National Library of Energy BETA

Sample records for development test capabilities

  1. In-situ Creep Testing Capability Development for Advanced Test Reactor

    SciTech Connect (OSTI)

    B. G. Kim; J. L. Rempe; D. L. Knudson; K. G. Condie; B. H. Sencer

    2010-08-01

    Creep is the slow, time-dependent strain that occurs in a material under a constant strees (or load) at high temperature. High temperature is a relative term, dependent on the materials being evaluated. A typical creep curve is shown in Figure 1-1. In a creep test, a constant load is applied to a tensile specimen maintained at a constant temperature. Strain is then measured over a period of time. The slope of the curve, identified in the figure below, is the strain rate of the test during Stage II or the creep rate of the material. Primary creep, Stage I, is a period of decreasing creep rate due to work hardening of the material. Primary creep is a period of primarily transient creep. During this period, deformation takes place and the resistance to creep increases until Stage II, Secondary creep. Stage II creep is a period with a roughly constant creep rate. Stage II is referred to as steady-state creep because a balance is achieved between the work hardening and annealing (thermal softening) processes. Tertiary creep, Stage III, occurs when there is a reduction in cross sectional area due to necking or effective reduction in area due to internal void formation; that is, the creep rate increases due to necking of the specimen and the associated increase in local stress.

  2. Infrastructure Development of Single Cell Testing Capability at A0 Facility

    SciTech Connect (OSTI)

    Dhanaraj, Nandhini; Padilla, R.; Reid, J.; Khabiboulline, T.; Ge, M.; Mukherjee, A.; Rakhnov, I.; Ginsburg, C.; Wu, G.; Harms, E.; Carter, H.; /Fermilab

    2009-09-01

    The objective of this technical note is to document the details of the infrastructure development process that was realized at the A0 photo injector facility to establish RF cold testing capability for 1.3 GHz superconducting niobium single cell cavities. The activity began the last quarter of CY 2006 and ended the first quarter of CY 2009. The whole process involved addressing various aspects such as design of vertical insert and lifting fixture, modification of existing RF test station and design of new couplers, development of a Temperature Mapping (T-Map) system, radiation considerations for the test location (north cave), update of existing High Pressure Rinse (HPR) system, preparation of necessary safety documents and eventually obtaining an Operational Readiness Clearance (ORC). Figure 1 illustrates the various components of the development process. In the past, the north cave test station at A0 has supported the cold testing 3.9 GHz nine cell and single cell cavities, thus some of the components were available for use and some needed modification. The test dewar had the capacity to accommodate 1.3 GHz single cells although a new vertical insert that could handle both cavity types (1.3 and 3.9 GHz) had to be designed. The existing cryogenic system with an average capacity of {approx} 0.5 g/sec was deemed sufficient. The RF system was updated with broadband components and an additional amplifier with higher power capacity to handle higher gradients usually achieved in 1.3 GHz cavities. The initial testing phase was arbitrated to proceed with fixed power coupling. A new temperature mapping system was developed to provide the diagnostic tool for hot spot studies, quench characterization and field emission studies. The defining feature of this system was the use of diode sensors instead of the traditional carbon resistors as sensing elements. The unidirectional current carrying capacity (forward bias) of the diodes provided for the ease of multiplexing of the

  3. Development of explosive event scale model testing capability at Sandia`s large scale centrifuge facility

    SciTech Connect (OSTI)

    Blanchat, T.K.; Davie, N.T.; Calderone, J.J.

    1998-02-01

    Geotechnical structures such as underground bunkers, tunnels, and building foundations are subjected to stress fields produced by the gravity load on the structure and/or any overlying strata. These stress fields may be reproduced on a scaled model of the structure by proportionally increasing the gravity field through the use of a centrifuge. This technology can then be used to assess the vulnerability of various geotechnical structures to explosive loading. Applications of this technology include assessing the effectiveness of earth penetrating weapons, evaluating the vulnerability of various structures, counter-terrorism, and model validation. This document describes the development of expertise in scale model explosive testing on geotechnical structures using Sandia`s large scale centrifuge facility. This study focused on buried structures such as hardened storage bunkers or tunnels. Data from this study was used to evaluate the predictive capabilities of existing hydrocodes and structural dynamics codes developed at Sandia National Laboratories (such as Pronto/SPH, Pronto/CTH, and ALEGRA). 7 refs., 50 figs., 8 tabs.

  4. Project Development and Finance: Capabilities (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-01-01

    Capabilities overview of NREL's Project Finance and Development Group within the Deployment and Market Transformation Directorate.

  5. Synthetic aperture radar capabilities in development

    SciTech Connect (OSTI)

    Miller, M.

    1994-11-15

    The Imaging and Detection Program (IDP) within the Laser Program is currently developing an X-band Synthetic Aperture Radar (SAR) to support the Joint US/UK Radar Ocean Imaging Program. The radar system will be mounted in the program`s Airborne Experimental Test-Bed (AETB), where the initial mission is to image ocean surfaces and better understand the physics of low grazing angle backscatter. The Synthetic Aperture Radar presentation will discuss its overall functionality and a brief discussion on the AETB`s capabilities. Vital subsystems including radar, computer, navigation, antenna stabilization, and SAR focusing algorithms will be examined in more detail.

  6. NREL: Process Development and Integration Laboratory - Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Most of these research and development (R&D) capabilities are associated with specific cluster tools for modular deposition, processing, and characterization techniques. The...

  7. Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power/Safety, Security & Resilience of Energy Infrastructure/Battery Testing/Capabilities Capabilities admin 2015-10-20T02:29:12+00:00 Facility Description Click to Open Factsheet 2012-3432P [181kb pdf] The Energy Storage Test Pad (ESTP) in conjunction with the Energy Storage Analysis Laboratory (ESAL) provides trusted, independent, third party testing and validation from the cell level up to 1+ MW AC electrical energy storage (EES) systems. In addition to long-term testing,

  8. In-Situ Creep Testing Capability for the Advanced Test Reactor

    SciTech Connect (OSTI)

    B. G. Kim; J. L. Rempe; D. L. Knudson; K. G. Condie; B. H. Sencer

    2012-09-01

    An instrumented creep testing capability is being developed for specimens irradiated in Pressurized Water Reactor (PWR) coolant conditions at the Advanced Test Reactor (ATR). The test rig has been developed such that samples will be subjected to stresses ranging from 92 to 350 MPa at temperatures between 290 and 370 C up to at least 2 dpa (displacement per atom). The status of Idaho National Laboratory (INL) efforts to develop the test rig in-situ creep testing capability for the ATR is described. In addition to providing an overview of in-pile creep test capabilities available at other test reactors, this paper reports efforts by INL to evaluate a prototype test rig in an autoclave at INLs High Temperature Test Laboratory (HTTL). Initial data from autoclave tests with 304 stainless steel (304 SS) specimens are reported.

  9. PCI Capability Development and Challenge Problem Progress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6-000 PCI Capability Development and Challenge Problem Progress Joe Rashid 1 , Brian D. Wirth 2 , Rich Williamson 3 1 ANATECH Corp 2 University of Tennessee 3 Idaho National Laboratory 2 CASL-U-2016-1086-000 Outline * State of the art of PCI & Fuel Performance Codes (FPCs) * FPCs compatibility with Utilities needs - what are the gaps? Can BISON close these gaps? * PCI Capability Development: BISON progress to-date * BISON as a Phase-2 product - will it fulfill its promise? 3

  10. Fuel Fabrication Capability Research and Development Plan

    SciTech Connect (OSTI)

    Senor, David J.; Burkes, Douglas

    2013-06-28

    The purpose of this document is to provide a comprehensive review of the mission of the Fuel Fabrication Capability (FFC) within the Global Threat Reduction Initiative (GTRI) Convert Program, along with research and development (R&D) needs that have been identified as necessary to ensuring mission success. The design and fabrication of successful nuclear fuels must be closely linked endeavors.

  11. ENHANCED THERMAL VACUUM TEST CAPABILITY FOR RADIOISOTOPE POWER...

    Office of Scientific and Technical Information (OSTI)

    Conference: ENHANCED THERMAL VACUUM TEST CAPABILITY FOR RADIOISOTOPE POWER SYSTEMS AT THE IDAHO NATIONAL LABORATORY BETTER SIMULATES ENVIRONMENTAL CONDITIONS OF SPACE Citation...

  12. ENHANCED THERMAL VACUUM TEST CAPABILITY FOR RADIOISOTOPE POWER...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ENHANCED THERMAL VACUUM TEST CAPABILITY FOR RADIOISOTOPE POWER SYSTEMS AT THE IDAHO NATIONAL LABORATORY ... Radioisotope Generator (ASRG), the next generation space power generator. ...

  13. Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities Profile Pages View profiles for scientists and researchers. Explore potential collaborations and project opportunities. Search the extensive range of capabilities by keyword to quickly find who and what you are looking for. Profile Pages Search Capabilities| Employees Capabilities Sort Capabilities Accelerators and Electrodynamics Search High power linear accelerator science and technology Search Accelerator operations Search Accelerator controls Search Neutron science Search Proton

  14. Development of Numerical Simulation Capabilities for In Situ...

    Office of Scientific and Technical Information (OSTI)

    Development of Numerical Simulation Capabilities for In Situ Heating of Oil Shale Citation Details In-Document Search Title: Development of Numerical Simulation Capabilities for In ...

  15. Development of manufacturing capability for the fabrication of the Nb/sub 3/Sn superconductor for the High Field Test Facility. Final report

    SciTech Connect (OSTI)

    Spencer, C R

    1981-01-01

    Construction of High Field Test Facility (HFTF) at Lawrence Livermore Laboratory (LLNL) requires an extended surface Nb/sub 3/Sn superconductor cable of carrying currents in excess of 7500 amperes in a 12 Tesla magnetic field. This conductor consists of a 5.4 mm x 11.0 mm superconducting core onto whose broad surfaces are soldered embossed oxygen free copper strips. Two different core designs have been developed and the feasibility of each design evaluated. Equipment necessary to produce the conductor were developed and techniques of production were explored.

  16. Sandia National Laboratories Test Capabilities Revitalization Phase 2

    National Nuclear Security Administration (NNSA)

    Project Completed On Time, Under Budget | National Nuclear Security Administration | (NNSA) Sandia National Laboratories Test Capabilities Revitalization Phase 2 Project Completed On Time, Under Budget March 24, 2014 WASHINGTON, D.C. - The National Nuclear Security Administration's (NNSA) Test Capabilities Revitalization Phase 2 (TCR 2) project was recently completed on schedule and $4 million under the original budget. Completion of the project, located at Sandia National Laboratories in

  17. ENHANCED THERMAL VACUUM TEST CAPABILITY FOR RADIOISOTOPE POWER SYSTEMS AT

    Office of Scientific and Technical Information (OSTI)

    THE IDAHO NATIONAL LABORATORY BETTER SIMULATES ENVIRONMENTAL CONDITIONS OF SPACE (Conference) | SciTech Connect Conference: ENHANCED THERMAL VACUUM TEST CAPABILITY FOR RADIOISOTOPE POWER SYSTEMS AT THE IDAHO NATIONAL LABORATORY BETTER SIMULATES ENVIRONMENTAL CONDITIONS OF SPACE Citation Details In-Document Search Title: ENHANCED THERMAL VACUUM TEST CAPABILITY FOR RADIOISOTOPE POWER SYSTEMS AT THE IDAHO NATIONAL LABORATORY BETTER SIMULATES ENVIRONMENTAL CONDITIONS OF SPACE The Idaho National

  18. PCI Capability Development and Challenge Problem Progress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BISON Fuel Performance Code: Capability Overview and V&V Status and Plans Rich Williamson, ... Assurance - V&V Status and Plans for LWR fuel - PCMI and RIA Benchmarks - Uncertainty ...

  19. Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities Structures of the zwitterionic coatings synthesized for this study. Permalink Gallery Investigations on Anti-biofouling Zwitterionic Coatings for MHK Is Now in Press Analysis, Capabilities, Energy, News, News & Events, Renewable Energy, Research & Capabilities, Water Power Investigations on Anti-biofouling Zwitterionic Coatings for MHK Is Now in Press Sandia's Marine Hydrokinetic (MHK) Advanced Materials program has a new publication on the antifouling efficacy of

  20. NREL Battery Testing Capabilities Get a Boost - News Feature | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Battery Testing Capabilities Get a Boost February 5, 2010 Photo of a Test engineer standing next to a camera showing a thermal image of a battery being tested. Enlarge image Engineer Dirk Long uses thermal imaging equipment to capture a battery's infrared fingerprint to diagnose its behavior. NREL soon will be ramping up testing as the battery industry uses stimulus funding to enhance batteries used in advanced vehicles. Credit: Pat Corkery Batteries are the heart of today's advanced electric

  1. Quality Assurance Program Application for the Component Test Capability

    SciTech Connect (OSTI)

    Stephanin L. Austad

    2009-06-01

    This paper documents the application of quality requirements to Component Test Capability (CTC) Project activities for each CTC alternative. Four alternatives are considered for quality program application: do nothing, vendor testing, existing testing facility modification, and Component Test Facility. It also describes the advantages and disadvantages of using the existing Next Generation Nuclear Plant Quality Program Plan with CTC modifications versus a stand-alone CTC Quality Program Plan.

  2. Fuel Fabrication Capability Research and Development Plan

    SciTech Connect (OSTI)

    Senor, David J.; Burkes, Douglas

    2014-04-17

    The purpose of this document is to provide a comprehensive review of the mission of the Fuel Fabrication Capability (FFC) within the Global Threat Reduction Initiative Convert Program, along with research and development (R&D) needs that have been identified as necessary to ensuring mission success. The design and fabrication of successful nuclear fuels must be closely linked endeavors. Therefore, the overriding motivation behind the FFC R&D program described in this plan is to foster closer integration between fuel design and fabrication to reduce programmatic risk. These motivating factors are all interrelated, and progress addressing one will aid understanding of the others. The FFC R&D needs fall into two principal categories, 1) baseline process optimization, to refine the existing fabrication technologies, and 2) manufacturing process alternatives, to evaluate new fabrication technologies that could provide improvements in quality, repeatability, material utilization, or cost. The FFC R&D Plan examines efforts currently under way in regard to coupon, foil, plate, and fuel element manufacturing, and provides recommendations for a number of R&D topics that are of high priority but not currently funded (i.e., knowledge gaps). The plan ties all FFC R&D efforts into a unified vision that supports the overall Convert Program schedule in general, and the fabrication schedule leading up to the MP-1 and FSP-1 irradiation experiments specifically. The fabrication technology decision gates and down-selection logic and schedules are tied to the schedule for fabricating the MP-1 fuel plates, which will provide the necessary data to make a final fuel fabrication process down-selection. Because of the short turnaround between MP-1 and the follow-on FSP-1 and MP-2 experiments, the suite of specimen types that will be available for MP-1 will be the same as those available for FSP-1 and MP-2. Therefore, the only opportunity to explore parameter space and alternative processing

  3. NGNP Component Test Capability Design Code of Record

    SciTech Connect (OSTI)

    S.L. Austad; D.S. Ferguson; L.E. Guillen; C.W. McKnight; P.J. Petersen

    2009-09-01

    The Next Generation Nuclear Plant Project is conducting a trade study to select a preferred approach for establishing a capability whereby NGNP technology development testing—through large-scale, integrated tests—can be performed for critical HTGR structures, systems, and components (SSCs). The mission of this capability includes enabling the validation of interfaces, interactions, and performance for critical systems and components prior to installation in the NGNP prototype.

  4. Capability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GE, used Swept Frequency Acoustic Interferometry technology to develop Sa re, the ... GE, used Swept Frequency Acoustic Interferometry technology to develop Sa re, the ...

  5. Development of Numerical Simulation Capabilities for In Situ...

    Office of Scientific and Technical Information (OSTI)

    for In Situ Heating of Oil Shale Citation Details In-Document Search Title: Development of Numerical Simulation Capabilities for In Situ Heating of Oil Shale Authors: Hoda, ...

  6. Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  7. Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  8. Final Technical Report: Development of Post‐Installation Monitoring Capabilities

    SciTech Connect (OSTI)

    Polagye, Brian

    2014-03-31

    colonization of the subsea base support structure. In support of these plans, the project team developed and field tested a strobe‐illuminated stereooptical camera system suitable for studying near‐turbine interactions with marine animals. The camera system underwent short‐term field testing at the proposed turbine deployment site and a multi‐month endurance test in shallower water to evaluate the effectiveness of biofouling mitigation measures for the optical ports on camera and strobe pressure housings. These tests demonstrated that the camera system is likely to meet the objectives of the near‐turbine monitoring plan and operate, without maintenance, for periods of at least three months. The project team also advanced monitoring capabilities related to passive acoustic monitoring of marine mammals and monitoring of tidal currents. These capabilities will be integrated in a recoverable monitoring package that has a single interface point with the OpenHydro turbines, connects to shore power and data via a wet‐mate connector, and can be recovered to the surface for maintenance and reconfiguration independent of the turbine. A logical next step would be to integrate these instruments within the package, such that one instrument can trigger the operation of another.

  9. Development of High Temperature Capacitor Technology and Manufacturing Capability

    SciTech Connect (OSTI)

    2011-05-15

    The goal of the Development of High Temperature Capacitor Technology and Manufacturing Capability program was to mature a production-ready supply chain for reliable 250°C FPE (fluorinated polyester) film capacitors by 2011. These high-temperature film capacitors enable both the down hole drilling and aerospace industries by enabling a variety of benefits including: − Deeper oil exploration in higher temperature and pressure environments − Enabling power electronic and control equipment to operate in higher temperature environments − Enabling reduced cooling requirements of electronics − Increasing reliability and life of capacitors operating below rated temperature − Enabling capacitors to handle higher electrical losses without overheating. The key challenges to bringing the FPE film capacitors to market have been manufacturing challenges including: − FPE Film is difficult to handle and wind, resulting in poor yields − Voltage breakdown strength decreases when the film is wound into capacitors (~70% decrease) − Encapsulation technologies must be improved to enable higher temperature operation − Manufacturing and test cycle time is very long As a direct result of this program most of the manufacturing challenges have been met. The FPE film production metalization and winding yield has increased to over 82% from 70%, and the voltage breakdown strength of the wound capacitors has increased 270% to 189 V/μm. The high temperature packaging concepts are showing significant progress including promising results for lead attachments and hermetic packages at 200°C and non-hermetic packages at 250°C. Manufacturing and test cycle time will decrease as the market for FPE capacitors develops.

  10. Testing the Delayed Gamma Capability in MCNP6

    SciTech Connect (OSTI)

    Weldon, Robert A.; Fensin, Michael L.; Mckinney, Gregg W.

    2014-01-01

    The mission of the Domestic Nuclear Detection Office is to quickly and reliably detect unauthorized attempts to import or transport special nuclear material for use against the United States. Developing detection equipment to meet this objective requires accurate simulation of both the detectable signature and detection mechanism. A delayed particle capability was initially added to MCNPX 2.6.A in 2005 to sample the radioactive fission product parents and emit decay particles resulting from the decay chain. To meet the objectives of detection scenario modelling, the capability was designed to sample a particular time for emitting particular multiplicity of a particular energy. Because the sampling process of selecting both time and energy is interdependent, to linearize the time and emission sampling, atom densities are computed at several discrete time steps, and the time integrated production is computed by multiplying the atom density by the decay constant and time step size to produce a cumulative distribution function for sampling the emission time, energy and multiplicity. The delayed particle capability was initially given a time bin structure to help reasonably reproduce, from a qualitative sense, a fission benchmark by D. Beddingfield, which examined the delayed gamma emission. This original benchmark was only qualitative and did not contain the magnitudes of the actual measured data, but did contain relative graphical representation of the spectra. A better benchmark with measured data was later provided by A. W.Hunt, Vladimir Mozin, E.T.E. Reedy, H.A. Selpel and Steve Tobin at the Idaho Accelerator Center; however, due to the complexity of the benchmark setup, sizable systematic errors were expected in the modeling, and initial results compared to MCNPX 2.7.0 showed errors outside of statistical fluctuation. Presented here is a more simplified approach to benchmarking, utilizing closed form analytic solutions to the granddaughter equations for 2

  11. AVTA: GE Smart Grid Capable AC Level 2 Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. ...

  12. Development of a fourth generation predictive capability maturity model.

    SciTech Connect (OSTI)

    Hills, Richard Guy; Witkowski, Walter R.; Urbina, Angel; Rider, William J.; Trucano, Timothy Guy

    2013-09-01

    The Predictive Capability Maturity Model (PCMM) is an expert elicitation tool designed to characterize and communicate completeness of the approaches used for computational model definition, verification, validation, and uncertainty quantification associated for an intended application. The primary application of this tool at Sandia National Laboratories (SNL) has been for physics-based computational simulations in support of nuclear weapons applications. The two main goals of a PCMM evaluation are 1) the communication of computational simulation capability, accurately and transparently, and 2) the development of input for effective planning. As a result of the increasing importance of computational simulation to SNL's mission, the PCMM has evolved through multiple generations with the goal to provide more clarity, rigor, and completeness in its application. This report describes the approach used to develop the fourth generation of the PCMM.

  13. Developing an operational capabilities index of the emergency services sector.

    SciTech Connect (OSTI)

    Collins, M.J.; Eaton, L.K.; Shoemaker, Z.M.; Fisher, R.E.; Veselka, S.N.; Wallace, K.E.; Petit, F.D.

    2012-02-20

    In order to enhance the resilience of the Nation and its ability to protect itself in the face of natural and human-caused hazards, the ability of the critical infrastructure (CI) system to withstand specific threats and return to normal operations after degradation must be determined. To fully analyze the resilience of a region and the CI that resides within it, both the actual resilience of the individual CI and the capability of the Emergency Services Sector (ESS) to protect against and respond to potential hazards need to be considered. Thus, a regional resilience approach requires the comprehensive consideration of all parts of the CI system as well as the characterization of emergency services. This characterization must generate reproducible results that can support decision making with regard to risk management, disaster response, business continuity, and community planning and management. To address these issues, Argonne National Laboratory, in collaboration with the U.S. Department of Homeland Security (DHS) Sector Specific Agency - Executive Management Office, developed a comprehensive methodology to create an Emergency Services Sector Capabilities Index (ESSCI). The ESSCI is a performance metric that ranges from 0 (low level of capabilities) to 100 (high). Because an emergency services program has a high ESSCI, however, does not mean that a specific event would not be able to affect a region or cause severe consequences. And because a program has a low ESSCI does not mean that a disruptive event would automatically lead to serious consequences in a region. Moreover, a score of 100 on the ESSCI is not the level of capability expected of emergency services programs; rather, it represents an optimal program that would rarely be observed. The ESSCI characterizes the state of preparedness of a jurisdiction in terms of emergency and risk management. Perhaps the index's primary benefit is that it can systematically capture, at a given point in time, the

  14. Development of an analysis capability for the National Transportation System

    SciTech Connect (OSTI)

    Anson, D.; Nelson, R.

    1997-10-24

    The purpose of this report is to examine the Department of Transportation`s (DOT) National Transportation System (NTS) initiative, to document what has been learned, and to outline a National Transportation Network Analysis Capability (NTNAC) based on a ``TRANSIMS-like`` approach. This study was conducted over a two month period at the end of FY1997. The scope of the effort was carefully defined to accommodate the short time horizon and to provide focus to a very large analytical problem. The objectives were to: (1) define the NTS and the NTS problem; (2) identify problem characteristics; (3) describe an analytical solution based on the TRANSIMS approach; (4) identify data requirements and availability; (5) develop criteria for a scenario to be used in a prototype demonstration; and (6) select a scenario for the prototype demonstration.

  15. Development of Numerical Simulation Capabilities for In Situ...

    Office of Scientific and Technical Information (OSTI)

    Numerical Simulation Capabilities for In Situ Heating of Oil Shale Hoda, Nazish ExxonMobil Upstream Research Company, Houston, TX, USA; Fang, Chen ExxonMobil Upstream Research...

  16. Development of covariance capabilities in EMPIRE code (Conference...

    Office of Scientific and Technical Information (OSTI)

    The nuclear reaction code EMPIRE has been extended to provide evaluation capabilities for neutron cross section covariances in the thermal, resolved resonance, unresolved resonance ...

  17. An Overview of Facilities and Capabilities to Support the Development of Nuclear Thermal Propulsion

    SciTech Connect (OSTI)

    James Werner; Sam Bhattacharyya; Mike Houts

    2011-02-01

    Abstract. The future of American space exploration depends on the ability to rapidly and economically access locations of interest throughout the solar system. There is a large body of work (both in the US and the Former Soviet Union) that show that Nuclear Thermal Propulsion (NTP) is the most technically mature, advanced propulsion system that can enable this rapid and economical access by its ability to provide a step increase above what is a feasible using a traditional chemical rocket system. For an NTP system to be deployed, the earlier measurements and recent predictions of the performance of the fuel and the reactor system need to be confirmed experimentally prior to launch. Major fuel and reactor system issues to be addressed include fuel performance at temperature, hydrogen compatibility, fission product retention, and restart capability. The prime issue to be addressed for reactor system performance testing involves finding an affordable and environmentally acceptable method to test a range of engine sizes using a combination of nuclear and non-nuclear test facilities. This paper provides an assessment of some of the capabilities and facilities that are available or will be needed to develop and test the nuclear fuel, and reactor components. It will also address briefly options to take advantage of the greatly improvement in computation/simulation and materials processing capabilities that would contribute to making the development of an NTP system more affordable. Keywords: Nuclear Thermal Propulsion (NTP), Fuel fabrication, nuclear testing, test facilities.

  18. Toward developing a computational capability for PEM fuel cell design and optimization.

    SciTech Connect (OSTI)

    Wang, Chao Yang; Luo, Gang; Jiang, Fangming; Carnes, Brian; Chen, Ken Shuang

    2010-05-01

    In this paper, we report the progress made in our project recently funded by the US Department of Energy (DOE) toward developing a computational capability, which includes a two-phase, three-dimensional PEM (polymer electrolyte membrane) fuel cell model and its coupling with DAKOTA (a design and optimization toolkit developed and being enhanced by Sandia National Laboratories). We first present a brief literature survey in which the prominent/notable PEM fuel cell models developed by various researchers or groups are reviewed. Next, we describe the two-phase, three-dimensional PEM fuel cell model being developed, tested, and later validated by experimental data. Results from case studies are presented to illustrate the utility of our comprehensive, integrated cell model. The coupling between the PEM fuel cell model and DAKOTA is briefly discussed. Our efforts in this DOE-funded project are focused on developing a validated computational capability that can be employed for PEM fuel cell design and optimization.

  19. Results from Operational Testing of the Siemens Smart Grid-Capable Electric Vehicle Supply Equipment

    SciTech Connect (OSTI)

    Bennett, Brion

    2015-05-01

    The Idaho National Laboratory conducted testing and analysis of the Siemens smart grid capable electric vehicle supply equipment (EVSE), which was a deliverable from Siemens for the U.S. Department of Energy FOA-554. The Idaho National Laboratory has extensive knowledge and experience in testing advanced conductive and wireless charging systems though INL’s support of the U.S. Department of Energy’s Advanced Vehicle Testing Activity. This document details the findings from the EVSE operational testing conducted at the Idaho National Laboratory on the Siemens smart grid capable EVSE. The testing conducted on the EVSE included energy efficiency testing, SAE J1772 functionality testing, abnormal conditions testing, and charging of a plug-in vehicle.

  20. Results from the Operational Testing of the Eaton Smart Grid Capable Electric Vehicle Supply Equipment

    SciTech Connect (OSTI)

    Bennett, Brion

    2014-10-01

    The Idaho National Laboratory conducted testing and analysis of the Eaton smart grid capable electric vehicle supply equipment (EVSE), which was a deliverable from Eaton for the U.S. Department of Energy FOA-554. The Idaho National Laboratory has extensive knowledge and experience in testing advanced conductive and wireless charging systems though INL’s support of the U.S. Department of Energy’s Advanced Vehicle Testing Activity. This document details the findings from the EVSE operational testing conducted at the Idaho National Laboratory on the Eaton smart grid capable EVSE. The testing conducted on the EVSE included energy efficiency testing, SAE J1772 functionality testing, abnormal conditions testing, and charging of a plug-in vehicle.

  1. The ORNL High Flux Isotope Reactor and New Advanced Fuel Testing Capabilities

    SciTech Connect (OSTI)

    Ott, Larry J; McDuffee, Joel Lee

    2011-01-01

    The U.S. Department of Energy s High Flux Isotope Reactor (HFIR), located at the Oak Ridge National Laboratory (ORNL), was originally designed (in the 1960s) primarily as a part of the overall program to produce transuranic isotopes for use in the heavy-element research program of the United States. Today, the reactor is a highly versatile machine, producing medical and transuranic isotopes and performing materials test experimental irradiations and neutron-scattering experiments. The ability to test advanced fuels and cladding materials in a thermal neutron spectrum in the United States is limited, and a fast-spectrum irradiation facility does not currently exist in this country. The HFIR has a distinct advantage for consideration as a fuel/cladding irradiation facility because of the extremely high neutron fluxes that this reactor provides over the full thermal- to fast-neutron energy range. New test capabilities have been developed that will allow testing of advanced nuclear fuels and cladding materials in the HFIR under prototypic light-water reactor (LWR) and fast-reactor (FR) operating conditions.

  2. Definition of Capabilities Needed for a Single Event Effects Test Facility

    SciTech Connect (OSTI)

    Riemer, Bernie; Gallmeier, Franz X.

    2014-12-01

    The Federal Aviation Administration (FAA) is contemplating new regulations mandating testing of the vulnerability of flight-critical avionics to single event effects (SEE). A limited number of high-energy neutron test facilities currently serve the SEE industrial and institutional research community. The FAA recognizes that existing facilities have insufficient test capacity to meet new demand from such mandates; it desires more flexible irradiation capabilities to test complete, large systems and would like capabilities to address greater concerns for thermal neutrons. For this reason, the FAA funded this study by Spallation Neutron Source (SNS) staff with the ultimate aim of developing options for SEE test facilities using high-energy neutrons at the SNS complex. After an investigation of current SEE test practices and assessment of future testing requirements, three concepts were identified covering a range of test functionality, neutron flux levels, and fidelity to the atmospheric neutron spectrum. The costs and times required to complete each facility were also estimated. SEE testing is generally performed by accelerating the event rate to a point where the effects are still dominated by single events and double event causes of failures are negligible. In practice, acceleration factors of as high as 106 are applicable for component testing, whereas for systems testing acceleration factors of 104 seem to be the upper limit. It is strongly desirable that the irradiation facility be tunable over a large range of high-energy neutron fluxes of 102 - 104 n/cm²/s for systems testing and from 104 - 107 n/cm²/s for components testing. The most capable, most flexible, and highest-test-capacity option is a new stand-alone target station named the High-Energy neutron Test Station (HETS). It is also the most expensive option, with a cost to complete of approximately $100 million. Dual test enclosures would

  3. Capabilities to Support Thermochemical Hydrogen Production Technology Development

    SciTech Connect (OSTI)

    Daniel M. Ginosar

    2009-05-01

    This report presents the results of a study to determine if Idaho National Laboratory (INL) has the skilled staff, instrumentation, specialized equipment, and facilities required to take on work in thermochemical research, development, and demonstration currently being performed by the Nuclear Hydrogen Initiative (NHI). This study outlines the beneficial collaborations between INL and other national laboratories, universities, and industries to strengthen INL's thermochemical efforts, which should be developed to achieve the goals of the NHI in the most expeditious, cost effective manner. Taking on this work supports INL's long-term strategy to maintain leadership in thermochemical cycle development. This report suggests a logical path forward to accomplish this transition.

  4. Post Combustion Test Bed Development

    SciTech Connect (OSTI)

    Cabe, James E.; King, Dale A.; Freeman, Charles J.

    2011-12-30

    Pacific Northwest National Laboratory (PNNL) assessment methodology and slip-stream testing platform enables the comprehensive early-stage evaluation of carbon capture solvents and sorbents utilizing a breadth of laboratory experimental capability as well as a testing platform at a nearby 600 MW pulverized coal-fired power plant.

  5. Development of Advanced Thermal-Hydrological-Mechanical-Chemical (THMC) Modeling Capabilities for Enhanced Geothermal Systems

    Broader source: Energy.gov [DOE]

    Development of Advanced Thermal-Hydrological-Mechanical-Chemical (THMC) Modeling Capabilities for Enhanced Geothermal Systems presentation at the April 2013 peer review meeting held in Denver, Colorado.

  6. WIPP transportation exercise to test emergency response capablities for Midland-Odessa

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Exercise to Test Emergency Response Capabilities for Midland-Odessa CARLSBAD, N.M., January 10, 2000 - Emergency response agencies from Midland and Odessa, Texas, will take part in a 1 p.m. (CST) training exercise Jan. 12 at the Ector County Coliseum. The graded exercise will help agencies determine whether emergency personnel are prepared to respond to a possible accident involving a shipment of transuranic radioactive waste headed for the U.S. Department of Energy's (DOE) Waste

  7. Pompano subsea development -- Testing program

    SciTech Connect (OSTI)

    Nelson, R.; Berger, R.; Tyer, C.

    1996-12-31

    System reliability is essential for the economic success of any subsea oil and gas development. Testing programs can be developed to prove system reliability while still adhering to cost and schedule constraints. This paper describes a three-tiered equipment testing program that was employed for the Pompano Phase 2 subsea system. Program objectives, test descriptions, procedure development and test execution are discussed in detail. Lessons learned throughout the tests are also presented.

  8. DEVELOPMENT OF TECHNOLOGIES AND ANALYTICAL CAPABILITIES FOR VISION 21 ENERGY PLANTS

    SciTech Connect (OSTI)

    Madhava Syamlal, Ph.D.

    2002-07-01

    A software design review meeting was held May 2-3 in Lebanon, NH. The work on integrating a reformer model based on CFD with a fuel cell flow sheet was completed (Task 2.0). The CFD database design was completed and the database API's finalized. A file -based CFD database was implemented and tested (Task 2.8). The task COM-CORBA Bridge-I was completed. The bridge now has CO interfaces for transferring reaction kinetics information from Aspen Plus to Fluent (Task 2.11). The capability for transferring temperature-dependent physical properties from Aspen Plus to Fluent was implemented (Task 2.12). Work on ''Model Selection'' GUI was completed. This GUI allows the process analyst to select models from the CFD database. Work on ''Model Edit'' GUI was started (Task 2.13). A version of Aspen Plus with the capability for using CO parameters in ''design spec'' analysis has become available. With this version being available, work on adding CO wrapper to INDVU code has been started (Task 2.15). A preliminary design for the Solution Strategy class was developed (Task 2.16). The requirements for transferring pressure data between Aspen Plus and Fluent were defined. The ability to include two CFD models in a flow sheet was successfully tested. The capability to handle multiple inlets and outlets in a CO block was tested (Task 2.17). A preliminary version of the Configuration Wizard, which helps a user to make any Fluent model readable from a process simulator, was developed and tested (Task 2.18). Work on constructing a flow sheet model for Demo Case 2 was started. The work on documenting Demo Case 2 is nearing completion (Task 3.2). A Fluent heat exchanger model was installed and tested. Work on calibrating the heat exchanger model was started (Task 4.1). An advisory board meeting was held in conjunction with the Fluent Users Group Meeting on Monday, June 10, 2002. The meeting minutes and presentations for the advisory board meeting have been posted on the project website

  9. An Assessment of Remote Visual Testing System Capabilities for the Detection of Service Induced Cracking

    SciTech Connect (OSTI)

    Anderson, Michael T.; Cumblidge, Stephen E.; Doctor, Steven R.

    2005-09-01

    Remote visual testing is typically employed to ascertain the condition of materials in components that are inaccessible for direct examination. In the power and petrochemical industries, remote visual testing is used to assess whether service-related degradation is being manifested that, if left unchecked, may eventually impair the structural reliability of a component. Several codes and standards require that visual examinations be periodically conducted. Many of these inspections must be performed remotely due to harsh environments or design geometries of the subject components. This paper describes the attributes and limitations of remote visual testing, performance demonstration standards for camera systems, typical dimensions for service-induced cracking phenomena, and an assessment of the reliability of remote video camera systems at finding cracks. Because many forms of service-induced cracks have very small crack opening dimensions, the reliability of remote visual testing may not be adequate to ensure component integrity, given the capabilities of current camera systems and application practices.

  10. ENHANCED THERMAL VACUUM TEST CAPABILITY FOR RADIOISOTOPE POWER SYSTEMS AT THE IDAHO NATIONAL LABORATORY BETTER SIMULATES ENVIRONMENTAL CONDITIONS OF SPACE

    SciTech Connect (OSTI)

    J. C. Giglio; A. A. Jackson

    2012-03-01

    The Idaho National Laboratory (INL) is preparing to fuel and test the Advanced Stirling Radioisotope Generator (ASRG), the next generation space power generator. The INL identified the thermal vacuum test chamber used to test past generators as inadequate. A second vacuum chamber was upgraded with a thermal shroud to process the unique needs and to test the full power capability of the new generator. The thermal vacuum test chamber is the first of its kind capable of testing a fueled power system to temperature that accurately simulate space. This paper outlines the new test and set up capabilities at the INL.

  11. 10 CFR 830 Major Modification Determination for the Advanced Test Reactor Remote Monitoring and Management Capability

    SciTech Connect (OSTI)

    Bohachek, Randolph Charles

    2015-09-01

    The Advanced Test Reactor (ATR; TRA-670), which is located in the ATR Complex at Idaho National Laboratory, was constructed in the 1960s for the purpose of irradiating reactor fuels and materials. Other irradiation services, such as radioisotope production, are also performed at ATR. While ATR is safely fulfilling current mission requirements, assessments are continuing. These assessments intend to identify areas to provide defense–in-depth and improve safety for ATR. One of the assessments performed by an independent group of nuclear industry experts recommended that a remote accident management capability be provided. The report stated that: “contemporary practice in commercial power reactors is to provide a remote shutdown station or stations to allow shutdown of the reactor and management of long-term cooling of the reactor (i.e., management of reactivity, inventory, and cooling) should the main control room be disabled (e.g., due to a fire in the control room or affecting the control room).” This project will install remote reactor monitoring and management capabilities for ATR. Remote capabilities will allow for post scram reactor management and monitoring in the event the main Reactor Control Room (RCR) must be evacuated.

  12. Design, implementation, and testing of a cryogenic loading capability on an engineering neutron diffractometer

    SciTech Connect (OSTI)

    Woodruff, T. R.; Krishnan, V. B.; Vaidyanathan, R.; Clausen, B.; Sisneros, T.; Livescu, V.; Brown, D. W.; Bourke, M. A. M.

    2010-06-15

    A novel capability was designed, implemented, and tested for in situ neutron diffraction measurements during loading at cryogenic temperatures on the spectrometer for materials research at temperature and stress at Los Alamos National Laboratory. This capability allowed for the application of dynamic compressive forces of up to 250 kN on standard samples controlled at temperatures between 300 and 90 K. The approach comprised of cooling thermally isolated compression platens that in turn conductively cooled the sample in an aluminum vacuum chamber which was nominally transparent to the incident and diffracted neutrons. The cooling/heat rate and final temperature were controlled by regulating the flow of liquid nitrogen in channels inside the platens that were connected through bellows to the mechanical actuator of the load frame and by heaters placed on the platens. Various performance parameters of this system are reported here. The system was used to investigate deformation in Ni-Ti-Fe shape memory alloys at cryogenic temperatures and preliminary results are presented.

  13. LWR codes capability to address SFR BDBA scenarios: Modeling of the ABCOVE tests

    SciTech Connect (OSTI)

    Herranz, L. E.; Garcia, M.; Morandi, S.

    2012-07-01

    The sound background built-up in LWR source term analysis in case of a severe accident, make it worth to check the capability of LWR safety analysis codes to model accident SFR scenarios, at least in some areas. This paper gives a snapshot of such predictability in the area of aerosol behavior in containment. To do so, the AB-5 test of the ABCOVE program has been modeled with 3 LWR codes: ASTEC, ECART and MELCOR. Through the search of a best estimate scenario and its comparison to data, it is concluded that even in the specific case of in-containment aerosol behavior, some enhancements would be needed in the LWR codes and/or their application, particularly with respect to consideration of particle shape. Nonetheless, much of the modeling presently embodied in LWR codes might be applicable to SFR scenarios. These conclusions should be seen as preliminary as long as comparisons are not extended to more experimental scenarios. (authors)

  14. IN-SITU XRD OF OPERATING LSFC CATHODES: DEVELOPMENT OF A NEW ANALYTICAL CAPABILITY

    SciTech Connect (OSTI)

    Hardy, John S.; Templeton, Jared W.; Stevenson, Jeffry W.

    2012-11-19

    A solid oxide fuel cell (SOFC) research capability has been developed that facilitates measuring the electrochemical performance of an operating SOFC while simultaneously performing x-ray diffraction on its cathode. The evolution of this research tools development is discussed together with a description of the instrumentation used for in-situ x-ray diffraction (XRD) measurements of operating SOFC cathodes. The challenges that were overcome in the process of developing this capability, which included seals and cathode current collectors, are described together with the solutions that are presently being applied to mitigate them.

  15. Thermal Properties Capability Development Workshop Summary to Support the Implementation Plan for PIE Thermal Conductivity Measurements

    SciTech Connect (OSTI)

    Braase, Lori; Papesch, Cynthia; Hurley, David

    2015-04-01

    The Department of Energy (DOE)-Office of Nuclear Energy (NE), Idaho National Laboratory (INL), and associated nuclear fuels programs have invested heavily over the years in infrastructure and capability development. With the current domestic and international need to develop Accident Tolerant Fuels (ATF), increasing importance is being placed on understanding fuel performance in irradiated conditions and on the need to model and validate that performance to reduce uncertainty and licensing timeframes. INL’s Thermal Properties Capability Development Workshop was organized to identify the capability needed by the various nuclear programs and list the opportunities to meet those needs. In addition, by the end of fiscal year 2015, the decision will be made on the initial thermal properties instruments to populate the shielded cell in the Irradiated Materials Characterization Laboratory (IMCL).

  16. DOE’s Deep Capabilities and Wide Possibilities Highlighted at Executive Summit on Marine and Hydrokinetic Research and Development

    Broader source: Energy.gov [DOE]

    When it comes to marine and hydrokinetic technology development, the Department of Energy (DOE) offers deep capabilities and wide possibilities.

  17. Results from the Operational Testing of the General Electric Smart Grid Capable Electric Vehicle Supply Equipment (EVSE)

    SciTech Connect (OSTI)

    Richard Barney Carlson; Don Scoffield; Brion Bennett

    2013-12-01

    The Idaho National Laboratory conducted testing and analysis of the General Electric (GE) smart grid capable electric vehicle supply equipment (EVSE), which was a deliverable from GE for the U.S. Department of Energy FOA-554. The Idaho National Laboratory has extensive knowledge and experience in testing advanced conductive and wireless charging systems though INL’s support of the U.S. Department of Energy’s Advanced Vehicle Testing Activity. This document details the findings from the EVSE operational testing conducted at the Idaho National Laboratory on the GE smart grid capable EVSE. The testing conducted on the EVSE included energy efficiency testing, SAE J1772 functionality testing, abnormal conditions testing, and charging of a plug-in vehicle.

  18. Research, Development, Test, and Evaluation | National Nuclear...

    National Nuclear Security Administration (NNSA)

    About Our Programs Defense Programs Research, Development, Test, and Evaluation ... The Office of Research, Development, Test, and Evaluation directs research, development, ...

  19. DEVELOPMENT OF TECHNOLOGIES AND ANALYTICAL CAPABILITIES FOR VISION 21 ENERGY PLANTS

    SciTech Connect (OSTI)

    Galen Richards, Ph.D.; David Sloan, Ph.D.; Woodrow Fiveland, Ph.D.

    2002-08-31

    The goal of this DOE Vision-21 project work scope is to develop an integrated suite of software tools that can be used to simulate and visualize advanced plant concepts. Existing process simulation software does not meet the DOE's objective of ''virtual simulation'' which is needed to evaluate complex cycles. The overall intent of the DOE is to improve predictive tools for cycle analysis, and to improve the component models that are used in turn to simulate the cycle. Advanced component models are available; however, a generic coupling capability that will link the advanced component models to the cycle simulation software remains to be developed. In the current project, the coupling of the cycle analysis and cycle component simulation software will be based on an existing suite of programs. The challenge is to develop a general-purpose software and communications link between the cycle analysis software Aspen Plus{reg_sign} (marketed by Aspen Technology, Inc.), and specialized component modeling packages, as exemplified by industrial proprietary codes (utilized by ALSTOM Power Inc.) and the FLUENT{trademark} CFD code (provided by Fluent Inc). ALSTOM Power has a task responsibility to select and run a combined cycle test case (designated as Demonstration Case 2) to demonstrate the feasibility of the linkage concept. This report summarizes and documents the unit selected to represent Case 2, a 250 MW, natural gas-fired, combined cycle power plant. An analogous document for Demonstration Case 1 was previously submitted on April 30, 2001. Sufficient information is available from the plant to adequately benchmark the model. Hence, the proposed unit is deemed to be well suited as a demonstration case. However, as the combined cycle plant selected for this study contains recent technology, sensitivity to the commercial implications of this study prevents the release of the plant name and limits the quantity of operating/design information that can be presented. These

  20. Fuel Cell Development and Test Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Fuel Cell Development and Test Laboratory at the Energy Systems Integration Facility. NREL's state-of-the-art Fuel Cell Development and Test Laboratory in the Energy Systems Integration Facility (ESIF) supports NREL's fuel cell research and development projects through in-situ fuel cell testing. Current projects include various catalyst development projects, a system contaminant project, and the manufacturing project. Testing capabilities include but are not limited to single cell fuel cells and fuel cell stacks.

  1. System Engineering Program Applicability for the High Temperature Gas-Cooled Reactor (HTGR) Component Test Capability (CTC)

    SciTech Connect (OSTI)

    Jeffrey Bryan

    2009-06-01

    This white paper identifies where the technical management and systems engineering processes and activities to be used in establishing the High Temperature Gas-cooled Reactor (HTGR) Component Test Capability (CTC) should be addressed and presents specific considerations for these activities under each CTC alternative

  2. Development of a Fiber Laser Welding Capability for the W76, MC4702 Firing Set

    SciTech Connect (OSTI)

    Samayoa, Jose

    2010-05-12

    Development work to implement a new welding system for a Firing Set is presented. The new system is significant because it represents the first use of fiber laser welding technology at the KCP. The work used Six-Sigma tools for weld characterization and to define process performance. Determinations of workable weld parameters and comparison to existing equipment were completed. Replication of existing waveforms was done utilizing an Arbitrary Pulse Generator (APG), which was used to modulate the fiber lasers exclusive continuous wave (CW) output. Fiber laser weld process capability for a Firing Set is demonstrated.

  3. DEVELOPMENT OF TECHNOLOGIES AND ANALYTICAL CAPABILITIES FOR VISION 21 ENERGY PLANTS

    SciTech Connect (OSTI)

    Madhava Syamlal; Maxwell Osawe; Stephen Zitney; Lewis Collins; David Sloan; Woodrow Fiveland; Frank Joop; Philip Simon; K. Joseph Cleetus

    2005-04-01

    To accelerate the development of advanced power plants, DOE's Vision 21 program identified the need for an integrated suite of software tools that could be used to simulate and visualize new plant concepts. Existing process simulation software did not meet this objective of virtual-plant simulation. Sophisticated models of many individual equipment items are available; however, a seamless coupling capability that would integrate the advanced equipment (component) models to the process (system) simulation software remained to be developed. The inability to use models in an integrated manner causes knowledge loss (e.g., knowledge captured in detailed equipment models is usually not available in process simulation) and modeling inconsistencies (e.g., physical properties and reaction kinetics data in different models are not the same). A team consisting of Fluent Inc., ALSTOM Power Inc., Aspen Technology Inc., Intergraph Corporation, and West Virginia University, in collaboration with the National Energy Technology Laboratory (NETL), addressed this challenge in a project performed over the period from October 2000 through December 2004. In this project the integration of the cycle analysis software was based on widely used commercial software: Aspen Plus{reg_sign} for process simulation and FLUENT{reg_sign} for computational fluid dynamics (CFD) modeling of equipment items. The integration software was designed to also include custom (in-house, proprietary, legacy) equipment models that often encapsulate the experience from the many years of designing and operating the equipment. The team adopted CAPE-OPEN (CO) interfaces, the de facto international standard for communication among process models, for exchanging information between software. The software developed in this project is the first demonstration of the use of CO interfaces to link CFD and custom equipment models with process simulators. New interface requirements identified during this project were

  4. High-performance computational and geostatistical experiments for testing the capabilities of 3-d electrical tomography

    SciTech Connect (OSTI)

    Carle, S. F.; Daily, W. D.; Newmark, R. L.; Ramirez, A.; Tompson, A.

    1999-01-19

    This project explores the feasibility of combining geologic insight, geostatistics, and high-performance computing to analyze the capabilities of 3-D electrical resistance tomography (ERT). Geostatistical methods are used to characterize the spatial variability of geologic facies that control sub-surface variability of permeability and electrical resistivity Synthetic ERT data sets are generated from geostatistical realizations of alluvial facies architecture. The synthetic data sets enable comparison of the "truth" to inversion results, quantification of the ability to detect particular facies at particular locations, and sensitivity studies on inversion parameters

  5. Air Monitoring Network at Tonopah Test Range: Network Description, Capabilities, and Analytical Results

    SciTech Connect (OSTI)

    Hartwell, William T.; Daniels, Jeffrey; Nikolich, George; Shadel, Craig; Giles, Ken; Karr, Lynn; Kluesner, Tammy

    2012-01-01

    During the period April to June 2008, at the behest of the Department of Energy (DOE), National Nuclear Security Administration, Nevada Site Office (NNSA/NSO); the Desert Research Institute (DRI) constructed and deployed two portable environmental monitoring stations at the Tonopah Test Range (TTR) as part of the Environmental Restoration Project Soils Activity. DRI has operated these stations since that time. A third station was deployed in the period May to September 2011. The TTR is located within the northwest corner of the Nevada Test and Training Range (NTTR), and covers an area of approximately 725.20 km2 (280 mi2). The primary objective of the monitoring stations is to evaluate whether and under what conditions there is wind transport of radiological contaminants from Soils Corrective Action Units (CAUs) associated with Operation Roller Coaster on TTR. Operation Roller Coaster was a series of tests, conducted in 1963, designed to examine the stability and dispersal of plutonium in storage and transportation accidents. These tests did not result in any nuclear explosive yield. However, the tests did result in the dispersal of plutonium and contamination of surface soils in the surrounding area.

  6. Air Monitoring Network at Tonopah Test Range: Network Description and Capabilities

    SciTech Connect (OSTI)

    Jeffrey Tappen; George Nikolich; Ken Giles; David Shafer; Tammy Kluesner

    2010-05-18

    During the period April to June 2008, at the behest of the U.S. Department of Energy (DOE) National Nuclear Security Administration, Nevada Site Office (NNSA/NSO); the Desert Research Institute (DRI) constructed and deployed two portable environmental monitoring stations at the Tonopah Test Range (TTR) as part of the Environmental Restoration Project Soils Sub-Project. The TTR is located within the boundaries of the Nevada Test and Training Range (NTTR) near the northern edge, and covers an area of approximately 725.20 km2 (179,200 acres). The primary objective of the monitoring stations is to evaluate whether and under what conditions there is wind transport of radiological contaminants from one of the three Soil Sub-Project Corrective Action Units (CAUs) associated with Operation Roller Coaster on TTR. Operation Roller Coaster was a series of tests, conducted in 1963, designed to examine the stability and dispersal of plutonium in storage and transportation accidents. These tests did not result in any nuclear explosive yield. However, the tests did result in the dispersal of plutonium and contamination of surface soils in the surrounding area.

  7. Development of an integrated thermal-hydraulics capability incorporating RELAP5 and PANTHER neutronics code

    SciTech Connect (OSTI)

    Page, R.; Jones, J.R.

    1997-07-01

    Ensuring that safety analysis needs are met in the future is likely to lead to the development of new codes and the further development of existing codes. It is therefore advantageous to define standards for data interfaces and to develop software interfacing techniques which can readily accommodate changes when they are made. Defining interface standards is beneficial but is necessarily restricted in application if future requirements are not known in detail. Code interfacing methods are of particular relevance with the move towards automatic grid frequency response operation where the integration of plant dynamic, core follow and fault study calculation tools is considered advantageous. This paper describes the background and features of a new code TALINK (Transient Analysis code LINKage program) used to provide a flexible interface to link the RELAP5 thermal hydraulics code with the PANTHER neutron kinetics and the SIBDYM whole plant dynamic modelling codes used by Nuclear Electric. The complete package enables the codes to be executed in parallel and provides an integrated whole plant thermal-hydraulics and neutron kinetics model. In addition the paper discusses the capabilities and pedigree of the component codes used to form the integrated transient analysis package and the details of the calculation of a postulated Sizewell `B` Loss of offsite power fault transient.

  8. Analysis of molybdenum-99 production capability in the materials test station

    SciTech Connect (OSTI)

    Pitcher, Eric J

    2009-01-01

    The United States of America currently relies on foreign suppliers to meet all of it needs for molybdenum-99 (Mo-99) used in medical diagnostic procedures. The current US demand is at least 5000 six-day curies per week. Neutronics calculations have been performed to assess whether the proposed Materials Test Station (MTS) could potentially generate Mo-99. Two target material options have been explored for Mo-99 production in the MTS: low enriched uranium (LEU) and Tc-99. For LEU, scoping calculations indicate that MTS can supply nearly half of the current US demand with only minor neutronic impact on the MTS primary mission. For the Tc-99 option, the MTS could produce about one-tenth of the US demand.

  9. DEVELOPMENT OF TECHNOLOGIES AND ANALYTICAL CAPABILITIES FOR VISION 21 ENERGY PLANTS

    SciTech Connect (OSTI)

    Madhava Syamlal, Ph.D.

    2002-04-01

    A software review meeting was held at Fluent Inc. in Lebanon, NH on January 31-February 1, 2002. The team reviewed the current status of the software and its compliance with the software requirements (Task 2). Work on a fuel cell based power-plant flow sheet that incorporates a reformer CFD model was started. This test case includes more features (multiple ports, temperature dependent properties) than the mixing tank test case developed earlier and will be used for the further testing of the software (Task 2). The software development plan was finalized (Task 2.7). The design and implementation of a CFD database was commenced. The CFD database would store various models that a process analyst can use in the flowsheet model (Task 2.8). The COM-CORBA Bridge was upgraded to use the recently published version 0.9.3 CAPE-OPEN specifications. Work on transferring reaction kinetics data from Aspen Plus to Fluent was started (Task 2.11). The requirements for extending CAPE-OPEN interfaces in Aspen Plus to transfer temperature dependent properties to Fluent was written and communicated to the Aspen Tech developer of CAPE-OPEN interfaces (Task 2.12). A prototype of low-order model based on the Multiple Regression technique was written. A low-order model is required to speed up the calculations with the integrated model (Task 2.19). The Berkshire Power (Agawam, MA) combined-cycle power plant was selected as the Demonstration Case 2 (Task 3.2). A CFD model of the furnace in Demonstration Case 1 was developed. The furnace model will be incorporated into the flowsheet model already developed for this case (Task 4.1). A new hire joined the Fluent development team for this project. The project management plan was revised based on the software development plan. A presentation on the project status was made at the Clearwater Conference, March 4-7, 2002. The final manuscript for ESCAPE-12 conference was submitted (Task 7.0).

  10. NREL: Concentrating Solar Power Research - Laboratory Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    To research, develop, and test a variety of concentrating solar power technologies, NREL features the following laboratory capabilities: Concentrated Solar Radiation Facility Large ...

  11. DEVELOPMENT OF TECHNOLOGIES AND ANALYTICAL CAPABILITIES FOR VISION 21 ENERGY PLANTS

    SciTech Connect (OSTI)

    Maxwell Osawe; Madhava Syamlal; Krishna Thotapalli; Stephen Zitney

    2003-07-30

    This is the eleventh Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40954. The goal of the project is to develop and demonstrate a software framework to enable virtual simulation of Vision 21 plants. During the last quarter much progress was made in software development. The CO wrapper for the integration of Alstom Power proprietary code INDVU was upgraded to CO V1.0.0 and was successfully integrated with an Aspen Plus flowsheet. The V21-Controller and the Fluent CO wrapper were upgraded to CO V.1.0.0, and the testing and debugging of the upgraded V21-Controller was completed. Two Aspen Plus analysis tools (sensitivity analysis and optimization) were successfully tested in an integrated simulation. Extensive testing of the integrated software was continued. A list of suggested enhancements was given to the software development team. Work on software documentation was started. Work on preparing the release version progressed: Several enhancements were made in the V21-Controller and the Fluent Configuration Wizard GUIs. Work to add persistence functionality to the V21-Controller was started. During the last quarter good progress was made in software demonstration. Demo Case 1 simulations were completed. This case, a conventional steam cycle with a CFD model representing the boiler module, was successfully demonstrated at 9 distinct load points from 33 MW to 19 MW. Much progress was made with Demo Case 2. Work on adding a CO wrapper to the HRSGSIM code was completed, and integrated simulations with the HRSGSIM code were conducted. The CFD heat exchanger model for Demo Case 2 was calibrated with HRSGSIM results. An Advisory Board meeting was held in Manchester, NH on May 6 during the Fluent Users Group Meeting. The preparation of the project final report was started.

  12. Abuse Testing Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water ...

  13. Computable General Equilibrium Model Fiscal Year 2013 Capability Development Report - April 2014

    SciTech Connect (OSTI)

    Edwards, Brian Keith; Rivera, Michael K.; Boero, Riccardo

    2014-04-01

    This report documents progress made on continued developments of the National Infrastructure Simulation and Analysis Center (NISAC) Computable General Equilibrium Model (NCGEM), developed in fiscal year 2012. In fiscal year 2013, NISAC the treatment of the labor market and tests performed with the model to examine the properties of the solutions computed by the model. To examine these, developers conducted a series of 20 simulations for 20 U.S. States. Each of these simulations compared an economic baseline simulation with an alternative simulation that assumed a 20-percent reduction in overall factor productivity in the manufacturing industries of each State. Differences in the simulation results between the baseline and alternative simulations capture the economic impact of the reduction in factor productivity. While not every State is affected in precisely the same way, the reduction in manufacturing industry productivity negatively affects the manufacturing industries in each State to an extent proportional to the reduction in overall factor productivity. Moreover, overall economic activity decreases when manufacturing sector productivity is reduced. Developers ran two additional simulations: (1) a version of the model for the State of Michigan, with manufacturing divided into two sub-industries (automobile and other vehicle manufacturing as one sub-industry and the rest of manufacturing as the other subindustry); and (2) a version of the model for the United States, divided into 30 industries. NISAC conducted these simulations to illustrate the flexibility of industry definitions in NCGEM and to examine the simulation properties of in more detail.

  14. NSTec Overview and Capabilities

    SciTech Connect (OSTI)

    Meidinger, A.

    2012-07-27

    This presentation describes the history of the Nevada National Security Site (Nevada Test Site) Contract as well as current capabilities.

  15. DEVELOPMENT OF TECHNOLOGIES AND ANALYTICAL CAPABILITIES FOR VISION 21 ENERGY PLANTS

    SciTech Connect (OSTI)

    Madhava Syamlal, Ph.D.

    2002-12-31

    A software design review meeting was conducted (Task 2.0). A CFD Viewer was developed, to allow the process analyst to view CFD results from the process simulator (Task 2.14). Work on developing a CO wrapper for the INDVU code was continued (Task 2.15). The model-edit GUI was modified to allow the user to specify a solution strategy. Enhancements were made to the solution strategy implementation (Task 2.16). Testing of the integrated software was continued and several bug fixes and enhancements were made: ability to expose CFD parameters to the process analyst and support for velocity and pressure inlet boundary conditions (Task 2.21). Work on preparing the release version progressed: Version 0.3 of V21 Controller was released, a global configuration dialog was implemented, and a code review process was initiated (Task 2.24). The calibration of the tube bank CFD model for the RP&L case was completed. While integrating the tube bank CFD model into the flow sheet model, several development requirements were identified and communicated to the developers. The requirements of porting V21 Controller and Configuration Wizard to FLUENT 6.1, turning off the transfer of temperature dependent properties, exposing CFD parameters in Aspen Plus and supporting velocity boundary conditions have been implemented (Task 4.1). An initial grid for the HRSG component has been prepared (Task 4.2). A web-based advisory board meeting was conducted on December 18, 2003 (Task 5.0). Project personnel attended and gave presentations at the Aspen World Conference, October 28-30, 2002; AIChE Annual Meeting, November 8, 2002; and the Vision 21 Simulation meeting at Iowa State University, November 19-20, 2002 (Task 7.0).

  16. GEOCHEMICAL TESTING AND MODEL DEVELOPMENT - RESIDUAL TANK WASTE TEST PLAN

    SciTech Connect (OSTI)

    CANTRELL KJ; CONNELLY MP

    2010-03-09

    This Test Plan describes the testing and chemical analyses release rate studies on tank residual samples collected following the retrieval of waste from the tank. This work will provide the data required to develop a contaminant release model for the tank residuals from both sludge and salt cake single-shell tanks. The data are intended for use in the long-term performance assessment and conceptual model development.

  17. EnergyPlus Analysis Capabilities for Use in California Building Energy Efficiency Standards Development and Compliance Calculations

    SciTech Connect (OSTI)

    Hong, Tianzhen; Buhl, Fred; Haves, Philip

    2008-03-28

    nonresidential Alternative Calculation Method (ACM) of the Title-24 Standards. The AEC team identified gaps between EnergyPlus modeling capabilities and the requirements of Title 24 and ACMs. AEC's evaluation was based on the 2005 version of Title 24 and ACMs and the version 1.2.1 of EnergyPlus released on October 1, 2004. AEC's evaluation is useful for understanding the functionality and technical merits of EnergyPlus for implementing the performance-based compliance methods described in the ACMs. However, it did not study the performance of EnergyPlus in actually making building energy simulations for both the standard and proposed building designs, as is required for any software program to be certified by the CEC for use in doing Title-24 compliance calculations. In 2005, CEC funded LBNL to evaluate the use of EnergyPlus for compliance calculations by comparing the ACM accuracy test runs between DOE-2.1E and EnergyPlus. LBNL team identified key technical issues that must be addressed before EnergyPlus can be considered by the CEC for use in developing future Nonresidential Title-24 Standards or as an ACM tool. With Title 24 being updated to the 2008 version (which adds new requirements to the standards and ACMs), and EnergyPlus having been through several update cycles from version 1.2.1 to 2.1, it becomes crucial to review and update the previously identified gaps of EnergyPlus for use in Title 24, and more importantly to close the gaps which would help pave the way for EnergyPlus to be adopted as a Title 24 compliance ACM. With this as the key driving force, CEC funded LBNL in 2008 through this PIER (Public Interest Energy Research) project with the overall technical goal to expand development of EnergyPlus to provide for its use in Title-24 standard compliance and by CEC staff.

  18. DEVELOPMENT OF TECHNOLOGIES AND ANALYTICAL CAPABILITIES FOR VISION 21 ENERGY PLANTS

    SciTech Connect (OSTI)

    Madhava Syamlal, Ph.D.

    2001-07-10

    The training of a new project team member was completed (Task 2.1). The Software Requirements Document was written (Task 2.3). It was determined that the CAPE-OPEN interfaces are sufficient for the communication between Fluent and V21 Controller (Task 2.4). The AspenPlus-Fluent prototype on allyl/triacetone alcohol production was further developed to assist the GUI and software design tasks. The prototype was also used to analyze the sensitivity of a process simulation result with respect to a parameter in a CFD model embedded in the process simulation. Thus the integration of process simulation and CFD provides additional process insights and enables the engineer to optimize overall process performance (e.g., product purity and yield) with respect to important CFD design and operation parameters (e.g., CSTR shaft speed). A top-level design of the V21 Controller was developed and discussed. A draft version of the Software Design Document was written (Task 2.5/2.6). A preliminary software development plan was outlined. At first the V21 Controller will be developed and tested in two parts--a part that communicates with Fluent and a part that communicates with Aspen Plus. Then the two parts will be combined and tested with the allyl/triacetone alcohol flow sheet simulation. Much progress was made in writing the code for the two parts (Task 2.7). A requirement for pre-configured models was identified and added to the software requirements document (Task 2.9). Alstom Power's INDVU code was ported to the PC platform and calibrated. Aspen Plus model of the RP&L unit was improved to reflect the latest information received on the unit. Thus the preparation for linking INDVU code with the Aspen Plus model of RP&L unit is complete (Task 2.14). A report describing Demo Case 1 was written and submitted to DOE for review and approval (Task 3.1). The first Advisory Board meeting was held at the Fluent Users Group Meeting on June 6th. At the Advisory Board meeting, the project was

  19. The Development of New User Research Capabilities in Environmental Molecular Science: Workshop Report

    SciTech Connect (OSTI)

    Felmy, Andrew R.; Baer, Donald R.; Fredrickson, Jim K.; Gephart, Roy E.; Rosso, Kevin M.

    2006-10-31

    On August 1, and 2, 2006, 104 scientists representing 40 institutions including 24 Universities and 5 National Laboratories gathered at the W.R. Wiley Environmental Molecular Sciences Laboratory, a National scientific user facility, to outline important science challenges for the next decade and identify major capabilities needed to pursue advanced research in the environmental molecular sciences. EMSL’s four science themes served as the framework for the workshop. The four science themes are 1) Biological Interactions and Interfaces, 2) Geochemistry/Biogeochemistry and Surface Science, 3) Atmospheric Aerosol Chemistry, and 4) Science of Interfacial Phenomena.

  20. Calculations conducted in developing an audit capability for ECCS analysis. [PWR

    SciTech Connect (OSTI)

    Bartel, T.J.; Berman, M.; Byers, R.K.; Cole, R.K. Jr.

    1981-12-01

    This study has demonstrated the capability of combining the results of thermal-hydraulic and fuel rod response computer codes to produce audit-type calculations for a pressurized water reactor equipped with a relatively new form of emergency core cooling systems. Models intended specifically for use with such systems were incorporated into the codes, sample calculations were performed, and very cursory comparisons with vendor-supplied results were made. In calculations of the blowdown phase of a large break loss-of-coolant accident, models for fuel rod surface quenching and for separated two-phase flow were observed to have significant effects on peak cladding temperatures and on system conditions at the beginning of core reflood. Models used for the reflood phase, particularly the model for carryover-rate fraction, were also seen to have important consequences. While the demonstration of audit capability was successful, there remain questions connected with details of coupling between the codes, and with uniformity of models as used in all phases of the calculations.

  1. Developing stakeholder understanding, technical capability, and responsibility: The New Bedford Harbor Superfund Forum

    SciTech Connect (OSTI)

    Finney, C.; Polk, R.E.

    1995-11-01

    The community of New Bedford, Massachusetts, site of one of the world`s worst underwater polychlorinated biphenyls (PCB) dumps, is undergoing a second attempt to choose the method for the first phase of the harbor Superfund site clean-up. The first attempt, which some termed a ``model public participation process,`` ended unfruitfully when the larger community rejected the selected remedy. The authors examine how a new effort -- the ongoing New Bedford Harbor Superfund Forum -- is working to instill in its participants the technical understanding and capability to assist in the selection of a remedy, as well as creating a larger sense of community ownership that will outlive the process. This article briefly reviews the first attempt at public participation and the factors that contributed to its dissolution, and then examines the current forum and the changes that increase the likelihood of the community accepting the forum`s recommendation.

  2. Lead Coolant Test Facility Development Workshop

    SciTech Connect (OSTI)

    Paul A. Demkowicz

    2005-06-01

    A workshop was held at the Idaho National Laboratory on May 25, 2005, to discuss the development of a next generation lead or lead-alloy coolant test facility. Attendees included representatives from the Generation IV lead-cooled fast reactor (LFR) program, Advanced Fuel Cycle Initiative, and several universities. Several participants gave presentations on coolant technology, existing experimental facilities for lead and lead-alloy research, the current LFR design concept, and a design by Argonne National Laboratory for an integral heavy liquid metal test facility. Discussions were focused on the critical research and development requirements for deployment of an LFR demonstration test reactor, the experimental scope of the proposed coolant test facility, a review of the Argonne National Laboratory test facility design, and a brief assessment of the necessary path forward and schedule for the initial stages of this development project. This report provides a summary of the presentations and roundtable discussions.

  3. Capabilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Catalysis Partnerships Licensing Sponsored Research Technical Services Technologist in Residence News Press Releases Feature Stories In the News Photos Videos Ombudsman Ombudsman Argonne National Laboratory Technology Development and Commercialization About Technologies Available for Licensing Capabilities Partnerships News Capabilities Catalysis Capabilities Argonne offers a wide range of R&D capabilities that collaborators from private industry, federal agencies, and state and local

  4. Development of Advanced Thermal-Hydrological-Mechanical-Chemical (THMC) Modeling Capabilities for Enhanced Geothermal Systems

    Broader source: Energy.gov [DOE]

    Project objectives: Develop a general framework for effective flow of water, steam and heat in in porous and fractured geothermal formations. Develop a computational module for handling coupled effects of pressure, temperature, and induced rock deformations. Develop a reliable model of heat transfer and fluid flow in fractured rocks.

  5. Testing, Manufacturing, and Component Development Projects

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report covers the Wind and Water Power Technologies Office's testing, manufacturing, and component development projects for utility-scale and distributed wind energy from fiscal years 2006 to 2014.

  6. Capabilities | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NISACCapabilities content top Capabilities Synopsis of NISAC Modeling Capabilities NISAC designed advanced modeling and simulation capabilities to analyze critical infrastructure vulnerabilities, interdependencies, and complexities. These analyses are used to aid our nation's decisionmakers in policy-making, assessments, mitigation planning, education, training, and real-time assistance to crisis response organizations. The domains in which we work are large, complex, dynamic, adaptive,

  7. Transport Test Problems for Hybrid Methods Development

    SciTech Connect (OSTI)

    Shaver, Mark W.; Miller, Erin A.; Wittman, Richard S.; McDonald, Benjamin S.

    2011-12-28

    This report presents 9 test problems to guide testing and development of hybrid calculations for the ADVANTG code at ORNL. These test cases can be used for comparing different types of radiation transport calculations, as well as for guiding the development of variance reduction methods. Cases are drawn primarily from existing or previous calculations with a preference for cases which include experimental data, or otherwise have results with a high level of confidence, are non-sensitive, and represent problem sets of interest to NA-22.

  8. Integrated Program of Experimental Diagnostics at the NNSS. An Integrated, Prioritized Work Plan for Diagnostic Development and Maintenance and Supporting Capability

    SciTech Connect (OSTI)

    None, None

    2010-09-01

    This Integrated Program of Experimental Diagnostics at the NNSS is an integrated prioritized work plan for the Nevada National Security Site (NNSS), formerly the Nevada Test Site (NTS), program that is independent of individual National Security Enterprise Laboratories’ (Labs) requests or specific Subprograms being supported. This prioritized work plan is influenced by national priorities presented in the Predictive Capability Framework (PCF) and other strategy documents (Primary and Secondary Assessment Technologies Plans and the Plutonium Experiments Plan). This document satisfies completion criteria for FY 2010 MRT milestone #3496: Document an integrated, prioritized work plan for diagnostic development, maintenance, and supporting capability. This document is an update of the 3-year NNSS plan written a year ago, September 21, 2009, to define and understand Lab requests for diagnostic implementation. This plan is consistent with Lab interpretations of the PCF, Primary Assessment Technologies, and Plutonium Experiment plans.

  9. Development of Computational Capabilities to Predict the Corrosion Wastage of Boiler Tubes in Advanced Combustion Systems

    SciTech Connect (OSTI)

    Kung, Steven; Rapp, Robert

    2014-08-31

    A comprehensive corrosion research project consisting of pilot-scale combustion testing and long-term laboratory corrosion study has been successfully performed. A pilot-scale combustion facility available at Brigham Young University was selected and modified to enable burning of pulverized coals under the operating conditions typical for advanced coal-fired utility boilers. Eight United States (U.S.) coals were selected for this investigation, with the test conditions for all coals set to have the same heat input to the combustor. In addition, the air/fuel stoichiometric ratio was controlled so that staged combustion was established, with the stoichiometric ratio maintained at 0.85 in the burner zone and 1.15 in the burnout zone. The burner zone represented the lower furnace of utility boilers, while the burnout zone mimicked the upper furnace areas adjacent to the superheaters and reheaters. From this staged combustion, approximately 3% excess oxygen was attained in the combustion gas at the furnace outlet. During each of the pilot-scale combustion tests, extensive online measurements of the flue gas compositions were performed. In addition, deposit samples were collected at the same location for chemical analyses. Such extensive gas and deposit analyses enabled detailed characterization of the actual combustion environments existing at the lower furnace walls under reducing conditions and those adjacent to the superheaters and reheaters under oxidizing conditions in advanced U.S. coal-fired utility boilers. The gas and deposit compositions were then carefully simulated in a series of 1000-hour laboratory corrosion tests, in which the corrosion performances of different commercial candidate alloys and weld overlays were evaluated at various temperatures for advanced boiler systems. Results of this laboratory study led to significant improvement in understanding of the corrosion mechanisms operating on the furnace walls as well as superheaters and reheaters in

  10. Research Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Capabilities Research Capabilities These capabilities are our science and engineering at work for the national security interest in areas from global climate to cyber security, from nonproliferation to new materials, from clean energy, to supercomputing. thumbnail of Bioscience At Los Alamos, scientists and engineers are working to unlock many of the mechanisms found in nature to improve humanity's ability to battle diseases, create new forms of environmentally friendly and abundant

  11. Developing Low-Conductance Window Frames: Capabilities and Limitations of Current Window Heat Transfer Design Tools

    SciTech Connect (OSTI)

    Gustavsen, Arild; Arasteh, Dariush; Jelle, Bjorn Petter; Curcija, Charlie; Kohler, Christian

    2008-09-11

    While window frames typically represent 20-30% of the overall window area, their impact on the total window heat transfer rates may be much larger. This effect is even greater in low-conductance (highly insulating) windows that incorporate very low-conductance glazing. Developing low-conductance window frames requires accurate simulation tools for product research and development. Based on a literature review and an evaluation of current methods of modeling heat transfer through window frames, we conclude that current procedures specified in ISO standards are not sufficiently adequate for accurately evaluating heat transfer through the low-conductance frames. We conclude that the near-term priorities for improving the modeling of heat transfer through low-conductance frames are: (1) Add 2D view-factor radiation to standard modeling and examine the current practice of averaging surface emissivity based on area weighting and the process of making an equivalent rectangular frame cavity. (2) Asses 3D radiation effects in frame cavities and develop recommendation for inclusion into the design fenestration tools. (3) Assess existing correlations for convection in vertical cavities using CFD. (4) Study 2D and 3D natural convection heat transfer in frame cavities for cavities that are proven to be deficient from item 3 above. Recommend improved correlations or full CFD modeling into ISO standards and design fenestration tools, if appropriate. (5) Study 3D hardware short-circuits and propose methods to ensure that these effects are incorporated into ratings. (6) Study the heat transfer effects of ventilated frame cavities and propose updated correlations.

  12. Development and Application of Optimal Design Capability for Coal Gasification Systems

    SciTech Connect (OSTI)

    Edward S. Rubin; Anand B. Rao; Michael B. Berkenpas

    2007-05-31

    The basic objective of this research is to develop a model to simulate the performance and cost of oxyfuel combustion systems to capture CO{sub 2} at fossil-fuel based power plants. The research also aims at identifying the key parameters that define the performance and costs of these systems, and to characterize the uncertainties and variability associated with key parameters. The final objective is to integrate the oxyfuel model into the existing IECM-CS modeling framework so as to have an analytical tool to compare various carbon management options on a consistent basis.

  13. Prototype Development Capabilities of 3D Spatial Interactions and Failures During Scenario Simulation

    SciTech Connect (OSTI)

    Steven Prescott; Ramprasad Sampath; Curtis Smith; Tony Koonce

    2014-09-01

    Computers have been used for 3D modeling and simulation, but only recently have computational resources been able to give realistic results in a reasonable time frame for large complex models. This report addressed the methods, techniques, and resources used to develop a prototype for using 3D modeling and simulation engine to improve risk analysis and evaluate reactor structures and components for a given scenario. The simulations done for this evaluation were focused on external events, specifically tsunami floods, for a hypothetical nuclear power facility on a coastline.

  14. Developing Research Capabilities in Energy Biosciences: Design principles of photosynthetic biofuel production.

    SciTech Connect (OSTI)

    Donald D. Brown; David Savage

    2012-06-30

    The current fossil fuel-based energy infrastructure is not sustainable. Solar radiation is a plausible alternative, but realizing it as such will require significant technological advances in the ability to harvest light energy and convert it into suitable fuels. The biological system of photosynthesis can carry out these reactions, and in principle could be engineered using the tools of synthetic biology. One desirable implementation would be to rewire the reactions of a photosynthetic bacterium to direct the energy harvested from solar radiation into the synthesis of the biofuel H2. Proposed here is a series of experiments to lay the basic science groundwork for such an attempt. The goal is to elucidate the transcriptional network of photosynthesis using a novel driver-reporter screen, evolve more robust hydrogenases for improved catalysis, and to test the ability of the photosynthetic machinery to directly produce H2 in vivo. The results of these experiments will have broad implications for the understanding of photosynthesis, enzyme function, and the engineering of biological systems for sustainable energy production. The ultimate impact could be a fundamental transformation of the world's energy economy.

  15. DEVELOPMENT OF TECHNOLOGIES AND ANALYTICAL CAPABILITIES FOR VISION 21 ENERGY PLANTS

    SciTech Connect (OSTI)

    Madhava Syamlal, Ph.D.

    2001-01-23

    To complete project planning, various project groups conducted several meetings and teleconferences. As a result a draft project management plan was written and circulated. The plan will be finalized in a project kick off meeting to be held on January 16, 2001 in Lebanon, NH, which will be attended by all project participants (Task 1.0). Various project personnel have been trained in the use of Fluent and Aspen Plus, which completes all the training tasks except for Aspen Plus and IDL training for Alstom Power (Task 2.1). A preliminary version of User Requirements Document (preURD) was written. This document will be sent to key users of Aspen Plus and FLUENT and their responses will be collected in January (Task 2.3). A prototype of Fluent integration with Aspen Plus was constructed for understanding the required software design. The development of a general architecture for the integrated software suite has been started (Task 2.6). Invitation letters for participation in an Advisory Board were sent out to several Vision 21 contractors. Their responses will be used to form an Advisory Board in January (Task 5.0). Fluent has awarded subcontracts to Alstom Power, CERC, and Aspen Tech and negotiations with Intergraph are underway. Aspen Plus and FLUENT were installed on a computer at CERC. The design of a project web site was completed, and the site setup was started (Task 7.0).

  16. Next Generation Drivetrain Development and Test Program

    SciTech Connect (OSTI)

    Keller, Jonathan; Erdman, Bill; Blodgett, Doug; Halse, Chris; Grider, Dave

    2015-11-03

    This presentation was given at the Wind Energy IQ conference in Bremen, Germany, November 30 through December 2, 2105. It focused on the next-generation drivetrain architecture and drivetrain technology development and testing (including gearbox and inverter software and medium-voltage inverter modules.

  17. DEVELOPMENT OF TECHNOLOGIES AND ANALYTICAL CAPABILITIES FOR VISION 21 ENERGY PLANTS

    SciTech Connect (OSTI)

    Madhava Syamlal, Ph.D.

    2001-10-20

    DOE Vision 21 project requirements for the support of Global CAPE-OPEN Reaction Kinetics interfaces in Aspen Plus 12 was written (Task 2.4). The software design document was written and posted on the project web site. Intergraph started work on a proof of concept demo of the physical domain software (Task 2.6). The COM-side (Aspen Plus) and CORBA-side (Fluent) pieces of the Vision 21 controller code were written and independently verified. The two pieces of the code were then combined. Debugging of the combined code is underway (Task 2.7). Papers on fuel cell processes were read in preparation for developing an example based on a fuel cell process (Task 2.8). The INDVU code has been used to replace the boiler component in the Aspen Plus flowsheet of the RP&L power plant. The INDVU code receives information from Aspen Plus and iterates on the split backpass LTSH bypass and excess air quantities until the stipulated superheat outlet temperature is satisfied. The combined INDVU-Aspen Plus model has been run for several load conditions (Task 2.14). Work on identifying a second demonstration case involving an advanced power cycle has been started (Task 3.2). Plans for the second Advisory Board meeting in November were made (Task 5.0). Intergraph subcontract was signed and work on a physical domain software demo was started. A second teleconference with Norsk Hydro was conducted to discuss Global CAPE-OPEN standards and issues related to COM-CORBA Bridge (Task 7.0).

  18. Cybersecurity Capability

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cybersecurity Capability Maturity Model (C2M2) Office of Electricity Delivery and Energy Reliability Cybersecurity Capability Maturity Model (C2M2) Frequently Asked Questions 1) What is the C2M2 model? The C2M2 is a voluntary evaluation process utilizing industry-accepted cybersecurity practices that can be used to measure the maturity of an organization's cybersecurity capabilities. The C2M2 is designed to measure both the sophistication and sustainment of a cyber security program. The model

  19. Heavy Ion Fusion Science Virtual National Laboratory1st Quarter FY08 Milestone Report: Report Initial Work on Developing Plasma Modeling Capability in WARP for NDCX ExperimentsReport Initial work on developing Plasma Modeling Capability in WARP for NDCX Experiments

    SciTech Connect (OSTI)

    Friedman, A.; Cohen, R.H.; Grote, D.P.; Vay, J.-L.

    2007-12-10

    This milestone has been accomplished. The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL) has developed and implemented an initial beam-in-plasma implicit modeling capability in Warp; has carried out tests validating the behavior of the models employed; has compared the results of electrostatic and electromagnetic models when applied to beam expansion in an NDCX-I relevant regime; has compared Warp and LSP results on a problem relevant to NDCX-I; has modeled wave excitation by a rigid beam propagating through plasma; and has implemented and begun testing a more advanced implicit method that correctly captures electron drift motion even when timesteps too large to resolve the electron gyro-period are employed. The HIFS-VNL is well on its way toward having a state-of-the-art source-to-target simulation capability that will enable more effective support of ongoing experiments in the NDCX series and allow more confident planning for future ones.

  20. Experimental Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    experimental capabilities Experimental Capabilities The National Ignition Facility is the premier high energy density science facility in the world, with laser energies 10 times greater than any other high-energy inertial confinement fusion (ICF) laser system. A major focus of NIF is a national effort to demonstrate ignition and thermonuclear burn in the laboratory. NIF also conducts a variety of experiments to study matter at the extremes, including studies of material properties,

  1. Development of a High Volume Capable Process to Manufacture High Performance Photovoltaic Cells: Cooperative Research and Development Final Report, CRADA Number CRD-08-322

    SciTech Connect (OSTI)

    Geisz, J. F.

    2012-11-01

    The intent of the work is for RFMD and NREL to cooperate in the development of a commercially viable and high volume capable process to manufacture high performance photovoltaic cells, based on inverted metamorphic (IMM) GaAs technology. The successful execution of the agreement will result in the production of a PV cell using technology that is capable of conversion efficiency at par with the market at the time of release (reference 2009: 37-38%), using RFMD's production facilities. The CRADA work has been divided into three phases: (1) a foundation phase where the teams will demonstrate the manufacturing of a basic PV cell at RFMD's production facilities; (2) a technology demonstration phase where the teams will demonstrate the manufacturing of prototype PV cells using IMM technology at RFMD's production facilities, and; (3) a production readiness phase where the teams will demonstrate the capability to manufacture PV cells using IMM technology with high yields, high reliability, high reproducibility and low cost.

  2. POISON RESISTANT CATALYST DEVELOPMENT AND TESTING

    SciTech Connect (OSTI)

    Andrew W. Wang

    2001-03-29

    The Alternative Fuels Field Test Unit (AFFTU) is a portable laboratory designed specifically to provide on-site evaluation of potential feedstocks for processes that produce alternative fuels from indigenous raw materials such as coal, natural gas or environmentally disadvantaged carbonaceous feedstocks. Since conversion of these raw materials into feed gas streams can produce a variety of bulk gas compositions, which furthermore can contain a myriad of trace components, it is necessary to evaluate each new feedstock on an individual basis. While it is possible to prepare blended gas mixtures to simulate the bulk composition of a known feedstock, it is neither possible nor cost-effective to simulate adequately the variety of trace chemicals present in that feedstock--some of which may not even be detected by routine analysis. Additionally, the transient composition of the gas during upsets or routine process changes may have an impact on the proposed process that is not foreseen in standard design. To address these concerns, the AFFTU was constructed with the following experimental capabilities: (1) A state-of-the-art gas chromatograph system to perform semi-continuous monitoring of both bulk composition and the concentration of key trace poisons down to one part per billion (ppb). (2) A 30-mL reactor system that can accept up to two feed streams from the customer, allowing a true life test with the actual gas projected for use in the proposed facility. (3) A manifold of four adsorbent beds, located upstream of the reactor, which permits the testing of adsorbents for the removal of contaminants from the feed stream. The effectiveness of these adsorbents may be evaluated either by analysis of the gas upstream and downstream of the bed (or at an intermediate point within the bed) or by observing the impact of the presence or absence of that bed on the actual stability of the catalyst activity. To achieve portability, the AFFTU was constructed in a commercial 48-foot

  3. Development and Commissioning of a Small/Mid-Size Wind Turbine Test Facility: Preprint

    SciTech Connect (OSTI)

    Valyou, D.; Arsenault, T.; Janoyan, K.; Marzocca, P.; Post, N.; Grappasonni, G.; Arras, M.; Coppotelli, G.; Cardenas, D.; Elizalde, H.; Probst, O.

    2015-01-01

    This paper describes the development and commissioning tests of the new Clarkson University/Center for Evaluation of Clean Energy Technology Blade Test Facility. The facility is a result of the collaboration between the New York State Energy Research and Development Authority and Intertek, and is supported by national and international partners. This paper discusses important aspects associated with blade testing and includes results associated with modal, static, and fatigue testing performed on the Sandia National Laboratories' Blade Systems Design Studies blade. An overview of the test capabilities of the Blade Test Facility are also provided.

  4. CAMS Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cams capabilities CAMS Capabilities HVEC 10 MV Model FN Tandem Of the three accelerators CAMS utilizes the largest is the HVEC 10 MV Model FN Tandem, which was obtained from the University of Washington and installed at LLNL in the mid-80s. During installation the accelerator's belt charging system was replaced with a NEC Pelletron, new Dowlish spiral-inclined beam tubes were installed, as were the gas-handling systems necessary for use of SF6 as the insulating tank gas. The FN accelerator is

  5. INTERNATIONAL DEVELOPMENT OF ENERGY STORAGE INTEROPERABILITY TEST

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DEVELOPMENT OF ENERGY STORAGE INTEROPERABILITY TEST PROTOCOLS FOR PHOTOVOLTAIC INTEGRATION David Rosewater 1 , Jay Johnson 1 *, Maurizio Verga 2 , Riccardo Lazzari 2 , Christian Messner 3 , Roland Bründlinger 3 , Kathan Johannes 3 , Jun Hashimoto 4 , Kenji Otani 4 * Corresponding Author 1 Sandia National Laboratories P.O. Box 5800 MS1033 Albuquerque, NM 87185-1033 USA Phone: +1 505-284-9586 Fax: +1 505-844-3952 jjohns2@sandia.gov 2 Ricerca sul Sistema Energetico-RSE S.P.A. Via R. Rubattino 54

  6. Develop Standard Method of Test for Integrated Heat Pump

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    April 2, 2013 Develop Standard Method of Test (MOT) for IHP 2 | Building Technologies ... Development of a uniform method-of-test along with performance descriptors ...

  7. Develop Standard Method of Test for Integrated Heat Pump - 2013...

    Energy Savers [EERE]

    Develop Standard Method of Test for Integrated Heat Pump - 2013 Peer Review Develop Standard Method of Test for Integrated Heat Pump - 2013 Peer Review Emerging Technologies ...

  8. Progress Letter Report on Bending Fatigue Test System Development...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Progress Letter Report on Bending Fatigue Test System Development for ... Title: Progress Letter Report on Bending Fatigue Test System Development for Spent Nuclear ...

  9. Development, Test and Demonstration of a Cost-Effective, Compact...

    Broader source: Energy.gov (indexed) [DOE]

    Development, Test and Demonstration of a Cost-Effective, Compact, Light-Weight, and Scalable High Temperature Inverter for HEVs, PHEVs, and FCVs Development, Test and Demonstration ...

  10. California GAMA Special Study. Development of a Capability for the Analysis of Krypton-85 in Groundwater Samples

    SciTech Connect (OSTI)

    Visser, Ate; Bibby, Richard K.; Moran, Jean E.; Singleton, Michael J.; Esser, Bradley K.

    2015-06-01

    A capability for the analysis of krypton-85 (85Kr) in groundwater samples was developed at LLNL. Samples are collected by extracting gas from 2000-4000 L of groundwater at the well, yielding approximately 0.2 cm3 STP krypton. Sample collection takes 1 to 4 hours. Krypton is purified in the laboratory using a combination of molecular sieve and activated charcoal traps, and transferred to a liquid scintillation vial. The 85Kr activity is measured by liquid scintillation on a Quantulus 1220 liquid scintillation counter from PerkinElmer. The detection limit for a typical 0.2 cm3Kr sample size is 11% of the present day activity in air, corresponding to the decay corrected activity in air in 1987. The typical measurement uncertainty is below 10% for recently recharged samples. Six groundwater samples were collected, purified and counted. 85Kr was not detected in any of the samples counted at LLNL. 85Kr was detected by the low level counting laboratory of Bern University in all samples between 1.5 and 6.6 decays per minute per cm3 krypton, corresponding to decay corrected activities in air between 1971 and 1985. The new capability is an excellent complement to tritium-helium, expanding the existing suite of age dating tools available to the GAMA program (35S, 3H/3He, 14C and radiogenic helium). 85Kr can replace 3H/3He in settings where 3H/3He ages are impossible to determine (for example where terrigenic helium overwhelms tritiogenic helium) and provides additional insight into travel time distributions in complex mixed groundwater systems.

  11. Development and validation of capabilities to measure thermal properties of layered monolithic U-Mo alloy plate-type fuel

    SciTech Connect (OSTI)

    Burkes, Douglas; Casella, Andrew M.; Buck, Edgar C.; Casella, Amanda J.; Edwards, Matthew K.; MacFarlan, Paul J.; Pool, Karl N.; Smith, Frances N.; Steen, Franciska H.

    2014-07-19

    The uranium-molybdenum (U-Mo) alloy in a monolithic form has been proposed as one fuel design capable of converting some of the world’s highest power research reactors from the use of high enriched uranium (HEU) to low enriched uranium (LEU). One aspect of the fuel development and qualification process is to demonstrate appropriate understanding of thermal conductivity behavior of the fuel system as a function of temperature and expected irradiation conditions. The purpose of this paper is to verify and validate the functionality of equipment methods installed in hot cells for eventual measurements on irradiated uranium-molybdenum (U-Mo) monolithic fuel specimens, procedures to operate the equipment, and models to extract the desired thermal properties. The results presented here demonstrate the adequacy of the equipment, procedures and models that have been developed for this purpose based on measurements conducted on surrogate depleted uranium-molybdenum (DU-Mo) alloy samples containing a zirconium diffusion barrier and clad in aluminum alloy 6061 (AA6061). The results are in excellent agreement with thermal property data reported in the literature for similar U-Mo alloys as a function of temperature.

  12. Thin polymer icemaker development and test program

    SciTech Connect (OSTI)

    Leigh, R.W. )

    1991-08-01

    We have constructed and tested a small device to produce ice in ice/water mixtures using a cold fluid as the heat sink. The device is a flexible heat exchanger constructed from a thin film of a suitable polymer. When filled with circulating liquid coolant the heat exchanger consists of an inflated series of parallel tubes; ice forms on the outside in complementary half cylinders. When the circulation is cut off, gravity drains the coolant and the static head of the water bath crushes the tubes, freeing them from the ice which floats to the surface. Brine circulation is then re-started and the cycle begins again. Here we report recent testing of this device: it makes ice readily under water and easily sheds the semi-cylinders of ice over many cycles of operation. It produces ice at a rate of 10 kg/m{sup 2}-hour. It offers substantial benefits in simplicity and reliability over mechanical harvester ice making systems, and the potential for significant improvements in energy efficiency compared to systems which use a re-heat cycle to harvest the ice. A reliable method of leak detection has been developed. The device should be of substantial value to systems where efficiency and reliability are at a premium, such as slush ice for district cooling.

  13. Blade Testing Equipment Development and Commercialization: Cooperative Research and Development Final Report, CRADA Number CRD-09-346

    SciTech Connect (OSTI)

    Snowberg, D.; Hughes, S.

    2013-04-01

    Blade testing is required to meet wind turbine design standards, reduce machine cost, and reduce the technical and financial risk of deploying mass-produced wind turbine models. NREL?s National Wind Technology Center (NWTC) in Colorado is the only blade test facility in the U.S. capable of performing full-scale static and fatigue testing of multi-megawatt-scale wind turbine blades. Rapid growth in wind turbine size over the past two decades has outstripped the size capacity of the NWTC blade test facility leaving the U.S. wind industry without a suitable means of testing blades for large land-based and offshore turbines. This CRADA will develop and commercialize testing technologies and test equipment, including scaling up, value engineering, and testing of equipment to be used at blade testing facilities in the U.S. and around the world.

  14. Federal Technical Capability Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-06-05

    The Federal Technical Capability Manual provides the process for the recruitment, deployment, development, and retention of Federal personnel with the demonstrated technical capability to safely accomplish the Departments missions and responsibilities at defense nuclear facilities. Canceled by DOE M 426.1-1A. Does not cancel other directives.

  15. Federal Technical Capability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-11-19

    This directive defines requirements and responsibilities for meeting the Department of Energy (DOE) commitment to recruiting, deploying, developing, and retaining a technically competent workforce that will accomplish DOE missions in a safe and efficient manner through the Federal Technical Capability Program (FTCP). Cancels DOE M 426.1-1A, Federal Technical Capability Manual.

  16. Development of Mechanistic Modeling Capabilities for Local Neutronically-Coupled Flow-Induced Instabilities in Advanced Water-Cooled Reactors

    SciTech Connect (OSTI)

    Michael Podowski

    2009-11-30

    The major research objectives of this project included the formulation of flow and heat transfer modeling framework for the analysis of flow-induced instabilities in advanced light water nuclear reactors such as boiling water reactors. General multifield model of two-phase flow, including the necessary closure laws. Development of neurton kinetics models compatible with the proposed models of heated channel dynamics. Formulation and encoding of complete coupled neutronics/thermal-hydraulics models for the analysis of spatially-dependent local core instabilities. Computer simulations aimed at testing and validating the new models of reactor dynamics.

  17. Test Procedure Development and Revision | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Test Procedure Development and Revision Test Procedure Development and Revision Most energy conservation standards rulemakings are accompanied by a concurrent test procedure rulemaking. Test procedures detail the protocols that manufacturers must follow when testing their products for compliance with Department of Energy (DOE) standards. DOE also uses the test procedures to determine compliance with the applicable standards in any verification or enforcement testing. The procedures specify how

  18. Hydrogen Storage Testing and Analysis Research and Development

    Broader source: Energy.gov [DOE]

    DOE's hydrogen storage R&D activities include testing, analysis, and developing recommended best practices. The status of hydrogen storage testing and analysis projects is detailed in the...

  19. Development, Test and Demonstration of a Cost-Effective, Compact...

    Broader source: Energy.gov (indexed) [DOE]

    Test and Demonstration of a Cost-Effective, Compact, Light-Weight, and Scalable High Temperature Inverter for HEVs, PHEVs, and FCVs High Temperature Inverter Development, Test ...

  20. Upcoming Funding Opportunity to Develop and Field Test Wind Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Field Test Wind Energy Bat Impact Minimization Technologies Upcoming Funding Opportunity to Develop and Field Test Wind Energy Bat Impact Minimization Technologies October 6, ...

  1. Development of Characterization Tools for Reliability Testing of MicroElectroMechanical System Actuators

    SciTech Connect (OSTI)

    Allen, James J.; Eaton, William P.; Smith, Norman F.; Tanner, Danelle M.

    1999-07-26

    Characterization tools have been developed to study the performance characteristics and reliability of surface micromachined actuators. These tools include (1) the ability to electrically stimulate or stress the actuator, (2) the capability to visually inspect the devices in operation, (3) a method for capturing operational information, and (4) a method to extract performance characteristics from the operational information. Additionally, a novel test structure has been developed to measure electrostatic forces developed by a comb drive actuator.

  2. Molten carbonate fuel cell product development test

    SciTech Connect (OSTI)

    Scroppo, J.A.; Camara, E.H.; Figueroa, R.A.

    1993-11-01

    M-C Power Corp. will design, fabricate, install, test, and evaluate a 250 kW Proof-of-Concept MCFC Power Plant. The plant will be located at Kaiser Permanente`s San Diego Medical Center; it will be designed and built by Bechtel Corp. Two 250 keV MCFC stacks will be assembled and tested at M-C Power; one stack will be used to support the San Diego field demonstration. This report outlines 6 tasks: project management/permitting, demonstration design, stack manufacturing, BOP fabrication, site work, and testing.

  3. Nuclear Rocket Development Station at the Nevada Test Site |...

    Office of Environmental Management (EM)

    Rocket Development Station at the Nevada Test Site Nuclear Rocket Development Station at the Nevada Test Site During the 1950s, the United States launched a nuclear rocket program ...

  4. Tank Waste Remediation System tank waste pretreatment and vitrification process development testing requirements assessment

    SciTech Connect (OSTI)

    Howden, G.F.

    1994-10-24

    A multi-faceted study was initiated in November 1993 to provide assurance that needed testing capabilities, facilities, and support infrastructure (sampling systems, casks, transportation systems, permits, etc.) would be available when needed for process and equipment development to support pretreatment and vitrification facility design and construction schedules. This first major report provides a snapshot of the known testing needs for pretreatment, low-level waste (LLW) and high-level waste (HLW) vitrification, and documents the results of a series of preliminary studies and workshops to define the issues needing resolution by cold or hot testing. Identified in this report are more than 140 Hanford Site tank waste pretreatment and LLW/HLW vitrification technology issues that can only be resolved by testing. The report also broadly characterizes the level of testing needed to resolve each issue. A second report will provide a strategy(ies) for ensuring timely test capability. Later reports will assess the capabilities of existing facilities to support needed testing and will recommend siting of the tests together with needed facility and infrastructure upgrades or additions.

  5. Marine and Hydrokinetic Technology Development and Testing |...

    Energy Savers [EERE]

    The Water Power Program supports the development of marine and hydrokinetic devices, which capture energy from waves, tides, ocean currents, the natural flow of water in rivers, ...

  6. Sandia National Laboratories: Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Top Capabilities Directed Energy Laser Applications Integrated Military Systems (IMS) Capabilities What We Do Supporting Sandia's national security mission in both traditional and emerging areas Alt text Areas of Expertise Integrated Military Systems (IMS) supports Sandia's national security mission in both traditional and emerging areas. Drawing on over six decades of weapons work and expertise, IMS continues to develop and refine many elements of strike systems, targets, and missile defense

  7. NREL: Geothermal Technologies - Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities The NREL geothermal team leverages its capabilities in several different areas to enhance the visibility of geothermal technologies. These areas include low-temperature resources; enhanced geothermal systems; strategic planning, analysis, and modeling; and project assessment. Low-Temperature Geothermal Resources NREL works to develop and deploy innovative new technologies that will help the geothermal community achieve widespread adoption of under-utilized low-temperature resources

  8. NREL: Transportation Research - Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities A Vision for Sustainable Transportation Line graph illustrating three pathways (biofuel, hydrogen, and electric vehicle) to reduce energy use and greenhouse gas emissions. Electric Vehicle Technologies & Targets 3-D illustration of electric car diagramming energy storage, power electronics, and climate control components. NREL uses 100% of its considerable transportation research, development, and deployment (RD&D) capabilities to pursue sustainable solutions that deliver

  9. NREL: Distributed Grid Integration - Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities Photo of a man in safety glasses working with laboratory equipment. NREL's distributed grid integration researchers conduct testing and evaluation at the one-of-a-kind ...

  10. Guide to good practices for the development of test items

    SciTech Connect (OSTI)

    1997-01-01

    While the methodology used in developing test items can vary significantly, to ensure quality examinations, test items should be developed systematically. Test design and development is discussed in the DOE Guide to Good Practices for Design, Development, and Implementation of Examinations. This guide is intended to be a supplement by providing more detailed guidance on the development of specific test items. This guide addresses the development of written examination test items primarily. However, many of the concepts also apply to oral examinations, both in the classroom and on the job. This guide is intended to be used as guidance for the classroom and laboratory instructor or curriculum developer responsible for the construction of individual test items. This document focuses on written test items, but includes information relative to open-reference (open book) examination test items, as well. These test items have been categorized as short-answer, multiple-choice, or essay. Each test item format is described, examples are provided, and a procedure for development is included. The appendices provide examples for writing test items, a test item development form, and examples of various test item formats.

  11. Electronic Mail Analysis Capability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-08

    Establishes the pilot program to test the Department of Energy (DOE) Electronic Mail Analysis Capability (EMAC), which will be used to monitor and analyze outgoing and incoming electronic mail (e-mail) from the National Nuclear Security Administration (NNSA) and DOE laboratories that are engaged in nuclear weapons design or work involving special nuclear material. No cancellation.

  12. The Observability Calibration Test Development Framework

    SciTech Connect (OSTI)

    Endicott-Popovsky, Barbara E.; Frincke, Deborah A.

    2007-06-20

    Abstract Formal standards, precedents, and best practices for verifying and validating the behavior of low layer network devices used for digital evidence-collection on networks are badly needed initially so that these can be employed directly by device owners and data users to document the behaviors of these devices for courtroom presentation, and ultimately so that calibration testing and calibration regimes are established and standardized as common practice for both vendors and their customers [1]. The ultimate intent is to achieve a state of confidence in device calibration that allows the network data gathered by them to be relied upon by all parties in a court of law. This paper describes a methodology for calibrating forensic-ready low layer network devices based on the Flaw Hypothesis Methodology [2,3].

  13. Stack Characterization System Development and Testing

    SciTech Connect (OSTI)

    Noakes, Mark W; Lind, Randall F; Lloyd, Peter D; Pin, Francois G; Rowe, John C

    2011-01-01

    Oak Ridge National Laboratory, as well as the rest of the U.S. Department of Energy community, has numerous off-gas stacks that need to be decommissioned, demolished, and packaged for disposal. Disposal requires a waste disposition determination phase. Process knowledge typically makes a worst-case scenario decision that may place lower-level waste into a more expensive higher-level waste disposal category. Truly useful radiological and chemical sampling can be problematic on old stacks due to their inherent height and access hazards, and many of these stacks have begun to deteriorate structurally. A remote stack characterization system (SCS) that can manage sample and data collection removes people from the hazards and provides an opportunity for access to difficult to reach internal stack areas. The SCS is a remotely operated articulated radiological data recovery system designed to deploy down into off-gas stacks from the top via crane. The battery-powered SCS is designed to stabilize itself against the stack walls and move various data recovery systems into areas of interest on the inner stack walls. Stabilization is provided by a tripod structure; sensors are mounted in a rotatable bipod underneath the tripod. Sensors include a beta/gamma/alpha detector, a removable contaminant multi-sample automated sampler, and a multi-core remote core drill. Multiple cameras provide remote task viewing, support for sampling, and video documentation of the process. A delay in funding has delayed project delivery somewhat. Therefore, this paper describes the technology and shows fabrication and testing progress to the extent that data is available.

  14. Development and Testing of an Americium/Lanthanide Separation...

    Office of Scientific and Technical Information (OSTI)

    Title: Development and Testing of an AmericiumLanthanide Separation Flowsheet Using Sodium Bismuthate The separation of Am from the lanthanides and curium is a key step in ...

  15. Concept Testing and Development at the Raft River Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concept Testing and Development at the Raft River Geothermal Field, Idaho presentation at the April 2013 peer review meeting held in Denver, Colorado. PDF icon ...

  16. Low Cost Exploration, Testing, And Development Of The Chena Geothermal...

    Open Energy Info (EERE)

    to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Low Cost Exploration, Testing, And Development Of The Chena Geothermal Resource Abstract The...

  17. Low Cost Exploration, Testing, and Development of the Chena Geothermal...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Low Cost Exploration, Testing, and Development of the Chena Geothermal Resource Abstract The...

  18. Development and Testing of an Americium/Lanthanide Separation...

    Office of Scientific and Technical Information (OSTI)

    ...Lanthanide Separation Flowsheet Using Sodium Bismuthate Citation Details In-Document Search Title: Development and Testing of an AmericiumLanthanide Separation Flowsheet ...

  19. Concept Testing and Development at the Raft River Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    output of the Raft River geothermal field by increasing production or injectivity. egsmooreraftriver.pdf (2.18 MB) More Documents & Publications Concept Testing and Development ...

  20. UPS multifuel stratified charge engine development program - Field test

    SciTech Connect (OSTI)

    Lewis, J.M.

    1986-01-01

    The multifuel, stratified charge engine program launched by United Parcel Service in 1978 has progressed through two years of field tests. The mechanical and electronic experience with the field test engine is covered in detail, with problems and causes identified and solutions described. Also included are reports on research initiated as a consequence of problems that appeared in the field test engines. All aspects of engine performance are covered, including fuel economy, multifuel experience, emissions testing and tuning, maintenance expectations and driver reactions. The original 350-engine field test was run with many components newly designed or modified, and relatively untested. Component and reliability problems identified in the field test have prompted modifications, and the engines are being reworked for the start of a new 200-engine field test. Research studies conducted on the field test engine have produced very encouraging emissions data, which suggests that the low-load hydrocarbon problem historically associated with this technology is not a barrier to commercial application. The engine appears capable of passing the heavy duty gasoline engine transient test.

  1. Development of a propulsion system and component test facility for advanced radioisotope powered Mars Hopper platforms

    SciTech Connect (OSTI)

    Robert C. O'Brien; Nathan D. Jerred; Steven D. Howe

    2011-02-01

    Verification and validation of design and modeling activities for radioisotope powered Mars Hopper platforms undertaken at the Center for Space Nuclear Research is essential for proof of concept. Previous research at the center has driven the selection of advanced material combinations; some of which require specialized handling capabilities. The development of a closed and contained test facility to forward this research is discussed within this paper.

  2. Metrology Measurement Capabilities

    SciTech Connect (OSTI)

    Dr. Glen E. Gronniger

    2007-10-02

    This document contains descriptions of Federal Manufacturing & Technologies (FM&T) Metrology capabilities, traceability flow charts, and the measurement uncertainty of each measurement capability. Metrology provides NIST traceable precision measurements or equipment calibration for a wide variety of parameters, ranges, and state-of-the-art uncertainties. Metrology laboratories conform to the requirements of the Department of Energy Development and Production Manual Chapter 13.2, ANSI/ISO/IEC ANSI/ISO/IEC 17025:2005, and ANSI/NCSL Z540-1. FM&T Metrology laboratories are accredited by NVLAP for the parameters, ranges, and uncertainties listed in the specific scope of accreditation under NVLAP Lab code 200108-0. See the Internet at http://ts.nist.gov/Standards/scopes/2001080.pdf. These parameters are summarized. The Honeywell Federal Manufacturing & Technologies (FM&T) Metrology Department has developed measurement technology and calibration capability in four major fields of measurement: (1) Mechanical; (2) Environmental, Gas, Liquid; (3) Electrical (DC, AC, RF/Microwave); and (4) Optical and Radiation. Metrology Engineering provides the expertise to develop measurement capabilities for virtually any type of measurement in the fields listed above. A strong audit function has been developed to provide a means to evaluate the calibration programs of our suppliers and internal calibration organizations. Evaluation includes measurement audits and technical surveys.

  3. Federal Technical Capability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-11-19

    To define requirements and responsibilities for meeting the Department of Energy (DOE) commitment to recruiting, deploying, developing, and retaining a technically competent workforce that will accomplish DOE missions in a safe and efficient manner through the Federal Technical Capability Program (FTCP). Chg 1 dated 9-20-11 supersedes DOE O 426.1 and cancels DOE P 426.1.

  4. US10 Capable Prototype Volvo MG11 Natural Gas Engine Development: Final Report, December 16, 2003 - July 31, 2006

    SciTech Connect (OSTI)

    Tai, C.; Reppert, T.; Chiu, J.; Christensen, L.; Knoll, K.; Stewart, J.

    2006-10-01

    The report discusses a project to develop a low-emissions natural gas engine with exhaust gas recirculation (EGR) and a three-way catalyst (TWC).

  5. Development of Modeling Capabilities for the Analysis of Supercritical Water-Cooled Reactor Thermal-Hydraulics and Dynamics

    SciTech Connect (OSTI)

    Dr. Michael Z. Podowski

    2009-04-16

    Develop an experimental and theoretical data base for heat transfer in tubes and channels cooled by water and CO2 at supercritical pressures.

  6. Further testing and development of an 11-watt Stirling converter

    SciTech Connect (OSTI)

    Ross, B.A.; Montgomery, W.L.

    1995-12-31

    Three previous IECEC papers describe the development of an 11-watt Radioisotope Stirling Generator (RSG) intended for remote power applications. This paper describes more recent testing and development activities. Testing of the engineering model (EM) was performed to determine the effect of heat rejection temperature, thermal input and initial charge pressure on thermal efficiency. Shock testing of the generator included a drop test and 3 hours of testing in a random vibration environment where g{sup 2}/Hz = 0.04. Endurance testing of a complete Stirling converter continues, with over 15,000 maintenance-free operating hours. Endurance testing of critical subsystems and components has achieved 14,000 to 26,000 hours of operation without failure. Minor changes to the RSG prototype design, based on the development of the EM, are described.

  7. NETL Research Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    netl research capabilities NETL Research Scientist As the lead field center for the DOE Office of Fossil Energy's R&D program, NETL has established a strong onsite research program conducted by federal scientists and engineers. Onsite R&D is managed by NETL's Office of Research and Development (ORD) and makes important contributions to NETL's mission of implementing a research, development, and demonstration program to resolve the environmental, supply, and reliability constraints of

  8. Development of Models to Simulate Tracer Tests for Characterization of Enhanced Geothermal Systems

    SciTech Connect (OSTI)

    Williams, Mark D.; Reimus, Paul; Vermeul, Vincent R.; Rose, Peter; Dean, Cynthia A.; Watson, Tom B.; Newell, D.; Leecaster, Kevin; Brauser, Eric

    2013-05-01

    A recent report found that power and heat produced from enhanced (or engineered) geothermal systems (EGSs) could have a major impact on the U.S energy production capability while having a minimal impact on the environment. EGS resources differ from high-grade hydrothermal resources in that they lack sufficient temperature distribution, permeability/porosity, fluid saturation, or recharge of reservoir fluids. Therefore, quantitative characterization of temperature distributions and the surface area available for heat transfer in EGS is necessary for the design and commercial development of the geothermal energy of a potential EGS site. The goal of this project is to provide integrated tracer and tracer interpretation tools to facilitate this characterization. This project was initially focused on tracer development with the application of perfluorinated tracer (PFT) compounds, non-reactive tracers used in numerous applications from atmospheric transport to underground leak detection, to geothermal systems, and evaluation of encapsulated PFTs that would release tracers at targeted reservoir temperatures. After the 2011 midyear review and subsequent discussions with the U.S. Department of Energy Geothermal Technology Program (GTP), emphasis was shifted to interpretive tool development, testing, and validation. Subsurface modeling capabilities are an important component of this project for both the design of suitable tracers and the interpretation of data from in situ tracer tests, be they single- or multi-well tests. The purpose of this report is to describe the results of the tracer and model development for simulating and conducting tracer tests for characterizing EGS parameters.

  9. Advanced Simulation Capability

    Office of Environmental Management (EM)

    ... Critical infrastructure was added for integration testing with Amanzi and development of ... working groups and outreach to the EM international programs. The robustness of the ...

  10. Research, Development, Test, and Evaluation | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Programs Research, Development, Test, and Evaluation Forty-eight final optic assemblies are symmetrically distributed around the upper and lower hemispheres of the target chamber of the National Ignition Facility at Lawrence Livermore National Laboratory The Office of Research, Development, Test, and Evaluation directs research, development, computer simulation, and inertial confinement fusion activities to maintain the safety, security and effectiveness of the

  11. Trinity / NERSC-8 Capability Improvement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Trinity / NERSC-8 Capability Improvement Trinity / NERSC-8 Capability Improvement As stated in Section 3.5 of the Technical Requirements, The performance of the ASC and NERSC capability improvement code suites will be evaluated at acceptance and used as acceptance criteria. All performance tests must continue to meet acceptance criteria throughout the lifetime of the system. These spreadsheets are here to provide examples but do not have to be returned with RFP response and will be required of

  12. Idaho National Laboratory Ten-year Site Plan (2012 through 2021) -- DOE-NE's National Nuclear Capability -- Developing and Maintaining the INL Infrastructure

    SciTech Connect (OSTI)

    Cal Ozaki

    2010-06-01

    To meet long-term objectives to transform the Idaho National Laboratory (INL), we are providing an integrated, long-term vision of infrastructure requirements that support research, development and demonstration (RD&D) goals outlined in the DOE strategic plans, including the NE Roadmap and reports such as Facilities for the Future of Nuclear Energy Research: A Twenty-year Outlook. The goal of the INL Ten-year Site Plan (TYSP) is to clearly link RD&D mission goals and INL core capabilities with infrastructure requirements (single and multi-program), establish the 10-year end-state vision for INL complexes, identify and prioritize infrastructure and capability gaps, as well as the most efficient and economic approaches to closing those gaps.

  13. Chemical Sciences Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling and Simulation in the Chemical Sciences Capabilities Modeling and simulation help us transform chemical data into meaningful information: * Develop remote-sensors that detect nuclear materials * Perform large- or small-scaled process modeling * Simulate new chemicals with tailored properties for diverse applications * Analyze chemical reaction rates for complex modeling needs * Examine chemical-sciences data and modeling for nuclear forensics * Analyze high explosive data and perform

  14. Development, Test and Demonstration of a Cost-Effective, Compact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon ape012taylor2010o.pdf More Documents & Publications Development, Test and Demonstration of a ...

  15. 2008 Annual Merit Review Results Summary - 3. Battery Development, Testing,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Simulation, Analysis | Department of Energy 3. Battery Development, Testing, Simulation, Analysis 2008 Annual Merit Review Results Summary - 3. Battery Development, Testing, Simulation, Analysis DOE Vehicle Technologies Annual Merit Review 2008_merit_review_3.pdf (1.21 MB) More Documents & Publications 2008 Annual Merit Review Results Summary - 5. Advanced Power Electronics 2008 Annual Merit Review Results Summary - 14. Vehicle Systems and Simulation 2008 Annual Merit Review Results

  16. Cooperation Reliability Testing of the Clipper Windpower Liberty 2.5 MW Turbine: Cooperative Research and Development Final Report, CRADA Number CRD-07-210

    SciTech Connect (OSTI)

    Hughes, S.

    2012-05-01

    Clipper Windpower (CWP) has developed the Liberty 2.5 MW wind turbine. The development, manufacturing, and certification process depends heavily on being able to validate the full-scale system design and performance under load in both an accredited structural test facility and through accredited field testing. CWP requested that DOE/ NREL upgrade blade test capabilities to perform a scope of work including structural testing of the C-96 blade used on the CWP Liberty turbine. This funds-in CRADA was developed to upgrade NREL blade test capability, while enabling certification testing of the C-96 blade through the facility and equipment upgrades. NREL shared resource funds were used to develop hardware necessary to structurally attach a large wind turbine to the test stand at the NWTC. Participant funds-in monies were used for developing the test program.

  17. Diagnostic development and support of MHD test facilities. Final progress report, March 1980--March 1994

    SciTech Connect (OSTI)

    Not Available

    1995-02-01

    The Diagnostic Instrumentation and Analysis Laboratory (DIAL) at Mississippi State University (MSU), under U.S. Department of Energy (DOE) Contract No. DE-AC02-80ET-15601, Diagnostic Development and Support of MHD Test Facilities, developed diagnostic instruments for magnetohydrodynamic (MHD) power train data acquisition and for support of MHD component development test facilities. Microprocessor-controlled optical instruments, initially developed for Heat Recovery/Seed Recovery (HRSR) support, were refined, and new systems to measure temperatures and gas-seed-slag stream characteristics were developed. To further data acquisition and analysis capabilities, the diagnostic systems were interfaced with DIAL`s computers. Technical support was provided for the diagnostic needs of the national MHD research effort. DIAL personnel also cooperated with government agencies and private industries to improve the transformation of research and development results into processes, products and services applicable to their needs. The initial contract, Testing and Evaluation of Heat Recovery/Seed Recovery, established a data base on heat transfer, slagging effects on heat transfer surfaces, metal durability, secondary combustor performance, secondary combustor design requirements, and other information pertinent to the design of HR/SR components at the Coal-Fired Flow Facility (CFFF). To accomplish these objectives, a combustion test stand was constructed that simulated MHD environments, and mathematical models were developed and evaluated for the heat transfer in hot-wall test sections. Two transitions occurred during the span of this contract. In May 1983, the objectives and title of the contract changed from Testing and Evaluation of Heat Recovery/Seed Recovery to Diagnostic Development and Support of MHD Test Facilities. In July 1988, the research laboratory`s name changed from the MHD Energy Center to the Diagnostic Instrumentation and Analysis Laboratory.

  18. Metrology Measurement Capabilities

    SciTech Connect (OSTI)

    Barnes, L.M.

    2003-11-12

    This document contains descriptions of Federal Manufacturing & Technologies (FM&T) Metrology capabilities, traceability flow charts, and the measurement uncertainty of each measurement capability. Metrology provides NIST traceable precision measurements or equipment calibration for a wide variety of parameters, ranges, and state-of-the-art uncertainties. Metrology laboratories conform to the requirements of the Department of Energy Development and Production Manual Chapter 8.4, ANSI/ISO/IEC ANSI/ISO/IEC 17025:2000, and ANSI/NCSL Z540-1 (equivalent to ISO Guide 25). FM&T Metrology laboratories are accredited by NVLAP for the parameters, ranges, and uncertainties listed in the specific scope of accreditation under NVLAP Lab code 200108-0. See the Internet at http://ts.nist.gov/ts/htdocs/210/214/scopes/2001080.pdf. These parameters are summarized in the table at the bottom of this introduction.

  19. Engineering development of selective agglomeration: Task 6, Operation of the Component Development Test Facility

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    The objective of this report is to summarize the component development and laboratory binder test work at Wilsonville during Task 6. This Task included the construction and startup of the Component Development Test Facility (CDTF), coal procurement, evaluation of unit operation and dewatering performance, laboratory binder tests for diesel and heptane, production characterization, and vendor tests. Data evaluation, interpretation, and analysis are not included in this report, but will be discussed in the Task 7 report.

  20. Wind Turbine Blade Test Definition of the DeWind DW90 Rotor Blade: Cooperative Research and Development Final Report, CRADA Number CRD-09-326

    SciTech Connect (OSTI)

    Hughes, S.

    2012-05-01

    This CRADA was developed as a funds-in CRADA with DeWind to assess the suitability of facilities and equipment at the NWTC for performing certification blade testing on wind turbine blades made from advanced materials. DeWind produces a wind turbine blade which includes the use of high-strength and stiffness materials. NREL and DeWind had a mutual interest in defining the necessary facilities, equipment, and test methods for testing large wind turbine blades which incorporate advanced materials and adaptive structures, as the demands on test equipment and infrastructure are greater than current capabilities. Work under this CRADA would enable DeWind to verify domestic capability for certification-class static and fatigue testing, while NREL would be able to identify and develop specialized test capabilities based on the test requirements.

  1. Interim report spent nuclear fuel retrieval system fuel handling development testing

    SciTech Connect (OSTI)

    Ketner, G.L.; Meeuwsen, P.V.; Potter, J.D.; Smalley, J.T.; Baker, C.P.; Jaquish, W.R.

    1997-06-01

    Fuel handling development testing was performed in support of the Fuel Retrieval System (FRS) Sub-Project at the Hanford Site. The project will retrieve spent nuclear fuel, clean and remove fuel from canisters, repackage fuel into baskets, and load fuel into a multi-canister overpack (MCO) for vacuum drying and interim dry storage. The FRS is required to retrieve basin fuel canisters, clean fuel elements sufficiently of uranium corrosion products (or sludge), empty fuel from canisters, sort debris and scrap from whole elements, and repackage fuel in baskets in preparation for MCO loading. The purpose of fuel handling development testing was to examine the systems ability to accomplish mission activities, optimization of equipment layouts for initial process definition, identification of special needs/tools, verification of required design changes to support performance specification development, and validation of estimated activity times/throughput. The test program was set up to accomplish this purpose through cold development testing using simulated and prototype equipment; cold demonstration testing using vendor expertise and systems; and graphical computer modeling to confirm feasibility and throughput. To test the fuel handling process, a test mockup that represented the process table was fabricated and installed. The test mockup included a Schilling HV series manipulator that was prototypic of the Schilling Hydra manipulator. The process table mockup included the tipping station, sorting area, disassembly and inspection zones, fuel staging areas, and basket loading stations. The test results clearly indicate that the Schilling Hydra arm cannot effectively perform the fuel handling tasks required unless it is attached to some device that can impart vertical translation, azimuth rotation, and X-Y translation. Other test results indicate the importance of camera locations and capabilities, and of the jaw and end effector tool design. 5 refs., 35 figs., 3 tabs.

  2. HANFORD CONTAINERIZED CAST STONE FACILITY TASK 1 PROCESS TESTING & DEVELOPMENT FINAL TEST REPORT

    SciTech Connect (OSTI)

    LOCKREM, L L

    2005-07-13

    Laboratory testing and technical evaluation activities on Containerized Cast Stone (CCS) were conducted under the Scope of Work (SOW) contained in CH2M HILL Hanford Group, Inc. (CHG) Contract No. 18548 (CHG 2003a). This report presents the results of testing and demonstration activities discussed in SOW Section 3.1, Task I--''Process Development Testing'', and described in greater detail in the ''Containerized Grout--Phase I Testing and Demonstration Plan'' (CHG, 2003b). CHG (2003b) divided the CCS testing and evaluation activities into six categories, as follows: (1) A short set of tests with simulant to select a preferred dry reagent formulation (DRF), determine allowable liquid addition levels, and confirm the Part 2 test matrix. (2) Waste form performance testing on cast stone made from the preferred DRF and a backup DRF, as selected in Part I, and using low activity waste (LAW) simulant. (3) Waste form performance testing on cast stone made from the preferred DRF using radioactive LAW. (4) Waste form validation testing on a selected nominal cast stone formulation using the preferred DRF and LAW simulant. (5) Engineering evaluations of explosive/toxic gas evolution, including hydrogen, from the cast stone product. (6) Technetium ''getter'' testing with cast stone made with LAW simulant and with radioactive LAW. In addition, nitrate leaching observations were drawn from nitrate leachability data obtained in the course of the Parts 2 and 3 waste form performance testing. The nitrate leachability index results are presented along with other data from the applicable activity categories.

  3. Catalysis Capabilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Catalysis Research Areas Facilities and Equipment Intellectual Property Publications Staff Partnerships Licensing Sponsored Research Technical Services Technologist in Residence News Press Releases Feature Stories In the News Photos Videos Ombudsman Ombudsman Argonne National Laboratory Technology Development and Commercialization About Technologies Available for Licensing Capabilities Partnerships News Capabilities Catalysis Research Areas Facilities and Equipment Intellectual Property

  4. An Experimental Test Facility to Support Development of the Fluoride Salt Cooled High Temperature Reactor

    SciTech Connect (OSTI)

    Yoder Jr, Graydon L; Aaron, Adam M; Cunningham, Richard Burns; Fugate, David L; Holcomb, David Eugene; Kisner, Roger A; Peretz, Fred J; Robb, Kevin R; Wilgen, John B; Wilson, Dane F

    2014-01-01

    The need for high-temperature (greater than 600 C) energy exchange and delivery systems is significantly increasing as the world strives to improve energy efficiency and develop alternatives to petroleum-based fuels. Liquid fluoride salts are one of the few energy transport fluids that have the capability of operating at high temperatures in combination with low system pressures. The Fluoride Salt-Cooled High-Temperature Reactor design uses fluoride salt to remove core heat and interface with a power conversion system. Although a significant amount of experimentation has been performed with these salts, specific aspects of this reactor concept will require experimental confirmation during the development process. The experimental facility described here has been constructed to support the development of the Fluoride Salt Cooled High Temperature Reactor concept. The facility is capable of operating at up to 700 C and incorporates a centrifugal pump to circulate FLiNaK salt through a removable test section. A unique inductive heating technique is used to apply heat to the test section, allowing heat transfer testing to be performed. An air-cooled heat exchanger removes added heat. Supporting loop infrastructure includes a pressure control system; trace heating system; and a complement of instrumentation to measure salt flow, temperatures, and pressures around the loop. The initial experiment is aimed at measuring fluoride salt heat transfer inside a heated pebble bed similar to that used for the core of the pebble bed advanced high-temperature reactor. This document describes the details of the loop design, auxiliary systems used to support the facility, the inductive heating system, and facility capabilities.

  5. Development of Artificial Ash Accelerated Accumulation Test | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Artificial Ash Accelerated Accumulation Test Development of Artificial Ash Accelerated Accumulation Test Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. p-04_fujii.pdf (138.91 KB) More Documents & Publications Impact of Honeycomb Ceramics Geometrical Cell Design on Urea SCR System Controlled Experiments on the Effects of Lubricant/Additive (Low-Ash, Ashless) Characteristics on DPF

  6. DEVELOPMENT AND TESTING OF A PRE-PROTOTYPE RAMGEN ENGINE

    SciTech Connect (OSTI)

    Aaron Koopman

    2003-07-01

    The research and development effort of a new kind of compressor and engine is presented. The superior performance of these two products arises from the superior performance of rotating supersonic shock-wave compression. Several tasks were performed in compliance with the DOE award objectives. A High Risk Technology review was conducted and evaluated by a team of 20 senior engineers and scientists representing various branches of the federal government. The conceptual design of a compression test rig, test rotors, and test cell adaptor was completed. The work conducted lays the foundation for the completed design and testing of the compression test rig, and the design of a supersonic shock-wave compressor matched to a conventional combustor and turbine.

  7. Leveraging National Lab Capabilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2/13/2015 eere.energy.gov Fuel Cell Seminar & Energy Exposition Los Angeles, California November 11, 2014 Leveraging National Lab Capabilities Dr. Sunita Satyapal, Director Chris Ainscough, P.E., NREL Fuel Cell Technologies Office U.S. Department of Energy 2 | Fuel Cell Technologies Office Source: US DOE 2/13/2015 eere.energy.gov All-of-the-Above Energy Strategy "We've got to invest in a serious, sustained, all-of-the-above energy strategy that develops every resource available for the

  8. Capabilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Staff Directory About HEP at Work Career Opportunities Staff Directory Argonne National Laboratory High Energy Physics Research Facilities Capabilities Initiatives Publications News & Events Capabilities Electronics Design and Fabrication High Performance Computing Mechanical Engineering Monte Carlo Simulations Capabilities Argonne's High Energy Physics division maintains a number of key capabilities to augment the research capacities of scientists at Argonne and throughout the high-energy

  9. Development and testing of the Perseus proof-of-concept aircraft. Final report

    SciTech Connect (OSTI)

    Langford, J.S.

    1993-02-26

    Many areas of global climate change research could benefit from a flexible, affordable, and near-term platform that could provide in situ measurements in the upper troposphere and lower stratosphere. To provide such a capability, the Perseus unmanned science research aircraft was proposed in 1989. As a first step toward the development of Perseus, a proof-of-concept (POC) demonstrator was constructed and tested during 1990 and 1991. The POC was a full scale Perseus airframe intended to validate the structural, aerodynamic, and flight control technologies for the Perseus within a total budget of about $1.5 million. Advanced propulsion systems needed for the operational Perseus were not covered in the POC program due to funding limitations. This report documents the design, development, and testing of the Perseus POC.

  10. Statement of Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Statement of Capabilities Statement of Capabilities World-class experts and capabilities countering all aspects of explosive threats, and aiming predominantly at enhanced detection capabilities. What is a SOC Letter? A nonbinding letter, a SOC is written by LACED to a requesting organization. The SOC describes a unique capability or service available from LACED on a non-exclusive basis. A SOC letter is not an endorsement of the requester and does not constitute a guarantee that LACED will

  11. Developing of the large-bore powder gun for the Nevada test site

    SciTech Connect (OSTI)

    Jensen, Brian J; Esparza, James S

    2009-01-01

    Plate-impact experiments on single stage guns provide very planar loading conditions suitable for studying complex phenomena such as phase transitions and material strength, and provide important data useful for constraining and validating predictive models. The objective of the current work was to develop a large-bore (3.5-inches or greater) powder gun capable of accelerating projectiles to moderately high velocities (greater than 2.25 km/s) for impact experiments at Nevada Test Site. This gun will span a performance gap between existing gun facilities and provide a means of examining phenomena over a wide range of stresses and time-scales. Advantages of the large-bore gun include the capability to load multiple samples simultaneously, the use of large diameter samples that significantly extend the time duration of the experiment, and minimal tilt (no bow). This new capability required the development of a disposable confinement system that used an explosively driven closure method to prevent contamination from moving up into the gun system. Experimental results for both the gun system and the explosive valve are presented.

  12. DEVELOPMENT OF THE LARGE-BORE POWDER GUN FOR THE NEVADA TEST SITE

    SciTech Connect (OSTI)

    Jensen, B.J.; Esparza, J.

    2009-12-28

    Plate-impact experiments on single stage guns provide very planar loading conditions suitable for studying complex phenomena such as phase transitions and material strength, and provide important data useful for constraining and validating predictive models. The objective of the current work was to develop a large-bore (3.5'' or greater) powder gun capable of accelerating projectiles to moderately high velocities (greater than 2.25 km/s) for impact experiments at Nevada Test Site. This gun will span a performance gap between existing gun facilities and provide a means of examining phenomena over a wide range of stresses and time-scales. Advantages of the large-bore gun include the capability to load multiple samples simultaneously, the use of large diameter samples that significantly extend the time duration of the experiment, and minimal tilt (no bow). This new capability required the development of a disposable confinement system that used an explosively driven closure method to prevent contamination from moving up into the gun system. Experimental results for both the gun system and the explosive valve are presented.

  13. Exploratory battery technology development and testing report for 1989

    SciTech Connect (OSTI)

    Magnani, N.J.; Diegle, R.B.; Braithwaite, J.W.; Bush, D.M.; Freese, J.M.; Akhil, A.A.; Lott, S.E.

    1990-12-01

    Sandia National Laboratories, Albuquerque, has been designated as Lead Center for the Exploratory Battery Technology Development and Testing Project, which is sponsored by the US Department of Energy's Office of Energy Storage and Distribution. In this capacity, Sandia is responsible for the engineering development of advanced rechargeable batteries for both mobile and stationary energy storage applications. This report details the technical achievements realized in pursuit of the Lead Center's goals during calendar year 1989. 4 refs., 84 figs., 18 tabs.

  14. Overview of PNGV Battery Development and Test Programs

    SciTech Connect (OSTI)

    Motloch, Chester George; Murphy, Timothy Collins; Sutula, Raymond; Miller, Ted J.

    2002-02-01

    Affordable, safe, long-lasting, high-power batteries are requisites for successful commercialization of hybrid electric vehicles. The U.S. Department of Energy’s Office of Advance Automotive Technologies and the Partnership for a New Generation of Vehicles are funding research and development programs to address each of these issues. An overview of these areas is presented along with a summary of battery development and test programs, as well as recent performance data from several of these programs.

  15. Blade Testing Trends (Presentation)

    SciTech Connect (OSTI)

    Desmond, M.

    2014-08-01

    As an invited guest speaker, Michael Desmond presented on NREL's NWTC structural testing methods and capabilities at the 2014 Sandia Blade Workshop held on August 26-28, 2014 in Albuquerque, NM. Although dynamometer and field testing capabilities were mentioned, the presentation focused primarily on wind turbine blade testing, including descriptions and capabilities for accredited certification testing, historical methodology and technology deployment, and current research and development activities.

  16. National RF Test Facility as a multipurpose development tool

    SciTech Connect (OSTI)

    McManamy, T.J.; Becraft, W.R.; Berry, L.A.; Blue, C.W.; Gardner, W.L.; Haselton, H.H.; Hoffman, D.J.; Loring, C.M. Jr.; Moeller, F.A.; Ponte, N.S.

    1983-01-01

    Additions and modifications to the National RF Test Facility design have been made that (1) focus its use for technology development for future large systems in the ion cyclotron range of frequencies (ICRF), (2) expand its applicability to technology development in the electron cyclotron range of frequencies (ECRF) at 60 GHz, (3) provide a facility for ELMO Bumpy Torus (EBT) 60-GHz ring physics studies, and (4) permit engineering studies of steady-state plasma systems, including superconducting magnet performance, vacuum vessel heat flux removal, and microwave protection. The facility will continue to function as a test bed for generic technology developments for ICRF and the lower hybrid range of frequencies (LHRF). The upgraded facility is also suitable for mirror halo physics experiments.

  17. THE PRODUCT CONSISTENCY TEST HOW AND WHY IT WAS DEVELOPED

    SciTech Connect (OSTI)

    Jantzen, C; Ned Bibler, N

    2008-12-15

    The Product Consistency Test (PCT), American Society for Testing Materials (ASTM) Standard C1285, is currently used world wide for testing glass and glass-ceramic waste forms for high level waste (HLW), low level waste (LLW), and hazardous wastes. Development of the PCT was initiated in 1986 because HLW glass waste forms required extensive characterization before actual production began and required continued characterization during production ({ge}25 years). Non-radioactive startup was in 1994 and radioactive startup was in 1996. The PCT underwent extensive development from 1986-1994 and became an ASTM consensus standard in 1994. During the extensive laboratory testing and inter- and intra-laboratory round robins using non-radioactive and radioactive glasses, the PCT was shown to be very reproducible, to yield reliable results rapidly, to distinguish between glasses of different durability and homogeneity, and to easily be performed in shielded cell facilities with radioactive samples. In 1997, the scope was broadened to include hazardous and mixed (radioactive and hazardous) waste glasses. In 2002, the scope was broadened to include glass-ceramic waste forms which are currently being recommended for second generation nuclear wastes yet to be generated in the nuclear renaissance. Since the PCT has proven useful for glass-ceramics with up to 75% ceramic component and has been used to evaluate Pu ceramic waste forms, the use of this test for other ceramic/mineral waste forms such as geopolymers, hydroceramics, and fluidized bed steam reformer mineralized product is under investigation.

  18. Sandia National Laboratories: Other Facilities and Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Other Facilities and Capabilities High Voltage Breakdown Testing We can perform high voltage standoff testing with DC and pulsed voltages. DC testing can be conducted up to 200 kV....

  19. Federal Technical Capability Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-05-18

    Provides requirements and responsibilities to ensure recruitment and hiring of technically capable personnel to retain critical technical capabilities within the Department at all times. Cancels DOE M 426.1-1. Canceled by DOE O 426.1.

  20. Capabilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities To learn about CNM instruments and capabilities, please click on the group names in the left navigation bar. Access to capabilities, tools, and facilities is provided through a peer-reviewed proposal submission process. Although individual capabilities are managed by one of the specific groups, all of them can be used across the CNM scientific portfolio and requested in a user proposal. Before submitting a proposal for access, prospective users are encouraged to contact staff

  1. Power Systems Development Facility Gasification Test Campaing TC18

    SciTech Connect (OSTI)

    Southern Company Services

    2005-08-31

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device (PCD), advanced syngas cleanup systems, and high pressure solids handling systems. This report details Test Campaign TC18 of the PSDF gasification process. Test campaign TC18 began on June 23, 2005, and ended on August 22, 2005, with the gasifier train accumulating 1,342 hours of operation using Powder River Basin (PRB) subbituminous coal. Some of the testing conducted included commissioning of a new recycle syngas compressor for gasifier aeration, evaluation of PCD filter elements and failsafes, testing of gas cleanup technologies, and further evaluation of solids handling equipment. At the conclusion of TC18, the PSDF gasification process had been operated for more than 7,750 hours.

  2. Hydrologic Modeling Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Understanding complex hydrologic systems requires the ability to develop, utilize, and interpret both numerical and analytical models. The Defense Waste Management Programs has both experience and technical knowledge to use and develop Earth systems models. Hydrological Modeling Models are simplified representations of reality, which we accept do not capture every detail of reality. Mathematical and numerical models can be used to rigorously test geologic and hydrologic assumptions, determine

  3. Planetary formation theory developed, tested: predicts timeline for life

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Planetary formation theory developed, tested: predicts timeline for life After the Big Bang: Theory suggests first planets formed after first generations of stars The researchers' calculations predict properties of first planet and timeline for life. May 3, 2012 image description The researchers state that the formation of Earth-like planets is not itself a sufficient prerequisite for life. Early galaxies contained strong sources of life-threatening radiation, such as supernovae and black holes.

  4. Federal laboratory nondestructive testing research and development applicable to industry

    SciTech Connect (OSTI)

    Smith, S.A.; Moore, N.L.

    1987-02-01

    This document presents the results of a survey of nondestructive testing (NDT) and related sensor technology research and development (R and D) at selected federal laboratories. Objective was to identify and characterize NDT activities that could be applied to improving energy efficiency and overall productivity in US manufacturing. Numerous federally supported R and D programs were identified in areas such as acoustic emissions, eddy current, radiography, computer tomography and ultrasonics. A Preliminary Findings Report was sent to industry representatives, which generated considerable interest.

  5. Bell Canyon Test (BCT) cement grout development report

    SciTech Connect (OSTI)

    Gulick, C.W. Jr.; Boa, J.A. Jr.; Buck, A.D.

    1980-12-01

    Development of the cement grout for the Bell Canyon Test was accomplished at the US Army Engineer Waterways Experiment Station (WES), Vicksburg, Mississippi. Initial development work centered on a saltwater grout with Class H cement, fly ash, and an expansive additive. Testing of the saltwater grout showed suitable properties except for the interface between anhydrite rock and grout in small core samples. Higher than expected permeability occurred at the interface because of space between the grout and the anhydrite; the space was produced as a result of allowing the specimens to dry. A change to freshwater grout and proper care to prevent the specimens from drying alleviated this condition. The BCT-1FF freshwater grout mixture was used in both the plug ONE and ONEX field grouting operations. Testing of the development grout mixtures was also done at Dowell, Pennsylvania State University, and Oak Ridge National Laboratory. Results of the testing and evaluation by the four laboratories are included in the report. Field batching, mixing, and placement of the grout at the plug locations for both plug ONE and ONEX were satisfactory with adequate quality control. The freshwater grout mixture maintained adequate flow characteristics for pumpability for 3 1/2 h during each of the two field operations. Physical property and expansivity data for the field samples through 90 days' age are in general agreement with laboratory development data. A large number of samples were obtained for inclusion in the long-term durability studies and the geochemical programs. The high-density, low water-cement ratio expansive grout (BCT-1FF) is considered to be an excellent candidate for plugging boreholes at most locations (except through halite sections).

  6. OPSAID improvements and capabilities report.

    SciTech Connect (OSTI)

    Halbgewachs, Ronald D.; Chavez, Adrian R.

    2011-08-01

    Process Control System (PCS) and Industrial Control System (ICS) security is critical to our national security. But there are a number of technological, economic, and educational impediments to PCS owners implementing effective security on their systems. Sandia National Laboratories has performed the research and development of the OPSAID (Open PCS Security Architecture for Interoperable Design), a project sponsored by the US Department of Energy Office of Electricity Delivery and Energy Reliability (DOE/OE), to address this issue. OPSAID is an open-source architecture for PCS/ICS security that provides a design basis for vendors to build add-on security devices for legacy systems, while providing a path forward for the development of inherently-secure PCS elements in the future. Using standardized hardware, a proof-of-concept prototype system was also developed. This report describes the improvements and capabilities that have been added to OPSAID since an initial report was released. Testing and validation of this architecture has been conducted in another project, Lemnos Interoperable Security Project, sponsored by DOE/OE and managed by the National Energy Technology Laboratory (NETL).

  7. Secondary Waste Simulant Development for Cast Stone Formulation Testing

    SciTech Connect (OSTI)

    Russell, Renee L.; Westsik, Joseph H.; Rinehart, Donald E.; Swanberg, David J.; Mahoney, J.

    2015-04-01

    Washington River Protection Solutions, LLC (WRPS) funded Pacific Northwest National Laboratory (PNNL) to conduct a waste form testing program to implement aspects of the Secondary Liquid Waste Treatment Cast Stone Technology Development Plan (Ashley 2012) and the Hanford Site Secondary Waste Roadmap (PNNL 2009) related to the development and qualification of Cast Stone as a potential waste form for the solidification of aqueous wastes from the Hanford Site after the aqueous wastes are treated at the Effluent Treatment Facility (ETF). The current baseline is that the resultant Cast Stone (or grout) solid waste forms would be disposed at the Integrated Disposal Facility (IDF). Data and results of this testing program will be used in the upcoming performance assessment of the IDF and in the design and operation of a solidification treatment unit planned to be added to the ETF. The purpose of the work described in this report is to 1) develop simulants for the waste streams that are currently being fed and future WTP secondary waste streams also to be fed into the ETF and 2) prepare simulants to use for preparation of grout or Cast Stone solid waste forms for testing.

  8. NREL: Water Power Research - Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities NREL supports the development of marine and hydrokinetic technologies and hydropower R&D through the U.S. Department of Energy's Water Power Program. Our activities span a wide spectrum of disciplines, including fluid mechanics; dynamics, structures, and fatigue; power systems and electronics; resource assessment and mapping; economic analysis; and grid interconnection. Read more about NREL's water power R&D capabilities: Design Review and Analysis Device and Component

  9. Power Systems Development Facility Gasification Test Campaign TC25

    SciTech Connect (OSTI)

    Southern Company Services

    2008-12-01

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of TC25, the second test campaign using a high moisture lignite coal from the Red Hills mine in Mississippi as the feedstock in the modified Transport Gasifier configuration. TC25 was conducted from July 4, 2008, through August 12, 2008. During TC25, the PSDF gasification process operated for 742 hours in air-blown gasification mode. Operation with the Mississippi lignite was significantly improved in TC25 compared to the previous test (TC22) with this fuel due to the addition of a fluid bed coal dryer. The new dryer was installed to dry coals with very high moisture contents for reliable coal feeding. The TC25 test campaign demonstrated steady operation with high carbon conversion and optimized performance of the coal handling and gasifier systems. Operation during TC25 provided the opportunity for further testing of instrumentation enhancements, hot gas filter materials, and advanced syngas cleanup technologies. The PSDF site was also made available for testing of the National Energy Technology Laboratory's fuel cell module and Media Process Technology's hydrogen selective membrane with syngas from the Transport Gasifier.

  10. Final project report: High energy rotor development, test and evaluation

    SciTech Connect (OSTI)

    1996-09-01

    Under the auspices of the {open_quotes}Government/Industry Wind Technology Applications Project{close_quotes} [{open_quotes}Letter of Interest{close_quotes} (LOI) Number RC-1-11101], Flo Wind Corp. has successfully developed, tested, and delivered a high-energy rotor upgrade candidate for their 19-meter Vertical Axis Wind Turbine. The project included the demonstration of the innovative extended height-to-diameter ratio concept, the development of a continuous span single-piece composite blade, the demonstration of a continuous blade manufacturing technique, the utilization of the Sandia National Laboratories developed SNLA 2150 natural laminar flow airfoil and the reuse of existing wind turbine and wind power plant infrastructure.

  11. Power Systems Development Facility Gasification Test Campaign TC24

    SciTech Connect (OSTI)

    Southern Company Services

    2008-03-30

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of TC24, the first test campaign using a bituminous coal as the feedstock in the modified Transport Gasifier configuration. TC24 was conducted from February 16, 2008, through March 19, 2008. The PSDF gasification process operated for about 230 hours in air-blown gasification mode with about 225 tons of Utah bituminous coal feed. Operational challenges in gasifier operation were related to particle agglomeration, a large percentage of oversize coal particles, low overall gasifier solids collection efficiency, and refractory degradation in the gasifier solids collection unit. The carbon conversion and syngas heating values varied widely, with low values obtained during periods of low gasifier operating temperature. Despite the operating difficulties, several periods of steady state operation were achieved, which provided useful data for future testing. TC24 operation afforded the opportunity for testing of various types of technologies, including dry coal feeding with a developmental feeder, the Pressure Decoupled Advanced Coal (PDAC) feeder; evaluating a new hot gas filter element media configuration; and enhancing syngas cleanup with water-gas shift catalysts. During TC24, the PSDF site was also made available for testing of the National Energy Technology Laboratory's fuel cell module and Media Process Technology's hydrogen selective membrane.

  12. Letter Report: LAW Simulant Development for Cast Stone Screening Test

    SciTech Connect (OSTI)

    Russell, Renee L.; Westsik, Joseph H.; Swanberg, David J.; Eibling, Russell E.; Cozzi, Alex; Lindberg, Michael J.; Josephson, Gary B.; Rinehart, Donald E.

    2013-03-27

    testing program was developed in fiscal year (FY) 2012 describing in some detail the work needed to develop and qualify Cast Stone as a waste form for the solidification of Hanford LAW (Westsik et al. 2012). Included within Westsik et al. (2012) is a section on the near-term needs to address Tri-Party Agreement Milestone M-062-40ZZ. The objectives of the testing program to be conducted in FY 2013 and FY 2014 are to: • Determine an acceptable formulation for the LAW Cast Stone waste form. • Evaluate sources of dry materials for preparing the LAW Cast Stone. • Demonstrate the robustness of the Cast Stone waste form for a range of LAW compositions. • Demonstrate the robustness of the formulation for variability in the Cast Stone process. • Provide Cast Stone contaminant release data for PA and risk assessment evaluations. The first step in determining an acceptable formulation for the LAW Cast Stone waste form is to conduct screening tests to examine expected ranges in pretreated LAW composition, waste stream concentrations, dry-materials sources, and mix ratios of waste feed to dry blend. A statistically designed test matrix will be used to evaluate the effects of these key parameters on the properties of the Cast Stone as it is initially prepared and after curing. The second phase of testing will focus on selection of a baseline Cast Stone formulation for LAW and demonstrating that Cast Stone can meet expected waste form requirements for disposal in the IDF. It is expected that this testing will use the results of the screening tests to define a smaller suite of tests to refine the composition of the baseline Cast Stone formulation (e.g. waste concentration, water to dry mix ratio, waste loading).

  13. Science & Engineering Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities Science & Engineering Capabilities These capabilities are our science and engineering at work for the national security interest in areas from global climate to cyber security, from nonproliferation to new materials, from clean energy solutions to supercomputing. Accelerators, Electrodynamics» Energy» Materials Science» Bioscience: Bioenergy, Biosecurity, and Health» Engineering» National Security, Weapons Science» Chemical Science» High-Energy-Density Plasmas, Fluids»

  14. Capabilities: Science Pillars

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pillars Capabilities: Science Pillars The Lab's four Science Pillars harness our scientific capabilities for national security solutions. What are the Los Alamos National Laboratory's Science Pillars? The Laboratory has established the Science Pillars under four main themes to bring together the Laboratory's diverse array of scientific capabilities and expertise: Information, Science, and Technology Pillar Materials for the Future Pillar Nuclear and Particle Futures Pillar Science of Signatures

  15. NREL: Biomass Research - Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is then separated, purified, and recovered for use as a transportation fuel. NREL biomass researchers and scientists have strong capabilities in many facets of biomass...

  16. Postdoc capability awareness AOT

    SciTech Connect (OSTI)

    Erickson, John L.

    2015-12-18

    This is a summary of the LANL accelerator operations and technology division prepared for the postdoc programmatic capability awareness workshop in engineering and applied sciences.

  17. Reactor Pressure Vessel Fracture Analysis Capabilities in Grizzly

    SciTech Connect (OSTI)

    Spencer, Benjamin; Backman, Marie; Chakraborty, Pritam; Hoffman, William

    2015-03-01

    Efforts have been underway to develop fracture mechanics capabilities in the Grizzly code to enable it to be used to perform deterministic fracture assessments of degraded reactor pressure vessels (RPVs). Development in prior years has resulted a capability to calculate -integrals. For this application, these are used to calculate stress intensity factors for cracks to be used in deterministic linear elastic fracture mechanics (LEFM) assessments of fracture in degraded RPVs. The -integral can only be used to evaluate stress intensity factors for axis-aligned flaws because it can only be used to obtain the stress intensity factor for pure Mode I loading. Off-axis flaws will be subjected to mixed-mode loading. For this reason, work has continued to expand the set of fracture mechanics capabilities to permit it to evaluate off-axis flaws. This report documents the following work to enhance Grizzly’s engineering fracture mechanics capabilities for RPVs: • Interaction Integral and -stress: To obtain mixed-mode stress intensity factors, a capability to evaluate interaction integrals for 2D or 3D flaws has been developed. A -stress evaluation capability has been developed to evaluate the constraint at crack tips in 2D or 3D. Initial verification testing of these capabilities is documented here. • Benchmarking for axis-aligned flaws: Grizzly’s capabilities to evaluate stress intensity factors for axis-aligned flaws have been benchmarked against calculations for the same conditions in FAVOR. • Off-axis flaw demonstration: The newly-developed interaction integral capabilities are demon- strated in an application to calculate the mixed-mode stress intensity factors for off-axis flaws. • Other code enhancements: Other enhancements to the thermomechanics capabilities that relate to the solution of the engineering RPV fracture problem are documented here.

  18. Wind Program Announces $2 Million to Develop and Field Test Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Announces 2 Million to Develop and Field Test Wind Energy Bat Impact Minimization Technologies Wind Program Announces 2 Million to Develop and Field Test Wind Energy Bat Impact ...

  19. Progress in Developing Finite Element Models Replicating Flexural Graphite Testing

    SciTech Connect (OSTI)

    Robert Bratton

    2010-06-01

    This report documents the status of flexural strength evaluations from current ASTM procedures and of developing finite element models predicting the probability of failure. This work is covered under QLD REC-00030. Flexural testing procedures of the American Society for Testing and Materials (ASTM) assume a linear elastic material that has the same moduli for tension and compression. Contrary to this assumption, graphite is known to have different moduli for tension and compression. A finite element model was developed and demonstrated that accounts for the difference in moduli tension and compression. Brittle materials such as graphite exhibit significant scatter in tensile strength, so probabilistic design approaches must be used when designing components fabricated from brittle materials. ASTM procedures predicting probability of failure in ceramics were compared to methods from the current version of the ASME graphite core components rules predicting probability of failure. Using the ASTM procedures yields failure curves at lower applied forces than the ASME rules. A journal paper was published in the Journal of Nuclear Engineering and Design exploring the statistical models of fracture in graphite.

  20. The Nevada Test Site Development Corporations

    National Nuclear Security Administration (NNSA)

    Conditional Approval Letter Notice of acceptance issued by NNSANV following evaluation of customer's Test Plan, Safety Assessment Document and Test Management summary. 16 17 18 19 ...

  1. Assessment, development, and testing of glass for blast environments.

    SciTech Connect (OSTI)

    Glass, Sarah Jill

    2003-06-01

    Glass can have lethal effects including fatalities and injuries when it breaks and then flies through the air under blast loading (''the glass problem''). One goal of this program was to assess the glass problem and solutions being pursued to mitigate it. One solution to the problem is the development of new glass technology that allows the strength and fragmentation to be controlled or selected depending on the blast performance specifications. For example the glass could be weak and fail, or it could be strong and survive, but it must perform reliably. Also, once it fails it should produce fragments of a controlled size. Under certain circumstances it may be beneficial to have very small fragments, in others it may be beneficial to have large fragments that stay together. The second goal of this program was to evaluate the performance (strength, reliability, and fragmentation) of Engineered Stress Profile (ESP) glass under different loading conditions. These included pseudo-static strength and pressure tests and free-field blast tests. The ultimate goal was to provide engineers and architects with a glass whose behavior under blast loading is less lethal. A near-term benefit is a new approach for improving the reliability of glass and modifying its fracture behavior.

  2. Sandia National Laboratories: Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities Alt text The PSL maintains measurement and calibration expertise in these areas: AC Electrical DC Electrical Electrical Flow and Humidity Acceleration and Shock Gas Leaks Length Mass and Force Mechanical Microwave Pressure Radiation Optics Temperature Vacuum

  3. Sierra/Fuego Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assessment of Existing Sierra/Fuego Capabilities Related to Grid-to-Rod Fretting (GTRF) Salvador Rodriguez and Daniel Z. Turner Sandia National Laboratory June 30, 2011 CASL-U-2011-0023-000-a SANDIA REPORT SAND2011-XXXX Unlimited Release Printed June 30, 2011 Assessment of existing Sierra/Fuego capabilities related to grid-to-rod-fretting (GTRF) Salvador B. Rodriguez and Daniel Z. Turner Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 Sandia

  4. Power Systems Development Facility Gasification Test Campaign TC22

    SciTech Connect (OSTI)

    Southern Company Services

    2008-11-01

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of TC22, the first test campaign using a high moisture lignite from Mississippi as the feedstock in the modified Transport Gasifier configuration. TC22 was conducted from March 24 to April 17, 2007. The gasification process was operated for 543 hours, increasing the total gasification operation at the PSDF to over 10,000 hours. The PSDF gasification process was operated in air-blown mode with a total of about 1,080 tons of coal. Coal feeder operation was challenging due to the high as-received moisture content of the lignite, but adjustments to the feeder operating parameters reduced the frequency of coal feeder trips. Gasifier operation was stable, and carbon conversions as high as 98.9 percent were demonstrated. Operation of the PCD and other support equipment such as the recycle gas compressor and ash removal systems operated reliably.

  5. Development of Onsite Transportation Safety Documents for Nevada Test Site

    SciTech Connect (OSTI)

    Frank Hand, Willard Thomas, Frank Sciacca, Manny Negrete, Susan Kelley

    2008-05-08

    Department of Energy (DOE) Orders require each DOE site to develop onsite transportation safety documents (OTSDs). The Nevada Test Site approach divided all onsite transfers into two groups with each group covered by a standalone OTSD identified as Non-Nuclear and Nuclear. The Non-Nuclear transfers involve all radioactive hazardous material in less than Hazard Category (HC)-3 quantities and all chemically hazardous materials. The Nuclear transfers involve all radioactive material equal to or greater than HC-3 quantities and radioactive material mated with high explosives regardless of quantity. Both OTSDs comply with DOE O 460.1B requirements. The Nuclear OTSD also complies with DOE O 461.1A requirements and includes a DOE-STD-3009 approach to hazard analysis (HA) and accident analysis as needed. All Nuclear OTSD proposed transfers were determined to be non-equivalent and a methodology was developed to determine if equivalent safety to a fully compliant Department of Transportation (DOT) transfer was achieved. For each HA scenario, three hypothetical transfers were evaluated: a DOT-compliant, uncontrolled, and controlled transfer. Equivalent safety is demonstrated when the risk level for each controlled transfer is equal to or less than the corresponding DOT-compliant transfer risk level. In this comparison the typical DOE-STD-3009 risk matrix was modified to reflect transportation requirements. Design basis conditions (DBCs) were developed for each non-equivalent transfer. Initial DBCs were based solely upon the amount of material present. Route-, transfer-, and site-specific conditions were evaluated and the initial DBCs revised as needed. Final DBCs were evaluated for each transfers packaging and its contents.

  6. Accelerator and electrodynamics capability review

    SciTech Connect (OSTI)

    Jones, Kevin W

    2010-01-01

    Los Alamos National Laboratory (LANL) uses capability reviews to assess the science, technology and engineering (STE) quality and institutional integration and to advise Laboratory Management on the current and future health of the STE. Capability reviews address the STE integration that LANL uses to meet mission requirements. The Capability Review Committees serve a dual role of providing assessment of the Laboratory's technical contributions and integration towards its missions and providing advice to Laboratory Management. The assessments and advice are documented in reports prepared by the Capability Review Committees that are delivered to the Director and to the Principal Associate Director for Science, Technology and Engineering (PADSTE). Laboratory Management will use this report for STE assessment and planning. LANL has defined fifteen STE capabilities. Electrodynamics and Accelerators is one of the seven STE capabilities that LANL Management (Director, PADSTE, technical Associate Directors) has identified for review in Fiscal Year (FY) 2010. Accelerators and electrodynamics at LANL comprise a blend of large-scale facilities and innovative small-scale research with a growing focus on national security applications. This review is organized into five topical areas: (1) Free Electron Lasers; (2) Linear Accelerator Science and Technology; (3) Advanced Electromagnetics; (4) Next Generation Accelerator Concepts; and (5) National Security Accelerator Applications. The focus is on innovative technology with an emphasis on applications relevant to Laboratory mission. The role of Laboratory Directed Research and Development (LDRD) in support of accelerators/electrodynamics will be discussed. The review provides an opportunity for interaction with early career staff. Program sponsors and customers will provide their input on the value of the accelerator and electrodynamics capability to the Laboratory mission.

  7. NREL: Energy Systems Integration Facility - Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    research capabilities include: Systems integration Prototype and component development Manufacturing and material diagnostics High-performance computing and analytics. Photo of...

  8. ADVANCED SIMULATION CAPABILITY FOR ENVIRONMENTAL MANAGEMENT

    Office of Scientific and Technical Information (OSTI)

    Key words: Environmental management; Simulation; Model; ... (GS-3, GS-4). 5. Develop predictive capabilities to ... to queue systems that control access Usability ...

  9. Mobile Ocean Test Berth Support: Cooperative Research and Development Final Report, CRADA Number CRD-10-413

    SciTech Connect (OSTI)

    LiVecchi, Albert

    2015-12-01

    The Northwest National Marine Renewable Energy Center (NNMREC), headquartered at the Oregon State University, is establishing the capabilities to test prototype wave energy conversion devices in the ocean. This CRADA will leverage the technical expertise and resources at NREL in the wind industry and in ocean engineering to support and enhance the development of the NNMREC Mobile Ocean Test Berth (MOTB). This CRADA will provide direct support to NNMREC by providing design evaluation and review of the MOTB, developing effective protocols for testing of the MOTB and wave energy conversion devices in the ocean, assisting in the specification of appropriate instrumentation and data acquisition packages, and providing guidance on obtaining and maintaining A2LA (American Association for Laboratory Accreditation) accreditation.

  10. Testing and development strategy for the tank waste remediation system

    SciTech Connect (OSTI)

    Reddick, G.W.

    1995-05-10

    This document provides a strategy for performing radioactive (hot) and nonradioactive testing to support processing tank waste. It evaluates the need for hot pilot plant(s) to support pretreatment and other processing functions and presents a strategy for performing hot test work. A strategy also is provided for nonradioactive process and equipment testing. The testing strategy supports design, construction, startup, and operation of Tank Waste Remediation System (TWRS) facilities.

  11. Testing and development strategy for the tank waste remediation system

    SciTech Connect (OSTI)

    Reddick, G.W.

    1994-12-01

    This document provides a strategy for performing radioactive (hot) and nonradioactive testing to support processing tank waste. It evaluates the need for hot pilot plant(s) to support pretreatment and other processing functions and presents a strategy for performing hot test work. A strategy also is provided for nonradioactive process and equipment testing. The testing strategy supports design, construction, startup, and operation of Tank Waste Remediation System (TWRS) facilities.

  12. Testing of the KRI-developed Silicon PIN Radioxenon Detector

    SciTech Connect (OSTI)

    Foxe, Michael P.; McIntyre, Justin I.

    2015-01-23

    Radioxenon detectors are used for the verification of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) in a network of detectors throughout the world called the International Monitoring System (IMS). The Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) Provisional Technical Secretariat (PTS) has tasked Pacific Northwest National Laboratory (PNNL) with testing a V.G. Khlopin Radium Institute (KRI) and Lares Ltd-developed Silicon PIN detector for radioxenon detection. PNNL measured radioxenon with the silicon PIN detector and determined its potential compared to current plastic scintillator beta cells. While the PNNL tested Si detector experienced noise issues, a second detector was tested in Russia at Lares Ltd, which did not exhibit the noise issues. Without the noise issues, the Si detector produces much better energy resolution and isomer peak separation than a conventional plastic scintillator cell used in the SAUNA systems in the IMS. Under the assumption of 1 cm3 of Xe in laboratory-like conditions, 24-hr count time (12-hr count time for the SAUNA), with the respective shielding the minimum detectable concentrations for the Si detector tested by Lares Ltd (and a conventional SAUNA system) were calculated to be: 131mXe – 0.12 mBq/m3 (0.12 mBq/m3); 133Xe – 0.18 mBq/m3 (0.21 mBq/m3); 133mXe – 0.07 mBq/m3 (0.15 mBq/m3); 135Xe – 0.45 mBq/m3 (0.67 mBq/m3). Detection limits, which are one of the important factors in choosing the best detection technique for radioxenon in field conditions, are significantly better than for SAUNA-like detection systems for 131mXe and 133mXe, but similar for 133Xe and 135Xe. Another important factor is the amount of “memory effect” or carry over signal from one radioxenon measurement to the subsequent sample. The memory effect is

  13. Development of 3D Simulation Training and Testing for Home Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of 3D Simulation Training and Testing for Home Energy Score Assessor Candidates Development of 3D Simulation Training and Testing for Home Energy Score Assessor Candidates This ...

  14. Advanced Simulation Capability for Environmental Management (ASCEM) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Advanced Simulation Capability for Environmental Management (ASCEM) Advanced Simulation Capability for Environmental Management (ASCEM) Advanced Simulation Capability for Environmental Management (ASCEM) ASCEM is being developed to provide a tool and approach to facilitate robust and standardized development of performance and risk assessments for cleanup and closure activities throughout the EM complex. The ASCEM team is composed of scientists from eight National

  15. Development of a Test Technique to Determine the Thermal Conductivity...

    Office of Scientific and Technical Information (OSTI)

    Tests have been performed to validate the method and preliminary results are presented in this paper. Authors: Hemrick, James Gordon 1 ; Dinwiddie, Ralph Barton 1 ; Loveland, ...

  16. Hot-Gas Filter Testing with a Transport Reactor Development Unit

    SciTech Connect (OSTI)

    Swanson, M.L.; Ness, R.O., Jr.

    1996-12-31

    The objective of the hot-gas cleanup (HGC) work on the transport reactor demonstration unit (TRDU) located at the Environmental Research Center is to demonstrate acceptable performance of hot-gas filter elements in a pilot-scale system prior to long-term demonstration tests. The primary focus of the experimental effort in the 2-year project will be the testing of hot- gas filter elements as a function of particulate collection efficiency, filter pressure differential, filter cleanability, and durability during relatively short-term operation (100-200 hours). A filter vessel will be used in combination with the TRDU to evaluate the performance of selected hot- gas filter elements under gasification operating conditions. This work will directly support the Power Systems Development Facility utilizing the M.W. Kellogg transport reactor located at Wilsonville, Alabama and indirectly the Foster Wheeler advanced pressurized fluid-bed combustor, also located at Wilsonville and the Clean Coal IV Pinon Pine IGCC Power Project. This program has a phased approach involving modification and upgrades to the TRDU and the fabrication, assembly, and operation of a hot-gas filter vessel (HGFV) capable of operating at the outlet design conditions of the TRDU. Phase 1 upgraded the TRDU based upon past operating experiences. Additions included a nitrogen supply system upgrade, upgraded LASH auger and 1807 coal feed lines, the addition of a second pressurized coal feed hopper and a dipleg ash hopper, and modifications to spoil the performance of the primary cyclone. Phase 2 included the HGFV design, procurement, and installation. Phases 3 through 5 consist of 200-hour hot-gas filter tests under gasification conditions using the TRDU at temperatures of 540-650{degrees}C (1000-1200{degrees}F), 9.3 bar, and face velocities of 1.4, 2. and 3.8 cm/s, respectively. The increased face velocities are achieved by removing candles between each test.

  17. The Development of Low-Level Measurement Capabilities for Total and Isotopic Uranium in Environmental Samples at Brazilian and Argentine Laboratories by ABACC

    SciTech Connect (OSTI)

    Guidicini, Olga M.; Olsen, Khris B.; Hembree, Doyle M.; Carter, Joel A.; Whitaker, Michael; Hayes, Susan M.

    2005-07-01

    In June 1998, the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC), with assistance from the U.S. Department of Energy (DOE), began a program to assess environmental sampling and analysis capabilities at laboratories in Argentina and Brazil. The program began with staff training conducted in South America and the United States by Oak Ridge National Laboratory (ORNL) and Pacific Northwest National Laboratory (PNNL). Both laboratories are participating members of DOE’s Network of Analytical Laboratories (NWAL) that support IAEA’s environmental sampling program. During the initial planning meeting, representatives from ABACC and all the participating analytical laboratories supporting ABACC were briefed on how the first exercise would be managed and on key aspects necessary to analyze low-level environmental samples for uranium. Subsequent to this training, a laboratory evaluation exercise (Exercise 1) was conducted using standard swipe samples prepared for this exercise by the International Atomic Energy Agency (IAEA). The results of Exercise 1 determined that sample contamination was a major factor in the analysis, and a thorough review of laboratory procedures was required to reduce the level of contamination to acceptable levels. Following modification of sample preparation procedures, the laboratories performed Exercise 2, an analysis of a National Institute of Standards and Technology (NIST) Standard Reference Material (SRM) 1547, Peach Leaves. The results of Exercise 2 demonstrated that several laboratories were capable of accurately determining the total uranium and uranium isotopic distribution in the peach leaves. To build on these successes, Exercise 3 was performed using a series of standard swipe samples prepared by the IAEA and distributed to laboratories supporting ABACC and to PNNL and ORNL. The results of Exercise 3 demonstrate that ABACC now has support laboratories in both Argentina and Brazil, which are capable

  18. Final Technical Report: Electromagnetic Pump Insulation Materials Development and Testing (PLM-DOC-0005-2465) Report # DOEGEHB00613

    SciTech Connect (OSTI)

    Krahn, John; Reed, Claude; Loewen, Eric

    2015-10-29

    Final Technical Report: Electromagnetic Pump Insulation Materials Development and Testing (Report # DOEGEHB00613) summarizes the information gathered from the analysis of the 160 m3/min EM Pump insulation that was tested in 2000-2002 and additional evaluations of new resilient, engineered insulation system evaluated and tested at both GRC and ANL. This report provides information on Tasks 1 and 2 of the entire project. This report also provides information in three broad areas: Historical and current data; Conclusions based on test data; and Insulation specifications for use in EM Pumps. The research for Task 2 builds upon Task 1: Update EM Pump Databank, which is summarized within this report. Where research for Task 3 and 4 Next-Generation EM Pump Analysis Tools identified parameters or analysis model that benefits Task 2 research, those items are noted within this report. The important design variables for the manufacture and operation of an EM Pump that the insulation research can evaluate are: space constraints; voltage capability of insulation system; maximum flux density through iron; flow rate and outlet pressure; efficiency and manufacturability. The development summary of the Electromagnetic Pump Insulation Materials Development and Testing was completed to include: Historical and current data; Conclusions based on test data; and Insulation specifications for use in EM Pumps.

  19. Sandia National Laboratories: Fabrication, Testing and Validation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities Microsystems Science & Technology Center Rad-Hard and Trusted Systems Fabrication, Testing and Validation Capabilities RF & Photonics Quantum Systems Sensors MicroElectroMechanical Systems (MEMS) Power Electronics IPIMI Facebook Twitter YouTube Flickr RSS Microsystems Science & Technology Center Fabrication, Testing and Validation Capabilities Fabrication, Testing and Validation Capabilities The MESAFab complex develops and maintains core semiconductor processing

  20. X-Ray Tools for Battery Development and Testing: Case Studies...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Tools for Battery Development and Testing: Case Studies Case studies of the use of X-ray techniques for battery development and testing at the Advanced Photon Source PDF icon...

  1. Nevada Test Site-Directed Research and Development FY 2010 Annual...

    Office of Scientific and Technical Information (OSTI)

    Nevada Test Site-Directed Research and Development FY 2010 Annual Report Citation Details In-Document Search Title: Nevada Test Site-Directed Research and Development FY 2010 ...

  2. CoolCab Test and Evaluation and CoolCalc HVAC Tool Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Test and Evaluation and CoolCalc HVAC Tool Development CoolCab Test and Evaluation and CoolCalc HVAC Tool Development 2013 DOE Hydrogen and Fuel Cells Program and Vehicle ...

  3. Creating an EPICS Based Test Stand Development System for a BPM Digitizer of the Linac Coherent Light Source

    SciTech Connect (OSTI)

    Not Available

    2011-06-22

    The Linac Coherent Light Source (LCLS) is required to deliver a high quality electron beam for producing coherent X-rays. As a result, high resolution beam position monitoring is required. The Beam Position Monitor (BPM) digitizer acquires analog signals from the beam line and digitizes them to obtain beam position data. Although Matlab is currently being used to test the BPM digitizer?s functions and capability, the Controls Department at SLAC prefers to use Experimental Physics and Industrial Control Systems (EPICS). This paper discusses the transition of providing similar as well as enhanced functionalities, than those offered by Matlab, to test the digitizer. Altogether, the improved test stand development system can perform mathematical and statistical calculations with the waveform signals acquired from the digitizer and compute the fast Fourier transform (FFT) of the signals. Finally, logging of meaningful data into files has been added.

  4. Concept Testing and Development at the Raft River Geothermal Field, Idaho |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Concept Testing and Development at the Raft River Geothermal Field, Idaho Concept Testing and Development at the Raft River Geothermal Field, Idaho Concept Testing and Development at the Raft River Geothermal Field, Idaho presentation at the April 2013 peer review meeting held in Denver, Colorado. raft_river_peer2013.pdf (3.68 MB) More Documents & Publications Concept Testing and Development at the Raft River Geothermal Field, Idaho track 4: enhanced geothermal

  5. FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING, AND COST DATA FOR MERCURY CONTROL SYSTEMS

    SciTech Connect (OSTI)

    Michael D. Durham

    2003-05-01

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000--2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES has developed a portable system that will be tested at four different utility power plants. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as activated carbon, which removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG&E National Energy Group is providing two test sites that fire bituminous coals and both are equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin (PRB) coal and has an electrostatic

  6. Capabilities | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The instrument will also machine sample for chemical, electronic, and mechanical testing. ... collection and precise selection of SE and BSE signals even at low landing energies. ...

  7. Concept Testing and Development at the Raft River Geothermal...

    Broader source: Energy.gov (indexed) [DOE]

    Development at the Raft River Geothermal Field, Idaho presentation at the April 2013 peer review meeting held in Denver, Colorado. raftriverpeer2013.pdf More Documents &...

  8. Zeroing and testing units developed for Gerdien atmospheric ion detectors

    SciTech Connect (OSTI)

    Kolarz, P.; Marinkovic, B.P.; Filipovic, D.M.

    2005-04-01

    Low current measurements in atmospheric ion detection using a Gerdien condenser are subjected to numerous sources of error. Zeroing and testing units described in this article, connected as modules to this type of detector, enable some of these errors to be found and eliminated. The zeroing unit provides digital compensation of the zero drift with a digital sample and hold circuit of 12-bit resolution. It overcomes difficulties related to zero drift and techniques used in the zero conductivity determination when the accelerating potential or airflow rate are zero. The testing unit is a current reference of nominally 10{sup -12} A intended for testing and correcting the system on current leakage and other measuring deviations due to changes in atmospheric parameters. This unit is an independent battery-powered module, which provides a charge of 10{sup -12} C per cycle (frequency of order 1 Hz) to the collecting electrode. The control of Gerdien devices is substantially simplified using the zeroing and testing units realized here. Both units are used during 'zero conductivity' regime only.

  9. Development and application of optimal design capability for coal gasification systems - Task 1 (Volume 1, 2 and 3). Topical report, July 1995

    SciTech Connect (OSTI)

    NONE

    1995-09-01

    Selective catalytic reduction (SCR) is a process for the post-combustion removal of NO{sub x} from the flue gas of fossil-fuel-fired power plants. SCR is capable of NO{sub x} reduction efficiencies of up to 80 or 90 percent. SCR technology has been applied for treatment of flue gases from a variety of emission sources, including natural gas- and oil-fired gas turbines, process steam boilers in refineries, and coal-fired power plants. SCR applications to coal-fired power plants have occurred in Japan and Germany. Full-scale SCR systems have not been applied to coal-fired power plants in the U.S., although there have been small-scale demonstration projects. SCR has become increasingly widely applied in the U.S. to natural-gas fired gas turbine combined cycle systems. In the remainder of this section, we review the applicability of SCR, as well as the need for post-combustion NO{sub x} control, for several power generation systems.

  10. Development of a dynamic quality assurance testing protocol for multisite clinical trial DCE-CT accreditation

    SciTech Connect (OSTI)

    Driscoll, B.; Keller, H.; Jaffray, D.; Coolens, C.; Department of Radiation Oncology, University of Toronto, 150 College Street, Toronto, Ontario M5S 3E2; Techna Institute, University Health Network, 124-100 College Street, Toronto, Ontario M5G 1L5

    2013-08-15

    Purpose: Credentialing can have an impact on whether or not a clinical trial produces useful quality data that is comparable between various institutions and scanners. With the recent increase of dynamic contrast enhanced-computed tomography (DCE-CT) usage as a companion biomarker in clinical trials, effective quality assurance, and control methods are required to ensure there is minimal deviation in the results between different scanners and protocols at various institutions. This paper attempts to address this problem by utilizing a dynamic flow imaging phantom to develop and evaluate a DCE-CT quality assurance (QA) protocol.Methods: A previously designed flow phantom, capable of producing predictable and reproducible time concentration curves from contrast injection was fully validated and then utilized to design a DCE-CT QA protocol. The QA protocol involved a set of quantitative metrics including injected and total mass error, as well as goodness of fit comparison to the known truth concentration curves. An additional region of interest (ROI) sensitivity analysis was also developed to provide additional details on intrascanner variability and determine appropriate ROI sizes for quantitative analysis. Both the QA protocol and ROI sensitivity analysis were utilized to test variations in DCE-CT results using different imaging parameters (tube voltage and current) as well as alternate reconstruction methods and imaging techniques. The developed QA protocol and ROI sensitivity analysis was then applied at three institutions that were part of clinical trial involving DCE-CT and results were compared.Results: The inherent specificity of robustness of the phantom was determined through calculation of the total intraday variability and determined to be less than 2.2 1.1% (total calculated output contrast mass error) with a goodness of fit (R{sup 2}) of greater than 0.99 0.0035 (n= 10). The DCE-CT QA protocol was capable of detecting significant deviations from the

  11. Sandia National Laboratories: Other Facilities and Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Other Facilities and Capabilities High Voltage Breakdown Testing We can perform high voltage standoff testing with DC and pulsed voltages. DC testing can be conducted up to 200 kV. Pulsed voltage from 140 - 400 kV can be attained, with a typical lightning waveform - unipolar, 1.2 microsecond risetime and 50 microsecond pulse width. Testing is conducted in humidity-controlled chambers. Breakdown voltage and current can be measured. Small TEM Cell We have a small transverse electromagnetic (TEM)

  12. Development of structural health monitoring techniques using dynamics testing

    SciTech Connect (OSTI)

    James, G.H. III

    1996-03-01

    Today`s society depends upon many structures (such as aircraft, bridges, wind turbines, offshore platforms, buildings, and nuclear weapons) which are nearing the end of their design lifetime. Since these structures cannot be economically replaced, techniques for structural health monitoring must be developed and implemented. Modal and structural dynamics measurements hold promise for the global non-destructive inspection of a variety of structures since surface measurements of a vibrating structure can provide information about the health of the internal members without costly (or impossible) dismantling of the structure. In order to develop structural health monitoring for application to operational structures, developments in four areas have been undertaken within this project: operational evaluation, diagnostic measurements, information condensation, and damage identification. The developments in each of these four aspects of structural health monitoring have been exercised on a broad range of experimental data. This experimental data has been extracted from structures from several application areas which include aging aircraft, wind energy, aging bridges, offshore structures, structural supports, and mechanical parts. As a result of these advances, Sandia National Laboratories is in a position to perform further advanced development, operational implementation, and technical consulting for a broad class of the nation`s aging infrastructure problems.

  13. Air Conditioning Stall Phenomenon Testing, Model Development, and Simulation

    SciTech Connect (OSTI)

    Irminger, Philip; Rizy, D Tom; Li, Huijuan; Smith, Travis; Rice, C Keith; Li, Fangxing; Adhikari, Sarina

    2012-01-01

    Electric distribution systems are experiencing power quality issues of extended reduced voltage due to fault-induced delayed voltage recovery (FIDVR). FIDVR occurs in part because modern air conditioner (A/C) and heat pump compressor motors are much more susceptible to stalling during a voltage sag or dip such as a sub-transmission fault. They are more susceptible than older A/C compressor motors due to the low inertia of these newer and more energy efficient motors. There is a concern that these local reduced voltage events on the distribution system will become more frequent and prevalent and will combine over larger areas and challenge transmission system voltage and ultimately power grid reliability. The Distributed Energy Communications and Controls (DECC) Laboratory at Oak Ridge National Laboratory (ORNL) has been employed to (1) test, (2) characterize and (3) model the A/C stall phenomenon.

  14. NREL Wind Turbine Blade Structural Testing of the Modular Wind Energy MW45 Blade: Cooperative Research and Development Final Report, CRADA Number CRD-09-354

    SciTech Connect (OSTI)

    Hughes, S.

    2012-05-01

    This CRADA was a purely funds-in CRADA with Modular Wind Energy (MWE). MWE had a need to perform full-scale testing of a 45-m wind turbine blade. NREL/NWTC provided the capabilities, facilities, and equipment to test this large-scale MWE wind turbine blade. Full-scale testing is required to demonstrate the ability of the wind turbine blade to withstand static design load cases and demonstrate the fatigue durability. Structural testing is also necessary to meet international blade testing certification requirements. Through this CRADA, MWE would obtain test results necessary for product development and certification, and NREL would benefit by working with an industrial partner to better understand the unique test requirements for wind turbine blades with advanced structural designs.

  15. General-Purpose Heat Source development: Extended series test program large fragment tests

    SciTech Connect (OSTI)

    Cull, T.A.

    1989-08-01

    General-Purpose Heat Source radioisotope thermoelectric generators (GPHS-RTGs) will provide electric power for the NASA Galileo and European Space Agency Ulysses missions. Each GPHS-RTG comprises two major components: GPHS modules, which provide thermal energy, and a thermoelectric converter, which converts the thermal energy into electric power. Each of the 18 GPHS modules in a GPHS-RTG contains four /sup 238/PuO/sub 2/-fueled capsules. LANL conducted a series of safety verification tests on the GPHS-RTG before the scheduled May 1986 launch of the Galileo spacecraft to assess the ability of the GPHS modules to contain the plutonia in potential accident environments. As a result of the Challenger 51-L accident in January 1986, NASA postponed the launch of Galileo; the launch vehicle was reconfigured and the spacecraft trajectory was modified. These actions prompted NASA to reevaluate potential mission accidents, and an extended series safety test program was initiated. The program included a series of large fragment tests that simulated the collision of solid rocket booster (SRB) fragments, generated in an SRB motor case rupture or resulting from a range safety officer SRB destruct action, with the GPHS-RTG. The tests indicated that fueled clads, inside a converter, will not breach or release fuel after a square (142 cm on a side) SRB fragment impacts flat-on at velocities up to 212 m/s, and that only the leading fueled capsules breach and release fuel after the square SRB fragment impacts the modules, inside the converter, edge-on at 95 m/s. 8 refs., 32 figs., 7 tabs.

  16. Advanced Simulation Capability for

    Office of Environmental Management (EM)

    for Environmental Management (ASCEM) ASCEM is being developed to provide a tool and approach to facilitate robust and standardized development of perfor- mance and risk assessments for cleanup and closure activi- ties throughout the EM complex. The ASCEM team is composed of scientists from eight National Laboratories. This team is leveraging Department of Energy (DOE) investments in basic science and applied research including high performance computing codes developed through the Advanced

  17. STATUS AND TEST RESULTS OF HIGH CURRENT 5-CELL SRF CAVITIES DEVELOPED...

    Office of Scientific and Technical Information (OSTI)

    STATUS AND TEST RESULTS OF HIGH CURRENT 5-CELL SRF CAVITIES DEVELOPED AT JLAB Citation Details In-Document Search Title: STATUS AND TEST RESULTS OF HIGH CURRENT 5-CELL SRF CAVITIES ...

  18. CoolCab Test and Evaluation and CoolCalc HVAC Tool Development...

    Broader source: Energy.gov (indexed) [DOE]

    ...s075lustbader2012o.pdf (3.14 MB) More Documents & Publications CoolCab Test and Evaluation CoolCab Test and Evaluation and CoolCalc HVAC Tool Development Vehicle Technologies ...

  19. A Roadmap for NEAMS Capability Transfer

    SciTech Connect (OSTI)

    Bernholdt, David E

    2011-11-01

    The vision of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program is to bring truly predictive modeling and simulation (M&S) capabilities to the nuclear engineering community in order to enable a new approach to the design and analysis of nuclear energy systems. From its inception, the NEAMS program has always envisioned a broad user base for its software and scientific products, including researchers within the DOE complex, nuclear industry technology developers and vendors, and operators. However activities to date have focused almost exclusively on interactions with NEAMS sponsors, who are also near-term users of NEAMS technologies. The task of the NEAMS Capability Transfer (CT) program element for FY2011 is to develop a comprehensive plan to support the program's needs for user outreach and technology transfer. In order to obtain community input to this plan, a 'NEAMS Capability Transfer Roadmapping Workshop' was held 4-5 April 2011 in Chattanooga, TN, and is summarized in this report. The 30 workshop participants represented the NEAMS program, the DOE and industrial user communities, and several outside programs. The workshop included a series of presentations providing an overview of the NEAMS program and presentations on the user outreach and technology transfer experiences of (1) The Advanced Simulation and Computing (ASC) program, (2) The Standardized Computer Analysis for Licensing Evaluation (SCALE) project, and (3) The Consortium for Advanced Simulation of Light Water Reactors (CASL), followed by discussion sessions. Based on the workshop and other discussions throughout the year, we make a number of recommendations of key areas for the NEAMS program to develop the user outreach and technology transfer activities: (1) Engage not only DOE, but also industrial users sooner and more often; (2) Engage with the Nuclear Regulatory Commission to facilitate their understanding and acceptance of NEAMS approach to predictive M&S; (3) Place

  20. Developing and Testing Future Applications and Operating Systems for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Developing a Natural Gas- Powered Bus Rapid Transit Service: A Case Study George Mitchell National Renewable Energy Laboratory Technical Report NREL/TP-5400-64756 November 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308

  1. Technology development: HEPA filter service life test plan

    SciTech Connect (OSTI)

    Kirchner, K.N.; Cummings, K.G.; Leck, W.C.; Fretthold, J.K.

    1995-05-31

    Rocky Flats Environmental Technology Site (the Site) has approximately 10,000 High Efficiency Particulate Air (HEPA) Filters installed in a variety of filter plenums. These ventilation/filtration plenum systems are used to control the release of airborne particulate contaminates to the environment during normal operations and also during potential design-based accidents. The operational integrity of the HEPA filter plenums is essential to maintaining the margins of safety as required by building specific Final Safety Analysis Reports (FSARS) for protection of the public and environment. An Unreviewed Safety Question Determination (USQD), USDQ-RFP94.0615-ARS, was conducted in 1994 addressing the potential inadequacy of the safety envelope for Protected Area building HEPA plenums. While conducting this USQD, questions were raised concerning the maximum service life criteria for HEPA filters. Accident scenarios in existing FSARs identify conditions that could potentially cause plugging or damage of down stream HEPA filters as a result of impaction from failed filters. Additionally, available data indicates that HEPA filters experience structural degradation due to the effects of age. The Unresolved Safety Question (USQ) compensatory measures thus require testing and analysis of used HEPA filters in order to determine and implement service life criteria.

  2. A nondestructive test for aircraft Halon bottles, the development of an acoustic emission application

    SciTech Connect (OSTI)

    Beattie, A.G.

    1996-12-01

    An acoustic emission test for aircraft Halon bottles has been developed in response to a need expressed by the US Airline Industry. During this development many choices had to be made about test methods, procedures and analysis techniques. This paper discusses these choices and how successful they were. The test itself was designed to replace the currently required hydrostatic test for these bottles. The necessary load is applied by heating the sealed bottles. Acoustic emission is monitored, during the heating, by six sensors held in position by a special fixture. A prototype of the test apparatus was constructed and used in two commercial Halon bottle repair and test facilities. Results to date indicate that about 97% of the bottles tested show no indications of flaws. The other 3% have had indications of possible flaws in non-critical areas of the bottles. All bottles tested to date have passed the hydrostatic test subsequent to the acoustic emission test.

  3. Development and testing of improved statistical wind power forecasting methods.

    SciTech Connect (OSTI)

    Mendes, J.; Bessa, R.J.; Keko, H.; Sumaili, J.; Miranda, V.; Ferreira, C.; Gama, J.; Botterud, A.; Zhou, Z.; Wang, J.

    2011-12-06

    Wind power forecasting (WPF) provides important inputs to power system operators and electricity market participants. It is therefore not surprising that WPF has attracted increasing interest within the electric power industry. In this report, we document our research on improving statistical WPF algorithms for point, uncertainty, and ramp forecasting. Below, we provide a brief introduction to the research presented in the following chapters. For a detailed overview of the state-of-the-art in wind power forecasting, we refer to [1]. Our related work on the application of WPF in operational decisions is documented in [2]. Point forecasts of wind power are highly dependent on the training criteria used in the statistical algorithms that are used to convert weather forecasts and observational data to a power forecast. In Chapter 2, we explore the application of information theoretic learning (ITL) as opposed to the classical minimum square error (MSE) criterion for point forecasting. In contrast to the MSE criterion, ITL criteria do not assume a Gaussian distribution of the forecasting errors. We investigate to what extent ITL criteria yield better results. In addition, we analyze time-adaptive training algorithms and how they enable WPF algorithms to cope with non-stationary data and, thus, to adapt to new situations without requiring additional offline training of the model. We test the new point forecasting algorithms on two wind farms located in the U.S. Midwest. Although there have been advancements in deterministic WPF, a single-valued forecast cannot provide information on the dispersion of observations around the predicted value. We argue that it is essential to generate, together with (or as an alternative to) point forecasts, a representation of the wind power uncertainty. Wind power uncertainty representation can take the form of probabilistic forecasts (e.g., probability density function, quantiles), risk indices (e.g., prediction risk index) or scenarios

  4. CTH reference manual : composite capability and technologies.

    SciTech Connect (OSTI)

    Key, Christopher T.; Schumacher, Shane C.

    2009-02-01

    The composite material research and development performed over the last year has greatly enhanced the capabilities of CTH for non-isotropic materials. The enhancements provide the users and developers with greatly enhanced capabilities to address non-isotropic materials and their constitutive model development. The enhancements to CTH are intended to address various composite material applications such as armor systems, rocket motor cases, etc. A new method for inserting non-isotropic materials was developed using Diatom capabilities. This new insertion method makes it possible to add a layering capability to a shock physics hydrocode. This allows users to explicitly model each lamina of a composite without the overhead of modeling each lamina as a separate material to represent a laminate composite. This capability is designed for computational speed and modeling efficiency when studying composite material applications. In addition, the layering capability also allows a user to model interlaminar mechanisms. Finally, non-isotropic coupling methods have been investigated. The coupling methods are specific to shock physics where the Equation of State (EOS) is used with a nonisotropic constitutive model. This capability elastically corrects the EOS pressure (typically isotropic) for deviatoric pressure coupling for non-isotropic materials.

  5. Development and Implementation of Radiation-Hydrodynamics Verification Test Problems

    SciTech Connect (OSTI)

    Marcath, Matthew J.; Wang, Matthew Y.; Ramsey, Scott D.

    2012-08-22

    Analytic solutions to the radiation-hydrodynamic equations are useful for verifying any large-scale numerical simulation software that solves the same set of equations. The one-dimensional, spherically symmetric Coggeshall No.9 and No.11 analytic solutions, cell-averaged over a uniform-grid have been developed to analyze the corresponding solutions from the Los Alamos National Laboratory Eulerian Applications Project radiation-hydrodynamics code xRAGE. These Coggeshall solutions have been shown to be independent of heat conduction, providing a unique opportunity for comparison with xRAGE solutions with and without the heat conduction module. Solution convergence was analyzed based on radial step size. Since no shocks are involved in either problem and the solutions are smooth, second-order convergence was expected for both cases. The global L1 errors were used to estimate the convergence rates with and without the heat conduction module implemented.

  6. Development Program of LOCA Licensing Calculation Capability with RELAP5-3D in Accordance with Appendix K of 10 CFR 50.46

    SciTech Connect (OSTI)

    Liang, Thomas K.S.; Schultz, Richard R.

    2001-03-15

    In light water reactors, particularly the pressurized water reactors, the severity of loss-of-coolant accidents (LOCAs) will limit how high the reactor power can extend. Although the best-estimate LOCA methodology can provide the greatest margin on the peak cladding temperature (PCT) evaluation during LOCA, it will take many more resources to develop and to get final approval from the licensing authority. Instead, implementation of evaluation models required by Appendix K of the Code of Federal Regulations, Title 10, Part 50 (10 CFR 50), upon an advanced thermal-hydraulic platform can also gain significant margin on the PCT calculation. A program to modify RELAP5-3D in accordance with Appendix K of 10 CFR 50 was launched by the Institute of Nuclear Energy Research, Taiwan, and it consists of six sequential phases of work. The compliance of the current RELAP5-3D with Appendix K of 10 CFR 50 has been evaluated, and it was found that there are 11 areas where the code modifications are required to satisfy the requirements set forth in Appendix K of 10 CFR 50. To verify and assess the development of the Appendix K version of RELAP5-3D, nine kinds of separate-effect experiments and six sets of integral-effect experiments will be adopted. Through the assessments program, all the model changes will be verified.

  7. Research & Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  8. ADVANCED SIMULATION CAPABILITY FOR ENVIRONMENTAL MANAGEMENT- CURRENT STATUS AND PHASE II DEMONSTRATION RESULTS

    SciTech Connect (OSTI)

    Seitz, R.

    2013-02-26

    The U.S. Department of Energy (USDOE) Office of Environmental Management (EM), Office of Soil and Groundwater, is supporting development of the Advanced Simulation Capability for Environmental Management (ASCEM). ASCEM is a state-of-the-art scientific tool and approach for understanding and predicting contaminant fate and transport in natural and engineered systems. The modular and open source high-performance computing tool facilitates integrated approaches to modeling and site characterization that enable robust and standardized assessments of performance and risk for EM cleanup and closure activities. The ASCEM project continues to make significant progress in development of computer software capabilities with an emphasis on integration of capabilities in FY12. Capability development is occurring for both the Platform and Integrated Toolsets and High-Performance Computing (HPC) Multiprocess Simulator. The Platform capabilities provide the user interface and tools for end-to-end model development, starting with definition of the conceptual model, management of data for model input, model calibration and uncertainty analysis, and processing of model output, including visualization. The HPC capabilities target increased functionality of process model representations, toolsets for interaction with Platform, and verification and model confidence testing. The Platform and HPC capabilities are being tested and evaluated for EM applications in a set of demonstrations as part of Site Applications Thrust Area activities. The Phase I demonstration focusing on individual capabilities of the initial toolsets was completed in 2010. The Phase II demonstration completed in 2012 focused on showcasing integrated ASCEM capabilities. For Phase II, the Hanford Site deep vadose zone (BC Cribs) served as an application site for an end-to-end demonstration of capabilities, with emphasis on integration and linkages between the Platform and HPC components. Other demonstrations

  9. Calderon coal gasification Process Development Unit design and test program

    SciTech Connect (OSTI)

    Calderon, A.; Madison, E.; Probert, P.

    1992-01-01

    The Process Development Unit (PDU) was designed and constructed to demonstrate the novel Calderon gasification/hot gas cleanup process. in the process, run-of-mine high sulfur coal is first pyrolyzed to recover a rich gas (medium Btu gas), after which the resulting char is subjected to airblown gasification to yield a lean gas (low Btu gas). The process incorporates a proprietary integrated system for the conversion of coal to gases and for the hot cleanup of the gases which removes both particulate and sulfur components of the gaseous products. The yields are: a syngas (CO and H[sub 2] mix) suitable for further conversion to liquid fuel (e.g. methanol/gasoline), and a lean gas suitable to fuel the combustion turbine of a combined cycle power generation plant with very low levels of NO[sub x] (15 ppmv). The fused slag (from the gasified char ash content) and the sulfur recovered during the hot gas cleanup will be sold as by-products. The small quantity of spent sorbent generated will be combined with the coal feed as a fluxing agent for the slag. The small quantity of wastewater from slag drainings and steam generation blowdown will be mixed with the coal feed for disposal. The Calderon gasification/hot gas cleanup, which is a completely closed system, operates at a pressure suitable for combined cycle power generation.

  10. Calderon coal gasification Process Development Unit design and test program

    SciTech Connect (OSTI)

    Calderon, A.; Madison, E.; Probert, P.

    1992-11-01

    The Process Development Unit (PDU) was designed and constructed to demonstrate the novel Calderon gasification/hot gas cleanup process. in the process, run-of-mine high sulfur coal is first pyrolyzed to recover a rich gas (medium Btu gas), after which the resulting char is subjected to airblown gasification to yield a lean gas (low Btu gas). The process incorporates a proprietary integrated system for the conversion of coal to gases and for the hot cleanup of the gases which removes both particulate and sulfur components of the gaseous products. The yields are: a syngas (CO and H{sub 2} mix) suitable for further conversion to liquid fuel (e.g. methanol/gasoline), and a lean gas suitable to fuel the combustion turbine of a combined cycle power generation plant with very low levels of NO{sub x} (15 ppmv). The fused slag (from the gasified char ash content) and the sulfur recovered during the hot gas cleanup will be sold as by-products. The small quantity of spent sorbent generated will be combined with the coal feed as a fluxing agent for the slag. The small quantity of wastewater from slag drainings and steam generation blowdown will be mixed with the coal feed for disposal. The Calderon gasification/hot gas cleanup, which is a completely closed system, operates at a pressure suitable for combined cycle power generation.