National Library of Energy BETA

Sample records for dft quantum mechanics

  1. QUANTUM MECHANICS WITHOUT STATISTICAL POSTULATES

    SciTech Connect (OSTI)

    G. GEIGER; ET AL

    2000-11-01

    The Bohmian formulation of quantum mechanics describes the measurement process in an intuitive way without a reduction postulate. Due to the chaotic motion of the hidden classical particle all statistical features of quantum mechanics during a sequence of repeated measurements can be derived in the framework of a deterministic single system theory.

  2. Phase space quantum mechanics - Direct

    SciTech Connect (OSTI)

    Nasiri, S.; Sobouti, Y.; Taati, F.

    2006-09-15

    Conventional approach to quantum mechanics in phase space (q,p), is to take the operator based quantum mechanics of Schroedinger, or an equivalent, and assign a c-number function in phase space to it. We propose to begin with a higher level of abstraction, in which the independence and the symmetric role of q and p is maintained throughout, and at once arrive at phase space state functions. Upon reduction to the q- or p-space the proposed formalism gives the conventional quantum mechanics, however, with a definite rule for ordering of factors of noncommuting observables. Further conceptual and practical merits of the formalism are demonstrated throughout the text.

  3. T-QUAKE Quantum Mechanical Microchip

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Principal application T-QUAKE Quantum Mechanical Microchip The quantum world defies intuition. One of its axioms, the Heisenberg Uncertainty Principle, states that any attempt to measure the position or momentum of a quantum object changes the object itself. Historically, this principle was viewed as a hindrance by scientists trying to examine quantum particles. But the same quantum effects that make them difficult to measure have long been of interest to the cryptography and intelligence

  4. In-Situ TEM and DFT Study of Large Cation Transport and Failure Mechanism

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In Single SnO2 Nanowire - Joint Center for Energy Storage Research July 18, 2013, Research Highlights In-Situ TEM and DFT Study of Large Cation Transport and Failure Mechanism In Single SnO2 Nanowire (Top)Captured in-situ TEM movie frame showing the pristine SnO2 nanowire, displacement reaction upon Na insertion leads to two phases materials and the corresponding electron diffraction pattern. Upon desodiation, pore forms, leading to high impedence of the electrode. (Bottom) High resolution

  5. Deformation Quantization: Quantum Mechanic Lives and Works in...

    Office of Scientific and Technical Information (OSTI)

    It has been useful in describing quantum flows in: quantum optics; nuclear physics; ... Subject: 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 73 NUCLEAR PHYSICS AND ...

  6. QUANTUM MECHANICS, GENERAL PHYSICS; 74 ATOMIC AND MOLECULAR PHYSICS...

    Office of Scientific and Technical Information (OSTI)

    of model atoms in fields Milonni, P.W. 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 74 ATOMIC AND MOLECULAR PHYSICS; ATOMS; OPTICAL MODELS; QUANTUM MECHANICS;...

  7. T-QUAKE Quantum Mechanical Microchip

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3b) How does the product operate? T-QUAKE Quantum Mechanical Microchip Delivering quantum-encoded secret keys is known as Quantum Key Distribution, or QKD; in essence it involves transmitting a series of randomly generated, quantum-encoded bits of information between a sender and a receiver, Alice and Bob, over a distance. This string of bits, called qubits, becomes the secret key Alice and Bob use to interpret encoded messages sent over less-secure channels. In the case of T-QUAKE, which relies

  8. Supersymmetric q-deformed quantum mechanics

    SciTech Connect (OSTI)

    Traikia, M. H.; Mebarki, N.

    2012-06-27

    A supersymmetric q-deformed quantum mechanics is studied in the weak deformation approximation of the Weyl-Heisenberg algebra. The corresponding supersymmetric q-deformed hamiltonians and charges are constructed explicitly.

  9. Multichannel framework for singular quantum mechanics

    SciTech Connect (OSTI)

    Camblong, Horacio E.; Epele, Luis N.; Fanchiotti, Huner; Garca Canal, Carlos A.; Ordez, Carlos R.

    2014-01-15

    A multichannel S-matrix framework for singular quantum mechanics (SQM) subsumes the renormalization and self-adjoint extension methods and resolves its boundary-condition ambiguities. In addition to the standard channel accessible to a distant (asymptotic) observer, one supplementary channel opens up at each coordinate singularity, where local outgoing and ingoing singularity waves coexist. The channels are linked by a fully unitary S-matrix, which governs all possible scenarios, including cases with an apparent nonunitary behavior as viewed from asymptotic distances. -- Highlights: A multichannel framework is proposed for singular quantum mechanics and analogues. The framework unifies several established approaches for singular potentials. Singular points are treated as new scattering channels. Nonunitary asymptotic behavior is subsumed in a unitary multichannel S-matrix. Conformal quantum mechanics and the inverse quartic potential are highlighted.

  10. Statistical mechanics based on fractional classical and quantum mechanics

    SciTech Connect (OSTI)

    Korichi, Z.; Meftah, M. T.

    2014-03-15

    The purpose of this work is to study some problems in statistical mechanics based on the fractional classical and quantum mechanics. At first stage we have presented the thermodynamical properties of the classical ideal gas and the system of N classical oscillators. In both cases, the Hamiltonian contains fractional exponents of the phase space (position and momentum). At the second stage, in the context of the fractional quantum mechanics, we have calculated the thermodynamical properties for the black body radiation, studied the Bose-Einstein statistics with the related problem of the condensation and the Fermi-Dirac statistics.

  11. Quantum mechanical studies of carbon structures

    SciTech Connect (OSTI)

    Bartelt, Norman Charles; Ward, Donald; Zhou, Xiaowang; Foster, Michael E.; Schultz, Peter A.; Wang, Bryan M.; McCarty, Kevin F.

    2015-10-01

    Carbon nanostructures, such as nanotubes and graphene, are of considerable interest due to their unique mechanical and electrical properties. The materials exhibit extremely high strength and conductivity when defects created during synthesis are minimized. Atomistic modeling is one technique for high resolution studies of defect formation and mitigation. To enable simulations of the mechanical behavior and growth mechanisms of C nanostructures, a high-fidelity analytical bond-order potential for the C is needed. To generate inputs for developing such a potential, we performed quantum mechanical calculations of various C structures.

  12. T-QUAKE Quantum Mechanical Microchip

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4b) Describe how your product/service improves upon competitive products or technologies. T-QUAKE Quantum Mechanical Microchip Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2016-4224 O The Sandia team has created the first-ever functioning CV-QKD quantum photonic

  13. Effect of Cusps in Time-Dependent Quantum Mechanics (Journal...

    Office of Scientific and Technical Information (OSTI)

    Effect of Cusps in Time-Dependent Quantum Mechanics Title: Effect of Cusps in Time-Dependent Quantum Mechanics Authors: Yang, Zeng-hui ; Maitra, Neepa T. ; Burke, Kieron ...

  14. Deformation Quantization: Quantum Mechanic Lives and Works in...

    Office of Scientific and Technical Information (OSTI)

    DENSITY MATRIX; DISTRIBUTION FUNCTIONS; FERMILAB; HILBERT SPACE; NUCLEAR PHYSICS; OPTICS; PATH INTEGRALS; PHASE SPACE; PROCESSING; QUANTIZATION; QUANTUM MECHANICS; UNCERTAINTY...

  15. Theoretical Study of the Inverting Mechanism in a Processive Cellobiohydrolase with Quantum Mechanical Calculations

    SciTech Connect (OSTI)

    Kim, S.; Payne, C. M.; Himmel, M. E.; Crowley, M. F.; Paton, R. S.; Beckham, G. T.

    2012-01-01

    The Hypocrea jecorina Family 6 cellobiohydrolase (Cel6A) is one of most efficient enzymes for cellulose deconstruction to soluble sugars and is thus of significant current interest for the growing biofuels industry. Cel6A is known to hydrolyze b(1,4)-glycosidic linkages in cellulose via an inverting mechanism, but there are still questions that remain regarding the role of water and the catalytic base. Here we study the inverting, single displacement, hydrolytic reaction mechanism in Cel6A using density functional theory (DFT) calculations. The computational model used to follow the reaction is a truncated active site model with several explicit waters based on structural studies of H. jecorina Cel6A. Proposed mechanisms are evaluated with several density functionals. From our calculations, the role of the water in nucleophilic attack on the anomeric carbon, and the roles of several residues in the active site loops are elucidated explicitly for the first time. We also apply quantum mechanical calculations to understand the proton transfer reaction which completes the catalytic cycle.

  16. Quantum-Mechanical Interatomic Potentials with Electron Temperature...

    Office of Scientific and Technical Information (OSTI)

    Electron Temperature for Strong Coupling Transition Metals Citation Details In-Document Search Title: Quantum-Mechanical Interatomic Potentials with Electron Temperature for ...

  17. Baryon Spectrum from Superconformal Quantum Mechanics and its...

    Office of Scientific and Technical Information (OSTI)

    Baryon Spectrum from Superconformal Quantum Mechanics and its Light-Front Holographic Embedding Citation Details In-Document Search Title: Baryon Spectrum from Superconformal...

  18. Baryon Spectrum from Superconformal Quantum Mechanics and its...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Baryon Spectrum from Superconformal Quantum Mechanics and its Light-Front Holographic Embedding Citation Details In-Document Search Title: Baryon Spectrum from...

  19. Tampering detection system using quantum-mechanical systems

    DOE Patents [OSTI]

    Humble, Travis S.; Bennink, Ryan S.; Grice, Warren P.

    2011-12-13

    The use of quantum-mechanically entangled photons for monitoring the integrity of a physical border or a communication link is described. The no-cloning principle of quantum information science is used as protection against an intruder's ability to spoof a sensor receiver using a `classical` intercept-resend attack. Correlated measurement outcomes from polarization-entangled photons are used to protect against quantum intercept-resend attacks, i.e., attacks using quantum teleportation.

  20. DFT study on cysteine adsorption mechanism on Au(111) and Au(110)

    SciTech Connect (OSTI)

    Buimaga-Iarinca, Luiza; Floare, Calin G.; Calborean, Adrian; Turcu, Ioan

    2013-11-13

    Periodic density functional theory calculations were used to investigate relevant aspects of adsorption mechanisms of cysteine dimers in protonated form on Au(111) and Au(110) surfaces. The projected densities of states are explicitly discussed for all main chemical groups of cysteine, i.e. the amino group (NH2), the thiol group (SH) and the carboxylic group (COOH) to identify differences in adsorption mechanism. Special emphasis is put on the analysis of changes in the electronic structure of molecules adsorbed on Au(111) and Au(110) surfaces as well as the accompanying charge transfer mechanisms at molecule-substrate interaction.

  1. COLLOQUIUM: Quantum Mechanics and Spacetime Geometry | Princeton Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Lab February 25, 2014, 4:00pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM: Quantum Mechanics and Spacetime Geometry Professor Juan Maldacena Institute for Advanced Study Quantum mechanics is important for determining the geometry of spacetime. We will review the role of quantum fluctuations that determine the large scale structure of the universe. In some model universes we can give an alternative description of the physics in terms of a theory of particles that lives on its

  2. Nonlinear Phenomenology from Quantum Mechanics: Soliton in a Lattice

    SciTech Connect (OSTI)

    Javanainen, Juha; Shrestha, Uttam

    2008-10-24

    We study a soliton in an optical lattice holding bosonic atoms quantum mechanically using both an exact numerical solution and quantum Monte Carlo simulations. The computation of the state is combined with an explicit account of the measurements of the numbers of the atoms at the lattice sites. In particular, importance sampling in the quantum Monte Carlo method arguably produces faithful simulations of individual experiments. Even though the quantum state is invariant under lattice translations, an experiment may show a noisy version of the localized classical soliton.

  3. On the hypothesis that quantum mechanism manifests classical mechanics: Numerical approach to the correspondence in search of quantum chaos

    SciTech Connect (OSTI)

    Lee, Sang-Bong

    1993-09-01

    Quantum manifestation of classical chaos has been one of the extensively studied subjects for more than a decade. Yet clear understanding of its nature still remains to be an open question partly due to the lack of a canonical definition of quantum chaos. The classical definition seems to be unsuitable in quantum mechanics partly because of the Heisenberg quantum uncertainty. In this regard, quantum chaos is somewhat misleading and needs to be clarified at the very fundamental level of physics. Since it is well known that quantum mechanics is more fundamental than classical mechanics, the quantum description of classically chaotic nature should be attainable in the limit of large quantum numbers. The focus of my research, therefore, lies on the correspondence principle for classically chaotic systems. The chaotic damped driven pendulum is mainly studied numerically using the split operator method that solves the time-dependent Schroedinger equation. For classically dissipative chaotic systems in which (multi)fractal strange attractors often emerge, several quantum dissipative mechanisms are also considered. For instance, Hoover`s and Kubo-Fox-Keizer`s approaches are studied with some computational analyses. But the notion of complex energy with non-Hermiticity is extensively applied. Moreover, the Wigner and Husimi distribution functions are examined with an equivalent classical distribution in phase-space, and dynamical properties of the wave packet in configuration and momentum spaces are also explored. The results indicate that quantum dynamics embraces classical dynamics although the classicalquantum correspondence fails to be observed in the classically chaotic regime. Even in the semi-classical limits, classically chaotic phenomena would eventually be suppressed by the quantum uncertainty.

  4. Unstable particles in non-relativistic quantum mechanics?

    SciTech Connect (OSTI)

    Hernandez-Coronado, H.

    2011-10-14

    The Schroedinger equation is up-to-a-phase invariant under the Galilei group. This phase leads to the Bargmann's superselection rule, which forbids the existence of the superposition of states with different mass and implies that unstable particles cannot be described consistently in non-relativistic quantum mechanics (NRQM). In this paper we claim that Bargmann's rule neglects physical effects and that a proper description of non-relativistic quantum mechanics requires to take into account this phase through the Extended Galilei group and the definition of its action on spacetime coordinates.

  5. A quantum mechanical description of particle spin rotation in channeling

    SciTech Connect (OSTI)

    Silenko, A.Ya.

    1995-04-01

    Spin rotation of spin-1/2 particles involved in planar channeling in straight and bent crystals is described in a consistent quantum mechanical manner. This is done by solving the Dirac equation in the Foldy-Wouthuysen representation, constructing an operator equation of motion for the spin, and calculating the average value of the spin precession frequency. For the case of channeling in bent crystals agreement is observed between the classical and quantum mechanical expressions, provided that the field of the planes is approximated by a harmonic potential. The effect of spin rotation in straight crystals is also examined. 17 refs.

  6. Deformation Quantization: Quantum Mechanic Lives and Works in...

    Office of Scientific and Technical Information (OSTI)

    of the density matrix. It has been useful in describing quantum flows in: quantum optics; nuclear physics; decoherence (eg, quantum computing); quantum chaos; 'Welcher Weg'...

  7. Deformation Quantization: Quantum Mechanic Lives and Works in Phase-Space

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Conference: Deformation Quantization: Quantum Mechanic Lives and Works in Phase-Space Citation Details In-Document Search Title: Deformation Quantization: Quantum Mechanic Lives and Works in Phase-Space Wigner's 1932 quasi-probability Distribution Function in phase-space is a special (Weyl) representation of the density matrix. It has been useful in describing quantum flows in: quantum optics; nuclear physics; decoherence (eg, quantum computing); quantum chaos;

  8. Methods of quantum mechanics applied to partially coherent light beams

    SciTech Connect (OSTI)

    Gase, R.

    1994-07-01

    Whenever the natural modes of the modal expansion of the cross-spectral density have a common waist, the wave equation in the waist plane has the form of a two-dimensional Schroedinger equation. Thus the results of quantum mechanics and quantum statistics, including the quantized Schroedinger field, can be transferred to partially coherent light. Such conceptions as temperature, entropy, and energy are used advantageously. A subclass of radiation, radiation in thermal equilibrium, is introduced, and, as examples, the Gaussian Schell-model beam and the quasi-rectangle model beam are investigated. The M{sup 2} factor is strongly related to the mean value of energy. 29 refs., 3 figs.

  9. Jarzynski equality in PT-symmetric quantum mechanics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Deffner, Sebastian; Saxena, Avadh

    2015-04-13

    We show that the quantum Jarzynski equality generalizes to PT -symmetric quantum mechanics with unbroken PT -symmetry. In the regime of broken PT -symmetry the Jarzynski equality does not hold as also the CPT -norm is not preserved during the dynamics. These findings are illustrated for an experimentally relevant system – two coupled optical waveguides. It turns out that for these systems the phase transition between the regimes of unbroken and broken PT -symmetry is thermodynamically inhibited as the irreversible work diverges at the critical point.

  10. A broken symmetry ontology: Quantum mechanics as a broken symmetry

    SciTech Connect (OSTI)

    Buschmann, J.E.

    1988-01-01

    The author proposes a new broken symmetry ontology to be used to analyze the quantum domain. This ontology is motivated and grounded in a critical epistemological analysis, and an analysis of the basic role of symmetry in physics. Concurrently, he is led to consider nonheterogeneous systems, whose logical state space contains equivalence relations not associated with the causal relation. This allows him to find a generalized principle of symmetry and a generalized symmetry-conservation formalisms. In particular, he clarifies the role of Noether's theorem in field theory. He shows how a broken symmetry ontology already operates in a description of the weak interactions. Finally, by showing how a broken symmetry ontology operates in the quantum domain, he accounts for the interpretational problem and the essential incompleteness of quantum mechanics. He proposes that the broken symmetry underlying this ontological domain is broken dilation invariance.

  11. PPPL researchers combine quantum mechanics and Einstein's theory of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    special relativity to clear up puzzles in plasma physics | Princeton Plasma Physics Lab researchers combine quantum mechanics and Einstein's theory of special relativity to clear up puzzles in plasma physics By John Greenwald July 29, 2016 Tweet Widget Google Plus One Share on Facebook Graduate student Yuan Shi (Photo by Elle Starkman/Office of Communications) Graduate student Yuan Shi Gallery: Sketch of a pulsar, center, in binary star system (Photo credit: NASA Goddard Space Flight Center)

  12. PPPL researchers combine quantum mechanics and Einstein's theory of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    special relativity to clear up puzzles in plasma physics | Princeton Plasma Physics Lab researchers combine quantum mechanics and Einstein's theory of special relativity to clear up puzzles in plasma physics By John Greenwald July 29, 2016 Tweet Widget Google Plus One Share on Facebook Graduate student Yuan Shi (Photo by Elle Starkman/Office of Communications) Graduate student Yuan Shi Gallery: Sketch of a pulsar, center, in binary star system (Photo credit: NASA Goddard Space Flight Center)

  13. MiniDFT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MiniDFT MiniDFT Description MiniDFT is a plane-wave density functional theory (DFT) mini-app for modeling materials. Given an set of atomic coordinates and pseudopotentials, MiniDFT computes self-consistent solutions of the Kohn-Sham equations using either the LDA or PBE exchange-correlation functionals. For each iteration of the self-consistent field cycle, the Fock matrix is constructed and then diagonalized. To build the Fock matrix, Fast Fourier Transforms are used to transform orbitals from

  14. MiniDFT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MiniDFT MiniDFT Description MiniDFT is a plane-wave denstity functional theory (DFT) mini-app for modeling materials. Given an set of atomic coordinates and pseudopotentials, MiniDFT computes self-consistent solutions of the Kohn-Sham equations using either the LDA or PBE exchange-correlation functionals. For each iteration of the self-consistent field cycle, the Fock matrix is constructed and then diagonalized. To build the Fock matrix, Fast Fourier Transforms are used to tranform orbitals from

  15. Twisting all the way: From classical mechanics to quantum fields

    SciTech Connect (OSTI)

    Aschieri, Paolo

    2008-01-15

    We discuss the effects that a noncommutative geometry induced by a Drinfeld twist has on physical theories. We systematically deform all products and symmetries of the theory. We discuss noncommutative classical mechanics, in particular its deformed Poisson bracket and hence time evolution and symmetries. The twisting is then extended to classical fields, and then to the main interest of this work: quantum fields. This leads to a geometric formulation of quantization on noncommutative space-time, i.e., we establish a noncommutative correspondence principle from *-Poisson brackets to * commutators. In particular commutation relations among creation and annihilation operators are deduced.

  16. Chan, H. B.; Yelton, J. 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL...

    Office of Scientific and Technical Information (OSTI)

    in microelectromechanical systems Chan, H. B.; Yelton, J. 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Our goal was to explore the strong dependence of the Casimir force...

  17. Quantum-mechanical aspects of classically chaotic driven systems

    SciTech Connect (OSTI)

    Milonni, P.W.; Ackerhalt, J.R.; Goggin, M.E.

    1987-01-01

    This paper treats atoms and molecules in laser fields as periodically driven quantum systems. The paper concludes by determining that stochastic excitation is possible in quantum systems with quasiperiodic driving. 17 refs. (JDH)

  18. Frequency-domain multiscale quantum mechanics/electromagnetics simulation method

    SciTech Connect (OSTI)

    Meng, Lingyi; Yin, Zhenyu; Yam, ChiYung E-mail: ghc@everest.hku.hk; Koo, SiuKong; Chen, GuanHua E-mail: ghc@everest.hku.hk; Chen, Quan; Wong, Ngai

    2013-12-28

    A frequency-domain quantum mechanics and electromagnetics (QM/EM) method is developed. Compared with the time-domain QM/EM method [Meng et al., J. Chem. Theory Comput. 8, 11901199 (2012)], the newly developed frequency-domain QM/EM method could effectively capture the dynamic properties of electronic devices over a broader range of operating frequencies. The system is divided into QM and EM regions and solved in a self-consistent manner via updating the boundary conditions at the QM and EM interface. The calculated potential distributions and current densities at the interface are taken as the boundary conditions for the QM and EM calculations, respectively, which facilitate the information exchange between the QM and EM calculations and ensure that the potential, charge, and current distributions are continuous across the QM/EM interface. Via Fourier transformation, the dynamic admittance calculated from the time-domain and frequency-domain QM/EM methods is compared for a carbon nanotube based molecular device.

  19. Supersymmetric descendants of self-adjointly extended quantum mechanical Hamiltonians

    SciTech Connect (OSTI)

    Al-Hashimi, M.H.; Salman, M.; Shalaby, A.; Wiese, U.-J.

    2013-10-15

    We consider the descendants of self-adjointly extended Hamiltonians in supersymmetric quantum mechanics on a half-line, on an interval, and on a punctured line or interval. While there is a 4-parameter family of self-adjointly extended Hamiltonians on a punctured line, only a 3-parameter sub-family has supersymmetric descendants that are themselves self-adjoint. We also address the self-adjointness of an operator related to the supercharge, and point out that only a sub-class of its most general self-adjoint extensions is physical. Besides a general characterization of self-adjoint extensions and their supersymmetric descendants, we explicitly consider concrete examples, including a particle in a box with general boundary conditions, with and without an additional point interaction. We also discuss bulk-boundary resonances and their manifestation in the supersymmetric descendant. -- Highlights: Self-adjoint extension theory and contact interactions. Application of self-adjoint extensions to supersymmetry. Contact interactions in finite volume with Robin boundary condition.

  20. The von Neumann model of measurement in quantum mechanics

    SciTech Connect (OSTI)

    Mello, Pier A.

    2014-01-08

    We describe how to obtain information on a quantum-mechanical system by coupling it to a probe and detecting some property of the latter, using a model introduced by von Neumann, which describes the interaction of the system proper with the probe in a dynamical way. We first discuss single measurements, where the system proper is coupled to one probe with arbitrary coupling strength. The goal is to obtain information on the system detecting the probe position. We find the reduced density operator of the system, and show how Lders rule emerges as the limiting case of strong coupling. The von Neumann model is then generalized to two probes that interact successively with the system proper. Now we find information on the system by detecting the position-position and momentum-position correlations of the two probes. The so-called 'Wigner's formula' emerges in the strong-coupling limit, while 'Kirkwood's quasi-probability distribution' is found as the weak-coupling limit of the above formalism. We show that successive measurements can be used to develop a state-reconstruction scheme. Finally, we find a generalized transform of the state and the observables based on the notion of successive measurements.

  1. Deformation quantization : quantum mechanics lives and works in phase-space.

    SciTech Connect (OSTI)

    Zachos, C.; High Energy Physics

    2002-01-30

    Wigner's quasi-probability distribution function in phase-space is a special (Weyl) representation of the density matrix. It has been useful in describing quantum transport in quantum optics; nuclear physics; decoherence (e.g. quantum computing); quantum chaos; 'Welcher Weg' discussions; semiclassical limits. It is also of importance in signal processing. Nevertheless, a remarkable aspect of its internal logic, pioneered by Moyal, has only emerged in the last quarter-century: It furnishes a third, alternative, formulation of Quantum Mechanics, independent of the conventional Hilbert Space, or Path Integral formulations. In this logically complete and self-standing formulation, one need not choose sides--coordinate or momentum space. It works in full phase-space, accommodating the uncertainty principle. This is an introductory overview of the formulation with simple illustrations.

  2. Deformation Quantization: Quantum Mechanic Lives and Works in Phase-Space

    SciTech Connect (OSTI)

    Zachos, Cosmas (Argonne National Laboratory) [Argonne National Laboratory

    2001-08-01

    Wigner's 1932 quasi-probability Distribution Function in phase-space is a special (Weyl) representation of the density matrix. It has been useful in describing quantum flows in: quantum optics; nuclear physics; decoherence (eg, quantum computing); quantum chaos; 'Welcher Weg' discussions; semiclassical limits. It is also of importance in signal processing. Nevertheless, a remarkable aspect of its internal logic, pioneered by the late Moyal, has only emerged in the last quarter-century: It furnishes a third, alternate, formulation of Quantum Mechanics, independent of the conventional Hilbert Space, or Path Integral formulations. It is logically complete and self-standing, and accommodates the uncertainty principle in an unexpected manner. Simple illustrations of this fact will be detailed.

  3. Facile synthesis and photoluminescence mechanism of graphene quantum dots

    SciTech Connect (OSTI)

    Yang, Ping; Zhou, Ligang; Zhang, Shenli; Pan, Wei Shen, Wenzhong; Wan, Neng

    2014-12-28

    We report a facile hydrothermal synthesis of intrinsic fluorescent graphene quantum dots (GQDs) with two-dimensional morphology. This synthesis uses glucose, concentrate sulfuric acid, and deionized water as reagents. Concentrated sulfuric acid is found to play a key role in controlling the transformation of as-prepared hydrothermal products from amorphous carbon nanodots to well-crystallized GQDs. These GQDs show typical absorption characteristic for graphene, and have nearly excitation-independent ultraviolet and blue intrinsic emissions. Temperature-dependent PL measurements have demonstrated strong electron-electron scattering and electron-phonon interactions, suggesting a similar temperature behavior of GQDs to inorganic semiconductor quantum dots. According to optical studies, the ultraviolet emission is found to originate from the recombination of electron-hole pairs localized in the C=C bonds, while the blue emission is from the electron transition of sp{sup 2} domains.

  4. Quantum Mechanical Corrections to Simulated Shock Hugoniot Temperatures

    SciTech Connect (OSTI)

    Goldman, N; Reed, E; Fried, L E

    2009-07-17

    The authors present a straightforward method for the inclusion of quantum nuclear vibrational effects in molecular dynamics calculations of shock Hugoniot temperatures. Using a grueneisen equation of state and a quasi-harmonic approximation to the vibrational energies, they derive a simple, post-processing method for calculation of the quantum corrected Hugoniot temperatures. They have used our novel technique on ab initio simulations of both shock compressed water and methane. Our results indicate significantly closer agreement with all available experimental temperature data for these two systems. Our formalism and technique can be easily applied to a number of different shock compressed molecular liquids or covalent solids, and has the potential to decrease the large uncertainties inherent in many experimental Hugoniot temperature measurements of these systems.

  5. Absorbing boundary conditions for relativistic quantum mechanics equations

    SciTech Connect (OSTI)

    Antoine, X.; Sater, J.; Fillion-Gourdeau, F.; Bandrauk, A.D.

    2014-11-15

    This paper is devoted to the derivation of absorbing boundary conditions for the Klein–Gordon and Dirac equations modeling quantum and relativistic particles subject to classical electromagnetic fields. Microlocal analysis is the main ingredient in the derivation of these boundary conditions, which are obtained in the form of pseudo-differential equations. Basic numerical schemes are derived and analyzed to illustrate the accuracy of the derived boundary conditions.

  6. Generalized contexts and consistent histories in quantum mechanics

    SciTech Connect (OSTI)

    Losada, Marcelo; Laura, Roberto

    2014-05-15

    We analyze a restriction of the theory of consistent histories by imposing that a valid description of a physical system must include quantum histories which satisfy the consistency conditions for all states. We prove that these conditions are equivalent to imposing the compatibility conditions of our formalism of generalized contexts. Moreover, we show that the theory of consistent histories with the consistency conditions for all states and the formalism of generalized context are equally useful representing expressions which involve properties at different times.

  7. Wigner functions for noncommutative quantum mechanics: A group representation based construction

    SciTech Connect (OSTI)

    Chowdhury, S. Hasibul Hassan; Ali, S. Twareque

    2015-12-15

    This paper is devoted to the construction and analysis of the Wigner functions for noncommutative quantum mechanics, their marginal distributions, and star-products, following a technique developed earlier, viz, using the unitary irreducible representations of the group G{sub NC}, which is the three fold central extension of the Abelian group of ℝ{sup 4}. These representations have been exhaustively studied in earlier papers. The group G{sub NC} is identified with the kinematical symmetry group of noncommutative quantum mechanics of a system with two degrees of freedom. The Wigner functions studied here reflect different levels of non-commutativity—both the operators of position and those of momentum not commuting, the position operators not commuting and finally, the case of standard quantum mechanics, obeying the canonical commutation relations only.

  8. Treating electrostatics with Wolf summation in combined quantum mechanical and molecular mechanical simulations

    SciTech Connect (OSTI)

    Ojeda-May, Pedro; Pu, Jingzhi

    2015-11-07

    The Wolf summation approach [D. Wolf et al., J. Chem. Phys. 110, 8254 (1999)], in the damped shifted force (DSF) formalism [C. J. Fennell and J. D. Gezelter, J. Chem. Phys. 124, 234104 (2006)], is extended for treating electrostatics in combined quantum mechanical and molecular mechanical (QM/MM) molecular dynamics simulations. In this development, we split the QM/MM electrostatic potential energy function into the conventional Coulomb r{sup −1} term and a term that contains the DSF contribution. The former is handled by the standard machinery of cutoff-based QM/MM simulations whereas the latter is incorporated into the QM/MM interaction Hamiltonian as a Fock matrix correction. We tested the resulting QM/MM-DSF method for two solution-phase reactions, i.e., the association of ammonium and chloride ions and a symmetric SN{sub 2} reaction in which a methyl group is exchanged between two chloride ions. The performance of the QM/MM-DSF method was assessed by comparing the potential of mean force (PMF) profiles with those from the QM/MM-Ewald and QM/MM-isotropic periodic sum (IPS) methods, both of which include long-range electrostatics explicitly. For ion association, the QM/MM-DSF method successfully eliminates the artificial free energy drift observed in the QM/MM-Cutoff simulations, in a remarkable agreement with the two long-range-containing methods. For the SN{sub 2} reaction, the free energy of activation obtained by the QM/MM-DSF method agrees well with both the QM/MM-Ewald and QM/MM-IPS results. The latter, however, requires a greater cutoff distance than QM/MM-DSF for a proper convergence of the PMF. Avoiding time-consuming lattice summation, the QM/MM-DSF method yields a 55% reduction in computational cost compared with the QM/MM-Ewald method. These results suggest that, in addition to QM/MM-IPS, the QM/MM-DSF method may serve as another efficient and accurate alternative to QM/MM-Ewald for treating electrostatics in condensed-phase simulations of chemical

  9. Chemical dynamics in the gas phase: Time-dependent quantum mechanics of chemical reactions

    SciTech Connect (OSTI)

    Gray, S.K.

    1993-12-01

    A major goal of this research is to obtain an understanding of the molecular reaction dynamics of three and four atom chemical reactions using numerically accurate quantum dynamics. This work involves: (i) the development and/or improvement of accurate quantum mechanical methods for the calculation and analysis of the properties of chemical reactions (e.g., rate constants and product distributions), and (ii) the determination of accurate dynamical results for selected chemical systems, which allow one to compare directly with experiment, determine the reliability of the underlying potential energy surfaces, and test the validity of approximate theories. This research emphasizes the use of recently developed time-dependent quantum mechanical methods, i.e. wave packet methods.

  10. Many worlds and modality in the interpretation of quantum mechanics: An algebraic approach

    SciTech Connect (OSTI)

    Domenech, G.; Freytes, H.; Ronde, C. de

    2009-07-15

    Many world interpretations (MWIs) of quantum mechanics avoid the measurement problem by considering every term in the quantum superposition as actual. A seemingly opposed solution is proposed by modal interpretations (MIs) which state that quantum mechanics does not provide an account of what 'actually is the case', but rather deals with what 'might be the case', i.e., with possibilities. In this paper we provide an algebraic framework which allows us to analyze in depth the modal aspects of MWI. Within our general formal scheme we also provide a formal comparison between MWI and MI, in particular, we provide a formal understanding of why - even though both interpretations share the same formal structure - MI fall pray of Kochen-Specker-type contradictions while MWI escape them.

  11. Quantum mechanical method of fragment's angular and energy distribution calculation for binary and ternary fission

    SciTech Connect (OSTI)

    Kadmensky, S. G., E-mail: kadmensky@phys.vsu.ru; Titova, L. V.; Pen'kov, N. V. [Voronezh State University (Russian Federation)

    2006-08-15

    In the framework of quantum-mechanical fission theory, the method of calculation for partial fission width amplitudes and asymptotic behavior of the fissile nucleus wave function with strong channel coupling taken into account has been suggested. The method allows one to solve the calculation problem of angular and energy distribution countation for binary and ternary fission.

  12. A parametric approach to supersymmetric quantum mechanics in the solution of Schrdinger equation

    SciTech Connect (OSTI)

    Tezcan, Cevdet; Sever, Ramazan

    2014-03-15

    We study exact solutions of the Schrdinger equation for some potentials. We introduce a parametric approach to supersymmetric quantum mechanics to calculate energy eigenvalues and corresponding wave functions exactly. As an application we solve Schrdinger equation for the generalized Morse potential, modified Hulthen potential, deformed Rosen-Morse potential and Poschl-Teller potential. The method is simple and effective to get the results.

  13. On the nonstationary quantum-mechanical origin of nuclear reactions in solids

    SciTech Connect (OSTI)

    Chechin, V.A.; Tsarev, V.A. )

    1994-07-01

    A model for deuteron reactions in solids is suggested in which an increase in the penetrability of the Coulomb barrier is attributed to a quantum-mechanical perturbation of the wave function caused by nonstationary deuterons in a crystalline lattice. 15 refs.

  14. Philosophy of Mind and the Problem of FreeWill in the Light of Quantum Mechanics.

    SciTech Connect (OSTI)

    Stapp, Henry; Stapp, Henry P

    2008-04-01

    Arguments pertaining to the mind-brain connection and to the physical effectiveness of our conscious choices have been presented in two recent books, one by John Searle, the other by Jaegwon Kim. These arguments are examined, and it is argued that the difficulties encountered arise from a defective understanding and application of a pertinent part of contemporary science, namely quantum mechanics.

  15. Measurement-only topological quantum computation via anyonic...

    Office of Scientific and Technical Information (OSTI)

    Subject: 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ANYONS; HALL EFFECT; INTERFEROMETRY; QUANTUM COMPUTERS; QUANTUM MECHANICS; QUANTUM TELEPORTATION; TOPOLOGY; ...

  16. The Wonders of Supersymmetry: From Quantum Mechanics, Topology, and Noise, to (maybe) the LHC

    ScienceCinema (OSTI)

    Poppitz, Erich [University of Toronto, Toronto, Ontario, Canada

    2010-09-01

    Supersymmetry, relating bosons and fermions was discovered almost 40 years ago in string theory and in quantum field theory, but the seeds of its 'miraculous' properties could have been seen already in quantum mechanics - which is also where it has found some of its more important applications. This talk introduces supersymmetry via the supersymmetric anharmonic oscillator. We shall see that this seemingly trivial example is sufficiently rich, allowing us to illustrate the uses of supersymmetric concepts in a variety of fields: mathematics, elementary particle physics, critical phenomena, and stochastic dynamics.

  17. What is behind small deviations of quantum mechanics theory from experiments? Observer's mathematics point of view

    SciTech Connect (OSTI)

    Khots, Boris; Khots, Dmitriy

    2014-12-10

    Certain results that have been predicted by Quantum Mechanics (QM) theory are not always supported by experiments. This defines a deep crisis in contemporary physics and, in particular, quantum mechanics. We believe that, in fact, the mathematical apparatus employed within today's physics is a possible reason. In particular, we consider the concept of infinity that exists in today's mathematics as the root cause of this problem. We have created Observer's Mathematics that offers an alternative to contemporary mathematics. This paper is an attempt to relay how Observer's Mathematics may explain some of the contradictions in QM theory results. We consider the Hamiltonian Mechanics, Newton equation, Schrodinger equation, two slit interference, wave-particle duality for single photons, uncertainty principle, Dirac equations for free electron in a setting of arithmetic, algebra, and topology provided by Observer's Mathematics (see www.mathrelativity.com). Certain results and communications pertaining to solution of these problems are provided.

  18. The Radical Pair Mechanism and the Avian Chemical Compass: Quantum Coherence and Entanglement

    SciTech Connect (OSTI)

    Zhang, Yiteng; Kais, Sabre; Berman, Gennady Petrovich

    2015-02-02

    We review the spin radical pair mechanism which is a promising explanation of avian navigation. This mechanism is based on the dependence of product yields on 1) the hyperfine interaction involving electron spins and neighboring nuclear spins and 2) the intensity and orientation of the geomagnetic field. One surprising result is that even at ambient conditions quantum entanglement of electron spins can play an important role in avian magnetoreception. This review describes the general scheme of chemical reactions involving radical pairs generated from singlet and triplet precursors; the spin dynamics of the radical pairs; and the magnetic field dependence of product yields caused by the radical pair mechanism. The main part of the review includes a description of the chemical compass in birds. We review: the general properties of the avian compass; the basic scheme of the radical pair mechanism; the reaction kinetics in cryptochrome; quantum coherence and entanglement in the avian compass; and the effects of noise. We believe that the quantum avian compass can play an important role in avian navigation and can also provide the foundation for a new generation of sensitive and selective magnetic-sensing nano-devices.

  19. Structure/Function Studies of Proteins Using Linear Scaling Quantum Mechanical Methodologies

    SciTech Connect (OSTI)

    Merz, K. M.

    2004-07-19

    We developed a linear-scaling semiempirical quantum mechanical (QM) program (DivCon). Using DivCon we can now routinely carry out calculations at the fully QM level on systems containing up to about 15 thousand atoms. We also implemented a Poisson-Boltzmann (PM) method into DivCon in order to compute solvation free energies and electrostatic properties of macromolecules in solution. This new suite of programs has allowed us to bring the power of quantum mechanics to bear on important biological problems associated with protein folding, drug design and enzyme catalysis. Hence, we have garnered insights into biological systems that have been heretofore impossible to obtain using classical simulation techniques.

  20. Baryon spectrum from superconformal quantum mechanics and its light-front holographic embedding

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    de Teramond, Guy F.; Dosch, Hans Gunter; Brodsky, Stanley J.

    2015-02-27

    We describe the observed light-baryon spectrum by extending superconformal quantum mechanics to the light front and its embedding in AdS space. This procedure uniquely determines the confinement potential for arbitrary half-integer spin. To this end, we show that fermionic wave equations in AdS space are dual to light-front supersymmetric quantum-mechanical bound-state equations in physical space-time. The specific breaking of conformal invariance explains hadronic properties common to light mesons and baryons, such as the observed mass pattern in the radial and orbital excitations, from the spectrum generating algebra. Lastly, the holographic embedding in AdS also explains distinctive and systematic features, suchmore » as the spin-J degeneracy for states with the same orbital angular momentum, observed in the light-baryon spectrum.« less

  1. Derivation of quantum mechanics from the Boltzmann equation for the Planch aether

    SciTech Connect (OSTI)

    Winterberg, F.

    1995-10-01

    The Planck aether hypothesis assumes that space is densely filled with an equal number of locally interacting positive and negative Planck masses obeying an exactly nonrelativistic law of motion. The Planck masses can be described by a quantum mechanical two-component nonrelativistic operator field equation having the form of a two-component nonlinear Schroedinger equation, with a spectrum of quasiparticles obeying Lorentz invariance as a dynamic symmetry for energies small compared to the Planck energy. We show that quantum mechanics itself can be derived from the Newtonian mechanics of the Planck aether as an approximate solution of Boltzmann`s equation for the locally interacting positive and negative Planck masses, and that the validity of the nonrelativistic Schroedinger equation depends on Lorentz invariance as a dynamic symmetry. We also show how the many-body Schroedinger wave function can be factorized into a product of quasiparticles of the Planck aether with separable quantum potentials. Finally, we present a possible explanation of wave function collapse as a kind of enhanced gravitational collapse in the presence of the negative Planck masses.

  2. General N=2 supersymmetric quantum mechanical model: Supervariable approach to its off-shell nilpotent symmetries

    SciTech Connect (OSTI)

    Krishna, S.; Shukla, A.; Malik, R.P.

    2014-12-15

    Using the supersymmetric (SUSY) invariant restrictions on the (anti-)chiral supervariables, we derive the off-shell nilpotent symmetries of the general one (0+1)-dimensional N=2 SUSY quantum mechanical (QM) model which is considered on a (1, 2)-dimensional supermanifold (parametrized by a bosonic variable t and a pair of Grassmannian variables θ and θ-bar with θ{sup 2}=(θ-bar){sup 2}=0,θ(θ-bar)+(θ-bar)θ=0). We provide the geometrical meanings to the two SUSY transformations of our present theory which are valid for any arbitrary type of superpotential. We express the conserved charges and Lagrangian of the theory in terms of the supervariables (that are obtained after the application of SUSY invariant restrictions) and provide the geometrical interpretation for the nilpotency property and SUSY invariance of the Lagrangian for the general N=2 SUSY quantum theory. We also comment on the mathematical interpretation of the above symmetry transformations. - Highlights: • A novel method has been proposed for the derivation of N=2 SUSY transformations. • General N=2 SUSY quantum mechanical (QM) model with a general superpotential, is considered. • The above SUSY QM model is generalized onto a (1, 2)-dimensional supermanifold. • SUSY invariant restrictions are imposed on the (anti-)chiral supervariables. • Geometrical meaning of the nilpotency property is provided.

  3. Retrocausal Effects as a Consequence of Quantum Mechanics Refined to Accommodate the Principle of Sufficient Reason

    SciTech Connect (OSTI)

    Stapp, Henry P.

    2011-05-10

    The principle of sufficient reason asserts that anything that happens does so for a reason: no definite state of affairs can come into being unless there is a sufficient reason why that particular thing should happen. This principle is usually attributed to Leibniz, although the first recorded Western philosopher to use it was Anaximander of Miletus. The demand that nature be rational, in the sense that it be compatible with the principle of sufficient reason, conflicts with a basic feature of contemporary orthodox physical theory, namely the notion that nature's response to the probing action of an observer is determined by pure chance, and hence on the basis of absolutely no reason at all. This appeal to pure chance can be deemed to have no rational fundamental place in reason-based Western science. It is argued here, on the basis of the other basic principles of quantum physics, that in a world that conforms to the principle of sufficient reason, the usual quantum statistical rules will naturally emerge at the pragmatic level, in cases where the reason behind nature's choice of response is unknown, but that the usual statistics can become biased in an empirically manifest way when the reason for the choice is empirically identifiable. It is shown here that if the statistical laws of quantum mechanics were to be biased in this way then the basically forward-in-time unfolding of empirical reality described by orthodox quantum mechanics would generate the appearances of backward-time-effects of the kind that have been reported in the scientific literature.

  4. Scattering mechanisms in shallow undoped Si/SiGe quantum wells

    SciTech Connect (OSTI)

    Laroche, D.; Nielsen, E.; Lu, T. M.; Huang, S.-H.; Chuang, Y.; Li, J.-Y. Liu, C. W.

    2015-10-15

    We report the magneto-transport study and scattering mechanism analysis of a series of increasingly shallow Si/SiGe quantum wells with depth ranging from ∼ 100 nm to ∼ 10 nm away from the heterostructure surface. The peak mobility increases with depth, suggesting that charge centers near the oxide/semiconductor interface are the dominant scattering source. The power-law exponent of the electron mobility versus density curve, μ ∝ n{sup α}, is extracted as a function of the depth of the Si quantum well. At intermediate densities, the power-law dependence is characterized by α ∼ 2.3. At the highest achievable densities in the quantum wells buried at intermediate depth, an exponent α ∼ 5 is observed. We propose and show by simulations that this increase in the mobility dependence on the density can be explained by a non-equilibrium model where trapped electrons smooth out the potential landscape seen by the two-dimensional electron gas.

  5. Scattering mechanisms in shallow undoped Si/SiGe quantum wells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Laroche, Dominique; Huang, S. -H.; Nielsen, Erik; Chuang, Y.; Li, J. -Y.; Liu, C. W.; Lu, Tzu -Ming

    2015-10-07

    We report the magneto-transport study and scattering mechanism analysis of a series of increasingly shallow Si/SiGe quantum wells with depth ranging from ~ 100 nm to ~ 10 nm away from the heterostructure surface. The peak mobility increases with depth, suggesting that charge centers near the oxide/semiconductor interface are the dominant scattering source. The power-law exponent of the electron mobility versus density curve, μ ∝ nα, is extracted as a function of the depth of the Si quantum well. At intermediate densities, the power-law dependence is characterized by α ~ 2.3. At the highest achievable densities in the quantum wellsmore » buried at intermediate depth, an exponent α ~ 5 is observed. Lastly, we propose and show by simulations that this increase in the mobility dependence on the density can be explained by a non-equilibrium model where trapped electrons smooth out the potential landscape seen by the two-dimensional electron gas.« less

  6. Scattering mechanisms in shallow undoped Si/SiGe quantum wells

    SciTech Connect (OSTI)

    Laroche, Dominique; Huang, S. -H.; Nielsen, Erik; Chuang, Y.; Li, J. -Y.; Liu, C. W.; Lu, Tzu -Ming

    2015-10-07

    We report the magneto-transport study and scattering mechanism analysis of a series of increasingly shallow Si/SiGe quantum wells with depth ranging from ~ 100 nm to ~ 10 nm away from the heterostructure surface. The peak mobility increases with depth, suggesting that charge centers near the oxide/semiconductor interface are the dominant scattering source. The power-law exponent of the electron mobility versus density curve, μ ∝ nα, is extracted as a function of the depth of the Si quantum well. At intermediate densities, the power-law dependence is characterized by α ~ 2.3. At the highest achievable densities in the quantum wells buried at intermediate depth, an exponent α ~ 5 is observed. Lastly, we propose and show by simulations that this increase in the mobility dependence on the density can be explained by a non-equilibrium model where trapped electrons smooth out the potential landscape seen by the two-dimensional electron gas.

  7. Quantum mechanical force field for hydrogen fluoride with explicit electronic polarization

    SciTech Connect (OSTI)

    Mazack, Michael J. M.; Gao, Jiali

    2014-05-28

    The explicit polarization (X-Pol) theory is a fragment-based quantum chemical method that explicitly models the internal electronic polarization and intermolecular interactions of a chemical system. X-Pol theory provides a framework to construct a quantum mechanical force field, which we have extended to liquid hydrogen fluoride (HF) in this work. The parameterization, called XPHF, is built upon the same formalism introduced for the XP3P model of liquid water, which is based on the polarized molecular orbital (PMO) semiempirical quantum chemistry method and the dipole-preserving polarization consistent point charge model. We introduce a fluorine parameter set for PMO, and find good agreement for various gas-phase results of small HF clusters compared to experiments and ab initio calculations at the M06-2X/MG3S level of theory. In addition, the XPHF model shows reasonable agreement with experiments for a variety of structural and thermodynamic properties in the liquid state, including radial distribution functions, interaction energies, diffusion coefficients, and densities at various state points.

  8. Unified theory of exactly and quasiexactly solvable ''discrete'' quantum mechanics. I. Formalism

    SciTech Connect (OSTI)

    Odake, Satoru [Department of Physics, Shinshu University, Matsumoto 390-8621 (Japan); Sasaki, Ryu [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan)

    2010-08-15

    We present a simple recipe to construct exactly and quasiexactly solvable Hamiltonians in one-dimensional ''discrete'' quantum mechanics, in which the Schroedinger equation is a difference equation. It reproduces all the known ones whose eigenfunctions consist of the Askey scheme of hypergeometric orthogonal polynomials of a continuous or a discrete variable. The recipe also predicts several new ones. An essential role is played by the sinusoidal coordinate, which generates the closure relation and the Askey-Wilson algebra together with the Hamiltonian. The relationship between the closure relation and the Askey-Wilson algebra is clarified.

  9. Nonlinear quantum-mechanical system associated with Sine-Gordon equation in (1 + 2) dimensions

    SciTech Connect (OSTI)

    Zarmi, Yair

    2014-10-15

    Despite the fact that it is not integrable, the (1 + 2)-dimensional Sine-Gordon equation has N-soliton solutions, whose velocities are lower than the speed of light (c = 1), for all N ≥ 1. Based on these solutions, a quantum-mechanical system is constructed over a Fock space of particles. The coordinate of each particle is an angle around the unit circle. U, a nonlinear functional of the particle number-operators, which obeys the Sine-Gordon equation in (1 + 2) dimensions, is constructed. Its eigenvalues on N-particle states in the Fock space are the slower-than-light, N-soliton solutions of the equation. A projection operator (a nonlinear functional of U), which vanishes on the single-particle subspace, is a mass-density generator. Its eigenvalues on multi-particle states play the role of the mass density of structures that emulate free, spatially extended, relativistic particles. The simplicity of the quantum-mechanical system allows for the incorporation of perturbations with particle interactions, which have the capacity to “annihilate” and “create” solitons – an effect that does not have an analog in perturbed classical nonlinear evolution equations.

  10. Quantum mechanical approaches to in silico enzyme characterization and drug design

    SciTech Connect (OSTI)

    Nilmeier, J P; Fattebert, J L; Jacobson, M P; Kalyanaraman, C

    2012-01-17

    The astonishing, exponentially increasing rates of genome sequencing has led to one of the most significant challenges for the biological and computational sciences in the 21st century: assigning the likely functions of the encoded proteins. Enzymes represent a particular challenge, and a critical one, because the universe of enzymes is likely to contain many novel functions that may be useful for synthetic biology, or as drug targets. Current approaches to protein annotation are largely based on bioinformatics. At the simplest level, this annotation involves transferring the annotations of characterized enzymes to related sequences. In practice, however, there is no simple, sequence based criterion for transferring annotations, and bioinformatics alone cannot propose new enzymatic functions. Structure-based computational methods have the potential to address these limitations, by identifying potential substrates of enzymes, as we and others have shown. One successful approach has used in silico 'docking' methods, more commonly applied in structure-based drug design, to identify possible metabolite substrates. A major limitation of this approach is that it only considers substrate binding, and does not directly assess the potential of the enzyme to catalyze a particular reaction using a particular substrate. That is, substrate binding affinity is necessary but not sufficient to assign function. A reaction profile is ultimately what is needed for a more complete quantitative description of function. To address this rather fundamental limitation, they propose to use quantum mechanical methods to explicitly compute transition state barriers that govern the rates of catalysis. Although quantum mechanical, and mixed quantum/classical (QM/MM), methods have been used extensively to investigate enzymatic reactions, the focus has been primarily on elucidating complex reaction mechanisms. Here, the key catalytic steps are known, and they use these methods quantify substrate

  11. Molecular Quantum Mechanics 2010: From Methylene to DNA and Beyond Conference Support

    SciTech Connect (OSTI)

    2013-05-15

    This grant was $12500 for partial support of an international conference, Molecular Quantum Mechanics 2010, which was held on the campus of the University of California, Berkeley, from 24 to 29 May 2010. The conference involved more than 250 participants. The conference schedule ran from as early as 8:00 AM to as late as 10:30 PM at night, in order to accommodate six historical lectures, 16 plenary lectures, 42 invited talks and two very strong poster sessions containing 143 contributed posters. Since 1989, the Molecular Quantum Mechanics (MQM) series of international conferences has show- cased the frontiers of research in quantum chemistry with a strong focus on basic theory and algorithms, as well as highlights of topical applications. Both were strongly in evidence at MQM 2010. At the same time as embracing the future, the MQM conferences also honour the lifetime contributions of some of the most prominent scientists in the field of theoretical and computational quantum chemistry. MQM 2010 recognised the work of Prof. Henry F. ‘Fritz’ Schaefer of the Center for Computational Chemistry at the University of Georgia, who was previously on the faculty at Berkeley The travel of invited speakers was partially covered by sponsorships from Dell Computer, Hewlett-Packard, Journal of Chemical Theory and Computation, Virginia Tech College of Science, Molecular Physics, Q-Chem Inc and the American Institute of Physics. By contrast, the conference grant from the Department of Energy was used to provide fellowships and scholarships to enable graduate students and postdoctoral fellows to attend the meeting, and thereby broaden the participation of young scientists at a meeting where in the past most of the attendees have been more senior faculty researchers. We believe that we were very successful in this regard: 118 students and postdocs attended out of the total of 256 participants. In detail, the DOE sponsorship money was partially used for dormitory scholarships that

  12. Solutions to position-dependent mass quantum mechanics for a new class of hyperbolic potentials

    SciTech Connect (OSTI)

    Christiansen, H. R.; Grupo de Fsica Terica, State University of Ceara , Av. Paranjana 1700, 60740-903 Fortaleza-CE ; Cunha, M. S.

    2013-12-15

    We analytically solve the position-dependent mass (PDM) 1D Schrdinger equation for a new class of hyperbolic potentials V{sub q}{sup p}(x)=?V{sub 0}(sinh{sup p}x/cosh{sup q}x),?p=?2,0,?q?[see C. A. Downing, J. Math. Phys. 54, 072101 (2013)] among several hyperbolic single- and double-wells. For a solitonic mass distribution, m(x)=m{sub 0}?sech{sup 2}(x), we obtain exact analytic solutions to the resulting differential equations. For several members of the class, the quantum mechanical problems map into confluent Heun differential equations. The PDM Poschl-Teller potential is considered and exactly solved as a particular case.

  13. Bound states for multiple Dirac-? wells in space-fractional quantum mechanics

    SciTech Connect (OSTI)

    Tare, Jeffrey D. Esguerra, Jose Perico H.

    2014-01-15

    Using the momentum-space approach, we obtain bound states for multiple Dirac-? wells in the framework of space-fractional quantum mechanics. Introducing first an attractive Dirac-comb potential, i.e., Dirac comb with strength ?g (g > 0), in the space-fractional Schrdinger equation we show that the problem of obtaining eigenenergies of a system with N Dirac-? wells can be reduced to a problem of obtaining the eigenvalues of an N N matrix. As an illustration we use the present matrix formulation to derive expressions satisfied by the bound-state energies of N = 1, 2, 3 delta wells. We also obtain the corresponding wave functions and express them in terms of Fox's H-function.

  14. A quantum mechanical model for the relationship between stock price and stock ownership

    SciTech Connect (OSTI)

    Cotfas, Liviu-Adrian

    2012-11-01

    The trade of a fixed stock can be regarded as the basic process that measures its momentary price. The stock price is exactly known only at the time of sale when the stock is between traders, that is, only in the case when the owner is unknown. We show that the stock price can be better described by a function indicating at any moment of time the probabilities for the possible values of price if a transaction takes place. This more general description contains partial information on the stock price, but it also contains partial information on the stock owner. By following the analogy with quantum mechanics, we assume that the time evolution of the function describing the stock price can be described by a Schroedinger type equation.

  15. Natural star-products on symplectic manifolds and related quantum mechanical operators

    SciTech Connect (OSTI)

    B?aszak, Maciej Doma?ski, Ziemowit

    2014-05-15

    In this paper is considered a problem of defining natural star-products on symplectic manifolds, admissible for quantization of classical Hamiltonian systems. First, a construction of a star-product on a cotangent bundle to an Euclidean configuration space is given with the use of a sequence of pair-wise commuting vector fields. The connection with a covariant representation of such a star-product is also presented. Then, an extension of the construction to symplectic manifolds over flat and non-flat pseudo-Riemannian configuration spaces is discussed. Finally, a coordinate free construction of related quantum mechanical operators from Hilbert space over respective configuration space is presented. -- Highlights: Invariant representations of natural star-products on symplectic manifolds are considered. Star-products induced by flat and non-flat connections are investigated. Operator representations in Hilbert space of considered star-algebras are constructed.

  16. Multiscale modeling of beryllium: quantum mechanics and laser-driven shock experiments using novel diagnostics.

    SciTech Connect (OSTI)

    Swift, D. C.; Paisley, Dennis L.; Kyrala, George A.; Hauer, Allan

    2002-01-01

    Ab initio quantum mechanics was used to construct a thermodynamically complete and rigorous equation of state for beryllium in the hexagonal and body-centred cubic structures, and to predict elastic constants as a function of compression. The equation of state agreed well with Hugoniot data and previously-published equations of state, but the temperatures were significantly different. The hexagonal/bcc phase boundary agreed reasonably well with published data, suggesting that the temperatures in our new equation of state were accurate. Shock waves were induced in single crystals and polycrystalline foils of beryllium, by direct illumination using the TRIDENT laser at Los Alamos. The velocity history at the surface of the sample was measured using a line-imaging VISAR, and transient X-ray diffraction (TXD) records were obtained with a plasma backlighter and X-ray streak cameras. The VISAR records exhibited elastic precursors, plastic waves, phase changes and spall. Dual TXD records were taken, in Bragg and Laue orientations. The Bragg lines moved in response to compression in the uniaxial direction. Because direct laser drive was used, the results had to be interpreted with the aid of radiation hydrodynamics simulations to predict the loading history for each laser pulse. In the experiments where there was evidence of polymorphism in the VISAR record, additional lines appeared in the Bragg and Laue records. The corresponding pressures were consistent with the phase boundary predicted by the quantum mechanical equation of state for beryllium. A model of the response of a single crystal of beryllium to shock loading is being developed using these new theoretical and experimental results. This model will be used in meso-scale studies of the response of the microstructure, allowing us to develop a more accurate representation of the behaviour of polycrystalline beryllium.

  17. A quantitative quantum-chemical analysis tool for the distribution of mechanical force in molecules

    SciTech Connect (OSTI)

    Stauch, Tim; Dreuw, Andreas

    2014-04-07

    The promising field of mechanochemistry suffers from a general lack of understanding of the distribution and propagation of force in a stretched molecule, which limits its applicability up to the present day. In this article, we introduce the JEDI (Judgement of Energy DIstribution) analysis, which is the first quantum chemical method that provides a quantitative understanding of the distribution of mechanical stress energy among all degrees of freedom in a molecule. The method is carried out on the basis of static or dynamic calculations under the influence of an external force and makes use of a Hessian matrix in redundant internal coordinates (bond lengths, bond angles, and dihedral angles), so that all relevant degrees of freedom of a molecule are included and mechanochemical processes can be interpreted in a chemically intuitive way. The JEDI method is characterized by its modest computational effort, with the calculation of the Hessian being the rate-determining step, and delivers, except for the harmonic approximation, exact ab initio results. We apply the JEDI analysis to several example molecules in both static quantum chemical calculations and Born-Oppenheimer Molecular Dynamics simulations in which molecules are subject to an external force, thus studying not only the distribution and the propagation of strain in mechanically deformed systems, but also gaining valuable insights into the mechanochemically induced isomerization of trans-3,4-dimethylcyclobutene to trans,trans-2,4-hexadiene. The JEDI analysis can potentially be used in the discussion of sonochemical reactions, molecular motors, mechanophores, and photoswitches as well as in the development of molecular force probes.

  18. Charging/discharging behavior and mechanism of silicon quantum dots embedded in amorphous silicon carbide films

    SciTech Connect (OSTI)

    Wen, Xixing; Zeng, Xiangbin Zheng, Wenjun; Liao, Wugang; Feng, Feng

    2015-01-14

    The charging/discharging behavior of Si quantum dots (QDs) embedded in amorphous silicon carbide (a-SiC{sub x}) was investigated based on the Al/insulating layer/Si QDs embedded in a-SiC{sub x}/SiO{sub 2}/p-Si (metal-insulator-quantum dots-oxide-silicon) multilayer structure by capacitance-voltage (C-V) and conductance-voltage (G-V) measurements. Transmission electron microscopy and Raman scattering spectroscopy measurements reveal the microstructure and distribution of Si QDs. The occurrence and shift of conductance peaks indicate the carrier transfer and the charging/discharging behavior of Si QDs. The multilayer structure shows a large memory window of 5.2 eV at ±8 V sweeping voltage. Analysis of the C-V and G-V results allows a quantification of the Coulomb charging energy and the trapped charge density associated with the charging/discharging behavior. It is found that the memory window is related to the size effect, and Si QDs with large size or low Coulomb charging energy can trap two or more electrons by changing the charging voltage. Meanwhile, the estimated lower potential barrier height between Si QD and a-SiC{sub x}, and the lower Coulomb charging energy of Si QDs could enhance the charging and discharging effect of Si QDs and lead to an enlarged memory window. Further studies of the charging/discharging mechanism of Si QDs embedded in a-SiC{sub x} can promote the application of Si QDs in low-power consumption semiconductor memory devices.

  19. Elastic tunneling charge transport mechanisms in silicon quantum dots /SiO{sub 2} thin films and superlattices

    SciTech Connect (OSTI)

    Illera, S. Prades, J. D.; Cirera, A.

    2015-05-07

    The role of different charge transport mechanisms in Si/SiO{sub 2} structures has been studied. A theoretical model based on the Transfer Hamiltonian Formalism has been developed to explain experimental current trends in terms of three different elastic tunneling processes: (1) trap assisted tunneling; (2) transport through an intermediate quantum dot; and (3) direct tunneling between leads. In general, at low fields carrier transport is dominated by the quantum dots whereas, for moderate and high fields, transport through deep traps inherent to the SiO{sub 2} is the most relevant process. Besides, current trends in Si/SiO{sub 2} superlattice structure have been properly reproduced.

  20. Hybrid Quantum Mechanics/Molecular Mechanics-Based Molecular Dynamics Simulation of Acid-Catalyzed Dehydration of Polyols in Liquid Water

    SciTech Connect (OSTI)

    Caratzoulas, Stavros; Courtney, Timothy; Vlachos, Dionisios G.

    2011-01-01

    We use the conversion of protonated glycerol to acrolein for a case study of the mechanism of acid-catalyzed dehydration of polyols in aqueous environments. We employ hybrid Quamtum Mechanics/Molecular Mechanics Molecular Dynamics (QM/MM MD) simulations with biased sampling and perform free energy calculations for the elementary steps of the reaction. We investigate the effects of solvent dynamics and in particular the role of quantum mechanical water in the dehydration mechanism. We present results supporting a mechanism that proceeds via water-mediated proton transfers and thus through an enol intermediate. We find that the first dehydration may take place by two, low-energy pathways requiring, respectively, 20.9 and 18.8 kcal/mol of activation free energy. The second dehydration requires 19.9 kcal/mol of activation free energy while for the overall reaction we compute a free energy change of -8 kcal/mol.

  1. Properties of the Katugampola fractional derivative with potential application in quantum mechanics

    SciTech Connect (OSTI)

    Anderson, Douglas R.; Ulness, Darin J.

    2015-06-15

    Katugampola [e-print http://arxiv.org/abs/1410.6535 ] recently introduced a limit based fractional derivative, D{sup α} (referred to in this work as the Katugampola fractional derivative) that maintains many of the familiar properties of standard derivatives such as the product, quotient, and chain rules. Typically, fractional derivatives are handled using an integral representation and, as such, are non-local in character. The current work starts with a key property of the Katugampola fractional derivative, D{sup α}[y]=t{sup 1−α}(dy)/(dt) , and the associated differential operator, D{sup α} = t{sup 1−α}D{sup 1}. These operators, their inverses, commutators, anti-commutators, and several important differential equations are studied. The anti-commutator serves as a basis for the development of a self-adjoint operator which could potentially be useful in quantum mechanics. A Hamiltonian is constructed from this operator and applied to the particle in a box model.

  2. Exact and approximate dynamics of the quantum mechanical O(N...

    Office of Scientific and Technical Information (OSTI)

    conditions consistent with O(N) symmetry, one of them a quantum roll, the other a wave packet initially to one side of the potential minimum, whose center has all coordinates...

  3. Entropic dynamics: From entropy and information geometry to Hamiltonians and quantum mechanics

    SciTech Connect (OSTI)

    Caticha, Ariel; Bartolomeo, Daniel; Reginatto, Marcel

    2015-01-13

    Entropic Dynamics is a framework in which quantum theory is derived as an application of entropic methods of inference. There is no underlying action principle. Instead, the dynamics is driven by entropy subject to the appropriate constraints. In this paper we show how a Hamiltonian dynamics arises as a type of non-dissipative entropic dynamics. We also show that the particular form of the 'quantum potential' that leads to the Schrdinger equation follows naturally from information geometry.

  4. Quantum memristors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pfeiffer, P.; Egusquiza, I. L.; Di Ventra, M.; Sanz, M.; Solano, E.

    2016-07-06

    Technology based on memristors, resistors with memory whose resistance depends on the history of the crossing charges, has lately enhanced the classical paradigm of computation with neuromorphic architectures. However, in contrast to the known quantized models of passive circuit elements, such as inductors, capacitors or resistors, the design and realization of a quantum memristor is still missing. Here, we introduce the concept of a quantum memristor as a quantum dissipative device, whose decoherence mechanism is controlled by a continuous-measurement feedback scheme, which accounts for the memory. Indeed, we provide numerical simulations showing that memory effects actually persist in the quantummore » regime. Our quantization method, specifically designed for superconducting circuits, may be extended to other quantum platforms, allowing for memristor-type constructions in different quantum technologies. As a result, the proposed quantum memristor is then a building block for neuromorphic quantum computation and quantum simulations of non-Markovian systems.« less

  5. Short-time asymptotics of a rigorous path integral for N = 1 supersymmetric quantum mechanics on a Riemannian manifold

    SciTech Connect (OSTI)

    Fine, Dana S.; Sawin, Stephen

    2014-06-15

    Following Feynman's prescription for constructing a path integral representation of the propagator of a quantum theory, a short-time approximation to the propagator for imaginary-time, N = 1 supersymmetric quantum mechanics on a compact, even-dimensional Riemannian manifold is constructed. The path integral is interpreted as the limit of products, determined by a partition of a finite time interval, of this approximate propagator. The limit under refinements of the partition is shown to converge uniformly to the heat kernel for the Laplace-de Rham operator on forms. A version of the steepest descent approximation to the path integral is obtained, and shown to give the expected short-time behavior of the supertrace of the heat kernel.

  6. Quantum Mechanical Calculations of Charge Effects on gating the KcsA channel

    SciTech Connect (OSTI)

    Kariev, Alisher M.; Znamenskiy, Vasiliy S.; Green, Michael E.

    2007-02-06

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. A series of ab initio (density functional) calculations were carried out on side chains of a set of amino acids, plus water, from the (intracellular) gating region of the KcsA K+ channel. Their atomic coordinates, except hydrogen, are known from X-ray structures [D.A. Doyle, J.M. Cabral, R.A. Pfuetzner, A. Kuo, J.M. Gulbis, S.L. Cohen, B.T. Chait, R. MacKinnon, The structure of the potassium channel: molecular basis of K+ conduction and selectivity, Science 280 (1998) 6977; R. MacKinnon, S.L. Cohen, A. Kuo, A. Lee, B.T. Chait, Structural conservation in prokaryotic and eukaryotic potassium channels, Science 280 (1998) 106109; Y. Jiang, A. Lee, J. Chen, M. Cadene, B.T. Chait, R. MacKinnon, The open pore conformation of potassium channels. Nature 417 (2001) 523526], as are the coordinates of some water oxygen atoms. The 1k4c structure is used for the starting coordinates. Quantum mechanical optimization, in spite of the starting configuration, places the atoms in positions much closer to the 1j95, more tightly closed, configuration. This state shows four water molecules forming a basket under the Q119 side chains, blocking the channel. When a hydrated K+ approaches this basket, the optimized system shows a strong set of hydrogen bonds with the K+ at defined positions, preventing further approach of the K+ to the basket. This optimized structure with hydrated K+ added shows an ice-like 12 molecule nanocrystal of water. If the water molecules exchange, unless they do it as a group, the channel will remain blocked. The basket itself appears to be very stable, although it is possible that the K+ with its hydrating water molecules may be more mobile, capable of withdrawing from

  7. Quantum mechanical calculation of electric fields and vibrational Stark shifts at active site of human aldose reductase

    SciTech Connect (OSTI)

    Wang, Xianwei; Zhang, John Z. H.; He, Xiao

    2015-11-14

    Recent advance in biophysics has made it possible to directly measure site-specific electric field at internal sites of proteins using molecular probes with C = O or C≡N groups in the context of vibrational Stark effect. These measurements directly probe changes of electric field at specific protein sites due to, e.g., mutation and are very useful in protein design. Computational simulation of the Stark effect based on force fields such as AMBER and OPLS, while providing good insight, shows large errors in comparison to experimental measurement due to inherent difficulties associated with point charge based representation of force fields. In this study, quantum mechanical calculation of protein’s internal electrostatic properties and vibrational Stark shifts was carried out by using electrostatically embedded generalized molecular fractionation with conjugate caps method. Quantum calculated change of mutation-induced electric field and vibrational Stark shift is reported at the internal probing site of enzyme human aldose reductase. The quantum result is in much better agreement with experimental data than those predicted by force fields, underscoring the deficiency of traditional point charge models describing intra-protein electrostatic properties.

  8. Molecular quantum mechanical gradients within the polarizable embedding approach—Application to the internal vibrational Stark shift of acetophenone

    SciTech Connect (OSTI)

    List, Nanna Holmgaard Jensen, Hans Jørgen Aagaard; Kongsted, Jacob; Beerepoot, Maarten T. P.; Gao, Bin; Ruud, Kenneth; Olsen, Jógvan Magnus Haugaard

    2015-01-21

    We present an implementation of analytical quantum mechanical molecular gradients within the polarizable embedding (PE) model to allow for efficient geometry optimizations and vibrational analysis of molecules embedded in large, geometrically frozen environments. We consider a variational ansatz for the quantum region, covering (multiconfigurational) self-consistent-field and Kohn–Sham density functional theory. As the first application of the implementation, we consider the internal vibrational Stark effect of the C=O group of acetophenone in different solvents and derive its vibrational linear Stark tuning rate using harmonic frequencies calculated from analytical gradients and computed local electric fields. Comparisons to PE calculations employing an enlarged quantum region as well as to a non-polarizable embedding scheme show that the inclusion of mutual polarization between acetophenone and water is essential in order to capture the structural modifications and the associated frequency shifts observed in water. For more apolar solvents, a proper description of dispersion and exchange–repulsion becomes increasingly important, and the quality of the optimized structures relies to a larger extent on the quality of the Lennard-Jones parameters.

  9. Ordering mechanism of stacked CdSe/ZnS{sub x}Se{sub 1-x} quantum dots: A combined reciprocal-space and real-space approach

    SciTech Connect (OSTI)

    Schmidt, Th.; Roventa, E.; Clausen, T.; Flege, J. I.; Alexe, G.; Rosenauer, A.; Hommel, D.; Falta, J.; Bernstorff, S.; Kuebel, C.

    2005-11-15

    The vertical and lateral ordering of stacked CdSe quantum dot layers embedded in ZnS{sub x}Se{sub 1-x} has been investigated by means of grazing incidence small angle x-ray scattering and transmission electron microscopy. Different growth parameters have been varied in order to elucidate the mechanisms leading to quantum dot correlation. From the results obtained for different numbers of quantum dot layers, we conclude on a self-organized process which leads to increasing ordering for progressive stacking. The dependence on the spacer layer thickness indicates that strain induced by lattice mismatch drives the ordering process, which starts to break down for too thick spacer layers in a thickness range from 45 to 80 A. Typical quantum dot distances in a range from about 110 to 160 A have been found. A pronounced anisotropy of the quantum dot correlation has been observed, with the strongest ordering along the [110] direction. Since an increased ordering is found with increasing growth temperature, the formation of stacking faults as an additional mechanism for quantum dot alignment can be ruled out.

  10. Scaling of volume to surface ratio and doubling time in growing unicellular organisms: Do cells appear quantum-mechanical systems?

    SciTech Connect (OSTI)

    Atanasov, Atanas Todorov

    2014-10-06

    The scaling of physical and biological characteristics of the living organisms is a basic method for searching of new biophysical laws. In series of previous studies the author showed that in Poikilotherms, Mammals and Aves, the volume to surface ratio VS{sup ?1} (m) of organisms is proportional to their generation time T{sub gt}(s) via growth rate v (m s{sup ?1}): VS{sup ?1}?=?v{sub gr}T{sup r}. The power and the correlation coefficients are near to 1.0. Aim of this study is: i) to prove with experimental data the validity of the above equation for Unicellular organisms and ii) to show that perhaps, the cells are quantum-mechanical systems. The data for body mass M (kg), density ? (kg/m{sup 3}), minimum and maximum doubling time T{sub dt} (s) for 50 unicellular organisms are assembled from scientific sources, and the computer program Statistics is used for calculations. In result i) the analytical relationship from type: VS{sup ?1}?=?4.46?10{sup ?11}T{sub dt} was found, where v{sub gr}?=?4.4610{sup ?11} m/s and ii) it is shown that the products between cell mass M, cell length expressed by V/S ratio and growth rate v{sub gr} satisfied the Heisenberg uncertainty principle i.e. the inequalities V/SMv{sub gr}>h/2? and T{sub dt}Mv{sub gr}{sup 2}>h/2? are valid, where h= 6.62610{sup ?34} J?s is the Planck constant. This rise the question: do cells appear quantum-mechanical systems?.

  11. Non-covalent Bonding in Complex Molecular Systems with Quantum Monte Carlo

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Argonne Leadership Computing Facility DFT A snapshot of a liquid water simulation performed with DFT, and a box including 64 molecules. By performing benchmark QMC calculations on snapshots of this type, researchers are able to ascertain DFT errors. Credit: Dario Alfè, University College London Non-covalent Bonding in Complex Molecular Systems with Quantum Monte Carlo PI Name: Dario Alfè PI Email: d.alfe@ucl.ac.uk Institution: University College London Allocation Program: INCITE

  12. Full quantum mechanical analysis of atomic three-grating Mach–Zehnder interferometry

    SciTech Connect (OSTI)

    Sanz, A.S.; Davidović, M.; Božić, M.

    2015-02-15

    Atomic three-grating Mach–Zehnder interferometry constitutes an important tool to probe fundamental aspects of the quantum theory. There is, however, a remarkable gap in the literature between the oversimplified models and robust numerical simulations considered to describe the corresponding experiments. Consequently, the former usually lead to paradoxical scenarios, such as the wave–particle dual behavior of atoms, while the latter make difficult the data analysis in simple terms. Here these issues are tackled by means of a simple grating working model consisting of evenly-spaced Gaussian slits. As is shown, this model suffices to explore and explain such experiments both analytically and numerically, giving a good account of the full atomic journey inside the interferometer, and hence contributing to make less mystic the physics involved. More specifically, it provides a clear and unambiguous picture of the wavefront splitting that takes place inside the interferometer, illustrating how the momentum along each emerging diffraction order is well defined even though the wave function itself still displays a rather complex shape. To this end, the local transverse momentum is also introduced in this context as a reliable analytical tool. The splitting, apart from being a key issue to understand atomic Mach–Zehnder interferometry, also demonstrates at a fundamental level how wave and particle aspects are always present in the experiment, without incurring in any contradiction or interpretive paradox. On the other hand, at a practical level, the generality and versatility of the model and methodology presented, makes them suitable to attack analogous problems in a simple manner after a convenient tuning. - Highlights: • A simple model is proposed to analyze experiments based on atomic Mach–Zehnder interferometry. • The model can be easily handled both analytically and computationally. • A theoretical analysis based on the combination of the position and

  13. Interaction of the cesium cation with calix[4]arene-bis(t-octylbenzo-18-crown-6): Extraction and DFT study

    SciTech Connect (OSTI)

    Makrlik, Emanuel; Toman, Petr; Vanura, Petr; Moyer, Bruce A

    2013-01-01

    From extraction experiments and c-activity measurements, the extraction constant corresponding to the equilibrium Cs+ (aq) + I (aq) + 1 (org),1Cs+ (org) + I (org) taking place in the two-phase water-phenyltrifluoromethyl sulfone (abbrev. FS 13) system (1 = calix[4]arene-bis(t-octylbenzo-18-crown-6); aq = aqueous phase, org = FS 13 phase) was evaluated as logKex (1Cs+, I) = 2.1 0.1. Further, the stability constant of the 1Cs+ complex in FS 13 saturated with water was calculated for a temperature of 25 C: log borg (1Cs+) = 9.9 0.1. Finally, by using quantum mechanical DFT calculations, the most probable structure of the cationic complex species 1Cs+ was derived. In the resulting 1Cs+ complex, the central cation Cs+ is bound by eight bond interactions to six oxygen atoms of the respective 18-crown-6 moiety and to two carbons of the corresponding two benzene rings of the parent ligand 1 via cation p interaction.

  14. Session #1: Cutting Edge Methodologies--Beyond Current DFT

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Session 1: Cutting Edge Methodologies (beyond Current DFT) Moderator: Shengbai Zhang (RPI REL) Topics to be addressed: Benchmarking state-of-the-art approaches, accurate energy ...

  15. Session #1: Cutting Edge Methodologies--Beyond Current DFT

    Broader source: Energy.gov [DOE]

    Benchmarking state-of-the-art approaches, accurate energy landscape. Identify problems with the current DFT-LDA and GGA approaches and possible pathways to overcome these problems.

  16. Cluster-continuum quantum mechanical models to guide the choice of anions for Li{sup +}-conducting ionomers

    SciTech Connect (OSTI)

    Shiau, Huai-Suen; Janik, Michael J.; Liu, Wenjuan; Colby, Ralph H.

    2013-11-28

    A quantum-mechanical investigation on Li poly(ethylene oxide)-based ionomers was performed in the cluster-continuum solvation model (CCM) that includes specific solvation in the first shell surrounding the cation, all surrounded by a polarizable continuum. A four-state model, including a free Li cation, Li{sup +}-anion pair, triple ion, and quadrupole was used to represent the states of Li{sup +} within the ionomer in the CCM. The relative energy of each state was calculated for Li{sup +} with various anions, with dimethyl ether representing the ether oxygen solvation. The population distribution of Li{sup +} ions among states was estimated by applying Boltzmann statistics to the CCM energies. Entropy difference estimates are needed for populations to better match the true ionomer system. The total entropy change is considered to consist of four contributions: translational, rotational, electrostatic, and solvent immobilization entropies. The population of ion states is reported as a function of Bjerrum length divided by ion-pair separation with/without entropy considered to investigate the transition between states. Predicted concentrations of Li{sup +}-conducting states (free Li{sup +} and positive triple ions) are compared among a series of anions to indicate favorable features for design of an optimal Li{sup +}-conducting ionomer; the perfluorotetraphenylborate anion maximizes the conducting positive triple ion population among the series of anions considered.

  17. Origin of the improved photo-catalytic activity of F-doped ZnWO{sub 4}: A quantum mechanical study

    SciTech Connect (OSTI)

    Sun, Honggang; Fan, Weiliu; Li, Yanlu; Cheng, Xiufeng; Li, Pan; Zhao, Xian

    2010-12-15

    Two different mechanisms for improving photo-catalytic activity in different types of F-doped ZnWO{sub 4} are tentatively proposed, based on density function theory calculations. When the lattice O atom is substituted by one F atom, our calculations show that a reduced W{sup 5+} center adjacent to the doped F atom will act as a trap for the photo-induced electron, and will thus result in a reduction of electron-hole recombination and improvement of the photo-catalytic activity. For the interstitial F-doped model, partial F 2p states mixing with O 2p states localize above the top of the valence band and act as the frontier orbital level. Electronic transitions from these localized states induce a red shift of about 54 nm of the optical absorption edge. This work shows that F-doped ZnWO{sub 4} will be a promising photo-catalyst with favorable photo-catalytic activity in the UV region. -- Graphical Abstract: DFT calculations are used to investigate the origin of the improved photo-activity of monoclinic ZnWO{sub 4} induced by the substituted and interstitial F-doping. Two possible mechanisms are tentatively put forward according to the F-doping types. Display Omitted

  18. Relativistic Quantum Scars

    SciTech Connect (OSTI)

    Huang, Liang; Lai Yingcheng; Ferry, David K.; Goodnick, Stephen M.; Akis, Richard

    2009-07-31

    The concentrations of wave functions about classical periodic orbits, or quantum scars, are a fundamental phenomenon in physics. An open question is whether scarring can occur in relativistic quantum systems. To address this question, we investigate confinements made of graphene whose classical dynamics are chaotic and find unequivocal evidence of relativistic quantum scars. The scarred states can lead to strong conductance fluctuations in the corresponding open quantum dots via the mechanism of resonant transmission.

  19. Quantum histories without contrary inferences

    SciTech Connect (OSTI)

    Losada, Marcelo; Laura, Roberto

    2014-12-15

    In the consistent histories formulation of quantum theory it was shown that it is possible to retrodict contrary properties. We show that this problem do not appear in our formalism of generalized contexts for quantum histories. - Highlights: We prove ordinary quantum mechanics has no contrary properties. Contrary properties in consistent histories are reviewed. We prove generalized contexts for quantum histories have no contrary properties.

  20. A divide-conquer-recombine algorithmic paradigm for large spatiotemporal quantum molecular dynamics simulations

    SciTech Connect (OSTI)

    Shimojo, Fuyuki; Hattori, Shinnosuke; Department of Physics, Kumamoto University, Kumamoto 860-8555 ; Kalia, Rajiv K.; Mou, Weiwei; Nakano, Aiichiro; Nomura, Ken-ichi; Rajak, Pankaj; Vashishta, Priya; Kunaseth, Manaschai; National Nanotechnology Center, Pathumthani 12120 ; Ohmura, Satoshi; Department of Physics, Kumamoto University, Kumamoto 860-8555; Department of Physics, Kyoto University, Kyoto 606-8502 ; Shimamura, Kohei; Department of Physics, Kumamoto University, Kumamoto 860-8555; Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Fukuoka 819-0395

    2014-05-14

    We introduce an extension of the divide-and-conquer (DC) algorithmic paradigm called divide-conquer-recombine (DCR) to perform large quantum molecular dynamics (QMD) simulations on massively parallel supercomputers, in which interatomic forces are computed quantum mechanically in the framework of density functional theory (DFT). In DCR, the DC phase constructs globally informed, overlapping local-domain solutions, which in the recombine phase are synthesized into a global solution encompassing large spatiotemporal scales. For the DC phase, we design a lean divide-and-conquer (LDC) DFT algorithm, which significantly reduces the prefactor of the O(N) computational cost for N electrons by applying a density-adaptive boundary condition at the peripheries of the DC domains. Our globally scalable and locally efficient solver is based on a hybrid real-reciprocal space approach that combines: (1) a highly scalable real-space multigrid to represent the global charge density; and (2) a numerically efficient plane-wave basis for local electronic wave functions and charge density within each domain. Hybrid space-band decomposition is used to implement the LDC-DFT algorithm on parallel computers. A benchmark test on an IBM Blue Gene/Q computer exhibits an isogranular parallel efficiency of 0.984 on 786 432 cores for a 50.3 × 10{sup 6}-atom SiC system. As a test of production runs, LDC-DFT-based QMD simulation involving 16 661 atoms is performed on the Blue Gene/Q to study on-demand production of hydrogen gas from water using LiAl alloy particles. As an example of the recombine phase, LDC-DFT electronic structures are used as a basis set to describe global photoexcitation dynamics with nonadiabatic QMD (NAQMD) and kinetic Monte Carlo (KMC) methods. The NAQMD simulations are based on the linear response time-dependent density functional theory to describe electronic excited states and a surface-hopping approach to describe transitions between the excited states. A series of

  1. Quantum Foam

    SciTech Connect (OSTI)

    Lincoln, Don

    2014-10-24

    The laws of quantum mechanics and relativity are quite perplexing however it is when the two theories are merged that things get really confusing. This combined theory predicts that empty space isnt empty at all its a seething and bubbling cauldron of matter and antimatter particles springing into existence before disappearing back into nothingness. Scientists call this complicated state of affairs quantum foam. In this video, Fermilabs Dr. Don Lincoln discusses this mind-bending idea and sketches some of the experiments that have convinced scientists that this crazy prediction is actually true.

  2. Quantum optics. Gravity meets quantum physics

    SciTech Connect (OSTI)

    Adams, Bernhard W.

    2015-02-27

    Albert Einstein’s general theory of relativity is a classical formulation but a quantum mechanical description of gravitational forces is needed, not only to investigate the coupling of classical and quantum systems but simply to give a more complete description of our physical surroundings. In this issue of Nature Photonics, Wen-Te Liao and Sven Ahrens reveal a link between quantum and gravitational physics. They propose that in the quantum-optical effect of superradiance, the world line of electromagnetic radiation is changed by the presence of a gravitational field.

  3. Proposed mechanism to represent the suppression of dark current density by four orders with low energy light ion (H{sup ?}) implantation in quaternary alloy-capped InAs/GaAs quantum dot infrared photodetectors

    SciTech Connect (OSTI)

    Mandal, A.; Ghadi, H.; Mathur, K.L.; Basu, A.; Subrahmanyam, N.B.V.; Singh, P.; Chakrabarti, S.

    2013-08-01

    Graphical abstract: - Abstract: Here we propose a carrier transport mechanism for low energy H{sup ?} ions implanted InAs/GaAs quantum dot infrared photodetectors supportive of the experimental results obtained. Dark current density suppression of up to four orders was observed in the implanted quantum dot infrared photodetectors, which further demonstrates that they are effectively operational. We concentrated on determining how defect-related material and structural changes attributed to implantation helped in dark current density reduction for InAs/GaAs quantum dot infrared photodetectors. This is the first study to report the electrical carrier transport mechanism of H{sup ?} ion-implanted InAs/GaAs quantum dot infrared photodetectors.

  4. Sandia National Laboratories: Quantum Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantum Systems Sensors Sandia leverages quantum mechanics to enable exquisite metrology devices, such as inertial sensors and frequency standards that go beyond the capabilities of conventional methods Custom Solutions Quantum Sensing We are leveraging quantum mechanics to enable sensors that go beyond the capabilities of conventional methods. Using the quantized states of matter, it is possible to build exquisite metrology devices such as frequency standards and inertial sensors. Our efforts

  5. Fractional corresponding operator in quantum mechanics and applications: A uniform fractional Schrödinger equation in form and fractional quantization methods

    SciTech Connect (OSTI)

    Zhang, Xiao; Wei, Chaozhen; Liu, Yingming; Luo, Maokang

    2014-11-15

    In this paper we use Dirac function to construct a fractional operator called fractional corresponding operator, which is the general form of momentum corresponding operator. Then we give a judging theorem for this operator and with this judging theorem we prove that R–L, G–L, Caputo, Riesz fractional derivative operator and fractional derivative operator based on generalized functions, which are the most popular ones, coincide with the fractional corresponding operator. As a typical application, we use the fractional corresponding operator to construct a new fractional quantization scheme and then derive a uniform fractional Schrödinger equation in form. Additionally, we find that the five forms of fractional Schrödinger equation belong to the particular cases. As another main result of this paper, we use fractional corresponding operator to generalize fractional quantization scheme by using Lévy path integral and use it to derive the corresponding general form of fractional Schrödinger equation, which consequently proves that these two quantization schemes are equivalent. Meanwhile, relations between the theory in fractional quantum mechanics and that in classic quantum mechanics are also discussed. As a physical example, we consider a particle in an infinite potential well. We give its wave functions and energy spectrums in two ways and find that both results are the same.

  6. Modeling Excited States in TiO2 Nanoparticles: On the Accuracy of a TD-DFT Based Description

    SciTech Connect (OSTI)

    Berardo, Enrico; Hu, Hanshi; Shevlin, S. A.; Woodley, Scott M.; Kowalski, Karol; Zwijnenburg, Martijn A.

    2014-03-11

    We have investigated the suitability of Time-Dependent Density Functional Theory (TD-DFT) to describe vertical low-energy excitations in naked and hydrated titanium dioxide nanoparticles through a comparison with results from Equation-of-Motion Coupled Cluster (EOM-CC) quantum chemistry methods. We demonstrate that for most TiO2 nanoparticles TD-DFT calculations with commonly used exchange-correlation (XC-)potentials (e.g. B3LYP) and EOM-CC methods give qualitatively similar results. Importantly, however, we also show that for an important subset of structures, TD-DFT gives qualitatively different results depending upon the XC-potential used and that in this case only TD-CAM-B3LYP and TD-BHLYP calculations yield results that are consistent with those obtained using EOM-CC theory. Moreover, we demonstrate that the discrepancies for such structures arise from a particular combination of defects, excitations involving which are charge-transfer excitations and hence are poorly described by XC-potentials that contain no or low fractions of Hartree-Fock like exchange. Finally, we discuss that such defects are readily healed in the presence of ubiquitously present water and that as a result the description of vertical low-energy excitations for hydrated TiO2 nanoparticles is hence non-problematic.

  7. Using DFT Methods to Study Activators in Optical Materials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Du, Mao-Hua

    2015-08-17

    Density functional theory (DFT) calculations of various activators (ranging from transition metal ions, rare-earth ions, ns2 ions, to self-trapped and dopant-bound excitons) in phosphors and scintillators are reviewed. As a single-particle ground-state theory, DFT calculations cannot reproduce the experimentally observed optical spectra, which involve transitions between multi-electronic states. However, DFT calculations can generally provide sufficiently accurate structural relaxation and distinguish different hybridization strengths between an activator and its ligands in different host compounds. This is important because the activator-ligand interaction often governs the trends in luminescence properties in phosphors and scintillators, and can be used to search for new materials.more » DFT calculations of the electronic structure of the host compound and the positions of the activator levels relative to the host band edges in scintillators are also important for finding optimal host-activator combinations for high light yields and fast scintillation response. Mn4+ activated red phosphors, scintillators activated by Ce3+, Eu2+, Tl+, and excitons are shown as examples of using DFT calculations in phosphor and scintillator research.« less

  8. Using DFT Methods to Study Activators in Optical Materials

    SciTech Connect (OSTI)

    Du, Mao-Hua

    2015-08-17

    Density functional theory (DFT) calculations of various activators (ranging from transition metal ions, rare-earth ions, ns2 ions, to self-trapped and dopant-bound excitons) in phosphors and scintillators are reviewed. As a single-particle ground-state theory, DFT calculations cannot reproduce the experimentally observed optical spectra, which involve transitions between multi-electronic states. However, DFT calculations can generally provide sufficiently accurate structural relaxation and distinguish different hybridization strengths between an activator and its ligands in different host compounds. This is important because the activator-ligand interaction often governs the trends in luminescence properties in phosphors and scintillators, and can be used to search for new materials. DFT calculations of the electronic structure of the host compound and the positions of the activator levels relative to the host band edges in scintillators are also important for finding optimal host-activator combinations for high light yields and fast scintillation response. Mn4+ activated red phosphors, scintillators activated by Ce3+, Eu2+, Tl+, and excitons are shown as examples of using DFT calculations in phosphor and scintillator research.

  9. Non-Covalent Bonding in Complex Molecular Systems with Quantum Monte Carlo

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Argonne Leadership Computing Facility DFT, and a box including 64 molecules. By performing benchmark QMC calculations on snapshots of this type, researchers are able to ascertain DFT errors. Dario Alfè, University College London Non-Covalent Bonding in Complex Molecular Systems with Quantum Monte Carlo PI Name: Dario Alfe PI Email: d.alfe@ucl.ac.uk Institution: University College London Allocation Program: INCITE Allocation Hours at ALCF: 56 Million Year: 2014 Research Domain: Materials

  10. Emission mechanisms in Al-rich AlGaN/AlN quantum wells assessed by excitation power dependent photoluminescence spectroscopy

    SciTech Connect (OSTI)

    Iwata, Yoshiya; Banal, Ryan G.; Ichikawa, Shuhei; Funato, Mitsuru; Kawakami, Yoichi

    2015-02-21

    The optical properties of Al-rich AlGaN/AlN quantum wells are assessed by excitation-power-dependent time-integrated (TI) and time-resolved (TR) photoluminescence (PL) measurements. Two excitation sources, an optical parametric oscillator and the 4th harmonics of a Ti:sapphire laser, realize a wide range of excited carrier densities between 10{sup 12} and 10{sup 21 }cm{sup −3}. The emission mechanisms change from an exciton to an electron-hole plasma as the excitation power increases. Accordingly, the PL decay time is drastically reduced, and the integrated PL intensities increase in the following order: linearly, super-linearly, linearly again, and sub-linearly. The observed results are well accounted for by rate equations that consider the saturation effect of non-radiative recombination processes. Using both TIPL and TRPL measurements allows the density of non-radiative recombination centers, the internal quantum efficiency, and the radiative recombination coefficient to be reliably extracted.

  11. Theory of melting at high pressures: Amending density functional theory with quantum Monte Carlo

    SciTech Connect (OSTI)

    Shulenburger, L.; Desjarlais, M. P.; Mattsson, T. R.

    2014-10-01

    We present an improved first-principles description of melting under pressure based on thermodynamic integration comparing Density Functional Theory (DFT) and quantum Monte Carlo (QMC) treatments of the system. The method is applied to address the longstanding discrepancy between density functional theory (DFT) calculations and diamond anvil cell (DAC) experiments on the melting curve of xenon, a noble gas solid where van der Waals binding is challenging for traditional DFT methods. The calculations show excellent agreement with data below 20 GPa and that the high-pressure melt curve is well described by a Lindemann behavior up to at least 80 GPa, a finding in stark contrast to DAC data.

  12. Quantum Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantum Institute Quantum Institute A new research frontier awaits! Our door is open and we thrive on mutually beneficial partnerships, collaborations that drive innovations and new technologies. Contact Leader Malcolm Boshier (505) 665-8892 Email Two of LANL's most successful quantum technology initiatives: quantum cryptography and the race for quantum computer The area of quantum information, science, and technology is rapidly evolving, with important applications in the areas of quantum

  13. Observation of a Macroscopically Quantum-Entangled Insulator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Form of Macroscopic Quantum Weirdness One of the strangest consequences of quantum mechanics is the possibility of seemingly instantaneous communication between...

  14. Universal Entanglement Entropy in 2D Conformal Quantum Critical...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; CONFORMAL GROUPS; DIMERS; ENTROPY; WAVE FUNCTIONS; QUANTUM ...

  15. Spin filtering in a double quantum dot device: Numerical renormalizati...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; MATHEMATICAL MODELS; MATHEMATICAL SOLUTIONS; QUANTUM DOTS; ...

  16. capture quantum correlations Qasimi, Asma Al-; James, Daniel...

    Office of Scientific and Technical Information (OSTI)

    University of Toronto, Toronto, Ontario M5S 1A7 (Canada) 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ALGORITHMS; CAPTURE; ENTROPY; MIXED STATES; PURE STATES; QUANTUM...

  17. Quantum Locality?

    SciTech Connect (OSTI)

    Stapp, Henry

    2011-11-10

    Robert Griffiths has recently addressed, within the framework of a consistent quantum theory (CQT) that he has developed, the issue of whether, as is often claimed, quantum mechanics entails a need for faster-than-light transfers of information over long distances. He argues, on the basis of his examination of certain arguments that claim to demonstrate the existence of such nonlocal influences, that such influences do not exist. However, his examination was restricted mainly to hidden-variable-based arguments that include in their premises some essentially classical-physics-type assumptions that are fundamentally incompatible with the precepts of quantum physics. One cannot logically prove properties of a system by attributing to the system properties alien to that system. Hence Griffiths rejection of hidden-variable-based proofs is logically warranted. Griffiths mentions the existence of a certain alternative proof that does not involve hidden variables, and that uses only macroscopically described observable properties. He notes that he had examined in his book proofs of this general kind, and concluded that they provide no evidence for nonlocal influences. But he did not examine the particular proof that he cites. An examination of that particular proof by the method specified by his consistent quantum theory shows that the cited proof is valid within that restrictive framework. This necessary existence, within the consistent framework, of long range essentially instantaneous influences refutes the claim made by Griffiths that his consistent framework is superior to the orthodox quantum theory of von Neumann because it does not entail instantaneous influences. An added section responds to Griffiths reply, which cites a litany of ambiguities that seem to restrict, devastatingly, the scope of his CQT formalism, apparently to buttress his claim that my use of that formalism to validate the nonlocality theorem is flawed. But the vagaries that he cites do

  18. Quantum random number generation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ma, Xiongfeng; Yuan, Xiao; Cao, Zhu; Zhang, Zhen; Qi, Bing

    2016-06-28

    Here, quantum physics can be exploited to generate true random numbers, which play important roles in many applications, especially in cryptography. Genuine randomness from the measurement of a quantum system reveals the inherent nature of quantumness -- coherence, an important feature that differentiates quantum mechanics from classical physics. The generation of genuine randomness is generally considered impossible with only classical means. Based on the degree of trustworthiness on devices, quantum random number generators (QRNGs) can be grouped into three categories. The first category, practical QRNG, is built on fully trusted and calibrated devices and typically can generate randomness at amore » high speed by properly modeling the devices. The second category is self-testing QRNG, where verifiable randomness can be generated without trusting the actual implementation. The third category, semi-self-testing QRNG, is an intermediate category which provides a tradeoff between the trustworthiness on the device and the random number generation speed.« less

  19. Communication: Practical and rigorous reduction of the many-electron quantum mechanical Coulomb problem to O(N{sup 2/3}) storage

    SciTech Connect (OSTI)

    Pederson, Mark R.

    2015-04-14

    It is tacitly accepted that, for practical basis sets consisting of N functions, solution of the two-electron Coulomb problem in quantum mechanics requires storage of O(N{sup 4}) integrals in the small N limit. For localized functions, in the large N limit, or for planewaves, due to closure, the storage can be reduced to O(N{sup 2}) integrals. Here, it is shown that the storage can be further reduced to O(N{sup 2/3}) for separable basis functions. A practical algorithm, that uses standard one-dimensional Gaussian-quadrature sums, is demonstrated. The resulting algorithm allows for the simultaneous storage, or fast reconstruction, of any two-electron Coulomb integral required for a many-electron calculation on processors with limited memory and disk space. For example, for calculations involving a basis of 9171 planewaves, the memory required to effectively store all Coulomb integrals decreases from 2.8 Gbytes to less than 2.4 Mbytes.

  20. Unusual mechanism for H{sub 3}{sup +} formation from ethane as obtained by femtosecond laser pulse ionization and quantum chemical calculations

    SciTech Connect (OSTI)

    Kraus, Peter M.; Schwarzer, Martin C.; Schirmel, Nora; Urbasch, Gunter; Frenking, Gernot; Weitzel, Karl-Michael

    2011-03-21

    The formation of H{sub 3}{sup +} from saturated hydrocarbon molecules represents a prototype of a complex chemical process, involving the breaking and the making of chemical bonds. We present a combined theoretical and experimental investigation providing for the first time an understanding of the mechanism of H{sub 3}{sup +} formation at the molecular level. The experimental approach involves femtosecond laser pulse ionization of ethane leading to H{sub 3}{sup +} ions with kinetic energies on the order of 4 to 6.5 eV. The theoretical approach involves high-level quantum chemical calculation of the complete reaction path. The calculations confirm that the process takes place on the potential energy surface of the ethane dication. A surprising result of the theoretical investigation is, that the transition state of the process can be formally regarded as a H{sub 2} molecule attached to a C{sub 2}H{sub 4}{sup 2+} entity but IRC calculations show that it belongs to the reaction channel yielding C{sub 2}H{sub 3}{sup +}+ H{sub 3}{sup +}. Experimentally measured kinetic energies of the correlated H{sub 3}{sup +} and C{sub 2}H{sub 3}{sup +} ions confirm the reaction path suggested by theory.

  1. Electronic Structure of Ligated CdSe Clusters: Dependence on DFT Methodology

    SciTech Connect (OSTI)

    Albert, VV; Ivanov, SA; Tretiak, S; Kilina, SV

    2011-07-07

    Simulations of ligated semiconductor quantum dots (QDs) and their physical properties, such as morphologies, QD-ligand interactions, electronic structures, and optical transitions, are expected to be very sensitive to computational methodology. We utilize Density Functional Theory (DFT) and systematically study how the choice of density functional, atom-localized basis set, and a solvent affects the physical properties of the Cd{sub 33}Se{sub 33} cluster ligated with a trimethyl phosphine oxide ligand. We have found that qualitative performance of all exchange-correlation (XC) functionals is relatively similar in predicting strong QD-ligand binding energy ({approx}1 eV). Additionally, all functionals predict shorter Cd-Se bond lengths on the QD surface than in its core, revealing the nature and degree of QD surface reconstruction. For proper modeling of geometries and QD-ligand interactions, however, augmentation of even a moderately sized basis set with polarization functions (e.g., LANL2DZ* and 6-31G*) is very important. A polar solvent has very significant implications for the ligand binding energy, decreasing it to 0.2-0.5 eV. However, the solvent model has a minor effect on the optoelectronic properties, resulting in persistent blue shifts up to {approx}0.3 eV of the low-energy optical transitions. For obtaining reasonable energy gaps and optical transition energies, hybrid XC functionals augmented by a long-range Hartree-Fock orbital exchange have to be applied.

  2. Adsorption of silver dimer on graphene - A DFT study

    SciTech Connect (OSTI)

    Kaur, Gagandeep, E-mail: gaganj1981@yahoo.com [Department of Physics and Centre of Advanced Studies in Physics, Panjab University, Chandigarh-160014, India and Chandigarh Engineering College, Landran, Mohali-140307, Punjab (India); Gupta, Shuchi [Department of Physics and Centre of Advanced Studies in Physics, Panjab University, Chandigarh-160014, India and University Institute of Engineering and Technology, Panjab University, Chandigarh -160014 (India); Rani, Pooja; Dharamvir, Keya [Department of Physics and Centre of Advanced Studies in Physics, Panjab University, Chandigarh-160014 (India)

    2014-04-24

    We performed a systematic density functional theory (DFT) study of the adsorption of silver dimer (Ag{sub 2}) on graphene using SIESTA (Spanish Initiative for Electronic Simulations with Thousands of Atoms) package, in the generalized gradient approximation (GGA). The adsorption energy, geometry, and charge transfer of Ag2-graphene system are calculated. The minimum energy configuration for a silver dimer is parallel to the graphene sheet with its two atoms directly above the centre of carbon-carbon bond. The negligible charge transfer between the dimer and the surface is also indicative of a weak bond. The methodology demonstrated in this paper may be applied to larger silver clusters on graphene sheet.

  3. An Efficient Implementation of Multiscale Simulation Software PNP-cDFT

    SciTech Connect (OSTI)

    Meng, Da; Lin, Guang; Sushko, Maria L.

    2012-07-23

    An efficient implementation of PNP-cDFT, a multiscale method for computing the chemical potentials of charged species is designed and evaluated. Spatial decomposition of the multi particle system is employed in the parallelization of classical density functional theory (cDFT) algorithm. Furthermore, a truncated strategy is used to reduce the computational complexity of cDFT algorithm. The simulation results show that the parallel implementation has close to linear scalability in parallel computing environments for both 1D and 3D systems. It also shows that the truncated versions of cDFT improve the efficiency of the methods substantially.

  4. Supersymmetric quantum mechanics and paraquantization

    SciTech Connect (OSTI)

    Morchedi, O.; Mebarki, N.

    2012-06-27

    The paraquantum Hamiltonian of a free particle is shown to be supersymmetric. Depending on the space-time dimension, the corresponding N=1 and N=2 supercharges are constructed and the related Hamiltonians are derived.

  5. Gravitomagnetism and Spinor Quantum Mechanics

    SciTech Connect (OSTI)

    Adler, Ronald J.; Chen, Pisin; Varani, Elisa; /Unlisted

    2012-09-14

    We give a systematic treatment of a spin 1=2 particle in a combined electromagnetic field and a weak gravitational field that is produced by a slowly moving matter source. This paper continues previous work on a spin zero particle, but it is largely self-contained and may serve as an introduction to spinors in a Riemann space. The analysis is based on the Dirac equation expressed in generally covariant form and coupled minimally to the electromagnetic field. The restriction to a slowly moving matter source, such as the earth, allows us to describe the gravitational field by a gravitoelectric (Newtonian) potential and a gravitomagnetic (frame-dragging) vector potential, the existence of which has recently been experimentally verified. Our main interest is the coupling of the orbital and spin angular momenta of the particle to the gravitomagnetic field. Specifically we calculate the gravitational gyromagnetic ratio as g{sub g} = 1 ; this is to be compared with the electromagnetic gyromagnetic ratio of g{sub e} = 2 for a Dirac electron.

  6. Quantum steady computation

    SciTech Connect (OSTI)

    Castagnoli, G. )

    1991-08-10

    This paper reports that current conceptions of quantum mechanical computers inherit from conventional digital machines two apparently interacting features, machine imperfection and temporal development of the computational process. On account of machine imperfection, the process would become ideally reversible only in the limiting case of zero speed. Therefore the process is irreversible in practice and cannot be considered to be a fundamental quantum one. By giving up classical features and using a linear, reversible and non-sequential representation of the computational process - not realizable in classical machines - the process can be identified with the mathematical form of a quantum steady state. This form of steady quantum computation would seem to have an important bearing on the notion of cognition.

  7. Extreme Scale Quantum Chemistry with Sparse Eigensolvers and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Parameterization | Argonne Leadership Computing Facility Extreme Scale Quantum Chemistry with Sparse Eigensolvers and Parameterization Event Sponsor: Argonne Leadership Computing Facility Seminar Start Date: Sep 15 2016 - 11:00am Building/Room: Building 240/Room 4301 Location: Argonne National Laboratory Speaker(s): Murat Keçeli Speaker(s) Title: Argonne National Laboratory, CSE Host: Alvaro Vazquez Mayagoitia Hartree-Fock (HF), density functional theory (DFT) and their parameterized

  8. Correlated electron dynamics with time-dependent quantum Monte...

    Office of Scientific and Technical Information (OSTI)

    atoms subjected to an external electromagnetic field with amplitude sufficient to ... QUANTUM MECHANICS, GENERAL PHYSICS; ELECTROMAGNETIC FIELDS; ELECTRON CORRELATION; ...

  9. Hybrid Rotaxanes: Interlocked Structures for Quantum Computing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hybrid Rotaxanes: Interlocked Structures for Quantum Computing? Print Rotaxanes are mechanically interlocked molecular architectures consisting of a dumbbell-shaped molecule, the...

  10. ANALOG QUANTUM NEURON FOR FUNCTIONS APPROXIMATION (Conference...

    Office of Scientific and Technical Information (OSTI)

    of Energy (US) Country of Publication: United States Language: English Subject: 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; IMPLEMENTATION; NERVE CELLS; WAVEGUIDES...

  11. Independent dynamic acousto-mechanical and electrostatic control of individual quantum dots in a LiNbO{sub 3}-GaAs hybrid

    SciTech Connect (OSTI)

    Pustiowski, Jens; Müller, Kai; Bichler, Max; Koblmüller, Gregor; Finley, Jonathan J.; Wixforth, Achim; Krenner, Hubert J.

    2015-01-05

    We demonstrate tuning of single quantum dot emission lines by the combined action of the dynamic acoustic field of a radio frequency surface acoustic wave and a static electric field. Both tuning parameters are set all-electrically in a LiNbO{sub 3}-GaAs hybrid device. The surface acoustic wave is excited directly on the strong piezoelectric LiNbO{sub 3} onto which a GaAs-based p-i-n photodiode containing a single layer of quantum dots was epitaxially transferred. We demonstrate dynamic spectral tuning with bandwidths exceeding 3 meV of single quantum dot emission lines due to deformation potential coupling. The center energy of the dynamic spectral oscillation can be independently programmed simply by setting the bias voltage applied to the diode.

  12. Quantum Computing: Solving Complex Problems

    ScienceCinema (OSTI)

    DiVincenzo, David [IBM Watson Research Center

    2009-09-01

    One of the motivating ideas of quantum computation was that there could be a new kind of machine that would solve hard problems in quantum mechanics. There has been significant progress towards the experimental realization of these machines (which I will review), but there are still many questions about how such a machine could solve computational problems of interest in quantum physics. New categorizations of the complexity of computational problems have now been invented to describe quantum simulation. The bad news is that some of these problems are believed to be intractable even on a quantum computer, falling into a quantum analog of the NP class. The good news is that there are many other new classifications of tractability that may apply to several situations of physical interest.

  13. Super-radiance and open quantum systems

    SciTech Connect (OSTI)

    Volya, Alexander [Department of Physics, Florida State University, Tallahassee, FL 32306-4350 (United States); Zelevinsky, Vladimir [NSCL, Michigan State University, East Lansing, MI 48824-1321 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824-1321 (United States)

    2005-07-08

    Quantum wires, loosely bound nuclei, molecules in chemical reactions and exotic narrow pentaquark states are different examples of open quantum mesoscopic systems. The coupling with and through continuum is their common feature. We discuss general properties of quantum systems in the regime of strong continuum coupling, when the mechanism of Dicke super-radiance changes intrinsic dynamics, signatures of quantum chaos, lifetime of unstable states and reaction cross sections. The examples are shown for various areas of mesoscopic physics.

  14. DFT investigation on the electronic structure of Faujasite

    SciTech Connect (OSTI)

    Popeneciu, Horea; Calborean, Adrian; Tudoran, Cristian; Buimaga-Iarinca, Luiza

    2013-11-13

    We report here first-principle pseudopotential DFT calculations to investigate relevant aspects of the electronic structure of zeolites based FAU. Fundamental molecular issues of the band-gap and electronic population analysis were reviewed under GGA/RPBE level of theory, corroborated with a DZP basis set and Troullier-Martins norm conserving pseudo-potentials. The atom-projected density of states and the analysis of HOMO-LUMO frontier orbitals at Gamma point were performed. Their electronic transfers are discussed through the alignment and relative positions of orbitals in order to determine the way that the molecule interacts with adsorbed molecules and other practical applications. Mulliken population analysis was employed for describing atomic charge distribution in the chosen systems.

  15. ONSET OF CHAOS IN A MODEL OF QUANTUM COMPUTATION G. BERMAN; ET...

    Office of Scientific and Technical Information (OSTI)

    OF CHAOS IN A MODEL OF QUANTUM COMPUTATION G. BERMAN; ET AL 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 99 GENERAL AND MISCELLANEOUSMATHEMATICS, COMPUTING, AND...

  16. Quantum Optics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Frontier Research Centers: Solid-State Lighting Science Center for Frontiers of ... Quantum Optics HomeEnergy ResearchEFRCsSolid-State Lighting Science EFRCQuantum Optics ...

  17. Weird quantum fluctuations of empty space-maybe (Science/AAAS...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Weird quantum fluctuations of empty space-maybe Weird quantum fluctuations of empty space-maybe (ScienceAAAS) Empty space is anything but, according to quantum mechanics: Instead, ...

  18. Palladium dimers adsorbed on graphene: A DFT study

    SciTech Connect (OSTI)

    Kaur, Gagandeep; Gupta, Shuchi; Dharamvir, Keya

    2015-05-15

    The 2D structure of graphene shows a great promise for enhanced catalytic activity when adsorbed with palladium. We performed a systematic density functional theory (DFT) study of the adsorption of palladium dimer (Pd{sub 2}) on graphene using SIESTA package, in the generalized gradient approximation (GGA). The adsorption energy, geometry, and charge transfer of Pd{sub 2}-graphene system are calculated. Both horizontal and vertical orientations of Pd{sub 2} on graphene are studied. Our calculations revealed that the minimum energy configuration for Pd dimer is parallel to the graphene sheet with its two atoms occupying centre of adjacent hexagonal rings of graphene sheet. Magnetic moment is induced for Pd dimer adsorbed on graphene in vertical orientation while horizontal orientation of Pd dimer on graphene do not exhibit magnetism. Insignificant energy differences among adsorption sites means that dimer mobility on the graphene sheet is high. There is imperceptible distortion of graphene sheet perpendicular to its plane. However, some lateral displacements are seen.

  19. Quantum Criticality and Black Holes

    ScienceCinema (OSTI)

    Sachdev, Subir [Harvard University, Cambridge, Massachusetts, United States

    2009-09-01

    I will describe the behavior of a variety of condensed matter systems in the vicinity of zero temperature quantum phase transitions. There is a remarkable analogy between the hydrodynamics of such systems and the quantum theory of black holes. I will show how insights from this analogy have shed light on recent experiments on the cuprate high temperature superconductors. Studies of new materials and trapped ultracold atoms are yielding new quantum phases, with novel forms of quantum entanglement. Some materials are of technological importance: e.g. high temperature superconductors. Exact solutions via black hole mapping have yielded first exact results for transport coefficients in interacting many-body systems, and were valuable in determining general structure of hydrodynamics. Theory of VBS order and Nernst effect in cuprates. Tabletop 'laboratories for the entire universe': quantum mechanics of black holes, quark-gluon plasma, neutrons stars, and big-bang physics.

  20. DFT+U Study on the Localized Electronic States and Their Potential...

    Office of Scientific and Technical Information (OSTI)

    DFT+U Study on the Localized Electronic States and Their Potential Role During H2O Dissociation and CO Oxidation Processes on CeO2(111) Surface Citation Details In-Document Search ...

  1. Theory of melting at high pressures: Amending density functional theory with quantum Monte Carlo

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shulenburger, L.; Desjarlais, M. P.; Mattsson, T. R.

    2014-10-01

    We present an improved first-principles description of melting under pressure based on thermodynamic integration comparing Density Functional Theory (DFT) and quantum Monte Carlo (QMC) treatments of the system. The method is applied to address the longstanding discrepancy between density functional theory (DFT) calculations and diamond anvil cell (DAC) experiments on the melting curve of xenon, a noble gas solid where van der Waals binding is challenging for traditional DFT methods. The calculations show excellent agreement with data below 20 GPa and that the high-pressure melt curve is well described by a Lindemann behavior up to at least 80 GPa, amore » finding in stark contrast to DAC data.« less

  2. Quantum chaos in the Lorenz equations with symmetry breaking

    SciTech Connect (OSTI)

    Sarkar, S.; Satchell, J.S.

    1987-01-01

    The role of phase diffusion for quantum chaos in the quantum-mechanical model of the laser in the Haken limit is discussed. Fractal properties of the support of the asymptotic attracting probability distribution for the system are studied.

  3. Quantum ESPRESSO/PWscf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantum ESPRESSOPWscf Quantum ESPRESSOPWscf Description Quantum ESPRESSO is an integrated suite of computer codes for electronic structure calculations and materials modeling at...

  4. Repeated interactions in open quantum systems

    SciTech Connect (OSTI)

    Bruneau, Laurent; Joye, Alain; Merkli, Marco

    2014-07-15

    Analyzing the dynamics of open quantum systems has a long history in mathematics and physics. Depending on the system at hand, basic physical phenomena that one would like to explain are, for example, convergence to equilibrium, the dynamics of quantum coherences (decoherence) and quantum correlations (entanglement), or the emergence of heat and particle fluxes in non-equilibrium situations. From the mathematical physics perspective, one of the main challenges is to derive the irreversible dynamics of the open system, starting from a unitary dynamics of the system and its environment. The repeated interactions systems considered in these notes are models of non-equilibrium quantum statistical mechanics. They are relevant in quantum optics, and more generally, serve as a relatively well treatable approximation of a more difficult quantum dynamics. In particular, the repeated interaction models allow to determine the large time (stationary) asymptotics of quantum systems out of equilibrium.

  5. A semiclassical study of quantum maps

    SciTech Connect (OSTI)

    Guo, Y.

    1992-01-01

    The study of the behavior of quantum systems whose classical limit exhibits chaos defines the problem of quantum chaos. One would naturally ask how quantum mechanics approaches the classical limit [h bar] = 0, and how the chaotic motion in classical systems manifests itself in the corresponding quantum counterparts. Semiclassical mechanics is the bridge between quantum mechanics and classical mechanics. For studying the quantum mechanics corresponding to generic classical motion it is desirable to use the simplest possible model. The model system the authors use is the kicked rotator. Detailed computations of both classical and quantum mechanics are feasible for this system. The relationship between invariant classical phase space structures and quantum eigenfunctions has been the focus of recent semiclassical studies. The authors study the eigenstates of the quantum standard map associated with both integrable and non-integrable regions in classical phase space. The coherent-state representation is used to make the correspondence between the quantum eigenstates and the classical phase space structure. The importance of periodic orbits in the quantum eigenstates of classically chaotic Hamiltonians has become a popular topic in study of semiclassical limits of the systems. Periodic orbits arise without any assumption in the trace formula developed by Gutzwiller. The authors calculate the semiclassical coherent-state propagator. Since computing all the complex stationary orbits is not practical, the authors make a further assumption which the authors call the periodic point dominance (PPD). The authors present arguments and evidence to show that the PPD approximation works well in hard chaos regions where the full semiclassical approximation is not practical to use. The method fails in some boundary regions where both stable and unstable points are present, but the full semiclassical approximation is not a much better method than the PPD in many situations.

  6. Dynamics in the quantum/classical limit based on selective use of the quantum potential

    SciTech Connect (OSTI)

    Garashchuk, Sophya Dell’Angelo, David; Rassolov, Vitaly A.

    2014-12-21

    A classical limit of quantum dynamics can be defined by compensation of the quantum potential in the time-dependent Schrödinger equation. The quantum potential is a non-local quantity, defined in the trajectory-based form of the Schrödinger equation, due to Madelung, de Broglie, and Bohm, which formally generates the quantum-mechanical features in dynamics. Selective inclusion of the quantum potential for the degrees of freedom deemed “quantum,” defines a hybrid quantum/classical dynamics, appropriate for molecular systems comprised of light and heavy nuclei. The wavefunction is associated with all of the nuclei, and the Ehrenfest, or mean-field, averaging of the force acting on the classical degrees of freedom, typical of the mixed quantum/classical methods, is avoided. The hybrid approach is used to examine evolution of light/heavy systems in the harmonic and double-well potentials, using conventional grid-based and approximate quantum-trajectory time propagation. The approximate quantum force is defined on spatial domains, which removes unphysical coupling of the wavefunction fragments corresponding to distinct classical channels or configurations. The quantum potential, associated with the quantum particle, generates forces acting on both quantum and classical particles to describe the backreaction.

  7. Optimum phase space probabilities from quantum tomography

    SciTech Connect (OSTI)

    Roy, Arunabha S.; Roy, S. M.

    2014-01-15

    We determine a positive normalised phase space probability distribution P with minimum mean square fractional deviation from the Wigner distribution W. The minimum deviation, an invariant under phase space rotations, is a quantitative measure of the quantumness of the state. The positive distribution closest to W will be useful in quantum mechanics and in time frequency analysis. The position-momentum correlations given by the distribution can be tested experimentally in quantum optics.

  8. Quantum mechanical calculations of state-to-state cross sections and rate constants for the F + DCl → Cl + DF reaction

    SciTech Connect (OSTI)

    Bulut, Niyazi; Kłos, Jacek; Roncero, Octavio

    2015-06-07

    We present accurate state-to-state quantum wave packet calculations of integral cross sections and rate constants for the title reaction. Calculations are carried out on the best available ground 1{sup 2}A′ global adiabatic potential energy surface of Deskevich et al. [J. Chem. Phys. 124, 224303 (2006)]. Converged state-to-state reaction cross sections have been calculated for collision energies up to 0.5 eV and different initial rotational and vibrational excitations, DCl(v = 0, j = 0 − 1; v = 1, j = 0). Also, initial-state resolved rate constants of the title reaction have been calculated in a temperature range of 100-400 K. It is found that the initial rotational excitation of the DCl molecule does not enhance reactivity, in contract to the reaction with the isotopologue HCl in which initial rotational excitation produces an important enhancement. These differences between the isotopologue reactions are analyzed in detail and attributed to the presence of resonances for HCl(v = 0, j), absent in the case of DCl(v = 0, j). For vibrational excited DCl(v = 1, j), however, the reaction cross section increases noticeably, what is also explained by another resonance.

  9. Defect-reduction mechanism for improving radiative efficiency...

    Office of Scientific and Technical Information (OSTI)

    Subject: 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; 77 NANOSCIENCE AND NANOTECHNOLOGY; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; CAPACITANCE; ...

  10. Hexakis(4-phormylphenoxy)cyclotriphosphazene: X-ray and DFT-calculated structures

    SciTech Connect (OSTI)

    Albayrak, Cigdem Kosar, Basak; Odabasoglu, Mustafa; Bueyuekguengoer, Orhan

    2010-12-15

    The crystal structure of hexakis(4-phormylphenoxy)cyclotriphosphazene is determined by using X-ray diffraction and then the molecular structure is investigated with density functional theory (DFT). X-Ray study shows that the title compound has C-H-{pi} interaction with phosphazene ring. The molecules in the unit cell are packed with Van der Waals and dipole-dipole interactions and the molecules are packed in zigzag shaped. Optimized molecular geometry is calculated with DFT at B3LYP/6-311G(d,p) level. The results from both experimental and theoretical calculations are compared in this study.

  11. Jeans stability in collisional quantum dusty magnetoplasmas

    SciTech Connect (OSTI)

    Jamil, M.; Asif, M.; Mir, Zahid; Salimullah, M.

    2014-09-15

    Jeans instability is examined in detail in uniform dusty magnetoplasmas taking care of collisional and non-zero finite thermal effects in addition to the quantum characteristics arising through the Bohm potential and the Fermi degenerate pressure using the quantum hydrodynamic model of plasmas. It is found that the presence of the dust-lower-hybrid wave, collisional effects of plasma species, thermal effects of electrons, and the quantum mechanical effects of electrons have significance over the Jeans instability. Here, we have pointed out a new class of dissipative instability in quantum plasma regime.

  12. Emerging Properties of Quantum Matter - Case Studies of Topological...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ANTIFERROMAGNETIC MATERIALS; CHARGE CARRIERS; CHARGE DENSITY; ...

  13. Entanglement, Holography, and the Quantum Phases of Matter (Conference...

    Office of Scientific and Technical Information (OSTI)

    (United States)) Sponsoring Org: USDOE Office of Science (SC) Country of Publication: United States Language: English Subject: 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS

  14. Universal entanglement entropy in two-dimensional conformal quantum...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; CONFORMAL INVARIANCE; DIMERS; ENTROPY; GAUGE INVARIANCE; ...

  15. Femtosecond upconverted photocurrent spectroscopy of InAs quantum...

    Office of Scientific and Technical Information (OSTI)

    Our results provide solid evidence for electron-hole-hole Auger process, dominating the ... Language: English Subject: 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; CARRIER ...

  16. Entanglement, Holography, and the Quantum Phases of Matter (Conference...

    Office of Scientific and Technical Information (OSTI)

    Subject: 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Word Cloud More Like This Multimedia File size NAView Multimedia View Multimedia Have feedback or suggestions for a ...

  17. ANALOG QUANTUM NEURON FOR FUNCTIONS APPROXIMATION A. EZHOV; A...

    Office of Scientific and Technical Information (OSTI)

    FOR FUNCTIONS APPROXIMATION A. EZHOV; A. KHROMOV; G. BERMAN 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; IMPLEMENTATION; NERVE CELLS; WAVEGUIDES We describe a system able...

  18. Scalable, High-Speed Measurement-Based Quantum Computer Using...

    Office of Scientific and Technical Information (OSTI)

    University of Toronto, Toronto, Ontario M5S 1A7 (Canada) 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; CALCIUM IONS; INFORMATION THEORY; MULTI-PHOTON PROCESSES;...

  19. University) [Johns Hopkins University] 71 CLASSICAL AND QUANTUM...

    Office of Scientific and Technical Information (OSTI)

    Zlatko (Johns Hopkins University) Johns Hopkins University 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY;...

  20. Entanglement, Holography, and the Quantum Phases of Matter Sachdev...

    Office of Scientific and Technical Information (OSTI)

    Matter Sachdev, Subir Harvard University 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Electrons in many interesting materials, such as the high temperature...

  1. Quantum Optics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantum Optics - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear

  2. Finite groups and quantum physics

    SciTech Connect (OSTI)

    Kornyak, V. V.

    2013-02-15

    Concepts of quantum theory are considered from the constructive 'finite' point of view. The introduction of a continuum or other actual infinities in physics destroys constructiveness without any need for them in describing empirical observations. It is shown that quantum behavior is a natural consequence of symmetries of dynamical systems. The underlying reason is that it is impossible in principle to trace the identity of indistinguishable objects in their evolution-only information about invariant statements and values concerning such objects is available. General mathematical arguments indicate that any quantum dynamics is reducible to a sequence of permutations. Quantum phenomena, such as interference, arise in invariant subspaces of permutation representations of the symmetry group of a dynamical system. Observable quantities can be expressed in terms of permutation invariants. It is shown that nonconstructive number systems, such as complex numbers, are not needed for describing quantum phenomena. It is sufficient to employ cyclotomic numbers-a minimal extension of natural numbers that is appropriate for quantum mechanics. The use of finite groups in physics, which underlies the present approach, has an additional motivation. Numerous experiments and observations in the particle physics suggest the importance of finite groups of relatively small orders in some fundamental processes. The origin of these groups is unclear within the currently accepted theories-in particular, within the Standard Model.

  3. Superfluid {sup 4}He Quantum Interference Grating

    SciTech Connect (OSTI)

    Sato, Yuki; Joshi, Aditya; Packard, Richard

    2008-08-22

    We report the first observation of quantum interference from a grating structure consisting of four weak link junctions in superfluid {sup 4}He. We find that an interference grating can be implemented successfully in a superfluid matter wave interferometer to enhance its sensitivity while trading away some of its dynamic range. We also show that this type of device can be used to measure absolute quantum mechanical phase differences. The results demonstrate the robust nature of superfluid phase coherence arising from quantum mechanics on a macroscopic scale.

  4. Theoretical and experimental determination of mechanical properties...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 36 MATERIALS SCIENCE; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; COPPER; ELASTICITY; NIOBIUM ALLOYS; ...

  5. Lattice Quantum Chromodynamics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lattice Quantum Chromodynamics Lattice Quantum Chromodynamics QCD-BU.jpg Key Challenges: Although the QCD theory has been extensively tested at at high energies, at low energies or...

  6. An algorithm for nonrelativistic quantum-mechanical finite-nuclear-mass variational calculations of nitrogen atom in L = 0, M = 0 states using all-electrons explicitly correlated Gaussian basis functions

    SciTech Connect (OSTI)

    Sharkey, Keeper L.; Adamowicz, Ludwik; Department of Physics, University of Arizona, Tucson, Arizona 85721

    2014-05-07

    An algorithm for quantum-mechanical nonrelativistic variational calculations of L = 0 and M = 0 states of atoms with an arbitrary number of s electrons and with three p electrons have been implemented and tested in the calculations of the ground {sup 4}S state of the nitrogen atom. The spatial part of the wave function is expanded in terms of all-electrons explicitly correlated Gaussian functions with the appropriate pre-exponential Cartesian angular factors for states with the L = 0 and M = 0 symmetry. The algorithm includes formulas for calculating the Hamiltonian and overlap matrix elements, as well as formulas for calculating the analytic energy gradient determined with respect to the Gaussian exponential parameters. The gradient is used in the variational optimization of these parameters. The Hamiltonian used in the approach is obtained by rigorously separating the center-of-mass motion from the laboratory-frame all-particle Hamiltonian, and thus it explicitly depends on the finite mass of the nucleus. With that, the mass effect on the total ground-state energy is determined.

  7. Non-hermitian quantum thermodynamics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gardas, Bartłomiej; Deffner, Sebastian; Saxena, Avadh

    2016-03-22

    Thermodynamics is the phenomenological theory of heat and work. Here we analyze to what extent quantum thermodynamic relations are immune to the underlying mathematical formulation of quantum mechanics. As a main result, we show that the Jarzynski equality holds true for all non-hermitian quantum systems with real spectrum. This equality expresses the second law of thermodynamics for isothermal processes arbitrarily far from equilibrium. In the quasistatic limit however, the second law leads to the Carnot bound which is fulfilled even if some eigenenergies are complex provided they appear in conjugate pairs. Lastly, we propose two setups to test our predictions,more » namely with strongly interacting excitons and photons in a semiconductor microcavity and in the non-hermitian tight-binding model.« less

  8. DFT STUDY REVISES INTERSTITIAL CONFIGURATIONS IN HCP Zr

    SciTech Connect (OSTI)

    Samolyuk, German D; Golubov, Stanislav I; Osetskiy, Yury N; Stoller, Roger E

    2012-06-01

    Analysis of experimental result on microstructure evolution in irradiated Zr and alloys has demonstrated that available knowledge on self-interstitial defects in Zr is in contradiction. We therefore have initiated an extensive theoretical and modeling program to clarify this issue. In this report we present first ab initio calculations results of single SIA configurations in Zr. We demonstrate importance of simulations cell size, applied exchange-correlation functional and simulated c/a ratio. The results obtained demonstrate clearly that the most stable configurations are in basal plane and provide some evidences for enhanced interstitial transport along basal planes. The results obtained will be used in generation a new interatomic potential for Zr to be used in large-scale atomistic modeling of mechanisms relevant for radiation-induced microstructure evolution.

  9. Secure communications using quantum cryptography

    SciTech Connect (OSTI)

    Hughes, R.J.; Buttler, W.T.; Kwiat, P.G.

    1997-08-01

    The secure distribution of the secret random bit sequences known as {open_quotes}key{close_quotes} material, is an essential precursor to their use for the encryption and decryption of confidential communications. Quantum cryptography is an emerging technology for secure key distribution with single-photon transmissions, nor evade detection (eavesdropping raises the key error rate above a threshold value). We have developed experimental quantum cryptography systems based on the transmission of non-orthogonal single-photon states to generate shared key material over multi-kilometer optical fiber paths and over line-of-sight links. In both cases, key material is built up using the transmission of a single-photon per bit of an initial secret random sequence. A quantum-mechanically random subset of this sequence is identified, becoming the key material after a data reconciliation stage with the sender. In our optical fiber experiment we have performed quantum key distribution over 24-km of underground optical fiber using single-photon interference states, demonstrating that secure, real-time key generation over {open_quotes}open{close_quotes} multi-km node-to-node optical fiber communications links is possible. We have also constructed a quantum key distribution system for free-space, line-of-sight transmission using single-photon polarization states, which is currently undergoing laboratory testing. 7 figs.

  10. Quantum cryptography over underground optical fibers

    SciTech Connect (OSTI)

    Hughes, R.J.; Luther, G.G.; Morgan, G.L.; Peterson, C.G.; Simmons, C.

    1996-05-01

    Quantum cryptography is an emerging technology in which two parties may simultaneously generated shared, secret cryptographic key material using the transmission of quantum states of light whose security is based on the inviolability of the laws of quantum mechanics. An adversary can neither successfully tap the key transmissions, nor evade detection, owing to Heisenberg`s uncertainty principle. In this paper the authors describe the theory of quantum cryptography, and the most recent results from their experimental system with which they are generating key material over 14-km of underground optical fiber. These results show that optical-fiber based quantum cryptography could allow secure, real-time key generation over ``open`` multi-km node-to-node optical fiber communications links between secure ``islands.``

  11. Exploring Classically Chaotic Potentials with a Matter Wave Quantum Probe

    SciTech Connect (OSTI)

    Gattobigio, G. L. [Laboratoire de Collisions Agregats Reactivite, CNRS UMR 5589, IRSAMC, Universite de Toulouse (UPS), 118 Route de Narbonne, 31062 Toulouse CEDEX 4 (France); Laboratoire Kastler Brossel, Ecole Normale Superieure, 24 rue Lhomond, 75005 Paris (France); Couvert, A. [Laboratoire Kastler Brossel, Ecole Normale Superieure, 24 rue Lhomond, 75005 Paris (France); Georgeot, B. [Laboratoire de Physique Theorique (IRSAMC), Universite de Toulouse (UPS), 31062 Toulouse (France); CNRS, LPT UMR5152 (IRSAMC), 31062 Toulouse (France); Guery-Odelin, D. [Laboratoire de Collisions Agregats Reactivite, CNRS UMR 5589, IRSAMC, Universite de Toulouse (UPS), 118 Route de Narbonne, 31062 Toulouse CEDEX 4 (France)

    2011-12-16

    We study an experimental setup in which a quantum probe, provided by a quasimonomode guided atom laser, interacts with a static localized attractive potential whose characteristic parameters are tunable. In this system, classical mechanics predicts a transition from regular to chaotic behavior as a result of the coupling between the different degrees of freedom. Our experimental results display a clear signature of this transition. On the basis of extensive numerical simulations, we discuss the quantum versus classical physics predictions in this context. This system opens new possibilities for investigating quantum scattering, provides a new testing ground for classical and quantum chaos, and enables us to revisit the quantum-classical correspondence.

  12. Weird quantum fluctuations of empty space-maybe (Science/AAAS)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Weird quantum fluctuations of empty space-maybe Weird quantum fluctuations of empty space-maybe (Science/AAAS) Empty space is anything but, according to quantum mechanics: Instead, it roils with quantum particles flitting in and out of existence. Now, a team of physicists claims it has measured those fluctuations directly, without disturbing or amplifying them. October 11, 2015 Weird quantum fluctuations of empty space-maybe (Science/AAAS) ADAPTED FROM C. RIEK ET AL., SCIENCE (2015) The setup in

  13. Ions in solution: Density corrected density functional theory (DC-DFT)

    SciTech Connect (OSTI)

    Kim, Min-Cheol; Sim, Eunji; Burke, Kieron

    2014-05-14

    Standard density functional approximations often give questionable results for odd-electron radical complexes, with the error typically attributed to self-interaction. In density corrected density functional theory (DC-DFT), certain classes of density functional theory calculations are significantly improved by using densities more accurate than the self-consistent densities. We discuss how to identify such cases, and how DC-DFT applies more generally. To illustrate, we calculate potential energy surfaces of HO·Cl{sup −} and HO·H{sub 2}O complexes using various common approximate functionals, with and without this density correction. Commonly used approximations yield wrongly shaped surfaces and/or incorrect minima when calculated self consistently, while yielding almost identical shapes and minima when density corrected. This improvement is retained even in the presence of implicit solvent.

  14. Quantum Fuel Systems Technologies Worldwide Inc Quantum Technologies...

    Open Energy Info (EERE)

    Fuel Systems Technologies Worldwide Inc Quantum Technologies Jump to: navigation, search Name: Quantum Fuel Systems Technologies Worldwide Inc (Quantum Technologies) Place: Irvine,...

  15. Not Magic...Quantum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Not Magic...Quantum 1663 Los Alamos science and technology magazine Latest Issue:July 2016 past issues All Issues » submit Not Magic...Quantum A nascent commercial quantum computer has arrived at Los Alamos and may solve certain problems with such astonishing speed that it would be like pulling answers out of a hat. July 21, 2016 commercial quantum-computer processor The world's first commercial quantum-computer processor is smaller than a wristwatch and can evaluate more possibilities

  16. Chemical degradation mechanisms of membranes for alkaline membrane fuel cells

    SciTech Connect (OSTI)

    Choe, Yoong-Kee; Henson, Neil J.; Kim, Yu Seung

    2015-12-31

    Chemical degradation mechanisms of membranes for alkaline membrane fuel cells have been investigated using density functional theory (DFT). We have elucidated that the aryl-ether moiety of membranes is one of the weakest site against attack of hydroxide ions. The results of DFT calculations for hydroxide initiated aryl-ether cleavage indicated that the aryl-ether cleavage occurred prior to degradation of cationic functional group. Such a weak nature of the aryl-ether group arises from the electron deficiency of the aryl group as well as the low bond dissociation energy. The DFT results suggests that removal of the aryl-ether group in the membrane should enhance the stability of membranes under alkaline conditions. In fact, an ether fee poly(phenylene) membrane exhibits excellent stability against the attack from hydroxide ions.

  17. Microsoft Word - MARKIEWICZ, Bob - IMS Lecture Series-'D'++- Going Beyond DFT via GW and Vertex Corrections information.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute for Materieals Science Lecture Series 'D'++: Going Beyond DFT via GW and Vertex Corrections Professor R. S. Markiewicz Northeastern University, Boston Date: Wednesday, February 17, 2016 Time: 2:00 - 3:00pm Location: MSL Auditorium (TA-03 - Bldg 1698 - Room A103) Abstract: A large variety of approaches have been implemented for extending DFT (density-functional theory) calculations of band structure to account for stronger calculations. In particular, GW calculations are used to

  18. A quantum measure of the multiverse

    SciTech Connect (OSTI)

    Vilenkin, Alexander

    2014-05-01

    It has been recently suggested that probabilities of different events in the multiverse are given by the frequencies at which these events are encountered along the worldline of a geodesic observer (the ''watcher''). Here I discuss an extension of this probability measure to quantum theory. The proposed extension is gauge-invariant, as is the classical version of this measure. Observations of the watcher are described by a reduced density matrix, and the frequencies of events can be found using the decoherent histories formalism of Quantum Mechanics (adapted to open systems). The quantum watcher measure makes predictions in agreement with the standard Born rule of QM.

  19. Assessing the density functional theory-based multireference configuration interaction (DFT/MRCI) method for transition metal complexes

    SciTech Connect (OSTI)

    Escudero, Daniel E-mail: thiel@kofo.mpg.de; Thiel, Walter E-mail: thiel@kofo.mpg.de

    2014-05-21

    We report an assessment of the performance of density functional theory-based multireference configuration interaction (DFT/MRCI) calculations for a set of 3d- and 4d-transition metal (TM) complexes. The DFT/MRCI results are compared to published reference data from reliable high-level multi-configurational ab initio studies. The assessment covers the relative energies of different ground-state minima of the highly correlated CrF{sub 6} complex, the singlet and triplet electronically excited states of seven typical TM complexes (MnO{sub 4}{sup ?}, Cr(CO){sub 6}, [Fe(CN){sub 6}]{sup 4?}, four larger Fe and Ru complexes), and the corresponding electronic spectra (vertical excitation energies and oscillator strengths). It includes comparisons with results from different flavors of time-dependent DFT (TD-DFT) calculations using pure, hybrid, and long-range corrected functionals. The DFT/MRCI method is found to be superior to the tested TD-DFT approaches and is thus recommended for exploring the excited-state properties of TM complexes.

  20. Electron Spin Dynamics in Semiconductor Quantum Dots

    SciTech Connect (OSTI)

    Marie, X.; Belhadj, T.; Urbaszek, B.; Amand, T.; Krebs, O.; Lemaitre, A.; Voisin, P.

    2011-07-15

    An electron spin confined to a semiconductor quantum dot is not subject to the classical spin relaxation mechanisms known for free carriers but it strongly interacts with the nuclear spin system via the hyperfine interaction. We show in time resolved photoluminescence spectroscopy experiments on ensembles of self assembled InAs quantum dots in GaAs that this interaction leads to strong electron spin dephasing.

  1. Hybrid Rotaxanes: Interlocked Structures for Quantum Computing?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hybrid Rotaxanes: Interlocked Structures for Quantum Computing? Hybrid Rotaxanes: Interlocked Structures for Quantum Computing? Print Wednesday, 26 August 2009 00:00 Rotaxanes are mechanically interlocked molecular architectures consisting of a dumbbell-shaped molecule, the "axle," that threads through a ring called a macrocycle. Because the rings can spin around and slide along the axle, rotaxanes are promising components of molecular machines. While most rotaxanes have been entirely

  2. Reliable quantum communication over a quantum relay channel

    SciTech Connect (OSTI)

    Gyongyosi, Laszlo; Imre, Sandor

    2014-12-04

    We show that reliable quantum communication over an unreliable quantum relay channels is possible. The coding scheme combines the results on the superadditivity of quantum channels and the efficient quantum coding approaches.

  3. Quantum mechanics problems in observer's mathematics

    SciTech Connect (OSTI)

    Khots, Boris; Khots, Dmitriy

    2012-11-06

    This work considers the ontology, guiding equation, Schrodinger's equation, relation to the Born Rule, the conditional wave function of a subsystem in a setting of arithmetic, algebra and topology provided by Observer's Mathematics (see www.mathrelativity.com). Observer's Mathematics creates new arithmetic, algebra, geometry, topology, analysis and logic which do not contain the concept of continuum, but locally coincide with the standard fields. Certain results and communications pertaining to solutions of these problems are provided. In particular, we prove the following theorems: Theorem I (Two-slit interference). Let {Psi}{sub 1} be a wave from slit 1, {Psi}{sub 2} - from slit 2, and {Psi} = {Psi}{sub 1}+{Psi}{sub 2}. Then the probability of {Psi} being a wave equals to 0.5. Theorem II (k-bodies solution). For W{sub n} from m-observer point of view with m>log{sub 10}((2 Multiplication-Sign 10{sup 2n}-1){sup 2k}+1), the probability of standard expression of Hamiltonian variation is less than 1 and depends on n,m,k.

  4. Intermediate-band photosensitive device with quantum dots having tunneling barrier embedded in organic matrix

    DOE Patents [OSTI]

    Forrest, Stephen R.

    2008-08-19

    A plurality of quantum dots each have a shell. The quantum dots are embedded in an organic matrix. At least the quantum dots and the organic matrix are photoconductive semiconductors. The shell of each quantum dot is arranged as a tunneling barrier to require a charge carrier (an electron or a hole) at a base of the tunneling barrier in the organic matrix to perform quantum mechanical tunneling to reach the respective quantum dot. A first quantum state in each quantum dot is between a lowest unoccupied molecular orbital (LUMO) and a highest occupied molecular orbital (HOMO) of the organic matrix. Wave functions of the first quantum state of the plurality of quantum dots may overlap to form an intermediate band.

  5. A discussion on the origin of quantum probabilities

    SciTech Connect (OSTI)

    Holik, Federico; Departamento de Matemtica - Ciclo Bsico Comn, Universidad de Buenos Aires - Pabelln III, Ciudad Universitaria, Buenos Aires ; Senz, Manuel; Plastino, Angel

    2014-01-15

    We study the origin of quantum probabilities as arising from non-Boolean propositional-operational structures. We apply the method developed by Cox to non distributive lattices and develop an alternative formulation of non-Kolmogorovian probability measures for quantum mechanics. By generalizing the method presented in previous works, we outline a general framework for the deduction of probabilities in general propositional structures represented by lattices (including the non-distributive case). -- Highlights: Several recent works use a derivation similar to that of R.T. Cox to obtain quantum probabilities. We apply Coxs method to the lattice of subspaces of the Hilbert space. We obtain a derivation of quantum probabilities which includes mixed states. The method presented in this work is susceptible to generalization. It includes quantum mechanics and classical mechanics as particular cases.

  6. Scalable optical quantum computer

    SciTech Connect (OSTI)

    Manykin, E A; Mel'nichenko, E V [Institute for Superconductivity and Solid-State Physics, Russian Research Centre 'Kurchatov Institute', Moscow (Russian Federation)

    2014-12-31

    A way of designing a scalable optical quantum computer based on the photon echo effect is proposed. Individual rare earth ions Pr{sup 3+}, regularly located in the lattice of the orthosilicate (Y{sub 2}SiO{sub 5}) crystal, are suggested to be used as optical qubits. Operations with qubits are performed using coherent and incoherent laser pulses. The operation protocol includes both the method of measurement-based quantum computations and the technique of optical computations. Modern hybrid photon echo protocols, which provide a sufficient quantum efficiency when reading recorded states, are considered as most promising for quantum computations and communications. (quantum computer)

  7. Values and the quantum conception of man

    SciTech Connect (OSTI)

    Stapp, H.P.

    1995-06-01

    Classical mechanics is based upon a mechanical picture of nature that is fundamentally incorrect. It has been replaced at the basic level by a radically different theory: quantum mechanics. This change entails an enormous shift in one`s basic conception of nature, one that can profoundly alter the scientific image of man himself. Self-image is the foundation of values, and the replacement of the mechanistic self-image derived from classical mechanics by one concordant with quantum mechanics may provide the foundation of a moral order better suited to today`s times, a self-image that endows human life with meaning, responsibility, and a deeper linkage to nature as a whole.

  8. CORRELATIONS IN CONFINED QUANTUM PLASMAS

    SciTech Connect (OSTI)

    DUFTY J W

    2012-01-11

    This is the final report for the project 'Correlations in Confined Quantum Plasmas', NSF-DOE Partnership Grant DE FG02 07ER54946, 8/1/2007 - 7/30/2010. The research was performed in collaboration with a group at Christian Albrechts University (CAU), Kiel, Germany. That collaboration, almost 15 years old, was formalized during the past four years under this NSF-DOE Partnership Grant to support graduate students at the two institutions and to facilitate frequent exchange visits. The research was focused on exploring the frontiers of charged particle physics evolving from new experimental access to unusual states associated with confinement. Particular attention was paid to combined effects of quantum mechanics and confinement. A suite of analytical and numerical tools tailored to the specific inquiry has been developed and employed

  9. Electronic Structure of Fullerene Acceptors in Organic Bulk-Heterojunctions. A Combined EPR and DFT Study

    SciTech Connect (OSTI)

    Mardis, Kristy L.; Webb, J.; Holloway, Tarita; Niklas, Jens; Poluektov, Oleg G.

    2015-11-16

    Organic photovoltaic (OPV) devices are a promising alternative energy source. Attempts to improve their performance have focused on the optimization of electron-donating polymers, while electron-accepting fullerenes have received less attention. Here, we report an electronic structure study of the widely used soluble fullerene derivatives PC61BM and PC71BM in their singly reduced state, that are generated in the polymer:fullerene blends upon light-induced charge separation. Density functional theory (DFT) calculations characterize the electronic structures of the fullerene radical anions through spin density distributions and magnetic resonance parameters. The good agreement of the calculated magnetic resonance parameters with those determined experimentally by advanced electron paramagnetic resonance (EPR) allows the validation of the DFT calculations. Thus, for the first time, the complete set of magnetic resonance parameters including directions of the principal g-tensor axes were determined. For both molecules, no spin density is present on the PCBM side chain, and the axis of the largest g-value lies along the PCBM molecular axis. While the spin density distribution is largely uniform for PC61BM, it is not evenly distributed for PC71BM.

  10. Partition-of-unity finite-element method for large scale quantum...

    Office of Scientific and Technical Information (OSTI)

    ... OF FREEDOM; MOLECULAR DYNAMICS METHOD; OPTIMIZATION; PARALLEL PROCESSING; QUANTUM MECHANICS Word Cloud More Like This Full Text preview image File size NAView Full Text ...

  11. CONTROL OF NON-RESONANT EFFECTS IN A NUCLERA SPIN QUANTUM COMPUTER...

    Office of Scientific and Technical Information (OSTI)

    COMPUTER WITH A LARGE NUMBER OF QUBITS G. BERMAN; ET AL 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 99 GENERAL AND MISCELLANEOUSMATHEMATICS, COMPUTING, AND...

  12. The two-electron reduction mechanism of ethylene carbonate: a...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: The two-electron reduction mechanism of ethylene carbonate: a quantum chemistry study. Citation Details In-Document Search Title: The two-electron reduction ...

  13. Radiation-induced mechanical property changes in filled rubber...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 36 MATERIALS SCIENCE; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; CROSS-LINKING; DENSITY; DISTRIBUTION; ...

  14. Quantum work statistics of charged Dirac particles in time-dependent fields

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Deffner, Sebastian; Saxena, Avadh

    2015-09-28

    The quantum Jarzynski equality is an important theorem of modern quantum thermodynamics. We show that the Jarzynski equality readily generalizes to relativistic quantum mechanics described by the Dirac equation. After establishing the conceptual framework we solve a pedagogical, yet experimentally relevant, system analytically. As a main result we obtain the exact quantum work distributions for charged particles traveling through a time-dependent vector potential evolving under Schrdinger as well as under Dirac dynamics, and for which the Jarzynski equality is verified. Thus, special emphasis is put on the conceptual and technical subtleties arising from relativistic quantum mechanics.

  15. Quantum work statistics of charged Dirac particles in time-dependent fields

    SciTech Connect (OSTI)

    Deffner, Sebastian; Saxena, Avadh

    2015-09-28

    The quantum Jarzynski equality is an important theorem of modern quantum thermodynamics. We show that the Jarzynski equality readily generalizes to relativistic quantum mechanics described by the Dirac equation. After establishing the conceptual framework we solve a pedagogical, yet experimentally relevant, system analytically. As a main result we obtain the exact quantum work distributions for charged particles traveling through a time-dependent vector potential evolving under Schrödinger as well as under Dirac dynamics, and for which the Jarzynski equality is verified. Thus, special emphasis is put on the conceptual and technical subtleties arising from relativistic quantum mechanics.

  16. Quantum dense key distribution

    SciTech Connect (OSTI)

    Degiovanni, I.P.; Ruo Berchera, I.; Castelletto, S.; Rastello, M.L.; Bovino, F.A.; Colla, A.M.; Castagnoli, G.

    2004-03-01

    This paper proposes a protocol for quantum dense key distribution. This protocol embeds the benefits of a quantum dense coding and a quantum key distribution and is able to generate shared secret keys four times more efficiently than the Bennet-Brassard 1984 protocol. We hereinafter prove the security of this scheme against individual eavesdropping attacks, and we present preliminary experimental results, showing its feasibility.

  17. Quantum skew divergence

    SciTech Connect (OSTI)

    Audenaert, Koenraad M. R.

    2014-11-15

    In this paper, we study the quantum generalisation of the skew divergence, which is a dissimilarity measure between distributions introduced by Lee in the context of natural language processing. We provide an in-depth study of the quantum skew divergence, including its relation to other state distinguishability measures. Finally, we present a number of important applications: new continuity inequalities for the quantum Jensen-Shannon divergence and the Holevo information, and a new and short proof of Bravyi's Small Incremental Mixing conjecture.

  18. 'Giant' Nanocrystal Quantum Dots

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Frontier Research Centers: Solid-State Lighting Science Center for Frontiers of ... 'Giant' Nanocrystal Quantum Dots HomeEnergy ResearchEFRCsSolid-State Lighting Science ...

  19. Criteria for quantum chaos

    SciTech Connect (OSTI)

    Heller, E.J. (Los Alamos National Lab., Albuquerque, NM); Davis, M.J.

    1982-06-10

    This paper reviews some of the opinions on quantum chaos put forth at the 1981 American Conference on Theoretical Chemistry and presents evidence to support the author's point of view. The degree of correspondence between classical and quantum onset and extent of chaos differs markedly according to the definition adopted for quantum chaos. At one extreme, a quantum generalization of the classical Kolmolgorov entropy which give zero entrophy for quantum systems with a discrete spectrum regardless of the classical properties, was a suitable foundation for the definition of quantum chaos. At the other, the quantum phase space definition shows generally excellent correspondence to the classical phase space measures. The authors preferred this approach. Another point of controversy is the question of whether the spectrum of energy levels (or its variation with some parameter of the Hamiltonian) is enough to characterize the quantum chaos (or lack of it), or whether more information is needed (i.e., eigenfunctions). The authors conclude that one does not want to rely upon eigenvalues alone to characterize the degree of chaos in the quantum dynamics.

  20. Efficient self-consistent quantum transport simulator for quantum...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Efficient self-consistent quantum transport simulator for quantum ... DOE Contract Number: DE-AC04-94AL85000 Resource Type: Journal Article Resource Relation: ...

  1. Exploring the interaction between lithium ion and defective graphene surface using dispersion corrected DFT studies

    SciTech Connect (OSTI)

    Vijayakumar, M.; Hu, Jian Z.

    2013-10-15

    To analyze the lithium ion interaction with realistic graphene surfaces, we carried out dispersion corrected DFT-D3 studies on graphene with common point defects and chemisorbed oxygen containing functional groups along with defect free graphene surface. Our study reveals that, the interaction between lithium ion (Li+) and graphene is mainly through the delocalized π electron of pure graphene layer. However, the oxygen containing functional groups pose high adsorption energy for lithium ion due to the Li-O ionic bond formation. Similarly, the point defect groups interact with lithium ion through possible carbon dangling bonds and/or cation-π type interactions. Overall these defect sites render a preferential site for lithium ions compared with pure graphene layer. Based on these findings, the role of graphene surface defects in lithium battery performance were discussed.

  2. First principles DFT investigation of yttrium-doped graphene: Electronic structure and hydrogen storage

    SciTech Connect (OSTI)

    Desnavi, Sameerah; Chakraborty, Brahmananda; Ramaniah, Lavanya M.

    2014-04-24

    The electronic structure and hydrogen storage capability of Yttrium-doped grapheme has been theoretically investigated using first principles density functional theory (DFT). Yttrium atom prefers the hollow site of the hexagonal ring with a binding energy of 1.40 eV. Doping by Y makes the system metallic and magnetic with a magnetic moment of 2.11 ?{sub B}. Y decorated graphene can adsorb up to four hydrogen molecules with an average binding energy of 0.415 eV. All the hydrogen atoms are physisorbed with an average desorption temperature of 530.44 K. The Y atoms can be placed only in alternate hexagons, which imply a wt% of 6.17, close to the DoE criterion for hydrogen storage materials. Thus, this system is potential hydrogen storage medium with 100% recycling capability.

  3. NO Chemisorption on Cu/SSZ-13: a Comparative Study from Infrared Spectroscopy and DFT Calculations

    SciTech Connect (OSTI)

    Zhang, Renqin; McEwen, Jean-Sabin; Kollar, Marton; Gao, Feng; Wang, Yilin; Szanyi, Janos; Peden, Charles HF

    2014-11-07

    The locations and energies of Cu ions in a Cu/SSZ-13 zeolite catalyst were investigated by density functional theory (DFT) calculations. For 'naked' Cu2+ ions (i.e., Cu2+ ions with no ligands in their coordination spheres other than zeolite lattice oxygen atoms), the more energetically favorable sites are within a 6-membered ring. However, with the presence of various adsorbates, the energy difference between 6- and 8-membered ring locations greatly diminishes. Specifically, Cu2+ ions are substantially stabilized by -OH ligands (as [CuII(OH)]+), making the extra-framework sites in an 8-membered ring energetically more favorable than 6-membered ring sites. Under fully dehydrated high vacuum conditions with different Si/Al and Cu/Al ratios, three chemisorbed NO species coexist upon exposure of NO to Cu/SSZ-13: NO+, Cu2+-NO and Cu+-NO. The relative signal intensities for these bands vary greatly with Si/Al ratios. The vibrational frequency of chemisorbed NO was found to be very sensitive to the location of Cu2+ ions. On the one hand, with the aid from DFT calculations, the nature for these vibrations can be assigned in detail. On the other hand, the relative intensities for various Cu2+-NO species provide a good measure of the nature of Cu2+ ions as functions of Si/Al and Cu/Al ratios and the presence of humidity. These new findings cast doubt on the generally accepted proposal that only Cu2+ ions located in 6-membered rings are catalytically active for NH3-SCR.

  4. Quantum methods for clock synchronization: Beating the standard quantum limit without entanglement

    SciTech Connect (OSTI)

    Burgh, Mark de; Bartlett, Stephen D.

    2005-10-15

    We introduce methods for clock synchronization that make use of the adiabatic exchange of nondegenerate two-level quantum systems: ticking qubits. Schemes involving the exchange of N independent qubits with frequency {omega} give a synchronization accuracy that scales as ({omega}{radical}(N)){sup -1}--i.e., as the standard quantum limit. We introduce a protocol that makes use of N{sub c} coherent exchanges of a single qubit at frequency {omega}, leading to an accuracy that scales as ({omega}N{sub c}){sup -1} ln N{sub c}. This protocol beats the standard quantum limit without the use of entanglement, and we argue that this scaling is the fundamental limit for clock synchronization allowed by quantum mechanics. We analyze the performance of these protocols when used with a lossy channel.0.

  5. Quantum physics and human values

    SciTech Connect (OSTI)

    Stapp, H.P.

    1989-09-01

    This report discusses the following concepts: the quantum conception of nature; the quantum conception of man; and the impact upon human values. (LSP).

  6. Mechanism of water oxidation by [Ru(bda)(L)?]: The return of the "blue dimer"

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Concepcion, Javier J.; Zhong, Diane K.; Szalda, David J.; Muckerman, James T.; Fujita, Etsuko

    2015-02-05

    We describe here a combined solution-surface-DFT calculations study for complexes of the type [Ru(bda)(L)?] including X-ray structure of intermediates, their reactivity, as well as pH-dependent electrochemistry and spectroelectrochemistry. These studies shed light on the mechanism of water oxidation by [Ru(bda)(L)?], revealing key features unavailable from solution studies with sacrificial oxidants.

  7. Quantum Dots: Theory

    SciTech Connect (OSTI)

    Vukmirovic, Nenad; Wang, Lin-Wang

    2009-11-10

    This review covers the description of the methodologies typically used for the calculation of the electronic structure of self-assembled and colloidal quantum dots. These are illustrated by the results of their application to a selected set of physical effects in quantum dots.

  8. Quantum plasmonic sensing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fan, Wenjiang; Lawrie, Benjamin J.; Pooser, Raphael C.

    2015-11-04

    Surface plasmon resonance (SPR) sensors can reach the quantum noise limit of the optical readout field in various configurations. We demonstrate that two-mode intensity squeezed states produce a further enhancement in sensitivity compared with a classical optical readout when the quantum noise is used to transduce an SPR sensor signal in the Kretschmann configuration. The quantum noise reduction between the twin beams when incident at an angle away from the plasmonic resonance, combined with quantum noise resulting from quantum anticorrelations when on resonance, results in an effective SPR-mediated modulation that yields a measured sensitivity 5 dB better than that withmore » a classical optical readout in this configuration. Furthermore, the theoretical potential of this technique points to resolving particle concentrations with more accuracy than is possible via classical approaches to optical transduction.« less

  9. Quantum plasmonic sensing

    SciTech Connect (OSTI)

    Fan, Wenjiang; Lawrie, Benjamin J.; Pooser, Raphael C.

    2015-11-04

    Surface plasmon resonance (SPR) sensors can reach the quantum noise limit of the optical readout field in various configurations. We demonstrate that two-mode intensity squeezed states produce a further enhancement in sensitivity compared with a classical optical readout when the quantum noise is used to transduce an SPR sensor signal in the Kretschmann configuration. The quantum noise reduction between the twin beams when incident at an angle away from the plasmonic resonance, combined with quantum noise resulting from quantum anticorrelations when on resonance, results in an effective SPR-mediated modulation that yields a measured sensitivity 5 dB better than that with a classical optical readout in this configuration. Furthermore, the theoretical potential of this technique points to resolving particle concentrations with more accuracy than is possible via classical approaches to optical transduction.

  10. Quantum discord with weak measurements

    SciTech Connect (OSTI)

    Singh, Uttam Pati, Arun Kumar

    2014-04-15

    Weak measurements cause small change to quantum states, thereby opening up the possibility of new ways of manipulating and controlling quantum systems. We ask, can weak measurements reveal more quantum correlation in a composite quantum state? We prove that the weak measurement induced quantum discord, called as the super quantum discord, is always larger than the quantum discord captured by the strong measurement. Moreover, we prove the monotonicity of the super quantum discord as a function of the measurement strength and in the limit of strong projective measurement the super quantum discord becomes the normal quantum discord. We find that unlike the normal discord, for pure entangled states, the super quantum discord can exceed the quantum entanglement. Our results provide new insights on the nature of quantum correlation and suggest that the notion of quantum correlation is not only observer dependent but also depends on how weakly one perturbs the composite system. We illustrate the key results for pure as well as mixed entangled states. -- Highlights: Introduced the role of weak measurements in quantifying quantum correlation. We have introduced the notion of the super quantum discord (SQD). For pure entangled state, we show that the SQD exceeds the entanglement entropy. This shows that quantum correlation depends not only on observer but also on measurement strength.

  11. Quantum mechanical differential and integral cross sections for the C({sup 1}D) + H{sub 2}(ν = 0, j = 0) → CH(ν′, j′) + H reaction

    SciTech Connect (OSTI)

    Shen, Zhitao; Cao, Jianwei; Bian, Wensheng

    2015-04-28

    Accurate quantum dynamics calculations for the C({sup 1}D) + H{sub 2} reaction are performed using a real wave packet approach with full Coriolis coupling. The newly constructed ZMB-a ab initio potential energy surface [Zhang et al., J. Chem. Phys. 140, 234301 (2014)] is used. The integral cross sections (ICSs), differential cross sections (DCSs), and product state distributions are obtained over a wide range of collision energies. In contrast to previous accurate quantum dynamics calculations on the reproducing kernel Hilbert space potential energy surface, the present total ICS is much larger at low collision energies, yielding larger rate coefficients in better agreement with experiment and with slight inverse temperature dependence. Meanwhile, interesting nonstatistical behaviors in the DCSs are revealed. In particular, the DCSs display strong oscillations with the collision energy; forward biased product angular distribution appears when only small J partial wave contributions are included; alternate forward and backward biases emerge with very small increments of collision energy; and the rotational state-resolved DCSs show strong oscillations with the scattering angle. Nevertheless, the total DCSs can be roughly regarded as backward–forward symmetric over the whole energy range and are in reasonably good agreement with the available experimental measurements.

  12. Tamper-indicating quantum optical seals

    SciTech Connect (OSTI)

    Humble, Travis S; Williams, Brian P

    2015-01-01

    Confidence in the means for identifying when tampering occurs is critical for containment and surveillance technologies. Fiber-optic seals have proven especially useful for actively surveying large areas or inventories due to the extended transmission range and flexible layout of fiber. However, it is reasonable to suspect that an intruder could tamper with a fiber-optic sensor by accurately replicating the light transmitted through the fiber. In this contribution, we demonstrate a novel approach to using fiber-optic seals for safeguarding large-scale inventories with increased confidence in the state of the seal. Our approach is based on the use of quantum mechanical phenomena to offer unprecedented surety in the authentication of the seal state. In particular, we show how quantum entangled photons can be used to monitor the integrity of a fiber-optic cable - the entangled photons serve as active sensing elements whose non-local correlations indicate normal seal operation. Moreover, we prove using the quantum no-cloning theorem that attacks against the quantum seal necessarily disturb its state and that these disturbances are immediately detected. Our quantum approach to seal authentication is based on physical principles alone and does not require the use of secret or proprietary information to ensure proper operation. We demonstrate an implementation of the quantum seal using a pair of entangled photons and we summarize our experimental results including the probability of detecting intrusions and the overall stability of the system design. We conclude by discussing the use of both free-space and fiber-based quantum seals for surveying large areas and inventories.

  13. A triple quantum dot based nano-electromechanical memory device

    SciTech Connect (OSTI)

    Pozner, R.; Lifshitz, E.; Peskin, U.

    2015-09-14

    Colloidal quantum dots (CQDs) are free-standing nano-structures with chemically tunable electronic properties. This tunability offers intriguing possibilities for nano-electromechanical devices. In this work, we consider a nano-electromechanical nonvolatile memory (NVM) device incorporating a triple quantum dot (TQD) cluster. The device operation is based on a bias induced motion of a floating quantum dot (FQD) located between two bound quantum dots (BQDs). The mechanical motion is used for switching between two stable states, “ON” and “OFF” states, where ligand-mediated effective interdot forces between the BQDs and the FQD serve to hold the FQD in each stable position under zero bias. Considering realistic microscopic parameters, our quantum-classical theoretical treatment of the TQD reveals the characteristics of the NVM.

  14. Direct measure of quantum correlation

    SciTech Connect (OSTI)

    Yu, Chang-shui [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Zhao, Haiqing [School of Science, Dalian Jiaotong University, Dalian 116028 (China)

    2011-12-15

    The quantumness of the correlation known as quantum correlation is usually measured by quantum discord. So far various quantum discords can be roughly understood as indirect measure by some special discrepancy of two quantities. We present a direct measure of quantum correlation by revealing the difference between the structures of classically and quantum correlated states. Our measure explicitly includes the contributions of the inseparability and local nonorthogonality of the eigenvectors of a density matrix. Besides its relatively easy computability, our measure can provide a unified understanding of quantum correlation of all the present versions.

  15. Spherically symmetric quantum horizons

    SciTech Connect (OSTI)

    Bojowald, Martin; Swiderski, Rafal

    2005-04-15

    Isolated horizon conditions specialized to spherical symmetry can be imposed directly at the quantum level. This answers several questions concerning horizon degrees of freedom, which are seen to be related to orientation, and its fluctuations at the kinematical as well as dynamical level. In particular, in the absence of scalar or fermionic matter the horizon area is an approximate quantum observable. Including different kinds of matter fields allows to probe several aspects of the Hamiltonian constraint of quantum geometry that are important in inhomogeneous situations.

  16. The promise of quantum simulation

    SciTech Connect (OSTI)

    Muller, Richard P.; Blume-Kohout, Robin

    2015-07-21

    In this study, quantum simulations promise to be one of the primary applications of quantum computers, should one be constructed. This article briefly summarizes the history of quantum simulation in light of the recent result of Wang and co-workers, demonstrating calculation of the ground and excited states for a HeH+ molecule, and concludes with a discussion of why this and other recent progress in the field suggest that quantum simulations of quantum chemistry have a bright future.

  17. The promise of quantum simulation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Muller, Richard P.; Blume-Kohout, Robin

    2015-07-21

    In this study, quantum simulations promise to be one of the primary applications of quantum computers, should one be constructed. This article briefly summarizes the history of quantum simulation in light of the recent result of Wang and co-workers, demonstrating calculation of the ground and excited states for a HeH+ molecule, and concludes with a discussion of why this and other recent progress in the field suggest that quantum simulations of quantum chemistry have a bright future.

  18. Prediction of {sup 2}D Rydberg energy levels of {sup 6}Li and {sup 7}Li based on very accurate quantum mechanical calculations performed with explicitly correlated Gaussian functions

    SciTech Connect (OSTI)

    Bubin, Sergiy; Sharkey, Keeper L.; Adamowicz, Ludwik

    2013-04-28

    Very accurate variational nonrelativistic finite-nuclear-mass calculations employing all-electron explicitly correlated Gaussian basis functions are carried out for six Rydberg {sup 2}D states (1s{sup 2}nd, n= 6, Horizontal-Ellipsis , 11) of the {sup 7}Li and {sup 6}Li isotopes. The exponential parameters of the Gaussian functions are optimized using the variational method with the aid of the analytical energy gradient determined with respect to these parameters. The experimental results for the lower states (n= 3, Horizontal-Ellipsis , 6) and the calculated results for the higher states (n= 7, Horizontal-Ellipsis , 11) fitted with quantum-defect-like formulas are used to predict the energies of {sup 2}D 1s{sup 2}nd states for {sup 7}Li and {sup 6}Li with n up to 30.

  19. (E)-2-[(2-Bromophenylimino)methyl]-5-methoxyphenol: X-ray and DFT-calculated structures

    SciTech Connect (OSTI)

    Kosar, B. Albayrak, C.; Odabasoglu, M.; Bueyuekguengoer, O.

    2010-12-15

    The crystal structure of (E)-2-[(2-Bromophenylimino)methyl]-5-methoxyphenol is determined by using X-ray diffraction and then the molecular structure is investigated with density functional theory (DFT). X-Ray study shows that the title compound has a strong intramolecular O-H-N hydrogen bond and three dimensional crystal structure is primarily determined by C-H-{pi} and weak van der Waals interactions. The strong O-H-N bond is an evidence of the preference for the phenol-imine tautomeric form in the solid state. Optimized molecular geometry is calculated with DFT at the B3LYP/6-31G(d,p) level. The IR spectra of compound were recorded experimentally and calculated to compare with each other. The results from both experiment and theoretical calculations are compared in this study.

  20. Toward protocols for quantum-ensured privacy and secure voting

    SciTech Connect (OSTI)

    Bonanome, Marianna; Buzek, Vladimir; Ziman, Mario; Hillery, Mark

    2011-08-15

    We present a number of schemes that use quantum mechanics to preserve privacy, in particular, we show that entangled quantum states can be useful in maintaining privacy. We further develop our original proposal [see M. Hillery, M. Ziman, V. Buzek, and M. Bielikova, Phys. Lett. A 349, 75 (2006)] for protecting privacy in voting, and examine its security under certain types of attacks, in particular dishonest voters and external eavesdroppers. A variation of these quantum-based schemes can be used for multiparty function evaluation. We consider functions corresponding to group multiplication of N group elements, with each element chosen by a different party. We show how quantum mechanics can be useful in maintaining the privacy of the choices group elements.

  1. Binding and Diffusion of Lithium in Graphite: Quantum Monte Carlo Benchmarks and Validation of van der Waals Density Functional Methods

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ganesh, P.; Kim, Jeongnim; Park, Changwon; Yoon, Mina; Reboredo, Fernando A.; Kent, Paul R. C.

    2014-11-03

    In highly accurate diffusion quantum Monte Carlo (QMC) studies of the adsorption and diffusion of atomic lithium in AA-stacked graphite are compared with van der Waals-including density functional theory (DFT) calculations. Predicted QMC lattice constants for pure AA graphite agree with experiment. Pure AA-stacked graphite is shown to challenge many van der Waals methods even when they are accurate for conventional AB graphite. Moreover, the highest overall DFT accuracy, considering pure AA-stacked graphite as well as lithium binding and diffusion, is obtained by the self-consistent van der Waals functional vdW-DF2, although errors in binding energies remain. Empirical approaches based onmore » point charges such as DFT-D are inaccurate unless the local charge transfer is assessed. Our results demonstrate that the lithium carbon system requires a simultaneous highly accurate description of both charge transfer and van der Waals interactions, favoring self-consistent approaches.« less

  2. Hybrid Rotaxanes: Interlocked Structures for Quantum Computing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    based on molecular magnets that may make them suitable as qubits for quantum computers. Chemistry Aids Quantum Computing Quantum bits or qubits are the fundamental...

  3. Theory of the nucleus as applied to quantum chaos

    SciTech Connect (OSTI)

    Bunakov, V. E., E-mail: bunakov@VB13190.spb.edu [St. Petersburg State University, Petersburg Nuclear Physics Institute, National Research Center Kurchatov Institute (Russian Federation)

    2014-12-15

    A critical analysis of the present-day concept of chaos in quantum systems as nothing but a quantum signature of chaos in classical mechanics is given. It is proposed to specify a regular versus a chaotic behavior on the basis of symmetries of the system being considered and global integrals of motion that are associated with these symmetries in accordance with the Liouville-Arnold theorem rather than on the basis of the concept of Lyapunovs instability of trajectories. Numerical criteria of quantum chaos that follow from the proposed concept are analyzed.

  4. Quantum Universe James Hartle University of California, Santa Barbara

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Einstein's Vision and the Quantum Universe James Hartle University of California, Santa Barbara October 21, 2015 4:00 p.m. - Wilson Hall, One West Einstein's theory of gravity -- general relativity --- is important on two major frontiers in physics: The frontier of the very large --- the domain of astrophysics and cosmology. The frontier of the very small --- quantum mechanics and elementary particle physics. Large and small are one at the big bang. We will review some successes of classical

  5. Turbocharging Quantum Tomography.

    SciTech Connect (OSTI)

    Blume-Kohout, Robin J; Gamble, John King,; Nielsen, Erik; Maunz, Peter Lukas Wilhelm; Scholten, Travis L.; Rudinger, Kenneth Michael

    2015-01-01

    Quantum tomography is used to characterize quantum operations implemented in quantum information processing (QIP) hardware. Traditionally, state tomography has been used to characterize the quantum state prepared in an initialization procedure, while quantum process tomography is used to characterize dynamical operations on a QIP system. As such, tomography is critical to the development of QIP hardware (since it is necessary both for debugging and validating as-built devices, and its results are used to influence the next generation of devices). But tomography su %7C ers from several critical drawbacks. In this report, we present new research that resolves several of these flaws. We describe a new form of tomography called gate set tomography (GST), which unifies state and process tomography, avoids prior methods critical reliance on precalibrated operations that are not generally available, and can achieve unprecedented accuracies. We report on theory and experimental development of adaptive tomography protocols that achieve far higher fidelity in state reconstruction than non-adaptive methods. Finally, we present a new theoretical and experimental analysis of process tomography on multispin systems, and demonstrate how to more e %7C ectively detect and characterize quantum noise using carefully tailored ensembles of input states.

  6. Full counting statistics as a probe of quantum coherence in a side-coupled double quantum dot system

    SciTech Connect (OSTI)

    Xue, Hai-Bin

    2013-12-15

    We study theoretically the full counting statistics of electron transport through side-coupled double quantum dot (QD) based on an efficient particle-number-resolved master equation. It is demonstrated that the high-order cumulants of transport current are more sensitive to the quantum coherence than the average current, which can be used to probe the quantum coherence of the considered double QD system. Especially, quantum coherence plays a crucial role in determining whether the super-Poissonian noise occurs in the weak inter-dot hopping coupling regime depending on the corresponding QD-lead coupling, and the corresponding values of super-Poissonian noise can be relatively enhanced when considering the spins of conduction electrons. Moreover, this super-Poissonian noise bias range depends on the singly-occupied eigenstates of the system, which thus suggests a tunable super-Poissonian noise device. The occurrence-mechanism of super-Poissonian noise can be understood in terms of the interplay of quantum coherence and effective competition between fast-and-slow transport channels. -- Highlights: The FCS can be used to probe the quantum coherence of side-coupled double QD system. Probing quantum coherence using FCS may permit experimental tests in the near future. The current noise characteristics depend on the quantum coherence of this QD system. The super-Poissonian noise can be enhanced when considering conduction electron spin. The side-coupled double QD system suggests a tunable super-Poissonian noise device.

  7. Hybrid Rotaxanes: Interlocked Structures for Quantum Computing?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hybrid Rotaxanes: Interlocked Structures for Quantum Computing? Print Rotaxanes are mechanically interlocked molecular architectures consisting of a dumbbell-shaped molecule, the "axle," that threads through a ring called a macrocycle. Because the rings can spin around and slide along the axle, rotaxanes are promising components of molecular machines. While most rotaxanes have been entirely organic, the physical properties desirable in molecular machines are mostly found in inorganic

  8. Hybrid Rotaxanes: Interlocked Structures for Quantum Computing?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hybrid Rotaxanes: Interlocked Structures for Quantum Computing? Print Rotaxanes are mechanically interlocked molecular architectures consisting of a dumbbell-shaped molecule, the "axle," that threads through a ring called a macrocycle. Because the rings can spin around and slide along the axle, rotaxanes are promising components of molecular machines. While most rotaxanes have been entirely organic, the physical properties desirable in molecular machines are mostly found in inorganic

  9. Hybrid Rotaxanes: Interlocked Structures for Quantum Computing?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hybrid Rotaxanes: Interlocked Structures for Quantum Computing? Print Rotaxanes are mechanically interlocked molecular architectures consisting of a dumbbell-shaped molecule, the "axle," that threads through a ring called a macrocycle. Because the rings can spin around and slide along the axle, rotaxanes are promising components of molecular machines. While most rotaxanes have been entirely organic, the physical properties desirable in molecular machines are mostly found in inorganic

  10. Hybrid Rotaxanes: Interlocked Structures for Quantum Computing?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hybrid Rotaxanes: Interlocked Structures for Quantum Computing? Print Rotaxanes are mechanically interlocked molecular architectures consisting of a dumbbell-shaped molecule, the "axle," that threads through a ring called a macrocycle. Because the rings can spin around and slide along the axle, rotaxanes are promising components of molecular machines. While most rotaxanes have been entirely organic, the physical properties desirable in molecular machines are mostly found in inorganic

  11. Hybrid Rotaxanes: Interlocked Structures for Quantum Computing?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hybrid Rotaxanes: Interlocked Structures for Quantum Computing? Print Rotaxanes are mechanically interlocked molecular architectures consisting of a dumbbell-shaped molecule, the "axle," that threads through a ring called a macrocycle. Because the rings can spin around and slide along the axle, rotaxanes are promising components of molecular machines. While most rotaxanes have been entirely organic, the physical properties desirable in molecular machines are mostly found in inorganic

  12. Hybrid Rotaxanes: Interlocked Structures for Quantum Computing?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hybrid Rotaxanes: Interlocked Structures for Quantum Computing? Print Rotaxanes are mechanically interlocked molecular architectures consisting of a dumbbell-shaped molecule, the "axle," that threads through a ring called a macrocycle. Because the rings can spin around and slide along the axle, rotaxanes are promising components of molecular machines. While most rotaxanes have been entirely organic, the physical properties desirable in molecular machines are mostly found in inorganic

  13. Hybrid Rotaxanes: Interlocked Structures for Quantum Computing?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hybrid Rotaxanes: Interlocked Structures for Quantum Computing? Print Rotaxanes are mechanically interlocked molecular architectures consisting of a dumbbell-shaped molecule, the "axle," that threads through a ring called a macrocycle. Because the rings can spin around and slide along the axle, rotaxanes are promising components of molecular machines. While most rotaxanes have been entirely organic, the physical properties desirable in molecular machines are mostly found in inorganic

  14. Hybrid Rotaxanes: Interlocked Structures for Quantum Computing?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hybrid Rotaxanes: Interlocked Structures for Quantum Computing? Print Rotaxanes are mechanically interlocked molecular architectures consisting of a dumbbell-shaped molecule, the "axle," that threads through a ring called a macrocycle. Because the rings can spin around and slide along the axle, rotaxanes are promising components of molecular machines. While most rotaxanes have been entirely organic, the physical properties desirable in molecular machines are mostly found in inorganic

  15. Classical and quantum chaos in atomic systems

    SciTech Connect (OSTI)

    Delande, D.; Buchleitner, A. [Universite Pierre et Marie Curie, Paris (France)

    1994-12-31

    Atomic systems played a major role in the birth and growth of quantum mechanics. One central idea was to relate the well-known classical motion of the electron of a hydrogen atom--an ellipsis around the nucleus--to the experimentally observed quantization of the energy levels. This is the aim of the Bohr and Bohr-Sommerfeld models. These simple semiclassical models were unable to make any reliable prediction on the energy spectrum of the next simplest atom, helium. Because of the great success of quantum mechanics, the problem of correspondence between the classical and the quantal dynamics has not received much attention in the last 60 years. The fundamental question is (Gutzwiller, 1990). How can classical mechanics be understood as a limiting case within quantum mechanics? For systems with time-independent one-dimensional dynamics like the harmonic oscillator and the hydrogen atom, the correspondence is well understood. The restriction to such simple cases creates the erroneous impression that the classical behavior of simple systems is entirely comprehensible and easily described. During the last 20 years it has been recognized that this in not true and that a complex behavior can be obtained from simple equations of motion. This usually happens when the motion is chaotic, that is, unpredictable on a long time scale although perfectly deterministic (Henon, 1983). A major problem is that of understanding how the regular or chaotic behavior of the classical system is manifest in its quantum properties, especially in the semiclassical limit. 53 refs., 15 figs., 1 tab.

  16. Note on quantum Minkowski space

    SciTech Connect (OSTI)

    Bentalha, Z.; Tahiri, M.

    2008-09-15

    In this work, some interesting details about quantum Minkowski space and quantum Lorentz group structures are revealed. The task is accomplished by generalizing an approach adopted in a previous work where quantum rotation group and quantum Euclidean space structures have been investigated. The generalized method is based on a mapping relating the q-spinors (precisely the tensor product of dotted and undotted fondamental q-spinors) to Minkowski q-vectors. As a result of this mapping, the quantum analog of Minkowski space is constructed (with a definite metric). Also, the matrix representation of the quantum Lorentz group is determined together with its corresponding q-deformed orthogonality relation.

  17. Grid-based methods for biochemical ab initio quantum chemical applications

    SciTech Connect (OSTI)

    Colvin, M.E.; Nelson, J.S.; Mori, E.

    1997-01-01

    A initio quantum chemical methods are seeing increased application in a large variety of real-world problems including biomedical applications ranging from drug design to the understanding of environmental mutagens. The vast majority of these quantum chemical methods are {open_quotes}spectral{close_quotes}, that is they describe the charge distribution around the nuclear framework in terms of a fixed analytic basis set. Despite the additional complexity they bring, methods involving grid representations of the electron or solvent charge can provide more efficient schemes for evaluating spectral operators, inexpensive methods for calculating electron correlation, and methods for treating the electrostatic energy of salvation in polar solvents. The advantage of mixed or {open_quotes}pseudospectral{close_quotes} methods is that they allow individual non-linear operators in the partial differential equations, such as coulomb operators, to be calculated in the most appropriate regime. Moreover, these molecular grids can be used to integrate empirical functionals of the electron density. These so-called density functional methods (DFT) are an extremely promising alternative to conventional post-Hartree Fock quantum chemical methods. The introduction of a grid at the molecular solvent-accessible surface allows a very sophisticated treatment of a polarizable continuum solvent model (PCM). Where most PCM approaches use a truncated expansion of the solute`s electric multipole expansion, e.g. net charge (Born model) or dipole moment (Onsager model), such a grid-based boundary-element method (BEM) yields a nearly exact treatment of the solute`s electric field. This report describes the use of both DFT and BEM methods in several biomedical chemical applications.

  18. Comparison of the attempts of quantum discord and quantum entanglement...

    Office of Scientific and Technical Information (OSTI)

    Department of Physics and Centre for Quantum Information and Quantum Control, University of Toronto, Toronto, Ontario M5S 1A7 (Canada) Publication Date: 2011-03-15 OSTI Identifier: ...

  19. Describing excited state relaxation and localization in TiO2 nanoparticles using TD-DFT

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Berardo, Enrico; Hu, Han -Shi; van Dam, Hubertus J. J.; Shevlin, Stephen A.; Woodley, Scott M.; Kowalski, Karol; Zwijnenburg, Martijn A.

    2014-02-26

    We have investigated the description of excited state relaxation in naked and hydrated TiO2 nanoparticles using Time-Dependent Density Functional Theory (TD-DFT) with three common hybrid exchange-correlation (XC) potentials; B3LYP, CAM-B3LYP and BHLYP. Use of TD-CAM-B3LYP and TD-BHLYP yields qualitatively similar results for all structures, which are also consistent with predictions of coupled cluster theory for small particles. TD-B3LYP, in contrast, is found to make rather different predictions; including apparent conical intersections for certain particles that are not observed with TD-CAM-B3LYP nor with TD-BHLYP. In line with our previous observations for vertical excitations, the issue with TD-B3LYP appears to be themore » inherent tendency of TD-B3LYP, and other XC potentials with no or a low percentage of Hartree-Fock Like Exchange, to spuriously stabilize the energy of charge-transfer (CT) states. Even in the case of hydrated particles, for which vertical excitations are generally well described with all XC potentials, the use of TD-B3LYP appears to result in CT-problems for certain particles. We hypothesize that the spurious stabilization of CT-states by TD-B3LYP even may drive the excited state optimizations to different excited state geometries than those obtained using TD-CAM-B3LYP or TD-BHLYP. In conclusion, focusing on the TD-CAM-B3LYP and TD-BHLYP results, excited state relaxation in naked and hydrated TiO2 nanoparticles is predicted to be associated with a large Stokes’ shift.« less

  20. Suppression of quantum chaos in a quantum computer hardware

    SciTech Connect (OSTI)

    Lages, J.; Shepelyansky, D. L. [Laboratoire de Physique Theorique, UMR 5152 du CNRS, Universite Paul Sabatier, 31062 Toulouse Cedex 4 (France)

    2006-08-15

    We present numerical and analytical studies of a quantum computer proposed by the Yamamoto group in Phys. Rev. Lett. 89, 017901 (2002). The stable and quantum chaos regimes in the quantum computer hardware are identified as a function of magnetic field gradient and dipole-dipole couplings between qubits on a square lattice. It is shown that a strong magnetic field gradient leads to suppression of quantum chaos.

  1. Discontinuous Methods for Accurate, Massively Parallel Quantum...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Investigator for Discontinuous Methods for Accurate, Massively Parallel Quantum Molecular Dynamics. Discontinuous Methods for Accurate, Massively Parallel Quantum...

  2. CDSS: Dr. Hensinger on Quantum Computing

    Broader source: Energy.gov [DOE]

    Dr. Winfried Hensinger – Professor of Quantum Technologies, Ion Quantum Technology Group, Department of Physics and Astronomy, University of Sussex

  3. Quantum Graph Analysis

    SciTech Connect (OSTI)

    Maunz, Peter Lukas Wilhelm; Sterk, Jonathan David; Lobser, Daniel; Parekh, Ojas D.; Ryan-Anderson, Ciaran

    2016-01-01

    In recent years, advanced network analytics have become increasingly important to na- tional security with applications ranging from cyber security to detection and disruption of ter- rorist networks. While classical computing solutions have received considerable investment, the development of quantum algorithms to address problems, such as data mining of attributed relational graphs, is a largely unexplored space. Recent theoretical work has shown that quan- tum algorithms for graph analysis can be more efficient than their classical counterparts. Here, we have implemented a trapped-ion-based two-qubit quantum information proces- sor to address these goals. Building on Sandia's microfabricated silicon surface ion traps, we have designed, realized and characterized a quantum information processor using the hyperfine qubits encoded in two 171 Yb + ions. We have implemented single qubit gates using resonant microwave radiation and have employed Gate set tomography (GST) to characterize the quan- tum process. For the first time, we were able to prove that the quantum process surpasses the fault tolerance thresholds of some quantum codes by demonstrating a diamond norm distance of less than 1 . 9 x 10 [?] 4 . We used Raman transitions in order to manipulate the trapped ions' motion and realize two-qubit gates. We characterized the implemented motion sensitive and insensitive single qubit processes and achieved a maximal process infidelity of 6 . 5 x 10 [?] 5 . We implemented the two-qubit gate proposed by Molmer and Sorensen and achieved a fidelity of more than 97 . 7%.

  4. Statistical behavior in deterministic quantum systems with few degrees of freedom

    SciTech Connect (OSTI)

    Jensen, R.V.; Shankar, R.

    1985-04-29

    Numerical studies of the dynamics of finite quantum spin chains are presented which show that quantum systems with few degrees of freedom (N = 7) can be described by equilibrium statistical mechanics. The success of the statistical description is seen to depend on the interplay between the initial state, the observable, and the Hamiltonian. This work clarifies the impact of integrability and conservation laws on statistical behavior. The relation to quantum chaos is also discussed.

  5. Quantum theory and Einstein's general relativity

    SciTech Connect (OSTI)

    v. Borzeszkowski, H.; Treder, H.

    1982-11-01

    We dicusss the meaning and prove the accordance of general relativity, wave mechanics, and the quantization of Einstein's gravitation equations themselves. Firstly, we have the problem of the influence of gravitational fields on the de Broglie waves, which influence is in accordance with Einstein's weak principle of equivalence and the limitation of measurements given by Heisenberg's uncertainty relations. Secondly, the quantization of the gravitational fields is a ''quantization of geometry.'' However, classical and quantum gravitation have the same physical meaning according to limitations of measurements given by Einstein's strong principle of equivalence and the Heisenberg uncertainties for the mechanics of test bodies.

  6. Quantum Solar | Open Energy Information

    Open Energy Info (EERE)

    Solar Jump to: navigation, search Name: Quantum Solar Place: Santa Fe, New Mexico Zip: 87507 Product: New Mexico-based PV cell technology company. References: Quantum Solar1 This...

  7. Quasiperiodically kicked quantum systems

    SciTech Connect (OSTI)

    Milonni, P.W.; Ackerhalt, J.R.; Goggin, M.E.

    1987-02-15

    We consider a two-state system kicked quasiperiodically by an external force. When the two kicking frequencies assumed for the force are incommensurate, there can be quantum chaos in the sense that (a) the autocorrelation function of the state vector decays, (b) the power spectrum of the state vector is broadband, and (c) the motion on the Bloch sphere is ergodic. The time evolution of the state vector is nevertheless dynamically stable in the sense that memory of the initial state is retained. We also consider briefly the kicked quantum rotator and find, in agreement with Shepelyansky (Physica 8D, 208 (1983)), that the quantum localization effect is greatly weakened by the presence of two incommensurate driving frequencies.

  8. Authentication of quantum messages.

    SciTech Connect (OSTI)

    Barnum, Howard; Crépeau, Jean-Claude; Gottesman, D.; Smith, A.; Tapp, Alan

    2001-01-01

    Authentication is a well-studied area of classical cryptography: a sender A and a receiver B sharing a classical private key want to exchange a classical message with the guarantee that the message has not been modified or replaced by a dishonest party with control of the communication line. In this paper we study the authentication of messages composed of quantum states. We give a formal definition of authentication in the quantum setting. Assuming A and B have access to an insecure quantum channel and share a private, classical random key, we provide a non-interactive scheme that both enables A to encrypt and authenticate (with unconditional security) an m qubit message by encoding it into m + s qubits, where the probability decreases exponentially in the security parameter s. The scheme requires a private key of size 2m + O(s). To achieve this, we give a highly efficient protocol for testing the purity of shared EPR pairs. It has long been known that learning information about a general quantum state will necessarily disturb it. We refine this result to show that such a disturbance can be done with few side effects, allowing it to circumvent cryptographic protections. Consequently, any scheme to authenticate quantum messages must also encrypt them. In contrast, no such constraint exists classically: authentication and encryption are independent tasks, and one can authenticate a message while leaving it publicly readable. This reasoning has two important consequences: On one hand, it allows us to give a lower bound of 2m key bits for authenticating m qubits, which makes our protocol asymptotically optimal. On the other hand, we use it to show that digitally signing quantum states is impossible, even with only computational security.

  9. Quantum positron acoustic waves

    SciTech Connect (OSTI)

    Metref, Hassina; Tribeche, Mouloud

    2014-12-15

    Nonlinear quantum positron-acoustic (QPA) waves are investigated for the first time, within the theoretical framework of the quantum hydrodynamic model. In the small but finite amplitude limit, both deformed Korteweg-de Vries and generalized Korteweg-de Vries equations governing, respectively, the dynamics of QPA solitary waves and double-layers are derived. Moreover, a full finite amplitude analysis is undertaken, and a numerical integration of the obtained highly nonlinear equations is carried out. The results complement our previously published results on this problem.

  10. Directed Quantum Chaos

    SciTech Connect (OSTI)

    Efetov, K.B. [Max-Planck Institut fuer Physik komplexer Systeme, Heisenbergstrasse 1, 70569 Stuttgart (Germany)] [Max-Planck Institut fuer Physik komplexer Systeme, Heisenbergstrasse 1, 70569 Stuttgart (Germany); [L.D. Landau Institute for Theoretical Physics, Moscow (Russia)

    1997-07-01

    Quantum disordered problems with a direction (imaginary vector potential) are discussed and mapped onto a supermatrix {sigma} model. It is argued that the 0D version of the {sigma} model may describe a broad class of phenomena that can be called directed quantum chaos. It is demonstrated by explicit calculations that these problems are equivalent to those of random asymmetric or non-Hermitian matrices. A joint probability of complex eigenvalues is obtained. The fraction of states with real eigenvalues proves to be always finite for time reversal invariant systems. {copyright} {ital 1997} {ital The American Physical Society}

  11. Quantum Statistical Testing of a Quantum Random Number Generator

    SciTech Connect (OSTI)

    Humble, Travis S

    2014-01-01

    The unobservable elements in a quantum technology, e.g., the quantum state, complicate system verification against promised behavior. Using model-based system engineering, we present methods for verifying the opera- tion of a prototypical quantum random number generator. We begin with the algorithmic design of the QRNG followed by the synthesis of its physical design requirements. We next discuss how quantum statistical testing can be used to verify device behavior as well as detect device bias. We conclude by highlighting how system design and verification methods must influence effort to certify future quantum technologies.

  12. Bell's Theorem, Entaglement, Quantum Teleportation and All That

    ScienceCinema (OSTI)

    Anthony Leggett

    2010-01-08

    One of the most surprising aspects of quantum mechanics is that under certain circumstances it does not allow individual physical systems, even when isolated, to possess properties in their own right. This feature, first clearly appreciated by John Bell in 1964, has in the last three decades been tested experimentally and found (in most people's opinion) to be spectacularly confirmed. More recently it has been realized that it permits various operations which are classically impossible, such as "teleportation" and secure-in-principle cryptography. This talk is a very basic introduction to the subject, which requires only elementary quantum mechanics.

  13. Quantum phase transitions in Bose-Fermi systems

    SciTech Connect (OSTI)

    Petrellis, D.; Leviatan, A.; Iachello, F.

    2011-04-15

    Research Highlights: > We study quantum phase transitions in a system of N bosons and a single-j fermion. > Classical order parameters and correlation diagrams of quantum levels are determined. > The odd fermion strongly influences the location and nature of the phase transition. > Experimental evidence for the U(5)-SU(3) transition in odd-even nuclei is presented. - Abstract: Quantum phase transitions in a system of N bosons with angular momentum L = 0, 2 (s, d) and a single fermion with angular momentum j are investigated both classically and quantum mechanically. It is shown that the presence of the odd fermion strongly influences the location and nature of the phase transition, especially the critical value of the control parameter at which the phase transition occurs. Experimental evidence for the U(5)-SU(3) (spherical to axially-deformed) transition in odd-even nuclei is presented.

  14. Certifying the quantumness of a generalized coherent control scenario

    SciTech Connect (OSTI)

    Scholak, Torsten Brumer, Paul

    2014-11-28

    We consider the role of quantum mechanics in a specific coherent control scenario, designing a “coherent control interferometer” as the essential tool that links coherent control to quantum fundamentals. Building upon this allows us to rigorously display the genuinely quantum nature of a generalized weak-field coherent control scenario (utilizing 1 vs. 2 photon excitation) via a Bell-CHSH test. Specifically, we propose an implementation of “quantum delayed-choice” in a bichromatic alkali atom photoionization experiment. The experimenter can choose between two complementary situations, which are characterized by a random photoelectron spin polarization with particle-like behavior on the one hand, and by spin controllability and wave-like nature on the other. Because these two choices are conditioned coherently on states of the driving fields, it becomes physically unknowable, prior to measurement, whether there is control over the spin or not.

  15. Comparison of quantum confinement effects between quantum wires and dots

    SciTech Connect (OSTI)

    Li, Jingbo; Wang, Lin-Wang

    2004-03-30

    Dimensionality is an important factor to govern the electronic structures of semiconductor nanocrystals. The quantum confinement energies in one-dimensional quantum wires and zero-dimensional quantum dots are quite different. Using large-scale first-principles calculations, we systematically study the electronic structures of semiconductor (including group IV, III-V, and II-VI) surface-passivated quantum wires and dots. The band-gap energies of quantum wires and dots have the same scaling with diameter for a given material. The ratio of band-gap-increases between quantum wires and dots is material-dependent, and slightly deviates from 0.586 predicted by effective-mass approximation. Highly linear polarization of photoluminescence in quantum wires is found. The degree of polarization decreases with the increasing temperature and size.

  16. Acceleration of positrons by a relativistic electron beam in the presence of quantum effects

    SciTech Connect (OSTI)

    Niknam, A. R.; Aki, H.; Khorashadizadeh, S. M.

    2013-09-15

    Using the quantum magnetohydrodynamic model and obtaining the dispersion relation of the Cherenkov and cyclotron waves, the acceleration of positrons by a relativistic electron beam is investigated. The Cherenkov and cyclotron acceleration mechanisms of positrons are compared together. It is shown that growth rate and, therefore, the acceleration of positrons can be increased in the presence of quantum effects.

  17. QCD: Quantum Chromodynamics

    ScienceCinema (OSTI)

    Lincoln, Don

    2016-06-28

    The strongest force in the universe is the strong nuclear force and it governs the behavior of quarks and gluons inside protons and neutrons. The name of the theory that governs this force is quantum chromodynamics, or QCD. In this video, Fermilab?s Dr. Don Lincoln explains the intricacies of this dominant component of the Standard Model.

  18. Nanowire terahertz quantum cascade lasers

    SciTech Connect (OSTI)

    Grange, Thomas

    2014-10-06

    Quantum cascade lasers made of nanowire axial heterostructures are proposed. The dissipative quantum dynamics of their carriers is theoretically investigated using non-equilibrium Green functions. Their transport and gain properties are calculated for varying nanowire thickness, from the classical-wire regime to the quantum-wire regime. Our calculation shows that the lateral quantum confinement provided by the nanowires allows an increase of the maximum operation temperature and a strong reduction of the current density threshold compared to conventional terahertz quantum cascade lasers.

  19. Energy concentration in composite quantum systems

    SciTech Connect (OSTI)

    Kurcz, Andreas; Beige, Almut; Capolupo, Antonio; Vitiello, Giuseppe; Del Giudice, Emilio

    2010-06-15

    The spontaneous emission of photons from optical cavities and from trapped atoms has been studied extensively in the framework of quantum optics. Theoretical predictions based on the rotating wave approximation (RWA) are, in general, in very good agreement with experimental findings. However, current experiments aim at combining better and better cavities with large numbers of tightly confined atoms. Here we predict an energy concentrating mechanism in the behavior of such a composite quantum system which cannot be described by the RWA. Its result is the continuous leakage of photons through the cavity mirrors, even in the absence of external driving. We conclude with a discussion of the predicted phenomenon in the context of thermodynamics.

  20. From Entropic Dynamics to Quantum Theory

    SciTech Connect (OSTI)

    Caticha, Ariel

    2009-12-08

    Non-relativistic quantum theory is derived from information codified into an appropriate statistical model. The basic assumption is that there is an irreducible uncertainty in the location of particles so that the configuration space is a statistical manifold. The dynamics then follows from a principle of inference, the method of Maximum Entropy. The concept of time is introduced as a convenient way to keep track of change. The resulting theory resembles both Nelson's stochastic mechanics and general relativity. The statistical manifold is a dynamical entity: its geometry determines the evolution of the probability distribution which, in its turn, reacts back and determines the evolution of the geometry. There is a new quantum version of the equivalence principle: 'osmotic' mass equals inertial mass. Mass and the phase of the wave function are explained as features of purely statistical origin.

  1. Stationary self-focusing of intense laser beam in cold quantum plasma using ramp density profile

    SciTech Connect (OSTI)

    Habibi, M.; Ghamari, F.

    2012-10-15

    By using a transient density profile, we have demonstrated stationary self-focusing of an electromagnetic Gaussian beam in cold quantum plasma. The paper is devoted to the prospects of using upward increasing ramp density profile of an inhomogeneous nonlinear medium with quantum effects in self-focusing mechanism of high intense laser beam. We have found that the upward ramp density profile in addition to quantum effects causes much higher oscillation and better focusing of laser beam in cold quantum plasma in comparison to that in the classical relativistic case. Our computational results reveal the importance and influence of formation of electron density profiles in enhancing laser self-focusing.

  2. "Adiabatic Quantum Computing with the D-Wave One" | Princeton Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Lab December 5, 2012, 4:15pm to 5:30pm Colloquia MSG Auditorium "Adiabatic Quantum Computing with the D-Wave One" Professor Robert F. Lucas University of Southern California Dr. Federico Spedalieri University of Southern California Presentation: File WC05DEC2012_FSpedalieri.pptx The USC-Lockheed Martin Quantum Computing Center has taken delivery of a D-Wave One adiabatic quantum computer. In this talk, we will report on our experience assessing the quantum mechanical

  3. Classical and quantum chaos in a circular billiard with a straight cut

    SciTech Connect (OSTI)

    Ree, S.; Reichl, L.E. [Center for Studies in Statistical Mechanics and Complex Systems, The University of Texas at Austin, Austin, Texas 78712 (United States)] [Center for Studies in Statistical Mechanics and Complex Systems, The University of Texas at Austin, Austin, Texas 78712 (United States)

    1999-08-01

    We study classical and quantum dynamics of a particle in a circular billiard with a straight cut. Classically, this system can be integrable, nonintegrable with {ital soft chaos}, or nonintegrable with {ital hard chaos} as we vary the size of the cut. We plot Poincar{acute e} surfaces of section to study chaos. Quantum mechanically, we look at Husimi plots, and also use the quantum web, the technique primarily used in spin systems so far, to try to see differences in quantum manifestations of soft and hard chaos. {copyright} {ital 1999} {ital The American Physical Society}

  4. Hybrid DFT Functional-Based Static and Molecular Dynamics Studies of Excess Electron in Liquid Ethylene Carbonate

    SciTech Connect (OSTI)

    Yu, J. M.; Balbuena, P. B.; Budzien, J. L.; Leung, Kevin

    2011-02-22

    We applied static and dynamic hybrid functional density functional theory (DFT) calculations to study the interactions of one and two excess electrons with ethylene carbonate (EC) liquid and clusters. Optimal structures of (EC)n and (EC)n- clusters devoid of Li+ ions, n = 16, were obtained. The excess electron was found to be localized on a single EC in all cases, and the EC dimeric radical anion exhibits a reduced barrier associated with the breaking of the ethylene carbonoxygen covalent bond compared to EC-. In ab initio molecular dynamics (AIMD) simulations of EC- solvated in liquid EC, large fluctuations in the carbonyl carbonoxygen bond lengths were observed. AIMD simulations of a two-electron attack on EC in EC liquid and on Li metal surfaces yielded products similar to those predicted using nonhybrid DFT functionals, except that CO release did not occur for all attempted initial configurations in the liquid state.

  5. Experimental and DFT studies of initiation processes for butane isomerization over sulfated-zirconia catalysts

    SciTech Connect (OSTI)

    Hong, Z.; Watwe, R.M.; Natal-Santiago, M.A.; Hill, J.M.; Dumesic, J.A.; Fogash, K.B.; Kim, B.; Masqueda-Jimenez, B.I.

    1998-09-10

    Reaction kinetics studies were conducted of isobutane and n-butane isomerization at 423 K over sulfated-zirconia, with the butane feeds purified of olefins. Dihydrogen evolution was observed during butane isomerization over fresh catalysts, as well as over catalysts selectively poisoned by preadsorbed ammonia. Butane isomerization over sulfated-zirconia can be viewed as a surface chain reaction comprised of initiation, propagation, and termination steps. The primary initiation step in the absence of feed olefins is considered to be the dehydrogenation of butane over sulfated-zirconia, generating butenes which adsorb onto acid sites to form protonated olefinic species associated with the conjugate base form of the acid sites. Quantum-chemical calculations, employing density-functional theory, suggest that the dissociative adsorption of dihydrogen, isobutylene hydrogenation, and dissociative adsorption of isobutane are feasible over the sulfated-zirconia cluster, and these reactions take place over Zr-O sites.

  6. Quantum probabilities from quantum entanglement: experimentally unpacking the Born rule

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Harris, Jérémie; Bouchard, Frédéric; Santamato, Enrico; Zurek, Wojciech H.; Boyd, Robert W.; Karimi, Ebrahim

    2016-05-11

    The Born rule, a foundational axiom was used to deduce probabilities of events from wavefunctions, is indispensable in the everyday practice of quantum physics. It is also key in the quest to reconcile the ostensibly inconsistent laws of the quantum and classical realms, as it confers physical significance to reduced density matrices, the essential tools of decoherence theory. Following Bohr's Copenhagen interpretation, textbooks postulate the Born rule outright. But, recent attempts to derive it from other quantum principles have been successful, holding promise for simplifying and clarifying the quantum foundational bedrock. Moreover, a major family of derivations is based onmore » envariance, a recently discovered symmetry of entangled quantum states. Here, we identify and experimentally test three premises central to these envariance-based derivations, thus demonstrating, in the microworld, the symmetries from which the Born rule is derived. Furthermore, we demonstrate envariance in a purely local quantum system, showing its independence from relativistic causality.« less

  7. Quantum flux parametron

    SciTech Connect (OSTI)

    Hioe, W. ); Goto, E. )

    1991-01-01

    The quantum flux parametron (QFP) is an offspring of the parametron, an early flux-based logic device, and the Josephson junction. It is a single flux quantum device that works completely in the superconductive mode. While it has the speed of other Josephson devices that work on switching between the voltage and superconductive modes, its power is about one thousand times less. Hence, it promises to be an attractive alternative to both transistors and other Josephson devices. This book reports the latest research results on QFP applications as a logic device. In particular, a number of auxiliary circuits and a new logic gate are proposed for improving the device margin. Samples of these circuits and logic gate have been fabricated.

  8. Intermediate-band photosensitive device with quantum dots embedded in energy fence barrier

    DOE Patents [OSTI]

    Forrest, Stephen R.; Wei, Guodan

    2010-07-06

    A plurality of layers of a first semiconductor material and a plurality of dots-in-a-fence barriers disposed in a stack between a first electrode and a second electrode. Each dots-in-a-fence barrier consists essentially of a plurality of quantum dots of a second semiconductor material embedded between and in direct contact with two layers of a third semiconductor material. Wave functions of the quantum dots overlap as at least one intermediate band. The layers of the third semiconductor material are arranged as tunneling barriers to require a first electron and/or a first hole in a layer of the first material to perform quantum mechanical tunneling to reach the second material within a respective quantum dot, and to require a second electron and/or a second hole in a layer of the first semiconductor material to perform quantum mechanical tunneling to reach another layer of the first semiconductor material.

  9. 'Giant' Nanocrystal Quantum Dots

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    'Giant' Nanocrystal Quantum Dots - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs

  10. Quantum Monte Carlo for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantum Monte Carlo for the Electronic Structure of Atoms and Molecules Brian Austin Lester Group, U.C. Berkeley BES Requirements Workshop Rockville, MD February 9, 2010 Outline  Applying QMC to diverse chemical systems  Select systems with high interest and impact  Phenol: bond dissociation energy  Retinal: excitation energy  Algorithmic details  Parallel Strategy  Wave function evaluation O-H Bond Dissociation Energy of Phenol  Ph-OH Ph-O * + H * (36 valence electrons)

  11. Quantum-to-classical crossover near quantum critical point

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vasin, M.; Ryzhov, V.; Vinokur, V. M.

    2015-12-21

    A quantum phase transition (QPT) is an inherently dynamic phenomenon. However, while non-dissipative quantum dynamics is described in detail, the question, that is not thoroughly understood is how the omnipresent dissipative processes enter the critical dynamics near a quantum critical point (QCP). Here we report a general approach enabling inclusion of both adiabatic and dissipative processes into the critical dynamics on the same footing. We reveal three distinct critical modes, the adiabatic quantum mode (AQM), the dissipative classical mode [classical critical dynamics mode (CCDM)], and the dissipative quantum critical mode (DQCM). We find that as a result of the transitionmore » from the regime dominated by thermal fluctuations to that governed by the quantum ones, the system acquires effective dimension d+zΛ(T), where z is the dynamical exponent, and temperature-depending parameter Λ(T)ε[0, 1] decreases with the temperature such that Λ(T=0) = 1 and Λ(T →∞) = 0. Lastly, our findings lead to a unified picture of quantum critical phenomena including both dissipation- and dissipationless quantum dynamic effects and offer a quantitative description of the quantum-to-classical crossover.« less

  12. Quantum-to-classical crossover near quantum critical point

    SciTech Connect (OSTI)

    Vasin, M.; Ryzhov, V.; Vinokur, V. M.

    2015-12-21

    A quantum phase transition (QPT) is an inherently dynamic phenomenon. However, while non-dissipative quantum dynamics is described in detail, the question, that is not thoroughly understood is how the omnipresent dissipative processes enter the critical dynamics near a quantum critical point (QCP). Here we report a general approach enabling inclusion of both adiabatic and dissipative processes into the critical dynamics on the same footing. We reveal three distinct critical modes, the adiabatic quantum mode (AQM), the dissipative classical mode [classical critical dynamics mode (CCDM)], and the dissipative quantum critical mode (DQCM). We find that as a result of the transition from the regime dominated by thermal fluctuations to that governed by the quantum ones, the system acquires effective dimension d+zΛ(T), where z is the dynamical exponent, and temperature-depending parameter Λ(T)ε[0, 1] decreases with the temperature such that Λ(T=0) = 1 and Λ(T →∞) = 0. Lastly, our findings lead to a unified picture of quantum critical phenomena including both dissipation- and dissipationless quantum dynamic effects and offer a quantitative description of the quantum-to-classical crossover.

  13. Mechanism of water oxidation by [Ru(bda)(L)₂]: The return of the "blue dimer"

    SciTech Connect (OSTI)

    Concepcion, Javier J.; Zhong, Diane K.; Szalda, David J.; Muckerman, James T.; Fujita, Etsuko

    2015-02-05

    We describe here a combined solution-surface-DFT calculations study for complexes of the type [Ru(bda)(L)₂] including X-ray structure of intermediates, their reactivity, as well as pH-dependent electrochemistry and spectroelectrochemistry. These studies shed light on the mechanism of water oxidation by [Ru(bda)(L)₂], revealing key features unavailable from solution studies with sacrificial oxidants.

  14. Spatially indirect excitons in coupled quantum wells

    SciTech Connect (OSTI)

    Lai, Chih-Wei Eddy

    2004-03-01

    Microscopic quantum phenomena such as interference or phase coherence between different quantum states are rarely manifest in macroscopic systems due to a lack of significant correlation between different states. An exciton system is one candidate for observation of possible quantum collective effects. In the dilute limit, excitons in semiconductors behave as bosons and are expected to undergo Bose-Einstein condensation (BEC) at a temperature several orders of magnitude higher than for atomic BEC because of their light mass. Furthermore, well-developed modern semiconductor technologies offer flexible manipulations of an exciton system. Realization of BEC in solid-state systems can thus provide new opportunities for macroscopic quantum coherence research. In semiconductor coupled quantum wells (CQW) under across-well static electric field, excitons exist as separately confined electron-hole pairs. These spatially indirect excitons exhibit a radiative recombination time much longer than their thermal relaxation time a unique feature in direct band gap semiconductor based structures. Their mutual repulsive dipole interaction further stabilizes the exciton system at low temperature and screens in-plane disorder more effectively. All these features make indirect excitons in CQW a promising system to search for quantum collective effects. Properties of indirect excitons in CQW have been analyzed and investigated extensively. The experimental results based on time-integrated or time-resolved spatially-resolved photoluminescence (PL) spectroscopy and imaging are reported in two categories. (i) Generic indirect exciton systems: general properties of indirect excitons such as the dependence of exciton energy and lifetime on electric fields and densities were examined. (ii) Quasi-two-dimensional confined exciton systems: highly statistically degenerate exciton systems containing more than tens of thousands of excitons within areas as small as (10 micrometer){sup 2} were

  15. Group action in topos quantum physics

    SciTech Connect (OSTI)

    Flori, C.

    2013-03-15

    Topos theory has been suggested first by Isham and Butterfield, and then by Isham and Doering, as an alternative mathematical structure within which to formulate physical theories. In particular, it has been used to reformulate standard quantum mechanics in such a way that a novel type of logic is used to represent propositions. In this paper, we extend this formulation to include the notion of a group and group transformation in such a way that we overcome the problem of twisted presheaves. In order to implement this we need to change the type of topos involved, so as to render the notion of continuity of the group action meaningful.

  16. Quantum error-correcting codes and devices

    DOE Patents [OSTI]

    Gottesman, Daniel

    2000-10-03

    A method of forming quantum error-correcting codes by first forming a stabilizer for a Hilbert space. A quantum information processing device can be formed to implement such quantum codes.

  17. DFT modeling of adsorption onto uranium metal using large-scale parallel computing

    SciTech Connect (OSTI)

    Davis, N.; Rizwan, U.

    2013-07-01

    There is a dearth of atomistic simulations involving the surface chemistry of 7-uranium which is of interest as the key fuel component of a breeder-burner stage in future fuel cycles. Recent availability of high-performance computing hardware and software has rendered extended quantum chemical surface simulations involving actinides feasible. With that motivation, data for bulk and surface 7-phase uranium metal are calculated in the plane-wave pseudopotential density functional theory method. Chemisorption of atomic hydrogen and oxygen on several un-relaxed low-index faces of 7-uranium is considered. The optimal adsorption sites (calculated cohesive energies) on the (100), (110), and (111) faces are found to be the one-coordinated top site (8.8 eV), four-coordinated center site (9.9 eV), and one-coordinated top 1 site (7.9 eV) respectively, for oxygen; and the four-coordinated center site (2.7 eV), four-coordinated center site (3.1 eV), and three-coordinated top2 site (3.2 eV) for hydrogen. (authors)

  18. Real-time Feynman path integral with Picard–Lefschetz theory and its applications to quantum tunneling

    SciTech Connect (OSTI)

    Tanizaki, Yuya; Koike, Takayuki

    2014-12-15

    Picard–Lefschetz theory is applied to path integrals of quantum mechanics, in order to compute real-time dynamics directly. After discussing basic properties of real-time path integrals on Lefschetz thimbles, we demonstrate its computational method in a concrete way by solving three simple examples of quantum mechanics. It is applied to quantum mechanics of a double-well potential, and quantum tunneling is discussed. We identify all of the complex saddle points of the classical action, and their properties are discussed in detail. However a big theoretical difficulty turns out to appear in rewriting the original path integral into a sum of path integrals on Lefschetz thimbles. We discuss generality of that problem and mention its importance. Real-time tunneling processes are shown to be described by those complex saddle points, and thus semi-classical description of real-time quantum tunneling becomes possible on solid ground if we could solve that problem. - Highlights: • Real-time path integral is studied based on Picard–Lefschetz theory. • Lucid demonstration is given through simple examples of quantum mechanics. • This technique is applied to quantum mechanics of the double-well potential. • Difficulty for practical applications is revealed, and we discuss its generality. • Quantum tunneling is shown to be closely related to complex classical solutions.

  19. First principles DFT investigation of yttrium-decorated boron-nitride nanotube: Electronic structure and hydrogen storage

    SciTech Connect (OSTI)

    Jain, Richa Naja; Chakraborty, Brahmananda; Ramaniah, Lavanya M.

    2015-06-24

    The electronic structure and hydrogen storage capability of Yttrium-doped BNNTs has been theoretically investigated using first principles density functional theory (DFT). Yttrium atom prefers the hollow site in the center of the hexagonal ring with a binding energy of 0.8048eV. Decorating by Y makes the system half-metallic and magnetic with a magnetic moment of 1.0µ{sub B}. Y decorated Boron-Nitride (8,0) nanotube can adsorb up to five hydrogen molecules whose average binding energy is computed as 0.5044eV. All the hydrogen molecules are adsorbed with an average desorption temperature of 644.708 K. Taking that the Y atoms can be placed only in alternate hexagons, the implied wt% comes out to be 5.31%, a relatively acceptable value for hydrogen storage materials. Thus, this system can serve as potential hydrogen storage medium.

  20. Structural, vibrational spectroscopic and nonlinear optical activity studies on 2-hydroxy- 3, 5-dinitropyridine: A DFT approach

    SciTech Connect (OSTI)

    Asath, R. Mohamed; Premkumar, S.; Mathavan, T.; Dhas, M. Kumara; Benial, A. Milton Franklin; Jawahar, A.

    2015-06-24

    The conformational analysis was carried out for 2-Hydroxy- 3, 5-dinitropyridine molecule using potential energy surface scan and the most stable optimized conformer was predicted. The vibrational frequencies and Mulliken atomic charge distribution were calculated for the optimized geometry of the molecule using DFT/B3LYP cc-pVQZ basis set by Gaussian 09 Program. The vibrational frequencies were assigned on the basis of potential energy distribution calculation using VEDA 4.0 program. In the Frontier molecular orbitals analysis, the molecular reactivity, kinetic stability, intramolecular charge transfer studies and the calculation of ionization energy, electron affinity, global hardness, chemical potential, electrophilicity index and softness values of the title molecule were carried out. The nonlinear optical activity of the molecule was studied by means of first order hyperpolarizability, which was computed as 7.64 times greater than urea. The natural bond orbital analysis was performed to confirm the nonlinear optical activity of the molecule.

  1. Quantum Information: Opportunities and Challenges

    SciTech Connect (OSTI)

    Bennink, Ryan S

    2008-01-01

    Modern society is shaped by the ability to transmit, manipulate, and store large amounts of information. Although we tend to think of information as abstract, information is physical, and computing is a physical process. How then should we understand information in a quantum world, in which physical systems may exist in multiple states at once and are altered by the very act of observation? This question has evolved into an exciting new field of research called Quantum Information (QI). QI challenges many accepted rules and practices in computer science. For example, a quantum computer would turn certain hard problems into soft problems, and would render common computationally-secure encryption methods (such as RSA) insecure. At the same time, quantum communication would provide an unprecedented kind of intrinsic information security at the level of the smallest physical objects used to store or transmit the information. This talk provides a general introduction to the subject of quantum information and its relevance to cyber security. In the first part, two of the stranger aspects of quantum physics namely, superposition and uncertainty are explained, along with their relation to the concept of information. These ideas are illustrated with a few examples: quantum ID cards, quantum key distribution, and Grover s quantum search algorithm. The state-of-the-art in quantum computing and communication hardware is then discussed, along with the daunting technological challenges that must be overcome. Relevant experimental and theoretical efforts at ORNL are highlighted. The talk concludes with speculations on the short- and long-term impact of quantum information on cyber security.

  2. Quantum emitters dynamically coupled to a quantum field

    SciTech Connect (OSTI)

    Acevedo, O. L.; Quiroga, L.; Rodrguez, F. J.; Johnson, N. F.

    2013-12-04

    We study theoretically the dynamical response of a set of solid-state quantum emitters arbitrarily coupled to a single-mode microcavity system. Ramping the matter-field coupling strength in round trips, we quantify the hysteresis or irreversible quantum dynamics. The matter-field system is modeled as a finite-size Dicke model which has previously been used to describe equilibrium (including quantum phase transition) properties of systems such as quantum dots in a microcavity. Here we extend this model to address non-equilibrium situations. Analyzing the systems quantum fidelity, we find that the near-adiabatic regime exhibits the richest phenomena, with a strong asymmetry in the internal collective dynamics depending on which phase is chosen as the starting point. We also explore signatures of the crossing of the critical points on the radiation subsystem by monitoring its Wigner function; then, the subsystem can exhibit the emergence of non-classicality and complexity.

  3. Quantum Darwinism, Decoherence, and the Randomness of Quantum Jumps

    SciTech Connect (OSTI)

    Zurek, Wojciech H.

    2014-06-05

    Tracing flows of information in our quantum Universe explains why we see the world as classical. Quantum principle of superposition decrees every combination of quantum states a legal quantum state. This is at odds with our experience. Decoherence selects preferred pointer states that survive interaction with the environment. They are localized and effectively classical. They persist while their superpositions decohere. Here we consider emergence of `the classical' starting at a more fundamental pre-decoherence level, tracing the origin of preferred pointer states and deducing their probabilities from the core quantum postulates. We also explore role of the environment as medium through which observers acquire information. This mode of information transfer leads to perception of objective classical reality.

  4. Quantum simulation of quantum field theory using continuous variables

    SciTech Connect (OSTI)

    Marshall, Kevin; Pooser, Raphael C.; Siopsis, George; Weedbrook, Christian

    2015-12-14

    Much progress has been made in the field of quantum computing using continuous variables over the last couple of years. This includes the generation of extremely large entangled cluster states (10,000 modes, in fact) as well as a fault tolerant architecture. This has lead to the point that continuous-variable quantum computing can indeed be thought of as a viable alternative for universal quantum computing. With that in mind, we present a new algorithm for continuous-variable quantum computers which gives an exponential speedup over the best known classical methods. Specifically, this relates to efficiently calculating the scattering amplitudes in scalar bosonic quantum field theory, a problem that is known to be hard using a classical computer. Thus, we give an experimental implementation based on cluster states that is feasible with today's technology.

  5. Quantum simulation of quantum field theory using continuous variables

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Marshall, Kevin; Pooser, Raphael C.; Siopsis, George; Weedbrook, Christian

    2015-12-14

    Much progress has been made in the field of quantum computing using continuous variables over the last couple of years. This includes the generation of extremely large entangled cluster states (10,000 modes, in fact) as well as a fault tolerant architecture. This has lead to the point that continuous-variable quantum computing can indeed be thought of as a viable alternative for universal quantum computing. With that in mind, we present a new algorithm for continuous-variable quantum computers which gives an exponential speedup over the best known classical methods. Specifically, this relates to efficiently calculating the scattering amplitudes in scalar bosonicmore » quantum field theory, a problem that is known to be hard using a classical computer. Thus, we give an experimental implementation based on cluster states that is feasible with today's technology.« less

  6. Quantum interference within the complex quantum Hamilton-Jacobi formalism

    SciTech Connect (OSTI)

    Chou, Chia-Chun; Sanz, Angel S.; Miret-Artes, Salvador; Wyatt, Robert E.

    2010-10-15

    Quantum interference is investigated within the complex quantum Hamilton-Jacobi formalism. As shown in a previous work [Phys. Rev. Lett. 102 (2009) 250401], complex quantum trajectories display helical wrapping around stagnation tubes and hyperbolic deflection near vortical tubes, these structures being prominent features of quantum caves in space-time Argand plots. Here, we further analyze the divergence and vorticity of the quantum momentum function along streamlines near poles, showing the intricacy of the complex dynamics. Nevertheless, despite this behavior, we show that the appearance of the well-known interference features (on the real axis) can be easily understood in terms of the rotation of the nodal line in the complex plane. This offers a unified description of interference as well as an elegant and practical method to compute the lifetime for interference features, defined in terms of the average wrapping time, i.e., considering such features as a resonant process.

  7. Hybrid Rotaxanes: Interlocked Structures for Quantum Computing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hybrid Rotaxanes: Interlocked Structures for Quantum Computing? Hybrid Rotaxanes: Interlocked Structures for Quantum Computing? Print Wednesday, 26 August 2009 00:00 Rotaxanes are...

  8. Applied Quantum Technology AQT | Open Energy Information

    Open Energy Info (EERE)

    Quantum Technology AQT Jump to: navigation, search Name: Applied Quantum Technology (AQT) Place: Santa Clara, California Zip: 95054 Product: California-based manufacturer of CIGS...

  9. Exploring quantum control landscapes: Topology, features, and...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Exploring quantum control landscapes: Topology, features, and optimization scaling Citation Details In-Document Search Title: Exploring quantum control landscapes: ...

  10. Second Generation Fractional Quantum Hall Effect

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generation Fractional Quantum Hall Effect - Sandia Energy Energy Search Icon Sandia Home ... Second Generation Fractional Quantum Hall Effect HomeHighlights - Energy Research...

  11. QuantumSphere Inc | Open Energy Information

    Open Energy Info (EERE)

    QuantumSphere Inc Jump to: navigation, search Name: QuantumSphere Inc Place: Santa Ana, California Zip: Santa Ana, CA 92705 Product: Manufacturer of metallic nanopowders for...

  12. Quantum Enabled Security (QES) for Optical Communications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory has developed Quantum Enabled Security (QES), a revolutionary new cybersecurity capability using quantum (single-photon) communications integrated with optical...

  13. Quantum gravity slows inflation

    SciTech Connect (OSTI)

    Tsamis, N.C. |; Woodard, R.P.

    1996-02-01

    We consider the quantum gravitational back-reaction on an initially inflating, homogeneous and isotropic universe whose topology is T{sup 3} {times} {Re}. Although there is no secular effect at one loop, an explicit calculation shows that two-loop processes act to slow the rate of expansion by an amount which becomes non-pertubatively large at late times. By exploiting Feynman`s tree theorem we show that all higher loops act in the same sense. 18 refs., 1 fig.

  14. PERTURBATION APPROACH FOR QUANTUM COMPUTATION

    SciTech Connect (OSTI)

    G. P. BERMAN; D. I. KAMENEV; V. I. TSIFRINOVICH

    2001-04-01

    We discuss how to simulate errors in the implementation of simple quantum logic operations in a nuclear spin quantum computer with many qubits, using radio-frequency pulses. We verify our perturbation approach using the exact solutions for relatively small (L = 10) number of qubits.

  15. Quantum technology and its applications

    SciTech Connect (OSTI)

    Boshier, Malcolm; Berkeland, Dana; Govindan, Tr; Abo - Shaeer, Jamil

    2010-12-10

    Quantum states of matter can be exploited as high performance sensors for measuring time, gravity, rotation, and electromagnetic fields, and quantum states of light provide powerful new tools for imaging and communication. Much attention is being paid to the ultimate limits of this quantum technology. For example, it has already been shown that exotic quantum states can be used to measure or image with higher precision or higher resolution or lower radiated power than any conventional technologies, and proof-of-principle experiments demonstrating measurement precision below the standard quantum limit (shot noise) are just starting to appear. However, quantum technologies have another powerful advantage beyond pure sensing performance that may turn out to be more important in practical applications: the potential for building devices with lower size/weight/power (SWaP) and cost requirements than existing instruments. The organizers of Quantum Technology Applications Workshop (QTAW) have several goals: (1) Bring together sponsors, researchers, engineers and end users to help build a stronger quantum technology community; (2) Identify how quantum systems might improve the performance of practical devices in the near- to mid-term; and (3) Identify applications for which more long term investment is necessary to realize improved performance for realistic applications. To realize these goals, the QTAW II workshop included fifty scientists, engineers, managers and sponsors from academia, national laboratories, government and the private-sector. The agenda included twelve presentations, a panel discussion, several breaks for informal exchanges, and a written survey of participants. Topics included photon sources, optics and detectors, squeezed light, matter waves, atomic clocks and atom magnetometry. Corresponding applications included communication, imaging, optical interferometry, navigation, gravimetry, geodesy, biomagnetism, and explosives detection. Participants

  16. Interface effect in coupled quantum wells

    SciTech Connect (OSTI)

    Hao, Ya-Fei

    2014-06-28

    This paper intends to theoretically investigate the effect of the interfaces on the Rashba spin splitting of two coupled quantum wells. The results show that the interface related Rashba spin splitting of the two coupled quantum wells is both smaller than that of a step quantum well which has the same structure with the step quantum well in the coupled quantum wells. And the influence of the cubic Dresselhaus spin-orbit interaction of the coupled quantum wells is larger than that of a step quantum well. It demonstrates that the spin relaxation time of the two coupled quantum wells will be shorter than that of a step quantum well. As for the application in the spintronic devices, a step quantum well may be better than the coupled quantum wells, which is mentioned in this paper.

  17. Quantum effects in unimolecular reaction dynamics

    SciTech Connect (OSTI)

    Gezelter, J.D.

    1995-12-01

    This work is primarily concerned with the development of models for the quantum dynamics of unimolecular isomerization and photodissociation reactions. We apply the rigorous quantum methodology of a Discrete Variable Representation (DVR) with Absorbing Boundary Conditions (ABC) to these models in an attempt to explain some very surprising results from a series of experiments on vibrationally excited ketene. Within the framework of these models, we are able to identify the experimental signatures of tunneling and dynamical resonances in the energy dependence of the rate of ketene isomerization. Additionally, we investigate the step-like features in the energy dependence of the rate of dissociation of triplet ketene to form {sup 3}B{sub 1} CH{sub 2} + {sup 1}{sigma}{sup +} CO that have been observed experimentally. These calculations provide a link between ab initio calculations of the potential energy surfaces and the experimentally observed dynamics on these surfaces. Additionally, we develop an approximate model for the partitioning of energy in the products of photodissociation reactions of large molecules with appreciable barriers to recombination. In simple bond cleavage reactions like CH{sub 3}COCl {yields} CH{sub 3}CO + Cl, the model does considerably better than other impulsive and statistical models in predicting the energy distribution in the products. We also investigate ways of correcting classical mechanics to include the important quantum mechanical aspects of zero-point energy. The method we investigate is found to introduce a number of undesirable dynamical artifacts including a reduction in the above-threshold rates for simple reactions, and a strong mixing of the chaotic and regular energy domains for some model problems. We conclude by discussing some of the directions for future research in the field of theoretical chemical dynamics.

  18. Quantum interference in polyenes

    SciTech Connect (OSTI)

    Tsuji, Yuta; Hoffmann, Roald; Movassagh, Ramis; Datta, Supriyo

    2014-12-14

    The explicit form of the zeroth Green's function in the Hckel model, approximated by the negative of the inverse of the Hckel matrix, has direct quantum interference consequences for molecular conductance. We derive a set of rules for transmission between two electrodes attached to a polyene, when the molecule is extended by an even number of carbons at either end (transmission unchanged) or by an odd number of carbons at both ends (transmission turned on or annihilated). These prescriptions for the occurrence of quantum interference lead to an unexpected consequence for switches which realize such extension through electrocyclic reactions: for some specific attachment modes the chemically closed ring will be the ON position of the switch. Normally the signs of the entries of the Green's function matrix are assumed to have no physical significance; however, we show that the signs may have observable consequences. In particular, in the case of multiple probe attachments if coherence in probe connections can be arranged in some cases new destructive interference results, while in others one may have constructive interference. One such case may already exist in the literature.

  19. Universal quantum computation in a semiconductor quantum wire network

    SciTech Connect (OSTI)

    Sau, Jay D.; Das Sarma, S.; Tewari, Sumanta

    2010-11-15

    Universal quantum computation (UQC) using Majorana fermions on a two-dimensional topological superconducting (TS) medium remains an outstanding open problem. This is because the quantum gate set that can be generated by braiding of the Majorana fermions does not include any two-qubit gate and also no single-qubit {pi}/8 phase gate. In principle, it is possible to create these crucial extra gates using quantum interference of Majorana fermion currents. However, it is not clear if the motion of the various order parameter defects (vortices, domain walls, etc.), to which the Majorana fermions are bound in a TS medium, can be quantum coherent. We show that these obstacles can be overcome using a semiconductor quantum wire network in the vicinity of an s-wave superconductor, by constructing topologically protected two-qubit gates and any arbitrary single-qubit phase gate in a topologically unprotected manner, which can be error corrected using magic-state distillation. Thus our strategy, using a judicious combination of topologically protected and unprotected gate operations, realizes UQC on a quantum wire network with a remarkably high error threshold of 0.14 as compared to 10{sup -3} to 10{sup -4} in ordinary unprotected quantum computation.

  20. Practical issues in quantum-key-distribution postprocessing

    SciTech Connect (OSTI)

    Fung, C.-H. Fred; Chau, H. F. [Department of Physics and Center of Theoretical and Computational Physics, University of Hong Kong, Pokfulam Road (Hong Kong); Ma Xiongfeng [Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, 200 University Ave W., Waterloo, Ontario, Canada N2L 3G1 (Canada)

    2010-01-15

    Quantum key distribution (QKD) is a secure key generation method between two distant parties by wisely exploiting properties of quantum mechanics. In QKD, experimental measurement outcomes on quantum states are transformed by the two parties to a secret key. This transformation is composed of many logical steps (as guided by security proofs), which together will ultimately determine the length of the final secret key and its security. We detail the procedure for performing such classical postprocessing taking into account practical concerns (including the finite-size effect and authentication and encryption for classical communications). This procedure is directly applicable to realistic QKD experiments and thus serves as a recipe that specifies what postprocessing operations are needed and what the security level is for certain lengths of the keys. Our result is applicable to the BB84 protocol with a single or entangled photon source.

  1. Quantum mechanical calculations of state-to-state cross sections...

    Office of Scientific and Technical Information (OSTI)

    Instituto de Fsica Fundamental (IFF-CSIC), C.S.I.C., Serrano 123, 28006 Madrid (Spain) Publication Date: 2015-06-07 OSTI Identifier: 22415939 Resource Type: Journal Article ...

  2. Symplectic quantum mechanics and Chern-Simons gauge theory. I

    SciTech Connect (OSTI)

    Jeffrey, Lisa C.

    2013-05-15

    In this article we describe the relation between the Chern-Simons gauge theory partition function and the partition function defined using the symplectic action functional as the Lagrangian. We show that the partition functions obtained using these two Lagrangians agree, and we identify the semiclassical formula for the partition function defined using the symplectic action functional.

  3. Quantum-mechanical picture of peripheral chiral dynamics (Journal...

    Office of Scientific and Technical Information (OSTI)

    The orbital motion of the pion causes a large left-right asymmetry in a transversely polarized nucleon. As a result, the effect attests to the relativistic nature of chiral ...

  4. Quantum-mechanical picture of peripheral chiral dynamics

    SciTech Connect (OSTI)

    Granados, Carlos; Weiss, Christian

    2015-08-28

    The nucleon's peripheral transverse charge and magnetization densities are computed in chiral effective field theory. The densities are represented in first-quantized form, as overlap integrals of chiral light-front wave functions describing the transition of the nucleon to soft pion-nucleon intermediate states. The orbital motion of the pion causes a large left-right asymmetry in a transversely polarized nucleon. As a result, the effect attests to the relativistic nature of chiral dynamics [pion momenta k = O(Mπ)] and could be observed in form factor measurements at low momentum transfer.

  5. Generalized space and linear momentum operators in quantum mechanics

    SciTech Connect (OSTI)

    Costa, Bruno G. da

    2014-06-15

    We propose a modification of a recently introduced generalized translation operator, by including a q-exponential factor, which implies in the definition of a Hermitian deformed linear momentum operator p{sup ^}{sub q}, and its canonically conjugate deformed position operator x{sup ^}{sub q}. A canonical transformation leads the Hamiltonian of a position-dependent mass particle to another Hamiltonian of a particle with constant mass in a conservative force field of a deformed phase space. The equation of motion for the classical phase space may be expressed in terms of the generalized dual q-derivative. A position-dependent mass confined in an infinite square potential well is shown as an instance. Uncertainty and correspondence principles are analyzed.

  6. Quantum-Mechanical Interatomic Potentials with Electron Temperature...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: ... 1184104 Report Number(s): LLNL-JRNL-487130 DOE Contract Number: DE-AC52-07NA27344 Resource Type: Journal Article ...

  7. Quantum fluctuations and isotope effects in ab initio descriptions of water

    SciTech Connect (OSTI)

    Wang, Lu; Markland, Thomas E.; Ceriotti, Michele

    2014-09-14

    Isotope substitution is extensively used to investigate the microscopic behavior of hydrogen bonded systems such as liquid water. The changes in structure and stability of these systems upon isotope substitution arise entirely from the quantum mechanical nature of the nuclei. Here, we provide a fully ab initio determination of the isotope exchange free energy and fractionation ratio of hydrogen and deuterium in water treating exactly nuclear quantum effects and explicitly modeling the quantum nature of the electrons. This allows us to assess how quantum effects in water manifest as isotope effects, and unravel how the interplay between electronic exchange and correlation and nuclear quantum fluctuations determine the structure of the hydrogen bond in water.

  8. A Compact Code for Simulations of Quantum Error Correction in Classical Computers

    SciTech Connect (OSTI)

    Nyman, Peter

    2009-03-10

    This study considers implementations of error correction in a simulation language on a classical computer. Error correction will be necessarily in quantum computing and quantum information. We will give some examples of the implementations of some error correction codes. These implementations will be made in a more general quantum simulation language on a classical computer in the language Mathematica. The intention of this research is to develop a programming language that is able to make simulations of all quantum algorithms and error corrections in the same framework. The program code implemented on a classical computer will provide a connection between the mathematical formulation of quantum mechanics and computational methods. This gives us a clear uncomplicated language for the implementations of algorithms.

  9. Flavored quantum Boltzmann equations

    SciTech Connect (OSTI)

    Cirigliano, Vincenzo; Lee, Christopher; Ramsey-Musolf, Michael J.; Tulin, Sean [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545 (United States); Center for Theoretical Physics, University of California, and Theoretical Physics Group, Lawrence Berkeley National Laboratory, Berkeley, California, 94720 (United States); Department of Physics, University of Wisconsin-Madison, 1150 University Avenue, Madison, Wisconsin, 53706 (United States) and Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California, 91125 (United States); Theory Group, TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, V6T 2A3 (Canada)

    2010-05-15

    We derive from first principles, using nonequilibrium field theory, the quantum Boltzmann equations that describe the dynamics of flavor oscillations, collisions, and a time-dependent mass matrix in the early universe. Working to leading nontrivial order in ratios of relevant time scales, we study in detail a toy model for weak-scale baryogenesis: two scalar species that mix through a slowly varying time-dependent and CP-violating mass matrix, and interact with a thermal bath. This model clearly illustrates how the CP asymmetry arises through coherent flavor oscillations in a nontrivial background. We solve the Boltzmann equations numerically for the density matrices, investigating the impact of collisions in various regimes.

  10. Quantum random number generator

    DOE Patents [OSTI]

    Pooser, Raphael C.

    2016-05-10

    A quantum random number generator (QRNG) and a photon generator for a QRNG are provided. The photon generator may be operated in a spontaneous mode below a lasing threshold to emit photons. Photons emitted from the photon generator may have at least one random characteristic, which may be monitored by the QRNG to generate a random number. In one embodiment, the photon generator may include a photon emitter and an amplifier coupled to the photon emitter. The amplifier may enable the photon generator to be used in the QRNG without introducing significant bias in the random number and may enable multiplexing of multiple random numbers. The amplifier may also desensitize the photon generator to fluctuations in power supplied thereto while operating in the spontaneous mode. In one embodiment, the photon emitter and amplifier may be a tapered diode amplifier.

  11. Quantum Field Theory & Gravity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantum Field Theory & Gravity Quantum Field Theory & Gravity Understanding discoveries at the Energy, Intensity, and Cosmic Frontiers Get Expertise Rajan Gupta (505) 667-7664 Email Bruce Carlsten (505) 667-5657 Email Quantum Field Theory and Gravity at Los Alamos The HEP effort at Los Alamos in this area is actively pursing a number of questions in this area. What is the final state of complete gravitational collapse? What happens at the event horizon? What is dark energy? How did the

  12. Effect of Ligands on Characteristics of (CdSe)13 Quantum Dot

    SciTech Connect (OSTI)

    Gao, Yang; Zhou, Bo; Kang, Seung-gu; Xin, Minsi; Yang, Ping; Dai, Xing; Wang, Zhigang; Zhou, Ruhong

    2014-01-01

    The widespread applications of quantum dots (QDs) have spurred an increasing interest in the study of their coating ligands, which can not only protect the electronic structures of the central QDs, but also control their permeability through biological membranes with both size and shape. In this work, we have used density functional theory (DFT) to investigate the electronic structures of (CdSe)13 passivated by OPMe2(CH2)nMe ligands with different lengths and various numbers of branches (Me=methyl group, n = 0, 1-3). Our results show that the absorption peak in the ultraviolet-visible (UV-vis) spectra displays a clear blue-shift, on the scale of ~100 nm, upon the binding of ligands. Once the total number of ligands bound with (CdSe)13 reached a saturated number (9 or 10), no more blue-shift occurred in the absorption peak in the UV-vis spectra. On the other hand, the aliphatic chain length of ligands has a negligible effect on the optical properties of the QD core. Analyses of the bonding characteristics confirm that optical transitions are dominantly governed by the central QD core rather than the organic passivation. Interestingly, the density of states (DOS) share similar characteristics as vibrational spectra, even though there is no coordination vibration mode between the ligands and the central QD. These findings might provide insights on the material design for the passivation of quantum dots for biomedical applications.

  13. On classical and quantum dynamics of tachyon-like fields and their cosmological implications

    SciTech Connect (OSTI)

    Dimitrijević, Dragoljub D. Djordjević, Goran S. Milošević, Milan; Vulcanov, Dumitru

    2014-11-24

    We consider a class of tachyon-like potentials, motivated by string theory, D-brane dynamics and inflation theory in the context of classical and quantum mechanics. A formalism for describing dynamics of tachyon fields in spatially homogenous and one-dimensional - classical and quantum mechanical limit is proposed. A few models with concrete potentials are considered. Additionally, possibilities for p-adic and adelic generalization of these models are discussed. Classical actions and corresponding quantum propagators, in the Feynman path integral approach, are calculated in a form invariant on a change of the background number fields, i.e. on both archimedean and nonarchimedean spaces. Looking for a quantum origin of inflation, relevance of p-adic and adelic generalizations are briefly discussed.

  14. Scalable quantum computer architecture with coupled donor-quantum dot qubits

    SciTech Connect (OSTI)

    Schenkel, Thomas; Lo, Cheuk Chi; Weis, Christoph; Lyon, Stephen; Tyryshkin, Alexei; Bokor, Jeffrey

    2014-08-26

    A quantum bit computing architecture includes a plurality of single spin memory donor atoms embedded in a semiconductor layer, a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, wherein a first voltage applied across at least one pair of the aligned quantum dot and donor atom controls a donor-quantum dot coupling. A method of performing quantum computing in a scalable architecture quantum computing apparatus includes arranging a pattern of single spin memory donor atoms in a semiconductor layer, forming a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, applying a first voltage across at least one aligned pair of a quantum dot and donor atom to control a donor-quantum dot coupling, and applying a second voltage between one or more quantum dots to control a Heisenberg exchange J coupling between quantum dots and to cause transport of a single spin polarized electron between quantum dots.

  15. Concurrence of quasipure quantum states

    SciTech Connect (OSTI)

    Mintert, Florian; Buchleitner, Andreas

    2005-07-15

    We derive an analytic approximation for the concurrence of weakly mixed bipartite quantum states--typical objects in state of the art experiments. This approximation is shown to be a lower bound of the concurrence of arbitrary states.

  16. Timelike Momenta In Quantum Electrodynamics

    DOE R&D Accomplishments [OSTI]

    Brodsky, S. J.; Ting, S. C. C.

    1965-12-01

    In this note we discuss the possibility of studying the quantum electrodynamics of timelike photon propagators in muon or electron pair production by incident high energy muon or electron beams from presently available proton or electron accelerators.

  17. Few Electron Quantum Dot coupling ...

    Office of Scientific and Technical Information (OSTI)

    Electron Quantum Dot coupling to Donor Implanted Electron Spins Martin Rudolph1. P. Harvey-Collard12, E. Nielson1, J.K. Gamble1, R. Muller1, T. Jacobson1, G. Ten-Eyck1, J. ...

  18. Quantum fluctuations in beam dynamics.

    SciTech Connect (OSTI)

    Kim, K.-J.

    1998-06-04

    Quantum effects could become important for particle and photon beams used in high-luminosity and high brightness applications in the current and next generation accelerators and radiation sources. This paper is a review of some of these effects.

  19. The Quantum Way of Sensing | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    quantum optics and spintronics. He counts as a pioneer in the field of solid state spin quantum physics and has explored applications in photonics, spintronics, quantum computing ...

  20. Santa Fe New Mexican: For cybersecurity, in quantum encryption...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    For cybersecurity, in quantum encryption we trust Santa Fe New Mexican: For cybersecurity, in quantum encryption we trust Los Alamos physicists developed a quantum random number...

  1. Quantum localization and bound-state formation in Bose-Einstein condensates

    SciTech Connect (OSTI)

    Franzosi, Roberto; Giampaolo, Salvatore M.; Illuminati, Fabrizio

    2010-12-15

    We discuss the possibility of exponential quantum localization in systems of ultracold bosonic atoms with repulsive interactions in open optical lattices without disorder. We show that exponential localization occurs in the maximally excited state of the lowest energy band. We establish the conditions under which the presence of the upper energy bands can be neglected, determine the successive stages and the quantum phase boundaries at which localization occurs, and discuss schemes to detect it experimentally by visibility measurements. The discussed mechanism is a particular type of quantum localization that is intuitively understood in terms of the interplay between nonlinearity and a bounded energy spectrum.

  2. Increased InAs quantum dot size and density using bismuth as a surfactant

    SciTech Connect (OSTI)

    Dasika, Vaishno D.; Krivoy, E. M.; Nair, H. P.; Maddox, S. J.; Park, K. W.; Yu, E. T.; Bank, S. R.; Jung, D.; Lee, M. L.

    2014-12-22

    We have investigated the growth of self-assembled InAs quantum dots using bismuth as a surfactant to control the dot size and density. We find that the bismuth surfactant increases the quantum dot density, size, and uniformity, enabling the extension of the emission wavelength with increasing InAs deposition without a concomitant reduction in dot density. We show that these effects are due to bismuth acting as a reactive surfactant to kinetically suppress the surface adatom mobility. This mechanism for controlling quantum dot density and size has the potential to extend the operating wavelength and enhance the performance of various optoelectronic devices.

  3. Convex polytopes and quantum separability

    SciTech Connect (OSTI)

    Holik, F.; Plastino, A.

    2011-12-15

    We advance a perspective of the entanglement issue that appeals to the Schlienz-Mahler measure [Phys. Rev. A 52, 4396 (1995)]. Related to it, we propose a criterium based on the consideration of convex subsets of quantum states. This criterium generalizes a property of product states to convex subsets (of the set of quantum states) that is able to uncover an interesting geometrical property of the separability property.

  4. Resilience to decoherence of the macroscopic quantum superpositions generated by universally covariant optimal quantum cloning

    SciTech Connect (OSTI)

    Spagnolo, Nicolo; Sciarrino, Fabio; De Martini, Francesco

    2010-09-15

    We show that the quantum states generated by universal optimal quantum cloning of a single photon represent a universal set of quantum superpositions resilient to decoherence. We adopt the Bures distance as a tool to investigate the persistence of quantum coherence of these quantum states. According to this analysis, the process of universal cloning realizes a class of quantum superpositions that exhibits a covariance property in lossy configuration over the complete set of polarization states in the Bloch sphere.

  5. Quantum Decay of the 'False Vacuum' and Pair Creation of Soliton Domain Walls

    SciTech Connect (OSTI)

    Miller, John H. Jr.

    2011-03-28

    Quantum decay of metastable states ('false vacua') has been proposed as a mechanism for bubble nucleation of new universes and phase transitions in the early universe. Experiments indicate the occurrence of false vacuum decay, within a region bounded by soliton domain walls that nucleate via quantum tunneling, in a highly anisotropic condensed matter system. This phenomenon provides a compelling example of false vacuum decay in the laboratory.

  6. Quantum well multijunction photovoltaic cell

    DOE Patents [OSTI]

    Chaffin, R.J.; Osbourn, G.C.

    1983-07-08

    A monolithic, quantum well, multilayer photovoltaic cell comprises a p-n junction comprising a p-region on one side and an n-region on the other side, each of which regions comprises a series of at least three semiconductor layers, all p-type in the p-region and all n-type in the n-region; each of said series of layers comprising alternating barrier and quantum well layers, each barrier layer comprising a semiconductor material having a first bandgap and each quantum well layer comprising a semiconductor material having a second bandgap when in bulk thickness which is narrower than said first bandgap, the barrier layers sandwiching each quantum well layer and each quantum well layer being sufficiently thin that the width of its bandgap is between said first and second bandgaps, such that radiation incident on said cell and above an energy determined by the bandgap of the quantum well layers will be absorbed and will produce an electrical potential across said junction.

  7. Quantum well multijunction photovoltaic cell

    DOE Patents [OSTI]

    Chaffin, Roger J.; Osbourn, Gordon C.

    1987-01-01

    A monolithic, quantum well, multilayer photovoltaic cell comprises a p-n junction comprising a p-region on one side and an n-region on the other side, each of which regions comprises a series of at least three semiconductor layers, all p-type in the p-region and all n-type in the n-region; each of said series of layers comprising alternating barrier and quantum well layers, each barrier layer comprising a semiconductor material having a first bandgap and each quantum well layer comprising a semiconductor material having a second bandgap when in bulk thickness which is narrower than said first bandgap, the barrier layers sandwiching each quantum well layer and each quantum well layer being sufficiently thin that the width of its bandgap is between said first and second bandgaps, such that radiation incident on said cell and above an energy determined by the bandgap of the quantum well layers will be absorbed and will produce an electrical potential across said junction.

  8. Mechanical memory

    DOE Patents [OSTI]

    Gilkey, Jeffrey C.; Duesterhaus, Michelle A.; Peter, Frank J.; Renn, Rosemarie A.; Baker, Michael S.

    2006-08-15

    A first-in-first-out (FIFO) microelectromechanical memory apparatus (also termed a mechanical memory) is disclosed. The mechanical memory utilizes a plurality of memory cells, with each memory cell having a beam which can be bowed in either of two directions of curvature to indicate two different logic states for that memory cell. The memory cells can be arranged around a wheel which operates as a clocking actuator to serially shift data from one memory cell to the next. The mechanical memory can be formed using conventional surface micromachining, and can be formed as either a nonvolatile memory or as a volatile memory.

  9. Mechanical memory

    DOE Patents [OSTI]

    Gilkey, Jeffrey C.; Duesterhaus, Michelle A.; Peter, Frank J.; Renn, Rosemarie A.; Baker, Michael S.

    2006-05-16

    A first-in-first-out (FIFO) microelectromechanical memory apparatus (also termed a mechanical memory) is disclosed. The mechanical memory utilizes a plurality of memory cells, with each memory cell having a beam which can be bowed in either of two directions of curvature to indicate two different logic states for that memory cell. The memory cells can be arranged around a wheel which operates as a clocking actuator to serially shift data from one memory cell to the next. The mechanical memory can be formed using conventional surface micromachining, and can be formed as either a nonvolatile memory or as a volatile memory.

  10. A comparative DFT study of the catalytic activity of the 3d transition metal sulphides surfaces

    SciTech Connect (OSTI)

    Gomez-Balderas, R.; Oviedo-Roa, R; Martinez-Magadan, J M.; Amador, C.; Dixon, David A. )

    2002-10-10

    The catalytic activity of the first transition metal series sulphides for hydrodesulfurization (HDS) reactions exhibits a particular behaviour when analysed as a function of the metal position in the Periodic Table. This work reports a comparative study of the electronic structure of the bulk and of the (0 0 1) metal surface (assumed to be the reactive surface) for the Sc-Zn monosulphides. The systems were modeled using the NiAs prototype crystal structure for the bulk and by applying the supercell model with seven atomic layers for (0 0 1) surfaces. The electronic structure of closed-packed solids code based on the density-functional theory and adopting the muffin-tin approximation to the potential was employed in the calculations of the electronic properties. For the Co and Ni sulphides, the density of states (DOS) variations between the metal atom present in the bulk and the ones exposed at the surface show that at the surface, there exists a higher DOS in the occupied states region just below the Fermi level. This feature might indicate a good performance of these two metal sulphides substrates in the HDS reactions favouring a donation, back-donation mechanism. In contrast, the DOS at the surface of Mn is increased in the unoccupied states region, just above the Fermi level. This suggests the possibility of a strong interaction with charge dontating sulphur adsorbate atoms poisoning the active substrate surface.

  11. ASCR Workshop on Quantum Computing for Science

    SciTech Connect (OSTI)

    Aspuru-Guzik, Alan; Van Dam, Wim; Farhi, Edward; Gaitan, Frank; Humble, Travis; Jordan, Stephen; Landahl, Andrew J; Love, Peter; Lucas, Robert; Preskill, John; Muller, Richard P.; Svore, Krysta; Wiebe, Nathan; Williams, Carl

    2015-06-01

    This report details the findings of the DOE ASCR Workshop on Quantum Computing for Science that was organized to assess the viability of quantum computing technologies to meet the computational requirements of the DOE’s science and energy mission, and to identify the potential impact of quantum technologies. The workshop was held on February 17-18, 2015, in Bethesda, MD, to solicit input from members of the quantum computing community. The workshop considered models of quantum computation and programming environments, physical science applications relevant to DOE's science mission as well as quantum simulation, and applied mathematics topics including potential quantum algorithms for linear algebra, graph theory, and machine learning. This report summarizes these perspectives into an outlook on the opportunities for quantum computing to impact problems relevant to the DOE’s mission as well as the additional research required to bring quantum computing to the point where it can have such impact.

  12. Methanol Synthesis from CO2 Hydrogenation over a Pd4/In2O3 Model Catalyst: A Combined DFT and Kinetic Study

    SciTech Connect (OSTI)

    Ye, Jingyun; Liu, Changjun; Mei, Donghai; Ge, Qingfeng

    2014-08-01

    Methanol synthesis from CO2 hydrogenation on Pd4/In2O3 has been investigated using density functional theory (DFT) and microkinetic modeling. In this study, three possible routes in the reaction network of CO2 + H2 ? CH3OH + H2O have been examined. Our DFT results show that the HCOO route competes with the RWGS route whereas a high activation barrier kinetically blocks the HCOOH route. DFT results also suggest that H2COO* + H* ? H2CO* +OH* and cis-COOH* + H* ?CO* + H2O* are the rate limiting steps in the HCOO route and the RWGS route, respectively. Microkinetic modeling results demonstrate that the HCOO route is the dominant reaction route for methanol synthesis from CO2 hydrogenation. We found that the activation of H adatom on the small Pd cluster and the presence of H2O on the In2O3 substrate play important roles in promoting the methanol synthesis. The hydroxyl adsorbed at the interface of Pd4/In2O3 induces the transformation of the supported Pd4 cluster from a butterfly structure into a tetrahedron structure. This important structure change not only indicates the dynamical nature of the supported nanoparticle catalyst structure during the reaction but also shifts the final hydrogenation step from H2COH to CH3O.

  13. Density functional theory calculations of stability and diffusion mechanisms of impurity atoms in Ge crystals

    SciTech Connect (OSTI)

    Maeta, Takahiro; Sueoka, Koji

    2014-08-21

    Ge-based substrates are being developed for applications in advanced nano-electronic devices because of their higher intrinsic carrier mobility than Si. The stability and diffusion mechanism of impurity atoms in Ge are not well known in contrast to those of Si. Systematic studies of the stable sites of 2nd to 6th row element impurity atoms in Ge crystal were undertaken with density functional theory (DFT) and compared with those in Si crystal. It was found that most of the impurity atoms in Ge were stable at substitutional sites, while transition metals in Si were stable at interstitial sites and the other impurity atoms in Si were stable at substitutional sites. Furthermore, DFT calculations were carried out to clarify the mechanism responsible for the diffusion of impurity atoms in Ge crystals. The diffusion mechanism for 3d transition metals in Ge was found to be an interstitial-substitutional diffusion mechanism, while in Si this was an interstitial diffusion mechanism. The diffusion barriers in the proposed diffusion mechanisms in Ge and Si were quantitatively verified by comparing them to the experimental values in the literature.

  14. Agreement Mechanisms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Agreement Mechanisms Agreement Mechanisms World-class experts and capabilities countering all aspects of explosive threats, and aiming predominantly at enhanced detection capabilities. CRADA: Cooperative Research and Development Agreement What is it? Work performed in collaboration with a sponsor. What does it do? Enables Los Alamos staff to participate with industry, academia, and nonprofit entities on collaborative R&D activities of mutual benefit. When is it used? An organization's

  15. Quantum fluctuations and saturable absorption in mesoscale lasers

    SciTech Connect (OSTI)

    Roy-Choudhury, Kaushik [Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089-0484 (United States); Levi, A. F. J. [Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089-0484 (United States); Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089-2533 (United States)

    2011-04-15

    We present a quantum-mechanical treatment of fluctuations and saturable absorption in mesoscale lasers. The time evolution of the density matrix is obtained from numerical integration and field-field and intensity-intensity correlations are calculated to obtain steady-state linewidth and photon statistics. Inclusion of a saturable absorber in the otherwise homogeneous medium is shown to suppress lasing, increase fluctuations, and enhance spontaneous emission near threshold.

  16. Quantum combustion chamber for the digital engine

    SciTech Connect (OSTI)

    Evers, L.W.; Baasch, V.

    1985-01-01

    For increasing fuel economy and reducing hydrocarbon emissions, a two-stoke-cycle, loop-scavenged single cylinder engine was modified by replacing the head with a head having three subchambers and incorporating a distributing pump fuel injection system. The fuel injection system allowed one subchamber to be operated at a time. The quantum combustion system demonstrated both lower fuel consumption and lower hydrocarbon emissions than a conventional homogeneous charge engine. The experimental evidence also indicates that the combustion essentially occurred in the one chamber into which fuel was injected. Establishing stratified charge combustion by mechanically separating the regions of air from the regions of air/fuel mixtures by means of subchambers is feasible.

  17. History dependent quantum random walks as quantum lattice gas automata

    SciTech Connect (OSTI)

    Shakeel, Asif E-mail: dmeyer@math.ucsd.edu Love, Peter J. E-mail: dmeyer@math.ucsd.edu; Meyer, David A. E-mail: dmeyer@math.ucsd.edu

    2014-12-15

    Quantum Random Walks (QRW) were first defined as one-particle sectors of Quantum Lattice Gas Automata (QLGA). Recently, they have been generalized to include history dependence, either on previous coin (internal, i.e., spin or velocity) states or on previous position states. These models have the goal of studying the transition to classicality, or more generally, changes in the performance of quantum walks in algorithmic applications. We show that several history dependent QRW can be identified as one-particle sectors of QLGA. This provides a unifying conceptual framework for these models in which the extra degrees of freedom required to store the history information arise naturally as geometrical degrees of freedom on the lattice.

  18. Computational mechanics

    SciTech Connect (OSTI)

    Goudreau, G.L.

    1993-03-01

    The Computational Mechanics thrust area sponsors research into the underlying solid, structural and fluid mechanics and heat transfer necessary for the development of state-of-the-art general purpose computational software. The scale of computational capability spans office workstations, departmental computer servers, and Cray-class supercomputers. The DYNA, NIKE, and TOPAZ codes have achieved world fame through our broad collaborators program, in addition to their strong support of on-going Lawrence Livermore National Laboratory (LLNL) programs. Several technology transfer initiatives have been based on these established codes, teaming LLNL analysts and researchers with counterparts in industry, extending code capability to specific industrial interests of casting, metalforming, and automobile crash dynamics. The next-generation solid/structural mechanics code, ParaDyn, is targeted toward massively parallel computers, which will extend performance from gigaflop to teraflop power. Our work for FY-92 is described in the following eight articles: (1) Solution Strategies: New Approaches for Strongly Nonlinear Quasistatic Problems Using DYNA3D; (2) Enhanced Enforcement of Mechanical Contact: The Method of Augmented Lagrangians; (3) ParaDyn: New Generation Solid/Structural Mechanics Codes for Massively Parallel Processors; (4) Composite Damage Modeling; (5) HYDRA: A Parallel/Vector Flow Solver for Three-Dimensional, Transient, Incompressible Viscous How; (6) Development and Testing of the TRIM3D Radiation Heat Transfer Code; (7) A Methodology for Calculating the Seismic Response of Critical Structures; and (8) Reinforced Concrete Damage Modeling.

  19. Topological one-way quantum computation on verified logical cluster...

    Office of Scientific and Technical Information (OSTI)

    NOISE; QUANTUM COMPUTERS; QUBITS; STAR CLUSTERS; THREE-DIMENSIONAL CALCULATIONS; TOPOLOGY; VERIFICATION COMPUTERS; INFORMATION; MATHEMATICS; QUANTUM INFORMATION Word Cloud ...

  20. Computational mechanics

    SciTech Connect (OSTI)

    Raboin, P J

    1998-01-01

    The Computational Mechanics thrust area is a vital and growing facet of the Mechanical Engineering Department at Lawrence Livermore National Laboratory (LLNL). This work supports the development of computational analysis tools in the areas of structural mechanics and heat transfer. Over 75 analysts depend on thrust area-supported software running on a variety of computing platforms to meet the demands of LLNL programs. Interactions with the Department of Defense (DOD) High Performance Computing and Modernization Program and the Defense Special Weapons Agency are of special importance as they support our ParaDyn project in its development of new parallel capabilities for DYNA3D. Working with DOD customers has been invaluable to driving this technology in directions mutually beneficial to the Department of Energy. Other projects associated with the Computational Mechanics thrust area include work with the Partnership for a New Generation Vehicle (PNGV) for ''Springback Predictability'' and with the Federal Aviation Administration (FAA) for the ''Development of Methodologies for Evaluating Containment and Mitigation of Uncontained Engine Debris.'' In this report for FY-97, there are five articles detailing three code development activities and two projects that synthesized new code capabilities with new analytic research in damage/failure and biomechanics. The article this year are: (1) Energy- and Momentum-Conserving Rigid-Body Contact for NIKE3D and DYNA3D; (2) Computational Modeling of Prosthetics: A New Approach to Implant Design; (3) Characterization of Laser-Induced Mechanical Failure Damage of Optical Components; (4) Parallel Algorithm Research for Solid Mechanics Applications Using Finite Element Analysis; and (5) An Accurate One-Step Elasto-Plasticity Algorithm for Shell Elements in DYNA3D.

  1. Describing excited state relaxation and localization in TiO2 nanoparticles using TD-DFT

    SciTech Connect (OSTI)

    Berardo, Enrico; Hu, Han -Shi; van Dam, Hubertus J. J.; Shevlin, Stephen A.; Woodley, Scott M.; Kowalski, Karol; Zwijnenburg, Martijn A.

    2014-02-26

    We have investigated the description of excited state relaxation in naked and hydrated TiO2 nanoparticles using Time-Dependent Density Functional Theory (TD-DFT) with three common hybrid exchange-correlation (XC) potentials; B3LYP, CAM-B3LYP and BHLYP. Use of TD-CAM-B3LYP and TD-BHLYP yields qualitatively similar results for all structures, which are also consistent with predictions of coupled cluster theory for small particles. TD-B3LYP, in contrast, is found to make rather different predictions; including apparent conical intersections for certain particles that are not observed with TD-CAM-B3LYP nor with TD-BHLYP. In line with our previous observations for vertical excitations, the issue with TD-B3LYP appears to be the inherent tendency of TD-B3LYP, and other XC potentials with no or a low percentage of Hartree-Fock Like Exchange, to spuriously stabilize the energy of charge-transfer (CT) states. Even in the case of hydrated particles, for which vertical excitations are generally well described with all XC potentials, the use of TD-B3LYP appears to result in CT-problems for certain particles. We hypothesize that the spurious stabilization of CT-states by TD-B3LYP even may drive the excited state optimizations to different excited state geometries than those obtained using TD-CAM-B3LYP or TD-BHLYP. In conclusion, focusing on the TD-CAM-B3LYP and TD-BHLYP results, excited state relaxation in naked and hydrated TiO2 nanoparticles is predicted to be associated with a large Stokes shift.

  2. Can quantum coherent solar cells break detailed balance?

    SciTech Connect (OSTI)

    Kirk, Alexander P.

    2015-07-21

    Carefully engineered coherent quantum states have been proposed as a design attribute that is hypothesized to enable solar photovoltaic cells to break the detailed balance (or radiative) limit of power conversion efficiency by possibly causing radiative recombination to be suppressed. However, in full compliance with the principles of statistical mechanics and the laws of thermodynamics, specially prepared coherent quantum states do not allow a solar photovoltaic cell—a quantum threshold energy conversion device—to exceed the detailed balance limit of power conversion efficiency. At the condition given by steady-state open circuit operation with zero nonradiative recombination, the photon absorption rate (or carrier photogeneration rate) must balance the photon emission rate (or carrier radiative recombination rate) thus ensuring that detailed balance prevails. Quantum state transitions, entropy-generating hot carrier relaxation, and photon absorption and emission rate balancing are employed holistically and self-consistently along with calculations of current density, voltage, and power conversion efficiency to explain why detailed balance may not be violated in solar photovoltaic cells.

  3. Large-amplitude solitons in gravitationally balanced quantum plasmas

    SciTech Connect (OSTI)

    Akbari-Moghanjoughi, M.

    2014-08-15

    Using the quantum fluid model for self-gravitating quantum plasmas with the Bernoulli pseudopotential method and taking into account the relativistic degeneracy effect, it is shown that gravity-induced large-amplitude density rarefaction solitons can exist in gravitationally balanced quantum plasmas. These nonlinear solitons are generated due to the force imbalance between the gravity and the quantum fluid pressure via local density perturbations, similar to that on shallow waters. It is found that both the fluid mass-density and the atomic-number of the constituent ions have significant effect on the amplitude and width of these solitonic profiles. Existence of a large-scale gravity-induced solitonic activities on neutron-star surface, for instance, can be a possible explanation for the recently proposed resonant shattering mechanism [D. Tsang et al., Phys. Rev. Lett. 108, 011102 (2012)] causing the intense short gamma ray burst phenomenon, in which release of ≃10{sup 46}–10{sup 47} ergs would be possible from the surface. The resonant shattering of the crust in a neutron star has been previously attributed to the crust-core interface mode and the tidal surface tensions. We believe that current model can be a more natural explanation for the energy liberation by solitonic activities on the neutron star surfaces, without a requirement for external mergers like other neutron stars or black holes for the crustal shatter.

  4. Superradiance in a two-channel quantum wire

    SciTech Connect (OSTI)

    Tayebi, A.; Zelevinsky, V.

    2014-10-15

    A one-dimensional, two-channel quantum wire is studied in the effective non-Hermitian Hamiltonian framework. Analytical expressions are derived for the band structure of the isolated wire. Quantum states and transport properties of the wire coupled to two ideal leads at the edges are studied in detail. The width distribution of the quasistationary states varies as a function of the coupling strength to the environment. At weak coupling, all the eigenenergies uniformly acquire small widths. The picture changes entirely at strong coupling, a certain number of states (“super-radiant”) are greatly broadened, while the rest remain long-lived states, a pure quantum mechanical effect as a consequence of quantum interference. The transition between the two regimes greatly influences the transport properties of the system. The maximum transmission through the wire occurs at the super-radiance transition. We consider also a realistic situation with energy-dependent coupling to the continuum due to the existence of decay threshold where super-radiance still plays a significant role in transport properties of the system.

  5. QKarD Quantum Smart Card

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    QKarD Quantum Smart Card QKarD Quantum Smart Card Los Alamos National Laboratory (LANL) scientists have developed a revolutionary technology entitled "QKarD" that implements the...

  6. Quantum Process Matrix Computation by Monte Carlo

    Energy Science and Technology Software Center (OSTI)

    2012-09-11

    The software package, processMC, is a python script that allows for the rapid modeling of small , noisy quantum systems and the computation of the averaged quantum evolution map.

  7. Double logarithmic asymptotic behavior in quantum chromodynamics

    SciTech Connect (OSTI)

    Kirschner, R.

    1981-08-01

    The double logarithmic contributions to the quark-(anti)quark scattering and annihilation amplitudes are summed to all orders in quantum chromodynamics. The results are a generalization of the calculations of Gorshkov et al. in the case of quantum electrodynamics.

  8. Electrical resistivity as quantum chaos

    SciTech Connect (OSTI)

    Laughlin, R.B.

    1987-08-01

    The physics of quantum transport is re-examined as a problem in quantum chaos. It is proposed that the ''random potential'' in which electrons in dirty metals move is not random at all, but rather any potential inducing the electron motion to be chaotic. The Liapunov characteristic exponent of classical electron motion in this potential is identified with the collision rate l/tau appearing in Ohm's law. A field theory for chaotic systems, analogous to that used to describe dirty metals, is developed and used to investigate the quantum Sinai billiard problem. It is shown that a noninteracting degenerate electron gas moving in this potential exhibits Drude conductivity in the limit h-bar ..-->.. 0. 15 refs., 4 figs.

  9. Quantum photonics hybrid integration platform

    SciTech Connect (OSTI)

    Murray, E.; Floether, F. F.; Ellis, D. J. P.; Meany, T.; Bennett, A. J. Shields, A. J.; Lee, J. P.; Griffiths, J. P.; Jones, G. A. C.; Farrer, I.; Ritchie, D. A.

    2015-10-26

    Fundamental to integrated photonic quantum computing is an on-chip method for routing and modulating quantum light emission. We demonstrate a hybrid integration platform consisting of arbitrarily designed waveguide circuits and single-photon sources. InAs quantum dots (QD) embedded in GaAs are bonded to a SiON waveguide chip such that the QD emission is coupled to the waveguide mode. The waveguides are SiON core embedded in a SiO{sub 2} cladding. A tuneable Mach Zehnder interferometer (MZI) modulates the emission between two output ports and can act as a path-encoded qubit preparation device. The single-photon nature of the emission was verified using the on-chip MZI as a beamsplitter in a Hanbury Brown and Twiss measurement.

  10. Quantum Chaos generates Regularities

    SciTech Connect (OSTI)

    Otsuka, Takaharu [Department of Physics, University of Tokyo (Japan); RIKEN (Japan); Center for Nuclear Study, University of Tokyo (Japan); Shimizu, Noritaka [Department of Physics, University of Tokyo (Japan); RIKEN (Japan)

    2005-07-08

    The mechanism of the dominance (preponderance) of the 0+ ground state for random interactions is proposed to be the chaotic realization of the highest rotational symmetry. This is a consequence of a general principle on the chaos and symmetry that the highest symmetry is given to the ground state if sufficient mixing occurs in a chaotic way by a random interaction. Under this symmetry-realization mechanism, the ground-state parity and isospin can be predicted so that the positive parity is favored over the negative parity and the isospin T = 0 state is favored over higher isospin. It is further suggested how one can enhance the realization of highest symmetries within random interactions. Thus, chaos and symmetry are shown to be linked deeply.

  11. Quantum Indeterminacy of Cosmic Systems

    SciTech Connect (OSTI)

    Hogan, Craig J.

    2013-12-30

    It is shown that quantum uncertainty of motion in systems controlled mainly by gravity generally grows with orbital timescale $H^{-1}$, and dominates classical motion for trajectories separated by distances less than $\\approx H^{-3/5}$ in Planck units. For example, the cosmological metric today becomes indeterminate at macroscopic separations, $H_0^{-3/5}\\approx 60$ meters. Estimates suggest that entangled non-localized quantum states of geometry and matter may significantly affect fluctuations during inflation, and connect the scale of dark energy to that of strong interactions.

  12. Ordinary versus PT-symmetric Φ³ quantum field theory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bender, Carl M.; Branchina, Vincenzo; Messina, Emanuele

    2012-04-02

    A quantum-mechanical theory is PT-symmetric if it is described by a Hamiltonian that commutes with PT, where the operator P performs space reflection and the operator T performs time reversal. A PT-symmetric Hamiltonian often has a parametric region of unbroken PT symmetry in which the energy eigenvalues are all real. There may also be a region of broken PT symmetry in which some of the eigenvalues are complex. These regions are separated by a phase transition that has been repeatedly observed in laboratory experiments. This paper focuses on the properties of a PT-symmetric igΦ³ quantum field theory. This quantum fieldmore » theory is the analog of the PT-symmetric quantum-mechanical theory described by the Hamiltonian H=p²+ix³, whose eigenvalues have been rigorously shown to be all real. This paper compares the renormalization group properties of a conventional Hermitian gΦ³ quantum field theory with those of the PT-symmetric igΦ³ quantum field theory. It is shown that while the conventional gΦ³ theory in d=6 dimensions is asymptotically free, the igΦ³ theory is like a gΦ⁴ theory in d=4 dimensions; it is energetically stable, perturbatively renormalizable, and trivial.« less

  13. Ordinary versus PT-symmetric Φ³ quantum field theory

    SciTech Connect (OSTI)

    Bender, Carl M.; Branchina, Vincenzo; Messina, Emanuele

    2012-04-02

    A quantum-mechanical theory is PT-symmetric if it is described by a Hamiltonian that commutes with PT, where the operator P performs space reflection and the operator T performs time reversal. A PT-symmetric Hamiltonian often has a parametric region of unbroken PT symmetry in which the energy eigenvalues are all real. There may also be a region of broken PT symmetry in which some of the eigenvalues are complex. These regions are separated by a phase transition that has been repeatedly observed in laboratory experiments. This paper focuses on the properties of a PT-symmetric igΦ³ quantum field theory. This quantum field theory is the analog of the PT-symmetric quantum-mechanical theory described by the Hamiltonian H=p²+ix³, whose eigenvalues have been rigorously shown to be all real. This paper compares the renormalization group properties of a conventional Hermitian gΦ³ quantum field theory with those of the PT-symmetric igΦ³ quantum field theory. It is shown that while the conventional gΦ³ theory in d=6 dimensions is asymptotically free, the igΦ³ theory is like a gΦ⁴ theory in d=4 dimensions; it is energetically stable, perturbatively renormalizable, and trivial.

  14. The effect of quantum correction on plasma electron heating in ultraviolet laser interaction

    SciTech Connect (OSTI)

    Zare, S.; Sadighi-Bonabi, R. Anvari, A.; Yazdani, E.; Hora, H.

    2015-04-14

    The interaction of the sub-picosecond UV laser in sub-relativistic intensities with deuterium is investigated. At high plasma temperatures, based on the quantum correction in the collision frequency, the electron heating and the ion block generation in plasma are studied. It is found that due to the quantum correction, the electron heating increases considerably and the electron temperature uniformly reaches up to the maximum value of 4.91 × 10{sup 7 }K. Considering the quantum correction, the electron temperature at the laser initial coupling stage is improved more than 66.55% of the amount achieved in the classical model. As a consequence, by the modified collision frequency, the ion block is accelerated quicker with higher maximum velocity in comparison with the one by the classical collision frequency. This study proves the necessity of considering a quantum mechanical correction in the collision frequency at high plasma temperatures.

  15. Rotational fluctuation of molecules in quantum clusters. I. Path integral hybrid Monte Carlo algorithm

    SciTech Connect (OSTI)

    Miura, Shinichi [Institute for Molecular Science, 38 Myodaiji, Okazaki 444-8585 (Japan)

    2007-03-21

    In this paper, we present a path integral hybrid Monte Carlo (PIHMC) method for rotating molecules in quantum fluids. This is an extension of our PIHMC for correlated Bose fluids [S. Miura and J. Tanaka, J. Chem. Phys. 120, 2160 (2004)] to handle the molecular rotation quantum mechanically. A novel technique referred to be an effective potential of quantum rotation is introduced to incorporate the rotational degree of freedom in the path integral molecular dynamics or hybrid Monte Carlo algorithm. For a permutation move to satisfy Bose statistics, we devise a multilevel Metropolis method combined with a configurational-bias technique for efficiently sampling the permutation and the associated atomic coordinates. Then, we have applied the PIHMC to a helium-4 cluster doped with a carbonyl sulfide molecule. The effects of the quantum rotation on the solvation structure and energetics were examined. Translational and rotational fluctuations of the dopant in the superfluid cluster were also analyzed.

  16. Fractofusion mechanism

    SciTech Connect (OSTI)

    Yasui, K. . Dept. of Physics)

    1992-11-01

    In this paper, the fractofusion mechanism of cold fusion is investigated theoretically. The conditions necessary for fractofusion during the absorption of deuterium atoms by palladium specimens (the condition of so-called cold fusion experiments) is clarified, including crack generation at grain boundaries, the high orientation angle of grains, rapid crack formation, the increase of electrical resistance around a crack, the large width of cracks, and the generation of many cracks. The origin and quantity of the electrical field inside cracks in the conductor are also clarified. By the fractofusion mechanism, the experimental facts that neutron emissions are observed in bursts, that sometimes they coincide with the deformation of a palladium specimen, and that in many experiments excess neutrons were not observed are qualitatively explained. The upper limit of the total fractofusion yields during the absorption of deuterium atoms by palladium specimens are estimated.

  17. FRW quantum cosmology with a generalized Chaplygin gas

    SciTech Connect (OSTI)

    Bouhmadi-Lopez, Mariam; Moniz, Paulo Vargas

    2005-03-15

    Cosmologies with a Chaplygin gas have recently been explored with the objective of explaining the transition from a dust dominated epoch towards an accelerating expansion stage. In this context, we consider the hypothesis that this transition involves a quantum mechanical process. Our analysis is entirely analytical, with the objective of finding explicit mathematical expressions for the different quantum mechanical states and their cosmological implications. We employ a Friedmann-Robertson-Walker (FRW) minisuperspace model, characterized by two Lorentzian sectors, separated by a classically forbidden region. This is the configuration associated with the evolution of a generalized Chaplygin gas in a FRW universe. The Hartle-Hawking and Vilenkin wave functions are then computed, together with the transition amplitudes towards the accelerating epoch. Furthermore, for specific initial conditions we found that the generalized Chaplygin gas parameters become related through an expression involving an integer n. We also introduce a phenomenological association between some brane-world scenarios and a FRW minisuperspace cosmology with a generalized Chaplygin gas. The aim is to promote a discussion and subsequent research on the quantum creation of brane cosmologies from such a perspective. Additional results in this paper suggest that the brane tension would become related with the generalized Chaplygin gas parameters through another expression involving an integer.

  18. Naked singularities and quantum gravity

    SciTech Connect (OSTI)

    Harada, Tomohiro; Iguchi, Hideo; Nakao, Ken-ichi; Singh, T. P.; Tanaka, Takahiro; Vaz, Cenalo

    2001-08-15

    There are known models of spherical gravitational collapse in which the collapse ends in a naked shell-focusing singularity for some initial data. If a massless scalar field is quantized on the classical background provided by such a star, it is found that the outgoing quantum flux of the scalar field diverges in the approach to the Cauchy horizon. We argue that the semiclassical approximation (i.e., quantum field theory on a classical curved background) used in these analyses ceases to be valid about one Planck time before the epoch of naked singularity formation, because by then the curvature in the central region of the star reaches the Planck scale. It is shown that during the epoch in which the semiclassical approximation is valid, the total emitted energy is about one Planck unit, and is not divergent. We also argue that back reaction in this model does not become important so long as gravity can be treated classically. It follows that the further evolution of the star will be determined by quantum gravitational effects, and without invoking quantum gravity it is not possible to say whether the star radiates away on a short time scale or settles down into a black hole state.

  19. Engineering Light: Quantum Cascade Lasers

    ScienceCinema (OSTI)

    Claire Gmachl

    2010-09-01

    Quantum cascade lasers are ideal for environmental sensing and medical diagnostic applications. Gmachl discusses how these lasers work, and their applications, including their use as chemical trace gas sensors. As examples of these applications, she briefly presents results from her field campaign at the Beijing Olympics, and ongoing campaigns in Texas, Maryland, and Ghana.

  20. How much a quantum measurement is informative?

    SciTech Connect (OSTI)

    Dall'Arno, Michele; D'Ariano, Giacomo Mauro; Sacchi, Massimiliano F.

    2014-12-04

    The informational power of a quantum measurement is the maximum amount of classical information that the measurement can extract from any ensemble of quantum states. We discuss its main properties. Informational power is an additive quantity, being equivalent to the classical capacity of a quantum-classical channel. The informational power of a quantum measurement is the maximum of the accessible information of a quantum ensemble that depends on the measurement. We present some examples where the symmetry of the measurement allows to analytically derive its informational power.

  1. Anisotropic lattice thermal expansion of PbFeBO{sub 4}: A study by X-ray and neutron diffraction, Raman spectroscopy and DFT calculations

    SciTech Connect (OSTI)

    Murshed, M. Mangir; Mendive, Cecilia B.; Curti, Mariano; Nénert, Gwilherm; Kalita, Patricia E.; Lipinska, Kris; Cornelius, Andrew L.; Huq, Ashfia; Gesing, Thorsten M.

    2014-11-15

    Highlights: • Mullite-type PbFeBO{sub 4} shows uni-axial negative coefficient of thermal expansion. • Anisotropic thermal expansion of the metric parameters was modeled using modified Grüneisen approximation. • The model includes harmonic, quasi-harmonic and intrinsic anharmonic contributions to the internal energy. • DFT calculation, temperature- and pressure-dependent Raman spectra help understand the phonon decay and associated anharmonicity. - Abstract: The lattice thermal expansion of mullite-type PbFeBO{sub 4} is presented in this study. The thermal expansion coefficients of the metric parameters were obtained from composite data collected from temperature-dependent neutron and X-ray powder diffraction between 10 K and 700 K. The volume thermal expansion was modeled using extended Grüneisen first-order approximation to the zero-pressure equation of state. The additive frame of the model includes harmonic, quasi-harmonic and intrinsic anharmonic potentials to describe the change of the internal energy as a function of temperature. The unit-cell volume at zero-pressure and 0 K was optimized during the DFT simulations. Harmonic frequencies of the optical Raman modes at the Γ-point of the Brillouin zone at 0 K were also calculated by DFT, which help to assign and crosscheck the experimental frequencies. The low-temperature Raman spectra showed significant anomaly in the antiferromagnetic regions, leading to softening or hardening of some phonons. Selected modes were analyzed using a modified Klemens model. The shift of the frequencies and the broadening of the line-widths helped to understand the anharmonic vibrational behaviors of the PbO{sub 4}, FeO{sub 6} and BO{sub 3} polyhedra as a function of temperature.

  2. MiniDFT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Fock matrix is constructed and then diagonalized. To build the Fock matrix, Fast Fourier Transforms are used to tranform orbitals from the plane wave basis ( where the...

  3. Authentication Protocol using Quantum Superposition States

    SciTech Connect (OSTI)

    Kanamori, Yoshito; Yoo, Seong-Moo; Gregory, Don A.; Sheldon, Frederick T

    2009-01-01

    When it became known that quantum computers could break the RSA (named for its creators - Rivest, Shamir, and Adleman) encryption algorithm within a polynomial-time, quantum cryptography began to be actively studied. Other classical cryptographic algorithms are only secure when malicious users do not have sufficient computational power to break security within a practical amount of time. Recently, many quantum authentication protocols sharing quantum entangled particles between communicators have been proposed, providing unconditional security. An issue caused by sharing quantum entangled particles is that it may not be simple to apply these protocols to authenticate a specific user in a group of many users. An authentication protocol using quantum superposition states instead of quantum entangled particles is proposed. The random number shared between a sender and a receiver can be used for classical encryption after the authentication has succeeded. The proposed protocol can be implemented with the current technologies we introduce in this paper.

  4. Quantum Markovian master equation for scattering from surfaces

    SciTech Connect (OSTI)

    Li, Haifeng; Shao, Jiushu; Azuri, Asaf; Pollak, Eli Alicki, Robert

    2014-01-07

    We propose a semi-phenomenological Markovian Master equation for describing the quantum dynamics of atom-surface scattering. It embodies the Lindblad-like structure and can describe both damping and pumping of energy between the system and the bath. It preserves positivity and correctly accounts for the vanishing of the interaction of the particle with the surface when the particle is distant from the surface. As a numerical test, we apply it to a model of an Ar atom scattered from a LiF surface, allowing for interaction only in the vertical direction. At low temperatures, we find that the quantum mechanical average energy loss is smaller than the classical energy loss. The numerical results obtained from the space dependent friction master equation are compared with numerical simulations for a discretized bath, using the multi-configurational time dependent Hartree methodology. The agreement between the two simulations is quantitative.

  5. Quantum Hall effect in semiconductor systems with quantum dots and antidots

    SciTech Connect (OSTI)

    Beltukov, Ya. M.; Greshnov, A. A.

    2015-04-15

    The integer quantum Hall effect in systems of semiconductor quantum dots and antidots is studied theoretically as a factor of temperature. It is established that the conditions for carrier localization in quantum-dot systems favor the observation of the quantum Hall effect at higher temperatures than in quantum-well systems. The obtained numerical results show that the fundamental plateau corresponding to the transition between the ground and first excited Landau levels can be retained up to a temperature of T ∼ 50 K, which is an order of magnitude higher than in the case of quantum wells. Implementation of the quantum Hall effect at such temperatures requires quantum-dot systems with controllable characteristics, including the optimal size and concentration and moderate geometrical and composition fluctuations. In addition, ordered arrangement is desirable, hence quantum antidots are preferable.

  6. ELEVATING MECHANISM

    DOE Patents [OSTI]

    Frederick, H.S.; Kinsella, M.A.

    1959-02-24

    An elevator is described, which is arranged for movement both in a horizontal and in a vertical direction so that the elevating mechanism may be employed for servicing equipment at separated points in a plant. In accordance with the present invention, the main elevator chassis is suspended from a monorail. The chassis, in turn supports a vertically moveable carriage, a sub- carriage vertically moveable on the carriage, and a turntable carried by the sub- carriage and moveable through an arc of 90 with the equipment attached thereto. In addition, the chassis supports all the means required to elevate or rotate the equipment.

  7. Ab initio and relativistic DFT study of spin–rotation and NMR shielding constants in XF{sub 6} molecules, X = S, Se, Te, Mo, and W

    SciTech Connect (OSTI)

    Ruud, Kenneth; Demissie, Taye B.; Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warszawa, Kasprzaka 44 ; Jaszuński, Michał

    2014-05-21

    We present an analysis of the spin–rotation and absolute shielding constants of XF{sub 6} molecules (X = S, Se, Te, Mo, W) based on ab initio coupled cluster and four-component relativistic density-functional theory (DFT) calculations. The results show that the relativistic contributions to the spin–rotation and shielding constants are large both for the heavy elements as well as for the fluorine nuclei. In most cases, incorporating the computed relativistic corrections significantly improves the agreement between our results and the well-established experimental values for the isotropic spin–rotation constants and their anisotropic components. This suggests that also for the other molecules, for which accurate and reliable experimental data are not available, reliable values of spin–rotation and absolute shielding constants were determined combining ab initio and relativistic DFT calculations. For the heavy nuclei, the breakdown of the relationship between the spin–rotation constant and the paramagnetic contribution to the shielding constant, due to relativistic effects, causes a significant error in the total absolute shielding constants.

  8. Anisotropic lattice thermal expansion of PbFeBO4: A study by X-ray and neutron diffraction, Raman spectroscopy and DFT calculations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Murshed, M. Mangir; Mendive, Cecilia B.; Curti, Mariano; Nénert, Gwilherm; Kalita, Patricia E.; Lipinska, Kris; Cornelius, Andrew L.; Huq, Ashfia; Gesing, Thorsten M.

    2014-11-01

    We present the lattice thermal expansion of mullite-type PbFeBO4 in this study. The thermal expansion coefficients of the metric parameters were obtained from composite data collected from temperature-dependent neutron and X-ray powder diffraction between 10 K and 700 K. The volume thermal expansion was modeled using extended Grüneisen first-order approximation to the zero-pressure equation of state. The additive frame of the model includes harmonic, quasi-harmonic and intrinsic anharmonic potentials to describe the change of the internal energy as a function of temperature. Moreover, the unit-cell volume at zero-pressure and 0 K was optimized during the DFT simulations. Harmonic frequencies ofmore » the optical Raman modes at the Γ-point of the Brillouin zone at 0 K were also calculated by DFT, which help to assign and crosscheck the experimental frequencies. The low-temperature Raman spectra showed significant anomaly in the antiferromagnetic regions, leading to softening or hardening of some phonons. Selected modes were analyzed using a modified Klemens model. The shift of the frequencies and the broadening of the line-widths helped to understand the anharmonic vibrational behaviors of the PbO4, FeO6 and BO3 polyhedra as a function of temperature.« less

  9. Anisotropic lattice thermal expansion of PbFeBO4: A study by X-ray and neutron diffraction, Raman spectroscopy and DFT calculations

    SciTech Connect (OSTI)

    Murshed, M. Mangir; Mendive, Cecilia B.; Curti, Mariano; Nénert, Gwilherm; Kalita, Patricia E.; Lipinska, Kris; Cornelius, Andrew L.; Huq, Ashfia; Gesing, Thorsten M.

    2014-11-01

    We present the lattice thermal expansion of mullite-type PbFeBO4 in this study. The thermal expansion coefficients of the metric parameters were obtained from composite data collected from temperature-dependent neutron and X-ray powder diffraction between 10 K and 700 K. The volume thermal expansion was modeled using extended Grüneisen first-order approximation to the zero-pressure equation of state. The additive frame of the model includes harmonic, quasi-harmonic and intrinsic anharmonic potentials to describe the change of the internal energy as a function of temperature. Moreover, the unit-cell volume at zero-pressure and 0 K was optimized during the DFT simulations. Harmonic frequencies of the optical Raman modes at the Γ-point of the Brillouin zone at 0 K were also calculated by DFT, which help to assign and crosscheck the experimental frequencies. The low-temperature Raman spectra showed significant anomaly in the antiferromagnetic regions, leading to softening or hardening of some phonons. Selected modes were analyzed using a modified Klemens model. The shift of the frequencies and the broadening of the line-widths helped to understand the anharmonic vibrational behaviors of the PbO4, FeO6 and BO3 polyhedra as a function of temperature.

  10. PBE–DFT theoretical study of organic photovoltaic materials based on thiophene with 1D and 2D periodic boundary conditions

    SciTech Connect (OSTI)

    Saïl, K. Bassou, G.; Gafour, M. H.; Miloua, F.

    2015-12-15

    Conjugated organic systems such as thiophene are interesting topics in the field of organic solar cells. We theoretically investigate π-conjugated polymers constituted by n units (n = 1–11) based on the thiophene (Tn) molecule. The computations of the geometries and electronic structures of these compounds are performed using the density functional theory (DFT) at the 6–31 G(d, p) level of theory and the Perdew–Burke–Eenzerhof (PBE) formulation of the generalized gradient approximation with periodic boundary conditions (PBCs) in one (1D) and two (2D) dimensions. Moreover, the electronic properties (HOCO, LUCO, E{sub gap}, V{sub oc}, and V{sub bi}) are determined from 1D and 2D PBC to understand the effect of the number of rings in polythiophene. The absorption properties—excitation energies (E{sub ex}), the maximal absorption wavelength (λ{sub max}), oscillator strengths, and light harvesting—efficiency are studied using the time-dependent DFT method. Our studies show that changing the number of thiophene units can effectively modulate the electronic and optical properties. On the other hand, our work demonstrates the efficiency of theoretical calculation in the PBCs.

  11. Quantitative multiplexed quantum dot immunohistochemistry

    SciTech Connect (OSTI)

    Sweeney, E.; Ward, T.H.; Gray, N.; Womack, C.; Jayson, G.; Hughes, A.; Dive, C.; Byers, R.

    2008-09-19

    Quantum dots are photostable fluorescent semiconductor nanocrystals possessing wide excitation and bright narrow, symmetrical, emission spectra. These characteristics have engendered considerable interest in their application in multiplex immunohistochemistry for biomarker quantification and co-localisation in clinical samples. Robust quantitation allows biomarker validation, and there is growing need for multiplex staining due to limited quantity of clinical samples. Most reported multiplexed quantum dot staining used sequential methods that are laborious and impractical in a high-throughput setting. Problems associated with sequential multiplex staining have been investigated and a method developed using QDs conjugated to biotinylated primary antibodies, enabling simultaneous multiplex staining with three antibodies. CD34, Cytokeratin 18 and cleaved Caspase 3 were triplexed in tonsillar tissue using an 8 h protocol, each localised to separate cellular compartments. This demonstrates utility of the method for biomarker measurement enabling rapid measurement of multiple co-localised biomarkers on single paraffin tissue sections, of importance for clinical trial studies.

  12. Quantum Dot Light Emitting Diode

    SciTech Connect (OSTI)

    Keith Kahen

    2008-07-31

    The project objective is to create low cost coatable inorganic light emitting diodes, composed of quantum dot emitters and inorganic nanoparticles, which have the potential for efficiencies equivalent to that of LEDs and OLEDs and lifetime, brightness, and environmental stability between that of LEDs and OLEDs. At the end of the project the Recipient shall gain an understanding of the device physics and properties of Quantum-Dot LEDs (QD-LEDs), have reliable and accurate nanocrystal synthesis routines, and have formed green-yellow emitting QD-LEDs with a device efficiency greater than 3 lumens/W, a brightness greater than 400 cd/m2, and a device operational lifetime of more than 1000 hours. Thus the aim of the project is to break the current cost-efficiency paradigm by creating novel low cost inorganic LEDs composed of inorganic nanoparticles.

  13. Quantum Dot Light Emitting Diode

    SciTech Connect (OSTI)

    Kahen, Keith

    2008-07-31

    The project objective is to create low cost coatable inorganic light emitting diodes, composed of quantum dot emitters and inorganic nanoparticles, which have the potential for efficiencies equivalent to that of LEDs and OLEDs and lifetime, brightness, and environmental stability between that of LEDs and OLEDs. At the end of the project the Recipient shall gain an understanding of the device physics and properties of Quantum-Dot LEDs (QD-LEDs), have reliable and accurate nanocrystal synthesis routines, and have formed green-yellow emitting QD-LEDs with a device efficiency greater than 3 lumens/W, a brightness greater than 400 cd/m{sup 2}, and a device operational lifetime of more than 1000 hours. Thus the aim of the project is to break the current cost-efficiency paradigm by creating novel low cost inorganic LEDs composed of inorganic nanoparticles.

  14. Quantum simulations of physics problems

    SciTech Connect (OSTI)

    Somma, R. D.; Ortiz, G.; Knill, E. H.; Gubernatis, J. E.

    2003-01-01

    If a large Quantum Computer (QC) existed today, what type of physical problems could we efficiently simulate on it that we could not efficiently simulate on a classical Turing machine? In this paper we argue that a QC could solve some relevant physical 'questions' more efficiently. The existence of one-to-one mappings between different algebras of observables or between different Hilbert spaces allow us to represent and imitate any physical system by any other one (e.g., a bosonic system by a spin-1/2 system). We explain how these mappings can be performed, and we show quantum networks useful for the efficient evaluation of some physical properties, such as correlation functions and energy spectra.

  15. Quantum state of the multiverse

    SciTech Connect (OSTI)

    Robles-Perez, Salvador; Gonzalez-Diaz, Pedro F.

    2010-04-15

    A third quantization formalism is applied to a simplified multiverse scenario. A well-defined quantum state of the multiverse is obtained which agrees with standard boundary condition proposals. These states are found to be squeezed, and related to accelerating universes: they share similar properties to those obtained previously by Grishchuk and Siderov. We also comment on related works that have criticized the third quantization approach.

  16. Algebraic techniques for diagonalization of a split quaternion matrix in split quaternionic mechanics

    SciTech Connect (OSTI)

    Jiang, Tongsong; Jiang, Ziwu; Zhang, Zhaozhong

    2015-08-15

    In the study of the relation between complexified classical and non-Hermitian quantum mechanics, physicists found that there are links to quaternionic and split quaternionic mechanics, and this leads to the possibility of employing algebraic techniques of split quaternions to tackle some problems in complexified classical and quantum mechanics. This paper, by means of real representation of a split quaternion matrix, studies the problem of diagonalization of a split quaternion matrix and gives algebraic techniques for diagonalization of split quaternion matrices in split quaternionic mechanics.

  17. Nitrogen-tuned bonding mechanism of Li and Ti adatom embedded graphene

    SciTech Connect (OSTI)

    Lee, Sangho; Chung, Yong-Chae, E-mail: yongchae@hanyang.ac.kr

    2013-09-15

    The effects of nitrogen defects on the bonding mechanism and resultant binding energy between the metal and graphene layer were investigated using density functional theory (DFT) calculations. For the graphitic N-doped graphene, Li adatom exhibited ionic bonding character, while Ti adatom showed features of covalent bonding similar to that of pristine graphene. However, in the cases of pyridinic and pyrrolic structures, partially covalent bonding characteristic occurred around N atoms in the process of binding with metals, and this particular bond formation enhanced the bond strength of metal on the graphene layer as much as it exceeded the cohesive energy of the metal bulk. Thus, Li and Ti metals are expected to be dispersed with atomic accuracy on the pyridinic and pyrrolic N-doped graphene layers. These results demonstrate that the bonding mechanism of metalgraphene complex can change according to the type of N defect, and this also affects the binding results. - Graphical abstract: Display Omitted - Highlights: Nitrogen defects changed the bonding mechanism between metal and graphene. Bonding character and binding results were investigated using DFT calculations. Covalent bonding character occurred around pyridinic and pyrrolic N-doped graphene. Pyridinic and pyrrolic N atoms are effective for metal dispersion on the graphene.

  18. Benchmarking density functionals for hydrogen-helium mixtures with quantum Monte Carlo: Energetics, pressures, and forces

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Clay, Raymond C.; Holzmann, Markus; Ceperley, David M.; Morales, Maguel A.

    2016-01-19

    An accurate understanding of the phase diagram of dense hydrogen and helium mixtures is a crucial component in the construction of accurate models of Jupiter, Saturn, and Jovian extrasolar planets. Though DFT based rst principles methods have the potential to provide the accuracy and computational e ciency required for this task, recent benchmarking in hydrogen has shown that achieving this accuracy requires a judicious choice of functional, and a quanti cation of the errors introduced. In this work, we present a quantum Monte Carlo based benchmarking study of a wide range of density functionals for use in hydrogen-helium mixtures atmore » thermodynamic conditions relevant for Jovian planets. Not only do we continue our program of benchmarking energetics and pressures, but we deploy QMC based force estimators and use them to gain insights into how well the local liquid structure is captured by di erent density functionals. We nd that TPSS, BLYP and vdW-DF are the most accurate functionals by most metrics, and that the enthalpy, energy, and pressure errors are very well behaved as a function of helium concentration. Beyond this, we highlight and analyze the major error trends and relative di erences exhibited by the major classes of functionals, and estimate the magnitudes of these e ects when possible.« less

  19. The potential, limitations, and challenges of divide and conquer quantum electronic structure calculations on energetic materials.

    SciTech Connect (OSTI)

    Tucker, Jon R.; Magyar, Rudolph J.

    2012-02-01

    High explosives are an important class of energetic materials used in many weapons applications. Even with modern computers, the simulation of the dynamic chemical reactions and energy release is exceedingly challenging. While the scale of the detonation process may be macroscopic, the dynamic bond breaking responsible for the explosive release of energy is fundamentally quantum mechanical. Thus, any method that does not adequately describe bonding is destined to lack predictive capability on some level. Performing quantum mechanics calculations on systems with more than dozens of atoms is a gargantuan task, and severe approximation schemes must be employed in practical calculations. We have developed and tested a divide and conquer (DnC) scheme to obtain total energies, forces, and harmonic frequencies within semi-empirical quantum mechanics. The method is intended as an approximate but faster solution to the full problem and is possible due to the sparsity of the density matrix in many applications. The resulting total energy calculation scales linearly as the number of subsystems, and the method provides a path-forward to quantum mechanical simulations of millions of atoms.

  20. Entanglement across a transition to quantum chaos

    SciTech Connect (OSTI)

    Mejia-Monasterio, Carlos [Center for Nonlinear and Complex Systems, Universita degli Studi dell'Insubria, via Vallegio 11, Como 22100 (Italy); Benenti, Guliano; Casati, Giulio [Center for Nonlinear and Complex Systems, Universita degli Studi dell'Insubria, via Vallegio 11, Como 22100 (Italy); Istituto Nazionale per la Fisica della Materia, Unita di Como, via Vallegio 11, Como 22100 (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Via Celoria 16, 20133 Milan (Italy); Carlo, Gabriel G. [Center for Nonlinear and Complex Systems, Universita degli Studi dell'Insubria, via Vallegio 11, Como 22100 (Italy); Istituto Nazionale per la Fisica della Materia, Unita di Como, via Vallegio 11, Como 22100 (Italy)

    2005-06-15

    We study the relation between entanglement and quantum chaos in one- and two-dimensional spin-1/2 lattice models, which exhibit mixing of the noninteracting eigenfunctions and transition from integrability to quantum chaos. Contrary to what occurs in a quantum phase transition, the onset of quantum chaos is not a property of the ground state but takes place for any typical many-spin quantum state. We study bipartite and pairwise entanglement measures--namely, the reduced von Neumann entropy and the concurrence--and discuss quantum entanglement sharing. Our results suggest that the behavior of the entanglement is related to the mixing of the eigenfunctions rather than to the transition to chaos.

  1. Quantum and Dirac Materials for Energy Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantum and Dirac Materials Conference Quantum and Dirac Materials for Energy (QDM) Applications The purpose of the workshop is to discuss current status and future prospects for the quantum materials and Dirac materials for energy and information technology applications using recent advances in synthesis, characterization and modeling. Contact Institute Director Dr. Alexander V. Balatsky Institute for Materials Science (505) 665-0077 Email Deputy Director Dr. Jennifer S. Martinez Institute for

  2. Kitaev models based on unitary quantum groupoids

    SciTech Connect (OSTI)

    Chang, Liang

    2014-04-15

    We establish a generalization of Kitaev models based on unitary quantum groupoids. In particular, when inputting a Kitaev-Kong quantum groupoid H{sub C}, we show that the ground state manifold of the generalized model is canonically isomorphic to that of the Levin-Wen model based on a unitary fusion category C. Therefore, the generalized Kitaev models provide realizations of the target space of the Turaev-Viro topological quantum field theory based on C.

  3. Could Aluminum Nitride Produce Quantum Bits?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home » News & Publications » News » Science News » Could Aluminum Nitride Produce Quantum Bits? Could Aluminum Nitride Produce Quantum Bits? After running simulations at NERSC researchers believe it's possible May 2, 2016 Linda Vu, lvu@lbl.gov, 510.495.2402 Graphical Abstract AlN Sci Rep no logo cropped This graphic illustrates an engineered nitrogen vacancy in aluminum nitride. Quantum computers have the potential to break common cryptography techniques, search huge datasets and

  4. Gate fidelity fluctuations and quantum process invariants

    SciTech Connect (OSTI)

    Magesan, Easwar; Emerson, Joseph [Institute for Quantum Computing and Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Blume-Kohout, Robin [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2011-07-15

    We characterize the quantum gate fidelity in a state-independent manner by giving an explicit expression for its variance. The method we provide can be extended to calculate all higher order moments of the gate fidelity. Using these results, we obtain a simple expression for the variance of a single-qubit system and deduce the asymptotic behavior for large-dimensional quantum systems. Applications of these results to quantum chaos and randomized benchmarking are discussed.

  5. Instantaneous spatially local projective measurements are consistent in a relativistic quantum field

    SciTech Connect (OSTI)

    Lin, Shih-Yuin

    2012-12-15

    Suppose the postulate of measurement in quantum mechanics can be extended to quantum field theory; then a local projective measurement at some moment on an object locally coupled with a relativistic quantum field will result in a projection or collapse of the wavefunctional of the combined system defined on the whole time-slice associated with the very moment of the measurement, if the relevant degrees of freedom have nonzero correlations. This implies that the wavefunctionals in the same Hamiltonian system but defined in different reference frames would collapse on different time-slices passing through the same local event where the measurement was done. Are these post-measurement states consistent with each other? We illustrate that the quantum states of the Raine-Sciama-Grove detector-field system started with the same initial Gaussian state defined on the same initial time-slice, then collapsed by the measurements on the pointlike detectors on different time-slices in different frames, will evolve to the same state of the combined system up to a coordinate transformation when compared on the same final time-slice. Such consistency is guaranteed by the spatial locality of interactions and the general covariance in a relativistic system, together with the spatial locality of measurements and the linearity of quantum dynamics in its quantum theory. - Highlights: Black-Right-Pointing-Pointer Spatially local quantum measurements in detector-field models are studied. Black-Right-Pointing-Pointer Local quantum measurement collapses the wavefunctional on the whole time-slice. Black-Right-Pointing-Pointer In different frames wavefunctionals of a field would collapse on different time-slices. Black-Right-Pointing-Pointer States collapsed by the same measurement will be consistent on the same final slice.

  6. Reexamination of quantum bit commitment: The possible and the impossible

    SciTech Connect (OSTI)

    D'Ariano, Giacomo Mauro; Kretschmann, Dennis; Schlingemann, Dirk; Werner, Reinhard F.

    2007-09-15

    Bit commitment protocols whose security is based on the laws of quantum mechanics alone are generally held to be impossible. We give a strengthened and explicit proof of this result. We extend its scope to a much larger variety of protocols, which may have an arbitrary number of rounds, in which both classical and quantum information is exchanged, and which may include aborts and resets. Moreover, we do not consider the receiver to be bound to a fixed 'honest' strategy, so that 'anonymous state protocols', which were recently suggested as a possible way to beat the known no-go results, are also covered. We show that any concealing protocol allows the sender to find a cheating strategy, which is universal in the sense that it works against any strategy of the receiver. Moreover, if the concealing property holds only approximately, the cheat goes undetected with a high probability, which we explicitly estimate. The proof uses an explicit formalization of general two-party protocols, which is applicable to more general situations, and an estimate about the continuity of the Stinespring dilation of a general quantum channel. The result also provides a natural characterization of protocols that fall outside the standard setting of unlimited available technology and thus may allow secure bit commitment. We present such a protocol whose security, perhaps surprisingly, relies on decoherence in the receiver's laboratory.

  7. Mechanical Design

    SciTech Connect (OSTI)

    Shook, Richard; /Marquette U. /SLAC

    2010-08-25

    The particle beam of the SXR (soft x-ray) beam line in the LCLS (Linac Coherent Light Source) has a high intensity in order to penetrate through samples at the atomic level. However, the intensity is so high that many experiments fail because of severe damage. To correct this issue, attenuators are put into the beam line to reduce this intensity to a level suitable for experimentation. Attenuation is defined as 'the gradual loss in intensity of any flux through a medium' by [1]. It is found that Beryllium and Boron Carbide can survive the intensity of the beam. At very thin films, both of these materials work very well as filters for reducing the beam intensity. Using a total of 12 filters, the first 9 being made of Beryllium and the rest made of Boron Carbide, the beam's energy range of photons can be attenuated between 800 eV and 9000 eV. The design of the filters allows attenuation for different beam intensities so that experiments can obtain different intensities from the beam if desired. The step of attenuation varies, but is relative to the thickness of the filter as a power function of 2. A relationship for this is f(n) = x{sub 0}2{sup n} where n is the step of attenuation desired and x{sub 0} is the initial thickness of the material. To allow for this desired variation, a mechanism must be designed within the test chamber. This is visualized using a 3D computer aided design modeling tool known as Solid Edge.

  8. Quantum Consulting Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc Jump to: navigation, search Name: Quantum Consulting Inc Place: Torrance, California Zip: 90505 Sector: Efficiency Product: Torrance-based energy consultancy, providing...

  9. Quantum Consulting s founders | Open Energy Information

    Open Energy Info (EERE)

    s founders Jump to: navigation, search Name: Quantum Consulting's founders Place: Berkeley, California Product: Founders of the energy consulting firm that was originally based in...

  10. Theoretical & Experimental Aspects of Controlled Quantum Dynamics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Experimental Aspects of Controlled Quantum Dynamics Professor Herschel Rabitz Princeton University Wednesday, March 25, 2015 - 4:15PM MBG AUDITORIUM Refreshments at 4:00PM The...

  11. Quantum Energy Solutions | Open Energy Information

    Open Energy Info (EERE)

    Solutions Jump to: navigation, search Name: Quantum Energy Solutions Place: Rancho Cordova, California Zip: 95742 Product: California-based energy management company that was...

  12. Communication: Quantum molecular dynamics simulation of liquid...

    Office of Scientific and Technical Information (OSTI)

    Communication: Quantum molecular dynamics simulation of liquid para-hydrogen by nuclear and electron wave packet approach Citation Details In-Document Search Title: Communication:...

  13. Coordinate time dependence in quantum gravity

    SciTech Connect (OSTI)

    Bojowald, Martin; Singh, Parampreet; Skirzewski, Aureliano

    2004-12-15

    The intuitive classical space-time picture breaks down in quantum gravity, which makes a comparison and the development of semiclassical techniques quite complicated. Using ingredients of the group averaging method to solve constraints one can nevertheless introduce a classical coordinate time into the quantum theory, and use it to investigate the way a semiclassical continuous description emerges from discrete quantum evolution. Applying this technique to test effective classical equations of loop cosmology and their implications for inflation and bounces, we show that the effective semiclassical theory is in good agreement with the quantum description even at short scales.

  14. QuantumSphere | Open Energy Information

    Open Energy Info (EERE)

    with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Science & Technology Partnership Year 2008 QuantumSphere is a company located in Santa Ana,...

  15. Quantum Well Thermoelectric Truck Air Conditioning

    Office of Energy Efficiency and Renewable Energy (EERE)

    Discusses advantages of quantum-well TE cooler, including no moving parts, no gases, performance on par with conventional, and easy switching to heat pump mode

  16. Quantum Security for the Physical Layer

    SciTech Connect (OSTI)

    Humble, Travis S

    2013-01-01

    The physical layer describes how communication signals are encoded and transmitted across a channel. Physical security often requires either restricting access to the channel or performing periodic manual inspections. In this tutorial, we describe how the field of quantum communication offers new techniques for securing the physical layer. We describe the use of quantum seals as a unique way to test the integrity and authenticity of a communication channel and to provide security for the physical layer. We present the theoretical and physical underpinnings of quantum seals including the quantum optical encoding used at the transmitter and the test for non-locality used at the receiver. We describe how the envisioned quantum physical sublayer senses tampering and how coordination with higher protocol layers allow quantum seals to influence secure routing or tailor data management methods. We conclude by discussing challenges in the development of quantum seals, the overlap with existing quantum key distribution cryptographic services, and the relevance of a quantum physical sublayer to the future of communication security.

  17. Controlling thermal conductance through quantum dot roughening...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Controlling thermal conductance through quantum dot roughening at interfaces. Citation Details ... Publication Date: 2011-01-01 OSTI Identifier: 1110382 Report ...

  18. Computational modeling of electrophotonics nanomaterials: Tunneling in double quantum dots

    SciTech Connect (OSTI)

    Vlahovic, Branislav Filikhin, Igor

    2014-10-06

    Single electron localization and tunneling in double quantum dots (DQD) and rings (DQR) and in particular the localized-delocalized states and their spectral distributions are considered in dependence on the geometry of the DQDs (DQRs). The effect of violation of symmetry of DQDs geometry on the tunneling is studied in details. The cases of regular and chaotic geometries are considered. It will be shown that a small violation of symmetry drastically affects localization of electron and that anti-crossing of the levels is the mechanism of tunneling between the localized and delocalized states in DQRs.

  19. Selective interactions in trapped ions: State reconstruction and quantum logic

    SciTech Connect (OSTI)

    Solano, E.

    2005-01-01

    We propose the implementation of selective interactions of atom-motion subspaces in trapped ions. These interactions yield resonant exchange of population inside a selected subspace, leaving the others in a highly dispersive regime. Selectivity allows us to generate motional Fock (and other nonclassical) states with high purity out of a wide class of initial states, and becomes an unconventional cooling mechanism when the ground state is chosen. Individual population of number states can be distinctively measured, as well as the motional Wigner function. Furthermore, a protocol for implementing quantum logic through a suitable control of selective subspaces is presented.

  20. Photocurrent extraction efficiency in colloidal quantum dot photovoltaics

    SciTech Connect (OSTI)

    Kemp, K. W.; Wong, C. T. O.; Hoogland, S. H.; Sargent, E. H.

    2013-11-18

    The efficiency of photocurrent extraction was studied directly inside operating Colloidal Quantum Dot (CQD) photovoltaic devices. A model was derived from first principles for a thin film p-n junction with a linearly spatially dependent electric field. Using this model, we were able to clarify the origins of recent improvement in CQD solar cell performance. From current-voltage diode characteristics under 1 sun conditions, we extracted transport lengths ranging from 39 nm to 86 nm for these materials. Characterization of the intensity dependence of photocurrent extraction revealed that the dominant loss mechanism limiting the transport length is trap-mediated recombination.

  1. Excited-State Relaxation in PbSe Quantum Dots

    SciTech Connect (OSTI)

    An, J. M.; Califano, M.; Franceschetti, A.; Zunger, A.

    2008-01-01

    In solids the phonon-assisted, nonradiative decay from high-energy electronic excited states to low-energy electronic excited states is picosecond fast. It was hoped that electron and hole relaxation could be slowed down in quantum dots, due to the unavailability of phonons energy matched to the large energy-level spacings ('phonon-bottleneck'). However, excited-state relaxation was observed to be rather fast ({le}1 ps) in InP, CdSe, and ZnO dots, and explained by an efficient Auger mechanism, whereby the excess energy of electrons is nonradiatively transferred to holes, which can then rapidly decay by phonon emission, by virtue of the densely spaced valence-band levels. The recent emergence of PbSe as a novel quantum-dot material has rekindled the hope for a slow down of excited-state relaxation because hole relaxation was deemed to be ineffective on account of the widely spaced hole levels. The assumption of sparse hole energy levels in PbSe was based on an effective-mass argument based on the light effective mass of the hole. Surprisingly, fast intraband relaxation times of 1-7 ps were observed in PbSe quantum dots and have been considered contradictory with the Auger cooling mechanism because of the assumed sparsity of the hole energy levels. Our pseudopotential calculations, however, do not support the scenario of sparse hole levels in PbSe: Because of the existence of three valence-band maxima in the bulk PbSe band structure, hole energy levels are densely spaced, in contradiction with simple effective-mass models. The remaining question is whether the Auger decay channel is sufficiently fast to account for the fast intraband relaxation. Using the atomistic pseudopotential wave functions of Pb{sub 2046}Se{sub 2117} and Pb{sub 260}Se{sub 249} quantum dots, we explicitly calculated the electron-hole Coulomb integrals and the P {yields} S electron Auger relaxation rate. We find that the Auger mechanism can explain the experimentally observed P {yields} S

  2. Method for discovering relationships in data by dynamic quantum clustering

    DOE Patents [OSTI]

    Weinstein, Marvin; Horn, David

    2014-10-28

    Data clustering is provided according to a dynamical framework based on quantum mechanical time evolution of states corresponding to data points. To expedite computations, we can approximate the time-dependent Hamiltonian formalism by a truncated calculation within a set of Gaussian wave-functions (coherent states) centered around the original points. This allows for analytic evaluation of the time evolution of all such states, opening up the possibility of exploration of relationships among data-points through observation of varying dynamical-distances among points and convergence of points into clusters. This formalism may be further supplemented by preprocessing, such as dimensional reduction through singular value decomposition and/or feature filtering.

  3. Gacs quantum algorithmic entropy in infinite dimensional Hilbert spaces

    SciTech Connect (OSTI)

    Benatti, Fabio; Oskouei, Samad Khabbazi Deh Abad, Ahmad Shafiei

    2014-08-15

    We extend the notion of Gacs quantum algorithmic entropy, originally formulated for finitely many qubits, to infinite dimensional quantum spin chains and investigate the relation of this extension with two quantum dynamical entropies that have been proposed in recent years.

  4. Promising future of quantum dots explored in conference

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Promising future of quantum dots explored Promising future of quantum dots explored in conference Researchers are gathering to reflect on two decades of quantum dot research at a special topical conference, "20 Years of Quantum Dots at Los Alamos" April 13, 2015 Quantum dot LSC devices under ultraviolet illumination. Quantum dot LSC devices under ultraviolet illumination. Contact Los Alamos National Laboratory Nancy Ambrosiano Communications Office (505) 667-0471 Email "This

  5. Multi-time wave functions for quantum field theory

    SciTech Connect (OSTI)

    Petrat, Sren; Tumulka, Roderich

    2014-06-15

    Multi-time wave functions such as ?(t{sub 1},x{sub 1},,t{sub N},x{sub N}) have one time variable t{sub j} for each particle. This type of wave function arises as a relativistic generalization of the wave function ?(t,x{sub 1},,x{sub N}) of non-relativistic quantum mechanics. We show here how a quantum field theory can be formulated in terms of multi-time wave functions. We mainly consider a particular quantum field theory that features particle creation and annihilation. Starting from the particleposition representation of state vectors in Fock space, we introduce multi-time wave functions with a variable number of time variables, set up multi-time evolution equations, and show that they are consistent. Moreover, we discuss the relation of the multi-time wave function to two other representations, the TomonagaSchwinger representation and the Heisenberg picture in terms of operator-valued fields on spacetime. In a certain sense and under natural assumptions, we find that all three representations are equivalent; yet, we point out that the multi-time formulation has several technical and conceptual advantages. -- Highlights: Multi-time wave functions are manifestly Lorentz-covariant objects. We develop consistent multi-time equations with interaction for quantum field theory. We discuss in detail a particular model with particle creation and annihilation. We show how multi-time wave functions are related to the TomonagaSchwinger approach. We show that they have a simple representation in terms of operator valued fields.

  6. NWChem: Quantum Chemistry Simulations at Scale

    SciTech Connect (OSTI)

    Apra, Edoardo; Kowalski, Karol; Hammond, Jeff R.; Klemm, Michael

    2015-01-17

    Methods based on quantum mechanics equations have been developed since the 1930's with the purpose of accurately studying the electronic structure of molecules. However, it is only during the last two decades that intense development of new computational algorithms has opened the possibility of performing accurate simulations of challenging molecular processes with high-order many-body methods. A wealth of evidence indicates that the proper inclusion of instantaneous interactions between electrons (or the so-called electron correlation effects) is indispensable for the accurate characterization of chemical reactivity, molecular properties, and interactions of light with matter. The availability of reliable methods for benchmarking of medium-size molecular systems provides also a unique chance to propagate high-level accuracy across spatial scales through the multiscale methodologies. Some of these methods have potential to utilize computational resources in an effi*cient way since they are characterized by high numerical complexity and appropriate level of data granularity, which can be effi*ciently distributed over multi-processor architectures. The broad spectrum of coupled cluster (CC) methods falls into this class of methodologies. Several recent CC implementations clearly demonstrated the scalability of CC formalisms on architectures composed of hundreds thousand computational cores. In this context NWChem provides a collection of Tensor Contraction Engine (TCE) generated parallel implementations of various coupled cluster methods capable of taking advantage of many thousand of cores on leadership class parallel architectures.

  7. Resonant tunnelling in a quantum oxide superlattice

    SciTech Connect (OSTI)

    Choi, Woo Seok; Lee, Sang A.; You, Jeong Ho; Lee, Suyoun; Lee, Ho Nyung

    2015-06-24

    Resonant tunneling is a quantum mechanical process that has long been attracting both scientific and technological attention owing to its intriguing underlying physics and unique applications for high-speed electronics. The materials system exhibiting resonant tunneling, however, has been largely limited to the conventional semiconductors, partially due to their excellent crystalline quality. Here we show that a deliberately designed transition metal oxide superlattice exhibits a resonant tunneling behaviour with a clear negative differential resistance. The tunneling occurred through an atomically thin, lanthanum δ- doped SrTiO3 layer, and the negative differential resistance was realized on top of the bi-polar resistance switching typically observed for perovskite oxide junctions. This combined process resulted in an extremely large resistance ratio (~105) between the high and low resistance states. Lastly, the unprecedentedly large control found in atomically thin δ-doped oxide superlattices can open a door to novel oxide-based high-frequency logic devices.

  8. Resonant tunnelling in a quantum oxide superlattice

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Choi, Woo Seok; Lee, Sang A.; You, Jeong Ho; Lee, Suyoun; Lee, Ho Nyung

    2015-06-24

    Resonant tunneling is a quantum mechanical process that has long been attracting both scientific and technological attention owing to its intriguing underlying physics and unique applications for high-speed electronics. The materials system exhibiting resonant tunneling, however, has been largely limited to the conventional semiconductors, partially due to their excellent crystalline quality. Here we show that a deliberately designed transition metal oxide superlattice exhibits a resonant tunneling behaviour with a clear negative differential resistance. The tunneling occurred through an atomically thin, lanthanum δ- doped SrTiO3 layer, and the negative differential resistance was realized on top of the bi-polar resistance switching typicallymore » observed for perovskite oxide junctions. This combined process resulted in an extremely large resistance ratio (~105) between the high and low resistance states. Lastly, the unprecedentedly large control found in atomically thin δ-doped oxide superlattices can open a door to novel oxide-based high-frequency logic devices.« less

  9. Quantum Anomalous Hall Effect in Hg_1-yMn_yTe Quantum Wells

    SciTech Connect (OSTI)

    Liu, Chao-Xing; Qi, Xiao-Liang; Dai, Xi; Fang, Zhong; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-03-19

    The quantum Hall effect is usually observed when the two-dimensional electron gas is subjected to an external magnetic field, so that their quantum states form Landau levels. In this work we predict that a new phenomenon, the quantum anomalous Hall effect, can be realized in Hg{sub 1-y}Mn{sub y}Te quantum wells, without the external magnetic field and the associated Landau levels. This effect arises purely from the spin polarization of the Mn atoms, and the quantized Hall conductance is predicted for a range of quantum well thickness and the concentration of the Mn atoms. This effect enables dissipationless charge current in spintronics devices.

  10. On-chip generation and guiding of quantum light from a site-controlled quantum dot

    SciTech Connect (OSTI)

    Jamil, Ayesha; Farrer, Ian; Griffiths, Jonathan P.; Jones, Geb A. C.; Ritchie, David A.; Skiba-Szymanska, Joanna; Kalliakos, Sokratis; Ward, Martin B.; Ellis, David J. P.; Shields, Andrew J.; Schwagmann, Andre; Brody, Yarden; Cambridge Research Laboratory, Toshiba Research Europe Limited, 208 Science Park, Milton Road, Cambridge, CB4 0GZ

    2014-03-10

    We demonstrate the emission and routing of single photons along a semiconductor chip originating from carrier recombination in an actively positioned InAs quantum dot. Devicescale arrays of quantum dots are formed by a twostep regrowth process. We precisely locate the propagating region of a unidirectional photonic crystal waveguide with respect to the quantum dot nucleation site. Under pulsed optical excitation, the multiphoton emission probability from the waveguide's exit is 12%??5% before any background correction. Our results are a major step towards the deterministic integration of a quantum emitter with the waveguiding components of photonic quantum circuits.

  11. Open-System Adiabatic Quantum Annealing Bob Lucas USC - Lockheed...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Open-System Adiabatic Quantum Annealing Bob Lucas USC - Lockheed Martin Quantum Computing Center April 29, 2015 Introduction | 2 Need More Capability? Application Specific Systems...

  12. Observation of a Macroscopically Quantum-Entangled Insulator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observation of a Macroscopically Quantum-Entangled Insulator Observation of a Macroscopically Quantum-Entangled Insulator Print Wednesday, 27 May 2009 00:00 It has recently been...

  13. Self-Referenced Continuous-Variable Quantum Key Distribution...

    Office of Scientific and Technical Information (OSTI)

    Self-Referenced Continuous-Variable Quantum Key Distribution Protocol Citation Details In-Document Search Title: Self-Referenced Continuous-Variable Quantum Key Distribution ...

  14. Observation of a Macroscopically Quantum-Entangled Insulator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    method can potentially pave the way for fault-tolerant (topological) quantum computing. ... Cava and M.Z. Hasan, "Observation of Unconventional Quantum Spin Textures in Topological ...

  15. Pressure-Driven Quantum Criticality in Iron-Selenide Superconductors...

    Office of Scientific and Technical Information (OSTI)

    Pressure-Driven Quantum Criticality in Iron-Selenide Superconductors Title: Pressure-Driven Quantum Criticality in Iron-Selenide Superconductors Authors: Guo, Jing ; Chen, Xiao-Jia ...

  16. Emerging Properties of Quantum Matter - Case Studies of Topological...

    Office of Scientific and Technical Information (OSTI)

    Emerging properties in quantum matter is a major theme of modern physics, with the promise ... Country of Publication: United States Language: English Subject: 71 CLASSICAL AND QUANTUM ...

  17. Quantum effects in the dynamics of deeply supercooled water ...

    Office of Scientific and Technical Information (OSTI)

    Quantum effects in the dynamics of deeply supercooled water Citation Details In-Document Search Title: Quantum effects in the dynamics of deeply supercooled water Authors: Agapov, ...

  18. Quantum Hall effects in a Weyl semimetal: Possible application...

    Office of Scientific and Technical Information (OSTI)

    Quantum Hall effects in a Weyl semimetal: Possible application in pyrochlore iridates Title: Quantum Hall effects in a Weyl semimetal: Possible application in pyrochlore iridates ...

  19. An Early Quantum Computing Proposal (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    This methodology is based on direct execution of a quantum evolution in experimental quantum hardware. While this can be ... Resource Type: Technical Report Research Org: Los Alamos ...

  20. Limits of optimal control yields achievable with quantum controllers...

    Office of Scientific and Technical Information (OSTI)

    Limits of optimal control yields achievable with quantum controllers Prev Next Title: Limits of optimal control yields achievable with quantum controllers Authors: Wu, ...

  1. Quantum control and pathway manipulation in rubidium (Journal...

    Office of Scientific and Technical Information (OSTI)

    Quantum control and pathway manipulation in rubidium This content will become publicly available on September 28, 2016 Prev Next Title: Quantum control and pathway ...

  2. Searching for quantum optimal controls under severe constraints...

    Office of Scientific and Technical Information (OSTI)

    Searching for quantum optimal controls under severe constraints Prev Next Title: Searching for quantum optimal controls under severe constraints Authors: Riviello, Gregory ; ...

  3. Quantum control and pathway manipulation in rubidium (Journal...

    Office of Scientific and Technical Information (OSTI)

    Quantum control and pathway manipulation in rubidium Citation Details In-Document Search This content will become publicly available on September 28, 2016 Title: Quantum control ...

  4. Microscopic theory of quantum anomalous Hall effect in graphene...

    Office of Scientific and Technical Information (OSTI)

    Microscopic theory of quantum anomalous Hall effect in graphene Citation Details In-Document Search Title: Microscopic theory of quantum anomalous Hall effect in graphene Authors: ...

  5. First-Ever Demonstration of Quantum Cryptography to Improve Security...

    Energy Savers [EERE]

    First-Ever Demonstration of Quantum Cryptography to Improve Security of the Electric Grid First-Ever Demonstration of Quantum Cryptography to Improve Security of the Electric Grid ...

  6. Topological Hubbard Model and Its High-Temperature Quantum Hall...

    Office of Scientific and Technical Information (OSTI)

    Topological Hubbard Model and Its High-Temperature Quantum Hall Effect Title: Topological Hubbard Model and Its High-Temperature Quantum Hall Effect Authors: Neupert, Titus ; ...

  7. An Early Quantum Computing Proposal (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: An Early Quantum Computing Proposal Citation Details In-Document Search Title: An Early Quantum Computing Proposal You are accessing a document from the ...

  8. Effects of Strain and Quantum Confinement in Optically Pumped...

    Office of Scientific and Technical Information (OSTI)

    Effects of Strain and Quantum Confinement in Optically Pumped Nuclear Magnetic Resonance ... Citation Details In-Document Search Title: Effects of Strain and Quantum Confinement in ...

  9. Quantum chaos and order based on classically moving reference frames

    SciTech Connect (OSTI)

    Hai Wenhua [Department of Physics, Hunan Normal University, Changsha 410081 (China); Department of Physics, Jishou University, Jishou 416000, Hunan (China); Xie Qiongtao; Fang Jianshu [Department of Physics, Hunan Normal University, Changsha 410081 (China)

    2005-07-15

    We develop a mathematically consistent approach for treating the quantum systems based on moving classical reference frames. The classical and quantum exact solutions show excellently classical-quantum correspondence, in which the quantum chaotic coherent states correspond to the classically chaotic motions. Applying the approach to the periodically driven linear and nonlinear oscillators, the regular and chaotic quantum states and quantum levels, and the quantum chaotic regions are evidenced. The results indicate that chaos may cause the collapse of matter wave packets and suppress the quantum effect of energy.

  10. Quantum Oscillations in an Interfacial 2D Electron Gas. (Technical...

    Office of Scientific and Technical Information (OSTI)

    Quantum Oscillations in an Interfacial 2D Electron Gas. Citation Details In-Document Search Title: Quantum Oscillations in an Interfacial 2D Electron Gas. Abstract not provided....

  11. Emergence of the Persistent Spin Helix in Semiconductor Quantum...

    Office of Scientific and Technical Information (OSTI)

    Emergence of the Persistent Spin Helix in Semiconductor Quantum Wells Citation Details In-Document Search Title: Emergence of the Persistent Spin Helix in Semiconductor Quantum ...

  12. Generation of even harmonics in coupled quantum dots (Journal...

    Office of Scientific and Technical Information (OSTI)

    Generation of even harmonics in coupled quantum dots Citation Details In-Document Search Title: Generation of even harmonics in coupled quantum dots Using the spatial-temporal...

  13. Observation of a Macroscopically Quantum-Entangled Insulator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    matter, it could also have application to quantum computers because its information-processing properties would be insensitive to the presence of impurities, making quantum...

  14. Heavy Mobile Equipment Mechanic (One Mechanic Shop)

    Broader source: Energy.gov [DOE]

    Join the Bonneville Power Administration (BPA) for a challenging and rewarding career, while working, living, and playing in the Pacific Northwest. The Heavy Mobile Equipment Mechanic (One Mechanic...

  15. Quantum Decay of Dark Solitons

    SciTech Connect (OSTI)

    Gangardt, D. M.; Kamenev, A.

    2010-05-14

    Unless protected by the exact integrability, solitons are subject to dissipative forces, originating from a thermally fluctuating background. At low enough temperatures T background fluctuations should be considered as being quantized which enables us to calculate finite lifetime of the solitons {tau}{approx}T{sup -4}. We also find that the coherent nature of the quantum fluctuations leads to long-range interactions between the solitons mediated by the superradiation. Our results are of relevance to current experiments with ultracold atoms, while the approach may be extended to solitons in other media.

  16. Optimized multiparty quantum clock synchronization

    SciTech Connect (OSTI)

    Ben-Av, Radel; Exman, Iaakov

    2011-07-15

    A multiparty protocol for distributed quantum clock synchronization has been claimed to provide universal limits on the clock accuracy, viz., that accuracy monotonically decreases with the number n of party members. But this is only true for synchronization when one limits oneself to W states. This work shows that the usage of Z (Symmetric Dicke) states, a generalization of W states, results in improved accuracy, having a maximum when Left-Floor n/2 Right-Floor of its members have their qubits with a |1> eigenstate.

  17. Mid-Infrared Quantum-Dot Quantum Cascade Laser: A Theoretical Feasibility Study

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Michael, Stephan; Chow, Weng; Schneider, Hans

    2016-05-13

    In the framework of a microscopic model for intersubband gain from electrically pumped quantum-dot structures we investigate electrically pumped quantum-dots as active material for a mid-infrared quantum cascade laser. Our previous calculations have indicated that these structures could operate with reduced threshold current densities while also achieving a modal gain comparable to that of quantum well active materials. We study the influence of two important quantum-dot material parameters, here, namely inhomogeneous broadening and quantum-dot sheet density, on the performance of a proposed quantum cascade laser design. In terms of achieving a positive modal net gain, a high quantum-dot density canmore » compensate for moderately high inhomogeneous broadening, but at a cost of increased threshold current density. By minimizing quantum-dot density with presently achievable inhomogeneous broadening and total losses, significantly lower threshold densities than those reported in quantum-well quantum-cascade lasers are predicted by our theory.« less

  18. Synthesis, crystal structure and DFT studies of N-(4-acetyl-5,5-dimethyl-4,5-dihydro-1,3,4-thiadiazol-2-yl)acetamide

    SciTech Connect (OSTI)

    Gautam, P.; Gautam, D.; Chaudhary, R. P.

    2013-12-15

    The title compound N-(4-acetyl-5,5-dimethyl-4,5-dihydro-1,3,4-thiadiazol-2-yl)acetamide (III) was obtained from the reaction of 2-(propan-2-ylidene)hydrazinecarbothioamide (II) with acetic anhydride instead of formation of the desired thiosemcarbazide derivative of Meldrum acid. The structures of II and III were established by elemental analysis, IR, NMR, Mass and X-ray crystallographic studies. II crystallizes in triclinic system, sp. gr. P-bar1 Z = 2; III crystallizes in the monoclinic system, sp. gr. P2{sub 1}/c, Z = 8. Density functional theory (DFT) calculations have been carried out for III. {sup 1}H and {sup 13}C NMR of III has been calculated and correlated with experimental results.

  19. Quantum transport calculations using periodic boundaryconditions

    SciTech Connect (OSTI)

    Wang, Lin-Wang

    2004-06-15

    An efficient new method is presented to calculate the quantum transports using periodic boundary conditions. This method allows the use of conventional ground state ab initio programs without big changes. The computational effort is only a few times of a normal groundstate calculations, thus is makes accurate quantum transport calculations for large systems possible.

  20. Thick-shell nanocrystal quantum dots

    SciTech Connect (OSTI)

    Hollingsworth, Jennifer A.; Chen, Yongfen; Klimov, Victor I.; Htoon, Han; Vela, Javier

    2011-05-03

    Colloidal nanocrystal quantum dots comprising an inner core having an average diameter of at least 1.5 nm and an outer shell, where said outer shell comprises multiple monolayers, wherein at least 30% of the quantum dots have an on-time fraction of 0.80 or greater under continuous excitation conditions for a period of time of at least 10 minutes.

  1. Quantum crystallographic charge density of urea

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wall, Michael E.

    2016-07-01

    Standard X-ray crystallography methods use free-atom models to calculate mean unit-cell charge densities. Real molecules, however, have shared charge that is not captured accurately using free-atom models. To address this limitation, a charge density model of crystalline urea was calculated using high-level quantum theory and was refined against publicly available ultra-high-resolution experimental Bragg data, including the effects of atomic displacement parameters. The resulting quantum crystallographic model was compared with models obtained using spherical atom or multipole methods. Despite using only the same number of free parameters as the spherical atom model, the agreement of the quantum model with the datamore » is comparable to the multipole model. The static, theoretical crystalline charge density of the quantum model is distinct from the multipole model, indicating the quantum model provides substantially new information. Hydrogen thermal ellipsoids in the quantum model were very similar to those obtained using neutron crystallography, indicating that quantum crystallography can increase the accuracy of the X-ray crystallographic atomic displacement parameters. Lastly, the results demonstrate the feasibility and benefits of integrating fully periodic quantum charge density calculations into ultra-high-resolution X-ray crystallographic model building and refinement.« less

  2. Introducing constricted variational density functional theory in its relaxed self-consistent formulation (RSCF-CV-DFT) as an alternative to adiabatic time dependent density functional theory for studies of charge transfer transitions

    SciTech Connect (OSTI)

    Krykunov, Mykhaylo; Seth, Mike; Ziegler, Tom

    2014-05-14

    We have applied the relaxed and self-consistent extension of constricted variational density functional theory (RSCF-CV-DFT) for the calculation of the lowest charge transfer transitions in the molecular complex X-TCNE between X = benzene and TCNE = tetracyanoethylene. Use was made of functionals with a fixed fraction (α) of Hartree-Fock exchange ranging from α = 0 to α = 0.5 as well as functionals with a long range correction (LC) that introduces Hartree-Fock exchange for longer inter-electronic distances. A detailed comparison and analysis is given for each functional between the performance of RSCF-CV-DFT and adiabatic time-dependent density functional theory (TDDFT) within the Tamm-Dancoff approximation. It is shown that in this particular case, all functionals afford the same reasonable agreement with experiment for RSCF-CV-DFT whereas only the LC-functionals afford a fair agreement with experiment using TDDFT. We have in addition calculated the CT transition energy for X-TCNE with X = toluene, o-xylene, and naphthalene employing the same functionals as for X = benzene. It is shown that the calculated charge transfer excitation energies are in as good agreement with experiment as those obtained from highly optimized LC-functionals using adiabatic TDDFT. We finally discuss the relation between the optimization of length separation parameters and orbital relaxation in the RSCF-CV-DFT scheme.

  3. Materials Frontiers to Empower Quantum Computing

    SciTech Connect (OSTI)

    Taylor, Antoinette Jane; Sarrao, John Louis; Richardson, Christopher

    2015-06-11

    This is an exciting time at the nexus of quantum computing and materials research. The materials frontiers described in this report represent a significant advance in electronic materials and our understanding of the interactions between the local material and a manufactured quantum state. Simultaneously, directed efforts to solve materials issues related to quantum computing provide an opportunity to control and probe the fundamental arrangement of matter that will impact all electronic materials. An opportunity exists to extend our understanding of materials functionality from electronic-grade to quantum-grade by achieving a predictive understanding of noise and decoherence in qubits and their origins in materials defects and environmental coupling. Realizing this vision systematically and predictively will be transformative for quantum computing and will represent a qualitative step forward in materials prediction and control.

  4. Lorentz violating supersymmetric quantum electrodynamics

    SciTech Connect (OSTI)

    Bolokhov, Pavel A.; Groot Nibbelink, Stefan; Pospelov, Maxim

    2005-07-01

    The theory of supersymmetric quantum electrodynamics is extended by interactions with external vector and tensor backgrounds, that are assumed to be generated by some Lorentz-violating (LV) dynamics at an ultraviolet scale perhaps related to the Planck scale. Exact supersymmetry requires that such interactions correspond to LV operators of dimension five or higher, providing a solution to the naturalness problem in the LV sector. We classify all dimension five and six LV operators, analyze their properties at the quantum level and describe observational consequences of LV in this theory. We show that LV operators do not induce destabilizing D-terms, gauge anomaly, and the Chern-Simons term for photons. We calculate the renormalization group evolution of dimension five LV operators and their mixing with dimension three LV operators, controlled by the scale of the soft-breaking masses. Dimension five LV operators are constrained by low-energy precision measurements at 10{sup -10}-10{sup -5} level in units of the inverse Planck scale, while the Planck-scale suppressed dimension six LV operators are allowed by observational data.

  5. Dynamical bifurcation as a semiclassical counterpart of a quantum phase transition

    SciTech Connect (OSTI)

    Buonsante, P.; Vezzani, A.

    2011-12-15

    We illustrate how dynamical transitions in nonlinear semiclassical models can be recognized as phase transitions in the corresponding--inherently linear--quantum model, where, in a statistical-mechanics framework, the thermodynamic limit is realized by letting the particle population go to infinity at fixed size. We focus on lattice bosons described by the Bose-Hubbard (BH) model and discrete self-trapping (DST) equations at the quantum and semiclassical levels, respectively. After showing that the Gaussianity of the quantum ground states is broken at the phase transition, we evaluate finite-population effects by introducing a suitable scaling hypothesis; we work out the exact value of the critical exponents and provide numerical evidence confirming our hypothesis. Our analytical results rely on a general scheme obtained from a large-population expansion of the eigenvalue equation of the BH model. In this approach the DST equations resurface as solutions of the zeroth-order problem.

  6. Higher-order corrections to dust ion-acoustic soliton in a quantum dusty plasma

    SciTech Connect (OSTI)

    Chatterjee, Prasanta; Das, Brindaban; Mondal, Ganesh; Muniandy, S. V.; Wong, C. S.

    2010-10-15

    Dust ion-acoustic soliton is studied in an electron-dust-ion plasma by employing a two-fluid quantum hydrodynamic model. Ions and electrons are assumed to follow quantum mechanical behaviors in dust background. The Korteweg-de Vries (KdV) equation and higher order contribution to KdV equations are derived using reductive perturbation technique. The higher order contribution is obtained as a higher order inhomogeneous differential equation. The nonsecular solution of the higher order contribution is obtained by using the renormalization method and the particular solution of the inhomogeneous equation is determined using a truncated series solution method. The effects of dust concentration, quantum parameter for ions and electrons, and soliton velocity on the amplitude and width of the dressed soliton are discussed.

  7. Carrier dynamics in inhomogeneously broadened InAs/AlGaInAs/InP quantum-dot semiconductor optical amplifiers

    SciTech Connect (OSTI)

    Karni, O. Mikhelashvili, V.; Eisenstein, G.; Kuchar, K. J.; Capua, A.; Sęk, G.; Misiewicz, J.; Ivanov, V.; Reithmaier, J. P.

    2014-03-24

    We report on a characterization of fundamental gain dynamics in recently developed InAs/InP quantum-dot semiconductor optical amplifiers. Multi-wavelength pump-probe measurements were used to determine gain recovery rates, following a powerful optical pump pulse, at various wavelengths for different bias levels and pump excitation powers. The recovery was dominated by coupling between the electronic states in the quantum-dots and the high energy carrier reservoir via capture and escape mechanisms. These processes determine also the wavelength dependencies of gain saturation depth and the asymptotic gain recovery level. Unlike quantum-dash amplifiers, these quantum-dots exhibit no instantaneous gain response, confirming their quasi zero-dimensional nature.

  8. Quantum measurements of atoms using cavity QED

    SciTech Connect (OSTI)

    Dada, Adetunmise C.; Andersson, Erika [SUPA, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Jones, Martin L.; Kendon, Vivien M. [School of Physics and Astronomy, University of Leeds, Woodhouse Lane, Leeds LS2 9JT (United Kingdom); Everitt, Mark S. [School of Physics and Astronomy, University of Leeds, Woodhouse Lane, Leeds LS2 9JT (United Kingdom); National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda ku, Tokyo 101-8430 (Japan)

    2011-04-15

    Generalized quantum measurements are an important extension of projective or von Neumann measurements in that they can be used to describe any measurement that can be implemented on a quantum system. We describe how to realize two nonstandard quantum measurements using cavity QED. The first measurement optimally and unambiguously distinguishes between two nonorthogonal quantum states. The second example is a measurement that demonstrates superadditive quantum coding gain. The experimental tools used are single-atom unitary operations effected by Ramsey pulses and two-atom Tavis-Cummings interactions. We show how the superadditive quantum coding gain is affected by errors in the field-ionization detection of atoms and that even with rather high levels of experimental imperfections, a reasonable amount of superadditivity can still be seen. To date, these types of measurements have been realized only on photons. It would be of great interest to have realizations using other physical systems. This is for fundamental reasons but also since quantum coding gain in general increases with code word length, and a realization using atoms could be more easily scaled than existing realizations using photons.

  9. Quantum ion-acoustic wave oscillations in metallic nanowires

    SciTech Connect (OSTI)

    Moradi, Afshin

    2015-05-15

    The low-frequency electrostatic waves in metallic nanowires are studied using the quantum hydrodynamic model, in which the electron and ion components of the system are regarded as a two-species quantum plasma system. The Poisson equation as well as appropriate quantum boundary conditions give the analytical expressions of dispersion relations of the surface and bulk quantum ion-acoustic wave oscillations.

  10. Experimental quantum multimeter and one-qubit fingerprinting

    SciTech Connect (OSTI)

    Du Jiangfeng; Zou Ping; Peng Xinhua; Oi, Daniel K. L.; Ekert, Artur; Kwek, L. C.; Oh, C. H.

    2006-10-15

    There has been much recent effort to realize quantum devices in many different physical systems. Among them, nuclear magnetic resonance (NMR) has been the first to demonstrate nontrivial quantum algorithms with small numbers of qubits and hence is a prototype for the key ingredients needed to build quantum computers. An important building block in many quantum applications is the scattering circuit, which can be used as a quantum multimeter to perform various quantum information processing tasks directly without recourse to quantum tomography. We implement in NMR a three-qubit version of the multimeter and also demonstrate a single-qubit fingerprinting.

  11. The quantum Hall effect helicity

    SciTech Connect (OSTI)

    Shrivastava, Keshav N.

    2015-04-16

    The quantum Hall effect in semiconductor heterostructures is explained by two signs in the angular momentum j=l±s and g=(2j+1)/(2l+1) along with the Landau factor (n+1/2). These modifications in the existing theories explain all of the fractional charges. The helicity which is the sign of the product of the linear momentum with the spin p.s plays an important role for the understanding of the data at high magnetic fields. In particular it is found that particles with positive sign in the spin move in one direction and those with negative sign move in another direction which explains the up and down stream motion of the particles.

  12. Towards bulk based preconditioning for quantum dotcomputations

    SciTech Connect (OSTI)

    Dongarra, Jack; Langou, Julien; Tomov, Stanimire; Channing,Andrew; Marques, Osni; Vomel, Christof; Wang, Lin-Wang

    2006-05-25

    This article describes how to accelerate the convergence of Preconditioned Conjugate Gradient (PCG) type eigensolvers for the computation of several states around the band gap of colloidal quantum dots. Our new approach uses the Hamiltonian from the bulk materials constituent for the quantum dot to design an efficient preconditioner for the folded spectrum PCG method. The technique described shows promising results when applied to CdSe quantum dot model problems. We show a decrease in the number of iteration steps by at least a factor of 4 compared to the previously used diagonal preconditioner.

  13. Nonradiative Recombination Pathways in Noncarcinogenic Quantum Dot

    Broader source: Energy.gov (indexed) [DOE]

    Composites | Department of Energy Lead Performer: UbiQD, LLC - Los Alamos, NM DOE Total Funding: $150,000 Project Term: February 22, 2016 - November 21, 2016 Funding Type: SBIR PROJECT OBJECTIVE Quantum dots composed of I-III-VI materials such as CuInS2 offer a compelling alternative to typical semiconductor quantum-dot systems, because they have no known toxicity and can be manufactured at a much lower cost. The project proposes to evaluate the commercial viability of CuInS2/ZnS quantum

  14. Generalized measurements via a programmable quantum processor

    SciTech Connect (OSTI)

    Rosko, Marian; Buzek, Vladimir; Chouha, Paul Robert; Hillery, Mark

    2003-12-01

    We show that it is possible to control the trade-off between information gain and disturbance in generalized measurements of qudits by utilizing a programmable quantum processor. This universal quantum machine allows us to perform a generalized measurement on the initial state of the input qudit to construct a Husimi function of this state. The trade-off between the gain and the disturbance of the qudit is controlled by the initial state of ancillary system that acts as a program for the quantum-information distributor. The trade-off fidelity does not depend on the initial state of the qudit.

  15. Uniqueness of measures in loop quantum cosmology

    SciTech Connect (OSTI)

    Hanusch, Maximilian

    2015-09-15

    In Ashtekar and Campiglia [Classical Quantum Gravity 29, 242001 (2012)], residual diffeomorphisms have been used to single out the standard representation of the reduced holonomy-flux algebra in homogeneous loop quantum cosmology (LQC). We show that, in the homogeneous isotropic case, unitarity of the translations with respect to the extended ℝ-action (exponentiated reduced fluxes in the standard approach) singles out the Bohr measure on both the standard quantum configuration space ℝ{sub Bohr} as well as on the Fleischhack one (ℝ⊔ℝ{sub Bohr}). Thus, in both situations, the same condition singles out the standard kinematical Hilbert space of LQC.

  16. Resonator-quantum well infrared photodetectors

    SciTech Connect (OSTI)

    Choi, K. K. Sun, J.; Olver, K.; Jhabvala, M. D.; Jhabvala, C. A.; Waczynski, A.

    2013-11-11

    We applied a recent electromagnetic model to design the resonator-quantum well infrared photodetector (R-QWIP). In this design, we used an array of rings as diffractive elements to diffract normal incident light into parallel propagation and used the pixel volume as a resonator to intensify the diffracted light. With a proper pixel size, the detector resonates at certain optical wavelengths and thus yields a high quantum efficiency (QE). To test this detector concept, we fabricated a number of R-QWIPs with different quantum well materials and detector geometries. The experimental result agrees satisfactorily with the prediction, and the highest QE achieved is 71%.

  17. Thermodynamic universality of quantum Carnot engines

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gardas, Bartłomiej; Deffner, Sebastian

    2015-10-12

    The Carnot statement of the second law of thermodynamics poses an upper limit on the efficiency of all heat engines. Recently, it has been studied whether generic quantum features such as coherence and quantum entanglement could allow for quantum devices with efficiencies larger than the Carnot efficiency. The present study shows that this is not permitted by the laws of thermodynamic —independent of the model. We will show that rather the definition of heat has to be modified to account for the thermodynamic cost of maintaining non-Gibbsian equilibrium states. As a result, our theoretical findings are illustrated for two experimentallymore » relevant examples.« less

  18. Thermodynamic universality of quantum Carnot engines

    SciTech Connect (OSTI)

    Gardas, Bart?omiej; Deffner, Sebastian

    2015-10-12

    The Carnot statement of the second law of thermodynamics poses an upper limit on the efficiency of all heat engines. Recently, it has been studied whether generic quantum features such as coherence and quantum entanglement could allow for quantum devices with efficiencies larger than the Carnot efficiency. The present study shows that this is not permitted by the laws of thermodynamic independent of the model. We will show that rather the definition of heat has to be modified to account for the thermodynamic cost of maintaining non-Gibbsian equilibrium states. As a result, our theoretical findings are illustrated for two experimentally relevant examples.

  19. Modeling of the quantum dot filling and the dark current of quantum dot infrared photodetectors

    SciTech Connect (OSTI)

    Ameen, Tarek A.; El-Batawy, Yasser M.; Abouelsaood, A. A.

    2014-02-14

    A generalized drift-diffusion model for the calculation of both the quantum dot filling profile and the dark current of quantum dot infrared photodetectors is proposed. The confined electrons inside the quantum dots produce a space-charge potential barrier between the two contacts, which controls the quantum dot filling and limits the dark current in the device. The results of the model reasonably agree with a published experimental work. It is found that increasing either the doping level or the temperature results in an exponential increase of the dark current. The quantum dot filling turns out to be nonuniform, with a dot near the contacts containing more electrons than one in the middle of the device where the dot occupation approximately equals the number of doping atoms per dot, which means that quantum dots away from contacts will be nearly unoccupied if the active region is undoped.

  20. Quantum tomographic cryptography with Bell diagonal states: Nonequivalence of classical and quantum distillation protocols

    SciTech Connect (OSTI)

    Kaszlikowski, Dagomir; Lim, J.Y.; Willeboordse, Frederick H.; Oi, D.K.L.; Gopinathan, Ajay; Kwek, L.C.

    2005-01-01

    We present a generalized tomographic quantum key distribution protocol in which the two parties share a Bell diagonal mixed state of two qubits. We show that if an eavesdropper performs a coherent measurement on many quantum ancilla states simultaneously, classical methods of secure key distillation are less effective than quantum entanglement distillation protocols. We also show that certain classes of Bell diagonal states are resistant to any attempt at incoherent eavesdropping.

  1. Continuous-time quantum walks on star graphs

    SciTech Connect (OSTI)

    Salimi, S.

    2009-06-15

    In this paper, we investigate continuous-time quantum walk on star graphs. It is shown that quantum central limit theorem for a continuous-time quantum walk on star graphs for N-fold star power graph, which are invariant under the quantum component of adjacency matrix, converges to continuous-time quantum walk on K{sub 2} graphs (complete graph with two vertices) and the probability of observing walk tends to the uniform distribution.

  2. Surface plasmon oscillations on a quantum plasma half-space

    SciTech Connect (OSTI)

    Moradi, Afshin

    2015-01-15

    We investigate the propagation of surface electrostatic oscillations on a quantum plasma half-space, taking into account the quantum effects. We derive the quantum surface wave frequencies of the system, by means the quantum hydrodynamic theory in conjunction with the Poisson equation and applying the appropriate additional quantum boundary conditions. Numerical results show in the presence of the slow nonlocal variations, plasmon wave energies of the system are significantly modified and plasmonic oscillations with blue-shifted frequencies emerge.

  3. Shiny quantum dots brighten future of solar cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Shiny quantum dots brighten future of solar cells Shiny quantum dots brighten future of solar cells The project demonstrates that superior light-emitting properties of quantum dots can be applied in solar energy by helping more efficiently harvest sunlight. April 14, 2014 Quantum dot LSC devices under ultraviolet illumination. Quantum dot LSC devices under ultraviolet illumination. Contact Nancy Ambrosiano Communications Office (505) 667-0471 Email "The key accomplishment is the

  4. Optical spectroscopy of quantum confined states in GaAs/AlGaAs quantum well tubes

    SciTech Connect (OSTI)

    Shi, Teng; Fickenscher, Melodie; Smith, Leigh; Jackson, Howard; Yarrison-Rice, Jan; Gao, Qiang; Tan, Hoe; Jagadish, Chennupati; Etheridge, Joanne; Wong, Bryan M.

    2013-12-04

    We have investigated the quantum confinement of electronic states in GaAs/Al{sub x}Ga{sub 1?x}As nanowire heterostructures which contain radial GaAs quantum wells of either 4nm or 8nm. Photoluminescence and photoluminescence excitation spectroscopy are performed on single nanowires. We observed emission and excitation of electron and hole confined states. Numerical calculations of the quantum confined states using the detailed structural information on the quantum well tubes show excellent agreement with these optical results.

  5. Integrability and nonintegrability of quantum systems. II. Dynamics in quantum phase space

    SciTech Connect (OSTI)

    Zhang, Weimin (Department of Physics, FM-15, University of Washington, Seattle, WA (USA) Department of Physics and Atmospheric Science, Drexel University, Philadelphia, PA (USA)); Feng, D.H.; Yuan, Jianmin (Department of Physics and Atmospheric Science, Drexel University, Philadelphia, PA (USA))

    1990-12-15

    Based on the concepts of integrability and nonintegrability of a quantum system presented in a previous paper (Zhang, Feng, Yuan, and Wang, Phys. Rev. A 40, 438 (1989)), a realization of the dynamics in the quantum phase space is now presented. For a quantum system with dynamical group {ital G-script} and in one of its unitary irreducible-representation carrier spaces {ital h-german}{sub {Lambda}}, the quantum phase space is a 2{ital M}{sub {Lambda}}-dimensional topological space, where {ital M}{sub {Lambda}} is the quantum-dynamical degrees of freedom. This quantum phase space is isomorphic to a coset space {ital G-script}/{ital H-script} via the unitary exponential mapping of the elementary excitation operator subspace of {ital g-script} (algebra of {ital G-script}), where {ital H-script} ({contained in}{ital G-script}) is the maximal stability subgroup of a fixed state in {ital h-german}{sub {Lambda}}. The phase-space representation of the system is realized on {ital G-script}/{ital H-script}, and its classical analogy can be obtained naturally. It is also shown that there is consistency between quantum and classical integrability. Finally, a general algorithm for seeking the manifestation of quantum chaos'' via the classical analogy is provided. Illustrations of this formulation in several important quantum systems are presented.

  6. Nontoxic quantum dot research improves solar cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar cells made with low-cost, nontoxic copper-based quantum dots can achieve ... LOS ALAMOS, N.M., Dec. 10, 2013-Solar cells made with low-cost, nontoxic copper-based ...

  7. What the Blank Makes Quantum Dots Blink?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    if scientists can stop them blinking. (Photo by Antipoff, CC BY-SA 3.0) Quantum dots are nanoparticles of semiconductor that can be tuned to glow in a rainbow of colors. ...

  8. Nuclear Scission and Quantum Localization (Journal Article) ...

    Office of Scientific and Technical Information (OSTI)

    Nuclear Scission and Quantum Localization Citation Details ... 1183533 Report Number(s): LLNL-JRNL-473099 DOE Contract Number: DE-AC52-07NA27344 Resource Type: Journal Article ...

  9. An uncertainty principle for unimodular quantum groups

    SciTech Connect (OSTI)

    Crann, Jason; Kalantar, Mehrdad E-mail: mkalanta@math.carleton.ca

    2014-08-15

    We present a generalization of Hirschman's entropic uncertainty principle for locally compact Abelian groups to unimodular locally compact quantum groups. As a corollary, we strengthen a well-known uncertainty principle for compact groups, and generalize the relation to compact quantum groups of Kac type. We also establish the complementarity of finite-dimensional quantum group algebras. In the non-unimodular setting, we obtain an uncertainty relation for arbitrary locally compact groups using the relative entropy with respect to the Haar weight as the measure of uncertainty. We also show that when restricted to q-traces of discrete quantum groups, the relative entropy with respect to the Haar weight reduces to the canonical entropy of the random walk generated by the state.

  10. Software-defined Quantum Communication Systems

    SciTech Connect (OSTI)

    Humble, Travis S; Sadlier, Ronald J

    2014-01-01

    Quantum communication systems harness modern physics through state-of-the-art optical engineering to provide revolutionary capabilities. An important concern for quantum communication engineering is designing and prototyping these systems to prototype proposed capabilities. We apply the paradigm of software-defined communica- tion for engineering quantum communication systems to facilitate rapid prototyping and prototype comparisons. We detail how to decompose quantum communication terminals into functional layers defining hardware, software, and middleware concerns, and we describe how each layer behaves. Using the super-dense coding protocol as a test case, we describe implementations of both the transmitter and receiver, and we present results from numerical simulations of the behavior. We find that while the theoretical benefits of super dense coding are maintained, there is a classical overhead associated with the full implementation.

  11. Non-abelian fractional quantum hall effect for fault-resistant...

    Office of Scientific and Technical Information (OSTI)

    Non-abelian fractional quantum hall effect for fault-resistant topological quantum computation. Citation Details In-Document Search Title: Non-abelian fractional quantum hall...

  12. First principle thousand atom quantum dot calculations

    SciTech Connect (OSTI)

    Wang, Lin-Wang; Li, Jingbo

    2004-03-30

    A charge patching method and an idealized surface passivation are used to calculate the single electronic states of IV-IV, III-V, II-VI semiconductor quantum dots up to a thousand atoms. This approach scales linearly and has a 1000 fold speed-up compared to direct first principle methods with a cost of eigen energy error of about 20 meV. The calculated quantum dot band gaps are parametrized for future references.

  13. Ultrabroad stimulated emission from quantum well laser

    SciTech Connect (OSTI)

    Wang, Huolei; Zhou, Xuliang; Yu, Hongyan; Mi, Junping; Wang, Jiaqi; Bian, Jing; Wang, Wei; Pan, Jiaoqing; Ding, Ying; Chen, Weixi

    2014-06-23

    Observation of ultrabroad stimulated emission from a simplex quantum well based laser at the center wavelength of 1.06??m is reported. With increased injection current, spectrum as broad as 38?nm and a pulsed output power of ?50?mW have been measured. The experiments show evidence of an unexplored broad emission regime in the InGaAs/GaAs quantum well material system, which still needs theoretical modeling and further analysis.

  14. Galilei invariant technique for quantum system description

    SciTech Connect (OSTI)

    Kamuntavi?ius, Gintautas P.

    2014-04-15

    Problems with quantum systems models, violating Galilei invariance are examined. The method for arbitrary non-relativistic quantum system Galilei invariant wave function construction, applying a modified basis where center-of-mass excitations have been removed before Hamiltonian matrix diagonalization, is developed. For identical fermion system, the Galilei invariant wave function can be obtained while applying conventional antisymmetrization methods of wave functions, dependent on single particle spatial variables.

  15. On variational definition of quantum entropy

    SciTech Connect (OSTI)

    Belavkin, Roman V.

    2015-01-13

    Entropy of distribution P can be defined in at least three different ways: 1) as the expectation of the Kullback-Leibler (KL) divergence of P from elementary δ-measures (in this case, it is interpreted as expected surprise); 2) as a negative KL-divergence of some reference measure ν from the probability measure P; 3) as the supremum of Shannon’s mutual information taken over all channels such that P is the output probability, in which case it is dual of some transportation problem. In classical (i.e. commutative) probability, all three definitions lead to the same quantity, providing only different interpretations of entropy. In non-commutative (i.e. quantum) probability, however, these definitions are not equivalent. In particular, the third definition, where the supremum is taken over all entanglements of two quantum systems with P being the output state, leads to the quantity that can be twice the von Neumann entropy. It was proposed originally by V. Belavkin and Ohya [1] and called the proper quantum entropy, because it allows one to define quantum conditional entropy that is always non-negative. Here we extend these ideas to define also quantum counterpart of proper cross-entropy and cross-information. We also show inequality for the values of classical and quantum information.

  16. Ultra Thin Quantum Well Materials

    SciTech Connect (OSTI)

    Dr Saeid Ghamaty

    2012-08-16

    This project has enabled Hi-Z technology Inc. (Hi-Z) to understand how to improve the thermoelectric properties of Si/SiGe Quantum Well Thermoelectric Materials. The research that was completed under this project has enabled Hi-Z Technology, Inc. (Hi-Z) to satisfy the project goal to understand how to improve thermoelectric conversion efficiency and reduce costs by fabricating ultra thin Si/SiGe quantum well (QW) materials and measuring their properties. In addition, Hi-Z gained critical new understanding on how thin film fabrication increases the silicon substrate's electrical conductivity, which is important new knowledge to develop critical material fabrication parameters. QW materials are constructed with alternate layers of an electrical conductor, SiGe and an electrical insulator, Si. Film thicknesses were varied, ranging from 2nm to 10nm where 10 nm was the original film thickness prior to this work. The optimum performance was determined at a Si and SiGe thickness of 4nm for an electrical current and heat flow parallel to the films, which was an important conclusion of this work. Essential new information was obtained on how the Si substrate electrical conductivity increases by up to an order of magnitude upon deposition of QW films. Test measurements and calculations are accurate and include both the quantum well and the substrate. The large increase in substrate electrical conductivity means that a larger portion of the electrical current passes through the substrate. The silicon substrate's increased electrical conductivity is due to inherent impurities and thermal donors which are activated during both molecular beam epitaxy and sputtering deposition of QW materials. Hi-Z's forward looking cost estimations based on future high performance QW modules, in which the best Seebeck coefficient and electrical resistivity are taken from separate samples predict that the electricity cost produced with a QW module could be achieved at <$0.35/W. This price would

  17. Combined Quantum Chemical/Raman Spectroscopic Analyses of Li+ Cation Solvation: Cyclic Carbonate Solvents - Ethylene Carbonate and Propylene Earbonate

    SciTech Connect (OSTI)

    Allen, Joshua L.; Borodin, Oleg; Seo, D. M.; Henderson, Wesley A.

    2014-12-01

    Combined computational/Raman spectroscopic analyses of ethylene carbonate (EC) and propylene carbonate (PC) solvation interactions with lithium salts are reported. It is proposed that previously reported Raman analyses of (EC)n-LiX mixtures have utilized faulty assumptions. In the present studies, density functional theory (DFT) calculations have provided corrections in terms of both the scaling factors for the solvent's Raman band intensity variations and information about band overlap. By accounting for these factors, the solvation numbers obtained from two different EC solvent bands are in excellent agreement with one another. The same analysis for PC, however, was found to be quite challenging. Commercially available PC is a racemic mixture of (S)- and (R)-PC isomers. Based upon the quantum chemistry calculations, each of these solvent isomers may exist as multiple conformers due to a low energy barrier for ring inversion, making deconvolution of the Raman bands daunting and inherently prone to significant error. Thus, Raman spectroscopy is able to accurately determine the extent of the EC...Li+ cation solvation interactions using the provided methodology, but a similar analysis of PC...Li+ cation solvation results in a significant underestimation of the actual solvation numbers.

  18. Gamma Ray Bursts from a Quantum Critical Surface

    SciTech Connect (OSTI)

    Chapline, G; Santiago, D I

    2002-11-20

    The logical inconsistency of quantum mechanics and general relativity can be avoided if the relativity principle fails for length scales smaller than the quantum coherence length for the vacuum state. Ordinarily this corresponds to energies near the Planck energy, but recently it has been pointed out that near to the event horizon of a black hole the coherence length can be much larger and Planck scale physics can take over at macroscopic distances from the event horizon. This has dramatic consequences for the phenomenology of black holes. If we assume that at the Planck scale elementary particles interact via a universal 4-point interaction and baryon number conservation is violated, then the rest mass of a star hitting the event horizon of a large black hole would be rapidly converted into a burst of gamma rays followed by a pulse of hard X-rays whose duration is on the order of the light transit time across the black hole. Predictions for the gamma ray spectra are strikingly similar to those observed for cosmic gamma ray bursts.

  19. Structural Stability and Defect Energetics of ZnO from Diffusion Quantum Monte Carlo

    SciTech Connect (OSTI)

    Santana Palacio, Juan A.; Krogel, Jaron T.; Kim, Jeongnim; Kent, Paul R.; Reboredo, Fernando A.

    2015-04-28

    We have applied the many-body ab-initio diffusion quantum Monte Carlo (DMC) method to study Zn and ZnO crystals under pressure, and the energetics of the oxygen vacancy, zinc interstitial and hydrogen impurities in ZnO. We show that DMC is an accurate and practical method that can be used to characterize multiple properties of materials that are challenging for density functional theory approximations. DMC agrees with experimental measurements to within 0.3 eV, including the band-gap of ZnO, the ionization potential of O and Zn, and the atomization energy of O2, ZnO dimer, and wurtzite ZnO. DMC predicts the oxygen vacancy as a deep donor with a formation energy of 5.0(2) eV under O-rich conditions and thermodynamic transition levels located between 1.8 and 2.5 eV from the valence band maximum. Our DMC results indicate that the concentration of zinc interstitial and hydrogen impurities in ZnO should be low under n-type, and Zn- and H-rich conditions because these defects have formation energies above 1.4 eV under these conditions. Comparison of DMC and hybrid functionals shows that these DFT approximations can be parameterized to yield a general correct qualitative description of ZnO. However, the formation energy of defects in ZnO evaluated with DMC and hybrid functionals can differ by more than 0.5 eV.

  20. Structural Stability and Defect Energetics of ZnO from Diffusion Quantum Monte Carlo

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Santana Palacio, Juan A.; Krogel, Jaron T.; Kim, Jeongnim; Kent, Paul R.; Reboredo, Fernando A.

    2015-04-28

    We have applied the many-body ab-initio diffusion quantum Monte Carlo (DMC) method to study Zn and ZnO crystals under pressure, and the energetics of the oxygen vacancy, zinc interstitial and hydrogen impurities in ZnO. We show that DMC is an accurate and practical method that can be used to characterize multiple properties of materials that are challenging for density functional theory approximations. DMC agrees with experimental measurements to within 0.3 eV, including the band-gap of ZnO, the ionization potential of O and Zn, and the atomization energy of O2, ZnO dimer, and wurtzite ZnO. DMC predicts the oxygen vacancy asmore » a deep donor with a formation energy of 5.0(2) eV under O-rich conditions and thermodynamic transition levels located between 1.8 and 2.5 eV from the valence band maximum. Our DMC results indicate that the concentration of zinc interstitial and hydrogen impurities in ZnO should be low under n-type, and Zn- and H-rich conditions because these defects have formation energies above 1.4 eV under these conditions. Comparison of DMC and hybrid functionals shows that these DFT approximations can be parameterized to yield a general correct qualitative description of ZnO. However, the formation energy of defects in ZnO evaluated with DMC and hybrid functionals can differ by more than 0.5 eV.« less

  1. A Matter of Quantum Voltages

    SciTech Connect (OSTI)

    Sellner, Bernhard; Kathmann, Shawn M.

    2014-11-14

    Voltages inside matter are relevant to crystallization, materials science, biology, catalysis, and aqueous chemistry. Electron holography is able to measure the variation of voltages in matter and modern supercomputers allow the calculation of quantum voltages with practically unlimited spatial and temporal resolution of bulk systems. Of particular interest is the Mean Inner Potential (Vo) - the spatial average of these voltages. Voltages are very sensitive to the distribution of electrons and provide metrics to understand interactions in condensed phases. In the present study, we find excellent agreement with measurements of Vo for vitrified water and salt crystals and demonstrate the impact of covalent and ionic bonding as well as intermolecular/atomic interactions. Furthermore, we predict Vo as well as the fluctuations of these voltages in aqueous NaCl electrolytes and characterize the changes in their behavior as the resolution increases below the size of atoms. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  2. Comment on "New Insights in the Electrocatalytic Proton Reduction and Hydrogen Oxidation by Bioinspired Catalysts: A DFT Investigation"

    SciTech Connect (OSTI)

    Dupuis, Michel; Chen, Shentan; Raugei, Simone; DuBois, Daniel L; Bullock, R. Morris

    2011-05-12

    In the title paper, Vetere et al. reported a computational investigation of the mechanism of H{sub 2} oxidation/proton reduction using a model of nickel-based electrocatalysts that incorporates pendant amines in cyclic phosphorus ligands. These catalysts are attracting considerable attention owing to their high turnover rates and relatively low overpotentials. These authors interpreted the results of their calculations as evidence for a symmetric bond cleavage of H{sub 2} leading directly to two protonated amines in concert with a two-electron reduction of the Ni(II) site to form a Ni(0) diproton state. Proton reduction would involve a reverse symmetric bond formation. We report here an analysis that refutes the interpretation by these authors. We give, for the same model system, the structure of a heterolytic cleavage transition state consistent with the presence of the Ni(II) center acting as a Lewis acid and the pendant amines acting as Lewis bases. We present the associated intrinsic reaction coordinate (IRC) pathway connecting the dihydrogen (?{sup 2}-H{sub 2}) adduct and a hydrideproton state. We report also the transition state and associated IRC for the proton rearrangement from a hydrideproton state to a diproton state. Finally, we complete the characterization of the transition state reported by Vetere et al. through a determination of the corresponding IRC. In summary, H{sub 2} oxidation/proton reduction with this class of catalysts involves a heterolytic bond breaking/formation.

  3. Comment on 'New Insights in the Electrocatalytic Proton Reduction and Hydrogen Oxidation by Bioinspired Catalysts: A DFT Investigation'

    SciTech Connect (OSTI)

    Dupuis, Michel; Chen, Shentan; Raugei, Simone; DuBois, Daniel L.; Bullock, R. Morris

    2011-05-12

    In the title paper, Vetere et al. reported a computational investigation of the mechanism of oxidation of H2 / proton reduction using a model nickel complex for nickel-based electrocatalysts with cyclic phosphorous ligands incorporating pendant amines. These catalysts are attracting considerable attention owing to their high turn-over rates and relatively low overpotentials. These authors interpreted the results of their calculations as evidence for a symmetric bond breaking (forming) of H2 directly to (from) two protonated amines in concert with a 2-electron reduction of the Ni(II) site to form a Ni(0) di-proton state. We show here that this interpretation is erroneous as we report the structure of an heterolytic cleavage transition state consistent with the presence of the Ni(II) center acting as a Lewis acid and of the pendant amines acting as Lewis bases. We determined the associated intrinsic reaction coordinate (IRC) pathway connecting the di-hydrogen (?2-H2) adduct and a hydride-proton state. We also characterize differently the nature of the transition state reported by these authors. H2 oxidation / proton reduction with this class of catalysts is a heterolytic process.

  4. Quantum nonlocal effects on optical properties of spherical nanoparticles

    SciTech Connect (OSTI)

    Moradi, Afshin

    2015-02-15

    To study the scattering of electromagnetic radiation by a spherical metallic nanoparticle with quantum spatial dispersion, we develop the standard nonlocal Mie theory by allowing for the excitation of the quantum longitudinal plasmon modes. To describe the quantum nonlocal effects, we use the quantum longitudinal dielectric function of the system. As in the standard Mie theory, the electromagnetic fields are expanded in terms of spherical vector wavefunctions. Then, the usual Maxwell boundary conditions are imposed plus the appropriate additional boundary conditions. Examples of calculated extinction spectra are presented, and it is found that the frequencies of the subsidiary peaks, due to quantum bulk plasmon excitations exhibit strong dependence on the quantum spatial dispersion.

  5. Mechanics Nima Arkani Hamed Institute for Advanced Study, Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Parke-Taylor Amplitude to Deeper Origins for Space-time and Quantum Mechanics Nima Arkani Hamed Institute for Advanced Study, Princeton March 16, 2016 4:00 p.m. - Wilson Hall, One West 30 years ago, Fermilab theorists Stephen Parke and Tomasz Taylor made one of the most important discoveries in theoretical physics of the past three decades--the Parke-Taylor gluon scattering amplitude--replacing hundreds of pages of complicated Feynman diagram calculations with an astonishingly simple

  6. Film quantum yields of EUV& ultra-high PAG photoresists

    SciTech Connect (OSTI)

    Hassanein, Elsayed; Higgins, Craig; Naulleau, Patrick; Matyi, Richard; Gallatin, Greg; Denbeaux, Gregory; Antohe, Alin; Thackery, Jim; Spear, Kathleen; Szmanda, Charles; Anderson, Christopher N.; Niakoula, Dimitra; Malloy, Matthew; Khurshid, Anwar; Montgomery, Cecilia; Piscani, Emil C.; Rudack, Andrew; Byers, Jeff; Ma, Andy; Dean, Kim; Brainard, Robert

    2008-01-10

    Base titration methods are used to determine C-parameters for three industrial EUV photoresist platforms (EUV-2D, MET-2D, XP5496) and twenty academic EUV photoresist platforms. X-ray reflectometry is used to measure the density of these resists, and leads to the determination of absorbance and film quantum yields (FQY). Ultrahigh levels ofPAG show divergent mechanisms for production of photo acids beyond PAG concentrations of 0.35 moles/liter. The FQY of sulfonium PAGs level off, whereas resists prepared with iodonium PAG show FQY s that increase beyond PAG concentrations of 0.35 moles/liter, reaching record highs of 8-13 acids generatedlEUV photons absorbed.

  7. Location deterministic biosensing from quantum-dot-nanowire assemblies

    SciTech Connect (OSTI)

    Liu, Chao; Kim, Kwanoh; Fan, D. L.

    2014-08-25

    Semiconductor quantum dots (QDs) with high fluorescent brightness, stability, and tunable sizes, have received considerable interest for imaging, sensing, and delivery of biomolecules. In this research, we demonstrate location deterministic biochemical detection from arrays of QD-nanowire hybrid assemblies. QDs with diameters less than 10 nm are manipulated and precisely positioned on the tips of the assembled Gold (Au) nanowires. The manipulation mechanisms are quantitatively understood as the synergetic effects of dielectrophoretic (DEP) and alternating current electroosmosis (ACEO) due to AC electric fields. The QD-nanowire hybrid sensors operate uniquely by concentrating bioanalytes to QDs on the tips of nanowires before detection, offering much enhanced efficiency and sensitivity, in addition to the position-predictable rationality. This research could result in advances in QD-based biomedical detection and inspires an innovative approach for fabricating various QD-based nanodevices.

  8. Polarization-Driven Stark Shifts in Quantum Dot Luminescence from Single CdSe/oligo-PPV Nanoparticles

    SciTech Connect (OSTI)

    Early, K. T.; Sudeep, P. K.; Emrick, Todd; Barnes, M. D.

    2010-05-12

    We demonstrate polarization-induced spectral shifts and associated linearly polarized absorption and emission in single CdSe/oligo-(phenylene vinylene) (CdSe/OPV) nanoparticles. A mechanism for these observations is presented in which charge separation from photoexcited ligands results in a significant Stark distortion of the quantum dot electron/hole wavefunctions. This distortion results in an induced linear polarization and an associated red shift in band-edge photoluminescence. These studies suggest the use of single quantum dots as local charge mobility probes.

  9. Quantum singularities in (2+1) dimensional matter coupled black hole spacetimes

    SciTech Connect (OSTI)

    Unver, O.; Gurtug, O.

    2010-10-15

    Quantum singularities considered in the 3D Banados-Teitelboim-Zanelli (BTZ) spacetime by Pitelli and Letelier [Phys. Rev. D 77, 124030 (2008)] is extended to charged BTZ and 3D Einstein-Maxwell-dilaton gravity spacetimes. The occurrence of naked singularities in the Einstein-Maxwell extension of the BTZ spacetime both in linear and nonlinear electrodynamics as well as in the Einstein-Maxwell-dilaton gravity spacetimes are analyzed with the quantum test fields obeying the Klein-Gordon and Dirac equations. We show that with the inclusion of the matter fields, the conical geometry near r=0 is removed and restricted classes of solutions are admitted for the Klein-Gordon and Dirac equations. Hence, the classical central singularity at r=0 turns out to be quantum mechanically singular for quantum particles obeying the Klein-Gordon equation but nonsingular for fermions obeying the Dirac equation. Explicit calculations reveal that the occurrence of the timelike naked singularities in the considered spacetimes does not violate the cosmic censorship hypothesis as far as the Dirac fields are concerned. The role of horizons that clothes the singularity in the black hole cases is replaced by repulsive potential barrier against the propagation of Dirac fields.

  10. Nuclear quantum effects in water exchange around lithium and fluoride ions

    SciTech Connect (OSTI)

    Wilkins, David M.; Manolopoulos, David E.; Dang, Liem X.

    2015-02-14

    We employ classical and ring polymer molecular dynamics simulations to study the effect of nuclear quantum fluctuations on the structure and the water exchange dynamics of aqueous solutions of lithium and fluoride ions. While we obtain reasonably good agreement with experimental data for solutions of lithium by augmenting the Coulombic interactions between the ion and the water molecules with a standard Lennard-Jones ion-oxygen potential, the same is not true for solutions of fluoride, for which we find that a potential with a softer repulsive wall gives much better agreement. A small degree of destabilization of the first hydration shell is found in quantum simulations of both ions when compared with classical simulations, with the shell becoming less sharply defined and the mean residence time of the water molecules in the shell decreasing. In line with these modest differences, we find that the mechanisms of the exchange processes are unaffected by quantization, so a classical description of these reactions gives qualitatively correct and quantitatively reasonable results. We also find that the quantum effects in solutions of lithium are larger than in solutions of fluoride. This is partly due to the stronger interaction of lithium with water molecules, partly due to the lighter mass of lithium and partly due to competing quantum effects in the hydration of fluoride, which are absent in the hydration of lithium.

  11. Nuclear quantum effects in water exchange around lithium and fluoride ions

    SciTech Connect (OSTI)

    Wilkins, David M.; Manolopoulos, David; Dang, Liem X.

    2015-02-14

    We employ classical and ring polymer molecular dynamics simulations to study the effect of nuclear quantum fluctuations on the structure and the water exchange dynamics of aqueous solutions of lithium and fluoride ions. While we obtain reasonably good agreement with experimental data for solutions of lithium by augmenting the Coulombic interactions between the ion and the water molecules with a standard Lennard-Jones ion-oxygen potential, the same is not true for solutions of fluoride, for which we find that a potential with a softer repulsive wall gives much better agreement. A small degree of destabilization of the first hydration shell is found in quantum simulations of both ions when compared with classical simulations, with the shell becoming less sharply defined and the mean residence time of the water molecules in the shell decreasing. In line with these modest differences, we find that the mechanisms of the water exchange reactions are unaffected by quantization, so a classical description of these reactions gives qualitatively correct and quantitatively reasonable results. We also find that the quantum effects in solutions of lithium are larger than in solutions of fluoride. This is partly due to the stronger interaction of lithium with water molecules, partly due to the lighter mass of lithium, and partly due to competing quantum effects in the hydration of fluoride, which are absent in the hydration of lithium. LXD was supported by US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences.

  12. The impact of disorder on charge transport in three dimensional quantum dot resonant tunneling structures

    SciTech Connect (OSTI)

    Puthen-Veettil, B. Patterson, R.; Knig, D.; Conibeer, G.; Green, M. A.

    2014-10-28

    Efficient iso-entropic energy filtering of electronic waves can be realized through nanostructures with three dimensional confinement, such as quantum dot resonant tunneling structures. Large-area deployment of such structures is useful for energy selective contacts but such configuration is susceptible to structural disorders. In this work, the transport properties of quantum-dot-based wide-area resonant tunneling structures, subject to realistic disorder mechanisms, are studied. Positional variations of the quantum dots are shown to reduce the resonant transmission peaks while size variations in the device are shown to reduce as well as broaden the peaks. Increased quantum dot size distribution also results in a peak shift to lower energy which is attributed to large dots dominating transmission. A decrease in barrier thickness reduces the relative peak height while the overall transmission increases dramatically due to lower series resistance. While any shift away from ideality can be intuitively expected to reduce the resonance peak, quantification allows better understanding of the tolerances required for fabricating structures based on resonant tunneling phenomena/.

  13. Quantum nonlinear resonance and quantum chaos in Aharonov-Bohm oscillations in mesoscopic semiconductor rings

    SciTech Connect (OSTI)

    Berman, G.P. [Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Bulgakov, E.N. [Kirensky Institute of Physics, 660036, Krasnoyarsk (Russia)] [Kirensky Institute of Physics, 660036, Krasnoyarsk (Russia); Campbell, D.K. [Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801-3080 (United States)] [Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801-3080 (United States); Krive, I.V. [Institute for Low Temperature Physics and Engineering, Ukrainian Academy of Sciences, 310164, Kharkov (Ukraine)] [Institute for Low Temperature Physics and Engineering, Ukrainian Academy of Sciences, 310164, Kharkov (Ukraine)

    1997-10-01

    We consider Aharonov-Bohm oscillations in a mesoscopic semiconductor ring threaded by both a constant magnetic flux and a time-dependent, resonant magnetic field with one or two frequencies. Working in the ballistic regime, we establish that the theory of {open_quotes}quantum nonlinear resonance{close_quotes} applies, and thus that this system represents a possible solid-state realization of {open_quotes}quantum nonlinear resonance{close_quotes} and {open_quotes}quantum chaos.{close_quotes} In particular, we investigate the behavior of the time-averaged electron energy at zero temperature in the regimes of (i) an isolated quantum nonlinear resonance and (ii) the transition to quantum chaos, when two quantum nonlinear resonances overlap. The time-averaged energy exhibits sharp resonant behavior as a function of the applied constant magnetic flux, and has a staircase dependence on the amplitude of the external time-dependent field. In the chaotic regime, the resonant behavior exhibits complex structure as a function of flux and frequency. We compare and contrast the quantum chaos expected in these mesoscopic {open_quotes}solid-state atoms{close_quotes} with that observed in Rydberg atoms in microwave fields, and discuss the prospects for experimental observation of the effects we predict. {copyright} {ital 1997} {ital The American Physical Society}

  14. Quantum and Dirac Materials for Energy Applications Conference...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantum and Dirac Materials for Energy Applications Quantum and Dirac Materials for Energy Applications Conference (QDM-15) WHEN: Mar 08, 2015 8:00 AM - Mar 11, 2015 5:00 PM WHERE:...

  15. Promising future of quantum dots explored in conference

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Los Alamos Quantum Dots for Solar, Display Technology 2:55 Los Alamos Quantum Dots for Solar, Display Technology Two for the price of one An important breakthrough reported by the ...

  16. Spin-orbit interaction in multiple quantum wells

    SciTech Connect (OSTI)

    Hao, Ya-Fei

    2015-01-07

    In this paper, we investigate how the structure of multiple quantum wells affects spin-orbit interactions. To increase the interface-related Rashba spin splitting and the strength of the interface-related Rashba spin-orbit interaction, we designed three kinds of multiple quantum wells. We demonstrate that the structure of the multiple quantum wells strongly affected the interface-related Rashba spin-orbit interaction, increasing the interface-related Rashba spin splitting to up to 26% larger in multiple quantum wells than in a stepped quantum well. We also show that the cubic Dresselhaus spin-orbit interaction similarly influenced the spin relaxation time of multiple quantum wells and that of a stepped quantum well. The increase in the interface-related Rashba spin splitting originates from the relationship between interface-related Rashba spin splitting and electron probability density. Our results suggest that multiple quantum wells can be good candidates for spintronic devices.

  17. Nanoscale engineering boosts performance of quantum dot light...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantum dots are nano-sized semiconductor particles whose emission color can be tuned by ... Quantum dots are nano-sized semiconductor particles whose emission color can be tuned by ...

  18. Next-Generation "Giant" Quantum Dots: Performance-Engineered...

    Energy Savers [EERE]

    This project seeks to develop quantum-dot downconverters to be used in LED lighting. The focus will be on synthesizing red-emitting quantum dots, revealing their failure ...

  19. ONSET OF CHAOS IN A MODEL OF QUANTUM COMPUTATION (Conference...

    Office of Scientific and Technical Information (OSTI)

    Clearly, if this happens in a quantum computer, it may lead to a destruction of the ... Numerical analysis 2 of a simplest model of quantum computer (2D model of 12-spins with ...

  20. Surface treatment of nanocrystal quantum dots after film deposition

    DOE Patents [OSTI]

    Sykora, Milan; Koposov, Alexey; Fuke, Nobuhiro

    2015-02-03

    Provided are methods of surface treatment of nanocrystal quantum dots after film deposition so as to exchange the native ligands of the quantum dots for exchange ligands that result in improvement in charge extraction from the nanocrystals.