Powered by Deep Web Technologies
Note: This page contains sample records for the topic "devices cells modules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Device physics of thin-film polycrystalline cells and modules. Annual subcontract report, December 6, 1993--December 5, 1994  

DOE Green Energy (OSTI)

Progress has been made in several applications of device physics to thin-film polycrystalline cells and modules. At the cell level, results include a more quantitative separation of photon losses, the impact of second barriers on cell operation, and preliminary studies of how current-voltage curves are affected by band offsets. Module analysis includes the effects of the typical monolithic, series-connected cell geometry, analytical techniques when only the two module leads are accessible, and the impact of chopping frequency, local defects, and high-intensity beams on laser-scanning measurements.

Sites, J.R.

1995-05-01T23:59:59.000Z

2

Electrostatically actuatable light modulating device  

DOE Patents (OSTI)

The electrostatically actuatable light modulator utilizes an opaque substrate plate patterned with an array of aperture cells, the cells comprised of physically positionable dielectric shutters and electrostatic actuators. With incorporation of a light source and a viewing screen, a projection display system is effected. Inclusion of a color filter array aligned with the aperture cells accomplishes a color display. The system is realized in terms of a silicon based manufacturing technology allowing fabrication of a high resolution capability in a physically small device which with the utilization of included magnification optics allows both large and small projection displays.

Koehler, Dale R. (1332 Wagontrain Dr., Albuquerque, NM 87123)

1991-01-01T23:59:59.000Z

3

Light modulating device  

DOE Patents (OSTI)

In a device for transmitting light, means for controlling the transmissivity of the device, including a ceramic, reversibly electrochromic, crystalline element having a highly reflective state when injected with electrons and charge compensating ions and a highly transmissive state when the electrons and ions are removed, the crystalline element being characterized as having a reflectivity of at least 50% in the reflective state and not greater than 10% in the transmissive state, and means for modulating the crystalline element between the reflective and transmissive states by injecting ions into the crystalline element in response to an applied electrical current of a first polarity and removing the ions in response to an applied electrical current of a second polarity are disclosed. 1 fig.

Rauh, R.D.; Goldner, R.B.

1989-12-26T23:59:59.000Z

4

Device Physics of Thin-Film Polycrystalline Cells and Modules; Final Subcontract Report; 6 December 1993-15 March 1998  

DOE Green Energy (OSTI)

This report describes work performed under this subcontract by Colorado State University (CSU). The results of the subcontract effort included progress in understanding CdTe and Cu(In1-xGax)Se2-based solar cells, in developing additional measurement and analysis techniques at the module level, and in strengthening collaboration within the thin-film polycrystalline solar-cell community. A major part of the CdTe work consisted of elevated-temperature stress tests to determine fabrication and operation conditions that minimize the possibility of long-term performance changes. Other CdTe studies included analysis of the back-contact junction, complete photon accounting, and the tradeoff with thin CdS between photocurrent gain and voltage loss. The Cu(In1-xGax)Se2 studies included work on the role of sodium in enhancing performance, the conditions under which conduction-band offsets affect cell performance, the transient effects of cycling between light and dark conditions, and detailed analysis of several individual series of cells. One aspect of thin-film module analysis has been addressing the differences in approach needed for relatively large individual cells made without grids. Most work, however, focused on analysis of laser-scanning data, including defect signatures, photocurrent/shunting separation, and the effects of forward bias or high-intensity light. Collaborations with other laboratories continued on an individual basis, and starting in 1994, collaboration was through the national R&D photovoltaic teams. CSU has been heavily involved in the structure and logistics of both the CdTe and CIS teams, as well as making frequent technical contributions in both areas.

Sites, J. R. (Department of Physics, Colorado State University, Ft. Collins, Colorado)

1999-05-03T23:59:59.000Z

5

Device physics of thin-film polycrystalline cells and modules: Phase 1 annual report: February 1998--January 1999  

DOE Green Energy (OSTI)

This report describes work done by Colorado State University (CSU) during Phase 1 of this subcontract. CSU researchers continued to make basic measurements on CI(G)S and CdTe solar cells fabricated at different labs, to quantitatively deduce the loss mechanisms in these cells, and to make appropriate comparisons that illuminate where progress is being made. Cells evaluated included the new record CIGS cell, CIS cells made with and without CdS, and those made by electrodeposition and electroless growth from solution. Work on the role of impurities focused on sodium in CIS. Cells with varying amounts of sodium added during CIS deposition were fabricated at NREL using four types of substrates. The best performance was achieved with 10{sup {minus}2}--10{sup {minus}1} at% sodium, and the relative merits of proposed mechanisms for the sodium effect were compared. Researchers also worked on the construction and testing of a fine-focused laser-beam apparatus to measure local variations in polycrystalline cell performance. A 1{micro}m spot was achieved, spatial reproducibility in one and two dimensions is less than 1 {micro}m, and photocurrent is reliably measured when the 1{micro}m spot is reduced as low as 1-sun in intensity. In elevated-temperature stress tests, typical CdTe cells held at 100 C under illumination and normal resistive loads for extended periods of time were generally very stable; but those held under reverse or large forward bias and those contacted using larger amounts of copper were somewhat less stable. CdTe cell modeling produced reasonable fits to experimental data, including variations in back-contact barriers. A major challenge being addressed is the photovoltaic response of a single simple-geometry crystallite with realistic grain boundaries.

Sites, J. R.

1999-12-21T23:59:59.000Z

6

Solar cell module lamination process  

DOE Patents (OSTI)

A solar cell module lamination process using fluoropolymers to provide protection from adverse environmental conditions and thus enable more extended use of solar cells, particularly in space applications. A laminate of fluoropolymer material provides a hermetically sealed solar cell module structure that is flexible and very durable. The laminate is virtually chemically inert, highly transmissive in the visible spectrum, dimensionally stable at temperatures up to about 200.degree. C. highly abrasion resistant, and exhibits very little ultra-violet degradation.

Carey, Paul G. (Mountain View, CA); Thompson, Jesse B. (Brentwood, CA); Aceves, Randy C. (Tracy, CA)

2002-01-01T23:59:59.000Z

7

Modulation instability in RF MEMS devices  

Science Conference Proceedings (OSTI)

Modulation instability generated by mechanical frequencies in RF MEMS switches is predicted and its potential contribution to the RF signal degradation is discussed. In particular, evaluations have been performed for double clamped configurations in ... Keywords: Modulation instability, Nonlinear Schrodinger equation, Power handling, RF MEMS

Romolo Marcelli; Giancarlo Bartolucci; Giorgio Angelis; Andrea Lucibello; Emanuela Proietti

2012-04-01T23:59:59.000Z

8

Device for monitoring cell voltage  

SciTech Connect

A device for monitoring a rechargeable battery having a number of electrically connected cells includes at least one current interruption switch for interrupting current flowing through at least one associated cell and a plurality of monitoring units for detecting cell voltage. Each monitoring unit is associated with a single cell and includes a reference voltage unit for producing a defined reference threshold voltage and a voltage comparison unit for comparing the reference threshold voltage with a partial cell voltage of the associated cell. The reference voltage unit is electrically supplied from the cell voltage of the associated cell. The voltage comparison unit is coupled to the at least one current interruption switch for interrupting the current of at least the current flowing through the associated cell, with a defined minimum difference between the reference threshold voltage and the partial cell voltage.

Doepke, Matthias (Garbsen, DE); Eisermann, Henning (Edermissen, DE)

2012-08-21T23:59:59.000Z

9

PV cell and module performance measurement capabilities at NREL  

DOE Green Energy (OSTI)

The Photovoltaic (PV) Cell and Module Performance Characterization team at NREL supports the entire photovoltaic community by providing: secondary calibrations of photovoltaic cells and modules; efficiency measurements with respect to a given set of standard reporting conditions; verification of contract efficiency milestones; and current versus voltage (I-V) measurements under various conditions of temperature, spectral irradiance, and total irradiance. Support is also provided to in-house programs in device fabrication, module stability, module reliability, PV systems evaluations, and alternative rating methods by performing baseline testing, specialized measurements and other assistance when required. The I-V and spectral responsivity equipment used to accomplish these tasks are described in this paper.

Rummel, S.; Emery, K.; Field, H.; Moriarty, T.; Anderberg, A.; Dunlavy, D.; Ottoson, L.

1998-09-01T23:59:59.000Z

10

Back-Contact Crystalline-Silicon Solar Cells and Modules  

DOE Green Energy (OSTI)

This paper summarizes recent progress in the development of back-contact crystalline-silicon (c-Si) solar cells and modules at Sandia National Laboratories. Back-contact cells have potentially improved efficiencies through the elimination of grid obscuration and allow for significant simplifications in the module assembly process. Optimization of the process sequence has improved the efficiency of our back-contact cell (emitter wrap through) from around 12% to near 17% in the past 12 months. In addition, recent theoretical work has elucidated the device physics of emitter wrap-through cells. Finally, improvements in the assembly processing back-contact cells are described.

Bode, M.D.; Garrett, S.E.; Gee, J.M.; Jimeno, J.C.; Smith, D.D.

1999-03-10T23:59:59.000Z

11

Device for frequency modulation of a laser output spectrum  

DOE Patents (OSTI)

A device is provided for fast frequency modulating the output spectrum of multimode lasers and single frequency lasers that are not actively stabilized. A piezoelectric transducer attached to a laser cavity mirror is driven in an unconventional manner to excite resonance vibration of the tranducer to rapidly, cyclicly change the laser cavity length. The result is a cyclic sweeping of the output wavelength sufficient to fill the gaps in the laser output frequency spectrum. When a laser is used to excite atoms or molecules, complete absorption line coverage is made possible.

Beene, J.R.; Bemis, C.E. Jr.

1984-07-17T23:59:59.000Z

12

Device for frequency modulation of a laser output spectrum  

DOE Patents (OSTI)

A device is provided for fast frequency modulating the output spectrum of multimode lasers and single frequency lasers that are not actively stabilized. A piezoelectric transducer attached to a laser cavity mirror is driven in an unconventional manner to excite resonance vibration of the transducer to rapidly, cyclicly change the laser cavity length. The result is a cyclic sweeping of the output wavelength sufficient to fill the gaps in the laser output frequency spectrum. When such a laser is used to excite atoms or molecules, complete absorption line coverage is made possible.

Beene, James R. (Oak Ridge, TN); Bemis, Jr., Curtis E. (Oak Ridge, TN)

1986-01-01T23:59:59.000Z

13

Module level solutions to solar cell polarization  

Science Conference Proceedings (OSTI)

A solar cell module includes interconnected solar cells, a transparent cover over the front sides of the solar cells, and a backsheet on the backsides of the solar cells. The solar cell module includes an electrical insulator between the transparent cover and the front sides of the solar cells. An encapsulant protectively packages the solar cells. To prevent polarization, the insulator has resistance suitable to prevent charge from leaking from the front sides of the solar cells to other portions of the solar cell module by way of the transparent cover. The insulator may be attached (e.g., by coating) directly on an underside of the transparent cover or be a separate layer formed between layers of the encapsulant. The solar cells may be back junction solar cells.

Xavier, Grace (Fremont, CA), Li; Bo (San Jose, CA)

2012-05-29T23:59:59.000Z

14

Process of making solar cell module  

DOE Patents (OSTI)

A process is presented for the manufacture of solar cell modules. A solution comprising a highly plasticized polyvinyl butyral is applied to a solar cell array. The coated array is dried and sandwiched between at last two sheets of polyvinyl butyral and at least two sheets of a rigid transparent member. The sandwich is laminated by the application of heat and pressure to cause fusion and bonding of the solar cell array with the rigid transparent members to produce a solar cell module.

Packer, M.; Coyle, P.J.

1981-03-09T23:59:59.000Z

15

EIA Renewable Energy- Shipments of Photovoltaic Cells and Modules ...  

U.S. Energy Information Administration (EIA)

Renewables and Alternate Fuels > Solar Photovoltaic Cell/Module Annual Report > Annual Shipments of Photovoltaic Cells and Modules by Source: Shipments of ...

16

Multi-junction solar cell device  

SciTech Connect

A multi-junction solar cell device (10) is provided. The multi-junction solar cell device (10) comprises either two or three active solar cells connected in series in a monolithic structure. The multi-junction device (10) comprises a bottom active cell (20) having a single-crystal silicon substrate base and an emitter layer (23). The multi-junction device (10) further comprises one or two subsequent active cells each having a base layer (32) and an emitter layer (23) with interconnecting tunnel junctions between each active cell. At least one layer that forms each of the top and middle active cells is composed of a single-crystal III-V semiconductor alloy that is substantially lattice-matched to the silicon substrate (22). The polarity of the active p-n junction cells is either p-on-n or n-on-p. The present invention further includes a method for substantially lattice matching single-crystal III-V semiconductor layers with the silicon substrate (22) by including boron and/or nitrogen in the chemical structure of these layers.

Friedman, Daniel J. (Lakewood, CO); Geisz, John F. (Wheat Ridge, CO)

2007-12-18T23:59:59.000Z

17

Breaking the energy-bandwidth limit of electro-optic modulators: theory and a device proposal  

E-Print Network (OSTI)

In this paper, we quantitatively analyzed the trade-off between energy per bit for switching and modulation bandwidth of classical electro-optic modulators. A formally simple energy-bandwidth limit (Eq. 10) is derived for electro-optic modulators based on intra-cavity index modulation. To overcome this limit, we propose a dual cavity modulator device which uses a coupling modulation scheme operating at high bandwidth (> 200 GHz) not limited by cavity photon lifetime and simultaneously features an ultra-low switching energy of 0.26 aJ, representing over three orders of magnitude energy consumption reduction compared to state-of-the-art electro-optic modulators.

Lin, Hongtao; Liu, Jifeng; Zhang, Lin; Michel, Jurgen; Hu, Juejun

2013-01-01T23:59:59.000Z

18

Polycrystalline thin-film solar cells and modules  

DOE Green Energy (OSTI)

This paper describes the recent technological advances in polycrystalline thin-film solar cells and modules. Three thin film materials, namely, cadmium telluride (CdTe), copper indium diselenide (CuInSe{sub 2}, CIS) and silicon films (Si-films) have made substantial technical progress, both in device and module performance. Early stability results for modules tested outdoors by various groups worldwide are also encouraging. The major global players actively involved in the development of the these technologies are discussed. Technical issues related to these materials are elucidated. Three 20-kW polycrystalline thin-film demonstration photovoltaic (PV) systems are expected to be installed in Davis, CA in 1992 as part of the Photovoltaics for Utility-Scale Applications (PVUSA) project. This is a joint project between the US Department of Energy (DOE), Pacific Gas and Electric (PG&E), Electric Power Research Institute (EPRI), California Energy Commission (CEC), and a utility consortium.

Ullal, H.S.; Stone, J.L.; Zweibel, K.; Surek, T.; Mitchell, R.L.

1991-12-01T23:59:59.000Z

19

Polycrystalline thin-film solar cells and modules  

DOE Green Energy (OSTI)

This paper describes the recent technological advances in polycrystalline thin-film solar cells and modules. Three thin film materials, namely, cadmium telluride (CdTe), copper indium diselenide (CuInSe{sub 2}, CIS) and silicon films (Si-films) have made substantial technical progress, both in device and module performance. Early stability results for modules tested outdoors by various groups worldwide are also encouraging. The major global players actively involved in the development of the these technologies are discussed. Technical issues related to these materials are elucidated. Three 20-kW polycrystalline thin-film demonstration photovoltaic (PV) systems are expected to be installed in Davis, CA in 1992 as part of the Photovoltaics for Utility-Scale Applications (PVUSA) project. This is a joint project between the US Department of Energy (DOE), Pacific Gas and Electric (PG E), Electric Power Research Institute (EPRI), California Energy Commission (CEC), and a utility consortium.

Ullal, H.S.; Stone, J.L.; Zweibel, K.; Surek, T.; Mitchell, R.L.

1991-12-01T23:59:59.000Z

20

Solar Cell Modules With Improved Backskin  

SciTech Connect

A laminated solar cell module comprises a front light transmitting support, a plurality of interconnected solar cells encapsulated by a light-transmitting encapsulant material, and an improved backskin formed of an ionomer/nylon alloy. The improved backskin has a toughness and melting point temperature sufficiently great to avoid any likelihood of it being pierced by any of the components that interconnect the solar cells.

Gonsiorawski, Ronald C. (Danvers, MA)

2003-12-09T23:59:59.000Z

Note: This page contains sample records for the topic "devices cells modules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Next Generation Solar Cell Materials and Devices - Programmaster ...  

Science Conference Proceedings (OSTI)

Symposium, Next Generation Solar Cell Materials and Devices. Sponsorship. Organizer(s), Mark S. Goorsky, University of California, Los Angeles

22

Reversible (unitized) PEM fuel cell devices  

DOE Green Energy (OSTI)

Regenerative fuel cells (RFCs) are enabling for many weight-critical portable applications, since the packaged specific energy (>400 Wh/kg) of properly designed lightweight RFC systems is several-fold higher than that of the lightest weight rechargeable batteries. RFC systems can be rapidly refueled (like primary fuel cells), or can be electrically recharged (like secondary batteries) if a refueling infrastructure is not conveniently available. Higher energy capacity systems with higher performance, reduced weight, and freedom from fueling infrastructure are the features that RFCs promise for portable applications. Reversible proton exchange membrane (PEM) fuel cells, also known as unitized regenerative fuel cells (URFCs), or reversible regenerative fuel cells, are RFC systems which use reversible PEM cells, where each cell is capable of operating both as a fuel cell and as an electrolyzer. URFCs further economize portable device weight, volume, and complexity by combining the functions of fuel cells and electrolyzers in the same hardware, generally without any system performance or efficiency reduction. URFCs are being made in many forms, some of which are already small enough to be portable. Lawrence Livermore National Laboratory (LLNL) has worked with industrial partners to design, develop, and demonstrate high performance and high cycle life URFC systems. LLNL is also working with industrial partners to develop breakthroughs in lightweight pressure vessels that are necessary for URFC systems to achieve the specific energy advantages over rechargeable batteries. Proton Energy Systems, Inc. (Proton) is concurrently developing and commercializing URFC systems (UNIGEN' product line), in addition to PEM electrolyzer systems (HOGEN' product line), and primary PEM fuel cell systems. LLNL is constructing demonstration URFC units in order to persuade potential sponsors, often in their own conference rooms, that advanced applications based on URFC s are feasible. Safety and logistics force these URFC demonstration units to be small, transportable, and easily set up, hence they already prove the viability of URFC systems for portable applications.

Mitlitsky, F; Myers, B; Smith, W F; Weisberg, Molter, T M

1999-06-01T23:59:59.000Z

23

Solar module having reflector between cells  

DOE Patents (OSTI)

A photovoltaic module comprising an array of electrically interconnected photovoltaic cells disposed in a planar and mutually spaced relationship between a light-transparent front cover member in sheet form and a back sheet structure is provided with a novel light-reflecting means disposed between adjacent cells for reflecting light falling in the areas between cells back toward said transparent cover member for further internal reflection onto the solar cells. The light-reflecting comprises a flexible plastic film that has been embossed so as to have a plurality of small V-shaped grooves in its front surface, and a thin light-reflecting coating on said front surface, the portions of said coating along the sides of said grooves forming light-reflecting facets, said grooves being formed so that said facets will reflect light impinging thereon back into said transparent cover sheet with an angle of incidence greater than the critical angle, whereby substantially all of the reflected light will be internally reflected from said cover sheet back to said solar modules, thereby increasing the current output of the module.

Kardauskas, Michael J. (Billerica, MA)

1999-01-01T23:59:59.000Z

24

Device Physics of Nanoscale Interdigitated Solar Cells (Poster)  

Science Conference Proceedings (OSTI)

Nanoscale interdigitated solar cell device architectures are being investigated for organic and inorganic solar cell devices. Due to the inherent complexity of these device designs quantitative modeling is needed to understand the device physics. Theoretical concepts have been proposed that nanodomains of different phases may form in polycrystalline CIGS solar cells. These theories propose that the nanodomains may form complex 3D intertwined p-n networks that enhance device performance.Recent experimental evidence offers some support for the existence of nanodomains in CIGS thin films. This study utilizes CIGS solar cells to examine general and CIGS-specific concepts in nanoscale interdigitated solar cells.

Metzger, W.; Levi, D.

2008-05-01T23:59:59.000Z

25

Hybrid fuel cell for mobile devices : an integrated approach  

E-Print Network (OSTI)

As mobile devices advance to 3G and beyond, there will be a pressing need for increased power to drive these devices, which the current batteries cannot provide. The direct methanol fuel cell has been identified as a ...

Sohn, Munhee, 1981-

2006-01-01T23:59:59.000Z

26

Device Physics of Nanoscale Interdigitated Solar Cells: Preprint  

DOE Green Energy (OSTI)

This paper uses multidimensional device simulation to explore the physics and solar cell performance of interdigitated p-n junctions for material parameters relevant to the postulated conditions.

Metzger, W. K.; Levi, D.

2008-05-01T23:59:59.000Z

27

Method and device for generating microwaves using a split cavity modulator  

DOE Patents (OSTI)

This invention consists of a compact device called the split cavity modulator whose self-generated oscillating electromagnetic field converts a steady particle beam into a modulated particle beam. The particle beam experiences both signs of the oscillating electric field during the transit through the split cavity modulator. The modulated particle beam can then be used to generate microwaves as that frequency and through a series of sequential extractors, high efficiency extraction of microwave power is enabled. The modulated beam and the microwave frequency can be varied by the placement of resistive wires at nodes of oscillation within the cavity. The short beam travel length through the cavity permit higher currents because both space charge and pinching limitations are reduced. The need for an applied magnetic field to control the beam has been eliminated.

Clark, M.C.; Coleman, P.D.; Marder, B.M.

1990-01-01T23:59:59.000Z

28

Method and device for generating microwaves using a split cavity modulator  

DOE Patents (OSTI)

This invention consists of a compact device called the split cavity modulator whose self-generated oscillating electromagnetic field converts a steady particle beam into a modulated particle beam. The particle beam experiences both signs of the oscillating electric field during the transit through the split cavity modulator. The modulated particle beam can then be used to generate microwaves as that frequency and through a series of sequential extractors, high efficiency extraction of microwave power is enabled. The modulated beam and the microwave frequency can be varied by the placement of resistive wires at nodes of oscillation within the cavity. The short beam travel length through the cavity permit higher currents because both space charge and pinching limitations are reduced. The need for an applied magnetic field to control the beam has been eliminated.

Clark, M.C.; Coleman, P.D.; Marder, B.M.

1990-12-31T23:59:59.000Z

29

Electrode with transparent series resistance for uniform switching of optical modulation devices  

DOE Patents (OSTI)

Switching uniformity of an optical modulation device for controlling the propagation of electromagnetic radiation is improved by use of an electrode comprising an electrically resistive layer that is transparent to the radiation. The resistive layer is preferably an innerlayer of a wide-bandgap oxide sandwiched between layers of indium tin oxide or another transparent conductor, and may be of uniform thickness, or may be graded so as to provide further improvement in the switching uniformity. The electrode may be used with electrochromic and reversible electrochemical mirror (REM) smart window devices, as well as display devices based on various technologies.

Tench, D. Morgan (Camarillo, CA); Cunningham, Michael A. (Thousand Oaks, CA); Kobrin, Paul H. (Newbury Park, CA)

2008-01-08T23:59:59.000Z

30

Short protection device for stack of electrolytic cells  

DOE Patents (OSTI)

The present invention relates to a device for preventing the electrical shorting of a stack of electrolytic cells during an extended period of operation. The device has application to fuel cell and other electrolytic cell stacks operating in low or high temperature corrosive environments. It is of particular importance for use in a stack of fuel cells operating with molten metal carbonate electrolyte for the production of electric power. Also, the device may have application in similar technology involving stacks of electrolytic cells for electrolysis to decompose chemical compounds.

Katz, M.; Schroll, C.R.

1984-11-29T23:59:59.000Z

31

Solar Photovoltaic Cell/Module Shipments Report 2011  

U.S. Energy Information Administration (EIA)

September 2012 U.S. Energy Information Administration | Solar Photovoltaic Cell/Module Shipments Report 2011 7 Table 2. Value, average price, and average efficiency ...

32

Laminated photovoltaic modules using back-contact solar cells  

DOE Patents (OSTI)

Photovoltaic modules which comprise back-contact solar cells, such as back-contact crystalline silicon solar cells, positioned atop electrically conductive circuit elements affixed to a planar support so that a circuit capable of generating electric power is created. The modules are encapsulated using encapsulant materials such as EVA which are commonly used in photovoltaic module manufacture. The module designs allow multiple cells to be electrically connected in a single encapsulation step rather than by sequential soldering which characterizes the currently used commercial practices.

Gee, James M. (Albuquerque, NM); Garrett, Stephen E. (Albuquerque, NM); Morgan, William P. (Albuquerque, NM); Worobey, Walter (Albuquerque, NM)

1999-09-14T23:59:59.000Z

33

Solid oxide fuel cell matrix and modules  

DOE Patents (OSTI)

Porous refractory ceramic blocks arranged in an abutting, stacked configuration and forming a three dimensional array provide a support structure and coupling means for a plurality of solid oxide fuel cells (SOFCs). Each of the blocks includes a square center channel which forms a vertical shaft when the blocks are arranged in a stacked array. Positioned within the channel is a SOFC unit cell such that a plurality of such SOFC units disposed within a vertical shaft form a string of SOFC units coupled in series. A first pair of facing inner walls of each of the blocks each include an interconnecting channel hole cut horizontally and vertically into the block walls to form gas exit channels. A second pair of facing lateral walls of each block further include a pair of inner half circular grooves which form sleeves to accommodate anode fuel and cathode air tubes. The stack of ceramic blocks is self-supporting, with a plurality of such stacked arrays forming a matrix enclosed in an insulating refractory brick structure having an outer steel layer. The necessary connections for air, fuel, burnt gas, and anode and cathode connections are provided through the brick and steel outer shell. The ceramic blocks are so designed with respect to the strings of modules that by simple and logical design the strings could be replaced by hot reloading if one should fail. The hot reloading concept has not been included in any previous designs.

Riley, Brian (Willimantic, CT)

1990-01-01T23:59:59.000Z

34

Energy Conversion Devices Fuel Cell Electrocatalyst Development...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell(tm) Texaco Ovonic Fuel Cell Company, LLC non-precious metal catalysts regenerative braking energy absorption capability wide temperature range instant...

35

Manufacturing technology development for CuInGaSe sub 2 solar cell modules  

DOE Green Energy (OSTI)

The report describes research performed by Boeing Aerospace and Electronics under the Photovoltaic Manufacturing Technology project. We anticipate that implementing advanced semiconductor device fabrication techniques to the production of large-area CuIn{sub 1-x}Ga{sub x}Se{sub 2} (CIGS)/Cd{sub 1-y}Zn{sub y}S/ZnO monolithically integrated thin-film solar cell modules will enable 15% median efficiencies to be achieved in high-volume manufacturing. We do not believe that CuInSe{sub 2} (CIS) can achieve this efficiency in production without sufficient gallium to significantly increase the band gap, thereby matching it better to the solar spectrum (i.e., x{ge}0.2). Competing techniques for CIS film formation have not been successfully extended to CIGS devices with such high band gaps. The SERI-confirmed intrinsic stability of CIS-based photovoltaics renders them far superior to a-Si:H-based devices, making a 30-year module lifetime feasible. The minimal amounts of cadmium used in the structure we propose, compared to CdTe-based devices, makes them environmentally safer and more acceptable to both consumers and relevant regulatory agencies. Large-area integrated thin-film CIGS modules are the product most likely to supplant silicon modules by the end of this decade and enable the cost improvements which will lead to rapid market expansion.

Stanbery, B.J. (Boeing Aerospace and Electronics Co., Seattle, WA (United States))

1991-11-01T23:59:59.000Z

36

Standard Test Methods for Electrical Performance of Nonconcentrator Terrestrial Photovoltaic Modules and Arrays Using Reference Cells  

E-Print Network (OSTI)

1.1 These test methods cover the electrical performance of photovoltaic modules and arrays under natural or simulated sunlight using a calibrated reference cell. 1.1.1 These test methods allow a reference module to be used instead of a reference cell provided the reference module has been calibrated using these test methods against a calibrated reference cell. 1.2 Measurements under a variety of conditions are allowed; results are reported under a select set of reporting conditions (RC) to facilitate comparison of results. 1.3 These test methods apply only to nonconcentrator terrestrial modules and arrays. 1.4 The performance parameters determined by these test methods apply only at the time of the test, and imply no past or future performance level. 1.5 These test methods apply to photovoltaic modules and arrays that do not contain series-connected photovoltaic multijunction devices; such module and arrays should be tested according to Test Methods E 2236. 1.6 The values stated in SI units are to be re...

American Society for Testing and Materials. Philadelphia

2008-01-01T23:59:59.000Z

37

Measurements and Characterization: Cell and Module Performance (Fact Sheet)  

DOE Green Energy (OSTI)

Capabilities fact sheet for the National Center for Photovoltaics: Measurements and Characterization -- Cell and Module Performance. One-sided sheet that includes Scope, Core Competencies and Capabilities, and Contact/Web information.

Not Available

2011-02-01T23:59:59.000Z

38

Single Glucose Biofuel Cells Implanted in Rats Power Electronic Devices  

E-Print Network (OSTI)

fuel cells10­12 . These systems generate electricity under mild conditions through the oxidation the first implanted glucose biofuel cell (GBFC) that is capable of generating sufficient power from a mammal, vibra- tions or body movements to generate power for an implanted device are limited because

Recanati, Catherine

39

Solar Cell Modules With Improved Backskin  

DOE Patents (OSTI)

The present invention relates to gas turbines and more particularly to a device for controlling the flow of cooling air through a flowpath in a turbine blade. The device can be inserted in the inlet opening of the blade flowpath and be retained therein. The device comprises a plug member for adjusting the flow of cooling air through the flowpath. The plug member comprises a retaining portion for retaining the plug member at the inlet opening of the flowpath and a blocking portion inserted within the flowpath for reducing the cross-sectional area of the inlet opening. Such a device is inexpensive and can be easily inserted in the inlet opening of a blade flowpath and retained therein.

Chevrefils, Andre (Chateauguay, CA); Grigore, Daniel Gheorghe (Pointe Claire, CA)

2001-01-23T23:59:59.000Z

40

Center punched solar cell module development effort. Final report  

SciTech Connect

The results of an advanced module development program with the objective of providing a low cost solar cell mechanical interconnect design are presented. The design approach, which avoids soldering or welding operations, lends itself to automated assembly techniques thus supporting the Low-Cost Silicon Solar Array Project goals. During the course of the program, a total of twelve modules were delivered to JPL for qualification testing. The first group of six modules contained aluminum contact cells and the second group of six modules contained silver-titanium-palladium contact cells. Extensive component and environmental testing by Xerox Electro-Optical Systems at the module level has shown that reliable cell mechanical interconnection can be achieved when utilizing the proper electrical contact materials and pressures. Environmental testing of XEOS modules at JPL, in accordance with the same JPL specification used by XEOS, will be performed and the results will be separately published. The module design, manufacturing procedure, test program, significant problem areas and solutions, and conclusions and recommendations as formulated and conducted by XEOS are discussed.

Ross, R.E.; Mortensen, W.E.

1978-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "devices cells modules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Optimization of processing and modeling issues for thin film solar cell devices: Final report, February 3, 1997--September 1, 1998  

DOE Green Energy (OSTI)

This final report describes results achieved under a 20-month NREL subcontract to develop and understand thin-film solar cell technology associated to CuInSe{sub 2} and related alloys, a-Si and its alloys, and CdTe. Modules based on all these thin films are promising candidates to meet DOE's long-range efficiency, reliability and manufacturing cost goals. The critical issues being addressed under this program are intended to provide the science and engineering basis for the development of viable commercial processes and to improve module performance. The generic research issues addressed are: (1) quantitative analysis of processing steps to provide information for efficient commercial-scale equipment design and operation; (2) device characterization relating the device performance to materials properties and process conditions; (3) development of alloy materials with different bandgaps to allow improved device structures for stability and compatibility with module design; (4) development and improved window/heterojunction layers and contacts to improve device performance and reliability; and (5) evaluation of cell stability with respect to device structure and module encapsulation.

Birkmire, R. W.; Phillips, J. E.; Shafarman, W. N.; Hegedus, S. S.; McCandless, B. E.

2000-02-28T23:59:59.000Z

42

Analysis of Fuel Cell Vehicles Hybridization and Implications for Energy Storage Devices (Presentation)  

DOE Green Energy (OSTI)

Presents an analysis of hybridization and implications energy storage devices concerning fuel cell vehicles.

Zolot, M.; Markel, T.; Pesaran, A.

2004-06-01T23:59:59.000Z

43

PV Cell and Module Calibration Activities at NREL  

DOE Green Energy (OSTI)

The performance of PV cells and modules with respect to standard reference conditions is a key indicator of progress of a given technology. This task provides the U.S. terrestrial PV community with the most accurate measurements that are technically possible in a timely fashion. The international module certification and accreditation program PVGap requires certification laboratories to maintain their calibration traceability path to groups like this one. The politics of a "world record" efficiency requires that an independent laboratory perform these measurements for credibility. Most manufacturers base their module peak watt rating upon standards and reference cells calibrated under this task. This task has been involved in reconciling disputes between manufacturers and their cell suppliers in terms of expected versus actual performance. This task has also served as a resource to the PV community for consultation on solar simulation, current versus voltage measurement instrumentation, measurement procedures and measurement artifacts.

Emery, K.; Anderberg, A.; Kiehl, J.; Mack, C.; Moriarty, T.; Ottoson, L.; Rummel, S.

2005-11-01T23:59:59.000Z

44

Module process optimization and device efficiency improvement for stable, low-cost, large-area, cadmium telluride-based photovoltaic module production  

DOE Green Energy (OSTI)

This report describes work under a three-year phased subcontract to develop CdS/CdTe devices and modules and to further improve the technology base at Photon Energy, Inc. (PEI) to better address the commercialization issues and objectives of the PEI and the US Department of Energy. During this reporting period we (1) achieved efficiencies of 12.7% on small area devices, (2) achieved 1-ft{sup 2} modules with over 8% aperture-area efficiency (and active area efficiencies up to {approximately}10%), (3) tested 4-ft{sup 2} modules at NREL at 23.1 (21.3) watts, normalized (6.3% efficiency), and (4) found no inherent stability problems with CdTe technology during life testing, at both NREL and PEI. 7 refs.

Albright, S.P.; Ackerman, B.; Chamberlin, R.R.; Jordan, J.F. (Photon Energy, Inc., El Paso, TX (United States))

1992-04-01T23:59:59.000Z

45

Novel Hydrogen Purification Device Integrated with PEM Fuel Cells  

DOE Green Energy (OSTI)

A prototype device containing twelve membrane tubes was designed, built, and demonstrated. The device produced almost 300 scfh of purified hydrogen at 200 psig feed pressure. The extent of purification met the program target of selectively removing enough impurities to enable industrial-grade hydrogen to meet purity specifications for PEM fuel cells. An extrusion process was developed to produce substrate tubes. Membranes met several test objectives, including completing 20 thermal cycles, exceeding 250 hours of operating life, and demonstrating a flux of 965 scfh/ft2 at 200 psid and 400 C.

Joseph Schwartz; Hankwon Lim; Raymond Drnevich

2010-12-31T23:59:59.000Z

46

High-Efficiency Solar Cell Concepts: Physics, Materials, and Devices  

DOE Green Energy (OSTI)

Over the past three decades, significant progress has been made in the area of high-efficiency multijunction solar cells, with the effort primarily directed at current-matched solar cells in tandem. The key materials issues here have been obtaining semiconductors with the required bandgaps for sequential absorption of light in the solar spectrum and that are lattice matched to readily available substrates. The GaInP/GaAs/Ge cell is a striking example of success achieved in this area. Recently, several new approaches for high-efficiency solar cell design have emerged, that involve novel methods for tailoring alloy bandgaps, as well as alternate technologies for hetero-epitaxy of III-V's on Si. The advantages and difficulties expected to be encountered with each approach will be discussed, addressing both the materials issues and device physics whilst contrasting them with other fourth-generation solar cell concepts.

Mascarenhas, A.; Francoeur, S.; Seong, M. J.; Fluegel, B.; Zhang, Y.; Wanlass, M. W.

2005-01-01T23:59:59.000Z

47

Module process optimization and device efficiency improvement for stable, low-cost, large-area, cadmium telluride-based photovoltaic module production. Final subcontract report, 1 July 1990--30 April 1994  

DOE Green Energy (OSTI)

This report describes work performed under a three-phase subcontract. The objectives of the program include (1) achievement of active-area efficiencies of greater than 14% on small cells; (2) achievement of aperture-area efficiencies of greater than 13% on 0.09-m{sup 2} (1 ft{sup 2}) modules; (3) achievement of aperture-area efficiencies of greater than 12.5% on 0.37-m{sup 2} (4 ft{sup 2}) modules; and achievement of greater than 20-year module life (based on life testing extrapolations) with no greater than 10% efficiency degradation. The results obtained and described herein include the following: (1) efficiencies of 12.7% were achieved on small-area devices; (2) 0.09-m{sup 2} (1 ft{sup 2}) modules achieved greater than 8% aperture-area efficiency, but work for further efficiency improvement was redirected toward the 0.37-M{sup 2} (4 if) modules; (3) 0.37-m{sup 2} (4 ft{sup 2}) modules achieved 26.5-W output, which calculates to 8.0% aperture-area efficiency; (4) consistent prototype production was focused on and substantially achieved within Phase 2; (5) life testing at the National Renewable Energy Laboratory showed no inherent stability problems with the CdTe technology, and the accuracy of module measurement was satisfactorily resolved; and (6) a ``cradle-to-cradle`` recycling program was begun based upon the philosophy that the establishment of such mechanisms will be required to ensure maximum recapture and recycling of all manufacturing waste materials and/or modules returned from the field.

Albright, S.P.; Johnson, S.X. [Golden Photon, Inc., CO (United States)

1994-06-01T23:59:59.000Z

48

Processing and modeling issues for thin-film solar cell devices: Annual subcontract report, January 16, 1995 -- January 15, 1996  

DOE Green Energy (OSTI)

The overall mission of the Institute of Energy Conversion is the development of thin film photovoltaic cells, modules, and related manufacturing technology and the education of students and professionals in photovoltaic technology. The objectives of this four-year NREL subcontract are to advance the state of the art and the acceptance of thin film PV modules in the areas of improved technology for thin film deposition, device fabrication, and material and device characterization and modeling, relating to solar cells based on CuInSe{sub 2} and its alloys, on a-Si and its alloys, and on CdTe. In the area of CuInSe{sub 2} and its alloys, EEC researchers have produced CuIn{sub 1-x}GaxSe{sub 2} films by selenization of elemental and alloyed films with H{sub 2}Se and Se vapor and by a wide variety of process variations employing co-evaporation of the elements. Careful design, execution and analysis of these experiments has led to an improved understanding of the reaction chemistry involved, including estimations of the reaction rate constants. Investigation of device fabrication has also included studies of the processing of the Mo, US and ZnO deposition parameters and their influence on device properties. An indication of the success of these procedures was the fabrication of a 15% efficiency CuIn{sub 1-x}GaxSe{sub 2} solar cell.

Birkmire, R.W.; Phillips, J.E.; Buchanan, W.A.; Eser, E.; Hegedus, S.S.; McCandless, B.E.; Meyers, P.V.; Shafarman, W.N. [Univ. of Delaware, Newark, DE (United States)

1996-08-01T23:59:59.000Z

49

Encapsulant Material For Solar Cell Module And Laminated Glass Applications  

SciTech Connect

An encapsulant material includes a layer of metallocene polyethylene disposed between two layers of an acid copolymer of polyethylene. More specifically, the layer of metallocene polyethylene is disposed adjacent a rear surface of the first layer of the acid copolymer of polyethylene, and a second layer of the acid copolymer of polyethlene is disposed adjacent a rear surface of the layer of metallocene polyethylene. The encapsulant material can be used in solar cell module and laminated glass applications.

Hanoka, Jack I. (Brookline, MA); Klemchuk, Peter P. (Watertown, CT)

2001-02-13T23:59:59.000Z

50

Device Performance  

DOE Green Energy (OSTI)

In the Device Performance group, within the National Center for Photovoltaic's Measurements and Characterization Division, we measure the performance of PV cells and modules with respect to standard reporting conditions--defined as a reference temperature (25 C), total irradiance (1000 Wm-2), and spectral irradiance distribution (IEC standard 60904-3). Typically, these are ''global'' reference conditions, but we can measure with respect to any reference set. To determine device performance, we conduct two general categories of measurements: spectral responsivity (SR) and current versus voltage (I-V). We usually perform these measurements using standard procedures, but we develop new procedures when required by new technologies. We also serve as an independent facility for verifying device performance for the entire PV community. We help the PV community solve its special measurement problems, giving advice on solar simulation, instrumentation for I-V measurements, reference cells, measurement procedures, and anomalous results. And we collaborate with researchers to analyze devices and materials.

Not Available

2006-06-01T23:59:59.000Z

51

The Design of a Five-Cell Superconducting RF Module with a PBG Coupler Cell  

SciTech Connect

We discuss the problem of incorporating a Photonic Band Gap (PBG) cell into a superconducting accelerating module of 5 cells designed for the operational frequency of 2.1 GHz. The reason for using a PBG cell is to provide a good accelerating mode confinement and good Higher Order Mode (HOM) suppression. PBG cell can potentially be used for placing HOM and fundamental mode couplers. However, because of the naturally higher ratio of the peak magnetic field to the accelerating field in the PBG cell, it should be designed to operate at a lower accelerating gradient than the other cells of the module. This ensures that the probability of quench in the PBG cell would be no higher than in other elliptical cells of the structure.

Arsenyev, Sergey A [Los Alamos National Laboratory; Simakov, Evgenya I [Los Alamos National Laboratory

2012-08-29T23:59:59.000Z

52

Electrical isolation of component cells in monolithically interconnected modules  

DOE Patents (OSTI)

A monolithically interconnected photovoltaic module having cells which are electrically connected which comprises a substrate, a plurality of cells formed over the substrate, each cell including a primary absorber layer having a light receiving surface and a p-region, formed with a p-type dopant, and an n-region formed with an n-type dopant adjacent the p-region to form a single pn-junction, and a cell isolation diode layer having a p-region, formed with a p-type dopant, and an n-region formed with an n-type dopant adjacent the p-region to form a single pn-junction, the diode layer intervening the substrate and the absorber layer wherein the absorber and diode interfacial regions of a same conductivity type orientation, the diode layer having a reverse-breakdown voltage sufficient to prevent inter-cell shunting, and each cell electrically isolated from adjacent cells with a vertical trench trough the pn-junction of the diode layer, interconnects disposed in the trenches contacting the absorber regions of adjacent cells which are doped an opposite conductivity type, and electrical contacts.

Wanlass, Mark W. (Golden, CO)

2001-01-01T23:59:59.000Z

53

Research on polycrystalline thin-film materials, cells, and modules  

DOE Green Energy (OSTI)

The US Department of Energy (DOE) supports research activities in polycrystalline thin films through the Polycrystalline Thin-Film Program at the Solar Energy Research Institute (SERI). This program includes research and development (R D) in both copper indium diselenide and cadmium telluride thin films for photovoltaic applications. The objective of this program is to support R D of photovoltaic cells and modules that meet the DOE long-term goals of high efficiency (15%--20%), low cost ($50/m{sup 2}), and reliability (30-year life time). Research carried out in this area is receiving increased recognition due to important advances in polycrystalline thin-film CuInSe{sub 2} and CdTe solar cells and modules. These have become the leading thin-film materials for photovoltaics in terms of efficiency and stability. DOE has recognized this potential through a competitive initiative for the development of CuInSe{sub 2} and CdTe modules. This paper focuses on the recent progress and future directions of the Polycrystalline Thin-Film Program and the status of the subcontracted research on these promising photovoltaic materials. 26 refs., 12 figs, 1 tab.

Mitchell, R.L.; Zweibel, K.; Ullal, H.S.

1990-11-01T23:59:59.000Z

54

Processing and modeling issues for thin-film solar cell devices. Annual subcontract report, January 16, 1993--January 15, 1994  

DOE Green Energy (OSTI)

The overall objective of the research presented in this report is to advance the development and acceptance of thin-film photovoltaic modules by increasing the understanding of film growth and processing and its relationship to materials properties and solar cell performance. The specific means toward meeting this larger goal include: (1) investigating scalable, cost-effective deposition processes; (2) preparing thin-film materials and device layers and completed cell structures; (3) performing detailed material and device analysis; and (4) participating in collaborative research efforts that address the needs of PV-manufacturers. These objectives are being pursued with CuInSe{sub 2}, CdTe and a-Si based solar cells.

Birkmire, R.W.; Phillips, J.E.; Buchanan, W.A.; Hegedus, S.S.; McCandless, B.E.; Shafarman, W.N.; Yokimcus, T.A. [Institute of Energy Conversion, Newark, DE (United States)

1994-09-01T23:59:59.000Z

55

Influence of parasitic resistances on the mismatch relative power loss of solar cell modules  

E-Print Network (OSTI)

available from a photovoltaic module is reduced by the cell-to-cell variations in the photogenerated current of the integrated bypass diode in the unit cell structure. Previous studies on the performance of photovoltaic solar. [ 11 ] have pro- posed a sorting method of the photovoltaic cells and modules in a array into four bins

Paris-Sud XI, Université de

56

Aspects of charge recombination and charge transport in organic solar cells and light-emitting devices  

E-Print Network (OSTI)

In this thesis, aspects of charge reconbination and charge transport in organic solar cells and light-emitting devices are presented. These devices show promise relative to traditional inorganic semiconductors. We show ...

Difley, Seth

2010-01-01T23:59:59.000Z

57

Optimization of Processing and Modeling Issues for Thin-Film Solar Cell Devices; Annual Report, 3 February 1997-2 February 1998  

DOE Green Energy (OSTI)

This report describes results achieved during phase I of a four-phase subcontract to develop and understand thin-film solar cell technology associated with CuInSe2 and related alloys, a-Si and its alloys, and CdTe. Modules based on all these thin films are promising candidates to meet DOE long-range efficiency, reliability, and manufacturing cost goals. The critical issues being addressed under this program are intended to provide the science and engineering basis for developing viable commercial processes and to improve module performance. The generic research issues addressed are: (1) quantitative analysis of processing steps to provide information for efficient commercial-scale equipment design and operation; (2) device characterization relating the device performance to materials properties and process conditions; (3) development of alloy materials with different bandgaps to allow improved device structures for stability and compatibility with module design; (4) development of improved window/heterojunction layers and contacts to improve device performance and reliability; and (5) evaluation of cell stability with respect to illumination, temperature, and ambient and with respect to device structure and module encapsulation.

Birkmire, R. W.; Phillips, J. E.; Shafarman, W. N.; Hegedus, S. S.; McCandless, B. E. (IEC, University of Delaware)

1998-12-08T23:59:59.000Z

58

Optimization of Processing and Modeling Issues for Thin Film Solar Cell Devices: Final Report, 24 August 1998-23 October 2001  

DOE Green Energy (OSTI)

This report describes results achieved during a three-year subcontract to develop and understand thin-film solar cell technology associated to CuInSe2 and related alloys, a-Si and its alloys, and CdTe. Modules based on all these thin films are promising candidates to meet DOE long-range efficiency, reliability, and manufacturing cost goals. The critical issues being addressed under this program are intended to provide the science and engineering basis for the development of viable commercial processes and to improve module performance. The generic research issues addressed are: (1) quantitative analysis of processing steps to provide information for efficient commercial-scale equipment design and operation; (2) device characterization relating the device performance to materials properties and process conditions; (3) development of alloy materials with different bandgaps to allow improved device structures for stability and compatibility with module design; (4) development of improved window/heterojunction layers and contacts to improve device performance and reliability; and (5) evaluation of cell stability with respect to illumination, temperature, and ambient and with respect to device structure and module encapsulation.

Birkmire, R. W.; Phillips, J. E.; Shafarman, W. N.; Eser, E.; Hegedus, S. S.; McCandless, B. E.; Aparicio, R.; Dobson, K.

2003-01-01T23:59:59.000Z

59

Triggerable electro-optic amplitude modulator bias stabilizer for integrated optical devices  

DOE Patents (OSTI)

An improved Mach-Zehnder integrated optical electro-optic modulator is achieved by application and incorporation of a DC bias box containing a laser synchronized trigger circuit, a DC ramp and hold circuit, a modulator transfer function negative peak detector circuit, and an adjustable delay circuit. The DC bias box ramps the DC bias along the transfer function curve to any desired phase or point of operation at which point the RF modulation takes place.

Conder, Alan D. (Tracy, CA); Haigh, Ronald E. (Tracy, CA); Hugenberg, Keith F. (Livermore, CA)

1995-01-01T23:59:59.000Z

60

Density fingering in spatially modulated Hele-Shaw cells  

SciTech Connect

Density fingering of the chlorite-tetrathionate reaction has been studied experimentally in a periodically heterogeneous Hele-Shaw cell where the heterogeneity is introduced in the form of spatial modulation of gap width along the front. Depending on the spatial wavelength, gap width, and chemical composition, three types of cellular structures have been observed. The initial evolution is characterized by dispersion curves, while the long time behavior is described by the change in the autocorrelation function of the front profile and in the mixing length of the patterns.

Toth, Tamara; Horvath, Dezso; Toth, Agota [Department of Physical Chemistry, University of Szeged, P.O. Box 105, Szeged, H-6701 (Hungary)

2007-12-21T23:59:59.000Z

Note: This page contains sample records for the topic "devices cells modules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Module Handbook Specialisation Photovoltaics  

E-Print Network (OSTI)

#12;Specialisation Photovoltaics, University of Northumbria Module 1/Photovoltaics: PHOTOVOLTAIC CELL AND MODULE TECHNOLOGY Module name: PHOTOVOLTAIC CELL AND MODULE TECHNOLOGY Section EUREC · Chemistry · Physics Target learning outcomes The module Photovoltaic Cell and Module Technology teaches

Habel, Annegret

62

Ge/SiGe quantum well devices for light modulation, detection, and emission.  

E-Print Network (OSTI)

??This PhD thesis is devoted to study electro-optic properties of Gemanium/Silicon-Germanium (Ge/SiGe) multiple quantum wells (MQWs) for light modulation, detection, and emission on Si platform. (more)

Chaisakul, Papichaya

2012-01-01T23:59:59.000Z

63

Table 10.9 Photovoltaic Cell and Module Shipments by Sector and ...  

U.S. Energy Information Administration (EIA)

9 Photovoltaic cells/modules that are not connected to the electric power grid, and that are used to ... Solar Collector Manufacturing Activity, annual reports.

64

Table 10.9 Photovoltaic Cell and Module Shipments by Sector and ...  

U.S. Energy Information Administration (EIA)

Includes hydropower, solar, wind, geothermal, biomass and ethanol. ... Table 10.9 Photovoltaic Cell and Module Shipments by Sector and End Use, 1989-2010

65

Table 10.8 Photovoltaic Cell and Module Shipments by Type, Trade ...  

U.S. Energy Information Administration (EIA)

2 Includes all types of photovoltaic cells and modules (single-crystal silicon, cast silicon, ribbon silicon, ... Solar Collector Manufacturing Activity, ...

66

Thin Film Si Bottom Cells for Tandem Device Structures: Final Technical Report, 15 December 2003 - 15 October 2007  

DOE Green Energy (OSTI)

GIT and IEC developed thin-film Si bottom cell and showed that deposition of top cell in tandem device did not reduce bottom cell performance.

Yelundur, V.; Hegedus, S.; Rohatgi, A.; Birkmire, R.

2008-11-01T23:59:59.000Z

67

Materials and devices for optical switching and modulation of photonic integrated circuits  

E-Print Network (OSTI)

The drive towards photonic integrated circuits (PIC) necessitates the development of new devices and materials capable of achieving miniaturization and integration on a CMOS compatible platform. Optical switching: fast ...

Seneviratne, Dilan Anuradha

2007-01-01T23:59:59.000Z

68

Nondestructive method for detecting defects in photodetector and solar cell devices  

SciTech Connect

The invention described herein is a method for locating semiconductor device defects and for measuring the internal resistance of such devices by making use of the intrinsic distributed resistance nature of the devices. The method provides for forward-biasing a solar cell or other device while it is scanning with an optical spot. The forward-biasing is achieved with either an illuminator light source or an external current source.

Sawyer, David E. (Rockville, MD)

1981-01-01T23:59:59.000Z

69

Block IV solar cell module design and test specification for Intermediate Load Center applications  

DOE Green Energy (OSTI)

Requirements are established for performance of terrestial solar cell modules intended for use in various test applications typically characterized as Intermediate Load Centers. During the 1979 to 1980 time period, such applications are expected to be in the 20 kilowatt to 500 kilowatt size range. In addition to module design and performance requirements, a series of characterization and qualification tests necessary to certify the module design for production, and the necessary performance tests for acceptance of modules are also specified.

Not Available

1978-11-01T23:59:59.000Z

70

Materials and process development for the monolithic interconnected module (MIM) InGaAs/InP TPV cells  

DOE Green Energy (OSTI)

Four major components of a thermophotovoltaic (TPV) energy conversion system are a heat source, a graybody or a selective emitter, spectrum shaping elements such as filters, and photovoltaic (PV) cells. One approach to achieving a high voltage/low current configuration is to fabricate a device, where small area PV cells are monolithically series connected. The authors have termed this device a monolithic interconnected module (MIM). A MIM device has other advantages over conventional one-junction cells, such as simplified array interconnections and heat-sinking, and radiation recycling capability via a back surface reflector (BSR). The authors confine the contents of this article to the MIM materials, process development, and some optical results. The successful fabrication of InGaAs/InP MIM devices entails the development and optimization of several key components and processes. These include: isolation trench via geometry, selective chemical etching, contact and interconnect metallization, dielectric isolation barrier, back surface reflector (BSR), and anti-reflection (AR) coating. The selection, development, and testing of the materials and processes described above for MIM fabrication will be described.

Fatemi, N.S.; Jenkins, P.P.; Hoffman, R.W. Jr.; Weizer, V.G. [Essential Research, Inc., Cleveland, OH (United States); Wilt, D.M. [National Aeronautics and Space Administration, Cleveland, OH (United States). Lewis Research Center; Murray, C.S.; Riley, D. [Westinghouse Electric Corp., West Mifflin, PA (United States)

1997-06-01T23:59:59.000Z

71

Technical evaluation of Solar Cells, Inc., CdTe modules and array at NREL  

DOE Green Energy (OSTI)

The Engineering and Technology Validation Team at the National Renewable Energy Laboratory (NREL) conducts in-situ technical evaluations of polycrystalline thin-film photovoltaic (PV) modules and arrays. This paper focuses on the technical evaluation of Solar Cells, Inc., (SCI) cadmium telluride (CdTe) module and array performance by attempting to correlate individual module and array performance. This is done by examining the performance and stability of the modules and array over a period of more than one year. Temperature coefficients for module and array parameters (P{sub max}V{sub oc}, V{sub max}, I{sub sc}, I{sub max}) are also calculated.

Kroposki, B.; Strand, T.; Hansen, R. [and others

1996-05-01T23:59:59.000Z

72

Method for forming a cell separator for use in bipolar-stack energy storage devices  

DOE Patents (OSTI)

An improved multi-cell electrochemical energy storage device, such as a battery, fuel cell, or double layer capacitor using a cell separator which allows cells to be stacked and interconnected with low electrical resistance and high reliability while maximizing packaging efficiency. By adding repeating cells, higher voltages can be obtained. The cell separator is formed by applying an organic adhesive on opposing surfaces of adjacent carbon electrodes or surfaces of aerogel electrodes of a pair of adjacent cells prior to or after pyrolysis thereof to form carbon aerogel electrodes. The cell separator is electronically conductive, but ionically isolating, preventing an electrolytic conduction path between adjacent cells in the stack. 2 figs.

Mayer, S.T.; Feikert, J.H.; Kaschmitter, J.L.; Pekala, R.W.

1994-08-09T23:59:59.000Z

73

Purge gas protected transportable pressurized fuel cell modules and their operation in a power plant  

DOE Patents (OSTI)

A fuel cell generator apparatus and method of its operation involves: passing pressurized oxidant gas, (O) and pressurized fuel gas, (F), into fuel cell modules, (10 and 12), containing fuel cells, where the modules are each enclosed by a module housing (18), surrounded by an axially elongated pressure vessel (64), where there is a purge gas volume, (62), between the module housing and pressure vessel; passing pressurized purge gas, (P), through the purge gas volume, (62), to dilute any unreacted fuel gas from the modules; and passing exhaust gas, (82), and circulated purge gas and any unreacted fuel gas out of the pressure vessel; where the fuel cell generator apparatus is transpatable when the pressure vessel (64) is horizontally disposed, providing a low center of gravity.

Zafred, Paolo R. (Pittsburgh, PA); Dederer, Jeffrey T. (Valencia, PA); Gillett, James E. (Greensburg, PA); Basel, Richard A. (Plub Borough, PA); Antenucci, Annette B. (Pittsburgh, PA)

1996-01-01T23:59:59.000Z

74

Purge gas protected transportable pressurized fuel cell modules and their operation in a power plant  

DOE Patents (OSTI)

A fuel cell generator apparatus and method of its operation involves: passing pressurized oxidant gas and pressurized fuel gas into modules containing fuel cells, where the modules are each enclosed by a module housing surrounded by an axially elongated pressure vessel, and where there is a purge gas volume between the module housing and pressure vessel; passing pressurized purge gas through the purge gas volume to dilute any unreacted fuel gas from the modules; and passing exhaust gas and circulated purge gas and any unreacted fuel gas out of the pressure vessel; where the fuel cell generator apparatus is transportable when the pressure vessel is horizontally disposed, providing a low center of gravity. 11 figs.

Zafred, P.R.; Dederer, J.T.; Gillett, J.E.; Basel, R.A.; Antenucci, A.B.

1996-11-12T23:59:59.000Z

75

Cast polycrystalline silicon photovoltaic cell and module manufacturing technology improvements. Annual subcontract report, 1 December 1993--30 November 1994  

DOE Green Energy (OSTI)

This report describes work performed under a 3-y contract to advance Solarex`s cast polycrystalline silicon manufacturing technology, reduce module production cost, increase module performance, and expand Solarex`s commercial production capacities. Specific objectives are to reduce manufacturing cost for polycrstalline silicon PV modules to less than $1.20/W and to increase manufacturing capacity by a factor of 3. Solarex is working on casting, wire saws, cell process, module assembly, frameless module development, and automated cell handling.

Wohlgemuth, J. [Solarex Corp., Frederick, MD (United States)

1995-09-01T23:59:59.000Z

76

Estimation of the two-dimensional presampled modulation transfer function of digital radiography devices using one-dimensional test objects  

SciTech Connect

Purpose: The modulation transfer function (MTF) of medical imaging devices is commonly reported in the form of orthogonal one-dimensional (1D) measurements made near the vertical and horizontal axes with a slit or edge test device. A more complete description is found by measuring the two-dimensional (2D) MTF. Some 2D test devices have been proposed, but there are some issues associated with their use: (1) they are not generally available; (2) they may require many images; (3) the results may have diminished accuracy; and (4) their implementation may be particularly cumbersome. This current work proposes the application of commonly available 1D test devices for practical and accurate estimation of the 2D presampled MTF of digital imaging systems. Methods: Theory was developed and applied to ensure adequate fine sampling of the system line spread function for 1D test devices at orientations other than approximately vertical and horizontal. Methods were also derived and tested for slit nonuniformity correction at arbitrary angle. Techniques were validated with experimental measurements at ten angles using an edge test object and three angles using a slit test device on an indirect-detection flat-panel system [GE Revolution XQ/i (GE Healthcare, Waukesha, WI)]. The 2D MTF was estimated through a simple surface fit with interpolation based on Delaunay triangulation of the 1D edge-based MTF measurements. Validation by synthesis was also performed with simulated images from a hypothetical direct-detection flat-panel device. Results: The 2D MTF derived from physical measurements yielded an average relative precision error of 0.26% for frequencies below the cutoff (2.5 mm{sup -1}) and approximate circular symmetry at frequencies below 4 mm{sup -1}. While slit analysis generally agreed with the results of edge analysis, the two showed subtle differences at frequencies above 4 mm{sup -1}. Slit measurement near 45 Degree-Sign revealed radial asymmetry in the MTF resulting from the square pixel aperture (0.2 mm Multiplication-Sign 0.2 mm), a characteristic which was not necessarily appreciated with the orthogonal 1D MTF measurements. In simulation experiments, both slit- and edge-based measurements resolved the radial asymmetries in the 2D MTF. The average absolute relative accuracy error in the 2D MTF between the DC and cutoff (2.5 mm{sup -1}) frequencies was 0.13% with average relative precision error of 0.11%. Other simulation results were similar to those derived from physical data. Conclusions: Overall, the general availability, acceptance, accuracy, and ease of implementation of 1D test devices for MTF assessment make this a valuable technique for 2D MTF estimation.

Wells, Jered R.; Dobbins, James T. III [Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 and Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 (United States); Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Department of Biomedical Engineering, Duke University, Durham, North Carolina 27705 (United States); Department of Physics, Duke University, Durham, North Carolina 27705 (United States) and Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States)

2012-10-15T23:59:59.000Z

77

Standard Test Methods for Measurement of Electrical Performance and Spectral Response of Nonconcentrator Multijunction Photovoltaic Cells and Modules  

E-Print Network (OSTI)

1.1 These test methods provide special techniques needed to determine the electrical performance and spectral response of two-terminal, multijunction photovoltaic (PV) devices, both cell and modules. 1.2 These test methods are modifications and extensions of the procedures for single-junction devices defined by Test Methods E948, E1021, and E1036. 1.3 These test methods do not include temperature and irradiance corrections for spectral response and current-voltage (I-V) measurements. Procedures for such corrections are available in Test Methods E948, E1021, and E1036. 1.4 These test methods may be applied to cells and modules intended for concentrator applications. 1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and ...

American Society for Testing and Materials. Philadelphia

2010-01-01T23:59:59.000Z

78

Table 10.9 Photovoltaic Cell and Module Shipments by Sector and ...  

U.S. Energy Information Administration (EIA)

1 See "Peak Kilowatt" in Glossary. 9 Photovoltaic cells/modules that are not connected to the electric power grid, and that are used to provide electric power to ...

79

Module process optimization and device efficiency improvement for stable, low-cost, large-area, cadmium telluride-based photovoltaic module production. Annual subcontract report, 1 July 1990--31 December 1991  

DOE Green Energy (OSTI)

This report describes work under a three-year phased subcontract to develop CdS/CdTe devices and modules and to further improve the technology base at Photon Energy, Inc. (PEI) to better address the commercialization issues and objectives of the PEI and the US Department of Energy. During this reporting period we (1) achieved efficiencies of 12.7% on small area devices, (2) achieved 1-ft{sup 2} modules with over 8% aperture-area efficiency (and active area efficiencies up to {approximately}10%), (3) tested 4-ft{sup 2} modules at NREL at 23.1 (21.3) watts, normalized (6.3% efficiency), and (4) found no inherent stability problems with CdTe technology during life testing, at both NREL and PEI. 7 refs.

Albright, S.P.; Ackerman, B.; Chamberlin, R.R.; Jordan, J.F. [Photon Energy, Inc., El Paso, TX (United States)

1992-04-01T23:59:59.000Z

80

Trade Study on Aggregation of Multiple 10-KW Solid Ozide Fuel Cell Power Modules  

DOE Green Energy (OSTI)

According to the Solid State Energy Conversion Alliance (SECA) program guidelines, solid oxide fuel cells (SOFC) will be produced in the form of 3-10 kW modules for residential use. In addition to residential use, these modules can also be used in apartment buildings, hospitals, etc., where a higher power rating would be required. For example, a hospital might require a 250 kW power generating capacity. To provide this power using the SECA SOFC modules, 25 of the 10 kW modules would be required. These modules can be aggregated in different architectures to yield the necessary power. This report will show different approaches for aggregating numerous SOFC modules and will evaluate and compare each one with respect to cost, control complexity, ease of modularity, and fault tolerance.

Ozpineci, B.

2004-12-03T23:59:59.000Z

Note: This page contains sample records for the topic "devices cells modules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Short protection device for stack of electrolytic cells  

DOE Patents (OSTI)

Electrical short protection is provided in an electrolytic cell stack by the combination of a thin, nonporous ceramic shield and a noble metal foil disposed on opposite sides of the sealing medium in a gas manifold gasket. The thin ceramic shield, such as alumina, is placed between the porous gasket and the cell stack face at the margins of the negative end plate to the most negative cells to impede ion current flow. The noble metal foil, for instance gold, is electrically coupled to the negative potential of the stack to collect positive ions at a harmless location away from the stack face. Consequently, corrosion products from the stack structure deposit on the foil rather than on the stack face to eliminate electrical shorting of cells at the negative end of the stack.

Katz, Murray (Newington, CT); Schroll, Craig R. (West Hartford, CT)

1985-10-22T23:59:59.000Z

82

Microfluidic devices for analysis of red blood cell mechanical properties  

E-Print Network (OSTI)

Decreased deformability of human red blood cells (RBCs) is both a cause of disease and biomarker for disease (1). To traverse blood capillaries, the biconcave disk-shaped RBC must deform dramatically, since the diameter ...

Bow, Hansen Chang

2010-01-01T23:59:59.000Z

83

Investigation of Junction Properties in CdS/CdTe Solar Cells and Their Correlation to Device Properties: Preprint  

DOE Green Energy (OSTI)

Secondary-ion mass spectrometry analysis of the CdS/CdTe interface shows that S diffusion in CdTe increases with substrate temperature and CdCl2 heat treatment. There is also an accumulation of Cl at the interface for CdCl2-treated samples. Modulated photo-reflectance studies shows that devices with CdCl2 heat treatment and open-circuit voltage (Voc) of 835 mV have a distinct high electric-field region in the layer with bandgap of 1.45 eV. Electron-beam induced current measurements reveal a one-sided junction for high Voc devices. The nature of the junction changes with processing. For heterojunction devices, the depletion region includes the highly defective CdS/CdTe interface, which would increase the recombination current and consequently the dark current, leading to lower Voc. In the case of CdCl2-treated cells, the n+-p junction and its high electric-field results in the junction between structurally compatible CdTe and the Te-rich CdSTe alloy, and thus, in higher Voc.

Dhere, R. G.; Zhang, Y.; Romero, M. J.; Asher, S. E.; Young, M.; To, B.; Noufi, R.; Gessert, T. A.

2008-05-01T23:59:59.000Z

84

Thermal Abuse Modeling of Li-Ion Cells and Propagation in Modules (Presentation)  

DOE Green Energy (OSTI)

The objectives of this paper are: (1) continue to explore thermal abuse behaviors of Li-ion cells and modules that are affected by local conditions of heat and materials; (2) use the 3D Li-ion battery thermal abuse 'reaction' model developed for cells to explore the impact of the location of internal short, its heating rate, and thermal properties of the cell; (3) continue to understand the mechanisms and interactions between heat transfer and chemical reactions during thermal runaway for Li-ion cells and modules; and (4) explore the use of the developed methodology to support the design of abuse-tolerant Li-ion battery systems.

Kim, G.-H.; Pesaran, A.; Smith, K.

2008-05-01T23:59:59.000Z

85

PVSIM{copyright}: A simulation program for photovoltaic cells, modules, and arrays  

DOE Green Energy (OSTI)

An electrical simulation model for photovoltaic cells, modules, and arrays has been developed that will be useful to a wide range of analysts in the photovoltaic industry. The Microsoft{reg_sign} Windows{trademark} based program can be used to analyze individual cells, to analyze the effects of cell mismatch or reverse bias(`hot spot`) heating in modules and to analyze the performance of large arrays of modules including bypass and blocking diodes. User defined statistical variance can be applied to the fundamental parameters used to simulate the cells and diodes. The model is most appropriate for cells that can be accurately modeled using a two-diode equivalent circuit. This paper describes the simulation program and illustrates its versatility with examples.

King, D.L.; Dudley, J.K.; Boyson, W.E.

1996-06-01T23:59:59.000Z

86

Solar cell modules with improved backskin and methods for forming same  

SciTech Connect

A laminated solar cell module with a backskin layer that reduces the materials and labor required during the manufacturing process. The solar cell module includes a rigid front support layer formed of light transmitting material having first and second surfaces. A transparent encapsulant layer has a first surface disposed adjacent the second surface of the front support layer. A plurality of interconnected solar cells have a first surface disposed adjacent a second surface of the transparent encapsulant layer. The backskin layer is formed of a thermoplastic olefin, which includes first ionomer, a second ionomer, glass fiber, and carbon black. A first surface of the backskin layer is disposed adjacent a second surface of the interconnected solar cells. The transparent encapsulant layer and the backskin layer, in combination, encapsulate the interconnected solar cells. An end portion of the backskin layer can be wrapped around the edge of the module for contacting the first surface of the front support layer to form an edge seal. A laminated solar cell module with a backskin layer that reduces the materials and labor required during the manufacturing process. The solar cell module includes a rigid front support layer formed of light transmitting material having first and second surfaces. A transparent encapsulant layer has a first surface disposed adjacent the second surface of the front support layer. A plurality of interconnected solar cells have a first surface disposed adjacent a second surface of the transparent encapsulant layer. The backskin layer is formed of a thermoplastic olefin, which includes first ionomer, a second ionomer, glass fiber, and carbon black. A first surface of the backskin layer is disposed adjacent a second surface of the interconnected solar cells. The transparent encapsulant layer and the backskin layer, in combination, encapsulate the interconnected solar cells. An end portion of the backskin layer can be wrapped around the edge of the module for contacting the first surface of the front support layer to form an edge seal.

Hanoka, Jack I. (Brookline, MA)

1998-04-21T23:59:59.000Z

87

Optimization of Processing and Modeling Issues for Thin Film Solar Cell Devices Including Concepts for the Development of Polycrystalline Multijunctions Annual Subcontract Report, 24 August 1999 - 23 August 2000  

DOE Green Energy (OSTI)

This report describes the results achieved during Phase I of a three-phase subcontract to develop and understand thin-film solar cell technology associated with CuInSe2 and related alloys, a-Si and its alloys, and CdTe. Modules based on all these thin films are promising candidates to meet DOE long-range efficiency, reliability, and manufacturing cost goals. The critical issues being addressed under this program are intended to provide the science and engineering basis for developing viable commercial processes and to improve module performance. The generic research issues addressed are: (1) quantitative analysis of processing steps to provide information for efficient commercial-scale equipment design and operation; (2) device characterization relating the device performance to materials properties and process conditions; (3) development of alloy materials with different bandgaps to allow improved device structures for stability and compatibility with module design; (4) development of improved window/heterojunction layers and contacts to improve device performance and reliability; and (5) evaluation of cell stability with respect to illumination, temperature, and ambient, and with respect to device structure and module encapsulation.

Birkmire, R. W.; Phillips, J. E.; Shafarman, W. N.; Eser, E.; Hegedus, S. S.; McCandless, B. E.

2001-11-14T23:59:59.000Z

88

Development and testing of shingle-type solar cell modules. Final report  

DOE Green Energy (OSTI)

The design, development, fabrication and testing of a shingle-type terrestrial solar cell module which produces 98 watts/m/sup 2/ of exposed module area at 1 kW/m/sup 2/ insolation and 61/sup 0/C are reported. These modules make it possible to easily incorporate photovoltaic power generation into the sloping roofs of residential or commercial buildings by simply nailing the modules to the plywood roof sheathing. This design consists of nineteen series-connected 53 mm diameter solar cells arranged in a closely packaged hexagon configuration. These cells are individually bonded to the embossed surface of a 3 mm thick thermally tempered hexagon-shaped piece of ASG SUNADEX glass. Monsanto SAFLEX polyvinyl butyral is used as the laminating adhesive. RTVII functions as the encapsulant between the underside of the glass superstrate and a rear protective sheet of 0.8 mm thick TEXTOLITE. The semi-flexible portion of each shingle module is a composite laminate construction consisting of outer layers of B.F. Goodrich FLEXSEAL and an epichlorohydrin closed cell foam core. The module design has satisfactorily survived the JPL-defined qualification testing program which includes 50 thermal cycles between -40 and +90/sup 0/C, a seven-day temperature-humidity exposure test and a mechanical integrity test consisting of a bidirectional cyclic loading at 2390 Pa (50 lb/ft/sup 2/) which is intended to simulate loads due to a 45 m/s (100 mph) wind.

Shepard, N.F.

1979-02-28T23:59:59.000Z

89

Cell separator for use in bipolar-stack energy storage devices  

DOE Patents (OSTI)

An improved multi-cell electrochemical energy storage device is described, such as a battery, fuel cell, or double layer capacitor using a cell separator which allows cells to be stacked and interconnected with low electrical resistance and high reliability while maximizing packaging efficiency. By adding repeating cells, higher voltages can be obtained. The cell separator is formed by applying an organic adhesive on opposing surfaces of adjacent carbon electrodes or surfaces of aerogel electrodes of a pair of adjacent cells prior to or after pyrolysis thereof to form carbon aerogel electrodes. The cell separator is electronically conductive, but ionically isolating, preventing an electrolytic conduction path between adjacent cells in the stack. 2 figs.

Mayer, S.T.; Feikert, J.H.; Kachmitter, J.L.; Pekala, R.W.

1995-02-28T23:59:59.000Z

90

Single module pressurized fuel cell turbine generator system  

DOE Patents (OSTI)

A pressurized fuel cell system (10), operates within a common pressure vessel (12) where the system contains fuel cells (22), a turbine (26) and a generator (98) where preferably, associated oxidant inlet valve (52), fuel inlet valve (56) and fuel cell exhaust valve (42) are outside the pressure vessel.

George, Raymond A. (Pittsburgh, PA); Veyo, Stephen E. (Murrysville, PA); Dederer, Jeffrey T. (Valencia, PA)

2001-01-01T23:59:59.000Z

91

EEE 565 Solar Cells Course Objective: To introduce the basic concepts of the operation of photovoltaic devices, the  

E-Print Network (OSTI)

solar cell technologies, and how they are integrated into solar cell systems. Topics: 1) PhotovoltaicEEE 565 Solar Cells Fall 2012 Course Objective: To introduce the basic concepts of the operation of photovoltaic devices, the major technologies, and the impact of materials and device structure

Zhang, Junshan

92

Development and testing of shingle-type solar cell modules. Quarterly report No. 2  

DOE Green Energy (OSTI)

The details of a shingle module design which produces in excess of 97 watts/m/sup 2/ of module area at 1 kW/m/sup 2/ insolation and at 60/sup 0/C are reported. This selected design employs a tempered glass coverplate to provide the primary solar cell structural support. The use of the B.F. Goodrich FLEXSEAL roofing system as the outer skin of the shingle substrate provides a high confidence of achieving the 15 year service life goal. The fabrication and testing of a preproduction module of this design has demonstrated that this selected approach will meet the environmental testing requirements imposed by the contract. Attempts to fabricate a preproduction module of an alternative design, which embeds the solar cell assembly within a methyl methacrylate casting, proved unsuccessful.

Shepard, N.F.

1978-01-05T23:59:59.000Z

93

Block IV solar cell module design and test specification for residential applications  

SciTech Connect

This specification provides near-term design, qualification and acceptance requirements for terrestrial solar cell modules suitable for incorporation in photovoltaic power sources (2 kW to 10 kW) applied to single family residential installations. Requirement levels and recommended design limits for selected performance criteria have been specified for modules intended principally for rooftop installations. Modules satisfying the requirements of this specification fall into one of two categories, residential panel or residential shingle, both meeting general performance requirements plus additional category peculiar constraints.

1978-11-01T23:59:59.000Z

94

Fuel cell crimp-resistant cooling device with internal coil  

DOE Patents (OSTI)

A cooling assembly for fuel cells having a simplified construction whereby coolant is efficiently circulated through a conduit arranged in serpentine fashion in a channel within a member of such assembly. The channel is adapted to cradle a flexible, chemically inert, conformable conduit capable of manipulation into a variety of cooling patterns without crimping or otherwise restricting of coolant flow. The conduit, when assembled with the member, conforms into intimate contact with the member for good thermal conductivity. The conduit is non-corrodible and can be constructed as a single, manifold-free, continuous coolant passage means having only one inlet and one outlet. The conduit has an internal coil means which enables it to be bent in small radii without crimping.

Wittel, deceased, Charles F. (late of Linden, NJ)

1986-01-01T23:59:59.000Z

95

NREL: Measurements and Characterization - Device Performance Measurement  

NLE Websites -- All DOE Office Websites (Extended Search)

Device Performance Measurement Device Performance Measurement The National Renewable Energy Laboratory is the premier U.S. Department of Energy (DOE) research laboratory for testing performance of commercial, developmental, and research photovoltaic (PV) devices. Our Device Performance group is one of only two laboratories in the world to hold an International Organization for Standardization (ISO) 17025 accreditation for primary reference cell and secondary module calibration, in addition to accreditation for secondary reference cell calibration under American Society for Testing Materials (ASTM), and International Electrotechnical Commission (IEC) standards. One of only four laboratories in the world certified in accordance with the IEC standard for calibrating terrestrial primary reference PV cells, we

96

Photovoltaic material and device measurements workshop: focus on polycrystalline thin film cells  

DOE Green Energy (OSTI)

The general purpose of the workshop was to accelerate the development of thin film solar cells by improving the versatility and reliability of material and device measurement techniques. Papers were presented under the following sessions: structural/chemical session; optical/electro-optical session; charge transport session; and poster session. Each paper was processed for EDB.

None

1979-01-01T23:59:59.000Z

97

Analysis of Heat Dissipation in Li-Ion Cells & Modules for Modeling of Thermal Runaway (Presentation)  

DOE Green Energy (OSTI)

The objectives of this study are: (1) To develop 3D Li-Ion battery thermal abuse ''reaction'' models for cell and module analysis; (2) To understand the mechanisms and interactions between heat transfer and chemical reactions during thermal runaway for Li-Ion cells and modules; (3) To develop a tool and methodology to support the design of abuse-tolerant Li-Ion battery systems for PHEVs/HEVs; and (4) To help battery developers accelerate delivery of abuse-tolerant Li-Ion battery systems in support of the FreedomCAR's Energy Storage Program.

Kim, G.-H.; Pesaran, A.

2007-05-15T23:59:59.000Z

98

Modulating cell behavior with engineered HER-receptor ligands  

E-Print Network (OSTI)

The primary motivation for this work is the manipulation of EGFR family signaling to influence regenerative responses of mesenchymal stem cells (MSC). Underlying the potential of regenerative medicine is the need to ...

Alvarez, Luis M. (Luis Manuel)

2009-01-01T23:59:59.000Z

99

Development of high efficiency (14%) solar cell array module. Final report, November 1979-June 1980  

DOE Green Energy (OSTI)

More effort was concentrated on development of procedures to provide large area (3 in. dia) high efficiency (16.5% AM1, 28/sup 0/C) P+NN+ solar cells. Intensive tests with 3 in. slices gave consistently lower efficiency (13.5%). The problems were identified as incomplete formation of an optimum back surface field (BSF), and interaction of the BSF process and the shallow P+ junction. The problem was shown not to be caused by reduced quality of silicon near the edges of the larger slices. A promising process sequence was identified. A reasonably large number of fairly efficient (13.5% average) 3 in. P+NN+ cells were made and combined with no problems with the module design developed for this project. In the module, one hundred and twenty (120) cells were connected, eight (8) in parallel and fifteen (15) in series. Six (6) modules were delivered with an average power output (per total module area of 6890 cm/sup 2/) of 75.3 watts and a module overall average efficiency of 10.9%.

Iles, P.A.; Khemthong, S.; Olah, S.; Sampson, W.J.; Ling, K.S.

1980-01-01T23:59:59.000Z

100

Thin film solar cell including a spatially modulated intrinsic layer  

SciTech Connect

One or more thin film solar cells in which the intrinsic layer of substantially amorphous semiconductor alloy material thereof includes at least a first band gap portion and a narrower band gap portion. The band gap of the intrinsic layer is spatially graded through a portion of the bulk thickness, said graded portion including a region removed from the intrinsic layer-dopant layer interfaces. The band gap of the intrinsic layer is always less than the band gap of the doped layers. The gradation of the intrinsic layer is effected such that the open circuit voltage and/or the fill factor of the one or plural solar cell structure is enhanced.

Guha, Subhendu (Troy, MI); Yang, Chi-Chung (Troy, MI); Ovshinsky, Stanford R. (Bloomfield Hills, MI)

1989-03-28T23:59:59.000Z

Note: This page contains sample records for the topic "devices cells modules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Process development for automated solar cell and module production. Task 4. Automated array assembly. Annual report  

DOE Green Energy (OSTI)

MBA has been working on the automated array assembly task of the Low-Cost Solar Array project. A baseline sequence for the manufacture of solar cell modules is specified. Starting with silicon wafers, the process goes through damage etching, texture etching, junction formation, plasma edge etch, aluminum back surface field formation, and screen printed metallization to produce finished solar cells which are then series connected on a ribbon and bonded into a finished glass, PVB, tedlar module. A number of steps required additional developmental effort to verify technical and economic feasibility. These steps include texture etching, plasma edge etch, aluminum back surface field formation, array layup and interconnect, and module edge sealing and framing.

Witham, C.R.

1979-06-12T23:59:59.000Z

102

STATISTICAL ANALYSIS AND STRUCTURE OPTIMIZATION OF LARGE PHOTOVOLTAIC MODULE  

E-Print Network (OSTI)

on the output power of large Photovoltaic (PV) module by modeling each PV cell as a current source whose short. Photovoltaic (PV) is a simple and elegant method of harnessing the sun's energy. PV devices (solar cellsSTATISTICAL ANALYSIS AND STRUCTURE OPTIMIZATION OF LARGE PHOTOVOLTAIC MODULE RATHEESH R

Qiu, Qinru

103

14th Workshop on Crystalline Silicon Solar Cells& Modules: Materials and Processes; Summary of Discussion Sessions  

DOE Green Energy (OSTI)

The 14th Workshop discussion sessions addressed funding needs for Si research and for R&D to enhance U.S. PV manufacturing. The wrap-up session specifically addressed topics for the new university silicon program. The theme of the workshop, Crystalline Silicon Solar Cells: Leapfrogging the Barriers, was selected to reflect the astounding progress in Si PV technology during last three decades, despite a host of barriers and bottlenecks. A combination of oral, poster, and discussion sessions addressed recent advances in crystal growth technology, new cell structures and doping methods, silicon feedstock issues, hydrogen passivation and fire through metallization, and module issues/reliability. The following oral/discussion sessions were conducted: (1) Technology Update; (2) Defects and Impurities in Si/Discussion; (3) Rump Session; (4) Module Issues and Reliability/Discussion; (5) Silicon Feedstock/Discussion; (6) Novel Doping, Cells, and Hetero-Structure Designs/Discussion; (7) Metallization/Silicon Nitride Processing/Discussion; (8) Hydrogen Passivation/Discussion; (9) Characterization/Discussion; and (10) Wrap-Up. This year's workshop lasted three and a half days and, for the first time, included a session on Si modules. A rump session was held on the evening of August 8, which addressed efficiency expectations and challenges of c Si solar cells/modules. Richard King of DOE and Daren Dance of Wright Williams& Kelly (formerly of Sematech) spoke at two of the luncheon sessions. Eleven students received Graduate Student Awards from funds contributed by the PV industry.

Sopori, B.; Tan, T.; Sinton, R.; Swanson, D.

2004-10-01T23:59:59.000Z

104

Generator module architecture for a large solid oxide fuel cell power plant  

DOE Patents (OSTI)

A solid oxide fuel cell module contains a plurality of integral bundle assemblies, the module containing a top portion with an inlet fuel plenum and a bottom portion receiving air inlet feed and containing a base support, the base supports dense, ceramic exhaust manifolds which are below and connect to air feed tubes located in a recuperator zone, the air feed tubes passing into the center of inverted, tubular, elongated, hollow electrically connected solid oxide fuel cells having an open end above a combustion zone into which the air feed tubes pass and a closed end near the inlet fuel plenum, where the fuel cells comprise a fuel cell stack bundle all surrounded within an outer module enclosure having top power leads to provide electrical output from the stack bundle, where the fuel cells operate in the fuel cell mode and where the base support and bottom ceramic air exhaust manifolds carry from 85% to all 100% of the weight of the stack, and each bundle assembly has its own control for vertical and horizontal thermal expansion control.

Gillett, James E.; Zafred, Paolo R.; Riggle, Matthew W.; Litzinger, Kevin P.

2013-06-11T23:59:59.000Z

105

Editorial: Photovoltaic Materials and Devices  

Science Conference Proceedings (OSTI)

As the global energy needs grow, there is increasing interest in the generation of electricity by photovoltaics (PVs) devices or solar cells - devices that convert sunlight to electricity. Solar industry has seen an enormous growth during the last decade. The sale of PV modules has exceeded 27 GW in 2011, with significant contributions to the market share from all technologies. While the silicon technology continues to have the dominant share, the other thin film technologies (CdTe, CIGS, a-Si, and organic PV) are experiencing fast growth. Increased production of silicon modules has led to a very rapid reduction in their price and remains as benchmark for other technologies. The PV industry is in full gear to commercialize new automated equipment for solar cell and module production, instrumentation for process monitoring technologies, and for implementation of other cost-reduction approaches, and extensive research continues to be carried out in many laboratories to improve the efficiency of solar cells and modules without increasing the production costs. A large variety of solar cells, which differ in the material systems used, design, PV structure, and even the principle of PV conversion, are designed to date. This special issue contains peer-reviewed papers in the recent developments in research related to broad spectrum of photovoltaic materials and devices. It contains papers on many aspects of solar cells-the growth and deposition, characterization, and new material development.

Sopori, B.; Tan, T.; Rupnowski, P.

2012-01-01T23:59:59.000Z

106

Processing and modeling issues for thin-film solar cell devices. Final report  

DOE Green Energy (OSTI)

During the third phase of the subcontract, IEC researchers have continued to provide the thin film PV community with greater depth of understanding and insight into a wide variety of issues including: the deposition and characterization of CuIn{sub 1-x}Ga{sub x}Se{sub 2}, a-Si, CdTe, CdS, and TCO thin films; the relationships between film and device properties; and the processing and analysis of thin film PV devices. This has been achieved through the systematic investigation of all aspects of film and device production and through the analysis and quantification of the reaction chemistries involved in thin film deposition. This methodology has led to controlled fabrications of 15% efficient CuIn{sub 1-x}Ga{sub x}Se{sub 2} solar cells over a wide range of Ga compositions, improved process control of the fabrication of 10% efficient a-Si solar cells, and reliable and generally applicable procedures for both contacting and doping films. Additional accomplishments are listed below.

Birkmire, R.W.; Phillips, J.E. [Univ. of Delaware, Newark, DE (United States). Institute of Energy Conversion

1997-11-01T23:59:59.000Z

107

FORM EIA-63B ANNUAL PHOTOVOLTAIC CELL/MODULE SHIPMENTS REPORT  

U.S. Energy Information Administration (EIA) Indexed Site

CELL/MODULE SHIPMENTS REPORT For Reporting Year ( ) OMB No. 1905-0129 Approval Expires: 12/31/2016 Burden: 5 hours GENERAL INFORMATION AND INSTRUCTIONS I. Purpose Form EIA-63B is designed to provide the data necessary for the U.S. Energy Information Administration (EIA), a part of the U.S. Department of Energy (DOE), to carry out its responsibilities tracking photovoltaic cell/module shipments in the photovoltaic industry and reporting information concerning the size and status of the industry. The data collected will be published a nnu a lly in the S o la r Phot o vo lt ai c C el l/ Mo du le Sh ip m ent s R epor t a nd be available through EIA's Internet site at http://www.eia.gov/renewable/annual/solar_photo/. II. Who Should Respond to This Survey

108

Process development for automated solar cell and module production. Task 4: automated array assembly  

DOE Green Energy (OSTI)

The scope of work under this contract involves specifying a process sequence which can be used in conjunction with automated equipment for the mass production of solar cell modules for terrestrial use. This process sequence is then critically analyzed from a technical and economic standpoint to determine the technological readiness of each process step for implementation. The process steps are ranked according to the degree of development effort required and according to their significance to the overall process. Under this contract the steps receiving analysis were: back contact metallization, automated cell array layup/interconnect, and module edge sealing. For automated layup/interconnect both hard automation and programmable automation (using an industrial robot) were studied. The programmable automation system was then selected for actual hardware development. Economic analysis using the SAMICS system has been performed during these studies to assure that development efforts have been directed towards the ultimate goal of price reduction. Details are given. (WHK)

Hagerty, J.J.

1980-06-30T23:59:59.000Z

109

Uv-Light Stabilization Additive Package For Solar Cell Module And Laminated Glass Applications  

SciTech Connect

An ultraviolet light stabilization additive package is used in an encapsulant material that may be used in solar cell modules, laminated glass and a variety of other applications. The ultraviolet light stabilization additive package comprises a first hindered amine light stabilizer and a second hindered amine light stabilizer. The first hindered amine light stabilizer provides thermal oxidative stabilization, and the second hindered amine light stabilizer providing photo-oxidative stabilization.

Hanoka, Jack I. (Brookline, MA); Klemchuk, Peter P. (Watertown, CT)

2002-03-05T23:59:59.000Z

110

17th Workshop on Crystalline Silicon Solar Cells and Modules: Materials and Processes; Workshop Proceedings  

DOE Green Energy (OSTI)

The National Center for Photovoltaics sponsored the 17th Workshop on Crystalline Silicon Solar Cells & Modules: Materials and Processes, held in Vail, CO, August 5-8, 2007. This meeting provided a forum for an informal exchange of technical and scientific information between international researchers in the photovoltaic and relevant non-photovoltaic fields. The theme of this year's meeting was 'Expanding Technology for a Future Powered by Si Photovoltaics.'

Sopori, B. L.

2007-08-01T23:59:59.000Z

111

Device for equalizing molten electrolyte content in a fuel cell stack  

DOE Patents (OSTI)

A device for equalizing the molten electrolyte content throughout the height of a fuel cell stack is disclosed. The device includes a passageway for electrolyte return with electrolyte wettable wicking material in the opposite end portions of the passageway. One end portion is disposed near the upper, negative end of the stack where electrolyte flooding occurs. The second end portion is placed near the lower, positive end of the stack where electrolyte is depleted. Heating means are provided at the upper portion of the passageway to increase electrolyte vapor pressure in the upper wicking material. The vapor is condensed in the lower passageway portion and conducted as molten electrolyte in the lower wick to the positive end face of the stack. An inlet is provided to inject a modifying gas into the passageway and thereby control the rate of electrolyte return.

Smith, James L. (Lemont, IL)

1987-01-01T23:59:59.000Z

112

Out-of-Field Cell Survival Following Exposure to Intensity-Modulated Radiation Fields  

Science Conference Proceedings (OSTI)

Purpose: To determine the in-field and out-of-field cell survival of cells irradiated with either primary field or scattered radiation in the presence and absence of intercellular communication. Methods and Materials: Cell survival was determined by clonogenic assay in human prostate cancer (DU145) and primary fibroblast (AGO1552) cells following exposure to different field configurations delivered using a 6-MV photon beam produced with a Varian linear accelerator. Results: Nonuniform dose distributions were delivered using a multileaf collimator (MLC) in which half of the cell population was shielded. Clonogenic survival in the shielded region was significantly lower than that predicted from the linear quadratic model. In both cell lines, the out-of-field responses appeared to saturate at 40%-50% survival at a scattered dose of 0.70 Gy in DU-145 cells and 0.24 Gy in AGO1522 cells. There was an approximately eightfold difference in the initial slopes of the out-of-field response compared with the {alpha}-component of the uniform field response. In contrast, cells in the exposed part of the field showed increased survival. These observations were abrogated by direct physical inhibition of cellular communication and by the addition of the inducible nitric oxide synthase inhibitor aminoguanidine known to inhibit intercellular bystander effects. Additional studies showed the proportion of cells irradiated and dose delivered to the shielded and exposed regions of the field to impact on response. Conclusions: These data demonstrate out-of-field effects as important determinants of cell survival following exposure to modulated irradiation fields with cellular communication between differentially irradiated cell populations playing an important role. Validation of these observations in additional cell models may facilitate the refinement of existing radiobiological models and the observations considered important determinants of cell survival.

Butterworth, Karl T., E-mail: k.butterworth@qub.ac.u [Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland (United Kingdom); McGarry, Conor K. [Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland (United Kingdom); Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Northern Ireland (United Kingdom); Trainor, Colman [Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland (United Kingdom); O'Sullivan, Joe M. [Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland (United Kingdom); Clinical Oncology, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, Northern Ireland (United Kingdom); Hounsell, Alan R. [Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland (United Kingdom); Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Northern Ireland (United Kingdom); Prise, Kevin M. [Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland (United Kingdom)

2011-04-01T23:59:59.000Z

113

Materials and Modules for Low Cost, High Performance Fuel Cell Humidifiers  

NLE Websites -- All DOE Office Websites (Extended Search)

Kick-off Meeting, Kick-off Meeting, Wash. D.C - 10/01/2009 Materials and Modules for Low Cost, High Performance Fuel Cell Humidifiers Prime Contractor: W. L. Gore & Associates Elkton, MD Principal Investigator: William B. Johnson Sub-Contractor: dPoint Technologies Vancouver, BC W. L. Gore & Associates, Inc. DOE Kick-off Meeting, Wash. D.C - 10/01/2009 Ahluwalia, et. al, ibid. Mirza, Z. DOE Hydrogen Program Review, June 9-13, 2008; Washington, DC Background W. L. Gore & Associates, Inc. DOE Kick-off Meeting, Wash. D.C - 10/01/2009 Objective and Technical Barriers Addressed More efficient, low-cost humidifiers can increase fuel cell inlet humidity: Reduce system cost and size of balance of plant; Improve fuel cell performance; Improve fuel cell durability. OBJECTIVE: Demonstrate a durable, high performance water

114

High-Efficiency Amorphous Silicon Alloy Based Solar Cells and Modules; Final Technical Progress Report, 30 May 2002--31 May 2005  

DOE Green Energy (OSTI)

The principal objective of this R&D program is to expand, enhance, and accelerate knowledge and capabilities for development of high-efficiency hydrogenated amorphous silicon (a-Si:H) and amorphous silicon-germanium alloy (a-SiGe:H) related thin-film multijunction solar cells and modules with low manufacturing cost and high reliability. Our strategy has been to use the spectrum-splitting triple-junction structure, a-Si:H/a-SiGe:H/a-SiGe:H, to improve solar cell and module efficiency, stability, and throughput of production. The methodology used to achieve the objectives included: (1) explore the highest stable efficiency using the triple-junction structure deposited using RF glow discharge at a low rate, (2) fabricate the devices at a high deposition rate for high throughput and low cost, and (3) develop an optimized recipe using the R&D batch large-area reactor to help the design and optimization of the roll-to-roll production machines. For short-term goals, we have worked on the improvement of a-Si:H and a-SiGe:H alloy solar cells. a-Si:H and a-SiGe:H are the foundation of current a-Si:H based thin-film photovoltaic technology. Any improvement in cell efficiency, throughput, and cost reduction will immediately improve operation efficiency of our manufacturing plant, allowing us to further expand our production capacity.

Guha, S.; Yang, J.

2005-10-01T23:59:59.000Z

115

Regenerative Fuel Cells: Renewable Energy Storage Devices Based on Neutral Water Input  

SciTech Connect

GRIDS Project: Proton Energy Systems is developing an energy storage device that converts water to hydrogen fuel when excess electricity is available, and then uses hydrogen to generate electricity when energy is needed. The system includes an electrolyzer, which generates and separates hydrogen and oxygen for storage, and a fuel cell which converts the hydrogen and oxygen back to electricity. Traditional systems use acidic membranes, and require expensive materials including platinum and titanium for key parts of the system. In contrast, Proton Energy Systems new system will use an inexpensive alkaline membrane and will contain only inexpensive metals such as nickel and stainless steel. If successful, Proton Energy Systems system will have similar performance to todays regenerative fuel cell systems at a fraction of the cost, and can be used to store electricity on the electric grid.

None

2010-09-01T23:59:59.000Z

116

Low-cost CdZnTe devices for cascade cell application  

DOE Green Energy (OSTI)

This report describes a research program to develop a low-cost technique for producing Cd{sub 1-x}Zn{sub x}Te devices for cascade solar cell applications. The technique involves a two-stage process for fabricating such devices with a band gap of about 1.7 eV and a transparent contact layer of low-resistivity ZnTe. In the first stage, thin films of Cd, Zn, and Te are deposited in stacked layers as Cd{sub 1-x}An{sub x}Te. The second stage involves hearing and reacting the layers to form the compound. At first, electrodeposition was used for depositing the layers to successfully fabricate Dc{sub 1-x}Zn{sub x}Te thin-film devices. These films were also intrinsically doped with copper. For the first time, transparent ZnTe films of low resistivity were obtained in a two-stage process; preliminary solar cells using films with low Zn content were demonstrated. A second phase of the project involved growing films with higher Zn content (>15%). Such films were grown on CdS-coated substrates for fabricating devices. The effects of the solar-cell processing steps on the Cd{sub 1-x}Zn{sub x}Te and CdS/Cd{sub 1-x}Zn{sub x}Te interfaces were studied; results showed that the nature of the interface depended on the stoichiometry of the Cd{sub 1-x}Zn{sub x}Te thin film. A sharp interface was observed for the CdS/CdTe structures, but the interface became highly diffused as the Zn content in the absorber layer increased above 15%. The interaction between the CdS window layer and the Cd{sub 1-x}Zn{sub x}Te absorber layer was found to result from an exchange reaction between Zn in the absorber layer and the thin CdS film. 14 refs., 10 figs.

Basol, B.M.; Kapur, V.K. (International Solar Electric Technology, Inglewood, CA (USA))

1990-11-01T23:59:59.000Z

117

Development of a Hybrid Compressor/Expander Module for Automotive Fuel Cell Applications  

DOE Green Energy (OSTI)

In this program TIAX LLC conducted the development of an advanced technology compressor/expander for supplying compressed air to Proton Exchange Membrane (PEM) fuel cells in transportation applications. The overall objective of this program was to develop a hybrid compressor/expander module, based on both scroll and high-speed turbomachinery technologies, which will combine the strengths of each technology to create a concept with superior performance at minimal size and cost. The resulting system was expected to have efficiency and pressure delivery capability comparable to that of a scroll-only machine, at significantly reduced system size and weight when compared to scroll-only designs. Based on the results of detailed designs and analyses of the critical system elements, the Hybrid Compressor/Expander Module concept was projected to deliver significant improvements in weight, volume and manufacturing cost relative to previous generation systems.

McTaggart, Paul

2004-12-31T23:59:59.000Z

118

Excess Dark Currents and Transients in Thin-Film CdTe Solar Cells: Implications for Cell Stability and Encapsulation of Scribe Lines and Cell Ends in Modules  

DOE Green Energy (OSTI)

We have isolated a non-linear, metastable, shunt-path failure mechanism located at the CdS/CdTe cell edge. In such cases, most performance loss, usually erratic, can be associated with the shunt path. We studied these shunt paths using dark current-transients and infrared (ir) imaging and find only one shunt path per cell and only at the cell corner wall, even in badly degraded cells. The effect on diminishing the cell's efficiency far exceeds what would be expected from the cell's linear shunt-resistance value. We propose that current transients and ir imaging be used as a ''fingerprint'' of the source and magnitude of excess currents to evaluate the contribution of scribe-line edges and cell ends in thin-film module performance and degradation due to environmental stress. Protection afforded by, or contamination due to, new or currently used encapsulants can then be evaluated.

McMahon, T. J.; Berniard, T. J.; Albin, D. S.; Demtsu, S. H.

2005-02-01T23:59:59.000Z

119

ESS 2012 Peer Review - 15 kV Phase Leg Power Modules with SiC Devices - Ranbir Singh, GeneSiC Semiconductor  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 1 Click to edit Master title style 15 kV Phase Leg Power Modules with SiC MIDSJT Devices Ranbir Singh and Siddarth Sundaresan GeneSiC Semiconductor Inc. ranbir.singh@genesicsemi.com +1 703 996 8200 43670 Trade Center Pl #155; Dulles VA 20166 September 27, 2012 Acknowledgement: The authors thank Dr. Imre Gyuk for funding this work and Dr. Stan Atcitty for technical supervision Sandia National Laboratories is a multi- program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. DOE SBIR HV DC Link Grant #SC0008240 2 Phase Leg forms fundamental building block for AC/DC AND DC/AC Conversion

120

Terrestrial solar cell module automated array assembly, Task 4. Final report  

SciTech Connect

It was proposed to establish a cost effective design and manufacturing process that would produce solar cell modules capable of meeting the JPL qualification test criteria. The basic design consisted of a glass/polyvinyl butyral/Mylar laminate mounted in either aluminum or stainless steel frames. To achieve a satisfactory power output margin, the production 36 three-inch solar cell design was expanded to 41 cells interconnected with standard dual redundant contacts. Aluminum paste as a back contact has both performance and cost advantages which warranted its production evaluation. The major effort involved firing the aluminum in a large belt furnace. Prior to this time, cells were successfully fired by hand in diffusion tube type furnaces. When printed aluminum was belt fired in small lots, i.e., less than 200 wafers, acceptable cells were produced. However, when implemented into production, i.e., 1,000 wafer lots, resistance increased a factor of two. Based on this result, production of the aluminum back contact in the existing muffle type furnace was stopped, awaiting installation of a new infrared furnace. Results of qualification testing are reported.

1978-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "devices cells modules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Dynamical systems in nanophotonics: From energy efficient modulators to light forces and optomechanics  

E-Print Network (OSTI)

We demonstrate novel device concepts based on rigorous design of the dynamics of resonant nanophotonic systems, such as dispersionless resonant switches and energy-efficient mo-dulator architectures, slow-light cells, and ...

Kaertner, Franz X.

122

In-Line Post-Process Scribing for Reducing Cell to Module Efficiency Gap in Monolithic Thin Film Photovoltaics  

E-Print Network (OSTI)

The gap between cell and module efficiency is a major challenge for all photovoltaic (PV) technologies. For monolithic thin film PV modules, a significant fraction of this gap has been attributed to parasitic shunts, and other defects, distributed across the module. In this paper, we show that it is possible to contain or isolate these shunt defects, using the state of the art laser scribing processes, after the fabrication of the series connected module is finished. We discuss three possible alternatives, and quantify the performance gains for each technique. We demonstrate that using these techniques, it is possible to recover up to 50% of the power lost to parasitic shunts, which results in 1-2% (absolute) increase in module efficiencies for typical thin film PV technologies.

Dongaonkar, Sourabh

2013-01-01T23:59:59.000Z

123

Terrestrial Concentrator PV Modules Based on GaInP/GaAs/Ge TJ Cells and Minilens Panels  

SciTech Connect

This paper is a description of research activity in the field of cost-effective modules realizing the concept of very high solar concentration with small-aperture area Fresnel lenses and multijunction III-V cells. Structural simplicity and 'all-glass' design are the guiding principles of the corresponding development. The advanced concentrator modules are made with silicone Fresnel lens panels (from 8 up to 144 lenses, each lens is 4 times 4 cm{sup 2} in aperture area) with composite structure. GaInP/GaAs/Ge triple-junction cells with average efficiencies of 31.1 and 34.7% at 1000 suns were used for the modules. Conversion efficiency as high as 26.3% has been measured indoors in a test module using a newly developed large-area solar simulator.

Rumyantsev, V. D.; Sadchikov, N. A.; Chalov, A. E.; Ionova, E. A.; Friedman, D. J.; Glenn, G.

2006-01-01T23:59:59.000Z

124

Processing and modeling issues for thin-film solar cell devices. Annual subcontract report, January 16, 1994--January 15, 1995  

DOE Green Energy (OSTI)

This report describes results achieved during the second phase of a four year subcontract to develop and understand thin film solar cell technology related to a-Si and its alloys, CuIn{sub 1{minus}x}Ga{sub x}Se{sub 2}, and CdTe. Accomplishments during this phase include, development of equations and reaction rates for the formation of CuIn{sub 1{minus}x}Ga{sub x}Se{sub 2} films by selenization, fabrication of a 15% efficient CuIn{sub 1{minus}x}Ga{sub x}Se{sub 2} cell, development of a reproducible, reliable Cu-diffused contact to CdTe, investigation of the role of CdTe-CdS interdiffusion on device operation, investigation of the substitution of HCl for CdCl{sub 2} in the post-deposition heat treatment of CdTe/CdS, demonstration of an improved reactor design for deposition of a-Si films, demonstration of improved process control in the fabrication of a ten set series of runs producing {approximately}8% efficient a-Si devices, demonstration of the utility of a simplified optical model for determining quantity and effect of current generation in each layer of a triple stacked a-Si cell, presentation of analytical and modeling procedures adapted to devices produced with each material system, presentation of baseline parameters for devices produced with each material system, and various investigations of the roles played by other layers in thin film devices including the Mo underlayer, CdS and ZnO in CuIn{sub 1{minus}x}Ga{sub x}Se{sub 2} devices, the CdS in CdTe devices, and the ZnO as window layer and as part of the back surface reflector in a-Si devices. In addition, collaborations with over ten research groups are briefly described. 73 refs., 54 figs., 34 tabs.

Birkmire, R.W.; Phillips, J.E.; Buchanan, W.A.; Hegedus, S.S.; McCandless, B.E.; Shafarman, W.N. [Delaware Univ., Newark, DE (United States). Inst. of Energy Conversion

1995-06-01T23:59:59.000Z

125

Modeling Cu Migration in CdTe Solar Cells Under Device-Processing and Long-Term Stability Conditions (Poster)  

DOE Green Energy (OSTI)

An impurity migration model for systems with material interfaces is applied to Cu migration in CdTe solar cells. In the model, diffusion fluxes are calculated from the Cu chemical potential gradient. Inputs to the model include Cu diffusivities, solubilities, and segregation enthalpies in CdTe, CdS and contact materials. The model yields transient and equilibrium Cu distributions in CdTe devices during device processing and under field-deployed conditions. Preliminary results for Cu migration in CdTe PV devices using available diffusivity and solubility data from the literature show that Cu segregates in the CdS, a phenomenon that is commonly observed in devices after back-contact processing and/or stress conditions.

Teeter, G.; Asher, S.

2008-05-01T23:59:59.000Z

126

Modeling Cu Migration in CdTe Solar Cells Under Device-Processing and Long-Term Stability Conditions: Preprint  

DOE Green Energy (OSTI)

An impurity migration model for systems with material interfaces is applied to Cu migration in CdTe solar cells. In the model, diffusion fluxes are calculated from the Cu chemical potential gradient. Inputs to the model include Cu diffusivities, solubilities, and segregation enthalpies in CdTe, CdS and contact materials. The model yields transient and equilibrium Cu distributions in CdTe devices during device processing and under field-deployed conditions. Preliminary results for Cu migration in CdTe photovoltaic devices using available diffusivity and solubility data from the literature show that Cu segregates in the CdS, a phenomenon that is commonly observed in devices after back-contact processing and/or stress conditions.

Teeter, G.; Asher, S.

2008-05-01T23:59:59.000Z

127

Module Configuration  

SciTech Connect

A stand alone battery module including: (a) a mechanical configuration; (b) a thermal management configuration; (c) an electrical connection configuration; and (d) an electronics configuration. Such a module is fully interchangeable in a battery pack assembly, mechanically, from the thermal management point of view, and electrically. With the same hardware, the module can accommodate different cell sizes and, therefore, can easily have different capacities. The module structure is designed to accommodate the electronics monitoring, protection, and printed wiring assembly boards (PWAs), as well as to allow airflow through the module. A plurality of modules may easily be connected together to form a battery pack. The parts of the module are designed to facilitate their manufacture and assembly.

Oweis, Salah (Ellicott City, MD); D' Ussel, Louis (Bordeaux, FR); Chagnon, Guy (Cockeysville, MD); Zuhowski, Michael (Annapolis, MD); Sack, Tim (Cockeysville, MD); Laucournet, Gaullume (Paris, FR); Jackson, Edward J. (Taneytown, MD)

2002-06-04T23:59:59.000Z

128

Fuel Cell Powered Vehicles Using Supercapacitors: Device Characteristics, Control Strategies, and Simulation Results  

E-Print Network (OSTI)

of fuel cell/battery/supercapacitor hybrid power source for479 7. Soonil Jeon, Hyundai Supercapacitor Fuel Cell Hybridtechnology, fuel cell/supercapacitor hybrid fuel cell

Zhao, Hengbing; Burke, Andy

2010-01-01T23:59:59.000Z

129

Impacts of Multileaf Collimators Leaf Width on Intensity-Modulated Radiotherapy Planning for Nasopharyngeal Carcinoma: Analysis of Two Commercial Elekta Devices  

Science Conference Proceedings (OSTI)

We compared the impacts of multileaf collimator (MLC) widths (standard MLC width of 10 mm [SMLC] and micro-MLC width of 4 mm [MMLC]) on intensity-modulated radiotherapy (IMRT) planning for nasopharyngeal carcinoma (NPC). Ten patients with NPC were recruited in this study. In each patient's case, plans were generated with the same machine setup parameter and optimizing methods in a treatment planning system according to 2 commercial Elekta MLC devices. All of the parameters were collected from dose-volume histograms of paired plans and evaluated. The average conformity index (CI) and homogeneous index (HI) for the planning gross target volume in IMRT plans with MMLC were 0.790 {+-} 0.036 and 1.062 {+-} 0.011, respectively. Data in plans with SMLC were 0.754 {+-} 0.038 and 1.070 {+-} 0.010, respectively. The differences were statistically significant (p < 0.05). Compared with CI and HI for planning target volume in paired plans, data with MMLC obviously were better than those with SMLC (CI: 0.858 {+-} 0.026 vs. 0.850 {+-} 0.021, p < 0.05; and HI: 1.185 {+-} 0.011 vs. 1.195 {+-} 0.011, p < 0.05). However, there was no statistical significance between evaluated parameters (Dmean, Dmax, D{sub 5}, gEUD, or NTCP) for organs at risk (OARs) in the 2 paired IMRT plans. According to these two kinds of Elekta MLC devices, IMRT plans with the MMLC have significant advantages in dose coverage for the targets, with more efficiency in treatment for NPC but fail to improve dose sparing of the OARs.

Wang Shichao [Radiation and Physics Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province (China); Gong Youling, E-mail: gongyouling@gmail.co [Department of Thoracic Oncology and Radiation Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province (China); State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province (China); Xu Qingfeng; Bai Sen [Radiation and Physics Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province (China); Lu You [Department of Thoracic Oncology and Radiation Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province (China); State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province (China); Jiang Qingfeng [Radiation and Physics Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province (China); Chen Nianyong [Department of Head and Neck Oncology and Radiation Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province (China)

2011-07-01T23:59:59.000Z

130

Parameter extraction from I-V characteristics of PV devices  

Science Conference Proceedings (OSTI)

Device parameters such as series and shunt resistances, saturation current and diode ideality factor influence the behaviour of the current-voltage (I-V) characteristics of solar cells and photovoltaic modules. It is necessary to determine these parameters since performance parameters are derived from the I-V curve and information provided by the device parameters are useful in analyzing performance losses. This contribution presents device parameters of CuIn(Se,S){sub 2}- and Cu(In,Ga)(Se,S){sub 2}-based solar cells, as well as, CuInSe{sub 2}, mono- and multicrystalline silicon modules determined using a parameter extraction routine that employs Particle Swarm Optimization. The device parameters of the CuIn(Se,S){sub 2}- and Cu(In,Ga)(Se,S){sub 2}-based solar cells show that the contribution of recombination mechanisms exhibited by high saturation current when coupled with the effects of parasitic resistances result in lower maximum power and conversion efficiency. Device parameters of photovoltaic modules extracted from I-V characteristics obtained at higher temperature show increased saturation current. The extracted values also reflect the adverse effect of temperature on parasitic resistances. The parameters extracted from I-V curves offer an understanding of the different mechanisms involved in the operation of the devices. The parameter extraction routine utilized in this study is a useful tool in determining the device parameters which reveal the mechanisms affecting device performance. (author)

Macabebe, Erees Queen B. [Department of Electronics, Computer and Communications Engineering, Ateneo de Manila University, Loyola Heights, Quezon City 1108 (Philippines); Department of Physics and Centre for Energy Research, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa); Sheppard, Charles J. [Department of Physics, University of Johannesburg, PO Box 524, Auckland Park 2006 (South Africa); Dyk, E. Ernest van [Department of Physics and Centre for Energy Research, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa)

2011-01-15T23:59:59.000Z

131

Design Of A Hybrid Jet Impingement / Microchannel Cooling Device For Densely Packed PV Cells Under High Concentration  

Science Conference Proceedings (OSTI)

A hybrid jet impingement / microchannel cooling scheme was designed and applied to densely packed PV cells under high concentration. An experimental study allows validating the principles of the design and confirming its applicability to the cited system. In order to study the characteristics of the device in a wide range of conditions

Jrme Barrau; Joan Rosell; Manel Ibaez

2010-01-01T23:59:59.000Z

132

Characterization of Damp-Heat Degradation of CuInGaSe2 Solar Cell Components and Devices by (Electrochemical) Impedance Spectroscopy: Preprint  

DOE Green Energy (OSTI)

This work evaluated the capability of (electrochemical) impedance spectroscopy (IS, or ECIS as used here) to monitor damp heat (DH) stability of contact materials, CuInGaSe2 (CIGS) solar cell components, and devices. Cell characteristics and its variation of the CIGS devices were also examined by the ECIS.

Pern, F. J. J.; Noufi, R.

2011-09-01T23:59:59.000Z

133

Fuel Cell Powered Vehicles Using Supercapacitors: Device Characteristics, Control Strategies, and Simulation Results  

E-Print Network (OSTI)

16, Appendix I Fuel cell hybrid vehicles with load levelingfuel cell/battery hybrid vehicles, Journal of Power Sourcesfor a PEM Fuel Cell Hybrid Vehicle, Transactions of the

Zhao, Hengbing; Burke, Andy

2010-01-01T23:59:59.000Z

134

Fuel Cell Powered Vehicles Using Supercapacitors: Device Characteristics, Control Strategies, and Simulation Results  

E-Print Network (OSTI)

Direct hydrogen fuel cell vehicles without energy storage.hydrogen fuel cell vehicles (FCVs) without energy storage (hydrogen fuel cell vehicles (FCVs) without energy storage

Zhao, Hengbing; Burke, Andy

2010-01-01T23:59:59.000Z

135

Nanostructured Electrodes For Organic Bulk Heterojunction Solar Cells: Model Study Using Carbon Nanotube Dispersed Polythiophene-fullerene Blend Devices  

Science Conference Proceedings (OSTI)

We test the feasibility of using nanostructured electrodes in organic bulk heterojunction solar cells to improve their photovoltaic performance by enhancing their charge collection efficiency and thereby increasing the optimal active blend layer thickness. As a model system, small concentrations of single wall carbon nanotubes are added to blends of poly(3-hexylthiophene): [6,6]-phenyl-C{sub 61}-butyric acid methyl ester in order to create networks of efficient hole conduction pathways in the device active layer without affecting the light absorption. The nanotube addition leads to a 22% increase in the optimal blend layer thickness from 90 nm to 110 nm, enhancing the short circuit current density and photovoltaic device efficiency by as much as {approx}10%. The associated incident-photon-to-current conversion efficiency for the given thickness also increases by {approx}10% uniformly across the device optical absorption spectrum, corroborating the enhanced charge carrier collection by nanostructured electrodes.

Nam, C.Y.; Wu, Q.; Su, D.; Chiu, C.-y; Tremblay, N.J.; Nuckolls, C,; Black, C.T.

2011-09-19T23:59:59.000Z

136

15th Workshop on Crystalline Silicon Solar Cells and Modules: Materials and Processes; Extended Abstracts and Papers  

DOE Green Energy (OSTI)

The National Center for Photovoltaics sponsored the 15th Workshop on Crystalline Silicon Solar Cells & Modules: Materials and Processes, held in Vail, CO, August 7-10, 2005. This meeting provided a forum for an informal exchange of technical and scientific information between international researchers in the photovoltaic and relevant non-photovoltaic fields. The workshop addressed the fundamental properties of PV silicon, new solar cell designs, and advanced solar cell processing techniques. A combination of oral presentations by invited speakers, poster sessions, and discussion sessions reviewed recent advances in crystal growth, new cell designs, new processes and process characterization techniques, and cell fabrication approaches suitable for future manufacturing demands. The theme of this year's meeting was 'Providing the Scientific Basis for Industrial Success.' Specific sessions during the workshop included: Advances in crystal growth and material issues; Impurities and defects in Si; Advanced processing; High-efficiency Si solar cells; Thin Si solar cells; and Cell design for efficiency and reliability module operation. The topic for the Rump Session was ''Si Feedstock: The Show Stopper'' and featured a panel discussion by representatives from various PV companies.

Sopori, B. L.

2005-11-01T23:59:59.000Z

137

Standard Test Method for Determination of the Spectral Mismatch Parameter Between a Photovoltaic Device and a Photovoltaic Reference Cell  

E-Print Network (OSTI)

1.1 This test method covers a procedure for the determination of a spectral mismatch parameter used in performance testing of photovoltaic devices. 1.2 The spectral mismatch parameter is a measure of the error, introduced in the testing of a photovoltaic device, caused by mismatch between the spectral responses of the photovoltaic device and the photovoltaic reference cell, as well as mismatch between the test light source and the reference spectral irradiance distribution to which the photovoltaic reference cell was calibrated. Examples of reference spectral irradiance distributions are Tables E490 or G173. 1.3 The spectral mismatch parameter can be used to correct photovoltaic performance data for spectral mismatch error. 1.4 This test method is intended for use with linear photovoltaic devices. 1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.6 This standard does not purport to address all of the safety concerns, if any, a...

American Society for Testing and Materials. Philadelphia

2010-01-01T23:59:59.000Z

138

40 kW of solar cell modules for the Large Scale Production Task, a Low Cost Silicon Solar Array Project. Final technical report  

SciTech Connect

Forty kilowatts of solar cell modules was produced in this program. This is equivalent to 4123 modules. The average power output per module was 9.7 watts at 16.5 volts, 60/sup 0/C and 100 mW/cm/sup 2/. The peak production rate was 200 modules per week which is equal to 1.9 kW per week. This rate was sustained for over four and one-half months and is equivalent to 100 kW per year. The solar cell module design, electrical and power performance, module preproduction environmental test results, production and shipping schedule, program summary, and delivery are described. A cost analysis section is written. Particular emphasis on the percentage of labor and material utilized in constructing a solar cell module is presented. Also included are cost reduction recommendations. It was concluded from this program that volume production on the order of hundreds of kilowatts per year per company as a minimum is required to significantly reduce the price per watt for solar cell modules. Sensor Technology more than doubled its solar cell module manufacturing facilities since the completion of the JPL Block II procurement. Plans are being made for large scale expansion of our facilities to meet growing JPL/DOE procurements.

Jones, G.T.

1977-12-01T23:59:59.000Z

139

Active Terahertz Metamaterial Devices  

NLE Websites -- All DOE Office Websites (Extended Search)

Active Terahertz Metamaterial Devices Active Terahertz Metamaterial Devices Active Terahertz Metamaterial Devices Metamaterial structures are taught which provide for the modulation of terahertz frequency signals. Available for thumbnail of Feynman Center (505) 665-9090 Email Active Terahertz Metamaterial Devices Metamaterial structures are taught which provide for the modulation of terahertz frequency signals. Each element within an array of metamaterial (MM) elements comprises multiple loops and at least one gap. The MM elements may comprise resonators with conductive loops and insulated gaps, or the inverse in which insulated loops are present with conductive gaps; each providing useful transmissive control properties. The metamaterial elements are fabricated on a semiconducting substrate configured with a

140

Fuel Cell Powered Vehicles Using Supercapacitors: Device Characteristics, Control Strategies, and Simulation Results  

E-Print Network (OSTI)

May 13 - 16, Appendix I Fuel cell hybrid vehicles with load510 cm 2 ) Appendix II Fuel cell vehicles with power assistcm 2 ) Appendix III Fuel cell vehicles with load leveling

Zhao, Hengbing; Burke, Andy

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "devices cells modules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Flow-Through Microfluidic Device for High-Efficiency Transfection of Mammalian Cells through Combined Microelectroporation and Sonoporation  

E-Print Network (OSTI)

In this study we are presenting a proof-of-concept microfluidic device that simultaneously applies the conditions required for microelectroporation and micro-sonoporation in a flow-through fashion that allows for high throughput, high efficiency transfection of mammalian cells. During the design stage, we developed a low-cost, high-resolution polymer microfabrication technique termed laser stenciling. While few other electro-sonoporation protocols have been reported, to the best of our knowledge, we are the first to incorporate microelectroporation, which has been well established in literature to be advantageous to conventional electroporation, with flow-through micro-sonoporation. When comparing transfection efficiency for our electro-sonoporation method to that of sonoporation or microelectroporation alone, we observed single batch improvements up to 20 percent and 17 percent, respectively. The average improvement in efficiency was approximately 15 percent greater than achieved with sonoporation and 10 percent greater than that of electroporation. Importantly, there was little difference in short term cell viability between the three methods (maintained at > 90 percent). The average transfection efficiency for electro-sonoporation was 81.25 percent and cell viability was 91.56 percent. Overall, we have presented a device and electro-sonoporation method that meets or outperforms the transfection efficiency and cell viability standards for HeLa cells set by other reported electroporation and sonoporation methods.

Longsine, Whitney Leigh

2011-05-01T23:59:59.000Z

142

Thermionic modules  

DOE Patents (OSTI)

Modules of assembled microminiature thermionic converters (MTCs) having high energy-conversion efficiencies and variable operating temperatures manufactured using MEMS manufacturing techniques including chemical vapor deposition. The MTCs incorporate cathode to anode spacing of about 1 micron or less and use cathode and anode materials having work functions ranging from about 1 eV to about 3 eV. The MTCs also exhibit maximum efficiencies of just under 30%, and thousands of the devices and modules can be fabricated at modest costs.

King, Donald B. (Albuquerque, NM); Sadwick, Laurence P. (Salt Lake City, UT); Wernsman, Bernard R. (Clairton, PA)

2002-06-18T23:59:59.000Z

143

Process development for automated solar cell and module production. Task 4. Automated array assembly. Quarterly report No. 1  

DOE Green Energy (OSTI)

Work has been divided into five phases. The first phase is to modify existing hardware and controlling computer software to: (1) improve cell-to-cell placement accuracy, (2) improve the solder joint while reducing the amount of solder and flux smear on the cell's surface, and (3) reduce the system cycle time to 10 seconds. The second phase involves expanding the existing system's capabilities to be able to reject broken cells and make post-solder electrical tests. Phase 3 involves developing new hardware to allow for the automated encapsulation of solar modules. This involves three discrete pieces of hardware: (1) a vacuum platen end effector for the robot which allows it to pick up the 1' x 4' array of 35 inter-connected cells. With this, it can also pick up the cover glass and completed module, (2) a lamination preparation station which cuts the various encapsulation components from roll storage and positions them for encapsulation, and (3) an automated encapsulation chamber which interfaces with the above two and applies the heat and vacuum to cure the encapsulants. Phase 4 involves the final assembly of the encapsulated array into a framed, edge-sealed module completed for installation. For this we are using MBA's Glass Reinforced Concrete (GRC) in panels such as those developed by MBA for JPL under contract No. 955281. The GRC panel plays the multiple role of edge frame, substrate and mounting structure. An automated method of applying the edge seal will also be developed. The final phase (5) is the fabrication of six 1' x 4' electrically active solar modules using the above developed equipment. Progress is reported. (WHK)

Hagerty, J. J.

1980-10-15T23:59:59.000Z

144

16th Workshop on Crystalline Silicon Solar Cells and Modules: Materials and Processes; Program, Extended Abstracts, and Papers  

DOE Green Energy (OSTI)

The National Center for Photovoltaics sponsored the 16th Workshop on Crystalline Silicon Solar Cells and Modules: Materials and Processes held August 6-9, 2006 in Denver, Colorado. The workshop addressed the fundamental properties of PV-Si, new solar cell designs, and advanced solar cell processing techniques. It provided a forum for an informal exchange of technical and scientific information between international researchers in the photovoltaic and relevant non-photovoltaic fields. The Workshop Theme was: "Getting more (Watts) for Less ($i)". A combination of oral presentations by invited speakers, poster sessions, and discussion sessions reviewed recent advances in crystal growth, new cell structures, new processes and process characterization techniques, and cell fabrication approaches suitable for future manufacturing demands. The special sessions included: Feedstock Issues: Si Refining and Purification; Metal-impurity Engineering; Thin Film Si; and Diagnostic Techniques.

Sopori, B. L.

2006-08-01T23:59:59.000Z

145

Experiments Involving Correlations Between CdTe Solar Cell Fabrication History and Intrinsic Device Stability  

DOE Green Energy (OSTI)

An orthogonal full-factorial design was used to study the effect of CdS and CdTe layer thickness, oxygen ambient during vapor CdCl2 (VCC) and the use of nitric-phosphoric (NP) acid as a pre-contact etch on the initial and stressed performance of CdS/CdTe small-area devices. The best initial device efficiency (using thinner CdS, thicker CdTe, no oxygen during VCC, and NP etch) also showed poor stability. Increasing the CdS thickness significantly improved stability with only a slight decrease in resulting initial performance. All devices used a thin margin of CdTe around the perimeter of the backcontact that was shown to significantly reduce catastrophic degradation and improve overall test statistics. The latter degradation is modeled by the formation of a weak-diode/low shunt resistance localized near the edge of finished devices. This shunting is believed to occur through the CdS/CdTe interface, rather than along the device edge, and is exacerbated by thinner CdS films.

Albin, D.; McMahon, T.; Berniard, T.; Pankow, J.; Demtsu, S.; Noufi, R.

2005-02-01T23:59:59.000Z

146

Systems, methods and computer-readable media for modeling cell performance fade of rechargeable electrochemical devices  

SciTech Connect

A system includes an electrochemical cell, monitoring hardware, and a computing system. The monitoring hardware periodically samples performance characteristics of the electrochemical cell. The computing system determines cell information from the performance characteristics of the electrochemical cell. The computing system also develops a mechanistic level model of the electrochemical cell to determine performance fade characteristics of the electrochemical cell and analyzing the mechanistic level model to estimate performance fade characteristics over aging of a similar electrochemical cell. The mechanistic level model uses first constant-current pulses applied to the electrochemical cell at a first aging period and at three or more current values bracketing a first exchange current density. The mechanistic level model also is based on second constant-current pulses applied to the electrochemical cell at a second aging period and at three or more current values bracketing the second exchange current density.

Gering, Kevin L

2013-08-27T23:59:59.000Z

147

Electrochemical device  

DOE Patents (OSTI)

A tunnel protected electrochemical device features channels fluidically communicating between manifold, tunnels and cells. The channels are designed to provide the most efficient use of auxiliary power. The channels have a greater hydraulic pressure drop and electrical resistance than the manifold. This will provide a design with the optimum auxiliary energy requirements.

Grimes, Patrick G. (Westfield, NJ); Einstein, Harry (Springfield, NJ); Bellows, Richard J. (Westfield, NJ)

1988-01-12T23:59:59.000Z

148

Photovoltaic module and module arrays  

DOE Patents (OSTI)

A photovoltaic (PV) module including a PV device and a frame. The PV device has a PV laminate defining a perimeter and a major plane. The frame is assembled to and encases the laminate perimeter, and includes leading, trailing, and side frame members, and an arm that forms a support face opposite the laminate. The support face is adapted for placement against a horizontal installation surface, to support and orient the laminate in a non-parallel or tilted arrangement. Upon final assembly, the laminate and the frame combine to define a unitary structure. The frame can orient the laminate at an angle in the range of 3.degree.-7.degree. from horizontal, and can be entirely formed of a polymeric material. Optionally, the arm incorporates integral feature(s) that facilitate interconnection with corresponding features of a second, identically formed PV module.

Botkin, Jonathan (El Cerrito, CA); Graves, Simon (Berkeley, CA); Lenox, Carl J. S. (Oakland, CA); Culligan, Matthew (Berkeley, CA); Danning, Matt (Oakland, CA)

2012-07-17T23:59:59.000Z

149

Intracellular calcium-expression-display (ICED) device operated by compressive stimulation of cells  

Science Conference Proceedings (OSTI)

The effects of steady compressive stimulation on intracellular calcium expression in MG-63 human osteoblast-like bone cells were examined using a fabricated micro cell chip with a microchannel array. A computer-controlled pneumatic system was used to ... Keywords: Cell chip, Compressive stress, Intracellular calcium-expression-display (ICED)

Tae Kyung Kim; Ok Chan Jeong

2012-10-01T23:59:59.000Z

150

Materials and devices research of PPV-ZnO nanowires for heterojunction solar cells  

Science Conference Proceedings (OSTI)

Bulk heterojunction photovoltaic devices, which use the conjugated polymer poly(2-methoxyl-5-(2?-ethylhexyloxy)-1,4- phenylenevinylene) (MEH-PPV) as the electron donor and crystalline ZnO nanowires as the electron acceptor, have been studied in ...

Zhang Xiao-Zhou; Jian Xi-Gao; Zu Li-Wu

2012-01-01T23:59:59.000Z

151

Cell-ECM traction force modulates endogenous tension at cellcell contacts  

E-Print Network (OSTI)

and resisting ex- ternal forces, it is becoming increasingly evident that cell-ECM and cell­cell adhesions are also sites of transmission of active, cell-generated forces (4). The nature of force balance across regulate cell shape and migration (1, 4, 5). In turn, force-mediated integrin signaling also controls cell

Schwarz, Ulrich

152

Development of high efficiency (14%) solar cell array module. Third quarterly report, July 15, 1979-November 15, 1979  

DOE Green Energy (OSTI)

Most effort was concentrated on development of procedures to provide large area (3'' diameter) high efficiency (approx. 15.5% AM1, 28/sup 0/C) P/N solar cells. These efficiencies had been obtained for 2 x 2 cm area cells, but tests showed that the problem was not reduced silicon quality near the edges of the larger slices. The problems were in optimizing the back-surface field (BSF) process, and its possible interaction with the shallow P+ layer formation. Towards the end of this reporting period a promising process sequence had been identified and is being tested. The module design has been finalized. One hundred and twenty (120) cells will be connected eight (8) in parallel and fifteen (15) in series. The designs and tooling phases have been completed and are awaiting completion of the cells.

Iles, P.A.; Khemthong, S.; Olah, S.; Sampson, W.J.; Ling, K.S.

1980-01-01T23:59:59.000Z

153

Dynamic Diamond Anvil Cell (dDAC): A novel device for studying the dynamic-pressure properties of materials  

SciTech Connect

We have developed a unique device, a dynamic diamond anvil cell (dDAC), which repetitively applies a time-dependent load/pressure profile to a sample. This capability allows studies of the kinetics of phase transitions and metastable phases at compression (strain) rates of up to 500 GPa/sec ({approx}0.16 s{sup -1} for a metal). Our approach adapts electromechanical piezoelectric actuators to a conventional diamond anvil cell design, which enables precise specification and control of a time-dependent applied load/pressure. Existing DAC instrumentation and experimental techniques are easily adapted to the dDAC to measure the properties of a sample under the varying load/pressure conditions. This capability addresses the sparsely studied regime of dynamic phenomena between static research (diamond anvil cells and large volume presses) and dynamic shock-driven experiments (gas guns, explosive and laser shock). We present an overview of a variety of experimental measurements that can be made with this device.

Evans, W J; Yoo, C; Lee, G W; Cynn, H; Lipp, M J; Visbeck, K

2007-02-23T23:59:59.000Z

154

Ultrafast nanolaser device for detecting cancer in a single live cell.  

Science Conference Proceedings (OSTI)

Emerging BioMicroNanotechnologies have the potential to provide accurate, realtime, high throughput screening of live tumor cells without invasive chemical reagents when coupled with ultrafast laser methods. These optically based methods are critical to advancing early detection, diagnosis, and treatment of disease. The first year goals of this project are to develop a laser-based imaging system integrated with an in- vitro, live-cell, micro-culture to study mammalian cells under controlled conditions. In the second year, the system will be used to elucidate the morphology and distribution of mitochondria in the normal cell respiration state and in the disease state for normal and disease states of the cell. In this work we designed and built an in-vitro, live-cell culture microsystem to study mammalian cells under controlled conditions of pH, temp, CO2, Ox, humidity, on engineered material surfaces. We demonstrated viability of cell culture in the microsystem by showing that cells retain healthy growth rates, exhibit normal morphology, and grow to confluence without blebbing or other adverse influences of the material surfaces. We also demonstrated the feasibility of integrating the culture microsystem with laser-imaging and performed nanolaser flow spectrocytometry to carry out analysis of the cells isolated mitochondria.

Gourley, Paul Lee; McDonald, Anthony Eugene

2007-11-01T23:59:59.000Z

155

Thermal Characterization and Analysis of A123 Systems Battery Cells, Modules and Packs: Cooperative Research and Development Final Report, CRADA Number CRD-07-243  

DOE Green Energy (OSTI)

In support of the A123 Systems battery development program with USABC/DOE, NREL provided technical support in thermal characterization, analysis and management of batteries. NREL's effort was part of Energy Storage Project funded by DOE Vehicle Technologies Program. The purpose of this work was for NREL to perform thermal characterization and analysis of A123 Systems cells and modules with the aim for Al23 Systems to improve the thermal performance of their battery cells, modules and packs.

Pesaran, A.

2012-03-01T23:59:59.000Z

156

Electric Modulation of Conduction and Optical Characteristics in Ca-doped BiFeO3 Films for Memory Device Applications  

E-Print Network (OSTI)

in Figure A.4, when an electric field is applied parallel toFigure A.4a). For anti-parallel electric field, the materialElectric Modulation of Conduction and Optical

Kim, Sang-Yong

2011-01-01T23:59:59.000Z

157

Ballasted photovoltaic module and module arrays  

DOE Patents (OSTI)

A photovoltaic (PV) module assembly including a PV module and a ballast tray. The PV module includes a PV device and a frame. A PV laminate is assembled to the frame, and the frame includes an arm. The ballast tray is adapted for containing ballast and is removably associated with the PV module in a ballasting state where the tray is vertically under the PV laminate and vertically over the arm to impede overt displacement of the PV module. The PV module assembly can be installed to a flat commercial rooftop, with the PV module and the ballast tray both resting upon the rooftop. In some embodiments, the ballasting state includes corresponding surfaces of the arm and the tray being spaced from one another under normal (low or no wind) conditions, such that the frame is not continuously subjected to a weight of the tray.

Botkin, Jonathan (El Cerrito, CA); Graves, Simon (Berkeley, CA); Danning, Matt (Oakland, CA)

2011-11-29T23:59:59.000Z

158

Analysis of Fuel Cell Vehicle Hybridization and Implications for Energy Storage Devices: June 2004  

DOE Green Energy (OSTI)

This paper addresses the impact of fuel efficiency characteristics on vehicle system efficiency, fuel economy from downsizing different fuel cells, as well as the energy storage system.

Zolot, M.; Markel, T.; Pesaran, A.

2007-01-01T23:59:59.000Z

159

Origin of Tumor Recurrence After Intensity Modulated Radiation Therapy for Oropharyngeal Squamous Cell Carcinoma  

Science Conference Proceedings (OSTI)

Purpose: To model locoregional recurrences of oropharyngeal squamous cell carcinomas (OSCC) treated with primary intensity modulated radiation therapy (IMRT) in order to find the origins from which recurrences grow and relate their location to original target volume borders. Methods and Materials: This was a retrospective analysis of OSCC treated with primary IMRT between January 2002 and December 2009. Locoregional recurrence volumes were delineated on diagnostic scans and coregistered rigidly with treatment planning computed tomography scans. Each recurrence was analyzed with two methods. First, overlapping volumes of a recurrence and original target were measured ('volumetric approach') and assessed as 'in-field', 'marginal', or 'out-field'. Then, the center of mass (COM) of a recurrence volume was assumed as the origin from where a recurrence expanded, the COM location was compared with original target volume borders and assessed as 'in-field', 'marginal', or 'out-field'. Results: One hundred thirty-one OSCC were assessed. For all patients alive at the end of follow-up, the mean follow-up time was 40 months (range, 12-83 months); 2 patients were lost to follow-up. The locoregional recurrence rate was 27%. Of all recurrences, 51% were local, 23% were regional, and 26% had both local and regional recurrences. Of all recurrences, 74% had imaging available for assessment. Regarding volumetric analysis of local recurrences, 15% were in-field gross tumor volume (GTV), and 65% were in-field clinical tumor volume (CTV). Using the COM approach, we found that 70% of local recurrences were in-field GTV and 90% were in-field CTV. Of the regional recurrences, 25% were volumetrically in-field GTV, and using the COM approach, we found 54% were in-field GTV. The COM of local out-field CTV recurrences were maximally 16 mm outside CTV borders, whereas for regional recurrences, this was 17 mm. Conclusions: The COM model is practical and specific for recurrence assessment. Most recurrences originated in the GTV. This suggests radioresistance in certain tumor parts.

Raktoe, Sawan A.S. [Department of Radiotherapy, University Medical Center Utrecht, Utrecht (Netherlands)] [Department of Radiotherapy, University Medical Center Utrecht, Utrecht (Netherlands); Dehnad, Homan, E-mail: h.dehnad@umcutrecht.nl [Department of Radiotherapy, University Medical Center Utrecht, Utrecht (Netherlands)] [Department of Radiotherapy, University Medical Center Utrecht, Utrecht (Netherlands); Raaijmakers, Cornelis P.J. [Department of Radiotherapy, University Medical Center Utrecht, Utrecht (Netherlands)] [Department of Radiotherapy, University Medical Center Utrecht, Utrecht (Netherlands); Braunius, Weibel [Department of ENT Head and Neck Surgery, University Medical Center Utrecht, Utrecht (Netherlands)] [Department of ENT Head and Neck Surgery, University Medical Center Utrecht, Utrecht (Netherlands); Terhaard, Chris H.J. [Department of Radiotherapy, University Medical Center Utrecht, Utrecht (Netherlands)] [Department of Radiotherapy, University Medical Center Utrecht, Utrecht (Netherlands)

2013-01-01T23:59:59.000Z

160

Distant Metastases in Head-and-Neck Squamous Cell Carcinoma Treated With Intensity-Modulated Radiotherapy  

SciTech Connect

Purpose: To determine the pattern and risk factors for distant metastases in head-and-neck squamous cell carcinoma (HNSCC) after curative treatment with intensity-modulated radiotherapy (IMRT). Methods and Materials: This was a retrospective study of 284 HNSCC patients treated in a single institution with IMRT. Sites included were oropharynx (125), oral cavity (70), larynx (55), hypopharynx (17), and unknown primary (17). American Joint Committee on Cancer stage distribution includes I (3), II (19), III (42), and IV (203). There were 224 males and 60 females with a median age of 57. One hundred eighty-six patients were treated with definitive IMRT and 98 postoperative IMRT. One hundred forty-nine patients also received concurrent cisplatin-based chemotherapy. Results: The median follow-up for all patients was 22.8 months (range, 0.07-77.3 months) and 29.5 months (4.23-77.3 months) for living patients. The 3-year local recurrence-free survival, regional recurrence-free survival, locoregional recurrence-free survival, distant metastasis-free survival, and overall survival were 94.6%, 96.4%, 92.5%, 84.1%, and 68.95%, respectively. There were 45 patients with distant metastasis. In multivariate analysis, distant metastasis was strongly associated with N stage (p = 0.046), T stage (p < 0.0001), and pretreatment maximum standardized uptake value of the lymph node (p = 0.006), but not associated with age, gender, disease sites, pretreatment standardized uptake value of the primary tumor, or locoregional control. The freedom from distant metastasis at 3 years was 98.1% for no factors, 88.6% for one factor, 68.3% for two factors, and 41.7% for three factors (p < 0.0001 by log-rank test). Conclusion: With advanced radiation techniques and concurrent chemotherapy, the failure pattern has changed with more patients failing distantly. The majority of patients with distant metastases had no local or regional failures, indicating that these patients might have microscopic distant disease before treatment. The clinical factors identified here should be incorporated in future clinical trials.

Yao Min, E-mail: min.yao@uhhospitals.org [Department of Radiation Oncology, University Hospitals Case Medical Center, Cleveland, OH (United States); Lu Minggen [School of Public Health, University of Nevada at Reno, Reno, NV (United States); Savvides, Panayiotis S. [Department of Medicine, University Hospitals Case Medical Center, Cleveland, OH (United States); Rezaee, Rod; Zender, Chad A.; Lavertu, Pierre [Department of Otolaryngology-Head and Neck Surgery, University Hospitals Case Medical Center, Cleveland, OH (United States); Buatti, John M. [Department of Radiation Oncology, University of Iowa, Iowa City, IA (United States); Machtay, Mitchell [Department of Radiation Oncology, University Hospitals Case Medical Center, Cleveland, OH (United States)

2012-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "devices cells modules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Long-range, full-duplex, modulated-reflector cell phone for voice/data transmission  

DOE Patents (OSTI)

A long-range communications apparatus utilizing modulated-reflector technology is described. The apparatus includes an energy-transmitting base station and remote units that do not emit radiation in order to communicate with the base station since modulated-reflector technology is used whereby information is attached to an RF carrier wave originating from the base station which is reflected by the remote unit back to the base station. Since the remote unit does not emit radiation, only a low-power power source is required for its operation. Information from the base station is transmitted to the remote unit using a transmitter and receiver, respectively. The range of such a communications system is determined by the properties of a modulated-reflector half-duplex link.

Neagley, Daniel L. (Albuquerque, NM); Briles, Scott D. (Los Alamos, NM); Coates, Don M. (Santa Fe, NM); Freund, Samuel M. (Los Alamos, NM)

2002-01-01T23:59:59.000Z

162

Photovoltaic Cell Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cell Basics Cell Basics Photovoltaic Cell Basics August 16, 2013 - 4:53pm Addthis Photovoltaic (PV) cells, or solar cells, take advantage of the photoelectric effect to produce electricity. PV cells are the building blocks of all PV systems because they are the devices that convert sunlight to electricity. Commonly known as solar cells, individual PV cells are electricity-producing devices made of semiconductor materials. PV cells come in many sizes and shapes, from smaller than a postage stamp to several inches across. They are often connected together to form PV modules that may be up to several feet long and a few feet wide. Modules, in turn, can be combined and connected to form PV arrays of different sizes and power output. The modules of the array make up the major part of a PV system, which can also include electrical connections,

163

Simulation of Device Parameters of High Efficiency Multicrystalline Silicon Solar Cells  

Science Conference Proceedings (OSTI)

The results of the simulation of the reported experimental results of high efficiency multicrystalline silicon (mc-Si) solar cells, using PC1D software, are reported in this study. Results obtained by various groups have been incorporated and compared in this study. The highest efficiency reported so far for mc-Si solar cells is 20{center_dot}4% and 17-18% by research laboratories and commercial houses, respectively. The efficiency can be further enhanced if passivation characteristics on both the front and back surface are improved. The role of back surface recombination has become more significant in light of the use of thin mc-Si wafers by the solar cell industry. Based on the passivation characteristics and considering the understanding of the past three decades of studies, the authors have proposed and simulated a structure for mc-Si solar cells to improve the performance of the same. The results of our modeled structure of mc-Si solar cell show an efficiency of 21{center_dot}88% with short-circuit current density, J{sub sc} = 39{center_dot}39 mA/cm2, and open circuit voltage, V{sub oc} = 0{center_dot}666 V.

Budhraja, V.; Misra, D.; Ravindra, N. M.

2011-11-01T23:59:59.000Z

164

Electrochemistry of . . . ELECTRODES WITH APPLICATIONS TO FUEL CELLS AND CARBON DIOXIDE CONVERSION DEVICES  

E-Print Network (OSTI)

There is a growing awareness of the need for basic and applied energy research due to the environmental impact of energy use and limitations in the supply of energy sources. In this work, electrochemical research is reported for fuel cells and carbon dioxide reduction, with the aim of reducing the environmental footprint of global energy use. In studies of the formic acid fuel cell, it is reported here that an increase in the formic acid fuel pH increases the rate of formic acid oxidation on palladium and platinum. It is also shown that an increase in fuel pH decreases the potential at which the catalyst poison is removed from the electrode surface. This poison is detrimental to fuel cell operation. This work reports the first such studies in an electrochemical cell on high surface area platinum and palladium nanoparticles. New catalyst formulations were developed via electrochemical surface modification in attempt to eliminate the catalyst poisoning and improve performance of the formic acid fuel cell. Electrochemical studies showed substantial improvement to the rate of formic acid oxidation by a combination of high surface area palladium with tin,

John Leonard Haan

2010-01-01T23:59:59.000Z

165

Incorporation of Novel Nanostructured Materials into Solar Cells and Nanoelectronic Devices  

DOE Green Energy (OSTI)

Each of the investigators on this project has had significant accomplishments toward the production of semiconductor nanoparticles, particles, and thin films and attempts to incorporate these materials into photovoltaics or sensors; to use them for improving fluorescence diagnostics; or to employ them as cancer fighting agents. The synthesis and characterization of the nanomaterials, and more recently the device construction and testing of these materials, have been the subject of several publications and presentations by team members. During the course of the investigations, several students were fully involved as part of their graduate and undergraduate training. The nature of these projects in material development dictates that the students have gained significant experience in a diverse array of material-related topics.

Rodriguez, Rene; Pak, Joshua; Holland, Andrew; Hunt, Alan; Bitterwolf, Thomas; Qiang, You; Bergman, Leah; Berven, Christine; Punnoose, Alex; Tenne, Dmitri

2011-11-11T23:59:59.000Z

166

Investigation of Junction Properties of CdS/CdTe Solar Cells and their Correlation to Device Properties (Presentation)  

DOE Green Energy (OSTI)

The objective of the Junction Studies are: (1) understand the nature of the junction in the CdTe/CdS device; (2) correlate the device fabrication parameters to the junction formation; and (3) develop a self consistent device model to explain the device properties. Detailed analysis of CdS/CdTe and SnO{sub 2}/CdTe devices prepared using CSS CdTe is discussed.

Dhere, R. G.; Zhang, Y.; Romero, M. J.; Asher, S. E.; Young, M.; To, B.; Noufi, R.; Gessert, T. A.

2008-05-01T23:59:59.000Z

167

Supporting electrodes for solid oxide fuel cells and other electrochemical devices  

DOE Patents (OSTI)

An electrode supported electrolyte membrane includes an electrode layer 630 facing an electrolyte layer 620. The opposing side of the electrode layer 630 includes a backing layer 640 of a material with a thermal expansion coefficient approximately equal to the thermal expansion coefficient of the electrolyte layer 620. The backing layer 640 is in a two dimensional pattern that covers only a portion of the electrolyte layer 630. An electrochemical cell such as a SOFC is formed by providing a cathode layer 610 on an opposing side of the electrolyte layer 620.

Sprenkle, Vincent L. (Richland, WA); Canfield, Nathan L. (Kennewick, WA); Meinhardt, Kerry (Kennewick, WA); Stevenson, Jeffry W. (Richland, WA)

2008-04-01T23:59:59.000Z

168

Measuring Devices  

Science Conference Proceedings (OSTI)

... Compressed Natural Gas Retail Motor-Fuel Dispensers; Hydrogen Measuring Devices; Liquefied Petroleum Gas Liquid-Measuring Devices; Loading ...

2010-10-05T23:59:59.000Z

169

Thyrotropin modulates receptor-mediated processing of the atrial natriuretic peptide receptor in cultured thyroid cells  

SciTech Connect

In a prior study of atrial natriuretic peptide (ANP) binding to cultured thyroid cells, we reported that at 4 C, more than 95% of bound ANP is recovered on cell membranes, with negligible ANP internalization observed. Since ANP binding was inhibited by TSH, we have further studied TSH effects on postbinding ANP processing to determine whether this phenomenon reflects enhanced endocytosis of the ANP-receptor complex. An ANP chase study was initiated by binding (125I) ANP to thyroid cells at 4 C for 2 h, followed by incubation at 37 C. ANP processing was then traced by following 125I activity at various time intervals in three fractions: cell surface membranes, incubation medium, and inside the cells. Radioactivity released into medium represented processed ANP rather than ANP dissociated from surface membranes, since prebound (125I)ANP could not be competitively dissociated by a high concentration of ANP (1 mumol/L) at 37 C. Chase study results showed that prebound ANP quickly disappeared from cell membranes down to 34% by 30 min. Internalized ANP peaked at 10 min, with 21% of initial prebound ANP found inside the cells. At the same time, radioactivity recovered in incubation medium sharply increased between 10-30 min from 8% to 52%. Preincubation of cells with chloroquine (which blocks degradation of the ANP-receptor complex by inhibiting lysosomal hydrolase) caused a 146% increase in internalized (125I)ANP by 30 min (39% compared to 15% control), while medium radioactivity decreased from 52% to 16%, suggesting that processing of the receptor complex is mediated via lysosomal enzymes. In chase studies employing cells pretreated with chloroquine, TSH stimulated the internalization rate of ANP-receptor complex. By 30 min, TSH significantly reduced the membrane-bound ANP, and the decrease was inversely correlated to the increase in internalized radioactivity.

Tseng, Y.L.; Burman, K.D.; Lahiri, S.; Abdelrahim, M.M.; D'Avis, J.C.; Wartofsky, L. (Walter Reed Army Medical Center, Washington, DC (USA))

1991-03-01T23:59:59.000Z

170

Multiple gap photovoltaic device  

DOE Patents (OSTI)

A multiple gap photovoltaic device having a transparent electrical contact adjacent a first cell which in turn is adjacent a second cell on an opaque electrical contact, includes utilizing an amorphous semiconductor as the first cell and a crystalline semiconductor as the second cell.

Dalal, Vikram L. (Newark, DE)

1981-01-01T23:59:59.000Z

171

High Volume Manufacturing of Silicon-Film Solar Cells and Modules; Final Subcontract Report, 26 February 2003 - 30 September 2003  

DOE Green Energy (OSTI)

The objective of the PV Manufacturing R&D subcontract was to continue to improve AstroPower's technology for manufacturing Silicon-Film* wafers, solar cells, and modules to reduce costs, and increase production yield, throughput, and capacity. As part of the effort, new technology such as the continuous back metallization screen-printing system and the laser scribing system were developed and implemented. Existing processes, such as the silicon nitride antireflection coating system and the fire-through process were optimized. Improvements were made to the statistical process control (SPC) systems of the major manufacturing processes: feedstock preparation, wafer growth, surface etch, diffusion, and the antireflection coating process. These process improvements and improved process control have led to an increase of 5% relative power, and nearly 15% relative improvement in mechanical and visual yield.

Rand, J. A.; Culik, J. S.

2005-10-01T23:59:59.000Z

172

Chapter 9: Photovoltaic DevicesChapter 9: Photovoltaic Devices Solar energy spectrumSolar energy spectrum  

E-Print Network (OSTI)

;Photovoltaic devices or solar cells convert thePhotovoltaic devices or solar cells convert the incident solar 4 Solar cell plant #12;Cars powered by photovoltaic devices PHYS 5320 Chapter Nine 5 #12;SolarChapter 9: Photovoltaic DevicesChapter 9: Photovoltaic Devices Solar energy spectrumSolar energy

Wang, Jianfang

173

Chapter III-2: Standards, Calibration and Testing of PV Modules and Solar Cells  

SciTech Connect

This chapter covers common PV measurement techniques and shows how potential problems and sources of error are minimized through the development and use of common standards. Measurement uncertainty, however, remains a problem for some types of PV cells, and tests continue to be developed to address these issues.

Osterwald, C. R.

2012-01-01T23:59:59.000Z

174

Technology Development for High-Efficiency Solar Cells and Modules Using Thin (<80 um) Single-Crystal Silicon Wafers Produced by Epitaxy: June 11, 2011 - April 30, 2013  

DOE Green Energy (OSTI)

Final technical progress report of Crystal Solar subcontract NEU-31-40054-01. The objective of this 18-month program was to demonstrate the viability of high-efficiency thin (less than 80 um) monocrystalline silicon (Si) solar cells and modules with a low-cost epitaxial growth process.

Ravi, T. S.

2013-05-01T23:59:59.000Z

175

Process development for automated solar cell and module production. Task 4: automated array assembly. Quarterly report No. 1  

DOE Green Energy (OSTI)

The objective of this program is to determine the state-of-the-art and to develop some of the technology required to allow for large volume and low cost terrestrial solar panel production. The baseline production facility being studied would provide for production of 200 megawatts of solar panels per year from an input commodity as sawn Czochralski wafers. Initial analysis of available automation equipment applicable to the 1986 goals shows that most of the equipment will have to be of special design. The currently available equipment is designed for the semiconductor industry where process volumes are low. Maximum speeds are of the range of 100 to 200 wafers per hour. Using special equipment it appears feasible to produce the solar cells with 6 to 8 parallel production lines operating three shifts per day, seven days per week and to produce the encapsulated modules with 1 to 3 parallel production lines. Preliminary costs analyses show promise for reaching the 1986 price goals assuming a SAMICS wafer price of $0.28/wafer (1986 dollars). Initial work has been done to study the applicability of a plasma process to perform back etch of the cells. This area shows promise for eliminating wet chemical etching procedures with attendant rinse and dry equipment and time required.

Witham, C.R.

1978-04-18T23:59:59.000Z

176

InGaAsN: A Novel Material for High-Efficiency Solar Cells and Advanced Photonic Devices  

DOE Green Energy (OSTI)

This report represents the completion of a 6 month Laboratory-Directed Research and Development (LDRD) program that focused on research and development of novel compound semiconductor, InGaAsN. This project seeks to rapidly assess the potential of InGaAsN for improved high-efficiency photovoltaic. Due to the short time scale, the project focused on quickly investigating the range of attainable compositions and bandgaps while identifying possible material limitations for photovoltaic devices. InGaAsN is a new semiconductor alloy system with the remarkable property that the inclusion of only 2% nitrogen reduces the bandgap by more than 30%. In order to help understand the physical origin of this extreme deviation from the typically observed nearly linear dependence of alloy properties on concentration, we have investigated the pressure dependence of the excited state energies using both experimental and theoretical methods. We report measurements of the low temperature photoluminescence energy of the material for pressures between ambient and 110 kbar. We describe a simple, density-functional-theory-based approach to calculating the pressure dependence of low lying excitation energies for low concentration alloys. The theoretically predicted pressure dependence of the bandgap is in excellent agreement with the experimental data. Based on the results of our calculations, we suggest an explanation for the strongly non-linear pressure dependence of the bandgap that, surprisingly, does not involve a nitrogen impurity band. Additionally, conduction-band mass measurements, measured by three different techniques, will be described and finally, the magnetoluminescence determined pressure coefficient for the conduction-band mass is measured. The design, growth by metal-organic chemical vapor deposition, and processing of an In{sub 0.07}Ga{sub 0.93}As{sub 0.98}N{sub 0.02} solar cell, with 1.0 eV bandgap, lattice matched to GaAs is described. The hole diffusion length in annealed, n-type InGaAsN is 0.6-0.8 pm, and solar cell internal quantum efficiencies >70% are obtained. Optical studies indicate that defects or impurities, from doping and nitrogen incorporation, limit cell performance.

Allerman, Andrew A.; Follstaedt, David M.; Gee, James M.; Jones, Eric D.; Kurtz, Steven R.; Modine, Norman A.

1999-07-01T23:59:59.000Z

177

Vapor Cell Devices  

Science Conference Proceedings (OSTI)

... biomagnetics. The sensors are based on a heated sample of alkali atoms, which are spin-polarized with a polarized light field. ...

2013-08-09T23:59:59.000Z

178

Method of monolithic module assembly  

DOE Patents (OSTI)

Methods for "monolithic module assembly" which translate many of the advantages of monolithic module construction of thin-film PV modules to wafered c-Si PV modules. Methods employ using back-contact solar cells positioned atop electrically conductive circuit elements affixed to a planar support so that a circuit capable of generating electric power is created. The modules are encapsulated using encapsulant materials such as EVA which are commonly used in photovoltaic module manufacture. The methods of the invention allow multiple cells to be electrically connected in a single encapsulation step rather than by sequential soldering which characterizes the currently used commercial practices.

Gee, James M. (Albuquerque, NM); Garrett, Stephen E. (Albuquerque, NM); Morgan, William P. (Albuquerque, NM); Worobey, Walter (Albuquerque, NM)

1999-01-01T23:59:59.000Z

179

High efficiency photovoltaic device  

DOE Patents (OSTI)

An N-I-P type photovoltaic device includes a multi-layered body of N-doped semiconductor material which has an amorphous, N doped layer in contact with the amorphous body of intrinsic semiconductor material, and a microcrystalline, N doped layer overlying the amorphous, N doped material. A tandem device comprising stacked N-I-P cells may further include a second amorphous, N doped layer interposed between the microcrystalline, N doped layer and a microcrystalline P doped layer. Photovoltaic devices thus configured manifest improved performance, particularly when configured as tandem devices.

Guha, Subhendu (Troy, MI); Yang, Chi C. (Troy, MI); Xu, Xi Xiang (Findlay, OH)

1999-11-02T23:59:59.000Z

180

Mefenamic acid bi-directionally modulates the transient outward K{sup +} current in rat cerebellar granule cells  

Science Conference Proceedings (OSTI)

The effect of non-steroidal anti-inflammatory drugs (NSAIDs) on ion channels has been widely studied in several cell models, but less is known about their modulatory mechanisms. In this report, the effect of mefenamic acid on voltage-activated transient outward K{sup +} current (I{sub A}) in cultured rat cerebellar granule cells was investigated. At a concentration of 5 {mu}M to 100 {mu}M, mefenamic acid reversibly inhibited I{sub A} in a dose-dependent manner. However, mefenamic acid at a concentration of 1 {mu}M significantly increased the amplitude of I{sub A} to 113 {+-} 1.5% of the control. At more than 10 {mu}M, mefenamic acid inhibited the amplitude of I{sub A} without any effect on activation or inactivation. In addition, a higher concentration of mefenamic acid induced a significant acceleration of recovery from inactivation with an increase of the peak amplitude elicited by the second test pulse. Intracellular application of mefenamic acid could significantly increase the amplitude of I{sub A}, but had no effect on the inhibition induced by extracellular mefenamic acid, implying that mefenamic acid may exert its effect from both inside and outside the ion channel. Furthermore, the activation of current induced by intracellular application of mefenamic acid was mimicked by other cyclooxygenase inhibitors and arachidonic acid. Our data demonstrate that mefenamic acid is able to bi-directionally modulate I{sub A} channels in neurons at different concentrations and by different methods of application, and two different mechanisms may be involved.

Zhang Man; Shi Wenjie; Fei Xiaowei; Liu Yarong; Zeng Ximin [Institute of Brain Science, School of Life Sciences and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200433 (China); Mei Yanai [Institute of Brain Science, School of Life Sciences and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200433 (China)], E-mail: yamei@fudan.edu.cn

2008-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "devices cells modules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Investigation of the Effect of I-ZnO Window Layer on the Device Performance of the Cd-Free CIGS Based Solar Cells (Poster)  

DOE Green Energy (OSTI)

This research work focuses on preparing Cd-free CIGS based solar cells with intrinsic high resistivity ZnO (I-ZnO) films deposited by metal-organic chemical vapor deposition (MOCVD) technique at different deposition substrate temperature and I-ZnO film thickness, and the effect of the prior treatment of CIGS films by ammonium hydroxide (NH4OH) diluted solution on the device performance.

Hasoon, F. S.; al-Thani, H. A.; Li, X.; Kanevce, A.; Perkins, C.; Asher, S.

2008-05-01T23:59:59.000Z

182

Investigation of the Effect of I-ZnO Window Layer on the Device Performance of the Cd-Free CIGS Based Solar Cells: Preprint  

DOE Green Energy (OSTI)

This paper focuses on preparing Cd-free, CIGS-based solar cells with intrinsic high resistivity ZnO (I-ZnO) films deposited by metal-organic chemical vapor deposition (MOCVD) technique at different deposition substrate temperature and I-ZnO film thickness, and the effect of the prior treatment of CIGS films by ammonium hydroxide (NH4OH) diluted solution on the device performance.

Hasoon, F. S.; Al-Thani, H. A.; Li, X.; Kanevce, A.; Perkins, C.; Asher, S.

2008-05-01T23:59:59.000Z

183

Sealed joint structure for electrochemical device  

DOE Patents (OSTI)

Several members make up a joint in a high-temperature electrochemical device, wherein the various members perform different functions. The joint is useful for joining multiple cells (generally tubular modules) of an electrochemical device to produce a multi-cell segment-in-series stack for a solid oxide fuel cell, for instance. The joint includes sections that bond the joining members to each other; one or more seal sections that provide gas-tightness, and sections providing electrical connection and/or electrical insulation between the various joining members. A suitable joint configuration for an electrochemical device has a metal joint housing, a first porous electrode, a second porous electrode, separated from the first porous electrode by a solid electrolyte, and an insulating member disposed between the metal joint housing and the electrolyte and second electrode. One or more brazes structurally and electrically connects the first electrode to the metal joint housing and forms a gas tight seal between the first electrode and the second electrode.

Tucker, Michael C; Jacobson, Craig P; De Jonghe, Lutgard C; Visco, Steven J

2013-05-21T23:59:59.000Z

184

Handheld portable real-time tracking and communications device  

DOE Patents (OSTI)

Portable handheld real-time tracking and communications devices include; a controller module, communications module including global positioning and mesh network radio module, data transfer and storage module, and a user interface module enclosed in a water-resistant enclosure. Real-time tracking and communications devices can be used by protective force, security and first responder personnel to provide situational awareness allowing for enhance coordination and effectiveness in rapid response situations. Such devices communicate to other authorized devices via mobile ad-hoc wireless networks, and do not require fixed infrastructure for their operation.

Wiseman, James M. (Albuquerque, NM); Riblett, Jr., Loren E. (Edgewood, NM); Green, Karl L. (Albuquerque, NM); Hunter, John A. (Albuquerque, NM); Cook, III, Robert N. (Rio Rancho, NM); Stevens, James R. (Arlington, VA)

2012-05-22T23:59:59.000Z

185

Precision alignment device  

DOE Patents (OSTI)

Apparatus for providing automatic alignment of beam devices having an associated structure for directing, collimating, focusing, reflecting, or otherwise modifying the main beam. A reference laser is attached to the structure enclosing the main beam producing apparatus and produces a reference beam substantially parallel to the main beam. Detector modules containing optical switching devices and optical detectors are positioned in the path of the reference beam and are effective to produce an electrical output indicative of the alignment of the main beam. This electrical output drives servomotor operated adjustment screws to adjust the position of elements of the structure associated with the main beam to maintain alignment of the main beam. 5 figs.

Jones, N.E.

1988-03-10T23:59:59.000Z

186

18th Workshop on Crystalline Silicon Solar Cells and Modules: Materials and Processes; Workshop Proceedings, 3-6 August 2008, Vail, Colorado  

DOE Green Energy (OSTI)

The National Center for Photovoltaics sponsored the 18th Workshop on Crystalline Silicon Solar Cells & Modules: Materials and Processes, held in Vail, CO, August 3-6, 2008. This meeting provided a forum for an informal exchange of technical and scientific information between international researchers in the photovoltaic and relevant non-photovoltaic fields. The theme of this year's meeting was 'New Directions for Rapidly Growing Silicon Technologies.'

Sopori, B. L.

2008-09-01T23:59:59.000Z

187

Photovoltaic concentrator module improvements study  

DOE Green Energy (OSTI)

This report presents results of a project to design and fabricate an improved photovoltaic concentrator module. Using previous work as a baseline, this study conducted analyses and testing to select major module components and design features. The lens parquet and concentrator solar cell were selected from the highest performing, available components. A single 185X point-focus module was fabricated by the project team and tested at Sandia. Major module characteristics include a 6 by 4 compression-molded acrylic lens parquet (0.737 m{sup 2} area), twenty-four 0.2 ohms-cm, FZ, p-Si solar cells (1.56 cm{sup 2} area) soldered to ceramic substrates and copper heat spreaders, and an aluminized steel housing with corrugated bottom. This project marked the first attempt to use prismatic covers on solar cells in a high-concentration, point-focus application. Cells with 15 percent metallization were obtained, but problems with the fabrication and placement of prismatic covers on these cells lead to the decision not to use covers in the prototype module. Cell assembly fabrication, module fabrication, and module optical design activities are presented here. Test results are also presented for bare cells, cell assemblies, and module. At operating conditions of 981 watts/m{sup 2} DNI and an estimated cell temperature of 65{degrees}C, the module demonstrated an efficiency of 13.9 percent prior to stressed environmental exposure. 12 refs., 56 figs., 7 tabs.

Levy, S.L.; Kerschen, K.A. (Black and Veatch, Kansas City, MO (United States)); Hutchison, G. (Solar Kinetics, Inc., Dallas, TX (United States)); Nowlan, M.J. (Spire Corp., Bedford, MA (United States))

1991-08-01T23:59:59.000Z

188

Energy Basics: Flat-Plate Photovoltaic Modules  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

PV module must have a high transmission in the wavelengths that can be used by the solar cells in the module. For example, for silicon solar cells, the top surface must have...

189

PDSF Modules  

NLE Websites -- All DOE Office Websites (Extended Search)

Modules Modules Modules Modules Approach to Managing The Environment Modules is a system which you can use to specify what software you want to use. If you want to use a particular software package loading its module will take care of the details of modifying your environment as necessary. The advantage of the modules approach is that the you are not required to explicitly specify paths for different executable versions and try to keep their related man paths and environment variables coordinated. Instead you simply "load" and "unload" specific modules to control your environment. Getting Started with Modules If you're using the standard startup files on PDSF then you're already setup for using modules. If the "module" command is not available, please

190

Tumor Control Outcomes After Hypofractionated and Single-Dose Stereotactic Image-Guided Intensity-Modulated Radiotherapy for Extracranial Metastases From Renal Cell Carcinoma  

Science Conference Proceedings (OSTI)

Purpose: To report tumor local progression-free outcomes after treatment with single-dose, image-guided, intensity-modulated radiotherapy and hypofractionated regimens for extracranial metastases from renal cell primary tumors. Patients and Methods: Between 2004 and 2010, 105 lesions from renal cell carcinoma were treated with either single-dose, image-guided, intensity-modulated radiotherapy to a prescription dose of 18-24 Gy (median, 24) or hypofractionation (three or five fractions) with a prescription dose of 20-30 Gy. The median follow-up was 12 months (range, 1-48). Results: The overall 3-year actuarial local progression-free survival for all lesions was 44%. The 3-year local progression-free survival for those who received a high single-dose (24 Gy; n = 45), a low single-dose (dose vs. low single dose, p = .001; high single dose vs. hypofractionation, p dose compared with a lower dose (p = .009) and a single dose vs. hypofractionation (p = .008). Conclusion: High single-dose, image-guided, intensity-modulated radiotherapy is a noninvasive procedure resulting in high probability of local tumor control for metastatic renal cell cancer generally considered radioresistant according to the classic radiobiologic ranking.

Zelefsky, Michael J., E-mail: zelefskm@mskcc.org [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Greco, Carlo [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Motzer, Robert [Solid Tumor Service, Medical Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Magsanoc, Juan Martin; Pei Xin [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Lovelock, Michael; Mechalakos, Jim [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Zatcky, Joan; Fuks, Zvi; Yamada, Yoshiya [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (United States)

2012-04-01T23:59:59.000Z

191

Personal annunciation device  

DOE Patents (OSTI)

A personal annunciation device (PAD) providing, in an area of interest, compensatory annunciation of the presence of an abnormal condition in a hazardous area and accountability of the user of the PAD. Compensatory annunciation supplements primary annunciation provided by an emergency notification system (ENS). A detection system detects an abnormal condition, and a wireless transmission system transmits a wireless transmission to the PAD. The PAD has a housing enclosing the components of the PAD including a communication module for receiving the wireless transmission, a power supply, processor, memory, annunciation system, and RFID module. The RFID module has an RFID receiver that listens for an RFID transmission from an RFID reader disposed in a portal of an area of interest. The PAD identifies the transmission and changes its operating state based on the transmission. The RFID readers recognize, record, and transmit the state of the PAD to a base station providing accountability of the wearer.

Angelo, Peter (Oak Ridge, TN); Younkin, James (Oak Ridge, TN); DeMint, Paul (Kingston, TN)

2011-01-25T23:59:59.000Z

192

Electronic security device  

DOE Patents (OSTI)

The present invention relates to a security device having a control box (12) containing an electronic system (50) and a communications loop (14) over which the system transmits a signal. The device is constructed so that the communications loop can extend from the control box across the boundary of a portal such as a door into a sealed enclosure into which access is restricted whereby the loop must be damaged or moved in order for an entry to be made into the enclosure. The device is adapted for detecting unauthorized entries into such enclosures such as rooms or containers and for recording the time at which such entries occur for later reference. Additionally, the device detects attempts to tamper or interfere with the operation of the device itself and records the time at which such events take place. In the preferred embodiment, the security device includes a microprocessor-based electronic system (50) and a detection module (72) capable of registering changes in the voltage and phase of the signal transmitted over the loop.

Eschbach, Eugene A. (Richland, WA); LeBlanc, Edward J. (Kennewick, WA); Griffin, Jeffrey W. (Kennewick, WA)

1992-01-01T23:59:59.000Z

193

Electronic security device  

DOE Patents (OSTI)

The present invention relates to a security device having a control box containing an electronic system and a communications loop over which the system transmits a signal. The device is constructed so that the communications loop can extend from the control box across the boundary of a portal such as a door into a sealed enclosure into which access is restricted whereby the loop must be damaged or moved in order for an entry to be made into the enclosure. The device is adapted for detecting unauthorized entries into such enclosures such as rooms or containers and for recording the time at which such entries occur for later reference. Additionally, the device detects attempts to tamper or interfere with the operation of the device itself and records the time at which such events take place. In the preferred embodiment, the security device includes a microprocessor-based electronic system and a detection module capable of registering changes in the voltage and phase of the signal transmitted over the loop. 11 figs.

Eschbach, E.A.; LeBlanc, E.J.; Griffin, J.W.

1992-03-17T23:59:59.000Z

194

Power Modulation based Device-Socket Association:.  

E-Print Network (OSTI)

??Smart metering can be entitled as a pivotal research area empowering the provision of enhanced energy conservation services. Academic research focuses mainly on upper context (more)

Larisis, N.

2013-01-01T23:59:59.000Z

195

Thin film photovoltaic device and process of manufacture  

DOE Patents (OSTI)

Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells. 13 figs.

Albright, S.P.; Chamberlin, R.

1997-10-07T23:59:59.000Z

196

Thin film photovoltaic device and process of manufacture  

DOE Patents (OSTI)

Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells.

Albright, Scot P. (Lakewood, CO); Chamberlin, Rhodes (El Paso, TX)

1997-10-07T23:59:59.000Z

197

Thin film photovoltaic device and process of manufacture  

DOE Patents (OSTI)

Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells. 13 figs.

Albright, S.P.; Chamberlin, R.

1999-02-09T23:59:59.000Z

198

Thin film photovoltaic device and process of manufacture  

DOE Patents (OSTI)

Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells.

Albright, Scot P. (Lakewood, CO); Chamberlin, Rhodes (El Paso, TX)

1999-02-09T23:59:59.000Z

199

Thin film nanoporous silica and graphene based biofuel cells (iBFCs) for low-power implantable medical device applications.  

E-Print Network (OSTI)

??This thesis describes the fabrication and characterization of an inorganic catalyst based glucose Biofuel cell using nanoporous (mesoporous) silica thin-film as a functional membrane. The (more)

Sharma, Tushar

2011-01-01T23:59:59.000Z

200

PHYS 5320PHYS 5320 Photonics: Materials and DevicesPhotonics: Materials and Devices Lecturer: Wang, Jianfang ()  

E-Print Network (OSTI)

Course ContentsContents ContinuedContinued Photovoltaic cells Solar energy spectrum Photovoltaic cell principles PN junction photovoltaic I-V characteristics Heterojunction photovoltaic cells Materials for photovoltaic cells and efficiencies Polarization and modulation of light Polarization Bi f i

Wang, Jianfang

Note: This page contains sample records for the topic "devices cells modules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Monolithic amorphous silicon modules on continuous polymer substrate  

DOE Green Energy (OSTI)

This report examines manufacturing monolithic amorphous silicon modules on a continuous polymer substrate. Module production costs can be reduced by increasing module performance, expanding production, and improving and modifying production processes. Material costs can be reduced by developing processes that use a 1-mil polyimide substrate and multilayers of low-cost material for the front encapsulant. Research to speed up a-Si and ZnO deposition rates is needed to improve throughputs. To keep throughput rates compatible with depositions, multibeam fiber optic delivery systems for laser scribing can be used. However, mechanical scribing systems promise even higher throughputs. Tandem cells and production experience can increase device efficiency and stability. Two alternative manufacturing processes are described: (1) wet etching and sheet handling and (2) wet etching and roll-to-roll fabrication.

Grimmer, D.P. (Iowa Thin Film Technologies, Inc., Ames, IA (United States))

1992-03-01T23:59:59.000Z

202

Electrochromic devices  

DOE Patents (OSTI)

An electrochromic device is disclosed having a selective ion transport layer which separates an electrochemically active material from an electrolyte containing a redox active material. The devices are particularly useful as large area architectural and automotive glazings due to there reduced back reaction.

Allemand, Pierre M. (Tucson, AZ); Grimes, Randall F. (Ann Arbor, MI); Ingle, Andrew R. (Tucson, AZ); Cronin, John P. (Tucson, AZ); Kennedy, Steve R. (Tuscon, AZ); Agrawal, Anoop (Tucson, AZ); Boulton, Jonathan M. (Tucson, AZ)

2001-01-01T23:59:59.000Z

203

Fusion devices  

SciTech Connect

Three types of thermonuclear fusion devices currently under development are reviewed for an electric utilities management audience. Overall design features of laser fusion, tokamak, and magnetic mirror type reactors are described and illustrated. Thrusts and trends in current research on these devices that promise to improve performance are briefly reviewed. Twenty photographs and drawings are included. (RME)

Fowler, T.K.

1977-10-11T23:59:59.000Z

204

Generic Testability and Test Methods Guidelines for ASIC Devices  

Science Conference Proceedings (OSTI)

Application specific integrated circuit (ASIC) devices can cost- effectively perform the same functions as analog modules. In fact, functions performed by several analog modules can be incorporated into one ASIC device. Qualification testing, however, is needed to ensure the high reliability required of ASIC devices used in nuclear power plant safety and control systems. This report presents guidelines for designing high- reliability ASIC devices that support cost-effective qualification testing.

1996-04-30T23:59:59.000Z

205

Advanced nanofabrication of thermal emission devices  

E-Print Network (OSTI)

Nanofabricated thermal emission devices can be used to modify and modulate blackbody thermal radiation. There are many areas in which altering thermal radiation is extremely useful, especially in static power conversion, ...

Hurley, Fergus (Fergus Gerard)

2008-01-01T23:59:59.000Z

206

SLM device for 193nm lithographic applications  

Science Conference Proceedings (OSTI)

The imaging capability of a new spatial light modulator, (SLM), a custom MEMS device is presented. Low k"1 factor aerial image measurements show the suitability of the SLM device for a variety of uses including optical maskless lithography (OML) applications. ... Keywords: Aerial image, Calibration, Design, Electro-mechanical, Electrode, Fabrication, Imaging, Integration, MEMS, Maskless, Micro-mirror, Mirror, OML, Optical maskless lithography, Packaging, Qualification, SLM, Spatial light modulator

John Lauria; Ronald Albright; Olga Vladimirsky; Maarten Hoeks; Roel Vanneer; Bert van Drieenhuizen; Luoqi Chen; Luc Haspeslagh; Ann Witvrouw

2009-04-01T23:59:59.000Z

207

Superconductive devices  

Science Conference Proceedings (OSTI)

Over the past 2 years there have been several suggestions advanced for computer devices which utilize the unique properties of superconductors. Some of these take advantage of the strong nonlinear dependence of resistance on magnetic field which makes ...

Albert E. Slade; Howard McMahon

1958-05-01T23:59:59.000Z

208

Apparatus for encapsulating a photovoltaic module  

DOE Patents (OSTI)

The subject inventions concern various photovoltaic module designs to protect the module from horizontal and vertical impacts and degradation of solar cell efficiency caused by moisture. In one design, a plurality of panel supports that are positioned adjacent to the upper panel in a photovoltaic module absorb vertical forces exerted along an axis perpendicular to the upper panel. Other designs employ layers of glass and tempered glass, respectively, to protect the module from vertical impacts. A plurality of button-shaped channels is used around the edges of the photovoltaic module to absorb forces applied to the module along an axis parallel to the module and direct moisture away from the module that could otherwise penetrate the module and adversely affect the cells within the module. A spacer is employed between the upper and lower panels that has a coefficient of thermal expansion substantially equivalent to the coefficient of thermal expansion of at least one of the panels.

Albright, Scot P. (El Paso, TX); Dugan, Larry M. (Boulder, CO)

1995-10-24T23:59:59.000Z

209

PLASMA DEVICE  

DOE Patents (OSTI)

A device for producing a confined high temperature plasma is described. In the device the concave inner surface of an outer annular electrode is disposed concentrically about and facing the convex outer face of an inner annular electrode across which electrodes a high potential is applied to produce an electric field there between. Means is provided to create a magnetic field perpendicular to the electric field and a gas is supplied at reduced pressure in the area therebetween. Upon application of the high potential, the gas between the electrodes is ionized, heated, and under the influence of the electric and magnetic fields there is produced a rotating annular plasma disk. The ionized plasma has high dielectric constant properties. The device is useful as a fast discharge rate capacitor, in controlled thermonuclear research, and other high temperature gas applications. (AEC)

Baker, W.R.; Brathenahl, A.; Furth, H.P.

1962-04-10T23:59:59.000Z

210

Immunosuppressive dietary n-3 polyunsaturated fatty acids differentially modulate costimulatory regulation of murine CD4+ T-cell function  

E-Print Network (OSTI)

Consumption of fish oils (FO) enriched with the n-3 polyunsaturated fatty acids (PUFA), docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), is beneficial to a variety of inflammatory disorders due, in part, to the alteration of membrane composition of T-lymphocytes and other immune cells. We previously observed that down-regulation of proliferation and cytokine synthesis by CD4+ T-cells in mice fed diets rich in n-3 PUFA was dependent on the involvement of CD28, a co-stimulatory molecule necessary for T-cell activation. Since the co-receptor homologues, CD28 and CTLA-4, have opposing effects on T-cell activation, we hypothesized that the balance of costimulatory and downregulatory properties of CD28 and CTLA-4, respectively, would be altered by diet. A significant increase (pCD28 and CTLA-4 surface expression was observed in CD4+ T-cells post-stimulation with phorbol ester and calcium ionophore (PMA/Iono) or anti-CD3 and anti-CD28 (?CD3/CD28) antibodies in all diet groups. A significant increase (pCD28 molecules was observed in n-3 PUFA vs. CO-fed mice after 48 h of in vitro CD4+ T-cell activation, and both CTLA-4 mRNA transcript and protein levels were upregulated by 50% at 72 h post-activation (pCD28. CD4T-cells from C57BL/6 mice fed DHA produced significantly less IFN? and IL-10, while CD4T-cells from IL-10Ligation of CD28 upregulates IL-10 receptor (IL-10R) expression on CD4+ T-cells. Therefore, we hypothesized that dietary n-3 PUFA would suppress T-cell function through the effects of IL-10. Surprisingly, the proliferation of purified splenic CD4+ T-cells activated in vitro with ?CD3/CD28 was suppressed by dietary n-3 PUFA in both conventional mice (C57BL/6) and IL-10 gene knockout (IL-10(-/-)) mice. Furthermore, IL-10R cell surface expression was significantly down-regulated on CD4+ T-cells from both the C67BL/6 and IL-10(-/-) mice fed dietary n-3 PUFA produced significantly more IFN? compared to the CO-fed group.

Ly, Lan H.

2004-12-01T23:59:59.000Z

211

Research on stable, high-efficiency amorphous silicon multijunction modules  

DOE Green Energy (OSTI)

This report describes the progress made during Phase 1 of research and development program to obtain high-efficiency amorphous silicon alloy multijunction modules. Using a large-area deposition system, double-and triple-junction cells were made on stainless steel substrates of over 1 ft{sup 2} area with Ag and ZnO predeposited back reflector. Modules of over 1 ft{sup 2} were produced with between 9.2% and 9.9 initial aperture-area efficiencies as measured under a USSC Spire solar simulator. Efficiencies as measured under the NREL Spire solar simulator were found to be typically 15% to 18% lower. The causes for this discrepancy are now being investigated. The modules show about 15% degradation after 600 hours of one-sun illumination at 50{degrees}C. To optimize devices for higher stabilized efficiency, a new method was developed by which the performance of single-junction cells after long-term, one-sun exposure at 50{degrees}C can be predicted by exposing cells to short-term intense light at different temperatures. This method is being used to optimize the component cells of the multijunction structure to obtain the highest light-degraded efficiency.

Banerjee, A.; Chen, E.; Clough, R.; Glatfelter, T.; Guha, S.; Hammond, G.; Hopson, M.; Jackett, N.; Lycette, M.; Noch, J.; Palmer, T.; Pawlikiewicz, A.; Rosenstein, I.; Ross, R.; Wolf, D.; Xu, X.; Yang, J.; Younan, K.

1992-04-01T23:59:59.000Z

212

Process development for automated solar cell and module production. Task 4. Automated array assembly. Quarterly report No. 4  

DOE Green Energy (OSTI)

Construction of the components of an automated solar cell layup and interconnect system is now complete. This system incorporates a Unimate 2000 B industrial robot with an end effector consisting of a vacuum pick up and induction heating coil. The robot interfaces with a smart cell preparation station which correctly orients the cell, applies solder paste and forms and positions the correct lengths of interconnect lead. The system is controlled and monitored by a TRS-80 micro computer. The entire system is presently undergoing integration prior to formal testing. A survey of elastomer manufacturers has shown transfer molded EPDM to be a strong candidate for the edge sealing material.

Hagerty, J.J.

1979-10-15T23:59:59.000Z

213

Detection device  

DOE Patents (OSTI)

The present invention is directed to a detection device comprising: (1) an entrance chamber; (2) a central chamber; and (3) an exit chamber. The central chamber includes an ionizing gas, anode, and means for connecting the anode with an external power supply and pulse counter.

Smith, J.E.

1981-02-27T23:59:59.000Z

214

Thin Single Crystal Silicon Solar Cells on Ceramic Substrates: November 2009 - November 2010  

Science Conference Proceedings (OSTI)

In this program we have been developing a technology for fabricating thin (cost raw materials. This 'handling layer' has sufficient strength for device and module processing and fabrication. Successful production of full sized (125 mm X 125 mm) silicon on ceramic wafers with 50 micrometre thick single crystal silicon has been achieved and device process flow developed for solar cell fabrication. Impurity transfer from the ceramic to the silicon during the elevated temperature consolidation process has resulted in very low minority carrier lifetimes and resulting low cell efficiencies. Detailed analysis of minority carrier lifetime, metals analysis and device characterization have been done. A full sized solar cell efficiency of 8% has been demonstrated.

Kumar, A.; Ravi, K. V.

2011-06-01T23:59:59.000Z

215

Electrochromic optical switching device  

DOE Patents (OSTI)

An electrochromic cell is disclosed which comprises an electrochromic layer, a polymerizable organo-sulfur layer which comprises the counter electrode of the structure, and an ionically conductive electronically insulating material which comprises the separator between the electrodes. In a preferred embodiment, both the separator and the organo-sulfur electrode (in both its charged and uncharged states) are transparent either to visible light or to the entire solar spectrum. An electrochromic device is disclosed which comprises such electrodes and separator encased in glass plates on the inner surface of each of which is formed a transparent electrically conductive film in respective electrical contact with the electrodes which facilitates formation of an external electrical connection or contact to the electrodes of the device to permit electrical connection of the device to an external potential source. 3 figs.

Lampert, C.M.; Visco, S.J.

1992-08-25T23:59:59.000Z

216

Electrochromic optical switching device  

DOE Patents (OSTI)

An electrochromic cell is disclosed which comprises an electrochromic layer, a polymerizable organo-sulfur layer which comprises the counter electrode of the structure, and an ionically conductive electronically insulating material which comprises the separator between the electrodes. In a preferred embodiment, both the separator and the organo-sulfur electrode (in both its charged and uncharged states) are transparent either to visible light or to the entire solar spectrum. An electrochromic device is disclosed which comprises such electrodes and separator encased in glass plates on the inner surface of each of which is formed a transparent electrically conductive film in respective electrical contact with the electrodes which facilitates formation of an external electrical connection or contact to the electrodes of the device to permit electrical connection of the device to an external potential source.

Lampert, Carl M. (El Sobrante, CA); Visco, Steven J. (Berkeley, CA)

1992-01-01T23:59:59.000Z

217

Critical infrastructure security curriculum modules  

Science Conference Proceedings (OSTI)

Critical infrastructures have succumbed to the demands of greater connectivity. Although the scheme of connecting these critical equipment and devices to cyberspace has brought us tremendous convenience, it also enabled certain unimaginable risks and ... Keywords: SCADA, control systems, course modules, critical infrastructures, cybersecurity, programmable logic controllers, security, vulnerability

Guillermo A. Francia, III

2011-09-01T23:59:59.000Z

218

Laser device  

DOE Patents (OSTI)

A laser device includes a virtual source configured to aim laser energy that originates from a true source. The virtual source has a vertical rotational axis during vertical motion of the virtual source and the vertical axis passes through an exit point from which the laser energy emanates independent of virtual source position. The emanating laser energy is collinear with an orientation line. The laser device includes a virtual source manipulation mechanism that positions the virtual source. The manipulation mechanism has a center of lateral pivot approximately coincident with a lateral index and a center of vertical pivot approximately coincident with a vertical index. The vertical index and lateral index intersect at an index origin. The virtual source and manipulation mechanism auto align the orientation line through the index origin during virtual source motion.

Scott, Jill R. (Idaho Falls, ID); Tremblay, Paul L. (Idaho Falls, ID)

2008-08-19T23:59:59.000Z

219

LOADING DEVICE  

DOE Patents (OSTI)

A device is presented for loading or charging bodies of fissionable material into a reactor. This device consists of a car, mounted on tracks, into which the fissionable materials may be placed at a remote area, transported to the reactor, and inserted without danger to the operating personnel. The car has mounted on it a heavily shielded magazine for holding a number of the radioactive bodies. The magazine is of a U-shaped configuration and is inclined to the horizontal plane, with a cap covering the elevated open end, and a remotely operated plunger at the lower, closed end. After the fissionable bodies are loaded in the magazine and transported to the reactor, the plunger inserts the body at the lower end of the magazine into the reactor, then is withdrawn, thereby allowing gravity to roll the remaining bodies into position for successive loading in a similar manner.

Ohlinger, L.A.

1958-10-01T23:59:59.000Z

220

Process development for automated solar cell and module production. Task 4: automated array assembly. Quarterly report No. 5  

DOE Green Energy (OSTI)

Construction of an automated solar cell layup and interconnect system is now complete. This system incorporates a Unimate 2000 B industrial robot with an end effector consisting of a vacuum pick up and induction heating coil. The robot interfaces with a smart cell preparation station which correctly orients the cell, applies solder paste and forms and positions the correct lengths of interconnect lead. The system is controlled and monitored by a TRS-80 micro computer. The first operational tests of the fully integrated station have been run. These tests proved the soundness of the basic design concept but also pointed to areas in which modifications are necessary. These modifications are nearly complete and the improved parts are being integrated. Development of the controlling computer program is progressing to both reflect these changes and reduce operating time.

Hagerty, J.J.

1980-01-31T23:59:59.000Z

Note: This page contains sample records for the topic "devices cells modules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Positron Emission Tomography/Computed Tomography-Guided Intensity-Modulated Radiotherapy for Limited-Stage Small-Cell Lung Cancer  

Science Conference Proceedings (OSTI)

Purpose: Omitting elective nodal irradiation from planning target volumes does not compromise outcomes in patients with non-small-cell lung cancer, but whether the same is true for those with limited-stage small-cell lung cancer (LS-SCLC) is unknown. Therefore, in the present study, we sought to determine the clinical outcomes and the frequency of elective nodal failure in patients with LS-SCLC staged using positron emission tomography/computed tomography and treated with involved-field intensity-modulated radiotherapy. Methods and Materials: Between 2005 and 2008, 60 patients with LS-SCLC at our institution underwent disease staging using positron emission tomography/computed tomography before treatment using an intensity-modulated radiotherapy plan in which elective nodal irradiation was intentionally omitted from the planning target volume (mode and median dose, 45 Gy in 30 fractions; range, 40.5 Gy in 27 fractions to 63.8 Gy in 35 fractions). In most cases, concurrent platinum-based chemotherapy was administered. We retrospectively reviewed the clinical outcomes to determine the overall survival, relapse-free survival, and failure patterns. Elective nodal failure was defined as recurrence in initially uninvolved hilar, mediastinal, or supraclavicular nodes. Survival was assessed using the Kaplan-Meier method. Results: The median age of the study patients at diagnosis was 63 years (range, 39-86). The median follow-up duration was 21 months (range, 4-58) in all patients and 26 months (range, 4-58) in the survivors. The 2-year actuarial overall survival and relapse-free survival rate were 58% and 43%, respectively. Of the 30 patients with recurrence, 23 had metastatic disease and 7 had locoregional failure. We observed only one isolated elective nodal failure. Conclusions: To our knowledge, this is the first study to examine the outcomes in patients with LS-SCLC staged with positron emission tomography/computed tomography and treated with definitive intensity-modulated radiotherapy. In these patients, elective nodal irradiation can be safely omitted from the planning target volume for the purposes of dose escalation and toxicity reduction.

Shirvani, Shervin M.; Komaki, Ritsuko [Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX (United States); Heymach, John V.; Fossella, Frank V. [Department of Thoracic/Head and Neck Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX (United States); Chang, Joe Y., E-mail: jychang@mdanderson.org [Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX (United States)

2012-01-01T23:59:59.000Z

222

Modulation of the HGF/c-Met/Akt and p38 cell signaling pathways by 3,3'-diindolylmethane in MDA-MB-231 breast cancer cells  

E-Print Network (OSTI)

24 and perillyl alcohol. Cancer research 68: 7439-in breast cancer cells. Cancer research 66: 4952-4960. 49.through the Akt pathway. Cancer research 60: 6841-6845. 66.

Nicastro, Holly

2010-01-01T23:59:59.000Z

223

Encapsulant materials and associated devices  

DOE Patents (OSTI)

Compositions suitable for use as encapsulants are described. The inventive compositions include a high molecular weight polymeric material, a curing agent, an inorganic compound, and a coupling agent. Optional elements include adhesion promoting agents, colorants, antioxidants, and UV absorbers. The compositions have desirable diffusivity properties, making them suitable for use in devices in which a substantial blocking of moisture ingress is desired, such as photovoltaic (PV) modules.

Kempe, Michael D (Littleton, CO); Thapa, Prem (Lima, OH)

2012-05-22T23:59:59.000Z

224

Encapsulant materials and associated devices  

DOE Patents (OSTI)

Compositions suitable for use as encapsulants are described. The inventive compositions include a high molecular weight polymeric material, a curing agent, an inorganic compound, and a coupling agent. Optional elements include adhesion promoting agents, colorants, antioxidants, and UV absorbers. The compositions have desirable diffusivity properties, making them suitable for use in devices in which a substantial blocking of moisture ingress is desired, such as photovoltaic (PV) modules.

Kempe, Michael D (Littleton, CO); Thapa, Prem (Lima, OH)

2011-03-08T23:59:59.000Z

225

InGaAs monolithic interconnected modules (MIM)  

DOE Green Energy (OSTI)

A monolithic interconnected module (MIM) structure has been developed for thermophotovoltaic (TPV) applications. The MIM device consists of many individual InGaAs cells series-connected on a single semi-insulating (S.I.) InP substrate. An infrared (IR) back surface reflector (BSR), placed on the rear surface of the substrate, returns the unused portion of the TPV radiator output spectrum back to the emitter for recycling, thereby providing for high system efficiencies. Also, the use of a BSR obviates the need to use a separate filtering element. As a result, MIMs are exposed to the entire emitter output, thereby maximizing output power density. MIMs with an active area of 1 x 1-cm were comprised of 15 cells monolithically connected in series. Both lattice-matched and lattice-mismatched InGaAs/InP devices were produced, with bandgaps of 0.74 and 0.55 eV, respectively. The 0.74-eV modules demonstrated an open-circuit voltage (Voc) of 6.158 V and a fill factor of 74.2% at a short-circuit current (Jsc) of 842 mA/cm{sup 2}, under flashlamp testing. The 0.55-eV modules demonstrated a Voc of 4.849 V and a fill factor of 57.8% at a Jsc of 3.87 A/cm{sup 2}. IR reflectance measurements (i.e., {lambda} > 2 {micro}m) of these devices indicated a reflectivity of {ge} 83%. Latest electrical and optical performance results for the MIMs will be presented.

Fatemi, N.S.; Jenkins, P.P.; Weizer, V.G.; Hoffman, R.W. Jr. [Essential Research, Inc., Cleveland, OH (United States); Wilt, D.M.; Scheiman, D.; Brinker, D. [National Aeronautics and Space Administration, Cleveland, OH (United States). Lewis Research Center; Murray, C.S.; Riley, D. [Westinghouse Electric Corp., West Mifflin, PA (United States)

1997-12-31T23:59:59.000Z

226

Process development for automated solar cell and module production. Task 4: automated array assembly. Quarterly report No. 2  

DOE Green Energy (OSTI)

Installation of the cell preparation station into its new enclosure is now complete and operation verification tests have been performed. The detailed layout drawings of the Automated Lamination Station have been produced and construction has begun. All major and most minor components have been delivered by vendors. The station framework has been built and assembly of components is underway. The final drawings for the Automated Vacuum Chamber are being completed and the first in-house components are being fabricated.

Hagerty, J. J.

1981-01-15T23:59:59.000Z

227

Fabrication of stable large-area thin-film CdTe photovoltaic modules. Annual subcontract report, 10 May 1992--9 May 1993  

DOE Green Energy (OSTI)

This report highlights the progress made by Solar Cells, Inc. (SCI), in its program to produce 60-cm {times} 120-cm solar modules based on CdTe films. During the past year, confirmed efficiency has increased to 10.4% (active area) on a 1 cm{sup 2} cell, 9.8% (aperture area) on a 64-cm{sup 2} 8-cell submodule, and 6.6% (total area) on a 7200-cm{sup 2} module. A module measured in-house had a power output of 53 W, for a total-area efficiency of 7.4%. Average efficiency of modules produced is steadily increasing and standard deviation is decreasing; in a limited run of 12 modules, results were 6.3% ({plus_minus} 0.2%). Field testing has begun; a nominal 1-kW array of 24 modules was set up adjacent to SCI`s facilities. Analysis indicates that present modules are limited in efficiency by shunt resistance and optical absorption losses in the glass superstrate. Loss analysis of present devices allows us to project a module efficiency of 11.8%. A third generation deposition method -- atmospheric pressure elemental vapor deposition (APEVD) has been brought on-line and has produced good quality CdTe. In addition, SCI is expanding its proactive safety, health, environmental, and disposal program dealing with issues surrounding cadmium.

Nolan, J.F.; Meyers, P.V. [Solar Cells, Inc., Toledo, OH (United States)

1993-08-01T23:59:59.000Z

228

Electrochromic device  

DOE Patents (OSTI)

An electrochromic device includes a first substrate spaced from a second substrate. A first conductive member is formed over at least a portion of the first substrate. A first electrochromic material is formed over at least a portion of the first conductive member. The first electrochromic material includes an organic material. A second conductive member is formed over at least a portion of the second substrate. A second electrochromic material is formed over at least a portion of the second conductive member. The second electrochromic material includes an inorganic material. An ionic liquid is positioned between the first electrochromic material and the second electrochromic material.

Schwendemanm, Irina G. (Wexford, PA); Polcyn, Adam D. (Pittsburgh, PA); Finley, James J. (Pittsburgh, PA); Boykin, Cheri M. (Kingsport, TN); Knowles, Julianna M. (Apollo, PA)

2011-03-15T23:59:59.000Z

229

Gripping device  

DOE Patents (OSTI)

This invention consists of a gripping device having at least two fingers: one movable finger and at least one stationary finger. The fingers are attached to a support by a collar, the movable finger being pivotally attached. The support carries an air cylinder with a shaft to actuate the movable finger. The movable finger has a wide portion with a slot. On the distal end of the air cylinder's shaft is a travelerthat rides int he slot and, as it does, causes the movable finger to pivot toward and away from the two stationary fingers.

Hapstack, M.

1991-04-08T23:59:59.000Z

230

OLED devices  

DOE Patents (OSTI)

An OLED device having an emission layer formed of an ambipolar phosphine oxide host material and a dopant, a hole transport layer in electrical communication with an anode, an electron transport layer in communication with a cathode, wherein the HOMO energy of the hole transport layer is substantially the same as the HOMO energy of the ambipolar host in the emission layer, and the LUMO energy of the electron transport layer is substantially the same as the LUMO energy of the ambipolar host in the emission layer.

Sapochak, Linda Susan [Arlington, VA; Burrows, Paul Edward [Kennewick, WA; Bimalchandra, Asanga [Richland, WA

2011-02-22T23:59:59.000Z

231

Microfluidic Cell Culture  

Science Conference Proceedings (OSTI)

... microfluidic device with access to optical imaging, electrochemical interrogation, controlled lysis of desired cells, and collection of cell contents for ...

2012-10-01T23:59:59.000Z

232

Engineering Technical Training Modules - Flow Measurement Version 1.0  

Science Conference Proceedings (OSTI)

The purpose of this training module is to provide an understanding of calculating flow and the various types of flow measurement devices. The module also provides information related to device selection, installation, failure modes, calibration, and instrument error. This computer-based training (CBT) module is intended for use by new engineers as well as engineers changing jobs where basic knowledge of this subject is a new requirement. This training is intended to help individuals acquire basic knowled...

2011-10-21T23:59:59.000Z

233

Changes in Pulmonary Function After Three-Dimensional Conformal Radiotherapy, Intensity-Modulated Radiotherapy, or Proton Beam Therapy for Non-Small-Cell Lung Cancer  

Science Conference Proceedings (OSTI)

Purpose: To investigate the extent of change in pulmonary function over time after definitive radiotherapy for non-small-cell lung cancer (NSCLC) with modern techniques and to identify predictors of changes in pulmonary function according to patient, tumor, and treatment characteristics. Patients and Methods: We analyzed 250 patients who had received {>=}60 Gy radio(chemo)therapy for primary NSCLC in 1998-2010 and had undergone pulmonary function tests before and within 1 year after treatment. Ninety-three patients were treated with three-dimensional conformal radiotherapy, 97 with intensity-modulated radiotherapy, and 60 with proton beam therapy. Postradiation pulmonary function test values were evaluated among individual patients compared with the same patient's preradiation value at the following time intervals: 0-4 (T1), 5-8 (T2), and 9-12 (T3) months. Results: Lung diffusing capacity for carbon monoxide (DLCO) was reduced in the majority of patients along the three time periods after radiation, whereas the forced expiratory volume in 1 s per unit of vital capacity (FEV1/VC) showed an increase and decrease after radiation in a similar percentage of patients. There were baseline differences (stage, radiotherapy dose, concurrent chemotherapy) among the radiation technology groups. On multivariate analysis, the following features were associated with larger posttreatment declines in DLCO: pretreatment DLCO, gross tumor volume, lung and heart dosimetric data, and total radiation dose. Only pretreatment DLCO was associated with larger posttreatment declines in FEV1/VC. Conclusions: Lung diffusing capacity for carbon monoxide is reduced in the majority of patients after radiotherapy with modern techniques. Multiple factors, including gross tumor volume, preradiation lung function, and dosimetric parameters, are associated with the DLCO decline. Prospective studies are needed to better understand whether new radiation technology, such as proton beam therapy or intensity-modulated radiotherapy, may decrease the pulmonary impairment through greater lung sparing.

Lopez Guerra, Jose L. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Radiation Oncology, Hospitales Universitarios Virgen del Rocio, Seville (Spain); Department of Medicine, Universitat Autonoma de Barcelona, Barcelona (Spain); Gomez, Daniel R., E-mail: dgomez@mdanderson.org [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Zhuang Yan; Levy, Lawrence B. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Eapen, George [Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Liu, Hongmei; Mohan, Radhe; Komaki, Ritsuko; Cox, James D.; Liao Zhongxing [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

2012-07-15T23:59:59.000Z

234

NSLS Insertion Devices  

NLE Websites -- All DOE Office Websites (Extended Search)

Insertion Devices MGU-25 VUV Ring Insertion Devices X-Ray Ring Insertion Devices VISA NISUS Flux & Brightness of NSLS IDs Magnetic Measurement Lab...

235

Photovoltaic solar concentrator module  

DOE Patents (OSTI)

This invention consists of a planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation which includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor.

Chiang, C.J.

1991-05-16T23:59:59.000Z

236

Interdigitated photovoltaic power conversion device  

DOE Patents (OSTI)

A photovoltaic power conversion device has a top surface adapted to receive impinging radiation. The device includes at least two adjacent, serially connected cells. Each cell includes a semi-insulating substrate and a lateral conductivity layer of a first doped electrical conductivity disposed on the substrate. A base layer is disposed on the lateral conductivity layer and has the same electrical charge conductivity thereof. An emitter layer of a second doped electrical conductivity of opposite electrical charge is disposed on the base layer and forms a p-n junction therebetween. A plurality of spaced channels are formed in the emitter and base layers to expose the lateral conductivity layer at the bottoms thereof. A front contact grid is positioned on the top surface of the emitter layer of each cell. A first current collector is positioned along one outside edge of at least one first cell. A back contact grid is positioned in the channels at the top surface of the device for engagement with the lateral conductivity layer. A second current collector is positioned along at least one outside edge of at least one oppositely disposed second cell. Finally, an interdigitation mechanism is provided for serially connecting the front contact grid of one cell to the back contact grid of an adjacent cell at the top surface of the device.

Ward, James Scott (Englewood, CO); Wanlass, Mark Woodbury (Golden, CO); Gessert, Timothy Arthur (Conifer, CO)

1999-01-01T23:59:59.000Z

237

Interdigitated photovoltaic power conversion device  

DOE Patents (OSTI)

A photovoltaic power conversion device has a top surface adapted to receive impinging radiation. The device includes at least two adjacent, serially connected cells. Each cell includes a semi-insulating substrate and a lateral conductivity layer of a first doped electrical conductivity disposed on the substrate. A base layer is disposed on the lateral conductivity layer and has the same electrical charge conductivity thereof. An emitter layer of a second doped electrical conductivity of opposite electrical charge is disposed on the base layer and forms a p-n junction therebetween. A plurality of spaced channels are formed in the emitter and base layers to expose the lateral conductivity layer at the bottoms thereof. A front contact grid is positioned on the top surface of the emitter layer of each cell. A first current collector is positioned along one outside edge of at least one first cell. A back contact grid is positioned in the channels at the top surface of the device for engagement with the lateral conductivity layer. A second current collector is positioned along at least one outside edge of at least one oppositely disposed second cell. Finally, an interdigitation mechanism is provided for serially connecting the front contact grid of one cell to the back contact grid of an adjacent cell at the top surface of the device. 15 figs.

Ward, J.S.; Wanlass, M.W.; Gessert, T.A.

1999-04-27T23:59:59.000Z

238

Internal Short Circuit Device Helps Improve Lithium-Ion ...  

result in the cells getting very hot, in extreme cases cells go into thermal runaway, igniting the device in which they are installed.

239

PLASMA DEVICE  

DOE Patents (OSTI)

A device is described for establishing and maintaining a high-energy, rotational plasma for use as a fast discharge capacitor. A disc-shaped, current- conducting plasma is formed in an axinl magnetic field and a crossed electric field, thereby creating rotational kinetic enengy in the plasma. Such energy stored in the rotation of the plasma disc is substantial and is convertible tc electrical energy by generator action in an output line electrically coupled to the plasma volume. Means are then provided for discharging the electrical energy into an external circuit coupled to the output line to produce a very large pulse having an extremely rapid rise time in the waveform thereof. (AE C)

Baker, W.R.

1961-08-22T23:59:59.000Z

240

ROBOTIC DEVICE FOR CLEANING PHOTOVOLTAIC PANEL ARRAYS  

E-Print Network (OSTI)

output from a photovoltaic cell installed at Northeastern University., Boston, MA, USA. The graph shows to human crews and current hardware alternatives. A photovoltaic cell is an electronic device that converts1 ROBOTIC DEVICE FOR CLEANING PHOTOVOLTAIC PANEL ARRAYS MARK ANDERSON, ASHTON GRANDY, JEREMY HASTIE

Mavroidis, Constantinos

Note: This page contains sample records for the topic "devices cells modules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Laser device  

DOE Patents (OSTI)

A laser device includes a target position, an optical component separated a distance J from the target position, and a laser energy source separated a distance H from the optical component, distance H being greater than distance J. A laser source manipulation mechanism exhibits a mechanical resolution of positioning the laser source. The mechanical resolution is less than a spatial resolution of laser energy at the target position as directed through the optical component. A vertical and a lateral index that intersect at an origin can be defined for the optical component. The manipulation mechanism can auto align laser aim through the origin during laser source motion. The laser source manipulation mechanism can include a mechanical index. The mechanical index can include a pivot point for laser source lateral motion and a reference point for laser source vertical motion. The target position can be located within an adverse environment including at least one of a high magnetic field, a vacuum system, a high pressure system, and a hazardous zone. The laser source and an electro-mechanical part of the manipulation mechanism can be located outside the adverse environment. The manipulation mechanism can include a Peaucellier linkage.

Scott, Jill R. (Idaho Falls, ID); Tremblay, Paul L. (Idaho Falls, ID)

2007-07-10T23:59:59.000Z

242

Photovoltaic module with adhesion promoter  

SciTech Connect

Photovoltaic modules with adhesion promoters and methods for fabricating photovoltaic modules with adhesion promoters are described. A photovoltaic module includes a solar cell including a first surface and a second surface, the second surface including a plurality of interspaced back-side contacts. A first glass layer is coupled to the first surface by a first encapsulating layer. A second glass layer is coupled to the second surface by a second encapsulating layer. At least a portion of the second encapsulating layer is bonded directly to the plurality of interspaced back-side contacts by an adhesion promoter.

2013-10-08T23:59:59.000Z

243

Reduced Toxicity With Intensity Modulated Radiation Therapy (IMRT) for Desmoplastic Small Round Cell Tumor (DSRCT): An Update on the Whole Abdominopelvic Radiation Therapy (WAP-RT) Experience  

SciTech Connect

Purpose: Desmoplastic small round cell tumor (DSRCT) is a rare malignancy typically involving the peritoneum in young men. Whole abdominopelvic radiation therapy (WAP-RT) using conventional 2-dimensional (2D) radiation therapy (RT) is used to address local recurrence but has been limited by toxicity. Our objectives were to assess the benefit of intensity modulated radiation therapy (IMRT) on toxicity and to update the largest series on radiation for DSRCT. Methods and Materials: The records of 31 patients with DSRCT treated with WAP-RT (22 with 2D-RT and 9 with IMRT) between 1992 and 2011 were retrospectively reviewed. All received multi-agent chemotherapy and maximal surgical debulking followed by 30 Gy of WAP-RT. A further focal boost of 12 to 24 Gy was used in 12 cases. Boost RT and autologous stem cell transplantation were nearly exclusive to patients treated with 2D-RT. Toxicities were assessed with the Common Terminology Criteria for Adverse Events. Dosimetric analysis compared IMRT and simulated 2D-RT dose distributions. Results: Of 31 patients, 30 completed WAP-RT, with a median follow-up after RT of 19 months. Acute toxicity was reduced with IMRT versus 2D-RT: P=.04 for gastrointestinal toxicity of grade 2 or higher (33% vs 77%); P=.02 for grade 4 hematologic toxicity (33% vs 86%); P=.01 for rates of granulocyte colony-stimulating factor; and P=.04 for rates of platelet transfusion. Post treatment red blood cell and platelet transfusion rates were also reduced (P=.01). IMRT improved target homogeneity ([D05-D95]/D05 of 21% vs 46%) and resulted in a 21% mean bone dose reduction. Small bowel obstruction was the most common late toxicity (23% overall). Updated 3-year overall survival and progression-free survival rates were 50% and 24%, respectively. Overall survival was associated with distant metastasis at diagnosis on multivariate analysis. Most failures remained intraperitoneal (88%). Conclusions: IMRT for consolidative WAP-RT in DSRCT improves hematologic toxicity in particular. Although the long-term efficacy of current treatment options remains disappointing, the improved therapeutic index of IMRT may aid in generalizing its use and allowing the addition of novel approaches such as intraperitoneal immunotherapy.

Desai, Neil B. [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)] [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Stein, Nicholas F. [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)] [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); LaQuaglia, Michael P. [Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)] [Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Alektiar, Kaled M. [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)] [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Kushner, Brian H.; Modak, Shakeel; Magnan, Heather M. [Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)] [Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Goodman, Karyn [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)] [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Wolden, Suzanne L., E-mail: woldens@mskcc.org [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)

2013-01-01T23:59:59.000Z

244

Hydrogen Fuel Cell Engines  

E-Print Network (OSTI)

#12;#12;Hydrogen Fuel Cell Engines MODULE 11:GLOSSARY AND CONVERSIONS CONTENTS 11.1 GLOSSARY Cell Engines MODULE 11:GLOSSARY AND CONVERSIONS OBJECTIVES This module is for reference only. Hydrogen MODULE 11: GLOSSARY AND CONVERSIONS PAGE 11-1 11.1 Glossary This glossary covers words, phrases

245

Photovoltaic Cells  

Energy.gov (U.S. Department of Energy (DOE))

Photovoltaic (PV) cells, or solar cells, take advantage of the photoelectric effect to produce electricity. PV cells are the building blocks of all PV systems because they are the devices that...

246

Spectral utilization in thermophotovoltaic devices  

DOE Green Energy (OSTI)

Multilayer assemblies of epitaxially-grown, III-V semiconductor materials are being investigated for use in thermophotovoltaic (TPV) energy conversion applications. It has been observed that thick, highly-doped semiconductor layers within cell architectures dominate the parasitic free-carrier absorption (FCA) of devices at wavelengths above the bandgap of the semiconductor material. In this work, the wavelength-dependent, free-carrier absorption of p- and n-type InGaAs layers grown epitaxially onto semi-insulating (SI) InP substrates has been measured and related to the total absorption of long-wavelength photons in thermophotovoltaic devices. The optical responses of the TPV cells are then used in the calculation of spectral utilization factors and device efficiencies.

Clevenger, M.B.; Murray, C.S.

1997-12-31T23:59:59.000Z

247

Mechanical scriber for semiconductor devices  

DOE Patents (OSTI)

A mechanical scriber using a scribing tip, such as a diamond, provides controlled scriber forces with a spring-loaded compound lever arrangement. The scribing force and range of scribing depth are adjusted by a pair of adjustable micrometer heads. A semiconductor device, such as a multilayer solar cell, can be formed into scribed strips at each layer. 5 figs.

Lin, P.T.

1985-03-05T23:59:59.000Z

248

Mechanical scriber for semiconductor devices  

DOE Patents (OSTI)

A mechanical scriber using a scribing tip, such as a diamond, provides controlled scriber forces with a spring-loaded compound lever arrangement. The scribing force and range of scribing depth are adjusted by a pair of adjustable micrometer heads. A semiconductor device, such as a multilayer solar cell, can be formed into scribed strips at each layer.

Lin, Peter T. (East Brunswick, NJ)

1985-01-01T23:59:59.000Z

249

Non-H{sub 2}Se, ultra-thin CuInSe{sub 2} devices. Annual subcontract report, November 10, 1992--November 9, 1993  

DOE Green Energy (OSTI)

This report describes advances made during Phase II (November 10, 1992-November 9, 1993) of a three-phase, cost-shared subcontract whose ultimate goal is the demonstration of thin film CuInSe{sub 2} photovoltaic modules prepared by methods adaptable to safe, high yield, high volume manufacturing. At the end of Phase I, EPV became one of the first groups to clear the 10% efficiency barrier for CIS cells prepared by non-H{sub 2}Se selenization. During Phase II a total area efficiency of 12.5% was achieved for a 1 cm{sup 2} cell. The key achievement of Phase II was the production of square foot CIS modules without the use of H{sub 2}Se. This is seen as a crucial step towards the commercialization of CIS. Using a novel interconnect technology, EPV delivered an 8.0% aperture area efficiency mini-module and a 6.2% aperture area efficiency 720 cm{sub 2} module to NREL. On the processing side, advances were made in precursor formation and the selenization profile, both of which contributed to higher quality CIS. The higher band gap quaternary chalcopyrite material CuIn(S{sub x}, Se{sub 1{minus}X}){sub 2} was prepared and 8% cells were fabricated using this material. Device analysis revealed a correlation between long wavelength quantum efficiency and the CIS Cu/In ratio. Temperature dependent studies highlighted the need for high V{sub OC} devices to minimize the impact of the voltage drop at operating temperature. Numerical modeling of module performance was performed in order to identify the correct ZnO sheet resistance for modules. Efforts in Phase III will focus on increase of module efficiency to 9-10%, initiation of an outdoor testing program, preparation of completely uniform CIS plates using second generation selenization equipment, and exploration of alternative precursors for CIS formation.

Delahoy, A.E.; Britt, J.; Faras, F.; Kiss, Z. [Energy Photovoltaics, Inc., Princeton, NY (United States)

1994-09-01T23:59:59.000Z

250

Definition: PV module | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: PV module Jump to: navigation, search Dictionary.png PV module A unit comprised of several PV cells, and the principal unit of a PV array; it is intended to generate direct current power under un-concentrated sunlight.[1][2] View on Wikipedia Wikipedia Definition A solar panel is a set of solar photovoltaic modules electrically connected and mounted on a supporting structure. A photovoltaic module is a packaged, connected assembly of photovoltaic cells. The solar module can be used as a component of a larger photovoltaic system to generate and supply electricity in commercial and residential applications. Each module is rated by its DC output power under standard test conditions (STC), and

251

Multijunction photovoltaic device and fabrication method  

DOE Patents (OSTI)

A multijunction photovoltaic device includes first and second amorphous silicon PIN photovoltaic cells in a stacked arrangement. An interface layer, composed of a doped silicon compound, is disposed between the two cells and has a lower bandgap than the respective n- and p-type adjacent layers of the first and second cells. The interface layer forms an ohmic contact with the one or the adjacent cell layers of the same conductivity type, and a tunnel junction with the other of the adjacent cell layers. The disclosed device is fabricated by a glow discharge process.

Arya, Rajeewa R. (Jamison, PA); Catalano, Anthony W. (Furlong, PA)

1993-09-21T23:59:59.000Z

252

CONTROL LIMITER DEVICE  

DOE Patents (OSTI)

A control-limiting device for monltoring a control system is described. The system comprises a conditionsensing device, a condition-varying device exerting a control over the condition, and a control means to actuate the condition-varying device. A control-limiting device integrates the total movement or other change of the condition-varying device over any interval of time during a continuum of overlapping periods of time, and if the tothl movement or change of the condition-varying device exceeds a preset value, the control- limiting device will switch the control of the operated apparatus from automatic to manual control.

DeShong, J.A.

1960-03-01T23:59:59.000Z

253

Testing and modeling of photo-electric modulators  

E-Print Network (OSTI)

Optical links are a promising alternative to the electrical interconnects that are currently used between chips within a computer. A crucial part of an optical link is a modulator, a device that converts an electrical ...

Weaver, Matthew J. (Matthew James)

2012-01-01T23:59:59.000Z

254

Required Materials Properties for High-Efficiency CIGS Modules: Preprint  

DOE Green Energy (OSTI)

This paper discusses material properties required for each CIGS device layer so that large-area CIGS modules can achieve efficiencies of >15%, substantially higher than the current state of the art.

Repins, I.; Glynn, S.; Duenow, J.; Coutts, T. J.; Metzger, W.; Contreras, M. A.

2009-07-01T23:59:59.000Z

255

Ion transport membrane module and vessel system  

DOE Patents (OSTI)

An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel. The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

Stein, VanEric Edward (Allentown, PA); Carolan, Michael Francis (Allentown, PA); Chen, Christopher M. (Allentown, PA); Armstrong, Phillip Andrew (Orefield, PA); Wahle, Harold W. (North Canton, OH); Ohrn, Theodore R. (Alliance, OH); Kneidel, Kurt E. (Alliance, OH); Rackers, Keith Gerard (Louisville, OH); Blake, James Erik (Uniontown, OH); Nataraj, Shankar (Allentown, PA); Van Doorn, Rene Hendrik Elias (Obersulm-Willsbach, DE); Wilson, Merrill Anderson (West Jordan, UT)

2012-02-14T23:59:59.000Z

256

Ion transport membrane module and vessel system  

DOE Patents (OSTI)

An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel.The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

Stein, VanEric Edward (Allentown, PA); Carolan, Michael Francis (Allentown, PA); Chen, Christopher M. (Allentown, PA); Armstrong, Phillip Andrew (Orefield, PA); Wahle, Harold W. (North Canton, OH); Ohrn, Theodore R. (Alliance, OH); Kneidel, Kurt E. (Alliance, OH); Rackers, Keith Gerard (Louisville, OH); Blake, James Erik (Uniontown, OH); Nataraj, Shankar (Allentown, PA); van Doorn, Rene Hendrik Elias (Obersulm-Willsbach, DE); Wilson, Merrill Anderson (West Jordan, UT)

2008-02-26T23:59:59.000Z

257

Photovoltaic-module bypass-diode encapsulation. Annual report  

DOE Green Energy (OSTI)

The design and processing techniques necessary to incorporate bypass diodes within the module encapsulant are presented in this annual report. A comprehensive survey of available pad-mounted PN junction and Schottky diodes led to the selection of Semicon PN junction diode cells for this application. Diode junction-to-heat spreader thermal resistance measurements, performed on a variety of mounted diode chip types and sizes, have yielded values which are consistently below 1/sup 0/C per watt, but show some instability when thermally cycled over the temperature range from -40 to 150/sup 0/C. Based on the results of a detailed thermal analysis, which covered the range of bypass currents from 2 to 20 amperes, three representative experimental modules, each incorporating integral bypass diode/heat spreader assemblies of various sizes, were designed and fabricated. Thermal testing of these modules has enabled the formation of a recommended heat spreader plate sizing relationship. The production cost of three encapsulated bypass diode/heat spreader assemblies were compared with similarly rated externally-mounted packaged diodes. An assessment of bypass diode reliability, which relies heavily on rectifying diode failure rate data, leads to the general conclusion that, when proper designed and installed, these devices will improve the overall reliability of a terrestrial array over a 20 year design lifetime.

Not Available

1983-06-20T23:59:59.000Z

258

DIRECT ENERGY CONVERSION DEVICES. A Literature Search  

SciTech Connect

A bibliography comprising 208 unclassified references is presented on nuclear direct energy conversion devices. Major emphasis is placed on auxiliary power devices suitable for use in satellites including reports on nuclear batteries, thermoelectric cells, thermionic conversron and aspects of the SNAP program. (J.R.D.)

Raleigh, H.D. comp.

1961-03-01T23:59:59.000Z

259

Solar Cells Hellas SA | Open Energy Information  

Open Energy Info (EERE)

Cells Hellas SA Jump to: navigation, search Name Solar Cells Hellas SA Place Athens, Greece Product Greek manufacturer of PV wafers, cells and modules. References Solar Cells...

260

High-efficiency one-sun photovoltaic module demonstration using solar-grade CZ silicon. Final report  

DOE Green Energy (OSTI)

This work was performed jointly by Sandia National Laboratories (Albuquerque, NM) and Siemens Solar Industries (Camarillo, CA) under a Cooperative Research and Development Agreement (CRADA 1248). The work covers the period May 1994 to March 1996. The purpose of the work was to explore the performance potential of commercial, photovoltaic-grade Czochralski (Cz) silicon, and to demonstrate this potential through fabrication of high-efficiency cells and a module. Fabrication of the module was omitted in order to pursue further development of advanced device structures. The work included investigation of response of the material to various fabrication processes, development of advanced cell structures using the commercial material, and investigation of the stability of Cz silicon solar cells. Some important achievements of this work include the following: post-diffusion oxidations were found to be a possible source of material contamination; bulk lifetimes around 75 pts were achieved; efficiencies of 17.6% and 15.7% were achieved for large-area cells using advanced cell structures (back-surface fields and emitter wrap-through); and preliminary investigations into photodegradation in Cz silicon solar cells found that oxygen thermal donors might be involved. Efficiencies around 20% should be possible with commercial, photovoltaic-grade silicon using properly optimized processes and device structures.

Gee, J.M.

1996-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "devices cells modules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

TOB Module Assembly  

NLE Websites -- All DOE Office Websites (Extended Search)

SiTracker Home Page Participating Institutions and Principal Contacts Useful Links Notes Images TOB Module Assembly and Testing Project TOB Integration Data Tracker Offline DQM LHC Fluence Calculator Total US Modules Tested Graph Total US Modules Tested Graph Total US Modules Tested Total US Modules Tested US Modules Tested Graph US Modules Tested Graph US Modules Tested US Modules Tested Rod Assembly TOB Modules on a Rod TOB Rod Insertion Installation of a TOB Rod Completed TOB Completed Tracker Outer Barrel TOB Module Assembly and Testing Project All 5208 modules of the CMS Tracker Outer Barrel were assembled and tested at two production sites in the US: the Fermi National Accelerator Laboratory and the University of California at Santa Barbara. The modules were delivered to CERN in the form of rods, with the last shipment taking

262

Analysis and Design of Smart PV Module  

E-Print Network (OSTI)

This thesis explores the design of a smart photovoltaic (PV) module- a PV module in which PV cells in close proximity are electrically grouped to form a pixel and are connected to dc-dc converter blocks which reside embedded in the back pane of the module. An auto-connected flyback converter topology processing less than full power is used to provide high gain and perform maximum power point tracking (MPPT). These dc-dc converters interface with cascaded H-bridge inverter modules operating on feed forward control for dc-link voltage ripple rejection. By means of feed forward control, a significant reduction in dc link capacitance is achieved by enduring higher dc link ripple voltages. The dc link electrolytic capacitors are replaced with film capacitors thus offering an improvement in the reliability of the smart PV module. The proposed configuration is capable of producing 120V/ 240V AC voltage. The PV module now becomes a smart AC module by virtue of embedded intelligence to selectively actuate the individual dc-dc converters and control the output AC voltages directly, thus becoming a true plug and power energy system. Such a concept is ideal for curved surfaces such as building integrated PV (BIPV) system applications where gradients of insolation and temperature cause not only variations from PV module-to-PV module but from group-to-group of cells within the module itself. A detailed analysis along with simulation and experimental results confirm the feasibility of the proposed system.

Mazumdar, Poornima

2012-12-01T23:59:59.000Z

263

Fuel Cells  

Energy.gov (U.S. Department of Energy (DOE))

Fuel cells are an emerging technology that can provide heat and electricity for buildings and electrical power for vehicles and electronic devices.

264

Asbestos : operating system security for mobile devices  

E-Print Network (OSTI)

This thesis presents the design and implementation of a port of the Asbestos operating system to the ARM processor. The port to the ARM allows Asbestos to run on mobile devices such as cell phones and personal digital ...

Stevenson, Martijn

2006-01-01T23:59:59.000Z

265

Disappearing mobile devices  

Science Conference Proceedings (OSTI)

In this paper, we extrapolate the evolution of mobile devices in one specific direction, namely miniaturization. While we maintain the concept of a device that people are aware of and interact with intentionally, we envision that this concept can become ... Keywords: gesture, input device, interaction technique, miniaturization, mobile device, sensor, ubicomp, wearable

Tao Ni; Patrick Baudisch

2009-10-01T23:59:59.000Z

266

Light modulated switches and radio frequency emitters  

DOE Patents (OSTI)

The disclosure relates to a light modulated electron beam driven radiofrequency emitter. Pulses of light impinge on a photoemissive device which generates an electron beam having the pulse characteristics of the light. The electron beam is accelerated through a radiofrequency resonator which produces radiofrequency emission in accordance with the electron, hence, the light pulses.

Wilson, Mahlon T. (Los Alamos, NM); Tallerico, Paul J. (Los Alamos, NM)

1982-01-01T23:59:59.000Z

267

Light modulated electron beam driven radiofrequency emitter  

DOE Patents (OSTI)

The disclosure relates to a light modulated electron beam-driven radiofrequency emitter. Pulses of light impinge on a photoemissive device which generates an electron beam having the pulse characteristics of the light. The electron beam is accelerated through a radiofrequency resonator which produces radiofrequency emission in accordance with the electron, hence, the light pulses.

Wilson, M.T.; Tallerico, P.J.

1979-10-10T23:59:59.000Z

268

High efficiency thin-film multiple-gap photovoltaic device  

SciTech Connect

A photovoltaic device includes at least two solar cells made from Group IV elements or their alloys in the amorphous state mounted on a substrate. The outermost or first cell has a larger bandgap than the second cell. Various techniques are utilized to improve the efficiency of the device.

Dalal, Vikram L. (Newark, DE)

1983-01-01T23:59:59.000Z

269

Development of reduced-variable master curves for estimating tensile stresses of encapsulated solar cells caused by module deflection or thermal expansion  

DOE Green Energy (OSTI)

Complex computer programs are being used by Spectrolab, Inc., to achieve encapsulation engineering optimization of photovoltaic modules. Optimization involves structural adequacy, electrical isolation (safety), maximum optical transmission, and minimum module temperature, at the lowest life-cycle energy cost. A goal of this activity is the generation, where possible, of encapsulation engineering generalities, principles, and design aids (tables or graphs) that would permit a ready, desktop capability of an engineering evaluation of encapsulation options involving materials or designs. The first efforts to generate reduced-variable mater curves for thermal expansion and deflection stress to serve as structural-analysis design aids are reported.

Cuddihy, E.F.

1981-10-01T23:59:59.000Z

270

Research on amorphous-silicon-based thin-film photovoltaic devices: Semiannual subcontract report, 1 July 1987--31 December 1987  

DOE Green Energy (OSTI)

The objective of this work is to develop 13% (aperture area) efficient, 850-cm/sup 2/ four-terminal hybrid tandem submodules. The module design consists of a copper-indium-diselenide (CIS)-based bottom circuit and a semitransparent, thin-film silicon-hydrogen (TFS)-based top circuit. High-performance, semitransparent TFS devices and submodules were fabricated in which ZnO was used in the front and rear transparent conductors. High-performance CIS devices and submodules were also fabricated; however, the location and nature of the junction are not yet understood. Representative four-terminal hybrid tandem devices and submodules were fabricated from TFS and CIS component circuits. Optical coupling between the circuits was lower than expected, because of reflection losses at key interfaces. Efficiencies obtained for these devices and modules include 14.17% for a four-terminal, 4-cm/sup 2/ tandem cell and 12.3% for a four-terminal, tandem module. 7 refs., 90 figs.

Bottenberg, W.; Mitchell, K.; Wieting, R.

1988-05-01T23:59:59.000Z

271

System and method for networking electrochemical devices  

DOE Patents (OSTI)

An improved electrochemically active system and method including a plurality of electrochemical devices, such as fuel cells and fluid separation devices, in which the anode and cathode process-fluid flow chambers are connected in fluid-flow arrangements so that the operating parameters of each of said plurality of electrochemical devices which are dependent upon process-fluid parameters may be individually controlled to provide improved operating efficiency. The improvements in operation include improved power efficiency and improved fuel utilization in fuel cell power generating systems and reduced power consumption in fluid separation devices and the like through interstage process fluid parameter control for series networked electrochemical devices. The improved networking method includes recycling of various process flows to enhance the overall control scheme.

Williams, Mark C. (Morgantown, WV); Wimer, John G. (Morgantown, WV); Archer, David H. (Pittsburgh, PA)

1995-01-01T23:59:59.000Z

272

Module Encapsulant Diagnostic and Modeling  

DOE Green Energy (OSTI)

Encapsulant materials are used in photovoltaic devices for mechanical support, electrical isolation, and protection against corrosion. The ability of an encapsulant to protect against surface corrosion is related to its adhesional strength. The adhesion of candidate encapsulants under accelerated environmental stress was examined to determine what materials have the best hydrolytic stability and are more likely to reduce corrosion rates. Under environmental exposure, the ingress of water has been correlated with increased corrosion rates. The diffusivity of different encapsulants has been measured to determine how long it takes for water to enter a module. The high diffusivity of ethylene vinyl acetate indicates that, even with the use of an impermeable back-sheet, moisture from the sides will diffuse throughout the entire module. To significantly reduce moisture ingress requires a true hermetic seal, the use of an encapsulant loaded with desiccant, or the use of a very low diffusivity encapsulant.

Kempe, M.

2005-01-01T23:59:59.000Z

273

Institute of Photo Electronic Thin Film Devices and Technology...  

Open Energy Info (EERE)

Place Tianjin Municipality, China Zip 300071 Sector Solar Product A thin-film solar cell research institute in China. References Institute of Photo-Electronic Thin Film Devices...

274

3D Carbon Nanotube based Photovoltaic Devices - Programmaster ...  

Science Conference Proceedings (OSTI)

We introduce a three dimensional photovoltaic device with carbon nanotube pillars ... The extra dimensionality of this cell added by the nanotubes has been...

275

Dark current-voltage measurements on photovoltaic modules as a diagnostic or manufacturing tool  

DOE Green Energy (OSTI)

Dark current-voltage (dark I-V) measurements are commonly used to analyze the electrical characteristics of solar cells, providing an effective way to determine fundamental performance parameters without the need for a solar simulator. The dark I-V measurement procedure does not provide information regarding short-circuit current, but is more sensitive than light I-V measurements in determining the other parameters (series resistance, shunt resistance, diode factor, and diode saturation currents) that dictate the electrical performance of a photovoltaic device. The work documented here extends the use of dark I-V measurements to photovoltaic modules, illustrates their use in diagnosing module performance losses, and proposes their use for process monitoring during manufacturing.

King, D.L.; Hansen, B.R.; Quintana, M.A.; Kratochvil, J.A.

1997-10-01T23:59:59.000Z

276

Pneumatic Conveyance Device  

The Pneumatic Conveyance Device is capable of dislodging, capturing, and conveying solid material, wet or dry, from a depth of 70+ feet, while discharging through a 100+ foot conveyance hose. The device was developed to remove water and solid ...

277

Nondestructive Performance Characterization Techniques for Module Reliability  

DOE Green Energy (OSTI)

This paper describes nondestructive characterization techniques for module reliability. These techniques include light and dark current versus voltage and related analysis such as resistance, diode quality factor, and dark current. The use of the NREL laser scanner at zero volts and forward bias is also described as a technique to uncover cracks, shunts, and open-circuit regions in a module. Quantum-efficiency measurements of isolated cells or regions in a module are also possible. The interpretation of laser-scanning data is enhanced by hot-spot testing with an infrared camera or thermographic paper. Specialized nondestructive techniques have also been developed to determine the shunt resistance of individual cells in a module by selective shading of cells under sunlight. Ultraviolet fluorescence and reflectivity measurements at NREL have proven useful in evaluating encapsulant stability.

Emery, K.

2003-05-01T23:59:59.000Z

278

GAS DISCHARGE DEVICES  

DOE Patents (OSTI)

The construction of gas discharge devices where the object is to provide a gas discharge device having a high dark current and stabilized striking voltage is described. The inventors have discovered that the introduction of tritium gas into a discharge device with a subsequent electrical discharge in the device will deposit tritium on the inside of the chamber. The tritium acts to emit beta rays amd is an effective and non-hazardous way of improving the abovementioned discharge tube characteristics

Arrol, W.J.; Jefferson, S.

1957-08-27T23:59:59.000Z

279

Residential Energy Display Devices  

Science Conference Proceedings (OSTI)

Residential energy display devices provide direct feedback to consumers about their electricity use and cost, direct feedback that potentially can help customers manage electricity consumption. EPRI tested five different stand-alone display devices in its Energy Efficiency and Demand Response Living Laboratory to assess whether devices functioned according to manufacturer specifications. In addition to providing results of these tests, this Technology Brief describes how display devices operate, summariz...

2008-06-20T23:59:59.000Z

280

Pulse detecting device  

DOE Patents (OSTI)

A device for measuring particle flux comprises first and second photodiode detectors for receiving flux from a source and first and second outputs for producing first and second signals representing the flux incident to the detectors. The device is capable of reducing the first output signal by a portion of the second output signal, thereby enhancing the accuracy of the device. Devices in accordance with the invention may measure distinct components of flux from a single source or fluxes from several sources.

Riggan, W.C.

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "devices cells modules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Photovoltaic module with removable wind deflector  

DOE Patents (OSTI)

A photovoltaic (PV) module assembly including a PV module, a deflector, and a clip. The PV module includes a PV device and a frame. A PV laminate is assembled to the frame, and the frame includes a support arm forming a seat. The deflector defines a front face and a rear face, with the clip extending from either the trailing frame member or the rear face of the deflector. In a mounted state, the deflector is nested within the seat and is releasably mounted to the trailing frame member via the clip. In some embodiments, the support arm forms a second seat, with the PV module assembly providing a second mounted state in which the deflector is in a differing orientation/slope, nested within the second seat and releasably mounted to the trailing frame member via the clip.

Botkin, Jonathan (El Cerrito, CA); Graves, Simon (Berkeley, CA); Danning, Matt (Oakland, CA); Culligan, Matthew (Berkeley, CA)

2012-08-07T23:59:59.000Z

282

Photovoltaic module with removable wind deflector  

DOE Patents (OSTI)

A photovoltaic (PV) module assembly including a PV module, a deflector, and a clip. The PV module includes a PV device and a frame. A PV laminate is assembled to the frame, and the frame includes a support arm forming a seat. The deflector defines a front face and a rear face, with the clip extending from either the trailing frame member or the rear face of the deflector. In a mounted state, the deflector is nested within the seat and is releasably mounted to the trailing frame member via the clip. In some embodiments, the support arm forms a second seat, with the PV module assembly providing a second mounted state in which the deflector is in a differing orientation/slope, nested within the second seat and releasably mounted to the trailing frame member via the clip.

Botkin, Jonathan; Graves, Simon; Danning, Matt; Culligan, Matthew

2013-05-28T23:59:59.000Z

283

NERSC Modules Software Environment  

NLE Websites -- All DOE Office Websites (Extended Search)

Environment » Modules Environment Environment » Modules Environment Modules Software Environment NERSC uses the module utility to manage nearly all software. There are two huge advantages of the module approach: NERSC can provide many different versions and/or installations of a single software package on a given machine, including a default version as well as several older and newer versions; and Users can easily switch to different versions or installations without having to explicitly specify different paths. With modules, the MANPATH and related environment variables are automatically managed. Users simply ``load'' and ``unload'' modules to control their environment. The module utility consists of two parts: the module command itself and the modulefiles on which it operates. Module Command

284

Waveguide Electroabsorption Modulator on Si Employing Ge/SiGe Quantum Wells  

E-Print Network (OSTI)

Waveguide Electroabsorption Modulator on Si Employing Ge/SiGe Quantum Wells Onur Fidaner, Ali K. 2007 Optical Society of America OCIS codes: (230.4110) Modulators ; (230.5590) Quantum-well devices Low wells opened up the possibility of realizing small and power-efficient electroabsorption modulators

Miller, David A. B.

285

Articulating feedstock delivery device  

DOE Patents (OSTI)

A fully articulable feedstock delivery device that is designed to operate at pressure and temperature extremes. The device incorporates an articulating ball assembly which allows for more accurate delivery of the feedstock to a target location. The device is suitable for a variety of applications including, but not limited to, delivery of feedstock to a high-pressure reaction chamber or process zone.

Jordan, Kevin

2013-11-05T23:59:59.000Z

286

Operated device estimation framework  

E-Print Network (OSTI)

Protective device estimation is a challenging task because there are numerous protective devices present in a typical distribution system. Among various protective devices, auto-reclosers and fuses are the main overcurrent protection on distribution systems. Operation of a protective device in response to a particular fault condition depends upon the protective devices operating behavior and coordination of various such protective devices. This thesis presents the design and implementation of a protective device estimation algorithm which helps in identifying which protective devices have operated to clear a short circuit condition. The algorithm uses manufacturers device details, power quality data measured from substation monitoring devices and power system event features estimated using existing DFA algorithms. The proposed technique can be used to evaluate coordination of these protective devices and helps in locating a fault in a distribution system feeder. This approach is independent of feeder topology and could be readily used for any distribution system. The effectiveness of this algorithm is verified by simulated and actual test data. Suggestions are included for future research and application by electric utilities.

Rengarajan, Janarthanan

2008-12-01T23:59:59.000Z

287

A microfluidic device to control bio actuators of microorganisms, an application to Vorticella convallaria  

E-Print Network (OSTI)

We demonstrate a microfluidic device to control the motion of Vorticella convallaria by changing solution. Floating cells of V. convallaria were injected and cultured inside the device. Approximately 35 cells of V. convallaria ...

Matsudaira, Paul T.

288

Low Cost Solar Array Project cell and module formation research area. Process research of non-CZ silicon material. Final report, November 26, 1980-September 30, 1983  

DOE Green Energy (OSTI)

The primary objective of the work reported was to investigate high-risk, high-payoff research areas associated with the Westinghouse process for producing photovoltaic modules using non-Czochralski sheet material. These tasks were addressed: technical feasibility study of forming front and back junctions using liquid dopant techniques, liquid diffusion mask feasibility study, application studies of antireflective material using a meniscus coater, ion implantation compatibility/feasibility study, and cost analysis. (LEW)

Campbell, R.B.

1983-01-01T23:59:59.000Z

289

Planar photovoltaic solar concentrator module  

DOE Patents (OSTI)

A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor. 5 figs.

Chiang, C.J.

1992-12-01T23:59:59.000Z

290

Planar photovoltaic solar concentrator module  

DOE Patents (OSTI)

A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor.

Chiang, Clement J. (New Brunswick, NJ)

1992-01-01T23:59:59.000Z

291

Portable data collection device  

DOE Patents (OSTI)

The present invention provides a portable data collection device that has a variety of sensors that are interchangeable with a variety of input ports in the device. The various sensors include a data identification feature that provides information to the device regarding the type of physical data produced by each sensor and therefore the type of sensor itself. The data identification feature enables the device to locate the input port where the sensor is connected and self adjust when a sensor is removed or replaced. The device is able to collect physical data, whether or not a function of a time.

French, Patrick D. (Aurora, CO)

1996-01-01T23:59:59.000Z

292

Unitary lens semiconductor device  

DOE Patents (OSTI)

A unitary lens semiconductor device and method. The unitary lens semiconductor device is provided with at least one semiconductor layer having a composition varying in the growth direction for unitarily forming one or more lenses in the semiconductor layer. Unitary lens semiconductor devices may be formed as light-processing devices such as microlenses, and as light-active devices such as light-emitting diodes, photodetectors, resonant-cavity light-emitting diodes, vertical-cavity surface-emitting lasers, and resonant cavity photodetectors.

Lear, Kevin L. (Albuquerque, NM)

1997-01-01T23:59:59.000Z

293

Static power conversion techniques for unique energy devices  

E-Print Network (OSTI)

Solar power, fuel cells, and supercapacitors are some hics. of the new energy devices that are being used today in various power applications. The first two of these devices are exciting alternative sources of clean energy. The third device is an important new energy storage device that has some properties of a battery and a capacitor allowing it to be used in applications where attributes of both are needed. To realize the full potential of these energy sources, novel engineering strategies have to be implemented to manage the conversion of power. Since these devices are relatively new and their development is constantly maturing, a introduction to these devices will be a useful to those unfamiliar with the state of the art of solar cells, fuel cells, and supercapacitors. In this paper characteristics of each technology will be reviewed and design consideration will be discussed, and methods of utilizing each of these devices will be offered.

Welch, Richard Andrew

1998-01-01T23:59:59.000Z

294

High-performance, lattice-mismatched InGaAs/InP monolithic interconnected modules (MIMs)  

SciTech Connect

High performance, lattice-mismatched p/n InGaAs/lnP monolithic interconnected module (MIM) structures were developed for thermophotovoltaic (TPV) applications. A MIM device consists of several individual InGaAs photovoltaic (PV) cells series-connected on a single semi-insulating (S.I.) InP substrate. Both interdigitated and conventional (i.e., non-interdigitated) MIMs were fabricated. The energy bandgap (Eg) for these devices was 0.60 eV. A compositionally step-graded InPAs buffer was used to accommodate a lattice mismatch of 1.1% between the active InGaAs cell structure and the InP substrate. 1x1-cm, 15-cell, 0.60-eV MIMs demonstrated an open-circuit voltage (Voc) of 5.2 V (347 mV per cell) and a fill factor of 68.6% at a short-circuit current density (Jsc) of 2.0 A/cm{sup 2}, under flashlamp testing. The reverse saturation current density (Jo) was 1.6x10{sup {minus}6} A/cm{sup 2}. Jo values as low as 4.1x10{sup {minus}7} A/cm{sup 2} were also observed with a conventional planar cell geometry.

Fatemi, Navid S.; Wilt, David M.; Hoffman, Richard W., Jr.; Stan, Mark S.; Weizer, Victor G.; Jenkins, Phillip P.; Khan, Osman S.; Murray, Christopher S.; Scheiman, David; Brinker, David

1998-10-01T23:59:59.000Z

295

Interface module for transverse energy input to dye laser modules  

DOE Patents (OSTI)

An interface module for transverse energy input to dye laser modules is provided particularly for the purpose of delivering enhancing transverse energy beams in the form of illumination bar to the lasing zone of a dye laser device, in particular to a dye laser amplifier. The preferred interface module includes an optical fiber array having a plurality of optical fibers arrayed in a co-planar fashion with their distal ends receiving coherent laser energy from an enhancing laser source, and their proximal ends delivered into a relay structure. The proximal ends of the optical fibers are arrayed so as to be coplanar and to be aimed generally at a common point. The transverse energy beam array delivered from the optical fiber array is acted upon by an optical element array to produce an illumination bar which has a cross section in the form of a elongated rectangle at the position of the lasing window. The illumination bar is selected to have substantially uniform intensity throughout. 5 figs.

English, R.E. Jr.; Johnson, S.A.

1994-10-11T23:59:59.000Z

296

Interface module for transverse energy input to dye laser modules  

SciTech Connect

An interface module (10) for transverse energy input to dye laser modules is provided particularly for the purpose of delivering enhancing transverse energy beams (36) in the form of illumination bar (54) to the lasing zone (18) of a dye laser device, in particular to a dye laser amplifier (12). The preferred interface module (10) includes an optical fiber array (30) having a plurality of optical fibers (38) arrayed in a co-planar fashion with their distal ends (44) receiving coherent laser energy from an enhancing laser source (46), and their proximal ends (4) delivered into a relay structure (3). The proximal ends (42) of the optical fibers (38) are arrayed so as to be coplanar and to be aimed generally at a common point. The transverse energy beam array (36) delivered from the optical fiber array (30) is acted upon by an optical element array (34) to produce an illumination bar (54) which has a cross section in the form of a elongated rectangle at the position of the lasing window (18). The illumination bar (54) is selected to have substantially uniform intensity throughout.

English, Jr., Ronald E. (Tracy, CA); Johnson, Steve A. (Tracy, CA)

1994-01-01T23:59:59.000Z

297

Apparatus and method for measuring single cell and sub-cellular photosynthetic efficiency  

DOE Patents (OSTI)

Devices for measuring single cell changes in photosynthetic efficiency in algal aquaculture are disclosed that include a combination of modulated LED trans-illumination of different intensities with synchronized through objective laser illumination and confocal detection. Synchronization and intensity modulation of a dual illumination scheme were provided using a custom microcontroller for a laser beam block and constant current LED driver. Therefore, single whole cell photosynthetic efficiency, and subcellular (diffraction limited) photosynthetic efficiency measurement modes are permitted. Wide field rapid light scanning actinic illumination is provided for both by an intensity modulated 470 nm LED. For the whole cell photosynthetic efficiency measurement, the same LED provides saturating pulses for generating photosynthetic induction curves. For the subcellular photosynthetic efficiency measurement, a switched through objective 488 nm laser provides saturating pulses for generating photosynthetic induction curves. A second near IR LED is employed to generate dark adapted states in the system under study.

Davis, Ryan Wesley; Singh, Seema; Wu, Huawen

2013-07-09T23:59:59.000Z

298

Electrically driven photonic crystal nanocavity devices  

E-Print Network (OSTI)

Interest in photonic crystal nanocavities is fueled by advances in device performance, particularly in the development of low-threshold laser sources. Effective electrical control of high performance photonic crystal lasers has thus far remained elusive due to the complexities associated with current injection into cavities. A fabrication procedure for electrically pumping photonic crystal membrane devices using a lateral p-i-n junction has been developed and is described in this work. We have demonstrated electrically pumped lasing in our junctions with a threshold of 181 nA at 50K - the lowest threshold ever demonstrated in an electrically pumped laser. At room temperature we find that our devices behave as single-mode light-emitting diodes (LEDs), which when directly modulated, have an ultrafast electrical response up to 10 GHz corresponding to less than 1 fJ/bit energy operation - the lowest for any optical transmitter. In addition, we have demonstrated electrical pumping of photonic crystal nanobeam LEDs...

Shambat, Gary; Petykiewicz, Jan; Mayer, Marie A; Majumdar, Arka; Sarmiento, Tomas; Harris, James; Haller, Eugene E; Vuckovic, Jelena

2012-01-01T23:59:59.000Z

299

Calnuc plays a role in dynamic distribution of G alpha i but not G beta subunits and modulates ACTH secretion in AtT-20 neuroendocrine secretory cells.  

E-Print Network (OSTI)

PM B C G?i1/2 (NT) G?i1/2 (CNG) % of Total Protein (pooled)NT Cells G?i3 (NT) G?i3 (CNG)CNG Cells G? (NT) G? (CNG) Top Pooled Bottom Figure 9

Lin, Ping; Fischer, Thierry; Lavoie, Christine; Huang, Haining; Farquhar, Marilyn

2009-01-01T23:59:59.000Z

300

Research on stable, high-efficiency amorphous silicon multijunction modules. Annual subcontract report, 1 January 1991--31 December 1991  

DOE Green Energy (OSTI)

This report describes the progress made during Phase 1 of research and development program to obtain high-efficiency amorphous silicon alloy multijunction modules. Using a large-area deposition system, double-and triple-junction cells were made on stainless steel substrates of over 1 ft{sup 2} area with Ag and ZnO predeposited back reflector. Modules of over 1 ft{sup 2} were produced with between 9.2% and 9.9 initial aperture-area efficiencies as measured under a USSC Spire solar simulator. Efficiencies as measured under the NREL Spire solar simulator were found to be typically 15% to 18% lower. The causes for this discrepancy are now being investigated. The modules show about 15% degradation after 600 hours of one-sun illumination at 50{degrees}C. To optimize devices for higher stabilized efficiency, a new method was developed by which the performance of single-junction cells after long-term, one-sun exposure at 50{degrees}C can be predicted by exposing cells to short-term intense light at different temperatures. This method is being used to optimize the component cells of the multijunction structure to obtain the highest light-degraded efficiency.

Banerjee, A.; Chen, E.; Clough, R.; Glatfelter, T.; Guha, S.; Hammond, G.; Hopson, M.; Jackett, N.; Lycette, M.; Noch, J.; Palmer, T.; Pawlikiewicz, A.; Rosenstein, I.; Ross, R.; Wolf, D.; Xu, X.; Yang, J.; Younan, K.

1992-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "devices cells modules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Development of a commercial photovoltaic concentrator module  

DOE Green Energy (OSTI)

The ojective of this work was to develop the design and prototype of a commercial high-concentration photovoltaic (PV) module. The design is for a 282-sun point-focus concentrating module. Most of the components, subassemblies, and design features incorporate simplifications and ease of manufacturing. The Solar Kinetics, Inc. (SKI) module is designed to incorporate high-efficiency, single-crystal silicon PV cells. The housing is made with aluminum laminated for voltage stand-off and simultaneously providing high thermal conductivity. The Fresnel lens injection molded by American Optical (AO) as singles. The cell assembly consists of a copper heat spreader, a photovoltaic cell soldered, a top and bottom contact, and a reflective secondary optical element (SOE). The cell assemblies passed all of the initial electrical characterization and high-potential tests. Under environmental cycling, the only bond that failed was the PV cell-to-heat spreader interface. The other components (top contact, bottom contact, SOE) passed all the environmental cycling tests. The cell assemblies were designed to be mounted onto the receiver section with a thermally conductive RTV. This geometry was subjected to environmental testing. There was no delamination of this bond nor was there electrical breakdown when the assemblies were subjected to the hi-pot test. A mock module was fabricated for environmental evaluation. This module was subjected to the humidity/freeze cycling to assess the performance of the lens mounting design. This module was also subjected to the rain test after the humidity/freeze cycling and checked for water leaks. The lens showed small displacement from its original position after the environmental cycling. One tablespoon of water did collect inside the module.

Saifee, S.T.; Hutchison, G. [Solar Kinetics, Inc., Dallas, TX (United States)

1992-09-01T23:59:59.000Z

302

Structural and Functional Characterization of a Single-chain Peptide-MHC Molecule that Modulates both Naive and Activated CD8plus T Cells  

SciTech Connect

Peptide-MHC (pMHC) multimers, in addition to being tools for tracking and quantifying antigen-specific T cells, can mediate downstream signaling after T-cell receptor engagement. In the absence of costimulation, this can lead to anergy or apoptosis of cognate T cells, a property that could be exploited in the setting of autoimmune disease. Most studies with class I pMHC multimers used noncovalently linked peptides, which can allow unwanted CD8{sup +} T-cell activation as a result of peptide transfer to cellular MHC molecules. To circumvent this problem, and given the role of self-reactive CD8{sup +} T cells in the development of type 1 diabetes, we designed a single-chain pMHC complex (scK{sup d}.IGRP) by using the class I MHC molecule H-2K{sup d} and a covalently linked peptide derived from islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP{sub 206-214}), a well established autoantigen in NOD mice. X-ray diffraction studies revealed that the peptide is presented in the groove of the MHC molecule in canonical fashion, and it was also demonstrated that scK{sup d}.IGRP tetramers bound specifically to cognate CD8{sup +} T cells. Tetramer binding induced death of naive T cells and in vitro- and in vivo-differentiated cytotoxic T lymphocytes, and tetramer-treated cytotoxic T lymphocytes showed a diminished IFN-{gamma} response to antigen stimulation. Tetramer accessibility to disease-relevant T cells in vivo was also demonstrated. Our study suggests the potential of single-chain pMHC tetramers as possible therapeutic agents in autoimmune disease. Their ability to affect the fate of naive and activated CD8{sup +} T cells makes them a potential intervention strategy in early and late stages of disease.

D Samanta; G Mukherjee; U Ramagopal; R Chaparro; S Nathenson; T DiLorenzo; S Almo

2011-12-31T23:59:59.000Z

303

Advanced silicon photonic modulators  

E-Print Network (OSTI)

Various electrical and optical schemes used in Mach-Zehnder (MZ) silicon plasma dispersion effect modulators are explored. A rib waveguide reverse biased silicon diode modulator is designed, tested and found to operate at ...

Sorace, Cheryl M

2010-01-01T23:59:59.000Z

304

Standard Specification for Physical Characteristics of Nonconcentrator Terrestrial Photovoltaic Reference Cells  

E-Print Network (OSTI)

1.1 This specification describes the physical requirements for primary and secondary terrestrial nonconcentrator photovoltaic reference cells. A reference cell is defined as a device that meets the requirements of this specification and is calibrated in accordance with Test Method E1125 or Test Method E1362. 1.2 Reference cells are used in the determination of the electrical performance of photovoltaic devices, as stated in Test Methods E948 and E1036. 1.3 Two reference cell physical specifications are described: 1.3.1 Small-Cell Package DesignA small, durable package with a low thermal mass, wide optical field-of-view, and standardized dimensions intended for photovoltaic devices up to 20 by 20 mm, and 1.3.2 Module-Package DesignA package intended to simulate the optical and thermal properties of a photovoltaic module design, but electric connections are made to only one photovoltaic cell in order to eliminate problems with calibrating series and parallel connections of cells. Physical dimensions ...

American Society for Testing and Materials. Philadelphia

2010-01-01T23:59:59.000Z

305

Barrier breaching device  

DOE Patents (OSTI)

A barrier breaching device that is designed primarily for opening holes in interior walls of buildings uses detonating fuse for explosive force. The fuse acts as the ribs or spokes of an umbrella-like device that may be opened up to form a cone. The cone is placed against the wall so that detonating fuse that rings the base of the device and which is ignited by the spoke-like fuses serves to cut a circular hole in the wall.

Honodel, C.A.

1983-06-01T23:59:59.000Z

306

Barrier breaching device  

DOE Patents (OSTI)

A barrier breaching device that is designed primarily for opening holes in interior walls of buildings uses detonating fuse for explosive force. The fuse acts as the ribs or spokes of an umbrella-like device that may be opened up to form a cone. The cone is placed against the wall so that detonating fuse that rings the base of the device and which is ignited by the spoke-like fuses serves to cut a circular hole in the wall.

Honodel, Charles A. (Tracy, CA)

1985-01-01T23:59:59.000Z

307

Chalcopyrite Heterojunction Photovoltaic Devices  

Science Conference Proceedings (OSTI)

This indicates that a p-n junction with photovoltaic response was formed between the films and Si. The estimated open -circuit voltage VOC for these devices is...

308

Iris Device Qualification Test  

Science Conference Proceedings (OSTI)

... Device Qualification Test (IDQT). July 15, 2013 - Slides from Workshop. Slides that give the detailed technical approach toward the IDQT tests are ...

2013-07-16T23:59:59.000Z

309

Medical Device Interoperability  

Science Conference Proceedings (OSTI)

... The research effort includes a gap analysis of the medical device communication standard IEEE 11073 versus use case scenarios outlined in ...

2011-03-14T23:59:59.000Z

310

High-Efficiency Amorphous Silicon and Nanocrystalline Silicon Based Solar Cells and Modules: Annual Technical Progress Report, 30 January 2006 - 29 January 29, 2007  

DOE Green Energy (OSTI)

United Solar used a-Si:H/a-SiGe:H/a-SiGe:H in two manufacturing plants and improved solar efficiency and reduced manufacturing cost by new deposition methods, optimized deposition parameters, and new materials and cell structures.

Guha, S.; Yang, J.

2007-07-01T23:59:59.000Z

311

Modulating lignin in plants  

DOE Patents (OSTI)

Materials and methods for modulating (e.g., increasing or decreasing) lignin content in plants are disclosed. For example, nucleic acids encoding lignin-modulating polypeptides are disclosed as well as methods for using such nucleic acids to generate transgenic plants having a modulated lignin content.

Apuya, Nestor; Bobzin, Steven Craig; Okamuro, Jack; Zhang, Ke

2013-01-29T23:59:59.000Z

312

Reconfigurable photonic switch based on a binary system using the White cell and micromirror arrays  

E-Print Network (OSTI)

AbstractWe describe an optical switch for use in crossconnects. It is a free-space device, based on multiple bounces in a pair of White cells sharing a spatial light modulator at one end. In a companion paper, we described various polynomial cells, in which the number of outputs was proportional to the number of bounces raised to some power. In the binary device described here, the number of possible outputs is proportional to the number two raised to the power of the number of bounces. It allows a 1024 1024 switch using a single digital two-state tip/tilt micromirror array, four spherical mirrors, and a spot displacement device. It is highly scalable and insensitive to micromirror pointing accuracy. Index TermsMicroelectromechanical systems (MEMS), optical communication, optical interconnects, White cell.

Victor Argueta-diaz; Betty Lise Anderson; Senior Member

2003-01-01T23:59:59.000Z

313

Mobile Device Management Android Device Enrollment  

E-Print Network (OSTI)

Play Store. b. Search for Zenprise for Employees. c. Tap Install. #12;d. Tap Accept and download. 4 your device. b. Tap Enroll Android. c. Enter your LSUHSC email address. #12;d. Enter LSUHSC password and click Enroll. i. StrongId should be blank. e. Accept the Terms and Conditions. 5. Installing Touchdown a

314

Flat-Plate Photovoltaic Module Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Module Basics Module Basics Flat-Plate Photovoltaic Module Basics August 20, 2013 - 4:25pm Addthis Flat-plate photovoltaic (PV) modules are made of several components, including the front surface materials, encapsulant, rear surface, and frame. Front Surface Materials The front surface of a flat-plate PV module must have a high transmission in the wavelengths that can be used by the solar cells in the module. For example, for silicon solar cells, the top surface must have high transmission of light with wavelengths from 350 to 1200 nm. Also, reflection from the front surface should be minimal. An antireflection coating added to the top surface can greatly reduce the reflection of sunlight, and texturing of the surface can cause light that strikes the surface to stay within the cells. Unfortunately, these textured

315

Polycrystalline thin-film module and system performance  

DOE Green Energy (OSTI)

The Module and System Performance and Engineering Project at the National Renewable Energy Laboratory (NREL) conducts in-situ technical evaluations of photovoltaic (PV) modules and systems (arrays). These evaluations on module/array performance and stability are conducted at the NREL Photovoltaic Outdoor Test Facility (OTF) in Golden, CO. The modules and arrays are located at 39.7{degree}N latitude, 105.2{degree}W longitude, and at 1,782 meters elevation. Currently, two polycrystalline thin-film technologies are the focus of the research presented here. The module structures are copper indium diselenide (CIS) from Siemens Solar Industries and cadmium telluride (CdTe) from Solar Cells, Inc. The research team is attempting to correlate individual module performance with array performance for these two polycrystalline thin-film technologies. This is done by looking at module and array performance over time. Also, temperature coefficients are determined at both the module and array level. Results are discussed.

Strand, T.; Kroposki, B.; Hansen, R.; Mrig, L.

1995-11-01T23:59:59.000Z

316

Process Intensification of Hydrogen Unit Operations Using an Electrochemical Device - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Glenn Eisman (Primary Contact), Dylan Share, Chuck Carlstrom H2Pump LLC 11 Northway Lane North Latham, NY 12110 Phone: (518) 783-2241 Email: glenn.eisman@h2pumpllc.com DOE Manager HQ: Richard Farmer Phone: (202) 586-1623 Email: Richard.Farmer@ee.doe.gov Contract Number: DE-SC0002185 Subcontractor: PBI Performance Products, Inc., Rock Hill, SC Project Start Date: Phase II: August 15, 2010 Project End Date: August 15, 2012 Fiscal Year (FY) 2012 Objectives Develop and demonstrate a multi-functional hydrogen production technology based on a polybenzimidazole (PBI) membrane which exhibits: High efficiency (70%) * Up to 100 scfh pumping capability * CO * 2 and CO tolerance

317

Dust removal in radio-frequency plasmas by a traveling potential modulation  

Science Conference Proceedings (OSTI)

The dust contamination in plasma deposition processes plays a crucial role in the quality and the yield of the products. To improve the quality and the yield of plasma processing, a favorable way is to remove the dust particles actively from the plasma reactors.Our recent experiments in the striped electrode device show that a traveling plasma modulation allows for a systematic particle removal independent of the reactor size. Besides the rf powered electrode, the striped electrode device includes a segmented electrode that consists of 100 electrically insulated narrow stripes. A traveling potential profile is produced by the modulation of the voltage signals applied on the stripes. The dust particles are trapped in the potential wells and transported with the traveling of the potential profile.The particle-in-cell (PIC) simulation on the potential above the segmented electrode indicates that the traveling potential profile can be realized either by applying low-frequency (0.1-10 Hz) voltage signals with a fixed phase shift between adjacent stripes or high-frequency (10 kHz a circumflex AS 100 MHz) signals with the amplitudes modulated by a low-frequency envelope. The transportation of the dust particles is simulated with a two-dimensional molecular dynamics (MD) code with the potential profile obtained from the PIC simulation. The MD results reproduce the experimental observations successfully.This technology allows for an active removal of the contaminating particles in processing plasmas and it is independent of the reactor size. The removal velocity is controllable by adjusting the parameters for the modulation.

Li Yangfang; Jiang Ke; Thomas, Hubertus M.; Morfill, Gregor E. [Max-Planck-Institute for Extraterrestrial Physics, 85748 Garching (Germany)

2010-06-16T23:59:59.000Z

318

Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science » Materials Science » Fuel Cells Fuel Cells Research into alternative forms of energy, especially energy security, is one of the major national security imperatives of this century. Get Expertise Melissa Fox Applied Energy Email Catherine Padro Sensors & Electrochemical Devices Email Fernando Garzon Sensors & Electrochemical Devices Email Piotr Zelenay Sensors & Electrochemical Devices Email Rod Borup Sensors & Electrochemical Devices Email Karen E. Kippen Experimental Physical Sciences Email Like a battery, a fuel cell consists of two electrodes separated by an electrolyte-in polymer electrolyte fuel cells, the separator is made of a thin polymeric membrane. Unlike a battery, a fuel cell does not need recharging-it continues to produce electricity as long as fuel flows

319

Grey man devices  

E-Print Network (OSTI)

The Vision Slaved to Walking Device i s one in a series of devices that are a result of the experimental ambulation series. The ability to see only when one's feet are moving allows for a distorted perspective of ones own ...

Sethi, Sanjit (Sanjit Singh), 1971-

2002-01-01T23:59:59.000Z

320

Verifiably secure devices  

Science Conference Proceedings (OSTI)

We put forward the notion of a verifiably secure device, in essence a stronger notion of secure computation, and achieve it in the ballot-box model. Verifiably secure devices 1. Provide a perfect solution to the problem of achieving correlated equilibrium, ...

Sergei Izmalkov; Matt Lepinski; Silvio Micali

2008-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "devices cells modules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Device for removing blackheads  

DOE Patents (OSTI)

A device for removing blackheads from pores in the skin having a elongated handle with a spoon shaped portion mounted on one end thereof, the spoon having multiple small holes piercing therethrough. Also covered is method for using the device to remove blackheads.

Berkovich, Tamara (116 N. Wetherly Dr., Suite 115, Los Angeles, CA)

1995-03-07T23:59:59.000Z

322

Self-actuated device  

DOE Patents (OSTI)

A self-actuated device, of particular use as a valve or an orifice for nuclear reactor fuel and blanket assemblies, in which a gas produced by a neutron induced nuclear reaction gradually accumulates as a function of neutron fluence. The gas pressure increase occasioned by such accumulation of gas is used to actuate the device.

Hecht, Samuel L. (Richland, WA)

1984-01-01T23:59:59.000Z

323

Chronology of Computing Devices  

Science Conference Proceedings (OSTI)

A chronology of computing devices is given. It begins with the abacus and counting tables, and traces the development through desk calculators, analog computers, and finally stored program automatic digital computers. Significant dates relative to the ... Keywords: Calculating machines, chronology, computers, computing devices, history.

H. D. Huskey; V. R. Huskey

1976-12-01T23:59:59.000Z

324

Hydrogen storage and integrated fuel cell assembly  

DOE Patents (OSTI)

Hydrogen is stored in materials that absorb and desorb hydrogen with temperature dependent rates. A housing is provided that allows for the storage of one or more types of hydrogen-storage materials in close thermal proximity to a fuel cell stack. This arrangement, which includes alternating fuel cell stack and hydrogen-storage units, allows for close thermal matching of the hydrogen storage material and the fuel cell stack. Also, the present invention allows for tailoring of the hydrogen delivery by mixing different materials in one unit. Thermal insulation alternatively allows for a highly efficient unit. Individual power modules including one fuel cell stack surrounded by a pair of hydrogen-storage units allows for distribution of power throughout a vehicle or other electric power consuming devices.

Gross, Karl J. (Fremont, CA)

2010-08-24T23:59:59.000Z

325

Planar electrochemical device assembly  

DOE Patents (OSTI)

A pre-fabricated electrochemical device having a dense electrolyte disposed between an anode and a cathode preferably deposited as thin films is bonded to a porous electrically conductive support. A second porous electrically conductive support may be bonded to a counter electrode of the electrochemical device. Multiple electrochemical devices may be bonded in parallel to a single porous support, such as a perforated sheet to provide a planar array. Planar arrays may be arranged in a stacked interconnected array. A method of making a supported electrochemical device is disclosed wherein the method includes a step of bonding a pre-fabricated electrochemical device layer to an existing porous metal or porous metal alloy layer.

Jacobson; Craig P. (Lafayette, CA), Visco; Steven J. (Berkeley, CA), De Jonghe; Lutgard C. (Lafayette, CA)

2010-11-09T23:59:59.000Z

326

Planar electrochemical device assembly  

DOE Patents (OSTI)

A pre-fabricated electrochemical device having a dense electrolyte disposed between an anode and a cathode preferably deposited as thin films is bonded to a porous electrically conductive support. A second porous electrically conductive support may be bonded to a counter electrode of the electrochemical device. Multiple electrochemical devices may be bonded in parallel to a single porous support, such as a perforated sheet to provide a planar array. Planar arrays may be arranged in a stacked interconnected array. A method of making a supported electrochemical device is disclosed wherein the method includes a step of bonding a pre-fabricated electrochemical device layer to an existing porous metal or porous metal alloy layer.

Jacobson, Craig P. (Lafayette, CA); Visco, Steven J. (Berkeley, CA); De Jonghe, Lutgard C. (Lafayette, CA)

2007-06-19T23:59:59.000Z

327

Fluidic nanotubes and devices  

DOE Patents (OSTI)

Fluidic nanotube devices are described in which a hydrophilic, non-carbon nanotube, has its ends fluidly coupled to reservoirs. Source and drain contacts are connected to opposing ends of the nanotube, or within each reservoir near the opening of the nanotube. The passage of molecular species can be sensed by measuring current flow (source-drain, ionic, or combination). The tube interior can be functionalized by joining binding molecules so that different molecular species can be sensed by detecting current changes. The nanotube may be a semiconductor, wherein a tubular transistor is formed. A gate electrode can be attached between source and drain to control current flow and ionic flow. By way of example an electrophoretic array embodiment is described, integrating MEMs switches. A variety of applications are described, such as: nanopores, nanocapillary devices, nanoelectrophoretic, DNA sequence detectors, immunosensors, thermoelectric devices, photonic devices, nanoscale fluidic bioseparators, imaging devices, and so forth.

Yang, Peidong (El Cerrito, CA); He, Rongrui (El Cerrito, CA); Goldberger, Joshua (Berkeley, CA); Fan, Rong (El Cerrito, CA); Wu, Yiying (Albany, CA); Li, Deyu (Albany, CA); Majumdar, Arun (Orinda, CA)

2010-01-10T23:59:59.000Z

328

Fluidic nanotubes and devices  

DOE Patents (OSTI)

Fluidic nanotube devices are described in which a hydrophilic, non-carbon nanotube, has its ends fluidly coupled to reservoirs. Source and drain contacts are connected to opposing ends of the nanotube, or within each reservoir near the opening of the nanotube. The passage of molecular species can be sensed by measuring current flow (source-drain, ionic, or combination). The tube interior can be functionalized by joining binding molecules so that different molecular species can be sensed by detecting current changes. The nanotube may be a semiconductor, wherein a tubular transistor is formed. A gate electrode can be attached between source and drain to control current flow and ionic flow. By way of example an electrophoretic array embodiment is described, integrating MEMs switches. A variety of applications are described, such as: nanopores, nanocapillary devices, nanoelectrophoretic, DNA sequence detectors, immunosensors, thermoelectric devices, photonic devices, nanoscale fluidic bioseparators, imaging devices, and so forth.

Yang, Peidong (Berkeley, CA); He, Rongrui (El Cerrito, CA); Goldberger, Joshua (Berkeley, CA); Fan, Rong (El Cerrito, CA); Wu, Yiying (Albany, CA); Li, Deyu (Albany, CA); Majumdar, Arun (Orinda, CA)

2008-04-08T23:59:59.000Z

329

Device for cutting protrusions  

DOE Patents (OSTI)

An apparatus for clipping a protrusion of material is provided. The protrusion may, for example, be a bolt head, a nut, a rivet, a weld bead, or a temporary assembly alignment tab protruding from a substrate surface of assembled components. The apparatus typically includes a cleaver having a cleaving edge and a cutting blade having a cutting edge. Generally, a mounting structure configured to confine the cleaver and the cutting blade and permit a range of relative movement between the cleaving edge and the cutting edge is provided. Also typically included is a power device coupled to the cutting blade. The power device is configured to move the cutting edge toward the cleaving edge. In some embodiments the power device is activated by a momentary switch. A retraction device is also generally provided, where the retraction device is configured to move the cutting edge away from the cleaving edge.

Bzorgi, Fariborz M. (Knoxville, TN)

2011-07-05T23:59:59.000Z

330

Role of retinoic acid in the modulation of benzo(a)pyrene-DNA adducts in human hepatoma cells: Implications for cancer prevention  

SciTech Connect

Carcinogen-DNA adducts could lead to mutations in critical genes, eventually resulting in cancer. Many studies have shown that retinoic acid (RA) plays an important role in inducing cell apoptosis. Here we have tested the hypothesis that levels of carcinogen-DNA adducts can be diminished by DNA repair and/or by eliminating damaged cells through apoptosis. Our results showed that the levels of total DNA adducts in HepG2 cells treated with benzo(a)pyrene (BP, 2 {mu}M) + RA (1 {mu}M) were significantly reduced compared to those treated with BP only (P = 0.038). In order to understand the mechanism of attenuation of DNA adducts, further experiments were performed. Cells were treated with BP (4 {mu}M) for 24 h to initiate DNA adduct formation, following which the medium containing BP was removed, and fresh medium containing 1 {mu}M RA was added. The cells were harvested 24 h after RA treatment. Interestingly, the levels of total DNA adducts were lower in the BP/RA group (390 {+-} 34) than those in the BP/DMSO group (544 {+-} 33), P = 0.032. Analysis of cell apoptosis showed an increase in BP + RA group, compared to BP or RA only groups. Our results also indicated that attenuation of BP-DNA adducts by RA was not primarily due to its effects on CYP1A1 expression. In conclusion, our results suggest a mechanistic link between cellular apoptosis and DNA adduct formation, phenomena that play important roles in BP-mediated carcinogenesis. Furthermore, these results help understand the mechanisms of carcinogenesis, especially in relation to the chemopreventive properties of nutritional apoptosis inducers.

Zhou Guodong, E-mail: gzhou@ibt.tamhsc.edu [Department of Environmental and Occupational Health, School of Rural Public Health, Texas A and M University System, College Station, Texas (United States); Institute of Biosciences and Technology, Texas A and M University System, Houston, Texas (United States); Richardson, Molly [Department of Environmental and Occupational Health, School of Rural Public Health, Texas A and M University System, College Station, Texas (United States); Fazili, Inayat S. [Department of Pediatrics, Baylor College of Medicine, Houston, Texas (United States); Wang, Jianbo [Institute of Biosciences and Technology, Texas A and M University System, Houston, Texas (United States); Donnelly, Kirby C. [Department of Environmental and Occupational Health, School of Rural Public Health, Texas A and M University System, College Station, Texas (United States); Wang Fen; Amendt, Brad [Institute of Biosciences and Technology, Texas A and M University System, Houston, Texas (United States); Moorthy, Bhagavatula [Department of Pediatrics, Baylor College of Medicine, Houston, Texas (United States)

2010-12-15T23:59:59.000Z

331

Multijunction photovoltaic device and method of manufacture  

DOE Patents (OSTI)

A multijunction photovoltaic device includes first, second, and third amorphous silicon p-i-n photovoltaic cells in a stacked arrangement. The intrinsic layers of the second and third cells are formed of a-SiGe alloys with differing ratios of Ge such that the bandgap of the intrinsic layers respectively decrease from the first uppermost cell to the third lowermost cell. An interface layer, composed of a doped silicon compound, is disposed between the two cells and has a lower bandgap than the respective n- and p-type adjacent layers of the first and second cells. The interface layer forms an ohmic contact with the one of the adjacent cell layers of the same conductivity type, and a tunnel junction with the other of the adjacent cell layers.

Arya, Rejeewa R. (Jamison, PA); Catalano, Anthony W. (Boulder, CO); Bennett, Murray (Longhorne, PA)

1995-04-04T23:59:59.000Z

332

Mixing device for materials with large density differences  

DOE Patents (OSTI)

An auger-tube pump mixing device is disclosed for mixing materials with large density differences while maintaining low stirring RPM and low power consumption. The mixing device minimizes the formation of vortexes and minimizes the incorporation of small bubbles in the liquid during mixing. By avoiding the creation of a vortex the device provides efficient stirring of full containers without spillage over the edge. Also, the device solves the problem of effective mixing in vessels where the liquid height is large compared to the diameter. Because of the gentle stirring or mixing by the device, it has application for biomedical uses where cell damage is to be avoided. 2 figs.

Gregg, D.W.

1994-08-16T23:59:59.000Z

333

Available Technologies: Electrochemical Environmental Cell ...  

Electrochemical Environmental Cell with Vertical, Aligned Electrodes for TEM IB-3330. ... Energy storage device / battery research and development;

334

INTERNAL CUTTING DEVICE  

DOE Patents (OSTI)

A device is described for removing material from the interior of a hollow workpiece so as to form a true spherical internal surface in a workpiece, or to cut radial slots of an adjustable constant depth in an already established spherical internal surface. This is accomplished by a spring loaded cutting tool adapted to move axially wherein the entire force urging the tool against the workpiece is derived from the spring. Further features of importance involve the provision of a seal between the workpiece and the cutting device and a suction device for carrying away particles of removed material.

Russell, W.H. Jr.

1959-06-30T23:59:59.000Z

335

Rain sampling device  

DOE Patents (OSTI)

The present invention constitutes a rain sampling device adapted for independent operation at locations remote from the user which allows rainfall to be sampled in accordance with any schedule desired by the user. The rain sampling device includes a mechanism for directing wet precipitation into a chamber, a chamber for temporarily holding the precipitation during the process of collection, a valve mechanism for controllably releasing samples of the precipitation from the chamber, a means for distributing the samples released from the holding chamber into vessels adapted for permanently retaining these samples, and an electrical mechanism for regulating the operation of the device. 11 figures.

Nelson, D.A.; Tomich, S.D.; Glover, D.W.; Allen, E.V.; Hales, J.M.; Dana, M.T.

1991-05-14T23:59:59.000Z

336

SLUG HANDLING DEVICES  

DOE Patents (OSTI)

A device is described for handling fuel elements of a neutronic reactor. The device consists of two concentric telescoped contalners that may fit about the fuel element. A number of ratchet members, equally spaced about the entrance to the containers, are pivoted on the inner container and spring biased to the outer container so thnt they are forced to hear against and hold the fuel element, the weight of which tends to force the ratchets tighter against the fuel element. The ratchets are released from their hold by raising the inner container relative to the outer memeber. This device reduces the radiation hazard to the personnel handling the fuel elements.

Gentry, J.R.

1958-09-16T23:59:59.000Z

337

New Electrode Manufacturing Process Equipment: Novel High Energy Density Lithium-Ion Cell Designs via Innovative Manufacturing Process Modules for Cathode and Integrated Separator  

Science Conference Proceedings (OSTI)

BEEST Project: Applied Materials is developing new tools for manufacturing Li-Ion batteries that could dramatically increase their performance. Traditionally, the positive and negative terminals of Li-Ion batteries are mixed with glue-like materials called binders, pressed onto electrodes, and then physically kept apart by winding a polymer mesh material between them called a separator. With the Applied Materials system, many of these manually intensive processes will be replaced by next generation coating technology to apply each component. This process will improve product reliability and performance of the cells at a fraction of the current cost. These novel manufacturing techniques will also increase the energy density of the battery and reduce the size of several of the batterys components to free up more space within the cell for storage.

None

2010-07-01T23:59:59.000Z

338

Electricity Market Module  

U.S. Energy Information Administration (EIA) Indexed Site

Market Module Market Module This page inTenTionally lefT blank 101 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Electricity Market Module The NEMS Electricity Market Module (EMM) represents the capacity planning, dispatching, and pricing of electricity. It is composed of four submodules-electricity capacity planning, electricity fuel dispatching, electricity load and demand, and electricity finance and pricing. It includes nonutility capacity and generation, and electricity transmission and trade. A detailed description of the EMM is provided in the EIA publication, Electricity Market Module of the National Energy Modeling System 2013, DOE/EIA-M068(2013). Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most

339

Slit injection device  

DOE Patents (OSTI)

A laser cavity electron beam injection device provided with a single elongated slit window for passing a suitably shaped electron beam and means for varying the current density of the injected electron beam.

Alger, Terry W. (Livermore, CA); Schlitt, Leland G. (Livermore, CA); Bradley, Laird P. (Livermore, CA)

1976-06-15T23:59:59.000Z

340

Multimaterial rectifying device fibers  

E-Print Network (OSTI)

Electronic and optoelectronic device processing is commonly thought to be incompatible with much simpler thermal drawing techniques used in optical fiber production. The incorporation of metals, polymer insulators, and ...

Orf, Nicholas D

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "devices cells modules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

DEVICE RESEARCH CONFERENCE  

Science Conference Proceedings (OSTI)

Jun 23, 2004 ... Inverter in Single-Wall Carbon Nanotubes. D. Tsuya1,2, M. Suzuki 1,3, Y. Aoyagi2, K. Ishibashi1,3,. 1Advanced Device Laboratory, The Institute.

342

Raney nickel catalytic device  

DOE Patents (OSTI)

A catalytic device for use in a conventional coal gasification process which includes a tubular substrate having secured to its inside surface by expansion a catalytic material. The catalytic device is made by inserting a tubular catalytic element, such as a tubular element of a nickel-aluminum alloy, into a tubular substrate and heat-treating the resulting composite to cause the tubular catalytic element to irreversibly expand against the inside surface of the substrate.

O' Hare, Stephen A. (Vienna, VA)

1978-01-01T23:59:59.000Z

343

A solar module fabrication process for HALE solar electric UAVs  

DOE Green Energy (OSTI)

We describe a fabrication process used to manufacture high power-to-weight-ratio flexible solar array modules for use on high-altitude-long-endurance (HALE) solar-electric unmanned air vehicles (UAVs). These modules have achieved power-to-weight ratios of 315 and 396 W/kg for 150{mu}m-thick monofacial and 110{mu}m-thick bifacial silicon solar cells, respectively. These calculations reflect average module efficiencies of 15.3% (150{mu}m) and 14.7% (110{mu}m) obtained from electrical tests performed by Spectrolab, Inc. under AMO global conditions at 25{degrees}C, and include weight contributions from all module components (solar cells, lamination material, bypass diodes, interconnect wires, and adhesive tape used to attach the modules to the wing). The fabrication, testing, and performance of 32 m{sup 2} of these modules will be described.

Carey, P.G.; Aceves, R.C.; Colella, N.J.; Williams, K.A. [Lawrence Livermore National Lab., CA (United States); Sinton, R.A. [Private Consultant, San Jose, CA (United States); Glenn, G.S. [Spectrolab, Inc., Sylmar, CA (United States)

1994-12-12T23:59:59.000Z

344

Detailed Course Module Description  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Course Module Description Course Module Description Module/Learning Objectives Level of Detail in Module by Audience Consumers Gen Ed/ Community College Trades 1. Energy Issues and Building Solutions High High High Learning Objectives: * Define terms of building science, ecological systems, economics of consumption * Relate building science perspective, ecology, social science * Explain historical energy and environmental issues related to buildings * Compare Site and source energy * Examine the health, safety and comfort issues in buildings * Examine the general context for building solutions (zero energy green home with durability as the goal) * Explain a basic overview of alternative energy (total solar flux) - do we have enough energy * Examine cash flow to homeowners

345

Cyber Security Module  

NLE Websites -- All DOE Office Websites (Extended Search)

Cyber Security Module Cyber security training is required for all facility users and must be submitted before or upon arrival at the GUV Center. System Requirements and Information...

346

Macroeconomic Activity Module  

Annual Energy Outlook 2012 (EIA)

d022412A. U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2012 18 Macroeconomic Activity Module To reflect uncertainty in the projection of...

347

International Energy Module  

Reports and Publications (EIA)

Summarizes the overall structure of the International Energy Model and its interface with other NEMS modules, mathematical specifications of behavioral relationships, and data sources and estimation methods.

Adrian Geagla

2012-11-05T23:59:59.000Z

348

International Energy Module  

Reports and Publications (EIA)

Summarizes the overall structure of the International Energy Model and its interface with other NEMS modules, mathematical specifications of behavioral relationships, and data sources and estimation methods.

Adrian Geagla

2013-10-22T23:59:59.000Z

349

Contamination control device  

DOE Patents (OSTI)

A contamination control device for use in a gas-insulated transmission bus consisting of a cylindrical center conductor coaxially mounted within a grounded cylindrical enclosure. The contamination control device is electrically connected to the interior surface of the grounded outer shell and positioned along an axial line at the lowest vertical position thereon. The contamination control device comprises an elongated metallic member having a generally curved cross-section in a first plane perpendicular to the axis of the bus and having an arcuate cross-section in a second plane lying along the axis of the bus. Each opposed end of the metallic member and its opposing sides are tapered to form a pair of generally converging and downward sloping surfaces to trap randomly moving conductive particles in the relatively field-free region between the metallic member and the interior surface of the grounded outer shell. The device may have projecting legs to enable the device to be spot welded to the interior of the grounded housing. The control device provides a high capture probability and prevents subsequent release of the charged particles after the capture thereof.

Clark, Robert M. (Ligonier, PA); Cronin, John C. (Greensburg, PA)

1977-01-01T23:59:59.000Z

350

Solar energy thermalization and storage device  

DOE Patents (OSTI)

A passive solar thermalization and thermal energy storage assembly which is visually transparent. The assembly consists of two substantial parallel, transparent wall members mounted in a rectangular support frame to form a liquid-tight chamber. A semitransparent thermalization plate is located in the chamber, substantially paralled to and about equidistant from the transparent wall members to thermalize solar radiation which is stored in a transparent thermal energy storage liquid which fills the chamber. A number of the devices, as modules, can be stacked together to construct a visually transparent, thermal storage wall for passive solar-heated buildings.

McClelland, John F. (Ames, IA)

1981-09-01T23:59:59.000Z

351

Strained layer Fabry-Perot device  

DOE Patents (OSTI)

An asymmetric Fabry-Perot reflectance modulator (AFPM) consists of an active region between top and bottom mirrors, the bottom mirror being affixed to a substrate by a buffer layer. The active region comprises a strained-layer region having a bandgap and thickness chosen for resonance at the Fabry-Perot frequency. The mirrors are lattice matched to the active region, and the buffer layer is lattice matched to the mirror at the interface. The device operates at wavelengths of commercially available semiconductor lasers.

Brennan, Thomas M. (Albuquerque, NM); Fritz, Ian J. (Albuquerque, NM); Hammons, Burrell E. (Tijeras, NM)

1994-01-01T23:59:59.000Z

352

Energy utilization reduction devices  

SciTech Connect

An energy conservation arrangement for a hotel guest room or other room lockable by a key comprises a key reception module disposed inside the room to receive a tag of the key when the guest enters the room. Control means is responsive to the tag being received by the key reception module to enable the use of room light(s) and electrical power outlet(s) and to allow a room air conditioner to function normally. When the guest removes the tag from the key reception module prior to leaving the room, the control means disables use of the light(s) and power outlet(s) and puts the air conditioner into a minimum power consumption mode.

Bar, O.

1982-03-16T23:59:59.000Z

353

Large-Scale PV Module Manufacturing Using Ultra-Thin Polycrystalline Silicon Solar Cells: Final Subcontract Report, 1 April 2002--28 February 2006  

DOE Green Energy (OSTI)

The major objectives of this program were to continue advances of BP Solar polycrystalline silicon manufacturing technology. The Program included work in the following areas. (1) Efforts in the casting area to increase ingot size, improve ingot material quality, and improve handling of silicon feedstock as it is loaded into the casting stations. (2) Developing wire saws to slice 100-..mu..m-thick silicon wafers on 290-..mu..m-centers. (3) Developing equipment for demounting and subsequent handling of very thin silicon wafers. (4) Developing cell processes using 100-..mu..m-thick silicon wafers that produce encapsulated cells with efficiencies of at least 15.4% at an overall yield exceeding 95%. (5) Expanding existing in-line manufacturing data reporting systems to provide active process control. (6) Establishing a 50-MW (annual nominal capacity) green-field Mega-plant factory model template based on this new thin polycrystalline silicon technology. (7) Facilitating an increase in the silicon feedstock industry's production capacity for lower-cost solar-grade silicon feedstock..

Wohlgemuth, J.; Narayanan, M.

2006-07-01T23:59:59.000Z

354

System and method for controlling remote devices  

DOE Patents (OSTI)

A system and method for controlling remote devices utilizing a radio frequency identification (RFID) tag device having a control circuit adapted to render the tag device, and associated objects, permanently inoperable in response to radio-frequency control signals. The control circuit is configured to receive the control signals that can include an enable signal, and in response thereto enable an associated object, such as a weapon; and in response to a disable signal, to disable the tag itself, or, if desired, to disable the associated weapon or both the device and the weapon. Permanent disabling of the tag can be accomplished by several methods, including, but not limited to, fusing a fusable link, breaking an electrically conductive path, permanently altering the modulation or backscattering characteristics of the antenna circuit, and permanently erasing an associated memory. In this manner, tags in the possession of unauthorized employees can be remotely disabled, and weapons lost on a battlefield can be easily tracked and enabled or disabled automatically or at will.

Carrender, Curtis Lee (Richland, WA); Gilbert, Ronald W. (Benton City, WA); Scott, Jeff W. (Pasco, WA); Clark, David A. (Kennewick, WA)

2006-02-07T23:59:59.000Z

355

Active superconducting devices formed of thin films  

DOE Patents (OSTI)

Active superconducting devices are formed of thin films of superconductor which include a main conduction channel which has an active weak link region. The weak link region is composed of an array of links of thin film superconductor spaced from one another by voids and selected in size and thickness such that magnetic flux can propagate across the weak link region when it is superconducting. Magnetic flux applied to the weak link region will propagate across the array of links causing localized loss of superconductivity in the links and changing the effective resistance across the links. The magnetic flux can be applied from a control line formed of a superconducting film deposited coplanar with the main conduction channel and weak link region on a substrate. The devices can be formed of any type to superconductor but are particularly well suited to the high temperature superconductors since the devices can be entirely formed from coplanar films with no overlying regions. The devices can be utilized for a variety of electrical components, including switching circuits, amplifiers, oscillators and modulators, and are well suited to microwave frequency applications.

Martens, Jon S. (Madison, WI); Beyer, James B. (Madison, WI); Nordman, James E. (Madison, WI); Hohenwarter, Gert K. G. (Madison, WI)

1991-05-28T23:59:59.000Z

356

Influence of skin effect on the series resistance of millimeter-wave IMPATT devices  

Science Conference Proceedings (OSTI)

An attempt is made in this paper to study the influence of skin depth on the parasitic series resistance of millimeter-wave IMPATT devices based on Silicon. The method is based on the concept of depletion width modulation of the device under large-signal ... Keywords: Large-signal simulation, Millimeter-wave IMPATTs, Series resistance, Skin effect

Aritra Acharyya, Suranjana Banerjee, J. P. Banerjee

2013-09-01T23:59:59.000Z

357

U-279: Cisco Firewall Services Module Bugs Let Remote Users Execute  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9: Cisco Firewall Services Module Bugs Let Remote Users Execute 9: Cisco Firewall Services Module Bugs Let Remote Users Execute Arbitrary Code and Deny Service U-279: Cisco Firewall Services Module Bugs Let Remote Users Execute Arbitrary Code and Deny Service October 11, 2012 - 6:00am Addthis PROBLEM: Cisco Firewall Services Module Bugs Let Remote Users Execute Arbitrary Code and Deny Service PLATFORM: Version(s): prior to 4.1(9) ABSTRACT: Several vulnerabilities were reported in Cisco Firewall Services Module. reference LINKS: Cisco Advisory ID: cisco-sa-20121010-fwsm SecurityTracker Alert ID: 1027640 CVE-2012-4661 CVE-2012-4662 CVE-2012-4663 IMPACT ASSESSMENT: High Discussion: A remote user can send specially crafted DCERPC data through the target device to trigger a stack overflow in the DCERPC inspection engine and execute arbitrary code on the target device or cause the target device to

358

Multi-processor including data flow accelerator module  

DOE Patents (OSTI)

An accelerator module for a data flow computer includes an intelligent memory. The module is added to a multiprocessor arrangement and uses a shared tagged memory architecture in the data flow computer. The intelligent memory module assigns locations for holding data values in correspondence with arcs leading to a node in a data dependency graph. Each primitive computation is associated with a corresponding memory cell, including a number of slots for operands needed to execute a primitive computation, a primitive identifying pointer, and linking slots for distributing the result of the cell computation to other cells requiring that result as an operand. Circuitry is provided for utilizing tag bits to determine automatically when all operands required by a processor are available and for scheduling the primitive for execution in a queue. Each memory cell of the module may be associated with any of the primitives, and the particular primitive to be executed by the processor associated with the cell is identified by providing an index, such as the cell number for the primitive, to the primitive lookup table of starting addresses. The module thus serves to perform functions previously performed by a number of sections of data flow architectures and coexists with conventional shared memory therein. A multiprocessing system including the module operates in a hybrid mode, wherein the same processing modules are used to perform some processing in a sequential mode, under immediate control of an operating system, while performing other processing in a data flow mode.

Davidson, George S. (Albuquerque, NM); Pierce, Paul E. (Albuquerque, NM)

1990-01-01T23:59:59.000Z

359

Modulating the Neutron Flux from a Mirror Neutron Source  

Science Conference Proceedings (OSTI)

A 14-MeV neutron source based on a Gas-Dynamic Trap will provide a high flux of 14 MeV neutrons for fusion materials and sub-component testing. In addition to its main goal, the source has potential applications in condensed matter physics and biophysics. In this report, the author considers adding one more capability to the GDT-based neutron source, the modulation of the neutron flux with a desired frequency. The modulation may be an enabling tool for the assessment of the role of non-steady-state effects in fusion devices as well as for high-precision, low-signal basic science experiments favoring the use of the synchronous detection technique. A conclusion is drawn that modulation frequency of up to 1 kHz and modulation amplitude of a few percent is achievable. Limitations on the amplitude of modulations at higher frequencies are discussed.

Ryutov, D D

2011-09-01T23:59:59.000Z

360

Siemens SOFC Test Article and Module Design  

SciTech Connect

Preliminary design studies of the 95 kWe-class SOFC test article continue resulting in a stack architecture of that is 1/3 of 250 kWe-class SOFC advanced module. The 95 kWeclass test article is envisioned to house 20 bundles (eight cells per bundle) of Delta8 cells with an active length of 100 cm. Significant progress was made in the conceptual design of the internal recirculation loop. Flow analyses were initiated in order to optimize the bundle row length for the 250 kWeclass advanced module. A preferred stack configuration based on acceptable flow and thermal distributions was identified. Potential module design and analysis issues associated with pressurized operation were identified.

None

2011-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "devices cells modules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Impurities and defects in photovoltaic Si devices: A review  

DOE Green Energy (OSTI)

The performance of commercial photovoltaic Si devices is strongly controlled by the impurities and defects present in the substrates. A well-designed solar cell processing sequence can mitigate their effects to yield high efficiency devices. Such a process-design requires a comprehensive knowledge of the properties of defects, impurities, and impurity-defect interactions that can occur during device processing. This paper reviews the recent understanding of the impurity and defect issues in Si-photovoltaics.

Sopori, B.

1999-11-04T23:59:59.000Z

362

Optoelectronic device with nanoparticle embedded hole injection/transport layer  

DOE Patents (OSTI)

An optoelectronic device is disclosed that can function as an emitter of optical radiation, such as a light-emitting diode (LED), or as a photovoltaic (PV) device that can be used to convert optical radiation into electrical current, such as a photovoltaic solar cell. The optoelectronic device comprises an anode, a hole injection/transport layer, an active layer, and a cathode, where the hole injection/transport layer includes transparent conductive nanoparticles in a hole transport material.

Wang, Qingwu (Chelmsford, MA); Li, Wenguang (Andover, MA); Jiang, Hua (Methuen, MA)

2012-01-03T23:59:59.000Z

363

Methodology for producing internal short for safety in energy storage devices  

Energy storage cells (also referred to herein as "cells" or "batteries") sold for consumer use in portable electronic devices and other applications have occasional failure in the field. These cells have typically passed a wide ...

364

Photovoltaic module with light reflecting backskin  

DOE Patents (OSTI)

A photovoltaic module comprises electrically interconnected and mutually spaced photovoltaic cells that are encapsulated by a light-transmitting encapsulant between a light-transparent front cover and a back cover, with the back cover sheet being an ionomer/nylon alloy embossed with V-shaped grooves running in at least two directions and coated with a light reflecting medium so as to provide light-reflecting facets that are aligned with the spaces between adjacent cells and oriented so as to reflect light falling in those spaces back toward said transparent front cover for further internal reflection onto the solar cells, whereby substantially all of the reflected light will be internally reflected from said cover sheet back to the photovoltaic cells, thereby increasing the current output of the module. The internal reflector improves power output by as much as 67%.

Gonsiorawski, Ronald C. (Danvers, MA)

2007-07-03T23:59:59.000Z

365

Working with Modules within Python  

NLE Websites -- All DOE Office Websites (Extended Search)

Working with Modules within Perl and Python Working with Modules within Perl and Python Working with Modules within Perl and Python It can often be convenient to work with the modules system from within perl or python scripts. You can do this! Using Modules within Python The EnvironmentModules python package gives access to the module system from within python. The EnvironmentModules python package has a single function: module. Using this function you can provide the same arguments you would to "module" on the command line. The module() function accepts a list of arguments, like ['load','']; or ['unload','']. >>> import EnvironmentModules as EnvMod >>> EnvMod.module(['load','blast+']) It is important to understand that this is most effective for scripts

366

Macroeconomic Activity Module  

Reports and Publications (EIA)

Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Macroeconomic Activity Module (MAM) used to develop the Annual Energy Outlook for 2013 (AEO2013). The report catalogues and describes the module assumptions, computations, methodology, parameter estimation techniques, and mainframe source code

2013-04-10T23:59:59.000Z

367

Membrane module assembly  

DOE Patents (OSTI)

A membrane module assembly is described which is adapted to provide a flow path for the incoming feed stream that forces it into prolonged heat-exchanging contact with a heating or cooling mechanism. Membrane separation processes employing the module assembly are also disclosed. The assembly is particularly useful for gas separation or pervaporation. 2 figures.

Kaschemekat, J.

1994-03-15T23:59:59.000Z

368

Module Safety Issues (Presentation)  

SciTech Connect

Description of how to make PV modules so that they are less likely to turn into safety hazards. Making modules inherently safer with minimum additional cost is the preferred approach for PV. Safety starts with module design to ensure redundancy within the electrical circuitry to minimize open circuits and proper mounting instructions to prevent installation related ground faults. Module manufacturers must control the raw materials and processes to ensure that that every module is built like those qualified through the safety tests. This is the reason behind the QA task force effort to develop a 'Guideline for PV Module Manufacturing QA'. Periodic accelerated stress testing of production products is critical to validate the safety of the product. Combining safer PV modules with better systems designs is the ultimate goal. This should be especially true for PV arrays on buildings. Use of lower voltage dc circuits - AC modules, DC-DC converters. Use of arc detectors and interrupters to detect arcs and open the circuits to extinguish the arcs.

Wohlgemuth, J.

2012-02-01T23:59:59.000Z

369

Organic optoelectronic devices based on platinum(ii) complexes and polymers  

Science Conference Proceedings (OSTI)

In this study, the syntheses and characterizations of platinum(II) complexes and polymers for applications in organic optoelectronic devices, such as light-emitting devices (LEDs) and photovoltaic (PV) cells, were explored in detail. The photoluminescent ...

Hai-Feng Xiang

2005-01-01T23:59:59.000Z

370

Development of Hydrogen Selective Membranes/Modules as Reactors/Separators for Distributed Hydrogen Production - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Paul KT Liu Media and Process Technology Inc. (M&P) 1155 William Pitt Way Pittsburgh, PA 15238 Phone: (412) 826-3711 Email: pliu@mediaandprocess.com DOE Managers HQ: Sara Dillich Phone: (202) 586-7925 Email: Sara.Dillich@ee.doe.gov GO: Katie Randolph Phone: (720) 356-1759 Email: Katie.Randolph@go.doe.gov Contract Number: DE-FG36-05GO15092 Subcontractor: University of Southern California Project Start Date: July 1, 2005 Projected End Date: December 31, 2012 Fiscal Year (FY) 2012 Objectives The water-gas shift (WGS) reaction becomes less efficient when high CO conversion is required, such as for distributed hydrogen production applications. Our project

371

Performance Testing using Silicon Devices - Analysis of Accuracy: Preprint  

SciTech Connect

Accurately determining PV module performance in the field requires accurate measurements of solar irradiance reaching the PV panel (i.e., Plane-of-Array - POA Irradiance) with known measurement uncertainty. Pyranometers are commonly based on thermopile or silicon photodiode detectors. Silicon detectors, including PV reference cells, are an attractive choice for reasons that include faster time response (10 us) than thermopile detectors (1 s to 5 s), lower cost and maintenance. The main drawback of silicon detectors is their limited spectral response. Therefore, to determine broadband POA solar irradiance, a pyranometer calibration factor that converts the narrowband response to broadband is required. Normally this calibration factor is a single number determined under clear-sky conditions with respect to a broadband reference radiometer. The pyranometer is then used for various scenarios including varying airmass, panel orientation and atmospheric conditions. This would not be an issue if all irradiance wavelengths that form the broadband spectrum responded uniformly to atmospheric constituents. Unfortunately, the scattering and absorption signature varies widely with wavelength and the calibration factor for the silicon photodiode pyranometer is not appropriate for other conditions. This paper reviews the issues that will arise from the use of silicon detectors for PV performance measurement in the field based on measurements from a group of pyranometers mounted on a 1-axis solar tracker. Also we will present a comparison of simultaneous spectral and broadband measurements from silicon and thermopile detectors and estimated measurement errors when using silicon devices for both array performance and resource assessment.

Sengupta, M.; Gotseff, P.; Myers, D.; Stoffel, T.

2012-06-01T23:59:59.000Z

372

Electrical apparatus lockout device  

DOE Patents (OSTI)

A simple lockout device for electrical equipment equipped with recessed power blades is described. The device comprises a face-plate (12) having a threaded member (14) attached thereto and apertures suitable for accommodating the power blades of a piece of electrical equipment, an elastomeric nose (16) abutting the face-plate having a hole for passage of the threaded member therethrough and power blade apertures in registration with those of the face-plate, a block (20) having a recess (34) in its forward face for receiving at least a portion of the hose, a hole therein for receiving the threaded member and an integral extension (26) extending from its rear face. A thumb screw (22) suitable for turning with the hands and having internal threads suitable for engaging the threaded member attached to the face-plate is inserted into a passage in the integral extension to engage the threaded member in such a fashion that when the device is inserted over the recessed power blades of a piece of electrical equipment and the thumb screw (22) tightened, the elastomeric nose (16) is compressed between the face-plate (12) and the block (20) forcing it to expand laterally thereby securing the device in the recess and precluding the accidental or intentional energization of the piece of equipment by attachment of a power cord to the recessed power blades. Means are provided in the interval extension and the thumb screw for the attachment of a locking device (46) which will satisfy OSHA standards.

Gonzales, Rick (Chesapeake, VA)

1999-01-01T23:59:59.000Z

373

Spectral tailoring device  

DOE Patents (OSTI)

A spectral tailoring device for altering the neutron energy spectra and flux of neutrons in a fast reactor thereby selectively to enhance or inhibit the transmutation rate of a target metrical to form a product isotope. Neutron moderators, neutron filters, neutron absorbers and neutron reflectors may be used as spectral tailoring devices. Depending on the intended use for the device, a member from each of these four classes of materials could be used singularly, or in combination, to provide a preferred neutron energy spectra and flux of the neutrons in the region of the target material. In one embodiment of the invention, an assembly is provided for enhancing the production of isotopes, such as cobalt 60 and gadolinium 153. In another embodiment of the invention, a spectral tailoring device is disposed adjacent a target material which comprises long lived or volatile fission products and the device is used to shift the neutron energy spectra and flux of neutrons in the region of the fission products to preferentially transmute them to produce a less volatile fission product inventory. 6 figs.

Brager, H.R.; Schenter, R.E.; Carter, L.L.; Karnesky, R.A.

1987-08-05T23:59:59.000Z

374

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 non-manufacturing industries. The manufacturing industries are further subdivided into the energy- intensive manufacturing industries and non-energy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process-flow or end-use accounting procedure, whereas the non- manufacturing industries are modeled with substantially less detail. The petroleum refining industry is not included in the Industrial Demand Module, as it is simulated separately in the Petroleum Market Module of NEMS. The Industrial Demand Module calculates energy consumption for the four Census Regions (see Figure 5) and disaggregates the energy consumption

375

International Energy Module  

Gasoline and Diesel Fuel Update (EIA)

he International Energy Module determines changes in the world oil price and the supply prices of crude he International Energy Module determines changes in the world oil price and the supply prices of crude oils and petroleum products for import to the United States in response to changes in U.S. import requirements. A market clearing method is used to determine the price at which worldwide demand for oil is equal to the worldwide supply. The module determines new values for oil production and demand for regions outside the United States, along with a new world oil price that balances supply and demand in the international oil market. A detailed description of the International Energy Module is provided in the EIA publication, Model Documentation Report: The International Energy Module of the National Energy Modeling System, DOE/EIA-M071(06), (Washington, DC, February 2006).

376

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 51 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 non-manufacturing industries. The manufacturing industries are further subdivided into the energy- intensive manufacturing industries and nonenergy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process-flow or end-use accounting procedure, whereas the non- manufacturing industries are modeled with substantially less detail. The petroleum refining industry is not included in the Industrial Module, as it is simulated separately in the Petroleum Market Module of NEMS. The Industrial Module calculates

377

Module Technology: Current Practice and Issues (Presentation)  

DOE Green Energy (OSTI)

PV modules must provide mechanical support for the cells, protect the world from the voltages inside, protect the cells, diodes and interconnects from the weather outside, couple as much light as possible into the PV cells and minimize the temperature increase of the cells. The package must continue to serve these functions for at least 25 years as that is the typical module warranty period today. Furthermore the package must do all this for as low a cost as possible since the key to large scale PV growth is a reduction in cost while retaining excellent module reliability and durability. This paper will review current module construction practices for both crystalline silicon and thin film PV with emphasis on explaining why the present designs and materials have been selected. Possible long term issues with today's designs and materials will be discussed. Several proposed solutions to these issues will be presented, highlighting the research efforts that will be necessary in order to verify that they can cost effectively solve the identified issues.

Wohlgemuth, J.

2010-10-05T23:59:59.000Z

378

Progress in Recycling of Retired Cadmium-Telluride Photovoltaic Modules  

E-Print Network (OSTI)

Progress in Recycling of Retired Cadmium- Telluride Photovoltaic Modules Postdoctoral: Wenming Wang-Talk Program July 21, 2005 #12;Recycling Retired Photovoltaic Modules to Valuable Products, Where Are We, ppm Cu, ppm Column I Column II H2SO4 Tank CdSO4 Electrolytic Cell Cadmium Metal Cd Solution H2SO4

379

Comparison of Predictive Models for Photovoltaic Module Performance: Preprint  

DOE Green Energy (OSTI)

This paper examines three models used to estimate the performance of photovoltaic (PV) modules when the irradiances and PV cell temperatures are known. The results presented here were obtained by comparing modeled and measured maximum power (Pm) for PV modules that rely on different technologies.

Marion, B.

2008-05-01T23:59:59.000Z

380

Opportunities and Challenges for Power Electronics in PV Modules (Presentation)  

DOE Green Energy (OSTI)

The presentation describes the value of adding DC converters and other power electronics to modules to improve their output even when shading or bad cells would otherwise decrease the module output. The presentation was part of a workshop sponsored by ARPA-E exploring the opportunities for power electronics to support PV applications.

Kurtz, S.; Deline, C.; Wohlgemuth, J.; Marion, B.; Granata, J.

2011-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "devices cells modules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Investigation into Spectral Parameters as they Impact CPV Module Performance  

DOE Green Energy (OSTI)

The CPV industry is well aware that performance of triple junction cells depends on spectral conditions but there is a lack of data quantifying this spectral dependence at the module level. This paper explores the impact of precipitable water vapor, aerosol optical depth (AOD), and optical air mass on multiple CPV module technologies on-sun in Golden, CO.

Muller, M.; Marion, B.; Kurtz, S.; Rodriguez, J.

2011-03-01T23:59:59.000Z

382

Non-linear optical crystal vibration sensing device  

SciTech Connect

A non-linear optical crystal vibration sensing device (10) including a photorefractive crystal (26) and a laser (12). The laser (12 ) produces a coherent light beam (14) which is split by a beam splitter (18) into a first laser beam (20) and a second laser beam (22). After passing through the crystal (26) the first laser beam (20) is counter-propagated back upon itself by a retro-mirror (32), creating a third laser beam (30). The laser beams (20, 22, 30) are modulated, due to the mixing effect within the crystal (26) by vibration of the crystal (30). In the third laser beam (30), modulation is stable and such modulation is converted by a photodetector (34) into a usable electrical output, intensity modulated in accordance with vibration applied to the crystal (26).

Kalibjian, Ralph (Livermore, CA)

1994-01-11T23:59:59.000Z

383

Non-linear optical crystal vibration sensing device  

DOE Patents (OSTI)

The report describes a non-linear optical crystal vibration sensing device including a photorefractive crystal and a laser. The laser produces a coherent light beam which is split by a beam splitter into a first laser beam and a second laser beam. After passing through the crystal the first laser beam is counter-propagated back upon itself by a retro-mirror, creating a third laser beam . The laser beams are modulated, due to the mixing effect within the crystal by vibration of the crystal. In the third laser beam modulation is stable and such modulation is converted by a photodetector into a usable electrical output, intensity modulated in accordance with vibration applied to the crystal.

Kalibjian, R.

1992-12-31T23:59:59.000Z

384

Properties of Encapsulated CIGS Cells in 85 degrees C/85%RH  

DOE Green Energy (OSTI)

This paper concerns studies of encapsulated cells subjected to an environment of 85C and 85%RH (85/85). Cells are encapsulated with PNNL multi-layer coatings (referred to as PML coatings) utilizing alternating layers of Al2O3, and an advanced polymer. The new polymer has been determined to withstand the 85/85 environment. Two types of cells were used for these studies, namely, SSI mini-modules (which are actually CIGSS devices) and CIGS cells provided by the Institute of Energy Conversion (IEC). Cells were coated and stressed at 85/85 in an environmental chamber. Current-voltage characteristics were acquired before and after coating, and periodically after being subjected to the 85/85 environment. Whereas coated SSI modules were determined to last 1000 hours when stressed at 60C/90%RH without degradation, the efficiency of these modules degrade to a level of 60% of the beginning-of-life value when stressed at 85/85. Encapsulated IEC cells, however, have exhibited extraordinary results. The efficiency of several encapsulated cells did not decrease for 1500 hours in an 85C/85%RH environment. This results establishes a benchmark for stressed, encapsulated CIGS cells.

Olsen, Larry C.; Gross, Mark E.; Kundu, Sambhu N.; Shafaman, William N.

2010-02-16T23:59:59.000Z

385

A sampling device with a capped body and detachable handle  

DOE Patents (OSTI)

The present invention relates to a device for sampling radioactive waste and more particularly to a device for sampling radioactive waste which prevents contamination of a sampled material and the environment surrounding the sampled material. During vitrification of nuclear wastes, it is necessary to remove contamination from the surfaces of canisters filled with radioactive glass. After removal of contamination, a sampling device is used to test the surface of the canister. The one piece sampling device currently in use creates a potential for spreading contamination during vitrification operations. During operations, the one piece sampling device is transferred into and out of the vitrification cell through a transfer drawer. Inside the cell, a remote control device handles the sampling device to wipe the surface of the canister. A one piece sampling device can be contaminated by the remote control device prior to use. Further, the sample device can also contaminate the transfer drawer producing false readings for radioactive material. The present invention overcomes this problem by enclosing the sampling pad in a cap. The removable handle is reused which reduces the amount of waste material.

Jezek, Gerd-Rainer

1997-12-01T23:59:59.000Z

386

Pendulum detector testing device  

DOE Patents (OSTI)

A detector testing device is described which provides consistent, cost-effective, repeatable results. The testing device is primarily constructed of PVC plastic and other non-metallic materials. Sensitivity of a walk-through detector system can be checked by: (1) providing a standard test object simulating the mass, size and material content of a weapon or other contraband, (2) suspending the test object in successive positions, such as head, waist and ankle levels, simulating where the contraband might be concealed on a person walking through the detector system; and (3) swinging the suspended object through each of the positions, while operating the detector system and observing its response. The test object is retained in a holder in which the orientation of the test device or target can be readily changed, to properly complete the testing requirements. 5 figs.

Gonsalves, J.M.

1997-09-30T23:59:59.000Z

387

REACTOR CONTROL DEVICE  

DOE Patents (OSTI)

A wholly mechanical compact control device is designed for automatically rendering the core of a fission reactor subcritical in response to core temperatures in excess of the design operating temperature limit. The control device comprises an expansible bellows interposed between the base of a channel in a reactor core and the inner end of a fuel cylinder therein which is normally resiliently urged inwardly. The bellows contains a working fluid which undergoes a liquid to vapor phase change at a temperature substantially equal to the design temperature limit. Hence, the bellows abruptiy expands at this limiting temperature to force the fuel cylinder outward and render the core subcritical. The control device is particularly applicable to aircraft propulsion reactor service. (AEC)

Graham, R.H.

1962-09-01T23:59:59.000Z

388

Pendulum detector testing device  

DOE Patents (OSTI)

A detector testing device which provides consistent, cost-effective, repeatable results. The testing device is primarily constructed of PVC plastic and other non-metallic materials. Sensitivity of a walk-through detector system can be checked by: 1) providing a standard test object simulating the mass, size and material content of a weapon or other contraband, 2) suspending the test object in successive positions, such as head, waist and ankle levels, simulating where the contraband might be concealed on a person walking through the detector system; and 3) swinging the suspended object through each of the positions, while operating the detector system and observing its response. The test object is retained in a holder in which the orientation of the test device or target can be readily changed, to properly complete the testing requirements.

Gonsalves, John M. (Modesto, CA)

1997-01-01T23:59:59.000Z

389

EXPERIMENTAL ANIMAL WATERING DEVICE  

SciTech Connect

A device for watering experimental animals confined in a battery of individual plastic enclosures is described. It consists of a rectangular plastic enclosure having a plurality of fluid-tight compartments, each with a drinking hole near the bottom and a filling hole on the top. The enclosure is immersed in water until filled, its drinking holes sealed with a strip of tape, and it is then placed in the battery. The tape sealing prevents the flow of water from the device, but permits animals to drink by licking the drinking holes. (AEC)

Finkel, M.P.

1964-04-01T23:59:59.000Z

390

Phononic crystal devices  

DOE Patents (OSTI)

Phononic crystals that have the ability to modify and control the thermal black body phonon distribution and the phonon component of heat transport in a solid. In particular, the thermal conductivity and heat capacity can be modified by altering the phonon density of states in a phononic crystal. The present invention is directed to phononic crystal devices and materials such as radio frequency (RF) tags powered from ambient heat, dielectrics with extremely low thermal conductivity, thermoelectric materials with a higher ratio of electrical-to-thermal conductivity, materials with phononically engineered heat capacity, phononic crystal waveguides that enable accelerated cooling, and a variety of low temperature application devices.

El-Kady, Ihab F. (Albuquerque, NM); Olsson, Roy H. (Albuquerque, NM)

2012-01-10T23:59:59.000Z

391

REMOTE CONTROLLED SWITCHING DEVICE  

DOE Patents (OSTI)

An electrical switching device which can be remotely controlled and in which one or more switches may be accurately operated at predetermined times or with predetermined intervening time intervals is described. The switching device consists essentially of a deck, a post projecting from the deck at right angles thereto, cam means mounted for rotation around said posts and a switch connected to said deck and actuated by said cam means. Means is provided for rotating the cam means at a constant speed and the switching apparatus is enclosed in a sealed container with external adjusting means and electrical connection elements.

Hobbs, J.C.

1959-02-01T23:59:59.000Z

392

Aluminum reduction cell electrode  

DOE Patents (OSTI)

The invention is directed to cathode modules comprised of refractory hard metal materials, such as TiB[sub 2], for an electrolytic cell for the reduction of alumina wherein the modules may be installed and replaced during operation of the cell and wherein the structure of the cathode modules is such that the refractory hard metal materials are not subjected to externally applied forces or rigid constraints. 9 figs.

Goodnow, W.H.; Payne, J.R.

1982-09-14T23:59:59.000Z

393

Hydrogen Fuel Cells  

Fuel Cell Technologies Publication and Product Library (EERE)

The fuel cell an energy conversion device that can efficiently capture and use the power of hydrogen is the key to making it happen.

394

Optical Modulator on Si Employing Ge Quantum Wells Jonathan E. Roth1*  

E-Print Network (OSTI)

Optical Modulator on Si Employing Ge Quantum Wells Jonathan E. Roth1* , Onur Fidaner1 , Rebecca K ; (230.5590) Quantum-well devices The recently demonstrated quantum confined Stark effect (QCSE) in germanium quantum wells is a likely candidate for creating optoelectronic modulators for monolithically

Miller, David A. B.

395

Miniaturized CMOS Imaging Module with Real-time DSP Technology for Endoscope and Laryngoscope Applications  

Science Conference Proceedings (OSTI)

Miniaturized video camera is a key component in modern medical devices such as endoscopes or other minimally invasive instruments. Here we present a new imaging module which is so small that it can fit through the instrument channels of conventional ... Keywords: Blackfin DSP, CMOS imaging module, Miniature, Minimally invasive instruments, Real-time video processing

Liqiang Wang; Yan Shi; Zukang Lu; Huilong Duan

2009-01-01T23:59:59.000Z

396

Engineering Technical Training Module (ETTM) - Instrumentation Sensing, Line Routing, and Separation Version 1.0  

Science Conference Proceedings (OSTI)

Engineering Technical Training Module (ETTM) Instrumentation Sensing, Line Routing, and Separation, Version 1.0 is a computer-based training module that allows users to access training when desired and review it at their own pace.This course provides training for Power Plant Instrumentation Engineers on instrumentation sensing line devices, their functions, and recommended use in nuclear plants. This module will familiarize the student with guidelines for routing and ...

2013-08-08T23:59:59.000Z

397

Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2035. The definition of the commercial sector is consistent with EIA's State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA

398

Sonication standard laboratory module  

DOE Patents (OSTI)

A standard laboratory module for automatically producing a solution of cominants from a soil sample. A sonication tip agitates a solution containing the soil sample in a beaker while a stepper motor rotates the sample. An aspirator tube, connected to a vacuum, draws the upper layer of solution from the beaker through a filter and into another beaker. This beaker can thereafter be removed for analysis of the solution. The standard laboratory module encloses an embedded controller providing process control, status feedback information and maintenance procedures for the equipment and operations within the standard laboratory module.

Beugelsdijk, Tony (Los Alamos, NM); Hollen, Robert M. (Los Alamos, NM); Erkkila, Tracy H. (Los Alamos, NM); Bronisz, Lawrence E. (Los Alamos, NM); Roybal, Jeffrey E. (Santa Fe, NM); Clark, Michael Leon (Menan, ID)

1999-01-01T23:59:59.000Z

399

Water heater control module  

DOE Patents (OSTI)

An advanced electric water heater control system that interfaces with a high temperature cut-off thermostat and an upper regulating thermostat. The system includes a control module that is electrically connected to the high-temperature cut-off thermostat and the upper regulating thermostat. The control module includes a switch to open or close the high-temperature cut-off thermostat and the upper regulating thermostat. The control module further includes circuitry configured to control said switch in response to a signal selected from the group of an autonomous signal, a communicated signal, and combinations thereof.

Hammerstrom, Donald J

2013-11-26T23:59:59.000Z

400

RADIO RANGING DEVICE  

DOE Patents (OSTI)

A description is given of a super-regenerative oscillator ranging device provided with radiating and receiving means and being capable of indicating the occurrence of that distance between itself and a reflecting object which so phases the received echo of energy of a preceding emitted oscillation that the intervals between oscillations become uniform.

Bogle, R.W.

1960-11-22T23:59:59.000Z

Note: This page contains sample records for the topic "devices cells modules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

RADIO RANGING DEVICE  

DOE Patents (OSTI)

A radio ranging device is described. It utilizes a super regenerative detector-oscillator in which echoes of transmitted pulses are received in proper phase to reduce noise energy at a selected range and also at multiples of the selected range.

Nieset, R.T.

1961-05-16T23:59:59.000Z

402

Electron beam device  

DOE Patents (OSTI)

This patent pertains to an electron beam device in which a hollow target is symmetrically irradiated by a high energy, pulsed electron beam about its periphery and wherein the outer portion of the target has a thickness slightly greater than required to absorb the electron beam pulse energy. (auth)

Beckner, E.H.; Clauser, M.J.

1975-08-12T23:59:59.000Z

403

Medical Device Reliability BIOMATERIALS  

E-Print Network (OSTI)

of the U.S. healthcare industry, with annual sales exceeding $13 billion. In the past decade, nearly 3 to those found in explanted devices. Multilayer ceramic capacitors are the focus, as changes-grade ceramic capacitors. The Use Conditions Summary and the Failure Mode Effects Analysis are currently under

404

Energy absorption device  

DOE Patents (OSTI)

An energy absorbing device comprising two metal elements slip-fit together. The inner element has an enlarged portion thereupon which is forced, by a force overload to travel along the inside of the outer tube. The energy of the overload is absorbed by the forces of friction and deformation as the two elements are telescoped together.

Hertelendy, N.A.

1987-01-27T23:59:59.000Z

405

Simulating nanoscale semiconductor devices.  

SciTech Connect

The next generation of electronic devices will be developed at the nanoscale and molecular level, where quantum mechanical effects are observed. These effects must be accounted for in the design process for such small devices. One prototypical nanoscale semiconductor device under investigation is a resonant tunneling diode (RTD). Scientists are hopeful the quantum tunneling effects present in an RTD can be exploited to induce and sustain THz frequency current oscillations. To simulate the electron transport within the RTD, the Wigner-Poisson equations are used. These equations describe the time evolution of the electrons distribution within the device. In this paper, this model and a parameter study using this model will be presented. The parameter study involves calculating the steady-state current output from the RTD as a function of an applied voltage drop across the RTD and also calculating the stability of that solution. To implement the parameter study, the computational model was connected to LOCA (Library of Continuation Algorithms), a part of Sandia National Laboratories parallel solver project, Trilinos. Numerical results will be presented.

Salinger, Andrew Gerhard; Zhao, P. (North Carolina State University, Raleigh, NC); Woolard, D. L. (U. S. Army Research Laboratory, NC); Kelley, C. Tim (North Carolina State University, Raleigh, NC); Lasater, Matthew S. (North Carolina State University, Raleigh, NC)

2005-03-01T23:59:59.000Z

406

LOADING AND UNLOADING DEVICE  

DOE Patents (OSTI)

A device for loading and unloading fuel rods into and from a reactor tank through an access hole includes parallel links carrying a gripper. These links enable the gripper to go through the access hole and then to be moved laterally from the axis of the access hole to the various locations of the fuel rods in the reactor tank.

Treshow, M.

1960-08-16T23:59:59.000Z

407

ANNULAR IMPACTOR SAMPLING DEVICE  

DOE Patents (OSTI)

A high-rate air sampler capable of sampling alphaemitting particles as small as 0.5 microns is described. The device is a cylindrical shaped cup that fits in front of a suction tube and which has sticky grease coating along its base. Suction forces contaminated air against the periodically monitored particle absorbing grease.

Tait, G.W.C.

1959-03-31T23:59:59.000Z

408

High Power SiC Modules for HEVs and PHEVs  

DOE Green Energy (OSTI)

With efforts to reduce the cost, size, and thermal management systems for the power electronics drivetrain in hybrid electric vehicles (HEVs) and plug-in hybrid electric vehicles (PHEVs), wide band gap semiconductors including silicon carbide (SiC) have been identified as possibly being a partial solution. Research on SiC power electronics has shown their higher efficiency compared to Si power electronics due to significantly lower conduction and switching losses. This paper focuses on the development of a high power module based on SiC JFETs and Schottky diodes. Characterization of a single device, a module developed using the same device, and finally an inverter built using the modules is presented. When tested at moderate load levels compared to the inverter rating, an efficiency of 98.2% was achieved by the initial prototype.

Chinthavali, Madhu Sudhan [ORNL; Tolbert, Leon M [ORNL; Zhang, Hui [ORNL; Han, Jung H [ORNL; Barlow, Fred D. [University of Idaho; Ozpineci, Burak [ORNL

2010-01-01T23:59:59.000Z

409

Electricity Market Module  

Gasoline and Diesel Fuel Update (EIA)

This page inTenTionally lefT blank 91 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2012 Electricity Market Module The NEMS Electricity Market Module (EMM) represents the capacity planning, dispatching, and pricing of electricity. It is composed of four submodules-electricity capacity planning, electricity fuel dispatching, electricity load and demand, and electricity finance and pricing. It includes nonutility capacity and generation, and electricity transmission and trade. A detailed description of the EMM is provided in the EIA publication, Electricity Market Module of the National Energy Modeling System 2012, DOE/EIA-M068(2012). Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most

410

Liquid Fuels Market Module  

U.S. Energy Information Administration (EIA) Indexed Site

Liquid Fuels Market Module Liquid Fuels Market Module This page inTenTionally lefT blank 145 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Liquid Fuels Market Module The NEMS Liquid Fuels Market Module (LFMM) projects petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, unfinished oil imports, other refinery inputs (including alcohols, ethers, esters, corn, biomass, and coal), natural gas plant liquids production, and refinery processing gain. In addition, the LFMM projects capacity expansion and fuel consumption at domestic refineries. The LFMM contains a linear programming (LP) representation of U.S. petroleum refining

411

Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Residential Demand Module The NEMS Residential Demand Module projects future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimate of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the "unit energy consumption" (UEC) by appliance (in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type

412

Electricity Market Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 95 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Electricity Market Module The NEMS Electricity Market Module (EMM) represents the capacity planning, dispatching, and pricing of electricity. It is composed of four submodules-electricity capacity planning, electricity fuel dispatching, electricity load and demand, and electricity finance and pricing. It includes nonutility capacity and generation, and electricity transmission and trade. A detailed description of the EMM is provided in the EIA publication, Electricity Market Module of the National Energy Modeling System 2011, DOE/EIA-M068(2011). Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most

413

CIM - compact intensity modulation.  

SciTech Connect

Compact intensity modulation (CIM), a new method to modulate the intensity of a neutron beam is demonstrated. CIM allows the production of arbitrary signals where the focus point can be chosen and changed without any constraints. A novel feature in this technique compared to spin echo techniques is that the neutron polarization is kept parallel or anti-parallel to the static fields during the passage through the magnetic fields and the beating pattern at the detector is produced by an amplitude modulation (AM) of the adiabatic RF-spin flippers rather than Larmor precession like in neutron spin echo (NSE) instruments; thus, the achievable contrast is very high and the instrument resolution can be changed very quickly. This gives the fascinating possibility at pulsed neutron sources to sweep the modulation frequency of the flippers in order to increase dynamic resolution range during the same neutron pulse.

Bleuel, M.; Lang, E.; Gahler, G.; Lal, J.; Intense Pulsed Neutron Source; Inst. Lau Langevin

2008-07-21T23:59:59.000Z

414

Flywheel Energy Storage Module  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

kWh100 kW Flywheel Energy Storage Module * 100KWh - 18 cost KWh vs. current State of the Art * Bonded Magnetic Bearings on Rim ID * No Shaft Hub (which limits surface speed)...

415

Residential Sector Demand Module  

Reports and Publications (EIA)

Model Documentation - Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

Owen Comstock

2012-12-19T23:59:59.000Z

416

Industrial Demand Module  

Reports and Publications (EIA)

Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Module. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

Kelly Perl

2013-05-14T23:59:59.000Z

417

Digital optical conversion module  

DOE Patents (OSTI)

A digital optical conversion module used to convert an analog signal to a computer compatible digital signal including a voltage-to-frequency converter, frequency offset response circuitry, and an electrical-to-optical converter. Also used in conjunction with the digital optical conversion module is an optical link and an interface at the computer for converting the optical signal back to an electrical signal. Suitable for use in hostile environments having high levels of electromagnetic interference, the conversion module retains high resolution of the analog signal while eliminating the potential for errors due to noise and interference. The module can be used to link analog output scientific equipment such as an electrometer used with a mass spectrometer to a computer.

Kotter, Dale K. (North Shelley, ID); Rankin, Richard A. (Ammon, ID)

1991-02-26T23:59:59.000Z

418

Industrial Demand Module  

Reports and Publications (EIA)

Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Module. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

Kelly Perl

2013-09-30T23:59:59.000Z

419

Residential Sector Demand Module  

Reports and Publications (EIA)

Model Documentation - Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

Owen Comstock

2013-11-05T23:59:59.000Z

420

Renewable Fuels Module  

Reports and Publications (EIA)

This report documents the objectives, analytical approach, and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it relates to the production of the Annual Energy Outlook forecasts.

Chris Namovicz

2013-07-03T23:59:59.000Z

Note: This page contains sample records for the topic "devices cells modules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Digital optical conversion module  

DOE Patents (OSTI)

A digital optical conversion module used to convert an analog signal to a computer compatible digital signal including a voltage-to-frequency converter, frequency offset response circuitry, and an electrical-to-optical converter. Also used in conjunction with the digital optical conversion module is an optical link and an interface at the computer for converting the optical signal back to an electrical signal. Suitable for use in hostile environments having high levels of electromagnetic interference, the conversion module retains high resolution of the analog signal while eliminating the potential for errors due to noise and interference. The module can be used to link analog output scientific equipment such as an electrometer used with a mass spectrometer to a computer. 2 figs.

Kotter, D.K.; Rankin, R.A.

1988-07-19T23:59:59.000Z

422

Renewable Fuels Module This  

U.S. Energy Information Administration (EIA) Indexed Site

Fuels Module Fuels Module This page inTenTionally lefT blank 175 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for projections of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has seven submodules representing various renewable energy sources: biomass, geothermal, conventional hydroelectricity, landfill gas, solar thermal, solar photovoltaics, and wind [1]. Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as water, wind, and solar radiation, are energy sources that do not involve

423

Programmable synchronous communications module  

SciTech Connect

The functional characteristics of a programmable, synchronous serial communications CAMAC module with buffering in block format are described. Both bit and byte oriented protocols can be handled in full duplex depending on the program implemented. The main elements of the module are a Signetics 2652 Multi-Protocol Communications Controller, a Zilog Z-808 8 bit microprocessor with PROM and RAM, and FIFOs for buffering. (FS)

Horelick, D.

1979-10-01T23:59:59.000Z

424

Electricity Market Module  

Reports and Publications (EIA)

Documents the Electricity Market Module as it was used for the Annual Energy Outlook 2013. The Electricity Market Module (EMM) is the electricity supply component of the National Energy Modeling System (NEMS). The EMM represents the generation, transmission, and pricing of electricity. It consists of four submodules: the Electricity Capacity Planning (ECP) Submodule, the Electricity Fuel Dispatch (EFD) Submodule, the Electricity Finance and Pricing (EFP) Submodule, and the Electricity Load and Demand (ELD) Submodule.

Jeff Jones

2013-07-24T23:59:59.000Z

425

An improved system and method for networking electrochemical devices  

DOE Patents (OSTI)

An improved electrochemically active system and method including a plurality of electrochemical devices, such as fuel cells and fluid separation devices are disclosed, in which the anode and cathode process-fluid flow chambers are connected in fluid-flow arrangements so that the operating parameters of each of said plurality of electrochemical devices which are dependent upon process-fluid parameters may be individually controlled to provide improved operating efficiency. Improvements in operation include improved power efficiency and improved fuel utilization in fuel cell power generating systems and reduced power consumption in fluid separation devices and the like through interstage process fluid parameter control for series networked electrochemical devices. The improved networking method includes recycling of various process flows to enhance the overall control scheme.

Williams, M.C.; Wimer, J.G.; Archer, D.H.

1993-12-31T23:59:59.000Z

426

Photovoltaic module reliability workshop  

DOE Green Energy (OSTI)

The paper and presentations compiled in this volume form the Proceedings of the fourth in a series of Workshops sponsored by Solar Energy Research Institute (SERI/DOE) under the general theme of photovoltaic module reliability during the period 1986--1990. The reliability Photo Voltaic (PV) modules/systems is exceedingly important along with the initial cost and efficiency of modules if the PV technology has to make a major impact in the power generation market, and for it to compete with the conventional electricity producing technologies. The reliability of photovoltaic modules has progressed significantly in the last few years as evidenced by warranties available on commercial modules of as long as 12 years. However, there is still need for substantial research and testing required to improve module field reliability to levels of 30 years or more. Several small groups of researchers are involved in this research, development, and monitoring activity around the world. In the US, PV manufacturers, DOE laboratories, electric utilities and others are engaged in the photovoltaic reliability research and testing. This group of researchers and others interested in this field were brought together under SERI/DOE sponsorship to exchange the technical knowledge and field experience as related to current information in this important field. The papers presented here reflect this effort.

Mrig, L. (ed.)

1990-01-01T23:59:59.000Z

427

Fuzzy logic based operated device identification in power distribution systems  

E-Print Network (OSTI)

Fault location in distribution systems is a challenging task because of the lack of homogeneity in the system and due to uncertainity in the data used for estimating the faulted sections. Fuzzy logic has widely been applied for handling uncertainities in the input data and its processing. Fuzzy logic has also been used to model human expertise and decision making capabilites and to determine the possibility of a fault on a particular section. This thesis presents the design and implementation of an operated device identification algorithm to be used as one of four modules in an automated modular scheme for fault section estimation on radial distribution systems. This algorithm will be executed in tandem with the other fault location modules that form the second stage of a three stage scheme. The operated device identification algorithm can assign section fault possibilities representing the possibility of involvement of each section of a distribution feeder in an event. The operated device algorithm uses the recorded current waveform of an abnormal event, the time-current characteristics and settings of various protective devices on a feeder, and feeder topology information as inputs. The algorithm then assigns a fault possibility value to each section of a feeder using fuzzy rules and fuzzy membership functions to compare a fault event with protective device settings and characteristics. The section fault possibility values can be superimposed on the feeder map by color coding the sections of a feeder according to their fault possibility values. This helps in easy visualization of possibly faulted sections. A detailed illustration of the results obtained from running the algorithm is presented in this thesis. They prove the effectiveness of the algorithm in locating faults in a distribution feeder. The operated device identification module was tested using real data measured at feeder substations. The results obtained by the algorithm were verified with feedback given by the utilities that owned the feeders. The results obtained from the tests were encouraging.

Manivannan, Karthick Muthu

2002-01-01T23:59:59.000Z

428

Seventh workshop on the role of impurities and defects in silicon device processing  

DOE Green Energy (OSTI)

This workshop is the latest in a series which has looked at technological issues related to the commercial development and success of silicon based photovoltaic (PV) modules. PV modules based on silicon are the most common at present, but face pressure from other technologies in terms of cell performance and cell cost. This workshop addresses a problem which is a factor in the production costs of silicon based PV modules.

NONE

1997-08-01T23:59:59.000Z

429

Lower Cost CPV 3-Sun Mirror Modules  

SciTech Connect

In a series of patent applications filed between 2002 and 2005, JX Crystals Inc described a evolutionary lower-cost low-concentration planar solar photovoltaic module that uses multiple linear rows of silicon cells and standard one-sun circuit laminations incorporating glass and EVA weather proofing encapsulations. The three novel features that we described are interdependent and integrated together to yield lower cost PV modules. These 3 novel features are: (1) The use of rows of linear mirrors or linear Fresnel lenses aligned with the cell rows and concentrating the sunlight onto the cell rows. (2) The addition of a thin aluminum sheet heat spreader on the back of the circuit lamination to spread the heat away from the cell rows so that the cell operating temperature remains acceptably low. (3) The incorporation of slots in the back of the aluminum sheet heat spreader to accommodate the differences in thermal expansion between the silicon cells, the glass, and the aluminum so that the circuit interconnectivity is maintained over time. Various embodiments of this planar linear concentrator panel are shown in figures 1 to 5. Figures 1 and 2 show the original planar linear concentrator module concept from July of 2002 with either mirrors (figure 1) or linear Fresnel lenses (figure 2). The idea was expanded in 2003 with the idea of an aluminum sheet heat spreader added to the back of a standard PV circuit lamination as shown in figure 3. In 2003, we also transitioned from half cells to third cells using SunPower cells as shown in figure 4. JX Crystals Inc then received funding for the 3-sun PV mirror module concept from the Shanghai Science and Technology Commission in 2003 and from the Shanghai Flower Port and the Shanghai Import and Export Trading Company in 2005. This funding led to a 800 panel pilot production run of our JX Crystals designed 3-sun module in 2006. 672 of these panels were installed in a 100 kW demonstration and an additional 24 panels were installed in a second 4 kW demonstration both at the Flower Port in Shanghai. Both of these systems were completed in 2006. Our 3-sun PV Panel concept has been described previously (see references 1, 2, & 3 available at www.jxcrystals.com under publication tab). We are now interested in bringing this potentially lower cost 3-sun technology back to the US. For any new technology, three issues need to be addressed. They are performance, durability, and cost. These topics are addressed in the next 3 sections.

Fraas, Dr. Lewis [JX Crystals, Inc.; Avery, James E. [JX Crystals, Inc.; Minkin, Leonid M [ORNL; Huang, H, [JX Crystals, Inc.; Gehl, Anthony C [ORNL; Maxey, L Curt [ORNL

2007-01-01T23:59:59.000Z

430

A Nuclear Microbattery for MEMS Devices  

DOE Green Energy (OSTI)

This project was designed to demonstrate the feasibility of producing on-board power for MEMS devices using radioisotopes. MEMS is a fast growing field, with hopes for producing a wide variety of revolutionary applications, including ''labs on a chip,'' micromachined scanning tunneling microscopes, microscopic detectors for biological agents, microsystems for DNA identification, etc. Currently, these applications are limited by the lack of an on-board power source. Research is ongoing to study approaches such as fuel cells, fossil fuels, and chemical batteries, but all these concepts have limitations. For long-lived, high energy density applications, on-board radioisotope power offers the best choice. We have succeeded in producing such devices using a variety of isotopes, incorporation methods, and device geometries. These experiments have demonstrated the feasibility of using radioisotope power and that there are a variety of options available for MEMS designers. As an example of an integrated, self-powered application, we have created an oscillating cantilever beam that is capable of consistent, periodic oscillations over very long time periods without the need for refueling. Ongoing work will demonstrate that this cantilever is capable of radio frequency transmission, allowing MEMS devices to communicate with one another wirelessly. Thus, this will be the first self-powered wireless transmitter available for use in MEMS devices, permitting such applications as sensors embedded in buildings for continuous monitoring of the building performance and integrity.

Blanchard, James; Henderson, Douglass; Lal, Amit

2002-08-20T23:59:59.000Z

431

Gunshot triangulation device testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Gunshot triangulation device testing Gunshot triangulation device testing Report to the Fermilab Community Advisory Board, Oct. 28, 2010 The Fermilab security director outlined for the board last month a recurring problem of people shooting guns near the edges of the laboratory and bullets coming onto the site. Fermilab is installing a system to triangulate the gunshots to improve police response time. This will require a set-up calibration of two dozen gunshots during a total of 6 minutes at the laboratory site. The board was asked for recommendations about how and whom to inform of the test firing. In response to the board discussion, Fermilab plans to take the following actions:  The test firing will occur during the mid-day of a week day to minimize the number of residents

432

PRESSURE SENSING DEVICE  

DOE Patents (OSTI)

This device is primarily useful as a switch which is selectively operable to actuate in response to either absolute or differential predetermined pressures. The device generally comprises a pressure-tight housing divided by a movable impermeable diaphragm into two chambers, a reference pressure chamber and a bulb chamber containing the switching means and otherwise filled with an incompressible non-conducting fluid. The switch means comprises a normally collapsed bulb having an electrically conductive outer surface and a vent tube leading to the housing exterior. The normally collapsed bulb is disposed such that upon its inflation, respensive to air inflow from the vent, two contacts fixed within the bulb chamber are adapted to be electrically shorted by the conducting outer surface of the bulb.

Pope, K.E.

1959-12-15T23:59:59.000Z

433

Nuclear reactor safety device  

DOE Patents (OSTI)

A safety device is disclosed for use in a nuclear reactor for axially repositioning a control rod with respect to the reactor core in the event of an upward thermal excursion. Such safety device comprises a laminated helical ribbon configured as a tube-like helical coil having contiguous helical turns with slidably abutting edges. The helical coil is disclosed as a portion of a drive member connected axially to the control rod. The laminated ribbon is formed of outer and inner laminae. The material of the outer lamina has a greater thermal coefficient of expansion than the material of the inner lamina. In the event of an upward thermal excursion, the laminated helical coil curls inwardly to a smaller diameter. Such inward curling causes the total length of the helical coil to increase by a substantial increment, so that the control rod is axially repositioned by a corresponding amount to reduce the power output of the reactor.

Hutter, Ernest (Wilmette, IL)

1986-01-01T23:59:59.000Z

434

Wire brush fastening device  

DOE Patents (OSTI)

A fastening device is provided which is a variation on the conventional nut and bolt. The bolt has a longitudinal axis and threading helically affixed thereon along the longitudinal axis. A nut having a bore extending therethrough is provided. The bore of the nut has a greater diameter than the diameter of the bolt so the bolt can extend through the bore. An array of wire bristles are affixed within the bore so as to form a brush. The wire bristles extend inwardly from the bore and are constructed and arranged of the correct size, length and stiffness to guide the bolt within the bore and to restrain the bolt within the bore as required. A variety of applications of the wire brush nut are disclosed, including a bolt capture device and a test rig apparatus.

Meigs, Richard A. (East Concord, NY)

1995-01-01T23:59:59.000Z

435

GAS DISCHARGE DEVICES  

DOE Patents (OSTI)

An apparatus utilized in introducing tritium gas into envelope of a gas discharge device for the purpose f maintaining the discharge path in ionized condition is described. ln addition to the cathode and anode, the ischarge device contains a zirconium or tantalum ilament arranged for external excitation and a metallic seed containing tritium, and also arranged to have a current passed through it. Initially, the zirconium or tantalum filament is vaporized to deposit its material adjacent the main discharge region. Then the tritium gas is released and, due to its affinity for the first released material, it deposits in the region of the main discharge where it is most effective in maintaining the discharge path in an ionized condition.

Jefferson, S.

1958-11-11T23:59:59.000Z

436

Regenerative braking device  

DOE Patents (OSTI)

Disclosed are several embodiments of a regenerative braking device for an automotive vehicle. The device includes a plurality of rubber rollers (24, 26) mounted for rotation between an input shaft (14) connectable to the vehicle drivetrain and an output shaft (16) which is drivingly connected to the input shaft by a variable ratio transmission (20). When the transmission ratio is such that the input shaft rotates faster than the output shaft, the rubber rollers are torsionally stressed to accumulate energy, thereby slowing the vehicle. When the transmission ratio is such that the output shaft rotates faster than the input shaft, the rubber rollers are torsionally relaxed to deliver accumulated energy, thereby accelerating or driving the vehicle.

Hoppie, Lyle O. (Birmingham, MI)

1982-01-12T23:59:59.000Z

437

Inertial energy storage device  

DOE Patents (OSTI)

The inertial energy storage device of the present invention comprises a composite ring formed of circumferentially wound resin-impregnated filament material, a flanged hollow metal hub concentrically disposed in the ring, and a plurality of discrete filament bandsets coupling the hub to the ring. Each bandset is formed of a pair of parallel bands affixed to the hub in a spaced apart relationship with the axis of rotation of the hub being disposed between the bands and with each band being in the configuration of a hoop extending about the ring along a chordal plane thereof. The bandsets are disposed in an angular relationship with one another so as to encircle the ring at spaced-apart circumferential locations while being disposed in an overlapping relationship on the flanges of the hub. The energy storage device of the present invention has the capability of substantial energy storage due to the relationship of the filament bands to the ring and the flanged hub.

Knight, Jr., Charles E. (Knoxville, TN); Kelly, James J. (Oak Ridge, TN); Pollard, Roy E. (Powell, TN)

1978-01-01T23:59:59.000Z

438

Support and maneuvering device  

DOE Patents (OSTI)

A support and maneuvering device includes an elongated flexible inflatable enclosure having a fixed end and a movable end. The movable end is collapsible toward the fixed end to a contracted position when the enclosure is in a noninflated condition. Upon inflation, the movable end is movable away from the fixed end to an extended position. The movable end includes means for mounting an article such as a solar reflector thereon. The device also includes a plurality of position controlling means disposed about the movable end to effect adjusting movement of portions thereof by predetermined amounts and for controlling an angle at which the article disposed at the movable end is oriented. The plurality of position controlling means limits a suitable number degrees of freedom of the movable end for transmitting a steering motion thereto and for controlling the position thereof. 9 figs.

Wood, R.L.

1987-03-23T23:59:59.000Z

439

Microelectromechanical safe arm device  

SciTech Connect

Microelectromechanical (MEM) apparatus and methods for operating, for preventing unintentional detonation of energetic components comprising pyrotechnic and explosive materials, such as air bag deployment systems, munitions and pyrotechnics. The MEM apparatus comprises an interrupting member that can be moved to block (interrupt) or complete (uninterrupt) an explosive train that is part of an energetic component. One or more latching members are provided that engage and prevent the movement of the interrupting member, until the one or more latching members are disengaged from the interrupting member. The MEM apparatus can be utilized as a safe and arm device (SAD) and electronic safe and arm device (ESAD) in preventing unintentional detonations. Methods for operating the MEM apparatus include independently applying drive signals to the actuators coupled to the latching members, and an actuator coupled to the interrupting member.

Roesler, Alexander W. (Tijeras, NM)

2012-06-05T23:59:59.000Z

440

Tire deflation device  

Science Conference Proceedings (OSTI)

A tire deflation device includes (1) a component having a plurality of bores, (2) a plurality of spikes removably insertable into the plurality of bores and (3) a keeper within each among the plurality of bores, the keeper being configured to contact a sidewall surface of a spike among the plurality of spikes and to exert force upon the sidewall surface. In an embodiment, the tire deflation device includes (a) a component including a bore in a material, the bore including a receiving region, a sidewall surface and a base surface, (b) a channel extending from the sidewall surface into the material, (c) a keeper having a first section housed within the channel and a second section which extends past the sidewall surface into the receiving region, and (d) a spike removably insertable into the bore.

Barker, Stacey G. (Idaho Falls, ID)

2010-01-05T23:59:59.000Z

Note: This page contains sample records for the topic "devices cells modules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Wire brush fastening device  

DOE Patents (OSTI)

A fastening device is provided which is a variation on the conventional nut and bolt. The bolt has a longitudinal axis and threading helically affixed thereon along the longitudinal axis. A nut having a bore extending therethrough is provided. The bore of the nut has a greater diameter than the diameter of the bolt so the bolt can extend through the bore. An array of wire bristles are affixed within the bore so as to form a brush. The wire bristles extend inwardly from the bore and are constructed and arranged of the correct size, length and stiffness to guide the bolt within the bore and to restrain the bolt within the bore as required. A variety of applications of the wire brush nut are disclosed, including a bolt capture device and a test rig apparatus.

Meigs, R.A.

1993-08-31T23:59:59.000Z

442

Support and maneuvering device  

DOE Patents (OSTI)

A support and maneuvering device includes an elongated flexible inflatable enclosure having a fixed end and a movable end. The movable end is collapsible toward the fixed end to a contracted position when the enclosure is in a noninflated condition. Upon inflation, the movable end is movable away from the fixed end to an extended position. The movable end includes means for mounting an article such as a solar reflector thereon. The device also includes a plurality of position controlling means disposed about the movable end to effect adjusting movement of portions thereof by predetermined amounts and for controlling an angle at which the article disposed at the movable end is oriented. The plurality of position controlling means limits a suitable number degrees of freedom of the movable end for transmitting a steering motion thereto and for controlling the position thereof.

Wood, Richard L. (Arvada, CO)

1988-01-01T23:59:59.000Z

443

Wire brush fastening device  

DOE Patents (OSTI)

A fastening device is provided which is a variation on the conventional nut and bolt. The bolt has a longitudinal axis and threading helically affixed thereon along the longitudinal axis. A nut having a bore extending therethrough is provided. The bore of the nut has a greater diameter than the diameter of the bolt so the bolt can extend through the bore. An array of wire bristles are affixed within the bore so as to form a brush. The wire bristles extend inwardly from the bore and are constructed and arranged of the correct size, length and stiffness to guide the bolt within the bore and to restrain the bolt within the bore as required. A variety of applications of the wire brush nut are disclosed, including a bolt capture device and a test rig apparatus. 13 figs.

Meigs, R.A.

1995-09-19T23:59:59.000Z

444

Cable shield connecting device  

DOE Patents (OSTI)

A cable shield connecting device for installation on a high voltage cable of the type having a metallic shield, the device including a relatively conformable, looped metal bar for placement around a bared portion of the metallic shield to extend circumferentially around a major portion of the circumference of the metallic shield while being spaced radially therefrom, a plurality of relatively flexible metallic fingers affixed to the bar, projecting from the bar in an axial direction and spaced circumferentially along the bar, each finger being attached to the metallic shield at a portion located remote from the bar to make electrical contact with the metallic shield, and a connecting conductor integral with the bar.

Silva, Frank A. (Basking Ridge, NJ)

1979-01-01T23:59:59.000Z

445

Battery loading device  

SciTech Connect

A battery loading device for loading a power source battery, built in small appliances having a battery loading chamber for selectively loading a number of cylindrical unit batteries or a one body type battery having the same voltage as a number of cylindrical unit batteries, whereby the one body type battery and the battery loading chamber are shaped similarly and asymmetrically in order to prevent the one body type battery from being inserted in the wrong direction.

Phara, T.; Suzuki, M.

1984-08-28T23:59:59.000Z

446

Relativistic electron beam device  

DOE Patents (OSTI)

A design is given for an electron beam device for irradiating spherical hydrogen isotope bearing targets. The accelerator, which includes hollow cathodes facing each other, injects an anode plasma between the cathodes and produces an approximately 10 nanosecond, megajoule pulse between the anode plasma and the cathodes. Targets may be repetitively positioned within the plasma between the cathodes, and accelerator diode arrangement permits materials to survive operation in a fusion power source. (auth)

Freeman, J.R.; Poukey, J.W.; Shope, S.L.; Yonas, G.

1975-07-01T23:59:59.000Z

447

Residual gas analysis device  

SciTech Connect

A system is provided for testing the hermeticity of a package, such as a microelectromechanical systems package containing a sealed gas volume, with a sampling device that has the capability to isolate the package and breach the gas seal connected to a pulse valve that can controllably transmit small volumes down to 2 nanoliters to a gas chamber for analysis using gas chromatography/mass spectroscopy diagnostics.

Thornberg, Steven M. (Peralta, NM)

2012-07-31T23:59:59.000Z

448

Hybrid electroluminescent devices  

DOE Patents (OSTI)

A hybrid electroluminescent (EL) device comprises at least one inorganic diode element and at least one organic EL element that are electrically connected in series. The absolute value of the breakdown voltage of the inorganic diode element is greater than the absolute value of the maximum reverse bias voltage across the series. The inorganic diode element can be a power diode, a Schottky barrier diode, or a light-emitting diode.

Shiang, Joseph John (Niskayuna, NY); Duggal, Anil Raj (Niskayuna, NY); Michael, Joseph Darryl (Schenectady, NY)

2010-08-03T23:59:59.000Z

449

ORGANIC PHOTOVOLTAIC DEVICE OPTIMIZATION .  

E-Print Network (OSTI)

??Polymer based organic photovoltaic (OPV) is making great progress on solar cell performance in the past decade. As a potential alternative to conventional expensive photovoltaic (more)

Nie, Wanyi

2012-01-01T23:59:59.000Z

450

Thermophotovoltaic energy conversion device  

DOE Patents (OSTI)

A thermophotovoltaic device and a method for making the thermophotovoltaic device are disclosed. The device includes an n-type semiconductor material substrate having top and bottom surfaces, a tunnel junction formed on the top surface of the substrate, a region of active layers formed on top of the tunnel junction and a back surface reflector (BSR). The tunnel junction includes a layer of heavily doped n-type semiconductor material that is formed on the top surface of the substrate and a layer of heavily doped p-type semiconductor material formed on the n-type layer. An optional pseudomorphic layer can be formed between the n-type and p-type layers. A region of active layers is formed on top of the tunnel junction. This region includes a base layer of p-type semiconductor material and an emitter layer of n-type semiconductor material. An optional front surface window layer can be formed on top of the emitter layer. An optional interference filter can be formed on top of the emitter layer or the front surface window layer when it is used. 1 fig.

Charache, G.W.; Baldasaro, P.F.; Egley, J.L.

1998-05-19T23:59:59.000Z

451

Thermophotovoltaic energy conversion device  

DOE Patents (OSTI)

A thermophotovoltaic device and a method for making the thermophotovoltaic device. The device includes an n-type semiconductor material substrate having top and bottom surfaces, a tunnel junction formed on the top surface of the substrate, a region of active layers formed on top of the tunnel junction and a back surface reflector (BSR). The tunnel junction includes a layer of heavily doped n-type semiconductor material that is formed on the top surface of the substrate and a layer of heavily doped p-type semiconductor material formed on the n-type layer. An optional pseudomorphic layer can be formed between the n-type and p-type layers. A region of active layers is formed on top of the tunnel junction. This region includes a base layer of p-type semiconductor material and an emitter layer of n-type semiconductor material. An optional front surface window layer can be formed on top of the emitter layer. An optional interference filter can be formed on top of the emitter layer or the front surface window layer when it is used.

Charache, Greg W. (Clifton Park, NY); Baldasaro, Paul F. (Clifton Park, NY); Egley, James L. (Burnt Hills, NY)

1998-01-01T23:59:59.000Z

452

Sectional device handling tool  

DOE Patents (OSTI)

Apparatus for remotely handling a device in an irradiated underwater environment includes a plurality of tubular sections interconnected end-to-end to form a handling structure, the bottom section being adapted for connection to the device. A support section is connected to the top tubular section and is adapted to be suspended from an overhead crane. Each section is flanged at its opposite ends. Axially retractable bolts in each bottom flange are threadedly engageable with holes in the top flange of an adjacent section, each bolt being biased to its retracted position and retained in place on the bottom flange. Guide pins on each top flange cooperate with mating holes on adjacent bottom flanges to guide movement of the parts to the proper interconnection orientation. Each section carries two hydraulic line segments provided with quick-connect/disconnect fittings at their opposite ends for connection to the segments of adjacent tubular sections upon interconnection thereof to form control lines which are connectable to the device and to an associated control console.

Candee, Clark B. (Monroeville, PA)

1988-07-12T23:59:59.000Z

453

Plasma jet ignition device  

DOE Patents (OSTI)

An ignition device of the plasma jet type is disclosed. The device has a cylindrical cavity formed in insulating material with an electrode at one end. The other end of the cylindrical cavity is closed by a metal plate with a small orifice in the center which plate serves as a second electrode. An arc jumping between the first electrode and the orifice plate causes the formation of a highly-ionized plasma in the cavity which is ejected through the orifice into the engine cylinder area to ignite the main fuel mixture. Two improvements are disclosed to enhance the operation of the device and the length of the plasma plume. One improvement is a metal hydride ring which is inserted in the cavity next to the first electrode. During operation, the high temperature in the cavity and the highly excited nature of the plasma breaks down the metal hydride, liberating hydrogen which acts as an additional fuel to help plasma formation. A second improvement consists of a cavity insert containing a plurality of spaced, metal rings. The rings act as secondary spark gap electrodes reducing the voltage needed to maintain the initial arc in the cavity.

McIlwain, Michael E. (Franklin, MA); Grant, Jonathan F. (Wayland, MA); Golenko, Zsolt (North Reading, MA); Wittstein, Alan D. (Fairfield, CT)

1985-01-15T23:59:59.000Z

454

Gradient Combinatorial Libraries via Modulated Light ...  

Science Conference Proceedings (OSTI)

... Libraries via Modulated Light Exposure. Bookmark and Share Gradient Combinatorial Libraries via Modulated Light Exposure. ...

455

Electrochromic window with high reflectivity modulation  

DOE Patents (OSTI)

A multi-layered, active, thin film, solid-state electrochromic device having a high reflectivity in the near infrared in a colored state, a high reflectivity and transmissivity modulation when switching between colored and bleached states, a low absorptivity in the near infrared, and fast switching times, and methods for its manufacture and switching are provided. In one embodiment, a multi-layered device comprising a first indium tin oxide transparent electronic conductor, a transparent ion blocking layer, a tungsten oxide electrochromic anode, a lithium ion conducting-electrically resistive electrolyte, a complimentary lithium mixed metal oxide electrochromic cathode, a transparent ohmic contact layer, a second indium oxide transparent electronic conductor, and a silicon nitride encapsulant is provided. Through elimination of optional intermediate layers, simplified device designs are provided as alternative embodiments. Typical colored-state reflectivity of the multi-layered device is greater than 50% in the near infrared, bleached-state reflectivity is less than 40% in the visible, bleached-state transmissivity is greater than 60% in the near infrared and greater than 40% in the visible, and spectral absorbance is less than 50% in the range from 0.65-2.5 .mu.m.

Goldner, Ronald B. (Lexington, MA); Gerouki, Alexandra (Medford, MA); Liu, Te-Yang (Arlington, MA); Goldner, Mark A. (Cambridge, MA); Haas, Terry E. (Southborough, MA)

2000-01-01T23:59:59.000Z

456

ILC Marx Modulator Development Program Status  

DOE Green Energy (OSTI)

Development of a first generation prototype (P1) Marx-topology klystron modulator for the International Linear Collider is nearing completion at the Stanford Linear Accelerator Center. It is envisioned as a smaller, lower cost, and higher reliability alternative to the present