar; /Fermilab

2011-04-01T23:59:59.000Z

145

COMMERCIALIZATION DEMONSTRATION OF MID-SIZED SUPERCONDUCTING MAGNETIC ENERGY STORAGE TECHNOLOGY FOR ELECTRIC UTILITYAPPLICATIONS  

SciTech Connect

As an outgrowth of the Technology Reinvestment Program of the 1990’s, an Agreement was formed between BWXT and the DOE to promote the commercialization of Superconducting Magnetic Energy Storage (SMES) technology. Business and marketing studies showed that the performance of electric transmission lines could be improved with this SMES technology by stabilizing the line thereby allowing the reserved stability margin to be used. One main benefit sought was to double the capacity and the amount of energy flow on an existing transmission line by enabling the use of the reserved stability margin, thereby doubling revenue. Also, electrical disturbances, power swings, oscillations, cascading disturbances and brown/black-outs could be mitigated and rendered innocuous; thereby improving power quality and reliability. Additionally, construction of new transmission lines needed for increased capacity could be delayed or perhaps avoided (with significant savings) by enabling the use of the reserved stability margin of the existing lines. Two crucial technical aspects were required; first, a large, powerful, dynamic, economic and reliable superconducting magnet, capable of oscillating power flow was needed; and second, an electrical power interface and control to a transmission line for testing, demonstrating and verifying the benefits and features of the SMES system was needed. A project was formed with the goals of commercializing the technology by demonstrating SMES technology for utility applications and to establish a domestic capability for manufacturing large superconducting magnets for both commercial and defense applications. The magnet had very low AC losses to support the dynamic and oscillating nature of the stabilizing power flow. Moreover, to economically interface to the transmission line, the magnet had the largest operating voltage ever made. The manufacturing of that design was achieved by establishing a factory with newly designed and acquired equipment, tooling, methods and skilled personnel. The final magnet system measured 14 feet in diameter, 10 feet in height, and weighed about 35 tons. The superconducting magnet and design technology was successfully implemented and demonstrated. The project was not successfully concluded however; as the critical planned final demonstration was not achieved. The utilities could not understand or clarify their future business needs and the regulatory requirements, because of the deregulation policies and practices of the country. Much uncertainty existed which prevented utilities from defining business plans, including asset allocation and cost recovery. Despite the technical successes and achievements, the commercial development could not be implemented and achieved. Thus, the demonstration of this enhancement to the utility’s transmission system and to the reliability of the nation’s electrical grid was not achieved. The factory was ultimately discontinued and the technology, equipment and product were placed in storage.

CHARLES M. WEBER

2008-06-24T23:59:59.000Z

146

GammaCam Technology Demonstration at ORNL Buildings 3026C and 3026D  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oak Ridge National Laboratory Tennessee GammaCam TM Technology Demonstration at ORNL Buildings 3026C and 3026D Challenge Buildings 3026C and 3026D at the Oak Ridge National Laboratory (ORNL) are in an advanced stage of deterioration. Rainwater damage and physical aging have reduced the structural integrity of these facilities to the point where human entry is restricted. Consequently, most activities within these facilities have ceased, including internal surveillance and maintenance. Characterization of contaminants of concern both inside and near the building is problematic. Technology is needed to remotely detect and quantify radiological contamination in facilities/spaces not fit for human entry due to physical, chemical or radiological

147

A design study for a medium-scale field demonstration of the viscous barrier technology  

SciTech Connect

This report is the design study for a medium-scale field demonstration of Lawrence Berkeley National Laboratory`s new subsurface containment technology for waste isolation using a new generation of barrier liquids. The test site is located in central California in a quarry owned by the Los Banos Gravel Company in Los Banos, California, in heterogeneous unsaturated deposits of sand, silt, and -ravel typical of many of the and DOE cleanup sites and particularly analogous to the Hanford site. The coals of the field demonstration are (a) to demonstrate the ability to create a continuous subsurface barrier isolating a medium-scale volume (30 ft long by 30 ft wide by 20 ft deep, i.e. 1/10th to 1/8th the size of a buried tank at the Hanford Reservation) in the subsurface, and (b) to demonstrate the continuity, performance, and integrity of the barrier.

Moridis, G. [Lawrence Berkeley National Lab., CA (United States); Yen, P. [Bechtel Corp., San Francisco, CA (United States); Persoff, P.; Finsterle, S.; Williams, P.; Myer, L.; Pruess, K. [Lawrence Berkeley National Lab., CA (United States)

1996-09-01T23:59:59.000Z

148

The Purpose and Value of Successful Technology Demonstrations Â… The Energy Independence and Security Act of 2007 Demonstrations  

NLE Websites -- All DOE Office Websites (Extended Search)

- Race for Investment - Race for Investment by Steve Pullins, Team Leader, DOE/NETL Modern Grid Strategy It seems to be clear from the investment data that private investment and consumer investment is rapidly taking place in the energy technology space, even if utilities don't invest in this space. Tom Friedman's Energy Technology At GridWeek 2008, Tom Friedman shared from his new book, "Hot, Flat, and Crowded" about the emerging ET revolution, meaning Energy Technology. He related how ET is transformational like IT (information technology) has been over the last 25 years. As I thought about this during his presentation, it seemed to me that there is a connection with the Edge Movement that we are seeing today in the electricity sector. The Edge Movement is the high speed innovation and investment evident at the edge of the

149

DOE`s Innovative Treatment Remediation Demonstration Program accelerating the implementation of innovative technologies  

SciTech Connect

A program to help accelerate the adoption and implementation of new and innovative remediation technologies has been initiated by the Department of Energy`s (DOE) Environmental Restoration Program Office (EM40). Developed as a Public-Private Partnership program in cooperation with the US Environmental Protection Agency`s (EPA) Technology Innovation Office (TIO) and coordinated by Sandia National Laboratories, the Innovative Treatment Remediation Demonstration (ITRD) Program attempts to reduce many of the classic barriers to the use of new technologies by involving government, industry, and regulatory agencies in the assessment, implementation, and validation of innovative technologies. In this program, DOE facilities work cooperatively with EPA, industry, national laboratories, and state and federal regulatory agencies to establish remediation demonstrations using applicable innovative technologies at their sites. Selected innovative technologies are used to remediate small, one to two acre, sites to generate the full-scale and real-world operating, treatment performance, and cost data needed to validate these technologies and gain acceptance by industry and regulatory agencies, thus accelerating their use nationwide. Each ITRD project developed at a DOE site is designed to address a typical soil or groundwater contamination issue facing both DOE and industry. This includes sites with volatile organic compound (VOC), semi-VOC, heavy metal, explosive residue, and complex or multiple constituent contamination. Projects are presently underway at three DOE facilities, while additional projects are under consideration for initiation in FY96 at several additional DOE sites. A brief overview of the ITRD Program, program plans, and the status and progress of existing ITRD projects are reviewed in this paper.

Hightower, M.

1995-08-01T23:59:59.000Z

150

Microsoft PowerPoint - Progress in Battery Swapping Technology and Demonstration in China  

NLE Websites -- All DOE Office Websites (Extended Search)

ProgressinBatterySwapping ProgressinBatterySwapping TechnologyandDemonstrationinChina Jianfeng Hua Email: huajf@tsinghua.edu.cn Tel: 010-62789570 2 Outline Background Battery Swapping Demonstration in China Conclusion 3 HowtorefuelforElectricalVehicle? AC Charging DC Charging Battery Swapping ï‚— Duetothelimiteddrivingrangeofelectricalvehicle, therefuelforalongdistancedrivingisanessential

151

Long-Term Demonstration of Sorbent Enhancement Additive Technology for Mercury Control  

NLE Websites -- All DOE Office Websites (Extended Search)

Long-Term DemonsTraTion of sorbenT Long-Term DemonsTraTion of sorbenT enhancemenT aDDiTive TechnoLogy for mercury conTroL Background The 2005 Clean Air Mercury Rule will require significant reductions in mercury emissions from coal-fired power plants. The combustion of subbituminous coals typically results in higher fractions of elemental mercury emissions than the combustion of bituminous coals. This complicates mercury capture efforts, particularly for technologies using powdered activated carbon (PAC) injection, because elemental mercury is not readily captured by PAC injection alone. In short, unmodified PACs are better suited for bituminous coals than for subbituminous coals. Various proprietary sorbent enhancement additives (SEA) have been developed to increase the mercury reactivity of PACs, and perhaps fly

152

Technology summary of the in situ bioremediation demonstration (methane biostimulation) via horizontal wells at the Savannah River Site Integrated Demonstration Project  

SciTech Connect

The US Department of Energy, Office of Technology Development, has been sponsoring full-scale environmental restoration technology demonstrations for the past 4 years. The Savannah River Site Integrated Demonstration focuses on ``Clean-up of Soils ad Groundwater Contaminated with Chlorinated VOCs.`` Several laboratories including our own had demonstrated the ability of methanotrophic bacteria to completely degrade or mineralize chlorinated solvents, and these bacteria were naturally found in soil and aquifer material. Thus the test consisted of injection of methane mixed with air into the contaminated aquifer via a horizontal well and extraction from the vadose zone via a parallel horizontal well.

Hazen, T.C.; Looney, B.B.; Fliermans, C.B.; Eddy-Dilek, C.A. [Westinghouse Savannah River Co., Aiken, SC (United States); Lombard, K.H. [Bechtel Savannah River, Inc., Aiken, SC (United States); Enzien, M.V. [Argonne National Lab., IL (United States); Dougherty, J.M. [US Environmental Protection Agency, Irving, TX (United States); Wear, J. [Catawba State Coll., Salisbury, NC (United States)

1994-06-01T23:59:59.000Z

153

The Mobile Test and Demonstration Unit, A Cooperative Project Between EPRI, Utilities and Industry to Demonstrate New Water Treatment Technologies  

E-Print Network (OSTI)

and has demonstrated that membrane processes like MF, UF, NF and RO can successfully be applied to remove BOD and TSS from process streams, often recovering valuable solids, reducing sewer charges and meeting environmental regulations....

Strasser, J.; Mannapperuma, J.

154

Clean Coal Technology Demonstration Program: Project fact sheets 2000, status as of June 30, 2000  

SciTech Connect

The Clean Coal Technology Demonstration Program (CCT Program), a model of government and industry cooperation, responds to the Department of Energy's (DOE) mission to foster a secure and reliable energy system that is environmentally and economically sustainable. The CCT Program represents an investment of over $5.2 billion in advanced coal-based technology, with industry and state governments providing an unprecedented 66 percent of the funding. With 26 of the 38 active projects having completed operations, the CCT Program has yielded clean coal technologies (CCTs) that are capable of meeting existing and emerging environmental regulations and competing in a deregulated electric power marketplace. The CCT Program is providing a portfolio of technologies that will assure that U.S. recoverable coal reserves of 274 billion tons can continue to supply the nation's energy needs economically and in an environmentally sound manner. As the nation embarks on a new millennium, many of the clean coal technologies have realized commercial application. Industry stands ready to respond to the energy and environmental demands of the 21st century, both domestically and internationally, For existing power plants, there are cost-effective environmental control devices to control sulfur dioxide (S02), nitrogen oxides (NO,), and particulate matter (PM). Also ready is a new generation of technologies that can produce electricity and other commodities, such as steam and synthetic gas, and provide efficiencies and environmental performance responsive to global climate change concerns. The CCT Program took a pollution prevention approach as well, demonstrating technologies that remove pollutants or their precursors from coal-based fuels before combustion. Finally, new technologies were introduced into the major coal-based industries, such as steel production, to enhance environmental performance. Thanks in part to the CCT Program, coal--abundant, secure, and economical--can continue in its role as a key component in the U.S. and world energy markets. The CCT Program also has global importance in providing clean, efficient coal-based technology to a burgeoning energy market in developing countries largely dependent on coal. Based on 1997 data, world energy consumption is expected to increase 60 percent by 2020, with almost half of the energy increment occurring in developing Asia (including China and India). By 2020, energy consumption in developing Asia is projected to surpass consumption in North America. The energy form contributing most to the growth is electricity, as developing Asia establishes its energy infrastructure. Coal, the predominant indigenous fuel, in that region will be the fuel of choice in electricity production. The CCTs offer a means to mitigate potential environmental problems associated with unprecedented energy growth, and to enhance the U.S. economy through foreign equipment sales and engineering services.

NONE

2000-09-01T23:59:59.000Z

155

Notice of Intent to Issue FOA DE-FOA-0001224: Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations  

Energy.gov (U.S. Department of Energy (DOE))

The Office of Energy Efficiency and Renewable Energy (EERE) intends to issue, on behalf of the Fuel Cell Technologies Office (FCTO), a Funding Opportunity Announcement (FOA) entitled “Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations.”

156

DEMONSTRATION OF A FULL-SCALE RETROFIT OF THE ADVANCED HYBRID PARTICULATE COLLECTOR TECHNOLOGY  

SciTech Connect

The Advanced Hybrid Particulate Collector (AHPC), developed in cooperation between W.L. Gore & Associates and the Energy & Environmental Research Center (EERC), is an innovative approach to removing particulates from power plant flue gas. The AHPC combines the elements of a traditional baghouse and electrostatic precipitator (ESP) into one device to achieve increased particulate collection efficiency. As part of the Power Plant Improvement Initiative (PPII), this project was demonstrated under joint sponsorship from the U.S. Department of Energy and Otter Tail Power Company. The EERC is the patent holder for the technology, and W.L. Gore & Associates was the exclusive licensee for this project. The project objective was to demonstrate the improved particulate collection efficiency obtained by a full-scale retrofit of the AHPC to an existing electrostatic precipitator. The full-scale retrofit was installed on an electric power plant burning Powder River Basin (PRB) coal, Otter Tail Power Company's Big Stone Plant, in Big Stone City, South Dakota. The $13.4 million project was installed in October 2002. Project related testing concluded in December 2005. The following Final Technical Report has been prepared for the project entitled ''Demonstration of a Full-Scale Retrofit of the Advanced Hybrid Particulate Collector Technology'' as described in DOE Award No. DE-FC26-02NT41420. The report presents the operation and performance results of the system.

Tom Hrdlicka; William Swanson

2005-12-01T23:59:59.000Z

157

Waste management technology development and demonstration programs at Brookhaven National Laboratory  

SciTech Connect

Two thermoplastic processes for improved treatment of radioactive, hazardous, and mixed wastes have been developed from bench-scale through technology demonstration: polyethylene encapsulation and modified sulfur cement encapsulation. The steps required to bring technologies from the research and development stage through full-scale implementation are described. Both systems result in durable waste forms that meet current Nuclear Regulatory Commission and Environmental Protection Agency regulatory criteria and provide significant improvements over conventional solidification systems such as hydraulic cement. For example, the polyethylene process can encapsulate up to 70 wt % nitrate salt, compared with a maximum of about 20 wt % for the best hydraulic cement formulation. Modified sulfur cement waste forms containing as much as 43 wt % incinerator fly ash have been formulated, whereas the maximum quantity of this waste in hydraulic cement is 16 wt %.

Kalb, P.D.; Colombo, P.

1991-12-31T23:59:59.000Z

158

Waste management technology development and demonstration programs at Brookhaven National Laboratory  

SciTech Connect

Two thermoplastic processes for improved treatment of radioactive, hazardous, and mixed wastes have been developed from bench-scale through technology demonstration: polyethylene encapsulation and modified sulfur cement encapsulation. The steps required to bring technologies from the research and development stage through full-scale implementation are described. Both systems result in durable waste forms that meet current Nuclear Regulatory Commission and Environmental Protection Agency regulatory criteria and provide significant improvements over conventional solidification systems such as hydraulic cement. For example, the polyethylene process can encapsulate up to 70 wt % nitrate salt, compared with a maximum of about 20 wt % for the best hydraulic cement formulation. Modified sulfur cement waste forms containing as much as 43 wt % incinerator fly ash have been formulated, whereas the maximum quantity of this waste in hydraulic cement is 16 wt %.

Kalb, P.D.; Colombo, P.

1991-01-01T23:59:59.000Z

159

LONG-TERM DEMONSTRATION OF SORBENT ENHANCEMENT ADDITIVE TECHNOLOGY FOR MERCURY CONTROL  

SciTech Connect

Long-term demonstration tests of advanced sorbent enhancement additive (SEA) technologies have been completed at five coal-fired power plants. The targeted removal rate was 90% from baseline conditions at all five stations. The plants included Hawthorn Unit 5, Mill Creek Unit 4, San Miguel Unit 1, Centralia Unit 2, and Hoot Lake Unit 2. The materials tested included powdered activated carbon, treated carbon, scrubber additives, and SEAs. In only one case (San Miguel) was >90% removal not attainable. The reemission of mercury from the scrubber at this facility prevented >90% capture.

Jason D. Laumb; Dennis L. Laudal; Grant E. Dunham; John P. Kay; Christopher L. Martin; Jeffrey S. Thompson; Nicholas B. Lentz; Alexander Azenkeng; Kevin C. Galbreath; Lucinda L. Hamre

2011-05-27T23:59:59.000Z

160

Hanford Waste Vitrification Plant technical background document for best available radionuclide control technology demonstration  

SciTech Connect

This report provides the background documentation to support applications for approval to construct and operate new radionuclide emission sources at the Hanford Waste Vitrification Plant (HWVP) near Richland, Washington. The HWVP is required to obtain permits under federal and state statutes for atmospheric discharges of radionuclides. Since these permits must be issued prior to construction of the facility, draft permit applications are being prepared, as well as documentation to support these permits. This report addresses the applicable requirements and demonstrates that the preferred design meets energy, environmental, and economic criteria for Best Available Radionuclide Control Technology (BARCT) at HWVP. 22 refs., 11 figs., 25 tabs.

Carpenter, A.B.; Skone, S.S.; Rodenhizer, D.G.; Marusich, M.V. (Ebasco Services, Inc., Bellevue, WA (USA))

1990-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "dg technologies demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Solar thermal upper stage technology demonstrator liquid hydrogen storage and feed system test program  

Science Journals Connector (OSTI)

The Solar Thermal Upper Stage Technology Demonstrator (STUSTD) Liquid Hydrogen Storage and Feed System (LHSFS) Test Program is described. The test program consists of two principal phases. First an engineering characterization phase includes tests performed to demonstrate and understand the expected tank performance. This includes fill and drain; baseline heat leak; active Thermodynamic Vent System (TVS); and flow tests. After the LHSFS performance is understood and performance characteristics are determined a 30 day mission simulation test will be conducted. This test will simulate a 30 day transfer mission from low earth orbit (LEO) to geosynchronous equatorial orbit (GEO). Mission performance predictions based on the results of the engineering characterization tests will be used to correlate the results of the 30 day mission simulation.

E. C. Cady

1997-01-01T23:59:59.000Z

162

The Purpose and Value of Successful Technology Demonstrations Â… The Energy Independence and Security Act of 2007 Demonstrations  

NLE Websites -- All DOE Office Websites (Extended Search)

in Rural America in Rural America by Steve Pullins, Team Leader, DOE/NETL Modern Grid Strategy About two years ago Pat Hoffman and Eric Lightner of DOE, Steve Bossart of DOE/NETL, and I had a discussion about whether the DOE solicitations around integration of distributed systems favor large utility versus small utility participation. It was discussed as a concern because of the risk in developing an energy technology (ET) that favors one group over another. There is a lot of talk and PR on what the "big guys" are doing but what about the value to rural America? Is a Smart Grid only for the big guys? Checking Our Pulse Is rural America (electrification) sufficiently different from urban or suburban America to make a Smart Grid not valuable to them? If there is value, how can it be cost-effectively applied with

163

Demonstration of Smart Building Controls to Manage Building Peak Loads: Innovative Non-Wires Technologies  

SciTech Connect

As a part of the non-wires solutions effort, BPA in partnership with Pacific Northwest National Laboratory (PNNL) is exploring the use of two distributed energy resources (DER) technologies in the City of Richland. In addition to demonstrating the usefulness of the two DER technologies in providing peak demand relief, evaluation of remote direct load control (DLC) is also one of the primary objectives of this demonstration. The concept of DLC, which is used to change the energy use profile during peak hours of the day, is not new. Many utilities have had success in reducing demand at peak times to avoid building new generation. It is not the need for increased generation that is driving the use of direct load control in the Northwest, but the desire to avoid building additional transmission capacity. The peak times at issue total between 50 and 100 hours a year. A transmission solution to the problem would cost tens of millions of dollars . And since a ?non wires? solution is just as effective and yet costs much less, the capital dollars for construction can be used elsewhere on the grid where building new transmission is the only alternative. If by using DLC, the electricity use can be curtailed, shifted to lower use time periods or supplemented through local generation, the existing system can be made more reliable and cost effective.

Katipamula, Srinivas; Hatley, Darrel D.

2004-12-22T23:59:59.000Z

164

Demonstration of Advanced Technologies for Multi-Load Washers in Hospitality and Healthcare – Ozone Based Laundry Systems  

SciTech Connect

The objective of this demonstration project was to evaluate market-ready retrofit technologies for reducing the energy and water use of multi-load washers in healthcare and hospitality facilities. Specifically, this project evaluated laundry wastewater recycling technology in the hospitality sector and ozone laundry technology in both the healthcare and hospitality sectors. This report documents the demonstration of ozone laundry system installations at the Charleston Place Hotel in Charleston, Sout Carolina, and the Rogerson House assisted living facility in Boston, Massachusetts.

Boyd, Brian K.; Parker, Graham B.; Petersen, Joseph M.; Sullivan, Greg; Goetzler, W.; Sutherland, T. A.; Foley, K. J.

2014-08-14T23:59:59.000Z

165

Preparation for commercial demonstration of biomass-to-ethanol conversion technology. Final report  

SciTech Connect

The objective of this program was to complete the development of a commercially viable process to produce fuel ethanol from renewable cellulosic biomass. The program focused on pretreatment, enzymatic hydrolysis, and fermentation technologies where Amoco has a unique proprietary position. Assured access to low-cost feedstock is a cornerstone of attractive economics for cellulose to ethanol conversion in the 1990s. Most of Amoco`s efforts in converting cellulosic feedstocks to ethanol before 1994 focused on using paper from municipal solid waste as the feed. However, while many municipalities and MSW haulers expressed interest in Amoco`s technology, none were willing to commit funding to process development. In May, 1994 several large agricultural products companies showed interest in Amoco`s technology, particularly for application to corn fiber. Amoco`s initial work with corn fiber was encouraging. The project work plan was designed to provide sufficient data on corn fiber conversion to convince a major agriculture products company to participate in the construction of a commercial demonstration facility.

NONE

1997-07-01T23:59:59.000Z

166

Pyrolysis Autoclave Technology Demonstration Program for Treatment of DOE Solidified Organic Wastes  

SciTech Connect

In the summer of 2005, MSE Technologies Applications, Inc. (MSE) and THOR Treatment Technologies, LLC (TTT) conducted a demonstration test of the Thermal Organic Reduction (THOR{sup sm}) in-drum pyrolysis autoclave system under contract to the Department of Energy. The purpose of the test was to demonstrate that the THOR{sup sm} pyrolysis autoclave system could successfully treat solidified organic waste to remove organics from the waste drums. The target waste was created at Rocky Flats and currently resides at the Radioactive Waste Management Complex (RWMC) at the Idaho National Laboratory (INL). Removing the organics from these drums would allow them to be shipped to the Waste Isolation Pilot Plant for disposal. Two drums of simulated organic setup waste were successfully treated. The simulated waste was virtually identical to the expected waste except for the absence of radioactive components. The simulated waste included carbon tetrachloride, trichloroethylene, perchloroethylene, Texaco Regal oil, and other organics mixed with calcium silicate and Portland cement stabilization agents. The two-stage process consisted of the THOR{sup sm} electrically heated pyrolysis autoclave followed by the MSE off gas treatment system. The treatment resulted in a final waste composition that meets the requirements for WIPP transportation and disposal. There were no detectable volatile organic compounds in the treated solid residues. The destruction and removal efficiency (DRE) for total organics in the two drums ranged from >99.999% to >99.9999%. The operation of the process proved to be easily controllable using the pyrolysis autoclave heaters. Complete treatment of a fully loaded surrogate waste drum including heat-up and cooldown took place over a two-day period. This paper discusses the results of the successful pyrolysis autoclave demonstration testing. (authors)

Roesener, W.S.; Mason, J.B.; Ryan, K. [THOR Treatment Technologies, LLC, 7800 E Union Ave, Denver, CO 80237 (United States); Bryson, S. [MSE Technologies Applications, Inc., 200 Technology Way, Butte, MT 59702 (United States); Eldredge, H.B. [Eldredge Engineering, P.A., 1090 Blue Ridge Dr., Idaho Falls, ID 83402 (United States)

2006-07-01T23:59:59.000Z

167

D&D Toolbox Project - Technology Demonstration of Fixatives Applied to Hot Cell Facilities via Remote Sprayer Platforms  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Demonstration Demonstration D&D Toolbox - FIU Tech Demo FIU Technology Demonstration - Selected technology platform(s) was demonstrated at the hot cell mockup facility at the FIU's Applied Research Center tech demo site in Miami, FL. Page 1 of 2 Oak Ridge National Laboratory Tennessee Florida New York D&D Toolbox Project - Technology Demonstration of Fixatives Applied to Hot Cell Facilities via Remote Sprayer Platforms Challenge Many facilities slated for D&D across the DOE complex pose hazards (radiological, chemical, and structural) which prevent the use of traditional manual techniques. Efficient and safe D&D of the facilities will require the use of remotely operated technologies. In addition, the D&D of a hot cell facility requires that each of the hot cells be

168

Development and demonstration of advanced technologies for direct electrochemical oxidation of hydrocarbons (methanol, methane, propane)  

SciTech Connect

Direct methanol fuel cells use methanol directly as a fuel, rather than the reformate typically required by fuel cells, thus eliminating the reformer and fuel processing train. In this program, Giner, Inc. advanced development of two types of direct methanol fuel cells for military applications. Advancements in direct methanol proton-exchange membrane fuel cell (DMPEMFC) technology included developement of a Pt-Ru anode catalyst and an associated electrode structure which provided some of the highest DMPEMFC performance reported to date. Scale-up from a laboratory-scale single cell to a 5-cell stack of practical area, providing over 100 W of power, was also demonstrated. Stable stack performance was achieved in over 300 hours of daily on/off cycling. Direct methanol aqueous carbonate fuel cells were also advanced with development of an anode catalyst and successful operation at decreased pressure. Improved materials for the cell separator/matrix and the hardware were also identified.

Kosek, J.A.; LaConti, A.B.

1994-07-01T23:59:59.000Z

169

COMMERCIAL DEMONSTRATION OF THE MANUFACTURED AGGREGATE PROCESSING TECHNOLOGY UTILIZING SPRAY DRYER ASH  

SciTech Connect

Universal Aggregates, LLC proposes to design, construct and operate a lightweight aggregate manufacturing plant at the Birchwood Power Facility in King George, Virginia. The installation and start-up expenses for the Birchwood Aggregate Facility are $19.5 million. The DOE share is $7.2 million (37%) and the Universal Aggregates share is $12.3 (63%). The project team consists of CONSOL Energy Inc., P.J. Dick, Inc., SynAggs, LLC, and Universal Aggregates, LLC. The Birchwood Facility will transform 115,000 tons per year of spray dryer by-products that are currently being disposed of in an offsite landfill into 167,000 tons of a useful product, lightweight aggregates that can be used to manufacture lightweight aggregates that can be used to manufacture lightweight and medium weight masonry blocks. In addition to the environmental benefits, the Birchwood Facility will create nine (9) manufacturing jobs plus additional employment in the local trucking industry to deliver the aggregate to customers or reagents to the facility. A successful demonstration would lead to additional lightweight aggregate manufacturing facilities in the United States. There are currently twenty-one (21) spray dryer facilities operating in the United States that produce an adequate amount of spray dryer by-product to economically justify the installation of a lightweight aggregate manufacturing facility. Industry sources believe that as additional scrubbing is required, dry FGD technologies will be the technology of choice. Letters from potential lightweight aggregate customers indicate that there is a market for the product once the commercialization barriers are eliminated by this demonstration project.

Roy Scandrol

2003-10-01T23:59:59.000Z

170

COMMERCIAL DEMONSTRATION OF THE MANUFACTURED AGGREGATE PROCESSING TECHNOLOGY UTILIZING SPRAY DRYER ASH  

SciTech Connect

Universal Aggregates, LLC proposes to design, construct and operate a lightweight aggregate manufacturing plant at the Birchwood Power Facility in King George, Virginia. The installation and start-up expenses for the Birchwood Aggregate Facility are $19.5 million. The DOE share is $7.2 million (37%) and the Universal Aggregates share is $12.3 (63%). The project team consists of CONSOL Energy Inc., P.J. Dick, Inc., SynAggs, LLC, and Universal Aggregates, LLC. The Birchwood Facility will transform 115,000 tons per year of spray dryer by-products that are currently being disposed of in an offsite landfill into 167,000 tons of a useful product, lightweight aggregates that can be used to manufacture lightweight aggregates that can be used to manufacture lightweight and medium weight masonry blocks. In addition to the environmental benefits, the Birchwood Facility will create eight (8) manufacturing jobs plus additional employment in the local trucking industry to deliver the aggregate to customers or reagents to the facility. A successful demonstration would lead to additional lightweight aggregate manufacturing facilities in the United States. There are currently twenty-one (21) spray dryer facilities operating in the United States that produce an adequate amount of spray dryer by-product to economically justify the installation of a lightweight aggregate manufacturing facility. Industry sources believe that as additional scrubbing is required, dry flue gas desulfurization (FGD) technologies will be the technology of choice. Letters from potential lightweight aggregate customers indicate that there is a market for the product once the commercialization barriers are eliminated by this demonstration project.

Roy Scandrol

2003-04-01T23:59:59.000Z

171

European Commission DG ENV Soil biodiversity: functions, threats and  

E-Print Network (OSTI)

European Commission DG ENV Soil biodiversity: functions, threats and tools for policy makers.turbe@biois.com In association with #12;2 European Commission - DG ENV Soil biodiversity: functions, threats and tools for policy Putten, Eric Labouze, and Shailendra Mudgal. Soil biodiversity: functions, threats and tools for policy

Paris-Sud XI, Université de

172

EIS-0282: McIntosh Unit 4 TCFB Demonstration Project, Clean Coal Technology Program, Lakeland, Florida (also see EIS-0304)  

Energy.gov (U.S. Department of Energy (DOE))

The proposed project, selected under DOE’s Clean Coal Technology Program, would demonstrate both Pressurized Circulating Fluidized Bed (PCFB) and Topped PCFB technologies. The proposed project would involve the construction and operation of a nominal 238 MWe (megawatts of electric power) combined-cycle power plant designed to burn a range of low- to high-sulfur coals.

173

Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

174

Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity  

Energy.gov (U.S. Department of Energy (DOE))

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

175

Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

176

Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks  

Energy.gov (U.S. Department of Energy (DOE))

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

177

Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

178

Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

179

Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity  

Energy.gov (U.S. Department of Energy (DOE))

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

180

Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity  

Energy.gov (U.S. Department of Energy (DOE))

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

Note: This page contains sample records for the topic "dg technologies demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Poster on Subsurface Technology & Engineering Research, Development, and Demonstration Crosscut (SubTER)  

Energy.gov (U.S. Department of Energy (DOE))

A new DOE Subsurface Crosscut, known as SubTER, coalesces energy technologies that use the subsurface for energy production, storage, and waste management.

182

Report to Congress on the Use of the Waste Isolation Pilot Plant to Develop and Demonstrate Transparency Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

the the Use of the Waste Isolation Pilot Plant to Develop and Demonstrate Transparency Technologies Introduction This report describes the Department of Energy's plan for evaluating the use of the Waste Isolation Pilot Plant (WIPP) repository system to develop transparency technologies. This report fulfills the requirement of Senate Report 106-50 on the National Defense Authorization Act for Fiscal Year 2000 for the Department of Energy (DOE) to develop a plan to establish a nuclear waste disposal demonstration test bed facility. Congressional Request In Report 106-50 the Senate Armed Services Committee directed DOE to develop a plan to establish a demonstration and training program using the WIPP repository system as a test bed facility to develop transparent monitoring technologies for waste storage

183

The Value of Distributed Generation (DG) under Different Tariff Structures  

Open Energy Info (EERE)

The Value of Distributed Generation (DG) under Different Tariff Structures The Value of Distributed Generation (DG) under Different Tariff Structures Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Value of Distributed Generation (DG) under Different Tariff Structures Focus Area: Renewable Energy Topics: Socio-Economic Website: eetd.lbl.gov/ea/emp/reports/60589.pdf Equivalent URI: cleanenergysolutions.org/content/value-distributed-generation-dg-under Language: English Policies: "Regulations,Financial Incentives" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. Regulations: Utility/Electricity Service Costs This report examines the standby tariff structures recently implemented in New York as a result of utilities feelings toward distributed generation

184

New Technology Demonstration of Microturbine with Heat Recovery at Fort Drum, New York  

SciTech Connect

This report replaces PNNL-14417 and documents a project to demonstrate and evaluate a combined heat and power-configured microturbine system.

Friedrich, Michele; Armstrong, Peter R.; Smith, David L.

2004-04-30T23:59:59.000Z

185

An Act to Facilitate Testing and Demonstration of Renewable Ocean Energy Technology (Maine)  

Energy.gov (U.S. Department of Energy (DOE))

This law streamlines and coordinates State permitting and submerged lands leasing requirements for renewable ocean energy demonstration projects, aiding Maine's goal to become an international...

186

Demonstration: The Key to Technology Transfer in the Field of Energy Conservation in the UK  

E-Print Network (OSTI)

Technology transfer has been one of the most intractable problems faced on a worldwide basis. The problem is particularly acute in the field of energy efficiency because none of the 3 major parties involved, the researcher, the manufacturer...

Carter, D. E. F.; Lawrence, J. E.

1983-01-01T23:59:59.000Z

187

DOE Announces Restructured FutureGen Approach to Demonstrate CCS Technology at Multiple Clean Coal Plants  

Energy.gov (U.S. Department of Energy (DOE))

Affirms Commitment to Clean Coal Technology Investments; Requests $648 Million for Coal Research, Development and Deployment for FY09 Budget - Largest Coal Budget Request in more than 25 years...

188

Vehicle Technologies Office Merit Review 2014: Zero-Emission Heavy-Duty Drayage Truck Demonstration  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by South Coast Air Quality Management District at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

189

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Appendix B: Input/Output Matrix  

Energy.gov (U.S. Department of Energy (DOE))

Appendix B: Input/Output Matrix section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated July 2013. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

190

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Section 1.0 Introduction  

Energy.gov (U.S. Department of Energy (DOE))

Introduction section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated March 2013. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

191

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Section 3.9 Market Transformation  

Energy.gov (U.S. Department of Energy (DOE))

Market Transformation technical plan section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated July 2013. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

192

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Section 5.0 Systems Integration  

Energy.gov (U.S. Department of Energy (DOE))

Systems Integration section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated July 2013. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

193

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Section 3.1 Hydrogen Production  

Energy.gov (U.S. Department of Energy (DOE))

Hydrogen Production technical plan section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated October 2014. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

194

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Section 3.5 Manufacturing R&D  

Energy.gov (U.S. Department of Energy (DOE))

Manufacturing R&D technical plan section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated October 2014. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

195

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Section 6.0 Program Management  

Energy.gov (U.S. Department of Energy (DOE))

Program Management section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated August 2012. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

196

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Section 4.0 Systems Analysis  

Energy.gov (U.S. Department of Energy (DOE))

Systems Analysis section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated October 2014. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

197

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Section 3.8 Education and Outreach  

Energy.gov (U.S. Department of Energy (DOE))

Education and Outreach technical plan section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration (MYRD&D) Plan; updated July 2013. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

198

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Section 3.0 Technical Plan  

Energy.gov (U.S. Department of Energy (DOE))

Technical Plan section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated May 2012. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

199

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Section 2.0 Program Benefits  

Energy.gov (U.S. Department of Energy (DOE))

Program Benefits section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated August 2012. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

200

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Section 3.2 Hydrogen Delivery  

Energy.gov (U.S. Department of Energy (DOE))

Hydrogen Delivery technical plan section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated October 2014. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

Note: This page contains sample records for the topic "dg technologies demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Section 3.3 Hydrogen Storage  

Energy.gov (U.S. Department of Energy (DOE))

Hydrogen Storage technical plan section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated October 2014. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

202

TOPIC Brief BUILDING TECHNOLOGIES PROGRAM BIM and Demonstrating Code Compliance TOPIC BRIEF 1  

NLE Websites -- All DOE Office Websites (Extended Search)

BIM and Demonstrating Code Compliance TOPIC BRIEF 1 BIM and Demonstrating Code Compliance TOPIC BRIEF 1 Building Information Modeling and Demonstrating Code Compliance Demonstrating or verifying compliance with codes, standards, or other criteria governing building design is achieved through a set of specific tasks. These include producing construction documents; providing specifications for the products, materials, equipment, and systems to be used; and describing how they come together to create the envisioned building. W hen building construction documents and specifications are produced, they should include all information necessary to prescribe how the building is to be constructed. Plans and specifications should be readily usable to verify compliance with prescriptive requirements of codes, standards, or other desired

203

Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Section 4.0 Systems Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems Analysis Systems Analysis Multi-Year Research, Development and Demonstration Plan Page 4 - 1 4.0 Systems Analysis The Fuel Cell Technologies Program (FCT Program) conducts a coordinated, comprehensive effort in modeling and analysis to clarify where hydrogen and fuel cells can be most effective from an economic, environmental, and energy security standpoint, as well as to guide RD&D priorities and set program goals. These activities support the FCT Program's decision- making process by evaluating technologies and pathways and determining technology gaps, risks, and benefits. The Systems Analysis sub-program works at all levels of the program, including technology analysis for specific sub-programs, policy and infrastructure analysis, and high-level implementation and

204

EECBG Success Story: Resourceful Kansas Puts Energy Efficient Technology on Display, Demonstrates Cost-Saving Benefits  

Energy.gov (U.S. Department of Energy (DOE))

As one of the windiest states in the country, Kansas is a great place to harness wind and solar power. Through the Department of Energy's Energy Efficiency and Conservation Block Grant program, the Resourceful Kansas team is teaching the rest of the state about all the technologies that are out there. Learn more.

205

An Underground Storage Tank Integrated Demonstration report. Volume 1, Waste Characterization Data and Technology Development Needs Assessment  

SciTech Connect

The Waste Characterization Data and Technology Development Needs Assessment provides direct support to the Underground Storage Tank Integrated Demonstration (UST-ID). Key users of the study`s products may also include individuals and programs within the US Department of Energy (DOE) Office of Technology Development (EM-50), the Office of Waste Operations (EM-30), and the Office of Environmental Restoration (EM-40). The goal of this work is to provide the UST-ID with a procedure for allocating funds across competing characterization technologies in a timely and defensible manner. It resulted in three primary products: 1. It organizes and summarizes information on underground storage tank characterization data needs. 2. It describes current technology development activity related to each need and flags areas where technology development may be beneficial. 3. It presents a decision process, with supporting software, for evaluating, prioritizing, and integrating possible technology development funding packages. The data presented in this document can be readily updated as the needs of the Waste Operations and Environmental Restoration programs mature and as new and promising technology development options emerge.

Quadrel, M.J.; Hunter, V.L.; Young, J.K. [Pacific Northwest Lab., Richland, WA (United States); Lini, D.C.; Goldberg, C. [Westinghouse Hanford Co., Richland, WA (United States)

1993-04-01T23:59:59.000Z

206

An Update of the U.S. Clean Coal Technology Demonstration Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Office of Fossil Energy, U.S. Department ol Energy Office of Fossil Energy, U.S. Department ol Energy Notable First Annual Clean Coal Conference -Technology Developers Linked with Wide Range of Users- Clean Coal Briefs MuchoftheDepartmentofEnergy's tftmtion this summer in the Clean 7oal Technology Program focused on L series of public "scoping" meetings hat were held across the nation. These nettings are one of the first steps aded for the Department to com- ~IeteanEnvironmentalImpactState- nent. a comprehensive analysis re- luired by the National Environmen- ,a1 Policy Act (NEPA) for certain mjects. While a requirement of law, hex meetings--as well as the entire 'JEPA process-provide excellent opportunities for the Department and he industrial project sponsors to work with local communities, both educat-

207

An Update of the U.S. Clean Coal Technology Demonstration Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Ofiice of Fossil Energy, U.S. Department of Energy Ofiice of Fossil Energy, U.S. Department of Energy Clean Coal Briefs Progress continued in the program this quarteras Southern Company Servic- es' SCR test project became the 23rd government/industry cooperative ven- ture to move into operations (see story p, 7). Look for results and other data in future issues of Clean Coul Today. Tthe Second Annual Clean Coal Technology Conference was held in Atlanta,GA,fromSeptember7-9,1993. This year's conference attracted a large number of overseas visitors who are interested in learning more about the clean coal technologies being demon- strated in the United States. Special thanks to the Southern States Energy Board for its help and hospitality this year, and to Georgia Power Company for its kind hospitality during the tour of

208

Roadmap for Research, Development, and Demonstration of Instrumentation, Controls, and Human-Machine Interface Technologies  

SciTech Connect

Instrumentation, controls, and human-machine interfaces are essential enabling technologies that strongly influence nuclear power plant performance and operational costs. The nuclear power industry is currently engaged in a transition from traditional analog-based instrumentation, controls, and human-machine interface (ICHMI) systems to implementations employing digital technologies. This transition has primarily occurred in an ad hoc fashion through individual system upgrades at existing plants and has been constrained by a number of concerns. Although international implementation of evolutionary nuclear power plants and the progression toward new plants in the United States have spurred design of more fully digital plant-wide ICHMI systems, the experience base in the nuclear power application domain is limited. Additionally, design and development programs by the U.S. Department of Energy (DOE) for advanced reactor concepts, such as the Generation IV Program and Next Generation Nuclear Plant (NGNP), introduce different plant conditions and unique plant configurations that increase the need for enhanced ICHMI capabilities to fully achieve programmatic goals related to economic competitiveness, safety and reliability, sustainability, and proliferation resistance and physical protection. As a result, there are challenges that need to be addressed to enable the nuclear power industry to effectively and efficiently complete the transition to safe and comprehensive use of digital technology.

Miller, Don W.; Arndt, Steven A.; Bond, Leonard J.; Dudenhoeffer, Donald D.; Hallbert, Bruce P.; Holcomb, David E.; Wood, Richard T.; Naser, Joseph A.; O'Hara, John M.; Quinn, Edward L.

2008-06-01T23:59:59.000Z

209

First-of-its-Kind Carbon Capture and Conversion Demonstration Technology Opening in Texas  

Energy.gov (U.S. Department of Energy (DOE))

WASHINGTON D.C. — Today, the Department of Energy and Skyonic Corporation marked the opening of a major project demonstration for converting carbon dioxide (CO2) into commercial products. This new plant will use a first-of-its-kind process to capture 75,000 tons of CO2 from a San Antonio, Texas, cement plant and convert the greenhouse gas into other products, including sodium carbonate and sodium bicarbonate, hydrochloric acid and bleach.

210

Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Appendix E: Acronyms  

NLE Websites -- All DOE Office Websites (Extended Search)

E - Acronyms E - Acronyms Multi-Year Research, Development and Demonstration Plan Page E - 1 Appendix E - Acronyms AEI Advanced Energy Initiative AEO Annual Energy Outlook AFC Alkaline Fuel Cell AHJ Authorities Having Jurisdiction AMFC Alkaline Membrane Fuel Cells AMR Annual Merit Review ANL (DOE) Argonne National Laboratory APU Auxiliary Power Unit ARRA American Recovery and Reinvestment Act of 2009 ASES American Solar Energy Society ASME American Society of Mechanical Engineers AST Accelerated Stress Test ASTM American Society for Testing and Materials ATP Adenosine-5'-Triphosphate Bchl Bacteriochlorophyll BES (DOE Office of) Basic Energy Sciences BEV Battery Electric Vehicle BNL (DOE) Brookhaven National Laboratory BOP Balance of Plant

211

Pilot-Scale Demonstration of Pefi's Oxygenated Transportation Fuels Production Technology  

SciTech Connect

Coal-cleaning processes have been utilized to increase the heating value of coal by extracting ash-forming minerals in the coal. These processes involve the crushing or grinding of raw coal followed by physical separation processes, taking advantage of the density difference between carbonaceous particles and mineral particles. In addition to the desired increase in the heating value of coal, a significant reduction of the sulfur content of the coal fed to a combustion unit is effected by the removal of pyrite and other sulfides found in the mineral matter. WRI is assisting PulseWave to develop an alternate, more efficient method of liberating and separating the undesirable mineral matter from the carbonaceous matter in coal. The approach is based on PulseWave's patented resonance disintegration technology that reduces that particle size of materials by application of destructive resonance, shock waves, and vortex generating forces. Illinois No.5 coal, a Wyodak coal, and a Pittsburgh No.8 coal were processed using the resonance disintegration apparatus then subjected to conventional density separations. Initial microscopic results indicate that up to 90% of the pyrite could be liberated from the coal in the machine, but limitations in the density separations reduced overall effectiveness of contaminant removal. Approximately 30-80% of the pyritic sulfur and 30-50% of the mercury was removed from the coal. The three coals (both with and without the pyritic phase separated out) were tested in WRI's 250,000 Btu/hr Combustion Test Facility, designed to replicate a coal-fired utility boiler. The flue gases were characterized for elemental, particle bound, and total mercury in addition to sulfur. The results indicated that pre-combustion cleaning could reduce a large fraction of the mercury emissions.

None

2005-05-01T23:59:59.000Z

212

Assessment of Carbon Tetrachloride Groundwater Transport in Support of the Hanford Carbon Tetrachloride Innovative Technology Demonstration Program  

SciTech Connect

Groundwater modeling was performed in support of the Hanford Carbon Tetrachloride Innovative Treatment Remediation Demonstration (ITRD) Program. The ITRD program is facilitated by Sandia National Laboratory for the Department of Energy Office of Science and Technology. This report was prepared to document the results of the modeling effort and facilitate discussion of characterization and remediation options for the carbon tetrachloride plume among the ITRD participants. As a first step toward implementation of innovative technologies for remediation of the carbon tetrachloride (CT) plume underlying the 200-West Area, this modeling was performed to provide an indication of the potential impact of the CT source on the compliance boundary approximately 5000 m distant. The primary results of the modeling bracket the amount of CT source that will most likely result in compliance/non-compliance at the boundary and the relative influence of the various modeling parameters.

Truex, Michael J.; Murray, Christopher J.; Cole, Charles R.; Cameron, Richard J.; Johnson, Michael D.; Skeen, Rodney S.; Johnson, Christian D.

2001-07-13T23:59:59.000Z

213

Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration (MYRDD) Plan - Section 1.0: Introduction  

NLE Websites -- All DOE Office Websites (Extended Search)

Introduction Introduction Multi-Year Research, Development and Demonstration Plan Page 1 - 1 Multi-Year Research, Development and Demonstration Plan Page 1 - 1 1.0 Introduction The U. S. Department of Energy's (DOE's or the Department's) hydrogen and fuel cell efforts are part of a broad portfolio of activities to build a competitive and sustainable clean energy economy to secure the nation's energy future. Reducing greenhouse gas emissions 80 percent by 2050 1 and eliminating dependence on imported fuel will require the use of diverse domestic energy sources and advanced fuels and technologies in all sectors of the economy. Achieving these goals requires a robust, comprehensive research and development (R&D) portfolio that balances short-term

214

Technological assessment of light-trapping technology for thin-film Si solar cell.  

E-Print Network (OSTI)

??The proposed light trapping technology of Distributed Bragg Reflector (DBR) with Diffraction Grating (DG) and Anti-Reflection Coating (ARC) for thin film Si solar cell was… (more)

Susantyoko, Rahmat Agung

2009-01-01T23:59:59.000Z

215

Advanced industrial gas turbine technology readiness demonstration. Quarterly technical progress report No. 12, 1 December 1979-29 February 1980  

SciTech Connect

The component technology base required for improved industrial gas turbine conversion efficiency is discussed. Specific goals are to demonstrate the high-pressure compressor and turbine cooling technologies required to achieve industrial gas turbine efficiencies of 34 to 36% simple cycle and 45 to 48% in combined cycle operation while reducing the number of compressor and turbine parts 80% over state-of-the-art units. The approach involves combining some of the most advanced aircraft turbine cooling and high-pressure compressor technology with the simplicity and ruggedness required of industrial engines to achieve not only improved performance, but also increased durability and low initial cost. The program currently consists of two phases. Phase I, which has been completed, included the conceptual definition of an industrial gas turbine capable of meeting the above goals and the aerothermodynamic designs of compressor and turbine component test rigs. Phase II, which is in progress, consists of component validation testing of the high-pressure compressor and turbine cooling designs which evolved in Phase I. During this quarter, work continued on Phase II, Task III - Compressor Rig Assembly and Test. Assembly of the compressor rig has been completed and final preparation of the rig for transporting to the test facility is in progress.

none,

1980-03-20T23:59:59.000Z

216

Optimum Capacity Allocation of DG Units Based on Unbalanced Three-phase Optimal Power Flow  

E-Print Network (OSTI)

of distributed generation (DG). Some positive support benefits of DG installation are system energy loss distribution system planning is necessary. Adnan Anwar and H. R. Pota are with the School of Engineering for determining opti- mum generation capacity of multiple distributed generation (DG) units is presented

Pota, Himanshu Roy

217

Summary report of the drilling technologies tested at the Integrated Demonstration Project for cleanup of organic contaminants in soils and groundwater at non-arid sites  

SciTech Connect

The Department of Energy`s Office of Technology Development initiated an integrated demonstration of innovative technologies and systems for cleanup of volatile organic compounds in soil and groundwater at SRS. The overall goal of the program is the demonstration of multiple technologies and systems in the fields of drilling, characterization, monitoring, and remediation at a single test bed. Horizontal environmental well installation technology was one of the remediation technologies that was demonstrated at SRS. Four distinctly different systems of directional drilling and horizontal well installations were successfully demonstrated and evaluated. The four systems were developed in the petroleum industry, the river crossing industry, and the utility industry. The transfer of information concerning the horizontal environmental well installations has been facilitated by publishing a series of reports describing each individual demonstration. This is the final report in the series and provides a comprehensive evaluation of all four systems. The objectives of this report are to summarize the strengths and weaknesses of each drilling technology, describe and compare the problems encountered by each drilling technology, compare the compatibility of each technology with varying logistical and geological conditions, and discuss the expense of using each technology. This report is designed to be a horizontal environmental well reference document for the environmental remediation industry. An environmental problem holder may use this report to evaluate a directional drilling technology for use at his/her site.

Not Available

1993-11-01T23:59:59.000Z

218

DG Fairhaven Power Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Fairhaven Power Biomass Facility Fairhaven Power Biomass Facility Jump to: navigation, search Name DG Fairhaven Power Biomass Facility Facility DG Fairhaven Power Sector Biomass Owner Marubeni Sustainable Energy Location Eureka, California Coordinates 40.8020712°, -124.1636729° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.8020712,"lon":-124.1636729,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

219

The Waste Isolation Pilot Plant - An International Center of Excellence for ''Training in and Demonstration of Waste Disposal Technologies''  

SciTech Connect

The Waste Isolation Pilot Plant (WIPP) site, which is managed and operated by the United States (U.S.) Department of Energy (USDOE) Carlsbad Field Office (CBFO) and located in the State of New Mexico, presently hosts an underground research laboratory (URL) and the world's first certified and operating deep geological repository for safe disposition of long-lived radioactive materials (LLRMs). Both the URL and the repository are situated approximately 650 meters (m) below the ground surface in a 250-million-year-old, 600-m-thick, undisturbed, bedded salt formation, and they have been in operation since 1982 and 1999, respectively. Founded on long-standing CBFO collaborations with international and national radioactive waste management organizations, since 2001, WIPP serves as the Center of Excellence in Rock Salt for the International Atomic Energy Agency's (IAEA's) International Network of Centers on ''Training in and Demonstration of Waste Disposal Technologies in Underground Research Facilities'' (the IAEA Network). The primary objective for the IAEA Network is to foster collaborative projects among IAEA Member States that: supplement national efforts and promote public confidence in waste disposal schemes; contribute to the resolution of key technical issues; and encourage the transfer and preservation of knowledge and technologies.

Matthews, Mark L.; Eriksson, Leif G.

2003-02-25T23:59:59.000Z

220

The DOE Wide Area Measurement System (WAMS) Project: Demonstration of dynamic information technology for the future power system  

SciTech Connect

In 1989 the Bonneville Power Administration (BPA) and the Western Area Power Administration (WAPA) joined the US Department of Energy (DOE) in an assessment of longer-term research and development needs for future electric power system operation. The effort produced a progressively sharper vision of a future power system in which enhanced control and operation are the primary means for serving new customer demands, in an environment where increased competition, a wider range of services and vendors, and much narrower operating margins all contribute to increased system efficiencies and capacity. Technology and infrastructure for real time access to wide area dynamic information were identified as critical path elements in realizing that vision. In 1995 the DOE accordingly launched the Wide Area Measurement System (WAMS) Project jointly with the two Power Marketing Administrations (PMAs) to address these issues in a practical operating environment--the western North America power system. The Project draws upon many years of PMA effort and related collaboration among the western utilities, plus an expanding infrastructure that includes regionally involved contractors, universities, and National Laboratories plus linkages to the Electric Power Research Institute (EPRI). The WAMS project also brings added focus and resources to the evolving Western System Dynamic Information Network, or WesDINet. This is a collective response of the Western Systems Coordinating Council (WSCC) member utilities to their shared needs for direct information about power system characteristics, model fidelity, and operational performance. The WAMS project is a key source of the technology and backbone communications needed to make WesDINet a well integrated, cost effective enterprise network demonstrating the role of dynamic information technology in the emerging utility environment.

Mittelstadt, W.A. [USDOE Bonneville Power Administration, Portland, OR (United States); Krause, P.E.; Wilson, R.E. [USDOE Western Area Power Administration, Golden, CO (United States); Overholt, P.N. [USDOE, Washington, DC (United States); Sobajic, D.J. [Electric Power Research Inst., Palo Alto, CA (United States); Hauer, J.F. [Pacific Northwest National Lab., Richland, WA (United States); Rizy, D.T. [Oak Ridge National Lab., TN (United States)

1996-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "dg technologies demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Bench-scale demonstration of hot-gas desulfurization technology. Quarterly report, October 1 - December 31, 1994  

SciTech Connect

The U.S. Department of Energy (DOE), Morgantown Energy Technology Center (METC), is sponsoring research in advanced methods for controlling contaminants in hot coal gasifier gas (coal gas) streams of integrated gasification combined-cycle (IGCC) power systems. The programs focus on hot-gas particulate removal and desulfurization technologies that match or nearly match the temperatures and pressures of the gasifier, cleanup system, and power generator. The work seeks to eliminate the need for expensive heat recovery equipment, reduce efficiency losses due to quenching, and minimize wastewater treatment costs. Hot-gas desulfurization research has focused on regenerable mixed-metal oxide sorbents which can reduce the sulfur in coal gas to less than 20 ppmv and can be regenerated in a cyclic manner with air for multicycle operation. Zinc titanate (Zn{sub 2}TiO{sub 4} or ZnTiO{sub 3}), formed by a solid-state reaction of zinc (ZnO) and titanium dioxide (TiO{sub 2}), is currently one of the leading sorbents. This report summarizes the highlights and accomplishments of the October slipstream test run of the Zinc Titanate Fluid Bed Desulfurization/Direct Sulfur Recovery Process (ZTFBD/DSRP) Mobile Laboratory at the Department of Energy`s Morgantown Energy Technology Center. Although the run had to be shortened due to mechanical problems with METC`s gasifier, there was sufficient on-stream time to demonstrate highly successful operation of both the zinc titanate fluid bed desulfurization and the DSRP with actual coal gas.

NONE

1994-12-31T23:59:59.000Z

222

GATEWAY Demonstrations  

Energy.gov (U.S. Department of Energy (DOE))

DOE GATEWAY demonstrations showcase high-performance LED products for general illumination in a variety of commercial and residential applications. Demonstration results provide real-world experience and data on state-of-the-art solid-state lighting (SSL) product performance and cost effectiveness. These results connect DOE technology procurement efforts with large-volume purchasers and provide buyers with reliable data on product performance.

223

Demonstration of Air-Power-Assist Engine Technology for Clean Combustion and Direct Energy Recovery in Heavy Duty Application  

SciTech Connect

The first phase of the project consists of four months of applied research, starting from September 1, 2005 and was completed by December 31, 2005. During this time, the project team heavily relied on highly detailed numerical modeling techniques to evaluate the feasibility of the APA technology. Specifically, (i) A GT-Power{sup TM}engine simulation model was constructed to predict engine efficiency at various operating conditions. Efficiency was defined based on the second-law thermodynamic availability. (ii) The engine efficiency map generated by the engine simulation was then fed into a simplified vehicle model, which was constructed in the Matlab/Simulink environment, to predict fuel consumption of a refuse truck on a simple collection cycle. (iii) Design and analysis work supporting the concept of retrofitting an existing Sturman Industries Hydraulic Valve Actuation (HVA) system with the modifications that are required to run the HVA system with Air Power Assist functionality. A Matlab/Simulink model was used to calculate the dynamic response of the HVA system. Computer aided design (CAD) was done in Solidworks for mechanical design and hydraulic layout. At the end of Phase I, 11% fuel economy improvement was predicted. During Phase II, the engine simulation group completed the engine mapping work. The air handling group made substantial progress in identifying suppliers and conducting 3D modelling design. Sturman Industries completed design modification of the HVA system, which was reviewed and accepted by Volvo Powertrain. In Phase II, the possibility of 15% fuel economy improvement was shown with new EGR cooler design by reducing EGR cooler outlet temperature with APA engine technology from Air Handling Group. In addition, Vehicle Simulation with APA technology estimated 4 -21% fuel economy improvement over a wide range of driving cycles. During Phase III, the engine experimental setup was initiated at VPTNA, Hagerstown, MD. Air Handling system and HVA system were delivered to VPTNA and then assembly of APA engine was completed by June 2007. Functional testing of APA engine was performed and AC and AM modes testing were completed by October 2007. After completing testing, data analysis and post processing were performed. Especially, the models were instrumental in identifying some of the key issues with the experimental HVA system. Based upon the available engine test results during AC and AM modes, the projected fuel economy improvement over the NY composite cycle is 14.7%. This is close to but slightly lower than the originally estimated 18% from ADVISOR simulation. The APA project group demonstrated the concept of APA technology by using simulation and experimental testing. However, there are still exists of technical challenges to meet the original expectation of APA technology. The enabling technology of this concept, i.e. a fully flexible valve actuation system that can handle high back pressure from the exhaust manifold is identified as one of the major technical challenges for realizing the APA concept.

Hyungsuk Kang; Chun Tai

2010-05-01T23:59:59.000Z

224

EC MoDeRn Project: In-situ Demonstration of Innovative Monitoring Technologies for Geological Disposal - 12053  

SciTech Connect

Monitoring to provide information on the evolution of geological disposal presents several challenges. The 4-year, euros M 5, EC MoDeRn Project (http://www.modern-fp7.eu/), which commenced in 2009, addresses monitoring processes, state-of-the-art technology and innovative research and development of monitoring techniques. This paper discusses some of the key drivers for the development of innovative monitoring techniques and provides outlines of the demonstration programmes being conducted within MoDeRn. The aim is to develop these innovative monitoring techniques and to demonstrate them under realistic conditions present in underground laboratories. These demonstration projects, applying a range of different monitoring techniques, are being carried out at underground research facilities in different geological environments at HADES URL in Belgium (plastic clay), Bure in France (indurated clay) and at Grimsel Test Site (granite) in Switzerland. These are either built upon existing infrastructure (EC ESDRED Low pH shotcrete and TEM experiments at Grimsel; and PRACLAY experiment and underground galleries in HADES) or will be attached to infrastructure that is being developed and financed by resources outside of this project (mock-up disposal cell in Bure). At Grimsel Test Site, cross-hole and hole-to-tunnel seismic methods are being employed as a means to monitor induced changes in an artificially saturated bentonite wall confined behind a shotcrete plug. Recognising the limitations for travel-time tomography for monitoring a disposal cell, full waveform inversion techniques are being employed to enhance the capacity to monitor remote from the excavation. At the same Grimsel location, an investigation will be conducted of the potential for using a high frequency wireless (HFW) sensor network embedded within the barrier system; this will include the possibility of providing energy remotely to isolated sensors. At the HADES URL, the monitoring programme will utilise the PRACLAY gallery equipped to simulate a disposal gallery for heat-generating high-level waste evaluating fibre-optic based sensing techniques, including distributed sensing for thermal distribution and long-term reliability in harsh conditions. It also includes the potential to improve the treatment of signals from micro-seismic monitoring to enable enhanced understanding of the evolution around the gallery following its excavation due to ventilation, saturation and heating, and to image a water-bearing concretion layer. HADES URL will also be used to test wireless techniques to transmit monitoring data from the underground to the surface. The main focus of this contribution is to evaluate magneto-inductive data transmission; and to optimise energy usage. At the Bure underground facility in France, monitoring systems have been developed and will be embedded into the steel liner for the mock-up high-level waste disposal tunnel. The aim of this programme is to establish the capacity to conduct integrated monitoring activities inside the disposal cell, on the cell liner and in the near-field and to assess the capability of the monitoring to withstand construction and liner emplacement procedures. These projects, which are supported by focused development and testing of the monitoring systems, will allow the testing of both the effectiveness of these techniques applied to disposal situations and to understand the limits of these monitoring technologies. This approach should also enhance the confidence of key stakeholders in the ability to understand/confirm the changes occurring within a disposal cell. In addition, remote or 'non-intrusive' monitoring technologies are evaluated to provide a means of enhancing understanding of what is occurring in an isolated disposal cell. The projects also test solutions for embedded monitoring systems in challenging (risk of damage) situations. The outputs from this work will lead to improved understanding of these state-of-the-art techniques and allow focused development of those techniques beneficial to future monitoring progr

Breen, B.J. [NDA, Herdus House, Westlakes Science and Technology Park, Moor Row, Cumbria, CA24 3HU (United Kingdom); Garcia-Sineriz, J.L. [AITEMIN, c/Margarita Salas 14-Parque Leganes Tecnologico-Leganes, ES-28918, Madrid (Spain); Maurer, H. [ETH Zurich, ETH Honggerberg, CH-8093, Zurich (Switzerland); Mayer, S. [ANDRA, 1-7 rue Jean-Monnet, F-92298 Chatenay-Malabry cedex (France); Schroeder, T.J. [NRG, P.O. Box 25, NL-1755 ZG Petten (Netherlands); Verstricht, J. [EURIDICE EIG, c/o SCK.CEN, Boeretang 200, BE-2400 Mol (Belgium)

2012-07-01T23:59:59.000Z

225

WATER VAPOR IN THE PROTOPLANETARY DISK OF DG Tau  

SciTech Connect

Water is key in the evolution of protoplanetary disks and the formation of comets and icy/water planets. While high-excitation water lines originating in the hot inner disk have been detected in several T Tauri stars (TTSs), water vapor from the outer disk, where most water ice reservoirs are stored, was only reported in the nearby TTS TW Hya. We present spectrally resolved Herschel/HIFI observations of the young TTS DG Tau in the ortho- and para-water ground-state transitions at 557 and 1113 GHz. The lines show a narrow double-peaked profile, consistent with an origin in the outer disk, and are {approx}19-26 times brighter than in TW Hya. In contrast, CO and [C II] lines are dominated by emission from the envelope/outflow, which makes H{sub 2}O lines a unique tracer of the disk of DG Tau. Disk modeling with the thermo-chemical code ProDiMo indicates that the strong UV field, due to the young age and strong accretion of DG Tau, irradiates a disk upper layer at 10-90 AU from the star, heating it up to temperatures of 600 K and producing the observed bright water lines. The models suggest a disk mass of 0.015-0.1 M{sub Sun }, consistent with the estimated minimum mass of the solar nebula before planet formation, and a water reservoir of {approx}10{sup 2}-10{sup 3} Earth oceans in vapor and {approx}100 times larger in the form of ice. Hence, this detection supports the scenario of ocean delivery on terrestrial planets by the impact of icy bodies forming in the outer disk.

Podio, L.; Dougados, C.; Thi, W.-F.; Menard, F.; Pinte, C. [UJF-Grenoble 1/CNRS-INSU, Institut de Planetologie et d'Astrophysique de Grenoble (IPAG) UMR 5274, F-38041 Grenoble (France); Kamp, I.; Meijerink, R.; Spaans, M.; Aresu, G. [Kapteyn Astronomical Institute, University of Groningen, Landleven 12, 9747 AD Groningen (Netherlands); Codella, C. [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Florence (Italy); Cabrit, S. [LERMA, UMR 8112 du CNRS, Observatoire de Paris, Ecole Normale Superieure, Universite Pierre et Marie Curie, Universite de Cergy-Pontoise, 61 Av. de l'Observatoire, F-75014 Paris (France); Nisini, B. [INAF-Osservatorio Astronomico di Roma, via di Frascati 33, I-00040 Monte Porzio Catone (Italy); Sandell, G. [SOFIA-USRA, NASA Ames Research Center, MS 232-12, Building N232, Rm. 146, P.O. Box 1, Moffett Field, CA 94035-0001 (United States); Williams, J. P. [Institute for Astronomy (IfA), University of Hawaii, 2680 Woodlawn Dr., Honolulu, HI 96822 (United States); Testi, L. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Woitke, P. [SUPA, School of Physics and Astronomy, University of St. Andrews, KY16 9SS (United Kingdom)

2013-03-20T23:59:59.000Z

226

DOE/EA-1449; Commercial Demonstration of the Manufactured Aggregate Processing Technology Utilizing Spray Dryer Ash, King George County, Virginia (August 2002)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9 9 ENVIRONMENTAL ASSESSMENT Commercial Demonstration of the Manufactured Aggregate Processing Technology Utilizing Spray Dryer Ash, King George County, Virginia United States Department of Energy National Energy Technology Laboratory August 2002 Commercial Demonstration of the Manufactured Aggregate Processing Technology Utilizing Spray-dryer Ash, King George County, Virginia ENVIRONMENTAL ASSESSMENT 2 National Environmental Policy Act (NEPA) Compliance Cover Sheet Proposed Action: The proposed action is for the U.S. Department of Energy (DOE) to provide cost- shared financial support to Universal Aggregates, LLC, for the design, construction, and operation of a lightweight aggregate manufacturing plant at the Mirant-Birchwood Power Plant Facility (Mirant-Birchwood Facility) in King George County, Virginia.

227

Cummins SuperTruck Program- Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

228

Cummins SuperTruck Program- Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks  

Energy.gov (U.S. Department of Energy (DOE))

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

229

Cummins SuperTruck Program- Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

230

Vehicle Technologies Office Merit Review 2014: Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Peterbilt at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the technology and system level...

231

Vehicle Technologies Office Merit Review 2014: Development and Demonstration of a Fuel-Efficient Class 8 Highway Vehicle  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Volvo Trucks at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the development and...

232

SPACE-R thermionic space nuclear power system: Design and technology demonstration. Monthly report for 1 August 1994--1 September 1994  

SciTech Connect

The objective of this program is to design, develop, demonstrate, and advance the technology for thermionic space nuclear power system (TI-SNPS) to meet key functional requirements with reliable 5{approximately}40 kWe output and 18-month near-term/10-year long-term goals. A 40 kWe TI-SNPS point design will be prepared, and key technologies and critical components supporting that design will be validated. This program will produce an assessed design of a 40 kWe-EOL space nuclear power system. Phase 1 will provide for the performance of parametric trade studies and demonstration of key technologies, resulting in a preferred conceptual design for the TI-SNPS. The focus of the tasks is technology validation drive by the system design.

Not Available

1994-10-01T23:59:59.000Z

233

DG Demonetz Validierung (Smart Grid Project) | Open Energy Information  

Open Energy Info (EERE)

Demonetz Validierung (Smart Grid Project) Demonetz Validierung (Smart Grid Project) Jump to: navigation, search Project Name DG Demonetz Validierung Country Austria Headquarters Location Salzburg, Austria Coordinates 47.80949°, 13.05501° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.80949,"lon":13.05501,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

234

Minimizing the Cost of Innovative Nuclear Technology Through Flexibility: The Case of a Demonstration Accelerator-Driven Subcritical Reactor Park  

E-Print Network (OSTI)

Presented is a methodology to analyze the expected Levelised Cost Of Electricity (LCOE) in the face of technology uncertainty for Accelerator-Driven Subcritical Reactors (ADSRs). It shows that flexibility in the design and deployment strategy...

Cardin, Michel-Alexandre; Steer, Steven J.; Nuttall, William J.; Parks, Geoffrey T.; Gonçalves, Leonardo V.N.; de Neufville, Richard

235

Vehicle Technologies Office Merit Review 2014: SCAQMD: Plug-In Hybrid Electric Medium-Duty Commercial Fleet Demonstration and Evaluation  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by South Coast Air Quality Management District at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

236

The Solar Power Tower Jülich — A Solar Thermal Power Plant for Test and Demonstration of Air Receiver Technology  

Science Journals Connector (OSTI)

The open volumetric receiver technology allows the use of air as heat transfer medium at high temperatures in solar thermal power tower plants. It combines porous ceramic ... a strictly modular receiver design. H...

K. Hennecke; P. Schwarzbözl; G. Koll…

2009-01-01T23:59:59.000Z

237

EERE Announces Notice of Intent to Issue Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations FOA  

Energy.gov (U.S. Department of Energy (DOE))

The Office of Energy Efficiency and Renewable Energy (EERE) posted a Notice of Intent (NOI), on behalf of the Fuel Cell Technologies Office (FCTO), for a Funding Opportunity Announcement (FOA)...

238

Technological assessment of light-trapping technology for thin-film Si solar cell  

E-Print Network (OSTI)

The proposed light trapping technology of Distributed Bragg Reflector (DBR) with Diffraction Grating (DG) and Anti-Reflection Coating (ARC) for thin film Si solar cell was analyzed from the technology, market, and ...

Susantyoko, Rahmat Agung

2009-01-01T23:59:59.000Z

239

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Section 3.7 Hydrogen Safety, Codes and Standards  

Energy.gov (U.S. Department of Energy (DOE))

Hydrogen Safety, Codes and Standards technical plan section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated July 2013. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

240

SunLine Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects Fact Sheet.  

Energy.gov (U.S. Department of Energy (DOE))

Fact sheet describes the ThunderPower hydrogen fuel cell bus that was demonstrated at SunLine Transit Agency from November 2002 to February 2003. The bus was evaluated by DOE’s Advanced Vehicle Testing Activity.

Note: This page contains sample records for the topic "dg technologies demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Vehicle Technologies Office Merit Review 2014: Cummins SuperTruck Program Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Cummins Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Cummins SuperTruck...

242

Decentralized coordination through digital technology, dynamic pricing, and Customer-Driven control: the GridWise testbed demonstration project  

SciTech Connect

The project highlights the idea that technology-enabled decentralized coordination can achieve the same, or better, economic and reliability benefits when compared to utility-focused centralized physical and economic control. Among the design's unique features was a retail double auction with five-minute market-clearing intervals that included residential customers as direct, active market participants. (author)

Chassin, David P.; Kiesling, Lynne

2008-10-15T23:59:59.000Z

243

PON-10-603 Advanced Medium-and Heavy-Duty Vehicle Technologies Pre-Commercial Demonstrations Questions and Answers  

E-Print Network (OSTI)

Center for Sustainable Energy Energy Independence Now EPRI Gas Technology Institute Natural Gas Vehicle. Applicant eligibility is determined on a case-by-case basis. 1 The Energy Commission will use two databases Coalition Plug-In America San Francisco Clean City Coalition Western Propane Gas Association NOTE

244

Utility advanced turbine systems (ATS) technology readiness testing and pre-commercial demonstration. Quarterly report, April 1--June 30, 1997  

SciTech Connect

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which will be sited and operated in Phase 4. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown. This report summarizes work accomplished in 2Q97.

NONE

1997-12-31T23:59:59.000Z

245

Utility advanced turbine systems (ATS) technology readiness testing and pre-commercial demonstration. Quarterly report, January 1--March 31, 1997  

SciTech Connect

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which will be sited and operated in Phase 4. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown. This report summarizes work accomplished in 1Q97.

NONE

1997-12-31T23:59:59.000Z

246

Utility Advanced Turbine Systems (ATS) technology readiness testing and pre-commercialization demonstration. Quarterly report, October 1--December 31, 1996  

SciTech Connect

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which will be sited and operated in Phase 4. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue.

NONE

1997-06-01T23:59:59.000Z

247

PILOT-AND FULL-SCALE DEMONSTRATION OF ADVANCED MERCURY CONTROL TECHNOLOGIES FOR LIGNITE-FIRED POWER PLANTS  

SciTech Connect

North Dakota lignite-fired power plants have shown a limited ability to control mercury emissions in currently installed electrostatic precipitators (ESPs), dry scrubbers, and wet scrubbers (1). This low level of control can be attributed to the high proportions of Hg{sup 0} present in the flue gas. Speciation of Hg in flue gases analyzed as part of the U.S. Environmental Protection Agency (EPA) information collection request (ICR) for Hg data showed that Hg{sup 0} ranged from 56% to 96% and oxidized mercury ranged from 4% to 44%. The Hg emitted from power plants firing North Dakota lignites ranged from 45% to 91% of the total Hg, with the emitted Hg being greater than 85% elemental. The higher levels of oxidized mercury were only found in a fluidized-bed combustion system. Typically, the form of Hg in the pulverized and cyclone-fired units was dominated by Hg{sup 0} at greater than 85%, and the average amount of Hg{sup 0} emitted from North Dakota power plants was 6.7 lb/TBtu (1, 2). The overall objective of this Energy & Environmental Research Center (EERC) project is to develop and evaluate advanced and innovative concepts for controlling Hg emissions from North Dakota lignite-fired power plants by 50%-90% at costs of one-half to three-fourths of current estimated costs. The specific objectives are focused on determining the feasibility of the following technologies: Hg oxidation for increased Hg capture in wet and dry scrubbers, incorporation of additives and technologies that enhance Hg sorbent effectiveness in ESPs and baghouses, the use of amended silicates in lignite-derived flue gases for Hg capture, and the use of Hg adsorbents within a baghouse. The scientific approach to solving the problems associated with controlling Hg emissions from lignite-fired power plants involves conducting testing of the following processes and technologies that have shown promise on a bench, pilot, or field scale: (1) activated carbon injection (ACI) upstream of an ESP combined with sorbent enhancement, (2) Hg oxidation and control using wet and dry scrubbers, (3) enhanced oxidation at a full-scale power plant using tire-derived fuel (TDF) and oxidizing catalysts, and (4) testing of Hg control technologies in the Advanced Hybrid{trademark} filter insert.

Steven A. Benson; Charlene R. Crocker; Kevin C. Galbreath; Jay R. Gunderson; Mike J. Holmes; Jason D. Laumb; Michelle R. Olderbak; John H. Pavlish; Li Yan; Ye Zhuang; Jill M. Zola

2004-02-01T23:59:59.000Z

248

Environmental management technology demonstration and commercialization. Semi-annual progress report, April 1, 1995--October 31, 1995  

SciTech Connect

Several field-portable (e.g., gas chromatrography (GC), gas chromatography-mass spectrometry (GC-MS)) instruments are available for the measurement of organic pollutants. However, solid samples such as soils, sludges, and sediments must first be extracted before analysis can be performed. Conventional extraction methods based on liquid solvent (e.g., Soxhlet extraction) are not practical in the field because of the large volumes fo solvents required as well as clumsy apparatus and glassware. However, supercritical fluid extraction (SFE) has been demonstrated in several studies by the Energy & Environmental Research Center (EERS) to extract a broad range of organic pollutants from soils and sediments successfully. Of the approximately 100 major organic pollutants identified as problems for the US Department of Energy (DOE) sites, our SFE laboratory has demonstrated efficient SFE recoveries for about half, and published literature has addressed an additional 40%. SFE in the off-line mode (i.e., collection of extracted organics in a small voluem of liquid solvent) has also been demonstrated to be easily performed in the field with only generator electrical power for support. Recent advances in flow restrictor design have virtually eliminated the mechanical problems previously associated with the performance of SFE in the field.

NONE

1995-11-01T23:59:59.000Z

249

Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Section 3.7 Hydrogen Safety, Codes and Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety, Codes and Standards Safety, Codes and Standards Multi-Year Research, Development and Demonstration Plan Page 3.7 - 1 3.7 Hydrogen Safety, Codes and Standards The United States and many other countries have established laws and regulations that require commercial products and infrastructure to meet all applicable codes and standards to demonstrate that they are safe, perform as designed and are compatible with the systems in which they are used. Hydrogen and fuel cell technologies have a history of safe use with market deployment and commercialization underway. The Safety, Codes and Standards sub-program (SCS) facilitates deployment and commercialization of fuel cell and hydrogen technologies by developing information resources for their safe use. SCS relies on extensive input from automobile

250

An Update ofthe U.S. Clean Coal Technology Demonstration Program Office of Fossil Energy, U.S. Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Issue No. 4, Fat, ,991 3 Issue No. 4, Fat, ,991 An Update ofthe U.S. Clean Coal Technology Demonstration Program Office of Fossil Energy, U.S. Department of Energy Nine New Clean Coal Technology Projects Selected In Fourth Round of Competition Clean Coal Briefs Highlights ofthis past quarter of the Clean Coal Technology Demonstra- tion Program include the addition 01 nine new projects selected for funding under the fourth round of competition, a new $203 million cooperative agree- ment for a pressurized circulating flu- idized bed combustion plant in Des Moines, Iowa, and the kick-off of next year's planned fifth round with the announcement of public meetings (see separate stories for details). The 42 government-industry projects now in the Clean Coal Pro- gram family-with a total value ex-

251

Task 3.14 - demonstration of technologies for remote power generation in Alaska. Semi-annual report, July 1, 1996--December 31, 1996  

SciTech Connect

This paper very briefly summarizes progress in the demonstration of a small (up to 6 MWe), environmentally acceptable electric generating system fueled by indigenous fuels and waste materials to serve power distribution systems typical of Alaskan Native communities. Two detailed appendices supplement the report. The project is focused on two primary technologies: (1) atmospheric fluidized bed combustion (AFBC), and (2) coalbed methane and coal-fired diesel technologies. Two sites have been selected as possible locations for an AFBC demonstration, and bid proposals are under review. The transfer of a coal-fired diesel clean coal demonstration project from Maryland to Fairbanks, Alaska was approved, and the environmental assessment has been initiated. Federal support for a fuel cell using coalbed methane is also being pursued. The appendices included in the report provide: (1) the status of the conceptual design study for a 600-kWe coal-fired cogeneration plant in McGrath, Alaska; and (2) a global market assessment of coalbed methane, fluidized-bed combustion, and coal-fired diesel technologies in remote applications.

Jones, M.L.

1998-12-31T23:59:59.000Z

252

Oil-Free Centrifugal Hydrogen Compression Technology Demonstration - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Hooshang Heshmat Mohawk Innovative Technology, Inc. (MiTi) 1037 Watervliet Shaker Road Albany, NY 12205 Phone: (518) 862-4290 Email: HHeshmat@miti.cc DOE Managers HQ: Erika Sutherland Phone: (202) 586-3152 Email: Erika.Sutherland@ee.doe.gov GO: Katie Randolph Phone: (720) 356-1759 Email: Katie.Randolph@go.doe.gov Contract Number: DE-FG36-08GO18060 Subcontractor: Mitsubishi Heavy Industries, Ltd, Compressor Corporation, Hiroshima, Japan Project Start Date: September 25, 2008 Project End Date: May 30, 2013 Fiscal Year (FY) 2012 Objectives Design a reliable and cost-effective centrifugal compressor for hydrogen pipeline transport and delivery: Eliminate sources of oil/lubricant contamination * Increase efficiency by using high rotational speeds *

253

LIMB demonstration project extension  

SciTech Connect

The purpose of the DOE limestone injection multistage burner (LIMB) Demonstration Project Extension is to extend the data base on LIMB technology and to expand DOE's list of Clean Coal Technologies by demonstrating the Coolside process as part of the project. The main objectives of this project are: to demonstrate the general applicability of LIMB technology by testing 3 coals and 4 sorbents (total of 12 coal/sorbent combinations) at the Ohio Edison Edgewater plant; and to demonstrate that Coolside is a viable technology for improving precipitator performance and reducing sulfur dioxide emissions while acceptable operability is maintained. Progress is reported. 3 figs.

Not Available

1990-09-21T23:59:59.000Z

254

Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Section 3.2 Hydrogen Delivery  

NLE Websites -- All DOE Office Websites (Extended Search)

Technical Plan - Delivery Technical Plan - Delivery Multi-Year Research, Development and Demonstration Plan Page 3.2 - 1 3.2 Hydrogen Delivery Delivery is an essential component of any future hydrogen infrastructure. It encompasses those processes needed to transport hydrogen from a central or semi-central production facility to the final point of use and those required to load the energy carrier directly onto a given fuel cell system. Successful commercialization of hydrogen-fueled fuel cell systems, including those used in vehicles, back-up power sources, and distributed power generators, will likely depend on a hydrogen delivery infrastructure that provides the same level of safety, convenience, and functionality as existing liquid and gaseous fossil

255

NREL Demonstrates Game-Changing Air Conditioner Technology (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing of DEVAP prototype validates modeled Testing of DEVAP prototype validates modeled predictions of 40% to 85% energy savings. Researchers in the NREL Buildings group are moving the award-winning desiccant enhanced evaporative (DEVAP) air conditioning technol- ogy further toward commercialization by demonstrating that its energy-saving perfor- mance matches closely with thermodynamic model predictions. Industry partners Synapse Product Development and AIL Research built two prototypes of DEVAP based on NREL's design and modeling, which were tested in NREL's Advanced HVAC Systems Laboratory. Experiments added confidence to the predicted energy savings of 40% in humid climates and 85% in dry climates, empowering the model as a tool for developing marketable designs, and illustrating the potential of DEVAP to transform

256

Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Section 5.0 Systems Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 3.8 Page 3.8 2012 Systems Integration Multi-Year Research, Development and Demonstration Plan Page 5 - 1 5.0 Systems Integration The Systems Integration function of the DOE Hydrogen and Fuel Cells Program (the Program) provides independent, strategic, systems-level expertise and processes to enable system-level planning, data-driven decision-making, effective portfolio management, and program integration. System Integration ensures that system-level targets are developed, verified, and met and that the sub- programs are well-coordinated. Systems Integration provides tailored technical and programmatic support to ensure a disciplined approach to the research, design, development, and validation of complex systems. Systems Integration provides

257

Demonstration of New Technologies Required for the Treatment of Mixed Waste Contaminated with {ge}260 ppm Mercury  

SciTech Connect

The Resource Conservation and Recovery Act (RCRA) defines several categories of mercury wastes, each of which has a defined technology or concentration-based treatment standard, or universal treatment standard (UTS). RCRA defines mercury hazardous wastes as any waste that has a TCLP value for mercury of 0.2 mg/L or greater. Three of these categories, all nonwastewaters, fall within the scope of this report on new technologies to treat mercury-contaminated wastes: wastes as elemental mercury; hazardous wastes with less than 260 mg/kg [parts per million (ppm)] mercury; and hazardous wastes with 260 ppm or more of mercury. While this report deals specifically with the last category--hazardous wastes with 260 ppm or more of mercury--the other two categories will be discussed briefly so that the full range of mercury treatment challenges can be understood. The treatment methods for these three categories are as follows: Waste as elemental mercury--RCRA identifies amalgamation (AMLGM) as the treatment standard for radioactive elemental mercury. However, radioactive mercury condensates from retorting (RMERC) processes also require amalgamation. In addition, incineration (IMERC) and RMERC processes that produce residues with >260 ppm of radioactive mercury contamination and that fail the RCRA toxicity characteristic leaching procedure (TCLP) limit for mercury (0.20 mg/L) require RMERC, followed by AMLGM of the condensate. Waste with <260 ppm mercury--No specific treatment method is specified for hazardous wastes containing <260 ppm. However, RCRA regulations require that such wastes (other than RMERC residues) that exceed a TCLP mercury concentration of 0.20 mg/L be treated by a suitable method to meet the TCLP limit for mercury of 0.025 mg/L. RMERC residues must meet the TCLP value of {ge}0.20 mg/L, or be stabilized and meet the {ge}0.025 mg/L limit. Waste with {ge}260 ppm mercury--For hazardous wastes with mercury contaminant concentrations {ge}260 ppm and RCRA-regulated organic contaminants (other than incinerator residues), incineration or retorting (IMERC or RMERC) is the treatment standard. For wastes with mercury contaminant concentrations {ge}260 ppm that are inorganic, including incinerator and retort residues, RMERC is the treatment standard. Mercury hazardous waste contaminated with {ge}260 ppm mercury is the primary focus of this report.

Morris, M.I.

2002-02-06T23:59:59.000Z

258

Paper 0069- INVESTIGATION OF NEW DISTRIBUTION GRID ARCHITECTURE FOR ACCOMODATING HIGHER DG PENETRATION RATE  

E-Print Network (OSTI)

Environment considerations combined to regulatory incentives and the opening of the energy markets has fostered the development of distributed generator (DG) in particular renewable ones. However, given the present operating modes and grid structures, a massive introduction of DG could deeply modify the behaviour of distribution networks. The two strategies used in France by the Distribution System Operator to anticipate the problems caused by DG are either reinforcement of the network or a dedicated feeder. The first strategy is acceptable as far as a marginal rate of DG is considered but could become too expensive in presence of a large amount of DG. The dedicated feeders strategy (direct connection of DGs to the HV/MV substation) could face a problem of local constraints. Inspired by the meshed operation of transmission network, a better way to integrate those generating units could be achieved through adding loops in the distribution network at appropriate locations. In order to compare the current architecture and operation mode with a meshed structure for better enabling more DG penetration, a stochastic algorithm based on Monte Carlo method was developed. This method was tested successfully on several networks which are parts of real urban and rural ones.

unknown authors

2010-01-01T23:59:59.000Z

259

Long-Term Demonstration of Hydrogen Production from Coal at Elevated Temperatures Year 6 - Activity 1.12 - Development of a National Center for Hydrogen Technology  

SciTech Connect

The Energy & Environmental Research Center (EERC) has continued the work of the National Center for Hydrogen Technology® (NCHT®) Program Year 6 Task 1.12 project to expose hydrogen separation membranes to coal-derived syngas. In this follow-on project, the EERC has exposed two membranes to coal-derived syngas produced in the pilot-scale transport reactor development unit (TRDU). Western Research Institute (WRI), with funding from the State of Wyoming Clean Coal Technology Program and the North Dakota Industrial Commission, contracted with the EERC to conduct testing of WRI’s coal-upgrading/gasification technology for subbituminous and lignite coals in the EERC’s TRDU. This gasifier fires nominally 200–500 lb/hour of fuel and is the pilot-scale version of the full-scale gasifier currently being constructed in Kemper County, Mississippi. A slipstream of the syngas was used to demonstrate warm-gas cleanup and hydrogen separation using membrane technology. Two membranes were exposed to coal-derived syngas, and the impact of coal-derived impurities was evaluated. This report summarizes the performance of WRI’s patent-pending coalupgrading/ gasification technology in the EERC’s TRDU and presents the results of the warm-gas cleanup and hydrogen separation tests. Overall, the WRI coal-upgrading/gasification technology was shown to produce a syngas significantly lower in CO2 content and significantly higher in CO content than syngas produced from the raw fuels. Warm-gas cleanup technologies were shown to be capable of reducing sulfur in the syngas to 1 ppm. Each of the membranes tested was able to produce at least 2 lb/day of hydrogen from coal-derived syngas.

Stanislowski, Joshua; Tolbert, Scott; Curran, Tyler; Swanson, Michael

2012-04-30T23:59:59.000Z

260

The DOE Wide Area Measurement System (WAMS) Project -- Demonstration of dynamic information technology for the future power system  

SciTech Connect

In 1989 the Bonneville Power Administration (BPA) and the Western Power Administration (WAPA) joined the US Department of Energy (DOE) in an assessment of longer-term research and development needs for future electric power system operation. The effort produced a progressively sharper vision of a future power system in which enhanced control and operation are the primary means for serving new customer demands in an environment characterized by increased competition, a wider range of services and vendors, and much narrower operating margins. Technology and infrastructure for real time access to wide area dynamic information were identified as critical path elements in realizing that vision. In 1995 the DOE accordingly launched the Wide Area Measurement System (WAMS) Project jointly with the two Power Marketing Administrations (PMAs) to address these issues in a practical operating environment the western North America power system. The Project draws upon many years of PMA effort and related collaboration among the western utilities, plus an expanding infrastructure that includes regionally involved contractors, universities, and National Laboratories plus linkages to the Electric Power Research Institute (EPRI).

Mittelstadt, W.A. [Bonneville Power Administration (United States); Hauer, J.F. [Pacific Northwest Lab., Richland, WA (United States); Krause, P.E.; Wilson, R.E. [Western Power Administration (United States); Overholt, P.N. [USDOE (United States); Rizy, D.T. [Oak Ridge National Lab., TN (United States)

1995-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "dg technologies demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Demonstration and Deployment Strategy Workshop | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Demonstration and Deployment Strategy Workshop Demonstration and Deployment Strategy Workshop The Bioenergy Technologies Office's (BETO's) Demonstration and Deployment Strategy...

262

Office of Technology Development FY 1993 program summary: Office of Research and Development, Office of Demonstration, Testing and Evaluation. Revision 1  

SciTech Connect

This report summarizes significant FY93 programmatic information and accomplishments relevant to the individual activities within the Office of Technology Development Program for Research, Development, Demonstration, Testing, and Evaluation (RDDT&E). A brief discussion of the mission of the Office of Environmental Restoration and Waste Management (EM) and the Office of Technology Development is presented. An overview is presented of the major problem areas confronting DOE. These problem areas include: groundwater and soils cleanup; waste retrieval and processing; and pollution prevention. The organizational elements within EM are highlighted. An EM-50 Funding Summary for FY92 and FY93 is also provided. RDDT&E programs are discussed and their key problem areas are summarized. Three salient program-formulating concepts are explained. They are: Integrated Demonstrations, Integrated Programs, and the technology window of opportunity. Detailed information for each of the programs within RDDT&E is presented and includes a fact sheet, a list of technical task plans and an accomplishments and objectives section.

Not Available

1994-02-01T23:59:59.000Z

263

Demonstration of Selective Catalytic Reduction Technology to Control Nitrogen Oxice Emissions From High-Sulfur, Coal-Fired Boilers: A DOE Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

2000/1111 2000/1111 Demonstration of Selective Catalytic Reduction Technology to Control Nitrogen Oxide Emissions From High-Sulfur, Coal- Fired Boilers: A DOE Assessment August 1998 U.S. Department of Energy Office of Fossil Energy Federal Energy Technology Center Morgantown, WV/Pittsburgh, PA 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or respon- sibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference

264

Hydrogen Storage Materials Database Demonstration  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

| Fuel Cell Technologies Program Source: US DOE 4252011 eere.energy.gov Hydrogen Storage Materials Database Demonstration FUEL CELL TECHNOLOGIES PROGRAM Ned Stetson Storage Tech...

265

Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NOx) emissions from high-sulfur coal-fired boilers  

SciTech Connect

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor.

Not Available

1991-11-01T23:59:59.000Z

266

Hypermodular Distributed Solar Power Satellites -- Exploring a Technology Option for Near-Term LEO Demonstration and GLPO Full-Scale Plants  

E-Print Network (OSTI)

This paper presents a new and innovative design for scaleable space solar power systems based on satellite self-assembly and microwave spatial power combination. Lower system cost of utility-scale space solar power is achieved by independence of yet-to-be-built in-space assembly and transportation infrastructure. Using current and expected near-term technology, this study explores a design for near-term space solar power low-Earth orbit demonstrators and for mid-term utility-scale power plants in geosynchronous Laplace plane orbits. High-level economic considerations in the context of current and expected future launch costs are given as well.

Leitgab, Martin

2013-01-01T23:59:59.000Z

267

Demonstration and Results of Grid Integrated Technologies at the Demand to Grid Laboratory (D2G Lab): Phase I Operations Report  

E-Print Network (OSTI)

of Grid Integrated Technologies at the Demand to Gridof Grid Integrated Technologies at the Demand to GridCommercial Adoption of DR Technologies Related Activities

Ghatikar, Girish

2014-01-01T23:59:59.000Z

268

Advanced hydrogen utilization technology demonstration  

SciTech Connect

This report presents the results of a study done by Detroit Diesel Corporation (DDC). DDC used a 6V-92TA engine for experiments with hydrogen fuel. The engine was first baseline tested using methanol fuel and methanol unit injectors. One cylinder of the engine was converted to operate on hydrogen fuel, and methanol fueled the remaining five cylinders. This early testing with only one hydrogen-fueled cylinder was conducted to determine the operating parameters that would later be implemented for multicylinder hydrogen operation. Researchers then operated three cylinders of the engine on hydrogen fuel to verify single-cylinder idle tests. Once it was determined that the engine would operate well at idle, the engine was modified to operate with all six cylinders fueled with hydrogen. Six-cylinder operation on hydrogen provided an opportunity to verify previous test results and to more accurately determine the performance, thermal efficiency, and emissions of the engine.

Hedrick, J.C.; Winsor, R.E. [Detroit Diesel Corp., MI (United States)] [Detroit Diesel Corp., MI (United States)

1994-06-01T23:59:59.000Z

269

Emerging Technology Retrofit Demonstration Projects  

Energy.gov (U.S. Department of Energy (DOE))

Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

270

Current status of MHI CO2 capture plant technology, large scale demonstration project and road map to commercialization for coal fired flue gas application  

Science Journals Connector (OSTI)

(1) It is becoming increasingly evident that the prolonged utilization of fossil fuels for primary energy production, especially coal which is relatively cheap and abundant, is inevitable and that Carbon Capture and Storage (CCS) technology can significantly reduce CO2 emissions from this sector thus allowing the continued environmentally sustainable use of this important energy commodity on a global basis. (2) MHI has co-developed the Kansai Mitsubishi Carbon Dioxide Recovery Process (KM-CDR Process™) and KS-1™ absorbent, which has been deployed in seven CO2 capture plants, now under commercial operation operating at a CO2 capture capacity of 450 metric tons per day (tpd). In addition, a further two commercial plants are now under construction all of which capture CO2 from natural gas fired flue gas boilers and steam reformers. Accordingly this technology is now available for commercial scale CO2 capture for gas boiler and gas turbine application. (3) However before offering commercial CO2 capture plants for coal fired flue gas application, it is necessary to verify the influence of, and develop countermeasures for, related impurities contained in coal fired flue gas. This includes the influence on both the absorbent and the entire system of the CO2 capture plant to achieve high operational reliability and minimize maintenance requirements. (4) Preventing the accumulation of impurities, especially the build up of dust, is very important when treating coal fired flue gas and MHI has undertaken significant work to understand the impact of impurities in order to achieve reliable and stable operating conditions and to efficiently optimize integration between the CO2 capture plant, the coal fired power plant and the flue gas clean up equipment. (5) To achieve this purpose, MHI constructed a 10 tpd CO2 capture demonstration plant at the Matsushima 1000 MW Power Station and confirmed successful, long term demonstration following ?5000 hours of operation in 2006–07 with 50% financial support by RITE, as a joint program to promote technological development with the private sector, and cooperation from J-POWER. (6) Following successful demonstration testing at Matsushima, additional testing was undertaken in 2008 to examine the impact of entrainment of higher levels of flue gas impurities (primarily \\{SOx\\} and dust by bypassing the existing FGD) and to determine which components of the CO2 recovery process are responsible for the removal of these impurities. Following an additional 1000 demonstration hours, results indicated stable operational performance in relation to the following impurities; (1) SO2: Even at higher SO2 concentrations were almost completely removed from the flue gas before entering the CO2 absorber. (2) Dust: The accumulation of dust in the absorbent was higher, leading to an advanced understanding of the behavior of dust in the CO2 capture plant and the dust removal efficiency of each component within the CO2 recovery system. The data obtained is useful for the design of large-scale units and confirms the operating robustness of the CO2 capture plant accounting for wide fluctuations in impurity concentrations. (7) This important coal fired flue gas testing showed categorically that minimizing the accumulation of large concentrations of impurities, and to suppress dust concentrations below a prescribed level, is important to achieve long-term stable operation and to minimize maintenance work for the CO2 capture plant. To comply with the above requirement, various countermeasures have been developed which include the optimization of the impurity removal technology, flue gas pre treatment and improved optimization with the flue gas desulfurization facility. (8) In case of a commercial scale CO2 capture plant applied for coal fired flue gas, its respective size will be several thousand tpd which represents a considerable scale-up from the 10 tpd demonstration plant. In order to ensure the operational reliability and to accurately confirm the influence and the behavior of the impurities in coal fired fl

Takahiko Endo; Yoshinori Kajiya; Hiromitsu Nagayasu; Masaki Iijima; Tsuyoshi Ohishi; Hiroshi Tanaka; Ronald Mitchell

2011-01-01T23:59:59.000Z

271

Objectives and Current Status of the IAEA Network of Centers of Excellence: Training in and Demonstration of Waste Disposal Technologies in Underground Research Laboratories  

SciTech Connect

Underground Research Laboratories (URLs) to develop and demonstrate technologies for the safe geologic disposal of radioactive wastes have been established for national purposes by several Member States of the International Atomic Energy Agency (IAEA). Under the auspices of the IAEA, nationally developed URLs and associated research institutions are being offered for use by other nations. These facilities form a Network of Centers of Excellence for training in and development of waste disposal technologies. Experience gained in the operation of the facilities, and through associated experimentation and demonstrations, will be transferred to participating Member States through hands-on work at the facilities. The Network consists of Network Members and Network Participants who share co-operative activities. Network Members are owners of facilities who have offered them to be part of the Network. At this time there are eight Members consisting of six underground facilities, a laboratory, and a university. Network Participants can potentially come from any interested IAEA Member State having spent nuclear fuel for disposal, with or without an established program for geologic disposal. There are presently about 15 Network Participants. A significant Network activity beginning in 2003 will be a Coordinated Research Project (CRP) on characterization and evaluation of swelling clays for use in engineered barrier systems of geologic repositories. At the end of this project, every involved Member State should be able to identify and characterize a swelling clay that is suitable for use in a geologic repository. As the Network grows, additional CRPs to be carried out in the Underground Research Facilities of the Network Members will be defined.

Bell, M. J.; Knapp, M. R.

2003-02-27T23:59:59.000Z

272

Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO[sub x]) emissions from high-sulfur coal-fired boilers  

SciTech Connect

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO[sub x]) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO[sub x] to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe, there are numerous technical uncertainties associated with applying SCR to US coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels. (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO[sub 2] and SO[sub 3]. (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U. S. coal.

Not Available

1992-08-01T23:59:59.000Z

273

Montana ICTL Demonstration Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Montana ICTL Demonstration Program Montana ICTL Demonstration Program Background The Department of Energy (DOE) funds basic and applied research toward the development of technologies that will allow the U.S. to depend to a greater extent on renewable fuels, especially those derived from domestic sources of energy. Coal is one of the nation's most abundant domestic energy resources; however, conventional technologies using coal release large amounts of carbon dioxide (CO

274

Innovative Clean Coal Technology (ICCT): Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Quarterly report No. 6, October--December, 1991  

SciTech Connect

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NOx) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NOx to convert it to nitrogen and water vapor.

Not Available

1992-02-01T23:59:59.000Z

275

Innovative Clean Coal Technology (ICCT): Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO sub x ) emissions from high-sulfur coal-fired boilers  

SciTech Connect

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NOx) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NOx to convert it to nitrogen and water vapor.

Not Available

1992-02-01T23:59:59.000Z

276

Innovative Clean Coal Technology (ICCT): Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Quarterly report No. 2, October--December 1990  

SciTech Connect

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide NO{sub x} control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor.

Not Available

1991-02-01T23:59:59.000Z

277

Innovative Clean Coal Technology (ICCT): Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO sub x ) emissions from high-sulfur coal-fired boilers  

SciTech Connect

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide NO{sub x} control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor.

Not Available

1991-02-01T23:59:59.000Z

278

Innovative clean coal technology (ICCT): Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Quarterly report No. 3, January--March 1991  

SciTech Connect

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NOx) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NOx to convert it to nitrogen and water vapor.

Not Available

1991-07-01T23:59:59.000Z

279

Innovative clean coal technology (ICCT): Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO sub x ) emissions from high-sulfur coal-fired boilers  

SciTech Connect

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NOx) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NOx to convert it to nitrogen and water vapor.

Not Available

1991-07-01T23:59:59.000Z

280

Design optimization of a fuzzy distributed generation (DG) system with multiple renewable energy sources  

Science Journals Connector (OSTI)

The global rise in energy demands brings major obstacles to many energy organizations in providing adequate energy supply. Hence many techniques to generate cost effective reliable and environmentally friendly alternative energy source are being explored. One such method is the integration of photovoltaic cells wind turbine generators and fuel-based generators included with storage batteries. This sort of power systems are known as distributed generation (DG) power system. However the application of DG power systems raise certain issues such as cost effectiveness environmental impact and reliability. The modelling as well as the optimization of this DG power system was successfully performed in the previous work using Particle Swarm Optimization (PSO). The central idea of that work was to minimize cost minimize emissions and maximize reliability (multi-objective (MO) setting) with respect to the power balance and design requirements. In this work we introduce a fuzzy model that takes into account the uncertain nature of certain variables in the DG system which are dependent on the weather conditions (such as; the insolation and wind speed profiles). The MO optimization in a fuzzy environment was performed by applying the Hopfield Recurrent Neural Network (HNN). Analysis on the optimized results was then carried out.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dg technologies demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

PEV-based Reactive Power Compensation for Wind DG Units: A Stackelberg Game Approach  

E-Print Network (OSTI)

--There has been a growing interest recently towards integrating more renewable energy resources management solutions for renewable wind and solar energy integration. In addition to the need for constantly challenges to integrate these DG units. Above all, there exists no accurate long term wind power prediction

Huang, Jianwei

282

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation 2010 DOE Vehicle Technologies...

283

Webinar: Hydrogen Storage Materials Database Demonstration |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Materials Database Demonstration Webinar: Hydrogen Storage Materials Database Demonstration Presentation slides from the Fuel Cell Technologies Office webinar "Hydrogen...

284

Hydrogen Storage Materials Database Demonstration | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Storage Materials Database Demonstration Hydrogen Storage Materials Database Demonstration Presentation slides from the Fuel Cell Technologies Office webinar "Hydrogen Storage...

285

National Hydrogen Learning Demonstration Status | Department...  

Energy Savers (EERE)

Hydrogen Learning Demonstration Status National Hydrogen Learning Demonstration Status Download presentation slides from the Fuel Cell Technologies Program webinar "National...

286

SPACE-R Thermionic Space Nuclear Power System: Design and Technology Demonstration Program. Semiannual technical progress report for period ending March 1993  

SciTech Connect

This Semiannual Technical Progress Report summarizes the technical progress and accomplishments for the Thermionic Space Nuclear Power System (TI-SNPS) Design and Technology Demonstration Program of the Prime Contractor, Space Power Incorporated (SPI), its subcontractors and supporting National Laboratories during the first half of the Government Fiscal Year (GFY) 1993. SPI`s subcontractors and supporting National Laboratories include: Babcock & Wilcox for the reactor core and externals; Space Systems/Loral for the spacecraft integration; Thermocore for the radiator heat pipes and the heat exchanger; INERTEK of CIS for the TFE, core elements and nuclear tests; Argonne National Laboratories for nuclear safety, physics and control verification; and Oak Ridge National laboratories for materials testing. Parametric trade studies are near completion. However, technical input from INERTEK has yet to be provided to determine some of the baseline design configurations. The INERTEK subcontract is expected to be initiated soon. The Point Design task has been initiated. The thermionic fuel element (TFE) is undergoing several design iterations. The reactor core vessel analysis and design has also been started.

Not Available

1993-05-01T23:59:59.000Z

287

California: Next-Generation Geothermal Demonstration Launched  

Office of Energy Efficiency and Renewable Energy (EERE)

First-of-its-kind achievement successfully demonstrates that EGS technologies are commercially viable.

288

Planning of grid integrated distributed generators: A review of technology, objectives and techniques  

Science Journals Connector (OSTI)

Abstract The world is witnessing a transition from its present centralized generation paradigm to a future with increased share of distributed generation (DG). Integration of renewable energy sources (RES) based distributed generators is seen as a solution to decrease reliance on depleting fossil fuel reserves, increase energy security and provide an environment friendly solution to growing power demand. The planning of power system incorporating \\{DGs\\} has to take into account various factors such as nature of DG technology, impact of DG on operating characteristics of power system and economic considerations. This paper put forwards a comprehensive review on planning of grid integrated distributed generators. An overview of different DG technologies has been presented. Different issues associated with DG integration have been discussed. The planning objectives of DG integration have been surveyed in detail and have been critically reviewed with respect to conventional and RES based DG technologies. Different techniques used for optimal placement of \\{DGs\\} have also been investigated and compared. The extensive literature survey revealed that researchers have mostly focussed on DG integration planning using conventional DGs. RES based \\{DGs\\} have not been given due consideration. While integrating RES, their stochastic behaviour has not been appropriately accounted. Finally, visualizing the wide scope of research in the planning of grid integrated DGs; an attempt has been made to identify future research avenues.

Priyanka Paliwal; N.P. Patidar; R.K. Nema

2014-01-01T23:59:59.000Z

289

Optimization of a stand?alone Solar PV?Wind?DG Hybrid System for Distributed Power Generation at Sagar Island  

Science Journals Connector (OSTI)

An estimation of a stand?alone solar PV and wind hybrid system for distributed power generation has been made based on the resources available at Sagar island a remote area distant to grid operation. Optimization and sensitivity analysis has been made to evaluate the feasibility and size of the power generation unit. A comparison of the different modes of hybrid system has been studied. It has been estimated that Solar PV?Wind?DG hybrid system provides lesser per unit electricity cost. Capital investment is observed to be lesser when the system run with Wind?DG compared to Solar PV?DG.

P. C. Roy; A. Majumder; N. Chakraborty

2010-01-01T23:59:59.000Z

290

Optimal allocation and sizing of DG and shunt capacitors using differential evolutionary algorithm  

Science Journals Connector (OSTI)

In the last few years, a number of factors have led to an increased interest in distributed generation (DG) scheme because placement of DG is the most effective method in reducing the power loss of the distribution networks to serve remote loads. Placement of shunt capacitors improves voltage profile but unable to serve remote load as it can provide only reactive power. So, combination of both gives productive solution. In this paper, differential evaluation algorithm (DEA) is utilised to find optimal location and sizes of both DGs and shunt capacitors in radial distribution systems with an objective of minimising line losses subjected to bus voltage limits. The performance of the proposed algorithm is implemented on Indian Electricity Board benchmark 25-bus distribution system.

Nasim Ali Khan; Saradindu Ghosh; Sakti Prasad Ghoshal

2013-01-01T23:59:59.000Z

291

Innovative clean coal technology (ICCT): Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Fourth quarterly progress report  

SciTech Connect

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe, there are numerous technical uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels; (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}; and (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur US coal.

NONE

1992-12-31T23:59:59.000Z

292

non-genomic CA1-CA3DG2,6)  

E-Print Network (OSTI)

ERER ERCREST ERRC-19 RC-19 ER ER ER ERA (BPA) (DES) BPA 30 CREST 30 CA1,CA3,DG NMDA LTD , DES, BPA LTD 7,8)LTD ERPPT ERDPN ER #12;CREST 3 CA1 thin 9,10,11,12,13,14), DES, BPA 15)ERPPT ER , OP BPA 16) Ca2+ Steroidogenic acute regulatory protein(StAR) Ca2+ BPA, DES

Kawato, Suguru

293

File:PUCT DG Interconnection Manual.pdf | Open Energy Information  

Open Energy Info (EERE)

PUCT DG Interconnection Manual.pdf PUCT DG Interconnection Manual.pdf Jump to: navigation, search File File history File usage Metadata File:PUCT DG Interconnection Manual.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Go to page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 Go! next page → next page → Full resolution ‎(1,275 × 1,650 pixels, file size: 2.02 MB, MIME type: application/pdf, 114 pages) File history Click on a date/time to view the file as it appeared at that time.

294

Research, Development, Demonstration, and Deployment  

Energy.gov (U.S. Department of Energy (DOE))

The Bioenergy Technologies Office's research, development, demonstration, and deployment (RDD&D) efforts are organized around five key technical and three cross-cutting elements. The first two...

295

Demonstration and Results of Grid Integrated Technologies at the Demand to Grid Laboratory (D2G Lab): Phase I Operations Report  

E-Print Network (OSTI)

energy systems, markets, and behavior; education and training Electric vehicle-to-grid capability demonstration with 30 EV cars

Ghatikar, Girish

2014-01-01T23:59:59.000Z

296

successfully demonstrated the separation  

NLE Websites -- All DOE Office Websites (Extended Search)

successfully demonstrated the separation and capture of 90 percent successfully demonstrated the separation and capture of 90 percent of the c arbon dioxide (CO 2 ) from a pulve rized coal plant. In t he ARRA-funded project, Membrane Technology and Research Inc. (MTR) and its partners tested the Polaris(tm) membrane system, which uses a CO 2 -selective polymeric membrane material and module to capture CO 2 from a plant's flue gas. Since the Polaris(tm) membranes

297

dg cover  

NLE Websites -- All DOE Office Websites (Extended Search)

Real Property Desk Guide Real Property Desk Guide Table of Contents Chapter 1-- Purpose of Desk Guide ................................................................... 1-1 Chapter 2-- Introduction..................................................................................... 2-1 Chapter 3-- Planning Policy................................................................................ 3-1 Chapter 4-- Real Estate Function....................................................................... 4-1 Chapter 5-- Acquisition of Interests in Real Property ..................................... 5-1 Chapter 6-- Acquisition of Leased Space through the General Services .Administration ...............................................................................

298

LIMB Demonstration Project Extension and Coolside Demonstration  

SciTech Connect

This report presents results from the limestone Injection Multistage Burner (LIMB) Demonstration Project Extension. LIMB is a furnace sorbent injection technology designed for the reduction of sulfur dioxide (SO[sub 2]) and nitrogen oxides (NO[sub x]) emissions from coal-fired utility boilers. The testing was conducted on the 105 Mwe, coal-fired, Unit 4 boiler at Ohio Edison's Edgewater Station in Lorain, Ohio. In addition to the LIMB Extension activities, the overall project included demonstration of the Coolside process for S0[sub 2] removal for which a separate report has been issued. The primary purpose of the DOE LIMB Extension testing, was to demonstrate the generic applicability of LIMB technology. The program sought to characterize the S0[sub 2] emissions that result when various calcium-based sorbents are injected into the furnace, while burning coals having sulfur content ranging from 1.6 to 3.8 weight percent. The four sorbents used included calcitic limestone, dolomitic hydrated lime, calcitic hydrated lime, and calcitic hydrated lime with a small amount of added calcium lignosulfonate. The results include those obtained for the various coal/sorbent combinations and the effects of the LIMB process on boiler and plant operations.

Goots, T.R.; DePero, M.J.; Nolan, P.S.

1992-11-10T23:59:59.000Z

299

Kentucky Department for Natural Resources and Environmental Protection permit application for air contaminant source: SRC-I Demonstruation Plant, Newman, Kentucky. Appendix B. Best available control technology (BACT) proposals. [Demonstration plant at Newman, KY  

SciTech Connect

The best available control technology (BACT) proposals for the following areas of the SRC-I demonstration plant are described: coal preparation and handling, SRC process and deashing, coke and liquid fuels (control of particles and hydrocarbon vapors), cryogenic systems and fuel gas purification (including sulfur recovery system and venting of gaseous wastes). (LTN)

Not Available

1980-11-21T23:59:59.000Z

300

Technology demonstration of dedicated compressed natural gas (CNG) original equipment manufacturer (OEM) vehicles at St. Bliss, Texas. Interim report, October 1992--May 1994  

SciTech Connect

Results are presented from a demonstration program conducted on the comparative evaluations of the combustion of compressed natural gas as an alternative fuel for gasoline. General Motors pick-up trucks were utilized in the study.

Alvarez, R.A.; Yost, D.M.

1995-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "dg technologies demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

CLTC is a not-for-profit research, development and demonstration facility leading innovations in energy-efficient lighting and daylighting technologies.  

E-Print Network (OSTI)

in energy-efficient lighting and daylighting technologies. Collaborating with partners in government and staff also work with legislative leaders and regulatory agencies on energy policy, lighting codes and building standards. CLTC AffiLiATe gifT progrAm Supporting innovations in energy-efficient lighting cltc

California at Davis, University of

302

Technolog  

NLE Websites -- All DOE Office Websites (Extended Search)

Research in Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow Sandia National Laboratories' fundamental science and technology research leads to greater understanding of how and why things work and is intrinsic to technological advances. Basic research that challenges scientific assumptions enables the nation to push scientific boundaries. Innovations and breakthroughs produced at Sandia allow it to tackle critical issues, from maintaining the safety, security and effectiveness of the nation's nuclear weapons and preventing domestic and interna- tional terrorism to finding innovative clean energy solutions, develop- ing cutting-edge nanotechnology and moving the latest advances to the marketplace. Sandia's expertise includes:

303

Major Demonstrations | netl.doe.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Major Demonstrations Industrial Carbon Capture and Storage Clean Coal Power Initiative Power Plant Improvement Initiative Clean Coal Technology Demonstration Program FutureGen For...

304

Newberry EGS Demonstration | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Production: Evaluation of Stimulation at the Newberry Volcano EGS Demonstration Site Microearthquake Technology for EGS Fracture Characterization Newberry Volcano EGS Demonstration...

305

Hydrogen Vehicle and Infrastructure Demonstration and Validation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Vehicle and Infrastructure Demonstration and Validation Hydrogen Vehicle and Infrastructure Demonstration and Validation 2009 DOE Hydrogen Program and Vehicle Technologies Program...

306

Application of the DG-1199 methodology to the ESBWR and ABWR.  

SciTech Connect

Appendix A-5 of Draft Regulatory Guide DG-1199 'Alternative Radiological Source Term for Evaluating Design Basis Accidents at Nuclear Power Reactors' provides guidance - applicable to RADTRAD MSIV leakage models - for scaling containment aerosol concentration to the expected steam dome concentration in order to preserve the simplified use of the Accident Source Term (AST) in assessing containment performance under assumed design basis accident (DBA) conditions. In this study Economic and Safe Boiling Water Reactor (ESBWR) and Advanced Boiling Water Reactor (ABWR) RADTRAD models are developed using the DG-1199, Appendix A-5 guidance. The models were run using RADTRAD v3.03. Low Population Zone (LPZ), control room (CR), and worst-case 2-hr Exclusion Area Boundary (EAB) doses were calculated and compared to the relevant accident dose criteria in 10 CFR 50.67. For the ESBWR, the dose results were all lower than the MSIV leakage doses calculated by General Electric/Hitachi (GEH) in their licensing technical report. There are no comparable ABWR MSIV leakage doses, however, it should be noted that the ABWR doses are lower than the ESBWR doses. In addition, sensitivity cases were evaluated to ascertain the influence/importance of key input parameters/features of the models.

Kalinich, Donald A.; Gauntt, Randall O.; Walton, Fotini

2010-09-01T23:59:59.000Z

307

Utility Advanced Turbine System (ATS) technology readiness testing and pre-commercial demonstration phase 3. Quarterly progress report, October 1--December 31, 1995  

SciTech Connect

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detailed design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which will be sited and operated in Phase 4. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue.

NONE

1997-05-01T23:59:59.000Z

308

Utility Advanced Turbine System (ATS) technology readiness testing and pre-commercial demonstration -- Phase 3. Quarterly report, April 1--June 30, 1996  

SciTech Connect

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detailed design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which will be sited and operated in Phase 4. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. This report summarizes work accomplished during the period 2Q96.

NONE

1996-12-31T23:59:59.000Z

309

LIMB demonstration project extension  

SciTech Connect

The main objectives of this project are: (1) To demonstrate the general applicability of Limestone Injection Multistage Burner (LIMB) technology by testing 3 coals and 4 sorbents (total of 12 coal/sorbent combinations) at the Ohio Edison Edgewater Plant. (2) To demonstrate that Coolside is a viable technology for improving precipitator performance and reducing sulfur dioxide emissions while acceptance operability is maintained. During the past quarter, activities for phase I, design and permitting, and phase II, construction, shakedown and start-up were completed for phase III, operation, data collection, reporting and disposition, activities continued with consol completing the revisions to the Coolside Topical report, the completion of LIMB Extension testing, and the start of demobilization and restoration.

Not Available

1991-12-16T23:59:59.000Z

310

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, third quarter 1991  

SciTech Connect

This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company`s Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NO{sub x} emissions and boiler performance. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project.

Not Available

1992-02-03T23:59:59.000Z

311

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO sub x ) emissions from coal-fired boilers  

SciTech Connect

This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company's Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NO{sub x} emissions and boiler performance. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project.

Not Available

1992-02-03T23:59:59.000Z

312

Utility advanced turbine system (ATS) technology readiness testing and pre-commercial demonstration -- Phase 3. Quarterly report, July 1--September 30, 1995  

SciTech Connect

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detailed design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which will be sited and operated in Phase 4. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. This initial report summarizes work accomplished during the third quarter of 1995. The most significant accomplishments reported include the following. Overall design continued, progressing from preliminary and conceptual design activities to detailed design activities. The aerodynamic design of six out of eight 9H turbine airfoils was completed. The 9H compressor design concept was finalized including rotor configuration, aerodynamic design of compressor, and compressor structure. Conceptual on-base and external piping layout was begun. The ATS Phase 3 Cooperative Agreement was negotiated and signed.

NONE

1995-12-31T23:59:59.000Z

313

SECONDARY NATURAL GAS RECOVERY IN THE APPALACHIAN BASIN: APPLICATION OF ADVANCED TECHNOLOGIES IN A FIELD DEMONSTRATION SITE, HENDERSON DOME, WESTERN PENNSYLVANIA  

SciTech Connect

The principal objectives of this project were to test and evaluate technologies that would result in improved characterization of fractured natural-gas reservoirs in the Appalachian Basin. The Bureau of Economic Geology (Bureau) worked jointly with industry partner Atlas Resources, Inc. to design, execute, and evaluate several experimental tests toward this end. The experimental tests were of two types: (1) tests leading to a low-cost methodology whereby small-scale microfractures observed in matrix grains of sidewall cores can be used to deduce critical properties of large-scale fractures that control natural-gas production and (2) tests that verify methods whereby robust seismic shear (S) waves can be generated to detect and map fractured reservoir facies. The grain-scale microfracture approach to characterizing rock facies was developed in an ongoing Bureau research program that started before this Appalachian Basin study began. However, the method had not been tested in a wide variety of fracture systems, and the tectonic setting of rocks in the Appalachian Basin composed an ideal laboratory for perfecting the methodology. As a result of this Appalachian study, a low-cost commercial procedure now exists that will allow Appalachian operators to use scanning electron microscope (SEM) images of thin sections extracted from oriented sidewall cores to infer the spatial orientation, relative geologic timing, and population density of large-scale fracture systems in reservoir sandstones. These attributes are difficult to assess using conventional techniques. In the Henderson Dome area, large quartz-lined regional fractures having N20E strikes, and a subsidiary set of fractures having N70W strikes, are prevalent. An innovative method was also developed for obtaining the stratigraphic and geographic tops of sidewall cores. With currently deployed sidewall coring devices, no markings from which top orientation can be obtained are made on the sidewall core itself during drilling. The method developed in this study involves analysis of the surface morphology of the broken end of the core as a top indicator. Together with information on the working of the tool (rotation direction), fracture-surface features, such as arrest lines and plume structures, not only give a top direction for the cores but also indicate the direction of fracture propagation in the tough, fine-grained Cataract/Medina sandstones. The study determined that microresistivity logs or other image logs can be used to obtain accurate sidewall core azimuths and to determine the precise depths of the sidewall cores. Two seismic S-wave technologies were developed in this study. The first was a special explosive package that, when detonated in a conventional seismic shot hole, produces more robust S-waves than do standard seismic explosives. The importance of this source development is that it allows S-wave seismic data to be generated across all of the Appalachian Basin. Previously, Appalachian operators have not been able to use S-wave seismic technology to detect fractured reservoirs because the industry-standard S-wave energy source, the horizontal vibrator, is not a practical source option in the heavy timber cover that extends across most of the basin. The second S-wave seismic technology that was investigated was used to verify that standard P-wave seismic sources can create robust downgoing S-waves by P-to-S mode conversion in the shallow stratigraphic layering in the Appalachian Basin. This verification was done by recording and analyzing a 3-component vertical seismic profile (VSP) in the Atlas Montgomery No. 4 well at Henderson Dome, Mercer County, Pennsylvania. The VSP data confirmed that robust S-waves are generated by P-to-S mode conversion at the basinwide Onondaga stratigraphic level. Appalachian operators can thus use converted-mode seismic technology to create S-wave images of fractured and unfractured rock systems throughout the basin.

BOB A. HARDAGE; ELOISE DOHERTY; STEPHEN E. LAUBACH; TUCKER F. HENTZ

1998-08-14T23:59:59.000Z

314

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Fourth quarterly technical progress report, [October--December, 1992  

SciTech Connect

This quarterly report discusses the technical progress of a U. S. Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company`s Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NOx combustion technologies on NOx emissions and boiler performance. A target of achieving fifty percent NOx reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NOx control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NOx concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NOx reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. During this quarter, tests of the LNCFS Level III system were conducted to determine the effect that fuel fineness has on NOx emissions and unburned carbon levels. Results showed that changing the fineness of the fuel has almost no effect on NOx emissions; however, unburned carbon levels can be reduced significantly by increasing fuel fineness.

Not Available

1992-12-31T23:59:59.000Z

315

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from coal-fired boilers  

SciTech Connect

This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company's Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO[sub x] combustion technologies on NO[sub x] emissions and boiler performance. A target of achieving fifty percent NO[sub x] reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NO[sub x] control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NO[sub x] concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NO[sub x] reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. This technical progress report presents the LNCFS Level I short-term data collected during this quarter. In addition, a comparison of all the long-term emissions data that have been collected to date is included.

Not Available

1992-11-25T23:59:59.000Z

316

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, fourth quarter 1991  

SciTech Connect

This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company`s Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NO{sub x} emissions and boiler performance. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NO{sub x} control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NO{sub x} concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency.

Not Available

1992-05-18T23:59:59.000Z

317

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO sub x ) emissions from coal-fired boilers  

SciTech Connect

This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company's Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NO{sub x} emissions and boiler performance. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NO{sub x} control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NO{sub x} concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency.

Not Available

1992-05-18T23:59:59.000Z

318

An Update of the U.S. Clean Coal Technology Demonstration Program Office of Fossil Energy, U.S. Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

SCR Holds Promise for Effective NO, Control SCR Holds Promise for Effective NO, Control CCT Projects Address Higher Costs, Limited U.S. Experience Clean Coal Briefs This quarter saw several major projects in the Clelm Coal Technology Program complete construction activi- ties and move into initial opcretions, bringing to 17 the total number of operatingf~cilitiesin theprogram Data generated from these projects will help utilities form their stratcgics for corn- pliance with the IYYO Clean Air Act Amendmxlts. Pure Air began running its first advanced flue gas desulfurization unit on June 2. The scrubber is running well, capturing more than YO percent of the SO, emissions from two units at Northern Indiana Public Service k's Bailly Station Construction of the 528 MW scrubber was completed

319

DG Demonet Smart LV Grid (Smart Grid Project) | Open Energy Information  

Open Energy Info (EERE)

Demonet Smart LV Grid (Smart Grid Project) Demonet Smart LV Grid (Smart Grid Project) Jump to: navigation, search Project Name DG Demonet Smart LV Grid Country Austria Coordinates 47.516232°, 14.550072° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.516232,"lon":14.550072,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

320

First-of-its-Kind Carbon Capture and Conversion Demonstration...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

First-of-its-Kind Carbon Capture and Conversion Demonstration Technology Opening in Texas First-of-its-Kind Carbon Capture and Conversion Demonstration Technology Opening in Texas...

Note: This page contains sample records for the topic "dg technologies demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

DOE Announces Restructured FutureGen Approach to Demonstrate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Restructured FutureGen Approach to Demonstrate CCS Technology at Multiple Clean Coal Plants DOE Announces Restructured FutureGen Approach to Demonstrate CCS Technology at Multiple...

322

Pilot Demonstration of Technology for the Production of High Value Materials from the Ultra-Fine (PM 2.5) Fraction of Coal Combustion Ash  

SciTech Connect

Work on the project focused on the determination of the hydraulic classification characteristics of the Coleman and Mill Creek ashes. The work utilized the hydraulic classifier developed earlier in the project. Testing included total yield, recovery of <5 {micro}m ash diameter particles and LOI partitioning as functions of dispersant dosage and type, retention time and superficial velocity. Yields as high as 21% with recoveries of up to 2/3 of the <5 {micro}m ash fractions were achieved. Mean particle size (D{sub 50}) of varied from 3.7 to 10 {micro}m. The ashes were tested for there pozzolanic activity in mortars as measured by strength activity index using ASTM criteria. Additional testing included air entrainment reagent demand and water requirements. The classified products all performed well, demonstrating excellent early strength development in the mortars. Some increased air entrainment demand was noted. The conceptual design of a process demonstration unit PDU was also completed. A flexible, trailer-mounted field unit is envisioned.

T.L. Robl; J.G. Groppo; Robert Rathebone

2005-12-14T23:59:59.000Z

323

arXiv:0707.4149v1[math.DG]27Jul2007 Test configurations and Geodesic rays  

E-Print Network (OSTI)

arXiv:0707.4149v1[math.DG]27Jul2007 Test configurations and Geodesic rays Xiuxiong Chen , Yudong Tang February 5, 2008 Contents 1 Introduction 2 2 Preliminary 5 2.1 Geodesic rays in K¨ahler potential Relative C1,1 geodesic ray from smooth test configuration 8 3.1 Existence

Chen, Xiuxiong

324

arXiv:1201.5447v1[math.DG]26Jan2012 CRITICAL CONFIGURATIONS OF PLANAR ROBOT ARMS  

E-Print Network (OSTI)

arXiv:1201.5447v1[math.DG]26Jan2012 CRITICAL CONFIGURATIONS OF PLANAR ROBOT ARMS G these results to the case of open polygonal chains, or robot arms. We introduce the notion of the oriented area of various special configurations of robot arms modeled by open polygonal chains appears essential in many

Siersma, Dirk

325

Spent fuel pyroprocessing demonstration  

SciTech Connect

A major element of the shutdown of the US liquid metal reactor development program is managing the sodium-bonded spent metallic fuel from the Experimental Breeder Reactor-II to meet US environmental laws. Argonne National Laboratory has refurbished and equipped an existing hot cell facility for treating the spent fuel by a high-temperature electrochemical process commonly called pyroprocessing. Four products will be produced for storage and disposal. Two high-level waste forms will be produced and qualified for disposal of the fission and activation products. Uranium and transuranium alloys will be produced for storage pending a decision by the US Department of Energy on the fate of its plutonium and enriched uranium. Together these activities will demonstrate a unique electrochemical treatment technology for spent nuclear fuel. This technology potentially has significant economic and technical advantages over either conventional reprocessing or direct disposal as a high-level waste option.

McFarlane, L.F.; Lineberry, M.J.

1995-05-01T23:59:59.000Z

326

Evaluation of plasma melter technology for verification of high-sodium content low-level radioactive liquid wastes: Demonstration test No. 4 preliminary test report  

SciTech Connect

This document provides a preliminary report of plasma arc vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System Low-Level Waste (LLW) Vitrification Program. Phase I test conduct included 26 hours (24 hours steady state) of melting of simulated high-sodium low-level radioactive liquid waste. Average processing rate was 4.9 kg/min (peak rate 6.2 kg/min), producing 7330 kg glass product. Free-flowing glass pour point was 1250 C, and power input averaged 1530 kW(e), for a total energy consumption of 19,800 kJ/kg glass. Restart capability was demonstrated following a 40-min outage involving the scrubber liquor heat exchanger, and glass production was continued for another 2 hours. Some volatility losses were apparent, probably in the form of sodium borates. Roughly 275 samples were collected and forwarded for analysis. Sufficient process data were collected for heat/material balances. Recommendations for future work include lower boron contents and improved tuyere design/operation.

McLaughlin, D.F.; Gass, W.R.; Dighe, S.V.; D`Amico, N.; Swensrud, R.L.; Darr, M.F.

1995-01-10T23:59:59.000Z

327

LIMB Demonstration Project Extension  

SciTech Connect

The basic goal of the Limestone Injection Multistage Burner (LIMB) demonstration is to extend LIMB technology development to a full- scale application on a representative wall-fired utility boiler. The successful retrofit of LIMB to an existing boiler is expected to demonstrate that (a) reductions of 50 percent or greater in SO{sub x} and NO{sub x} emissions can be achieved at a fraction of the cost of add-on FGD systems, (b) boiler reliability, operability, and steam production can be maintained at levels existing prior to LIMB retrofit, and (c) technical difficulties attributable to LIMB operation, such as additional slagging and fouling, changes in ash disposal requirements, and an increased particulate load, can be resolved in a cost-effective manner. The primary fuel to be used will be an Ohio bituminous coal having a nominal sulfur content of 3 percent or greater.

Not Available

1989-06-15T23:59:59.000Z

328

LIMB Demonstration Project Extension  

SciTech Connect

The basic goal of the Limestone Injection Multistage Burner (LIMB) demonstration is to extend LIMB technology development to a full- scale application on a representative wall-fired utility boiler. The successful retrofit of LIMB to an existing boiler is expected to demonstrate that (a) reductions of 50 percent or greater in SO{sub x} and NO{sub x} emissions can be achieved at a fraction of the cost of add-on FGD systems, (b) boiler reliability, operability, and steam production can be maintained at levels existing prior to LIMB retrofit, and (c) technical difficulties attributable to LIMB operation, such as additional slagging and fouling, changes in ash disposal requirements, and an increased particulate load, can be resolved in a cost-effective manner. The primary fuel to be used will be an Ohio bituminous coal having a nominal sulfur content of 3 percent or greater.

Not Available

1989-03-15T23:59:59.000Z

329

LIMB Demonstration Project Extension  

SciTech Connect

The basic goal of the Limestone Injection Mitigation Burner (LIMB) demonstration is to extend LIMB technology development to a full- scale application on a representative wall-fired utility boiler. The successful retrofit of LIMB to an existing boiler is expected to demonstrate that (a) reductions of 50 percent or greater in SO{sub x} and NO{sub x} emissions can be achieved at a fraction of the cost of add-on FGD systems, (b) boiler reliability, operability, and steam production can be maintained at levels existing prior to LIMB retrofit, and (c) technical difficulties attributable to LIMB operation, such as additional slagging and fouling, changes in ash disposal requirements, and an increased particulate load, can be resolved in a cost-effective manner. The primary fuel to be used will be an Ohio bituminous coal having a nominal sulfur content of 3 percent or greater.

Not Available

1989-11-15T23:59:59.000Z

330

LIMB Demonstration Project Extension  

SciTech Connect

The basic goal of the Limestone Injection Multistage Burner (LIMB) demonstration is to extend LIMB technology development to a full- scale application on a representative wall-fired utility boiler. The successful retrofit of LIMB to an existing boiler is expected to demonstrate that (a) reductions of 50 percent or greater in SO{sub x} and NO{sub x} emissions can be achieved at a fraction of the cost of add-on FGD systems, (b) boiler reliability, operability, and steam production can be maintained at levels existing prior to LIMB retrofit, and (c) technical difficulties attributable to LIMB operation, such as additional slagging and fouling, changes in ash disposal requirements, and an increased particulate load, can be resolved in a cost-effective manner. The primary fuel to be used will be an Ohio bituminous coal having a nominal sulfur content of 3 percent or greater.

Not Available

1988-12-15T23:59:59.000Z

331

LIMB Demonstration Project Extension  

SciTech Connect

The basic goal of the Limestone Injection Multistage Burner (LIMB) demonstration is to extend LIMB technology development to a full-scale application on a representative wall-fired utility boiler. The successful retrofit of LIMB to an existing boiler is expected to demonstrate that (a) reductions of 50 percent or greater in SO and NO emissions can be achieved at a fraction of the cost of add-on FGD systems, (b) boiler reliability, operability, and steam production can be maintained at levels existing prior to LIMB retrofit, and (c) technical difficulties attributable to LIMB operation, such as additional slagging and fouling, changes in ash disposal requirements, and an increased particulate load, can be resolved in a cost-effective manner. The primary fuel to be used will be an Ohio bituminous coal having a nominal sulfur content of 3 percent or greater.

Not Available

1988-09-15T23:59:59.000Z

332

LIMB Demonstration Project Extension  

SciTech Connect

The basic goal of the Limestone Injection Multistage Burner (LIMB) demonstration is to extend LIMB technology development to a full-scale application on a representative wall-fired utility boiler. The successful retrofit of LIMB to an existing boiler is expected to demonstrate that (a) reductions of 50 percent or greater in SO{sub x} and NO{sub x} emissions can be achieved at a fraction of the cost of add-on FGD systems, (b) boiler reliability, operability, and steam production can be maintained at levels existing prior to LIMB retrofit, and (c) technical difficulties attributable to LIMB operation, such as additional slagging and fouling, changes in ash disposal requirements, and an increased particulate load, can be resolved in a cost-effective manner. The primary fuel to be used will be an Ohio bituminous coal having a nominal sulfur content of 3 percent or greater.

Not Available

1988-03-15T23:59:59.000Z

333

Pilot Demonstration of Technology for the Production of High Value Materials from the Ultra-Fine (PM2.5) Fraction of Coal Combustion Ash  

SciTech Connect

The overall objective of this research was to determine the feasibility of recovering a very fine fraction of fly ash, that is 5 microns in diameter or less and examining the characteristics of these materials in new or at least less traditional applications. These applications included as a polymer filler or as a 'super' pozzolanic concrete additive. As part of the effort the ash from 6 power plants was investigated and characterized. This work included collection from ESP Hoppers and ponds. The ash was thoroughly characterized chemically and physically. Froth flotation was used to reduce the carbon and testing showed that flotation could effectively reduce carbon to acceptable levels (i.e. 0.5% LOI) for most of the substrates tested. in order to enable eventual use as fillers. Hydraulic classification was used in the separation of the fine ash from the coarse ash. Hydraulic classification requires the ash to be dispersed to be effective and a range of dispersants were tested for adsorption as well as sedimentation rate. A wide range of dosages were required (0.3 to 10 g/kg). In general the ponded ash required less dispersant. A model was developed for hydraulic classification. A pilot-scale hydraulic classifier was also designed and operated for the project. Product yields of up to 21% of feed solids were achieved with recoveries of <5 {micro}m particles as high as 64%. Mean particle sizes (D{sub 50}) of the ultra fine ash (UFA) products varied from 3.7 to 10 {micro}m. A patent was filed on the classifier design. A conceptual design of a Process Demonstration Unit (PDU) with a feed rate of 2 tons of raw ash feed per hour was also completed. Pozzolanic activity was determined for the UFA ashes in mortars. In general the overall strength index was excellent with values of 90% achieved in 3 days and {approx}100% in 7 days. Three types of thermoplastic polymers were evaluated with the UFA as a filler: high density polyethylene, thermoplastic elastomer and polyethylene terphthalate filled polymers were prepared and subjected to SEM analysis to verify that the UFA was well dispersed. The addition of fillers increased the modulus of the HDPE composite, but decreased both the offset yield stress and offset yield strain, showing that the fillers essentially made the composite stiffer but the transition to plastic deformation occurred earlier in filled HDPE as stress was applied. Similar results were obtained with TPE, however, the decrease in either stress or strain at offset yield were not as significant. Dynamic mechanical analyses (DMA) were also completed and showed that although there were some alterations in the properties of the HDPE and TPE, the alterations are small, and more importantly, transition temperatures are not altered. The UFA materials were also tested in expanded urethanes, were improvements were made in the composites strength and stiffness, particularly for lighter weight materials. The results of limited flammability and fire safety testing were encouraging. A flowsheet was developed to produce an Ultra-Fine Ash (UFA) product from reclaimed coal-fired utility pond ash. The flowsheet is for an entry level product development scenario and additional production can be accommodated by increasing operating hours and/or installing replicate circuits. Unit process design was based on experimental results obtained throughout the project and cost estimates were derived from single vendor quotes. The installation cost of this plant is estimated to be $2.1M.

T. L. Robl; J. G. Groppo; R. Rathbone; B. Marrs; R. Jewell

2008-07-18T23:59:59.000Z

334

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, first quarter 1992  

SciTech Connect

This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company`s Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NO{sub x} emissions and boiler performance. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NO{sub x} control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NO{sub x} concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. This technical progess report presents the LNCFS Level III long-term data collected during this quarter. NO{sub x} emissions for each day of long-term testing are presented. The average NO{sub x} emission during long-term testing was 0.39 lb/MBtu at an average load of 155 MW. The effect of the low NO{sub x} combustion system on other combustion parameters such as carbon monoxide, excess oxygen level, and carbon carryover are also included.

Not Available

1992-05-20T23:59:59.000Z

335

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from coal-fired boilers  

SciTech Connect

This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company's Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO[sub x] combustion technologies on NO[sub x] emissions and boiler performance. A target of achieving fifty percent NO[sub x] reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NO[sub x] control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NO[sub x] concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NO[sub x] reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. This technical progess report presents the LNCFS Level III long-term data collected during this quarter. NO[sub x] emissions for each day of long-term testing are presented. The average NO[sub x] emission during long-term testing was 0.39 lb/MBtu at an average load of 155 MW. The effect of the low NO[sub x] combustion system on other combustion parameters such as carbon monoxide, excess oxygen level, and carbon carryover are also included.

Not Available

1992-05-20T23:59:59.000Z

336

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, second quarter 1992  

SciTech Connect

This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company`s Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NO{sub x} emissions and boiler performance. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NO{sub x} control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NO{sub x} concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. This technical progress report presents the LNCFS Level I short-term data collected during this quarter. In addition, a comparison of all the long-term emissions data that have been collected to date is included.

Not Available

1992-11-25T23:59:59.000Z

337

Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NOx) emissions from high-sulfur coal-fired boilers. Quarterly report No. 5, July--September 1991  

SciTech Connect

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor.

Not Available

1991-11-01T23:59:59.000Z

338

Fuel Cell Demonstration Program  

SciTech Connect

In an effort to promote clean energy projects and aid in the commercialization of new fuel cell technologies the Long Island Power Authority (LIPA) initiated a Fuel Cell Demonstration Program in 1999 with six month deployments of Proton Exchange Membrane (PEM) non-commercial Beta model systems at partnering sites throughout Long Island. These projects facilitated significant developments in the technology, providing operating experience that allowed the manufacturer to produce fuel cells that were half the size of the Beta units and suitable for outdoor installations. In 2001, LIPA embarked on a large-scale effort to identify and develop measures that could improve the reliability and performance of future fuel cell technologies for electric utility applications and the concept to establish a fuel cell farm (Farm) of 75 units was developed. By the end of October of 2001, 75 Lorax 2.0 fuel cells had been installed at the West Babylon substation on Long Island, making it the first fuel cell demonstration of its kind and size anywhere in the world at the time. Designed to help LIPA study the feasibility of using fuel cells to operate in parallel with LIPA's electric grid system, the Farm operated 120 fuel cells over its lifetime of over 3 years including 3 generations of Plug Power fuel cells (Lorax 2.0, Lorax 3.0, Lorax 4.5). Of these 120 fuel cells, 20 Lorax 3.0 units operated under this Award from June 2002 to September 2004. In parallel with the operation of the Farm, LIPA recruited government and commercial/industrial customers to demonstrate fuel cells as on-site distributed generation. From December 2002 to February 2005, 17 fuel cells were tested and monitored at various customer sites throughout Long Island. The 37 fuel cells operated under this Award produced a total of 712,635 kWh. As fuel cell technology became more mature, performance improvements included a 1% increase in system efficiency. Including equipment, design, fuel, maintenance, installation, and decommissioning the total project budget was approximately $3.7 million.

Gerald Brun

2006-09-15T23:59:59.000Z

339

Solid SCR Demonstration Truck Application | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

SCR Demonstration Truck Application Solid SCR Demonstration Truck Application Demonstrate the feasibility and performance of the FEV Solid SCR (Ammonium Carbamate) Technology...

340

Application of USNRC NUREG/CR-6661 and draft DG-1108 to evolutionary and advanced reactor designs  

SciTech Connect

For the seismic design of evolutionary and advanced nuclear reactor power plants, there are definite financial advantages in the application of USNRC NUREG/CR-6661 and draft Regulatory Guide DG-1108. NUREG/CR-6661, 'Benchmark Program for the Evaluation of Methods to Analyze Non-Classically Damped Coupled Systems', was by Brookhaven National Laboratory (BNL) for the USNRC, and Draft Regulatory Guide DG-1108 is the proposed revision to the current Regulatory Guide (RG) 1.92, Revision 1, 'Combining Modal Responses and Spatial Components in Seismic Response Analysis'. The draft Regulatory Guide DG-1108 is available at http://members.cox.net/apolloconsulting, which also provides a link to the USNRC ADAMS site to search for NUREG/CR-6661 in text file or image file. The draft Regulatory Guide DG-1108 removes unnecessary conservatism in the modal combinations for closely spaced modes in seismic response spectrum analysis. Its application will be very helpful in coupled seismic analysis for structures and heavy equipment to reduce seismic responses and in piping system seismic design. In the NUREG/CR-6661 benchmark program, which investigated coupled seismic analysis of structures and equipment or piping systems with different damping values, three of the four participants applied the complex mode solution method to handle different damping values for structures, equipment, and piping systems. The fourth participant applied the classical normal mode method with equivalent weighted damping values to handle differences in structural, equipment, and piping system damping values. Coupled analysis will reduce the equipment responses when equipment, or piping system and structure are in or close to resonance. However, this reduction in responses occurs only if the realistic DG-1108 modal response combination method is applied, because closely spaced modes will be produced when structure and equipment or piping systems are in or close to resonance. Otherwise, the conservatism in the current Regulatory Guide 1.92, Revision 1, will overshadow the advantage of coupled analysis. All four participants applied the realistic modal combination method of DG-1108. Consequently, more realistic and reduced responses were obtained. (authors)

Chang 'Apollo', Chen [Apollo Consulting, Inc., Surprise, AZ 85374-4605 (United States)

2006-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "dg technologies demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Buried Waste Integrated Demonstration Plan  

SciTech Connect

This document presents the plan of activities for the Buried Waste Integrated Demonstration (BWID) program which supports the environmental restoration (ER) objectives of the Department of Energy (DOE) Complex. Discussed in this plan are the objectives, organization, roles and responsibilities, and the process for implementing and managing BWID. BWID is hosted at the Idaho National Engineering Laboratory (INEL), but involves participants from throughout the DOE Complex, private industry, universities, and the international community. These participants will support, demonstrate, and evaluate a suite of advanced technologies representing a comprehensive remediation system for the effective and efficient remediation of buried waste. The processes for identifying technological needs, screening candidate technologies for applicability and maturity, selecting appropriate technologies for demonstration, field demonstrating, evaluation of results and transferring technologies to environmental restoration programs are also presented. This document further describes the elements of project planning and control that apply to BWID. It addresses the management processes, operating procedures, programmatic and technical objectives, and schedules. Key functions in support of each demonstration such as regulatory coordination, safety analyses, risk evaluations, facility requirements, and data management are presented.

Kostelnik, K.M.

1991-12-01T23:59:59.000Z

342

LIMB Demonstration Project Extension  

SciTech Connect

The DOE LIMB Demonstration Project Extension is a continuation of the EPA Limestone Injection Multistage Burner (LIMB) Demonstration. EPA ultimately expects to show that LIMB is a low cost control technology capable of producing moderate SO{sub x} and NO{sub x} control (50--60 percent) with applicability for retrofit to the major portion of the existing coal-fired boiler population. The current EPA Wall-Fired LIMB Demonstration is a four-year project that includes design and installation of a LIMB system at the 105-MW Unit 4 boiler at Ohio Edison's Edgewater Station in Lorain, Ohio. LIMB Extension testing continued during the quarter with lignosulfonated hydrated lime, pulverized limestone, and hydrated dolomitic lime while firing 1.8% and 3% sulfur coals. Sulfur dioxide removal efficiencies were equivalent to the results found during EPA, base LIMB testing. Sulfur dioxide removal efficiencies were lower than expected while testing with pulverized limestone without humidification. A slight increase in sulfur capture was noted while injecting pulverized limestone at the 187' elevation and with the humidifier outlet temperature at 145{degree}F.

Not Available

1990-09-21T23:59:59.000Z

343

LIMB Demonstration Project Extension  

SciTech Connect

The basic goal of the Limestone Injection Multistage Burner (LIMB) demonstration is to extend LIMB technology development to a full- scale application on a representative wall-fired utility boiler. The successful retrofit of LIMB to an existing boiler is expected to demonstrate that (1) reductions of 50 percent or greater in SO{sub x} and NO{sub x} emissions can be achieved at a fraction of the cost of add-on FGD systems; (2) boiler reliability, operability, and steam production can be maintained at levels existing prior to LIMB retrofit; and (3) technical difficulties attributable to LIMB operation, such as additional slagging and fouling, changes in ash disposal requirements, and an increased particulate load, can be resolved in a cost-effective manner. The primary fuel to be used will be an Ohio bituminous coal having a nominal sulfur content of 3 percent or greater. The demonstration project consists of several distinct phases: a preliminary phase to develop the LIMB process design applicable to the host boiler, a construction and start-up phase, and an operating and evaluation phase. The first major activity, the development of the Edgewater LIMB design, was completed in January 1986 and detailed engineering is now complete. Major boiler-related components were installed during a September 1986 boiler outage. Start-up activities began in March of 1987 with tuning of the low NO{sub x} burners. Sorbent injection activities were underway as of July 1987. 3 figs.

Not Available

1991-09-15T23:59:59.000Z

344

Offshore Wind Advanced Technology Demonstration Projects | Department...  

Office of Environmental Management (EM)

will help address key challenges associated with installing full-scale offshore wind turbines, connecting offshore turbines to the power grid, and navigating new permitting and...

345

Three Offshore Wind Advanced Technology Demonstration Projects...  

Office of Environmental Management (EM)

commercial operation by 2017. Dominion Power will install two 6-MW direct-drive wind turbines off the coast of Virginia Beach on twisted jacket foundations designed by Keystone...

346

SPIDERS Joint Capability Technology Demonstration Industry Day...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Presented by Hal Alguire JCTD SPIDERS Technical Overview: Presented by Melanie Johnson SPIDERS Phase II Technical Report: Presented by Dave Barr and Eric Putnam...

347

Achieving and Demonstrating Vehicle Technologies Engine Fuel...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

resources. Integrated turbinegenerator expander Example 2 nd Law Distribution 10% Heat Loss (engine block, head, intercooler, etc) 14% Availability Exhaust Flow 36%...

348

Oak Ridge National Laboratory Manufacturing Demonstration Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Oak Ridge National Laboratory Manufacturing Demonstration Facility Technology Collaborations | Proposal Guidelines Proposal Guidelines Proposals should be no more than 5 single...

349

CCUS Demonstrations Making Progress  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9, First Quarter, 2013 9, First Quarter, 2013 www.fossil.energy.gov/news/energytoday.html HigHligHts inside 2 CCUS Demonstrations Making Progress A Column from the Director of Clean Energy Sys- tems, Office of Clean Coal 4 LNG Exports DOE Releases Third Party Study on Impact of Natural Gas Exports 5 Providing Emergency Relief Petroleum Reservers Helps Out with Hurricane Relief Efforts 7 Game-Changing Membranes FE-Funded Project Develops Novel Membranes for CCUS 8 Shale Gas Projects Selected 15 Projects Will Research Technical Challenges of Shale Gas Development A project important to demonstrat- ing the commercial viability of carbon capture, utilization and storage (CCUS) technology has completed the first year of inject-

350

MDF | Manufacturing Demonstration Facility | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

BTRIC CNMS CSMB CFTF HFIR MDF Working with MDF NTRC OLCF SNS Titanium robotic hand holding sphere fabricated using additive manufacturing Home | User Facilities | MDF MDF | Manufacturing Demonstration Facility SHARE As the nation's premier research laboratory, ORNL is one of the world's most capable resources for transforming the next generation of scientific discovery into solutions for rebuilding and revitalizing America's manufacturing industries. Manufacturing industries engage ORNL's expertise in materials synthesis, characterization, and process technology to reduce technical risk and validate investment for innovations targeting products of the future. DOE's Manufacturing Demonstration Facility, established at ORNL, helps industry adopt new manufacturing technologies to reduce life-cycle energy

351

MDF | Manufacturing Demonstration Facility | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Working with MDF Working with MDF Titanium robotic hand holding sphere fabricated using additive manufacturing Home | User Facilities | MDF MDF | Manufacturing Demonstration Facility SHARE As the nation's premier research laboratory, ORNL is one of the world's most capable resources for transforming the next generation of scientific discovery into solutions for rebuilding and revitalizing America's manufacturing industries. Manufacturing industries engage ORNL's expertise in materials synthesis, characterization, and process technology to reduce technical risk and validate investment for innovations targeting products of the future. DOE's Manufacturing Demonstration Facility, established at ORNL, helps industry adopt new manufacturing technologies to reduce life-cycle energy

352

HTI retrieval demonstration project execution plan  

SciTech Connect

This plan describes the process for demonstrating the retrieval of difficult Hanford tank waste forms utilizing commercial technologies and the private sector to conduct the operations. The demonstration is to be conducted in Tank 241-C-106.

Ellingson, D.R.

1997-09-04T23:59:59.000Z

353

Market Optimization of a Cluster of DG-RES, Micro-CHP, Heat Pumps and Energy Storage within Network Constraints: The PowerMatching City Field Test  

Science Journals Connector (OSTI)

The share of renewable energy resources for electricity production, in a distributed setting (DG-RES), increases. The amount of energy transported via the electricity grid by substitution of fossil fuels for m...

René Kamphuis; Bart Roossien; Frits Bliek…

2011-01-01T23:59:59.000Z

354

DOE/EA-1472: Finding of No Significant Impact for the Commercial Demonstration of the Low NOx Burner/Separated Over-Fire Air Integration System Emission Reduction Technology (03/11/03)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IMPACT IMPACT COMMERCIAL DEMONSRATION OF THE LOW NOx BURNER/SEPARATED OVER- FIRE AIR (LNB/SOFA) INTEGRATON SYSTEM EMISSION REDUCTION TECHNOLOGY HOLCOMB STATION SUNFLOWER ELECTRIC POWER CORPORATION FINNEY COUNTY, KANSAS AGENCY: U.S. Department of Energy (DOE) ACTION: Finding of No Significant Impact (FONSI) SUMMARY: The DOE has prepared an Environmental Assessment (EA), to analyze the potential impacts of the commercial application of the Low-NOx Burner/Separated Over-Fire Air (LNB/SOFA) integration system to achieve nitrogen oxide (NOx) emissions reduction at Sunflower's Holcomb Unit No. 1 (Holcomb Station), located near Garden City, in Finney County, Kansas. The Holcomb Station would be modified in three distinct phases to demonstrate the synergistic effect of layering NO,

355

Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, fourth quarter 1991  

SciTech Connect

This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO{sub x} burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as parameters such as particulate characteristics and boiler efficiency.

Not Available

1992-04-21T23:59:59.000Z

356

Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, Second quarter 1992  

SciTech Connect

This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (No{sub x}) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO{sub x} burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency.

Not Available

1992-08-24T23:59:59.000Z

357

Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, First quarter 1992  

SciTech Connect

This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO{sub x} burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency.

Not Available

1992-12-31T23:59:59.000Z

358

Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from coal-fired boilers  

SciTech Connect

This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (No[sub x]) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company's Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO[sub x] combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO[sub x] reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO[sub x] burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO[sub x] reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency.

Not Available

1992-08-24T23:59:59.000Z

359

Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO sub x ) emissions from coal-fired boilers  

SciTech Connect

This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company's Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO{sub x} burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as parameters such as particulate characteristics and boiler efficiency.

Not Available

1992-04-21T23:59:59.000Z

360

Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Quarterly report No. 8, April--June, 1992  

SciTech Connect

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe, there are numerous technical uncertainties associated with applying SCR to US coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels. (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}. (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U. S. coal.

Not Available

1992-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "dg technologies demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

LIMB demonstration project extension and Coolside demonstration: A DOE assessment  

SciTech Connect

The goal of the US Department of Energy (DOE) Clean Coal Technology (CCT) program is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have already reached the proof-of-concept stage. This document serves as a DOE post-project assessment of the CCT Round 1 project ``LIMB Demonstration Project Extension and Coolside Demonstration'', described in a report to Congress (Babcock and Wilcox 1987), a paper by DePero et al. (1992), and in a report by Goots et al. (1992). The original limestone injection multistage burner (LIMB) demonstration work was conducted by Babcock and Wilcox Company (B and W) beginning in 1984, under the sponsorship of the US Environmental Protection Agency (EPA) and the State of Ohio Coal Development Office (OCDO). In 1987, B and W and the Ohio Edison Company agreed to extend the full-scale demonstration of LIMB technology under the sponsorship of DOE through its CCT Program, and with support from OCDO and Consolidation Coal Company, now known as CONSOL. In a separate effort, CONSOL had been developing another flue gas desulfurization (FGD) technology known as the Coolside process. Both LIMB and Coolside use sorbent injection to remove SO{sub 2}. The LIMB process injects the sorbent into the furnace and the Coolside injects the sorbent into the flue gas duct. In addition, LIMB uses low-NO{sub x} burners to reduce NO{sub x} emissions; hence it is categorized as a combination SO{sub 2}/NO{sub x} control technology. To take advantage of synergism between the two processes, the CCT project was structured to incorporate demonstration of both the LIMB and Coolside processes. Coolside testing was accomplished between July 1989 and February 1990, and the LIMB Extension test program was conducted between April 1990 and August 1991. The host site for both tests was the 105 MWe coal-fired Unit 4 at Ohio Edison's Edgewater Station in Lorain, Ohio. The major performance objectives of this project were successfully achieved, with SO{sub 2} emissions reductions of up to 70% demonstrated in both processes.

National Energy Technology Laboratory

2000-04-30T23:59:59.000Z

362

Major Demonstrations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Major Demonstrations Major Demonstrations Major Demonstrations A state-of-the-art integrated coal gasification combined-cycle (IGCC) power plant, Tampa Electric's Polk Power Station produces enough electricity to serve 75,000 homes. A state-of-the-art integrated coal gasification combined-cycle (IGCC) power plant, Tampa Electric's Polk Power Station produces enough electricity to serve 75,000 homes. The Office of Fossil Energy is co-funding large-scale demonstrations of clean coal technologies to hasten their adoption into the commercial marketplace. Through the year 2030, electricity consumption in the United States is expected to grow by about 1 percent per year. The ability of coal-fired generation to help meet this demand could be limited by concerns over greenhouse gas emissions. While the Major Demonstrations performed to date

363

A Demonstration System for Capturing Geothermal Energy from Mine...  

Open Energy Info (EERE)

MT Project Type Topic 1 Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Project Type Topic 2 Topic Area 1: Technology Demonstration Projects Project...

364

Hydrogen Storage Materials Database Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

| Fuel Cell Technologies Program Source: US DOE 4/25/2011 eere.energy.gov | Fuel Cell Technologies Program Source: US DOE 4/25/2011 eere.energy.gov Hydrogen Storage Materials Database Demonstration FUEL CELL TECHNOLOGIES PROGRAM Ned Stetson Storage Tech Team Lead Fuel Cell Technologies Program U.S. Department of Energy 12/13/2011 Hydrogen Storage Materials Database Marni Lenahan December 13, 2011 Database Background * The Hydrogen Storage Materials Database was built to retain information from DOE Hydrogen Storage funded research and make these data more accessible. * Data includes properties of hydrogen storage materials investigated such as synthesis conditions, sorption and release conditions, capacities, thermodynamics, etc. http://hydrogenmaterialssearch.govtools.us Current Status * Data continues to be collected from DOE funded research.

365

Novel Composite Materials Demonstrate Ultra-sensitivity  

NLE Websites -- All DOE Office Websites (Extended Search)

2, Issue 25 2, Issue 25 Novel Composite Materials Demonstrate Ultra-sensitivity Gold nanowires on graphite templates used in gas sensing application page 2 Coronary Stent Wins Technology Transfer Award page 4 University of Oregon Team Wins Competition for Commercializing NETL Technology page 5 the ENERGY lab NATIONAL ENERGY TECHNOLOGY LABORATORY 2 Novel Composite Materials Demonstrate Ultra-sensitivity-Gold nanowires on graphite templates used in gas sensing applications ____________________2 Coronary Stent Wins Technology Transfer Award ________4 University of Oregon Team Wins Competition for Commercializing NETL Technology __________________5 NETL & WVU Researchers Design New Catalysts for CO 2 Management ___________________________________6 Structurally Dynamic MOF Sorbent Selectively Adsorbs

366

New Technologies for 21st Century Plant Science  

Science Journals Connector (OSTI)

...131-133. McLafferty, F.W. (2011). A century of progress in molecular mass spectrometry...Masselon, C., Pasa-Tolic, L., Camp, D.G., II, Hixson, K.K., Zhao...Sci. 2 : 31. New technologies for 21st century plant science. | Plants are one of the...

David W. Ehrhardt; Wolf B. Frommer

2012-02-24T23:59:59.000Z

367

Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Technical progress report, first and second quarters 1994  

SciTech Connect

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involve injecting ammonia into the flue gas generated from coal combustion in a boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to form nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur coal-fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels; (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}; and (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties are being explored by operating a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. The project is being conducted in the following three phases: permitting, environmental monitoring plan and preliminary engineering; detailed design engineering and construction; and operation, testing, disposition and final report. The project was in the operation and testing phase during this reporting period. Accomplishments for this period are described.

NONE

1995-11-01T23:59:59.000Z

368

Energy Department Announces Funding for Demonstration and Testing...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Funding for Demonstration and Testing of Advanced Wave and Tidal Energy Technologies Energy Department Announces Funding for Demonstration and Testing of Advanced Wave and Tidal...

369

AVTA ? PHEV Demonstrations and Testing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AVTA PHEV Demonstrations and Testing AVTA PHEV Demonstrations and Testing 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting,...

370

AVTA HEV, NEV, BEV and HICEV Demonstrations and Testing | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

HEV, NEV, BEV and HICEV Demonstrations and Testing AVTA HEV, NEV, BEV and HICEV Demonstrations and Testing 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review...

371

Engine ground demonstration test approach  

SciTech Connect

The hardware portion of the current phase of the Integrated Solar Upper Stage (ISUS) program culminates in a system ground demonstration test. The potential application of ISUS technology to a wide array of future missions complicates the process of selecting from among demonstration system design options and test approaches. The approach to this system demonstration has been to maximize system technology readiness level for the entire array of potential missions within the constraints of the program. To this end, system design and test operations planning has been carried out with a premium on demonstrating those elements of the system common to all missions. In addition, test planning has been managed to allow margin for testing those portions of the system envelope needed to confirm acceptable operation for scenarios within the mission set that are specific to a given mission or mission type. Examples drawn from the specific Engine Ground Demonstration (EGD) design selections are used to illuminate this approach, with the result that the EGD system design is not only described, but the reasons for its particular characteristics are made evident.

Kudija, C.T. [Rockwell Aerospace, Canoga Park, CA (United States). Rocketdyne Div.

1996-12-31T23:59:59.000Z

372

West Valley Demonstration Project  

Energy.gov (U.S. Department of Energy (DOE))

West Valley Demonstration Project compliance agreements, along with summaries of the agreements, can be viewed here.

373

NETL: CCPI/Clean Coal Demonstrations  

NLE Websites -- All DOE Office Websites (Extended Search)

Topical Reports Topical Reports CCPI/Clean Coal Demonstrations Topical Reports General Topical Report #18: Environmental Benefits of Clean Coal Technologies[PDF-2MB] (Apr 2001) This report describes a variety of processes that are capable of meeting existing and emerging environmental regulations and competing economically in a deregulated electric power marketplace. Topical Report #17: Software Systems in Clean Coal Demonstration Projects [PDF-650KB] (Dec 2001) This report describes computer software systems used to optimize coal utilization technologies. Environmental Control Technologies Sulfur Dioxide Control Technologies Topical Report #12: Advanced Technologies for the Control of Sulfur Dioxide Emissions from Coal-Fired Boilers [PDF-1.6MB] (June 1999) A discussion of three CCT projects that demonstrate innovative wet flue gas desulfurization technologies to remove greater than 90% SO2.

374

Milestone Project Demonstrates Innovative Mercury Emissions Reduction  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Milestone Project Demonstrates Innovative Mercury Emissions Milestone Project Demonstrates Innovative Mercury Emissions Reduction Technology Milestone Project Demonstrates Innovative Mercury Emissions Reduction Technology January 12, 2010 - 12:00pm Addthis Washington, DC - An innovative technology that could potentially help some coal-based power generation facilities comply with anticipated new mercury emissions standards was successfully demonstrated in a recently concluded milestone project at a Michigan power plant. Under a cooperative agreement with the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL), WE Energies demonstrated the TOXECON(TM) process in a $52.9million project at the Presque Isle Power Plant in Marquette, Mich. TOXECON is a relatively cost-effective option for achieving significant reductions in mercury emissions and increasing the

375

FEMP/NTDP Technology Focus New Technology  

E-Print Network (OSTI)

FEMP/NTDP Technology Focus New Technology Demonstration Program Technology Focus FEMPFederal Energy Management Program Trends in Energy Management Technology: BCS Integration Technologies ­ Open Communications into a complete EMCIS. The first article [1] covered enabling technologies for emerging energy management systems

376

Advanced Coal Conversion Process Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Coal Technology Program Clean Coal Technology Program Advanced Coal Conversion Process Demonstration A DOE Assessment DOE/NETL-2005/1217 U.S. Department of Energy Office of Fossil Energy National Energy Technology Laboratory April 2005 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name,

377

Implementation of the buried waste integrated demonstration  

SciTech Connect

The Department of Energy (DOE), Office of Technology Development (OTD) has initiated the Buried Waste Integrated Demonstration (BWID) to resolve technological deficiencies associated with the remediation of radioactive and hazardous buried waste. The BWID mission is to identify, demonstrate, and transfer innovative technologies for the remediation of DOE buried waste. To accomplish the mission, BWID is using a systems approach which supports the development of a suite of advanced and innovative technologies for the effective and efficient remediation of buried waste. This systems approach includes technologies for theentire remediation cycle. Specifically, BWID sponsors technology development in the following technology categories: site and waste characterization, retrieval, preprocessing, ex situ treatment, packaging, transportation, storage, disposal, and post-disposal monitoring.

Kostelnik, K.M.; Merrill, S.K.

1992-09-01T23:59:59.000Z

378

Implementation of the buried waste integrated demonstration  

SciTech Connect

The Department of Energy (DOE), Office of Technology Development (OTD) has initiated the Buried Waste Integrated Demonstration (BWID) to resolve technological deficiencies associated with the remediation of radioactive and hazardous buried waste. The BWID mission is to identify, demonstrate, and transfer innovative technologies for the remediation of DOE buried waste. To accomplish the mission, BWID is using a systems approach which supports the development of a suite of advanced and innovative technologies for the effective and efficient remediation of buried waste. This systems approach includes technologies for theentire remediation cycle. Specifically, BWID sponsors technology development in the following technology categories: site and waste characterization, retrieval, preprocessing, ex situ treatment, packaging, transportation, storage, disposal, and post-disposal monitoring.

Kostelnik, K.M.; Merrill, S.K.

1992-01-01T23:59:59.000Z

379

Molecular vibration demonstrations  

Science Journals Connector (OSTI)

Molecular vibration demonstrations ... Two dynamic models that illustrate the normal-mode vibrations of the water and benzene molecules. ...

George Turrell; Robert Demol

1987-01-01T23:59:59.000Z

380

NREL: Energy Analysis - Energy Technology Cost and Performance Data for  

NLE Websites -- All DOE Office Websites (Extended Search)

Bookmark and Share Bookmark and Share Energy Technology Cost and Performance Data for Distributed Generation Transparent Cost Database Button Recent cost estimates for distributed generation (DG) renewable energy technologies are available across capital costs, operations and maintenance (O&M) costs, and levelized cost of energy (LCOE). Use the tabs below to navigate the charts. The LCOE tab provides a simple calculator for both utility-scale and DG technologies that compares the combination of capital costs, O&M, performance, and fuel costs. If you are seeking utility-scale technology cost and performance estimates, please visit the Transparent Cost Database website for NREL's information regarding vehicles, biofuels, and electricity generation. Capital Cost (September 2013 Update)

Note: This page contains sample records for the topic "dg technologies demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Shallow Carbon Sequestration Demonstration Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Shallow Carbon SequeStration Shallow Carbon SequeStration DemonStration ProjeCt Background The Shallow Carbon Sequestration Pilot Demonstration Project is a cooperative effort involving City Utilities of Springfield (CU); Missouri Department of Natural Resources (MDNR); Missouri State University (MSU); Missouri University of Science & Technology (MS&T); AmerenUE; Aquila, Inc.; Associated Electric Cooperative, Inc.; Empire District Electric Company; and Kansas City Power & Light. The purpose of this project is to assess the feasibility of carbon sequestration at Missouri power plant sites. The six electric utilities involved in the project account for approximately 90 percent of the electric generating capacity in Missouri. Description The pilot demonstration will evaluate the feasibility of utilizing the Lamotte and

382

QuickPEP Tool Demonstration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

QuickPEP Tool Demonstration QuickPEP Tool Demonstration Riyaz Papar, PE, CEM Director, Energy Assets & Optimization Hudson Technologies Company William Orthwein, CEM US Department of Energy February 26, 2009 Agenda * Introduction * Plant Energy Profiling * QuickPEP Demonstration * New features in Quick 2.0 * Wrap Up * There are different levels of Plant Energy Profiling - 10,000 ft level - Overall Plant * Phone interview * 1-day plant walkthrough * Using QuickPEP - 1,000 ft level - System level * Gap Analysis (Qualitative only) * 1-day plant walkthrough * 3-day plant Energy Savings Assessments (ESA) * Using US DOE BestPractices System Tools Plant Energy Profiling 10,000 ft approach - The Big Picture in your Plant * Looking at the forest first - Understanding your plant from an energy supply & demand perspective

383

Propane Vehicle Demonstration Grant Program  

SciTech Connect

Project Description: Propane Vehicle Demonstration Grants The Propane Vehicle Demonstration Grants was established to demonstrate the benefits of new propane equipment. The US Department of Energy, the Propane Education & Research Council (PERC) and the Propane Vehicle Council (PVC) partnered in this program. The project impacted ten different states, 179 vehicles, and 15 new propane fueling facilities. Based on estimates provided, this project generated a minimum of 1,441,000 new gallons of propane sold for the vehicle market annually. Additionally, two new off-road engines were brought to the market. Projects originally funded under this project were the City of Portland, Colorado, Kansas City, Impco Technologies, Jasper Engines, Maricopa County, New Jersey State, Port of Houston, Salt Lake City Newspaper, Suburban Propane, Mutual Liquid Propane and Ted Johnson.

Jack Mallinger

2004-08-27T23:59:59.000Z

384

Vehicle Technologies Office Merit Review 2014: Technology and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks Vehicle Technologies Office Merit Review 2014: Technology and System Level...

385

Rotary Burner Demonstration  

SciTech Connect

The subject technology, the Calcpos Rotary Burner (CRB), is a burner that is proposed to reduce energy consumption and emission levels in comparison to currently available technology. burners are used throughout industry to produce the heat that is required during the refining process. Refineries seek to minimize the use of energy in refining while still meeting EPA regulations for emissions.

Paul Flanagan

2003-04-30T23:59:59.000Z

386

Demonstration and Deployment Strategy Workshop: Summary  

Energy.gov (U.S. Department of Energy (DOE))

This report is based on the proceedings of the U.S. DOE’s Bioenergy Technologies Office Demonstration and Deployment Strategy Workshop, held on March 12–13, 2014, at Argonne National Laboratory.

387

LIMB Demonstration Project Extension and Coolside Demonstration. [Final report  

SciTech Connect

This report presents results from the limestone Injection Multistage Burner (LIMB) Demonstration Project Extension. LIMB is a furnace sorbent injection technology designed for the reduction of sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) emissions from coal-fired utility boilers. The testing was conducted on the 105 Mwe, coal-fired, Unit 4 boiler at Ohio Edison`s Edgewater Station in Lorain, Ohio. In addition to the LIMB Extension activities, the overall project included demonstration of the Coolside process for S0{sub 2} removal for which a separate report has been issued. The primary purpose of the DOE LIMB Extension testing, was to demonstrate the generic applicability of LIMB technology. The program sought to characterize the S0{sub 2} emissions that result when various calcium-based sorbents are injected into the furnace, while burning coals having sulfur content ranging from 1.6 to 3.8 weight percent. The four sorbents used included calcitic limestone, dolomitic hydrated lime, calcitic hydrated lime, and calcitic hydrated lime with a small amount of added calcium lignosulfonate. The results include those obtained for the various coal/sorbent combinations and the effects of the LIMB process on boiler and plant operations.

Goots, T.R.; DePero, M.J.; Nolan, P.S.

1992-11-10T23:59:59.000Z

388

Radiation Emergency Procedure Demonstrations  

NLE Websites -- All DOE Office Websites (Extended Search)

Managing Radiation Emergencies Managing Radiation Emergencies Procedure Demonstrations Procedure Demonstrations Note: RealPlayer is needed for listening to the narration that accompany these demonstrations. Real Player Dressing To Prevent the Spread of Radioactive Contamination This demonstration shows how your team can dress to prevent the spread of radioactive contamination. Click to begin presentation on dressing to prevent the spread of radioactive contamination. Preparing The Area This demonstration shows basic steps you can take to gather equipment and prepare a room to receive a patient who may be contaminated with radioactive material. Click to begin presentation on preparing a room to receive a radioactive contaminated patient. Removing Contaminated Clothing This demonstration shows the procedure for removing clothing from a patient who may be contaminated with radioactive material.

389

Robotics for mixed waste operations, demonstration description  

SciTech Connect

The Department of Energy (DOE) Office of Technology Development (OTD) is developing technology to aid in the cleanup of DOE sites. Included in the OTD program are the Robotics Technology Development Program and the Mixed Waste Integrated Program. These two programs are working together to provide technology for the cleanup of mixed waste, which is waste that has both radioactive and hazardous constituents. There are over 240,000 cubic meters of mixed low level waste accumulated at DOE sites and the cleanup is expected to generate about 900,000 cubic meters of mixed low level waste over the next five years. This waste must be monitored during storage and then treated and disposed of in a cost effective manner acceptable to regulators and the states involved. The Robotics Technology Development Program is developing robotics technology to make these tasks safer, better, faster and cheaper through the Mixed Waste Operations team. This technology will also apply to treatment of transuranic waste. The demonstration at the Savannah River Site on November 2-4, 1993, showed the progress of this technology by DOE, universities and industry over the previous year. Robotics technology for the handling, characterization and treatment of mixed waste as well robotics technology for monitoring of stored waste was demonstrated. It was shown that robotics technology can make future waste storage and waste treatment facilities better, faster, safer and cheaper.

Ward, C.R.

1993-11-01T23:59:59.000Z

390

NETL: PPII - Commercial Demonstration of the Manufactured Aggregate  

NLE Websites -- All DOE Office Websites (Extended Search)

Demonstration Project Documents - Industrial Applications Demonstration Project Documents - Industrial Applications Commercial Demonstration of the Manufactured Aggregate Processing Technology Utilizing Spray Dryer Ash - Project Brief [PDF-72KB] Universal Aggregates, LLC, King George County, VA PROJECT FACT SHEET Commercial Demonstration of the Manufactured Aggregate Processing Technology Utilizing Spray Dryer Ash [PDF-412KB] (Feb 2008) PROGRAM PUBLICATIONS Final Report Commercial Demonstration of the Manufactured Aggregate Processing Technology Utilizing Spray Dryer Absorber Ash [PDF-4.5MB] (Nov 2007) CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports Commercial Demonstration of the Manufactured Aggregate Processing Technology Utilizing Spray Dryer Ash: A DOE Assessment [PDF-170KB] (Mar 2008)

391

Clean Coal Diesel Demonstration Project  

SciTech Connect

A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

Robert Wilson

2006-10-31T23:59:59.000Z

392

West Valley Demonstration Project  

Energy.gov (U.S. Department of Energy (DOE))

The West Valley Demonstration Project came into being through the West Valley Demonstration Project Act of 1980. The Act requires that the DOE is responsible for solidifying the high-level waste, disposing of waste created by the solidification, and decommissioning the facilities used in the process.

393

Cooling Neutron Stars and Super uidity in Their Interiors D.G. Yakovlev, K.P. Leven sh, Yu.A. Shibanov  

E-Print Network (OSTI)

Cooling Neutron Stars and Super uidity in Their Interiors D.G. Yakovlev, K.P. Leven#12;sh, Yu-nucleon bremsstrahlung, Cooper pairing of nucleons) in matter of supranuclear density of the neutron star cores with super uid neutrons and protons. Various super uidity types are analysed (singlet-state pairing and two

394

Oak Ridge Manufacturing Demonstration Facility (MDF)  

Office of Energy Efficiency and Renewable Energy (EERE)

The Manufacturing Demonstration Facility (MDF) is a collabora­tive manufacturing community that shares a common RD&D infrastructure. This shared infrastructure provides affordable access to advanced physical and virtual tools for rapidly demonstrating new manufacturing technologies and optimizing critical processes. Oak Ridge National Laboratory is home to AMO's MDF focused on Additive Manufacturing and Low-cost Carbon Fiber.

395

International Stationary Fuel Cell Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

STATIONARY FUEL CELL DEMONSTRATION STATIONARY FUEL CELL DEMONSTRATION John Vogel, Plug Power Inc. Yu-Min Tsou, PEMEAS E-TEK 14 February, 2007 Clean, Reliable On-site Energy SAFE HARBOR STATEMENT This presentation contains forward-looking statements, including statements regarding the company's future plans and expectations regarding the development and commercialization of fuel cell technology. All forward-looking statements are subject to risks, uncertainties and assumptions that could cause actual results to differ materially from those projected. The forward-looking statements speak only as of the date of this presentation. The company expressly disclaims any obligation or undertaking to release publicly any updates or revisions to any such statements to reflect any change in the company's expectations or any change in

396

Glass melter system technologies for vitrification of high-sodium-content low-level, radioactive, liquid wastes: Phase 1, SBS demonstration with simulated low-level waste. Final test report  

SciTech Connect

The attached vendor report was prepared for Westinghouse Hanford Company by Babcock & Wilcox as documentation of the Phase I Final Test Report, Cyclone Combustion Melter Demonstration.

Holmes, M.J.; Scotto, M.V.; Shiao, S.Y. [Babcock & Wilcox, Alliance, OH (United States) Research Center

1995-12-31T23:59:59.000Z

397

Coal Technology  

Science Journals Connector (OSTI)

Several large demonstrations of FBC technology for electrical power generation have proven ... -MW(e) atmospheric pressure circulating fluidized-bed boiler at the Colorado–Ute Electric Association's...14 ...

2003-01-01T23:59:59.000Z

398

Core Drilling Demonstration  

Energy.gov (U.S. Department of Energy (DOE))

Tank Farms workers demonstrate core drilling capabilities for Hanford single-shell tanks. Core drilling is used to determine the current condition of each tank to assist in the overall assessment...

399

Chevrolet Volt Vehicle Demonstration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Volt Vehicle Demonstration Fleet Summary Report Reporting period: January 2013 through March 2013 Number of vehicles: 146 Number of vehicle days driven: 6,680 4292013 2:38:13 PM...

400

Buried Waste Integrated Demonstration commercialization actions plans. Volume 1  

SciTech Connect

The Buried Waste Integrated Demonstration (BWID) is sponsored by US Department of Energy (DOE) Office of Technology Development. BWID supports the development and demonstration of a suite of technologies that when integrated with commercially available baseline technologies form a comprehensive system for the effective and efficient remediation of buried waste throughout the DOE complex. BWID evaluates, validates, and demonstrates technologies and transfers this information throughout DOE and private industry to support DOE. remediation planning and implementation activities. This report documents commercialization action plans for five technologies with near-term commercialization/ implementation potential as well as provides a status of commercial and academic partners for each technology.

Kaupanger, R.M. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Glore, D. [Advanced Sciences, Inc. (United States)

1994-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "dg technologies demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Buried Waste Integrated Demonstration Plan. Revision 1  

SciTech Connect

This document presents the plan of activities for the Buried Waste Integrated Demonstration (BWID) program which supports the environmental restoration (ER) objectives of the Department of Energy (DOE) Complex. Discussed in this plan are the objectives, organization, roles and responsibilities, and the process for implementing and managing BWID. BWID is hosted at the Idaho National Engineering Laboratory (INEL), but involves participants from throughout the DOE Complex, private industry, universities, and the international community. These participants will support, demonstrate, and evaluate a suite of advanced technologies representing a comprehensive remediation system for the effective and efficient remediation of buried waste. The processes for identifying technological needs, screening candidate technologies for applicability and maturity, selecting appropriate technologies for demonstration, field demonstrating, evaluation of results and transferring technologies to environmental restoration programs are also presented. This document further describes the elements of project planning and control that apply to BWID. It addresses the management processes, operating procedures, programmatic and technical objectives, and schedules. Key functions in support of each demonstration such as regulatory coordination, safety analyses, risk evaluations, facility requirements, and data management are presented.

Kostelnik, K.M.

1991-12-01T23:59:59.000Z

402

Category:Smart Grid Projects - Regional Demonstrations | Open Energy  

Open Energy Info (EERE)

Demonstrations Demonstrations Jump to: navigation, search Smart Grid Regional Demonstrations Projects category. Pages in category "Smart Grid Projects - Regional Demonstrations" The following 16 pages are in this category, out of 16 total. B Battelle Memorial Institute, Pacific Northwest Division Smart Grid Demonstration Project C Center for the Commercialization of Electric Technologies Smart Grid Demonstration Project Columbus Southern Power Company (doing business as AEP Ohio) Smart Grid Demonstration Project Consolidated Edison Company of New York, Inc. Smart Grid Demonstration Project K Kansas City Power & Light Company Smart Grid Demonstration Project L Long Island Power Authority Smart Grid Demonstration Project L cont. Los Angeles Department of Water and Power Smart Grid Demonstration Project

403

GATEWAY Demonstration Outdoor Projects  

Energy.gov (U.S. Department of Energy (DOE))

DOE shares the results of completed GATEWAY demonstration projects, publishing detailed reports that include analysis of data collected, projected energy savings, economic analyses, and user feedback. Report briefs summarize key findings in a quick-scan format. Both the reports and briefs are available as Adobe Acrobat PDFs.

404

GATEWAY Demonstration Indoor Projects  

Energy.gov (U.S. Department of Energy (DOE))

DOE shares the results of completed GATEWAY demonstration projects, publishing detailed reports that include analysis of data collected, projected energy savings, economic analyses, and user feedback. Report briefs summarize key findings in a quick-scan format. Both the reports and briefs are available as Adobe Acrobat PDFs.

405

MAJORANA Demonstrator Motivation  

E-Print Network (OSTI)

1 #12;OVERVIEW MAJORANA Demonstrator Motivation Neutrinoless double beta decay Search for axions: MAJORANA Collaboration #12;NEUTRINOLESS DOUBLE BETA DECAY Emission of 2 electrons from Ge-76 and application to neutrinoless double beta decay search in Ge- 76." Journal of Instrumentation 6 (2011).13 #12

Washington at Seattle, University of - Department of Physics, Electroweak Interaction Research Group

406

A prompt radio transient associated with a gamma-ray superflare from the young M dwarf binary DG CVn  

E-Print Network (OSTI)

On 2014 April 23, the Swift satellite detected a gamma-ray superflare from the nearby star system DG CVn. This system comprises a M-dwarf binary with extreme properties: it is very young and at least one of the components is a very rapid rotator. The gamma-ray superflare is one of only a handful detected by Swift in a decade. As part of our AMI-LA Rapid Response Mode, ALARRM, we automatically slewed to this target, were taking data at 15 GHz within six minutes of the burst, and detected a bright (~100 mJy) radio flare. This is the earliest detection of bright, prompt, radio emission from a high energy transient ever made with a radio telescope, and is possibly the most luminous incoherent radio flare ever observed from a red dwarf star. An additional bright radio flare, peaking at around 90 mJy, occurred around one day later, and there may have been further events between 0.1-1 days when we had no radio coverage. The source subsequently returned to a quiescent level of 2-3 mJy on a timescale of about 4 days. ...

Fender, R P; Osten, R; Staley, T; Rumsey, C; Grainge, K; Saunders, R D E

2014-01-01T23:59:59.000Z

407

Results From The Salt Disposition Project Next Generation Solvent Demonstration Plan  

SciTech Connect

Strip Effluent Hold Tank (SEHT), Decontaminated Salt Solution Hold Tank (DSSHT), Caustic Wash Tank (CWT) and Solvent Hold Tank (SHT) samples were taken throughout the Next Generation Solvent (NGS) Demonstration Plan. These samples were analyzed and the results are reported. SHT: The solvent behaved as expected, with no bulk changes in the composition over time, with the exception of the TOA and TiDG. The TiDG depletion is higher than expected, and consideration must be taken on the required rate of replenishment. Monthly sampling of the SHT is warranted. If possible, additional SHT samples for TiDG analysis (only) would help SRNL refine the TiDG degradation model. CWT: The CWT samples show the expected behavior in terms of bulk chemistry. The 137Cs deposited into the CWT varies somewhat, but generally appears to be lower than during operations with the BOBCalix solvent. While a few minor organic components were noted to be present in the Preliminary sample, at this time these are thought to be artifacts of the sample preparation or may be due to the preceding solvent superwash. DSSHT: The DSSHT samples show the predicted bulk chemistry, although they point towards significant dilution at the front end of the Demonstration. The 137Cs levels in the DSSHT are much lower than during the BOBCalix operations, which is the expected observation. SEHT: The SEHT samples represent the most different output of all four of the outputs from MCU. While the bulk chemistry is as expected, something is causing the pH of the SEHT to be higher than what would be predicted from a pure stream of 0.01 M boric acid. There are several possible different reasons for this, and SRNL is in the process of investigating. Other than the pH issue, the SEHT is as predicted. In summary, the NGS Demonstration Plan samples indicate that the MCU system, with the Blend Solvent, is operating as expected. The only issue of concern regards the pH of the SEHT, and SRNL is in the process of investigating this. SRNL results support the transition to routine operations.

Peters, T. B.; Fondeur, F. F.; Taylor-Pashow, K. M.L.

2014-04-02T23:59:59.000Z

408

New York State Electric & Gas Corporation Smart Grid Demonstration...  

Open Energy Info (EERE)

in Binghamton, New York. Overview Demonstrate an advanced, less costly 150 MW Compressed Air Energy Storage (CAES) technology plant using an existing salt cavern. The project will...

409

Zero Emission Heavy Duty Drayage Truck Demonstration | Department...  

Office of Environmental Management (EM)

Zero Emission Heavy Duty Drayage Truck Demonstration 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

410

Supertruck - Development and Demonstration of a Fuel-Efficient...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Attain 50% BTE Engine Demonstrate path towards 55% BTE Engine Barriers Assemble a cost effective, robust, reduced weight technologies for 50% freight efficiency Increase...

411

Demonstration of integrated optimization software  

SciTech Connect

NeuCO has designed and demonstrated the integration of five system control modules using its proprietary ProcessLink{reg_sign} technology of neural networks, advanced algorithms and fuzzy logic to maximize performance of coal-fired plants. The separate modules control cyclone combustion, sootblowing, SCR operations, performance and equipment maintenance. ProcessLink{reg_sign} provides overall plant-level integration of controls responsive to plant operator and corporate criteria. Benefits of an integrated approach include NOx reduction improvement in heat rate, availability, efficiency and reliability; extension of SCR catalyst life; and reduced consumption of ammonia. All translate into cost savings. As plant complexity increases through retrofit, repowering or other plant modifications, this integrated process optimization approach will be an important tool for plant operators. 1 fig., 1 photo.

NONE

2008-01-01T23:59:59.000Z

412

JEA successfully completes world's largest CFB demonstration  

SciTech Connect

JEA (formerly the Jacksonville Electric Authority) has successfully completed an eighth year landmark demonstration project that continues in baseload commercial operation. It scales up atmospheric fluidized-bed technology demonstration to the near-300-MW size, providing important data on a technology that can achieve > 90% SO{sub 2} removal and 60% NOx reduction at relatively high efficiencies and at costs comparable to those of conventional pulverized coal plants. The article recounts the history of the project. Performance tests showed a blend of coal and petcoke were most efficient as a feedstock. 3 figs.

NONE

2005-09-30T23:59:59.000Z

413

Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Draft final report  

SciTech Connect

The primary goal of this project was to demonstrate the use of Selective Catalytic Reduction (SCR) to reduce NO{sub x} emissions from pulverized-coal utility boilers using medium- to high-sulfur US coal. The prototype SCR facility, built in and around the ductwork of Plant Crist Unit 5, consisted of three large SCR reactor units (Reactors A, B, and C), each with a design capacity of 5,000 standard cubic feet per minute (scfm) of flue gas, and six smaller reactors (Reactors D through J), each with a design capacity of 400 scfm of flue gas. The three large reactors contained commercially available SCR catalysts as offered by SCR catalyst suppliers. These reactors were coupled with small-scale air preheaters to evaluate (1) the long-term effects of SCR reaction chemistry on air preheater deposit formation and (2) the impact of these deposits on the performance of air preheaters. The small reactors were used to test additional varieties of commercially available catalysts. The demonstration project was organized into three phases: (1) Permitting, Environmental Monitoring Plan (EMP) Preparation, and Preliminary Engineering; (2) Detail Design Engineering and Construction; and (3) Operation, Testing, Disposition, and Final Report Preparation. Section 2 discusses the planned and actual EMP monitoring for gaseous, aqueous, and solid streams over the course of the SCR demonstration project; Section 3 summarizes sampling and analytical methods and discusses exceptions from the methods specified in the EMP; Section 4 presents and discusses the gas stream monitoring results; Section 5 presents and discusses the aqueous stream monitoring results; Section 6 presents and discusses the solid stream monitoring results; Section 7 discusses EMP-related quality assurance/quality control activities performed during the demonstration project; Section 8 summarizes compliance monitoring reporting activities; and Section 9 presents conclusions based on the EMP monitoring results.

NONE

1996-06-14T23:59:59.000Z

414

Jennings Demonstration PLant  

SciTech Connect

Verenium operated a demonstration plant with a capacity to produce 1.4 million gallons of cellulosic ethanol from agricultural resiues for about two years. During this time, the plant was able to evaluate the technical issues in producing ethanol from three different cellulosic feedstocks, sugar cane bagasse, energy cane, and sorghum. The project was intended to develop a better understanding of the operating parameters that would inform a commercial sized operation. Issues related to feedstock variability, use of hydrolytic enzymes, and the viability of fermentative organisms were evaluated. Considerable success was achieved with pretreatment processes and use of enzymes but challenges were encountered with feedstock variability and fermentation systems. Limited amounts of cellulosic ethanol were produced.

Russ Heissner

2010-08-31T23:59:59.000Z

415

Fusion Power Demonstration III  

SciTech Connect

This is the third in the series of reports covering the Fusion Power Demonstration (FPD) design study. This volume considers the FPD-III configuration that incorporates an octopole end plug. As compared with the quadrupole end-plugged designs of FPD-I and FPD-II, this octopole configuration reduces the number of end cell magnets and shortens the minimum ignition length of the central cell. The end-cell plasma length is also reduced, which in turn reduces the size and cost of the end cell magnets and shielding. As a contiuation in the series of documents covering the FPD, this report does not stand alone as a design description of FPD-III. Design details of FPD-III subsystems that do not differ significantly from those of the FPD-II configuration are not duplicated in this report.

Lee, J.D. (ed.)

1985-07-01T23:59:59.000Z

416

CubeSat deformable mirror demonstration  

E-Print Network (OSTI)

The goal of the CubeSat Deformable Mirror Demonstration (DeMi) is to characterize the performance of a small deformable mirror over a year in low-Earth orbit. Small form factor deformable mirrors are a key technology needed ...

Cahoy, Kerri

417

NREL: Technology Deployment - U.S. Virgin Islands Cut Diesel...  

NLE Websites -- All DOE Office Websites (Extended Search)

with developing distributed generation (DG) solar projects. Fifteen megawatts of DG solar projects have been installed over the past few years. In December 2012, NREL wind...

418

Manufacturing Demonstration Facility (MDF) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturing Demonstration Facility (MDF) Manufacturing Demonstration Facility (MDF) Manufacturing Demonstration Facility (MDF) October 11, 2013 - 9:44am Addthis The Manufacturing Demonstration Facility (MDF) is a collabora-tive manufacturing community that shares a common RD&D infrastructure. This shared infrastructure provides affordable access to advanced physical and virtual tools for rapidly demonstrating new manufacturing technologies and optimizing critical processes. Oak Ridge National Laboratory is home to AMO's MDF focused on Additive Manufacturing and Low-cost Carbon Fiber. Fostering Collaboration to Accelerate Progress Work conducted by MDF partners and users provides real data that is used to reduce the technical risk associated with full commercialization of promising foundational manufacturing process and materials innovations. The

419

CALDERON COKEMAKING PROCESS/DEMONSTRATION PROJECT  

SciTech Connect

This project deals with the demonstration of a coking process using proprietary technology of Calderon, with the following objectives geared to facilitate commercialization: (1) making coke of such quality as to be suitable for use in hard-driving, large blast furnaces; (2) providing proof that such process is continuous and environmentally closed to prevent emissions; (3) demonstrating that high-coking-pressure (non-traditional) coal blends which cannot be safely charged into conventional by-product coke ovens can be used in the Calderon process; (4) conducting a blast furnace test to demonstrate the compatibility of the coke produced; and (5) demonstrating that coke can be produced economically, at a level competitive with coke imports. The activities of the past quarter were focused on the following: Detailed studies of LTV's site for the installation of the commercial Demonstration Unit with site specific layouts; Environmental Work; Firm commitments for funding from the private sector; and Federal funding to complement the private contribution.

Albert Calderon

1999-06-23T23:59:59.000Z

420

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

3.6 Technology Validation Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.6 Technology Validation Technology Validation technical...

Note: This page contains sample records for the topic "dg technologies demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Milliken Clean Coal Demonstration Project: A DOE Assessment  

SciTech Connect

The goal of the U.S. Department of Energy's (DOE) Clean Coal Technology (CCT) program is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal-utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have developed beyond the proof-of-concept stage.

National Energy Technology Laboratory

2001-08-15T23:59:59.000Z

422

Integrated powerhead demonstration full flow cycle development  

Science Journals Connector (OSTI)

The Integrated Powerhead Demonstration (IPD) is a 1 112 000 N (250 000? lb f ) thrust (at sea level) LOX/LH2 demonstration of a full flow cycle in an integrated system configuration. Aerojet and Rocketdyne are on contract to the Air Force Research Laboratory to design develop and deliver the required components and to provide test support to accomplish the demonstration. Rocketdyne is on contract to provide a fuel and oxygen turbopump a gas-gas injector and system engineering and integration. Aerojet is on contract to provide a fuel and oxygen preburner a main combustion chamber and a nozzle. The IPD components are being designed with Military Spaceplane (MSP) performance and operability requirements in mind. These requirements include: lifetime ?200 missions mean time between overhauls ?100 cycles and a capability to throttle from 20% to 100% of full power. These requirements bring new challenges both in designing and testing the components. This paper will provide some insight into these issues. Lessons learned from operating and supporting the space shuttle main engine (SSME) have been reviewed and incorporated where applicable. The IPD program will demonstrate phase I goals of the Integrated High Payoff Rocket Propulsion Technology (IHPRPT) program while demonstrating key propulsion technologies that will be available for MSP concepts. The demonstration will take place on Test Stand 2A at the Air Force Research Laboratory at Edwards AFB. The component tests will begin in 1999 and the integrated system tests will be completed in 2002.

J. Mathew Jones; James T. Nichols; William F. Sack; William D. Boyce; William A. Hayes

1998-01-01T23:59:59.000Z

423

SunShot Initiative: Research, Development, and Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

Research, Development, and Research, Development, and Demonstration to someone by E-mail Share SunShot Initiative: Research, Development, and Demonstration on Facebook Tweet about SunShot Initiative: Research, Development, and Demonstration on Twitter Bookmark SunShot Initiative: Research, Development, and Demonstration on Google Bookmark SunShot Initiative: Research, Development, and Demonstration on Delicious Rank SunShot Initiative: Research, Development, and Demonstration on Digg Find More places to share SunShot Initiative: Research, Development, and Demonstration on AddThis.com... Concentrating Solar Power Photovoltaics Systems Integration Research, Development, & Demonstration Distribution Grid Integration Transmission Grid Integration Solar Resource Assessment Technology Validation

424

Integrated test schedule for buried waste integrated demonstration  

SciTech Connect

The Integrated Test Schedule incorporates the various schedules the Buried Waste Integrated Demonstration (BWID) supports into one document. This document contains the Federal Facilities Agreement and Consent Order schedules for the Idaho National Engineering Laboratory, Hanford Reservation, Oak Ridge Reservation, and Fernald Environmental Materials Center. Included in the Integrated Test Schedule is the Buried Waste Integrated Demonstration ``windows of opportunity`` schedule. The ``windows of opportunity`` schedule shows periods of time in which Buried Waste Integrated Demonstration Program-sponsored technology demonstrations could support key decisions in the Federal Facilities Agreement and Consent Order. Schedules for the Buried Waste Integrated Demonstration-sponsored technology task plans are categorized by technology area and divided by current fiscal year and out-year. Total estimated costs for Buried Waste Integrated Demonstration-sponsored Technology Task Plans for FY-92 through FY-97 are $74.756M.

Brown, J.T.; McDonald, J.K.

1992-05-01T23:59:59.000Z

425

Integrated test schedule for buried waste integrated demonstration  

SciTech Connect

The Integrated Test Schedule incorporates the various schedules the Buried Waste Integrated Demonstration (BWID) supports into one document. This document contains the Federal Facilities Agreement and Consent Order schedules for the Idaho National Engineering Laboratory, Hanford Reservation, Oak Ridge Reservation, and Fernald Environmental Materials Center. Included in the Integrated Test Schedule is the Buried Waste Integrated Demonstration windows of opportunity'' schedule. The windows of opportunity'' schedule shows periods of time in which Buried Waste Integrated Demonstration Program-sponsored technology demonstrations could support key decisions in the Federal Facilities Agreement and Consent Order. Schedules for the Buried Waste Integrated Demonstration-sponsored technology task plans are categorized by technology area and divided by current fiscal year and out-year. Total estimated costs for Buried Waste Integrated Demonstration-sponsored Technology Task Plans for FY-92 through FY-97 are $74.756M.

Brown, J.T.; McDonald, J.K.

1992-05-01T23:59:59.000Z

426

Registration, Force Protection Equipment Demonstration - May 2009 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Registration, Force Protection Equipment Demonstration - May 2009 Registration, Force Protection Equipment Demonstration - May 2009 Registration, Force Protection Equipment Demonstration - May 2009 May 2009 Demonstrating commercially availale physical security/force protection soultions around the world The bombing of Khobar Towers in Saudi Arabia on 25 June 1996 revealed the need for continal vigilance and protection againist terrorist forces intent on harming US personnel and interests. The Chairman if the Joint Chiefs of Staff directed the Services to investigate COTS equipments solutions for physical security/force protection needs. The Office of the Under Secretary of Defense for Acquistion, Technology, and Logistics (OUSD {at&l}) tasked the Office of the US Army Product Manager, force Protection Systems (PM-FPS), to coordiante and facilitate a Force Protection Equipment

427

Calderon Cokemaking Process/Demonstration Project  

SciTech Connect

This project deals with the demonstration of a coking process using proprietary technology of Calderon with the following objectives in order to enable its commercialization: (i) making coke of such quality as to be suitable for use in high driving (highly productive) blast furnaces; (ii) providing proof that such process is continuous and environmentally closed to prevent emissions; and (iii) demonstrating that high-coking-pressure (non-traditional) coal blends which cannot be safely charged into conventional by-product coke ovens can be used in the Calderon process. The activities of the past quarter were entirely focused on operating the Calderon Process Development Unit (PDU-I) in Alliance, Ohio conducting a series of tests under steady state using coal from Bethlehem Steel and U.S. Steel in order to demonstrate the above. The objectives mentioned above were successfully demonstrated.

None

1998-04-08T23:59:59.000Z

428

Technology-to-Market Portfolio  

Energy.gov (U.S. Department of Energy (DOE))

BTO’s Technology-to-Market (T2M) team drives high impact technologies from R&D to market readiness, preparing these technologies for real building demonstration, market deployment, and ultimately mass-market adoption.

429

Power Plant Optimization Demonstration Projects Cover Photos:  

NLE Websites -- All DOE Office Websites (Extended Search)

5 SEPTEMBER 2007 5 SEPTEMBER 2007 Power Plant Optimization Demonstration Projects Cover Photos: * Top left: Coal Creek Station * Top right: Big Bend Power Station * Bottom left: Baldwin Energy Complex * Bottom right: Limestone Power Plant A report on four projects conducted under separate cooperative agreements between the U.S. Department of Energy and: * Great River Energy * Tampa Electric Company * Pegasus Technologies * NeuCo. , Inc.  Power Plant Optimization Demonstration Projects Executive Summary .......................................................................................4 Background: Power Plant Optimization ......................................................5 Lignite Fuel Enhancement Project ...............................................................8

430

Western Greenbrier Co-Production Demonstration Project  

NLE Websites -- All DOE Office Websites (Extended Search)

contacts contacts Brad tomer Director Office of Major Demonstrations National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-4692 brad.tomer@netl.doe.gov nelson Rekos Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-4066 nelson.rekos@netl.doe.gov PaRtIcIPant Western Greenbrier Co-Generation, LLC Lewisburg, WV Western Greenbrier Co-ProduCtion demonstration ProjeCt (disContinued) Project Description The Western Greenbrier Co-Production (WGC) project will generate about 100 megawatts of electricity and commercial quantities of salable ash by-products by burning waste coal presently contained in numerous coal refuse dumps in the vicinity of the plant. These refuse dumps, created by coal cleaning operations over

431

THOR Bench-Scale Steam Reforming Demonstration  

SciTech Connect

The Idaho Nuclear Technology and Engineering Center (INTEC) was home to nuclear fuel reprocessing activities for decades at the Idaho National Engineering and Environmental Laboratory. As a result of the reprocessing activities, INTEC has accumulated approximately one million gallons of acidic, radioactive, sodium-bearing waste (SBW). The purpose of this demonstration was to investigate a reforming technology, offered by THORsm Treatment Technologies, LLC, for treatment of SBW into a ''road ready'' waste form that would meet the waste acceptance criteria for the Waste Isolation Pilot Plant (WIPP). A non-radioactive simulated SBW was used based on the known composition of waste tank WM-180 at INTEC. Rhenium was included as a non-radioactive surrogate for technetium. Data was collected to determine the nature and characteristics of the product, the operability of the technology, the composition of the off-gases, and the fate of key radionuclides (cesium and technetium) and volatile mercury compounds. The product contained a low fraction of elemental carbon residues in the cyclone and filter vessel catches. Mercury was quantitatively stripped from the product but cesium, rhenium (Tc surrogate), and the heavy metals were retained. Nitrates were not detected in the product and NOx destruction exceeded 98%. The demonstration was successful.

Marshall, D.W.; Soelberg, N.R.; Shaber, K.M.

2003-05-21T23:59:59.000Z

432

THOR Bench-Scale Steam Reforming Demonstration  

SciTech Connect

The Idaho Nuclear Technology and Engineering Center (INTEC) was home to nuclear fuel reprocessing activities for decades at the Idaho National Engineering and Environmental Laboratory. As a result of the reprocessing activities, INTEC has accumulated approximately one million gallons of acidic, radioactive, sodium-bearing waste (SBW). The purpose of this demonstration was to investigate a reforming technology, offered by THORsm Treatment Technologies, LLC, for treatment of SBW into a "road ready" waste form that would meet the waste acceptance criteria for the Waste Isolation Pilot Plant (WIPP). A non-radioactive simulated SBW was used based on the known composition of waste tank WM-180 at INTEC. Rhenium was included as a non-radioactive surrogate for technetium. Data was collected to determine the nature and characteristics of the product, the operability of the technology, the composition of the off-gases, and the fate of key radionuclides (cesium and technetium) and volatile mercury compounds. The product contained a low fraction of elemental carbon residues in the cyclone and filter vessel catches. Mercury was quantitatively stripped from the product but cesium, rhenium (Tc surrogate), and the heavy metals were retained. Nitrates were not detected in the product and NOx destruction exceeded 98%. The demonstration was successful.

D. W. Marshall; N. R. Soelberg; K. M. Shaber

2003-05-01T23:59:59.000Z

433

CO2 CAPTURE PROJECT - AN INTEGRATED, COLLABORATIVE TECHNOLOGY DEVELOPMENT PROJECT FOR NEXT GENERATION CO2 SEPARATION, CAPTURE AND GEOLOGIC SEQUESTRATION  

SciTech Connect

The CO{sub 2} Capture Project (CCP) is a joint industry project, funded by eight energy companies (BP, ChevronTexaco, EnCana, Eni, Norsk Hydro, Shell, Statoil, and Suncor) and three government agencies (1) European Union (DG Res & DG Tren), (2) Norway (Klimatek) and (3) the U.S.A. (Department of Energy). The project objective is to develop new technologies, which could reduce the cost of CO{sub 2} capture and geologic storage by 50% for retrofit to existing plants and 75% for new-build plants. Technologies are to be developed to ''proof of concept'' stage by the end of 2003. The project budget is approximately $24 million over 3 years and the work program is divided into eight major activity areas: (1) Baseline Design and Cost Estimation--defined the uncontrolled emissions from each facility and estimate the cost of abatement in $/tonne CO{sub 2}. (2) Capture Technology, Post Combustion: technologies, which can remove CO{sub 2} from exhaust gases after combustion. (3) Capture Technology, Oxyfuel: where oxygen is separated from the air and then burned with hydrocarbons to produce an exhaust with high CO{sub 2} for storage. (4) Capture Technology, Pre -Combustion: in which, natural gas and petroleum coke are converted to hydrogen and CO{sub 2} in a reformer/gasifier. (5) Common Economic Model/Technology Screening: analysis and evaluation of each technology applied to the scenarios to provide meaningful and consistent comparison. (6) New Technology Cost Estimation: on a consistent basis with the baseline above, to demonstrate cost reductions. (7) Geologic Storage, Monitoring and Verification (SMV): providing assurance that CO{sub 2} can be safely stored in geologic formations over the long term. (8) Non-Technical: project management, communication of results and a review of current policies and incentives governing CO{sub 2} capture and storage. Technology development work dominated the past six months of the project. Numerous studies are making substantial progress towards their goals. Some technologies are emerging as preferred over others. Pre-combustion Decarbonization (hydrogen fuel) technologies are showing good progress and may be able to meet the CCP's aggressive cost reduction targets for new-build plants. Chemical looping to produce oxygen for oxyfuel combustion shows real promise. As expected, post-combustion technologies are emerging as higher cost options that may have niche roles. Storage, measurement, and verification studies are moving rapidly forward. Hyper-spectral geo-botanical measurements may be an inexpensive and non-intrusive method for long-term monitoring. Modeling studies suggest that primary leakage routes from CO{sub 2} storage sites may be along wellbores in areas disturbed by earlier oil and gas operations. This is good news because old wells are usually mapped and can be repaired during the site preparation process. Many studies are nearing completion or have been completed. Their preliminary results are summarized in the attached report and presented in detail in the attached appendices.

Dr. Helen Kerr

2003-08-01T23:59:59.000Z

434

Selection Criteria for Demonstration Projects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Selection Criteria: Selection Criteria: Energy Savings: * If a building were to apply this technology, how much energy could it save compared to a "typical" existing building? How much energy could it save compared to a typical "new" building built to the latest (IECC 2007) code? Provide references, calculations, and documentation. * If the technology is a drop-in replacement, how much energy could it save compared to "typical" new equipment? Provide references, calculations, and documentation. Market & Job Creation Potential: * What is the market potential for this technology? * What types of buildings is this technology best suited for? What types of buildings is this technology ill-suited for? * How many US buildings that could potentially benefit from/utilize this technology? What % of U.S.

435

DOE National Hydrogen Learning Demonstration  

Energy.gov (U.S. Department of Energy (DOE))

DOE's Technology Validation project is a government/industry partnership created to address the national challenge of ensuring reliable, domestic, diverse energy sources while reducing U.S....

436

E-Print Network 3.0 - accelerator technology developments Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Through Flexibility: The Case of a Demonstration Accelerator-Driven Subcritical Reactor... technology facing significant technological uncertainty, the...

437

TRW advanced slagging coal combustor utility demonstration  

SciTech Connect

The TRW Advanced Entrained Coal Combustor Demonstration Project consists of retrofitting Orange and Rockland (O R) Utility Corporation's Lovett Plant Unit No. 3 with four (4) slagging combustors which will allow the gas/oil unit to fire 2.5% sulfur coal. The slagging combustor process will provide NO{sub x} and SO{sub x} emissions that meet NSPS and New York State Environmental Standards. The TRW-Utility Demonstration Unit (UDU) is responsible for the implementation of program policies and overall direction of the project. The following projects will be carried out: process and design development of clean coal technology CCT-1 the development and operation of the entrained coal combustor will enable the boiler to burn low and medium sulfur coal while meeting all the Federal/State emission requirements; demonstrate sulfur dioxide emissions control by pulverized limestone injection into the entrained coal combustor system.

Not Available

1990-01-01T23:59:59.000Z

438

Heat Pump Water Heaters Demonstration Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Pump Water Heaters Heat Pump Water Heaters Demonstration Project Building America Stakeholder Meeting Ron Domitrovic Ammi Amarnath 3/1/2012 Austin, TX 2 © 2011 Electric Power Research Institute, Inc. All rights reserved. HPWH Field Demonstration: Research Objectives * Assess heat pump water heater technology by measuring efficiency. * Provide credible data on the performance and reliability of heat pump water heaters. * Assess user satisfaction in a residential setting. 3 © 2011 Electric Power Research Institute, Inc. All rights reserved. Demonstration Host Utilities Target: 40 Units per Utility Installed and Potential Sites by Climate Zone Source: Department of Energy (DOE), Building America climate regions 4 © 2011 Electric Power Research Institute, Inc. All rights reserved. Installation Locations-Southern Company Region

439

Airborne Process Commercial Scale Demonstration Program  

NLE Websites -- All DOE Office Websites (Extended Search)

CCPI 2) CCPI 2) contacts Brad tomer Director Office of Major Demonstrations National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-4692 brad.tomer@netl.doe.gov PaRtIcIPant Mustang Clean Energy, LLC, a subsidiary of Peabody Energy St. Louis, MO. Airborne Process(tm) commerciAl scAle DemonstrAtion ProgrAm (withDrAwn Prior to AwArD) Project Description Mustang Clean Energy will design, construct, and operate a full scale sodium-based multi-pollutant scrubber in conjunction with a revenue-generating fertilizer by-product processing plant at Mustang Energy Company, LLC's Mustang Generating Station. Both Mustang Clean Energy and Mustang Energy Company are subsidiaries of Peabody Energy, the world's largest coal company. The 300 MW (net) station will

440

Livestock Odor Reduction Demonstration Project  

E-Print Network (OSTI)

Livestock Odor Reduction Demonstration Project Objectives The 1996 and 1997 Iowa General Assembly-share basis to livestock producers and operators selected to carry out various demonstration projects. Organization The Livestock Odor Reduction Demonstration Project was administered by ISU Extension. Stewart

Lin, Zhiqun

Note: This page contains sample records for the topic "dg technologies demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 4  

NLE Websites -- All DOE Office Websites (Extended Search)

Wabash River Coal Gasification Repowering Project - Project Brief [PDF-250KB] Wabash River Coal Gasification Repowering Project - Project Brief [PDF-250KB] Wabash River Coal Gasification Repowering Project Joint Venture West Terre Haute, IN Program Publications Final Reports Wabash River Coal Gasification Repowering Project, Final Technical Report [PDF-8.2MB] (Aug 2000) Annual/Quarterly Technical Reports Wabash River Coal Gasification Repowering Project, Annual Technical Progress Reports 1995 [PDF-1.7MB] (Mar 1999) 1996 [PDF-3.8MB] (Feb 2000) 1997 [PDF-4.8MB] 1998 [PDF-3.6MB] 1999 [PDF-3.4MB] (June 2000) CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports Wabash River Coal Gasification Repowering Project, Project Performance Summary [PDF-2.5MB] (June 2002) Wabash River Coal Gasification Repowering Project: A DOE Assessment [PDF-295KB] (Jan 2002)

442

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 2  

NLE Websites -- All DOE Office Websites (Extended Search)

Combustion Engineering IGCC Repowering Project - (There is no Project Brief for this project) Combustion Engineering IGCC Repowering Project - (There is no Project Brief for this project) ABB Combustion Engineering, Inc. Program Publications Annual/Quarterly Technical Reports IGCC Repowering Project, Clean Coal II Project, Annual Report, (Oct 1992 - (Sept 1993 [PDF-7MB] (Oct1993) Annual Report, January - December 1992. U.S. Department of Energy report DOE/MC/26308-3645 (Available from NTIS as DE94004063). Interim Reports Use of the Lockheed Kinetic Extruder for Coal Feeding, Topical Report (Feb 1994) U.S. Department of Energy report DOE/MC/26308-3646 (Available from NTIS as DE94004066) Controls and Instrumentation, Topical Report (Dec 1993) U.S. Department of Energy report DOE/MC/26308-3648 (Available from NTIS as DE94004068) Topical Report: Sulfuric Acid Plant, Topical Report (Dec 1993)

443

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 3  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 Advanced Electric Power Generation - Advanced Combustion Systems Healy Clean Coal Project - Project Brief [PDF-226KB] Alaska Industrial Development and Export Authority, Healy, AK PROGRAM PUBLICATIONS Final Reports Healy Clean Coal Project, Project Performance and Economics Report, Final Report: Volume 2 [PDF-1.2MB] (Apr 2001) Annual/Quarterly Technical Reports Healy Clean Coal Project , Quarterly Technical Progress Reports Numbers 1 and 2, January - June 1991 [PDF-1.3MB] Number 3, July - September 1991 [PDF-579KB] Number 4, October - December 1991 [PDF-862KB] Number 5, January - March 1992 [PDF-668KB] Number 6, April - June 1992 [PDF-1.2MB] Number 14, April - June 1994 [PDF-311KB] Numbers 16-19, October 1994 - September 1995 [PDF-1.3MB] Number 20, October - December 1995 [PDF-653KB]

444

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 1  

NLE Websites -- All DOE Office Websites (Extended Search)

Development of the Coal Quality Expert(tm) - Project Brief [PDF-313KB] Development of the Coal Quality Expert(tm) - Project Brief [PDF-313KB] ABB Combustion Engineering, Inc., and CQ, Inc. Pittsburgh, PA and Homer City, PA PROGRAM PUBLICATIONS Final Reports Final Report: Development of a Coal Quality Expert [PDF-6.9MB] (June 1998) CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports Development of a Coal Quality ExpertT: A DOE Assessment [PDF-1.5MB] (Nov 2000) Interim Reports Characterization and Evaluation of the Cleanability of Subbituminous Coals from Powder River Basin [PDF-18.4MB] (June 1993) Coal Cleanability Characterization of Pratt and Utley Seam Coal [PDF-10.1MB] (Aug 1992) Coal Cleanability Characterization of Pratt and Utley Seam Coal, Trace Element Addendum [PDF-10.1MB] (June 1993)

445

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 4  

NLE Websites -- All DOE Office Websites (Extended Search)

Piñon Pine IGCC Power Project - Project Brief [PDF-313KB] Piñon Pine IGCC Power Project - Project Brief [PDF-313KB] Sierra Pacific Power Company, Reno, NV PROGRAM PUBLICATIONS Final Reports Piñon Pine IGCC Project, Final Technical Report [PDF-14.1MB] (Jan 2001) Annual/Quarterly Technical Reports Piñon Pine Power Project Annual Reports August 1992 - December 1993 [PDF-2.4MB] January - December 1994 [PDF-2.3MB] January - December 1995 [PDF-3.1MB] January - December 1996 [PDF-6.1MB] CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports Piñon Pine IGCC Power Project: A DOE Assessment [PDF-321KB] (Dec 2002) Topical Report Number 8: The Piñon Pine Power Project [PDF-850KB] (Dec 1996) Design Reports Tracy Power Station-Unit No. 4 Piñon Pine Power Project Public Design Report [PDF-4.7MB] (Dec 1994)

446

Northwest Open Automated Demand Response Technology Demonstration Project  

E-Print Network (OSTI)

with hydro power and wind integration, more DR may be neededload growth, wind power integration, and fish operations are

Kiliccote, Sila

2010-01-01T23:59:59.000Z

447

Open Automated Demand Response Dynamic Pricing Technologies and Demonstration  

E-Print Network (OSTI)

Center for the Study of Energy Markets Paper CSEMWP-105.OASIS SDO. 2010b. “Energy Market Information Exchange (eMIX)charges. • Wholesale energy market prices are volatile, and

Ghatikar, Girish

2010-01-01T23:59:59.000Z

448

Technology and System Level Demonstration of Highly Efficient...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Engine Speed) - Powertrain Components - VibrationCustomer Acceptance * Trailer Aerodynamic Devices that Meet Operational Requirements * Vehicle and Powertrain Communication...

449

Technology and System Level Demonstration of Highly Efficient...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AvgGust: 6.5 mphsteady Temp MinAvgMax: 546368F Wind AvgGust: 2340 mph 20 Aerodynamic Improvements - Technical Progress Configurations Demo 2 - 24% Target Demo 1 - 14%...

450

Cummins SuperTruck Program - Technology Demonstration of Highly...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Seasons (Summer, Winter, etc.) 5 Engine Losses Urban: 58-60% Interstate: 58-59% Aerodynamic Losses Urban: 4-10% Interstate: 15-22% Inertia Braking Urban: 15-20% Interstate:...

451

Technology and System Level Demonstration of Highly Efficient...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lithium Ion Start Battery Predictive Cruise Control SOFC eHVAC Light Trailer 11 Aerodynamic Improvements - Technical Progress 11 Configurations Demo 2 - 24% Target Demo 1 -...

452

Northwest Open Automated Demand Response Technology Demonstration Project  

E-Print Network (OSTI)

meters are required for measurement and verification of DRare required for measurement and verification of DR

Kiliccote, Sila

2010-01-01T23:59:59.000Z

453

Northwest Open Automated Demand Response Technology Demonstration Project  

E-Print Network (OSTI)

Report 2009. Open Automated Demand Response Communicationsand Techniques for Demand Response. California Energyand S. Kiliccote. Estimating Demand Response Load Impacts:

Kiliccote, Sila

2010-01-01T23:59:59.000Z

454

Northwest Open Automated Demand Response Technology Demonstration Project  

E-Print Network (OSTI)

reliability signals for demand response GTA HTTPS HVAC IT kWand Commissioning Automated Demand Response Systems. ”and Techniques for Demand Response. California Energy

Kiliccote, Sila

2010-01-01T23:59:59.000Z

455

Open Automated Demand Response Dynamic Pricing Technologies and Demonstration  

E-Print Network (OSTI)

significantly affect electricity costs for many facilities.lower operational electricity costs and reduce grid stress.to reduce their electricity costs. Standardized OpenADR

Ghatikar, Girish

2010-01-01T23:59:59.000Z

456

Cummins SuperTruck Program - Technology and System Level Demonstration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Can Depend On TDC Increased efficiency Technical Accomplishment - 55% Engine Analytical Data 19 2013 advancement plan * Combustion design * Air handling system matching * Cycle...

457

Northwest Open Automated Demand Response Technology Demonstration Project  

E-Print Network (OSTI)

Power Administration (BPA) in the Seattle City Light (SCL)times of the year. The project was funded by BPA and SCL.BPA is a U.S. Department of Energy agency headquartered in

Kiliccote, Sila

2010-01-01T23:59:59.000Z

458

Northwest Open Automated Demand Response Technology Demonstration Project  

E-Print Network (OSTI)

Bonneville Power Administration (BPA) in Seattle City Light’project was funded by BPA and SCL. This report summarizesPower Administration (BPA) and Seattle City Light (SCL) DR

Kiliccote, Sila

2010-01-01T23:59:59.000Z

459

Northwest Open Automated Demand Response Technology Demonstration Project  

E-Print Network (OSTI)

Facility Technician) Automated Logic Corporation: Ivanembedded in the Target’s Automated Logic Corporation (ALC)

Kiliccote, Sila

2010-01-01T23:59:59.000Z

460

The Purpose and Value of Successful Technology Demonstrations...  

NLE Websites -- All DOE Office Websites (Extended Search)

Leader, DOENETL Modern Grid Strategy It seems to be clear from the investment data that private investment and consumer investment is rapidly taking place in the energy...

Note: This page contains sample records for the topic "dg technologies demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Northwest Open Automated Demand Response Technology Demonstration Project  

E-Print Network (OSTI)

Air Volume VFD – Variable Frequency Drive XML – Extensiblepressure reset, variable frequency drive (VFD) position

Kiliccote, Sila

2010-01-01T23:59:59.000Z

462

Daemen Alternative Energy/Geothermal Technologies Demonstration Program Erie County  

Energy.gov (U.S. Department of Energy (DOE))

Project objectives: Replacement of the inefficient Marian Library Heating System with a state of the art, open loop, geo-exchange system in conjunction withthe Daemen College sustainable campus objectives. Coursework to be developed to engage students in the evaluation and future modifications of our campus buildings.

463

Cummins SuperTruck Program Technology and System Level Demonstration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

- Closed cycle efficiency gains * High Conversion Efficiency NOx Aftertreatment Fuel Efficient Thermal Management Vehicle and Engine System Weight Reduction ...

464

Cummins SuperTruck Program - Technology and System Level Demonstration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

- Closed cycle efficiency gains * High Conversion Efficiency NOx Aftertreatment - Fuel Efficient Thermal Management * Vehicle and Engine System Weight Reduction * Underhood...

465

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 3  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 Advanced Electric Power Generation - Integrated Gasification/Combined Cycle Tampa Electric Integrated Gasification Combined-Cycle Project - Project Brief [PDF-241KB] Tampa Electric Co., Tampa, FL Program Publications Final Reports Tampa Electric Polk Power Station Integrated Gasification Combined Cycle Project, Final Technical Report [PDF-5MB] (Aug 2002) Annual/Quarterly Technical Reports Tampa Electric Company - IGCC Project, Quarterly Reports April - June 1997 [PDF-698KB] January - March 1997 [PDF-465KB] October - December 1996 [PDF-1.04MB] July - September 1996 [PDF-863KB] April - June 1996 [PDF-544KB] January - March 1996 [PDF-2.2MB] October - December 1995 [PDF-684KB] July - September 1995 [PDF-307KB] April - June 1995 [PDF-150KB] Tampa Electric Company Polk Power Station Unit No. 1, Annual Reports

466

DOE's Advanced Coal Research, Development, and Demonstration Program to  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE's Advanced Coal Research, Development, and Demonstration DOE's Advanced Coal Research, Development, and Demonstration Program to Develop Low-carbon Emission Coal Technologies DOE's Advanced Coal Research, Development, and Demonstration Program to Develop Low-carbon Emission Coal Technologies March 11, 2009 - 3:18pm Addthis Statement of Victor K. Der, Acting Assistant Secretary, Office of Fossil Energy before the Subcommittee on Energy and Environment, Committee on Science and Technology, U.S. House of Representatives. Thank you, Mr. Chairman and Members of the Committee. I appreciate this opportunity to provide testimony on the U.S. Department of Energy's (DOE's) advanced coal research, development, and demonstration program to develop low-carbon emission coal technologies. Introduction Fossil fuel resources represent a tremendous national asset. An abundance

467

DOE's Advanced Coal Research, Development, and Demonstration Program to  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Coal Research, Development, and Demonstration Advanced Coal Research, Development, and Demonstration Program to Develop Low-carbon Emission Coal Technologies DOE's Advanced Coal Research, Development, and Demonstration Program to Develop Low-carbon Emission Coal Technologies March 11, 2009 - 3:18pm Addthis Statement of Victor K. Der, Acting Assistant Secretary, Office of Fossil Energy before the Subcommittee on Energy and Environment, Committee on Science and Technology, U.S. House of Representatives. Thank you, Mr. Chairman and Members of the Committee. I appreciate this opportunity to provide testimony on the U.S. Department of Energy's (DOE's) advanced coal research, development, and demonstration program to develop low-carbon emission coal technologies. Introduction Fossil fuel resources represent a tremendous national asset. An abundance

468

Final Results from U.S. FCEV Learning Demonstration (Presentation)  

SciTech Connect

This presentation discusses the objectives of the U.S. DOE Fuel Cell Electric Vehicle Learning Demonstration Project, describes NREL's technology validation approach, and summarizes key technical results from the project.

Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Ainscough, C.; Saur, G.

2012-05-01T23:59:59.000Z

469

Addendum Added to Innovative Demonstration of Geothermal Energy Production FOA  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy’s (DOE) Geothermal Technologies Program (GTP) has released a Funding Opportunity Announcement (FOA) that seeks innovative demonstration of energy production from non-conventional geothermal resources.

470

Study Guide Development-relevant Education  

E-Print Network (OSTI)

- Sustainable building technology design ...................................................42 DG409 - Design

Franssen, Michael

471

DMEC-1 Pressurized Circulating Fluidized-Bed Demonstration Project  

SciTech Connect

The DMEC-1 project will demonstrate the use of Pyropower`s PYROFLOW pressurized circulating fluidized bed technology to repower an existing coal fired generating station. This will be the first commercial application of this technology in the world. The project is now in budget period 1, the preliminary design phase.

Kruempel, G.E.; Ambrose, S.J. [Midwest Power, Des Moines, IA (United States); Provol, S.J. [Pyropower Corp., San Diego, CA (United States)

1992-12-01T23:59:59.000Z

472

Distributed Generation: Which technologies? How fast will they emerge?  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Generation: Which technologies? How fast will they emerge? Distributed Generation: Which technologies? How fast will they emerge? Speaker(s): Tony DeVuono Date: March 16, 2000 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Julie Osborn Utility deregulation, environmental issues, increases in electricity demand, natural gas/electricity rate changes, new technologies, and several other key drivers are stimulating distributed generation globally. The technologies that have pushed ahead of the pack are micro turbines and fuel cells. Since Modine is a world leader in the manufacturing of heat transfer equipment, we are eager to play in this new, emerging market. Are the market drivers real? Will these technologies survive or even thrive? What are the pitfalls? If you had the responsibility in your company to spend millions and direct dozens of people down the DG path,

473

Demand Response Spinning Reserve Demonstration  

E-Print Network (OSTI)

F) Enhanced ACP Date RAA ACP Demand Response – SpinningReserve Demonstration Demand Response – Spinning Reservesupply spinning reserve. Demand Response – Spinning Reserve

2007-01-01T23:59:59.000Z

474

Oregon: Advancing Technology Readiness: Wave Energy Testing and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Oregon: Advancing Technology Readiness: Wave Energy Testing and Demonstration Oregon: Advancing Technology Readiness: Wave Energy Testing and Demonstration March 6, 2014 - 1:23pm...

475

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan The...

476

Geothermal EGS Demonstration Photo Library  

Energy.gov (U.S. Department of Energy (DOE))

EGS Demonstrations make up the most advanced research and science investments in the geothermal sector. Five active demonstration sites nationwide are proving the spectrum of EGS potential, in and near existing hydrothermal operations, with infrastructure, and in the longer-term greenfield settings, where no previous geothermal development is operating.

477

Integrated gasification fuel cell (IGFC) demonstration test  

SciTech Connect

As concern about the environment generates interest in ultra-clean energy plants, fuel cell power plants can respond to the challenge. Fuel cells convert hydrocarbon fuels to electricity at efficiencies exceeding conventional heat engine technologies while generating extremely low emissions. Emissions of SOx and NOx are expected to be well below current and anticipated future standards. Nitrogen oxides, a product of combustion, will be extremely low in this power plant because power is produced electrochemically rather than by combustion. Due to its higher efficiencies, a fuel cell power plant also produces less carbon dioxide. Fuel cells in combination with coal gasification, are an efficient and environmentally acceptable means to utilize the abundant coal reserves both in the US and around the world. To demonstrate this technology, FuelCell Energy, Inc. (FCE), is planning to build and test a 2-MW Fuel Cell Power Plant for operation on coal derived gas. This power plant is based on Direct Fuel Cell (DFC{trademark}) technology and will be part of a Clean Coal V IGCC project supported by the US DOE. A British Gas Lurgi (BGL) slagging fixed-bed gasification system with cold gas clean up is planned as part of a 400 MW IGCC power plant to provide a fuel gas slip stream to the fuel cell. The IGFC power plant will be built by Kentucky Pioneer Energy, A subsidiary of Global Energy, in Clark County, KY. This demonstration will result in the world's largest fuel cell power plant operating on coal derived gas. The objective of this test is to demonstrate fuel cell operation on coal derived gas at a commercial scale and to verify the efficiency and environmental benefits.

Steinfeld, G.; Ghezel-Ayagh, H.; Sanderson, R.; Abens, S.

2000-07-01T23:59:59.000Z