National Library of Energy BETA

Sample records for devices heating elements

  1. Thermoelectric heat exchange element

    DOE Patents [OSTI]

    Callas, James J. (Peoria, IL); Taher, Mahmoud A. (Peoria, IL)

    2007-08-14

    A thermoelectric heat exchange module includes a first substrate including a heat receptive side and a heat donative side and a series of undulatory pleats. The module may also include a thermoelectric material layer having a ZT value of 1.0 or more disposed on at least one of the heat receptive side and the heat donative side, and an electrical contact may be in electrical communication with the thermoelectric material layer.

  2. Enhancing Heat Recovery for Thermoelectric Devices | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Recovery for Thermoelectric Devices Enhancing Heat Recovery for Thermoelectric Devices Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research...

  3. Heating device for semiconductor wafers

    DOE Patents [OSTI]

    Vosen, Steven R. (Berkeley, CA)

    1999-01-01

    An apparatus for heat treating semiconductor wafers is disclosed. The apparatus includes a heating device which contains an assembly of light energy sources for emitting light energy onto a wafer. In particular, the light energy sources are positioned such that many different radial heating zones are created on a wafer being heated. For instance, in one embodiment, the light energy sources form a spiral configuration. In an alternative embodiment, the light energy sources appear to be randomly dispersed with respect to each other so that no discernable pattern is present. In a third alternative embodiment of the present invention, the light energy sources form concentric rings. Tuning light sources are then placed in between the concentric rings of light.

  4. Heating device for semiconductor wafers

    DOE Patents [OSTI]

    Vosen, S.R.

    1999-07-27

    An apparatus for heat treating semiconductor wafers is disclosed. The apparatus includes a heating device which contains an assembly of light energy sources for emitting light energy onto a wafer. In particular, the light energy sources are positioned such that many different radial heating zones are created on a wafer being heated. For instance, in one embodiment, the light energy sources form a spiral configuration. In an alternative embodiment, the light energy sources appear to be randomly dispersed with respect to each other so that no discernible pattern is present. In a third alternative embodiment of the present invention, the light energy sources form concentric rings. Tuning light sources are then placed in between the concentric rings of light. 4 figs.

  5. Self supporting heat transfer element

    DOE Patents [OSTI]

    Story, Grosvenor Cook (Livermore, CA); Baldonado, Ray Orico (Livermore, CA)

    2002-01-01

    The present invention provides an improved internal heat exchange element arranged so as to traverse the inside diameter of a container vessel such that it makes good mechanical contact with the interior wall of that vessel. The mechanical element is fabricated from a material having a coefficient of thermal conductivity above about 0.8 W cm.sup.-1.degree. K.sup.-1 and is designed to function as a simple spring member when that member has been cooled to reduce its diameter to just below that of a cylindrical container or vessel into which it is placed and then allowed to warm to room temperature. A particularly important application of this invention is directed to a providing a simple compartmented storage container for accommodating a hydrogen absorbing alloy.

  6. Bi-stable optical element actuator device

    DOE Patents [OSTI]

    Holdener, Fred R. (Tracy, CA); Boyd, Robert D. (Livermore, CA)

    2002-01-01

    The present invention is a bistable optical element actuator device utilizing a powered means to move an actuation arm, to which an optical element is attached, between two stable positions. A non-powered means holds the actuation arm in either of the two stable positions. The optical element may be a electromagnetic (EM) radiation or particle source, an instrument, or EM radiation or particle transmissive reflective or absorptive elements. A bearing is used to transfer motion and smoothly transition the actuation arm between the two stable positions.

  7. Two position optical element actuator device

    DOE Patents [OSTI]

    Holdener, Fred R. (Tracy, CA); Boyd, Robert D. (Livermore, CA)

    2002-01-01

    The present invention is a two position optical element actuator device utilizing a powered means to hold an actuation arm, to which an optical element is attached, in a first position. A non-powered means drives the actuation arm to a second position, when the powered means ceases to receive power. The optical element may be a electromagnetic (EM) radiation or particle source, an instrument, or EM radiation or particle transmissive, reflective or absorptive elements. A bearing is used to transfer motion and smoothly transition the actuation arm from the first to second position.

  8. Microfabricated fuel heating value monitoring device

    DOE Patents [OSTI]

    Robinson, Alex L. (Albuquerque, NM); Manginell, Ronald P. (Albuquerque, NM); Moorman, Matthew W. (Albuquerque, NM)

    2010-05-04

    A microfabricated fuel heating value monitoring device comprises a microfabricated gas chromatography column in combination with a catalytic microcalorimeter. The microcalorimeter can comprise a reference thermal conductivity sensor to provide diagnostics and surety. Using microfabrication techniques, the device can be manufactured in production quantities at a low per-unit cost. The microfabricated fuel heating value monitoring device enables continuous calorimetric determination of the heating value of natural gas with a 1 minute analysis time and 1.5 minute cycle time using air as a carrier gas. This device has applications in remote natural gas mining stations, pipeline switching and metering stations, turbine generators, and other industrial user sites. For gas pipelines, the device can improve gas quality during transfer and blending, and provide accurate financial accounting. For industrial end users, the device can provide continuous feedback of physical gas properties to improve combustion efficiency during use.

  9. Heat exchanger with ceramic elements

    DOE Patents [OSTI]

    Corey, John A. (North Troy, NY)

    1986-01-01

    An annular heat exchanger assembly includes a plurality of low thermal growth ceramic heat exchange members with inlet and exit flow ports on distinct faces. A mounting member locates each ceramic member in a near-annular array and seals the flow ports on the distinct faces into the separate flow paths of the heat exchanger. The mounting member adjusts for the temperature gradient in the assembly and the different coefficients of thermal expansion of the members of the assembly during all operating temperatures.

  10. Heat engine Device that transforms heat into work.

    E-Print Network [OSTI]

    Winokur, Michael

    adiabats Stirling engines The SES solar Stirling system isotherms the Stirling cycle 1 2 3 4 #12;6 Power less work than -Ws, because when the gas cooled its pressure also dropped. Stirling Engine (Beta1 Heat engine Device that transforms heat into work. It requires two energy reservoirs at different

  11. Susceptor heating device for electron beam brazing

    DOE Patents [OSTI]

    Antieau, Susan M. (Pittsburgh, PA); Johnson, Robert G. R. (Trafford, PA)

    1999-01-01

    A brazing device and method are provided which locally apply a controlled amount of heat to a selected area, within a vacuum. The device brazes two components together with a brazing metal. A susceptor plate is placed in thermal contact with one of the components. A serrated pedestal supports the susceptor plate. When the pedestal and susceptor plate are in place, an electron gun irradiates an electron beam at the susceptor plate such that the susceptor plate is sufficiently heated to transfer heat through the one component and melt the brazing metal.

  12. Phase Change Heat Transfer Device for Process Heat Applications

    SciTech Connect (OSTI)

    Piyush Sabharwall; Mike Patterson; Vivek Utgikar; Fred Gunnerson

    2010-10-01

    The next generation nuclear plant (NGNP) will most likely produce electricity and process heat, with both being considered for hydrogen production. To capture nuclear process heat, and transport it to a distant industrial facility requires a high temperature system of heat exchangers, pumps and/or compressors. The heat transfer system is particularly challenging not only due to the elevated temperatures (up to approx.1300 K) and industrial scale power transport (=50MW), but also due to a potentially large separation distance between the nuclear and industrial plants (100+m) dictated by safety and licensing mandates. The work reported here is the preliminary analysis of two-phase thermosyphon heat transfer performance with alkali metals. A thermosyphon is a thermal device for transporting heat from one point to another with quite extraordinary properties. In contrast to single-phased forced convective heat transfer via ‘pumping a fluid’, a thermosyphon (also called a wickless heat pipe) transfers heat through the vaporization/condensing process. The condensate is further returned to the hot source by gravity, i.e., without any requirement of pumps or compressors. With this mode of heat transfer, the thermosyphon has the capability to transport heat at high rates over appreciable distances, virtually isothermally and without any requirement for external pumping devices. Two-phase heat transfer by a thermosyphon has the advantage of high enthalpy transport that includes the sensible heat of the liquid, the latent heat of vaporization, and vapor superheat. In contrast, single-phase forced convection transports only the sensible heat of the fluid. Additionally, vapor-phase velocities within a thermosyphon are much greater than single-phase liquid velocities within a forced convective loop. Thermosyphon performance can be limited by the sonic limit (choking) of vapor flow and/or by condensate entrainment. Proper thermosyphon requires analysis of both.

  13. Quantum heat engines and refrigerators: Continuous devices

    E-Print Network [OSTI]

    Ronnie Kosloff; Amikam Levy

    2013-10-02

    Quantum thermodynamics supplies a consistent description of quantum heat engines and refrigerators up to the level of a single few level system coupled to the environment. Once the environment is split into three;a hot, cold and work reservoirs a heat engine can operate. The device converts the positive gain into power;where the gain is obtained from population inversion between the components of the device. Reversing the operation transforms the device into a quantum refrigerator. The quantum tricycle, a device connected by three external leads to three heat reservoirs is used as a template for engines and refrigerators. The equation of motion for the heat currents and power can be derived from first principle. Only a global description of the coupling of the device to the reservoirs is consistent with the first and second laws of thermodynamics. Optimisation of the devices leads to a balanced set of parameters where the couplings to the three reservoirs are of the same order and the external driving field is in resonance. When analysing refrigerators special attention is devoted to a dynamical version of the third law of thermodynamics. Bounds on the rate of cooling when approaching the absolute zero are obtained by optimising the cooling current. At low temperature all refrigerators show universal behavior. Restrictions on the system imposed by the dynamical version of the third law are studied.

  14. Methods and devices for fabricating and assembling printable semiconductor elements

    DOE Patents [OSTI]

    Nuzzo, Ralph G; Rogers, John A; Menard, Etienne; Lee, Keon Jae; Khang, Dahl-Young; Sun, Yugang; Meitl, Matthew; Zhu, Zhengtao

    2014-03-04

    The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.

  15. Methods and devices for fabricating and assembling printable semiconductor elements

    SciTech Connect (OSTI)

    Nuzzo, Ralph G; Rogers, John A; Menard, Etienne; Lee, Keon Jae; Khang, Dahl-Young; Sun, Yugang; Meitl, Matthew; Zhu, Zhengtao

    2013-05-14

    The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.

  16. Methods and devices for fabricating and assembling printable semiconductor elements

    DOE Patents [OSTI]

    Nuzzo, Ralph G. (Champaign, IL); Rogers, John A. (Champaign, IL); Menard, Etienne (Durham, NC); Lee, Keon Jae (Daejeon, KR); Khang, Dahl-Young (Urbana, IL); Sun, Yugang (Champaign, IL); Meitl, Matthew (Raleigh, NC); Zhu, Zhengtao (Urbana, IL)

    2011-07-19

    The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.

  17. Methods and devices for fabricating and assembling printable semiconductor elements

    DOE Patents [OSTI]

    Nuzzo, Ralph G. (Champaign, IL); Rogers, John A. (Champaign, IL); Menard, Etienne (Urbana, IL); Lee, Keon Jae (Savoy, IL); Khang, Dahl-Young (Urbana, IL); Sun, Yugang (Champaign, IL); Meitl, Matthew (Champaign, IL); Zhu, Zhengtao (Urbana, IL)

    2009-11-24

    The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.

  18. Heat Exchanger With Internal Pin Elements

    DOE Patents [OSTI]

    Gerstmann, Joseph (Framingham, MA); Hannon, Charles L. (Arlington, MA)

    2004-01-13

    A heat exchanger/heater comprising a tubular member having a fluid inlet end, a fluid outlet end and plurality of pins secured to the interior wall of the tube. Various embodiments additionally comprise a blocking member disposed concentrically inside the pins, such as a core plug or a baffle array. Also disclosed is a vapor generator employing an internally pinned tube, and a fluid-heater/heat-exchanger utilizing an outer jacket tube and fluid-side baffle elements, as well as methods for heating a fluid using an internally pinned tube.

  19. Heat pipe device and heat pipe fabricating process

    SciTech Connect (OSTI)

    Busch, C.H.

    1982-08-10

    An energy saving liquid to liquid heat exchanger for a dishwasher or like device discharging hot waste water comprising a hot water tank for holding the waste water from the dishwasher and having inlet and outlet pipes, a cold water tank for holding the fresh water going to a water heater and having inlet and outlet pipes, the cold water tank disposed on top of the hot water tank, a bundle of heat pipes containing low boiling refrigerant disposed inside of the two tanks so as to extract heat from the hot water tank and give it up to the cold water tank, whereby the temperature of the fresh water leaving the heat exchanger is higher than its entering temperature.

  20. Contactless heat flux control with photonic devices

    E-Print Network [OSTI]

    Ben-Abdallah, Philippe

    2015-01-01

    The ability to control electric currents in solids using diodes and transistors is undoubtedly at the origin of the main developments in modern electronics which have revolutionized the daily life in the second half of 20th century. Surprisingly, until the year 2000 no thermal counterpart for such a control had been proposed. Since then, based on pioneering works on the control of phononic heat currents new devices were proposed which allow for the control of heat fluxes carried by photons rather than phonons or electrons. The goal of the present paper is to summarize the main advances achieved recently in the field of thermal energy control with photons.

  1. Shielded regeneration heating element for a particulate filter

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI; Ament, Frank [Troy, MI

    2011-01-04

    An exhaust system includes a particulate filter (PF) that is disposed downstream from an engine. The PF filters particulates within an exhaust from the engine. A heating element heats particulate matter in the PF. A catalyst substrate or a flow converter is disposed upstream from said heating element. The catalyst substrate oxidizes the exhaust prior to reception by the heating element. The flow converter converts turbulent exhaust flow to laminar exhaust flow prior to reception by the heating element.

  2. Characterization of thermoelectric elements and devices by impedance...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterization of thermoelectric elements and devices by impedance spectroscopy Home Author: A. D. Downey, T. P. Hogan, B. Cook Year: 2007 Abstract: This article describes a new...

  3. Finite Element Modeling of Micromachined MEMS Photon Devices

    SciTech Connect (OSTI)

    Datskos, P.G.; Evans, B.M.; Schonberger, D.

    1999-09-20

    The technology of microelectronics that has evolved over the past half century is one of great power and sophistication and can now be extended to many applications (MEMS and MOEMS) other than electronics. An interesting application of MEMS quantum devices is the detection of electromagnetic radiation. The operation principle of MEMS quantum devices is based on the photoinduced stress in semiconductors, and the photon detection results from the measurement of the photoinduced bending. These devices can be described as micromechanical photon detectors. In this work, we have developed a technique for simulating electronic stresses using finite element analysis. We have used our technique to model the response of micromechanical photon devices to external stimuli and compared these results with experimental data. Material properties, geometry, and bimaterial design play an important role in the performance of micromechanical photon detectors. We have modeled these effects using finite element analysis and included the effects of bimaterial thickness coating, effective length of the device, width, and thickness.

  4. Heat exchanger device and method for heat removal or transfer

    DOE Patents [OSTI]

    Koplow, Jeffrey P. (San Ramon, CA)

    2012-07-24

    Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

  5. Heat exchanger device and method for heat removal or transfer

    DOE Patents [OSTI]

    Koplow, Jeffrey P.

    2015-12-08

    Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

  6. Heat exchanger device and method for heat removal or transfer

    DOE Patents [OSTI]

    Koplow, Jeffrey P

    2013-12-10

    Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

  7. Mobile monolithic polymer elements for flow control in microfluidic devices

    DOE Patents [OSTI]

    Hasselbrink, Jr., Ernest F. (Saline, MI); Rehm, Jason E. (Alameda, CA); Shepodd, Timothy J. (Livermore, CA); Kirby, Brian J. (San Francisco, CA)

    2005-11-11

    A cast-in-place and lithographically shaped mobile, monolithic polymer element for fluid flow control in microfluidic devices and method of manufacture. Microfluid flow control devices, or microvalves that provide for control of fluid or ionic current flow can be made incorporating a cast-in-place, mobile monolithic polymer element, disposed within a microchannel, and driven by fluid pressure (either liquid or gas) against a retaining or sealing surface. The polymer elements are made by the application of lithographic methods to monomer mixtures formulated in such a way that the polymer will not bond to microchannel walls. The polymer elements can seal against pressures greater than 5000 psi, and have a response time on the order of milliseconds. By the use of energetic radiation it is possible to depolymerize selected regions of the polymer element to form shapes that cannot be produced by conventional lithographic patterning and would be impossible to machine.

  8. Mobile monolithic polymer elements for flow control in microfluidic devices

    DOE Patents [OSTI]

    Hasselbrink, Jr., Ernest F.; Rehm, Jason E.; Shepodd, Timothy J.

    2004-08-31

    A cast-in-place and lithographically shaped mobile, monolithic polymer element for fluid flow control in microfluidic devices and method of manufacture. Microfluid flow control devices, or microvalves that provide for control of fluid or ionic current flow can be made incorporating a cast-in-place, mobile monolithic polymer element, disposed within a microchannel, and driven by either fluid or gas pressure against a retaining or sealing surface. The polymer elements are made by the application of lithographic methods to monomer mixtures formulated in such a way that the polymer will not bond to microchannel walls. The polymer elements can seal against pressures greater than 5000 psi, and have a response time on the order of milliseconds. By the use of energetic radiation it is possible to depolymerize selected regions of the polymer element to form shapes that cannot be produced by conventional lithographic patterning and would be impossible to machine.

  9. FINITE ELEMENT METHOD IN FLUID MECHANICS & HEAT TRANSFER

    E-Print Network [OSTI]

    Camci, Cengiz

    completed this course should be able to perform quick analysis of small problems using the finite element of Fluid Mechanics and Heat Transfer An Introduction to Finite Element Analysis Using "Galerkin Weak of Euler's Equation in Finite Element Analysis Generalized Form of Euler's Equation in Three Dimensional

  10. Energy effectiveness of simultaneous heat and mass exchange devices

    E-Print Network [OSTI]

    Narayan, G. Prakash

    2010-01-01

    Simultaneous heat and mass exchange devices such as cooling towers, humidifiers and dehumidifiers are widely used in the power generation, desalination, air conditioning, and refrigeration industries. For design and rating ...

  11. Heat Transfer in Thermoelectric Materials and Devices

    E-Print Network [OSTI]

    Tian, Zhiting

    Solid-state thermoelectric devices are currently used in applications ranging from thermocouple sensors to power generators in space missions, to portable air-conditioners and refrigerators. With the ever-rising demand ...

  12. Thermodynamic Efficiency of Heat Exchange Devices 

    E-Print Network [OSTI]

    Witte, L. C.; Shamsundar, N.

    1982-01-01

    inlet temperatures, the efficiency and effectiveness for particular heat exchange configurations are related. Conclusions regarding the effect of stream temperatures on the efficiency of various types of exchangers are made. The concept is applied...

  13. Surface photovoltage measurements and finite element modeling of SAW devices.

    SciTech Connect (OSTI)

    Donnelly, Christine

    2012-03-01

    Over the course of a Summer 2011 internship with the MEMS department of Sandia National Laboratories, work was completed on two major projects. The first and main project of the summer involved taking surface photovoltage measurements for silicon samples, and using these measurements to determine surface recombination velocities and minority carrier diffusion lengths of the materials. The SPV method was used to fill gaps in the knowledge of material parameters that had not been determined successfully by other characterization methods. The second project involved creating a 2D finite element model of a surface acoustic wave device. A basic form of the model with the expected impedance response curve was completed, and the model is ready to be further developed for analysis of MEMS photonic resonator devices.

  14. Microwave Dielectric Heating of Drops in Microfluidic Devices

    E-Print Network [OSTI]

    David Issadore; Katherine J. Humphry; Keith A. Brown; Lori Sandberg; David Weitz; Robert M. Westervelt

    2009-01-09

    We present a technique to locally and rapidly heat water drops in microfluidic devices with microwave dielectric heating. Water absorbs microwave power more efficiently than polymers, glass, and oils due to its permanent molecular dipole moment that has a large dielectric loss at GHz frequencies. The relevant heat capacity of the system is a single thermally isolated picoliter drop of water and this enables very fast thermal cycling. We demonstrate microwave dielectric heating in a microfluidic device that integrates a flow-focusing drop maker, drop splitters, and metal electrodes to locally deliver microwave power from an inexpensive, commercially available 3.0 GHz source and amplifier. The temperature of the drops is measured by observing the temperature dependent fluorescence intensity of cadmium selenide nanocrystals suspended in the water drops. We demonstrate characteristic heating times as short as 15 ms to steady-state temperatures as large as 30 degrees C above the base temperature of the microfluidic device. Many common biological and chemical applications require rapid and local control of temperature, such as PCR amplification of DNA, and can benefit from this new technique.

  15. A simplified model for heat transfer in heat exchangers and stack plates for thermoacoustic devices

    SciTech Connect (OSTI)

    Chen, Y.; Herman, C.

    1999-07-01

    A simplified model of heat transfer in heat exchangers and stack plates of thermoacoustic devices was developed. The model took advantage of previous results regarding the thermal behavior of the thermoacoustic core for investigations of the performance of heat exchangers attached to the core. Geometrical and operational parameters as well as thermophysical properties of the heat exchangers, the plate, and the working medium were organized into dimensionless groups that allowed to account for their impact on the performance of the heat exchangers. Numerical simulations with the model were carried out. Nonlinear temperature distributions and heat fluxes near the edge of the stack plate were observed. Effects of different parameters on the thermal performance of the heat exchangers were investigated.

  16. Iron aluminide useful as electrical resistance heating elements

    DOE Patents [OSTI]

    Sikka, V.K.; Deevi, S.C.; Fleischhauer, G.S.; Hajaligol, M.R.; Lilly, A.C. Jr.

    1997-04-15

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, {<=}1% Cr and either {>=}0.05% Zr or ZrO{sub 2} stringers extending perpendicular to an exposed surface of the heating element or {>=}0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, {<=}2% Ti, {<=}2% Mo, {<=}1% Zr, {<=}1% C, {<=}0.1% B, {<=}30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, {<=}1% rare earth metal, {<=}1% oxygen, {<=}3% Cu, balance Fe. 64 figs.

  17. Iron aluminide useful as electrical resistance heating elements

    DOE Patents [OSTI]

    Sikka, Vinod K. (Oak Ridge, TN); Deevi, Seetharama C. (Oak Ridge, TN); Fleischhauer, Grier S. (Midlothian, VA); Hajaligol, Mohammad R. (Richmond, VA); Lilly, Jr., A. Clifton (Chesterfield, VA)

    1999-01-01

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.

  18. Iron aluminide useful as electrical resistance heating elements

    DOE Patents [OSTI]

    Sikka, Vinod K. (Oak Ridge, TN); Deevi, Seetharama C. (Oak Ridge, TN); Fleischhauer, Grier S. (Midlothian, VA); Hajaligol, Mohammad R. (Richmond, VA); Lilly, Jr., A. Clifton (Chesterfield, VA)

    2001-01-01

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.

  19. Recovering "Waste" from "WTEs"? Heat Attaching devices to flues and exhaust pipes could harvest waste heat-

    E-Print Network [OSTI]

    Columbia University

    that convert heat into electricity to chimney stacks and vehicle exhausts, to squeeze more useful energy from saving that would be especially relevant in hybrid petrol/electric devices where the battery is recharged% of the energy converted in power generation is wasted. The price of energy is high, both in terms of the actual

  20. Microwave heating device for internal heating convection experiments, applied to Earth's mantle dynamics

    SciTech Connect (OSTI)

    Surducan, E.; Surducan, V.; Neamtu, C.; Limare, A.; Di Giuseppe, E.

    2014-12-15

    We report the design, construction, and performances of a microwave (MW) heating device for laboratory experiments with non-contact, homogeneous internal heating. The device generates MW radiation at 2.47 GHz from a commercial magnetron supplied by a pulsed current inverter using proprietary, feedback based command and control hardware and software. Specially designed MW launchers direct the MW radiation into the sample through a MW homogenizer, devised to even the MW power distribution into the sample's volume. An adjustable MW circuit adapts the MW generator to the load (i.e., the sample) placed in the experiment chamber. Dedicated heatsinks maintain the MW circuits at constant temperature throughout the experiment. Openings for laser scanning for image acquisition with a CCD camera and for the cooling circuits are protected by special MW filters. The performances of the device are analyzed in terms of heating uniformity, long term output power stability, and load matching. The device is used for small scale experiments simulating Earth's mantle convection. The 30 × 30 × 5 cm{sup 3} convection tank is filled with a water?based viscous fluid. A uniform and constant temperature is maintained at the upper boundary by an aluminum heat exchanger and adiabatic conditions apply at the tank base. We characterize the geometry of the convective regime as well as its bulk thermal evolution by measuring the velocity field by Particle Image Velocimetry and the temperature field by using Thermochromic Liquid Crystals.

  1. Method And Apparatus For Coupling Optical Elements To Optoelectronic Devices For Manufacturing Optical Transceiver Modules

    DOE Patents [OSTI]

    Anderson, Gene R. (Albuquerque, NM); Armendariz, Marcelino G. (Albuquerque, NM); Bryan, Robert P. (Albuquerque, NM); Carson, Richard F. (Albuquerque, NM); Chu, Dahwey (Albuquerque, NM); Duckett, III, Edwin B. (Albuquerque, NM); Giunta, Rachel Knudsen (Albuquerque, NM); Mitchell, Robert T. (Albuquerque, NM); McCormick, Frederick B. (Albuquerque, NM); Peterson, David W. (Sandia Park, NM); Rising, Merideth A. (Santa Fe, NM); Reber, Cathleen A. (Corrales, NM); Reysen, Bill H. (Lafayette, CO)

    2005-06-14

    A process is provided for aligning and connecting at least one optical fiber to at least one optoelectronic device so as to couple light between at least one optical fiber and at least one optoelectronic device. One embodiment of this process comprises the following steps: (1) holding at least one optical element close to at least one optoelectronic device, at least one optical element having at least a first end; (2) aligning at least one optical element with at least one optoelectronic device; (3) depositing a first non-opaque material on a first end of at least one optoelectronic device; and (4) bringing the first end of at least one optical element proximate to the first end of at least one optoelectronic device in such a manner that the first non-opaque material contacts the first end of at least one optoelectronic device and the first end of at least one optical element. The optical element may be an optical fiber, and the optoelectronic device may be a vertical cavity surface emitting laser. The first non-opaque material may be a UV optical adhesive that provides an optical path and mechanical stability. In another embodiment of the alignment process, the first end of at least one optical element is brought proximate to the first end of at least one optoelectronic device in such a manner that an interstitial space exists between the first end of at least one optoelectronic device and the first end of at least one optical element.

  2. Guaranteed Verification of Finite Element Solutions of Heat Conduction 

    E-Print Network [OSTI]

    Wang, Delin

    2012-07-16

    ||uSp?h ||C, and the relative value of C-norm of the error ||eh||C / ||u||C, for the semi-discrete solutions of degree p = 1, 2 and 3, computed using uniform meshes with mesh size h = L2n , n = 1, 2, 3, and 4 respectively.... . . . . . . . . . . . . . . . . . 67 4.2 Heat transition problem in one dimension. The effectivity indices ? based on the exact solution u? and ?Sp+k?h? = ESp+k?h? /||eh||C based on the finite element solution u?Sp+k?h? (k = 1, 2, 3, and ?h? from the nest subdivision...

  3. Device structure for OLED light device having multi element light extraction and luminescence conversion layer

    DOE Patents [OSTI]

    Antoniadis; Homer (Mountain View, CA), Krummacher; Benjamin Claus (Regensburg, DE)

    2008-01-22

    An apparatus such as a light source has a multi-element light extraction and luminescence conversion layer disposed over a transparent layer of the light source and on the exterior of said light source. The multi-element light extraction and luminescence conversion layer includes a plurality of light extraction elements and a plurality of luminescence conversion elements. The light extraction elements diffuses the light from the light source while luminescence conversion elements absorbs a first spectrum of light from said light source and emits a second spectrum of light.

  4. Printed Optics: 3D Printing of Embedded Optical Elements for Interactive Devices

    E-Print Network [OSTI]

    Poupyrev, Ivan

    Printed Optics: 3D Printing of Embedded Optical Elements for Interactive Devices Karl D.D. Willis1 d Figure 1: Custom optical elements are fabricated with 3D printing and embedded in interactive), and embedded optoelectronics (d). ABSTRACT We present an approach to 3D printing custom optical ele- ments

  5. hp-finite-elements for simulating electromagnetic fields in optical devices with rough textures

    E-Print Network [OSTI]

    Burger, S; Hammerschmidt, M; Herrmann, S; Pomplun, J; Schmidt, F; Wohlfeil, B; Zschiedrich, L

    2015-01-01

    The finite-element method is a preferred numerical method when electromagnetic fields at high accuracy are to be computed in nano-optics design. Here, we demonstrate a finite-element method using hp-adaptivity on tetrahedral meshes for computation of electromagnetic fields in a device with rough textures. The method allows for efficient computations on meshes with strong variations in element sizes. This enables to use precise geometry resolution of the rough textures. Convergence to highly accurate results is observed.

  6. Heat Transport in Groundwater Systems--Finite Element Model 

    E-Print Network [OSTI]

    Grubaugh, E. K.; Reddell, D. L.

    1980-01-01

    Solar energy is a promising alternate energy source for space heating. A method of economic long term solar energy storage is needed. Researchers have proposed storing solar energy by injecting hot water heated using solar collectors...

  7. COMPARISON OF ELECTRON CYCLOTRON HEATING IN VARIOUS DEVICES

    E-Print Network [OSTI]

    Sprott, Julien Clinton

    heating rate of a plasma in an ar bitrary magnetic field can be written as d J ! - TI neElo(B-B o )dV/2 is low (W/W2 0.01) . This paper will com pare the heating rates in a toroidal octupole, a bumpy torus, and a Tokamak. For purposes of comparison, it is convenient to write the heating rate as where d e

  8. RF Plasma Heating in the PFRC-2 Device: Motivation, Goals and Methods

    SciTech Connect (OSTI)

    Cohen, S.; Brunkhorst, C.; Glasser, A.; Landsman, A.; Welch, D.

    2011-12-23

    The motivation for using radio frequency, odd-parity rotating magnetic fields for heating field-reversed-configuration (FRC) plasmas is explained. Calculations are presented of the expected electron and ion temperatures in the PFRC-2 device, currently under construction.

  9. High-Performance Thermoelectric Devices Based on Abundant Silicide Materials for Vehicle Waste Heat Recovery

    Office of Energy Efficiency and Renewable Energy (EERE)

    Development of high-performance thermoelectric devices for vehicle waste heat recovery will include fundamental research to use abundant promising low-cost thermoelectric materials, thermal management and interfaces design, and metrology

  10. On the failure of graphene devices by Joule heating under current stressing conditions

    E-Print Network [OSTI]

    Durkan, Colm; Xiao, Zhuocong

    2015-01-01

    The behaviour of single layer graphene sections under current-stressing conditions is presented. Graphene devices are stressed to the point of failure and it is seen that they exhibit Joule heating. Using a simple 1-D model for heat generation, we...

  11. Combined heat and mass transfer device for improving separation process

    DOE Patents [OSTI]

    Tran, Thanh Nhon (Flossmoor, IL)

    1999-01-01

    A two-phase small channel heat exchange matrix simultaneously provides for heat transfer and mass transfer between the liquid and vapor phases of a multi-component mixture at a single, predetermined location within a separation column, significantly improving the thermodynamic efficiency of the separation process. The small channel heat exchange matrix is composed of a series of channels having a hydraulic diameter no greater than 5.0 millimeters for conducting a two-phase coolant. In operation, the matrix provides the liquid-vapor contacting surfaces within the separation column, such that heat and mass are transferred simultaneously between the liquid and vapor phases. The two-phase coolant allows for a uniform heat transfer coefficient to be maintained along the length of the channels and across the surface of the matrix. Preferably, a perforated, concave sheet connects each channel to an adjacent channel to facilitate the flow of the liquid and vapor phases within the column and to increase the liquid-vapor contacting surface area.

  12. Combined heat and mass transfer device for improving separation process

    DOE Patents [OSTI]

    Tran, T.N.

    1999-08-24

    A two-phase small channel heat exchange matrix simultaneously provides for heat transfer and mass transfer between the liquid and vapor phases of a multi-component mixture at a single, predetermined location within a separation column, significantly improving the thermodynamic efficiency of the separation process. The small channel heat exchange matrix is composed of a series of channels having a hydraulic diameter no greater than 5.0 millimeters for conducting a two-phase coolant. In operation, the matrix provides the liquid-vapor contacting surfaces within the separation column, such that heat and mass are transferred simultaneously between the liquid and vapor phases. The two-phase coolant allows for a uniform heat transfer coefficient to be maintained along the length of the channels and across the surface of the matrix. Preferably, a perforated, concave sheet connects each channel to an adjacent channel to facilitate the flow of the liquid and vapor phases within the column and to increase the liquid-vapor contacting surface area. 12 figs.

  13. Finite element analysis of conjugate heat transfer in axisymmetric pipe flows 

    E-Print Network [OSTI]

    Fithen, Robert Miller

    1987-01-01

    FINITE ELEMENT ANALYSIS OF CONJUGATE HEAT TRANSFER IN AXISYMMETRIC PIPE FLOWS A Thesis by ROBERT MILLER FITHEN Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MA STER... OF S CI EN CE August 1987 Major Subject: Mechanical Engineering FINITE ELEMENT ANALYSIS OF CONJUGATE HEAT TRANSFER IN AXISYMMETRIC PIPE FLOWS A Thesis by ROBERT MILLER FITHEN Approved ss to style and content by: N. K. Anand (Chairman of Committee...

  14. Carbon 40 (2002) 22852289 Flexible graphite as a heating element

    E-Print Network [OSTI]

    Chung, Deborah D.L.

    2002-01-01

    of aircraft [20,21] and the the plane of the sheet [5,6]. Due to the graphite layers heating of floors, pipes, is corrosion-resistant, does not need to be encased flexible graphite is electrically and thermally conductive

  15. Optimal Heat Collection Element Shapes for Parabolic Trough Concentrators

    SciTech Connect (OSTI)

    Bennett, C

    2007-11-15

    For nearly 150 years, the cross section of the heat collection tubes used at the focus of parabolic trough solar concentrators has been circular. This type of tube is obviously simple and easily fabricated, but it is not optimal. It is shown in this article that the optimal shape, assuming a perfect parabolic figure for the concentrating mirror, is instead oblong, and is approximately given by a pair of facing parabolic segments.

  16. Finite element residual stress analysis of induction heating bended ferritic steel piping

    SciTech Connect (OSTI)

    Kima, Jong Sung; Kim, Kyoung-Soo; Oh, Young-Jin; Chang, Hyung-Young; Park, Heung-Bae

    2014-10-06

    Recently, there is a trend to apply the piping bended by induction heating process to nuclear power plants. Residual stress can be generated due to thermo-mechanical mechanism during the induction heating bending process. It is well-known that the residual stress has important effect on crack initiation and growth. The previous studies have focused on the thickness variation. In part, some studies were performed for residual stress evaluation of the austenitic stainless steel piping bended by induction heating. It is difficult to find the residual stresses of the ferritic steel piping bended by the induction heating. The study assessed the residual stresses of induction heating bended ferriticsteel piping via finite element analysis. As a result, it was identified that high residual stresses are generated on local outersurface region of the induction heating bended ferritic piping.

  17. Removal of Elemental Mercury from a Gas Stream Facilitated by a Non-Thermal Plasma Device

    SciTech Connect (OSTI)

    Charles Mones

    2006-12-01

    Mercury generated from anthropogenic sources presents a difficult environmental problem. In comparison to other toxic metals, mercury has a low vaporization temperature. Mercury and mercury compounds are highly toxic, and organic forms such as methyl mercury can be bio-accumulated. Exposure pathways include inhalation and transport to surface waters. Mercury poisoning can result in both acute and chronic effects. Most commonly, chronic exposure to mercury vapor affects the central nervous system and brain, resulting in neurological damage. The CRE technology employs a series of non-thermal, plasma-jet devices to provide a method for elemental mercury removal from a gas phase by targeting relevant chemical reactions. The technology couples the known chemistry of converting elemental mercury to ionic compounds by mercury-chlorine-oxygen reactions with the generation of highly reactive species in a non-thermal, atmospheric, plasma device. The generation of highly reactive metastable species in a non-thermal plasma device is well known. The introduction of plasma using a jet-injection device provides a means to contact highly reactive species with elemental mercury in a manner to overcome the kinetic and mass-transfer limitations encountered by previous researchers. To demonstrate this technology, WRI has constructed a plasma test facility that includes plasma reactors capable of using up to four plasma jets, flow control instrumentation, an integrated control panel to operate the facility, a mercury generation system that employs a temperature controlled oven and permeation tube, combustible and mercury gas analyzers, and a ductless fume hood designed to capture fugitive mercury emissions. Continental Research and Engineering (CR&E) and Western Research Institute (WRI) successfully demonstrated that non-thermal plasma containing oxygen and chlorine-oxygen reagents could completely convert elemental mercury to an ionic form. These results demonstrate potential the application of this technology for removing elemental mercury from flue gas streams generated by utility boilers. On an absolute basis, the quantity of reagent required to accomplish the oxidation was small. For example, complete oxidation of mercury was accomplished using a 1% volume fraction of oxygen in a nitrogen stream. Overall, the tests with mercury validated the most useful aspect of the CR&E technology: Providing a method for elemental mercury removal from a gas phase by employing a specific plasma reagent to either increase reaction kinetics or promote reactions that would not have occurred under normal circumstances.

  18. Source replenishment device for vacuum deposition

    DOE Patents [OSTI]

    Hill, Ronald A. (Albuquerque, NM)

    1988-01-01

    A material source replenishment device for use with a vacuum deposition apparatus. The source replenishment device comprises an intermittent motion producing gear arrangement disposed within the vacuum deposition chamber. An elongated rod having one end operably connected to the gearing arrangement is provided with a multiarmed head at the opposite end disposed adjacent the heating element of the vacuum deposition apparatus. An inverted U-shaped source material element is releasably attached to the outer end of each arm member whereby said multiarmed head is moved to locate a first of said material elements above said heating element, whereupon said multiarmed head is lowered to engage said material element with the heating element and further lowered to release said material element on the heating element. After vaporization of said material element, second and subsequent material elements may be provided to the heating element without the need for opening the vacuum deposition apparatus to the atmosphere.

  19. Source replenishment device for vacuum deposition

    DOE Patents [OSTI]

    Hill, R.A.

    1986-05-15

    A material source replenishment device for use with a vacuum deposition apparatus is described. The source replenishment device comprises an intermittent motion producing gear arrangement disposed within the vacuum deposition chamber. An elongated rod having one end operably connected to the gearing arrangement is provided with a multiarmed head at the opposite end disposed adjacent the heating element of the vacuum deposition apparatus. An inverted U-shaped source material element is releasably attached to the outer end of each arm member whereby said multiarmed head is moved to locate a first of said material elements above said heating element, whereupon said multiarmed head is lowered to engage said material element with the heating element and further lowered to release said material element on the heating element. After vaporization of said material element, second and subsequent material elements may be provided to the heating element without the need for opening the vacuum deposition apparatus to the atmosphere.

  20. Mixed-RKDG Finite Element Methods for the 2-D Hydrodynamic Model for Semiconductor Device Simulation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, Zhangxin; Cockburn, Bernardo; Jerome, Joseph W.; Shu, Chi-Wang

    1995-01-01

    In this paper we introduce a new method for numerically solving the equations of the hydrodynamic model for semiconductor devices in two space dimensions. The method combines a standard mixed finite element method, used to obtain directly an approximation to the electric field, with the so-called Runge-Kutta Discontinuous Galerkin (RKDG) method, originally devised for numerically solving multi-dimensional hyperbolic systems of conservation laws, which is applied here to the convective part of the equations. Numerical simulations showing the performance of the new method are displayed, and the results compared with those obtained by using Essentially Nonoscillatory (ENO) finite difference schemes. Frommore »the perspective of device modeling, these methods are robust, since they are capable of encompassing broad parameter ranges, including those for which shock formation is possible. The simulations presented here are for Gallium Arsenide at room temperature, but we have tested them much more generally with considerable success.« less

  1. Electron heat transport comparison in the Large Helical Device and TJ-II

    SciTech Connect (OSTI)

    Garcia, J.; Dies, J.; Castejon, F.; Yamazaki, K. [Fusion Energy Engineering Laboratory (FEEL), Departament de Fisica i Enginyeria Nuclear, ETSEIB, Universitat Politecnica de Catalunya (UPC), Barcelona (Spain); Laboratorio Nacional de Fusion, Asociacion EURATOM-CIEMAT, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Madrid (Spain); Nagoya University, Chikusa-ku, Nagoya 464-8603 (Japan)

    2007-10-15

    The electron heat transport in the Large Helical Device (LHD) [K. Ida, T. Shimozuma, H. Funaba et al., Phys. Rev. Lett. 91, 085003 (2003)] and TJ-II [F. Castejon, V. Tribaldos, I. Garcia-Cortes, E. de la Luna, J. Herranz, I. Pastor, T. Estrada, and TJ-II Team, Nucl. Fusion 42, 271 (2002)] is analyzed by means of the TOTAL [K. Yamazaki and T. Amano, Nucl. Fusion 32, 4 (1992)] and PRETOR-Stellarator [J. Dies, F. Castejon, J. M. Fontdecaba, J. Fontanet, J. Izquierdo, G. Cortes, and C. Alejaldre, Proceedings of the 29th European Physical Society Conference on Plasma Physics and Controlled Fusion, Montreux, 2002, Europhysics Conference Abstracts, 2004, Vol. 26B, P-5.027] plasma simulation codes and assuming a global transport model mixing GyroBohm-like drift wave model and other drift wave model with shorter wavelength. The stabilization of the GyroBohm-like model by the ExB shear has been also taken into account. Results show how such kind of electron heat transport can simulate experimental evidence in both devices, leading to the electron internal transport barrier (eITB) formation in the LHD and to the so-called 'enhanced heat confinement regimes' in TJ-II when electron density is low enough. Therefore, two sources for the anomalous electron heat transport can coexist in plasmas with eITB; however, for each device the relative importance of anomalous and neoclassical transport can be different.

  2. Multiwalled carbon nanotube/polydimethylsiloxane composite films as high performance flexible electric heating elements

    SciTech Connect (OSTI)

    Yan, Jing; Jeong, Young Gyu, E-mail: ygjeong@cnu.ac.kr [Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

    2014-08-04

    High performance elastomeric electric heating elements were prepared by incorporating various contents of pristine multiwalled carbon nanotube (MWCNT) in polydimethylsiloxane (PDMS) matrix by using an efficient solution-casting and curing technique. The pristine MWCNTs were identified to be uniformly dispersed in the PDMS matrix and the electrical percolation of MWCNTs was evaluated to be at ?0.27?wt.?%, where the electrical resistivity of the MWCNT/PDMS composite films dropped remarkably. Accordingly, the composite films with higher MWCNT contents above 0.3?wt.?% exhibit excellent electric heating performance in terms of temperature response rapidity and electric energy efficiency at constant applied voltages. In addition, the composite films, which were thermally stable up to 250?°C, showed excellent heating-cooling cyclic performance, which was associated with operational stability in actual electric heating applications.

  3. A numerical study on the effects of 2d structured sinusoidal elements on fluid flow and heat transfer at microscale

    E-Print Network [OSTI]

    Kandlikar, Satish

    , the effect of structured roughness elements on incompress- ible laminar fluid flow is analyzedA numerical study on the effects of 2d structured sinusoidal elements on fluid flow and heat flow Structured roughness elements Laminar flow a b s t r a c t Better understanding of laminar flow

  4. Stein's method, heat kernel, and traces of powers of elements of compact Lie groups

    E-Print Network [OSTI]

    Jason Fulman

    2010-05-07

    Combining Stein's method with heat kernel techniques, we show that the trace of the jth power of an element of U(n,C), USp(n,C) or SO(n,R) has a normal limit with error term of order j/n. In contrast to previous works, here j may be growing with n. The technique should prove useful in the study of the value distribution of approximate eigenfunctions of Laplacians.

  5. Electronic devices containing switchably conductive silicon oxides as a switching element and methods for production and use thereof

    DOE Patents [OSTI]

    Tour, James M.; Yao, Jun; Natelson, Douglas; Zhong, Lin; He, Tao

    2015-09-08

    In various embodiments, electronic devices containing switchably conductive silicon oxide as a switching element are described herein. The electronic devices are two-terminal devices containing a first electrical contact and a second electrical contact in which at least one of the first electrical contact or the second electrical contact is deposed on a substrate to define a gap region therebetween. A switching layer containing a switchably conductive silicon oxide resides in the gap region between the first electrical contact and the second electrical contact. The electronic devices exhibit hysteretic current versus voltage properties, enabling their use in switching and memory applications. Methods for configuring, operating and constructing the electronic devices are also presented herein.

  6. Electronic devices containing switchably conductive silicon oxides as a switching element and methods for production and use thereof

    SciTech Connect (OSTI)

    Tour, James M; Yao, Jun; Natelson, Douglas; Zhong, Lin; He, Tao

    2013-11-26

    In various embodiments, electronic devices containing switchably conductive silicon oxide as a switching element are described herein. The electronic devices are two-terminal devices containing a first electrical contact and a second electrical contact in which at least one of the first electrical contact or the second electrical contact is deposed on a substrate to define a gap region therebetween. A switching layer containing a switchably conductive silicon oxide resides in the the gap region between the first electical contact and the second electrical contact. The electronic devices exhibit hysteretic current versus voltage properties, enabling their use in switching and memory applications. Methods for configuring, operating and constructing the electronic devices are also presented herein.

  7. Heating of semiconductor devices in electric Markus Brunk and Ansgar Jungel

    E-Print Network [OSTI]

    Jüngel, Ansgar

    -consistent electric potential V read as tn-q-1 divJn = -R(n, p), t p+q-1 divJp = -R(n, p), (1) t(3 2 kBnTn)-divJw +Jn ·V = W(n,Tn)- 3 2 kBTnR(n, p), (2) sV = q(n- p-C(x)), (3) where q is the elementary cha (mixed) finite elements. Heating effects from numerical simulations in a pn-junction diode and a clipper

  8. An h-adaptive finite element method for turbulent heat transfer

    SciTech Connect (OSTI)

    Carriington, David B [Los Alamos National Laboratory

    2009-01-01

    A two-equation turbulence closure model (k-{omega}) using an h-adaptive grid technique and finite element method (FEM) has been developed to simulate low Mach flow and heat transfer. These flows are applicable to many flows in engineering and environmental sciences. Of particular interest in the engineering modeling areas are: combustion, solidification, and heat exchanger design. Flows for indoor air quality modeling and atmospheric pollution transport are typical types of environmental flows modeled with this method. The numerical method is based on a hybrid finite element model using an equal-order projection process. The model includes thermal and species transport, localized mesh refinement (h-adaptive) and Petrov-Galerkin weighting for the stabilizing the advection. This work develops the continuum model of a two-equation turbulence closure method. The fractional step solution method is stated along with the h-adaptive grid method (Carrington and Pepper, 2002). Solutions are presented for 2d flow over a backward-facing step.

  9. Device and method for measuring the coefficient of performance of a heat pump

    DOE Patents [OSTI]

    Brantley, V.R.; Miller, D.R.

    1982-05-18

    A method and instrument is provided which allows quick and accurate measurement of the coefficient of performance of an installed electrically powered heat pump including auxiliary resistane heaters. Temperature-sensitive resistors are placed in the return and supply air ducts to measure the temperature increase of the air across the refrigerant and resistive-heating elements of the system. The voltages across the resistors which are directly proportional to the respective duct tempertures are applied to the inputs of a differential amplifier so that its output voltage is proportional to the temperature difference across the unit. A voltage-to-frequency converter connected to the output of the differential amplifier converts the voltage signal to a proportional-frequency signal. A digital watt meter is used to measure the power to the unit and produces a signal having a frequency proportional to the input power. A digital logic circuit ratios the temperature difference signal and the electric power input signal in a unique manner to produce a single number which is the coefficient of performance of the unit over the test interval. The digital logic and an in-situ calibration procedure enables the instrument to make these measurements in such a way that the ratio of heat flow/power input is obtained without computations. No specialized knowledge of thermodynamics or electrons is required to operate the instrument.

  10. Device and method for measuring the coefficient of performance of a heat pump

    DOE Patents [OSTI]

    Brantley, Vanston R. (Knoxville, TN); Miller, Donald R. (Kingston, TN)

    1984-01-01

    A method and instrument is provided which allows quick and accurate measurement of the coefficient of performance of an installed electrically powered heat pump including auxiliary resistance heaters. Temperature sensitive resistors are placed in the return and supply air ducts to measure the temperature increase of the air across the refrigerant and resistive heating elements of the system. The voltages across the resistors which are directly proportional to the respective duct temperatures are applied to the inputs of a differential amplifier so that its output voltage is proportional to the temperature difference across the unit. A voltage-to-frequency converter connected to the output of the differential amplifier converts the voltage signal to a proportional frequency signal. A digital watt meter is used to measure the power to the unit and produces a signal having a frequency proportional to the input power. A digital logic circuit ratios the temperature difference signal and the electric power input signal in a unique manner to produce a single number which is the coefficient of performance of the unit over the test interval. The digital logic and an in-situ calibration procedure enables the instrument to make these measurements in such a way that the ratio of heat flow/power input is obtained without computations. No specialized knowledge of thermodynamics or electronics is required to operate the instrument.

  11. OLED lighting devices having multi element light extraction and luminescence conversion layer

    DOE Patents [OSTI]

    Krummacher, Benjamin Claus (Regensburg, DE); Antoniadis, Homer (Mountain View, CA)

    2010-11-16

    An apparatus such as a light source has a multi element light extraction and luminescence conversion layer disposed over a transparent layer of the light source and on the exterior of said light source. The multi-element light extraction and luminescence conversion layer includes a plurality of light extraction elements and a plurality of luminescence conversion elements. The light extraction elements diffuses the light from the light source while luminescence conversion elements absorbs a first spectrum of light from said light source and emits a second spectrum of light.

  12. Electron cyclotron heating at down-shifted frequencies in existing tokamak devices

    SciTech Connect (OSTI)

    Mazzucato, E.; Fidone, I.; Giruzzi, G.; Krivenski, V.

    1985-06-01

    Plasma heating in existing tokamak devices by electron cyclotron waves with frequency (f) significantly smaller than the electron gyrofrequency (f/sub c/) is investigated for the case of Maxwellian plasmas. It is shown that for central electron temperatures larger than 3 keV, strong absorption of extraordinary waves can occur at values of toroidal field for which the condition f = f/sub c/ is not satisfied in the plasma region. The cases of f = 60 GHz and f = 100 GHz are discussed for the PLT and TFTR devices as representative of medium (approx. =30 kG) and high (approx. =50 kG) magnetic field tokamaks, respectively. Numerical calculations with a ray tracing code indicate that most of the rf energy is absorbed in a central plasma region. These results are of practical interest because they significantly simplify the main technical problem of ECH in a tokamak reactor, i.e., the development of high frequency and high power microwave sources.

  13. JET Posters presented at the 2nd Europhysics Topical Conference on RF Heating and Current Drive of Fusion Devices (Brussels, Belgium, 20th-23rd January 1998)

    E-Print Network [OSTI]

    JET Posters presented at the 2nd Europhysics Topical Conference on RF Heating and Current Drive of Fusion Devices (Brussels, Belgium, 20th-23rd January 1998)

  14. Analysis of ballistic transport in nanoscale devices by using an accelerated finite element contact block reduction approach

    SciTech Connect (OSTI)

    Li, H.; Li, G., E-mail: gli@clemson.edu [College of Engineering and Science, Clemson University, Clemson, South Carolina 29634-0921 (United States)

    2014-08-28

    An accelerated Finite Element Contact Block Reduction (FECBR) approach is presented for computational analysis of ballistic transport in nanoscale electronic devices with arbitrary geometry and unstructured mesh. Finite element formulation is developed for the theoretical CBR/Poisson model. The FECBR approach is accelerated through eigen-pair reduction, lead mode space projection, and component mode synthesis techniques. The accelerated FECBR is applied to perform quantum mechanical ballistic transport analysis of a DG-MOSFET with taper-shaped extensions and a DG-MOSFET with Si/SiO{sub 2} interface roughness. The computed electrical transport properties of the devices obtained from the accelerated FECBR approach and associated computational cost as a function of system degrees of freedom are compared with those obtained from the original CBR and direct inversion methods. The performance of the accelerated FECBR in both its accuracy and efficiency is demonstrated.

  15. Comparison of methods for solving nonlinear finite-element equations in heat transfer

    SciTech Connect (OSTI)

    Cort, G.E.; Graham, A.L.; Johnson, N.L.

    1981-01-01

    We have derived two new techniques for solving the finite-element heat-transfer equations with highly nonlinear boundary conditions and material properties. When compared with the more commonly employed successive substitution and Newton-Raphson procedures, the new methods speed convergence rates and simultaneously increase the radius of convergence. We have observed reductions in computation time in excess of 80% when the new techniques are employed. The first method accelerates the standard Newton-Raphson approach when the degree of the nonlinearity is known (for example, radiation boundary conditions or a prescribed temperature dependence in the thermal conductivity). The second technique employs feedback to regulate the solution algorithm during execution. Comparisons of these techniques are given for several practical examples.

  16. Proceedings of US/Japan workshop, Q219 on high heat flux components and plasma surface interactions for next fusion devices

    SciTech Connect (OSTI)

    Ulrickson, M.A.; Stevens, P.L.; Hino, T.; Hirohata, Y.

    1996-12-01

    This report contains the viewgraphs from the proceedings of US/Japan Workshop on High Heat Flux Components and Plasma Surface Interactions for Next Fusion Devices. Some of the general topics covered by this report are: PFC/PSI in tokamak and helical devices; development of high heat flux components; PSIS and plasma facing materials;tritium; and material damage.

  17. Device and method for electron beam heating of a high density plasma

    DOE Patents [OSTI]

    Thode, Lester E. (Los Alamos, NM)

    1981-01-01

    A device and method for relativistic electron beam heating of a high density plasma in a small localized region. A relativistic electron beam generator produces a high voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target plasma is ionized prior to application of the electron beam by means of a laser or other preionization source. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high density target plasma causing the relativistic electron beam to efficiently deposit its energy into a small localized region within the high density plasma target.

  18. Inductively Heated Shape Memory Polymer for the Magnetic Actuation of Medical Devices

    E-Print Network [OSTI]

    Buckley, Patrick R.

    2007-01-23

    Presently there is interest in making medical devices such as expandable stents and intravascular microactuators from shape memory polymer (SMP). One of the key challenges in realizing SMP medical devices is the implementation ...

  19. Off-axis cooling of rotating devices using a crank-shaped heat pipe

    DOE Patents [OSTI]

    Jankowski, Todd A.; Prenger, F. Coyne; Waynert, Joseph A.

    2007-01-30

    The present invention is a crank-shaped heat pipe for cooling rotating machinery and a corresponding method of manufacture. The crank-shaped heat pipe comprises a sealed cylindrical tube with an enclosed inner wick structure. The crank-shaped heat pipe includes a condenser section, an adiabatic section, and an evaporator section. The crank-shape is defined by a first curve and a second curve existing in the evaporator section or the adiabatic section of the heat pipe. A working fluid within the heat pipe provides the heat transfer mechanism.

  20. Transient cooling and heating via a bismuth-telluride thermoelectric device 

    E-Print Network [OSTI]

    Clancy, Terry L

    1998-01-01

    Thermoelectric cooling or heating can be used to drive materials to specified temperatures. By way of the Peltier effect, heat is liberated or absorbed when a current flows across a 'unction of two dissimilar conductors. A time history...

  1. Data Center Economizer Cooling with Tower Water; Demonstration of a Dual Heat Exchanger Rack Cooling Device

    E-Print Network [OSTI]

    Greenberg, Steve

    2014-01-01

    rates of each fluid (water and air) to be known for eachcontained two separate air-to-water heat exchangers, rathercontained two, larger air-to-water heat exchangers, compared

  2. Molecular heat pump

    E-Print Network [OSTI]

    Dvira Segal; Abraham Nitzan

    2005-10-11

    We propose a novel molecular device that pumps heat against a thermal gradient. The system consists of a molecular element connecting two thermal reservoirs that are characterized by different spectral properties. The pumping action is achieved by applying an external force that periodically modulates molecular levels. This modulation affects periodic oscillations of the internal temperature of the molecule and the strength of its coupling to each reservoir resulting in a net heat flow in the desired direction. The heat flow is examined in the slow and fast modulation limits and for different modulation waveforms, thus making it possible to optimize the device performance.

  3. Optimization of the configuration and working fluid for a micro heat pipe thermal control device 

    E-Print Network [OSTI]

    Coughlin, Scott Joseph

    2006-04-12

    Continued development of highly compact and powerful electronic components has led to the need for a simple and effective method for controlling the thermal characteristics of these devices. One proposed method for thermal ...

  4. Simulated evolution of fractures and fracture networks subject to thermal cooling: A coupled discrete element and heat conduction model

    SciTech Connect (OSTI)

    Huang, Hai; Plummer, Mitchell; Podgorney, Robert

    2013-02-01

    Advancement of EGS requires improved prediction of fracture development and growth during reservoir stimulation and long-term operation. This, in turn, requires better understanding of the dynamics of the strongly coupled thermo-hydro-mechanical (THM) processes within fractured rocks. We have developed a physically based rock deformation and fracture propagation simulator by using a quasi-static discrete element model (DEM) to model mechanical rock deformation and fracture propagation induced by thermal stress and fluid pressure changes. We also developed a network model to simulate fluid flow and heat transport in both fractures and porous rock. In this paper, we describe results of simulations in which the DEM model and network flow & heat transport model are coupled together to provide realistic simulation of the changes of apertures and permeability of fractures and fracture networks induced by thermal cooling and fluid pressure changes within fractures. Various processes, such as Stokes flow in low velocity pores, convection-dominated heat transport in fractures, heat exchange between fluid-filled fractures and solid rock, heat conduction through low-permeability matrices and associated mechanical deformations are all incorporated into the coupled model. The effects of confining stresses, developing thermal stress and injection pressure on the permeability evolution of fracture and fracture networks are systematically investigated. Results are summarized in terms of implications for the development and evolution of fracture distribution during hydrofracturing and thermal stimulation for EGS.

  5. Characterization of Damp-Heat Degradation of CuInGaSe2 Solar Cell Components and Devices by (Electrochemical) Impedance Spectroscopy: Preprint

    SciTech Connect (OSTI)

    Pern, F. J. J.; Noufi, R.

    2011-09-01

    This work evaluated the capability of (electrochemical) impedance spectroscopy (IS, or ECIS as used here) to monitor damp heat (DH) stability of contact materials, CuInGaSe2 (CIGS) solar cell components, and devices. Cell characteristics and its variation of the CIGS devices were also examined by the ECIS.

  6. Modelling Heat Transport Across Nano-scale Material Interfaces for Next-generation Electronic Devices

    E-Print Network [OSTI]

    Milgram, Paul

    ) thermal boundary resistance between two dissimilar semiconductor materials using a combinationModelling Heat Transport Across Nano-scale Material Interfaces for Next-generation Electronic) with customized thermal transport properties. The scattering of thermal energy carriers at fabricated interfaces

  7. The Use of Hollow Plastic Balls as Energy Conservation Devices in Heated Open Tanks 

    E-Print Network [OSTI]

    Byrne, T. J.

    1983-01-01

    The problem of heat losses from open liquid filled tanks is as old as industry itself. This paper will present the advantages of using an insulating blanket of hollow plastic spheres as a mechanism to conserve this type ...

  8. Method and apparatus for removing heat from electronic devices using synthetic jets

    DOE Patents [OSTI]

    Sharma, Rajdeep; Weaver, Jr., Stanton Earl; Seeley, Charles Erklin; Arik, Mehmet; Icoz, Tunc; Wolfe, Jr., Charles Franklin; Utturkar, Yogen Vishwas

    2014-04-15

    An apparatus for removing heat comprises a heat sink having a cavity, and a synthetic jet stack comprising at least one synthetic jet mounted within the cavity. At least one rod and at least one engaging structure to provide a rigid positioning of the at least one synthetic jet with respect to the at least one rod. The synthetic jet comprises at least one orifice through which a fluid is ejected.

  9. Numerical study on transient heat transfer under soil with plastic mulch in agriculture applications using a nonlinear finite element model

    E-Print Network [OSTI]

    De Castro, Carlos Armando

    2011-01-01

    In this paper is developed a simple mathematical model of transient heat transfer under soil with plastic mulch in order to determine with numerical studies the influence of different plastic mulches on the soil temperature and the evolutions of temperatures at different depths with time. The governing differential equations are solved by a Galerkin Finite Element Model, taking into account the nonlinearities due to radiative heat exchange between the soil surface, the plastic mulch and the atmosphere. The model was validated experimentally giving good approximation of the model to the measured data. Simulations were run with the validated model in order to determine the optimal combination of mulch optical properties to maximize the soil temperature with a Taguchi's analysis, proving that the material most used nowadays in Colombia is not the optimal and giving quantitative results of the properties the optimal mulch must possess.

  10. A visualization comparison of convective flow boiling heat transfer augmentation devices 

    E-Print Network [OSTI]

    Lundy, Brian Franklin

    1998-01-01

    of 9.50, 7.2 1, and 3.72, a static mixer, and a circumferentailly wrapped wire screen were compared with bare tube data to ascertain the qualitative effects of these devices. Visualization experiments using high resolution video techniques were...

  11. Modeling Improvements for Air Source Heat Pumps using Different Expansion Devices at Varied Charge Levels Part II

    SciTech Connect (OSTI)

    Shen, Bo [ORNL

    2011-01-01

    This paper describes steady-state performance simulations performed on a 3-ton R-22 split heat pump in heating mode. In total, 150 steady-state points were simulated, which covers refrigerant charge levels from 70 % to 130% relative to the nominal value, the outdoor temperatures at 17 F (-8.3 C), 35 F (1.7 C) and 47 F (8.3 C), indoor air flow rates from 60% to 150% of the rated air flow rate, and two types of expansion devices (fixed orifice and thermostatic expansion valve). A charge tuning method, which is to calibrate the charge inventory model based on measurements at two operation conditions, was applied and shown to improve the system simulation accuracy significantly in an extensive range of charge levels. In addition, we discuss the effects of suction line accumulator in modeling a heat pump system using either a fixed orifice or thermal expansion valve. Last, we identify the issue of refrigerant mass flow mal-distribution at low charge levels and propose an improved modeling approach.

  12. Device and method for relativistic electron beam heating of a high-density plasma to drive fast liners

    DOE Patents [OSTI]

    Thode, Lester E. (Los Alamos, NM)

    1981-01-01

    A device and method for relativistic electron beam heating of a high-density plasma in a small localized region. A relativistic electron beam generator or accelerator produces a high-voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low-density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high-density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target gas is ionized prior to application of the electron beam by means of a laser or other preionization source to form a plasma. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy and momentum into a small localized region of the high-density plasma target. Fast liners disposed in the high-density target plasma are explosively or ablatively driven to implosion by a heated annular plasma surrounding the fast liner which is generated by an annular relativistic electron beam. An azimuthal magnetic field produced by axial current flow in the annular plasma, causes the energy in the heated annular plasma to converge on the fast liner.

  13. Convective heat flow probe

    DOE Patents [OSTI]

    Dunn, J.C.; Hardee, H.C.; Striker, R.P.

    1984-01-09

    A convective heat flow probe device is provided which measures heat flow and fluid flow magnitude in the formation surrounding a borehole. The probe comprises an elongate housing adapted to be lowered down into the borehole; a plurality of heaters extending along the probe for heating the formation surrounding the borehole; a plurality of temperature sensors arranged around the periphery of the probe for measuring the temperature of the surrounding formation after heating thereof by the heater elements. The temperature sensors and heater elements are mounted in a plurality of separate heater pads which are supported by the housing and which are adapted to be radially expanded into firm engagement with the walls of the borehole. The heat supplied by the heater elements and the temperatures measured by the temperature sensors are monitored and used in providing the desired measurements. The outer peripheral surfaces of the heater pads are configured as segments of a cylinder and form a full cylinder when taken together. A plurality of temperature sensors are located on each pad so as to extend along the length and across the width thereof, with a heating element being located in each pad beneath the temperature sensors. An expansion mechanism driven by a clamping motor provides expansion and retraction of the heater pads and expandable packet-type seals are provided along the probe above and below the heater pads.

  14. Fluid-cooled heat sink with improved fin areas and efficiencies for use in cooling various devices

    DOE Patents [OSTI]

    Bharathan, Desikan; Bennion, Kevin; Kelly, Kenneth; Narumanchi, Sreekant

    2015-04-21

    The disclosure provides a fluid-cooled heat sink having a heat transfer base and a plurality of heat transfer fins in thermal communication with the heat transfer base, where the heat transfer base and the heat transfer fins form a central fluid channel through which a forced or free cooling fluid may flow. The heat transfer pins are arranged around the central fluid channel with a flow space provided between adjacent pins, allowing for some portion of the central fluid channel flow to divert through the flow space. The arrangement reduces the pressure drop of the flow through the fins, optimizes average heat transfer coefficients, reduces contact and fin-pin resistances, and reduces the physical footprint of the heat sink in an operating environment.

  15. 78 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 46, NO. 1, JANUARY 1999 The Effects of Extended Heat Treatment

    E-Print Network [OSTI]

    . The MILC rate decreased upon extended heat treatment. One reason is the continuously changing state OIM micrograph of MILC induced by a 20 m diameter Ni disc after 7 h of heat treatment at 500 C. Long], the rate decreased upon extended heat treatment. Clearly, the stability of the MILC rate is an important

  16. Influence of Damp Heat on the Electrical, Optical, and Morphological Properties of Encapsulated CuInGaSe2 Devices: Preprint

    SciTech Connect (OSTI)

    Sundaramoorthy, R.; Pern, F. J.; Teeter, G.; Li, J. V.; Young, M.; Kuciauskas, D.; Call, N.; Yan, F.; To, B.; Johnston, S.; Noufi, R.; Gessert, T. A.

    2011-08-01

    CuInGaSe2 (CIGS) devices, encapsulated with different backsheets having different water vapor transmission rates (WVTR), were exposed to damp heat (DH) at 85C and 85% relative humidity (RH) and characterized periodically to understand junction degradation induced by moisture ingress. Performance degradation of the devices was primarily driven by an increase in series resistance within first 50 h of exposure, resulting in a decrease in fill factor and, accompanied loss in carrier concentration and widening of depletion width. Surface analysis of the devices after 700-h DH exposure showed the formation of Zn(OH)2 from hydrolysis of the Al-doped ZnO (AZO) window layer by the moisture, which was detrimental to the collection of minority carriers. Minority carrier lifetimes observed for the CIGS devices using time resolved photoluminescence (TRPL) remained relatively long after DH exposure. By etching the DH-exposed devices and re-fabricating with new component layers, the performance of reworked devices improved significantly, further indicating that DH-induced degradation of the AZO layer and/or the CdS buffer was the primary performance-degrading factor.

  17. IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 41, NO. 12, DECEMBER 1994 2391 Influence of Lattice Self-Heating and

    E-Print Network [OSTI]

    Florida, University of

    IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 41, NO. 12, DECEMBER 1994 2391 Influence of Lattice Member, IEEE Abstract-As device technologiesimprove, the traditional drift- diffusion transport model Engineering, University of Florida, Gainesville, FL 32603 USA. IEEE Log Number 9405891. ical dimension is more

  18. Downhole thermoacoustic device

    SciTech Connect (OSTI)

    Kuznetsov, O. L.; Malchenok, V. O.; Maxutov, R. A.; Mordukhaev, K. M.; Ostrovsky, A. P.

    1985-12-17

    A downhole thermoacoustic device comprises a heater with a terminal chamber, connected to a source or radiator of acoustic oscillation, including a hollow housing having mounted therein a longitudinal shaft carrying coils with cores in the form of a plurality of flat rings of a magnetostrictive material, operable as the active elements adapted to generate acoustic oscillation. Accommodated intermediate the coils is a member for focusing the acoustic field, in the form of a sleeve, while the longitudinal shaft carries a tube-shaped reflector of acoustic oscillation internally of the core of each coil. The top and bottom portions of the hollow housing of the radiator of acoustic oscillation have mounted therein damping elements including sleeves of a resilient material, while a heat-insulating member including a sleeve with a fluted surface is provided intermediate the terminal chamber of the heater and the hollow housing of the radiator.

  19. The Impact of Refrigerant Charge, Air Flow and Expansion Devices on the Measured Performance of an Air-Source Heat Pump Part I

    SciTech Connect (OSTI)

    Shen, Bo [ORNL

    2011-01-01

    This paper describes extensive tests performed on a 3-ton R-22 split heat pump in heating mode. The tests contain 150 steady-state performance tests, 18 cyclic tests and 18 defrost tests. During the testing work, the refrigerant charge level was varied from 70 % to 130% relative to the nominal value; the outdoor temperature was altered by three levels at 17 F (-8.3 C), 35 F (1.7 C) and 47 F (8.3 C); indoor air flow rates ranged from 60% to 150% of the rated air flow rate; and the expansion device was switched from a fixed-orifice to a thermal expansion value. Detailed performance data from the extensive steady state cyclic and defrost testing performed were presented and compared.

  20. Bipolar thermoelectric devices

    E-Print Network [OSTI]

    Pipe, Kevin P. (Kevin Patrick), 1976-

    2004-01-01

    The work presented here is a theoretical and experimental study of heat production and transport in bipolar electrical devices, with detailed treatment of thermoelectric effects. Both homojunction and heterojunction devices ...

  1. US-Japan workshop Q-181 on high heat flux components and plasma-surface interactions for next devices: Proceedings

    SciTech Connect (OSTI)

    McGrath, R.T. [ed.] [Sandia National Labs., Albuquerque, NM (United States)] [ed.; Sandia National Labs., Albuquerque, NM (United States); Yamashina, T. [ed.] [Hokkadio Univ. (Japan)] [ed.; Hokkadio Univ. (Japan)

    1994-04-01

    This report contain viewgraphs of papers from the following sessions: plasma facing components issues for future machines; recent PMI results from several tokamaks; high heat flux technology; plasma facing components design and applications; plasma facing component materials and irradiation damage; boundary layer plasma; plasma disruptions; conditioning and tritium; and erosion/redeposition.

  2. Reflux pool-boiler as a heat-transport device for Stirling engines: On-sun test program results

    SciTech Connect (OSTI)

    Andraka, C.E.; Moreno, J.B.; Diver, R.B.; Ginn, W.C.; Dudley, V.; Rawlinson, K.S.

    1990-01-01

    The efficient operation of a Stirling engine requires the application of a high heat flux to the relatively small area occupied by the heater head tubes. Previous attempts to couple solar energy to Stirling engines generally involved directly illuminating the heater head tubes with concentrated sunlight. In this study, operation of 75-kW, sodium reflux pool-boiler solar receiver has been demonstrated and its performance characterized on Sandia's nominal 75-kW parabolic-dish concentrator, using a cold-water gas-gap calorimeter to simulate Stirling engine operation. The pool boiler (and more generally liquid-metal reflux receivers) supplies heat to the engine in the form of latent heat released from condensation of the metal vapor on the heater head tubes. The advantages of the pool boiler include uniform tube temperature, leading to longer life and higher temperature available to the engine, and decoupling of the design of the solar absorber from the engine heater head. The two-phase system allows high input thermal flux, reducing the receiver size and losses, therefore improving system efficiency. The receiver design is reported here along with test results including transient operations, steady-state performance evaluation, operation at various temperatures, and x-ray studies of the boiling behavior. Also reported are a fist-order cost analysis, plans for future studies, and the integration of the receiver with a Stirling Thermal Motors STM4-120 Stirling engine. 19 refs., 11 figs.

  3. Heat pump employing optimal refrigerant compressor for low pressure ratio applications

    DOE Patents [OSTI]

    Ecker, Amir L. (Dallas, TX)

    1982-01-01

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler for circulating the fluid in heat exchange relationship with a refrigerant fluid; two refrigerant heat exchangers; one for effecting the heat exchange with the fluid and a second refrigerant-heat exchange fluid heat exchanger for effecting a low pressure ratio of compression of the refrigerant; a rotary compressor for compressing the refrigerant with low power consumption at the low pressure ratio; at least one throttling valve connecting at the inlet side of heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit serially connecting the above elements; refrigerant in the circuit; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant.

  4. Methods of making composite optical devices employing polymer liquid crystal

    DOE Patents [OSTI]

    Jacobs, S.D.; Marshall, K.L.; Cerqua, K.A.

    1991-10-08

    Composite optical devices are disclosed using polymer liquid crystal materials both as optical and adhesive elements. The devices are made by assembling a heated polymer liquid crystal compound, while in a low viscosity form between optically transparent substrates. The molecules of the polymer are oriented, while in the liquid crystalline state and while above the glass transition temperature (T[sub g]) of the polymer, to provide the desired optical effects, such as polarization, and selective reflection. The liquid crystal polymer cements the substrates together to form an assembly providing the composite optical device. 7 figures.

  5. Methods of making composite optical devices employing polymer liquid crystal

    DOE Patents [OSTI]

    Jacobs, Stephen D. (Pittsford, NY); Marshall, Kenneth L. (Henrietta, NY); Cerqua, Kathleen A. (Fairport, NY)

    1991-01-01

    Composite optical devices using polymer liquid crystal materials both as optical and adhesive elements. The devices are made by assembling a heated polymer liquid crystal compound, while in a low viscosity form between optically transparent substrates. The molecules of the polymer are oriented, while in the liquid crystalline state and while above the glass transition temperature (T.sub.g) of the polymer, to provide the desired optical effects, such as polarization, and selective reflection. The liquid crystal polymer cements the substrates together to form an assembly providing the composite optical device.

  6. A laser gyro with a four-mirror square resonator: formulas for simulating the dynamics of the synchronisation zone parameters of the frequencies of counterpropagating waves during the device operation in the self-heating regime

    SciTech Connect (OSTI)

    Bondarenko, E A

    2014-04-28

    For a laser gyro with a four-mirror square resonator we have developed a mathematical model, which allows one to simulate the temporal behaviour of the synchronisation zone parameters of the frequencies of counterpropagating waves in a situation when the device operates in the self-heating regime and is switched-on at different initial temperatures. (laser gyroscopes)

  7. Thermoelectric energy converter for generation of electricity from low-grade heat

    DOE Patents [OSTI]

    Jayadev, T.S.; Benson, D.K.

    1980-05-27

    A thermoelectric energy conversion device which includes a plurality of thermoelectric elements is described. A hot liquid is supplied to one side of each element and a cold liquid is supplied to the other side of each element. The thermoelectric generator may be utilized to produce power from low-grade heat sources such as ocean thermal gradients, solar ponds, and low-grade geothermal resources. (WHK)

  8. Status of Segmented Element Thermoelectric Generator for Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Segmented Element Thermoelectric Generator for Vehicle Waste Heat Recovery Status of Segmented Element Thermoelectric Generator for Vehicle Waste Heat Recovery Discusses progress...

  9. Dual source heat pump

    DOE Patents [OSTI]

    Ecker, Amir L. (Dallas, TX); Pietsch, Joseph A. (Dallas, TX)

    1982-01-01

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

  10. Phononic crystal devices

    DOE Patents [OSTI]

    El-Kady, Ihab F. (Albuquerque, NM); Olsson, Roy H. (Albuquerque, NM)

    2012-01-10

    Phononic crystals that have the ability to modify and control the thermal black body phonon distribution and the phonon component of heat transport in a solid. In particular, the thermal conductivity and heat capacity can be modified by altering the phonon density of states in a phononic crystal. The present invention is directed to phononic crystal devices and materials such as radio frequency (RF) tags powered from ambient heat, dielectrics with extremely low thermal conductivity, thermoelectric materials with a higher ratio of electrical-to-thermal conductivity, materials with phononically engineered heat capacity, phononic crystal waveguides that enable accelerated cooling, and a variety of low temperature application devices.

  11. Energy Efficient HVAC System for Distributed Cooling/Heating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficient HVAC System for Distributed CoolingHeating with Thermoelectric Devices Energy Efficient HVAC System for Distributed CoolingHeating with Thermoelectric Devices 2012 DOE...

  12. Hybrid electroluminescent devices

    DOE Patents [OSTI]

    Shiang, Joseph John (Niskayuna, NY); Duggal, Anil Raj (Niskayuna, NY); Michael, Joseph Darryl (Schenectady, NY)

    2010-08-03

    A hybrid electroluminescent (EL) device comprises at least one inorganic diode element and at least one organic EL element that are electrically connected in series. The absolute value of the breakdown voltage of the inorganic diode element is greater than the absolute value of the maximum reverse bias voltage across the series. The inorganic diode element can be a power diode, a Schottky barrier diode, or a light-emitting diode.

  13. JOURNAL DE PHYSIQUE Colloque C6, suppliment au no 12, Tome 38, De'cembre 1977, page C6-161 LOWER HYBRID FREQUENCY HEATING IN TOROIDAL DEVICES

    E-Print Network [OSTI]

    Boyer, Edmond

    , FT) experiments on lower hybrid heating are plotted in figure 1 as a function of toroidal magnetic field and electron density. The FIG. 1. - Frequency ranges of interest for lower hybrid heating. accessible regions for lower hybrid heating are given for different frequencies (Ref. [7]). For example, WEGA

  14. Tunable circuit for tunable capacitor devices

    DOE Patents [OSTI]

    Rivkina, Tatiana; Ginley, David S.

    2006-09-19

    A tunable circuit (10) for a capacitively tunable capacitor device (12) is provided. The tunable circuit (10) comprises a tunable circuit element (14) and a non-tunable dielectric element (16) coupled to the tunable circuit element (16). A tunable capacitor device (12) and a method for increasing the figure of merit in a tunable capacitor device (12) are also provided.

  15. Heat sinking for printed circuitry

    DOE Patents [OSTI]

    Wilson, S.K.; Richardson, G.; Pinkerton, A.L.

    1984-09-11

    A flat pak or other solid-state device mounted on a printed circuit board directly over a hole extends therethrough so that the bottom of the pak or device extends beyond the bottom of the circuit board. A heat sink disposed beneath the circuit board contacts the bottom of the pak or device and provides direct heat sinking thereto. Pressure may be applied to the top of the pak or device to assure good mechanical and thermal contact with the heat sink.

  16. Solar tracking device

    SciTech Connect (OSTI)

    Wyland, R.R.

    1981-01-20

    A solar tracking device having a plurality of reflector banks for reflecting the sun rays onto collector tubes and heating a fluid circulated therethrough. The reflector banks synchronized to follow the sun during the daily and yearly cycle of the earth as the earth orbits around the sun. The device by accurately following the sun provides a more efficient means of collecting solar energy.

  17. Integrated heat pump system

    SciTech Connect (OSTI)

    Reedy, W.R.

    1988-03-01

    An integrated heat pump and hot water system is described that includes: a heat pump having an indoor heat exchanger and an outdoor heat exchanger that are selectively connected to the suction line and the discharge line respectively of a compressor by a flow reversing means, and to each other by a liquid line having an expansion device mounted therein, whereby heating and cooling is provided to an indoor comfort zone by cycling the flow reversing means, a refrigerant to water heat exchanger having a hot water flow circuit in heat transfer relation with a first refrigerant condensing circuit and a second refrigerant evaporating circuit, a connection mounted in the liquid between the indoor heat exchanger and the expansion device, control means for regulating the flow of refrigerant through the refrigerant to water heat exchanger to selectively transfer heat into and out of the hot water flow circuit.

  18. Integrated heat pump water heater

    SciTech Connect (OSTI)

    Robinson, G.P.; Blackshaw, A.L.

    1986-07-08

    An integrated heat pump water heater system is described for providing either heating or cooling of an interior space, and heating water in conjunction with either the heating or cooling cycle or independently, by means of a refrigerant flowing through the system. The system consists of: a compressor; a first heat exchanger means for providing heat to the interior space in the heating cycle and for removing heat during the cooling cycle by heat transfer with a refrigerant therein; a second heat exchanger means for transferring heat to or from a refrigerant therein by heat exchanger with an exterior medium; a third heat exchanger means for transferring heat from a refrigerant therein to water circulated therethrough; a first expansion device; a second expansion device; a third expansion device; refrigerant flow connection means connected between the compressor, the heat exchanger means, and the expansion devices which may be controllably connected in alternate configurations whereby. In a first configuration the refrigerant flow is sequentially from the compressor, through the third heat exchanger means, through the second heat exchanger means, through the first expansion device, through the first heat exchanger means, and back to the compressor. In a second configuration the refrigerant flow is sequentially from the compressor, through the third heat exchanger means, through the first heat exchanger means, through the second expansion device, through the second heat exchanger means, and back to the compressor. In a third configuration the refrigerant flow is sequentially from the compressor, through the third heat exchanger means, through the third expansion device, through the second heat exchanger means, and back to the compressor.

  19. Stretchable semiconductor elements and stretchable electrical circuits

    DOE Patents [OSTI]

    Rogers, John A. (Champaign, IL); Khang, Dahl-Young (Seoul, KR); Menard, Etienne (Durham, NC)

    2009-07-07

    The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.

  20. Finite element methods for 3D eddy current prob-lems in bounded domains subject to realistic

    E-Print Network [OSTI]

    Rodríguez, Rodolfo

    devices such us electrical machines, induction heating systems, transformers, waveguides, microwaves, etc formulations based on the magnetic or the electric field, approximated by means of edge elements. The most electric furnaces are discussed and numerical results are given. 1 INTRODUCTION Numerical simulation plays

  1. Measured Effects of Retrofits - A Refrigerant Oil Additive and a Condenser Spray Device - On the Cooling Performance of a Heat Pump 

    E-Print Network [OSTI]

    Levins, W. P.; Sand, J. R.; Baxter, V. D.; Linkous, R. S.

    1996-01-01

    A 15-year old, 3-ton single package air-to-air heat pump was tested in laboratory environmental chambers simulating indoor and outdoor conditions. After documenting initial performance, the unit was retrofitted with a prototype condenser water...

  2. Materials Growth and Characterization of Thermoelectric and Resistive Switching Devices

    E-Print Network [OSTI]

    Norris, Kate Jeanne

    2015-01-01

    SPIE 8467, Nanoepitaxy: Materials and Devices IV (2012)non-toxic thermoelectric material for waste heat recovery,”dot superlattice thermoelectric materials and devices. ,”

  3. Release Resistant Electrical Interconnections For Mems Devices

    DOE Patents [OSTI]

    Peterson, Kenneth A. (Albuquerque, NM); Garrett, Stephen E. (Albuquerque, NM); Reber, Cathleen A. (Corrales, NM)

    2005-02-22

    A release resistant electrical interconnection comprising a gold-based electrical conductor compression bonded directly to a highly-doped polysilicon bonding pad in a MEMS, IMEMS, or MOEMS device, without using any intermediate layers of aluminum, titanium, solder, or conductive adhesive disposed in-between the conductor and polysilicon pad. After the initial compression bond has been formed, subsequent heat treatment of the joint above 363 C creates a liquid eutectic phase at the bondline comprising gold plus approximately 3 wt % silicon, which, upon re-solidification, significantly improves the bond strength by reforming and enhancing the initial bond. This type of electrical interconnection is resistant to chemical attack from acids used for releasing MEMS elements (HF, HCL), thereby enabling the use of a "package-first, release-second" sequence for fabricating MEMS devices. Likewise, the bond strength of an Au--Ge compression bond may be increased by forming a transient liquid eutectic phase comprising Au-12 wt % Ge.

  4. Sodium heat engine electrical feedthrough

    DOE Patents [OSTI]

    Weber, Neill (Dearborn, MI)

    1985-01-01

    A thermoelectric generator device which converts heat energy to electrical energy. An alkali metal is used with a solid electrolyte and a hermetically sealed feedthrough structure.

  5. Personal cooling air filtering device

    DOE Patents [OSTI]

    Klett, James (Knoxville, TN); Conway, Bret (Denver, NC)

    2002-08-13

    A temperature modification system for modifying the temperature of fluids includes at least one thermally conductive carbon foam element, the carbon foam element having at least one flow channel for the passage of fluids. At least one temperature modification device is provided, the temperature modification device thermally connected to the carbon foam element and adapted to modify the temperature of the carbon foam to modify the temperature of fluids flowing through the flow channels. Thermoelectric and/or thermoionic elements can preferably be used as the temperature modification device. A method for the reversible temperature modification of fluids includes the steps of providing a temperature modification system including at least one thermally conductive carbon foam element having flow channels and at least one temperature modification device, and flowing a fluid through the flow channels.

  6. Sensorless temperature estimation and control of Peltier devices

    E-Print Network [OSTI]

    Odhner, Lael Ulam, 1980-

    2006-01-01

    Peltier devices, also known as thermoelectric devices (TEDs), are solid state junctions of two dissimilar materials in which heat transfer and electrical conduction are coupled. A current running through a TED causes heat ...

  7. Magnetic Fusion Energy Plasma Interactive and High Heat Flux Components: Volume 5, Technical assessment of critical issues in the steady state operation of fusion confinement devices

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    Critical issues for the steady state operation of plasma confinement devices exist in both the physics and technology fields of fusion research. Due to the wide range and number of these issues, this technical assessment has focused on the crucial issues associated with the plasma physics and the plasma interactive components. The document provides information on the problem areas that affect the design and operation of a steady state ETR or ITER type confinement device. It discusses both tokamaks and alternative concepts, and provides a survey of existing and planned confinement machines and laboratory facilities that can address the identified issues. A universal definition of steady state operation is difficult to obtain. From a physics point of view, steady state is generally achieved when the time derivatives approach zero and the operation time greatly exceeds the characteristic time constants of the device. Steady state operation for materials depends on whether thermal stress, creep, fatigue, radiation damage, or power removal are being discussed. For erosion issues, the fluence and availability of the machine for continuous operation are important, assuming that transient events such as disruptions do not limit the component lifetimes. The panel suggests, in general terms, that steady state requires plasma operation from 100 to 1000 seconds and an availability of more than a few percent, which is similar to the expectations for an ETR type device. The assessment of critical issues for steady state operation is divided into four sections: physics issues; technology issues; issues in alternative concepts; and devices and laboratory facilities that can address these problems.

  8. SUPERCONDUCTING DEVICES

    E-Print Network [OSTI]

    Clarke, John

    2014-01-01

    communications. References Superconductor Applications: ~on all aspects of superconducting devices. IEEE Trans.on all aspects vf superconducting devices. The IBM Journal

  9. Characteristics, finite element analysis, test description, and preliminary test results of the STM4-120 kinematic Stirling engine

    SciTech Connect (OSTI)

    Linker, K.L.; Rawlinson, K.S.; Smith, G.

    1991-10-01

    The Department of Energy's Solar Thermal Program has as one of its program elements the development and evaluation of conversion device technologies applicable to dish-electric systems. The primary research and development combines a conversion device (heat engine), solar receiver, and generator mounted at the focus of a parabolic dish concentrator. The Stirling-cycle heat engine was identified as the conversion device for dish-electric with the most potential for meeting the program's goals for efficiency, reliability, and installed cost. To advance the technology toward commercialization, Sandia National Laboratories has acquired a Stirling Thermal Motors, Inc., kinematic Stirling engine, STM4-120, for evaluation. The engine is being bench-tested at Sandia's Engine Test Facility and will be combined later with a solar receiver for on-sun evaluation. This report presents the engine characteristics, finite element analyses of critical engine components, test system layout, instrumentation, and preliminary performance results from the bench test.

  10. Closed loop pulsating heat pipes Part A: parametric experimental investigations

    E-Print Network [OSTI]

    Khandekar, Sameer

    Closed loop pulsating heat pipes Part A: parametric experimental investigations Piyanun; accepted 1 May 2003 Abstract Closed loop pulsating heat pipes (CLPHPs) are complex heat transfer devices range of pulsating heat pipes is experimentally studied thereby providing vital information

  11. Water-heating dehumidifier

    DOE Patents [OSTI]

    Tomlinson, John J. (Knoxville, TN)

    2006-04-18

    A water-heating dehumidifier includes a refrigerant loop including a compressor, at least one condenser, an expansion device and an evaporator including an evaporator fan. The condenser includes a water inlet and a water outlet for flowing water therethrough or proximate thereto, or is affixed to the tank or immersed into the tank to effect water heating without flowing water. The immersed condenser design includes a self-insulated capillary tube expansion device for simplicity and high efficiency. In a water heating mode air is drawn by the evaporator fan across the evaporator to produce cooled and dehumidified air and heat taken from the air is absorbed by the refrigerant at the evaporator and is pumped to the condenser, where water is heated. When the tank of water heater is full of hot water or a humidistat set point is reached, the water-heating dehumidifier can switch to run as a dehumidifier.

  12. Thermal Transistor: Heat Flux Switching and Modulating Wei Chung LO1;4

    E-Print Network [OSTI]

    Li, Baowen

    is an efficient heat control device which can act as a heat switch as well as a heat modulator. In this paper, we

  13. Radiation detector system having heat pipe based cooling

    DOE Patents [OSTI]

    Iwanczyk, Jan S.; Saveliev, Valeri D.; Barkan, Shaul

    2006-10-31

    A radiation detector system having a heat pipe based cooling. The radiation detector system includes a radiation detector thermally coupled to a thermo electric cooler (TEC). The TEC cools down the radiation detector, whereby heat is generated by the TEC. A heat removal device dissipates the heat generated by the TEC to surrounding environment. A heat pipe has a first end thermally coupled to the TEC to receive the heat generated by the TEC, and a second end thermally coupled to the heat removal device. The heat pipe transfers the heat generated by the TEC from the first end to the second end to be removed by the heat removal device.

  14. Heat pipe with embedded wick structure

    DOE Patents [OSTI]

    Adkins, Douglas Ray (Albuquerque, NM); Shen, David S. (Albuquerque, NM); Tuck, Melanie R. (Albuquerque, NM); Palmer, David W. (Albuquerque, NM); Grafe, V. Gerald (Corrales, NM)

    1998-01-01

    A heat pipe has an embedded wick structure that maximizes capillary pumping capability. Heat from attached devices such as integrated circuits evaporates working fluid in the heat pipe. The vapor cools and condenses on a heat dissipation surface. The condensate collects in the wick structure, where capillary pumping returns the fluid to high heat areas.

  15. Heat pipe with embedded wick structure

    DOE Patents [OSTI]

    Adkins, Douglas Ray (Albuquerque, NM); Shen, David S. (Albuquerque, NM); Tuck, Melanie R. (Albuquerque, NM); Palmer, David W. (Albuquerque, NM); Grafe, V. Gerald (Corrales, NM)

    1999-01-01

    A heat pipe has an embedded wick structure that maximizes capillary pumping capability. Heat from attached devices such as integrated circuits evaporates working fluid in the heat pipe. The vapor cools and condenses on a heat dissipation surface. The condensate collects in the wick structure, where capillary pumping returns the fluid to high heat areas.

  16. Heat pipe with embedded wick structure

    DOE Patents [OSTI]

    Adkins, D.R.; Shen, D.S.; Tuck, M.R.; Palmer, D.W.; Grafe, V.G.

    1998-06-23

    A heat pipe has an embedded wick structure that maximizes capillary pumping capability. Heat from attached devices such as integrated circuits evaporates working fluid in the heat pipe. The vapor cools and condenses on a heat dissipation surface. The condensate collects in the wick structure, where capillary pumping returns the fluid to high heat areas. 7 figs.

  17. Electrical latching of microelectromechanical devices

    SciTech Connect (OSTI)

    Garcia, Ernest J.; Sleefe, Gerard E.

    2004-11-02

    Methods are disclosed for row and column addressing of an array of microelectromechanical (MEM) devices. The methods of the present invention are applicable to MEM micromirrors or memory elements and allow the MEM array to be programmed and maintained latched in a programmed state with a voltage that is generally lower than the voltage required for electrostatically switching the MEM devices.

  18. Finite Element Analysis of Roadside Safety Devices

    E-Print Network [OSTI]

    bridge rail system did not satisfy NCHRP Report 350 criteria for high-speed (i.e., Test Level 3 to the popular T6 tubular W-beam bridge rail addressed problems with vehicle instability observed in full with hand mowing. What We Found... T6 Bridge Rail The Texas T6 bridge rail is a breakaway bridge rail system

  19. Heat pipe array heat exchanger

    DOE Patents [OSTI]

    Reimann, Robert C. (Lafayette, NY)

    1987-08-25

    A heat pipe arrangement for exchanging heat between two different temperature fluids. The heat pipe arrangement is in a ounterflow relationship to increase the efficiency of the coupling of the heat from a heat source to a heat sink.

  20. Heat storage duration

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1981-01-01

    Both the amount and duration of heat storage in massive elements of a passive building are investigated. Data taken for one full winter in the Balcomb solar home are analyzed with the aid of sub-system simulation models. Heat storage duration is tallied into one-day intervals. Heat storage location is discussed and related to overall energy flows. The results are interpreted and conclusions drawn.

  1. Daydreaming Devices

    E-Print Network [OSTI]

    Da Ponte, Ana Sofia Lopes

    2008-01-01

    Daydreaming Devices is a project on aspects of daydream and the design of convertible furniture within the context of art. This thesis addresses the concepts and the design of two daydreaming devices developed during my ...

  2. Precision alignment device

    DOE Patents [OSTI]

    Jones, Nelson E. (Huntington Beach, CA)

    1990-01-01

    Apparatus for providing automatic alignment of beam devices having an associated structure for directing, collimating, focusing, reflecting, or otherwise modifying the main beam. A reference laser is attached to the structure enclosing the main beam producing apparatus and produces a reference beam substantially parallel to the main beam. Detector modules containing optical switching devices and optical detectors are positioned in the path of the reference beam and are effective to produce an electrical output indicative of the alignment of the main beam. This electrical output drives servomotor operated adjustment screws to adjust the position of elements of the structure associated with the main beam to maintain alignment of the main beam.

  3. Precision alignment device

    DOE Patents [OSTI]

    Jones, N.E.

    1988-03-10

    Apparatus for providing automatic alignment of beam devices having an associated structure for directing, collimating, focusing, reflecting, or otherwise modifying the main beam. A reference laser is attached to the structure enclosing the main beam producing apparatus and produces a reference beam substantially parallel to the main beam. Detector modules containing optical switching devices and optical detectors are positioned in the path of the reference beam and are effective to produce an electrical output indicative of the alignment of the main beam. This electrical output drives servomotor operated adjustment screws to adjust the position of elements of the structure associated with the main beam to maintain alignment of the main beam. 5 figs.

  4. Heat pump with freeze-up prevention

    DOE Patents [OSTI]

    Ecker, Amir L. (Dallas, TX)

    1981-01-01

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid prevents freeze up of the second heat exchanger by keeping the temperature above the dew point; and, optionally, provides heat for efficient operation.

  5. Sealing device

    DOE Patents [OSTI]

    Garcia-Crespo, Andres Jose

    2013-12-10

    A sealing device for sealing a gap between a dovetail of a bucket assembly and a rotor wheel is disclosed. The sealing device includes a cover plate configured to cover the gap and a retention member protruding from the cover plate and configured to engage the dovetail. The sealing device provides a seal against the gap when the bucket assemply is subjected to a centrifugal force.

  6. Radiography Device

    Broader source: Energy.gov [DOE]

    This scenario provides the planning instructions, guidance, and evaluation forms necessary to conduct an exercise involving a highway shipment of a radiography device (Class 7 - Radioactive). This...

  7. Lighting system with heat distribution face plate

    DOE Patents [OSTI]

    Arik, Mehmet; Weaver, Stanton Earl; Stecher, Thomas Elliot; Kuenzler, Glenn Howard; Wolfe, Jr., Charles Franklin; Li, Ri

    2013-09-10

    Lighting systems having a light source and a thermal management system are provided. The thermal management system includes synthetic jet devices, a heat sink and a heat distribution face plate. The synthetic jet devices are arranged in parallel to one and other and are configured to actively cool the lighting system. The heat distribution face plate is configured to radially transfer heat from the light source into the ambient air.

  8. Micro and nanostructured surfaces for enhanced phase change heat transfer

    E-Print Network [OSTI]

    Chu, Kuang-Han, Ph. D. Massachusetts Institute of Technology

    2013-01-01

    Two-phase microchannel heat sinks are of significant interest for thermal management applications, where the latent heat of vaporization offers an efficient method to dissipate large heat fluxes in a compact device. However, ...

  9. Energy Efficient Design of a Waste Heat Rejection System 

    E-Print Network [OSTI]

    Mehta, P.

    2000-01-01

    , and oil preheaters. The heating requirements for these heat sinks are generally met by burning fossil fuels or even by using electric heaters while available waste heat is rejected to the surrounding environment using devices such as cooling towers...

  10. Electrochromic devices

    DOE Patents [OSTI]

    Allemand, Pierre M. (Tucson, AZ); Grimes, Randall F. (Ann Arbor, MI); Ingle, Andrew R. (Tucson, AZ); Cronin, John P. (Tucson, AZ); Kennedy, Steve R. (Tuscon, AZ); Agrawal, Anoop (Tucson, AZ); Boulton, Jonathan M. (Tucson, AZ)

    2001-01-01

    An electrochromic device is disclosed having a selective ion transport layer which separates an electrochemically active material from an electrolyte containing a redox active material. The devices are particularly useful as large area architectural and automotive glazings due to there reduced back reaction.

  11. Thermal analysis of an indirectly heat pulsed non-volatile phase change material microwave switch

    SciTech Connect (OSTI)

    Young, Robert M., E-mail: rm.young@ngc.com; El-Hinnawy, Nabil; Borodulin, Pavel; Wagner, Brian P.; King, Matthew R.; Jones, Evan B.; Howell, Robert S.; Lee, Michael J. [Northrop Grumman Corp., Electronic Systems, P.O. Box 1521, Baltimore, Maryland 21203 (United States)

    2014-08-07

    We show the finite element simulation of the melt/quench process in a phase change material (GeTe, germanium telluride) used for a radio frequency switch. The device is thermally activated by an independent NiCrSi (nickel chrome silicon) thin film heating element beneath a dielectric separating it electrically from the phase change layer. A comparison is made between the predicted and experimental minimum power to amorphize (MPA) for various thermal pulse powers and pulse time lengths. By including both the specific heat and latent heat of fusion for GeTe, we find that the MPA and the minimum power to crystallize follow the form of a hyperbola on the power time effect plot. We also find that the simulated time at which the entire center GeTe layer achieves melting accurately matches the MPA curve for pulse durations ranging from 75–1500?ns and pulse powers from 1.6–4?W.

  12. Geothermal Heat Pump Grant Program

    Broader source: Energy.gov [DOE]

    The definition of geothermal heat pump property does not include swimming pools, hot tubs, or any other energy storage device that has a primary function other than storage. In addition, systems...

  13. Sodium heat engine electrical feedthrough

    DOE Patents [OSTI]

    Weber, N.

    1985-03-19

    A thermoelectric generator device which converts heat energy to electrical energy is disclosed. An alkali metal is used with a solid electrolyte and a hermetically sealed feedthrough structure. 4 figs.

  14. Temperature differential detection device

    DOE Patents [OSTI]

    Girling, Peter M. (Allentown, PA)

    1986-01-01

    A temperature differential detection device for detecting the temperature differential between predetermined portions of a container wall is disclosed as comprising a Wheatstone bridge circuit for detecting resistance imbalance with a first circuit branch having a first elongated wire element mounted in thermal contact with a predetermined portion of the container wall, a second circuit branch having a second elongated wire element mounted in thermal contact with a second predetermined portion of a container wall with the wire elements having a predetermined temperature-resistant coefficient, an indicator interconnected between the first and second branches remote from the container wall for detecting and indicating resistance imbalance between the first and second wire elements, and connector leads for electrically connecting the wire elements to the remote indicator in order to maintain the respective resistance value relationship between the first and second wire elements. The indicator is calibrated to indicate the detected resistance imbalance in terms of a temperature differential between the first and second wall portions.

  15. Lih thermal energy storage device

    DOE Patents [OSTI]

    Olszewski, Mitchell (Knoxville, TN); Morris, David G. (Knoxville, TN)

    1994-01-01

    A thermal energy storage device for use in a pulsed power supply to store waste heat produced in a high-power burst operation utilizes lithium hydride as the phase change thermal energy storage material. The device includes an outer container encapsulating the lithium hydride and an inner container supporting a hydrogen sorbing sponge material such as activated carbon. The inner container is in communication with the interior of the outer container to receive hydrogen dissociated from the lithium hydride at elevated temperatures.

  16. An Introduction to Waste Heat Recovery 

    E-Print Network [OSTI]

    Darby, D. F.

    1985-01-01

    The recovery of waste heat energy is one element of a complete energy conservation plan. In addition to contributing to the goal of saving energy, utilization of waste heat is also an important source of cost savings. This presentation details...

  17. Solid state heat engine

    SciTech Connect (OSTI)

    Cory, J.S.

    1981-12-15

    A compact solid state turbine heat engine can be devised by pairing the nitinol elements. Each element is characterized by being in thermal contact with at least one hot water and one cold water bath and mechanically coupled to at least one driven pulley and driver pulley. A second nitinol element is similarly configured with a driver pulley, driven pulley, hot and cold water bath. The driver pulley associated with the first nitinol element is mechanically coupled to the driven pulley of the second nitinol element. Similarly, the driver pulley of the second nitinol element is mechanically coupled to the driven pulley of the first nitinol element. The paired nitinol elements form a compound solid state turbine engine wherein each nitinol element lies in a single plane and wherein the engine may be combined with a plurality of such pairs for increased power output. The nitinol elements may also incorporate a snubber to limit the strain on the element and the engine may further incorporate a variable radius pulley to increase the efficiency of mechanical conversion.

  18. Fast reactor power plant design having heat pipe heat exchanger

    DOE Patents [OSTI]

    Huebotter, P.R.; McLennan, G.A.

    1984-08-30

    The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.

  19. Fast reactor power plant design having heat pipe heat exchanger

    DOE Patents [OSTI]

    Huebotter, Paul R. (Western Springs, IL); McLennan, George A. (Downers Grove, IL)

    1985-01-01

    The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.

  20. Photoconductive circuit element pulse generator

    DOE Patents [OSTI]

    Rauscher, Christen (Alexandria, VA)

    1989-01-01

    A pulse generator for characterizing semiconductor devices at millimeter wavelength frequencies where a photoconductive circuit element (PCE) is biased by a direct current voltage source and produces short electrical pulses when excited into conductance by short laser light pulses. The electrical pulses are electronically conditioned to improve the frequency related amplitude characteristics of the pulses which thereafter propagate along a transmission line to a device under test.

  1. Thermoelectric device characterization and solar thermoelectric system modeling

    E-Print Network [OSTI]

    Muto, Andrew (Andrew Jerome)

    2011-01-01

    Recent years have witnessed a trend of rising electricity costs and an emphasis on energy efficiency. Thermoelectric (TE) devices can be used either as heat pumps for localized environmental control or heat engines to ...

  2. Uncooled thin film infrared imaging device with aerogel thermal isolation: Deposition and planarization techniques

    SciTech Connect (OSTI)

    Ruffner, J.A.; Clem, P.G.; Tuttle, B.A.; Brinker, C.J. [Sandia National Labs., Albuquerque, NM (United States); Sriram, C.S. [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering; Bullington, J.A. [AMMPEC, Inc., Albuquerque, NM (United States)

    1998-04-01

    The authors have successfully integrated a thermally insulating silica aerogel thin film into a new uncooled monolithic thin film infrared (IR) imaging device. Compared to other technologies (bulk ceramic and microbridge), use of an aerogel layer provides superior thermal isolation of the pyroelectric imaging element from the relatively massive heat sinking integrated circuit. This results in significantly higher thermal and temporal resolutions. They have calculated noise equivalent temperature differences of 0.04--0.10 C from a variety of Pb{sub x}Zr{sub y}Ti{sub 1{minus}y}O{sub 3} (PZT) and Pb{sub x}La{sub 1{minus}x}Zr{sub y}Ti{sub 1{minus}y}O{sub 3} (PLZT) pyroelectric imaging elements in monolithic structures. In addition, use of aerogels results in an easier, less expensive fabrication process and a more robust device. Fabrication of these monolithic devices entails sol-gel deposition of the aerogel, sputter deposition of the electrodes, and solution chemistry deposition of the pyroelectric imaging elements. Uniform pyroelectric response is achieved across the device by use of appropriate planarization techniques. These deposition and planarization techniques are described. Characterization of the individual layers and monolithic structure using scanning electron microscopy, atomic force microscopy and Byer-Roundy techniques also is discussed.

  3. Harford County- Property Tax Credit for Solar and Geothermal Devices

    Broader source: Energy.gov [DOE]

    Harford County offers a tax credit from real property taxes imposed on residential buildings, nonresidential buildings, or other structures that use solar or geothermal devices for heating, cooling...

  4. High-Performance Thermoelectric Devices Based on Abundant Silicide...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development of high-performance thermoelectric devices for vehicle waste heat recovery will include fundamental research to use abundant promising low-cost thermoelectric...

  5. Stacked switchable element and diode combination

    DOE Patents [OSTI]

    Branz, Howard M.; Wang, Qi

    2006-06-27

    A device (10) comprises a semiconductor diode (12) and a switchable element (14) positioned in stacked adjacent relationship so that the semiconductor diode (12) and the switchable element (14) are electrically connected in series with one another. The switchable element (14) is switchable from a low-conductance state to a high-conductance state in response to the application of a forming voltage to the switchable element (14).

  6. Stacked Switchable Element and Diode Combination

    DOE Patents [OSTI]

    Branz, H. M.; Wang, Q.

    2006-06-27

    A device (10) comprises a semiconductor diode (12) and a switchable element (14) positioned in stacked adjacent relationship so that the semiconductor diode (12) and the switchable element (14) are electrically connected in series with one another. The switchable element (14) is switchable from a low-conductance state to a high-conductance state in response to the application of a forming voltage to the switchable element (14).

  7. (OWC's) ' (heaving devices) (heaving devices)

    E-Print Network [OSTI]

    Psarrakos, Panayiotis

    Testing», EU GD Energy, 2002 ­ 2003). ­ Coordination action on Ocean Energy", EU GD Research, 2004 ­ 2007 ` ' : ­ ­ : ­ ­ #12;: : : · : · : . (OWC's) ' (heaving devices University · ­ "Offshore Wave Energy Converters (OWEC1)", EU, GD Research, OULE II, 19931995. ­ LABBUOY

  8. Polymer-based electrocaloric cooling devices

    DOE Patents [OSTI]

    Zhang, Qiming; Lu, Sheng-Guo; Li, Xinyu; Gorny, Lee; Cheng, Jiping; Neese, Bret P; Chu, Baojin

    2014-10-28

    Cooling devices (i.e., refrigerators or heat pumps) based on polymers which exhibit a temperature change upon application or removal of an electrical field or voltage, (e.g., fluoropolymers or crosslinked fluoropolymers that exhibit electrocaloric effect).

  9. Devices, systems, and methods for harvesting energy and methods for forming such devices

    DOE Patents [OSTI]

    Kotter, Dale K.; Novack, Steven D.

    2012-12-25

    Energy harvesting devices include a substrate coupled with a photovoltaic material and a plurality of resonance elements associated with the substrate. The resonance elements are configured to collect energy in at least visible and infrared light spectra. Each resonance element is capacitively coupled with the photovoltaic material, and may be configured to resonate at a bandgap energy of the photovoltaic material. Systems include a photovoltaic material coupled with a feedpoint of a resonance element. Methods for harvesting energy include exposing a resonance element having a resonant electromagnetic radiation having a frequency between approximately 20 THz and approximately 1,000 THz, absorbing at least a portion of the electromagnetic radiation with the resonance element, and resonating the resonance element at a bandgap energy of an underlying photovoltaic material. Methods for forming an energy harvesting device include forming resonance elements on a substrate and capacitively coupling the resonance elements with a photovoltaic material.

  10. Heat Pipe Performance Enhancement with Binary Mixture Fluids that Exhibit Strong Concentration Marangoni Effects

    E-Print Network [OSTI]

    Armijo, Kenneth Miguel

    2011-01-01

    pipe energy generation devices. Thermo-electric evaluationpipe energy generation devices. Thermo-electric evaluationenergy for heating applications or thermal electric power generation [

  11. A TWO-PHASE HEAT SPREADER FOR COOLING HIGH HEAT FLUX SOURCES Mitsuo Hashimoto, Hiroto Kasai, Yuichi Ishida, Hiroyuki Ryoson, a

    E-Print Network [OSTI]

    -power lasers, high-intensity light-emitting diodes (LEDs), and semiconductor power devices. The heat spreader

  12. Microchannel heat sink assembly

    DOE Patents [OSTI]

    Bonde, W.L.; Contolini, R.J.

    1992-03-24

    The present invention provides a microchannel heat sink with a thermal range from cryogenic temperatures to several hundred degrees centigrade. The heat sink can be used with a variety of fluids, such as cryogenic or corrosive fluids, and can be operated at a high pressure. The heat sink comprises a microchannel layer preferably formed of silicon, and a manifold layer preferably formed of glass. The manifold layer comprises an inlet groove and outlet groove which define an inlet manifold and an outlet manifold. The inlet manifold delivers coolant to the inlet section of the microchannels, and the outlet manifold receives coolant from the outlet section of the microchannels. In one embodiment, the manifold layer comprises an inlet hole extending through the manifold layer to the inlet manifold, and an outlet hole extending through the manifold layer to the outlet manifold. Coolant is supplied to the heat sink through a conduit assembly connected to the heat sink. A resilient seal, such as a gasket or an O-ring, is disposed between the conduit and the hole in the heat sink in order to provide a watertight seal. In other embodiments, the conduit assembly may comprise a metal tube which is connected to the heat sink by a soft solder. In still other embodiments, the heat sink may comprise inlet and outlet nipples. The present invention has application in supercomputers, integrated circuits and other electronic devices, and is suitable for cooling materials to superconducting temperatures. 13 figs.

  13. Microchannel heat sink assembly

    DOE Patents [OSTI]

    Bonde, Wayne L. (Livermore, CA); Contolini, Robert J. (Pleasanton, CA)

    1992-01-01

    The present invention provides a microchannel heat sink with a thermal range from cryogenic temperatures to several hundred degrees centigrade. The heat sink can be used with a variety of fluids, such as cryogenic or corrosive fluids, and can be operated at a high pressure. The heat sink comprises a microchannel layer preferably formed of silicon, and a manifold layer preferably formed of glass. The manifold layer comprises an inlet groove and outlet groove which define an inlet manifold and an outlet manifold. The inlet manifold delivers coolant to the inlet section of the microchannels, and the outlet manifold receives coolant from the outlet section of the microchannels. In one embodiment, the manifold layer comprises an inlet hole extending through the manifold layer to the inlet manifold, and an outlet hole extending through the manifold layer to the outlet manifold. Coolant is supplied to the heat sink through a conduit assembly connected to the heat sink. A resilient seal, such as a gasket or an O-ring, is disposed between the conduit and the hole in the heat sink in order to provide a watetight seal. In other embodiments, the conduit assembly may comprise a metal tube which is connected to the heat sink by a soft solder. In still other embodiments, the heat sink may comprise inlet and outlet nipples. The present invention has application in supercomputers, integrated circuits and other electronic devices, and is suitable for cooling materials to superconducting temperatures.

  14. Photoconductive circuit element reflectometer

    DOE Patents [OSTI]

    Rauscher, Christen (Alexandria, VA)

    1990-01-01

    A photoconductive reflectometer for characterizing semiconductor devices at millimeter wavelength frequencies where a first photoconductive circuit element (PCE) is biased by a direct current voltage source and produces short electrical pulses when excited into conductance by short first laser light pulses. The electrical pulses are electronically conditioned to improve the frequency related amplitude characteristics of the pulses which thereafter propagate along a transmission line to a device under test. Second PCEs are connected along the transmission line to sample the signals on the transmission line when excited into conductance by short second laser light pulses, spaced apart in time a variable period from the first laser light pulses. Electronic filters connected to each of the second PCEs act as low-pass filters and remove parasitic interference from the sampled signals and output the sampled signals in the form of slowed-motion images of the signals on the transmission line.

  15. Electrochemical device

    DOE Patents [OSTI]

    Grimes, Patrick G. (Westfield, NJ); Einstein, Harry (Springfield, NJ); Bellows, Richard J. (Westfield, NJ)

    1988-01-12

    A tunnel protected electrochemical device features channels fluidically communicating between manifold, tunnels and cells. The channels are designed to provide the most efficient use of auxiliary power. The channels have a greater hydraulic pressure drop and electrical resistance than the manifold. This will provide a design with the optimum auxiliary energy requirements.

  16. Detection device

    DOE Patents [OSTI]

    Smith, Jay E. (Pittsburgh, PA)

    1984-01-01

    The present invention is directed to a detection device comprising: (1) an entrance chamber, (2) a central chamber, and (3) an exit chamber. The central chamber includes an ionizing gas, anode, and means for connecting the anode with an external power supply and pulse counter.

  17. Electrical assembly having heat sink protrusions

    DOE Patents [OSTI]

    Rinehart, Lawrence E. (Lake Oswego, OR); Romero, Guillermo L. (Phoenix, AZ)

    2009-04-21

    An electrical assembly, comprising a heat producing semiconductor device supported on a first major surface of a direct bond metal substrate that has a set of heat sink protrusions supported by its second major surface. In one preferred embodiment the heat sink protrusions are made of the same metal as is used in the direct bond copper.

  18. Direct mounted photovoltaic device with improved adhesion and method thereof

    DOE Patents [OSTI]

    Boven, Michelle L; Keenihan, James R; Lickly, Stan; Brown, Jr., Claude; Cleereman, Robert J; Plum, Timothy C

    2014-12-23

    The present invention is premised upon a photovoltaic device suitable for directly mounting on a structure. The device includes an active portion including a photovoltaic cell assembly having a top surface portion that allows transmission of light energy to a photoactive portion of the photovoltaic device for conversion into electrical energy and a bottom surface having a bottom bonding zone; and an inactive portion immediately adjacent to and connected to the active portion, the inactive portion having a region for receiving a fastener to connect the device to the structure and having on a top surface, a top bonding zone; wherein one of the top and bottom bonding zones comprises a first bonding element and the other comprises a second bonding element, the second bonding element designed to interact with the first bonding element on a vertically overlapped adjacent photovoltaic device to bond the device to such adjacent device or to the structure.

  19. Thermoplastic tape compaction device

    DOE Patents [OSTI]

    Campbell, V.W.

    1994-12-27

    A device is disclosed for bonding a thermoplastic tape to a substrate to form a fully consolidated composite. This device has an endless chain associated with a frame so as to rotate in a plane that is perpendicular to a long dimension of the tape, the chain having pivotally connected chain links with each of the links carrying a flexible foot member that extends outwardly from the chain. A selected number of the foot members contact the tape, after the heating thereof, to cause the heated tape to bond to the substrate. The foot members are each a thin band of metal oriented transversely to the chain, with a flexibility and width and length to contact the tape so as to cause the tape to conform to the substrate to achieve consolidation of the tape and the substrate. A biased leaf-type spring within the frame bears against an inner surface of the chain to provide the compliant pressure necessary to bond the tape to the substrate. The chain is supported by sprockets on shafts rotatably supported in the frame and, in one embodiment, one of the shafts has a drive unit to produce rotation such that the foot members in contact with the tape move at the same speed as the tape. Cooling jets are positioned along the frame to cool the resultant consolidated composite. 5 figures.

  20. Thermoplastic tape compaction device

    DOE Patents [OSTI]

    Campbell, Vincent W. (Oak Ridge, TN)

    1994-01-01

    A device for bonding a thermoplastic tape to a substrate to form a fully consolidated composite. This device has an endless chain associated with a frame so as to rotate in a plane that is perpendicular to a long dimension of the tape, the chain having pivotally connected chain links with each of the links carrying a flexible foot member that extends outwardly from the chain. A selected number of the foot members contact the tape, after the heating thereof, to cause the heated tape to bond to the substrate. The foot members are each a thin band of metal oriented transversely to the chain, with a flexibility and width and length to contact the tape so as to cause the tape to conform to the substrate to achieve consolidation of the tape and the substrate. A biased leaf-type spring within the frame bears against an inner surface of the chain to provide the compliant pressure necessary to bond the tape to the substrate. The chain is supported by sprockets on shafts rotatably supported in the frame and, in one embodiment, one of the shafts has a drive unit to produce rotation such that the foot members in contact with the tape move at the same speed as the tape. Cooling jets are positioned along the frame to cool the resultant consolidated composite.

  1. Laser device

    DOE Patents [OSTI]

    Scott, Jill R. (Idaho Falls, ID); Tremblay, Paul L. (Idaho Falls, ID)

    2008-08-19

    A laser device includes a virtual source configured to aim laser energy that originates from a true source. The virtual source has a vertical rotational axis during vertical motion of the virtual source and the vertical axis passes through an exit point from which the laser energy emanates independent of virtual source position. The emanating laser energy is collinear with an orientation line. The laser device includes a virtual source manipulation mechanism that positions the virtual source. The manipulation mechanism has a center of lateral pivot approximately coincident with a lateral index and a center of vertical pivot approximately coincident with a vertical index. The vertical index and lateral index intersect at an index origin. The virtual source and manipulation mechanism auto align the orientation line through the index origin during virtual source motion.

  2. Cooling devices and methods for use with electric submersible pumps

    DOE Patents [OSTI]

    Jankowski, Todd A; Hill, Dallas D

    2014-12-02

    Cooling devices for use with electric submersible pump motors include a refrigerator attached to the end of the electric submersible pump motor with the evaporator heat exchanger accepting all or a portion of the heat load from the motor. The cooling device can be a self-contained bolt-on unit, so that minimal design changes to existing motors are required.

  3. Split-tapered joint clamping device

    DOE Patents [OSTI]

    Olsen, Max J. (North Huntingdon, PA); Schwartz, Jr., John F. (Pittsburgh, PA)

    1988-01-01

    This invention relates to a clamping device for removably attaching a tool element to a bracket element wherein a bracket element is disposed in a groove in the tool and a clamping member is disposed in said groove and in engagement with a clamping face of the bracket and a wall of the groove and with the clamping member having pivot means engaging the bracket and about which the clamping member rotates.

  4. Hybrid quantum devices and quantum engineering

    E-Print Network [OSTI]

    Margareta Wallquist; Klemens Hammerer; Peter Rabl; Mikhail Lukin; Peter Zoller

    2009-11-19

    We discuss prospects of building hybrid quantum devices involving elements of atomic and molecular physics, quantum optics and solid state elements with the attempt to combine advantages of the respective systems in compatible experimental setups. In particular, we summarize our recent work on quantum hybrid devices and briefly discuss recent ideas for quantum networks. These include interfacing of molecular quantum memory with circuit QED, and using nanomechanical elements strongly coupled to qubits represented by electronic spins, as well as single atoms or atomic ensembles.

  5. OLED devices

    DOE Patents [OSTI]

    Sapochak, Linda Susan [Arlington, VA; Burrows, Paul Edward [Kennewick, WA; Bimalchandra, Asanga [Richland, WA

    2011-02-22

    An OLED device having an emission layer formed of an ambipolar phosphine oxide host material and a dopant, a hole transport layer in electrical communication with an anode, an electron transport layer in communication with a cathode, wherein the HOMO energy of the hole transport layer is substantially the same as the HOMO energy of the ambipolar host in the emission layer, and the LUMO energy of the electron transport layer is substantially the same as the LUMO energy of the ambipolar host in the emission layer.

  6. Diversionary device

    DOE Patents [OSTI]

    Grubelich, Mark C. (Albuquerque, NM)

    2001-01-01

    A diversionary device has a housing having at least one opening and containing a non-explosive propellant and a quantity of fine powder packed within the housing, with the powder being located between the propellant and the opening. When the propellant is activated, it has sufficient energy to propel the powder through the opening to produce a cloud of powder outside the housing. An igniter is also provided for igniting the cloud of powder to create a diversionary flash and bang, but at a low enough pressure to avoid injuring nearby people.

  7. Heat-driven acoustic cooling engine having no moving parts

    DOE Patents [OSTI]

    Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Santa Fe, NM); Migliori, Albert (Santa Fe, NM); Hofler, Thomas J. (Los Alamos, NM)

    1989-01-01

    A heat-driven acoustic cooling engine having no moving parts receives heat from a heat source. The acoustic cooling engine comprises an elongated resonant pressure vessel having first and second ends. A compressible fluid having a substantial thermal expansion coefficient and capable of supporting an acoustic standing wave is contained in the resonant pressure vessel. The heat source supplies heat to the first end of the vessel. A first heat exchanger in the vessel is spaced-apart from the first end and receives heat from the first end. A first thermodynamic element is adjacent to the first heat exchanger and converts some of the heat transmitted by the first heat exchanger into acoustic power. A second thermodynamic element has a first end located spaced-apart from the first thermodynamic element and a second end farther away from the first thermodynamic element than is its first end. The first end of the second thermodynamic element heats while its second end cools as a consequence of the acoustic power. A second heat exchanger is adjacent to and between the first and second thermodynamic elements. A heat sink outside of the vessel is thermally coupled to and receives heat from the second heat exchanger. The resonant pressure vessel can include a housing less than one-fourth wavelength in length coupled to a reservoir. The housing can include a reduced diameter portion communicating with the reservoir.

  8. Inductively heated particulate matter filter regeneration control system

    DOE Patents [OSTI]

    Gonze, Eugene V; Paratore Jr., Michael J; Kirby, Kevin W; Phelps, Amanda; Gregoire, Daniel J

    2012-10-23

    A system includes a particulate matter (PM) filter with an upstream end for receiving exhaust gas, a downstream end and zones. The system also includes a heating element. A control module selectively activates the heating element to inductively heat one of the zones.

  9. How Powerful Are Elements? An Evaluation of the Adequacy of Element Thory in Phonological Representations 

    E-Print Network [OSTI]

    Chen, Yun-Ling

    2010-08-31

    In this dissertation, I resume the discussion of privative features as a notational device in segmental representation. I argue from both theoretical and empirical perspectives that element theory is a better theory of ...

  10. Inertial impaction air sampling device

    DOE Patents [OSTI]

    Dewhurst, K.H.

    1990-05-22

    An inertial impactor is designed which is to be used in an air sampling device for collection of respirable size particles in ambient air. The device may include a graphite furnace as the impaction substrate in a small-size, portable, direct analysis structure that gives immediate results and is totally self-contained allowing for remote and/or personal sampling. The graphite furnace collects suspended particles transported through the housing by means of the air flow system, and these particles may be analyzed for elements, quantitatively and qualitatively, by atomic absorption spectrophotometry. 3 figs.

  11. Materials Science & Metallurgy Master of Philosophy, Materials Modelling, Course MP7, Finite Element Analysis, H. K. D. H. Bhadeshia

    E-Print Network [OSTI]

    Cambridge, University of

    Element Analysis, H. K. D. H. Bhadeshia Lecture 3: Finite Elements Steady­state heat flow through A and length L. The finite element representation consists of two nodes i and j. Heat flow in one. The temperatures T1 and T2 are maintained constant. The finite element representation consists of a single element

  12. Intrinsically irreversible heat engine

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-12-25

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat. 11 figs.

  13. Intrinsically irreversible heat engine

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-01-01

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

  14. Intrinsically irreversible heat engine

    DOE Patents [OSTI]

    Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

    1984-01-01

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. the second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

  15. Programmatic Elements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-07-11

    The Guide provides acceptable methods of meeting the requirements of DOE O 151.1C for programmatic elements that sustain the emergency management program and maintain the readiness of the program to respond to an emergency. Supersedes DOE G 151.1-1, Volume 5-1, DOE G 151.1-1, Volume 5-2, DOE G 151.1-1, Volume 5-3, DOE G 151.1-1, Volume 5-4, DOE G 151.1-1, Volume 7-1, and DOE G 151.1-1, Volume 7-3.

  16. Multiported storage devices 

    E-Print Network [OSTI]

    Grande, Marcus Bryan

    2000-01-01

    and intelligence than the traditional block storage device. A multiported storage device allows application-specific code that we call filter applets to be downloaded to the device while still maintaining the simple block-level interface. The device contains...

  17. Opportunistic Sensing for Smart Heating Control in Private Households

    E-Print Network [OSTI]

    devices. Since heating represents the major source of energy consumption in do- mestic environments in the home, our solution may significantly lower the adoption barrier of smart heating solutions. 1.1 Background Traditional heating control systems use preset time intervals to avoid heating the home when its

  18. Optoelectronic device

    DOE Patents [OSTI]

    Bonekamp, Jeffrey E.; Boven, Michelle L.; Gaston, Ryan S.

    2014-09-09

    The invention is an optoelectronic device comprising an active portion which converts light to electricity or converts electricity to light, the active portion having a front side for the transmittal of the light and a back side opposite from the front side, at least two electrical leads to the active portion to convey electricity to or from the active portion, an enclosure surrounding the active portion and through which the at least two electrical leads pass wherein the hermetically sealed enclosure comprises at the front side of the active portion a barrier material which allows for transmittal of light, one or more getter materials disposed so as to not impede the transmission of light to or from the active portion, and a contiguous gap pathway to the getter material which pathway is disposed between the active portion and the barrier material.

  19. Induced natural convection thermal cycling device

    DOE Patents [OSTI]

    Heung, Leung Kit (Aiken, SC)

    2002-08-13

    A device for separating gases, especially isotopes, by thermal cycling of a separation column using a pressure vessel mounted vertically and having baffled sources for cold and heat. Coils at the top are cooled with a fluid such as liquid nitrogen. Coils at the bottom are either electrical resistance coils or a tubular heat exchange. The sources are shrouded with an insulated "top hat" and simultaneously opened and closed at the outlets to cool or heat the separation column. Alternatively, the sources for cold and heat are mounted separately outside the vessel and an external loop is provided for each circuit.

  20. Development of a compensation chamber for use in a multiple condenser loop heat pipe

    E-Print Network [OSTI]

    Roche, Nicholas Albert

    2013-01-01

    The performance of many electronic devices is presently limited by heat dissipation rates. One potential solution lies in high-performance air-cooled heat exchangers like PHUMP, the multiple condenser loop heat pipe presented ...

  1. Fluid-cooled heat sink with improved fin areas and efficiencies...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    VARIOUS DEVICES Abstract: The disclosure provides a fluid-cooled heat sink having a heat transfer base and a plurality of heat transfer fins in thermal communication with the...

  2. Enhanced two phase flow in heat transfer systems

    DOE Patents [OSTI]

    Tegrotenhuis, Ward E; Humble, Paul H; Lavender, Curt A; Caldwell, Dustin D

    2013-12-03

    A family of structures and designs for use in devices such as heat exchangers so as to allow for enhanced performance in heat exchangers smaller and lighter weight than other existing devices. These structures provide flow paths for liquid and vapor and are generally open. In some embodiments of the invention, these structures can also provide secondary heat transfer as well. In an evaporate heat exchanger, the inclusion of these structures and devices enhance the heat transfer coefficient of the evaporation phase change process with comparable or lower pressure drop.

  3. Integrated device architectures for electrochromic devices

    DOE Patents [OSTI]

    Frey, Jonathan Mack; Berland, Brian Spencer

    2015-04-21

    This disclosure describes systems and methods for creating monolithically integrated electrochromic devices which may be a flexible electrochromic device. Monolithic integration of thin film electrochromic devices may involve the electrical interconnection of multiple individual electrochromic devices through the creation of specific structures such as conductive pathway or insulating isolation trenches.

  4. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

  5. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

  6. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

  7. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

  8. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 636 580 46 1 Q 114.0...

  9. Susanville District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature...

  10. Tunable surface plasmon devices

    DOE Patents [OSTI]

    Shaner, Eric A. (Rio Rancho, NM); Wasserman, Daniel (Lowell, MA)

    2011-08-30

    A tunable extraordinary optical transmission (EOT) device wherein the tunability derives from controlled variation of the dielectric constant of a semiconducting material (semiconductor) in evanescent-field contact with a metallic array of sub-wavelength apertures. The surface plasmon resonance wavelength can be changed by changing the dielectric constant of the dielectric material. In embodiments of this invention, the dielectric material is a semiconducting material. The dielectric constant of the semiconducting material in the metal/semiconductor interfacial region is controllably adjusted by adjusting one or more of the semiconductor plasma frequency, the concentration and effective mass of free carriers, and the background high-frequency dielectric constant in the interfacial region. Thermal heating and/or voltage-gated carrier-concentration changes may be used to variably adjust the value of the semiconductor dielectric constant.

  11. Encapsulant materials and associated devices

    DOE Patents [OSTI]

    Kempe, Michael D (Littleton, CO); Thapa, Prem (Lima, OH)

    2011-03-08

    Compositions suitable for use as encapsulants are described. The inventive compositions include a high molecular weight polymeric material, a curing agent, an inorganic compound, and a coupling agent. Optional elements include adhesion promoting agents, colorants, antioxidants, and UV absorbers. The compositions have desirable diffusivity properties, making them suitable for use in devices in which a substantial blocking of moisture ingress is desired, such as photovoltaic (PV) modules.

  12. Encapsulant materials and associated devices

    DOE Patents [OSTI]

    Kempe, Michael D (Littleton, CO); Thapa, Prem (Lima, OH)

    2012-05-22

    Compositions suitable for use as encapsulants are described. The inventive compositions include a high molecular weight polymeric material, a curing agent, an inorganic compound, and a coupling agent. Optional elements include adhesion promoting agents, colorants, antioxidants, and UV absorbers. The compositions have desirable diffusivity properties, making them suitable for use in devices in which a substantial blocking of moisture ingress is desired, such as photovoltaic (PV) modules.

  13. Response Elements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-07-11

    The Guide provides acceptable methods for meeting the requirement of DOE O 151.1C for response elements that respond or contribute to response as needed in an emergency. Supersedes DOE G 151.1-1, Volume 3-1, DOE G 151.1-1, Volume 3-2, DOE G 151.1-1, Volume 3-3, DOE G 151.1-1, Volume 3-4, DOE G 151.1-1, Volume 4-1, DOE G 151.1-1, Volume 4-2, DOE G 151.1-1, Volume 4-3, DOE G 151.1-1, Volume 4-4, DOE G 151.1-1, Volume 4-5, and DOE G 151.1-1, Volume 4-6.

  14. Process for synthesizing compounds from elemental powders and product

    DOE Patents [OSTI]

    Rabin, Barry H. (Idaho Falls, ID); Wright, Richard N. (Idaho Falls, ID)

    1993-01-01

    A process for synthesizing intermetallic compounds from elemental powders. The elemental powders are initially combined in a ratio which approximates the stoichiometric composition of the intermetallic compound. The mixed powders are then formed into a compact which is heat treated at a controlled rate of heating such that an exothermic reaction between the elements is initiated. The heat treatment may be performed under controlled conditions ranging from a vacuum (pressureless sintering) to compression (hot pressing) to produce a desired densification of the intermetallic compound. In a preferred form of the invention, elemental powders of Fe and Al are combined to form aluminide compounds of Fe.sub.3 Al and FeAl.

  15. Laser device

    DOE Patents [OSTI]

    Scott, Jill R. (Idaho Falls, ID); Tremblay, Paul L. (Idaho Falls, ID)

    2007-07-10

    A laser device includes a target position, an optical component separated a distance J from the target position, and a laser energy source separated a distance H from the optical component, distance H being greater than distance J. A laser source manipulation mechanism exhibits a mechanical resolution of positioning the laser source. The mechanical resolution is less than a spatial resolution of laser energy at the target position as directed through the optical component. A vertical and a lateral index that intersect at an origin can be defined for the optical component. The manipulation mechanism can auto align laser aim through the origin during laser source motion. The laser source manipulation mechanism can include a mechanical index. The mechanical index can include a pivot point for laser source lateral motion and a reference point for laser source vertical motion. The target position can be located within an adverse environment including at least one of a high magnetic field, a vacuum system, a high pressure system, and a hazardous zone. The laser source and an electro-mechanical part of the manipulation mechanism can be located outside the adverse environment. The manipulation mechanism can include a Peaucellier linkage.

  16. Laser device

    DOE Patents [OSTI]

    Scott, Jill R.; Tremblay, Paul L.

    2004-11-23

    A laser device includes a target position, an optical component separated a distance J from the target position, and a laser energy source separated a distance H from the optical component, distance H being greater than distance J. A laser source manipulation mechanism exhibits a mechanical resolution of positioning the laser source. The mechanical resolution is less than a spatial resolution of laser energy at the target position as directed through the optical component. A vertical and a lateral index that intersect at an origin can be defined for the optical component. The manipulation mechanism can auto align laser aim through the origin during laser source motion. The laser source manipulation mechanism can include a mechanical index. The mechanical index can include a pivot point for laser source lateral motion and a reference point for laser source vertical motion. The target position can be located within an adverse environment including at least one of a high magnetic field, a vacuum system, a high pressure system, and a hazardous zone. The laser source and an electro-mechanical part of the manipulation mechanism can be located outside the adverse environment. The manipulation mechanism can include a Peaucellier linkage.

  17. Comments on the report "Indications of anomalous heat energy production in a reactor device containing hydrogen loaded nickel powder" [arXiv:1305.3913] by G.Levi, E.Foschi, T.Hartman, B.Höistad, R.Pettersson, L.Tegnér, H.Essén

    E-Print Network [OSTI]

    Göran Ericsson; Stephan Pomp

    2013-09-17

    In a recent report titled "Indications of anomalous heat energy production in a reactor device containing hydrogen loaded nickel powder" and published on arXiv, G. Levi and co-workers put forth several claims concerning the operations and performance of the so-called E-Cat of inventor Andrea Rossi. We note first of all that the circumstances and people involved in the test make it far from being an independent one. We examine the claims put forth by the authors and note that in many cases they are not supported by the facts given in the report. We present results from thermal calculations showing that alternative explanations are possible were the authors seem to jump to conclusions fitting pre-conceived ideas. In general we find that much attention is drawn to trivialities, while important pieces of information and investigation are lacking and seem not to have been conducted or considered. We also note that the proposed claims would require new physics in not only one but several areas. Besides a cold-fusion like process without production of any radiation also extreme new material properties would be needed to explain what rather seems to be a problem of correct measurement. Therefore, it is clear to us that a truly independent and scientific investigation of the so called E-Cat device, convincingly demonstrating an "anomalous heat energy production" has not been presented in the arXiv report and is thus, to-date, still lacking.

  18. Characteristics, finite element analysis, test description, and preliminary test results of the STM4-120 kinematic Stirling engine

    SciTech Connect (OSTI)

    Linker, K.L.; Rawlinson, K.S.; Smith, G.

    1991-10-01

    The Department of Energy`s Solar Thermal Program has as one of its program elements the development and evaluation of conversion device technologies applicable to dish-electric systems. The primary research and development combines a conversion device (heat engine), solar receiver, and generator mounted at the focus of a parabolic dish concentrator. The Stirling-cycle heat engine was identified as the conversion device for dish-electric with the most potential for meeting the program`s goals for efficiency, reliability, and installed cost. To advance the technology toward commercialization, Sandia National Laboratories has acquired a Stirling Thermal Motors, Inc., kinematic Stirling engine, STM4-120, for evaluation. The engine is being bench-tested at Sandia`s Engine Test Facility and will be combined later with a solar receiver for on-sun evaluation. This report presents the engine characteristics, finite element analyses of critical engine components, test system layout, instrumentation, and preliminary performance results from the bench test.

  19. Data transmission element for downhole drilling components

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David S. (Lehi, UT); Dahlgren, Scott (Provo, UT); Fox, Joe (Spanish Fork, UT); Sneddon, Cameron (Provo, UT); Briscoe, Michael (Lehi, UT)

    2006-01-31

    A robust data transmission element for transmitting information between downhole components, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The data transmission element components include a generally U-shaped annular housing, a generally U-shaped magnetically conductive, electrically insulating element such as ferrite, and an insulated conductor. Features on the magnetically conducting, electrically insulating element and the annular housing create a pocket when assembled. The data transmission element is filled with a polymer to retain the components within the annular housing by filling the pocket with the polymer. The polymer can bond with the annular housing and the insulated conductor but preferably not the magnetically conductive, electrically insulating element. A data transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe.

  20. Device for cooling and humidifying reformate

    DOE Patents [OSTI]

    Zhao, Jian Lian (Belmont, MA); Northrop, William F. (Ann Arbor, MI)

    2008-04-08

    Devices for cooling and humidifying a reformate stream from a reforming reactor as well as related methods, modules and systems includes a heat exchanger and a sprayer. The heat exchanger has an inlet, an outlet, and a conduit between the inlet and the outlet. The heat exchanger is adapted to allow a flow of a first fluid (e.g. water) inside the conduit and to establish a heat exchange relationship between the first fluid and a second fluid (e.g. reformate from a reforming reactor) flowing outside the conduit. The sprayer is coupled to the outlet of the heat exchanger for spraying the first fluid exiting the heat exchanger into the second fluid.

  1. Stacked switchable element and diode combination with a low breakdown switchable element

    DOE Patents [OSTI]

    Wang, Qi (Littleton, CO); Ward, James Scott (Englewood, CO); Hu, Jian (Englewood, CO); Branz, Howard M. (Boulder, CO)

    2012-06-19

    A device (10) comprises a semiconductor diode (12) and a switchable element (14) positioned in stacked adjacent relationship. The semiconductor diode (12) and the switchable element (14) are electrically connected in series with one another. The switchable element (14) is switchable from a low-conductance state to a high-conductance state in response to the application of a low-density forming current and/or a low voltage.

  2. High power radio frequency attenuation device

    DOE Patents [OSTI]

    Kerns, Quentin A. (Bloomingdale, IL); Miller, Harold W. (Winfield, IL)

    1984-01-01

    A resistor device for attenuating radio frequency power includes a radio frequency conductor connected to a series of fins formed of high relative magnetic permeability material. The fins are dimensional to accommodate the skin depth of the current conduction therethrough, as well as an inner heat conducting portion where current does not travel. Thermal connections for air or water cooling are provided for the inner heat conducting portions of each fin. Also disclosed is a resistor device to selectively alternate unwanted radio frequency energy in a resonant cavity.

  3. A superconducting-nanowire 3-terminal electronic device

    E-Print Network [OSTI]

    Adam N. McCaughan; Karl K. Berggren

    2014-03-25

    In existing superconducting electronic systems, Josephson junctions play a central role in processing and transmitting small-amplitude electrical signals. However, Josephson-junction-based devices have a number of limitations including: (1) sensitivity to magnetic fields, (2) limited gain, (3) inability to drive large impedances, and (4) difficulty in controlling the junction critical current (which depends sensitively on sub-Angstrom-scale thickness variation of the tunneling barrier). Here we present a nanowire-based superconducting electronic device, which we call the nanocryotron (nTron), that does not rely on Josephson junctions and can be patterned from a single thin film of superconducting material with conventional electron-beam lithography. The nTron is a 3-terminal, T-shaped planar device with a gain of ~20 that is capable of driving impedances of more than 100 k{\\Omega}, and operates in typical ambient magnetic fields at temperatures of 4.2K. The device uses a localized, Joule-heated hotspot formed in the gate to modulate current flow in a perpendicular superconducting channel. We have characterized the nTron, matched it to a theoretical framework, and applied it both as a digital logic element in a half-adder circuit, and as a digital amplifier for superconducting nanowire single-photon detectors pulses. The nTron has immediate applications in classical and quantum communications, photon sensing and astronomy, and its performance characteristics make it compatible with existing superconducting technologies. Furthermore, because the hotspot effect occurs in all known superconductors, we expect the design to be extensible to other materials, providing a path to digital logic, switching, and amplification in high-temperature superconductors.

  4. Critical heat flux test apparatus

    DOE Patents [OSTI]

    Welsh, Robert E. (West Mifflin, PA); Doman, Marvin J. (McKeesport, PA); Wilson, Edward C. (West Mifflin, PA)

    1992-01-01

    An apparatus for testing, in situ, highly irradiated specimens at high temperature transients is provided. A specimen, which has a thermocouple device attached thereto, is manipulated into test position in a sealed quartz heating tube by a robot. An induction coil around a heating portion of the tube is powered by a radio frequency generator to heat the specimen. Sensors are connected to monitor the temperatures of the specimen and the induction coil. A quench chamber is located below the heating portion to permit rapid cooling of the specimen which is moved into this quench chamber once it is heated to a critical temperature. A vacuum pump is connected to the apparatus to collect any released fission gases which are analyzed at a remote location.

  5. Open-loop heat-recovery dryer

    DOE Patents [OSTI]

    TeGrotenhuis, Ward Evan

    2013-11-05

    A drying apparatus is disclosed that includes a drum and an open-loop airflow pathway originating at an ambient air inlet, passing through the drum, and terminating at an exhaust outlet. A passive heat exchanger is included for passively transferring heat from air flowing from the drum toward the exhaust outlet to air flowing from the ambient air inlet toward the drum. A heat pump is also included for actively transferring heat from air flowing from the passive heat exchanger toward the exhaust outlet to air flowing from the passive heat exchanger toward the drum. A heating element is also included for further heating air flowing from the heat pump toward the drum.

  6. Vapor phase elemental sulfur amendment for sequestering mercury in contaminated soil

    DOE Patents [OSTI]

    Looney, Brian B.; Denham, Miles E.; Jackson, Dennis G.

    2014-07-08

    The process of treating elemental mercury within the soil is provided by introducing into the soil a heated vapor phase of elemental sulfur. As the vapor phase of elemental sulfur cools, sulfur is precipitated within the soil and then reacts with any elemental mercury thereby producing a reaction product that is less hazardous than elemental mercury.

  7. Triple integrated heat pump system

    SciTech Connect (OSTI)

    Blackshaw, A.L.; Robinson, G.P. Jr.

    1987-03-03

    A heat pump system is described comprising: a first heat exchange means having first and second refrigerant connections; a second heat exchange means having first and second refrigerant connections; a third heat exchange means having first and second refrigerant connections; a refrigerant pressurizing device having a suction inlet and a high pressure outlet; a reversible refrigerant expansion means for expanding refrigerant from condenser to evaporator pressure connected between the second refrigerant connections on the first and second heat exchange means; an alternate refrigerant expansion means for expanding refrigerant from condenser to evaporator pressure connected to the second refrigerant connection on the third heat exchange means; check valve means connecting the alternate refrigerant expansion means to the common points between the reversible expansion means and each of the first and second heat exchange means so that refrigerant can flow from the alternate expansion means to the first and second heat exchange means but flow of refrigerant from the first and second heat exchange means is prevented; and control valve means.

  8. Connector device for building integrated photovoltaic device

    DOE Patents [OSTI]

    Keenihan, James R.; Langmaid, Joe A.; Eurich, Gerald K.; Lesniak, Michael J.; Mazor, Michael H.; Cleerman, Robert J.; Gaston, Ryan S.

    2015-11-10

    The present invention is premised upon a connector device and method that can more easily electrically connect a plurality of PV devices or photovoltaic system components and/or locate these devices/components upon a building structure. It also may optionally provide some additional sub-components (e.g. at least one bypass diode and/or an indicator means) and may enhance the serviceability of the device.

  9. Connector device for building integrated photovoltaic device

    SciTech Connect (OSTI)

    Keenihan, James R.; Langmaid, Joseph A.; Eurich, Gerald K.; Lesniak, Michael J.; Mazor, Michael H.; Cleereman, Robert J.; Gaston, Ryan S.

    2014-06-03

    The present invention is premised upon a connector device and method that can more easily electrically connect a plurality of PV devices or photovoltaic system components and/or locate these devices/components upon a building structure. It also may optionally provide some additional sub-components (e.g. at least one bypass diode and/or an indicator means) and may enhance the serviceability of the device.

  10. On Solving the Coronal Heating Problem

    E-Print Network [OSTI]

    James A. Klimchuk

    2006-03-09

    This article assesses the current state of understanding of coronal heating, outlines the key elements of a comprehensive strategy for solving the problem, and warns of obstacles that must be overcome along the way.

  11. Memory device using movement of protons

    DOE Patents [OSTI]

    Warren, W.L.; Vanheusden, K.J.R.; Fleetwood, D.M.; Devine, R.A.B.

    1998-11-03

    An electrically written memory element is disclosed utilizing the motion of protons within a dielectric layer surrounded by layers on either side to confine the protons within the dielectric layer with electrode means attached to the surrounding layers to change the spatial position of the protons within the dielectric layer. The device is preferably constructed as a silicon-silicon dioxide-silicon layered structure with the protons being introduced to the structure laterally through the exposed edges of the silicon dioxide layer during a high temperature anneal in an atmosphere containing hydrogen gas. The device operates at low power, is preferably nonvolatile, is radiation tolerant, and is compatible with convention silicon MOS processing for integration with other microelectronic elements on the same silicon substrate. With the addition of an optically active layer, the memory element becomes an electrically written, optically read optical memory element. 19 figs.

  12. Memory device using movement of protons

    DOE Patents [OSTI]

    Warren, William L. (Albuquerque, NM); Vanheusden, Karel J. R. (Albuquerque, NM); Fleetwood, Daniel M. (Albuquerque, NM); Devine, Roderick A. B. (St. Martin le Vinoux, FR)

    1998-01-01

    An electrically written memory element utilizing the motion of protons within a dielectric layer surrounded by layers on either side to confine the protons within the dielectric layer with electrode means attached to the surrounding layers to change the spatial position of the protons within the dielectric layer. The device is preferably constructed as a silicon-silicon dioxide-silicon layered structure with the protons being introduced to the structure laterally through the exposed edges of the silicon dioxide layer during a high temperature anneal in an atmosphere containing hydrogen gas. The device operates at low power, is preferably nonvolatile, is radiation tolerant, and is compatible with convention silicon MOS processing for integration with other microelectronic elements on the same silicon substrate. With the addition of an optically active layer, the memory element becomes an electrically written, optically read optical memory element.

  13. Memory device using movement of protons

    DOE Patents [OSTI]

    Warren, William L. (Albuquerque, NM); Vanheusden, Karel J. R. (Albuquerque, NM); Fleetwood, Daniel M. (Albuquerque, NM); Devine, Roderick A. B. (St. Martin le Vinoux, FR)

    2000-01-01

    An electrically written memory element utilizing the motion of protons within a dielectric layer surrounded by layers on either side to confine the protons within the dielectric layer with electrode means attached to the surrounding layers to change the spatial position of the protons within the dielectric layer. The device is preferably constructed as a silicon-silicon dioxide-silicon layered structure with the protons being introduced to the structure laterally through the exposed edges of the silicon dioxide layer during a high temperature anneal in an atmosphere containing hydrogen gas. The device operates at low power, is preferably nonvolatile, is radiation tolerant, and is compatible with convention silicon MOS processing for integration with other microelectronic elements on the same silicon substrate. With the addition of an optically active layer, the memory element becomes an electrically written, optically read optical memory element.

  14. Towards reproducible, scalable lateral molecular electronic devices

    SciTech Connect (OSTI)

    Durkan, Colm Zhang, Qian

    2014-08-25

    An approach to reproducibly fabricate molecular electronic devices is presented. Lateral nanometer-scale gaps with high yield are formed in Au/Pd nanowires by a combination of electromigration and Joule-heating-induced thermomechanical stress. The resulting nanogap devices are used to measure the electrical properties of small numbers of two different molecular species with different end-groups, namely 1,4-butane dithiol and 1,5-diamino-2-methylpentane. Fluctuations in the current reveal that in the case of the dithiol molecule devices, individual molecules conduct intermittently, with the fluctuations becoming more pronounced at larger biases.

  15. Economic Options for Upgrading Waste Heat 

    E-Print Network [OSTI]

    Erickson, D. C.

    1983-01-01

    high and low pressures. These devices are extremely simple and low cost, having no moving parts. In a heat pumping application, the capital cost of this type configuration would be dominated by any necessary heat exchangers. Perez Blanco (1... to a lower temperature. This variation corresponds functionally to the waste heat powered mechanical com pressor, as indicated in Figure 2. Perez Blanco (1) describes several reverse absorption configurations and Erickson (14, 15) describes...

  16. Heat transfer probe

    DOE Patents [OSTI]

    Frank, Jeffrey I.; Rosengart, Axel J.; Kasza, Ken; Yu, Wenhua; Chien, Tai-Hsin; Franklin, Jeff

    2006-10-10

    Apparatuses, systems, methods, and computer code for, among other things, monitoring the health of samples such as the brain while providing local cooling or heating. A representative device is a heat transfer probe, which includes an inner channel, a tip, a concentric outer channel, a first temperature sensor, and a second temperature sensor. The inner channel is configured to transport working fluid from an inner inlet to an inner outlet. The tip is configured to receive at least a portion of the working fluid from the inner outlet. The concentric outer channel is configured to transport the working fluid from the inner outlet to an outer outlet. The first temperature sensor is coupled to the tip, and the second temperature sensor spaced apart from the first temperature sensor.

  17. Proceedings of the 21st National and 10th ISHMT-ASME Heat and Mass Transfer conference, December 27-30, 2011, IIT Madras, India.

    E-Print Network [OSTI]

    Khandekar, Sameer

    -30, 2011, IIT Madras, India. Paper ID: ISHMT_IND_16_033 AN EXPLORATORY STUDY OF A PULSATING HEAT PIPE A Pulsating Heat Pipe (PHP) is essentially a passive two-phase heat transfer device. In this study a simple A Pulsating Heat Pipe (PHP) is not only a very promising passive heat transfer device but also

  18. Heat pump/refrigerator using liquid working fluid

    DOE Patents [OSTI]

    Wheatley, John C. (Del Mar, CA); Paulson, Douglas N. (Del Mar, CA); Allen, Paul C. (Solana Beach, CA); Knight, William R. (Corvallis, OR); Warkentin, Paul A. (San Diego, CA)

    1982-01-01

    A heat transfer device is described that can be operated as a heat pump or refrigerator, which utilizes a working fluid that is continuously in a liquid state and which has a high temperature-coefficient of expansion near room temperature, to provide a compact and high efficiency heat transfer device for relatively small temperature differences as are encountered in heating or cooling rooms or the like. The heat transfer device includes a pair of heat exchangers that may be coupled respectively to the outdoor and indoor environments, a regenerator connecting the two heat exchangers, a displacer that can move the liquid working fluid through the heat exchangers via the regenerator, and a means for alternately increasing and decreasing the pressure of the working fluid. The liquid working fluid enables efficient heat transfer in a compact unit, and leads to an explosion-proof smooth and quiet machine characteristic of hydraulics. The device enables efficient heat transfer as the indoor-outdoor temperature difference approaches zero, and enables simple conversion from heat pumping to refrigeration as by merely reversing the direction of a motor that powers the device.

  19. Heat collector

    DOE Patents [OSTI]

    Merrigan, M.A.

    1981-06-29

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  20. Heat collector

    DOE Patents [OSTI]

    Merrigan, Michael A. (Santa Cruz, NM)

    1984-01-01

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  1. Fabrication and Characterization of Organic/Inorganic Photovoltaic Devices

    E-Print Network [OSTI]

    Guvenc, Ali Bilge

    2012-01-01

    in solar energy harvesting, capacity of electricitygenerate electricity by concentrating solar energy to heat asolar cell, is a solid state electrical device that converts the energy of light directly into electricity

  2. A microfluidic electroporation device for cell lysis Martin A. Schmidtb

    E-Print Network [OSTI]

    A microfluidic electroporation device for cell lysis Hang Lu,ac Martin A. Schmidtb and Klavs F of heating. In order to enable subcellular fractionation in microfluidic systems without the complications

  3. Improvements to solar thermoelectric generators through device design

    E-Print Network [OSTI]

    Weinstein, Lee A. (Lee Adragon)

    2013-01-01

    A solar thermoelectric generator (STEG) is a device which converts sunlight into electricity through the thermoelectric effect. A STEG is nominally formed when a thermoelectric generator (TEG), a type of solid state heat ...

  4. Corrosive resistant heat exchanger

    DOE Patents [OSTI]

    Richlen, Scott L. (Annandale, VA)

    1989-01-01

    A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.

  5. Notes 01. Modeling of mechanical (lumped parameter) elements 

    E-Print Network [OSTI]

    San Andres, Luis

    2008-01-01

    1 / ? Luis San Andr?s 2008 1.1 Handout # 1 Modeling of Mechanical (Lumped Parameter) Elements The fundamental components of a mechanical system are: masses or inertias, springs (stiffnesses), and dampers. Lumped elements lead to ordinary... into another form of energy (usually heat). Dampers relate the element force (torque) to a translational (angular) velocity. MEEN 617 Notes: Handout 1 / ? Luis San Andr?s 2008 1.2 Our objective: to determine equivalent system elements as those capable...

  6. A Modified Analytical Method for Simulating Cyclic Operation of Vertical U-Tube Ground-Coupled Heat Pumps 

    E-Print Network [OSTI]

    Dobson, M. K.; O'Neal, D. L.; Aldred, W.

    1994-01-01

    A modified analytical model is presented which discretizes the ground-coupled heat exchanger of a ground-coupled heat pump and utilized a separate cylindrical source solution for each element. First law expressions are utilized for each element...

  7. Selective nano-patterning of graphene using a heated atomic force microscope tip

    SciTech Connect (OSTI)

    Choi, Young-Soo; Wu, Xuan; Lee, Dong-Weon, E-mail: mems@jnu.ac.kr [MEMS and Nanotechnology Laboratory, School of Mechanical Engineering, Chonnam National University, Gwangju (Korea, Republic of)] [MEMS and Nanotechnology Laboratory, School of Mechanical Engineering, Chonnam National University, Gwangju (Korea, Republic of)

    2014-04-15

    In this study, we introduce a selective thermochemical nano-patterning method of graphene on insulating substrates. A tiny heater formed at the end of an atomic force microscope (AFM) cantilever is optimized by a finite element method. The cantilever device is fabricated using conventional micromachining processes. After preliminary tests of the cantilever device, nano-patterning experiments are conducted with various conducting and insulating samples. The results indicate that faster scanning speed and higher contact force are desirable to reduce the sizes of nano-patterns. With the experimental condition of 1 ?m/s and 24 mW, the heated AFM tip generates a graphene oxide layer of 3.6 nm height and 363 nm width, on a 300 nm thick SiO{sub 2} layer, with a tip contact force of 100 nN.

  8. Photovoltaic device with increased light absorption and method for its manufacture

    DOE Patents [OSTI]

    Glatfelter, Troy (Royal Oak, MI); Vogeli, Craig (New Baltimore, MI); Call, Jon (Royal Oak, MI); Hammond, Ginger (Imlay City, MI)

    1993-07-20

    A photovoltaic cell having a light-directing optical element integrally formed in an encapsulant layer thereof. The optical element redirects light to increase the internal absorption of light incident on the photovoltaic device.

  9. Energy harvesting devices for harvesting energy from terahertz electromagnetic radiation

    DOE Patents [OSTI]

    Novack, Steven D.; Kotter, Dale K.; Pinhero, Patrick J.

    2012-10-09

    Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. The optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.

  10. Device-to-Device Assisted Video Transmission

    E-Print Network [OSTI]

    Shen, Y; Zhou, W; Wu, P; Toni, L; Cosman, P C; Milstein, L B

    2013-01-01

    Equipment (UE) radio transmission and reception (3GPP TSand Mobile Ad Hoc Networks: Transmission-Capacity Tradeoff”,Device Assisted Video Transmission Yichao Shen, Wenwen Zhou,

  11. 2.72 Elements of Mechanical Design, Fall 2002

    E-Print Network [OSTI]

    Blanco, Ernesto E.

    Examination and practice in the application of many mechanical design elements, including control components. Students working in groups design, fabricate, and test prototype devices in response to requests from industrial ...

  12. 2.72 Elements of Mechanical Design, Spring 2006

    E-Print Network [OSTI]

    Frey, Daniel

    Examination and practice in the application of many mechanical design elements, including control components. Students working in groups design, fabricate, and test prototype devices in response to requests from industrial ...

  13. Inertial impaction air sampling device

    DOE Patents [OSTI]

    Dewhurst, K.H.

    1987-12-10

    An inertial impactor to be used in an air sampling device for collection of respirable size particles in ambient air which may include a graphite furnace as the impaction substrate in a small-size, portable, direct analysis structure that gives immediate results and is totally self-contained allowing for remote and/or personal sampling. The graphite furnace collects suspended particles transported through the housing by means of the air flow system, and these particles may be analyzed for elements, quantitatively and qualitatively, by atomic absorption spectrophotometry. 3 figs.

  14. ABSORPTION HEAT PUMP IN THE DISTRICT HEATING

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    #12;ABSORPTION HEAT PUMP IN THE DISTRICT HEATING PLANT Dr.sc.ing. Agnese Lickrastina M.Sc. Normunds European Heat Pump Summit 2013, Nuremberg, 15-16.10.2013 · Riga District Heating company · Operation of the DH plant Imanta · Selection of the heat pump/chiller · Operation of the heat pump/chiller · Summary

  15. Low exhaust temperature electrically heated particulate matter filter system

    DOE Patents [OSTI]

    Gonze, Eugene V. (Pinckney, MI); Paratore, Jr., Michael J. (Howell, MI); Bhatia, Garima (Bangalore, IN)

    2012-02-14

    A system includes a particulate matter (PM) filter, a sensor, a heating element, and a control module. The PM filter includes with an upstream end that receives exhaust gas, a downstream end and multiple zones. The sensor detects a temperature of the exhaust gas. The control module controls current to the heating element to convection heat one of the zones and initiate a regeneration process. The control module selectively increases current to the heating element relative to a reference regeneration current level when the temperature is less than a predetermined temperature.

  16. Heat exchanger with transpired, highly porous fins

    DOE Patents [OSTI]

    Kutscher, Charles F. (Golden, CO); Gawlik, Keith (Boulder, CO)

    2002-01-01

    The heat exchanger includes a fin and tube assembly with increased heat transfer surface area positioned within a hollow chamber of a housing to provide effective heat transfer between a gas flowing within the hollow chamber and a fluid flowing in the fin and tube assembly. A fan is included to force a gas, such as air, to flow through the hollow chamber and through the fin and tube assembly. The fin and tube assembly comprises fluid conduits to direct the fluid through the heat exchanger, to prevent mixing with the gas, and to provide a heat transfer surface or pathway between the fluid and the gas. A heat transfer element is provided in the fin and tube assembly to provide extended heat transfer surfaces for the fluid conduits. The heat transfer element is corrugated to form fins between alternating ridges and grooves that define flow channels for directing the gas flow. The fins are fabricated from a thin, heat conductive material containing numerous orifices or pores for transpiring the gas out of the flow channel. The grooves are closed or only partially open so that all or substantially all of the gas is transpired through the fins so that heat is exchanged on the front and back surfaces of the fins and also within the interior of the orifices, thereby significantly increasing the available the heat transfer surface of the heat exchanger. The transpired fins also increase heat transfer effectiveness of the heat exchanger by increasing the heat transfer coefficient by disrupting boundary layer development on the fins and by establishing other beneficial gas flow patterns, all at desirable pressure drops.

  17. Protection of microelectronic devices during packaging

    DOE Patents [OSTI]

    Peterson, Kenneth A. (Albuquerque, NM); Conley, William R. (Tijeras, NM)

    2002-01-01

    The present invention relates to a method of protecting a microelectronic device during device packaging, including the steps of applying a water-insoluble, protective coating to a sensitive area on the device; performing at least one packaging step; and then substantially removing the protective coating, preferably by dry plasma etching. The sensitive area can include a released MEMS element. The microelectronic device can be disposed on a wafer. The protective coating can be a vacuum vapor-deposited parylene polymer, silicon nitride, metal (e.g. aluminum or tungsten), a vapor deposited organic material, cynoacrylate, a carbon film, a self-assembled monolayered material, perfluoropolyether, hexamethyldisilazane, or perfluorodecanoic carboxylic acid, silicon dioxide, silicate glass, or combinations thereof. The present invention also relates to a method of packaging a microelectronic device, including: providing a microelectronic device having a sensitive area; applying a water-insoluble, protective coating to the sensitive area; providing a package; attaching the device to the package; electrically interconnecting the device to the package; and substantially removing the protective coating from the sensitive area.

  18. Computational model of miniature pulsating heat pipes.

    SciTech Connect (OSTI)

    Martinez, Mario J.; Givler, Richard C.

    2013-01-01

    The modeling work described herein represents Sandia National Laboratories (SNL) portion of a collaborative three-year project with Northrop Grumman Electronic Systems (NGES) and the University of Missouri to develop an advanced, thermal ground-plane (TGP), which is a device, of planar configuration, that delivers heat from a source to an ambient environment with high efficiency. Work at all three institutions was funded by DARPA/MTO; Sandia was funded under DARPA/MTO project number 015070924. This is the final report on this project for SNL. This report presents a numerical model of a pulsating heat pipe, a device employing a two phase (liquid and its vapor) working fluid confined in a closed loop channel etched/milled into a serpentine configuration in a solid metal plate. The device delivers heat from an evaporator (hot zone) to a condenser (cold zone). This new model includes key physical processes important to the operation of flat plate pulsating heat pipes (e.g. dynamic bubble nucleation, evaporation and condensation), together with conjugate heat transfer with the solid portion of the device. The model qualitatively and quantitatively predicts performance characteristics and metrics, which was demonstrated by favorable comparisons with experimental results on similar configurations. Application of the model also corroborated many previous performance observations with respect to key parameters such as heat load, fill ratio and orientation.

  19. Discrete Element Modeling

    SciTech Connect (OSTI)

    Morris, J; Johnson, S

    2007-12-03

    The Distinct Element Method (also frequently referred to as the Discrete Element Method) (DEM) is a Lagrangian numerical technique where the computational domain consists of discrete solid elements which interact via compliant contacts. This can be contrasted with Finite Element Methods where the computational domain is assumed to represent a continuum (although many modern implementations of the FEM can accommodate some Distinct Element capabilities). Often the terms Discrete Element Method and Distinct Element Method are used interchangeably in the literature, although Cundall and Hart (1992) suggested that Discrete Element Methods should be a more inclusive term covering Distinct Element Methods, Displacement Discontinuity Analysis and Modal Methods. In this work, DEM specifically refers to the Distinct Element Method, where the discrete elements interact via compliant contacts, in contrast with Displacement Discontinuity Analysis where the contacts are rigid and all compliance is taken up by the adjacent intact material.

  20. High efficiency thin-film multiple-gap photovoltaic device

    DOE Patents [OSTI]

    Dalal, Vikram L. (Newark, DE)

    1983-01-01

    A photovoltaic device includes at least two solar cells made from Group IV elements or their alloys in the amorphous state mounted on a substrate. The outermost or first cell has a larger bandgap than the second cell. Various techniques are utilized to improve the efficiency of the device.

  1. Characterization of thermoelectric elements and devices by impedance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits &BradburyMay 1,CenterJohnCeremonySynchrotronCharacterization ofof

  2. Bayonet heat exchangers in heat-assisted Stirling heat pump

    SciTech Connect (OSTI)

    Yagyu, S.; Fukuyama, Y.; Morikawa, T.; Isshiki, N.; Satoh, I.; Corey, J.; Fellows, C.

    1998-07-01

    The Multi-Temperature Heat Supply System is a research project creating a city energy system with lower environmental load. This system consists of a gas-fueled internal combustion engine and a heat-assisted Stirling heat pump utilizing shaft power and thermal power in a combination of several cylinders. The heat pump is mainly driven by engine shaft power and is partially assisted by thermal power from engine exhaust heat source. Since this heat pump is operated by proportioning the two energy sources to match the characteristics of the driving engine, the system is expected to produce cooling and heating water at high COP. This paper describes heat exchanger development in the project to develop a heat-assisted Stirling heat pump. The heat pump employs the Bayonet type heat exchangers (BHX Type I) for supplying cold and hot water and (BHX Type II) for absorbing exhaust heat from the driving engine. The heat exchanger design concepts are presented and their heat transfer and flow loss characteristics in oscillating gas flow are investigated. The main concern in the BHX Type I is an improvement of gas side heat transfer and the spirally finned tubes were applied to gas side of the heat exchanger. For the BHX Type II, internal heat transfer characteristics are the main concern. Shell-and-tube type heat exchangers are widely used in Stirling machines. However, since brazing is applied to the many tubes for their manufacturing processes, it is very difficult to change flow passages to optimize heat transfer and loss characteristics once they have been made. The challenge was to enhance heat transfer on the gas side to make a highly efficient heat exchanger with fewer parts. It is shown that the Bayonet type heat exchanger can have good performance comparable to conventional heat exchangers.

  3. Use of photovoltaics for waste heat recovery

    DOE Patents [OSTI]

    Polcyn, Adam D

    2013-04-16

    A device for recovering waste heat in the form of radiated light, e.g. red visible light and/or infrared light includes a housing having a viewing window, and a photovoltaic cell mounted in the housing in a relationship to the viewing window, wherein rays of radiated light pass through the viewing window and impinge on surface of the photovoltaic cell. The housing and/or the cell are cooled so that the device can be used with a furnace for an industrial process, e.g. mounting the device with a view of the interior of the heating chamber of a glass making furnace. In this manner, the rays of the radiated light generated during the melting of glass batch materials in the heating chamber pass through the viewing window and impinge on the surface of the photovoltaic cells to generate electric current which is passed onto an electric load.

  4. Amorphous silicon photovoltaic devices

    DOE Patents [OSTI]

    Carlson, David E.; Lin, Guang H.; Ganguly, Gautam

    2004-08-31

    This invention is a photovoltaic device comprising an intrinsic or i-layer of amorphous silicon and where the photovoltaic device is more efficient at converting light energy to electric energy at high operating temperatures than at low operating temperatures. The photovoltaic devices of this invention are suitable for use in high temperature operating environments.

  5. Photovoltaic device and method

    DOE Patents [OSTI]

    Cleereman, Robert; Lesniak, Michael J.; Keenihan, James R.; Langmaid, Joe A.; Gaston, Ryan; Eurich, Gerald K.; Boven, Michelle L.

    2015-11-24

    The present invention is premised upon an improved photovoltaic device ("PVD") and method of use, more particularly to an improved photovoltaic device with an integral locator and electrical terminal mechanism for transferring current to or from the improved photovoltaic device and the use as a system.

  6. Photovoltaic device and method

    DOE Patents [OSTI]

    Cleereman, Robert J; Lesniak, Michael J; Keenihan, James R; Langmaid, Joe A; Gaston, Ryan; Eurich, Gerald K; Boven, Michelle L

    2015-01-27

    The present invention is premised upon an improved photovoltaic device ("PVD") and method of use, more particularly to an improved photovoltaic device with an integral locator and electrical terminal mechanism for transferring current to or from the improved photovoltaic device and the use as a system.

  7. Articulating feedstock delivery device

    DOE Patents [OSTI]

    Jordan, Kevin

    2013-11-05

    A fully articulable feedstock delivery device that is designed to operate at pressure and temperature extremes. The device incorporates an articulating ball assembly which allows for more accurate delivery of the feedstock to a target location. The device is suitable for a variety of applications including, but not limited to, delivery of feedstock to a high-pressure reaction chamber or process zone.

  8. Organic photosensitive devices

    DOE Patents [OSTI]

    Rand, Barry P; Forrest, Stephen R

    2013-11-26

    The present invention generally relates to organic photosensitive optoelectronic devices. More specifically, it is directed to organic photosensitive optoelectronic devices having a photoactive organic region containing encapsulated nanoparticles that exhibit plasmon resonances. An enhancement of the incident optical field is achieved via surface plasmon polariton resonances. This enhancement increases the absorption of incident light, leading to a more efficient device.

  9. Development of an air-cooled, loop-type heat pipe with multiple condensers

    E-Print Network [OSTI]

    Kariya, H. Arthur (Harumichi Arthur)

    2012-01-01

    Thermal management challenges are prevalent in various applications ranging from consumer electronics to high performance computing systems. Heat pipes are capillary-pumped devices that take advantage of the latent heat ...

  10. Numerical simulation of gas dynamics and heat exchange tasks in fuel assemblies of the nuclear reactors

    SciTech Connect (OSTI)

    Zhuchenko, S. V.

    2014-11-12

    This report presents a PC-based program for solution gas dynamics and heat exchange mathematical tasks in fuel assemblies of the fast-neutron nuclear reactors. A fuel assembly consisting of bulk heat-generating elements, which are integrated together by the system of supply and pressure manifolds, is examined. Spherical heat-generating microelements, which contain nuclear fuel, are pulled into the heat-generating elements. Gaseous coolant proceed from supply manifolds to heat-generating elements, where it withdraws the nuclear reaction heat and assembles in pressure manifolds.

  11. Heating System Specification Specification of Heating System

    E-Print Network [OSTI]

    Day, Nancy

    Appendix A Heating System Specification /* Specification of Heating System (loosely based */ requestHeat : Room ­? bool; 306 #12; APPENDIX A. HEATING SYSTEM SPECIFICATION 307 /* user inputs */ living --- HEATERâ??ACTIVE --- ACTIVATINGâ??HEATER --- HEATERâ??RUNNING ; #12; APPENDIX A. HEATING SYSTEM SPECIFICATION

  12. Thermoelectrics: From Space Power Systems to Terrestrial Waste Heat Recovery Applications

    Broader source: Energy.gov [DOE]

    Progress in reliable high temperature segmented thermoelectric devices and potential for producing electricity from waste heat from energy intensive industrial processes and transportation vehicles exhaust are discussed

  13. Regular unipotent elements Elements unipotents reguliers

    E-Print Network [OSTI]

    Bonnafé, Cédric

    GF . Alors il existe un ´el´ement unipotent r´egulier v dans LF tel que RG LPG u = L v o`u G u est un ´el´ement unipotent r´egulier de GF et soit uL = resG L u. Alors RG LPG u = L uL . L

  14. LiH thermal energy storage device

    DOE Patents [OSTI]

    Olszewski, M.; Morris, D.G.

    1994-06-28

    A thermal energy storage device for use in a pulsed power supply to store waste heat produced in a high-power burst operation utilizes lithium hydride as the phase change thermal energy storage material. The device includes an outer container encapsulating the lithium hydride and an inner container supporting a hydrogen sorbing sponge material such as activated carbon. The inner container is in communication with the interior of the outer container to receive hydrogen dissociated from the lithium hydride at elevated temperatures. 5 figures.

  15. Optical plasma microelectronic devices

    E-Print Network [OSTI]

    Forati, Ebrahim; Dill, Thyler; Sievenpiper, Dan

    2015-01-01

    The semiconductor channel in conventional microelectronic devices was successfully replaced with an optically triggered gas plasma channel. The combination of DC and laser-induced gas ionizations controls the conductivity of the channel, enabling us to realize different electronic devices such as transistors, switches, modulators, etc. A special micro-scale metasurface was used to enhance the laser-gas interaction, as well as combining it with DC ionization properly. Optical plasma devices benefit form the advantages of plasma/vacuum electronic devices while preserving most of the integrablity of semiconductor based devices.

  16. Unitary lens semiconductor device

    DOE Patents [OSTI]

    Lear, Kevin L. (Albuquerque, NM)

    1997-01-01

    A unitary lens semiconductor device and method. The unitary lens semiconductor device is provided with at least one semiconductor layer having a composition varying in the growth direction for unitarily forming one or more lenses in the semiconductor layer. Unitary lens semiconductor devices may be formed as light-processing devices such as microlenses, and as light-active devices such as light-emitting diodes, photodetectors, resonant-cavity light-emitting diodes, vertical-cavity surface-emitting lasers, and resonant cavity photodetectors.

  17. Portable data collection device

    DOE Patents [OSTI]

    French, P.D.

    1996-06-11

    The present invention provides a portable data collection device that has a variety of sensors that are interchangeable with a variety of input ports in the device. The various sensors include a data identification feature that provides information to the device regarding the type of physical data produced by each sensor and therefore the type of sensor itself. The data identification feature enables the device to locate the input port where the sensor is connected and self adjust when a sensor is removed or replaced. The device is able to collect physical data, whether or not a function of a time. 7 figs.

  18. Portable data collection device

    DOE Patents [OSTI]

    French, Patrick D. (Aurora, CO)

    1996-01-01

    The present invention provides a portable data collection device that has a variety of sensors that are interchangeable with a variety of input ports in the device. The various sensors include a data identification feature that provides information to the device regarding the type of physical data produced by each sensor and therefore the type of sensor itself. The data identification feature enables the device to locate the input port where the sensor is connected and self adjust when a sensor is removed or replaced. The device is able to collect physical data, whether or not a function of a time.

  19. Optimization of the Fin Heat Pipe for Ventilating and Air Conditioning with a Genetic Algorithm 

    E-Print Network [OSTI]

    Qian, J.; Sun, D.; Li, G.

    2006-01-01

    This paper illustrates that use of a heat pipe as a heat-reclaiming device can significantly influence the air-conditioning system. It analyzes the heat transfer model of the uniform annular fin heat pipe under the condition of air conditioning...

  20. Heat Transfer Engineering, 29(1):2044, 2008 Copyright C Taylor and Francis Group, LLC

    E-Print Network [OSTI]

    Zhang, Yuwen

    , Connecticut, USA Pulsating (or oscillating) heat pipes (PHP or OHP) are new two-phase heat transfer devices turns. The unique feature of PHPs, compared with conventional heat pipes, is that there is no wick are discussed. INTRODUCTION Evolution in the design of the heat pipe--a type of passive two-phase thermal

  1. Skyrmion Dynamics for Spintronic Devices

    E-Print Network [OSTI]

    Liu, Yizhou

    2013-01-01

    Skyrmion Dynamics for Spintronic Devices A Thesis submittedSkyrmion Dynamics for Spintronic Devices by Yizhou Liua candidate for future spintronic devices. However, Skyrmion

  2. Location Management for Mobile Devices

    E-Print Network [OSTI]

    Wilde, Erik

    2008-01-01

    general, and wireless and mobile devices in particular. Thelocation-enabled mobile devices and location-based services.information from mobile devices and making it available to

  3. Pre-release plastic packaging of MEMS and IMEMS devices

    DOE Patents [OSTI]

    Peterson, Kenneth A. (Albuquerque, NM); Conley, William R. (Tijeras, NM)

    2002-01-01

    A method is disclosed for pre-release plastic packaging of MEMS and IMEMS devices. The method can include encapsulating the MEMS device in a transfer molded plastic package. Next, a perforation can be made in the package to provide access to the MEMS elements. The non-ablative material removal process can include wet etching, dry etching, mechanical machining, water jet cutting, and ultrasonic machining, or any combination thereof. Finally, the MEMS elements can be released by using either a wet etching or dry plasma etching process. The MEMS elements can be protected with a parylene protective coating. After releasing the MEMS elements, an anti-stiction coating can be applied. The perforating step can be applied to both sides of the device or package. A cover lid can be attached to the face of the package after releasing any MEMS elements. The cover lid can include a window for providing optical access. The method can be applied to any plastic packaged microelectronic device that requires access to the environment, including chemical, pressure, or temperature-sensitive microsensors; CCD chips, photocells, laser diodes, VCSEL's, and UV-EPROMS. The present method places the high-risk packaging steps ahead of the release of the fragile portions of the device. It also provides protection for the die in shipment between the molding house and the house that will release the MEMS elements and subsequently treat the surfaces.

  4. Photovoltaic building sheathing element with anti-slide features

    DOE Patents [OSTI]

    Keenihan, James R.; Langmaid, Joseph A.; Lopez, Leonardo C.

    2015-09-08

    The present invention is premised` upon an assembly that includes at least a photovoltaic building sheathing element capable of being affixed on a building structure, the photovoltaic building sheathing element. The element including a photovoltaic cell assembly, a body portion attached to one or more portions of the photovoltaic cell assembly; and at feast a first and a second connector assembly capable of directly or indirectly electrically connecting the photovoltaic cell assembly to one or more adjoining devices; wherein the body portion includes one or more geometric features adapted to engage a vertically adjoining device before installation.

  5. SMALL PARTICLE HEAT EXCHANGERS

    E-Print Network [OSTI]

    Hunt, A.J.

    2011-01-01

    The Small Particle Heat Exchange Receiver (SPHER) for Solarof the small particle heat exchange receiver (or SPHER), asabsorption process, the heat exchange to the gas, the choice

  6. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F. (Cleveland, OH); Moore, Paul B. (Fedhaurn, FL)

    1982-01-01

    An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchanges and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

  7. Water and Space Heating Heat Pumps 

    E-Print Network [OSTI]

    Kessler, A. F.

    1985-01-01

    This paper discusses the design and operation of the Trane Weathertron III Heat Pump Water Heating System and includes a comparison of features and performance to other domestic water heating systems. Domestic water is generally provided through...

  8. Industrial Waste Heat Recovery Using Heat Pipes 

    E-Print Network [OSTI]

    Ruch, M. A.

    1981-01-01

    For almost a decade now, heat pipes with secondary finned surfaces have been utilized in counter flow heat exchangers to recover sensible energy from industrial exhaust gases. Over 3,000 such heat exchangers are now in service, recovering...

  9. Stacked white OLED having separate red, green and blue sub-elements

    DOE Patents [OSTI]

    Forrest, Stephen; Qi, Xiangfei; Slootsky, Michael

    2015-06-23

    The present invention relates to efficient organic light emitting devices (OLEDs). More specifically, the present invention relates to white-emitting OLEDs, or WOLEDs. The devices of the present invention employ three emissive sub-elements, typically emitting red, green and blue, to sufficiently cover the visible spectrum. The sub-elements are separated by charge generating layers.

  10. Optimal Design of Thermoelectric Devices with Dimensional Analysis Mechanical and Aeronautical Engineering, Western Michigan University,

    E-Print Network [OSTI]

    Lee, Ho Sung

    1 Optimal Design of Thermoelectric Devices with Dimensional Analysis HoSung Lee Mechanical of thermoelectric devices (thermoelectric generator and cooler) in connection with heat sinks was developed using of the thermoelectric devices. Particularly, use of the convection conductance of a fluid in the denominators

  11. Throttle valve position-detecting device for a vehicle engine

    SciTech Connect (OSTI)

    Minagawa, K.

    1987-08-25

    A throttle valve position-detecting device is described for a vehicle, for detecting the position of a throttle valve in a throttle body provided for an engine mounted on the vehicle, by detecting rotation of a throttle shaft of the throttle valve, and in which the throttle shaft is supported to the throttle body through a bearing. The throttle valve position-detecting device consists of: a first rotary element fixed to the throttle shaft for rotating together with the throttle shaft; a second rotary element contacting the first rotary element for rotating with the first rotary element by receiving rotary power from the first rotary element; spring means for pressing the second rotary element towards the first rotary element against the rotary power; and detecting means for detecting from a rotary position of the second rotary element at least a position of the throttle valve corresponding to an idling condition of the engine; the first and second rotary elements being positioned with such a relationship as a crossing angle of a moving direction of the throttle shaft by clearance between the throttle shaft and the bearing and a transmitting direction of the rotary power from the first rotary element to the second rotary element during the idling condition of the engine being within a range from 45 to 90 degrees.

  12. Heat flux solarimeter

    SciTech Connect (OSTI)

    Sartarelli, A.; Vera, S.; Cyrulies, E.; Echarri, R.; Samson, I.

    2010-12-15

    The solarimeter presented in this work is easy to assemble. It is calibrated and its performance is validated by means of Hottel's method. Finally, the curves obtained with this solarimeter are compared to the ones obtained with a commercial solarimeter. This device is based on the evaluation of the heat flow in a metal rod. In consequence, measurements are not affected by ambient temperature variations. On the other hand, there is a linear relationship between the temperatures measured at the rod ends and the incident radiation, as can be concluded both from the theory of its operation and the calibration lines obtained. The results obtained from the global irradiance measurements in the area of Los Polvorines (Buenos Aires Province), together with a preliminary evaluation of the solarimeter's response time, are presented in this work. (author)

  13. Composition, apparatus, and process, for sorption of gaseous compounds of group II-VII elements

    DOE Patents [OSTI]

    Tom, Glenn M. (New Milford, CT); McManus, James V. (Danbury, CT); Luxon, Bruce A. (Stamford, CT)

    1991-08-06

    Scavenger compositions are disclosed, which have utility for effecting the sorptive removal of hazardous gases containing Group II-VII elements of the Periodic Table, such as are widely encountered in the manufacture of semiconducting materials and semiconductor devices. Gas sorption processes including the contacting of Group II-VII gaseous compounds with such scavenger compositions are likewise disclosed, together with critical space velocity contacting conditions pertaining thereto. Further described are gas contacting apparatus, including mesh structures which may be deployed in gas contacting vessels containing such scavenger compositions, to prevent solids from being introduced to or discharged from the contacting vessel in the gas stream undergoing treatment. A reticulate heat transfer structure also is disclosed, for dampening localized exothermic reaction fronts when gas mixtures comprising Group II-VII constituents are contacted with the scavenger compositions in bulk sorption contacting vessels according to the invention.

  14. Heating systems for heating subsurface formations

    DOE Patents [OSTI]

    Nguyen, Scott Vinh (Houston, TX); Vinegar, Harold J. (Bellaire, TX)

    2011-04-26

    Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

  15. Heat transfer and heat exchangers reference handbook

    SciTech Connect (OSTI)

    Not Available

    1991-01-15

    The purpose of this handbook is to provide Rocky Flats personnel with an understanding of the basic concepts of heat transfer and the operation of heat exchangers.

  16. Internal-integral sodium return line for sodium heat engine

    DOE Patents [OSTI]

    Hunt, Thomas K. (Ann Arbor, MI)

    1985-01-01

    A thermoelectric generator device which converts heat energy to electrical energy. An alkali metal is used with a solid electrolyte and a portion of the return line for the alkali metal is located within the generator vacuum space.

  17. Method of making compound semiconductor films and making related electronic devices

    DOE Patents [OSTI]

    Basol, Bulent M. (Manhattan Beach, CA); Kapur, Vijay K. (Tarzana, CA); Halani, Arvind T. (Northridge, CA); Leidholm, Craig R. (Woodland Hills, CA); Roe, Robert A. (Glendale, CA)

    1999-01-01

    A method of forming a compound film includes the steps of preparing a source material, depositing the source material on a base to form a precursor film, and heating the precursor film in a suitable atmosphere to form a film. The source material includes Group IB-IIIA alloy-containing particles having at least one Group IB-IIIA alloy phase, with Group IB-IIIA alloys constituting greater than about 50 molar percent of the Group IB elements and greater than about 50 molar percent of the Group IIIA elements in the source material. The film, then, includes a Group IB-IIIA-VIA compound. The molar ratio of Group IB to Group IIIA elements in the source material may be greater than about 0.80 and less than about 1.0, or substantially greater than 1.0, in which case this ratio in the compound film may be reduced to greater than about 0.80 and less than about 1.0. The source material may be prepared as an ink from particles in powder form. The alloy phase may include a dopant. Compound films including a Group IIB-IVA-VA compound or a Group IB-VA-VIA compound may be substituted using appropriate substitutions in the method. The method, also, is applicable to fabrication of solar cells and other electronic devices.

  18. Heat pipe technology development for high temperature space radiator applications

    SciTech Connect (OSTI)

    Merrigan, M.A.; Keddy, E.S.; Sena, J.T.; Elder, M.G.

    1984-01-01

    Technology requirements for heat pipe radiators, potentially among the lightest weight systems for space power applications, include flexible elements, and improved specific radiator performance(kg/kW). For these applications a flexible heat pipe capable of continuous operation through an angle of 180/sup 0/ has been demonstrated. The effect of bend angle on the heat pipe temperature distribution is reviewed. An analysis of lightweight membrane heat pipe radiators that use surface tension forces for fluid containment has been conducted. The design analysis of these lightweight heat pipes is described and a potential application in heat rejection systems for space nuclear power plants outlined.

  19. Integrated heat pump and heat storage system

    SciTech Connect (OSTI)

    Katz, A.

    1983-09-13

    An integrated heat pump and heat storage system is disclosed comprising a heat pump, a first conduit for supplying return air from an enclosure to the heat pump, a second conduit for supplying heated air from the heat pump to the enclosure, heat storage apparatus. A first damper is operative in a first orientation to permit return air from the enclosure to enter the first conduit and to prevent return air from passing through the heat storage apparatus and operative in a second orientation to cause return air to pass through the heat storage apparatus for being heated thereby before entering the first conduit. A second damper is operative in a first orientation to cause heated air from the second conduit to pass through the heat storage apparatus for giving up a portion of its heat for storage and operative in a second orientation to prevent heated air from the second conduit from passing through the heat storage apparatus and to permit the heated air from the second conduit to reach the enclosure. The heat storage apparatus may comprise phase change materials.

  20. Device for hydrogen separation and method

    DOE Patents [OSTI]

    Paglieri, Stephen N. (White Rock, NM); Anderson, Iver E. (Ames, IA); Terpstra, Robert L. (Ames, IA)

    2009-11-03

    A device for hydrogen separation has a porous support and hydrogen separation material on the support. The support is prepared by heat treatment of metal microparticles, preferably of iron-based or nickel-based alloys that also include aluminum and/or yttrium. The hydrogen separation material is then deposited on the support. Preferred hydrogen separation materials include metals such as palladium, alloys, platinum, refractory metals, and alloys.

  1. Localized electrical fine tuning of passive microwave and radio frequency devices

    DOE Patents [OSTI]

    Findikoglu, Alp T. (Los Alamos, NM)

    2001-04-10

    A method and apparatus for the localized electrical fine tuning of passive multiple element microwave or RF devices in which a nonlinear dielectric material is deposited onto predetermined areas of a substrate containing the device. An appropriate electrically conductive material is deposited over predetermined areas of the nonlinear dielectric and the signal line of the device for providing electrical contact with the nonlinear dielectric. Individual, adjustable bias voltages are applied to the electrically conductive material allowing localized electrical fine tuning of the devices. The method of the present invention can be applied to manufactured devices, or can be incorporated into the design of the devices so that it is applied at the time the devices are manufactured. The invention can be configured to provide localized fine tuning for devices including but not limited to coplanar waveguides, slotline devices, stripline devices, and microstrip devices.

  2. Comments on the report "Indications of anomalous heat energy production in a reactor device containing hydrogen loaded nickel powder" [arXiv:1305.3913] by G.Levi, E.Foschi, T.Hartman, B.H\\"oistad, R.Pettersson, L.Tegn\\'er, H.Ess\\'en

    E-Print Network [OSTI]

    Ericsson, Göran

    2013-01-01

    In a recent report titled "Indications of anomalous heat energy production in a reactor device containing hydrogen loaded nickel powder" [arXiv:1305.3913], G. Levi and co-workers put forth several claims concerning the operations and performance of the so-called E-Cat of Andrea Rossi. We note first of all that the circumstances and people involved in the test make if far from being an independent one. We examine the claims put forth by the authors and note that in many cases they are not supported by the facts given in the report. The authors seem to jump to conclusions fitting pre-conceived ideas where alternative explanations are possible. In general we find that much attention is drawn to trivialities while important pieces of information and investigation are lacking and seem not to have been conducted or considered. These are characteristics more typically found in pseudo-scientific texts and have no place in a technical/scientific report on this level. We also note that the proposed claims would require...

  3. Radiation sensitive devices and systems for detection of radioactive materials and related methods

    DOE Patents [OSTI]

    Kotter, Dale K

    2014-12-02

    Radiation sensitive devices include a substrate comprising a radiation sensitive material and a plurality of resonance elements coupled to the substrate. Each resonance element is configured to resonate responsive to non-ionizing incident radiation. Systems for detecting radiation from a special nuclear material include a radiation sensitive device and a sensor located remotely from the radiation sensitive device and configured to measure an output signal from the radiation sensitive device. In such systems, the radiation sensitive device includes a radiation sensitive material and a plurality of resonance elements positioned on the radiation sensitive material. Methods for detecting a presence of a special nuclear material include positioning a radiation sensitive device in a location where special nuclear materials are to be detected and remotely interrogating the radiation sensitive device with a sensor.

  4. Numerical Study of Convective Heat Transfer in Flat Tube Heat Exchangers Operating in Self-Sustained Oscillatory Flow Regimes 

    E-Print Network [OSTI]

    Fullerton, Tracy

    2012-02-14

    Laminar, two-dimensional, constant-property numerical simulations of flat tube heat exchanger devices operating in flow regimes in which self-sustained oscillations occur were performed. The unsteady flow regimes were ...

  5. Barrier breaching device

    DOE Patents [OSTI]

    Honodel, C.A.

    1983-06-01

    A barrier breaching device that is designed primarily for opening holes in interior walls of buildings uses detonating fuse for explosive force. The fuse acts as the ribs or spokes of an umbrella-like device that may be opened up to form a cone. The cone is placed against the wall so that detonating fuse that rings the base of the device and which is ignited by the spoke-like fuses serves to cut a circular hole in the wall.

  6. Process for synthesizing compounds from elemental powders and product

    DOE Patents [OSTI]

    Rabin, B.H.; Wright, R.N.

    1993-12-14

    A process for synthesizing intermetallic compounds from elemental powders is described. The elemental powders are initially combined in a ratio which approximates the stoichiometric composition of the intermetallic compound. The mixed powders are then formed into a compact which is heat treated at a controlled rate of heating such that an exothermic reaction between the elements is initiated. The heat treatment may be performed under controlled conditions ranging from a vacuum (pressureless sintering) to compression (hot pressing) to produce a desired densification of the intermetallic compound. In a preferred form of the invention, elemental powders of Fe and Al are combined to form aluminide compounds of Fe[sub 3] Al and FeAl. 25 figures.

  7. Triaxial thermopile array geo-heat-flow sensor

    DOE Patents [OSTI]

    Carrigan, C.R.; Hardee, H.C.; Reynolds, G.D.; Steinfort, T.D.

    1990-01-01

    A triaxial thermopile array geothermal heat flow sensor is designed to measure heat flow in three dimensions in a reconstituted or unperturbed subsurface regime. Heat flow can be measured in conductive or permeable convective media. The sensor may be encased in protective pvc tubing and includes a plurality of thermistors and an array of heat flow transducers produce voltage proportional to heat flux along the subsurface regime and permit direct measurement of heat flow in the subsurface regime. The presence of the thermistor array permits a comparison to be made between the heat flow estimates obtained from the transducers and heat flow calculated using temperature differences and Fourier's Law. The device is extremely sensitive with an accuracy of less than 0.1 Heat Flow Units (HFU) and may be used for long term readings. 6 figs.

  8. Triaxial thermopile array geo-heat-flow sensor

    DOE Patents [OSTI]

    Carrigan, Charles R. (Tracy, CA); Hardee, Harry C. (Albuquerque, NM); Reynolds, Gerald D. (Tijeras, NM); Steinfort, Terry D. (Tijeras, NM)

    1992-01-01

    A triaxial thermopile array geothermal heat flow sensor is designed to measure heat flow in three dimensions in a reconstituted or unperturbed subsurface regime. Heat flow can be measured in conductive or permeable convective media. The sensor may be encased in protective pvc tubing and includes a plurality of thermistors and an array of heat flow transducers arranged in a vertical string. The transducers produce voltage proportional to heat flux along the subsurface regime and permit direct measurement of heat flow in the subsurface regime. The presence of the thermistor array permits a comparison to be made between the heat flow estimates obtained from the transducers and heat flow calculated using temperature differences and Fourier's Law. The device is extremely sensitive with an accuracy of less than 0.1 Heat Flow Units (HFU) and may be used for long term readings.

  9. Cryogenic vacuumm RF feedthrough device

    DOE Patents [OSTI]

    Wu, Genfa (Yorktown, VA); Phillips, Harry Lawrence (Hayes, VA)

    2008-12-30

    A cryogenic vacuum rf feedthrough device comprising: 1) a probe for insertion into a particle beam; 2) a coaxial cable comprising an inner conductor and an outer conductor, a dielectric/insulating layer surrounding the inner conductor, the latter being connected to the probe for the transmission of higher mode rf energy from the probe; and 3) a high thermal conductivity stub attached to the coaxial dielectric about and in thermal contact with the inner conductor which high thermal conductivity stub transmits heat generated in the vicinity of the probe efficiently and radially from the area of the probe and inner conductor all while maintaining useful rf transmission line characteristics between the inner and outer coaxial conductors.

  10. High efficiency photovoltaic device

    DOE Patents [OSTI]

    Guha, Subhendu (Troy, MI); Yang, Chi C. (Troy, MI); Xu, Xi Xiang (Findlay, OH)

    1999-11-02

    An N-I-P type photovoltaic device includes a multi-layered body of N-doped semiconductor material which has an amorphous, N doped layer in contact with the amorphous body of intrinsic semiconductor material, and a microcrystalline, N doped layer overlying the amorphous, N doped material. A tandem device comprising stacked N-I-P cells may further include a second amorphous, N doped layer interposed between the microcrystalline, N doped layer and a microcrystalline P doped layer. Photovoltaic devices thus configured manifest improved performance, particularly when configured as tandem devices.

  11. Interconnected semiconductor devices

    DOE Patents [OSTI]

    Grimmer, Derrick P. (White Bear Lake, MN); Paulson, Kenneth R. (North St. Paul, MN); Gilbert, James R. (St. Paul, MN)

    1990-10-23

    Semiconductor layer and conductive layer formed on a flexible substrate, divided into individual devices and interconnected with one another in series by interconnection layers and penetrating terminals.

  12. Mobile Monolith Polymer Elements For Flow Control In Microfluidic Systems

    DOE Patents [OSTI]

    Hasselbrink, Jr., Ernest F. (Saline, MI); Rehm, Jason E. (Alameda, CA); Shepodd, Timothy J. (Livermore, CA); Kirby, Brian J. (San Francisco, CA)

    2006-01-24

    A cast-in-place and lithographically shaped mobile, monolithic polymer element for fluid flow control in microfluidic devices and method of manufacture. Microfluid flow control devices, or microvalves that provide for control of fluid or ionic current flow can be made incorporating a cast-in-place, mobile monolithic polymer element, disposed within a microchannel, and driven by fluid pressure (either liquid or gas) against a retaining or sealing surface. The polymer elements are made by the application of lithographic methods to monomer mixtures formulated in such a way that the polymer will not bond to microchannel walls. The polymer elements can seal against pressures greater than 5000 psi, and have a response time on the order of milliseconds. By the use of energetic radiation it is possible to depolymerize selected regions of the polymer element to form shapes that cannot be produced by conventional lithographic patterning and would be impossible to machine.

  13. Mobile Device Management Android Device Enrollment

    E-Print Network [OSTI]

    to manage your device. c. Enter your password. #12;d. Accept the Terms and Conditions e. You have completed. 2. Get Touchdown from Google Play a. Open up the Google Play Store. b. Search for Touchdown. c. Use the application. #12;3. Get Citrix Mobile Connect from Google Play a. Open up the Google Play Store. b. Search

  14. Traveling-wave device with mass flux suppression

    DOE Patents [OSTI]

    Swift, Gregory W. (Santa Fe, NM); Backhaus, Scott N. (Los Alamos, NM); Gardner, David L. (White Rock, NM)

    2000-01-01

    A traveling-wave device is provided with the conventional moving pistons eliminated. Acoustic energy circulates in a direction through a fluid within a torus. A side branch may be connected to the torus for transferring acoustic energy into or out of the torus. A regenerator is located in the torus with a first heat exchanger located on a first side of the regenerator downstream of the regenerator relative to the direction of the circulating acoustic energy; and a second heat exchanger located on an upstream side of the regenerator. The improvement is a mass flux suppressor located in the torus to minimize time-averaged mass flux of the fluid. In one embodiment, the device further includes a thermal buffer column in the torus to thermally isolate the heat exchanger that is at the operating temperature of the device.

  15. Code Number HEAT TRANSFER QUALIFYING EXAM

    E-Print Network [OSTI]

    Feeny, Brian

    is a device that uses inadiation from the sun to heat water. A solar collector is insulated on the bottom the rate of energy transfer to the water ifthe solar collector has a temperature of 45°C and ifthe sun.e. that all the energy received is radiated back in space. #12;Question #4) A water solar collector

  16. Passive ice freezing-releasing heat pipe

    DOE Patents [OSTI]

    Gorski, Anthony J. (Lemont, IL); Schertz, William W. (Batavia, IL)

    1982-01-01

    A heat pipe device has been developed which permits completely passive ice formation and periodic release of ice without requiring the ambient temperature to rise above the melting point of water. This passive design enables the maximum amount of cooling capacity to be stored in the tank.

  17. Polysilicon Vertical Actuator Powered with Waste Heat

    E-Print Network [OSTI]

    Hamoui, Anas

    an electric current flow through the device structure and induce Joule heating. The corresponding increase require an external battery that is several times the size of the microsystem itself. It is the power that do not rely on a bulky battery with fairly limited energy storage capacity. Through the application

  18. Capillary interconnect device

    DOE Patents [OSTI]

    Renzi, Ronald F

    2013-11-19

    An interconnecting device for connecting a plurality of first fluid-bearing conduits to a corresponding plurality of second fluid-bearing conduits thereby providing fluid communication between the first fluid-bearing conduits and the second fluid-bearing conduits. The device includes a manifold and one or two ferrule plates that are held by compressive axial forces.

  19. Device for cutting protrusions

    DOE Patents [OSTI]

    Bzorgi, Fariborz M. (Knoxville, TN)

    2011-07-05

    An apparatus for clipping a protrusion of material is provided. The protrusion may, for example, be a bolt head, a nut, a rivet, a weld bead, or a temporary assembly alignment tab protruding from a substrate surface of assembled components. The apparatus typically includes a cleaver having a cleaving edge and a cutting blade having a cutting edge. Generally, a mounting structure configured to confine the cleaver and the cutting blade and permit a range of relative movement between the cleaving edge and the cutting edge is provided. Also typically included is a power device coupled to the cutting blade. The power device is configured to move the cutting edge toward the cleaving edge. In some embodiments the power device is activated by a momentary switch. A retraction device is also generally provided, where the retraction device is configured to move the cutting edge away from the cleaving edge.

  20. Fluidic nanotubes and devices

    DOE Patents [OSTI]

    Yang, Peidong (Berkeley, CA); He, Rongrui (El Cerrito, CA); Goldberger, Joshua (Berkeley, CA); Fan, Rong (El Cerrito, CA); Wu, Yiying (Albany, CA); Li, Deyu (Albany, CA); Majumdar, Arun (Orinda, CA)

    2008-04-08

    Fluidic nanotube devices are described in which a hydrophilic, non-carbon nanotube, has its ends fluidly coupled to reservoirs. Source and drain contacts are connected to opposing ends of the nanotube, or within each reservoir near the opening of the nanotube. The passage of molecular species can be sensed by measuring current flow (source-drain, ionic, or combination). The tube interior can be functionalized by joining binding molecules so that different molecular species can be sensed by detecting current changes. The nanotube may be a semiconductor, wherein a tubular transistor is formed. A gate electrode can be attached between source and drain to control current flow and ionic flow. By way of example an electrophoretic array embodiment is described, integrating MEMs switches. A variety of applications are described, such as: nanopores, nanocapillary devices, nanoelectrophoretic, DNA sequence detectors, immunosensors, thermoelectric devices, photonic devices, nanoscale fluidic bioseparators, imaging devices, and so forth.

  1. Fluidic nanotubes and devices

    DOE Patents [OSTI]

    Yang, Peidong (El Cerrito, CA); He, Rongrui (El Cerrito, CA); Goldberger, Joshua (Berkeley, CA); Fan, Rong (El Cerrito, CA); Wu, Yiying (Albany, CA); Li, Deyu (Albany, CA); Majumdar, Arun (Orinda, CA)

    2010-01-10

    Fluidic nanotube devices are described in which a hydrophilic, non-carbon nanotube, has its ends fluidly coupled to reservoirs. Source and drain contacts are connected to opposing ends of the nanotube, or within each reservoir near the opening of the nanotube. The passage of molecular species can be sensed by measuring current flow (source-drain, ionic, or combination). The tube interior can be functionalized by joining binding molecules so that different molecular species can be sensed by detecting current changes. The nanotube may be a semiconductor, wherein a tubular transistor is formed. A gate electrode can be attached between source and drain to control current flow and ionic flow. By way of example an electrophoretic array embodiment is described, integrating MEMs switches. A variety of applications are described, such as: nanopores, nanocapillary devices, nanoelectrophoretic, DNA sequence detectors, immunosensors, thermoelectric devices, photonic devices, nanoscale fluidic bioseparators, imaging devices, and so forth.

  2. Active terahertz metamaterial devices

    DOE Patents [OSTI]

    Chen, Houtong (Los Alamos, NM); Padilla, Willie John (Newton, MA); Averitt, Richard Douglas (Newton, MA); O'Hara, John F. (Los Alamos, NM); Lee, Mark (Albuquerque, NM)

    2010-11-02

    Metamaterial structures are taught which provide for the modulation of terahertz frequency signals. Each element within an array of metamaterial (MM) elements comprises multiple loops and at least one gap. The MM elements may comprise resonators with conductive loops and insulated gaps, or the inverse in which insulated loops are present with conductive gaps; each providing useful transmissive control properties. The metamaterial elements are fabricated on a semiconducting substrate configured with a means of enhancing or depleting electrons from near the gaps of the MM elements. An on to off transmissivity ratio of about 0.5 is achieved with this approach. Embodiments are described in which the MM elements incorporated within a Quantum Cascade Laser (QCL) to provide surface emitting (SE) properties.

  3. Investigation of the heat pipe arrays for convective electronic cooling 

    E-Print Network [OSTI]

    Howard, Alicia Ann Harris

    1993-01-01

    A combined experimental and analytical investigation was conducted to evaluate a heat pipe convective cooling device consisting of sixteen small copper/water heat pipes mounted vertically in a 4x4 array 25.4 mm square. The analytical portion...

  4. Beyond ITER: RF Heating and Current Drive Issues for DEMO

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    Current devices Need flexible RF systems for heating, CD, start-up, instability suppression, and profileBeyond ITER: RF Heating and Current Drive Issues for DEMO C. K. Phillips, J. C. Hosea, G. Taylor under development ­ May need Lower Hybrid for r/a > 0.6 (not currently on ITER) ­ Need feedback control

  5. Proceedings of HTSC 2005: Heat Transfer Summer Conference

    E-Print Network [OSTI]

    Guo, Zhixiong "James"

    for describing radiation transfer and heat transfer in the micro/nanoscale devices is presented firstProceedings of HTSC 2005: Heat Transfer Summer Conference San Francisco, CA, July 17-22, 2005 HT's equations which govern the propagation of electromagnetic field and the radiation energy transport

  6. Temperature-Gated Thermal Rectifier for Active Heat Flow Control Kedar Hippalgaonkar,,

    E-Print Network [OSTI]

    Wu, Junqiao

    Temperature-Gated Thermal Rectifier for Active Heat Flow Control Jia Zhu,, Kedar Hippalgaonkar to develop advanced all-thermal solid-state devices that actively control heat flow without consuming other of solid-state active-thermal devices with a large rectification in the Rectifier state. This temperature

  7. Enhancement of automotive exhaust heat recovery by thermoelectric devices

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journal Article) | SciTech(Journal(Patent) |(Journal Article) |nanoparticles

  8. The synthetic elements

    SciTech Connect (OSTI)

    Hoffman, D.C.

    1990-05-01

    Prior to 1940, the heaviest element known was uranium, discovered in 1789. Since that time the elements 93 through 109 have been synthesized and identified and the elements 43, 61, 85, and 87 which were missing form the periodic tables of the 1930's have been discovered. The techniques and problems involved in these discoveries and the placement of the transuranium elements in the periodic table will be discussed. The production and positive identification of elements heavier than Md (Z=101), which have very short half-lives and can only be produced an atom-at-a-time, are very difficult and there have been controversies concerning their discovery. Some of the new methods which have been developed and used in these studies will be described. The prospects for production of still heavier elements will be considered.

  9. High-power radio-frequency attenuation device

    DOE Patents [OSTI]

    Kerns, Q.A.; Miller, H.W.

    1981-12-30

    A resistor device for attenuating radio frequency power includes a radio frequency conductor connected to a series of fins formed of high relative magnetic permeability material. The fins are dimensional to accommodate the skin depth of the current conduction therethrough, as well as an inner heat conducting portion where current does not travel. Thermal connections for air or water cooling are provided for the inner heat conducting portions of each fin. Also disclosed is a resistor device to selectively alternate unwanted radio frequency energy in a resonant cavity.

  10. Finite element modeling of heat and mass transport in aquifers 

    E-Print Network [OSTI]

    Grubaugh, Elston Kent

    1980-01-01

    3C ac aq 3N. 1 ay aN. 1 az aN. 3 3y aN. 1 az The left hand side can be evaluated since the basis functions are specified in local coordinates. The matrix [J], known as the "Jacobian matrix", can also be formed in terms of local... N. when iso- 1 parametric formulation is used, J may be written as, aN. 1 z ? x. az i BN 1 z ? x. an i aN. 1 z ? y. az i' aN. 1 z ? y. an i aN. 1 z ? z. az i BN. 1 z ? z. an BN. z ? x. 1 ac i aN. 1 z ? y. ac i aN. 1...

  11. Carbon or Graphite Foam Heating Element for Regulating Engine Fluids -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B LReports from thecarbon captureCarbon Storage

  12. Status of Segmented Element Thermoelectric Generator for Vehicle Waste Heat

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergyPlan | Department of Energy 1 DOE HydrogenDepartmentStatus ofMarilyn

  13. FEHM (Finite Element Heat and Mass Transfer Code)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunitiesofExtrans - Permeation Measurement2TargetedFEHM (Finite

  14. Multiple source heat pump

    DOE Patents [OSTI]

    Ecker, Amir L. (Duncanville, TX)

    1983-01-01

    A heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating a fluid in heat exchange relationship with a refrigerant fluid, at least three refrigerant heat exchangers, one for effecting heat exchange with the fluid, a second for effecting heat exchange with a heat exchange fluid, and a third for effecting heat exchange with ambient air; a compressor for compressing the refrigerant; at least one throttling valve connected at the inlet side of a heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circuit and pump for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and directional flow of refrigerant therethrough for selecting a particular mode of operation. Also disclosed are a variety of embodiments, modes of operation, and schematics therefor.

  15. Heat Plan DenmarkHeat Plan Denmark Anders Dyrelundy

    E-Print Network [OSTI]

    efficient use of renewable energy in district heating · individual heat pumps solar heating and wood pellets· individual heat pumps, solar heating and wood pellets 6Risø International Energy Conference 2009Heat Plan

  16. Heat Exchangers for Solar Water Heating Systems | Department...

    Energy Savers [EERE]

    Heat Exchangers for Solar Water Heating Systems Heat Exchangers for Solar Water Heating Systems Image of a heat exchanger. | Photo from iStockphoto.com Image of a heat exchanger. |...

  17. Heat-Of-Reaction Chemical Heat Pumps--Possible Configurations 

    E-Print Network [OSTI]

    Kirol, L. D.

    1986-01-01

    Chemical heat pumps utilize working fluids which undergo reversible chemical changes. Mechanically driven reactive heat pump cycles or, alternatively, heat driven heat pumps in which either heat engine or heat pump ...

  18. Introduction to Heat Exchangers

    E-Print Network [OSTI]

    Heller, Barbara

    . Since, the effectiveness can be written in terms of heat capacitance rate [W/K], C, and change in temperature [K], . The heat capacitance rate is defined in terms of mass flow rate [kg/s], , and specific heat: ! ! ! " # = ! ! "# ! ! ! - ! ! ! ! ! ! = ! !! ! ! ! ! = ! ! ! ! ! - ! ! ! ! ! "# ! ! ! - ! ! ! ! ! ! = ! ! ! ! ! - ! ! ! ! ! "# ! ! ! - ! ! ! ! ! Heat%Capacitance%Rate % ! = ! !! ! ! Heat%Capacitance%Rate%[W % ! = ! ! ! ! ! ! ! = ! ! !! ! ! ! max

  19. FINITE ELEMENT ANALYSIS OF THERMAL TENSIONING TECHNIQUES MITIGATING WELD BUCKLING DISTORTION

    E-Print Network [OSTI]

    Michaleris, Panagiotis

    FINITE ELEMENT ANALYSIS OF THERMAL TENSIONING TECHNIQUES MITIGATING WELD BUCKLING DISTORTION. This paper presents a finite element analysis model of the thermal tensioning technique. A series of finite by the finite element simulations, the residual stresses of large size and high heat input welds are reduced

  20. Rain sampling device

    DOE Patents [OSTI]

    Nelson, D.A.; Tomich, S.D.; Glover, D.W.; Allen, E.V.; Hales, J.M.; Dana, M.T.

    1991-05-14

    The present invention constitutes a rain sampling device adapted for independent operation at locations remote from the user which allows rainfall to be sampled in accordance with any schedule desired by the user. The rain sampling device includes a mechanism for directing wet precipitation into a chamber, a chamber for temporarily holding the precipitation during the process of collection, a valve mechanism for controllably releasing samples of the precipitation from the chamber, a means for distributing the samples released from the holding chamber into vessels adapted for permanently retaining these samples, and an electrical mechanism for regulating the operation of the device. 11 figures.

  1. Rain sampling device

    DOE Patents [OSTI]

    Nelson, Danny A. (Richland, WA); Tomich, Stanley D. (Richland, WA); Glover, Donald W. (Prosser, WA); Allen, Errol V. (Benton City, WA); Hales, Jeremy M. (Kennewick, WA); Dana, Marshall T. (Richland, WA)

    1991-01-01

    The present invention constitutes a rain sampling device adapted for independent operation at locations remote from the user which allows rainfall to be sampled in accordance with any schedule desired by the user. The rain sampling device includes a mechanism for directing wet precipitation into a chamber, a chamber for temporarily holding the precipitation during the process of collection, a valve mechanism for controllably releasing samples of said precipitation from said chamber, a means for distributing the samples released from the holding chamber into vessels adapted for permanently retaining these samples, and an electrical mechanism for regulating the operation of the device.

  2. Wireless device monitoring systems and monitoring devices, and associated methods

    DOE Patents [OSTI]

    McCown, Steven H; Derr, Kurt W; Rohde, Kenneth W

    2014-05-27

    Wireless device monitoring systems and monitoring devices include a communications module for receiving wireless communications of a wireless device. Processing circuitry is coupled with the communications module and configured to process the wireless communications to determine whether the wireless device is authorized or unauthorized to be present at the monitored area based on identification information of the wireless device. Methods of monitoring for the presence and identity of wireless devices are also provided.

  3. Heat Pump for High School Heat Recovery 

    E-Print Network [OSTI]

    Huang, K.; Wang, H.; Zhou, X.

    2006-01-01

    The heat pump system used for recycling and reusing waste heat in s high school bathroom was minutely analyzed in its coefficient of performance, onetime utilization ratio of energy, economic property and so on. The results showed that this system...

  4. Pagosa Springs District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    Pagosa Springs District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs District Heating District Heating Low...

  5. City of Klamath Falls District Heating District Heating Low Temperatur...

    Open Energy Info (EERE)

    City of Klamath Falls District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name City of Klamath Falls District Heating District Heating...

  6. San Bernardino District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    San Bernardino District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name San Bernardino District Heating District Heating Low...

  7. Philip District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Philip District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Philip District Heating District Heating Low Temperature Geothermal...

  8. Kethcum District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Kethcum District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Kethcum District Heating District Heating Low Temperature Geothermal...

  9. Boise City Geothermal District Heating District Heating Low Temperatur...

    Open Energy Info (EERE)

    Boise City Geothermal District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Boise City Geothermal District Heating District Heating...

  10. Midland District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Midland District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Midland District Heating District Heating Low Temperature Geothermal...

  11. Northeast Home Heating Oil Reserve System Heating Oil, PIA Office...

    Broader source: Energy.gov (indexed) [DOE]

    Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy Headquaters Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy...

  12. Multimaterial rectifying device fibers

    E-Print Network [OSTI]

    Orf, Nicholas D

    2009-01-01

    Electronic and optoelectronic device processing is commonly thought to be incompatible with much simpler thermal drawing techniques used in optical fiber production. The incorporation of metals, polymer insulators, and ...

  13. SMALL PARTICLE HEAT EXCHANGERS

    E-Print Network [OSTI]

    Hunt, A.J.

    2011-01-01

    heat exchangers. These types of heat exchangers have limitedheat exchanger to solar collection systems that utilize linear trough- typenon-solar heat exchangers. These may be of the type used to

  14. Concentrating solar heat collector

    SciTech Connect (OSTI)

    Fattor, A.P.

    1980-09-23

    A heat storage unit is integrated with a collection unit providing a heat supply in off-sun times, and includes movable insulation means arranged to provide insulation during off-sun times for the heat storage unit.

  15. Absorption heat pump system

    DOE Patents [OSTI]

    Grossman, G.

    1982-06-16

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  16. Absorption heat pump system

    DOE Patents [OSTI]

    Grossman, Gershon (Oak Ridge, TN)

    1984-01-01

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  17. Locating Heat Recovery Opportunities 

    E-Print Network [OSTI]

    Waterland, A. F.

    1981-01-01

    Basic concepts of heat recovery are defined as they apply to the industrial community. Methods for locating, ranking, and developing heat recovery opportunities are presented and explained. The needs for useful heat 'sinks' are emphasized as equal...

  18. Waste Heat Recovery – Submerged Arc Furnaces (SAF) 

    E-Print Network [OSTI]

    O'Brien, T.

    2008-01-01

    designed consumes power and fuel that yields an energy efficiency of approximately 40% (Total Btu’s required to reduce to elemental form/ Btu Input). The vast majority of heat is lost to the atmosphere or cooling water system. The furnaces can be modified...

  19. Draining our Glass: An Energy and Heat Characterization of Google Glass

    E-Print Network [OSTI]

    Zhong, Lin

    of optical head-mounted display devices. We share insights and implications to limit power draw to in- crease the safety and utility of head-mounted devices. 1 Introduction Optical Head Mounted Display (OHMD) devices will make heat generation from power draw uncomfortable and unsafe. Thus, low-power constraints pose

  20. Woven heat exchanger

    DOE Patents [OSTI]

    Piscitella, R.R.

    1984-07-16

    This invention relates to a heat exchanger for waste heat recovery from high temperature industrial exhaust streams. In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

  1. Electronic security device

    DOE Patents [OSTI]

    Eschbach, Eugene A. (Richland, WA); LeBlanc, Edward J. (Kennewick, WA); Griffin, Jeffrey W. (Kennewick, WA)

    1992-01-01

    The present invention relates to a security device having a control box (12) containing an electronic system (50) and a communications loop (14) over which the system transmits a signal. The device is constructed so that the communications loop can extend from the control box across the boundary of a portal such as a door into a sealed enclosure into which access is restricted whereby the loop must be damaged or moved in order for an entry to be made into the enclosure. The device is adapted for detecting unauthorized entries into such enclosures such as rooms or containers and for recording the time at which such entries occur for later reference. Additionally, the device detects attempts to tamper or interfere with the operation of the device itself and records the time at which such events take place. In the preferred embodiment, the security device includes a microprocessor-based electronic system (50) and a detection module (72) capable of registering changes in the voltage and phase of the signal transmitted over the loop.

  2. Electronic security device

    DOE Patents [OSTI]

    Eschbach, E.A.; LeBlanc, E.J.; Griffin, J.W.

    1992-03-17

    The present invention relates to a security device having a control box containing an electronic system and a communications loop over which the system transmits a signal. The device is constructed so that the communications loop can extend from the control box across the boundary of a portal such as a door into a sealed enclosure into which access is restricted whereby the loop must be damaged or moved in order for an entry to be made into the enclosure. The device is adapted for detecting unauthorized entries into such enclosures such as rooms or containers and for recording the time at which such entries occur for later reference. Additionally, the device detects attempts to tamper or interfere with the operation of the device itself and records the time at which such events take place. In the preferred embodiment, the security device includes a microprocessor-based electronic system and a detection module capable of registering changes in the voltage and phase of the signal transmitted over the loop. 11 figs.

  3. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

  4. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

  5. Geothermal Heat Pumps

    Broader source: Energy.gov [DOE]

    Geothermal heat pumps are expensive to install but pay for themselves over time in reduced heating and cooling costs. Find out if one is right for your home.

  6. Molecular mechanisms of the plant heat stress response

    SciTech Connect (OSTI)

    Qu, Ai-Li; Ding, Yan-Fei; Jiang, Qiong [China Jiliang University, Xueyuan Road 258, Hangzhou 310018 (China)] [China Jiliang University, Xueyuan Road 258, Hangzhou 310018 (China); Zhu, Cheng, E-mail: pzhch@cjlu.edu.cn [China Jiliang University, Xueyuan Road 258, Hangzhou 310018 (China)] [China Jiliang University, Xueyuan Road 258, Hangzhou 310018 (China)

    2013-03-08

    Highlights: ? This review elaborates the response networks of heat stress in plants. ? It elaborates proteins responding to heat stress in special physiological period. ? The proteins and pathways have formed a basic network of the heat stress response. ? Achievements of the various technologies are also combined. -- Abstract: High temperature has become a global concern, which seriously affects the growth and production of plants, particularly crops. Thus, the molecular mechanism of the heat stress response and breeding of heat-tolerant plants is necessary to protect food production and ensure crop safety. This review elaborates on the response networks of heat stress in plants, including the Hsf and Hsp response pathways, the response of ROS and the network of the hormones. In addition, the production of heat stress response elements during particular physiological periods of the plant is described. We also discuss the existing problems and future prospects concerning the molecular mechanisms of the heat stress response in plants.

  7. Thermally-induced voltage alteration for analysis of microelectromechanical devices

    DOE Patents [OSTI]

    Walraven, Jeremy A. (Albuquerque, NM); Cole, Jr., Edward I. (Albuquerque, NM)

    2002-01-01

    A thermally-induced voltage alteration (TIVA) apparatus and method are disclosed for analyzing a microelectromechanical (MEM) device with or without on-board integrated circuitry. One embodiment of the TIVA apparatus uses constant-current biasing of the MEM device while scanning a focused laser beam over electrically-active members therein to produce localized heating which alters the power demand of the MEM device and thereby changes the voltage of the constant-current source. This changing voltage of the constant-current source can be measured and used in combination with the position of the focused and scanned laser beam to generate an image of any short-circuit defects in the MEM device (e.g. due to stiction or fabrication defects). In another embodiment of the TIVA apparatus, an image can be generated directly from a thermoelectric potential produced by localized laser heating at the location of any short-circuit defects in the MEM device, without any need for supplying power to the MEM device. The TIVA apparatus can be formed, in part, from a scanning optical microscope, and has applications for qualification testing or failure analysis of MEM devices.

  8. Active and passive plasmonic devices

    E-Print Network [OSTI]

    Pourabdollah Nezhad, Maziar

    2007-01-01

    G. Mattiussi, and P. Berini, "Passive integrated opticsCALIFORNIA, SAN DIEGO Active and Passive Plasmonic Devices ADISSERTATION Active and Passive Plasmonic Devices by Maziar

  9. Optimization of heat exchanger design in a thermoacoustic engine using a second law analysis

    SciTech Connect (OSTI)

    Ishikawa, H.; Hobson, P.A.

    1996-05-01

    An analysis for the time averaged entropy generation due to both flow and heat transfer losses in the heat exchangers of a thermoacoustic engine has been developed. An expression for the optimum dimensionless heat exchanger area corresponding to minimum entropy generation has been determined in terms of three other dimensionless parameters. Optimum heat exchanger areas were calculated for three thermoacoustic devices. For the prime mover components of the thermoacoustic devices investigated where the temperature differences across the regenerator stacks were high, the analysis developed indicated that the heat exchanger at the hot end of the regenerator stack should be smaller than that at the cold end.

  10. Heat Management Strategy Trade Study

    SciTech Connect (OSTI)

    Nick Soelberg; Steve Priebe; Dirk Gombert; Ted Bauer

    2009-09-01

    This Heat Management Trade Study was performed in 2008-2009 to expand on prior studies in continued efforts to analyze and evaluate options for cost-effectively managing SNF reprocessing wastes. The primary objective was to develop a simplified cost/benefit evaluation for spent nuclear fuel (SNF) reprocessing that combines the characteristics of the waste generated through reprocessing with the impacts of the waste on heating the repository. Under consideration were age of the SNF prior to reprocessing, plutonium and minor actinide (MA) separation from the spent fuel for recycle, fuel value of the recycled Pu and MA, age of the remaining spent fuel waste prior to emplacement in the repository, length of time that active ventilation is employed in the repository, and elemental concentration and heat limits for acceptable glass waste form durability. A secondary objective was to identify and qualitatively analyze remaining issues such as (a) impacts of aging SNF prior to reprocessing on the fuel value of the recovered fissile materials, and (b) impact of reprocessing on the dose risk as developed in the Yucca Mountain Total System Performance Assessment (TSPA). Results of this study can be used to evaluate different options for managing decay heat in waste streams from spent nuclear fuel.

  11. Multiple pollutant removal using the condensing heat exchanger: Phase 1 final report, October 1995--July 1997

    SciTech Connect (OSTI)

    Bailey, R.T.; Jankura, B.J.; Kudlac, G.A.

    1998-06-01

    The Integrated Flue Gas Treatment (IFGT) system is a new concept whereby a Teflon{reg_sign} covered condensing heat exchanger is adapted to remove certain flue gas constitutents, both particulate and gaseous, while recovering low level heat. Phase 1 includes two experimental tasks. One task dealt principally with the pollutant removal capabilities of the IFGT at a scale of about 1.2MW{sub t}. The other task studied the durability of the Teflon{reg_sign} covering to withstand the rigors of abrasive wear by fly ash emitted as a result of coal combustion. The pollutant removal characteristics of the IFGT system were measured over a wide range of operating conditions. The coals tested included high, medium and low-sulfur coals. The flue gas pollutants studied included ammonia, hydrogen chloride, hydrogen fluoride, particulate, sulfur dioxide, gas phase and particle phase mercury and gas phase and particle phase trace elements. The particulate removal efficiency and size distribution was investigated. These test results demonstrated that the IFGT system is an effective device for both acid gas absorption and fine particulate collection. The durability of the Teflon{reg_sign} covered heat exchanger tubes was studied on a pilot-scale single-stage condensing heat exchanger (CHX{reg_sign}). Data from the test indicate that virtually no decrease in Teflon{reg_sign} thickness was observed for the coating on the first two rows of heat exchanger tubes, even at high inlet particulate loadings. Evidence of wear was present only at the microscopic level, and even then was very minor in severity.

  12. Short communication Optimization of hybrid ground coupled and air source heat pump systems

    E-Print Network [OSTI]

    Fernández de Córdoba, Pedro

    Short communication Optimization of hybrid ­ ground coupled and air source ­ heat pump systems 2008 Accepted 14 January 2010 Available online 28 January 2010 Keywords: Ground coupled heat pump Air to water heat pump Thermal storage device Hybrid HVAC system Energy efficiency Numerical simulation a b

  13. Neutronic fuel element fabrication

    DOE Patents [OSTI]

    Korton, George (Cincinnati, OH)

    2004-02-24

    This disclosure describes a method for metallurgically bonding a complete leak-tight enclosure to a matrix-type fuel element penetrated longitudinally by a multiplicity of coolant channels. Coolant tubes containing solid filler pins are disposed in the coolant channels. A leak-tight metal enclosure is then formed about the entire assembly of fuel matrix, coolant tubes and pins. The completely enclosed and sealed assembly is exposed to a high temperature and pressure gas environment to effect a metallurgical bond between all contacting surfaces therein. The ends of the assembly are then machined away to expose the pin ends which are chemically leached from the coolant tubes to leave the coolant tubes with internal coolant passageways. The invention described herein was made in the course of, or under, a contract with the U.S. Atomic Energy Commission. It relates generally to fuel elements for neutronic reactors and more particularly to a method for providing a leak-tight metal enclosure for a high-performance matrix-type fuel element penetrated longitudinally by a multiplicity of coolant tubes. The planned utilization of nuclear energy in high-performance, compact-propulsion and mobile power-generation systems has necessitated the development of fuel elements capable of operating at high power densities. High power densities in turn require fuel elements having high thermal conductivities and good fuel retention capabilities at high temperatures. A metal clad fuel element containing a ceramic phase of fuel intimately mixed with and bonded to a continuous refractory metal matrix has been found to satisfy the above requirements. Metal coolant tubes penetrate the matrix to afford internal cooling to the fuel element while providing positive fuel retention and containment of fission products generated within the fuel matrix. Metal header plates are bonded to the coolant tubes at each end of the fuel element and a metal cladding or can completes the fuel-matrix enclosure by encompassing the sides of the fuel element between the header plates.

  14. Actuation of shape memory polymer using magnetic fields for applications in medical devices

    E-Print Network [OSTI]

    Buckley, Patrick Regan, 1981-

    2004-01-01

    A novel approach to the heating and actuation of shape memory polymer using dispersed Curie temperature thermo-regulated particles is proposed. Such a material has potential applications in medical devices which are delivered ...

  15. Spectral tailoring device

    DOE Patents [OSTI]

    Brager, H.R.; Schenter, R.E.; Carter, L.L.; Karnesky, R.A.

    1987-08-05

    A spectral tailoring device for altering the neutron energy spectra and flux of neutrons in a fast reactor thereby selectively to enhance or inhibit the transmutation rate of a target metrical to form a product isotope. Neutron moderators, neutron filters, neutron absorbers and neutron reflectors may be used as spectral tailoring devices. Depending on the intended use for the device, a member from each of these four classes of materials could be used singularly, or in combination, to provide a preferred neutron energy spectra and flux of the neutrons in the region of the target material. In one embodiment of the invention, an assembly is provided for enhancing the production of isotopes, such as cobalt 60 and gadolinium 153. In another embodiment of the invention, a spectral tailoring device is disposed adjacent a target material which comprises long lived or volatile fission products and the device is used to shift the neutron energy spectra and flux of neutrons in the region of the fission products to preferentially transmute them to produce a less volatile fission product inventory. 6 figs.

  16. Electrical apparatus lockout device

    SciTech Connect (OSTI)

    Gonzales, Rick (Chesapeake, VA)

    1999-01-01

    A simple lockout device for electrical equipment equipped with recessed power blades is described. The device comprises a face-plate (12) having a threaded member (14) attached thereto and apertures suitable for accommodating the power blades of a piece of electrical equipment, an elastomeric nose (16) abutting the face-plate having a hole for passage of the threaded member therethrough and power blade apertures in registration with those of the face-plate, a block (20) having a recess (34) in its forward face for receiving at least a portion of the hose, a hole therein for receiving the threaded member and an integral extension (26) extending from its rear face. A thumb screw (22) suitable for turning with the hands and having internal threads suitable for engaging the threaded member attached to the face-plate is inserted into a passage in the integral extension to engage the threaded member in such a fashion that when the device is inserted over the recessed power blades of a piece of electrical equipment and the thumb screw (22) tightened, the elastomeric nose (16) is compressed between the face-plate (12) and the block (20) forcing it to expand laterally thereby securing the device in the recess and precluding the accidental or intentional energization of the piece of equipment by attachment of a power cord to the recessed power blades. Means are provided in the interval extension and the thumb screw for the attachment of a locking device (46) which will satisfy OSHA standards.

  17. Electrical apparatus lockout device

    SciTech Connect (OSTI)

    Gonzales, R.

    1999-10-12

    A simple lockout device for electrical equipment equipped with recessed power blades is described. The device comprises a face-plate (12) having a threaded member (14) attached thereto and apertures suitable for accommodating the power blades of a piece of electrical equipment, an elastomeric nose (16) abutting the face-plate having a hole for passage of the threaded member therethrough and power blade apertures in registration with those of the face-plate, a block (20) having a recess (34) in its forward face for receiving at least a portion of the hose, a hole therein for receiving the threaded member and an integral extension (26) extending from its rear face. A thumb screw (22) suitable for turning with the hands and having internal threads suitable for engaging the threaded member attached to the face-plate is inserted into a passage in the integral extension to engage the threaded member in such a fashion that when the device is inserted over the recessed power blades of a piece of electrical equipment and the thumb screw (22) tightened, the elastomeric nose (16) is compressed between the face-plate (12) and the block (20) forcing it to expand laterally thereby securing the device in the recess and precluding the accidental or intentional energization of the piece of equipment by attachment of a power cord to the recessed power blades. Means are provided in the interval extension and the thumb screw for the attachment of a locking device (46) which will satisfy OSHA standards.

  18. Copper oxide/N-silicon heterojunction photovoltaic device

    DOE Patents [OSTI]

    Feng, Tom (Morris Plains, NJ); Ghosh, Amal K. (New Providence, NJ)

    1982-01-01

    A photovoltaic device having characteristics of a high efficiency solar cell comprising a Cu.sub.x O/n-Si heterojunction. The Cu.sub.x O layer is formed by heating a deposited copper layer in an oxygen containing ambient.

  19. Direct fired heat exchanger

    DOE Patents [OSTI]

    Reimann, Robert C. (Lafayette, NY); Root, Richard A. (Spokane, WA)

    1986-01-01

    A gas-to-liquid heat exchanger system which transfers heat from a gas, generally the combustion gas of a direct-fired generator of an absorption machine, to a liquid, generally an absorbent solution. The heat exchanger system is in a counterflow fluid arrangement which creates a more efficient heat transfer.

  20. Woven heat exchanger

    DOE Patents [OSTI]

    Piscitella, Roger R. (Idaho Falls, ID)

    1987-01-01

    In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

  1. Rotary magnetic heat pump

    DOE Patents [OSTI]

    Kirol, L.D.

    1987-02-11

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.

  2. Rotary magnetic heat pump

    DOE Patents [OSTI]

    Kirol, Lance D. (Shelly, ID)

    1988-01-01

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation.

  3. Mass and Heat Recovery 

    E-Print Network [OSTI]

    Hindawai, S. M.

    2010-01-01

    In the last few years heat recovery was under spot and in air conditioning fields usually we use heat recovery by different types of heat exchangers. The heat exchanging between the exhaust air from the building with the fresh air to the building...

  4. Pendulum detector testing device

    DOE Patents [OSTI]

    Gonsalves, J.M.

    1997-09-30

    A detector testing device is described which provides consistent, cost-effective, repeatable results. The testing device is primarily constructed of PVC plastic and other non-metallic materials. Sensitivity of a walk-through detector system can be checked by: (1) providing a standard test object simulating the mass, size and material content of a weapon or other contraband, (2) suspending the test object in successive positions, such as head, waist and ankle levels, simulating where the contraband might be concealed on a person walking through the detector system; and (3) swinging the suspended object through each of the positions, while operating the detector system and observing its response. The test object is retained in a holder in which the orientation of the test device or target can be readily changed, to properly complete the testing requirements. 5 figs.

  5. Fragment capture device

    DOE Patents [OSTI]

    Payne, Lloyd R.; Cole, David L.

    2010-03-30

    A fragment capture device for use in explosive containment. The device comprises an assembly of at least two rows of bars positioned to eliminate line-of-sight trajectories between the generation point of fragments and a surrounding containment vessel or asset. The device comprises an array of at least two rows of bars, wherein each row is staggered with respect to the adjacent row, and wherein a lateral dimension of each bar and a relative position of each bar in combination provides blockage of a straight-line passage of a solid fragment through the adjacent rows of bars, wherein a generation point of the solid fragment is located within a cavity at least partially enclosed by the array of bars.

  6. Biochip scanner device

    DOE Patents [OSTI]

    Perov, Alexander (Troitsk, RU); Belgovskiy, Alexander I. (Mayfield Heights, OH); Mirzabekov, Andrei D. (Darien, IL)

    2001-01-01

    A biochip scanner device used to detect and acquire fluorescence signal data from biological microchips or biochips and method of use are provided. The biochip scanner device includes a laser for emitting a laser beam. A modulator, such as an optical chopper modulates the laser beam. A scanning head receives the modulated laser beam and a scanning mechanics coupled to the scanning head moves the scanning head relative to the biochip. An optical fiber delivers the modulated laser beam to the scanning head. The scanning head collects the fluorescence light from the biochip, launches it into the same optical fiber, which delivers the fluorescence into a photodetector, such as a photodiode. The biochip scanner device is used in a row scanning method to scan selected rows of the biochip with the laser beam size matching the size of the immobilization site.

  7. Nonaqueous Electrical Storage Device

    DOE Patents [OSTI]

    McEwen, Alan B. (Melrose, MA); Evans, David A. (Seekonk, MA); Blakley, Thomas J. (Woburn, MA); Goldman, Jay L. (Mansfield, MA)

    1999-10-26

    An electrochemical capacitor is disclosed that features two, separated, high surface area carbon cloth electrodes sandwiched between two current collectors fabricated of a conductive polymer having a flow temperature greater than 130.degree. C., the perimeter of the electrochemical capacitor being sealed with a high temperature gasket to form a single cell device. The gasket material is a thermoplastic stable at temperatures greater than 100.degree. C., preferably a polyester or a polyurethane, and having a reflow temperature above 130.degree. C. but below the softening temperature of the current collector material. The capacitor packaging has good mechanical integrity over a wide temperature range, contributes little to the device equivalent series resistance (ESR), and is stable at high potentials. In addition, the packaging is designed to be easily manufacturable by assembly line methods. The individual cells can be stacked in parallel or series configuration to reach the desired device voltage and capacitance.

  8. Regenerative combustion device

    DOE Patents [OSTI]

    West, Phillip B.

    2004-03-16

    A regenerative combustion device having a combustion zone, and chemicals contained within the combustion zone, such as water, having a first equilibrium state, and a second combustible state. Means for transforming the chemicals from the first equilibrium state to the second combustible state, such as electrodes, are disposed within the chemicals. An igniter, such as a spark plug or similar device, is disposed within the combustion zone for igniting combustion of the chemicals in the second combustible state. The combustion products are contained within the combustion zone, and the chemicals are selected such that the combustion products naturally chemically revert into the chemicals in the first equilibrium state following combustion. The combustion device may thus be repeatedly reused, requiring only a brief wait after each ignition to allow the regeneration of combustible gasses within the head space.

  9. Electrochromic optical switching device

    DOE Patents [OSTI]

    Lampert, Carl M. (El Sobrante, CA); Visco, Steven J. (Berkeley, CA)

    1992-01-01

    An electrochromic cell is disclosed which comprises an electrochromic layer, a polymerizable organo-sulfur layer which comprises the counter electrode of the structure, and an ionically conductive electronically insulating material which comprises the separator between the electrodes. In a preferred embodiment, both the separator and the organo-sulfur electrode (in both its charged and uncharged states) are transparent either to visible light or to the entire solar spectrum. An electrochromic device is disclosed which comprises such electrodes and separator encased in glass plates on the inner surface of each of which is formed a transparent electrically conductive film in respective electrical contact with the electrodes which facilitates formation of an external electrical connection or contact to the electrodes of the device to permit electrical connection of the device to an external potential source.

  10. Electrochromic optical switching device

    DOE Patents [OSTI]

    Lampert, C.M.; Visco, S.J.

    1992-08-25

    An electrochromic cell is disclosed which comprises an electrochromic layer, a polymerizable organo-sulfur layer which comprises the counter electrode of the structure, and an ionically conductive electronically insulating material which comprises the separator between the electrodes. In a preferred embodiment, both the separator and the organo-sulfur electrode (in both its charged and uncharged states) are transparent either to visible light or to the entire solar spectrum. An electrochromic device is disclosed which comprises such electrodes and separator encased in glass plates on the inner surface of each of which is formed a transparent electrically conductive film in respective electrical contact with the electrodes which facilitates formation of an external electrical connection or contact to the electrodes of the device to permit electrical connection of the device to an external potential source. 3 figs.

  11. Modeling a bender element test using Abaqus Finite Element Program

    E-Print Network [OSTI]

    Johnson, Sean (Sean Michael)

    2011-01-01

    Finite Element Methods hold promise for modeling the behavior of an unsaturated soil specimen subjected to bender element agitation. The immediate objective of this research project is to reproduce a bender element test ...

  12. Device for collecting emissions from kerosene heaters

    SciTech Connect (OSTI)

    Gilloti, N.J.

    1984-09-04

    An apparatus for both improving the heat distribution throughout a room from a portable kerosene heater and for collecting undesirable emissions resulting from the burning of the kerosene, includes a base adapted to be mounted on the top of the heater, the base supporting a vertically extending shaft on which is mounted a heat-driven fan formed of either paper or metal, and a disposable disk mounted a spaced distance above the fan on the same shaft, the disk serving as a collector for the undesirable emissions. When the device is placed on an operating kerosene heater, the rising hot air and gases from the heater cause the fan to rotate, which in turn causes emissions from the burning fuel to move upwardly in a more or less cylindrical path. As the products of combustion move upwardly, certain emissions therein such as soot, oily vapors, etc. deposit or condense onto the surface of the spinner and disposable disk.

  13. Telescopic nanotube device for hot nanolithography

    DOE Patents [OSTI]

    Popescu, Adrian; Woods, Lilia M

    2014-12-30

    A device for maintaining a constant tip-surface distance for producing nanolithography patterns on a surface using a telescopic nanotube for hot nanolithography. An outer nanotube is attached to an AFM cantilever opposite a support end. An inner nanotube is telescopically disposed within the outer nanotube. The tip of the inner nanotube is heated to a sufficiently high temperature and brought in the vicinity of the surface. Heat is transmitted to the surface for thermal imprinting. Because the inner tube moves telescopically along the outer nanotube axis, a tip-surface distance is maintained constant due to the vdW force interaction, which in turn eliminates the need of an active feedback loop.

  14. Electron emitting filaments for electron discharge devices

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA); Pincosy, Philip A. (Oakland, CA); Ehlers, Kenneth W. (Alamo, CA)

    1988-01-01

    Electrons are copiously emitted by a device comprising a loop-shaped filament made of lanthanum hexaboride. The filament is directly heated by an electrical current produced along the filament by a power supply connected to the terminal legs of the filament. To produce a filament, a diamond saw or the like is used to cut a slice from a bar made of lanthanum hexaboride. The diamond saw is then used to cut the slice into the shape of a loop which may be generally rectangular, U-shaped, hairpin-shaped, zigzag-shaped, or generally circular. The filaments provide high electron emission at a relatively low operating temperature, such as 1600.degree. C. To achieve uniform heating, the filament is formed with a cross section which is tapered between the opposite ends of the filament to compensate for non-uniform current distribution along the filament due to the emission of electrons from the filament.

  15. Electron emitting filaments for electron discharge devices

    DOE Patents [OSTI]

    Leung, K.N.; Pincosy, P.A.; Ehlers, K.W.

    1983-06-10

    Electrons are copiously emitted by a device comprising a loop-shaped filament made of lanthanum hexaboride. The filament is directly heated by an electrical current produced along the filament by a power supply connected to the terminal legs of the filament. To produce a filament, a diamond saw or the like is used to cut a slice from a bar made of lanthanum hexaboride. The diamond saw is then used to cut the slice into the shape of a loop which may be generally rectangular, U-shaped, hairpin-shaped, zigzag-shaped, or generally circular. The filaments provide high electron emission at a relatively low operating temperature, such as 1600/sup 0/C. To achieve uniform heating, the filament is formed with a cross section which is tapered between the opposite ends of the filament to compensate for nonuniform current distribution along the filament due to the emission of electrons from the filament.

  16. Heat Treating Apparatus

    DOE Patents [OSTI]

    De Saro, Robert (Annandale, NJ); Bateman, Willis (Sutton Colfield, GB)

    2002-09-10

    Apparatus for heat treating a heat treatable material including a housing having an upper opening for receiving a heat treatable material at a first temperature, a lower opening, and a chamber therebetween for heating the heat treatable material to a second temperature higher than the first temperature as the heat treatable material moves through the chamber from the upper to the lower opening. A gas supply assembly is operatively engaged to the housing at the lower opening, and includes a source of gas, a gas delivery assembly for delivering the gas through a plurality of pathways into the housing in countercurrent flow to movement of the heat treatable material, whereby the heat treatable material passes through the lower opening at the second temperature, and a control assembly for controlling conditions within the chamber to enable the heat treatable material to reach the second temperature and pass through the lower opening at the second temperature as a heated material.

  17. Thulium-170 heat source

    DOE Patents [OSTI]

    Walter, Carl E. (Pleasanton, CA); Van Konynenburg, Richard (Livermore, CA); VanSant, James H. (Tracy, CA)

    1992-01-01

    An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

  18. Solar energy thermalization and storage device

    DOE Patents [OSTI]

    McClelland, John F. (Ames, IA)

    1981-09-01

    A passive solar thermalization and thermal energy storage assembly which is visually transparent. The assembly consists of two substantial parallel, transparent wall members mounted in a rectangular support frame to form a liquid-tight chamber. A semitransparent thermalization plate is located in the chamber, substantially paralled to and about equidistant from the transparent wall members to thermalize solar radiation which is stored in a transparent thermal energy storage liquid which fills the chamber. A number of the devices, as modules, can be stacked together to construct a visually transparent, thermal storage wall for passive solar-heated buildings.

  19. Precision positioning device

    DOE Patents [OSTI]

    McInroy, John E.

    2005-01-18

    A precision positioning device is provided. The precision positioning device comprises a precision measuring/vibration isolation mechanism. A first plate is provided with the precision measuring mean secured to the first plate. A second plate is secured to the first plate. A third plate is secured to the second plate with the first plate being positioned between the second plate and the third plate. A fourth plate is secured to the third plate with the second plate being positioned between the third plate and the fourth plate. An adjusting mechanism for adjusting the position of the first plate, the second plate, the third plate, and the fourth plate relative to each other.

  20. Dielectrophoretic columnar focusing device

    DOE Patents [OSTI]

    James, Conrad D. (Albuquerque, NM); Galambos, Paul C. (Albuquerque, NM); Derzon, Mark S. (Tijeras, NM)

    2010-05-11

    A dielectrophoretic columnar focusing device uses interdigitated microelectrodes to provide a spatially non-uniform electric field in a fluid that generates a dipole within particles in the fluid. The electric field causes the particles to either be attracted to or repelled from regions where the electric field gradient is large, depending on whether the particles are more or less polarizable than the fluid. The particles can thereby be forced into well defined stable paths along the interdigitated microelectrodes. The device can be used for flow cytometry, particle control, and other process applications, including cell counting or other types of particle counting, and for separations in material control.

  1. Radial heat transfer from a moving plasma 

    E-Print Network [OSTI]

    Johnson, James Randall

    1966-01-01

    devices are presently being con- sideredd both f r propulsion and attitude control. For the gener'ation of electrical power - the future, the controlled thermonuclear pro- cess or, , uclear fusion holds great promise. Whether the e. ergy created in.... this process is removed in the form of heat or some other means, the fusion gas will exist as a plasma. Also, chemical processing at pre- sent appears to be another area for future application of plasma jets '". which heat transfer data will be needed...

  2. Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide

    E-Print Network [OSTI]

    Baugher, Britton W. H.

    The p–n junction is the functional element of many electronic and optoelectronic devices, including diodes, bipolar transistors, photodetectors, light-emitting diodes and solar cells. In conventional p–n junctions, the ...

  3. Ultra-low-power circuits and systems for wearable and implantable medical devices

    E-Print Network [OSTI]

    Yip, Marcus

    2013-01-01

    Advances in circuits, sensors, and energy storage elements have opened up many new possibilities in the health industry. In the area of wearable devices, the miniaturization of electronics has spurred the rapid development ...

  4. Book Reviews Elements of Mathematical Linguistics ELEMENTS OF MATHEMATICALLINGUISTICS

    E-Print Network [OSTI]

    Book Reviews Elements of Mathematical Linguistics ELEMENTS OF MATHEMATICALLINGUISTICS (Janus and Phonetics University of Leeds LEEDS LS2-9JT AUTOMATIC SEMANTICINTERPRETATION: k COMPUTER MODEL

  5. Apparatus for making photovoltaic devices

    DOE Patents [OSTI]

    Foote, James B. (Toledo, OH); Kaake, Steven A. F. (Perrysburg, OH); Meyers, Peter V. (Bowling Green, OH); Nolan, James F. (Sylvania, OH)

    1994-12-13

    A process and apparatus (70) for making a large area photovoltaic device (22) that is capable of generating low cost electrical power. The apparatus (70) for performing the process includes an enclosure (126) providing a controlled environment in which an oven (156) is located. At least one and preferably a plurality of deposition stations (74,76,78) provide heated vapors of semiconductor material within the oven (156) for continuous elevated temperature deposition of semiconductor material on a sheet substrate (24) including a glass sheet (26) conveyed within the oven. The sheet substrate (24) is conveyed on a roller conveyor (184) within the oven (156) and the semiconductor material whose main layer (82) is cadmium telluride is deposited on an upwardly facing surface (28) of the substrate by each deposition station from a location within the oven above the roller conveyor. A cooling station (86) rapidly cools the substrate (24) after deposition of the semiconductor material thereon to strengthen the glass sheet of the substrate.

  6. Cascaded thermoacoustic devices

    DOE Patents [OSTI]

    Swift, Gregory W.; Backhaus, Scott N.; Gardner, David L.

    2003-12-09

    A thermoacoustic device is formed with a resonator system defining at least one region of high specific acoustic impedance in an acoustic wave within the resonator system. A plurality of thermoacoustic units are cascaded together within the region of high specific acoustic impedance, where at least one of the thermoacoustic units is a regenerator unit.

  7. Liquid mixing device

    SciTech Connect (OSTI)

    O'Leary, R. P.

    1985-08-06

    A mixing device for mixing at least two liquids to produce a homogenous mixture. The device includes an elongated chamber in which a vertically oriented elongated mixing cavity is located. The cavity is sealed at its lower end and it is open at its upper end and in communication with the interior of the chamber. An elongated conduit extends the length of the cavity and is adapted to receive liquids to be mixed. The conduit includes a plurality of ports located at longitudinally spaced positions therealong and which ports are directed in different directions. The ports create plural streams of liquid which interact and mix with one another within the cavity. The mixed liquids overflow the cavity and out its top end into the chamber 24. The chamber 24 includes an outlet from which the mixed liquids are withdrawn. In accordance with the preferred embodiment gas eductor means are provided in the inlet to the conduit to introduce gas bubbles within the cavity. Gas vent means are also provided in the device to vent any introduced gases from the device so that only the mixed liquids flow out the outlet.

  8. Solar Innovator | Alta Devices

    ScienceCinema (OSTI)

    Mattos, Laila; Le, Minh

    2013-05-29

    Selected to participate in the Energy Department's SunShot Initiative, Alta Devices produces solar cells that convert sunlight into electricity at world record-breaking levels of efficiency. Through its innovative solar technology Alta is helping bring down the cost of solar. Learn more about the Energy Department's efforts to advance solar technology at energy.gov/solar .

  9. Condensate removal device

    DOE Patents [OSTI]

    Maddox, James W. (Newport News, VA); Berger, David D. (Alexandria, VA)

    1984-01-01

    A condensate removal device is disclosed which incorporates a strainer in unit with an orifice. The strainer is cylindrical with its longitudinal axis transverse to that of the vapor conduit in which it is mounted. The orifice is positioned inside the strainer proximate the end which is remoter from the vapor conduit.

  10. Device Oriented Project Controller

    SciTech Connect (OSTI)

    Dalesio, Leo; Kraimer, Martin

    2013-11-20

    This proposal is directed at the issue of developing control systems for very large HEP projects. A de-facto standard in accelerator control is the Experimental Physics and Industrial Control System (EPICS), which has been applied successfully to many physics projects. EPICS is a channel based system that requires that each channel of each device be configured and controlled. In Phase I, the feasibility of a device oriented extension to the distributed channel database was demonstrated by prototyping a device aware version of an EPICS I/O controller that functions with the current version of the channel access communication protocol. Extensions have been made to the grammar to define the database. Only a multi-stage position controller with limit switches was developed in the demonstration, but the grammar should support a full range of functional record types. In phase II, a full set of record types will be developed to support all existing record types, a set of process control functions for closed loop control, and support for experimental beam line control. A tool to configure these records will be developed. A communication protocol will be developed or extensions will be made to Channel Access to support introspection of components of a device. Performance bench marks will be made on both communication protocol and the database. After these records and performance tests are under way, a second of the grammar will be undertaken.

  11. Solar Innovator | Alta Devices

    SciTech Connect (OSTI)

    Mattos, Laila; Le, Minh

    2012-01-01

    Selected to participate in the Energy Department's SunShot Initiative, Alta Devices produces solar cells that convert sunlight into electricity at world record-breaking levels of efficiency. Through its innovative solar technology Alta is helping bring down the cost of solar. Learn more about the Energy Department's efforts to advance solar technology at energy.gov/solar .

  12. Systematic Derivation of the Weakly Non-Linear Theory of Thermoacoustic Devices

    E-Print Network [OSTI]

    Eindhoven, Technische Universiteit

    Systematic Derivation of the Weakly Non-Linear Theory of Thermoacoustic Devices P.H.M.W. in 't Eindhoven P.O. Box 513, 5600 MB Eindhoven, The Netherlands Abstract Thermoacoustics is the field concerned of thermoacoustic devices: the ther- moacoustic prime mover and the thermoacoustic heat pump or refrigerator. Two

  13. Hardware Implementation of the Primary Mirror Surface Heating System for the Gemini 8 meter Telescopes

    E-Print Network [OSTI]

    ­meter primary mirror. Keywords: seeing, resistive heating, thermal control, primary mirror 2 as a resistive heating element; the control of current flow across the mirror surface results in a controlled Block Diagram for Gemini Surface Heating System 2.4 Primary Voltage Control Subsystem: This system

  14. Numerical null controllability of the 1D heat equation: dual methods

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Numerical null controllability of the 1D heat equation: dual methods Enrique Fern for the 1D heat equation. The goal is to compute a control that drives (a numerical approximation of and efficiency. Keywords: one-dimensional heat equation, null controllability, finite element methods, dual meth

  15. Hardware Implementation of the Primary Mirror Surface Heating System for the Gemini 8 meter Telescopes

    E-Print Network [OSTI]

    -meter primary mirror. Keywords: seeing, resistive heating, thermal control, primary mirror 2 as a resistive heating element; the control of current flow across the mirror surface results in a controlled Block Diagram for Gemini Surface Heating System 2.4 Primary Voltage Control Subsystem: This system

  16. Electrical connection structure for a superconductor element

    DOE Patents [OSTI]

    Lallouet, Nicolas; Maguire, James

    2010-05-04

    The invention relates to an electrical connection structure for a superconductor element cooled by a cryogenic fluid and connected to an electrical bushing, which bushing passes successively through an enclosure at an intermediate temperature between ambient temperature and the temperature of the cryogenic fluid, and an enclosure at ambient temperature, said bushing projecting outside the ambient temperature enclosure. According to the invention, said intermediate enclosure is filled at least in part with a solid material of low thermal conductivity, such as a polyurethane foam or a cellular glass foam. The invention is applicable to connecting a superconductor cable at cryogenic temperature to a device for equipment at ambient temperature.

  17. Nanomechanical and Nanothermodynamic Devices Department of Physics / iQuest / CNID

    E-Print Network [OSTI]

    Fominov, Yakov

    power dan schmidt #12;rf pulse heating cleland nanostructures group ucsb P = V(T5 el - T5 ph) #12 transport on a nanoscale" Chernogolovka, Russia June 10, 2003 #12;Combine mechanical devices with tunnel in the phonons Trap phonons as long as possible Measure as well as possible Minimize heat capacity Minimize

  18. Electrocaloric materials and devices

    E-Print Network [OSTI]

    Crossley, Samuel

    2013-10-08

    temperature change ?T, without the need for field-resolved heat capacity data, is also described. Three temperature controllers were built: a cryogenic probe for 77-420 K with ?5 mK resolution, a high-temperature stage with vacuum enclosure for 295-700 K...

  19. Sulfuric acid-sulfur heat storage cycle

    DOE Patents [OSTI]

    Norman, John H. (LaJolla, CA)

    1983-12-20

    A method of storing heat is provided utilizing a chemical cycle which interconverts sulfuric acid and sulfur. The method can be used to levelize the energy obtained from intermittent heat sources, such as solar collectors. Dilute sulfuric acid is concentrated by evaporation of water, and the concentrated sulfuric acid is boiled and decomposed using intense heat from the heat source, forming sulfur dioxide and oxygen. The sulfur dioxide is reacted with water in a disproportionation reaction yielding dilute sulfuric acid, which is recycled, and elemental sulfur. The sulfur has substantial potential chemical energy and represents the storage of a significant portion of the energy obtained from the heat source. The sulfur is burned whenever required to release the stored energy. A particularly advantageous use of the heat storage method is in conjunction with a solar-powered facility which uses the Bunsen reaction in a water-splitting process. The energy storage method is used to levelize the availability of solar energy while some of the sulfur dioxide produced in the heat storage reactions is converted to sulfuric acid in the Bunsen reaction.

  20. Elemental sulfur recovery process

    DOE Patents [OSTI]

    Flytzani-Stephanopoulos, M.; Zhicheng Hu.

    1993-09-07

    An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO[sub 2] in the regenerator off gas stream to elemental sulfur in the presence of a catalyst. 4 figures.

  1. Elemental sulfur recovery process

    DOE Patents [OSTI]

    Flytzani-Stephanopoulos, Maria (Winchester, MA); Hu, Zhicheng (Somerville, MA)

    1993-01-01

    An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO.sub.2 -containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO.sub.2 to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO.sub.2 in the regenerator off gas stream to elemental sulfur in the presence of a catalyst.

  2. Nuclear fuel element

    DOE Patents [OSTI]

    Zocher, Roy W. (Los Alamos, NM)

    1991-01-01

    A nuclear fuel element and a method of manufacturing the element. The fuel element is comprised of a metal primary container and a fuel pellet which is located inside it and which is often fragmented. The primary container is subjected to elevated pressure and temperature to deform the container such that the container conforms to the fuel pellet, that is, such that the container is in substantial contact with the surface of the pellet. This conformance eliminates clearances which permit rubbing together of fuel pellet fragments and rubbing of fuel pellet fragments against the container, thus reducing the amount of dust inside the fuel container and the amount of dust which may escape in the event of container breach. Also, as a result of the inventive method, fuel pellet fragments tend to adhere to one another to form a coherent non-fragmented mass; this reduces the tendency of a fragment to pierce the container in the event of impact.

  3. Super energy saver heat pump with dynamic hybrid phase change material

    DOE Patents [OSTI]

    Ally, Moonis Raza (Oak Ridge, TN) [Oak Ridge, TN; Tomlinson, John Jager (Knoxville, TN) [Knoxville, TN; Rice, Clifford Keith (Clinton, TN) [Clinton, TN

    2010-07-20

    A heat pump has a refrigerant loop, a compressor in fluid communication with the refrigerant loop, at least one indoor heat exchanger in fluid communication with the refrigerant loop, and at least one outdoor heat exchanger in fluid communication with the refrigerant loop. The at least one outdoor heat exchanger has a phase change material in thermal communication with the refrigerant loop and in fluid communication with an outdoor environment. Other systems, devices, and methods are described.

  4. Temporary coatings for protection of microelectronic devices during packaging

    DOE Patents [OSTI]

    Peterson, Kenneth A.; Conley, William R.

    2005-01-18

    The present invention relates to a method of protecting a microelectronic device during device packaging, including the steps of applying a water-insoluble, temporary protective coating to a sensitive area on the device; performing at least one packaging step; and then substantially removing the protective coating, preferably by dry plasma etching. The sensitive area can include a released MEMS element. The microelectronic device can be disposed on a wafer. The protective coating can be a vacuum vapor-deposited parylene polymer, silicon nitride, metal (e.g. aluminum or tungsten), a vapor deposited organic material, cynoacrylate, a carbon film, a self-assembled monolayered material, perfluoropolyether, hexamethyldisilazane, or perfluorodecanoic carboxylic acid, silicon dioxide, silicate glass, or combinations thereof. The present invention also relates to a method of packaging a microelectronic device, including: providing a microelectronic device having a sensitive area; applying a water-insoluble, protective coating to the sensitive area; providing a package; attaching the device to the package; electrically interconnecting the device to the package; and substantially removing the protective coating from the sensitive area.

  5. Heat transfer system

    DOE Patents [OSTI]

    Not Available

    1980-03-07

    A heat transfer system for a nuclear reactor is described. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

  6. Heat transfer system

    DOE Patents [OSTI]

    McGuire, Joseph C. (Richland, WA)

    1982-01-01

    A heat transfer system for a nuclear reactor. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

  7. Wound tube heat exchanger

    DOE Patents [OSTI]

    Ecker, Amir L. (Duncanville, TX)

    1983-01-01

    What is disclosed is a wound tube heat exchanger in which a plurality of tubes having flattened areas are held contiguous adjacent flattened areas of tubes by a plurality of windings to give a double walled heat exchanger. The plurality of windings serve as a plurality of effective force vectors holding the conduits contiguous heat conducting walls of another conduit and result in highly efficient heat transfer. The resulting heat exchange bundle is economical and can be coiled into the desired shape. Also disclosed are specific embodiments such as the one in which the tubes are expanded against their windings after being coiled to insure highly efficient heat transfer.

  8. Design and Development of a Plastic Film Heat Exchanger 

    E-Print Network [OSTI]

    Guyer, E. C.; Gollin, M. K.; Brownell, D. L.

    1986-01-01

    condensing vapor. The low thermal conductivity of the plastic is off set by the use of thin films so that overall heat transfer rates are achieved which are comparable 'to conventional units. Potential.uses for such? a unit are low grade heat recovery... with the design of elements and manifolds are described together with an analysis of the thermal and hydraulic factors affecting the operation of the unit. INTRODUCTION The concept for the plastic film heat exchanger (PFHX) is that of individual heat...

  9. Recoverable immobilization of transuranic elements in sulfate ash

    DOE Patents [OSTI]

    Greenhalgh, Wilbur O. (Richland, WA)

    1985-01-01

    Disclosed is a method of reversibly immobilizing sulfate ash at least about 20% of which is sulfates of transuranic elements. The ash is mixed with a metal which can be aluminum, cerium, samarium, europium, or a mixture thereof, in amounts sufficient to form an alloy with the transuranic elements, plus an additional amount to reduce the transuranic element sulfates to elemental form. Also added to the ash is a fluxing agent in an amount sufficient to lower the percentage of the transuranic element sulfates to about 1% to about 10%. The mixture of the ash, metal, and fluxing agent is heated to a temperature sufficient to melt the fluxing agent and the metal. The mixture is then cooled and the alloy is separated from the remainder of the mixture.

  10. Pulse combustion: Devices and applications. (Latest citations from the US Patent database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    The bibliography contains citations of selected patents concerning pulse combustion techniques, apparatus, and applications. Pulse combustion devices for burners, furnaces, boilers, ignition and fuel control, heating and drying systems, heat exchangers, and exhaust and noise reduction are presented. Applications for industrial, commercial, and residential space and water heating are considered. (Contains a minimum of 135 citations and includes a subject term index and title list.)

  11. Non- contacting capacitive diagnostic device

    DOE Patents [OSTI]

    Ellison, Timothy

    2005-07-12

    A non-contacting capacitive diagnostic device includes a pulsed light source for producing an electric field in a semiconductor or photovoltaic device or material to be evaluated and a circuit responsive to the electric field. The circuit is not in physical contact with the device or material being evaluated and produces an electrical signal characteristic of the electric field produced in the device or material. The diagnostic device permits quality control and evaluation of semiconductor or photovoltaic device properties in continuous manufacturing processes.

  12. Packaging of solid state devices

    DOE Patents [OSTI]

    Glidden, Steven C.; Sanders, Howard D.

    2006-01-03

    A package for one or more solid state devices in a single module that allows for operation at high voltage, high current, or both high voltage and high current. Low thermal resistance between the solid state devices and an exterior of the package and matched coefficient of thermal expansion between the solid state devices and the materials used in packaging enables high power operation. The solid state devices are soldered between two layers of ceramic with metal traces that interconnect the devices and external contacts. This approach provides a simple method for assembling and encapsulating high power solid state devices.

  13. Course Information --EE 531 Semiconductor Devices and Device Simulation

    E-Print Network [OSTI]

    Hochberg, Michael

    of Semiconductor Devices" by Hess "Si Processing for the VLSI Era: Vol. 3-- The Submicron MOSFET" by Wolf "Advanced: 20% Exam 1: 30% Exam 2: 30% Project: 20% Prerequisite: Semiconductor Devices (EE 482) or equivalent

  14. Eddy current measurement of tube element spacing

    DOE Patents [OSTI]

    Latham, Wayne Meredith (Forest, VA); Hancock, Jimmy Wade (Lynchburg, VA); Grut, Jayne Marie (Madison Heights, VA)

    1998-01-01

    A method of electromagnetically measuring the distance between adjacent tube elements in a heat exchanger. A cylindrical, high magnetic permeability ferrite slug is placed in the tube adjacent the spacing to be measured. A bobbin or annular coil type probe operated in the absolute mode is inserted into a second tube adjacent the spacing to be measured. From prior calibrations on the response of the eddy current coil, the signals from the coil, when sensing the presence of the ferrite slug, are used to determine the spacing between the tubes.

  15. Consolidated Electric Cooperative- Heat Pump and Water Heating Rebates

    Office of Energy Efficiency and Renewable Energy (EERE)

    Consolidated Electric Cooperative provides rebates to residential customers who install electric water heaters, dual-fuel heating system or geothermal heat pumps. A dual-fuel heating systems...

  16. Organic photosensitive devices

    DOE Patents [OSTI]

    Peumans, Peter; Forrest, Stephen R.

    2013-01-22

    A photoactive device is provided. The device includes a first electrode, a second electrode, and a photoactive region disposed between and electrically connected to the first and second electrodes. The photoactive region further includes an organic donor layer and an organic acceptor layer that form a donor-acceptor heterojunction. The mobility of holes in the organic donor region and the mobility of electrons in the organic acceptor region are different by a factor of at least 100, and more preferably a factor of at least 1000. At least one of the mobility of holes in the organic donor region and the mobility of electrons in the organic acceptor region is greater than 0.001 cm.sup.2/V-sec, and more preferably greater than 1 cm.sup.2/V-sec. The heterojunction may be of various types, including a planar heterojunction, a bulk heterojunction, a mixed heterojunction, and a hybrid planar-mixed heterojunction.

  17. Support and maneuvering device

    DOE Patents [OSTI]

    Wood, R.L.

    1987-03-23

    A support and maneuvering device includes an elongated flexible inflatable enclosure having a fixed end and a movable end. The movable end is collapsible toward the fixed end to a contracted position when the enclosure is in a noninflated condition. Upon inflation, the movable end is movable away from the fixed end to an extended position. The movable end includes means for mounting an article such as a solar reflector thereon. The device also includes a plurality of position controlling means disposed about the movable end to effect adjusting movement of portions thereof by predetermined amounts and for controlling an angle at which the article disposed at the movable end is oriented. The plurality of position controlling means limits a suitable number degrees of freedom of the movable end for transmitting a steering motion thereto and for controlling the position thereof. 9 figs.

  18. Microelectromechanical safe arm device

    SciTech Connect (OSTI)

    Roesler, Alexander W. (Tijeras, NM)

    2012-06-05

    Microelectromechanical (MEM) apparatus and methods for operating, for preventing unintentional detonation of energetic components comprising pyrotechnic and explosive materials, such as air bag deployment systems, munitions and pyrotechnics. The MEM apparatus comprises an interrupting member that can be moved to block (interrupt) or complete (uninterrupt) an explosive train that is part of an energetic component. One or more latching members are provided that engage and prevent the movement of the interrupting member, until the one or more latching members are disengaged from the interrupting member. The MEM apparatus can be utilized as a safe and arm device (SAD) and electronic safe and arm device (ESAD) in preventing unintentional detonations. Methods for operating the MEM apparatus include independently applying drive signals to the actuators coupled to the latching members, and an actuator coupled to the interrupting member.

  19. Dielectrokinetic chromatography devices

    DOE Patents [OSTI]

    Chirica, Gabriela S; Fiechtner, Gregory J; Singh, Anup K

    2014-12-16

    Disclosed herein are methods and devices for dielectrokinetic chromatography. As disclosed, the devices comprise microchannels having at least one perturber which produces a non-uniformity in a field spanning the width of the microchannel. The interaction of the field non-uniformity with a perturber produces a secondary flow which competes with a primary flow. By decreasing the size of the perturber the secondary flow becomes significant for particles/analytes in the nanometer-size range. Depending on the nature of a particle/analyte present in the fluid and its interaction with the primary flow and the secondary flow, the analyte may be retained or redirected. The composition of the primary flow can be varied to affect the magnitude of primary and/or secondary flows on the particles/analytes and thereby separate and concentrate it from other particles/analytes.

  20. Nuclear reactor safety device

    DOE Patents [OSTI]

    Hutter, Ernest (Wilmette, IL)

    1986-01-01

    A safety device is disclosed for use in a nuclear reactor for axially repositioning a control rod with respect to the reactor core in the event of an upward thermal excursion. Such safety device comprises a laminated helical ribbon configured as a tube-like helical coil having contiguous helical turns with slidably abutting edges. The helical coil is disclosed as a portion of a drive member connected axially to the control rod. The laminated ribbon is formed of outer and inner laminae. The material of the outer lamina has a greater thermal coefficient of expansion than the material of the inner lamina. In the event of an upward thermal excursion, the laminated helical coil curls inwardly to a smaller diameter. Such inward curling causes the total length of the helical coil to increase by a substantial increment, so that the control rod is axially repositioned by a corresponding amount to reduce the power output of the reactor.

  1. Wire brush fastening device

    DOE Patents [OSTI]

    Meigs, R.A.

    1995-09-19

    A fastening device is provided which is a variation on the conventional nut and bolt. The bolt has a longitudinal axis and threading helically affixed thereon along the longitudinal axis. A nut having a bore extending therethrough is provided. The bore of the nut has a greater diameter than the diameter of the bolt so the bolt can extend through the bore. An array of wire bristles are affixed within the bore so as to form a brush. The wire bristles extend inwardly from the bore and are constructed and arranged of the correct size, length and stiffness to guide the bolt within the bore and to restrain the bolt within the bore as required. A variety of applications of the wire brush nut are disclosed, including a bolt capture device and a test rig apparatus. 13 figs.

  2. Wire brush fastening device

    DOE Patents [OSTI]

    Meigs, Richard A. (East Concord, NY)

    1995-01-01

    A fastening device is provided which is a variation on the conventional nut and bolt. The bolt has a longitudinal axis and threading helically affixed thereon along the longitudinal axis. A nut having a bore extending therethrough is provided. The bore of the nut has a greater diameter than the diameter of the bolt so the bolt can extend through the bore. An array of wire bristles are affixed within the bore so as to form a brush. The wire bristles extend inwardly from the bore and are constructed and arranged of the correct size, length and stiffness to guide the bolt within the bore and to restrain the bolt within the bore as required. A variety of applications of the wire brush nut are disclosed, including a bolt capture device and a test rig apparatus.

  3. Regenerative braking device

    DOE Patents [OSTI]

    Hoppie, Lyle O. (Birmingham, MI)

    1982-01-12

    Disclosed are several embodiments of a regenerative braking device for an automotive vehicle. The device includes a plurality of rubber rollers (24, 26) mounted for rotation between an input shaft (14) connectable to the vehicle drivetrain and an output shaft (16) which is drivingly connected to the input shaft by a variable ratio transmission (20). When the transmission ratio is such that the input shaft rotates faster than the output shaft, the rubber rollers are torsionally stressed to accumulate energy, thereby slowing the vehicle. When the transmission ratio is such that the output shaft rotates faster than the input shaft, the rubber rollers are torsionally relaxed to deliver accumulated energy, thereby accelerating or driving the vehicle.

  4. Quick stop device

    DOE Patents [OSTI]

    Hipwell, Roger L. (35 Hounds Ditch La., Duxbury, MA 02332); Hazelton, Andrew J. (3877 Army St., San Francisco, CA 94131)

    1996-01-01

    A quick stop device for abruptly interrupting the cutting of a workpiece by a cutter is disclosed. The quick stop device employs an outer housing connected to an inner workpiece holder by at least one shear pin. The outer housing includes an appropriate shank designed to be received in the spindle of a machine, such as a machine tool. A cutter, such as a drill bit, is mounted in a stationary position and the workpiece, mounted to the workpiece holder, is rotated during engagement with the cutter. A trigger system includes at least one spring loaded punch disposed for movement into engagement with the workpiece holder to abruptly stop rotation of the workpiece holder. This action shears the shear pin and permits continued rotation of the spindle and outer housing without substantially disturbing the chip root formed during cutting.

  5. Residual gas analysis device

    DOE Patents [OSTI]

    Thornberg, Steven M. (Peralta, NM)

    2012-07-31

    A system is provided for testing the hermeticity of a package, such as a microelectromechanical systems package containing a sealed gas volume, with a sampling device that has the capability to isolate the package and breach the gas seal connected to a pulse valve that can controllably transmit small volumes down to 2 nanoliters to a gas chamber for analysis using gas chromatography/mass spectroscopy diagnostics.

  6. Temperature measuring device

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN); Bible, Don W. (Clinton, TN); Sohns, Carl W. (Oak Ridge, TN)

    1999-01-01

    Systems and methods are described for a wireless instrumented silicon wafer that can measure temperatures at various points and transmit those temperature readings to an external receiver. The device has particular utility in the processing of semiconductor wafers, where it can be used to map thermal uniformity on hot plates, cold plates, spin bowl chucks, etc. without the inconvenience of wires or the inevitable thermal perturbations attendant with them.

  7. Operated device estimation framework 

    E-Print Network [OSTI]

    Rengarajan, Janarthanan

    2009-05-15

    time on recloser slow curve Tl Point on the maximum equivalent lockout curve of recloser TRj Maximum clearing time at the chosen current for the jth operation TC Total Clearing TCC Time Current Characteristic V Volts / Voltage viii TABLE... to trip open. Sectionalizer setting should be one less than lockout setting of upstream protective device. The third factor is that sectionalizer?s memory time must be no longer than the cumulative tripping and reclosing time intervals of the upstream...

  8. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

  9. HEAT TRANSFER FLUIDS

    E-Print Network [OSTI]

    Lenert, Andrej

    2012-01-01

    The choice of heat transfer fluids has significant effects on the performance, cost, and reliability of solar thermal systems. In this chapter, we evaluate existing heat transfer fluids such as oils and molten salts based ...

  10. Fusion heating technology

    SciTech Connect (OSTI)

    Cole, A.J.

    1982-06-01

    John Lawson established the criterion that in order to produce more energy from fusion than is necessary to heat the plasma and replenish the radiation losses, a minimum value for both the product of plasma density and confinement time t, and the temperature must be achieved. There are two types of plasma heating: neutral beam and electromagnetic wave heating. A neutral beam system is shown. Main development work on negative ion beamlines has focused on the difficult problem of the production of high current sources. The development of a 30 keV-1 ampere multisecond source module is close to being accomplished. In electromagnetic heating, the launcher, which provides the means of coupling the power to the plasma, is most important. The status of heating development is reviewed. Electron cyclotron resonance heating (ECRH), lower hybrid heating (HHH), and ion cyclotron resonance heating (ICRH) are reviewed.

  11. Photovoltaic roof heat flux

    E-Print Network [OSTI]

    Samady, Mezhgan Frishta

    2011-01-01

    designs (relatively) Photovoltaic Solar P a n e l AtmosphereCALIFORNIA, SAN DIEGO Photovoltaic Roof Heat Flux A ThesisABSTRACT OF T H E THESIS Photovoltaic Roof Heat Flux by

  12. Photovoltaic roof heat flux

    E-Print Network [OSTI]

    Samady, Mezhgan Frishta

    2011-01-01

    influence on the heat transfer as the radiation. Since thethe heat transfer analysis, the difference of net radiationheat transfer involved i n this project were conduction, convection and radiation.

  13. Plasma jet ignition device

    DOE Patents [OSTI]

    McIlwain, Michael E. (Franklin, MA); Grant, Jonathan F. (Wayland, MA); Golenko, Zsolt (North Reading, MA); Wittstein, Alan D. (Fairfield, CT)

    1985-01-15

    An ignition device of the plasma jet type is disclosed. The device has a cylindrical cavity formed in insulating material with an electrode at one end. The other end of the cylindrical cavity is closed by a metal plate with a small orifice in the center which plate serves as a second electrode. An arc jumping between the first electrode and the orifice plate causes the formation of a highly-ionized plasma in the cavity which is ejected through the orifice into the engine cylinder area to ignite the main fuel mixture. Two improvements are disclosed to enhance the operation of the device and the length of the plasma plume. One improvement is a metal hydride ring which is inserted in the cavity next to the first electrode. During operation, the high temperature in the cavity and the highly excited nature of the plasma breaks down the metal hydride, liberating hydrogen which acts as an additional fuel to help plasma formation. A second improvement consists of a cavity insert containing a plurality of spaced, metal rings. The rings act as secondary spark gap electrodes reducing the voltage needed to maintain the initial arc in the cavity.

  14. Thermophotovoltaic energy conversion device

    DOE Patents [OSTI]

    Charache, G.W.; Baldasaro, P.F.; Egley, J.L.

    1998-05-19

    A thermophotovoltaic device and a method for making the thermophotovoltaic device are disclosed. The device includes an n-type semiconductor material substrate having top and bottom surfaces, a tunnel junction formed on the top surface of the substrate, a region of active layers formed on top of the tunnel junction and a back surface reflector (BSR). The tunnel junction includes a layer of heavily doped n-type semiconductor material that is formed on the top surface of the substrate and a layer of heavily doped p-type semiconductor material formed on the n-type layer. An optional pseudomorphic layer can be formed between the n-type and p-type layers. A region of active layers is formed on top of the tunnel junction. This region includes a base layer of p-type semiconductor material and an emitter layer of n-type semiconductor material. An optional front surface window layer can be formed on top of the emitter layer. An optional interference filter can be formed on top of the emitter layer or the front surface window layer when it is used. 1 fig.

  15. Sectional device handling tool

    DOE Patents [OSTI]

    Candee, Clark B. (Monroeville, PA)

    1988-07-12

    Apparatus for remotely handling a device in an irradiated underwater environment includes a plurality of tubular sections interconnected end-to-end to form a handling structure, the bottom section being adapted for connection to the device. A support section is connected to the top tubular section and is adapted to be suspended from an overhead crane. Each section is flanged at its opposite ends. Axially retractable bolts in each bottom flange are threadedly engageable with holes in the top flange of an adjacent section, each bolt being biased to its retracted position and retained in place on the bottom flange. Guide pins on each top flange cooperate with mating holes on adjacent bottom flanges to guide movement of the parts to the proper interconnection orientation. Each section carries two hydraulic line segments provided with quick-connect/disconnect fittings at their opposite ends for connection to the segments of adjacent tubular sections upon interconnection thereof to form control lines which are connectable to the device and to an associated control console.

  16. Thermophotovoltaic energy conversion device

    DOE Patents [OSTI]

    Charache, Greg W. (Clifton Park, NY); Baldasaro, Paul F. (Clifton Park, NY); Egley, James L. (Burnt Hills, NY)

    1998-01-01

    A thermophotovoltaic device and a method for making the thermophotovoltaic device. The device includes an n-type semiconductor material substrate having top and bottom surfaces, a tunnel junction formed on the top surface of the substrate, a region of active layers formed on top of the tunnel junction and a back surface reflector (BSR). The tunnel junction includes a layer of heavily doped n-type semiconductor material that is formed on the top surface of the substrate and a layer of heavily doped p-type semiconductor material formed on the n-type layer. An optional pseudomorphic layer can be formed between the n-type and p-type layers. A region of active layers is formed on top of the tunnel junction. This region includes a base layer of p-type semiconductor material and an emitter layer of n-type semiconductor material. An optional front surface window layer can be formed on top of the emitter layer. An optional interference filter can be formed on top of the emitter layer or the front surface window layer when it is used.

  17. Devices with extended area structures for mass transfer processing of fluids

    DOE Patents [OSTI]

    TeGrotenhuis, Ward E. (Kennewick, WA); Wegeng, Robert S. (Richland, WA); Whyatt, Greg A. (West Richland, WA); King, David L. (Richland, WA); Brooks, Kriston P. (Kennewick, WA); Stenkamp, Victoria S. (Richland, WA)

    2009-04-21

    A microchannel device includes several mass transfer microchannels to receive a fluid media for processing at least one heat transfer microchannel in fluid communication with a heat transfer fluid defined by a thermally conductive wall, and at several thermally conductive fins each connected to the wall and extending therefrom to separate the mass transfer microchannels from one another. In one form, the device may optionally include another heat transfer microchannel and corresponding wall that is positioned opposite the first wall and has the fins and the mass transfer microchannels extending therebetween.

  18. Heat Pipe Impact on Dehumidification, Indoor Air Quality and Energy Savings 

    E-Print Network [OSTI]

    Cooper, J. T.

    1996-01-01

    for dehumidification, precooling, reheating and heat recovery. FIGURE 1. A SIMPLE HEAT BACKGROUND AND OVERVIEW The use of heat pipes dates back to the turn of the century. Heat pipes, also termed Perkins pipes, are heat transfer devices which work by means... stream_source_info ESL-HH-96-05-44.pdf.txt stream_content_type text/plain stream_size 15385 Content-Encoding UTF-8 stream_name ESL-HH-96-05-44.pdf.txt Content-Type text/plain; charset=UTF-8 HEAT PIPE IMPACT...

  19. DOLFIN: Automated Finite Element Computing

    E-Print Network [OSTI]

    Logg, Anders; Wells, G N

    2009-01-01

    ´de´lec 1980]. (4) L2-conforming finite elements: (a) DGq, arbitrary degree discontinuous Lagrange elements; and (b) CR1, first degree Crouzeix–Raviart5 elements [Crouzeix and Raviart 1973]. Arbitrary combinations of the above elements may be used to define...

  20. Finite Element Analysis Skateboard Truck

    E-Print Network [OSTI]

    De, Suvranu

    Finite Element Analysis Of a Skateboard Truck #12;2 Executive Summary: Engineering is and always is an element of the `truck,' which holds the wheels. Finite Element analysis will be conducted on this piece a combination of SolidWorks (for modeling) and ABAQUS (for finite element analysis). It is evident from

  1. Abrasion resistant heat pipe

    DOE Patents [OSTI]

    Ernst, D.M.

    1984-10-23

    A specially constructed heat pipe is described for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

  2. Abrasion resistant heat pipe

    DOE Patents [OSTI]

    Ernst, Donald M. (Leola, PA)

    1984-10-23

    A specially constructed heat pipe for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

  3. Solar heat receiver

    DOE Patents [OSTI]

    Hunt, A.J.; Hansen, L.J.; Evans, D.B.

    1982-09-29

    A receiver is described for converting solar energy to heat a gas to temperatures from 700 to 900/sup 0/C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

  4. MA HEAT Loan Overview

    Broader source: Energy.gov [DOE]

    Presents information on the success of Massachusetts's HEAT loan offerings and how the financing tool is funded.

  5. Solar heat receiver

    DOE Patents [OSTI]

    Hunt, Arlon J. (Oakland, CA); Hansen, Leif J. (Berkeley, CA); Evans, David B. (Orinda, CA)

    1985-01-01

    A receiver for converting solar energy to heat a gas to temperatures from 700.degree.-900.degree. C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

  6. Internal combustion engine system with fog injection and heat exchange

    SciTech Connect (OSTI)

    Munk, M.

    1987-10-27

    An improved turbine apparatus is described comprising: a turbine power generator, including a source of input air, and a source of fuel, a compressor which receives the input air, a combustion chamber which receives air from the output of the compressor and fuel from the source of fuel, a turbine which receives exhaust gases from the combustion chamber; and an electrical generator mechanically coupled with the turbine; a fogging device communicating with the input air. The fogging device is adapted to receive a fogger air supply and a fogger water supply, and to generate a fog in the input air, an adjustable heat exchanger for exchanging heat from the exhaust of the turbine to the input air to be fogged; and means for adjusting the level of heat exchange of the heat exchanger in accordance with properties of the input air and the level of fog being generated.

  7. Dependency of Heat Transfer Rate on the Brinkman Number in Microchannels

    E-Print Network [OSTI]

    H. S. Park

    2008-01-07

    Heat generation from electronics increases with the advent of high-density integrated circuit technology. To come up with the heat generation, microscale cooling has been thought as a promising technology. Prediction of heat transfer rate is crucial in design of microscale cooling device but is not clearly understood yet. This work proposes a new correlation between heat transfer rate and Brinkman number which is nondimensional number of viscosity, flow velocity and temperature. It is expected that the equation proposed by this work can be useful to design microchannel cooling device.

  8. Mechanically flexible organic electroluminescent device with directional light emission

    DOE Patents [OSTI]

    Duggal, Anil Raj; Shiang, Joseph John; Schaepkens, Marc

    2005-05-10

    A mechanically flexible and environmentally stable organic electroluminescent ("EL") device with directional light emission comprises an organic EL member disposed on a flexible substrate, a surface of which is coated with a multilayer barrier coating which includes at least one sublayer of a substantially transparent organic polymer and at least one sublayer of a substantially transparent inorganic material. The device includes a reflective metal layer disposed on the organic EL member opposite to the substrate. The reflective metal layer provides an increased external quantum efficiency of the device. The reflective metal layer and the multilayer barrier coating form a seal around the organic EL member to reduce the degradation of the device due to environmental elements.

  9. Geothermal Heat Pump Basics

    Broader source: Energy.gov [DOE]

    Geothermal heat pumps use the constant temperature of the earth as an exchange medium for heat. Although many parts of the country experience seasonal temperature extremes—from scorching heat in the summer to sub-zero cold in the winter—the ground a few feet below the earth's surface remains at a relatively constant temperature.

  10. Liquid heat capacity lasers

    DOE Patents [OSTI]

    Comaskey, Brian J. (Walnut Creek, CA); Scheibner, Karl F. (Tracy, CA); Ault, Earl R. (Livermore, CA)

    2007-05-01

    The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

  11. Pioneering Heat Pump Project

    Broader source: Energy.gov [DOE]

    Project objectives: To install and monitor an innovative WaterFurnace geothermal system that is technologically advanced and evolving; To generate hot water heating from a heat pump that uses non-ozone depleting refrigerant CO2. To demonstrate the energy efficiency of this system ground source heat pump system.

  12. Heat Transfer Guest Editorial

    E-Print Network [OSTI]

    Kandlikar, Satish

    Journal of Heat Transfer Guest Editorial We are indeed delighted in bringing out this special issue was showcased in diverse areas such as traditional heat and mass transfer, lab-on-chip, sensors, biomedical applica- tions, micromixers, fuel cells, and microdevices. Selected papers in the field of heat transfer

  13. Non-equilibrium quantum heat machines

    E-Print Network [OSTI]

    Rober Alicki; David Gelbwaser-Klimovsky

    2015-07-07

    Standard heat machines (engine, heat pump, refrigerator) are composed of a system ("working fluid") coupled to at least two equilibrium baths at different temperatures and periodically driven by an external device (piston or rotor) called sometimes work reservoir. The aim of this paper is to go beyond this scheme by considering environments which are stationary but cannot be decomposed into few baths at thermal equilibrium. Such situations are important, for example in solar cells, chemical machines in biology, various realizations of laser cooling or nanoscopic machines driven by laser radiation. We classify non-equilibrium baths depending on their thermodynamic behavior and show that the efficiency of heat machines operating under their influences is limited by a generalized Carnot bound.

  14. Multi-stage quantum absorption heat pumps

    E-Print Network [OSTI]

    Luis A. Correa

    2014-01-16

    It is well known that heat pumps, while being all limited by the same basic thermodynamic laws, may find realization on systems as "small" and "quantum" as a three-level maser. In order to quantitatively assess how the performance of these devices scales with their size, we design generalized $N$-dimensional ideal heat pumps by merging $N-2$ elementary three-level stages. We set them to operate in the absorption chiller mode between given hot and cold baths, and study their maximum achievable cooling power and the corresponding efficiency as a function of $N$. While the efficiency at maximum power is roughly size-independent, the power itself slightly increases with the dimension, quickly saturating to a constant. Thus, interestingly, scaling up autonomous quantum heat pumps does not render a significant enhancement beyond the optimal double-stage configuration.

  15. A corrosive resistant heat exchanger

    DOE Patents [OSTI]

    Richlen, S.L.

    1987-08-10

    A corrosive and erosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is pumped through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium. 3 figs., 3 tabs.

  16. Heat recovery in building envelopes

    E-Print Network [OSTI]

    Walker, Iain S.; Sherman, Max H.

    2003-01-01

    2003). Infiltration heat recovery – ASHRAE Research ProjectModel for Infiltration Heat Recovery, Proc. 21 st AnnualN ATIONAL L ABORATORY Heat Recovery in Building Envelopes

  17. Heat Recovery in Building Envelopes

    E-Print Network [OSTI]

    Sherman, Max H.; Walker, Iain S.

    2001-01-01

    Model For Infiltration Heat Recovery. Proceedings 21st AivcLBNL 47329 HEAT RECOVERY IN BUILDING ENVELOPES Max H.contribution because of heat recovery within the building

  18. Heat recovery in building envelopes

    E-Print Network [OSTI]

    Walker, Iain S.; Sherman, Max H.

    2003-01-01

    2003). Infiltration heat recovery – ASHRAE Research ProjectModel for Infiltration Heat Recovery, Proc. 21 st AnnualWalker, I.S. (2001). "Heat Recovery in Building Envelopes".

  19. Solar Thermal Energy Storage Device: Hybrid Nanostructures for High-Energy-Density Solar Thermal Fuels

    SciTech Connect (OSTI)

    2012-01-09

    HEATS Project: MIT is developing a thermal energy storage device that captures energy from the sun; this energy can be stored and released at a later time when it is needed most. Within the device, the absorption of sunlight causes the solar thermal fuel’s photoactive molecules to change shape, which allows energy to be stored within their chemical bonds. A trigger is applied to release the stored energy as heat, where it can be converted into electricity or used directly as heat. The molecules would then revert to their original shape, and can be recharged using sunlight to begin the process anew. MIT’s technology would be 100% renewable, rechargeable like a battery, and emissions-free. Devices using these solar thermal fuels—called Hybrisol—can also be used without a grid infrastructure for applications such as de-icing, heating, cooking, and water purification.

  20. Wireless Communications Device Policy & Procedures

    E-Print Network [OSTI]

    Wireless Communications Device Policy & Procedures Effective Date: October 1, 2012 Page 1 Revised staff eligibility for a wireless communication device b. Define the process for obtaining a wireless Wireless devices and plans will be provided by StFX for the following employees: 1. President, Vice

  1. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard (2750-C Segerstrom Ave., Santa Ana, CA 92704)

    1980-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer. The heat pump part of the system heats or cools a house or other structure through a combination of evaporation and absorption or, conversely, condensation and desorption, in a pair of containers. A set of automatic controls change the system for operation during winter and summer months and for daytime and nighttime operation to satisfactorily heat and cool a house during an entire year. The absorber chamber is subjected to solar heating during regeneration cycles and is covered by one or more layers of glass or other transparent material. Daytime home air used for heating the home is passed at appropriate flow rates between the absorber container and the first transparent cover layer in heat transfer relationship in a manner that greatly reduce eddies and resultant heat loss from the absorbant surface to ambient atmosphere.

  2. Heat Transfer Fluids for Solar Water Heating Systems | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Illustration of a solar water heater. Illustration of a solar water heater. Heat-transfer fluids carry heat through solar collectors and a heat exchanger to the heat storage tanks...

  3. Absorption heat pump system

    DOE Patents [OSTI]

    Grossman, Gershon (Oak Ridge, TN); Perez-Blanco, Horacio (Knoxville, TN)

    1984-01-01

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  4. The transuranium elements: From neptunium and plutonium to element 112

    SciTech Connect (OSTI)

    Hoffman, D.C. |

    1996-07-26

    Beginning in the 1930`s, both chemists and physicists became interested in synthesizing new artificial elements. The first transuranium element, Np, was synthesized in 1940. Over the past six decades, 20 transuranium elements have been produced. A review of the synthesis is given. The procedure of naming the heavy elements is also discussed. It appears feasible to produce elements 113 and 114. With the Berkeley Gas-filled Separator, it should be possible to reach the superheavy elements in the region of the spherical Z=114 shell, but with fewer neutrons than the N=184 spherical shell. 57 refs, 6 figs.

  5. Cryogenic refrigeration requirements for superconducting insertion devices in a light source

    SciTech Connect (OSTI)

    Green, Michael A.; Green, Michael A.; Green, Michael A.

    2003-08-15

    This report discusses cryogenic cooling superconducting insertion devices for modern light sources. The introductory part of the report discusses the difference between wiggler and undulators and how the bore temperature may affect the performance of the magnets. The steps one would take to reduce the gap between the cold magnet pole are discussed. One section of the report is devoted to showing how one would calculate the heat that enters the device. Source of heat include, heat entering through the vacuum chamber, heating due to stray electrons and synchrotron radiation, heating due to image current on the bore, heat flow by conduction and radiation, and heat transfer into the cryostat through the magnet leads. A section of the report is devoted to cooling options such as small cryo-cooler and larger conventional helium refrigerators. This section contains a discussion as to when it is appropriate to use small coolers that do not have J-T circuits. Candidate small cryo-coolers are discussed in this section of the report. Cooling circuits for cooling with a conventional refrigerator are also discussed. A section of the report is devoted to vibration isolation and how this may affect how the cooling is attached to the device. Vibration isolation using straps is compared to vibration isolation using helium heat pipes. The vibration isolation of a conventional refrigeration system is also discussed. Finally, the cool down of an insertion device is discussed. The device can either be cooled down using liquid cryogenic nitrogen and liquid helium or by using the cooler used to keep the devices cold over the long haul.

  6. Heat pump apparatus

    DOE Patents [OSTI]

    Nelson, Paul A. (Wheaton, IL); Horowitz, Jeffrey S. (Woodridge, IL)

    1983-01-01

    A heat pump apparatus including a compact arrangement of individual tubular reactors containing hydride-dehydride beds in opposite end sections, each pair of beds in each reactor being operable by sequential and coordinated treatment with a plurality of heat transfer fluids in a plurality of processing stages, and first and second valves located adjacent the reactor end sections with rotatable members having multiple ports and associated portions for separating the hydride beds at each of the end sections into groups and for simultaneously directing a plurality of heat transfer fluids to the different groups. As heat is being generated by a group of beds, others are being regenerated so that heat is continuously available for space heating. As each of the processing stages is completed for a hydride bed or group of beds, each valve member is rotated causing the heat transfer fluid for the heat processing stage to be directed to that bed or group of beds. Each of the end sections are arranged to form a closed perimeter and the valve member may be rotated repeatedly about the perimeter to provide a continuous operation. Both valves are driven by a common motor to provide a coordinated treatment of beds in the same reactors. The heat pump apparatus is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators but may be used with any source of heat, including a source of low-grade heat.

  7. A mixed finite-element scheme of a semiconductor energy-transport model

    E-Print Network [OSTI]

    Hanke-Bourgeois, Martin

    A mixed finite-element scheme of a semiconductor energy-transport model using dual entropy which are able to deal with physical effects such as carrier heating and velocity overshoot. The energy that the Joule heating term vanishes if the dual entropy variables w1 = (µ - V )/T and w2 = -1/T are employed

  8. Active microchannel heat exchanger

    DOE Patents [OSTI]

    Tonkovich, Anna Lee Y. (Pasco, WA) [Pasco, WA; Roberts, Gary L. (West Richland, WA) [West Richland, WA; Call, Charles J. (Pasco, WA) [Pasco, WA; Wegeng, Robert S. (Richland, WA) [Richland, WA; Wang, Yong (Richland, WA) [Richland, WA

    2001-01-01

    The present invention is an active microchannel heat exchanger with an active heat source and with microchannel architecture. The microchannel heat exchanger has (a) an exothermic reaction chamber; (b) an exhaust chamber; and (c) a heat exchanger chamber in thermal contact with the exhaust chamber, wherein (d) heat from the exothermic reaction chamber is convected by an exothermic reaction exhaust through the exhaust chamber and by conduction through a containment wall to the working fluid in the heat exchanger chamber thereby raising a temperature of the working fluid. The invention is particularly useful as a liquid fuel vaporizer and/or a steam generator for fuel cell power systems, and as a heat source for sustaining endothermic chemical reactions and initiating exothermic reactions.

  9. Nanotube resonator devices

    DOE Patents [OSTI]

    Jensen, Kenneth J; Zettl, Alexander K; Weldon, Jeffrey A

    2014-05-06

    A fully-functional radio receiver fabricated from a single nanotube is being disclosed. Simultaneously, a single nanotube can perform the functions of all major components of a radio: antenna, tunable band-pass filter, amplifier, and demodulator. A DC voltage source, as supplied by a battery, can power the radio. Using carrier waves in the commercially relevant 40-400 MHz range and both frequency and amplitude modulation techniques, successful music and voice reception has been demonstrated. Also disclosed are a radio transmitter and a mass sensor using a nanotube resonator device.

  10. Nanoscale Josephson Devices

    E-Print Network [OSTI]

    Bell, Chris

    , ferromagnetically (aligned ferromagnetic layers) FIB Focused Ion Beam GL Ginzburg-Landau GPIB General Purpose Interface Bus GMR Giant Magnetoresistance HTS High Temperature Superconductor I Insulator LED Light Emitting Diode LTS Low Temperature Superconductor MR... . The fabrication of intrinsic Josephson junctions in the high temperature superconductor Tl2Ba2CaCu2O8 will then be discussed, as well as Nb/MoSi2/Nb junctions, superconducting quantum interference devices, and finally GaN light emitting diodes. The work on Tl2Ba2...

  11. Micro environmental sensing device

    DOE Patents [OSTI]

    Polosky, Marc A. (Tijeras, NM); Lukens, Laurance L. (Tijeras, NM)

    2006-05-02

    A microelectromechanical (MEM) acceleration switch is disclosed which includes a proof mass flexibly connected to a substrate, with the proof mass being moveable in a direction substantially perpendicular to the substrate in response to a sensed acceleration. An electrode on the proof mass contacts one or more electrodes located below the proof mass to provide a switch closure in response to the sensed acceleration. Electrical latching of the switch in the closed position is possible with an optional latching electrode. The MEM acceleration switch, which has applications for use as an environmental sensing device, can be fabricated using micromachining.

  12. Assembly for electrical conductivity measurements in the piston cylinder device

    DOE Patents [OSTI]

    Watson, Heather Christine (Dublin, CA); Roberts, Jeffrey James (Livermore, CA)

    2012-06-05

    An assembly apparatus for measurement of electrical conductivity or other properties of a sample in a piston cylinder device wherein pressure and heat are applied to the sample by the piston cylinder device. The assembly apparatus includes a body, a first electrode in the body, the first electrode operatively connected to the sample, a first electrical conductor connected to the first electrode, a washer constructed of a hard conducting material, the washer surrounding the first electrical conductor in the body, a second electrode in the body, the second electrode operatively connected to the sample, and a second electrical conductor connected to the second electrode.

  13. PERFORMANCE OF A STIRLING ENGINE POWERED HEAT ACTIVATED HEAT PUMP

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    PERFORMANCE OF A STIRLING ENGINE POWERED HEAT ACTIVATED HEAT PUMP W. D. C. Richards and W. L. Auxer General Electric Company Space Division King of Prussia, Pa. ABSTRACT A heat activated heat pump (HAHP by the heat pump effect. The Stirling engine/Rankine cycle refrigeration loop heat pump being developed would

  14. Stretchable and foldable electronic devices

    DOE Patents [OSTI]

    2013-10-08

    Disclosed herein are stretchable, foldable and optionally printable, processes for making devices and devices such as semiconductors, electronic circuits and components thereof that are capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Strain isolation layers provide good strain isolation to functional device layers. Multilayer devices are constructed to position a neutral mechanical surface coincident or proximate to a functional layer having a material that is susceptible to strain-induced failure. Neutral mechanical surfaces are positioned by one or more layers having a property that is spatially inhomogeneous, such as by patterning any of the layers of the multilayer device.

  15. Stretchable and foldable electronic devices

    DOE Patents [OSTI]

    Rogers, John A; Huang, Yonggang; Ko, Heung Cho; Stoykovich, Mark; Choi, Won Mook; Song, Jizhou; Ahn, Jong Hyun; Kim, Dae Hyeong

    2014-12-09

    Disclosed herein are stretchable, foldable and optionally printable, processes for making devices and devices such as semiconductors, electronic circuits and components thereof that are capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Strain isolation layers provide good strain isolation to functional device layers. Multilayer devices are constructed to position a neutral mechanical surface coincident or proximate to a functional layer having a material that is susceptible to strain-induced failure. Neutral mechanical surfaces are positioned by one or more layers having a property that is spatially inhomogeneous, such as by patterning any of the layers of the multilayer device.

  16. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 53, NO. 10, OCTOBER 2006 2075 Inductively Heated Shape Memory Polymer for the

    E-Print Network [OSTI]

    ferromagnetic particles were actuated in air by applying an alternating magnetic field to induce heating was used to quantify the rate of heat genera- tion as a function of particle size and volumetric loading, inductive heating magnetic particle, medical device, shape memory polymer (SMP). I. INTRODUCTION SHAPE

  17. Method for making devices having intermetallic structures and intermetallic devices made thereby

    DOE Patents [OSTI]

    Paul, Brian Kevin (Oregon State University, Corvallis, OR); Wilson, Rick D.; Alman, David E.

    2004-01-06

    A method and system for making a monolithic intermetallic structure are presented. The structure is made from lamina blanks which comprise multiple layers of metals which are patternable, or intermetallic lamina blanks that are patternable. Lamina blanks are patterned, stacked and registered, and processed to form a monolithic intermetallic structure. The advantages of a patterned monolithic intermetallic structure include physical characteristics such as melting temperature, thermal conductivity, and corrosion resistance. Applications are broad, and include among others, use as a microreactor, heat recycling device, and apparatus for producing superheated steam. Monolithic intermetallic structures may contain one or more catalysts within the internal features.

  18. An electrochemical system for efficiently harvesting low-grade heat energy

    E-Print Network [OSTI]

    Lee, Seok Woo

    Efficient and low-cost thermal energy-harvesting systems are needed to utilize the tremendous low-grade heat sources. Although thermoelectric devices are attractive, its efficiency is limited by the relatively low ...

  19. Radiant Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    across the room. When radiant heating is located in the floor, it is often called radiant floor heating or simply floor heating. Radiant heating has a number of advantages. It is...

  20. Numerical Analysis of a Mixed Finite Element Method for a FlowTransport Problem

    E-Print Network [OSTI]

    Chou, So-Hsiang

    a waste­ disposal problem in which high level radioactive waste is buried in a salt dome, the salt dissolves to create a brine, radioactive elements decay to generate heat, and radionuclides are transportedNumerical Analysis of a Mixed Finite Element Method for a Flow­Transport Problem S. H. CHOU AND Q