Powered by Deep Web Technologies
Note: This page contains sample records for the topic "development technology transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

NETL Technologies Recognized for Technology Development, Transfer |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recognized for Technology Development, Transfer Recognized for Technology Development, Transfer NETL Technologies Recognized for Technology Development, Transfer October 25, 2013 - 1:31pm Addthis Did you know? The Federal Laboratory Consortium for Technology Transfer is the nationwide network of federal laboratories that provides the forum to develop strategies and opportunities for linking laboratory mission technologies and expertise with the marketplace. In consonance with the Federal Technology Transfer Act of 1986 and related federal policy, the mission of the FLC is to promote and facilitate the rapid movement of federal laboratory research results and technologies into the mainstream of the U.S. economy. Learn more about the FLC. A great invention that sits on a shelf, gathering dust, benefits no one.

2

Geo energy research and development: technology transfer  

DOE Green Energy (OSTI)

Sandia Geo Energy Programs related to geothermal, coal, oil and gas, and synfuel resources have provided a useful mechanism for transferring laboratory technologies to private industry. Significant transfer of hardware, computer programs, diagnostics and instrumentation, advanced materials, and in situ process understanding has occurred through US/DOE supported programs in the past five years. The text briefly reviews the technology transfer procedures and summarizes 32 items that have been transferred and another 20 technologies that are now being considered for possible transfer to industry. A major factor in successful transfer has been personal interactions between Sandia engineers and the technical staff from private industry during all aspects of the technology development.

Traeger, R.K.

1982-03-01T23:59:59.000Z

3

Characterization and Development of Advanced Heat Transfer Technologies (Presentation)  

DOE Green Energy (OSTI)

Advancing heat transfer technologies is a critical factor in power electronics equipment. NREL aims to characterize and develop advanced heat transfer technologies.

Abraham, T.

2007-11-08T23:59:59.000Z

4

Technology Transfer and the Product Development Process  

DOE Green Energy (OSTI)

It is my pleasure this morning to address a topic that is much talked about in passing but rarely examined from a first person point of view. That topic is Technology Transfer. Over the next 30 minutes I'd like to approach Technology Transfer within the context of the Product Development Process looking at it from the perspectives of the federal government researcher and the industry manufacturer/user. Fist let us recognize that we are living in an ''Information Age'', where global economic and military competition is determined as much by technology as it is by natural resource assets. It is estimated that technical/scientific information is presently growing at a rate of l3 percent per year; this is expected to increase to 30 percent per year by the turn of the century. In fact, something like 90 percent of all scientific knowledge has been generated in the last 30 years; this pool will double again in the next 10-15 years (Exhibit 1). Of all the scientists and engineers throughout history, 90% live and work in the present time. Successfully managing this technical information/knowledge--i.e., transforming the results of R&D to practical applications--will be an important measure of national strength. A little over a dozen years ago, the United States with only 5 percent of the world's population was generating approximately 75 percent of the world's technology. The US. share is now 50 percent and may decline to 30 percent by the turn of the century. This decline won't be because of downturn in U.S. technological advances but because the other 95 percent of the world's population will be increasing its contribution. Economic and military strength then, will be determined by how quickly and successfully companies, industries, and nations can apply new technological information to practical applications--i.e., how they manage technology transfer within the context of the product development process. Much discussion and pronouncements are ongoing in public forums today over the apparent decline in global competitiveness of U.S. industry. The question is why does U.S. industry not succeed in the development and marketing of competitive products when they lead in the generation of new technology.

Mock, John E.

1989-03-21T23:59:59.000Z

5

Developing and Transferring Technologies for a Global Low-Carbon...  

NLE Websites -- All DOE Office Websites (Extended Search)

Office EETD Safety Program Development Contact Us Department Contacts Media Contacts Developing and Transferring Technologies for a Global Low-Carbon Energy System Speaker(s):...

6

Characterization and Development of Advanced Heat Transfer Technologies (Presentation)  

DOE Green Energy (OSTI)

This presentation gives an overview of the status and FY09 accomplishments for the NREL thermal management research project 'Characterization and Development of Advanced Heat Transfer Technologies'.

Kelly, K.

2009-05-01T23:59:59.000Z

7

Argonne TDC: Technology Transfer and Business Development Links  

Web assistance to promote technologies for licensing ? : Amarket-driven technology transfer company helping public companies acquire innovative technologies from ...

8

SRNL - Technology Transfer - Home  

Technology Transfer. Research and Development Savannah River Nuclear Solutions, LLC (SRNS) scientists and engineers develop technologies designed to improve ...

9

Jefferson Lab Technology Transfer  

What is Technology Transfer at Jefferson Lab? The transfer of technology (intellectual property) developed at JLab to the private sector is an ...

10

Technology Transfer  

A new search feature has been implemented, which allows searching of technology transfer information across the Department of Energy Laboratories.

11

Geo energy research and development: technology transfer update  

DOE Green Energy (OSTI)

Sandia Geo Energy Programs in geothermal, coal, oil and gas, and synfuel technologies have been effective in transferring research concepts to applications in private industry. This report updates the previous summary (SAND82-0211, March 1982) to include recent technology transfers and to reflect recent changes in philosophy on technology transfer. Over 40 items transferred to industry have been identified in the areas of Hardware, Risk Removal and Understanding. Successful transfer is due largely to personal interactions between Sandia engineers and the technical staffs of private industry.

Traeger, R.K.; Dugan, V.L.

1983-01-01T23:59:59.000Z

12

Federal Laboratory Technology Transfer  

Science Conference Proceedings (OSTI)

... Department of Energy (DOE) ... and business development involved in successful technology transfer. 8. Government-industry interactions. ...

2012-11-14T23:59:59.000Z

13

Technology Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency & Renewable and Energy - Commercialization Energy Efficiency & Renewable and Energy - Commercialization Deployment SBIR/STTR - Small Business Innovation Research and Small Business Technology Transfer USEFUL LINKS Contract Opportunities: FBO.gov FedConnect.net Grant Opportunities DOE Organization Chart Association of University Technology Managers (AUTM) Federal Laboratory Consortium (FLC) Feedback Contact us about Tech Transfer: Mary.McManmon@science.doe.gov Mary McManmon, 202-586-3509 link to Adobe PDF Reader link to Adobe Flash player Licensing Guide and Sample License The Technology Transfer Working Group (TTWG), made up of representatives from each DOE Laboratory and Facility, recently created a Licensing Guide and Sample License [762-KB PDF]. The Guide will serve to provide a general understanding of typical contract terms and provisions to help reduce both

14

TECHNOLOGY TRANSFER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

404-NOV. 1, 2000 404-NOV. 1, 2000 TECHNOLOGY TRANSFER COMMERCIALIZATION ACT OF 2000 VerDate 11-MAY-2000 04:52 Nov 16, 2000 Jkt 089139 PO 00000 Frm 00001 Fmt 6579 Sfmt 6579 E:\PUBLAW\PUBL404.106 APPS27 PsN: PUBL404 114 STAT. 1742 PUBLIC LAW 106-404-NOV. 1, 2000 Public Law 106-404 106th Congress An Act To improve the ability of Federal agencies to license federally owned inventions. Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled, SECTION 1. SHORT TITLE. This Act may be cited as the ''Technology Transfer Commer- cialization Act of 2000''. SEC. 2. FINDINGS. The Congress finds that- (1) the importance of linking our unparalleled network of over 700 Federal laboratories and our Nation's universities with United States industry continues to hold great promise

15

Technology Transfer: Available Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Biofuels Biofuels Biotechnology and Medecine Biotechnology & Medicine Chemistry Developing World Energy Efficient Technologies Energy Environmental Technologies...

16

Jefferson Lab Technology Transfer - JLab  

What is Technology Transfer at Jefferson Lab? The transfer of technology (intellectual property) developed at JLab to the private sector is an important element of ...

17

NREL: Technology Transfer - About Technology Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

About Technology Transfer About Technology Transfer Through technology partnerships, NREL seeks to reduce private sector risk and enable investment in the adoption of renewable energy and energy efficiency technologies. The transfer of these technologies to the marketplace helps displace oil, reduce carbon emissions, and increase U.S. industry competitiveness. Principles NREL develops and implements technology partnerships based on the standards established by the following principles: Balancing Public and Private Interest Form partnerships that serve the public interest and advance U.S. Department of Energy goals. Demonstrate appropriate stewardship of publicly funded assets, yielding national benefits. Provide value to the commercial partner. Focusing on Outcomes Develop mutually beneficial collaborations through processes, which are

18

NETL: Technology Transfer - History of Technology Transfer  

History of Technology Transfer Technology transfer differs from providing services or products (e.g., acquisition) and financial assistance (e.g., ...

19

Technology Transfer: About the Technology Transfer Department  

NLE Websites -- All DOE Office Websites (Extended Search)

About the Technology Transfer and Intellectual Property Management About the Technology Transfer and Intellectual Property Management Department The Technology Transfer Department helps move technologies from the Lab to the marketplace to benefit society and the U. S. economy. We accomplish this through developing and managing an array of partnerships with the private and public sectors. What We Do We license a wide range of cutting-edge technologies to companies that have the financial, R & D, manufacturing, marketing, and managerial capabilities to successfully commercialize Lab inventions. In addition, we manage lab-industry research partnerships, ensure that inventions receive appropriate patent or copyright protection, license technology to start-up companies, distribute royalties to the Lab and to inventors and serve as

20

Technology transfer 1994  

SciTech Connect

This document, Technology Transfer 94, is intended to communicate that there are many opportunities available to US industry and academic institutions to work with DOE and its laboratories and facilities in the vital activity of improving technology transfer to meet national needs. It has seven major sections: Introduction, Technology Transfer Activities, Access to Laboratories and Facilities, Laboratories and Facilities, DOE Office, Technologies, and an Index. Technology Transfer Activities highlights DOE`s recent developments in technology transfer and describes plans for the future. Access to Laboratories and Facilities describes the many avenues for cooperative interaction between DOE laboratories or facilities and industry, academia, and other government agencies. Laboratories and Facilities profiles the DOE laboratories and facilities involved in technology transfer and presents information on their missions, programs, expertise, facilities, and equipment, along with data on whom to contact for additional information on technology transfer. DOE Offices summarizes the major research and development programs within DOE. It also contains information on how to access DOE scientific and technical information. Technologies provides descriptions of some of the new technologies developed at DOE laboratories and facilities.

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "development technology transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Technology Transfer: Available Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Software and Information Technologies Software and Information Technologies Algorithm for Correcting Detector Nonlinearites Chatelet: More Accurate Modeling for Oil, Gas or Geothermal Well Production Collective Memory Transfers for Multi-Core Processors Energy Efficiency Software EnergyPlus:Energy Simulation Software for Buildings Tools, Guides and Software to Support the Design and Operation of Energy Efficient Buildings Flexible Bandwidth Reservations for Data Transfer Genomic and Proteomic Software LABELIT - Software for Macromolecular Diffraction Data Processing PHENIX - Software for Computational Crystallography Vista/AVID: Visualization and Allignment Software for Comparative Genomics Geophysical Software Accurate Identification, Imaging, and Monitoring of Fluid Saturated Underground Reservoirs

22

NREL: Technology Transfer - Cooperative Research and Development Agreements  

NLE Websites -- All DOE Office Websites (Extended Search)

Cooperative Research and Development Agreements Cooperative Research and Development Agreements NREL uses a cooperative research and development agreement (CRADA) when a partner and the lab intend to collaborate on a project. It protects a company's and NREL's existing intellectual property, and allows the company to negotiate for an exclusive field-of-use license to subject inventions that arise during the CRADA's execution. The agreement type used depends on the business, and the specific partnership selected is determined on a case-by-case basis. Types CRADA types include: Shared-Resources A joint research project between NREL and a partner to develop, advance, or commercialize an NREL-developed technology without funds changing hands. It must fit within the scope of a project at NREL that's funded by the U.S.

23

Partnerships and Technology Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

Cooperative Research and Development Agreement Cooperative Research and Development Agreement visualization scientist A Cooperative Research and Development Agreement (CRADA) is a mechanism whereby non-federal entities (industry, universities, non-profits, etc.) can collaborate with federal laboratories on research and development projects. CRADAs are specifically technology transfer agreements; technologies developed under CRADAs are expected to be transferred to the private sector for commercial exploitation, either by the non-federal partner or another licensee of such technologies. CRADAs were authorized by the Stevenson-Wydler Technology Innovation Act of 1980 (Public Law 96-480); the authority for government-owned, contractor-operated laboratories such as ORNL to enter into CRADAs was granted by the National Competitiveness Technology Transfer Act of 1989

24

Technology Transfer  

Science Conference Proceedings (OSTI)

... get started on understanding accessibility in elections and voting technology. ... bibliography was created by the Georgia Tech Research Institute ...

2013-09-17T23:59:59.000Z

25

Technology transfer issue  

Science Conference Proceedings (OSTI)

Testimony by Lawrence J. Brady, Commerce Assistant Secretary for Trade Administration, at Congressional hearings on the national security issues of technology transfers to the Soviet Union identified steps the US needs to take to deal effectively with the problem. These steps include an understanding of how the Soviet Union has and will benefit militarily by acquiring Western technology and efforts to work with other countries, counterintelligence agencies, and industries to stem the flow of technological information. Brady outlined changes in technology development that complicate the enforcement of transfer rules, and emphasized the importance of a close relationship between the business community and the Commerce Department. (DCK)

Jacobson, C.

1982-05-31T23:59:59.000Z

26

NREL: Technology Transfer Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Transfer Technology Transfer Search More Search Options Site Map The National Renewable Energy Laboratory (NREL) works with industry and organizations to transfer renewable energy and energy efficiency technologies into the marketplace. Working with Us We offer many opportunities and ways for you to partner with us. Learn more about our technology partnership agreements and services: Agreements for Commercializing Technology Cooperative Research and Development Agreements Technologies Available for Licensing Technology Partnerships Work for Others Research Facilities NREL follows its principles for establishing mutually beneficial technology partnerships. Through our commercialization programs, we work to stimulate the market for clean energy technologies and foster the growth of clean energy start-ups.

27

Technology Transfer: Site Map  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Map Site Map About Us About Technology Transfer Contact Us Available Technologies Advanced Materials Biofuels Biotechnology and Medicine Developing World Energy Environmental Technologies Imaging and Lasers Ion Sources and Beam Technologies Nanotechnology and Microtechnology Software and Information Technology For Industry Licensing Overview Frequently Asked Questions Partnering with Berkeley Lab Licensing Interest Form Receive New Tech Alerts For Researchers What You Need to Know and Do The Tech Transfer Process Forms Record of Invention (Word doc -- please do not use earlier PDF version of the form) Software Disclosure and Abstract (PDF, use Adobe Acrobat or Adobe Reader 9 and up ONLY to complete the form) Policies Conflict of Interest Outside Empolyment Export Control FAQs for Researchers

28

Technology Transfer: Available Technologies  

Please refer to the list of technologies below for licensing and research collaboration availability. If you can't find the technology you ...

29

Technology Transfer | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

by facilitating development, transfer, and use of federally owned or originated technology to industry for public benefit and to leverage DOE resources through partnering with...

30

Technology Transfer: For Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

Available Technologies Licensing Berkeley Lab Technologies Partnering with Berkeley Lab Contact Us Receive Customized Tech Alerts Tech Transfer Site Map Last updated: 09172009...

31

Argonne National Laboratory - Office of Technology Transfer  

argonne national laboratory's office of technology transfer offers licensable technologies developed at the Laboratory and oversees other agreements with research ...

32

Technology Transfer Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Research Projects Agency-Energy (ARPA-E) Advanced Research Projects Agency-Energy (ARPA-E) Oil & Gas Technology Transfer Initiatives USEFUL LINKS Association of University Technology Managers (AUTM) Federal Laboratory Consortium (FLC) FLC Technology Locator Feedback Contact us about Tech Transfer: Mary.McManmon@science.doe.gov Mary McManmon, 202-586-3509 link to Adobe PDF Reader link to Adobe Flash player Reports Navigate Home About Us Contact Information Hide Thumbs First Previous Pause Next Last Set Speed Slideshow speed: 5 seconds Move Autoinduction system New Image Set Autoinduction Autoinduction System The award winning Overnight Express(tm) Autoinduction System developed at BNL simplifies protein production in the widely used T7 gene expression system. Decontamination Foam-based decontamination

33

Technology Transfer: Available Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

test test Please refer to the list of technologies below for licensing and research collaboration availability. If you can't find the technology you're interested in, please contact us at TTD@lbl.gov. Energy ENERGY EFFICIENT TECHNOLOGIES Aerosol Sealing Aerosol Remote Sealing System Clog-free Atomizing and Spray Drying Nozzle Air-stable Nanomaterials for Efficient OLEDs Solvent Processed Nanotube Composites OLEDS with Air-stable Structured Electrodes APIs for Online Energy Saving Tools: Home Energy Saver and EnergyIQ Carbon Dioxide Capture at a Reduced Cost Dynamic Solar Glare Blocking System Electrochromic Device Controlled by Sunlight Electrochromic Windows with Multiple-Cavity Optical Bandpass Filter Electrochromic Window Technology Portfolio Universal Electrochromic Smart Window Coating

34

Technology Transfer: Available Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Please refer to the list of technologies below for licensing and research Please refer to the list of technologies below for licensing and research collaboration availability. If you can't find the technology you're interested in, please contact us at TTD@lbl.gov. Biotechnology and Medicine DIAGNOSTICS AND THERAPEUTICS CANCER CANCER PROGNOSTICS 14-3-3 Sigma as a Biomarker of Basal Breast Cancer ANXA9: A Therapeutic Target and Predictive Marker for Early Detection of Aggressive Breast Cancer Biomarkers for Predicting Breast Cancer Patient Response to PARP Inhibitors Breast Cancer Recurrence Risk Analysis Using Selected Gene Expression Comprehensive Prognostic Markers and Therapeutic Targets for Drug-Resistant Breast Cancers Diagnostic Test to Personalize Therapy Using Platinum-based Anticancer Drugs Early Detection of Metastatic Cancer Progenitor Cells

35

Technology Transfer: Available Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Ion Sources and Beam Technologies Ion Sources and Beam Technologies GENERATORS AND DETECTORS Compact, Safe and Energy Efficient Neutron Generator Fast Pulsed Neutron Generator High Energy Gamma Generator Lithium-Drifted Silicon Detector with Segmented Contacts Low Power, High Energy Gamma Ray Detector Calibration Device Nested Type Coaxial Neutron Generator Neutron and Proton Generators: Cylindrical Neutron Generator with Nested Option, IB-1764 Neutron-based System for Nondestructive Imaging, IB-1794 Mini Neutron Tube, IB-1793a Ultra-short Ion and Neutron Pulse Production, IB-1707 Mini Neutron Generator, IB-1793b Compact Spherical Neutron Generator, IB-1675 Plasma-Driven Neutron/Gamma Generators Portable, Low-cost Gamma Source for Active Interrogation ION SOURCES WITH ANTENNAS External Antenna for Ion Sources

36

NREL: Technology Transfer - Cooperative Research and ...  

National Renewable Energy Laboratory Technology Transfer Cooperative Research and Development Agreements. NREL uses a cooperative research and development agreement ...

37

Jefferson Lab Technology Transfer  

This site's design is only visible in a graphical browser that supports web standards, but its content is accessible to any browser. Concerns? Technology Transfer.

38

SRNL - Technology Transfer - Ombudsman  

... complete fairness in the transfer of federally funded technologies into the marketplace for the benefit of the U.S. economy.

39

NETL: Technology Transfer - DOE  

Home > Technology Transfer. ... and cheaper to design future power plants. ... we welcome the opportunity to build mutually beneficial partnerships with industry, ...

40

NREL: Technology Transfer - Contacts  

National Renewable Energy Laboratory Technology Transfer Contacts. Here you'll find contact information and resources to help answer any questions you may have about ...

Note: This page contains sample records for the topic "development technology transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Gas shales characterization and technology development and transfer. Annual technical report, October 1991-September 1992  

Science Conference Proceedings (OSTI)

The objective of the Technology Transfer work area was to compile and publish the Technology Review, Sponsor Gas Shales Workshops, and manage the Marietta College Natural Gas Supply Information Center. In the Technical and Economic Evaluations work area, the objective was to quantify the gas shale resource and determine the potential economic benefits of future shale research. The objectives of the third work area, Field Projects in the Antrim Shale were to improve gas producibility from the Antrim Shale by optimizing stimulations and production practices and to develop log-based gas content and gas in-place calculations.

Wicks, D.; Decker, D.; Reeves, S.

1992-10-01T23:59:59.000Z

42

Technology Transfer Awards 2012  

Science Conference Proceedings (OSTI)

EPRI's 2012 Technology Transfer Awards recognize the leaders and the innovators who have transferred research into applied results. The 2012 award winners have shown exceptional application of EPRI research and technology to solve a problem of size and significance, to champion a technology both within their companies and across the industry, to drive progress in the electricity sector, and to provide meaningful benefits for stakeholders and for society.

2013-01-23T23:59:59.000Z

43

Partnerships and Technology Transfer  

Economic Development Overview. ORNL's Partnerships Staff works with a number of partners in the region, State, and across the nation to help transfer ORNL-developed ...

44

Partnerships and Technology Transfer  

Search . Browse Available Technologies. Learn About Us. Licensing; Sponsored Research; Economic Development; Industrial Partnerships; University ...

45

Technology Transfer Summit  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Agenda as of April 9, 2012 Agenda as of April 9, 2012 Technology Transfer Summit April 16, 2012 IMC - Trinity Ballroom 4 8:00 - 8:10 Welcome & Introduction Pete Tseronis, DOE Chief Technology Officer 8:10 - 8:50 Accelerating Transfer Within an Innovation Ecosystem Debra M. Amidon, Founder and Chief Strategist, ENTOVATION International, and Author, The Innovation SuperHighway 8:50 - 9:20 Tech Transfer - Predicaments, Perplexities, and Possible Panaceas Rex Northen, Executive Director, Cleantech Open 9:20 - 9:50 A Systems Approach to Innovation Mike Schwenk, Vice President and Director Technology Deployment and Outreach, Pacific Northwest National Laboratory (PNNL) 9:50 - 10:15 DOE's Online Tech Transfer Ecosystem - aka...Stop Building Moai! Robert Bectel, Senior Policy Advisor / Chief Technology Officer

46

NETL: Technology Transfer - Available Technologies for Partnership  

Technology Transfer Available Technologies for Partnership Software and Modeling. Month Posted. Partnership Opportunity. Patent Information. 12/2011: ...

47

NREL: Technology Transfer - Ombuds - National Renewable Energy ...  

National Renewable Energy Laboratory Technology Transfer Technology Transfer Ombuds. NREL's Technology Transfer Ombuds offers an informal process to ...

48

"S" Glass Manufacturing Technology Transfer  

SciTech Connect

A glass-ceramic-to metal sealing technology patented by Sandia National Laboratories, Albuquerque (SNLA) was developed by MRC-Mound for use in the manufacture of weapon components. Successful implementation attracted increasingly widespread weapon use of this technology. "S-glass" manufacturing technology was transferred to commercial vendors to ensure that weapons production schedules would be met in the coming years. Such transfer also provided sources of this fledgling technology for the Department of Defense (DOD), aerospace and other commercial uses. The steps involved in the technology transfer are described, from the initial cooperative development work of Sandia and Mound scientists and technologists to the final phase of qualifying commercial vendors for component manufacture.

Buckner, Dean, A.; McCollister, Howard, L.

1988-06-01T23:59:59.000Z

49

NREL: Technology Transfer - Webmaster  

NLE Websites -- All DOE Office Websites (Extended Search)

Webmaster Webmaster To report any problems on or ask a question about the NREL Technology Transfer Web site, you may contact the Webmaster using the online form below. If you have a question or concern that's not related to this Web site, please see our list of contacts for assistance. To contact the Webmaster, please provide your name, e-mail address, and message below. When you are finished, click "Send Message." NOTE: If you enter your e-mail address incorrectly, we will be unable to reply. Your name: Your email address: Your message: Send Message Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing Agreements Nondisclosure Agreements Research Facilities Commercialization Programs Success Stories News

50

NREL: Technology Transfer - Ombuds  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Transfer Ombuds Technology Transfer Ombuds NREL's Technology Transfer Ombuds offers an informal process to help resolve issues and concerns regarding the laboratory's technology partnership, patent, and licensing activities. As a designated neutral party, our ombuds provides confidential, resolution-focused services. Through the ombuds process, we encourage collaborative techniques such as mediation to facilitate the speedy and low-cost resolution of complaints and disputes, when appropriate. The NREL Ombuds does not: Handle contract negotiation or other legal issues Act as a decision maker or draw conclusions Investigate or make formal recommendations on findings of fact. The ombuds also does not replace, override, or influence formal review or appeal mechanisms, or serve as an intermediary when legal action is

51

SRNL - Technology Transfer - Ombudsman  

NLE Websites -- All DOE Office Websites (Extended Search)

Ombudsman Ombudsman Ombudsman Program Policy The Department of Energy and its management and operating contractors (M & O Contractors) engaging in technology partnership activities, share a mutual objective to ensure complete fairness in the transfer of federally funded technologies into the marketplace for the benefit of the U.S. economy. This includes an interest in open lines of communication and the early identification of issues, complaints and disputes between contractors and their existing or potential partners. The Technology Transfer Ombudsman Program provides an independent point of contact for concerns about technology transfer i SRS Sign ssues, complaints and disputes. The mission of the Ombudsman Program is to elevate to the appropriate SRNS officials the information needed to identify and resolve problems thereby improving satisfaction with SRNS practices and reducing the occasion for formal disputes and litigation. The Ombudsman will not be involved in the merits of cases that are the subject of ongoing dispute resolution or litigation, or investigation incidents thereto. The Ombudsman is not established to be a super-administrator, re-doing what specialized officials have already done. Rather, the Ombudsman is to ensure that appropriate SRNS officials consider all pertinent information when deciding the company's position on a technology transfer complaint. To request forms or acquire additional information contact: Michael Wamstad, 803-725-3751 or mike.wamstad@srs.gov.

52

Technology Transfer Overview | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Services » Technology Transfer and Procurement » Technology Services » Technology Transfer and Procurement » Technology Transfer & Intellectual Property » Technology Transfer Overview Technology Transfer Overview Through strategic investments in science and technology, the U.S. Department of Energy (DOE) helps power and secure America's future. DOE's capabilities, and the innovations it supports, help ensure the country's role as a leader in science and technology. In particular, technology transfer supports the maturation and deployment of DOE discoveries, providing ongoing economic, security and environmental benefits for all Americans. "Technology transfer" refers to the process by which knowledge, intellectual property, or capabilities developed at the Department of Energy's National Laboratories, single-purpose research facilities, plants,

53

Accelerating the transfer in Technology Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerating the transfer in Technology Transfer Accelerating the transfer in Technology Transfer Community Connections: Our link to Northern New Mexico Communities Latest Issue:Dec. 2013 - Jan. 2014 All Issues » submit Accelerating the transfer in Technology Transfer Express Licensing fast tracks commercialization. May 1, 2013 Division Leader Dave Pesiri Division Leader Dave Pesiri. Contact Editor Linda Anderman Email Community Programs Office Kurt Steinhaus Email Express Licensing program To better serve its partners, one of the first improvements the Lab's Technology Transfer Division (TT) has made is through its new Express Licensing initiative. Standardized license agreements and fee structures will remove long and complicated negotiations and decrease the time required to get patented Lab technology and software into the hands of

54

Development and transfer of fuel fabrication and utilization technology for research reactors  

SciTech Connect

Approximately 300 research reactors supplied with US-enriched uranium are currently in operation in about 40 countries, with a variety of types, sizes, experiment capabilities and applications. Despite the usefulness and popularity of research reactors, relatively few innovations in their core design have been made in the last fifteen years. The main reason can be better understood by reviewing briefly the history of research reactor fuel technology and enrichment levels. Stringent requirements on the enrichment of the uranium to be used in research reactors were considered and a program was launched to assist research reactors in continuing their operation with the new requirements and with minimum penalties. The goal of the new program, the Reduced Enrichment Research and Test Reactor (RERTR) Program, is to develop the technical means to utilize LEU instead of HEU in research reactors without significant penalties in experiment performance, operating costs, reactor modifications, and safety characteristics. This paper reviews briefly the RERTR Program activities with special emphasis on the technology transfer aspects of interest to this conference.

Travelli, A.; Domagala, R.F.; Matos, J.E.; Snelgrove, J.L.

1982-01-01T23:59:59.000Z

55

SHARED TECHNOLOGY TRANSFER PROGRAM  

DOE Green Energy (OSTI)

The program established a collaborative process with domestic industries for the purpose of sharing Navy-developed technology. Private sector businesses were educated so as to increase their awareness of the vast amount of technologies that are available, with an initial focus on technology applications that are related to the Hydrogen, Fuel Cells and Infrastructure Technologies (Hydrogen) Program of the U.S. Department of Energy. Specifically, the project worked to increase industry awareness of the vast technology resources available to them that have been developed with taxpayer funding. NAVSEA-Carderock and the Houston Advanced Research Center teamed with Nicholls State University to catalog NAVSEA-Carderock unclassified technologies, rated the level of readiness of the technologies and established a web based catalog of the technologies. In particular, the catalog contains technology descriptions, including testing summaries and overviews of related presentations.

GRIFFIN, JOHN M. HAUT, RICHARD C.

2008-03-07T23:59:59.000Z

56

NREL: Technology Transfer - Events  

NLE Websites -- All DOE Office Websites (Extended Search)

Events Events February 2014 NASEO Energy Outlook Conference February 4 - 7, 2014 Washington , DC Add to calendar Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing Agreements Nondisclosure Agreements Research Facilities Commercialization Programs Success Stories News Contacts Did you find what you needed? Yes 1 No 0 Thank you for your feedback. Would you like to take a moment to tell us how we can improve this page? Submit We value your feedback. Thanks! We've received your feedback. Something went wrong. Please try again later. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NREL U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Alliance for Sustainable Energy, LLC

57

NETL: Technology Transfer - Outreach  

The Office of Research and Development (ORD)s Outreach team assists to bridge the gap from NETL technology to the general public. The team ...

58

Technology Transfer Reporting Form | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Transfer Reporting Form Technology Transfer Reporting Form Technology Transfer Reporting Form More Documents & Publications DOE F 3230.6A Technology Partnership...

59

Glass Furnace Model (GFM) development and technology transfer program final report.  

Science Conference Proceedings (OSTI)

A Glass Furnace Model (GFM) was developed under a cost-shared R&D program by the U.S. Department of Energy's Argonne National Laboratory in close collaboration with a consortium of five glass industry members: Techneglas, Inc., Owens-Corning, Libbey, Inc., Osram Sylvania, Inc., and Visteon, Inc. Purdue University and Mississippi State University's DIAL Laboratory were also collaborators in the consortium. The GFM glass furnace simulation model that was developed is a tool industry can use to help define and evaluate furnace design changes and operating strategies to: (1) reduce energy use per unit of production; (2) solve problems related to production and glass quality by defining optimal operating windows to reduce cullet generation due to rejects and maximize throughput; and (3) make changes in furnace design and/or operation to reduce critical emissions, such as NO{sub x} and particulates. A two-part program was pursued to develop and validate the furnace model. The focus of the Part I program was to develop a fully coupled furnace model which had the requisite basic capabilities for furnace simulation. The principal outcome from the Phase I program was a furnace simulation model, GFM 2.0, which was copyrighted. The basic capabilities of GFM 2.0 were: (1) built-in burner models that can be included in the combustion space simulation; (2) a participating media spectral radiation model that maintains local and global energy balances throughout the furnace volume; and (3) a multiphase (liquid, solid) melt model that calculates (does not impose) the batch-melting rate and the batch length. The key objectives of the Part II program, which overlapped the Part I program were: (1) to incorporate a full multiphase flow analytical capability with reduced glass chemistry models in the glass melt model and thus be able to compute and track key solid, gas, and liquid species through the melt and the combustion space above; and (2) to incorporate glass quality indices into the simulation to facilitate optimization studies with regard to productivity, energy use and emissions. Midway through the Part II program, however, at the urging of the industrial consortium members, the decision was made to refocus limited resources on transfer of the existing GFM 2.0 software to the industry to speed up commercialization of the technology. This decision, in turn, necessitated a de-emphasis of the development of the planned final version of the GFM software that had full multiphase capability, GFM 3.0. As a result, version 3.0 was not completed; considerable progress, however, was made before the effort was terminated. The objectives of the Technology Transfer program were to transfer the Glass Furnace Model (GFM) to the glass industry and to promote its widespread use by providing the requisite technical support to allow effective use of the software. GFM Version 2.0 was offered at no cost on a trial, six-month basis to expedite its introduction to and use by the industry. The trial licenses were issued to generate a much more thorough user beta test of the software than the relatively small amount completed by the consortium members prior to the release of version 2.0.

Lottes, S. A.; Petrick, M.; Energy Systems

2007-12-04T23:59:59.000Z

60

NREL: Technology Transfer - Research Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Facilities Research Facilities Photo of Solar Energy Research Facility building at NREL. NREL's Solar Energy Research Facility is one of many world-class facilities available to public and private agencies. For developing commercially viable energy products, organizations may partner with NREL to use our state-of-the-art laboratories, and testing and user facilities. Visit NREL's Research Facilities Web site to learn more about them. We typically develop technology partnership agreements for using our facilities and/or working with our researchers. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing Agreements Nondisclosure Agreements Research Facilities Commercialization Programs Success Stories News Contacts Did you find what you needed?

Note: This page contains sample records for the topic "development technology transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

About Technology Transfer - National Renewable Energy ...  

National Renewable Energy Laboratory Technology Transfer About Technology Transfer. Through technology partnerships, NREL seeks to reduce private sector risk and ...

62

Partnerships and Technology Transfer - ORNL  

Carbon Fiber Consortium; Oak Ridge Science and Technology Park; Contact; Staff; Oak Ridge National Laboratory. Partnerships and Technology Transfer. User Facilities ...

63

Partnering Today: Technology Transfer Highlights  

THE LLNL TECHNOLOGY COMPANY PRODUCTS Partnering Today: Technology Transfer Highlights 10 Ametek-Ortec: High-precision Radiation Detectors ORTEC, a unit of AMETEK, is ...

64

NREL: Technology Transfer - Licensing Agreements  

National Renewable Energy Laboratory Technology Transfer Licensing Agreements. Through licensing agreements, NREL provides industry with an opportunity to ...

65

NREL: Technology Transfer - Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts Contacts Here you'll find contact information and resources to help answer any questions you may have about NREL's technology transfer and commercialization opportunities. Agreement for Commercializing Technology For more information about NREL's agreements for commercializing technology, contact Anne Miller, 303-384-7353. Financial and Funding Assistance NREL does not provide financial or funding assistance for any research projects. If you're a startup company, small business, or an inventor, visit the following Web sites: Grants.gov Small Business Administration. Industry Growth Forum Visit the NREL Industry Growth Forum website or contact Kate Cheesbrough for more information about this event. Investors and Entrepreneurs For more information about NREL's Innovation and Entrepreneurship Center,

66

Technology transfer 1995  

Science Conference Proceedings (OSTI)

Technology Transfer 1995 is intended to inform the US industrial and academic sectors about the many opportunities they have to form partnerships with the US Department of Energy (DOE) for the mutual advantage of the individual institutions, DOE, and the nation as a whole. It also describes some of the growing number of remarkable achievements resulting from such partnerships. These partnership success stories offer ample evidence that Americans are learning how to work together to secure major benefits for the nation--by combining the technological, scientific, and human resources resident in national laboratories with those in industry and academia. The benefits include more and better jobs for Americans, improved productivity and global competitiveness for technology-based industries, and a more efficient government laboratory system.

Not Available

1995-01-01T23:59:59.000Z

67

NREL: Technology Transfer - Commercialization Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercialization Programs Commercialization Programs Through our commercialization programs, we help accelerate the transfer of renewable energy and energy efficiency technologies into the marketplace. Clean Energy Alliance The Clean Energy Alliance is an alliance of the nation's top business incubators that provide business services to nascent clean energy entrepreneurs. NREL partners with these elite business incubators to help foster the growth of robust clean energy businesses and commercialize their technologies. Colorado Center for Renewable Energy Economic Development Formerly the Colorado Cleantech Initiative program, the Colorado Center for Renewable Energy Economic Development (CREED) is a joint effort between NREL, the State of Colorado, and affiliated stakeholders to provide

68

Chemistry - Technology Transfer: Available Technologies  

Please refer to the list of technologies below for licensing and research collaboration availability. If you can't find the technology you ...

69

NREL: Technology Transfer - Technologies Available for Licensing  

National Renewable Energy Laboratory Technology Transfer New Amber LEDs for High-Efficiency Solid-State Lighting. NREL is closing the LED "green gap" ...

70

Partnerships and Technology Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

Work for Others Agreement Work for Others Agreement scientists The DOE national laboratories were granted the authority to perform work for others by the Atomic Energy Act of 1954 [Public Law 83-703; 42 USC 2053]. Work For Others programs at the DOE national laboratories are governed by DOE Directive 481.1-1A, "Reimbursable Work for Non-Federal Sponsors: Process Manual." Work For Others agreements provide an excellent way for companies, universities, and other entities to access the unique facilities, technologies, and expertise available at ORNL on a project-specific basis. This gives the sponsor access to research and development expertise and technology unavailable in the private sector, without having to expend the capital cost of developing or re-creating such facilities, expertise, and technology for itself.

71

Technology Transfer Reporting Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

form is to be completed by the TTO for individual inquiry/case activity during the quarter as required form is to be completed by the TTO for individual inquiry/case activity during the quarter as required by the Technology Transfer Commercialization Act of 2000. Mouse over definitions and descriptions appear over text/check boxes where appropriate. After completing this form, click on the submit button. *If you have no TTO activity for the quarter, please fill in your name, FY and quarter, lab or facility and check the box "No Quarterly Activity". Initial Ombuds Contact: ____________________ Type: Inquiry Case Ombuds Name: __________________________ Time Spent: (Hours) ______________ Final Ombuds Involvement: _________________ Laboratory or Facility: AMES ANL BNL LBNL INL KCP LANL NREL LLNL NBL NETL PNNL NNSS ORNL PXSO SRNL

72

Advanced Technology and Knowledge Transfer  

Science Conference Proceedings (OSTI)

This paper reports on a specific food and agribusiness industry project, employing new technological capabilities to better transfer expert knowledge. Knowledge transfer and technical support are key components of this project. VisIT, which stands for ...

Geetanjali Tandon; Steven T. Sonka

2003-01-01T23:59:59.000Z

73

NREL: Technology Transfer - Nondisclosure Agreements  

Technology Transfer ... Experience suggests that the fastest means to reach an agreement is through direct communications to create understanding and agree on actions. 1.

74

Fostering Technology Transfer and Entrepreneurship  

Science Conference Proceedings (OSTI)

... agencies to take steps to enhance successful technology innovation networks ... is one of the partners working with NIST to foster tech transfer and its ...

2013-08-16T23:59:59.000Z

75

NREL: Technology Transfer Home Page  

The National Renewable Energy Laboratory (NREL) works with industry and organizations to transfer renewable energy and energy efficiency technologies into the ...

76

[Technology transfer of building materials by ECOMAT  

Science Conference Proceedings (OSTI)

This report discusses the plan for technology transfer of building materials developed by ECOMAT to the commercial private sector. Some of the materials are briefly discussed like foams, fiber reinforcement, fly ash development, and polymer fillers.

NONE

1996-01-01T23:59:59.000Z

77

NREL: Technology Transfer - Agreements for Commercializing ...  

National Renewable Energy Laboratory Technology Transfer Agreements for Commercializing Technology. NREL uses Agreements for Commercializing Technology (ACT) when a ...

78

Partnering Today: Technology Transfer Highlights Reactive ...  

THE LLNL TECHNOLOGY COMPANY PRODUCT Partnering Today: Technology Transfer Highlights Reactive NanoTechnologies Inc.: Temperature-controlled Precision Bonding

79

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program  

E-Print Network (OSTI)

: 530-752-9603 Technology Transfer Program www.techtransfer.berkeley.edu UC Berkeley Institute-665-3454 Email: techtransfer@berkeley.edu The contents of this document reflect the views of the authors, who

California at Berkeley, University of

80

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program  

E-Print Network (OSTI)

-665-3562 Technology Transfer Program www.techtransfer.berkeley.edu UC Berkeley Institute of Transportation Studies: techtransfer@berkeley.edu The contents of this document reflect the views of the authors, who are responsible

California at Berkeley, University of

Note: This page contains sample records for the topic "development technology transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Jefferson Lab Technology Transfer  

Invention Disclosure; CRADA/WFO Routing; Fairness of Opportunity; Achievements at JLab. Patents; New Inventions; New Technologies; New Advances; ...

82

Partnerships and Technology Transfer  

... and photovoltaic materials. This technology is applicable to quantum dot solid-state lighting, flexible electronics, thin film batteries, and ...

83

Technology Transfer: Success Stories  

NLE Websites -- All DOE Office Websites (Extended Search)

Lawrence Berkeley National Laboratory masthead A-Z Index Berkeley Lab masthead U.S. Department of Energy logo Phone Book Jobs Search Tech Transfer Tech Index For Industry For...

84

Technology Transfer Plan  

Science Conference Proceedings (OSTI)

BPF developed the concept of a mobile, on-site NORM remediation and disposal process in late 1993. Working with Conoco and receiving encouragement born the Department of Energy, Metarie Office, and the Texas Railroad Commission the corporation conducted extensive feasibility studies on an on-site disposal concept. In May 1994, the Department of Energy issued a solicitation for cooperative agreement proposal for, "Development and Testing of a Method for Treatment and Underground Disposal of Naturally Occurring Radioactive Materials (NORM)". BPF submitted a proposal to the solicitation in July 1994, and was awarded a cooperative agreement in September 1995. BPF proposed and believed that proven equipment and technology could be incorporated in to a mobile system. The system would allow BPF to demonstrate an environmentally sound and commercially affordable method for treatment and underground disposal of NORM. The key stop in the BPF process incorporates injection of the dissolved radioactive materials into a water injection or disposal well. Disposal costs in the BPF proposal of July 1995 were projected to range from $1000 to $5000 per cubic yard. The process included four separate steps. (1) De-oiling (2) Volume Reduction (3) Chemical Dissolution of the Radium (4) Injection

None

1998-12-31T23:59:59.000Z

85

Technology transfer | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology transfer Technology transfer Technology available for licensing: CURLSNovember 21, 2013 Containment Unidirectional Resource Loading System expands flexibility of glove boxes and other containment systems. Read more about Technology available for licensing: CURLS Rhodobacter System for the Expression of Membrane Proteins Using photosynthetic bacteria (Rhodobacter) for the expression of heterologous membrane proteins Read more about Rhodobacter System for the Expression of Membrane Proteins Synthesizing Membrane Proteins Using In Vitro Methodology This in vitro, cell-free expression system caters to the production of protein types that are challenging to study: membrane proteins, membrane-associated proteins, and soluble proteins that require complex redox cofactors.

86

SBIR Technology Transfer Opportunity  

Thanks for your interest in SRNL's Nanoproportional Counter technology. On this page you will find links to additional information and a listing of frequently asked ...

87

NETL: Technology Transfer - DOE  

Clean power technologies, integrated gasification, carbon capture, and quantum mechanical simulationswords like these mean the future of energy to NETL's in-house ...

88

Jefferson Lab Technology Transfer  

List the name (s) of Thomas Jefferson National Accelerator Facility's technology of interest: * Does any foreign entity (company, person, ... Select license type:

89

SRNL - Technology Transfer - Home  

NLE Websites -- All DOE Office Websites (Extended Search)

so that these technologies may have the collateral benefit of enhancing U.S. economic competitiveness. Savannah River National Laboratory . DOE-EM Logo Last updated: September 4...

90

NREL: Technology Transfer - 22nd Industry Growth Forum ...  

22nd Industry Growth Forum Presentations. ... Technology: Energy storage ... Technology Transfer Home; About Technology Transfer;

91

Contact NETL Technology Transfer Group  

NLE Websites -- All DOE Office Websites (Extended Search)

NETL Technology Transfer Group techtransfer@netl.doe.gov May 2012 Significance * Applicable to subcritical and supercritical air-fired boiler designs * Eliminates the need to mimic air-fired heat transfer characteristics in order to meet existing dry steam load demands * Reduces retrofit complexity, time, and cost Applications * Retrofitting of conventional air-fired boilers Opportunity Research is active on the patent-pending technology, titled "Temperature

92

SRNL - Technology Transfer - Contacts  

Contacts. TBD, Director Strategic Development and Technical Partnerships. Steve Wach, Manager & Acting Director Strategic Development and ...

93

NREL: Technology Transfer - Webmaster - National Renewable ...  

National Renewable Energy Laboratory Technology Transfer Webmaster. To report any problems on or ask a question about the NREL Technology Transfer Web ...

94

Smart Lawrence Berkeley National Laboratory Technology Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

From Berkeley Lab to the Marketplace Smart Lawrence Berkeley National Laboratory Technology Transfer with Partner Lawrence Berkeley National Laboratory Technology Transfer at...

95

Technology Transfer Commercialization Act of 2000 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Transfer Commercialization Act of 2000 Technology Transfer Commercialization Act of 2000 PUBLIC LAW 106-404-NOV. 1, 2000 To improve the ability of Federal agencies to...

96

2008 Technology Transfer Awards  

NLE Websites -- All DOE Office Websites (Extended Search)

conductivity than pure copper. Sensor Development and Advanced Concepts for Oil Shale Recovery Jonathan L. Mace (DE-6) Develop new methods that are based on combinations...

97

Technology_Transfer_Memo.pdf | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TechnologyTransferMemo.pdf TechnologyTransferMemo.pdf TechnologyTransferMemo.pdf More Documents & Publications PolicyStatementonTechnologyTransfer.pdf...

98

Energy Innovation Portal Bridging Technology Transfer ...  

Call the Energy Innovation Portal (the Portal) a Craigslist for technology transfer, aimed at entrepreneurs, investors, and corporate technology scouts.

99

NREL: Technology Transfer - News  

NLE Websites -- All DOE Office Websites (Extended Search)

News News December 13, 2013 NREL Electrode Innovation Poised to Shake Up the Li-ion Battery Industry NREL's groundbreaking manufacturing process uses a special kind of carbon nanotube to increase the volume of active material that can be stored within an electrode. November 12, 2013 Brilliant White Light with Amber LEDs; NREL Licensing Webinar December 10th NREL's Amber LED technology, when combined with red, green and blue LEDs, produces a broad-spectrum white light more efficiently than current LEDs. This new technology, which is available for licensing from NREL, results in a low-cost, easy-to-manufacture white LED, with improved luminosity. October 21, 2013 NREL Forum Attracts Clean Energy Investors and Entrepreneurs Thirty clean energy companies, including seven companies based in Colorado,

100

Partnerships and Technology Transfer  

Learn About Us. Licensing; Sponsored Research; Economic Development; Industrial Partnerships; University Partnerships; Event; Symposium; Materials; Photos; Video

Note: This page contains sample records for the topic "development technology transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

2006 Technology Transfer Awards  

NLE Websites -- All DOE Office Websites (Extended Search)

the Participants, for electricity and heat production from biofuels (biodiesel and bioethanol) in contemporary gas turbines. LANL will work with the Partici- pants to develop...

102

Bio-Imaging Technology Transfer and Commercialization ...  

Science Conference Proceedings (OSTI)

Bio-Imaging Technology Transfer and Commercialization Showcase. For Immediate Release: August 25, 2009. ...

2010-12-29T23:59:59.000Z

103

NREL: Technology Transfer - President Obama Unveils Climate ...  

National Renewable Energy Laboratory Technology Transfer President Obama Unveils Climate Action Plan

104

Los Alamos Lab: Technology Transfer | Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Phone 505-665-9090 Address 2237 Trinity Dr., Bldg. 1 TA-00, Bldg. 1325 Map to TT (pdf) Tech Transfer Ombuds Technology Transfer The Laboratory's Technology Transfer Division...

105

SRNL - Technology Transfer - Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Director Strategic Development and Technical Partnerships 803-725-3020 steve.wach@srnl.doe.gov Dale Haas, Commercialization Program Manager (803) 725-4185 dale.haas@srnl.doe.gov...

106

NREL: Technology Transfer - Technologies Available for Licensing  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Available for Licensing Technologies Available for Licensing Photo of NREL scientist in the NREL Hydrogen Lab. NREL's scientists and engineers develop award-winning technologies available for licensing. NREL scientists and engineers produce breakthrough and award-winning renewable energy and energy efficiency technologies that are available for licensing. We have many licensing opportunities for NREL-developed technologies, including our featured LED technologies. To see all our technologies available for licensing, visit the EERE Innovation Portal and search for NREL. Learn about our licensing agreement process. Contact For more information about licensing NREL-developed technologies, contact Eric Payne, 303-275-3166. Ombuds NREL strives to quickly resolve any issue or concern you may have regarding

107

NIH Technology Transfer Prepared by  

E-Print Network (OSTI)

Institutes of Health U.S. Department of Health & Human Services February 2013 #12;Table of Contents 2013 Federal Laboratory Consortium | National Award | Excellence in Technology Transfer Glybera®: First Gene.......................................................................................................................... 3 2012 National Institutes of Health | Inventors on NIH Patents Issued in FY 2012 Congratulations

Bandettini, Peter A.

108

Technology Transfer Ombudsman Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Technology Transfer Ombudsman Program Technology Transfer Ombudsman Program The Technology Transfer Commercialization Act of 2000, Public Law 106-404 (PDF) was enacted in November 2000. Pursuant to Section 11, Technology Partnerships Ombudsman, each DOE national laboratory and research facility has appointed a technology partnership ombudsman (ombuds). The role of the ombuds is prevention and early resolution of disputes between the lab and inventors or private companies over technology transfer issues such as infringement, intellectual property rights, royalties and licensing, etc. The Director, Office of Conflict Prevention and Resolution, coordinates this program and compiles data for quarterly reports. See the Department of Energy Technology Transfer Ombuds (PDF).

109

Fermilab | Office of Partnerships and Technology Transfer ...  

Quantum Diaries; Office of Partnerships and Technology Transfer. Feature. Tech Transfer at Fermilab. In an effort to fuel the economy and foster ...

110

Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants - Public Final Technical Report  

SciTech Connect

Executive Summary This Final Report for the "Development of Molten-Salt Heat Transfer Fluid (HTF) Technology for Parabolic Trough Solar Power Plants describes the overall project accomplishments, results and conclusions. Phase 1 analyzed the feasibility, cost and performance of a parabolic trough solar power plant with a molten salt heat transfer fluid (HTF); researched and/or developed feasible component options, detailed cost estimates and workable operating procedures; and developed hourly performance models. As a result, a molten salt plant with 6 hours of storage was shown to reduce Thermal Energy Storage (TES) cost by 43.2%, solar field cost by 14.8%, and levelized cost of energy (LCOE) by 9.8% - 14.5% relative to a similar state-of-the-art baseline plant. The LCOE savings range met the projects Go/No Go criteria of 10% LCOE reduction. Another primary focus of Phase 1 and 2 was risk mitigation. The large risk areas associated with a molten salt parabolic trough plant were addressed in both Phases, such as; HTF freeze prevention and recovery, collector components and piping connections, and complex component interactions. Phase 2 analyzed in more detail the technical and economic feasibility of a 140 MWe,gross molten-salt CSP plant with 6 hours of TES. Phase 2 accomplishments included developing technical solutions to the above mentioned risk areas, such as freeze protection/recovery, corrosion effects of applicable molten salts, collector design improvements for molten salt, and developing plant operating strategies for maximized plant performance and freeze risk mitigation. Phase 2 accomplishments also included developing and thoroughly analyzing a molten salt, Parabolic Trough power plant performance model, in order to achieve the project cost and performance targets. The plant performance model and an extensive basic Engineering, Procurement, and Construction (EPC) quote were used to calculate a real levelized cost of energy (LCOE) of 11.50/kWhe , which achieved the Phase 2 Go/No Go target of less than 0.12/kWhe. Abengoa Solar has high confidence that the primary risk areas have been addressed in the project and a commercial plant utilizing molten salt is economically and technically feasible. The strong results from the Phase 1 and 2 research, testing, and analyses, summarized in this report, led Abengoa Solar to recommend that the project proceed to Phase 3. However, a commercially viable collector interconnection was not fully validated by the end of Phase 2, combined with the uncertainty in the federal budget, forced the DOE and Abengoa Solar to close the project. Thus the resources required to construct and operate a molten salt pilot plant will be solely supplied by Abengoa Solar.

Grogan, Dylan C. P.

2013-08-15T23:59:59.000Z

111

TECHNOLOGY TRANSFER QUESTIONS..txt - Notepad | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TECHNOLOGY TRANSFER QUESTIONS..txt - Notepad TECHNOLOGY TRANSFER QUESTIONS..txt - Notepad TECHNOLOGY TRANSFER QUESTIONS..txt - Notepad More Documents & Publications Attn Technology...

112

TECHNOLOGY TRANSFER COMMERCIALIZATION ACT OF 2000 PDF | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TECHNOLOGY TRANSFER COMMERCIALIZATION ACT OF 2000 PDF TECHNOLOGY TRANSFER COMMERCIALIZATION ACT OF 2000 PDF TECHNOLOGY TRANSFERCOMMERCIALIZATION ACT OF 2000 TECHNOLOGY TRANSFER...

113

TECHNOLOGY TRANSFER COMMERCIALIZATION ACT OF 2000 PDF | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TECHNOLOGY TRANSFER COMMERCIALIZATION ACT OF 2000 PDF TECHNOLOGY TRANSFER COMMERCIALIZATION ACT OF 2000 PDF TECHNOLOGY TRANSFER COMMERCIALIZATION ACT OF 2000 PDF TECHNOLOGY...

114

NETL Technology Transfer Agreements & Research Partnerships Available  

NLE Websites -- All DOE Office Websites (Extended Search)

How to Partner How to Partner Technology Transfer NETL Technology Transfer Agreements & Research Partnerships Pouring molten metal into a lost foam, loose sand casting for cast steel armorplate Pouring molten metal into a lost foam, loose sand casting for cast steel armorplate A technology transfer agreement with the National Energy Technology Laboratory (NETL) provides access to the research and development expertise, facilities, and intellectual property of a government research facility. Specializing in fossil fuel energy research, NETL technology transfer options include: Research Partnership Notice - "Seeking Partnerships on Field Research Related to Shale Gas Development" Cooperative Research and Development Agreement (CRADA) Contributed Funds-in Agreement (CFA)

115

Technology Transfer and Commercialization Annual Report 2008  

Science Conference Proceedings (OSTI)

The Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory, technology transfer mission to make its capabilities and technologies available to all federal agencies, to state and local governments, and to universities and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and made available to others who might benefit from it. As part of the mission, intellectual property is licensed to industrial partners for commercialization, creating jobs and delivering the benefits of federally funded technology to consumers. In other cases, unique capabilities are made available to other federal agencies or to regional small businesses to solve specific technical challenges. In other interactions, INL employees work cooperatively with researchers and other technical staff of our partners to further develop emerging technologies. This report is a catalog of selected INL technology transfer and commercialization transactions during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically authorized by technology transfer legislation (and corresponding contractual provisions) or involve the transfer of legal rights to technology to other parties. This report was compiled from primary records, which were readily available to the INLs Office of Technology Transfer & Commercialization. The accomplishments cataloged in the report, however, reflect the achievements and creativity of the highly skilled researchers, technicians, support staff, and operators of the INL workforce. Their achievements and recognized capabilities are what make the accomplishments cataloged here possible. Without them, none of these transactions would occur.

Michelle R. Blacker

2008-12-01T23:59:59.000Z

116

USDOE Technology Transfer, Working with DOE  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency & Renewable and Energy - Commercialization Energy Efficiency & Renewable and Energy - Commercialization Deployment SBIR/STTR - Small Business Innovation Research and Small Business Technology Transfer Advanced Research Projects Agency-Energy (ARPA-E) Oil & Gas Technology Transfer Initiatives USEFUL LINKS Contract Opportunities: FBO.gov FedConnect.net Grant Opportunities DOE Organization Chart Association of University Technology Managers (AUTM) Federal Laboratory Consortium (FLC) Feedback Contact us about Tech Transfer: Mary.McManmon@science.doe.gov Mary McManmon, 202-586-3509 Working with DOE Navigate Home About Us Contact Information Hide Thumbs First Previous Pause Next Last Set Speed Slideshow speed: 5 seconds Move Decontamination New Image Set Autoinduction Autoinduction System The award winning Overnight Express(tm) Autoinduction System developed at

117

Analysis of Technology Transfer in CDM Projects | Open Energy Information  

Open Energy Info (EERE)

Analysis of Technology Transfer in CDM Projects Analysis of Technology Transfer in CDM Projects Jump to: navigation, search Tool Summary Name: Analysis of Technology Transfer in CDM Projects Agency/Company /Organization: United Nations Framework Convention on Climate Change Sector: Energy, Land Topics: Finance, Implementation Resource Type: Publications Website: cdm.unfccc.int/Reference/Reports/TTreport/TTrep08.pdf Analysis of Technology Transfer in CDM Projects Screenshot References: Analysis of Technology Transfer in CDM Projects[1] Overview "Although the Clean Development Mechanism (CDM) does not have an explicit technology transfer mandate, it may contribute to technology transfer by financing emission reduction projects using technologies currently not available in the host countries. This report analyzes the claims of

118

NETL Inventions Earn 2009 Technology Transfer Awards | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Inventions Earn 2009 Technology Transfer Awards Inventions Earn 2009 Technology Transfer Awards NETL Inventions Earn 2009 Technology Transfer Awards February 13, 2009 - 12:00pm Addthis Washington, DC -- Two technologies developed by researchers at the Office of Fossil Energy's National Energy Technology Laboratory (NETL) have earned 2009 Excellence in Technology Transfer Awards from the Federal Laboratory Consortium for Technology Transfer (FLC). Both technologies enable the cleaner use of coal for electricity production and have been licensed to the private sector for commercial development. The awards will be formally presented at the annual FLC national meeting to be held May 4-7, 2009, in Charlotte, N.C. The national awards are given for outstanding work commercializing new and innovative technologies developed

119

Attn Technology Transfer Questions.txt - Notepad  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Attn Technology Transfer Questions.txt From: eschaput esandc@prodigy.net Sent: Monday, January 26, 2009 10:31 PM To: GC-62 Subject: Attn: Technology Transfer Questions We have...

120

NREL: Technology Transfer - Solar Policy and Program ...  

National Renewable Energy Laboratory Technology Transfer ... Unbiased analysis of economic and market impacts related to policy changes;

Note: This page contains sample records for the topic "development technology transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

NREL: Technology Transfer - Clean Energy Investors Directory  

National Renewable Energy Laboratory Technology Transfer NREL is no longer maintaining the Clean Energy Investors Directory due to widely accessible ...

122

NREL: Technology Transfer - Materials Exposure Testing Market ...  

National Renewable Energy Laboratory Technology Transfer Materials Exposure Testing Market Expands with Ultra-Accelerated Weathering System

123

PNNL: Doing Business - Technology Transfer Contacts  

Search PNNL. PNNL Home; About; Research; Publications; Jobs; News; Contacts; PNNL's Technology Transfer team represents more than a century of ...

124

Available Technologies: Heat Transfer Interface for Thermo ...  

Refrigeration systems; Internal combustion engines; ... The components of the technology could be used to improve heat transfer in industrial, ...

125

NREL: Technology Transfer - Commercialization Assistance Program  

National Renewable Energy Laboratory Technology Transfer Commercialization Assistance Program. The NREL Commercialization Assistance Program (NCAP) helps emerging ...

126

NREL: Technology Transfer - NREL Launches Renewable Energy ...  

The National Renewable Energy Laboratory's (NREL's) ... For more information about REopt, visit the new website. Printable Version. Technology Transfer Home;

127

Los Alamos Lab: Technology Transfer | Home Page  

Contacts Event Calendar Maps Organization Phonebook Policy Center Emergency. NEWS. LIBRARY. JOBS. Technology Transfer, TT . Division Home; About Us; Organization;

128

Jefferson Lab Technology Transfer - Thomas Jefferson National ...  

JSA Invention Disclosure; Technology Transfer Issues (Ombudsman) Programs and Facilities. Free-Electron Laser Program (FEL) Applied Research Center ...

129

Sandia National Laboratories : Licensing/Technology Transfer  

Search; About Sandia; Mission Areas; Newsroom; Careers; Doing Business; Education; Contact Us; Licensing and Technology Transfer. IP Home; Search ...

130

NREL: Technology Transfer - NREL Electrode Innovation ...  

National Renewable Energy Laboratory Technology Transfer NREL Electrode Innovation Poised to Shake Up the Li-ion Battery Industry

131

Technology Transfer: Triggering New Global Markets and Job Growth |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Transfer: Triggering New Global Markets and Job Growth Technology Transfer: Triggering New Global Markets and Job Growth Technology Transfer: Triggering New Global Markets and Job Growth September 20, 2011 - 11:33am Addthis The Global Positioning System (GPS) was initially a government technology developed to guide nuclear missiles, and is one of the many examples of the economic potential of successful technology transfer -- the now worldwide location technologies market is projected to grow to $75 billion by 2013. The Global Positioning System (GPS) was initially a government technology developed to guide nuclear missiles, and is one of the many examples of the economic potential of successful technology transfer -- the now worldwide location technologies market is projected to grow to $75 billion by 2013.

132

PNNL wins Four Technology Transfer Awards  

Science Conference Proceedings (OSTI)

PNNL wins 4 Technology Transfer Awards Pacific Northwest National Laboratory has received four 2006 Excellence in Technology Transfer Awards from the Federal Laboratory Consortium - a nationwide network of more than 700 major federal laboratories and centers as well as their parent departments and agencies that provides a forum to develop strategies and opportunities for linking technology with the mission and the marketplace. The FLC presents its Awards for Excellence in Technology Transfer to federal laboratory employees who have done outstanding work in transferring U.S. government-sponsored technologies to the public and private sectors. Since 1984, when the awards program was established, Pacific Northwest has earned 62 of these awards, far more than any other national laboratory. This year, PNNL won all four of the nominations that were submitted--the most that any laboratory can submit. PNNL was recognized for transferring technologies that treat and cure cancer, uniquely analyze massive sets of data, increase surgical implant success rates, and neutralize toxic chemicals from the environment. Through collaboration with PNNL researchers and access to facilities at PNNL, IsoRay Medical, Inc. (http://www.isoray.com), expanded its brachytherapy technology for treating prostate and other cancers. The medical isotope ?seed? products are available at more than 17 implant centers nationwide. More than 40 organizations, including Fortune 500 companies, are using the Starlight information visualization software to mine and interpret massive amounts of data. Bacterin International licensed bioactive thin-film coatings which reduce infection rates associated with surgical implants. Self-Assembled Monolayers on Mesoporous Silica (SAMMS), a process for removing mercury and other toxic chemicals from the environment, was licensed to Steward Advanced Materials for use in coal-fired power plants, municipal incinerators, and other plants.

Fisher, Julie A.; McMakin, Andrea H.

2006-06-01T23:59:59.000Z

133

Attn Technology Transfer Questions.txt - Notepad | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Attn Technology Transfer Questions.txt - Notepad Attn Technology Transfer Questions.txt - Notepad Attn Technology Transfer Questions.txt - Notepad More Documents & Publications...

134

UNIDO ICS Portal for Technology Transfer | Open Energy Information  

Open Energy Info (EERE)

UNIDO ICS Portal for Technology Transfer UNIDO ICS Portal for Technology Transfer Jump to: navigation, search Tool Summary Name: UNIDO ICS Portal for Technology Transfer Agency/Company /Organization: United Nations Industrial Development Organization Sector: Energy Topics: Technology characterizations Resource Type: Dataset Website: portal.ics.trieste.it/Portal/Default.aspx References: UNIDO ICS Portal for Technology Transfer[1] This article is a stub. You can help OpenEI by expanding it. References ↑ "UNIDO ICS Portal for Technology Transfer" Retrieved from "http://en.openei.org/w/index.php?title=UNIDO_ICS_Portal_for_Technology_Transfer&oldid=329335" Categories: Tools Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load)

135

Overcoming Barriers to the Transfer and Diffusion of Climate Technologies |  

Open Energy Info (EERE)

Overcoming Barriers to the Transfer and Diffusion of Climate Technologies Overcoming Barriers to the Transfer and Diffusion of Climate Technologies Jump to: navigation, search Tool Summary Name: Overcoming Barriers to the Transfer and Diffusion of Climate Technologies Agency/Company /Organization: UNEP-Risoe Centre Sector: Energy, Climate Focus Area: Greenhouse Gas Topics: Technology characterizations Resource Type: Publications, Guide/manual, Training materials Website: uneprisoe.org/ Cost: Free Overcoming Barriers to the Transfer and Diffusion of Climate Technologies Screenshot References: UNEP-Risoe[1] Logo: Overcoming Barriers to the Transfer and Diffusion of Climate Technologies This guidebook deals with the transfer of proven technologies both between countries and within them. "The purpose of the TNA project is to assist participant developing country

136

A planning framework for transferring building energy technologies: Executive Summary  

Science Conference Proceedings (OSTI)

Accelerating the adoption of new and existing cost-effective technologies has significant potential to reduce the energy consumed in US buildings. This report summarizes some of the key results of an interlaboratory technology transfer planning effort in support of the US Department of Energy's Office of Building Technologies (the full report is published under SERI number TP-260-3729). A guiding assumption for planning was that OBT's R D program should forge linkages with existing programs whose goals involved enhancing energy efficiency in buildings. An ad hoc Technology Transfer Advisory Group reviewed the existing analysis and technology transfer program, brainstormed technology transfer approaches, interviewed DOE program managers, identified applicable research results, and developed a framework that management could use in deciding on the best investments of technology transfer resources. Representatives of 22 organizations were interviewed on their views of the potential for transferring energy efficiency technologies through active linking with OBT. The report describes in summary these programs and interview results; outlines OBT tools, technologies, and practices to be transferred; defines OBT audiences; identifies technology transfer functions and presents a framework devised using functions and audiences; presents some example technology transfer activities; and summarizes the Advisory Group's recommendations.

Farhar, B C; Brown, M A; Mohler, B L; Wilde, M; Abel, F H

1990-08-01T23:59:59.000Z

137

A planning framework for transferring building energy technologies  

SciTech Connect

Accelerating the adoption of new and existing cost-effective technologies has significant potential to reduce the energy consumed in US buildings. This report presents key results of an interlaboratory technology transfer planning effort in support of the US Department of Energy's Office of Building Technologies (OBT). A guiding assumption for planning was that OBT's R D program should forge linkages with existing programs whose goals involved enhancing energy efficiency in buildings. An ad hoc Technology Transfer Advisory Group reviewed the existing analysis and technology transfer program, brainstormed technology transfer approaches, interviewed DOE program managers, identified applicable research results, and developed a framework that management could use in deciding on the best investments of technology transfer resources. Representatives of 22 organizations were interviewed on their views of the potential for transferring energy efficiency technologies through active linking with OBT. The report describes these programs and interview results; outlines OBT tools, technologies, and practices to be transferred; defines OBT audiences; identifies technology transfer functions and presents a framework devised using functions and audiences; presents some 60 example technology transfer activities; and documents the Advisory Group's recommendations. 37 refs., 3 figs., 12 tabs.

Farhar, B C; Brown, M A; Mohler, B L; Wilde, M; Abel, F H

1990-07-01T23:59:59.000Z

138

NREL: Technology Transfer - Success Stories  

NLE Websites -- All DOE Office Websites (Extended Search)

Success Stories Success Stories We'd like to share our stories about innovation, industry partnerships, and the path towards commercializing renewable energy and energy efficiency technologies developed at NREL. Materials Exposure Testing Market Expands with Ultra-Accelerated Weathering System The Ultra-Accelerated Weathering System will change the weathering industry. A partnership with Atlas, one of the leader's in materials exposure testing, will take NREL's technology to industry. Watch the video. NREL and SkyFuel Partnership Reflects Bright Future for Solar Energy For the next generation of parabolic troughs, NREL Principal Scientist Gary Jorgensen and SkyFuel Chief Technology Officer Randy Gee have developed a lower-cost, more durable solution to glass mirrors. Watch the video.

139

Resource Center Workforce SBIR/STTR Technology Transfer ...  

Science Conference Proceedings (OSTI)

... Students in Today's Global Marketplace Technology Transfer Benefits to Academia from Tech Transfer Partnerships RESOURCE CENTER ...

2013-08-21T23:59:59.000Z

140

NREL Successfully Transfers VSHOT Technology to Solar Industry  

NREL Successfully Transfers VSHOT Technology to Solar Industry ... The increasing demand for concentrating solar power, ... Technology Transfer Home;

Note: This page contains sample records for the topic "development technology transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Idaho National Laboratory - Technology Transfer - Technologies ...  

Idaho National Laboratory Technologies Available for Licensing ... Fossil Energy; Information Technology; Manufacturing ; Materials; National Security; Non-Nuclear ...

142

NETL: News Release - NETL Recognized for Technology Transfer Success  

NLE Websites -- All DOE Office Websites (Extended Search)

9, 2011 9, 2011 NETL Recognized for Technology Transfer Success NETL's commitment to transferring advanced energy technologies from the laboratory into the marketplace has again won recognition from the Federal Laboratory Consortium for Technology Transfer (FLC). This year, four research groups will receive regional FLC awards for their efforts in commercializing technologies developed at NETL. Technology transfer - moving a new technology from the inventor's workbench or laboratory to a company that will market the product - is the crucial and essential step that gives an invention the means to be of service to the greatest number of people. The FLC awards, established in 1984, recognize laboratory employees who have done an outstanding work in technology transfer over the past year.

143

Responses To Questions Concerning Technology Transfer Practices at DOE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Responses To Questions Concerning Technology Transfer Practices at Responses To Questions Concerning Technology Transfer Practices at DOE Laboratories Responses To Questions Concerning Technology Transfer Practices at DOE Laboratories AllianceForSustainableEnergy Battelle Department of Economic and Community Development Planar Energy Devices Center for Hydrogen Research Electric Power Research Institute (EPRI) APJeT, Inc. Pacific Northwest National Laboratory (PNNL) American Superconductor (AMSC) Economic Development Partnership Campbell Applied Physics, Inc. Oak Ridge Economic Partnership Purdue University Council on Governmental Relations Cummins University of California ORNL Tech Transfer Jet Propulsion Laboratory (JPL) Eastman Chemical Company Sandia National Laboratories Lawrence Livermore National Laboratory Oak Ridge National Laboratory

144

Combustion Process Contact NETL Technology Transfer Group  

NLE Websites -- All DOE Office Websites (Extended Search)

the Reactivity and Capacity of Oxygen Carriers for the Chemical Looping Combustion Process Contact NETL Technology Transfer Group techtransfer@netl.doe.gov February 2013 This...

145

Partnerships and Technology Transfer - Oak Ridge National ...  

Distributed Energy Communications & Controls (DECC) Laboratory D. Tom Rizy; ... Partnerships and Technology Transfer. P.O. Box 2008, Oak Ridge, TN 37831.

146

NREL: Awards and Honors - Technology Transfer Awards  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Transfer Awards Federal Laboratory Consortium (FLC) Awards These awards are given to scientists, researchers, and others who work for federal laboratories and agencies...

147

Secretary Bodman Announces DOE Technology Transfer Coordinator...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Announces DOE Technology Transfer Coordinator June 29, 2007 - 2:36pm Addthis Establishes Policy Board; Strengthens DOE Efforts to Bring Energy Options to the Marketplace...

148

Partnerships and Technology Transfer - Oak Ridge National ...  

Disclaimer; Oak Ridge National Laboratory; Ombudsman; Partnerships and Technology Transfer. P.O. Box 2008, Oak Ridge, TN 37831. Office: 865-574-4180 ...

149

Technology Transfer at Berkeley Lab: Ombuds  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Transfer Contact Us See Also Partner Smart with Berkeley Lab (Downloadable Copy, 1.4MB, PDF) Licensing Interest Form Receive New Tech Alerts Ombudsman Complaint...

150

Argonne National Laboratory - Office of Technology Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

at Argonne on or before November 15, 2013. Download the commercialization plan worksheet Tech Transfer Information for Employees Technology Corner Recent News Report an invention...

151

Study Highlights Diversity in Agency Technology Transfer ...  

Science Conference Proceedings (OSTI)

... capture the full range of the economic impact of federal research facilities.". ... to transfer technology from the federal laboratories is essential to the ...

2012-05-08T23:59:59.000Z

152

Technology Transfer and Procurement | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Procurement Technology Transfer and Procurement Solar Panel Technician | Credit: DOE Archives Solar Panel Technician | Credit: DOE Archives Offices of the Deputy General Counsel...

153

Fermilab | Office of Partnerships and Technology Transfer ...  

Quantum Diaries; Technology transfer at Fermilab. In an effort to fuel the economy and foster innovation, President Obama recently issued a directive ...

154

Technology Transfer: For Industry:SBIR Opportunities  

Technology Transfer Opportunities (TTOs) for SBIR and STTR Programs. FY2013 Phase 1 Release 1. During the FOA open period August 13 - October 16, 2012,

155

Operational safety enhancement of Soviet-designed nuclear reactors via development of nuclear power plant simulators and transfer of related technology  

SciTech Connect

The US Department of Energy (DOE), under the US government`s International Nuclear Safety Program (INSP), is implementing a program of developing and providing simulators for many of the Russian and Ukrainian Nuclear Power Plants (NPPs). Pacific Northwest National Laboratory (PNNL) and Brookhaven National Laboratory (BNL) manage and provide technical oversight of the various INSP simulator projects for DOE. The program also includes a simulator technology transfer process to simulator design organizations in Russia and Ukraine. Training programs, installation of new simulators, and enhancements in existing simulators are viewed as providing a relatively fast and cost-effective technology transfer that will result in measurable improvement in the safety culture and operation of NPPs. A review of this program, its present status, and its accomplishments are provided in this paper.

Kohut, P.; Epel, L.G.; Tutu, N.K. [and others

1998-08-01T23:59:59.000Z

156

Technology Transfer: Success Stories: Licensed Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Licensed Technologies Licensed Technologies Here are some of our licensees and the technologies they are commercializing; see our Start-Up Company page for more of our technology licenses. Company (Licensee) Technology Life Technologies Corp. Cell lines for breast cancer research Bristol Myers Squibb; Novartis; Plexxikon Inc.; Wyeth Research; GlaxoSmithKline; Johnson & Johnson; Boehringer Ingelheim Pharmaceuticals, Inc.; Genzyme Software for automated macromolecular crystallography Shell International Exploration and Production; ConnocoPhillips Company; StatOil ASA; Schlumburger Technology Corportation; BHP Billiton Ltd.; Chevron Energy Technology Company; EniTecnologie S.p.A. Geo-Hydrophysical modeling software Microsoft Home Energy Saver software distribution Kalinex Colorimetric bioassay

157

Idaho National Laboratory - Technology Transfer - Technologies ...  

Idaho National Laboratory Technologies Available for Licensing ... Environmental Flow-Through Reactor for the In Situ Assessment of Remediation Technologies in Vadose ...

158

NREL: Technology Transfer - Licensing Agreements  

NLE Websites -- All DOE Office Websites (Extended Search)

Licensing Agreements Licensing Agreements Through licensing agreements, NREL provides industry with an opportunity to commercialize NREL-developed energy technologies and products. Our licensing opportunities are available to both small and large businesses-from start-ups to Fortune 500 companies. Process The licensing agreement process basically includes seven steps. See the NREL Licensing Agreement Process flowchart. We are committed to working through these steps in a timely manner. Experience suggests that the fastest means to reach an agreement is through direct communications to create understanding and agree on actions. 1. Identify and Qualify Opportunity To identify an opportunity, a company can browse the technologies available for licensing. When an opportunity has been identified, NREL then asks the company to

159

Idaho National Laboratory - Technology Transfer - Technologies ...  

Idaho National Laboratory Technologies Available for Licensing ... Manufacturing Electrochemical Impedance Spectroscopy. Related Patents: 7088115

160

Idaho National Laboratory - Technology Transfer - Technologies ...  

Idaho National Laboratory Technologies Available for Licensing ... Manufacturing Welding Apparatus and Methods for Using Ultrasonic Sensing

Note: This page contains sample records for the topic "development technology transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Idaho National Laboratory - Technology Transfer - Technologies ...  

Idaho National Laboratory Technologies Available for Licensing ... Manufacturing Realtime Acoustic Imaging Microscope. Related Patents: 7123364; 6836336

162

Idaho National Laboratory - Technology Transfer - Technologies ...  

Idaho National Laboratory Technologies Available for Licensing ... Manufacturing Spray Rolling Metal. Related Patents: 6074194; 5718863

163

Office of Technology Transfer TES MICROBOLOMETER IMPROVED  

E-Print Network (OSTI)

in key areas for UW TechTransfer. UW researchers, faculty and staff reported 335 innovations, which TechTransfer programs like the Technology Gap Innovation Fund and LaunchPad continue to demonstrate and dedication of an exceptional team assembled at UW TechTransfer. This past year we have added staff in key

Kemner, Ken

164

NREL: Technology Transfer - Technology Partnership Agreements  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Partnership Agreements Technology Partnership Agreements Through technology partnership agreements, NREL provides partners with technical support to help commercialize and deploy energy technologies and products. We do not fund any projects under a technology partnership agreement. The partner provides the necessary resources and covers our costs of providing technical services. NREL does provide funding opportunities through competitively placed contracts. For more information, see our business opportunities. Process The technology partnership agreement process basically includes 11 steps. See the NREL Technology Partnership Agreement Process flowchart. We are committed to working through these steps in a timely manner. Experience suggests that the fastest means to reach an agreement is through

165

Partnerships and Technology Transfer - Oak Ridge National ...  

Search . Browse Available Technologies. Economic Development Staff. Manager; Tom Rogers: Director, Industrial and Economic Development Partnerships: ...

166

SRNL - Technology Transfer - Tech Briefs  

NLE Websites -- All DOE Office Websites (Extended Search)

Tech home Tech home SRNL home SRS home Tech Briefs Examples of SRNL technologies available for collaboration (CRADA) and licensing. Remote Electrical Throw Device Magnetic Release Coupling InviziMark: Concealed Identification System Elemental Mercury Probe Environmental Biocatalyst - BioTiger(tm) Microbial Based Chlorinated Ethene Destruction Boron-Structured Nano-Proportional Counters Acoustic Door Latch Detector (Smart Latch(tm)) SoundAnchor(tm) Nondestructive Testing Method Microwave Off-Gas Treatment System IDEAS Program (Individuals Developing Effective Alternative Solutions) Hybrid Microwave Energy Nanoparticle-Enhanced Ionic Liquids (NEILs) Groundwater and Wastewater Remediation Using Agricultural Oils Aerosol-to-Liquid Particle Extraction System (ALPES) Double Coil Condenser Apparatus

167

Idaho National Laboratory - Technology Transfer - Technologies ...  

Idaho National Laboratory Technologies Available for Licensing ... Manufacturing Integrated Optical Sensor. Related Patents: 5275327. Contact: David R. Anderson

168

Idaho National Laboratory - Technology Transfer - Technologies ...  

Idaho National Laboratory Technologies Available for Licensing ... National Security Portable Tire Deflation Device. Related Patents: 7,641,417; 5507588

169

Idaho National Laboratory - Technology Transfer - Technologies ...  

Idaho National Laboratory Technologies Available for Licensing ... Materials Forming Aluminum Oxynitride. Related Patents: 7,459,122. Contact: Lisa Nate

170

Idaho National Laboratory - Technology Transfer - Technologies ...  

Idaho National Laboratory Technologies Available for Licensing ... National Security Electric Generator Protection. Related Patents: 7,453,674

171

Idaho National Laboratory - Technology Transfer - Technologies ...  

Idaho National Laboratory Technologies Available for Licensing ... Environmental Method and Apparatus Configured for Identification of a Material

172

Idaho National Laboratory - Technology Transfer - Technologies ...  

Idaho National Laboratory Technologies Available for Licensing ... National Security; Non-Nuclear Energy; Nuclear Energy; Robotics; Transportation;

173

Idaho National Laboratory - Technology Transfer - Technologies ...  

Idaho National Laboratory Technologies Available for Licensing ... Manufacturing Modular Friction Stir Welding Tool. Related Patents: 7,357,292

174

Idaho National Laboratory - Technology Transfer - Technologies ...  

Idaho National Laboratory Technologies Available for Licensing ... Materials Natural Adhesive Systems. Related Patents: 6987170. Contact: David R. Anderson

175

Jefferson Lab Technology Transfer - JLab  

Grants and cooperative agreements are entered into solely by the government with a recipient whereby money or property is transferred to the recipient to support ...

176

Ombuds Services for Technology Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

To learn about other Laboratory resources for businesses, please go to: BusinessTech Transfer Small Business Office Community Outreach Procurement, Vendor Information For...

177

NREL: Technology Transfer - 23rd Industry Growth Forum  

Discover future opportunities for the clean energy industry. Panel Discussions. Explore current technology, ... Technology Transfer Home; About Technology ...

178

Fermilab | Office of Partnerships and Technology Transfer | Home  

Search. Skip over navigation to main content. Office of Partnerships and Technology Transfer; Fermilab Technology; Available Technologies; CRADA. ...

179

Idaho National Laboratory - Technology Transfer - Technologies ...  

The Idaho National Laboratory is operated for the U.S. Department of Energy's Office of Nuclear Energy, Science and Technology by Battelle Energy alliance.

180

Idaho National Laboratory - Technology Transfer - Technologies ...  

Fossil Energy; Information Technology; Manufacturing ... The Idaho National Laboratory is operated for the U.S. Department of Energy's Office of Nuclear Energy, ...

Note: This page contains sample records for the topic "development technology transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Idaho National Laboratory - Technology Transfer - Technologies ...  

Idaho National Laboratory Technologies Available for Licensing ... Environmental Microwave Assisted Centrifuge for Viscous Oil Analysis. Related Patents: 7,775,961

182

Idaho National Laboratory - Technology Transfer - Technologies ...  

Idaho National Laboratory Technologies Available for Licensing ... This site will work and look better in a browser that supports web standards, but it is accessible ...

183

NREL: Technology Transfer - Technologies Available for Licensing  

NREL scientists and engineers produce breakthrough and award-winning renewable energy and energy efficiency technologies that are available for licensing.

184

Idaho National Laboratory - Technology Transfer - Technologies ...  

Licensing technologies between Battelle Energy Alliance (BEA), the Management and Operating Contractor at the Idaho National Laboratory (INL) and a business or other ...

185

Idaho National Laboratory - Technology Transfer - Technologies ...  

Idaho National Laboratory Technologies Available for Licensing ... Manufacturing A Novel Gas Flow Meter. Related Patents: 7,082,826. Contact: David R. Anderson

186

NREL: Technology Transfer - Wind Technology Center Installing ...  

Wind Technology Center Installing a Dynamic Duo August 25, 2009. Generating 20 percent of the nation's electricity from clean wind resources will ...

187

NREL: Technology Transfer - Agreements for Commercializing Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Agreements for Commercializing Technology Agreements for Commercializing Technology NREL uses Agreements for Commercializing Technology (ACT) when a partner seeks highly-specialized or technical services to complete a project. An ACT agreement also authorizes participating contractor-operated DOE laboratories, such as NREL, to partner with businesses using more flexible terms that are aligned with industry practice. The agreement type used depends on the business, and the specific partnership selected is determined on a case-by-case basis. Benefits The benefits of Agreements for Commercializing Technology include: Intellectual Property Rights. ACT provides a more flexible framework for negotiation of intellectual property rights to facilitate moving technology from the laboratory to the marketplace as quickly as possible.

188

Technology transfer: Developing dual-degree programs with major universities in three energy-related careers. Final performance report  

SciTech Connect

In 1983, Fort Valley State University (FVSU) received start-up funds from the US Department of Energy`s Office of Minority Economic Impact to develop a Cooperative Developmental Energy Program (CDEP). The objective of CDEP is to develop a mutually beneficial long-term synergistic relationship among FVSU, two major universities, and the private and governmental sectors of the nation`s energy industry by creating a technology oriented labor base for minorities and women. FVSU accomplishes this objective by (1) developing dual-degree curricula with the University of Oklahoma and the University of Nevada at Las Vegas in energy related disciplines such as engineering, geosciences, and health physics; (2) by recruiting academically talented minority and female students to pursue careers in the above disciplines; and (3) by developing participatory alliances with major energy companies and governmental agencies via internship, co-op, and employment programs. Since its inception in 1983, CDEP has provided over 650 energy internships for FVSU students, they have gained over 250,000 hours of hands-on work experience, and earned over $3 million to help finance their education. Approximately, 900 students have been in the CDEP program. Over 30 have found employment in the energy industry and approximately 35 have gone on to earn Master`s or Ph.D. degrees.

1998-02-01T23:59:59.000Z

189

Technology Development Loans (Wisconsin)  

Energy.gov (U.S. Department of Energy (DOE))

Technology Development Loans help innovative companies with promising economic futures clear the hurdles associated with bringing new technologies, products, and concepts to market. Loan funds...

190

Partnerships and Technology Transfer - Oak Ridge National ...  

Search . Browse Available Technologies. Learn About Us. Licensing; Sponsored Research; Economic Development; Industrial Partnerships; University ...

191

Attn Technology Transfer Questions.txt - Notepad  

NLE Websites -- All DOE Office Websites (Extended Search)

Attn Technology Transfer Questions.txt Attn Technology Transfer Questions.txt From: eschaput [esandc@prodigy.net] Sent: Monday, January 26, 2009 10:31 PM To: GC-62 Subject: Attn: Technology Transfer Questions We have reviewed the DOE "Questions Concerning Technology Transfer Practices at DOE Laboratories" (Federal Register notice of November 26, 2008), with the following comments and suggestions for your consideration. DOE asked five questions and the following thoughts be provided for your consideration: Question #1 - Are existing arrangements adequate? Answer #1 - The existing types of arrangement are generally adequate, but their application should be broadened and their implementation streamlined. a.. The application of "User Agreements" should be broadened to soften the effect

192

Partnerships and Technology Transfer - Oak Ridge National ...  

Oak Ridge National Laboratory; Ombudsman; Partnerships and Technology Transfer. P.O. Box 2008, Oak Ridge, TN 37831. Office: 865-574-4180 Fax: 865-241-4265 Help Line ...

193

Partnerships and Technology Transfer - Oak Ridge National ...  

Disclaimer; Oak Ridge National Laboratory; Ombudsman; Partnerships and Technology Transfer. P.O. Box 2008, Oak Ridge, TN 37831. Office: 865-574-4180 Fax: 865-241-4265 ...

194

Business Plan Competitions and Technology Transfer  

SciTech Connect

An evaluation of business plan competitions, with a focus on the NREL-hosted Industry Growth Forum, and how it helps cleantech startups secure funding and transfer their technology to market.

Worley, C.M.; Perry, T.D., IV

2012-09-01T23:59:59.000Z

195

TARGETED TECHNOLOGY TRANSFER TO US INDEPENDENTS  

SciTech Connect

The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of assisting U.S. independent oil and gas producers with timely, informed technology decisions during Fiscal Year 2004 (FY04). PTTC has active grassroots programs through its 10 Regional Lead Organizations (RLOs) and 2 satellite offices. They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, technical publications and other cooperative outreach efforts. PTTC's Headquarters (HQ) staff receives direction from a National Board of Directors predominantly comprised of American natural gas and oil producers to plan and manage the overall technology transfer program. PTTC HQ implements a comprehensive communications program by interconnecting the talents of the National Board, 10 Regional Producer Advisory Groups (PAG) and the RLOs with industry across the U.S. PTTC effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy, namely the Strategic Center for Natural Gas and Oil with state and industry contributions to share application of upstream technologies. Ultimately, these efforts factor in to provide a safe, secure and reliable energy supply for American consumers. This integrated resource base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results regarding domestic production figures. PTTC is increasingly recognized as a critical resource for information and access to technologies by providing direct contact with research, development and demonstration (RD&D) results. A key to the program is demonstrating proven technologies that can be applied broadly and rapidly. This technical progress report summarizes PTTC's accomplishments during FY04. Activities remained at high levels. Board and staff interaction has defined strategic thrusts to further outreach. Networking, involvement in technical activities and an active exhibit schedule are increasing PTTC's sphere of influence with both producers and the service sector. PTTC's reputation for unbiased bottom line information stimulates cooperative ventures with other organizations. Efforts to build the contact database and a growing E-mail Technology Alert service are expanding PTTC's audience.

Donald F. Duttlinger; E. Lance Cole

2005-01-01T23:59:59.000Z

196

Partnerships and Technology Transfer - ORNL  

Licensing Guidelines. At ORNL, our focus is on working with partners to ensure ORNL technologies are broadly and successfully commercialized. To that end, we have ...

197

Sandia National Laboratories : Licensing/Technology Transfer ...  

... SD# 7652 Development Stage Prototype - TECHNOLOGY READINESS LEVEL: 6 A PROTOTYPE HAS BEEN DEVELOPED AND TESTED Availability Available Published ...

198

NREL: Technology Transfer Home Page - National Renewable Energy ...  

National Renewable Energy Laboratory Technology Transfer The National Renewable Energy Laboratory (NREL) works with industry and organizations to transfer renewable ...

199

New Study Examines Methods for Technology Transfer from ...  

Science Conference Proceedings (OSTI)

... news announcement, Study Highlights Diversity in Agency Technology Transfer Approaches at www.nist.gov/director/tech-transfer-063011.cfm. ...

2012-05-08T23:59:59.000Z

200

Transfer of hot dry rock technology  

DOE Green Energy (OSTI)

The Hot Dry Rock Geothermal Energy Development Program has focused worldwide attention on the facts that natural heat in the upper part of the earth's crust is an essentially inexhaustible energy resource which is accessible almost everywhere, and that practical means now exist to extract useful heat from the hot rock and bring it to the earth's surface for beneficial use. The Hot Dry Rock Program has successfully constructed and operated a prototype hot, dry rock energy system that produced heat at the temperatures and rates required for large-scale space heating and many other direct uses of heat. The Program is now in the final stages of constructing a larger, hotter system potentially capable of satisfying the energy requirements of a small, commercial, electrical-generating power plant. To create and understand the behavior of such system, it has been necessary to develop or support the development of a wide variety of equipment, instruments, techniques, and analyses. Much of this innovative technology has already been transferred to the private sector and to other research and development programs, and more is continuously being made available as its usefulness is demonstrated. This report describes some of these developments and indicates where this new technology is being used or can be useful to industry, engineering, and science.

Smith, M.C.

1985-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "development technology transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Sandia National Laboratories : Licensing/Technology Transfer ...  

Technology Summary. Sandia researchers have developed a technology that could potentially turn agricultural waste, weeds, and other plant products that are typically ...

202

Sandia National Laboratories : Licensing/Technology Transfer ...  

... ID US Patent# 7,514,004 Development Stage Prototype - Sandia estimates this technologys TRL at approximately a level 6/7.

203

Partnerships and Technology Transfer - Oak Ridge National ...  

Carpenter Technology Corporation has licensed a new alloy developed at the Oak Ridge National Laboratory. Carpenter Technology Corporation is a leader in the ...

204

Targeted Technology Transfer to US Independents  

Science Conference Proceedings (OSTI)

The Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers, working in conjunction with the Independent Petroleum Association of America (IPAA), the U.S. Department of Energy (DOE) and selected universities, in 1994 as a national not-for-profit organization. Its goal is to transfer Exploration and Production (E&P) technology to the domestic upstream petroleum industry, in particular to the small independent operators. PTTC connects producers, technology providers and innovators, academia, and university/industry/government research and development (R&D) groups. From inception PTTC has received federal funding through DOE's oil and natural gas program managed by the National Energy Technology Laboratory (NETL). With higher funding available in its early years, PTTC was able to deliver well more than 100 workshops per year, drawing 6,000 or more attendees per year. Facing the reality of little or no federal funding in the 2006-2007 time frame, PTTC and the American Association of Petroleum Geologists (AAPG) worked together for PTTC to become a subsidiary organization of AAPG. This change brings additional organizational and financial resources to bear for PTTC's benefit. PTTC has now been 'powered by AAPG' for two full fiscal years. There is a clear sense that PTTC has stabilized and is strengthening its regional workshop and national technology transfer programs and is becoming more entrepreneurial in exploring technology transfer opportunities beyond its primary DOE contract. Quantitative accomplishments: PTTC has maintained its unique structure of a national organization working through Regional Lead Organizations (RLOs) to deliver local, affordable workshops. During the contract period PTTC consolidated from 10 to six regions efficiency and alignment with AAPG sections. The number of workshops delivered by its RLOs during the contract period is shown below. Combined attendance over the period was approximately 32,000, 70% of whom were repeat attendees. Participant feedback established that 40% of them said they had applied a technology they learned of through PTTC. Central/Eastern Gulf Univ. of Alabama, LSU Center for Energy Studies 77 Eastern West Virginia University, Illinois Geological Survey, W. Michigan Univ. 99 Midcontinent University of Kansas, University of Tulsa, Okla. Geological Survey (past) 123 Rocky Mountains Colorado School of Mines 147 Texas/SE New Mexico Bureau of Economic Geology, U. of Texas at Austin 85 West Coast Conservation Committee of California O&G Producers, Univ. So. Cal. (past) 54 At the national level HQ went from an office in Houston to a virtual office in the Tulsa, Okla. area with AAPG providing any physical assets required. There are no employees, rather several full time and several part time contractors. Since inception, PTTC has produced quarterly and mailed the 16-page Network News newsletter. It highlights new advances in technology and has a circulation of 19,000. It also produces the Tech Connections Column in The American Oil & Gas Reporter, with a circulation of 13,000. On an approximate three-week frequency, the electronic Email Tech Alert goes out to 9,000 readers. The national staff also maintains a central website with information of national interest and individual sections for each of the six regions. The national organization also provides legal and accounting services, coordinates the RLO activities, exhibits at at least major national and other meetings, supports the volunteer Board as it provides strategic direction, and is working to restore the Producer Advisory Groups to bolster the regional presence. Qualitative Value: Three qualitative factors confirm PTTC's value to the domestic O&G producing industry. First, AAPG was willing to step in and rescue PTTC, believing it was of significant interest to its domestic membership and of potential value internationally. Second, through a period of turmoil and now with participant fees dramatically increased, industry participants 'keep coming back' to wo

E. Lance Cole

2009-09-30T23:59:59.000Z

205

NREL: Technology Transfer - Ruth Douglas Miller Named One of the ...  

Douglas Miller was included for her work on wind and solar. Read the article. Printable Version. Technology Transfer Home; About Technology Transfer;

206

Idaho National Laboratory - Technology Transfer - Technologies ...  

The INL has developed a concept that superimposes an electric arc onto a combustion flame to superheat the combustion flame to plasma condition.

207

Idaho National Laboratory - Technology Transfer - Technologies ...  

... developed a portal-style concealed weapons detection system that uses passive magnetic sensors. The system provides a non-intrusive method for rapid detection, ...

208

Targeted Technology Transfer to US Independents  

SciTech Connect

The Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers in 1994 as a national not-for-profit organization to address the increasingly urgent need to improve the technology-transfer process in the U.S. upstream petroleum industry. Coordinated from a Headquarters (HQ) office in Houston, PTTC maintains an active grassroots program executed by 10 Regional Lead Organizations (RLOs) and two satellite offices (Figure 1). Regional Directors interact with domestic oil and gas producers through technology workshops, resource centers, websites, newsletters, technical publications and cooperative outreach efforts. HQ facilitates inter-regional technology transfer and implements a comprehensive communications program. Active volunteers on the National Board and in Producer Advisory Groups (PAGs) in each of the 10 regions focus effort in areas that will create the most impact for domestic producers. Focused effort by dedicated individuals across the country has enabled PTTC to achieve the milestones outlined in Appendix A.

Donald F. Duttlinger; E. Lance Cole

2006-09-29T23:59:59.000Z

209

Program on Technology Innovation: Impact of Wireless Power Transfer Technology  

Science Conference Proceedings (OSTI)

This report presents an overview and analysis of wireless power transmission, also called wireless power transfer (WPT), a means of delivering power from a source to an end-use device without wires or contacts. The recent explosive growth in wireless data applications and the surge in the use of portable electronic devices has dramatically increased the market potential for wireless energy-transfer technologies. Industries are investigating the latest wireless power technologies to improve versatility, r...

2009-12-22T23:59:59.000Z

210

Methods for Climate Change Technology Transfer Needs Assessments and  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Methods for Climate Change Technology Transfer Needs Assessments and Implementing Activities: Experiences of Developing and Transition Countries Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Methods for Climate Change Technology Transfer Needs Assessments and Implementing Activities: Experiences of Developing and Transition Countries Focus Area: Energy Access Topics: Potentials & Scenarios Website: www.climatetech.net/pdf/Ccmethod.pdf Equivalent URI: cleanenergysolutions.org/content/methods-climate-change-technology-tra Language: English

211

NREL: Technology Transfer - Technologies Available for Licensing  

NLE Websites -- All DOE Office Websites (Extended Search)

New Amber LEDs for High-Efficiency Solid-State Lighting New Amber LEDs for High-Efficiency Solid-State Lighting NREL is closing the LED "green gap" with a patent-pending technology that allows for easy manufacturing of low-cost amber LEDs that-when combined with red, green, and blue LEDs-produce brilliant broad-spectrum white light more efficiently than current LEDs. This color-mixing technique enables low-cost, easy-to-manufacture white LEDs with improved luminosity. This novel device architecture achieves greater efficiencies than current amber LEDs. In addition, the color-mixing approach avoids the energy losses associated with producing white light via conventional (phosphor-converted blue) LEDs. NREL's game-changing innovation could transform the market for solid-state lighting (SSL) for industry, businesses, and consumers. It also will impact

212

NREL: Technology Transfer - NREL Mission and CSP Highlighted ...  

Laboratory Director Dan Arvizu and Concentrating Solar Power ... partnerships with industry to move advanced technologies ... Technology Transfer Home ...

213

NREL: Technology Transfer - Commercialization Programs  

The program specifically helps renewable energy and energy efficiency companies by providing free assistance or information ... energy businesses develop market ...

214

Partnering Today: Technology Transfer Highlights  

... California, develops, manufactures, and markets fully-integrated genetic analysis systems for the clinical assessment, biothreat, and life sciences markets.

215

Technology Transfer Success Stories, Security  

The Department of Energy Labs conduct basic and applied research and development across a broad spectrum of sciences, ...

216

Technology Transfer: For Industry:SBIR Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

For Industry Licensing Overview Frequently Asked Questions Partnering with Berkeley Lab Available Technologies See Also Licensed Technologies Start-up Companies Licensing Interest Form Receive New Tech Alerts Partner Smart with Berkeley Lab (Downloadable Copy, 1.4MB, PDF) Berkeley Lab Economic Impact Report Technology Transfer Opportunities (TTOs) for SBIR and STTR Programs FY2014 Phase 1 Release 1 Selected topic and subtopics contained in this page are designated as Technology Transfer Opportunities (TTOs) from Berkeley Lab. 10. BASIC ENERGY SCIENCES (Phase I $225,000 / Phase II: $1,500,000): Contact: Shanshan Li, Shanshanli@lbl.gov, 510-486-5366 For a description of the technology, publications (if available) and latest patent status, click on the TTO tracking number link.

217

Sandia National Laboratories : Licensing/Technology Transfer ...  

Technology Summary Sandia has developed an advanced electrical wiring diagnostic system capable of detecting insulation defects in complex wiring systems.

218

Sandia National Laboratories : Licensing/Technology Transfer ...  

Technology Summary Sandia National Laboratories has developed a new class of tilting micromechanical mechanisms. Description. These mechanisms utilize floating pivot ...

219

Partnerships and Technology Transfer - Oak Ridge National ...  

Economic Development ... Innovations in Energy Briefings on capabilities in bioenergy, advanced vehicles, and building technologies Overview, Johney G ...

220

Partnerships and Technology Transfer - Oak Ridge National ...  

DNP Green Technology, Inc. Exclusively Licenses Patents Invented at Argonne National ... Economic Development. Seven ... ORNL Receives $55 Million for ...

Note: This page contains sample records for the topic "development technology transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Solid-State Transfer Switch Development  

Science Conference Proceedings (OSTI)

EPRIs multi-function Solid-State Switchgear System (4-S) will be a first-generation power-electronics replacement for conventional distribution switchgear. In 2007, EPRI began a project to identify major application areas and demonstration of the technology. EPRI also coordinated this effort with other EPRI programs related to the development of fault current limiters. As part of this project, EPRI is developing, testing, and refining an S-GTO based transfer switch. The S-GTO based Static Transfer Switc...

2008-12-01T23:59:59.000Z

222

TECHNOLOGY TRANSFER QUESTIONS..txt - Notepad  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TECHNOLOGY TRANSFER QUESTIONS..txt TECHNOLOGY TRANSFER QUESTIONS..txt From: Bob Fien [rfien@campbellap.com] Sent: Monday, January 26, 2009 5:34 PM To: GC-62 Subject: TECHNOLOGY TRANSFER QUESTIONS. Sensitivity: Confidential To Whom It May Concern, Campbell Applied Physics, Inc has been working with several DOE labs (e.g., Oak Ridge, Pacific Northwest, Laurence Livermore, Sandia) on various commercialization projects and, has been asked to submit answers to the questions presented in 72036 Federal Register / Vol. 73, No. 229 concerning our experiences. Please accept the following as our response to that request. 1. Existing and Other Agreements (4sub questions): The DOE labs currently offer CRADAs, WFO Agreements, and User Agreements, all briefly referenced below. The DOE Orders and model agreements for CRADAs, WFO and

223

Partnering Today: Technology Transfer Highlights  

on fossil fuels. Mike Simon, GA Director, Commercial Business Development TOP500. Title: 2007 LLNL Layout 11_18_07 CS2.ai Author: Daniel Schumaker Created Date:

224

Jefferson Lab Technology Transfer - JLab  

.6. A brief description of the company's commitment and overall plans to successfully develop, manufacture and sell products under the proposed ...

225

Sandia National Laboratories : Licensing/Technology Transfer ...  

Technology ID SD#11655.1 Development Stage Development Availability Available Published 11/07/2011 Last Updated 01/23/2013 ... News release RSS feed ...

226

Technology Transfer Success Stories, Security  

NLE Websites -- All DOE Office Websites (Extended Search)

Environment Environment Navigate Home About Us Contact Information Hide Thumbs First Previous Pause Next Last Set Speed Slideshow speed: 5 seconds Move Autoinduction system New Image Set Autoinduction Autoinduction System The award winning Overnight Express(tm) Autoinduction System developed at BNL simplifies protein production in the widely used T7 gene expression system. Decontamination Foam-based decontamination Foam-based decontamination, developed at INL and licensed to Environmental Alternatives, Inc. provides for non-destructive removal and decontamination of radionuclides from concrete and other surfaces. Motion to energy power generation system Motion to Energy Power Generation System Motion to energy power generation system, developed at INL with its licensee M2E Power, Inc., converts the power of motion into electrical

227

Technology Transfer Success Stories, Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Energy Navigate Home About Us Contact Information Hide Thumbs First Previous Pause Next Last Set Speed Slideshow speed: 5 seconds Move Autoinduction system New Image Set Autoinduction Autoinduction System The award winning Overnight Express(tm) Autoinduction System developed at BNL simplifies protein production in the widely used T7 gene expression system. Decontamination Foam-based decontamination Foam-based decontamination, developed at INL and licensed to Environmental Alternatives, Inc. provides for non-destructive removal and decontamination of radionuclides from concrete and other surfaces. Motion to energy power generation system Motion to Energy Power Generation System Motion to energy power generation system, developed at INL with its licensee M2E Power, Inc., converts the power of motion into electrical

228

A framework for evaluation of technology transfer programs. Volume 2  

Science Conference Proceedings (OSTI)

The objective of this volume is to describe a framework with which DOE can develop a program specific methodology to evaluate it`s technology transfer efforts. This approach could also be applied to an integrated private sector technology transfer organization. Several benefits will be realized from the application of this work. While the immediate effect will be to assist program managers in evaluating and improving program performance, the ultimate benefits will accrue to the producing industry, the states, and the nation in the form of sustained or increased domestic oil production. This benefit depends also, of course, on the effectiveness of the technology being transferred. The managers of the Technology Transfer program, and the larger federal oil and gas R&D programs, will be provided with a means to design and assess the effectiveness of program efforts as they are developed, tested and performed. The framework allows deficiencies in critical aspects of the program to be quickly identified, allowing for timely corrections and improvements. The actual process of developing the evaluation also gives the staff of the Oil R&D Program or Technology Transfer subprogram the opportunity to become oriented to the overall program goals. The structure and focus imposed by the evaluation paradigm will guide program staff in selecting activities which are consistent with achieving the goals of the overall R&D program.

Not Available

1993-07-01T23:59:59.000Z

229

Heat Transfer Enhancement: Second Generation Technology  

E-Print Network (OSTI)

This paper reviews current activity in the field of enhanced heat transfer, with the aim of illustrating the technology and typical applications. Guidelines for application of enhanced surfaces are given, and practical concerns and economics are discussed. Special attention is directed toward use of enhanced surfaces in industrial process heat exchangers and heat recovery equipment.

Bergles, A. E.; Webb, R. L.

1984-01-01T23:59:59.000Z

230

by E. Lance Cole Operations Manager Petroleum Technology Transfer Council  

NLE Websites -- All DOE Office Websites (Extended Search)

World Energy Vol. 11 No. 2 2008 World Energy Vol. 11 No. 2 2008 2 by E. Lance Cole Operations Manager Petroleum Technology Transfer Council Jim Blankenship Geoscience Director American Association of Petroleum Geologists Tom Williams PTTC Board Member and Retired Vice President, Technology Services Noble Corporation Ken Oglesby Managing Partner Impact Technologies LLC E&P Technology: From Idea to Widespread Adoption in the U.S. M any factors influence the degree to which a new exploration and production (E&P) technology is accepted by industry and grows to realize its full market potential. These include the introduction of a good idea that is needed by industry, intellectual property protection, capitalization at each level of development, field testing, the business model, technology transfer and

231

TRANSfer - Towards climate-friendly transport technologies and measures |  

Open Energy Info (EERE)

TRANSfer - Towards climate-friendly transport technologies and measures TRANSfer - Towards climate-friendly transport technologies and measures Jump to: navigation, search Tool Summary Name: TRANSfer - Towards climate-friendly transport technologies and measures Agency/Company /Organization: GIZ Focus Area: Governance - Planning - Decision-Making Structure Topics: Best Practices Resource Type: Reports, Journal Articles, & Tools Website: transferproject.org/index.php/hb During the 3-year project, project partners will develop the online handbook 'Navigating Transport NAMAs' with practical advice on how to develop and implement a mitigation action in the transport sector. The handbook will consist of a generic part with general information on transport NAMAs and a number of case studies which will be based on south-south networks of countries and practical implementation within the

232

Graphite technology development plan  

Science Conference Proceedings (OSTI)

This document presents the plan for the graphite technology development required to support the design of the 350 MW(t) Modular HTGR within the US National Gas-Cooled Reactor Program. Besides descriptions of the required technology development, cost estimates, and schedules, the plan also includes the associated design functions and design requirements.

NONE

1986-07-01T23:59:59.000Z

233

NREL: Technology Transfer - CRADA Opportunity for Blade ...  

... seeks one or more CRADA partners to develop testing technologies and equipment for static and fatigue testing of wind turbine blades up to ...

234

Sandia National Laboratories : Licensing/Technology Transfer ...  

Technology Summary. Sandia has developed a cheap, efficient, and accurate method of measuring the irradiance from solar reflections using a digital camera.

235

Sandia National Laboratories : Licensing/Technology Transfer ...  

Technology Summary Sandia has developed an energy monitoring device that measures energy from liquid flow systems (e.g., solar systems) using a simple technique that ...

236

Sandia National Laboratories : Licensing/Technology Transfer ...  

Technology Summary Sandia has developed red-emitting phosphors that will help to transform the cold blue of many current light-emitting diodes (LEDs) into the warm ...

237

Fermilab | Office of Partnerships and Technology Transfer ...  

Quantum Diaries; Fermilab Technology. In order for Fermilab to achieve these objectives equipment must be developed which is at the limits of todays ...

238

MHD Technology Transfer, Integration and Review Committee  

DOE Green Energy (OSTI)

As part of the MHD Integrated Topping Cycle (ITC) project, TRW was given the responsibility to organize, charter and co-chair, with the Department of Energy (DOE), an MHD Technology Transfer, Integration and Review Committee (TTIRC). The Charter of the TTIRC, which was approved by the DOE in June 1988 and distributed to the committee members, is included as part of this Summary. As stated in the Charter, the purpose of this committee is to: (1) review all Proof-of-Concept (POC) projects and schedules in the national MHD program; to assess their compatibility with each other and the first commercial MHD retrofit plant; (2) establish and implement technology transfer formats for users of this technology; (3) identify interfaces, issues, and funding structures directly impacting the success of the commercial retrofit; (4) investigate and identify the manner in which, and by whom, the above should be resolved; and (5) investigate and assess other participation (foreign and domestic) in the US MHD Program. The DOE fiscal year 1989 MHD Program Plan Schedule is included at the end of this Summary. The MHD Technology Transfer, Integration and Review Committee's activities to date have focused primarily on the technology transfer'' aspects of its charter. It has provided a forum for the dissemination of technical and programmatic information among workers in the field of MHD and to the potential end users, the utilities, by holding semi-annual meetings. The committee publishes this semi-annual report, which presents in Sections 2 through 11 capsule summaries of technical progress for all DOE Proof-of-Concept MHD contracts and major test facilities.

Not Available

1989-10-01T23:59:59.000Z

239

Technology Development | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Development Electricity Advisory Committee Technology Development Smart Grid Demand Response Federal Smart Grid Task Force Distributed Energy Recovery Act...

240

DOE Technology Transfer Website Features New Tool to Search Tech Transfer  

Office of Scientific and Technical Information (OSTI)

Technology Transfer Website Features New Tool to Search Tech Transfer Technology Transfer Website Features New Tool to Search Tech Transfer Information from DOE National Laboratories December 3, 2012 DOE Technology Transfer Website Features New Tool to Search Tech Transfer Information from DOE National Laboratories The Department of Energy (DOE) Technology Transfer website has a new search feature that for the first time allows searching of technology transfer information across the DOE national laboratories. The new tool enables users to search all of DOE's technology transfer information, including inventions, patents and other applied research, available from DOE's national laboratories in real time. Using web-crawling technology, the search capability allows users to enter a single query for a technology transfer term; the search feature returns a

Note: This page contains sample records for the topic "development technology transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Sandia National Laboratories : Licensing/Technology Transfer ...  

Technology ID US Patent 7,425,297/ SD# 7721.1 Development Stage Development Availability Available Published 09/29/2011 Last Updated 01/31/2013 ... News release RSS ...

242

USDOE Technology Transfer, Responses to the Notice of Inquiry  

NLE Websites -- All DOE Office Websites (Extended Search)

About the National Labs About the National Labs Designated User Facilities TECH TRANSFER AGREEMENTS (CRADA) Cooperative Research and Development Agreement (PDF file | Word doc) User Agreement - Proprietary User Agreement - Non-proprietary Work for Others Agreement (PDF file | Word doc) USEFUL LINKS DOE Organization Chart Association of University Technology Managers (AUTM) Federal Laboratory Consortium (FLC) FLC Technology Locator Feedback Contact us about Tech Transfer: Mary.McManmon@science.doe.gov Mary McManmon, 202-586-3509 link to Adobe PDF Reader link to Adobe Flash player Responses to the Notice of Inquiry Introduction On November 26, 2008, a Notice of Inquiry regarding Questions Concerning Technology Transfer Practices at DOE Laboratories was posted for public comment. DOE received thirty-six responses to that notice. Numerous persons

243

Technology Transfer at Berkeley Lab: For Berkeley Lab Researchers  

NLE Websites -- All DOE Office Websites (Extended Search)

Steven Chu Steven Chu "Technology transfer is a superb opportunity to demonstrate the value of our discoveries and to benefit society. It is an area I would like to see grow." Steve Chu, Secretary, US Department of Energy, and Former Lab Director What You Need to Know and Do What you, as a Berkeley Lab researcher or guest, need to do to protect the intellectual property you create to meet Lab requirements and how publishing and pursuing a patent are fully compatible. The Tech Transfer Proces The steps to patent, market and commercialize an invention and the role of Technology Transfer and Intellectual Property Management (TTIPM). Business Development Services Resources available within TTIPM to help move your technology to market. Berkeley Lab LaunchPad Services available at the Lab and beyond to help launch your startup

244

Technology Transfer for Brownfields Redevelopment Project | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Transfer for Brownfields Redevelopment Project Technology Transfer for Brownfields Redevelopment Project Technology Transfer for Brownfields Redevelopment Project The U.S. Department of Energy has provided six computers to Prichard to improve its decision-making process through Geographic Information System (GIS) as a decision-making tool. The agency has provided GIS training and other technical assistance in Prichard's Brownfields redevelopment effort. Other National Conference of Black Mayors' cities that have received computers for technology centers and technology transfer are Hayti Heights, Missouri; East St. Louis, Illinois; and Glenarden, Maryland. Technology Transfer for Brownfields Redevelopment Project (July 1998) More Documents & Publications Environmental Justice and Public Participation Through Technology-

245

MHD Technology Transfer, Integration and Review Committee  

DOE Green Energy (OSTI)

This fifth semi-annual status report of the MHD Technology Transfer, Integration, and Review Committee (TTIRC) summarizes activities of the TTIRC during the period April 1990 through September 1990. It includes summaries and minutes of committee meetings, progress summaries of ongoing Proof-of-Concept (POC) contracts, discussions pertaining to technical integration issues in the POC program, and planned activities for the next six months.

Not Available

1992-01-01T23:59:59.000Z

246

NREL: Technology Transfer - DOE-NREL Launch Mid-size Turbine ...  

National Renewable Energy Laboratory Technology Transfer DOE-NREL Launch Mid-size Turbine Development Project October 30, 2009. Since the early 90s, the wind energy ...

247

NETL: News Release - NETL Inventions Earn 2009 Technology Transfer...  

NLE Websites -- All DOE Office Websites (Extended Search)

for Technology Transfer (FLC). Both technologies enable the cleaner use of coal for electricity production and have been licensed to the private sector for commercial...

248

NREL: Technology Transfer - NREL Mission and CSP Highlighted ...  

National Renewable Energy Laboratory Technology Transfer NREL Mission and CSP Highlighted in Innovation Magazine April 29, 2008. Laboratory Director ...

249

NREL: Technology Transfer - Study Shows Feasibility of High Wind ...  

National Renewable Energy Laboratory Technology Transfer Study Shows Feasibility of High Wind Penetrations in Southwest Power Pool March 15, 2010

250

DOC Annual Reports to OMB on Technology Transfer  

Science Conference Proceedings (OSTI)

*. Bookmark and Share. Department of Commerce (DOC) Annual Reports to the Office of Management and Budget (OMB) on Technology Transfer. ...

2013-08-01T23:59:59.000Z

251

NREL: Technology Transfer - Updated Report Details an Emerging ...  

Updated Report Details an Emerging CPV Industry January 5, 2010. In November, the National Renewable Energy Laboratory ... Technology Transfer Home;

252

USDOE Technology Transfer, Map of DOE National Laboratories  

SEARCH DOE TECHNOLOGY TRANSFER INFORMATION. Map of DOE National Laboratories Careers & Internships; Contact Us; Email Updates; Popular Topics . ...

253

NREL: Technology Transfer - NREL Joins Public-Private ...  

National Renewable Energy Laboratory Technology Transfer NREL Joins Public-Private Partnership to Deploy Hydrogen Infrastructure July 2, 2013

254

Cross-border transfer of climate change mitigation technologies : the case of wind energy from Denmark and Germany to India.  

E-Print Network (OSTI)

??This research investigated the causal factors and processes of international development and diffusion of wind energy technology by examining private sector cross-border technology transfer from (more)

Mizuno, Emi, Ph. D. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

255

Secretarial Policy Statement on Technology Transfer at Department of Energy Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretarial Policy Statement on Secretarial Policy Statement on Technology Transfer at Department of Energy Facilities Introduction This Policy Statement is designed to help guide and strengthen the Department of Energy's technology transfer efforts and to heighten awareness of the importance of technology transfer activities throughout DOE. For purposes of this document, the term "technology transfer" refers to the process by which knowledge, intellectual property or capabilities developed at the Department of Energy's National Laboratories, single- purpose research facilities, and other facilities ("Facilities") are transferred to any other entity, including private industry, academia, state and local governments, or other government entities to meet public and private needs. The Policy Statement follows upon

256

Annual Report on DOE Technology Transfer FY 2007 and 2008  

NLE Websites -- All DOE Office Websites (Extended Search)

Annual Report Annual Report on Technology Transfer and Related Technology Partnering Activities at the National Laboratories and Other Facilities Fiscal Years 2007 and 2008 Prepared by: Office of Laboratory Policy and Evaluation Office of Science and National Nuclear Security Administration U.S. Department of Energy In Coordination With: Technology Transfer Policy Board Technology Transfer Working Group U.S. Department of Energy December 2009 ii TABLE OF CONTENTS Background .......... .................................................................................................................................................1 Technology Partnering Policy .................................................................................................................................1

257

Effective Transfer of Industrial Energy Conservation Technologies  

E-Print Network (OSTI)

Voluntary participation in industrial energy conservation programs resulted in savings of approximately 1 million barrels of oil equivalent per day in the U.S. during 1981. These energy savings accrued largely from the development, introduction, and acceptance by industry of new energy conserving technologies. These new technologies were developed through cost sharing programs between the Department of Energy and private industry. These joint efforts reduced the risk to industry, thus making them willing to accept and use these new technologies at an accelerated rate. Examples of several technologies that were used by industry at an accelerated rate are described in this paper. These technologies are; textile foam finishing and dyeing, forging furnace modifications, and high efficiency metallic recuperators.

Clement, M.; Vallario, R. W.

1983-01-01T23:59:59.000Z

258

Technology transfer for the US Department of Energy's Energy Storage Program: Volume 1, Recommendations  

DOE Green Energy (OSTI)

Technologies developed by the US Department of Energy's (DOE) Energy Storage (STOR) Program must be converted into products, processes, or services that benefit the private sector. The process of technology transfer is the primary means of accomplishing this. The purpose of this report is to examine the technology transfer activities of the STOR Program and suggest mechanisms that might make the transfer of technologies from national laboratories and universities to the private sector more effective. A brief summary of recommendations that would improve the effectiveness of the transfer of energy storage technologies from the national laboratories to the private sector is discussed. 33 refs., 2 figs.

Bruneau, C.L.; Fassbender, L.L.

1988-10-01T23:59:59.000Z

259

Technology Transfer at Berkeley Lab: Success Stories  

NLE Websites -- All DOE Office Websites (Extended Search)

Start-Up Companies Based on Berkeley Lab Technology Start-Up Companies Based on Berkeley Lab Technology Since 1990, Berkeley Lab technology has formed the basis for over 30 start-ups, creating over 2,000 new jobs in these companies alone. These technologies include solar cells, genomics-related software, nanotechnology, drug development, x-ray imaging, materials sciences processing, biomolecular tagging, and energy-efficiency home improvements. The majority of these companies are located in California (see map on the right). Company Business Year* FTE** Exogen heliotrope logo Next generation technologies to monitor individual DNA damage for personalized and preventative health care 2013 N/A Heliotrope heliotrope logo New materials and manufacturing processes for electrochomic devices including energy-saving, smart windows 2013 N/A

260

NREL: Technology Transfer - Materials Exposure Testing Market Expands with  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Exposure Testing Market Expands with Ultra-Accelerated Weathering Materials Exposure Testing Market Expands with Ultra-Accelerated Weathering System In this video, NREL researchers Gary Jorgenson and Carl Bingham discuss the NREL-developed ultra accelerated weathering system and its ability to revolutionize the weathering industry. Get the Adobe Flash Player to see this video. Credit: Fireside Production Learn more about the Ultra Accelerated Weathering System. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing Agreements Nondisclosure Agreements Research Facilities Commercialization Programs Success Stories News Contacts Did you find what you needed? Yes 1 No 0 Thank you for your feedback. Would you like to take a moment to tell us how we can improve this page? Submit

Note: This page contains sample records for the topic "development technology transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Smart Charger Technology Development  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Charger Technology Charger Technology Development Presented by: Frank Tuffner Pacific Northwest National Laboratory Smart Grid R&D Peer Review November 4, 2010 Golden, CO Project Team: Michael Kintner-Meyer, PI Krishnan Gowri Richard Pratt Nathan Tenney Frank Tuffner PNNL-SA-75999 Analysis and Development Grid Capabilities for the Electrification of Transportation Goals and Objectives Funding Summary ($K) FY09 FY10 FY11 $350 $500 $500 Technical Scope GOAL: * Assure grid can support electrification of transportation * Assure that EVs/PHEVs will not create new peaks (locally or regionally) or electricity prices will not support large adoption of EVs/PHEVs Objectives: * Assess grid benefits and impacts of electrification of transportation * Technology demonstration * Actively engage in codes and standards

262

Marine & hydrokinetic technology development.  

DOE Green Energy (OSTI)

The Wind and Water Power Program supports the development of marine and hydrokinetic devices, which capture energy from waves, tides, ocean currents, the natural flow of water in rivers, and marine thermal gradients, without building new dams or diversions. The program works closely with industry and the Department of Energy's national laboratories to advance the development and testing of marine and hydrokinetic devices. In 2008, the program funded projects to develop and test point absorber, oscillating wave column, and tidal turbine technologies. The program also funds component design, such as techniques for manufacturing and installing coldwater pipes critical for ocean thermal energy conversion (OTEC) systems. Rigorous device testing is necessary to validate and optimize prototypes before beginning full-scale demonstration and deployment. The program supports device testing by providing technology developers with information on testing facilities. Technology developers require access to facilities capable of simulating open-water conditions in order to refine and validate device operability. The program has identified more than 20 tank testing operators in the United States with capabilities suited to the marine and hydrokinetic technology industry. This information is available to the public in the program's Hydrodynamic Testing Facilities Database. The program also supports the development of open-water, grid-connected testing facilities, as well as resource assessments that will improve simulations done in dry-dock and closed-water testing facilities. The program has established two university-led National Marine Renewable Energy Centers to be used for device testing. These centers are located on coasts and will have open-water testing berths, allowing researchers to investigate marine and estuary conditions. Optimal array design, development, modeling and testing are needed to maximize efficiency and electricity generation at marine and hydrokinetic power plants while mitigating nearby and distant impacts. Activities may include laboratory and computational modeling of mooring design or research on device spacing. The geographies, resources, technologies, and even nomenclature of the U.S. marine and hydrokinetic technology industry have yet to be fully understood or defined. The program characterizes and assesses marine and hydrokinetic devices, and then organizes the collected information into a comprehensive and searchable Web-based database, the Marine and Hydrokinetic Technology Database. The database, which reflects intergovernmental and international collaboration, provides industry with one of the most comprehensive and up-to-date public resources on marine and hydrokinetic devices.

LiVecchi, Al (National Renewable Energy Laboratory); Jepsen, Richard Alan

2010-06-01T23:59:59.000Z

263

Office of the Assistant General Counsel for Technology Transfer &  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Transfer & Intellectual Property Technology Transfer & Intellectual Property Office of the Assistant General Counsel for Technology Transfer & Intellectual Property The Office of the Assistant General Counsel for Technology Transfer and Intellectual Property is responsible for providing legal counsel to Departmental elements on all matters relating to intellectual property (including patents, trademarks, copyrights, and technical data) and transfer of those rights from Department laboratories to the private sector in accordance with established legal authorities. The Office is also responsible for investigating and disposing of copyright and patent infringement actions against the Department. Additional information on intellectual property is available here. Among its duties, the Office obtains, administers, and licenses

264

ABC Technology Development Program  

Science Conference Proceedings (OSTI)

The Accelerator-Based Conversion (ABC) facility will be designed to accomplish the following mission: `Provide a weapon`s grade plutonium disposition capability in a safe, economical, and environmentally sound manner on a prudent schedule for [50] tons of weapon`s grade plutonium to be disposed on in [20] years.` This mission is supported by four major objectives: provide a reliable plutonium disposition capability within the next [15] years; provide a level of safety and of safety assurance that meets or exceeds that afforded to the public by modern commercial nuclear power plants; meet or exceed all applicable federal, state, and local regulations or standards for environmental compliance; manage the program in a cost effective manner. The ABC Technology Development Program defines the technology development activities that are required to accomplish this mission. The technology development tasks are related to the following topics: blanket system; vessel systems; reactivity control systems; heat transport system components; energy conversion systems; shutdown heat transport systems components; auxiliary systems; technology demonstrations - large scale experiments.

NONE

1994-10-14T23:59:59.000Z

265

Technology Transfer, Reaching the Market for Geopressured-Geothermal Resources  

DOE Green Energy (OSTI)

Technology transfer to the industrial sector for geopressured-geothermal technology has included diverse strategies, with successes and obstacles or roadblocks. Numerical data are tabulated in terms of response to the various strategies. Strategy categories include the following: feasibility studies and reports, consortium activities and proceedings, the Geothermal Resource Council, national and international meetings of the American Association of Petroleum Geologists, other societal and organizational meetings, and conferences, Department of Energy solicitation of interest in the Commerce Business Daily, industry peer review panels, and the Secretary's Technology Initiative. Additionally, the potential of a 12-page color brochure on the geopressured-geothermal resource, workshops, and cooperative research and development agreement (CRADA) is discussed. In conclusion, what is the best way to reach the market and what is the winning combination? All of the above strategies contribute to technology transfer and are needed in some combination for the desired success. The most successful strategy activities for bringing in the interest of the largest number of industries and the independents are the consortium meetings, one-on-one telephone calling, and consortium proceedings with information service followup. the most successful strategy activities for bringing in the interest and participation of ''majors'' are national and international peer reviewed papers at internationally recognized industry-related society meetings, and on-call presentations to specific companies. Why? Because quality is insured, major filtering has already taken place, and the integrity of the showcase is established. Thus, the focused strategy is reduced to a target of numbers (general public/minors/independents) versus quality (majors). The numerical results of the activities reflecting four years of technology transfer following the 15 year lead in the early phases of geopressured-geothermal program under the leadership of Dr. Myron Dorfman, reflect a dynamic surveying of what works in technology transfer with industry in the area of geopressured-geothermal resources. The identified obstacles can be removed and future efforts can benefit by this cataloging and discussion of results.

Wys, J. Negus-de

1992-03-24T23:59:59.000Z

266

Geothermal Reservoir Well Stimulation Program: technology transfer  

DOE Green Energy (OSTI)

To assess the stimulation technology developed in the oil and gas industry as to its applicability to the problems of geothermal well stimulation, a literature search was performed through on-line computer systems. Also, field records of well stimulation programs that have worked successfully were obtained from oil and gas operators and service companies. The results of these surveys are presented. (MHR)

Not Available

1980-05-01T23:59:59.000Z

267

Technology Transfer through the Pipeline and Other Channels: Preprint  

DOE Green Energy (OSTI)

Presented at the 2001 NCPV Program Review Meeting: Examines some success stories of tech transfer and lessons learned from these experiences that point to possible improvements to expedite transfer to future technologies.

Benner, J.; Hulstrom, R.; Sheldon, P.

2001-10-01T23:59:59.000Z

268

Fermilab | Office of Partnerships and Technology Transfer | Home  

Home; Help; Press Room; Phone Book; Fermilab at Work; Search. Skip over navigation to main content. Office of Partnerships and Technology Transfer; ... Security ...

269

NREL: Technology Transfer - Automakers Drive toward Fuel Cell ...  

... featured Jen Kurtz of the U.S. Department of Energys National Renewable Energy Laboratory ... Hawaii, and the Northeast ... Technology Transfer H ...

270

Event:Technology Transfer in Energy and Efficient Lighting to...  

Open Energy Info (EERE)

in Energy and Efficient Lighting to Combat Climate Change Jump to: navigation, search Calendar.png Technology Transfer in Energy and Efficient Lighting to Combat Climate Change: on...

271

Methods for Climate Change Technology Transfer Needs Assessments...  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Methods for Climate Change Technology Transfer Needs Assessments and Implementing Activities:...

272

Rocky Mountain E&P Technology Transfer Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Rocky Mountain E&P Technology Transfer Workshop August 4, 2003 Table of Contents Disclaimer Papers and Presentations Disclaimer This report was prepared as an account of work...

273

NREL: Technology Transfer - 21st Industry Growth Forum Photos  

National Renewable Energy Laboratory Technology Transfer 21 st Industry Growth Forum Photos. From NREL's 21st Industry Growth Forum on Oct. 28-30, 2008, in Denver ...

274

NREL: Technology Transfer - DOE Supports and Expands NREL's ...  

National Renewable Energy Laboratory Technology Transfer DOE Supports and Expands NREL's Commercialization Efforts. Through the U.S. Department of Energy's (DOE ...

275

Secretarial Policy Statement on Technology Transfer at Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretarial Policy Statement on Technology Transfer at Department of Energy Facilities Introduction This Policy Statement is designed to help guide and strengthen the Department of...

276

Technology Transfer | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

(LDRD) Technology Transfer DOE National Laboratories Contact Information Laboratory Policy and Evaluation U.S. Department of Energy SC-32Forrestal Building 1000 Independence...

277

NREL: Technology Transfer - 21st Industry Growth Forum ...  

National Renewable Energy Laboratory Technology Transfer 21 st Industry Growth Forum Presentations. Here you'll find presentations from NREL's 21 st Industry Growth ...

278

NREL: Technology Transfer - NREL Signs Contract with Romax for ...  

The U.S. Department of Energys National ... Dynamometers enable industry and testing agencies to verify the performance ... Technology Transfer Home;

279

Notice of Inquiry: Technology Transfer Practices at Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

Notice of Inquiry: Technology Transfer Practices at Department of Energy Laboratories (75 FR 72036) We are pleased to respond to the questions published in the Federal Register....

280

Houston, we have a success story: technology transfer at the NASA IV&V facility  

Science Conference Proceedings (OSTI)

This paper details, from the point of view of researchers and from the point of view of program managers, the development of and technology transfer from NASA's research program in Independent Verification and Validation (IV&V). Keywords: independent verification and validation, research, technology transfer

Ken McGill; Wes Deadrick; Jane Huffman Hayes; Alex Dekhtyar

2006-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "development technology transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Brookhaven National Laboratory technology transfer report, fiscal year 1986  

SciTech Connect

An increase in the activities of the Office of Research and Technology Applications (ORTA) is reported. Most of the additional effort has been directed to the regional electric utility initiative, but intensive efforts have been applied to the commercialization of a compact synchrotron storage ring for x-ray lithography applications. At least six laboratory technologies are reported as having been transferred or being in the process of transfer. Laboratory accelerator technology is being applied to study radiation effects, and reactor technology is being applied for designing space reactors. Technologies being transferred and emerging technologies are described. The role of the ORTA and the technology transfer process are briefly described, and application assessment records are given for a number of technologies. A mini-incubator facility is also described. (LEW)

Not Available

1986-01-01T23:59:59.000Z

282

Response to Notice of Inquiry: Technology Transfer Practices at DOE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Response to Notice of Inquiry: Technology Transfer Practices at DOE Response to Notice of Inquiry: Technology Transfer Practices at DOE Laboratories (73 FR 2036) by Batelle Energy Alliance, LLC. Response to Notice of Inquiry: Technology Transfer Practices at DOE Laboratories (73 FR 2036) by Batelle Energy Alliance, LLC. Response to Notice of Inquiry: Technology Transfer Practices at DOE Laboratories (73 FR 2036) by Batelle Energy Alliance, LLC. This letter includes the BEA response (the contractor for Idaho National Laboratory) to the DOE's inquiry regarding suggestions for its Technology Transfer Practices. Recommended improvements include: more flexible transactional agreements to meet the diverse needs of interested parties, more support for commercial investors considering higher risk technologies, the removal of some of the U.S. manufacturing requirements, and more rights

283

NREL: Technology Transfer - Defense Department Announces ...  

Defense Department Announces Funding Opportunity for Energy Technology Demonstrations March 1, 2013. Through the Environmental Security Technology ...

284

NREL: Technology Transfer - Energy Innovation Portal  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Innovation Portal Energy Innovation Portal Get the EERE Energy Innovation Portal widget and many other great free widgets at Widgetbox! Not seeing a widget? (More info) NREL developed and manages the Energy Innovation Portal for the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE). The portal provides streamlined searching and browsing of patents, patent applications, and marketing summaries for clean energy technologies available for licensing from DOE laboratories and participating research institutions. Visit the EERE Energy Innovation Portal. For more information about NREL's involvement with the portal, read NREL Helps DOE Promote Cutting-Edge Technology. Contact If you have any questions about the portal, contact Matthew Ringer,

285

USDOE Technology Transfer, Frequently Asked Questions about Agreement for  

NLE Websites -- All DOE Office Websites (Extended Search)

Frequently Asked Questions about ACT: Frequently Asked Questions about ACT: Q1: What is ACT (Agreement for Commercializing Technology)? A1: ACT is a pilot program under which businesses may partner with participating DOE laboratories for research and development that commercializes technology. Q2: Why is this pilot being introduced? A2: ACT is being piloted to address concerns about difficulties in partnering with the DOE laboratories that were raised in public responses to a DOE Request for Information on improving technology transfer. These concerns include requirements for advance payments, indemnification and government use rights in intellectual property. Q3: Who can partner with the laboratories under ACT? A3: ACT is available to a full range of sponsors, including start-ups, small and large businesses that provide private funding to

286

Sandia National Laboratories : Licensing/Technology Transfer ...  

IP Home; Search/Browse Technology Portfolios; Licensing Overview; Ready-to-Sign Licenses; DOE SBIR TTI; Government Use Notices; News; Contact Us; Technology Summary

287

Sandia National Laboratories : Licensing/Technology Transfer ...  

Technology Summary Hybrid polymer-nanocrystal optical coatings are a platform technology in the field of multilayered films, and are seen in a variety of consumer ...

288

NREL: Technology Transfer - News Release Archives  

Solar Technology Acceleration Center is Powering Up . Members of the Solar Technology Acceleration Center (SolarTAC) and supporters convened in ...

289

Partnerships and Technology Transfer - Oak Ridge National ...  

Licensing Technology Assistance Program. Assistance is available for small business licensees of ORNL technologies who would like to leverage ORNLs expertise and ...

290

NREL: Technology Transfer - News Release Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 December 3, 2008 DOE to Award $14.55 Million for Advanced Vehicle Technologies Ford Motor Company has received funds from the U.S. Department of Energy to develop an energy-efficient way to cool, heat, and ventilate cars. NREL will serve on Ford's project team. November 20, 2008 NREL, Brazilian Energy Company to Collaborate on Bioenergy The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) and Petróleo Brasileiro S.A. (Petrobras) announced today that they have signed an agreement that could accelerate the development and international commercialization of biofuels. The announcement was made at the International Biofuels Conference in Sao Paulo, Brazil. November 13, 2008 NREL and Private Industry Begin Nationwide Solar Measuring Network

291

Information systems and technology transfer programs on geothermal energy and other renewable sources of energy  

DOE Green Energy (OSTI)

In order to remain competitive, it is necessary to stay informed and use the most advanced technologies available. Recent developments in communication, like the Internet and the World Wide Web, enormously facilitate worldwide data and technology transfer. A compilation of the most important sources of data on renewable energies, especially geothermal, as well as lists of relevant technology transfer programs are presented. Information on how to gain access to, and learn more about them, is also given.

Lippmann, M.J.; Antunez, E.

1996-01-01T23:59:59.000Z

292

Information systems and technology transfer programs on geothermal energy and other renewable sources of energy  

Science Conference Proceedings (OSTI)

In order to remain competitive it is necessary to stay informed and use the most advanced technologies available. Recent developments in communication, like the Internet and the World Wide Web, enormously facilitate worldwide data and technology transfer. A compilation of the most important sources of data on renewable energies, especially geothermal, as well as lists of relevant technology transfer programs are presented. Information on how to gain access to, and learn more about them is also given.

Lippmann, Marcelo J.; Antunez, Emilio u.

1996-01-24T23:59:59.000Z

293

Fermilab | Office of Partnerships and Technology Transfer | Home  

NLE Websites -- All DOE Office Websites (Extended Search)

Partnerships and Technology Transfer Partnerships and Technology Transfer U.S. Department of Energy Fermilab Fermilab: Home Help Press Room Phone Book Fermilab at Work Search Search Go Skip over navigation to main content Office of Partnerships and Technology Transfer Fermilab Technology Available Technologies CRADA Model CRADA Joint Work Statement CRADA OCI Certification SC Foreign Work for Other Sheet WFO Model Work for Others SC Foreign Work for Other Sheet WFO Questionnaire Documents and Forms Related Links Accelerators for America's Future Department of Energy Technology Transfer Follow Fermilab On... Facebook Twitter YouTube Quantum Diaries More ways to follow us U.S. Department of Energy Home Page HEP Program News & Information Interactions.org Particle Physics News Image Bank Fermilab in the News Quantum Diaries

294

Technology transfer package on seismic base isolation - Volume III  

Science Conference Proceedings (OSTI)

This Technology Transfer Package provides some detailed information for the U.S. Department of Energy (DOE) and its contractors about seismic base isolation. Intended users of this three-volume package are DOE Design and Safety Engineers as well as DOE Facility Managers who are responsible for reducing the effects of natural phenomena hazards (NPH), specifically earthquakes, on their facilities. The package was developed as part of DOE's efforts to study and implement techniques for protecting lives and property from the effects of natural phenomena and to support the International Decade for Natural Disaster Reduction. Volume III contains supporting materials not included in Volumes I and II.

NONE

1995-02-14T23:59:59.000Z

295

Federal assistance program. Geothermal technology transfer. Project status report, May 1986  

DOE Green Energy (OSTI)

Progress for the month of May, 1986, is described. Projects include evaluation of direct heating of greenhouses and other businesses, technology transfer to consultants, developers and users, and program monitor activities. (ACR)

Lienau, P.J.; Culver, G.

1986-05-01T23:59:59.000Z

296

Report of the workshop on transferring X-ray Lithography Synchrotron (XLS) technology to industry  

Science Conference Proceedings (OSTI)

This paper reports on plans to develop an x-ray synchrotron for use in lithography. The primary concern of the present paper is technology transfer from national laboratories to private industry. (JDH)

Marcuse, W.

1987-01-01T23:59:59.000Z

297

FY05 Targeted Technology Transfer to US Independents  

Science Conference Proceedings (OSTI)

Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers in 1994 as a national not-for-profit organization to address the increasingly urgent need to improve the technology-transfer process in the U.S. upstream petroleum industry. PTTC's technology-transfer programs enhance U.S. national security. PTTC administers the only nation-wide, comprehensive program dedicated to maximizing America's supplies of domestic oil and gas. PTTC conducts grassroots programs through 10 Regional Lead Organizations (RLOs) and two satellite offices, leveraging their preexisting connections with industry. This organizational structure helps bring researchers and academia to the table. Nationally and regionally, volunteers within a National Board and Regional Producer Advisory Groups guide efforts. The National Board meets three times per year, an important function being approving the annual plans and budgets developed by the regions and Headquarters (HQ). Between Board meetings, an active Management and Budget Committee guide HQ activity. PTTC itself undergoes a thorough financial audit each year. The PTTC's HQ staff plans and manages all aspects of the PTTC program, conducts nation-wide technology-transfer activities, and implements a comprehensive communications program. Networking, involvement in technical activities, and an active exhibit schedule are increasing PTTC's sphere of influence with both producers and the oilfield service sector. Circulation for ''PTTC Network News'', the quarterly newsletter, has risen to nearly 17,500. About 7,500 people receive an email Technology Alert on an approximate three-week frequency. Case studies in the ''Petroleum Technology Digest in World Oil'' appear monthly, as do ''Tech Connections'' columns in ''The American Oil and Gas Reporter''. As part of its oversight responsibility for the regions, the PTTC from the start has captured and reported data that document the myriad ways its programs impact industry. Of 119 workshops in FY05 where repeat attendance was reported, 59 percent of attendees on average had attended a PTTC event previously, indicating that a majority felt they were receiving enough value to come back. It also is encouraging that, after 11 years, PTTC events continue to attract new people. The form used at workshops to get participants feedback asks for a ''yes'' or ''no'' response to the question: ''Have you used any new technologies based on knowledge gained through PTTC?'' With data now available from 611 workshops, 41 percent of respondents said, ''yes'', confirming that people are applying the information they receive at PTTC workshops. PTTC in FY04 asked RLO directors, oilfield service companies and producers in 11 areas with significant technological barriers to adding new reserves to estimate the ''PTTC Impact Factor''--that is, the percentage of the total reserves added in their areas that logically could be attributed to PTTC's efforts. Of the estimated 1,266 million barrels of oil equivalent (BOE) added in the 11 areas, participants estimated that roughly 88 million BOE had been added as a result of PTTC's techtransfer efforts. PTTC's 10 regions are the primary delivery mechanism for technology transfer. Attendance at PTTC regional activities set a record in FY05, with 8,900 individuals attending 154 workshops, lunch-and-learn events, or student training and internships. When appropriate, regional workshops incorporate R&D findings from DOE-funded projects. This year HQ began a ''Microhole Technology Integration'' Initiative with DOE to more clearly present their microhole program to producers. Often events are held cooperatively with other national organizations, regional producer associations and professional society groups. This practice leverages outreach and engenders future cooperation. Of the more than 61,000 individuals PTTC has attracted to its events since its inception, more than 15,000 have attended in the past two years. Eight-eight percent of PTTC event attendees during FY05 were from industry. The numb

Donald F. Duttlinger; E. Lance Cole

2005-11-01T23:59:59.000Z

298

Geothermal Elastomeric Materials Technology-Transfer (GEM-TT) Program. Final report  

DOE Green Energy (OSTI)

The primary objective, to promote broad use of the earlier developed elastomers technology appears to have been successfully accomplished. The expertise was transferred to three rubber products manufacturers, and is currently commercially available. Significant substantiation of the viability of the technology was fostered through supporting and tracking numerous test efforts in various industry laboratories and out in the field. Numerous papers were presented on the technology and information was also disseminated verbally and by providing data packages. The formal and informal technology transfer effort are described. Several secondary spin-offs also resulted. Steps toward a better understanding of the complex technology transfer process were achieved. The experience provides a data point illustrating one way that technology transfer can be accomplished and a data point which can be used to evaluate its effectiveness. And finally studies were made assessing the potential of elastomers to perform at even higher temperatures.

Hirasuna, A.R.; Friese, G.J.; Stephens, C.A.

1982-12-01T23:59:59.000Z

299

Successful Oil and Gas Technology Transfer Program Extended to 2015 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Successful Oil and Gas Technology Transfer Program Extended to 2015 Successful Oil and Gas Technology Transfer Program Extended to 2015 Successful Oil and Gas Technology Transfer Program Extended to 2015 June 23, 2010 - 1:00pm Addthis Washington, D.C. - The Stripper Well Consortium (SWC) - a program that has successfully provided and transferred technological advances to small, independent oil and gas operators over the past nine years - has been extended to 2015 by the U.S. Department of Energy (DOE). An industry-driven consortium initiated in 2000, SWC's goal is to keep "stripper wells" productive in an environmentally safe manner, maximizing the recovery of domestic hydrocarbon resources. The consortium is managed and administered by The Pennsylvania State University on behalf of DOE; the Office of Fossil Energy's (FE) National Energy Technology Laboratory (NETL)

300

Research and Technology Transfer Organization www.techtransfer.psu.edu  

E-Print Network (OSTI)

Research and Technology Transfer Organization www.techtransfer.psu.edu from idea to product #12 Office 119 Technology Center, University Park, PA 16802 814-865-9519 · iro@psu.edu · www.techtransfer. Intellectual Property Office 113 Technology Center, University Park, PA 16802 814-865-6277 · ipo@psu.edu · www.techtransfer

Guiltinan, Mark

Note: This page contains sample records for the topic "development technology transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Sandia National Laboratories : Licensing/Technology Transfer ...  

IP Home; Search/Browse Technology Portfolios; Licensing Overview; ... National Defense and Security; Molecular Spectroscopy; Imaging Array; Medical Imaging; Remote ...

302

Fossil Energy - Idaho National Laboratory - Technology Transfer ...  

Idaho National Laboratory Technologies Available for Licensing ... Fossil Energy Geologic Strain Measurement System. Related Patents: 7,284,604

303

Sandia National Laboratories : Licensing/Technology Transfer ...  

Technology Summary The Theoretical Overlay Photographic Heliostat Alignment Technique (TOPHAT) is a unique method which helps to accurately and effectively ...

304

Sandia National Laboratories : Licensing/Technology Transfer ...  

Technology Summary. Current methods of producing titanium dioxide nanoparticles require costly surfactants and/or high temperature and pressure processing.

305

Available Technologies:Collective Memory Transfers for ...  

APPLICATIONS OF TECHNOLOGY: High Performance Computing (HPC) Big Data processing and analysis; Processor manufacturers; Memory module manufacturers

306

NREL: Technology Transfer - NREL's Industry Growth Forum  

... to 7AC Technologies, Inc., a Massachusetts company that is commercializing a novel membrane-based liquid desiccant HVAC system.

307

Cast Metals Coalition Technology Transfer and Program Management Final Report  

Science Conference Proceedings (OSTI)

The Cast Metals Coalition (CMC) partnership program was funded to ensure that the results of the Department of Energy's (DOE) metalcasting research and development (R&D) projects are successfully deployed into industry. Specifically, the CMC program coordinated the transfer and deployment of energy saving technologies and process improvements developed under separately funded DOE programs and projects into industry. The transition of these technologies and process improvements is a critical step in the path to realizing actual energy savings. At full deployment, DOE funded metalcasting R&D results are projected to save 55% of the energy used by the industry in 1998. This closely aligns with DOE's current goal of driving a 25% reduction in industrial energy intensity by 2017. In addition to benefiting DOE, these energy savings provide metalcasters with a significant economic advantage. Deployment of already completed R&D project results and those still underway is estimated to return over 500% of the original DOE and industry investment. Energy savings estimates through December 2008 from the Energy-Saving Melting and Revert Reduction Technology (E-SMARRT) portfolio of projects alone are 12 x 1012 BTUs, with a projection of over 50 x 1012 BTUs ten years after program completion. These energy savings and process improvements have been made possible through the unique collaborative structure of the CMC partnership. The CMC team consists of DOE's Office of Industrial Technology, the three leading metalcasting technical societies in the U.S: the American Foundry Society; the North American Die Casting Association; and the Steel Founders Society of America; and the Advanced Technology Institute (ATI), a recognized leader in distributed technology management. CMC provides collaborative leadership to a complex industry composed of approximately 2,100 companies, 80% of which employ less than 100 people, and only 4% of which employ more than 250 people. Without collaboration, new technologies enabling energy efficiencies and environment-friendly improvements are slow to develop, and have trouble obtaining a broad application. The CMC team was able to effectively and efficiently transfer the results of DOE's metalcasting R&D projects to industry by utilizing and delivering the numerous communication vehicles identified in the proposal. The three metalcasting technical associations achieved significant technology transition results under this program. In addition to reaching over 23,000 people per year through Modern Casting and 28,000 through Engineered Casting Solutions, AFS had 84 national publications and reached over 1,200 people annually through Cast Metals Institute (CMI) education courses. NADCA's education department reached over 1,000 people each year through their courses, in addition to reaching over 6,000 people annually through Die Casting Engineer, and publishing 58 papers. The SFSA also published 99 research papers and reached over 1,000 people annually through their member newsletters. In addition to these communication vehicles, the CMC team conducted numerous technical committee meetings, project reviews, and onsite visits. All of these efforts to distribute the latest metalcasting technologies contributed to the successful deployment of DOE's R&D projects into industry. The DOE/CMC partnership demonstrated significant success in the identification and review of relevant and easy-to-implement metalcasting energy-saving processes and technologies so that the results are quickly implemented and become general practice. The results achieved in this program demonstrate that sustained technology transfer efforts are a critical step in the deployment of R&D projects to industry.

Gwyn, Mike

2009-03-31T23:59:59.000Z

308

NREL: Technology Transfer - NREL's Wind Technology Patents Boost ...  

NREL's Wind Technology Patents Boost Efficiency and Lower Costs March 22, 2013. Wind energy research conducted at the National Wind Technology Center (NWTC ...

309

NETL: Technology Transfer - Contact NETLs ORD Technology ...  

For inquiries regarding a specific technology or group of technologies, please complete this form and submit to techtransfer@netl.doe.gov : For any ...

310

Department of Energy Announces Technology Transfer Coordinator | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Transfer Coordinator Technology Transfer Coordinator Department of Energy Announces Technology Transfer Coordinator February 23, 2010 - 12:00am Addthis Washington, D.C. - U.S. Department of Enery Secretary Steven Chu announced today that Dr. Karina Edmonds will join the Department of Energy as its new Technology Transfer Coordinator. Dr. Edmonds will be responsible for working with the Department's National Laboratories to accelerate the process of moving discoveries from the laboratory to the private sector, ensuring that America's scientific leadership translates into new, high-paying jobs for America's families. Dr. Edmonds is scheduled to join the Department starting in April 2010. "I am pleased to have Karina join our team at the Department of Energy," said Secretary Chu. "Having Karina oversee a coordinated, strategic

311

NETL: News Release - Successful Oil and Gas Technology Transfer...  

NLE Websites -- All DOE Office Websites (Extended Search)

23, 2010 Successful Oil and Gas Technology Transfer Program Extended to 2015 Long-Term Success of Stripper Well Consortium Supports Small Oil and Gas Producers Washington, D.C. -...

312

Office of the Assistant General Counsel for Technology Transfer...  

NLE Websites -- All DOE Office Websites (Extended Search)

Labor and Pension Law Energy Policy ARPA-E Laws & Legal Resources Open Government SmartGrid Information The Office of the Assistant General Counsel for Technology Transfer and...

313

Map to Technology Transfer Division - Los Alamos National Lab ...  

Hilltop House 8. Bradbury Science Museum To White Rock, Santa Fe Bridge 1 N TT Building Front door Los Alamos & TT Building Map to Technology Transfer Division 8 4 ...

314

Questions concerning Technology Transfer Practices at DOE Labs...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

concerning Technology Transfer Practices at DOE Labs.txt From: Gary S. Selwyn gary.selwyn@apjet.com Sent: Tuesday, February 10, 2009 7:00 PM To: GC-62 Subject: Questions...

315

VR based knowledge transfer in medical technology and techniques  

Science Conference Proceedings (OSTI)

This paper reports on an ongoing projects use of virtual reality (VR) technologies to support vocational training. Three-dimensional interactive VR models can be employed to support the innovative transfer of knowledge about complex equipment ...

Wolfram Schoor; Rdiger Mecke; Martina Rehfeld

2006-05-01T23:59:59.000Z

316

NREL: Technology Transfer - Defense Department Announces Funding ...  

... 2013. Through the Environmental Security Technology Certification Program, the U.S. Department of Defense (DoD) seeks proposals for Fiscal Year 2014 projects that ...

317

LBNL Technology Transfer website - Lawrence Berkeley National ...  

Nano- & Micro-technology; Software and IT ; ... Oscillator in wireless and microwave communications; ADVANTAGES: Smallest synthetic motor ~ 300 nm wide; Operates ...

318

NREL: Technology Transfer - NREL Evaluates Fuel Cell ...  

... (i.e. forklift) applications across the United States. And the technology validation team at the National Renewable Energy Laboratory (NREL) ...

319

New Advances - Jefferson Lab Technology Transfer  

New Advances Commercial Spin-offs Abound For New Free Electron Laser. The world of laser technology took a giant leap forward recently as researchers ...

320

Fossil Energy - Idaho National Laboratory - Technology Transfer ...  

Idaho National Laboratory Technologies Available for Licensing ... Fossil Energy Catalysts for Alcohol Production from CO2 and CO. Related Patents: 7,879,749 ...

Note: This page contains sample records for the topic "development technology transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Fossil Energy - Idaho National Laboratory - Technology Transfer ...  

Idaho National Laboratory Technologies Available for Licensing ... Fossil Energy Method of Liquefying a Gas. Related Patents: 6997012. Contact: David R. Anderson

322

Fossil Energy - Idaho National Laboratory - Technology Transfer ...  

Idaho National Laboratory Technologies Available for Licensing ... Fossil Energy Liquefaction of Natural Gas. Related Patents: 6581409; 6962061; 6,886,362; ...

323

Sandia National Laboratories : Licensing/Technology Transfer ...  

IP Home; Search/Browse Technology Portfolios; ... The gas leak detection devices use an infrared light source to spectroscopically probe the gas and a video camera to ...

324

NREL: Technology Transfer - Nonexclusive and Exclusive Licenses  

Nonexclusive and Exclusive Licenses. NREL's technology licensing agreements with companies are either nonexclusive or exclusive depending on their field of use.

325

Sandia National Laboratories : Licensing/Technology Transfer ...  

Technology Summary There is a need for improved active infrared optical elements such as modulators. Extraordinary optical transmission (EOT) through subwavelength ...

326

Sandia National Laboratories : Licensing/Technology Transfer ...  

Technology Summary In the past, traditional encryption engines utilized a mode of encryption that was vulnerable to certain attacks and not capable of running at full ...

327

Sandia National Laboratories : Licensing/Technology Transfer ...  

Technology Summary Sandia National Laboratories has created sensors to identify and assess the pervasive and expensive problem of corrosion in applications ranging ...

328

Sandia National Laboratories : Licensing/Technology Transfer ...  

Technology Summary. Self guided projectiles such as bullets that can be fired from small caliber weapons (around .50 caliber or less) are desirable due to the ...

329

Sandia National Laboratories : Licensing/Technology Transfer ...  

Technology Summary Single junction solar cells have limited efficiency and fail to extract maximum energy from photons outside of a specific spectral region.

330

Sandia National Laboratories : Licensing/Technology Transfer ...  

Technology Summary Sandia National Laboratories has created a new class of scintillators with novel properties enabling use in a wide range of particle detection ...

331

Partnerships and Technology Transfer - Oak Ridge National ...  

Sponsored Research Partnering Mechanisms. Private companies, universities, non-profit agencies, and other non-federal entities seeking technology solutions, or ...

332

NREL: Technology Transfer - News Release Archives  

A small company commercializing a novel solar energy technology has been named the Clean Energy Entrepreneur of the Year at the 20th Industry ... Home; About ...

333

PNNL: Technology Transfer - Our Licensing Guidelines  

NLE Websites -- All DOE Office Websites (Extended Search)

Our Licensing Guidelines PNNL approaches licensing in a flexible, collaborative manner Although every technology license is unique, at PNNL we recognize that there are basic...

334

PNNL: Doing Business - Technology Transfer Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Management Tools Information Technology John T. McEntire (509) 372-6960 john.mcentire@pnnl.gov Electronics Environmental Microsystems Nuclear & Radiological Sensors Ultrasonics...

335

Fermilab | Office of Partnerships and Technology Transfer ...  

Quantum Diaries; Available Technologies. The Laboratory owns a holds a small number of patents that are available for licensing to interested parties.

336

Sandia National Laboratories : Licensing/Technology Transfer ...  

Search; About Sandia; Mission Areas; Newsroom; Careers; Doing Business; Education; Contact Us The Sandia Cooler IP Home; Search/Browse Technology ...

337

NREL: Technology Transfer - NREL Collaborates to Commercialize ...  

Natural gas. Nuclear waste. Nuclear Filter Technology is also licensing several NREL inventions related to the fiber optic and thin film materials that sense the ...

338

Understanding Joint Technology Development Arrangements  

Science Conference Proceedings (OSTI)

For example, a maker of printing inks may partner with a company that owns glass-decorating equipment and process technology in order to develop a better ...

339

National Technology Transfer and Advancement Act of 1995 [Public Law (PL)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Technology Transfer and Advancement Act of 1995 [Public National Technology Transfer and Advancement Act of 1995 [Public Law (PL) 104-113] National Technology Transfer and Advancement Act of 1995 [Public Law (PL) 104-113] On March 7, 1996, President Clinton signed into law "The National Technology Transfer and Advancement Act of 1995." The new law, referred to as PL 104-113, serves to continue the policy changes initiated in the 1980s under Office of Management and Budget (OMB) Circular A-119 (OMB A-119), Federal Participation in the Development and Use of Voluntary Standards, that are transitioning the Executive branch of the Federal Government from a developer of internal standards to a customer of external standards. Section 12, "Standards Conformity," of the act states that "...all Federal

340

Inspection of selected issues regarding the Department`s Enhanced Technology Transfer Program  

SciTech Connect

An inspection was conducted to review the Department of Energy`s Enhanced Technology Transfer Program, now referred to as the Department`s Technology Transfer Program, in order to improve the effectiveness of the program and to identify issues that require management attention. Specifically, selected Departmental and Laboratory plans, policies, and procedures for implementing technology transfer activities were reviewed. Legislation, Department directives, Management and Operating contract clauses, and selected Cooperative Research and Development Agreements/Joint Work Statements were also collected and reviewed. The inspection identified four issues for management`s attention: (1) there is a lack of uniform budget guidelines for the Department`s technology transfer activities, (2) there is a lack of objectives for the Department`s Technology Transfer Program, (3) the budget and accounting information submitted to the Office of Management and Budget regarding the Department`s technology transfer activities is incomplete, and (4) there is a Department`s Technology Transfer Program. The report includes specific recommendations to address these matters.

1994-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "development technology transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Partnerships and Technology Transfer - Oak Ridge National ...  

ORNL researchers and engineers have won eight R&D 100 awards, presented each year by R&D Magazine in recognition of the years most significant technological ...

342

Sandia National Laboratories : Licensing/Technology Transfer ...  

7662.1: 7,785,391 08/31/2010 Issued: Technology ID ... Published 07/29/2013 Last Updated 10/14/2013 ... News release RSS feed ...

343

Sandia National Laboratories : Licensing/Technology Transfer ...  

Technology is needed to release the cellular contents in a ... Suitable for processing volumes ranging from 1-1000 ... Published 09/28/2011 Last Updated 09/26/2013

344

Cross-border transfer of climate change mitigation technologies : the case of wind energy from Denmark and Germany to India  

E-Print Network (OSTI)

This research investigated the causal factors and processes of international development and diffusion of wind energy technology by examining private sector cross-border technology transfer from Denmark and Germany to India ...

Mizuno, Emi, Ph. D. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

345

Robotics Technology Development Program. Technology summary  

SciTech Connect

The Robotics Technology Development Program (RTDP) is a ``needs-driven`` effort. A lengthy series of presentations and discussions at DOE sites considered critical to DOE`s Environmental Restoration and Waste Management (EM) Programs resulted in a clear understanding of needed robotics applications toward resolving definitive problems at the sites. A detailed analysis of the Tank Waste Retrieval (TWR), Contaminant Analysis Automation (CAA), Mixed Waste Operations (MWO), and Decontamination & Dismantlement (D&D). The RTDP Group realized that much of the technology development was common (Cross Cutting-CC) to each of these robotics application areas, for example, computer control and sensor interface protocols. Further, the OTD approach to the Research, Development, Demonstration, Testing, and Evaluation (RDDT&E) process urged an additional organizational break-out between short-term (1--3 years) and long-term (3--5 years) efforts (Advanced Technology-AT). The RDTP is thus organized around these application areas -- TWR, CAA, MWO, D&D and CC&AT -- with the first four developing short-term applied robotics. An RTDP Five-Year Plan was developed for organizing the Program to meet the needs in these application areas.

Not Available

1994-02-01T23:59:59.000Z

346

Questions concerning Technology Transfer Practices at DOE Labs.txt - Notepad  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

concerning Technology Transfer Practices at DOE Labs.txt concerning Technology Transfer Practices at DOE Labs.txt From: Gary S. Selwyn [gary.selwyn@apjet.com] Sent: Tuesday, February 10, 2009 7:00 PM To: GC-62 Subject: Questions concerning Technology Transfer Practices at DOE Labs In response to the request for written comments, as listed in the Federal Register, Vol 73, No. 229, APJeT, Inc. offers the comments below. APJET is an early-stage, technology company that has licensed technology developed at Los Alamos National Laboratory. APJET has been a licensee for 7 years, has 10 employees in NM and NC, is the largest spin-off from LANL in its history, and the author of these responses is the founder of APJET and a former technical staff member from LANL. Question #3: US Competitiveness It is highly restrictive to require that the recipient of new technology from the

347

Questions concerning Technology Transfer Practices at DOE Labs.txt - Notepad  

NLE Websites -- All DOE Office Websites (Extended Search)

concerning Technology Transfer Practices at DOE Labs.txt concerning Technology Transfer Practices at DOE Labs.txt From: Gary S. Selwyn [gary.selwyn@apjet.com] Sent: Tuesday, February 10, 2009 7:00 PM To: GC-62 Subject: Questions concerning Technology Transfer Practices at DOE Labs In response to the request for written comments, as listed in the Federal Register, Vol 73, No. 229, APJeT, Inc. offers the comments below. APJET is an early-stage, technology company that has licensed technology developed at Los Alamos National Laboratory. APJET has been a licensee for 7 years, has 10 employees in NM and NC, is the largest spin-off from LANL in its history, and the author of these responses is the founder of APJET and a former technical staff member from LANL. Question #3: US Competitiveness It is highly restrictive to require that the recipient of new technology from the

348

Analysis and technology transfer report, 1989 and 1990  

SciTech Connect

The buildings sector used 29.6 quadrillion Btus (quads) of energy in 1989, or 36 percent of the total primary energy consumed in the United States. The major uses are for space heating and cooling, water heating, refrigeration, and lighting. Electricity is the dominant fuel, followed by natural gas, petroleum, and other fuels. Although there were dramatic improvements in energy efficiency in this sector from 1975 to 1985, in recent years energy use has grown rapidly. The large growth expected in commercial building floor space and in residential units means that total building-sector energy consumption could increase dramatically by the year 2030. The mission of the US DOE's Office of Building Technologies (OBT) is to lead a national program supporting private sector efforts to improve the energy efficiency of the nation's buildings and to increase their utilization of renewable energy sources. The Office is also responsible for energy efficiency planning and management for Federal buildings as well as buildings-related associated information, financial incentives, and regulatory functions that are determined to be appropriate for the Federal government. To accomplish its goals, OBT plans and conducts research and development to make technologies available and provides information on their effectiveness. The selection and management of OBT research activities requires an understanding of where and how energy is used within the buildings sectors, how energy use is expected to change in the future, and the potential impact of new and emerging technologies on energy use. Analysis activities serve to collect energy use information, provide the analysis necessary to apply this information to research and development planning, and develop analysis tools which the program uses to set priorities for research projects. This report summarizes analysis and technology transfer activities undertaken by OBT during 1989 and 1990. 101 refs., 19 figs., 9 tabs.

1991-08-01T23:59:59.000Z

349

Analysis and technology transfer report, 1989 and 1990  

SciTech Connect

The buildings sector used 29.6 quadrillion Btus (quads) of energy in 1989, or 36 percent of the total primary energy consumed in the United States. The major uses are for space heating and cooling, water heating, refrigeration, and lighting. Electricity is the dominant fuel, followed by natural gas, petroleum, and other fuels. Although there were dramatic improvements in energy efficiency in this sector from 1975 to 1985, in recent years energy use has grown rapidly. The large growth expected in commercial building floor space and in residential units means that total building-sector energy consumption could increase dramatically by the year 2030. The mission of the US DOE's Office of Building Technologies (OBT) is to lead a national program supporting private sector efforts to improve the energy efficiency of the nation's buildings and to increase their utilization of renewable energy sources. The Office is also responsible for energy efficiency planning and management for Federal buildings as well as buildings-related associated information, financial incentives, and regulatory functions that are determined to be appropriate for the Federal government. To accomplish its goals, OBT plans and conducts research and development to make technologies available and provides information on their effectiveness. The selection and management of OBT research activities requires an understanding of where and how energy is used within the buildings sectors, how energy use is expected to change in the future, and the potential impact of new and emerging technologies on energy use. Analysis activities serve to collect energy use information, provide the analysis necessary to apply this information to research and development planning, and develop analysis tools which the program uses to set priorities for research projects. This report summarizes analysis and technology transfer activities undertaken by OBT during 1989 and 1990. 101 refs., 19 figs., 9 tabs.

Not Available

1991-08-01T23:59:59.000Z

350

Technology Transfer: Success Stories: Honors and Awards  

NLE Websites -- All DOE Office Websites (Extended Search)

Honors and Awards Honors and Awards R & D Magazine's R&D 100 Awards are presented to the 100 most technologically significant new technologies each year. Below is a list of Berkeley Lab award winners over the past 27 years. Go here for an overview of Berkeley Lab's approach to preparing R&D 100 Awards nominations. Technology Title R&D 100 Principal Investigators High Throughput NIMS Screening 2013 Trent Northen (co-entry with Nextval Systems) Bacteriophage Power Generator 2013 Seung-Wuk Lee Conducting Polymer Binder for High Capacity Lithium Ion Batteries 2013 Gao Liu OSCARS: On-demand Secure Circuits and Reservation System 2013 Chin Guok Universal Smart Window Coating 2013 Delia Milliron, Guillermo Garcia, Raffaella Buonsanti, Anna Llordés Campanile Probe 2013 Alex Weber-Bargioni, P. James Schuck, Stefano Cabrini

351

Fermilab | Office of Partnerships and Technology Transfer ...  

Quantum Diaries; MOUs U.S. Procedure. This section is under development. Model. This section is under development . Last modified: 03/19/2013 | ...

352

Oil and gas technology transfer activities and potential in eight major producing states. Volume 1  

Science Conference Proceedings (OSTI)

In 1990, the Interstate Oil and Gas Compact Commission (the Compact) performed a study that identified the structure and deficiencies of the system by which oil and gas producers receive information about the potential of new technologies and communicate their problems and technology needs back to the research community. The conclusions of that work were that major integrated companies have significantly more and better sources of technology information than independent producers. The majors also have significantly better mechanisms for communicating problems to the research and development (R&D) community. As a consequence, the Compact recommended analyzing potential mechanisms to improve technology transfer channels for independents and to accelerate independents acceptance and use of existing and emerging technologies. Building on this work, the Compact, with a grant from the US Department Energy, has reviewed specific technology transfer organizations in each of eight major oil producing states to identify specific R&D and technology transfer organizations, characterize their existing activities, and identify potential future activities that could be performed to enhance technology transfer to oil and gas producers. The profiles were developed based on information received from organizations,follow-up interviews, site visit and conversations, and participation in their sponsored technology transfer activities. The results of this effort are reported in this volume. In addition, the Compact has also developed a framework for the development of evaluation methodologies to determine the effectiveness of technology transfer programs in performing their intended functions and in achieving desired impacts impacts in the producing community. The results of that work are provided in a separate volume.

Not Available

1993-07-01T23:59:59.000Z

353

USDOE Technology Transfer, Working with DOE Labs - Arrangements  

NLE Websites -- All DOE Office Websites (Extended Search)

Arrangements Arrangements To see the content of this image, Get Adobe Flash player . Mouse over map to see Laboratory locations and websites. See larger map of DOE National Laboratories. During 2008 alone, our 17 National Laboratories and 5 facilities engaged in more than 12,000 technology transfer transactions. These included more than 700 CRADAs, 2500 WFO Agreements, more than 2800 user facility agreements, and more than 6,000 licenses. They also reported more than 1400 inventions, filing more than 900 patent applications. They were issued nearly 400 patents and logged more than 561,050 downloads of their copyrighted open-source software. Collaborative Research Cooperative Research and Development (CRADA) arrangements allow for collaborative work and either cost-sharing or funds to be provided by the

354

Technology transfer package on seismic base isolation - Volume I  

Science Conference Proceedings (OSTI)

This Technology Transfer Package provides some detailed information for the U.S. Department of Energy (DOE) and its contractors about seismic base isolation. Intended users of this three-volume package are DOE Design and Safety Engineers as well as DOE Facility Managers who are responsible for reducing the effects of natural phenomena hazards (NPH), specifically earthquakes, on their facilities. The package was developed as part of DOE's efforts to study and implement techniques for protecting lives and property from the effects of natural phenomena and to support the International Decade for Natural Disaster Reduction. Volume I contains the proceedings of the Workshop on Seismic Base Isolation for Department of Energy Facilities held in Marina Del Rey, California, May 13-15, 1992.

NONE

1995-02-14T23:59:59.000Z

355

Survey and analysis of federally developed technology  

Science Conference Proceedings (OSTI)

The methodology and results of a test effort to determine whether there exist unexpected opportunities for the direct transfer of technologies from federal laboratories to industry are presented. Specifically, the latest results of six federal laboratories with potential application in the pulp and paper industry, particularly those results applicable to improving energy productivity, were evaluated, cataloged, and distributed to industry representatives to gauge their reaction. The principal methodological steps in this effort were the development of a taxonomy of the pulp and paper industry, identification of industry needs and laboratory capabilities, laboratory visits, review of technology findings with industry, and evaluation and compilation of industry responses.

Reed, J.E.; Conrad, J.L.

1983-02-01T23:59:59.000Z

356

Partnerships and Technology Transfer - Oak Ridge National ...  

Learn About Us. Licensing; Sponsored Research; Economic Development; Industrial Partnerships; University Partnerships; Success Stories AB Sciex Licenses ORNL Inventions

357

Partnerships and Technology Transfer - Oak Ridge National ...  

Economic Development; Industrial Partnerships; University Partnerships; ... Standing are (l to r) Johney Green, ORNL Energy and Transportation Science ...

358

International Center for Environmental Technology Transfer | Open Energy  

Open Energy Info (EERE)

Transfer Transfer Jump to: navigation, search Logo: International Center for Environmental Technology Transfer Name International Center for Environmental Technology Transfer Place Yokkaichi, Japan Year founded 1990 Coordinates 34.9651567°, 136.6244847° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9651567,"lon":136.6244847,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

359

NREL: Technology Transfer - NREL Partnering with GreenVolts to ...  

National Renewable Energy ... to co-develop NREL's patents and bring this new technology to market. ... specifications and process information, ...

360

Technology Development | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Development Technology Development Technology Development Hydroelectric power is the largest source of renewable electricity in the United States, producing about 7% of the nation's total electricity throughout the last decade. Even after a century of proven experience with this reliable renewable resource, significant opportunities still exist to expand the nation's hydropower resources through non-powered dams, water conveyance systems, pumped storage hydropower, and new site development. The Water Power Program supports the hydropower industry and complements existing investments through the development and deployment of new technologies and key components, and by identifying key opportunity areas through which hydropower generation can be enhanced. The Water Power Program aims to provide 15% of the nation's electricity

Note: This page contains sample records for the topic "development technology transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Technology Transfer at Berkeley Lab: For Berkeley Lab Researchers  

NLE Websites -- All DOE Office Websites (Extended Search)

Webcasts from Transferring Technology to the Marketplace Spring 2006 Series Webcasts from Transferring Technology to the Marketplace Spring 2006 Series Eureka! - Inventing and what happens next? Speakers share what makes a commercially successful invention and what happens on the pathway from invention to the marketplace. Click here for the webcast (60 min) or just hear Paul Avlivisatos' talk here (9 min). Speakers: Steve Chu, LBNL Lab Director Paul Alivisatos, Associate Lab Director and Founder of Nanosys Cheryl Fragiadakis, Technology Transfer Department Head Patenting - The ins and outs of this mysterious process Better understand why patent and copyright protection is so important, how the process works, and what role the inventor plays. Click here for the webcast (60 min). Speakers: Tim Lithgow, Patent Department Head Michael Fuller, Partner, Knobbe Martens Olson & Bear, L.L.P.

362

National Lab Technology Transfer Making a Difference | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Lab Technology Transfer Making a Difference National Lab Technology Transfer Making a Difference National Lab Technology Transfer Making a Difference August 28, 2013 - 11:10am Addthis Incorporation of a new CO2 sorbent into commercial heating, ventilation, and air conditioning (HVAC) systems will save energy and reduce operating costs. HVAC is one of the largest consumers of electric power in the United States, responsible for more than half of the load on the electric grid in many major cities. NETL work has led to a patented CO2 sorbent that has now been licensed commercially. Incorporation of a new CO2 sorbent into commercial heating, ventilation, and air conditioning (HVAC) systems will save energy and reduce operating costs. HVAC is one of the largest consumers of electric power in the United

363

Federal Laboratory Consortium Excellence in Technology Transfer Award |  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Laboratory Federal Laboratory Consortium Excellence in Technology Transfer Award About Organization Budget Field Offices Federal Advisory Committees History Scientific and Technical Information Honors & Awards Presidential Early Career Awards for Scientists and Engineers (PECASE) The Enrico Fermi Award The Ernest Orlando Lawrence Award DOE Nobel Laureates Federal Laboratory Consortium Excellence in Technology Transfer Award R&D 100 Awards Jobs Brochures, Logos, & Information Resources Contact Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 Honors & Awards Federal Laboratory Consortium Excellence in Technology Transfer Award Print Text Size: A A A RSS Feeds FeedbackShare Page Estimates are that fully half the growth in the American economy in the

364

NREL: Technology Transfer - DOE Announces Nanomanufacturing ...  

Other nano-developments that yield energy and carbon benefits. The purpose of these nanotechnologies is to reduce energy and carbon intensity in ...

365

Partnerships and Technology Transfer - Oak Ridge National ...  

... responses to develop immunity to common pathogens," said Greenberg, professor of molecular genetics and cell biology at the University of Chicago.

366

Technology Transfer: The History - Industrial Partnerships Office  

Each funding agency developed its own intellectual property policies. ... terms and provisions of the agreements led to the passage in 1980 of Public Law 96-517, ...

367

Partnerships and Technology Transfer - Oak Ridge National ...  

The Shifting Scintillator Neutron Detector system was developed for DOEs Spallation Neutron Source (SNS) and High Flux Isotope Reactor complex, ...

368

Partnerships and Technology Transfer - Oak Ridge National ...  

Economic Development; ... The appliance will meet the new Energy Star water heater ... Over subsequent years the new facility could provide up to ...

369

Fossil Energy - Idaho National Laboratory - Technology Transfer ...  

Fossil Energy LNG Engine Delivery. Related Patents: 6921858. Contact: David R. Anderson . Phone: (208) 526-0837 . E-mail: Send E-mail. INL has developed a patented ...

370

Sandia National Laboratories : Licensing/Technology Transfer ...  

March 1-5, 2004, Williamsburg ... SD# 8427.2 Development Stage Prototype Availability Available Published 09/29/2011 Last Updated 01/23/2013 ... News release RSS feed ...

371

Sandia National Laboratories : Licensing/Technology Transfer ...  

Sandia Disclosure 10745.1 ... SD# 10545.1 Development Stage Prototype Availability Available Published 11/16/2011 Last Updated 01/30/2013 ... News release RSS feed ...

372

Sandia National Laboratories : Licensing/Technology Transfer ...  

8386.1: 6,988,402 01/24 /2006 ... SD# 8392 Development Stage Prototype Availability Available Published 09/29/2011 Last Updated 01/23/2013 ... News release RSS ...

373

Sandia National Laboratories : Licensing/Technology Transfer ...  

SAND 2013-2516P. Portfolio name ... 6098.1 Development Stage Production Availability Available Published 03/29/2013 Last Updated 03/29/2013 ... News release RSS feed ...

374

Sandia National Laboratories : Licensing/Technology Transfer ...  

Filed October 1, 2008 ... SD # 10545.1 Development Stage Prototype Availability Available Published 09/29/2011 Last Updated 02/06/2013 ... News release RSS feed ...

375

Sandia National Laboratories : Licensing/Technology Transfer ...  

8427.1: 7,400,119 07/15 /2008 ... SD#8409.0 Development Stage Prototype Availability Available Published 09/29/2011 Last Updated 01/23/2013 ... News release RSS ...

376

Technology transfer in hazardous waste management  

SciTech Connect

Hazardous waste is a growing problem in all parts of the world. Industrialized countries have had to deal with the treatment and disposal of hazardous wastes for many years. The newly industrializing countries of the world are now faced with immediate problems of waste handling. The developing nations of the world are looking at increasing quantities of hazardous waste generation as they move toward higher levels of industrialization. Available data are included on hazardous waste generation in Asia and the Pacific as a function of Gross Domestic Product (GDP). Although there are many inconsistencies in the data (inconsistent hazardous waste definitions, inconsistent reporting of wastes, etc.) there is definite indication that a growing economy tends to lead toward larger quantities of hazardous waste generation. In developing countries the industrial sector is growing at a faster rate than in the industrialized countries. In 1965 industry accounted for 29% of GDP in the developing countries of the world. In 1987 this had grown to 37% of GDP. In contrast, industry accounted for 40% of GDP in 1965 in industrialized countries and dropped to 35% in 1987. This growth in industrial activity in the developing countries brings an increase in the need to handle hazardous wastes. Although hazardous wastes are ubiquitous, the control of hazardous wastes varies. The number of regulatory options used by various countries in Asia and the Pacific to control wastes are included. It is evident that the industrialized countries, with a longer history of having to deal with hazardous wastes, have found the need to use more mechanisms to control them. 2 refs., 2 figs.

Drucker, H.

1989-01-01T23:59:59.000Z

377

Technology transfer: A cooperative agreement and success story  

SciTech Connect

This paper describes the cooperative agreement between the U.S. Department of Energy and Envirocare of Utah, Inc., wherein the former transferred macroencapsulative technology to the latter for purposes of demonstrating commercialization of treatment and disposal of 225, 000 Kg of radioactive lead stored at departmental installations.

Reno, H.W.; McNeel, K. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Armstrong, A.T. [USDOE Idaho Operations Office, Idaho Falls, ID (United States); Vance, J.K. [Envirocare of Utah, Inc., Salt Lake City, UT (UNited States)

1996-08-01T23:59:59.000Z

378

Information Technology and Rural Development in India  

E-Print Network (OSTI)

Information Technology and Rural Development in India California, Santa Cruz, USA Information Technology and Rural2004 Abstract How can information technology (IT) contribute

Singh, Nirvikar

2004-01-01T23:59:59.000Z

379

Development of Path 15 Software: Managing Power Transfer Constraints on a Major Transmission Interface: Path 15 of the California Transmission System with EPRI's DTCR Technology  

Science Conference Proceedings (OSTI)

In a previous research project, a dynamic thermal software model was developed and tested for the California Path 15 power transmission interface. A summary of that work is included in this report. The dynamic thermal model used real-time data from tension monitors on the critical Gates Panoche 230-kV lines. It also used continual updates of an automatic load and generation reduction scheme to calculate the post-contingency Path 15 power flow resulting from the loss of two 500-kV lines (double line outag...

2003-12-08T23:59:59.000Z

380

Lost Circulation Technology Development Status  

DOE Green Energy (OSTI)

Lost circulation is the loss of drilling fluid from the wellbore to fractures or pores in the rock formation. In geothermal drilling, lost circulation is often a serious problem that contributes greatly to the cost of the average geothermal well. The Lost Circulation Technology Development Program is sponsored at Sandia National Laboratories by the U.S. Department of Energy. The goal of the program is to reduce lost circulation costs by 30-50% through the development of mitigation and characterization technology. This paper describes the technical progress made in this program during the period April, 1991-March, 1992.

Glowka, David A.; Schafer, Diane M.; Loeppke, Glen E.; Scott, Douglas D.; Wernig, Marcus D.; Wright, Elton K.

1992-03-24T23:59:59.000Z

Note: This page contains sample records for the topic "development technology transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Lost circulation technology development status  

DOE Green Energy (OSTI)

Lost circulation is the loss of drilling fluid from the wellbore to fractures or pores in the rock formation. In geothermal drilling, lost circulation is often a serious problem that contributes greatly to the cost of the average geothermal well. The Lost Circulation Technology Development Program is sponsored at Sandia National Laboratories by the US Department of Energy. The goal of the program is to reduce lost circulation costs by 30--50% through the development of mitigation and characterization technology. This paper describes the technical progress made in this program during the period April 1991--March 1992. 8 refs.

Glowka, D.A.; Schafer, D.M.; Loeppke, G.E.; Scott, D.D.; Wernig, M.D.; Wright, E.K.

1992-01-01T23:59:59.000Z

382

Lost circulation technology development status  

DOE Green Energy (OSTI)

Lost circulation is the loss of drilling fluid from the wellbore to fractures or pores in the rock formation. In geothermal drilling, lost circulation is often a serious problem that contributes greatly to the cost of the average geothermal well. The Lost Circulation Technology Development Program is sponsored at Sandia National Laboratories by the US Department of Energy. The goal of the program is to reduce lost circulation costs by 30--50% through the development of mitigation and characterization technology. This paper describes the technical progress made in this program during the period April 1991--March 1992. 8 refs.

Glowka, D.A.; Schafer, D.M.; Loeppke, G.E.; Scott, D.D.; Wernig, M.D.; Wright, E.K.

1992-07-01T23:59:59.000Z

383

Photovoltaic technology development at Sandia National Laboratories  

SciTech Connect

This report describes the following investigations being pursued under photovoltaic technology development at Sandia National Laboratories: photovoltaic systems technology; concentrator technology; concentrator arrays and tracking structures; concentrator solar cell development; system engineering; subsystem development; and test and applications.

1981-12-31T23:59:59.000Z

384

NREL: Technology Transfer - NREL and SkyFuel Partnership Reflects Bright  

NLE Websites -- All DOE Office Websites (Extended Search)

NREL and SkyFuel Partnership Reflects Bright Future for Solar Energy NREL and SkyFuel Partnership Reflects Bright Future for Solar Energy In this video, NREL Principal Scientist Gary Jorgensen and SkyFuel Chief Technology Officer Randy Gee talk about their partnership to develop a thin film to substitute for bulkier glass mirrors on solar-collecting parabolic troughs. Get the Adobe Flash Player to see this video. Credit: Fireside Production More Information For more information about NREL's partnership with SkyFuel, read Award-Winning Reflector to Cut Solar Cost and New Solar Technology Concentrates on Cost, Efficiency. Learn more about NREL's Concentrating Solar Power Research. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing Agreements Nondisclosure Agreements Research Facilities

385

Development of Technologies on Innovative-Simplified Nuclear Power Plant Using High-Efficiency Steam Injectors (12) Evaluations of Spatial Distributions of Flow and Heat Transfer in Steam Injector  

SciTech Connect

Next-generation nuclear reactor systems have been under development aiming at simplified system and improvement of safety and credibility. One of the innovative technologies is the supersonic steam injector, which has been investigated as one of the most important component of the next-generation nuclear reactor. The steam injector has functions of a passive pump without large motor or turbo-machinery and a high efficiency heat exchanger. The performances of the supersonic steam injector as a pump and a heat exchanger are dependent on direct contact condensation phenomena between a supersonic steam and a sub-cooled water jet. In previous studies of the steam injector, there are studies about the operating characteristics of steam injector and about the direct contact condensation between static water pool and steam in atmosphere. However, there is a little study about the turbulent heat transfer and flow behavior under the great shear stress. In order to examine the heat transfer and flow behavior in supersonic steam injector, it is necessary to measure the spatial temperature distribution and velocity in detail. The present study, visible transparent supersonic steam injector is used to obtain the axial pressure distributions in the supersonic steam injector, as well as high speed visual observation of water jet and steam interface. The experiments are conducted with and without non-condensable gas. The experimental results of the interfacial flow behavior between steam and water jet are obtained. It is experimentally clarified that an entrainment exists on the water jet surface. It is also clarified that discharge pressure is depended on the steam supply pressure, the inlet water flow rate, the throat diameter and non-condensable flow rate. Finally a heat flux is estimated about 19 MW/m{sup 2} without non-condensable gas condition in steam. (authors)

Yutaka Abe; Yujiro Kawamoto [University of Tsukuba, Tsukuba, Ibaraki (Japan); Chikako Iwaki [Toshiba Corporation (Japan); Tadashi Narabayashi [Hokkaido University, Kita-ku, Sapporo (Japan); Michitsugu Mori; Shuichi Ohmori [Tokyo Electric Power Company (Japan)

2006-07-01T23:59:59.000Z

386

Building Technologies Office: Standards Development and Revision  

NLE Websites -- All DOE Office Websites (Extended Search)

and Revision to someone by E-mail Share Building Technologies Office: Standards Development and Revision on Facebook Tweet about Building Technologies Office: Standards Development...

387

Transportation Technology Research and Development | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Research and Development Transportation Technology Research and Development SEAB - Hillebrand presentation.pdf More Documents & Publications AsiaITS Environmental...

388

Sandia Researchers Develop Promising Chemical Technology for...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Researchers Develop Promising Chemical Technology for Energy Storage Sandia Researchers Develop Promising Chemical Technology for Energy Storage March 7, 2012 - 9:50am Addthis...

389

NETL: News Release - DOE Transfers Steel Casting Technology to Rock Island  

NLE Websites -- All DOE Office Websites (Extended Search)

31, 2007 31, 2007 DOE Transfers Steel Casting Technology to Rock Island Arsenal Army Facility to Produce Improved Armor in War on Terrorism WASHINGTON, DC - A steel casting technology developed by the U.S. Department of Energy has been transferred to the U.S. Army's Rock Island Arsenal to manufacture improved armor for vehicles used in the global war on terrorism. MORE INFO Learn more about NETL's cooperative research with the Army The Office of Fossil Energy's National Energy Technology Laboratory (NETL) provided the Rock Island Arsenal with process guidelines, parameters, expertise, and patterns to set up and operate a facility for making steel castings using an NETL-developed process called loose-bonded sand, lost-foam technology. The facilities at the arsenal, in Rock Island, Ill.,

390

NREL: Technology Transfer - NREL Spearheads Developing the ...  

Case study data for the FCPower Model include building energy load profiles and solar/wind resource profiles for U.S. cities in eight climate zones.

391

Technology development life cycle processes.  

SciTech Connect

This report and set of appendices are a collection of memoranda originally drafted in 2009 for the purpose of providing motivation and the necessary background material to support the definition and integration of engineering and management processes related to technology development. At the time there was interest and support to move from Capability Maturity Model Integration (CMMI) Level One (ad hoc processes) to Level Three. As presented herein, the material begins with a survey of open literature perspectives on technology development life cycles, including published data on %E2%80%9Cwhat went wrong.%E2%80%9D The main thrust of the material presents a rational expose%CC%81 of a structured technology development life cycle that uses the scientific method as a framework, with further rigor added from adapting relevant portions of the systems engineering process. The material concludes with a discussion on the use of multiple measures to assess technology maturity, including consideration of the viewpoint of potential users.

Beck, David Franklin

2013-05-01T23:59:59.000Z

392

Transferring building energy technologies by linking government and private-sector programs  

SciTech Connect

The US Department of Energy's Office of Building Technologies (OBT) may wish to use existing networks and infrastructures wherever possible to transfer energy-efficiency technologies for buildings. The advantages of relying on already existing networks are numerous. These networks have in place mechanisms for reaching audiences interested in energy-efficiency technologies in buildings. Because staffs in trade and professional organizations and in state and local programs have responsibilities for brokering information for their members or client organizations, they are open to opportunities to improve their performance in information transfer. OBT, as an entity with primarily R D functions, is, by cooperating with other programs, spared the necessity of developing an extensive technology transfer program of its own, thus reinventing the wheel.'' Instead, OBT can minimize its investment in technology transfer by relying extensively on programs and networks already in place. OBT can work carefully with staff in other organizations to support and facilitate their efforts at information transfer and getting energy-efficiency tools and technologies into actual use. Consequently, representatives of some 22 programs and organizations were contacted, and face-to-face conversations held, to explore what the potential might be for transferring technology by linking with OBT. The briefs included in this document were derived from the discussions, the newly published Directory of Energy Efficiency Information Services for the Residential and Commercial Sectors, and other sources provided by respondents. Each brief has been sent to persons contacted for their review and comment one or more times, and each has been revised to reflect the review comments.

Farhar, B.C.

1990-07-01T23:59:59.000Z

393

Waste disposal technology transfer matching requirement clusters for waste disposal facilities in China  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer We outline the differences of Chinese MSW characteristics from Western MSW. Black-Right-Pointing-Pointer We model the requirements of four clusters of plant owner/operators in China. Black-Right-Pointing-Pointer We examine the best technology fit for these requirements via a matrix. Black-Right-Pointing-Pointer Variance in waste input affects result more than training and costs. Black-Right-Pointing-Pointer For China technology adaptation and localisation could become push, not pull factors. - Abstract: Even though technology transfer has been part of development aid programmes for many decades, it has more often than not failed to come to fruition. One reason is the absence of simple guidelines or decision making tools that help operators or plant owners to decide on the most suitable technology to adopt. Practical suggestions for choosing the most suitable technology to combat a specific problem are hard to get and technology drawbacks are not sufficiently highlighted. Western counterparts in technology transfer or development projects often underestimate or don't sufficiently account for the high investment costs for the imported incineration plant; the differing nature of Chinese MSW; the need for trained manpower; and the need to treat flue gas, bunker leakage water, and ash, all of which contain highly toxic elements. This article sets out requirements for municipal solid waste disposal plant owner/operators in China as well as giving an attribute assessment for the prevalent waste disposal plant types in order to assist individual decision makers in their evaluation process for what plant type might be most suitable in a given situation. There is no 'best' plant for all needs and purposes, and requirement constellations rely on generalisations meaning they cannot be blindly applied, but an alignment of a type of plant to a type of owner or operator can realistically be achieved. To this end, a four-step approach is suggested and a technology matrix is set out to ease the choice of technology to transfer and avoid past errors. The four steps are (1) Identification of plant owner/operator requirement clusters; (2) Determination of different municipal solid waste (MSW) treatment plant attributes; (3) Development of a matrix matching requirement clusters to plant attributes; (4) Application of Quality Function Deployment Method to aid in technology localisation. The technology transfer matrices thus derived show significant performance differences between the various technologies available. It is hoped that the resulting research can build a bridge between technology transfer research and waste disposal research in order to enhance the exchange of more sustainable solutions in future.

Dorn, Thomas, E-mail: thomas.dorn@uni-rostock.de [University of Rostock, Faculty of Agricultural and Environmental Sciences, Department Waste Management, Justus-v.-Liebig-Weg 6, 18059 Rostock (Germany); Nelles, Michael, E-mail: michael.nelles@uni-rostock.de [University of Rostock, Faculty of Agricultural and Environmental Sciences, Department Waste Management, Justus-v.-Liebig-Weg 6, 18059 Rostock (Germany); Flamme, Sabine, E-mail: flamme@fh-muenster.de [University of Applied Sciences Muenster, Corrensstrasse 25, 48149 Muenster (Germany); Jinming, Cai [Hefei University of Technology, 193 Tunxi Road, 230009 Hefei (China)

2012-11-15T23:59:59.000Z

394

Advanced Modular Inverter Technology Development  

DOE Green Energy (OSTI)

Electric and hybrid-electric vehicle systems require an inverter to convert the direct current (DC) output of the energy generation/storage system (engine, fuel cells, or batteries) to the alternating current (AC) that vehicle propulsion motors use. Vehicle support systems, such as lights and air conditioning, also use the inverter AC output. Distributed energy systems require an inverter to provide the high quality AC output that energy system customers demand. Today's inverters are expensive due to the cost of the power electronics components, and system designers must also tailor the inverter for individual applications. Thus, the benefits of mass production are not available, resulting in high initial procurement costs as well as high inverter maintenance and repair costs. Electricore, Inc. (www.electricore.org) a public good 501 (c) (3) not-for-profit advanced technology development consortium assembled a highly qualified team consisting of AeroVironment Inc. (www.aerovironment.com) and Delphi Automotive Systems LLC (Delphi), (www.delphi.com), as equal tiered technical leads, to develop an advanced, modular construction, inverter packaging technology that will offer a 30% cost reduction over conventional designs adding to the development of energy conversion technologies for crosscutting applications in the building, industry, transportation, and utility sectors. The proposed inverter allows for a reduction of weight and size of power electronics in the above-mentioned sectors and is scalable over the range of 15 to 500kW. The main objective of this program was to optimize existing AeroVironment inverter technology to improve power density, reliability and producibility as well as develop new topology to reduce line filter size. The newly developed inverter design will be used in automotive and distribution generation applications. In the first part of this program the high-density power stages were redesigned, optimized and fabricated. One of the main tasks was to design and validate new gate drive circuits to provide the capability of high temp operation. The new power stages and controls were later validated through extensive performance, durability and environmental tests. To further validate the design, two power stages and controls were integrated into a grid-tied load bank test fixture, a real application for field-testing. This fixture was designed to test motor drives with PWM output up to 50kW. In the second part of this program the new control topology based on sub-phases control and interphase transformer technology was successfully developed and validated. The main advantage of this technology is to reduce magnetic mass, loss and current ripple. This report summarizes the results of the advanced modular inverter technology development and details: (1) Power stage development and fabrication (2) Power stage validation testing (3) Grid-tied test fixture fabrication and initial testing (4) Interphase transformer technology development

Adam Szczepanek

2006-02-04T23:59:59.000Z

395

Advanced Modular Inverter Technology Development  

SciTech Connect

Electric and hybrid-electric vehicle systems require an inverter to convert the direct current (DC) output of the energy generation/storage system (engine, fuel cells, or batteries) to the alternating current (AC) that vehicle propulsion motors use. Vehicle support systems, such as lights and air conditioning, also use the inverter AC output. Distributed energy systems require an inverter to provide the high quality AC output that energy system customers demand. Today's inverters are expensive due to the cost of the power electronics components, and system designers must also tailor the inverter for individual applications. Thus, the benefits of mass production are not available, resulting in high initial procurement costs as well as high inverter maintenance and repair costs. Electricore, Inc. (www.electricore.org) a public good 501 (c) (3) not-for-profit advanced technology development consortium assembled a highly qualified team consisting of AeroVironment Inc. (www.aerovironment.com) and Delphi Automotive Systems LLC (Delphi), (www.delphi.com), as equal tiered technical leads, to develop an advanced, modular construction, inverter packaging technology that will offer a 30% cost reduction over conventional designs adding to the development of energy conversion technologies for crosscutting applications in the building, industry, transportation, and utility sectors. The proposed inverter allows for a reduction of weight and size of power electronics in the above-mentioned sectors and is scalable over the range of 15 to 500kW. The main objective of this program was to optimize existing AeroVironment inverter technology to improve power density, reliability and producibility as well as develop new topology to reduce line filter size. The newly developed inverter design will be used in automotive and distribution generation applications. In the first part of this program the high-density power stages were redesigned, optimized and fabricated. One of the main tasks was to design and validate new gate drive circuits to provide the capability of high temp operation. The new power stages and controls were later validated through extensive performance, durability and environmental tests. To further validate the design, two power stages and controls were integrated into a grid-tied load bank test fixture, a real application for field-testing. This fixture was designed to test motor drives with PWM output up to 50kW. In the second part of this program the new control topology based on sub-phases control and interphase transformer technology was successfully developed and validated. The main advantage of this technology is to reduce magnetic mass, loss and current ripple. This report summarizes the results of the advanced modular inverter technology development and details: (1) Power stage development and fabrication (2) Power stage validation testing (3) Grid-tied test fixture fabrication and initial testing (4) Interphase transformer technology development

Adam Szczepanek

2006-02-04T23:59:59.000Z

396

Ceramic dome receiver technology developments  

DOE Green Energy (OSTI)

The development and experimental demonstration of a high-temperature seal for the SHARE ceramic dome cavity receiver is reported. The mechanical contact seal which was tested on one-foot-diameter silicon-carbide ceramic-dome hardware at pressure differentials to four atmospheres and dome temperatures to 2200/sup 0/F (1200/sup 0/C) showed negligible leakage at expected receiver operating conditions. Potential solar receiver applications for the technology are illustrated.

Jarvinen, P. O.

1980-01-01T23:59:59.000Z

397

Engineering and Technology Research & Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Wang, Xiaoxing Wang July 09, 2012 Copyright 2012 RTI. All rights reserved Center for Energy Technology 2012 NETL CO 2 Capture Technology Meeting Engineering and Technology...

398

Contacts for the Deputy General Counsel for Technology Transfer & Procurement (GC-60)  

Energy.gov (U.S. Department of Energy (DOE))

Gena E. Cadieux, Deputy General Counsel for Technology Transfer & Procurement 202-586-3426gena.cadieux@hq.doe.gov

399

Crosscutting Technology Development | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Crosscutting Crosscutting Technology Development Crosscutting Technology Development The NEET Crosscutting Technology Development (CTD) activity provides R&D support to various reactor and fuel cycle technologies, both existing and under development. These include several areas that crosscut multiple nuclear technologies CTD aims to: Work with other NE R&D programs to identify critical capabilities and common technology needs. Encourage and lead coordinated research and development activities to deliver capabilities and technologies when needed to ensure NE R&D program success. Ensure scalability and compatibility of results across NE R&D programs. Reduce costs of resulting technologies and capabilities. Leverage programmatic investments to maximize benefits across the

400

Licensing and {open_quotes}CRADA`s{close_quotes} in Oak Ridge technology transfer  

SciTech Connect

In the belief that effective technology transfer is a ``contact sport,`` Martin Marietta Energy Systems (Energy Systems), the Department of Energy`s (DOE`s) management contractor in Oak Ridge, Tennessee, encourages its research and engineering employees to directly interact with their commercial-sector counterparts. Over the years, relationships which have been initiated through such technical interactions have led to many of the patent licenses ad cooperative research and development agreements (CRADAs) which currently exist among Energy Systems, US companies, universities, and industrial consortia. The responsibility for creating and implementing Energy Systems policies and procedures to accomplish DOE`s technology transfer objectives in Oak Ridge lies with the Office of Technology Transfer (OTT). In addition, licensing executives within OTT are responsible for negotiating the terms and conditions of patent licenses and CRADAs for the commercialization of government-funded technologies and research expertise. Other technology transfer initiatives in Oak Ridge help companies in a wide range of industries overcome manufacturing obstacles, enabling them to retain existing jobs and to create new business opportunities.

Prosser, G.A.

1993-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "development technology transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Building Technologies Office: Workforce Guidance Development...  

NLE Websites -- All DOE Office Websites (Extended Search)

Send a link to Building Technologies Office: Workforce Guidance Development: By Industry, For Industry to someone by E-mail Share Building Technologies Office: Workforce...

402

Technology Development, Growth, and Deployment | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Development, Technology Development, Growth, and Deployment Technology Development, Growth, and Deployment A look at our resources: This map shows the location of our National Laboratories with links to their Technology Transfer programs; the locations of our i6 Green Challenge grant recipients; and the nation's Minority Serving Institutions. Our office works to engage the research and innovation at Minority Serving Institutions with the resources of our National Labs. Early stage energy technologies face a number of challenges in transitioning for basic research to market solutions. The Energy Department has created specific initiatives in order to address the commercialization challenges that energy efficient and renewable energy technologies must face. These initiatives are developed to launch emerging

403

Technology transfer: Half-way houses. No. 17  

Science Conference Proceedings (OSTI)

In the fall of 1993, 1 was asked by the Center for National Security Studies (CNSS) of the Los Alamos National Laboratory (LANL) to study the ways in which technology transfer and defense conversion had been accomplished at General Atomics (GA) and Science Applications International Corporation (SAIC) by interviewing Harold Agnew, who had served as director of Los Alamos before becoming president of General Atomics in 1979, and J. Robert Beyster, who had been a staff member at Los Alamos and at General Atomics before founding SAIC in 1969. Harold Agnew readily complied with my request for an interview and also suggested that I talk to Douglas Fouquet, who is in charge of public relations at General Atomics and is their unofficial historian. Robert Beyster was not available for an interview, but, through the courtesy of John C. Hopkins, a former director of CNSS, I was able to interview SAIC`s executive vice president, Donald M. Kerr, who is also a former director at Los Alamos, and Steven Rockwood, a sector vice president at SAIC who was formerly a staff member at the Laboratory Because Agnew, Kerr, and Rockwood are all familiar with LANL, as well as with their respective companies, the interviews becam exercises In comparative analyses of technology transfer. In what follows, I have tried to summarize both the interviews and some of the research which attended them. It is the historian`s hope that by use of comparative institutional analyses, Laboratory administrators may learn something of value in directing their efforts toward the transfer of technology to private industry and other government agencies.

Seidel, R.W.

1995-05-01T23:59:59.000Z

404

Geothermal technology development at Sandia  

DOE Green Energy (OSTI)

Geothermal technology development at Sandia consists of work in two major project areas - Hard Rock Penetration and Magma Energy Extraction. The Hard Rock Penetration Program is directed at reducing drilling costs for geothermal wells. Current activities are focused in three areas: borehole mechanics, rock penetration mechanics, and industry cost-shared research. The Magma Energy Extraction Program is investigating the engineering feasibility of utilizing crustal magma bodies as a source of energy. Work is divided into four major areas: geophysics, geochemistry/materials, drilling, and energy extraction.

Dunn, J.C.

1987-04-01T23:59:59.000Z

405

Safeguards and Security Technology Development Directory. FY 1993  

SciTech Connect

The Safeguards and Security Technology Development Directory is published annually by the Office of Safeguards and Security (OSS) of the US Department of Energy (DOE), and is Intended to inform recipients of the full scope of the OSS R&D program. It is distributed for use by DOE headquarters personnel, DOE program offices, DOE field offices, DOE operating contractors, national laboratories, other federal agencies, and foreign governments. Chapters 1 through 7 of the Directory provide general information regarding the Technology Development Program, including the mission, program description, organizational roles and responsibilities, technology development lifecycle, requirements analysis, program formulation, the task selection process, technology development infrastructure, technology transfer activities, and current research and development tasks. These chapters are followed by a series of appendices which contain more specific information on aspects of the Program. Appendix A is a summary of major technology development accomplishments made during FY 1992. Appendix B lists S&S technology development reports issued during FY 1992 which reflect work accomplished through the OSS Technology Development Program and other relevant activities outside the Program. Finally, Appendix C summarizes the individual task statements which comprise the FY 1993 Technology Development Program.

1993-06-01T23:59:59.000Z

406

Molten nitrate salt technology development status report  

SciTech Connect

Recognizing thermal energy storage as potentially critical to the successful commercialization of solar thermal power systems, the Department of Energy (DOE) has established a comprehensive and aggressive thermal energy storage technology development program. Of the fluids proposed for heat transfer and energy storage molten nitrate salts offer significant economic advantages. The nitrate salt of most interest is a binary mixture of NaNO/sub 3/ and KNO/sub 3/. Although nitrate/nitrite mixtures have been used for decades as heat transfer and heat treatment fluids the use has been at temperatures of about 450/sup 0/C and lower. In solar thermal power systems the salts will experience a temperature range of 350 to 600/sup 0/C. Because central receiver applications place more rigorous demands and higher temperatures on nitrate salts a comprehensive experimental program has been developed to examine what effects, if any, the new demands and temperatures have on the salts. The experiments include corrosion testing, environmental cracking of containment materials, and determinations of physical properties and decomposition mechanisms. This report details the work done at Sandia National Laboratories in each area listed. In addition, summaries of the experimental programs at Oak Ridge National Laboratory, the University of New York, EIC Laboratories, Inc., and the Norwegian Institute of Technology on molten nitrate salts are given. Also discussed is how the experimental programs will influence the near-term central receiver programs such as utility repowering/industrial retrofit and cogeneration. The report is designed to provide easy access to the latest information and data on molten NaNO/sub 3//KNO/sub 3/ for the designers and engineers of future central receiver projects.

Carling, R.W.; Kramer, C.M.; Bradshaw, R.W.; Nissen, D.A.; Goods, S.H.; Mar, R.W.; Munford, J.W.; Karnowsky, M.M.; Biefeld, R.N.; Norem, N.J.

1981-03-01T23:59:59.000Z

407

Technology for Development, 1st edition  

Science Conference Proceedings (OSTI)

This book employs a critical sociology to focus on science and technology and their relationship to development. While "knowledge" and the ways it is created and privileged has been increasingly critiqued, the specific role of technology in shaping development ...

James Smith

2009-10-01T23:59:59.000Z

408

Selected case studies of technology transfer from mission-oriented applied research  

DOE Green Energy (OSTI)

The US Department of Energy (DOE) Advanced Industrial Concepts Division (AICD) under the Office of Industrial Technologies (OIT) supports interdisciplinary applied research and exploratory development that will expand the knowledge base to enable industry to improve its energy efficiency and its capability to use alternative energy resources. AICD capitalizes on scientific and technical advances from the United States and abroad, applying them to address critical technical needs of American industry. As a result, AICD research and development products are many and varied, and the effective transfer of these products to diverse targeted users requires different strategies as well. This paper describes the products of AICD research, how they are transferred to potential users, and how actual transfer is determined.

Daellenbach, K.K.; Watts, R.L.; Young, J.K. (Pacific Northwest Lab., Richland, WA (United States)); Abarcar, R.B. (Energetics, Inc., Columbia, MD (United States))

1992-07-01T23:59:59.000Z

409

DOE lost circulation technology development  

DOE Green Energy (OSTI)

Lost circulation is a problem common in both the geothermal and the solution mining industries. In both cases, drilling is on a relatively large scale (geothermal holes can be as large as 26 inches). Lost circulation technology development for geothermal drilling has been in progress at Sandia National Laboratories for more than 15 years. The initial work centered on lost circulation materials, but testing and modeling indicated that if the aperture of a loss zone is very large (larger than the drill bit nozzles) it cannot be plugged by simply adding materials to the drilling fluid. Thus, the lost circulation work evolved to include: (1) Development of metering techniques that accurately measure and characterize drilling fluid inflow and outflow for rapid diagnosis of los circulation and/or fluid balance while drilling. (2) Construction of a laboratory facility for testing drillable straddle packers (to improve the plugging efficiency of cementing operations) and the actual testing of components of the straddle packer. (3) Construction of a laboratory facility for the testing of candidate porous fabrics as a part of a program to develop a porous packer that places polyurethane foam into a loss zone. (4) Implementing (with Halliburton and CalEnergy Company), a program to test cementitious lost circulation material as an alternative to Portland cement.

Glowka, D.A.; Staller, G.E.; Sattler, A.R.

1996-09-01T23:59:59.000Z

410

Advanced Integrated Systems Technology Development  

E-Print Network (OSTI)

allows the use of alternative cooling sources, for example,system, and alternative radiant cooling technology, i.e.

2013-01-01T23:59:59.000Z

411

Arctic Energy Technology Development Laboratory  

DOE Green Energy (OSTI)

The Arctic Energy Technology Development Laboratory was created by the University of Alaska Fairbanks in response to a congressionally mandated funding opportunity through the U.S. Department of Energy (DOE), specifically to encourage research partnerships between the university, the Alaskan energy industry, and the DOE. The enabling legislation permitted research in a broad variety of topics particularly of interest to Alaska, including providing more efficient and economical electrical power generation in rural villages, as well as research in coal, oil, and gas. The contract was managed as a cooperative research agreement, with active project monitoring and management from the DOE. In the eight years of this partnership, approximately 30 projects were funded and completed. These projects, which were selected using an industry panel of Alaskan energy industry engineers and managers, cover a wide range of topics, such as diesel engine efficiency, fuel cells, coal combustion, methane gas hydrates, heavy oil recovery, and water issues associated with ice road construction in the oil fields of the North Slope. Each project was managed as a separate DOE contract, and the final technical report for each completed project is included with this final report. The intent of this process was to address the energy research needs of Alaska and to develop research capability at the university. As such, the intent from the beginning of this process was to encourage development of partnerships and skills that would permit a transition to direct competitive funding opportunities managed from funding sources. This project has succeeded at both the individual project level and at the institutional development level, as many of the researchers at the university are currently submitting proposals to funding agencies, with some success.

Sukumar Bandopadhyay; Charles Chamberlin; Robert Chaney; Gang Chen; Godwin Chukwu; James Clough; Steve Colt; Anthony Covescek; Robert Crosby; Abhijit Dandekar; Paul Decker; Brandon Galloway; Rajive Ganguli; Catherine Hanks; Rich Haut; Kristie Hilton; Larry Hinzman; Gwen Holdman; Kristie Holland; Robert Hunter; Ron Johnson; Thomas Johnson; Doug Kame; Mikhail Kaneveskly; Tristan Kenny; Santanu Khataniar; Abhijeet Kulkami; Peter Lehman; Mary Beth Leigh; Jenn-Tai Liang; Michael Lilly; Chuen-Sen Lin; Paul Martin; Pete McGrail; Dan Miller; Debasmita Misra; Nagendra Nagabhushana; David Ogbe; Amanda Osborne; Antoinette Owen; Sharish Patil; Rocky Reifenstuhl; Doug Reynolds; Eric Robertson; Todd Schaef; Jack Schmid; Yuri Shur; Arion Tussing; Jack Walker; Katey Walter; Shannon Watson; Daniel White; Gregory White; Mark White; Richard Wies; Tom Williams; Dennis Witmer; Craig Wollard; Tao Zhu

2008-12-31T23:59:59.000Z

412

Building Technologies Office: Test Procedure Development and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Test Procedure Development and Revision to someone by E-mail Share Building Technologies Office: Test Procedure Development and Revision on Facebook Tweet about Building...

413

Developing Websites in the Environmental Energy Technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

Office EETD Safety Program Development Contact Us Department Contacts Media Contacts Developing Websites in the Environmental Energy Technologies Division: A Brown Bag Lunch...

414

NREL: Technology Transfer - DOE Announces Plans for Future ...  

Technologies can include renewable energy and energy efficiency technologies, as well as advanced electricity transmission and distribution technologi ...

415

Legal and social concerns to the development of bioremediation technologies  

SciTech Connect

The social and legal framework within which bioremediation technologies must be researched, developed, and deployed in the US are discussed in this report. Discussions focus on policies, laws and regulations, intellectual property, technology transfer, and stakeholder concerns. These discussions are intended to help program managers, scientists and engineers understand the social and legal framework within which they work, and be cognizant of relevant issues that must be navigated during bioremediation technology research, development, and deployment activities. While this report focuses on the legal and social environment within which the DOE operates, the laws, regulations and social processes could apply to DoD and other sites nationwide. This report identifies specific issues related to bioremediation technologies, including those involving the use of plants; native, naturally occurring microbes; non-native, naturally occurring microbes; genetically engineered organisms; and microbial products (e.g., enzymes, surfactants, chelating compounds). It considers issues that fall within the following general categories: US biotechnology policy and the regulation of field releases of organisms; US environmental laws and waste cleanup regulations; intellectual property and patenting issues; technology transfer procedures for commercializing technology developed through government-funded research; stakeholder concerns about bioremediation proposals; and methods for assuring public involvement in technology development and deployment.

Bilyard, G.R.; McCabe, G.H.; White, K.A.; Gajewski, S.W.; Hendrickson, P.L.; Jaksch, J.A.; Kirwan-Taylor, H.A.; McKinney, M.D.

1996-09-01T23:59:59.000Z

416

The Software Technology Center at Lawrence Livermore National Laboratory: Software engineering technology transfer in a scientific R&D laboratory  

SciTech Connect

Software engineering technology transfer for productivity and quality improvement can be difficult to initiate and sustain in a non-profit research laboratory where the concepts of profit and loss do not exist. In this experience report, the author discusses the approach taken to establish and maintain a software engineering technology transfer organization at a large R&D laboratory.

Zucconi, L.

1993-12-01T23:59:59.000Z

417

Development in wind energy technology: an update  

Science Conference Proceedings (OSTI)

This paper presents an overview of the development in wind energy technology. Growth in wind technology and components of wind energy conversion systems are provided. Ratings, and system size are included for various applications in addition to power ... Keywords: development, power electronics converters, technology, wind energy

Faeka M. H. Khater

2012-04-01T23:59:59.000Z

418

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

SciTech Connect

The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and natural gas producers make timely, informed technology decisions. Networking opportunities that occur with a Houston Headquarters (HQ) location are increasing name awareness. Focused efforts by Executive Director Don Duttlinger to interact with large independents, national service companies and some majors are continuing to supplement the support base of the medium to smaller industry participants around the country. PTTC is now involved in many of the technology-related activities that occur in high oil and natural gas activity areas. Access to technology remains the driving force for those who do not have in-house research and development capabilities and look to the PTTC to provide services and options for increased efficiency.

Unknown

2003-04-30T23:59:59.000Z

419

Modularization and nuclear power. Report by the Technology Transfer Modularization Task Team  

SciTech Connect

This report describes the results of the work performed by the Technology Transfer Task Team on Modularization. This work was performed as part of the Technology Transfer work being performed under Department of Energy Contract 54-7WM-335406, between December, 1984 and February, 1985. The purpose of this task team effort was to briefly survey the current use of modularization in the nuclear and non-nuclear industries and to assess and evaluate the techniques available for potential application to nuclear power. A key conclusion of the evaluation was that there was a need for a study to establish guidelines for the future development of Light Water Reactor, High Temperature Gas Reactor and Liquid Metal Reactor plants. The guidelines should identify how modularization can improve construction, maintenance, life extension and decommissioning.

1985-06-01T23:59:59.000Z

420

Ethical Governance of Emerging Technologies Development  

Science Conference Proceedings (OSTI)

The more integrated technology becomes in our everyday lives and businesses, the more vital it grows that its applications are utilized in an ethical and appropriate way.Ethical Governance of Emerging Technologies Development combines multiple perspectives ...

Fernand Doridot, Fernand Doridot, Penny Duquenoy, Philippe Goujon, Aygen Kurt, Sylvain Lavelle, Norberto Patrignani, Stephen Rainey, Alessia Santuccio

2013-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "development technology transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Technology Development Advances EM Cleanup  

Energy.gov (U.S. Department of Energy (DOE))

The unique nature of many of EM's remaining facilities will require a strong and responsive engineering and technology program to improve work and public safety, and reduce costs and environmental impacts while completing the cleanup program.

422

Fuel Cell-Fuel Cell Hybrid System Contact NETL Technology Transfer...  

NLE Websites -- All DOE Office Websites (Extended Search)

Cell-Fuel Cell Hybrid System Contact NETL Technology Transfer Group techtransfer@netl.doe.gov November 2012 Opportunity Research on the patented technology "Fuel Cell-Fuel Cell...

423

Argonne National Laboratory study of the transfer of federal computational technology to manufacturing industry in the State of Michigan  

SciTech Connect

This report describes a pilot study to develop, initiate the implementation, and document a process to identify computational technology capabilities resident within Argonne National Laboratory to small and medium-sized businesses in the State of Michigan. It is a derivative of a program entitled ``Technology Applications Development Process for the State of Michigan`` undertaken by the Industrial Technology Institute and MERRA under funding from the National Institute of Standards and Technology. The overall objective of the latter program is to develop procedures which can facilitate the discovery and commercialization of new technologies for the benefit of small and medium-size manufacturing firms. Federal laboratories such as Argonne, along with universities, have been identified by the Industrial Technology Institute as key sources of technology which can be profitably commercialized by the target firms. The scope of this study limited the investigation of technology areas for technology transfer to that of computational science and engineering featuring high performance computing. This area was chosen as the broad technological capability within Argonne to investigate for technology transfer to Michigan firms for several reasons. First, and most importantly, as a multidisciplinary laboratory, Argonne has the full range of scientific and engineering skills needed to utilize leading-edge computing capabilities in many areas of manufacturing.

Mueller, C.J.

1991-11-01T23:59:59.000Z

424

Argonne National Laboratory study of the transfer of federal computational technology to manufacturing industry in the State of Michigan  

SciTech Connect

This report describes a pilot study to develop, initiate the implementation, and document a process to identify computational technology capabilities resident within Argonne National Laboratory to small and medium-sized businesses in the State of Michigan. It is a derivative of a program entitled Technology Applications Development Process for the State of Michigan'' undertaken by the Industrial Technology Institute and MERRA under funding from the National Institute of Standards and Technology. The overall objective of the latter program is to develop procedures which can facilitate the discovery and commercialization of new technologies for the benefit of small and medium-size manufacturing firms. Federal laboratories such as Argonne, along with universities, have been identified by the Industrial Technology Institute as key sources of technology which can be profitably commercialized by the target firms. The scope of this study limited the investigation of technology areas for technology transfer to that of computational science and engineering featuring high performance computing. This area was chosen as the broad technological capability within Argonne to investigate for technology transfer to Michigan firms for several reasons. First, and most importantly, as a multidisciplinary laboratory, Argonne has the full range of scientific and engineering skills needed to utilize leading-edge computing capabilities in many areas of manufacturing.

Mueller, C.J.

1991-11-01T23:59:59.000Z

425

Development of Thin Section Zinc Die Casting Technology  

SciTech Connect

A new high fluidity zinc high pressure die casting alloy, termed the HF alloy, was developed during laboratory trials and proven in industrial production. The HF alloy permits castings to be achieved with section thicknesses of 0.3 mm or less. Technology transfer activities were conducted to develop usage of the HF high fluidity alloy. These included production of a brochure and a one-hour webinar on the HF alloy. The brochure was then sent to 1,184 product designers in the Interzinc database. There was excellent reception to this mailing, and from this initial contact 5 technology transfer seminars were conducted for 81 participants from 30 companies across a wide range of business sectors. Many of the successful applications to date involve high quality surface finishes. Design and manufacturing assistance was given for development of selected applications.

Goodwin, Frank [International Lead Zinc Research Org., Inc.] [International Lead Zinc Research Org., Inc.

2013-10-31T23:59:59.000Z

426

China Technology Development Group Corporation | Open Energy...  

Open Energy Info (EERE)

Corporation Jump to: navigation, search Name China Technology Development Group Corporation Place Hong Kong, Hong Kong Sector Solar Product Chinese manufacturer of hardware and...

427

Renewable Energy Technology Development, Deployment, and Education...  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Powered Truck 68 Fork Lift Trucks Deployed in Industry Renewable Energy Technology Development, Deployment, and Education in South Carolina EDPSC-SRNL Install Advanced Offshore...

428

Solid-State Transfer Switch Development  

Science Conference Proceedings (OSTI)

EPRI's multi-function Solid-State Switchgear System (4-S) will be a first-generation power-electronics replacement for conventional distribution switchgear. A key component of the system is the S-GTO based Static Transfer Switch (SSTS), an intelligent power-electronics device (IED) for Advanced Distribution Automation (ADA). This switch is a multi-functional, high performance, compact, high reliability cost-effective device. It utilizes the 2007 R&D100 Award winning S-GTO power-electronics devices, the l...

2009-12-10T23:59:59.000Z

429

CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES  

Science Conference Proceedings (OSTI)

This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

Christopher E. Hull

2006-05-15T23:59:59.000Z

430

Crosscutting Technology Development at the Center for Advanced Separation Technologies  

SciTech Connect

This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

Christopher E. Hull

2006-09-30T23:59:59.000Z

431

CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES  

SciTech Connect

This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

Christopher E. Hull

2005-11-04T23:59:59.000Z

432

EV Charging Through Wireless Power Transfer: Analysis of Efficiency Optimization and Technology Trends  

Science Conference Proceedings (OSTI)

This paper is aimed at reviewing the technology trends for wireless power transfer (WPT) for electric vehicles (EV). It also analyzes the factors affecting its efficiency and describes the techniques currently used for its optimization. The review of the technology trends encompasses both stationary and moving vehicle charging systems. The study of the stationary vehicle charging technology is based on current implementations and on-going developments at WiTricity and Oak Ridge National Lab (ORNL). The moving vehicle charging technology is primarily described through the results achieved by the Korean Advanced Institute of Technology (KAIST) along with on-going efforts at Stanford University. The factors affecting the efficiency are determined through the analysis of the equivalent circuit of magnetic resonant coupling. The air gap between both transmitting and receiving coils along with the magnetic field distribution and the relative impedance mismatch between the related circuits are the primary factors affecting the WPT efficiency. Currently the industry is looking at an air gap of 25 cm or below. To control the magnetic field distribution, Kaist has recently developed the Shaped Magnetic Field In Resonance (SMFIR) technology that uses conveniently shaped ferrite material to provide low reluctance path. The efficiency can be further increased by means of impedance matching. As a result, Delphi's implementation of the WiTricity's technology exhibits a WPT efficiency above 90% for stationary charging while KAIST has demonstrated a maximum efficiency of 83% for moving vehicle with its On Line Vehicle (OLEV) project. This study is restricted to near-field applications (short and mid-range) and does not address long-range technology such as microwave power transfer that has low efficiency as it is based on radiating electromagnetic waves. This paper exemplifies Delphi's work in powertrain electrification as part of its innovation for the real world program geared toward a safer, greener and more connected driving. Moreover, it draws from and adds to Dr. Andrew Brown Jr.'s SAE books 'Active Safety and the Mobility Industry', 'Connectivity and Mobility Industry', and 'Green Technologies and the Mobility Industry'. Magnetic resonant coupling is the foundation of modern wireless power transfer. Its efficiency can be controlled through impedance matching and magnetic field shaping. Current implementations use one or both of these control methods and enable both stationary and mobile charging with typical efficiency within the 80% and 90% range for an air gap up to 25 cm.

Miller, John M [ORNL; Rakouth, Heri [Delphi Automotive Systems, USA; Suh, In-Soo [Korea Advanced Institute of Science and Technology

2012-01-01T23:59:59.000Z

433

Solid-State Transfer Switch Technology and Application Update  

Science Conference Proceedings (OSTI)

Static transfer switches are used to switch between multiple voltage sources. Most legacy transfer switches typically use electromechanical devices, and some use thyristors. The advent of advanced high-voltage power semiconductors has allowed the realization of solid-state transfer switches (SSTS) that can seamlessly transfer between switches to provide high-quality uninterrupted power. Although a few legacy applications have been reported, SSTS could have an important role to play in alternating-current...

2010-12-31T23:59:59.000Z

434

A technology transfer plan for the US Department of Energy's Electric Energy Systems Program  

DOE Green Energy (OSTI)

The major objective of this study was to develop a technology transfer plan that would be both practical and effective in promoting the transfer of the products of DOE/EES research to appropriate target audiences. The study drew upon several major components of the marketing process in developing this plan: definition/charcterization of the products being produced by the DOE/EES program, identification/characterization of possible users of the products being produced by the program, and documentation/analysis of the methods currently being used to promote the adoption of DOE/EES products. Fields covered include HVDC, new materials, superconductors, electric field effects, EMP impacts, battery storage/load leveling, automation/processing concepts, normal/emergency operating concepts, Hawaii deep water cable, and failure mechanisms.

Harrer, B.J.; Hurwitch, J.W.; Davis, L.J.

1986-11-01T23:59:59.000Z

435

Clean Technology Evaluation & Workforce Development Program  

Science Conference Proceedings (OSTI)

The overall objective of the Clean Technology Evaluation portion of the award was to design a process to speed up the identification of new clean energy technologies and match organizations to testing and early adoption partners. The project was successful in identifying new technologies targeted to utilities and utility technology integrators, in developing a process to review and rank the new technologies, and in facilitating new partnerships for technology testing and adoption. The purpose of the Workforce Development portion of the award was to create an education outreach program for middle & high-school students focused on clean technology science and engineering. While originally targeting San Diego, California and Cambridge, Massachusetts, the scope of the program was expanded to include a major clean technology speaking series and expo as part of the USA Science & Engineering Festival on the National Mall in Washington, D.C.

Patricia Glaza

2012-12-01T23:59:59.000Z

436

Demonstration: The Key to Technology Transfer in the Field of Energy Conservation in the UK  

E-Print Network (OSTI)

Technology transfer has been one of the most intractable problems faced on a worldwide basis. The problem is particularly acute in the field of energy efficiency because none of the 3 major parties involved, the researcher, the manufacturer or the user is well geared to undertake the task in this still developing field. The UK Government recognized the problem and established the Energy Conservation Demonstration Project Scheme in 1978 to promote the take-up of cost effective conservation technology. The Scheme offers financial support to companies 'hosting' novel projects which the Government then monitors and publicizes to the relevant market sectors in order to stimulate 'replication' of the by then proven technology. This paper outlines the objectives and operation of the scheme and illustrates work underway with case studies in the areas of automatic energy management control systems and industrial heat recovery and cogeneration.

Carter, D. E. F.; Lawrence, J. E.

1983-01-01T23:59:59.000Z

437

Geothermal technology transfer for direct heat applications: Final report, 1983--1988  

DOE Green Energy (OSTI)

This report describes a geothermal technology transfer program, performed by Oregon Institute of Technology's Geo-Heat Center, used to aid in the development of geothermal energy for direct heat applications. It provides a summary of 88 technical assistance projects performed in 10 states for space heating, district heating, green-houses, aquaculture, industrial processing, small scale binary electric power generation and heat pump applications. It describes an inventory compiled for over 100 direct heat projects that contains information on project site, resource and engineering data. An overview of information services is provided to users of the program which includes; advisory, referrals, literature distribution, geothermal technology library, quarterly Bulletin, training programs, presentations and tours, and reporting of activities for the USDOE Geothermal Progress Monitor.

Lienau, P.J.; Culver, G.

1988-01-01T23:59:59.000Z

438

Putting Science to Work TTED TECHNOLOGY EVENTS BUILDING ECONOMIC DEVELOPMENT  

NLE Websites -- All DOE Office Websites (Extended Search)

TTED TECHNOLOGY TTED TECHNOLOGY EVENTS BUILDING ECONOMIC DEVELOPMENT (continued on page 3) Nano Competition To Debut at ORNL T he first U.S. business competition for technology entrepre- neurs focused specifically on nanotechnology - Nano Nexus 2007 - will be held at ORNL April 2-4. The goal of the event, which is attracting nationwide participation from academia, industry, and the investment community, is to provide a learning environment to help accelerate the commercialization of nanotechnology. "This event is one of several activities positioning ORNL as the nation's leading organization for nanotechnology research, development, and education," said Alex Fisher, the laborato- ry's director of Technology Transfer. "In addition to building skill sets of entrepreneurs, we expect the event to attract new

439

Microhole Drilling Tractor Technology Development  

SciTech Connect

In an effort to increase the U.S. energy reserves and lower costs for finding and retrieving oil, the USDOE created a solicitation to encourage industry to focus on means to operate in small diameter well-Microhole. Partially in response to this solicitation and because Western Well Tool's (WWT) corporate objective to develop small diameter coiled tubing drilling tractor, WWT responded to and was awarded a contract to design, prototype, shop test, and field demonstrate a Microhole Drilling Tractor (MDT). The benefit to the oil industry and the US consumer from the project is that with the MDT's ability to facilitate Coiled Tubing drilled wells to be 1000-3000 feet longer horizontally, US brown fields can be more efficiently exploited resulting in fewer wells, less environmental impact, greater and faster oil recovery, and lower drilling costs. Shortly after award of the contract, WWT was approached by a major oil company that strongly indicated that the specified size of a tractor of 3.0 inches diameter was inappropriate and that immediate applications for a 3.38-inch diameter tractor would substantially increase the usefulness of the tool to the oil industry. Based on this along with an understanding with the oil company to use the tractor in multiple field applications, WWT applied for and was granted a no-cost change-of-scope contract amendment to design, manufacture, assemble, shop test and field demonstrate a prototype a 3.38 inch diameter MDT. Utilizing existing WWT tractor technology and conforming to an industry developed specification for the tool, the Microhole Drilling Tractor was designed. Specific features of the MDT that increase it usefulness are: (1) Operation on differential pressure of the drilling fluid, (2) On-Off Capability, (3) Patented unique gripping elements (4) High strength and flexibility, (5) Compatibility to existing Coiled Tubing drilling equipment and operations. The ability to power the MDT with drilling fluid results in a highly efficient tool that both delivers high level of force for the pressure available and inherently increases downhole reliability because parts are less subject to contamination. The On-Off feature is essential to drilling to allow the Driller to turn off the tractor and pull back while circulating in cleanout runs that keep the hole clean of drilling debris. The gripping elements have wide contact surfaces to the formation to allow high loads without damage to the formation. As part of the development materials evaluations were conducted to verify compatibility with anticipated drilling and well bore fluids. Experiments demonstrated that the materials of the tractor are essentially undamaged by exposure to typical drilling fluids used for horizontal coiled tubing drilling. The design for the MDT was completed, qualified vendors identified, parts procured, received, inspected, and a prototype was assembled. As part of the assembly process, WWT prepared Manufacturing instructions (MI) that detail the assembly process and identify quality assurance inspection points. Subsequent to assembly, functional tests were performed. Functional tests consisted of placing the MDT on jack stands, connecting a high pressure source to the tractor, and verifying On-Off functions, walking motion, and operation over a range of pressures. Next, the Shop Demonstration Test was performed. An existing WWT test fixture was modified to accommodate operation of the 3.38 inch diameter MDT. The fixture simulated the tension applied to a tractor while walking (pulling) inside 4.0 inch diameter pipe. The MDT demonstrated: (1) On-off function, (2) Pulling forces proportional to available differential pressure up to 4000 lbs, (3) Walking speeds to 1100 ft/hour. A field Demonstration of the MDT was arranged with a major oil company operating in Alaska. A demonstration well with a Measured Depth of approximately 15,000 ft was selected; however because of problems with the well drilling was stopped before the planned MDT usage. Alternatively, functional and operational tests were run with the MDT insi

Western Well Tool

2007-07-09T23:59:59.000Z

440

Shandiin/DOE intertribal energy programs: technology transfer series  

SciTech Connect

This project entailed the continuation of solar design and construction workshops for the Navajo, Hopi, and Apache Tribes, including tribal planners, tribal staff, engineers, architects, and installers of energy systems. The project also entailed the continuation of support for the development of an energy self-sufficient community school system for the many rural Navajo communities. Great emphasis was placed in completing the second phase of development of the intertribal computer network. The development of this network will greatly benefit our nation in increased efficiency and coordination of tribal energy programs. A series of workshops was held in energy programs training for planners from the Navajo, Hopi, and Apache Tribes. The initial assessment of this program concludes that the greatest impact and return came from the Navajo Tribe's Division of Economic Development, with lesser impact upon the Community Development branches of the Hopi and Apache Tribes. The impact of microcomputer technologies upon the tribes has been shown to be profound, and the development of the intertribal computer network can be seen as a true asset to both the tribes and to the nation.

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "development technology transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

LANL | Technology Transfer | - Los Alamos National Lab: National ...  

Leigh House. Technology Management Team 4 . Portfolio: Software and technologies for modeling and simulation, image analysis and processing, cyber and space systems, ...

442

Role of solar energy research in transferring of technology to Saudi Arabia  

Science Conference Proceedings (OSTI)

The Kingdom of Saudi Arabia is blessed with abundant solar energy, which is renewable, clean, and freely available. This paper describes the status of the major research, development, and demonstration (RD and D) activities and achievements at the Energy Research Institute, King Abdulaziz City for Science and Technology, in the field of solar energy. RD and D activities in the Kingdom have confirmed that solar energy has a multitude of practical uses. These include lighting, cooling, cooking, water heating, crop/fruit drying, water desalination, operating irrigation pumps, and meteorological stations, and providing road and tunnel lighting. Furthermore, these solar energy RD and D activities and achievements played a significant role in transferring technology and manpower development in the Kingdom.

Alawaji, S.H.; Hasnain, S.M.

1999-12-01T23:59:59.000Z

443

NETL: News Release - Technology Transfer Award To Be Presented...  

NLE Websites -- All DOE Office Websites (Extended Search)

NETL research group leader Henry Pennline and research chemical engineer Evan Granite will receive the award for the transfer of a palladium-based sorbent for the capture...

444

NREL: Technology Deployment - Tool Development  

NLE Websites -- All DOE Office Websites (Extended Search)

renewable energy projects. NREL develops geographic tools, interactive calculators, market and metrics databases, and mobile applications to help inform sustainable energy...

445

Potentials to transfer the US NEPA experience to developing countries  

SciTech Connect

The US National Environmental Policy Act (NEPA) of 1969 has been important as a learning experience for the United States, but it has also served as a model for the rest of the world. In particular, other counties which benefit form US foreign aid have found NEPA concerns to be of growing importance in the 1980s and multinational bodies such as The World Bank have increasingly suggested US standards and practices as guidelines to countries without well-defined environmental policies of their own. With environmental protection becoming a dominant issue in development assistance, it is timely to assess the relevance of the US experience to developing countries. Other outgrowths of the NEPA process in the United States may be less appropriate to the conditions that exist in many developing countries. Examples might include standards for certain emissions, standards for impact analysis, the size and complexity of impact assessment documents, and mechanisms for public involvement. In these kinds of connections, the US NEPA experience is already becoming an issue in the expanding dialogue about global environmental change, Considered in the light of the experience of other advanced countries, such as West Germany and Great Britain, and in the light of differing circumstances of less-developed countries, such as urgent needs for job creation and shortages of technical capabilities, the US experience has the potential to be transformed from what now appears too often to be a rigid straight-jacket to what can be a rich, robust body of lessons learned. In the process, an enhanced transfer of US professional experience and monitoring and control technologies can contribute to our competitiveness in the world economy and an acceleration of environmental management improvements in developing countries.

Wilbanks, T.J.; Hunsaker, D.B. Jr.; Petrich, C.H.; Wright, S.B.

1989-12-31T23:59:59.000Z

446

Potentials to transfer the US NEPA experience to developing countries  

SciTech Connect

The US National Environmental Policy Act (NEPA) of 1969 has been important as a learning experience for the United States, but it has also served as a model for the rest of the world. In particular, other counties which benefit form US foreign aid have found NEPA concerns to be of growing importance in the 1980s and multinational bodies such as The World Bank have increasingly suggested US standards and practices as guidelines to countries without well-defined environmental policies of their own. With environmental protection becoming a dominant issue in development assistance, it is timely to assess the relevance of the US experience to developing countries. Other outgrowths of the NEPA process in the United States may be less appropriate to the conditions that exist in many developing countries. Examples might include standards for certain emissions, standards for impact analysis, the size and complexity of impact assessment documents, and mechanisms for public involvement. In these kinds of connections, the US NEPA experience is already becoming an issue in the expanding dialogue about global environmental change, Considered in the light of the experience of other advanced countries, such as West Germany and Great Britain, and in the light of differing circumstances of less-developed countries, such as urgent needs for job creation and shortages of technical capabilities, the US experience has the potential to be transformed from what now appears too often to be a rigid straight-jacket to what can be a rich, robust body of lessons learned. In the process, an enhanced transfer of US professional experience and monitoring and control technologies can contribute to our competitiveness in the world economy and an acceleration of environmental management improvements in developing countries.

Wilbanks, T.J.; Hunsaker, D.B. Jr.; Petrich, C.H.; Wright, S.B.

1989-01-01T23:59:59.000Z

447

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

SciTech Connect

The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and natural gas producers make timely, informed technology decisions. Networking opportunities that occur with a Houston Headquarters (HQ) location are increasing name awareness. Focused efforts by Executive Director Don Duttlinger to interact with large independents, national service companies and some majors are continuing to supplement the support base of the medium to smaller industry participants around the country. PTTC is now involved in many of the technology-related activities that occur in high oil and natural gas activity areas. Access to technology remains the driving force for those who do not have in-house research and development capabilities and look to the PTTC to provide services and options for increased efficiency. Looking forward to the future, the Board, Regional Lead Organization (RLO) Directors and HQ staff developed a 10-year vision outlining what PTTC needs to accomplish in supporting a national energy plan. This vision has been communicated to Department of Energy (DOE) staff and PTTC looks forward to continuing this successful federal-state-industry partnership. As part of this effort, several more examples of industry using information gained through PTTC activities to impact their bottom line were identified. Securing the industry pull on technology acceptance was the cornerstone of this directional plan.

Unknown

2002-05-31T23:59:59.000Z

448

Transferring the technology of welding and bonding: hands-on courses at LLL make it possible  

SciTech Connect

The technology training program at LLL is summarized. The program is directed toward transfer of unclassified laboratory technology to government and private-industry employees. Information is included on technology training program (TTP) organization, facilities and equipment, and participating companies and government agencies. A five-day training program on joining, fastening, and welding is outlined. (JRD)

Jensen, C.W.; Hugenberger, C.E.

1976-08-15T23:59:59.000Z

449

Technology Transfer: Use of Federally Funded Research and ...  

Science Conference Proceedings (OSTI)

... or technological advancements which have either commercial value or ... data storage; advanced vapor-compression refrigeration systems; motor ...

2013-07-31T23:59:59.000Z

450

NREL: Technology Transfer - NREL's 20th Industry Growth Forum ...  

Porous Power Technologies, LLC Tim Feaver, CEO Presentation: Microporous Membranes for Highly Efficient Lithium Batteries ... Vortex Hydro Energy, LLC

451

DOE Funds 15 New Projects to Develop Solar Power Storage and Heat Transfer  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Funds 15 New Projects to Develop Solar Power Storage and Heat Funds 15 New Projects to Develop Solar Power Storage and Heat Transfer Projects For Up to $67.6 Million DOE Funds 15 New Projects to Develop Solar Power Storage and Heat Transfer Projects For Up to $67.6 Million September 19, 2008 - 3:43pm Addthis WASHINGTON - U.S. Department of Energy (DOE) today announced selections for negotiations of award under the Funding Opportunity Announcement (FOA), Advanced Heat Transfer Fluids and Novel Thermal Storage Concepts for Concentrating Solar Power Generation. These 15 new projects, for up to approximately $67.6 million, will facilitate the development of lower-cost energy storage for concentrating solar power (CSP) technology. These projects support President Bush's Solar America Initiative, which aims to make solar energy cost-competitive with conventional forms of electricity

452

Contacts for the Assistant General Counsel for Technology Transfer...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(fax) Brenda Banks 202-586-2802 Subject MatterFunctional Area Lead Backup Lab Tech Transfer; DHS John T. Lucas 202-586-2939 Robert Marchick 202-586-4792 IP Policy John...

453

Technological development and innovation : selected policy implications  

E-Print Network (OSTI)

Technological development is one of the main drivers in economic progress throughout the world and is strongly linked to the creation of new industries, jobs, and wealth. This thesis attempts to better understand how a ...

Benson, Christopher L

2012-01-01T23:59:59.000Z

454

Networking and Information Technology Research and Development...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Research and Development (NITRD) Program, as required by the High-Performance Computing Act of 1991 (P.L. 102-194), the Next Generation Internet Research Act of...

455

Advanced Model and Methodology Development [Heat Transfer and Fluid  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Model and Advanced Model and Methodology Development Capabilities Engineering Computation and Design Engineering and Structural Mechanics Systems/Component Design, Engineering and Drafting Heat Transfer and Fluid Mechanics Overview Thermal Hydraulic Optimization of Nuclear Systems Underhood Thermal Management Combustion Simulations Advanced Model and Methodology Development Multi-physics Reactor Performance and Safety Simulations Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Heat Transfer and Fluid Mechanics Bookmark and Share Advanced Model and Methodology Development Electrorefiner Model for Treatment of Spent Nuclear Fuel Electrorefiner Model for Treatment of Spent Nuclear Fuel. Click on image to

456

CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES  

SciTech Connect

This Technical Progress Report describes progress made on the seventeen subprojects awarded in the first year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices. Due to the time taken up by the solicitation/selection process, these cover the initial 6-month period of project activity only. The U.S. is the largest producer of mining products in the world. In 1999, U.S. mining operations produced $66.7 billion worth of raw materials that contributed a total of $533 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, this endeavor has been expanded into a seven-university consortium--Virginia Tech, West Virginia University, University of Kentucky, University of Utah, Montana Tech, New Mexico Tech and University of Nevada, Reno--that is supported through U.S. DOE Cooperative Agreement No. DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation (2) Solid-liquid separation (3) Chemical/Biological Extraction (4) Modeling and Control, and (5) Environmental Control.

Hugh W. Rimmer

2004-05-12T23:59:59.000Z

457

Global Nuclear Energy Partnership Technology Development Plan  

Science Conference Proceedings (OSTI)

This plan describes the GNEP Technology Demonstration Program (GNEP-TDP). It has been prepared to guide the development of integrated plans and budgets for realizing the domestic portion of the GNEP vision as well as providing the basis for developing international cooperation. Beginning with the GNEP overall goals, it describes the basic technical objectives for each element of the program, summarizes the technology status and identifies the areas of greatest technical risk. On this basis a proposed technology demonstration program is described that can deliver the required information for a Secretarial decision in the summer of 2008 and support construction of facilities.

David J. Hill

2007-07-01T23:59:59.000Z

458

Lead-free solder technology transfer from ASE Americas  

DOE Green Energy (OSTI)

To safeguard the environmental friendliness of photovoltaics, the PV industry follows a proactive, long-term environmental strategy involving a life-of-cycle approach to prevent environmental damage by its processes and products from cradle to grave. Part of this strategy is to examine substituting lead-based solder on PV modules with other solder alloys. Lead is a toxic metal that, if ingested, can damage the brain, nervous system, liver and kidneys. Lead from solder in electronic products has been found to leach out from municipal waste landfills and municipal incinerator ash was found to be high in lead also because of disposed consumer electronics and batteries. Consequently, there is a movement in Europe and Japan to ban lead altogether from use in electronic products and to restrict the movement across geographical boundaries of waste containing lead. Photovoltaic modules may contain small amounts of regulated materials, which vary from one technology to another. Environmental regulations impact the cost and complexity of dealing with end-of-life PV modules. If they were classified as hazardous according to Federal or State criteria, then special requirements for material handling, disposal, record-keeping and reporting would escalate the cost of decommissioning the modules. Fthenakis showed that several of today's x-Si modules failed the US-EPA Toxicity Characteristic Leaching Procedure (TCLP) for potential leaching of Pb in landfills and also California's standard on Total Threshold Limit Concentration (TTLC) for Pb. Consequently, such modules may be classified as hazardous waste. He highlighted potential legislation in Europe and Japan which could ban or restrict the use of lead and the efforts of the printed-circuit industries in developing Pb-free solder technologies in response to such expected legislation. Japanese firms already have introduced electronic products with Pb-free solder, and one PV manufacturer in the US, ASE Americas has used a Pb-free solder exclusively in their modules since 1993. Finding a safe, reliable and cost-effective substitute for lead-containing solders is not easy. Tin/lead solder has been the standard solder technology for several decades and extensive knowledge has been gained on the practical and theoretical aspects of its use. The printed circuit and the electronics industries recently embarked on a multi-million-dollar R and D effort to develop such alternatives, focusing on material properties, manufacturing processes, cost of alloys and long-term availability and reliability. Fthenakis outlined such efforts and listed alternatives examined by the electronics industries. One of the most promising alternatives (for electronics) is the 96.5%Sn/3.5%Ag solder that ASE Americas developed and use. ASE Americas' research and independent field testing showed it is at least as reliable as the standard one. This solder is slightly more expensive than the regular Sn/Pb solder. However, to the audience gratification, Steel Heddle, a solder manufacturer, announced that they will absorb the incremental cost and will supply 96.5%Sn/3.5%Ag at the same price as the conventional Sn/Pb solder ribbon. Another issue is the low TTLC for Ag in California (i.e., 0.5 g / kg of module), but Fthenakis showed that the Sn/Ag solder will add less than 10% of this quantity (i.e., 0.05 g of Ag / kg of module). The major point made by Fthenakis was that alternatives exist that are both environmentally benign and cost-effective, and that the PV industry can only benefit by being proactive in switching to Pb-free materials, thereby exceeding the expectations of its supporters and averting potential future legislation.

FTHENAKIS,V.

1999-10-19T23:59:59.000Z

459

Technological Transfer from Research Nuclear Reactors to New Generation Nuclear Power Reactors  

SciTech Connect

The goal of this paper is the analysis of the technological transfer role in the nuclear field, with particular emphasis on nuclear reactors domain. The presentation is sustained by historical arguments. In this frame, it is very important to start with the achievements of the first nuclear systems, for instant those with natural uranium as fuel and heavy water as moderator, following in time through the history until the New Generation Nuclear Power Reactors.Starting with 1940, the accelerated development of the industry has implied the increase of the global demand for energy. In this respect, the nuclear energy could play an important role, being essentially an unlimited source of energy. However, the nuclear option faces the challenges of increasingly demanding safety requirements, economic competitiveness and public acceptance. Worldwide, a significant amount of experience has been accumulated during development, licensing, construction, and operation of nuclear power reactors. The experience gained is a strong basis for further improvements. Actually, the nuclear programs of many countries are addressing the development of advanced reactors, which are intended to have better economics, higher reliability, improved safety, and proliferation-resistant characteristics in order to overcome the current concerns about nuclear power. Advanced reactors, now under development, may help to meet the demand for energy power of both developed and developing countries as well as for district heating, desalination and for process heat.The paper gives historical examples that illustrate the steps pursued from first research nuclear reactors to present advanced power reactors. Emphasis was laid upon the fact that the progress is due to the great discoveries of the nuclear scientists using the technological transfer.

Radulescu, Laura ['Horia Hulubei' National Institute of Nuclear Physics and Engineering, PO BOX MG-6, Bucharest 077125 (Romania); Pavelescu, Margarit [Academy of Romanian Scientists, Bucharest (Romania)

2010-01-21T23:59:59.000Z

460

Notice of Inquiry: Technology Transfer Practices at Department of Energy (DOE) Laboratories (73 FR 72036)  

NLE Websites -- All DOE Office Websites (Extended Search)

V V E R S I T Y O F C A L I F O R N I A BERKELEY * DAVIS * IRVINE * LOS ANGELES * MERCED * RIVERSIDE * SAN DIEGO * SAN FRANCISCO SANTA BARBARA * SANTA CRUZ OFFICE OF THE PROVOST AND EXECUTIVE VICE PRESIDENT - ACADEMIC AFFAIRS OFFICE OF TECHNOLOGY TRANSFER 1111 Franklin Street, 5 th Floor Oakland, California 94607-5200 Web Site: www.ucop.edu/ott/ Tel: (510) 587-6000 Fax: (510) 587-6090 January 23, 2009 Submitted electronically to GC-62@hq.doe.gov Office of the Assistant General Counsel for Technology Transfer and Intellectual Property U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 Attn: Technology Transfer Questions Subject: Notice of Inquiry: Technology Transfer Practices at Department of Energy (DOE) Laboratories (73 FR 72036)

Note: This page contains sample records for the topic "development technology transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

EA-1175: Proposed Title Transfer of East Tennessee Technology Park Land and Facilities, Oak Ridge, Tennessee  

Energy.gov (U.S. Department of Energy (DOE))

This EA evaluates the environmental impacts for the proposal to transfer the title of unneeded DOE real property located at the U.S. Department of Energy East Tennessee Technology Park (ETTP) in...

462

NREL: Technology Transfer Home Page - National Renewable Energy ...  

Through our commercialization programs, we work to stimulate the market for clean energy technologies and foster the growth of clean energy start-ups.

463

NREL: Technology Transfer - Award-Winning Battery's Secret Is ...  

... say the technology's greatest promise is as a building block for big batteries powering vehicles and storing wind and solar power.

464

Argonne TDC: About Technology Transfer at Argonne National Laboratory  

Cost-shared R&D with an industrial ... Performing results-orientated outreach to technology stakeholders to ... U.S. Department of Energy Office of Science ...

465

Sandia National Laboratories : Licensing/Technology Transfer News  

Search; About Sandia; Mission Areas; Newsroom; Careers; Doing Business; Education; Contact Us; News. IP Home; Search/Browse Technology Portfolios; Licensing Overview ...

466

NREL: Technology Transfer - EPRI Joins SolarTAC  

EPRI Joins SolarTAC June 10, 2010. On May 26, the Solar Technology Acceleration Center (SolarTAC) announced that the Electric Power Research Institute ...

467

NREL: Technology Transfer - Investing in Clean Energy Innovation  

Decreasing proven reserves of fossil fuels, ... They include technologies in the R&D areas of advanced vehicles and fuels, basic sciences, biomass, buildings ...

468

Technology transfer expert to lead Lawrence Livermore's Industrial...  

NLE Websites -- All DOE Office Websites (Extended Search)

immediate release: 07092013 | NR-13-07-02 The commercialization of laser peening technology, used for critical jet engine components, has proven to be one of the most...

469

NIST to Help Speed Technology Transfer from Federal Labs  

Science Conference Proceedings (OSTI)

... NIST licensed a technology called RoboCrane, which is now being used to build a new confinement structure at the Chernobyl Nuclear Power Plant ...

2011-11-08T23:59:59.000Z

470

2009 MBA Program Call for Proposals Technology Transfer Division  

E-Print Network (OSTI)

customers for my technology or service? - What benefits do these customers expect from my technology. A detailed description of the project, for example, help with identifying customers, evaluating various (in terms of annual sales), location, products and services, number of employees, and the date

471

HUMID AIR TURBINE CYCLE TECHNOLOGY DEVELOPMENT PROGRAM  

SciTech Connect

The Humid Air Turbine (HAT) Cycle Technology Development Program focused on obtaining HAT cycle combustor technology that will be the foundation of future products. The work carried out under the auspices of the HAT Program built on the extensive low emissions stationary gas turbine work performed in the past by Pratt & Whitney (P&W). This Program is an integral part of technology base development within the Advanced Turbine Systems Program at the Department of Energy (DOE) and its experiments stretched over 5 years. The goal of the project was to fill in technological data gaps in the development of the HAT cycle and identify a combustor configuration that would efficiently burn high moisture, high-pressure gaseous fuels with low emissions. The major emphasis will be on the development of kinetic data, computer modeling, and evaluations of combustor configurations. The Program commenced during the 4th Quarter of 1996 and closed in the 4th Quarter of 2001. It teamed the National Energy Technology Laboratory (NETL) with P&W, the United Technologies Research Center (UTRC), and a subcontractor on-site at UTRC, kraftWork Systems Inc. The execution of the program started with bench-top experiments that were conducted at UTRC for extending kinetic mechanisms to HAT cycle temperature, pressure, and moisture conditions. The fundamental data generated in the bench-top experiments was incorporated into the analytical tools available at P&W to design the fuel injectors and combustors. The NETL then used the hardware to conduct combustion rig experiments to evaluate the performance of the combustion systems at elevated pressure and temperature conditions representative of the HAT cycle. The results were integrated into systems analysis done by kraftWork to verify that sufficient understanding of the technology had been achieved and that large-scale technological application and demonstration could be undertaken as follow-on activity. An optional program extended the experimental combustion evaluations to several specific technologies that can be used with HAT technology. After 5 years of extensive research and development, P&W is pleased to report that the HAT Technology Development Program goals have been achieved. With 0 to 10 percent steam addition, emissions achieved during this program featured less than 8 ppm NO{sub x}, less than 16 ppm CO, and unburned hydrocarbons corrected to 15 percent O{sub 2} for an FT8 engine operating between 0 and 120 F with 65 to 100 percent power at any day.

Richard Tuthill

2002-07-18T23:59:59.000Z

472

MHD magnet technology development program summary, September 1982  

DOE Green Energy (OSTI)

The program of MHD magnet technology development conducted for the US Department of Energy by the Massachusetts Institute of Technology during the past five years is summarized. The general strategy is explained, the various parts of the program are described and the results are discussed. Subjects covered include component analysis, research and development aimed at improving the technology base, preparation of reference designs for commercial-scale magnets with associated design evaluations, manufacturability studies and cost estimations, the detail design and procurement of MHD test facility magnets involving transfer of technology to industry, investigations of accessory subsystem characteristics and magnet-flow-train interfacing considerations and the establishment of tentative recommendations for design standards, quality assurance procedures and safety procedures. A systematic approach (framework) developed to aid in the selection of the most suitable commercial-scale magnet designs is presented and the program status as of September 1982 is reported. Recommendations are made for future work needed to complete the design evaluation and selection process and to provide a sound technological base for the detail design and construction of commercial-scale MHD magnets. 85 references.

Not Available

1983-11-01T23:59:59.000Z

473

Technology certification and technology acceptance: Promoting interstate cooperation and market development for innovative technologies  

SciTech Connect

In the past two years, public and private efforts to promote development and deployment of innovative environmental technologies have shifted from the analysis of barriers to the implementation of a variety of initiatives aimed at surmounting those barriers. Particular attention has been directed at (1) streamlining fragmented technology acceptance processes within and among the states, and (2) alleviating disincentives, created by inadequate or unverified technology cost and performance data, for users and regulators to choose innovative technologies. Market fragmentation currently imposes significant cost burdens on technology developers and inhibits the investment of private capital in environmental technology companies. Among the responses to these problems are state and federal technology certification/validation programs, efforts to standardize cost/performance data reporting, and initiatives aimed at promoting interstate cooperation in technology testing and evaluation. This paper reviews the current status of these initiatives, identifies critical challenges to their success, and recommends strategies for addressing those challenges.

Brockbank, B.R.

1995-03-01T23:59:59.000Z

474

Development of the EPRI Magnetic Molecules Technology  

Science Conference Proceedings (OSTI)

This report describes the work to date on development of Magnetic Molecules, a new technology for the selective removal of radioactive and other contaminants from liquid wastes and process solutions at nuclear power plants. Following an initial proof of principle test demonstrating the viability of the concept, EPRI has filed a patent application. This report describes the work completed during the first half of the EPRI program to establish this technology.

2004-11-15T23:59:59.000Z

475

Venture Capital, High Technology and Regional Development  

E-Print Network (OSTI)

This paper explores the role ofventure capital in technological innovation and regional development. Both aggregate data and a unique firm level data base are employed to determine the location of major centres of venture capital, flows of venture capital investments, and patterns of investment syndication or coinvestment among venture capital firms. Three major centres of venture capital arc identified: California (San Francisco-Silicon Valley); New York; and Ncw England (Massachusetts-Connecticut): as well as three minor venture capital centres: Illinois (Chicago); Texas; and Minnesota. Venture capital firms are found to cluster in areas with high concentrations of financial institutions and those with high concentrations of technology-intensive enterprises. Venture capital firms which are based in financial centres are typically export-oriented, while those in technology centres tend to invest in their own region and attract outside venture capital. Venture capital investmcnts flow predominantly toward established high technology areas such as Silicon Valley and Boston-Iioute 128, and venturc investing is also characterized by high degrees of intra-and inter-regional syndication or coinvestment. The venture capital industry displays a high level of agglomeration due to the information intensive nature of the investment process and the importance of venture capital networks in locating investments, mobilizing resources, and establishing business start-ups. The existence of well developed venture capital networks in technology-based regions significantly accelerates the pace of technological innovation and economic development in those regions.

Richard L. Florida; Martin Kenneyt

1986-01-01T23:59:59.000Z

476

CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES  

Science Conference Proceedings (OSTI)

The U.S. is the largest producer of mining products in the world. In 2003, U.S. mining operations produced $57 billion worth of raw materials that contributed a total of $564 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation; (2) Solid-liquid separation; (3) Chemical/Biological Extraction; (4) Modeling and Control; and (5) Environmental Control.

Christopher E. Hull

2005-01-20T23:59:59.000Z

477

Radial Flow Pulse Jet Mixer Contact NETL Technology Transfer...  

NLE Websites -- All DOE Office Websites (Extended Search)

PON-13-007, June 2013 Opportunity Research is currently active on the patent-pending technology "A Process for the Mixing of Heavy Solid Particulate Matter in a...

478

Geothermal drilling and completion technology development  

SciTech Connect

The high cost of drilling and completing geothermal wells is an impediment to the development of geothermal energy resources. Technological deficiencies in rotary drilling techniques are evidenced when drilling geothermal wells. The Division of Geothermal Energy (DGE) of the U.S. Department of Energy has initiated a program aimed at developing new drilling and completion techniques for geothermal wells. The goals of this program are to reduce well costs by 25% by 1982 and by 50% by 1986. Sandia Laboratories has been selected to manage this technology development program, and this paper presents an overview of the program. Program justification which relates well cost to busbar energy cost and to DGE power-on-line goals is presented. Technological deficiencies in current rotary drilling techniques for geothermal wells are discussed. A program for correcting these deficiencies is described.

Varnado, S.G.; Stoller, H.M.

1978-01-01T23:59:59.000Z

479

The Office of Technology Development technical reports. A bibliography  

Science Conference Proceedings (OSTI)

The US Department of Energy`s Office of Technology Development (OTD) within the Office of Environmental Management was established in 1989 to conduct an aggressive national program of applied research, development, demonstration, testing, and evaluation (RDDT&E) for innovative environmental cleanup solutions that are safer and more time- and cost-effective than those currently available. In many cases, the development of new technology presents the best hope for ensuring a substantive reduction in risk to the environment and improved worker/public safety within realistic financial constraints. Five major remediation and waste management problem areas have been identified to date within the DOE weapons complex; Contaminant Plume Containment and Remediation; Mixed Waste Characterization, Treatment, and Disposal; High-Level Waste Tank Remediation; Landfill Stabilization; and Facility Transitioning, Decommissioning, and Final Disposition. New technologies to address these problem areas are demonstrated to the point that they are proven to work and that they can be transferred to the private sector end-users. This bibliography contains information on scientific and technical reports sponsored by the Office of Environmental Management from its inception in 1989 through June 1994. Future issues contain reports from Technology Development activities and will be published biannually.

Not Available

1994-09-01T23:59:59.000Z

480

Waste Processing Annual Technology Development Report 2007  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Processing Processing Annual Technology Development Report 2007 SRNS-STI-2008-00040 United States Department of Energy Waste Processing Annual Technology Development Report 2007 Prepared and edited by S. R. Bush EM Technical Integration Office Savannah River National Laboratory Reviewed by Dr. W. R. Wilmarth, Manager EM Technical Integration Office Savannah River National Laboratory Approved by Dr. S. L. Krahn, Director EM-21 Office of Waste Processing U. S. Department of Energy APPROVED for Release for Unlimited (Release to Public) (Signed 08/13/2008) (Signed 08/13/2008) (Signed 08/13/2008) EM-21 Waste Processing Annual Report for Calendar Year 2007 2/74

Note: This page contains sample records for the topic "development technology transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

TECH TRANSFER TECHNOLOGY TRANSFER PROGRAM INSTITUTE OF TRANSPORTATION STUDIES UNIVERSITY OF CALIFORNIA, BERKELEY  

E-Print Network (OSTI)

. Further details about Ceramicrete: http://www.anl.gov/techtransfer/ Available_Technologies/ Material_Science/Ceramicrete/ index.html: Ceramicrete properties (Table 2): http://www.anl.gov/techtransfer/ Available_Technologies/ Material_Science/Ceramicrete/ properties-table2.pdf Patents issued and licenses: http://www.anl.gov/techtransfer

California at Berkeley, University of

482

Crosscutting Technology Development at the Center for Advanced Separation Technologies  

SciTech Connect

The U.S. is the largest producer of mining products in the world. In 2003, U.S. mining operations produced $57 billion worth of raw materials that contributed a total of $564 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, this endeavor has been expanded into a seven-university consortium -- Virginia Tech, West Virginia University, University of Kentucky, University of Utah, Montana Tech, New Mexico Tech and University of Nevada, Reno - that is supported through U.S. DOE Cooperative Agreement No. DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation; (2) Solid-liquid separation; (3) Chemical/biological extraction; (4) Modeling and control; and (5) Environmental control. Distribution of funds is handled via competitive solicitation of research proposals through Site Coordinators at the seven member universities. These were first reviewed and ranked by a group of technical reviewers (selected primarily from industry). Based on these reviews, and an assessment of overall program requirements, the CAST Technical Committee made an initial selection/ranking of proposals and forwarded these to the DOE/NETL Project Officer for final review and approval. The successful projects are listed by category, along with brief abstracts of their aims and objectives.

Christopher Hull

2009-10-31T23:59:59.000Z

483

Light Water Reactors Technology Development - Nuclear Reactors  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Water Reactors Light Water Reactors About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy Argonne's Nuclear Science and Technology Legacy

484

USDOE Technology Transfer, Working with Department of Energy Labs  

NLE Websites -- All DOE Office Websites (Extended Search)

Cutting Edge Research Cutting Edge Research DOE National Laboratories and facilities have expertise in many areas that support key national missions and are also critical to major high-technology industries and services. Technology collaborations between industry and DOE laboratories mutually leverage each partner's resources to meet common or compatible objectives. Find laboratories and investigators doing cutting edge research in specific scientific and technological areas of interest. To pick resource(s) or to search by field(s), see Advanced Search Get the Science Accelerator widget at Widgetbox! Not seeing a widget? (More info) Science Accelerator is a gateway to science, including R&D results, project descriptions, accomplishments, DOE and Lab patents and more Resources made available by the Office of Scientific and Technical

485

Fermilab | Office of Partnerships and Technology Transfer | Cooperativ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Cooperative Research and Development Agreements (CRADAs) CRADAs are cooperative research and development agreements between Fermilab and industrial partners that contribute to the...

486

Office of Technology Transfer Composite Electrodes for Rechargeable Lithium-  

E-Print Network (OSTI)

of this technology. Page 6 Lithium-ion Batteries Could Hold the Key to 100-MPG Hybrids Lithium-ion batteries are a promising alternative to the nickel metal hydride batteries used in current-generation HEVs. Lithium-ion batteries pack more power and energy into a smaller battery package. But there's work to do before lithium-ion

Kemner, Ken

487

Thermoelectric Development at Hi-Z Technology  

DOE Green Energy (OSTI)

An improved Thermoelectric Generator (TEG) for the Heavy Duty Class Eight Diesel Trucks is under development at Hi-Z Technology. The current TEG is equipped with the improved HZ-14 Thermoelectric module, which features better mechanical properties as well as higher electric power output. Also, the modules are held in place more securely.

Kushch, Aleksandr S.; Bass, John C.; Ghamaty, Saeid; Elsner, Norbert B.; Bergstrand, Richard A.; Furrow, David; Melvin, Mike

2002-08-25T23:59:59.000Z

488

Business developments of nonthermal solar technologies  

DOE Green Energy (OSTI)

Information on the developments of nonthermal solar technologies is presented. The focus is on the success of wind energy conversion systems (WECS) and photovoltaics. Detailed information on the installed generating capacity, market sectors, financing sources, systems costs and warranties of WECS and photovoltaic systems is summarized. (BCS)

Smith, S.A.; Watts, R.L.; Williams, T.A.

1985-10-01T23:59:59.000Z

489

Fulong Wind Technology Development Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Fulong Wind Technology Development Co Ltd Jump to: navigation, search Name Fulong Wind Technology Development Co Ltd Place Heilongjiang Province, China Sector Wind energy Product A...

490

Fenglilai Technology Development Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Fenglilai Technology Development Co Ltd Jump to: navigation, search Name Fenglilai Technology Development Co Ltd Place Inner Mongolia Autonomous Region, China Sector Wind energy...

491

ICPP Waste Management Technology Development Program  

SciTech Connect

As a result of the decision to curtail reprocessing at the Idaho Chemical Processing Plant (ICPP), a Spent fuel and Waste Management Technology Development plan has been implemented to identify acceptable options for disposing of the (1) sodium-bearing liquid radioactive waste, (2) radioactive calcine, and (3) irradiated spent fuel stored at the Idaho National Engineering Laboratory (INEL). The plan was developed jointly by DOE and WINCO.

Hogg, G.W.; Olson, A.L.; Knecht, D.A. [Westinghouse Idaho Nuclear Co., Inc., Idaho Falls, ID (United States); Bonkoski, M.J. [USDOE, Washington, DC (United States)

1993-01-01T23:59:59.000Z

492

Lawrence Berkeley National Lab_Technology_Transfer_Contact_Us  

NLE Websites -- All DOE Office Websites (Extended Search)

Contact Us Contact Us chemistry, cleantech, bioenergy, environmental remediation, physical biosciences, geothermal energy, scintillating materials batteries, oil exploration, fuel cells, thin film deposition, gamma and neutron generators, materials physics, material science, nanotechnology, photovoltaics, electronic and photonic devices, NMR and MRI, optics, computing sciences biotechnology, life sciences, physical biosciences, genomics, nanotechnology To file a complaint or provide feedback on the work we do, please contact our Ombudsman. For licensing inquiries, please fill out our online Technology Licensing form or send e-mail to TTD@lbl.gov. To receive customized email alerts about Berkeley Lab technologies, please complete our Tech Alerts form. For any General Law matters handled by Patent Attorneys, work is under

493

NREL: Technology Transfer - DOE Supports and Expands NREL's ...  

Commercial partners will share 50% or more of project development costs, ... outside industry can submit proposals for commercially beneficial project ...

494

NREL: Technology Transfer - NREL, HelioVolt Receive ...  

A revolutionary thin-film photovoltaic (PV) manufacturing process developed through a partnership between the National Renewable Energy Laboratory ...

495

Continuation of Crosscutting Technology Development at Cast  

Science Conference Proceedings (OSTI)

This Final Technical Report describes progress made on the sub-projects awarded in the Cooperative Agreement DE-FC26-05NT42457: Continuation of Crosscutting Technology Development at Center for Advanced Separation Technologies (CAST). The final reports for each sub-project are attached in the appendix. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: a) Solid-solid separation b) Solid-liquid separation c) Chemical/Biological Extraction d) Modeling and Control, and e) Environmental Control.

Yoon, Roe-Hoan

2012-03-31T23:59:59.000Z

496

TECHNOLOGY DEVELOPMENT ON THE DUPIC SAFEGUARDS SYSTEM  

Science Conference Proceedings (OSTI)

A safeguards system has been developed since 1993 in the course of supporting a fuel cycle process to fabricate CANDU fuel with spent PWR fuel (known as Direct Use of PWR spent fuel In CANDU, DUPIC). The major safeguards technology involved here was to design and fabricate a neutron coincidence counting system for process accountability, and also an unattended continuous monitoring system in association with independent verification by the IAEA. This combined technology was to produce information of nuclear material content and to maintain knowledge of the continuity of nuclear material flow. In addition to hardware development, diagnosis software is being developed to assist data acquisition, data review, and data evaluation based on a neural network system on the IAEA C/S system.

H. KIM; H. CHA; ET AL

2001-02-01T23:59:59.000Z

497

Technology Transfer: Success Stories: Industry-Lab Research Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry-Lab Collaboration Industry-Lab Collaboration Below are some of Berkeley Lab's collaborative research projects performed with industry. Companies Technologies Applied Materials, Inc. Particle -Free Wafer Processing Boeing, StatOil Hydro Techno Economic Model for Commercial Cellulosic Biorefineries Capintec, Inc. Compact Scintillation Camera for Medical Imaging Catalytica, Inc. Optimized Catalysts For The Cracking of Heavier Petroleum Feedstocks Chiron Corporation High Throughput Assay for Screening Novel Anti-Cancer Compounds CVC-Commonwealth Scientific Corp. Advanced Hard Carbon Plasma Deposition System with Application to the Magnetic Storage Industry E.I. du Pont de Nemours & Company Catalytic Conversion of Chloro-Fluorocarbons over Palladium-Carbon Catalysts Empire Magnetics, Inc.

498

MHD Technology Transfer, Integration and Review Committee. Seventh semi-annual status report, April 1991--September 1991  

DOE Green Energy (OSTI)

This seventh semi-annual status report of the MHD Technology Transfer, Integration and Review Committee (TTIRC) summarizes activities of the TTIRC during the period April 1991 through September 1991. It includes a summary and minutes of the General Committee meeting, progress summaries of ongoing POC contracts, discussions pertaining to technical integration issues in the POC program, and planned activities for the next six months. The meeting included test plan with Western coal, seed regeneration economics, power management for the integrated topping cycle and status of the Clean Coal Technology Proposal activities. Appendices cover CDIF operations HRSR development, CFFF operations etc.

Not Available

1993-02-01T23:59:59.000Z

499

RESPECT Research & Enterprise Services; Promoting Excellence in Commercialisation and Knowledge Transfer Email: Technology-Licensing@hw.ac.uk  

E-Print Network (OSTI)

cover interconnection capabilities for flip chip packaging and 3D integration of MEMS. Problem this Heriot-Watt technology through an industry/ university knowledge transfer partnership: Knowledge Transfer Partnership Scheme or Scottish Enterprise For further information: Robert Goodfellow, Commercialisation

Painter, Kevin

500

Asian and Pacific Centre for Transfer of Technology (APCTT) | Open Energy  

Open Energy Info (EERE)

and Pacific Centre for Transfer of Technology (APCTT) and Pacific Centre for Transfer of Technology (APCTT) Jump to: navigation, search Name Asian and Pacific Centre for Transfer of Technology (APCTT) Address Qutab Institutional Area, India Place India Coordinates 28.5384902°, 77.1844619° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.5384902,"lon":77.1844619,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}