Powered by Deep Web Technologies
Note: This page contains sample records for the topic "development reformed fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Research and Development of a PEM Fuel Cell, Hydrogen Reformer, and Vehicle Refueling Facility  

Broader source: Energy.gov [DOE]

Technical paper on the development of a hydrogen reformer, vehicle refueling facility, and PEM fuel cell for Las Vegas, NV presented at the 2002 Annual Hydrogen Review held May 6-8, 2002 in Golden, CO.

2

Hydrogen Generation Via Fuel Reforming  

Science Journals Connector (OSTI)

Reforming is the conversion of a hydrocarbon based fuel to a gas mixture that contains hydrogen. The H2 that is produced by reforming can then be used to produce electricity via fuel cells. The realization of H2?based power generation via reforming is facilitated by the existence of the liquid fuel and natural gas distribution infrastructures. Coupling these same infrastructures with more portable reforming technology facilitates the realization of fuel cell powered vehicles. The reformer is the first component in a fuel processor. Contaminants in the H2?enriched product stream such as carbon monoxide (CO) and hydrogen sulfide (H2S) can significantly degrade the performance of current polymer electrolyte membrane fuel cells (PEMFC’s). Removal of such contaminants requires extensive processing of the H2?rich product stream prior to utilization by the fuel cell to generate electricity. The remaining components of the fuel processor remove the contaminants in the H2 product stream. For transportation applications the entire fuel processing system must be as small and lightweight as possible to achieve desirable performance requirements. Current efforts at Argonne National Laboratory are focused on catalyst development and reactor engineering of the autothermal processing train for transportation applications.

John F. Krebs

2003-01-01T23:59:59.000Z

3

Renewable Liquid Fuels Reforming  

Broader source: Energy.gov [DOE]

The Program anticipates that distributed reforming of biomass-derived liquid fuels could be commercial during the transition to hydrogen and used in the mid- and long-term time frames.

4

NETL - Fuel Reforming Facilities  

ScienceCinema (OSTI)

Research using NETL's Fuel Reforming Facilities explores catalytic issues inherent in fossil-energy related applications, including catalyst synthesis and characterization, reaction kinetics, catalyst activity and selectivity, catalyst deactivation, and stability.

None

2014-06-27T23:59:59.000Z

5

Reforming of fuel inside fuel cell generator  

DOE Patents [OSTI]

Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream I and spent fuel stream II. Spent fuel stream I is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream I and exhaust stream II, and exhaust stream I is vented. Exhaust stream II is mixed with spent fuel stream II to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells.

Grimble, Ralph E. (Finleyville, PA)

1988-01-01T23:59:59.000Z

6

Biogas fuel reforming for solid oxide fuel cells  

Science Journals Connector (OSTI)

In this paper strategies for biogas reforming and their ensuing effects on solid oxide fuel cell(SOFC) performance are explored. Synthesized biogas (65% CH4?+?35% CO2) fuel streams are reformed over a rhodium catalyst supported on a porous ?-alumina foam. Reforming approaches include steam reforming and catalytic partial oxidation (CPOX) utilizing either air or pure oxygen as the oxidant. A computational model is developed and utilized to guide the specification of reforming conditions that maximize both CH4 and CO2 conversions. Model predictions are validated with experimental measurements over a wide range of biogas-reforming conditions. Higher reforming temperatures are shown to activate the biogas-borne CO2 to enable significant methane dry-reforming chemistry. Dry reforming minimizes the oxidant-addition needs for effective biogas conversion potentially decreasing the thermal requirements for reactant heating and improving system efficiency. Such high-temperature reforming conditions are prevalent during CPOX with a pure-O2 oxidant. While CPOX-with-O2 reforming is highly exothermic the endothermicity of dry-reforming chemistry can be exploited to ensure that catalyst temperatures do not reach levels which cause catalyst sintering and degradation. SOFCelectrochemical performance under biogas reformate is shown to vary substantially with reforming approach. Cell operation under CPOX-with-O2 reformate is found to be comparable to that under humidified hydrogen.

Danielle M. Murphy; Amy E. Richards; Andrew Colclasure; Wade A. Rosensteel; Neal P. Sullivan

2012-01-01T23:59:59.000Z

7

Multi-fuel reformers for fuel cells used in transportation. Multi-fuel reformers: Phase 1 -- Final report  

SciTech Connect (OSTI)

DOE has established the goal, through the Fuel Cells in Transportation Program, of fostering the rapid development and commercialization of fuel cells as economic competitors for the internal combustion engine. Central to this goal is a safe feasible means of supplying hydrogen of the required purity to the vehicular fuel cell system. Two basic strategies are being considered: (1) on-board fuel processing whereby alternative fuels such as methanol, ethanol or natural gas stored on the vehicle undergo reformation and subsequent processing to produce hydrogen, and (2) on-board storage of pure hydrogen provided by stationary fuel processing plants. This report analyzes fuel processor technologies, types of fuel and fuel cell options for on-board reformation. As the Phase 1 of a multi-phased program to develop a prototype multi-fuel reformer system for a fuel cell powered vehicle, the objective of this program was to evaluate the feasibility of a multi-fuel reformer concept and to select a reforming technology for further development in the Phase 2 program, with the ultimate goal of integration with a DOE-designated fuel cell and vehicle configuration. The basic reformer processes examined in this study included catalytic steam reforming (SR), non-catalytic partial oxidation (POX) and catalytic partial oxidation (also known as Autothermal Reforming, or ATR). Fuels under consideration in this study included methanol, ethanol, and natural gas. A systematic evaluation of reforming technologies, fuels, and transportation fuel cell applications was conducted for the purpose of selecting a suitable multi-fuel processor for further development and demonstration in a transportation application.

Not Available

1994-05-01T23:59:59.000Z

8

Advanced turbine systems program conceptual design and product development Task 8.3 - autothermal fuel reformer (ATR). Topical report  

SciTech Connect (OSTI)

Autothermal fuel reforming (ATR) consists of reacting a hydrocarbon fuel such as natural gas or diesel with steam to produce a hydrogen-rich {open_quotes}reformed{close_quotes} fuel. This work has been designed to investigate the fuel reformation and the product gas combustion under gas turbine conditions. The hydrogen-rich gas has a high flammability with a wide range of combustion stability. Being lighter and more reactive than methane, the hydrogen-rich gas mixes readily with air and can be burned at low fuel/air ratios producing inherently low emissions. The reformed fuel also has a low ignition temperature which makes low temperature catalytic combustion possible. ATR can be designed for use with a variety of alternative fuels including heavy crudes, biomass and coal-derived fuels. When the steam required for fuel reforming is raised by using energy from the gas turbine exhaust, cycle efficiency is improved because of the steam and fuel chemically recuperating. Reformation of natural gas or diesel fuels to a homogeneous hydrogen-rich fuel has been demonstrated. Performance tests on screening various reforming catalysts and operating conditions were conducted on a batch-tube reactor. Producing over 70 percent of hydrogen (on a dry basis) in the product stream was obtained using natural gas as a feedstock. Hydrogen concentration is seen to increase with temperature but less rapidly above 1300{degrees}F. The percent reforming increases as the steam to carbon ratio is increased. Two basic groups of reforming catalysts, nickel - and platinum-basis, have been tested for the reforming activity.

NONE

1996-11-01T23:59:59.000Z

9

Fuel cell integrated with steam reformer  

SciTech Connect (OSTI)

A H.sub.2 -air fuel cell integrated with a steam reformer is disclosed wherein a superheated water/methanol mixture is fed to a catalytic reformer to provide a continuous supply of hydrogen to the fuel cell, the gases exhausted from the anode of the fuel cell providing the thermal energy, via combustion, for superheating the water/methanol mixture.

Beshty, Bahjat S. (Lower Makefield, PA); Whelan, James A. (Bricktown, NJ)

1987-01-01T23:59:59.000Z

10

Steam reforming of fuel to hydrogen in fuel cells  

SciTech Connect (OSTI)

A fuel cell is claimed capable of utilizing a hydrocarbon such as methane as fuel and having an internal dual catalyst system within the anode zone, the dual catalyst system including an anode catalyst supporting and in heat conducting relationship with a reforming catalyst with heat for the reforming reaction being supplied by the reaction at the anode catalyst.

Fraioli, A.V.; Young, J.E.

1984-06-12T23:59:59.000Z

11

Steam reforming of fuel to hydrogen in fuel cells  

DOE Patents [OSTI]

A fuel cell capable of utilizing a hydrocarbon such as methane as fuel and having an internal dual catalyst system within the anode zone, the dual catalyst system including an anode catalyst supporting and in heat conducting relationship with a reforming catalyst with heat for the reforming reaction being supplied by the reaction at the anode catalyst.

Fraioli, Anthony V. (Hawthorne Woods, IL); Young, John E. (Woodridge, IL)

1984-01-01T23:59:59.000Z

12

Steam reforming of fuel to hydrogen in fuel cell  

DOE Patents [OSTI]

A fuel cell is described capable of utilizing a hydrocarbon such as methane as fuel and having an internal dual catalyst system within the anode zone, the dual catalyst system including an anode catalyst supporting and in heat conducting relationship with a reforming catalyst with heat for the reforming reaction being supplied by the reaction at the anode catalyst.

Young, J.E.; Fraioli, A.V.

1983-07-13T23:59:59.000Z

13

HH22 Reformer, Fuel Cell Power Plant,Reformer, Fuel Cell Power Plant, & Vehicle Refueling System& Vehicle Refueling System  

E-Print Network [OSTI]

sufficient hydrogen demand develops. #12;4 Relevant DOE Program Objectives Reduce dependence on foreign oil Promote use of diverse, domestic energy resources ­ Natural gas reformation Develop and demonstrate on test fill tank, CNG/H2 ICE vehicles and H2 Fuel Cell vehicles. Fuel dispensing integrated with City

14

Fuel Reformer, LNT and SCR Aftertreatment System Meeting Emissions...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Reformer, LNT and SCR Aftertreatment System Meeting Emissions Useful Life Requirements Fuel Reformer, LNT and SCR Aftertreatment System Meeting Emissions Useful Life Requirements...

15

FUEL CELLS – SOLID OXIDE FUEL CELLS | Internal and External Reformation  

Science Journals Connector (OSTI)

Three basic concepts of solid oxide fuel cell (SOFC) systems operating on hydrocarbon fuels, with external, internal, and partial prereforming, respectively, are presented and discussed. Internal reforming of methane is advantageously used for additional cooling of the SOFC stack, thus increasing system efficiency. Basic thermodynamics, catalysis, and kinetics of the methane steam reforming process are presented. Examples of SOFC stacks operating on internal reforming of methane and simulated partial prereforming of mine gas and natural gas are discussed. The latter is used to illustrate the effect of internal methane reforming on heat management in SOFC stacks.

L.G.J. de Haart; R. Peters

2009-01-01T23:59:59.000Z

16

Fuel processing for fuel cells: a model for fuel conversion and carbon formation in the adiabatic steam reformer  

SciTech Connect (OSTI)

In present fuel cell power plants the fuel processor is a catalytic steam reformer which is limited to the use of fuels such as naphtha and natural gas. The sulfur content of these feeds must be reduced to low levels by hydrotreatment before contacting the nickel catalyst in the reformer. However, future fuel cell power plants may be required to ue coal-derived liquid fuel or heavy petroleum distillates which are more difficult to hydrotreat and reform. To meet this requirement, an adiabatic steam reformer is being developed by United Technologies Corporation with the support of the Electric Power Research Institute. In the adiabatic reformer, air is added to the process stream to provide, by combustion, the heat for endothermic reforming in a catalyst bed. In the inlet section of the reformer, air and fuel combust, and reforming is initiated on special catalysts whose primary functon is to prevent formation and accumulation of carbon. Following the inlet section, catalysts with high activity for steam reforming complete the conversion of the remaining fuel, principally methane. The objective of the present program is to establish a reactor model for the adiabatic reformer which would predict process stream compositions and temperatures and include carbon formation processes. Progress is reported on the four tasks: (1) determine rate expressions for catalytic reactions occurring in the adiabatic reformer; (2) establish a reactor model to predict process stream compositions in the adiabatic reformer using data from Task 1 for cataytic reactions and data from the literature for homogeneous gas-phase reactions; (3) determine critical conditions for carbon formation on selected catalysts using microbalance experiments; and (4) establish a model to predict carbon formation by combination of the model for process stream composition from Task 2 and data for carbon formation from Task 3. (WHK)

Bett, J.A.S.; Cutlip, M.C.; Foley, P.F.; Lesieur, R.R.; Meyer, A.P.; Sederquist, R.A.; Setzer, H.J.

1981-01-01T23:59:59.000Z

17

Fuel reforming for fuel cell application.  

E-Print Network [OSTI]

??Fossil fuels, such as natural gas, petroleum, and coal are currently the primary source of energy that drives the world economy. However, fossil fuel is… (more)

Hung, Tak Cheong

2006-01-01T23:59:59.000Z

18

SMALL SCALE FUEL CELL AND REFORMER SYSTEMS FOR REMOTE POWER  

SciTech Connect (OSTI)

New developments in fuel cell technologies offer the promise of clean, reliable affordable power, resulting in reduced environmental impacts and reduced dependence on foreign oil. These developments are of particular interest to the people of Alaska, where many residents live in remote villages, with no roads or electrical grids and a very high cost of energy, where small residential power systems could replace diesel generators. Fuel cells require hydrogen for efficient electrical production, however. Hydrogen purchased through conventional compressed gas suppliers is very expensive and not a viable option for use in remote villages, so hydrogen production is a critical piece of making fuel cells work in these areas. While some have proposed generating hydrogen from renewable resources such as wind, this does not appear to be an economically viable alternative at this time. Hydrogen can also be produced from hydrocarbon feed stocks, in a process known as reforming. This program is interested in testing and evaluating currently available reformers using transportable fuels: methanol, propane, gasoline, and diesel fuels. Of these, diesel fuels are of most interest, since the existing energy infrastructure of rural Alaska is based primarily on diesel fuels, but this is also the most difficult fuel to reform, due to the propensity for coke formation, due to both the high vaporization temperature and to the high sulfur content in these fuels. There are several competing fuel cell technologies being developed in industry today. Prior work at UAF focused on the use of PEM fuel cells and diesel reformers, with significant barriers identified to their use for power in remote areas, including stack lifetime, system efficiency, and cost. Solid Oxide Fuel Cells have demonstrated better stack lifetime and efficiency in demonstrations elsewhere (though cost still remains an issue), and procuring a system for testing was pursued. The primary function of UAF in the fuel cell industry is in the role of third party independent testing. In order for tests to be conducted, hardware must be purchased and delivered. The fuel cell industry is still in a pre-commercial state, however. Commercial products are defined as having a fixed set of specifications, fixed price, fixed delivery date, and a warrantee. Negotiations with fuel cell companies over these issues are often complex, and the results of these discussions often reveal much about the state of development of the technology. This work includes some of the results of these procurement experiments. Fuel cells may one day replace heat engines as the source of electrical power in remote areas. However, the results of this program to date indicate that currently available hardware is not developed sufficiently for these environments, and that significant time and resources will need to be committed for this to occur.

Dennis Witmer

2003-12-01T23:59:59.000Z

19

Diesel Reforming for Solid Oxide Fuel Cell Application  

SciTech Connect (OSTI)

This presentation discusses the development of a diesel reforming catalyst and catalytic system development.

Liu, D-J.; Sheen, S-H.; Krumpelt, M.

2005-01-27T23:59:59.000Z

20

Modeling and simulation of a reformate supplied PEM fuel cell stack, application to fault detection  

E-Print Network [OSTI]

Modeling and simulation of a reformate supplied PEM fuel cell stack, application to fault detection exchange membrane (PEM) fuel cells are the main type of fuel cell developed for ground vehicle applications tool for thermal characteristic and fault detection of a PEM fuel cell stack. The fuel cell stack model

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "development reformed fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

On-Board Ammonia Generation Using Delphi Diesel Fuel Reformer  

Broader source: Energy.gov (indexed) [DOE]

Fuel LNT (Generates Ammonia) Exhaust Selective Catalytic DPF Valve Reduction Catalyst (SCR) 2 DEER 2007 Bypass V2 LNT V1 Reformer SCR Bypass V2 LNT V1 SCR Reformer * NOx storage...

22

Diesel Reforming for Fuel Cell Auxiliary Power Units  

SciTech Connect (OSTI)

This objective of this project was to develop technology suitable for onboard reforming of diesel. The approach was to examine catalytic partial oxidation and steam reforming.

Borup, R.; Parkinson, W. J.; Inbody, M.; Brosha, E.L.; Guidry, D.R.

2005-01-27T23:59:59.000Z

23

Fuel cell integrated with steam reformer  

SciTech Connect (OSTI)

A process is described of providing a continuous supply of hydrogen fuel to a fuel cell system. The system comprises a heat exchanger, a burner, a catalytic reactor containing a catalyst bed for catalyzing the production of hydrogen from a gaseous mixture of water and methanol and a fuel cell comprised of a fuel electrode, an oxygen electrode and an electrolyte disposed therebetween. The process comprises: passing a gaseous mixture consisting essentially of water and methanol to the heat exchanger to heat the mixture to a superheated state, the temperature and composition of the superheated mixture being sufficient to supply at least about 90% of the heat required for reforming the methanol contained in the mixture by condensation.

Beshty, B.S.; Whelan, J.A.

1987-06-02T23:59:59.000Z

24

Methods of Reforming Hydrocarbon Fuels Using Hexaaluminate Catalysts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Reforming Hydrocarbon Fuels Using of Reforming Hydrocarbon Fuels Using Hexaaluminate Catalysts Contact NETL Technology Transfer Group techtransfer@netl.doe.gov May 2012 Opportunity Research is currently active on the technology "Methods of Reforming Hydrocarbon Fuels Using Hexaaluminate Catalysts." The technology is available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory. Overview This invention discloses a method to reform hydrocarbon fuels using hexa- aluminate catalysts. In general, the method successfully disrupts the forma- tion of carbon that leads to the deactivation of the catalyst, a key element in the reforming of hydrocarbon fuels. When researchers are designing catalysts to reform hydrocarbon fuels, one

25

Improved System Performance and Reduced Cost of a Fuel Reformer...  

Broader source: Energy.gov (indexed) [DOE]

Improved System Performance and Reduced Cost of a Fuel Reformer, LNT, and SCR Aftertreatment System Meeting Emissions Useful Life Requirement Damodara Poojary, Jacques Nicole,...

26

Improved System Performance and Reduced Cost of a Fuel Reformer...  

Broader source: Energy.gov (indexed) [DOE]

Improved System Performance and Reduced Cost of a Fuel Reformer, LNT, and SCR Aftertreatment System Meeting Emissions Useful Life Requirement Improved System Performance and...

27

UNDERSTANDING OF CATALYST DEACTIVATION CAUSED BY SULFUR POISONING AND CARBON DEPOSITION IN STEAM REFORMING OF LIQUID HYDROCARBON FUELS.  

E-Print Network [OSTI]

??The present work was conducted to develop a better understanding on the catalyst deactivation in steam reforming of sulfur-containing liquid hydrocarbon fuels for hydrogen production.… (more)

Xie, Chao

2011-01-01T23:59:59.000Z

28

Vehicle type choice under the influence of a tax reform and rising fuel prices  

Science Journals Connector (OSTI)

Abstract Differentiated vehicle taxes are considered by many a useful tool for promoting environmentally friendly vehicles. Various structures have been implemented in several countries, e.g. Ireland, France, The Czech Republic, and Denmark. In many countries the tax reforms have been followed by a steep change in new vehicle purchases toward more diesel vehicles and more fuel-efficient vehicles. The paper analyses to what extent a vehicle tax reform similar to the Danish 2007 reform may explain changes in purchasing behaviour. The paper investigates the effects of a tax reform, fuel price changes, and technological development on vehicle type choice using a mixed logit model. The model allows a simulation of the effect of car price changes that resemble those induced by the tax reform. This effect is compared to the effects of fuel price changes and technology improvements. The simulations show that the effect of the tax reform on fuel efficiency is similar to the effect of rising fuel prices while the effect of technological development is much larger. The conclusion is that while the tax reform appeared in the same year as a large increase in fuel efficiency, it seems likely that it only explains a small part of the shift in fuel efficiency that occurred and that the main driver was the technological development.

Stefan L. Mabit

2014-01-01T23:59:59.000Z

29

Fuel cell system with combustor-heated reformer  

DOE Patents [OSTI]

A fuel cell system including a fuel reformer heated by a catalytic combustor fired by anode effluent and/or fuel from a liquid fuel supply providing fuel for the fuel cell. The combustor includes a vaporizer section heated by the combustor exhaust gases for vaporizing the fuel before feeding it into the combustor. Cathode effluent is used as the principle oxidant for the combustor.

Pettit, William Henry (Rochester, NY)

2000-01-01T23:59:59.000Z

30

A Planar Anode -Supported Solid Oxide Fuel Cell Model with Internal Reforming of Natural Gas  

E-Print Network [OSTI]

1 A Planar Anode - Supported Solid Oxide Fuel Cell Model with Internal Reforming of Natural Gas of natural gas has been developed. The model simultaneously solves mass, energy transport equations emission level, and multiple fuel utilization. SOFC can operate with various kinds of fuels such as natural

Boyer, Edmond

31

Activity and structure of perovskites as diesel reforming catalysts for solid oxide fuel cells.  

SciTech Connect (OSTI)

Recent progress in developing perovskite materials as more cost-effective catalysts in autothermal reforming (ATR) of diesel fuel to hydrogen-rich reformate for solid oxide fuel cell (SOFC) application is reported. Perovskite-type metal oxides with B sites partially exchanged by ruthenium were prepared and evaluated under ATR reaction conditions. The hydrogen yield, reforming efficiency, and CO{sub x} selectivity of these catalysts were investigated using diesel surrogate fuel with 50 ppm sulfur. The catalyst performances have approached or exceeded a benchmark, high-cost rhodium-based material. In parallel with the reactivity study, we also investigated the physical properties of B-site doped perovskites and their impact on the reforming performance using various characterization techniques such as BET, X-ray powder diffraction, temperature programmable reduction, scanning electron microscopy, and synchrotron X-ray absorption spectroscopy. We found that ruthenium is highly dispersed into perovskite lattice and its redox behavior is directly associated with reforming activity.

Liu, D.-J.; Krumpelt, M.; Chemical Engineering

2005-01-01T23:59:59.000Z

32

Heat exchanger for fuel cell power plant reformer  

DOE Patents [OSTI]

A heat exchanger uses the heat from processed fuel gas from a reformer for a fuel cell to superheat steam, to preheat raw fuel prior to entering the reformer and to heat a water-steam coolant mixture from the fuel cells. The processed fuel gas temperature is thus lowered to a level useful in the fuel cell reaction. The four temperature adjustments are accomplished in a single heat exchanger with only three heat transfer cores. The heat exchanger is preheated by circulating coolant and purge steam from the power section during startup of the latter.

Misage, Robert (Manchester, CT); Scheffler, Glenn W. (Tolland, CT); Setzer, Herbert J. (Ellington, CT); Margiott, Paul R. (Manchester, CT); Parenti, Jr., Edmund K. (Manchester, CT)

1988-01-01T23:59:59.000Z

33

In situ Gas Conditioning in Fuel Reforming for Hydrogen Generation  

SciTech Connect (OSTI)

The production of hydrogen for fuel cell applications requires cost and energy efficient technologies. The Absorption Enhanced Reforming (AER), developed at ZSW with industrial partners, is aimed to simplify the process by using a high temperature in situ CO2 absorption. The in situ CO2 removal results in shifting the steam reforming reaction equilibrium towards increased hydrogen concentration (up to 95 vol%). The key part of the process is the high temperature CO2 absorbent. In this contribution results of Thermal Gravimetric Analysis (TGA) investigations on natural minerals, dolomites, silicates and synthetic absorbent materials in regard of their CO2 absorption capacity and absorption/desorption cyclic stability are presented and discussed. It has been found that the inert parts of the absorbent materials have a structure stabilizing effect, leading to an improved cyclic stability of the materials.

Bandi, A.; Specht, M.; Sichler, P.; Nicoloso, N.

2002-09-20T23:59:59.000Z

34

Hydrogen & Fuel Cells - Hydrogen - Distributed Ethanol Reforming  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen from Bio-Derived Liquids Hydrogen from Bio-Derived Liquids Bio-derived liquid fuels can be produced from renewable agricultural products, such as wood chips. Background Bio-derived renewable fuels are attractive for their high energy density and ease of transport. One scenario for a sustainable hydrogen economy considers that these bio-derived liquid fuels will be produced at plants close to the biomass resource, and then transported to distributed hydrogen production centers (e.g., hydrogen refueling stations), where the fuels will be reformed via the steam reforming process, similar to the current centralized production of hydrogen by the steam reforming of natural gas. Hydrogen produced by reforming these fuels must first be purified and compressed to appropriate storage and dispensing pressures. Compressing

35

Hydrogen Production by Noncatalytic Autothermal Reformation of Aviation Fuel Using Supercritical Water  

Science Journals Connector (OSTI)

Hydrogen Production by Noncatalytic Autothermal Reformation of Aviation Fuel Using Supercritical Water ... Energy Fuels, 2009, 23 (12), ...

Jason W. Picou; Jonathan E. Wenzel; H. Brian Lanterman; Sunggyu Lee

2009-10-07T23:59:59.000Z

36

Fuel reforming for scramjet thermal management and combustion optimization  

E-Print Network [OSTI]

Fuel reforming for scramjet thermal management and combustion optimization E. DANIAU* , M. BOUCHEZ in a Scramjet combustion chamber. Another critical point is that mixing and combustion should be sufficiently

Paris-Sud XI, Université de

37

Electrochemical fuel cell generator having an internal and leak tight hydrocarbon fuel reformer  

DOE Patents [OSTI]

An electrochemical fuel cell generator configuration is made having a generator section which contains a plurality of axially elongated fuel cells, each cell containing a fuel electrode, air electrode, and solid oxide electrolyte between the electrodes, in which axially elongated dividers separate portions of the fuel cells from each other, and where at least one divider also reforms a reformable fuel gas mixture prior to electricity generation reactions, the at least one reformer-divider is hollow having a closed end and an open end entrance for a reformable fuel mixture to pass to the closed end of the divider and then reverse flow and pass back along the hollowed walls to be reformed, and then finally to pass as reformed fuel out of the open end of the divider to contact the fuel cells, and further where the reformer-divider is a composite structure having a gas diffusion barrier of metallic foil surrounding the external walls of the reformer-divider except at the entrance to prevent diffusion of the reformable gas mixture through the divider, and further housed in an outer insulating jacket except at the entrance to prevent short-circuiting of the fuel cells by the gas diffusion barrier. 10 figs.

Dederer, J.T.; Hager, C.A.

1998-03-31T23:59:59.000Z

38

Electrochemical fuel cell generator having an internal and leak tight hydrocarbon fuel reformer  

DOE Patents [OSTI]

An electrochemical fuel cell generator configuration is made having a generator section which contains a plurality of axially elongated fuel cells, each cell containing a fuel electrode, air electrode, and solid oxide electrolyte between the electrodes, in which axially elongated dividers separate portions of the fuel cells from each other, and where at least one divider also reforms a reformable fuel gas mixture prior to electricity generation reactions, the at least one reformer-divider is hollow having a closed end and an open end entrance for a reformable fuel mixture to pass to the closed end of the divider and then reverse flow and pass back along the hollowed walls to be reformed, and then finally to pass as reformed fuel out of the open end of the divider to contact the fuel cells, and further where the reformer-divider is a composite structure having a gas diffusion barrier of metallic foil surrounding the external walls of the reformer-divider except at the entrance to prevent diffusion of the reformable gas mixture through the divider, and further housed in an outer insulating jacket except at the entrance to prevent short-circuiting of the fuel cells by the gas diffusion barrier.

Dederer, Jeffrey T. (Valencia, PA); Hager, Charles A. (Mars, PA)

1998-01-01T23:59:59.000Z

39

Reforming petroleum-based fuels for fuel cell vehicles : composition-performance relationships.  

SciTech Connect (OSTI)

Onboard reforming of petroleum-based fuels, such as gasoline, may help ease the introduction of fuel cell vehicles to the marketplace. Although gasoline can be reformed, it is optimized to meet the demands of ICEs. This optimization includes blending to increase the octane number and addition of oxygenates and detergents to control emissions. The requirements for a fuel for onboard reforming to hydrogen are quite different than those for combustion. Factors such as octane number and flame speed are not important; however, factors such as hydrogen density, catalyst-fuel interactions, and possible catalyst poisoning become paramount. In order to identify what factors are important in a hydrocarbon fuel for reforming to hydrogen and what factors are detrimental, we have begun a program to test various components of gasoline and blends of components under autothermal reforming conditions. The results indicate that fuel composition can have a large effect on reforming behavior. Components which may be beneficial for ICEs for their octane enhancing value were detrimental to reforming. Fuels with high aromatic and naphthenic content were more difficult to reform. Aromatics were also found to have an impact on the kinetics for reforming of paraffins. The effects of sulfur impurities were dependent on the catalyst. Sulfur was detrimental for Ni, Co, and Ru catalysts. Sulfur was beneficial for reforming with Pt catalysts, however, the effect was dependent on the sulfur concentration.

Kopasz, J. P.; Miller, L. E.; Ahmed, S.; Devlin, P. R.; Pacheco, M.

2001-12-04T23:59:59.000Z

40

Low Cost Autothermal Diesel Reforming Catalyst Development  

SciTech Connect (OSTI)

Catalytic autothermal reforming (ATR) represents an important step of converting fossil fuel to hydrogen rich reformate for use in solid oxide fuel cell (SOFC) stacks. The state-of-the-art reforming catalyst, at present, is a Rh based material which is effective but costly. The objective of our current research is to reduce the catalyst cost by finding an efficient ATR catalyst containing no rhodium. A group of perovskite based catalysts have been synthesized and evaluated under the reforming condition of a diesel surrogate fuel. Hydrogen yield, reforming efficiency, and conversion selectivity to carbon oxides of the catalyst ATR reaction are calculated and compared with the benchmark Rh based material. Several catalyst synthesis improvements were carried out including: 1) selectively doping metals on the A-site and B-site of the perovskite structure, 2) changing the support from perovskite to alumina, 3) altering the method of metal addition, and 4) using transition metals instead of noble metals. It was found that the catalytic activity changed little with modification of the A-site metal, while it displayed considerable dependence on the B-site metal. Perovskite supports performed much better than alumina based supports.

Shihadeh, J.; Liu, D.

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "development reformed fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Exhaust gas fuel reforming of Diesel fuel by non-thermal arc discharge for NOx trap regeneration  

E-Print Network [OSTI]

1 Exhaust gas fuel reforming of Diesel fuel by non- thermal arc discharge for NOx trap regeneration to the reforming of Diesel fuel with Diesel engine exhaust gas using a non-thermal plasma torch for NOx trap Diesel fuel reforming with hal-00617141,version1-17May2013 Author manuscript, published in "Energy

Boyer, Edmond

42

Thermally efficient melting and fuel reforming for glass making  

DOE Patents [OSTI]

An integrated process for utilizing waste heat from a glass making furnace. The hot off-gas from the furnace is initially partially cooled, then fed to a reformer. In the reformer, the partially cooled off-gas is further cooled against a hydrocarbon which is thus reformed into a synthesis gas, which is then fed into the glass making furnace as a fuel. The further cooled off-gas is then recycled back to absorb the heat from the hot off-gas to perform the initial cooling.

Chen, Michael S. (Zionsville, PA); Painter, Corning F. (Allentown, PA); Pastore, Steven P. (Allentown, PA); Roth, Gary S. (Trexlertown, PA); Winchester, David C. (Allentown, PA)

1991-01-01T23:59:59.000Z

43

High performance internal reforming unit for high temperature fuel cells  

DOE Patents [OSTI]

A fuel reformer having an enclosure with first and second opposing surfaces, a sidewall connecting the first and second opposing surfaces and an inlet port and an outlet port in the sidewall. A plate assembly supporting a catalyst and baffles are also disposed in the enclosure. A main baffle extends into the enclosure from a point of the sidewall between the inlet and outlet ports. The main baffle cooperates with the enclosure and the plate assembly to establish a path for the flow of fuel gas through the reformer from the inlet port to the outlet port. At least a first directing baffle extends in the enclosure from one of the sidewall and the main baffle and cooperates with the plate assembly and the enclosure to alter the gas flow path. Desired graded catalyst loading pattern has been defined for optimized thermal management for the internal reforming high temperature fuel cells so as to achieve high cell performance.

Ma, Zhiwen (Sandy Hook, CT); Venkataraman, Ramakrishnan (New Milford, CT); Novacco, Lawrence J. (Brookfield, CT)

2008-10-07T23:59:59.000Z

44

Application of a Diesel Fuel Reformer for Tier 2 Bin 5 Emissions  

Broader source: Energy.gov (indexed) [DOE]

of a Diesel Fuel Reformer for Tier 2 Bin 5 Emissions APPROACH On-board diesel fuel reformation is being evaluated as an alternative to urea SCR to meet Tier 2 Bin 5 emissions...

45

Numerical analysis of an internal methane reforming solid oxide fuel cell with fuel recycling  

Science Journals Connector (OSTI)

The development of solid oxide fuel cell (SOFC) systems capable of direct internal reforming (DIR) of methane is being actively pursued. However, a major challenge with current state-of-the-art nickel-based anodes is their propensity to form deteriorous carbon deposits in DIR, unless excess steam is introduced in the fuel. Reduced fuel humidification levels are desirable from the viewpoints of cell performance, reliability and plant economics. This study explores the use of partial recycling of the anode exhaust as a mitigation strategy against carbon deposits at fuel steam-to-carbon ratios less than unity. Using a detailed computational fluid dynamics (CFD) model which couples momentum, heat, mass and charge transport with electrochemical and chemical reactions, the spatial extent of carbon deposition within a SOFC anode is analyzed by accounting for both the cracking and Boudouard reactions, for several fuel humidification and recycling conditions. At temperatures of approximately 1173 K and for inlet fuel molar H2O/CH4 ratios between 0.5 and 1, 50% (mass%) fuel recycling is found to be an effective strategy against carbon deposition. For lower recycling levels at the same fuel compositions, or lower fuel humidification levels (regardless of the recycling level), fuel recycling reduces the risk of coking, but does not eliminate it. The analyses presented suggest that recycling of the anodic fuel stream could help extend the operational range of DIR-SOFCs to lower fuel humidification levels than typically considered, with reduced risks of carbon deposits, while reducing system cost and complexity in terms of steam production. For dry or weakly humidified fuels, additional mitigation strategies would be required.

Valérie Eveloy

2012-01-01T23:59:59.000Z

46

Application of Exhaust Gas Fuel Reforming in Compression Ignition Engines Fueled by Diesel and Biodiesel Fuel Mixtures  

Science Journals Connector (OSTI)

In recent years, ester-based oxygenated fuels have been used in compression ignition engines in pure form or as an addition to diesel fuel. ... In hydrocarbon steam reforming (SR), high-temperature steam separates hydrogen from carbon atoms. ...

A. Tsolakis; A. Megaritis; M. L. Wyszynski

2003-09-19T23:59:59.000Z

47

Pyrochlore-type catalysts for the reforming of hydrocarbon fuels  

DOE Patents [OSTI]

A method of catalytically reforming a reactant gas mixture using a pyrochlore catalyst material comprised of one or more pyrochlores having the composition A.sub.2-w-xA'.sub.wA''.sub.xB.sub.2-y-zB'.sub.yB''.sub.zO.sub.7-.DELTA.. Distribution of catalytically active metals throughout the structure at the B site creates an active and well dispersed metal locked into place in the crystal structure. This greatly reduces the metal sintering that typically occurs on supported catalysts used in reforming reactions, and reduces deactivation by sulfur and carbon. Further, oxygen mobility may also be enhanced by elemental exchange of promoters at sites in the pyrochlore. The pyrochlore catalyst material may be utilized in catalytic reforming reactions for the conversion of hydrocarbon fuels into synthesis gas (H.sub.2+CO) for fuel cells, among other uses.

Berry, David A. (Morgantown, WV); Shekhawat, Dushyant (Morgantown, WV); Haynes, Daniel (Morgantown, WV); Smith, Mark (Morgantown, WV); Spivey, James J. (Baton Rouge, LA)

2012-03-13T23:59:59.000Z

48

Electricity reform in developing and transition countries: A reappraisal  

E-Print Network [OSTI]

Electricity reform in developing and transition countries: A reappraisal J.H. Williams, R. Ghanadan-oriented reforms in their electric power sectors. Despite the widespread adoption of a standard policy model features of non-OECD electricity reform and reappraises reform policies and underlying assumptions

Kammen, Daniel M.

49

Energy and exergy analysis of an ethanol reforming process for solid oxide fuel cell applications  

Science Journals Connector (OSTI)

Abstract The fuel processor in which hydrogen is produced from fuels is an important unit in a fuel cell system. The aim of this study is to apply a thermodynamic concept to identify a suitable reforming process for an ethanol-fueled solid oxide fuel cell (SOFC). Three different reforming technologies, i.e., steam reforming, partial oxidation and autothermal reforming, are considered. The first and second laws of thermodynamics are employed to determine an energy demand and to describe how efficiently the energy is supplied to the reforming process. Effect of key operating parameters on the distribution of reforming products, such as H2, CO, CO2 and CH4, and the possibility of carbon formation in different ethanol reformings are examined as a function of steam-to-ethanol ratio, oxygen-to-ethanol ratio and temperatures at atmospheric pressure. Energy and exergy analysis are performed to identify the best ethanol reforming process for SOFC applications.

Phanicha Tippawan; Amornchai Arpornwichanop

2014-01-01T23:59:59.000Z

50

An Innovative Injection and Mixing System for Diesel Fuel Reforming  

SciTech Connect (OSTI)

This project focused on fuel stream preparation improvements prior to injection into a solid oxide fuel cell reformer. Each milestone and the results from each milestone are discussed in detail in this report. The first two milestones were the creation of a coking formation test rig and various testing performed on this rig. Initial tests indicated that three anti-carbon coatings showed improvement over an uncoated (bare metal) baseline. However, in follow-up 70 hour tests of the down selected coatings, Scanning Electron Microscope (SEM) analysis revealed that no carbon was generated on the test specimens. These follow-up tests were intended to enable a down selection to a single best anti-carbon coating. Without the formation of carbon it was impossible to draw conclusions as to which anti-carbon coating showed the best performance. The final 70 hour tests did show that AMCX AMC26 demonstrated the lowest discoloration of the metal out of the three down selected anti-carbon coatings. This discoloration did not relate to carbon but could be a useful result when carbon growth rate is not the only concern. Unplanned variations in the series of tests must be considered and may have altered the results. Reliable conclusions could only be drawn from consistent, repeatable testing beyond the allotted time and funding for this project. Milestones 3 and 4 focused on the creation of a preheating pressure atomizer and mixing chamber. A design of experiment test helped identify a configuration of the preheating injector, Build 1, which showed a very uniform fuel spray flow field. This injector was improved upon by the creation of a Build 2 injector. Build 2 of the preheating injector demonstrated promising SMD results with only 22psi fuel pressure and 0.7 in H2O of Air. It was apparent from testing and CFD that this Build 2 has flow field recirculation zones. These recirculation zones may suggest that this Build 2 atomizer and mixer would require steam injection to reduce the auto ignition potential. It is also important to note that to achieve uniform mixing within a short distance, some recirculation is necessary. Milestone 5 generated CFD and FEA results that could be used to optimize the preheating injector. CFD results confirmed the recirculation zones seen in test data and confirmed that the flow field would not change when attached to a reformer. The FEA predicted fuel wetted wall temperatures which led to several suggested improvements that could possibly improve nozzle efficiency. Milestone 6 (originally an optional task) took a different approach than the preheating pressure atomizer. It focused on creation and optimization of a piezoelectric injector which could perform at extremely low fuel pressures. The piezoelectric atomizer showed acceptable SMD results with fuel pressure less than 1.0 psig and air pressure less than 1.0 in H2O. These SMD values were enhanced when a few components were changed, and it is expected would improve further still at elevated air temperatures. It was demonstrated that the piezoelectric injector could accomplish the desired task. The addition of phase tracking and a burst mode to the frequency controller increased the usability of the piezoelectric injector. This injector is ready to move on to the next phase of development. Engine Components has met the required program milestones of this project. Some of the Milestones were adjusted to allow Milestone 6 to be completed in parallel with the other Milestones. Because of this, Task 3.10 and 3.13 were made optional instead of Milestone 6. Engine Components was extremely grateful for the support that was provided by NETL in support of this work.

Spencer Pack

2007-12-31T23:59:59.000Z

51

Development of thin palladium membranes supported on large porous 310L tubes for a steam reformer operated with gas-to-liquid fuel  

Science Journals Connector (OSTI)

Abstract Palladium membranes were prepared on large tubes (80 mm diameter and 150 mm length) of porous stainless steel supports (PSS) using a modified electroless plating technique. The morphology of the palladium layer was found to be depending on the container material of the coating apparatus. The use of PMMA resulted in compact palladium layers with smooth surfaces whereas PTFE led to inhomogeneous palladium coating with rough surface. Two different ceramic materials and coating methods were used to prepare an intermediate layer needed to prevent intermetallic diffusion between the palladium and the support at elevated temperatures. Wet powder spraying of TiO2 followed by sintering resulted in a smoother surface than atmospheric plasma spraying of YSZ, thus allowing for a thinner palladium coating. Pd/TiO2/PSS membranes showed about 4 times higher hydrogen permeances than Pd/YSZ/PSS membranes as a consequence of higher palladium thickness and lower porosity of the ceramic intermediate layer. The selectivity against nitrogen was comparable for both membranes. However, the YSZ intermediate layer showed better stability at elevated temperatures. Two membrane tubes were applied in the membrane reformer, which produced hydrogen successfully from a gas-to-liquid (GtL) fuel.

Grazyna Straczewski; Johannes Völler-Blumenroth; Hubert Beyer; Peter Pfeifer; Michael Steffen; Ingmar Felden; Angelika Heinzel; Matthias Wessling; Roland Dittmeyer

2014-01-01T23:59:59.000Z

52

The Clean Development Mechanism and Power Sector Reforms in Developing  

E-Print Network [OSTI]

regions include stimulating private sector financing, increasing operational and managerial efficiencies and lowering electricity tariffs #12;The CDM and renewable energy · Power sector reforms could potentially require higher investments for electricity generation than conventional fuel projects · Can also offer

53

Electricity reform in Chile : lessons for developing countries  

E-Print Network [OSTI]

Chile was the first country in the world to implement a comprehensive reform of its electricity sector in the recent period. Among developing countries only Argentina has had a comparably comprehensive and successful reform. ...

Pollitt, Michael G.

2004-01-01T23:59:59.000Z

54

How fuel composition affects on-board reforming for fuel cell vehicles.  

SciTech Connect (OSTI)

Different blends of gasoline range hydrocarbons were investigated to determine the effect of aromatic, naphthenic, and paraffinic content on performance in an autothermal reformer. In addition, we investigated the effects of detergent, antioxidant, and oxygenate additives. These tests indicate that composition effects are minimal at temperatures of 800C and above, but at lower temperatures or at high gas hourly space velocities (GHSV approaching 100,000 h{sup -1} ) composition can have a large effect on catalyst performance. Fuels high in aromatic and naphthenic components were more difficult to reform. In addition, additives, such as detergents and oxygenates were shown to decrease reformer performance at lower temperatures.

Kopasz, J. P.; Miller, L. E.; Applegate, D. V.; Chemical Engineering

2003-01-01T23:59:59.000Z

55

A Fast Start-up On-Board Fuel Reformer for NOx Adsorber Regeneration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Processor for Rapid and Efficient Regeneration of Single Leg NOx Adsorber Systems Hydrogen generation from plasmatron reformers and use for diesel exhaust aftertreatment...

56

Endurance testing of a high-efficiency steam reformer for fuel cell power plants: Final report  

SciTech Connect (OSTI)

This final report documents the results from demonstration and endurance tests, conducted in 1987 and 1988, of the Haldor Topsoe Heat Exchange Reformer. The primary objectives of this EPRI project were to develop, test and verify fuel processing components suitable for use in a Westinghouse Electric Corporation 7.5-MW phosphoric acid fuel cell power plant. EPRI's project is part of a larger national program sponsored by the Department of Energy to develop the technology and systems which are technically and economically viable for electric utility power generation applications. 26 figs., 11 tabs.

Udengaard, N.R.; Christiansen, L.J.; Summers, W.A.

1988-10-01T23:59:59.000Z

57

Demonstration of a high-efficiency steam reformer for fuel cell power plant applications  

SciTech Connect (OSTI)

Full-scale tests of a new modular steam reformer confirm its suitability for a wide range of fuel cell power plant applications. This new fuel processor offers interested utilities excellent performance, operating flexibility, reliability, and maintainability.

Udengaard, N.R.; Christiansen, L.J.; Summers, W.A.

1987-08-01T23:59:59.000Z

58

Reaction Profiles during Exhaust-Assisted Reforming of Diesel Engine Fuels  

Science Journals Connector (OSTI)

Reaction Profiles during Exhaust-Assisted Reforming of Diesel Engine Fuels ... The reforming efficiency was dependent on the fuel type and followed the general trend of bioethanol > rapeseed methyl ester > low-sulfur diesel fuel. ... The use of exhaust gas recirculation (EGR) in diesel engines reduces nitrogen oxide (NOx) emissions but results in an increased release of smoke and particulate matter (PM), as well as higher fuel consumption. ...

A. Tsolakis; A. Megaritis; S. E. Golunski

2005-03-10T23:59:59.000Z

59

Electrochemical Removal of Carbon Monoxide in Reformate Hydrogen for Fueling Proton Exchange Membrane  

E-Print Network [OSTI]

Electrochemical Removal of Carbon Monoxide in Reformate Hydrogen for Fueling Proton Exchange Membrane Fuel Cells Sivagaminathan Balasubramanian, Charles E. Holland,* and John W. Weidner*,z Center in reformate hydrogen. In this design, the potential and gas flow are switched between the two filter cells so

Weidner, John W.

60

Modeling the Effects of Steam-Fuel Reforming Products on Low Temperature Combustion of n-Heptane  

Broader source: Energy.gov [DOE]

The effects of blends of base fuel (n-heptane) and fuel-reformed products on the low-temperature combustion process were investigated.

Note: This page contains sample records for the topic "development reformed fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Performance and endurance of a high temperature PEM fuel cell operated on methanol reformate  

E-Print Network [OSTI]

Performance and endurance of a high temperature PEM fuel cell operated on methanol reformate Samuel September 2014 Available online xxx Keywords: High temperature PEM Fuel cell Methanol Impedance spectroscopy]. The report forecasts even more success for fuel cells in the near future. Proton exchange membrane (PEM) fuel

Kær, Søren Knudsen

62

The Effect of Reformate on PEM Fuel Cell Performance Mahesh Murthy  

E-Print Network [OSTI]

Exchanged Membrane (PEM) fuel cells in a "hydrogen-challenged" economy, hydrogen can be produced contains about 35 - 40 % hydrogen [1]. The effects of reformate fuel on the performance of PEM fuel cells in hydrogen for a laboratory polymer electrolyte membrane fuel cell [3, 4]. In these earlier studies

Van Zee, John W.

63

Reforming Power Markets in Developing Countries | Open Energy Information  

Open Energy Info (EERE)

Reforming Power Markets in Developing Countries Reforming Power Markets in Developing Countries Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Reforming Power Markets in Developing Countries Agency/Company /Organization: World Bank Sector: Energy Focus Area: Conventional Energy, Renewable Energy Topics: Policies/deployment programs Resource Type: Publications, Lessons learned/best practices Website: siteresources.worldbank.org/INTENERGY/Resources/Energy19.pdf References: Reforming Power Markets in Developing Countries [1] Summary "This paper complements the World Bank's Operational Guidance Note by compiling lessons of this experience that help in applying the Note's guidance. These lessons are taken from the rapidly growing literature on power market reform in developing countries. They cover the range of issues

64

Autothermal and partial oxidation reformer-based fuel processor, method for improving catalyst function in autothermal and partial oxidation reformer-based processors  

DOE Patents [OSTI]

The invention provides a fuel processor comprising a linear flow structure having an upstream portion and a downstream portion; a first catalyst supported at the upstream portion; and a second catalyst supported at the downstream portion, wherein the first catalyst is in fluid communication with the second catalyst. Also provided is a method for reforming fuel, the method comprising contacting the fuel to an oxidation catalyst so as to partially oxidize the fuel and generate heat; warming incoming fuel with the heat while simultaneously warming a reforming catalyst with the heat; and reacting the partially oxidized fuel with steam using the reforming catalyst.

Ahmed, Shabbir; Papadias, Dionissios D.; Lee, Sheldon H. D.; Ahluwalia, Rajesh K.

2013-01-08T23:59:59.000Z

65

Idle catalytic reformer can be converted to isomerization unit or jet-fuel treater  

SciTech Connect (OSTI)

This article discusses the economic advantages in conversion of catalytic reformers idled by reduced demand or rendered obsolete by replacement with modern technology. An older semi-regenerative reformer can be converted to a modern C4 or C5/C6 isomerization unit or to a kerosene hydrotreater to meet jet fuel specifications. Reactor design parameters operating conditions, and equipment sizing required for the highly endothermic reforming process are discussed.

Cobb, D.D.; Chapel, D.G.

1985-06-03T23:59:59.000Z

66

Performance of Sulfur Tolerant Reforming Catalysts for Production of Hydrogen from Jet Fuel Simulants  

E-Print Network [OSTI]

,2 operated by fuel cells. Unfortunately, the lack of infrastructure, such as a network of hydrogen refueling of hydrogen sulfide (H2S), which poisons the anode in the fuel cell stack, leading to low SOFC efficiencyPerformance of Sulfur Tolerant Reforming Catalysts for Production of Hydrogen from Jet Fuel

Azad, Abdul-Majeed

67

American Institute of Aeronautics and Astronautics Measurements for fuel reforming for scramjet thermal management and  

E-Print Network [OSTI]

American Institute of Aeronautics and Astronautics 1 Measurements for fuel reforming for scramjet, since even composite materials can't withstand the large heat load found in a Scramjet combustion

Paris-Sud XI, Université de

68

Modeling of Pressurized Electrochemistry and Steam-Methane Reforming in Solid Oxide Fuel Cells and the Effects on Thermal and Electrical Stack Performance  

SciTech Connect (OSTI)

Summarizes work done to extend the electrochemical performance and methane reforming submodels to include the effects of pressurization and to demonstrate this new modeling capability by simulating large stacks operating on methane-rich fuel under pressurized and non-pressurized conditions. Pressurized operation boosts electrochemical performance, alters the kinetics of methane reforming, and effects the equilibrium composition of methane fuels. This work developed constitutive submodels that couple the electrochemistry, reforming, and pressurization to yield an increased capability of the modeling tool for prediction of SOFC stack performance.

Recknagle, Kurtis P.; Khaleel, Mohammad A.

2009-03-01T23:59:59.000Z

69

\\{NOx\\} reduction from a large bore natural gas engine via reformed natural gas prechamber fueling optimization  

Science Journals Connector (OSTI)

Lean combustion is a standard approach used to reduce \\{NOx\\} emissions in large bore (35–56 cm) stationary natural gas engines. However, at lean operating points, combustion instabilities and misfires give rise to high total hydrocarbon (THC) and carbon monoxide (CO) emissions. To counteract this effect, precombustion chamber (PCC) technology is employed to allow engine operation at an overall lean equivalence ratio while mitigating the rise of THC and CO caused by combustion instability and misfires. A PCC is a small chamber, typically 1–2% of the clearance volume. A separate fuel line supplies gaseous fuel to the PCC and a standard spark plug ignites the slightly rich mixture (equivalence ratio 1.1–1.2) in the PCC. The ignited PCC mixture enters the main combustion chamber as a high energy flame jet, igniting the lean mixture in the main chamber. Typically, natural gas fuels both the main chamber and the PCC. In the current research, a mixture of reformed natural gas (syngas) and natural gas fuels the PCC. Syngas is a broad term that refers to a synthetic gaseous fuel. In this case, syngas specifically denotes a mixture of hydrogen, carbon monoxide, nitrogen, and methane generated in a natural gas reformer. Syngas has a faster flame speed and a wider equivalence ratio range of operation than methane. Fueling the PCC with Syngas reduces combustion instabilities and misfires. This extends the overall engine lean limit, enabling further \\{NOx\\} reductions. Research results presented are aimed at quantifying the benefits of syngas PCC fueling. A model is developed to calculate the equivalence ratio in the PCC for different mixtures and flowrates of fuel. An electronic injection valve is used to supply the PCC with syngas. The delivery pressure, injection timing, and flow rate are varied to optimize PCC equivalence ratio. The experimental results show that supplying the PCC with 100% syngas improves combustion stability by 21% compared to natural gas PCC fueling. A comparison at equivalent combustion stability operating points between 100% syngas and natural gas shows an 87% reduction in \\{NOx\\} emissions for 100% syngas PCC fueling compared to natural gas PCC fueling.

Mathew D. Ruter; Daniel B. Olsen; Mark V. Scotto; Mark A. Perna

2012-01-01T23:59:59.000Z

70

Methods of reforming hydrocarbon fuels using hexaaluminate catalysts  

DOE Patents [OSTI]

A metal substituted hexaaluminate catalyst for reforming hydrocarbon fuels to synthesis gas of the general formula AB.sub.yAl.sub.12-yO.sub.19-.delta., A being selected from alkali metals, alkaline earth metals and lanthanide metals or mixtures thereof. A dopant or surface modifier selected from a transitions metal, a spinel of an oxygen-ion conductor is incorporated. The dopant may be Ca, Cs, K, La, Sr, Ba, Li, Mg, Ce, Co, Fe, Ir, Rh, Ni, Ru, Cu, Pe, Os, Pd, Cr, Mn, W, Re, Sn, Gd, V, Ti, Ag, Au, and mixtures thereof. The oxygen-ion conductor may be a perovskite selected from M'RhO.sub.3, M'PtO.sub.3, M'PdO.sub.3, M'IrO.sub.3, M'RuO.sub.3 wherein M'=Mg, Sr, Ba, La, Ca; a spinel selected from MRh.sub.2O.sub.4, MPt.sub.2O.sub.4, MPd.sub.2O.sub.4, MIr.sub.2O.sub.4, MRu.sub.2O.sub.4 wherein M=Mg, Sr, Ba, La, Ca and mixtures thereof; a florite is selected from M''O.sub.2.

Gardner, Todd H. (Morgantown, WV); Berry, David A. (Morgantown, WV); Shekhawat, Dushyant (Morgantown, WV)

2012-03-27T23:59:59.000Z

71

REFORMING OF LIQUID HYDROCARBONS IN A NOVEL HYDROGEN-SELECTIVE MEMBRANE-BASED FUEL PROCESSOR  

SciTech Connect (OSTI)

We propose to develop an inorganic metal-metal composite membrane to study reforming of liquid hydrocarbons and methanol by equilibrium shift in membrane-reactor configuration, viewed as fuel processor. Based on our current understanding and experience in the Pd-ceramic composite membrane, we propose to further develop this membrane to a Pd and Pd-Ag alloy membrane on microporous stainless steel support to provide structural reliability from distortion due to thermal cycling. Because of the metal-metal composite structure, we believe that the associated end-seal problem in the Pd-ceramic composite membrane in tubular configuration would not be an issue at all. We plan to test this membrane as membrane-reactor-separator for reforming liquid hydrocarbons and methanol for simultaneous production and separation of high-purity hydrogen for PEM fuel cell applications. To improve the robustness of the membrane film and deep penetration into the pores, we have used osmotic pressure field in the electroless plating process. Using this novel method, we deposited thin Pd-film on the inside of microporous stainless steel tube and the deposited film appears to robust and defect free. Work is in progress to evaluate the hydrogen perm-selectivity of the Pd-stainless steel membrane.

Shamsuddin Ilias

2003-06-30T23:59:59.000Z

72

Fuel Cell Development Status  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Development Status Michael Short Systems Engineering Manager United Technologies Corporation Research Center Hamilton Sundstrand UTC Power UTC Fire & Security Fortune 50 corporation $52.9B in annual sales in 2009 ~60% of Sales are in building technologies Transportation Stationary Fuel Cells Space & Defense * Fuel cell technology leader since 1958 * ~ 550 employees * 768+ Active U.S. patents, more than 300 additional U.S. patents pending * Global leader in efficient, reliable, and sustainable fuel cell solutions UTC Power About Us PureCell ® Model 400 Solution Process Overview Power Conditioner Converts DC power to high-quality AC power 3 Fuel Cell Stack Generates DC power from hydrogen and air 2 Fuel Processor Converts natural gas fuel to hydrogen

73

Exhaust Gas Fuel Reforming of Diesel Fuel by Nonthermal Arc Discharge for NOx Trap Regeneration Application  

Science Journals Connector (OSTI)

Exhaust Gas Fuel Reforming of Diesel Fuel by Nonthermal Arc Discharge for NOx Trap Regeneration Application ... It has been demonstrated that low current arc discharges are highly nonhomogenous. ... In the second case, which corresponds to the most favorable one, assuming (i) a 100 kW car engine thermal power (i.e., 40 kW mechanical power), (ii) that the plasma will treat only a small fraction of the exhaust gas (typically 3.5%), (iii) that the plasma will operate under a cycling operating mode, and (iv) an 80% efficiency for the onboard production of electricity from the car engine, one can estimate that the electric power needed to run the plasma will be around 2.2% of the engine power only during 12 s every 11 km (6.8 miles), that is, 12 s every 6 min assuming a 110 km·h?1 (68 mph) average car velocity. ...

Alexandre Lebouvier; Franc?ois Fresnet; Fre?de?ric Fabry; Vale?rie Boch; Vandad Rohani; Franc?ois Cauneau; Laurent Fulcheri

2011-02-03T23:59:59.000Z

74

DFMA Cost Estimates of Fuel-Cell/Reformer Systems  

E-Print Network [OSTI]

Car Technical Barriers Addressed: Fuel Flexible Processors Technical Barriers N: Cost Component designs of complete automotive FC power systems: · Onboard gasoline fuel processor and PEM fuel cell ·Fuel cell stacks ·Air supply and humidification ·Thermal management ·Water management ·Fuel Supply

75

Economics of the Clean Fuel Hydrogen in a Novel Autothermal Reforming Process  

Science Journals Connector (OSTI)

Economics of the Clean Fuel Hydrogen in a Novel Autothermal Reforming Process ... Gaudernack, B. Hydrogen Production from Fossil Fuels. ... Myers, D. B.; Ariff, G. D.; James, B. D.; Lettow, J. S.; Thomas, C. E. (Sandy); Kuhn, R. C. Cost and Performance Comparison Of Stationary Hydrogen Fueling Appliances; Task 2 Report; The Hydrogen Program Office, Office of Power Technologies, U.S. Department of Energy:? Washington, DC, Apr 2002; under Grant DE-FG01-99EE35099. ...

Zhongxiang Chen; Said S. E. H. Elnashaie

2005-05-20T23:59:59.000Z

76

Experimental and numerical analysis of transport phenomena in an internal indirect fuel reforming type Solid Oxide Fuel Cells using Ni/SDC as a catalyst  

Science Journals Connector (OSTI)

This paper presents experimental and numerical studies on the fuel reforming process on an Ni/SDC catalyst. To optimize the reforming reactors, detailed data about the entire reforming process is required. In the present paper kinetics of methane/steam reforming on the Ni/SDC catalyst was experimentally investigated. Measurements including different thermal boundary conditions, the fuel flow rate and the steam-to-methane ratios were performed. The reforming rate equation derived from experimental data was implemented in into numerical model which was numerically solved in order to discuss this process in details.

G Brus; S Kimijima; J S Szmyd

2012-01-01T23:59:59.000Z

77

Breakthrough Vehicle Development - Fuel Cells  

Fuel Cell Technologies Publication and Product Library (EERE)

Document describing research and development program for fuel cell power systems for transportation applications.

78

Distributed Bio-Oil Reforming - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Stefan Czernik (Primary Contact), Richard French, Michael Penev National Renewable Energy Laboratory (NREL) 15013 Denver West Parkway Golden, CO 80401 Phone: (303) 384-6135 Email: Stefan.Czernik@nrel.gov DOE Manager Sara Dillich Phone: (202) 586-1623 Email: Sara.Dillich@ee.doe.gov Subcontractor: University of Minnesota, Minneapolis, MN Project Start Date: October 1, 2004 Project End Date: September 30, 2012 Fiscal Year (FY) 2012 Objectives By 2012, develop and demonstrate distributed reforming * technology for producing hydrogen from bio-oil at $4.10/ kilogram (kg) purified hydrogen. Demonstrate integrated performance at bench scale * including bio-oil vaporization, partial-oxidation (POX)

79

Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fueling Fueling Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Locations Infrastructure Development Business Case Equipment Options

80

Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fueling Fueling Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on AddThis.com... More in this section... Hydrogen Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives

Note: This page contains sample records for the topic "development reformed fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Alternative Fuels Data Center: Alternative Fuel Research and Development  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Fuel Research and Development Funding to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Research and Development Funding on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Research and Development Funding on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Research and Development Funding on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Research and Development Funding on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Research and Development Funding on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Research and Development Funding on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

82

Hydrogen Fuel Quality - Focus: Analytical Methods Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Quality - Focus: Analytical Methods Development & Hydrogen Fuel Quality Results Hydrogen Fuel Quality - Focus: Analytical Methods Development & Hydrogen Fuel Quality Results...

83

Ethanol Steam Reforming Thermally Coupled with Fuel Combustion in a Parallel Plate Reactor  

Science Journals Connector (OSTI)

Experimental Conditions for Measuring the Isothermal Kinetics of the Pd-Based Catalytic Spacers for Ethanol Steam Reforming ... (9) On the basis of previous experience,(23) a mixture of hydrogen with CO2 (about 1:2 in molar ratio) is used as fuel in order to reduce the danger of homogeneous combustion of the fuel in the mixing zones. ... 0.09 (after mixing with air) were necessary to prevent ignition of the homogeneous reaction. ...

Eduardo Lopez; Vanessa Gepert; Achim Gritsch; Ulrich Nieken; Gerhart Eigenberger

2012-02-28T23:59:59.000Z

84

Alternative Fuels Data Center: Propane Fueling Infrastructure Development  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Infrastructure Development to someone by E-mail Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Digg Find More places to share Alternative Fuels Data Center: Propane Fueling Infrastructure Development on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives

85

Alternative Fuels Data Center: Biodiesel Fueling Infrastructure Development  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Infrastructure Development to someone by E-mail Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Biodiesel Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Biodiesel Fueling Infrastructure Development on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fueling Infrastructure Development on AddThis.com... More in this section... Biodiesel Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives

86

Hydrogen Production for Fuel Cells Via Reforming Coal-Derived Methanol  

SciTech Connect (OSTI)

Hydrogen can be produced from many feed stocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the fourth report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of July 1-Sept 30, 2004 along with a recap of progress from the start of the project on Oct 1, 2003 to Sept 30, 2004. All of the projects are proceeding on or slightly ahead of schedule. This year saw progress in several areas. These areas are: (1) External and internal evaluation of coal based methanol and a fuel cell grade baseline fuel, (2) Design set up and initial testing of three laboratory scale steam reformers, (3) Design, set up and initial testing of a laboratory scale autothermal reactor, (4) Hydrogen generation from coal-derived methanol using steam reformation, (5) Experiments to determine the axial and radial thermal profiles of the steam reformers, (6) Initial catalyst degradation studies with steam reformation and coal based methanol, and (7) Experimental investigations of heat and mass transfer enhancement methods by flow field manipulation. All of the projects are proceeding on or slightly ahead of schedule.

Paul A. Erickson

2004-09-30T23:59:59.000Z

87

HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL  

SciTech Connect (OSTI)

Hydrogen can be produced from many feedstocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the sixth report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of January 1-March 31, 2005. This quarter saw progress in four areas. These areas are: (1) Autothermal reforming of coal derived methanol, (2) Catalyst deactivation, (3) Steam reformer transient response, and (4) Catalyst degradation with bluff bodies. All of the projects are proceeding on or slightly ahead of schedule.

Paul A. Erickson

2005-04-01T23:59:59.000Z

88

Autothermal Reforming of Glycerol with Supercritical Water for Maximum Power through a Turbine Plus a Fuel Cell  

Science Journals Connector (OSTI)

An autothermal reforming of glycerol process using supercritical water was proposed to produce maximum power by means of a turbine, from the huge pressure energy of product gas just at the outlet of the reformer, and a proton exchange membrane (PEM) fuel cell, which is fed by a hydrogen-rich stream. ... Supercritical water (SCW) has many advantageous properties and is extremely reactive,(5-8) and it may allow for the performance of a catalyst-free process, because of its relevant thermophysical properties, such as a high capability to solubilize gaseous organic molecules and high reactivity, among others. ... This research is supported by the Science and Technology Ministry of Spain under Research Project ENE2009-13755, as a Project of Fundamental Research inside the framework of the National Plan of Scientific Research, Development and Technological Innovation 2008–2011. ...

F. J. Gutiérrez Ortiz; P. Ollero; A. Serrera; S. Galera

2012-12-06T23:59:59.000Z

89

Methane Steam Reforming Thermally Coupled with Fuel Combustion: Application of Chemical Looping Concept as a Novel Technology  

Science Journals Connector (OSTI)

Methane Steam Reforming Thermally Coupled with Fuel Combustion: Application of Chemical Looping Concept as a Novel Technology ... One of these new methods is chemical looping combustion (CLC). ... Experimental Study of Chemical-Looping Reforming in a Fixed-Bed Reactor: Performance Investigation of Different Oxygen Carriers on Al2O3 and TiO2 Support ...

Mohammad Reza Rahimpour; Marziyeh Hesami; Majid Saidi; Abdolhossein Jahanmiri; Mahdi Farniaei; Mohsen Abbasi

2013-03-14T23:59:59.000Z

90

Improving gasoline direct injection (GDI) engine efficiency and emissions with hydrogen from exhaust gas fuel reforming  

Science Journals Connector (OSTI)

Abstract Exhaust gas fuel reforming has been identified as a thermochemical energy recovery technology with potential to improve gasoline engine efficiency, and thereby reduce CO2 in addition to other gaseous and particulate matter (PM) emissions. The principle relies on achieving energy recovery from the hot exhaust stream by endothermic catalytic reforming of gasoline and a fraction of the engine exhaust gas. The hydrogen-rich reformate has higher enthalpy than the gasoline fed to the reformer and is recirculated to the intake manifold, i.e. reformed exhaust gas recirculation (REGR). The REGR system was simulated by supplying hydrogen and carbon monoxide (CO) into a conventional EGR system. The hydrogen and CO concentrations in the REGR stream were selected to be achievable in practice at typical gasoline exhaust temperatures. Emphasis was placed on comparing REGR to the baseline gasoline engine, and also to conventional EGR. The results demonstrate the potential of REGR to simultaneously increase thermal efficiency, reduce gaseous emissions and decrease PM formation.

Daniel Fennell; Jose Herreros; Athanasios Tsolakis

2014-01-01T23:59:59.000Z

91

Alternative Fuels Data Center: Alternative Fuel Standard Development  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel Alternative Fuel Standard Development to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Standard Development on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Standard Development on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Standard Development on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Standard Development on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Standard Development on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Standard Development on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Standard Development The state of Hawaii is responsible for facilitating the development of

92

Alternative Fuels Data Center: Alternative Fuel Economic Development  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel Alternative Fuel Economic Development to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Economic Development on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Economic Development on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Economic Development on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Economic Development on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Economic Development on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Economic Development on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Economic Development To stimulate local economic development, landowners may apply to amend the

93

Experimental Evaluation of a Pt-based Heat Exchanger Methanol Reformer for a HTPEM Fuel Cell Stack  

E-Print Network [OSTI]

) Included in this reaction is the decomposition of methanol, which produces CO: CH3OH CO + 2H2 (90.5 kJ mol a picture of the methanol reformer which has been designed to produce hydrogen for a 1 kWe HTPEM fuel cellExperimental Evaluation of a Pt-based Heat Exchanger Methanol Reformer for a HTPEM Fuel Cell Stack

Berning, Torsten

94

Alternative Fuels Data Center: Fuel-Efficient Tire Program Development  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel-Efficient Tire Fuel-Efficient Tire Program Development to someone by E-mail Share Alternative Fuels Data Center: Fuel-Efficient Tire Program Development on Facebook Tweet about Alternative Fuels Data Center: Fuel-Efficient Tire Program Development on Twitter Bookmark Alternative Fuels Data Center: Fuel-Efficient Tire Program Development on Google Bookmark Alternative Fuels Data Center: Fuel-Efficient Tire Program Development on Delicious Rank Alternative Fuels Data Center: Fuel-Efficient Tire Program Development on Digg Find More places to share Alternative Fuels Data Center: Fuel-Efficient Tire Program Development on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Fuel-Efficient Tire Program Development The California Energy Commission (CEC) must adopt and implement a

95

HTR Fuel Development in Europe  

SciTech Connect (OSTI)

In the frame of the European Network HTR-TN and in the 5. EURATOM RTD Framework Programme (FP5) European programmes have been launched to consolidate advanced modular HTR technology in Europe. This paper gives an overall description and first results of this programme. The major tasks covered concern a complete recovery of the past experience on fuel irradiation behaviour in Europe, qualification of HTR fuel by irradiating of fuel elements in the HFR reactor, understanding of fuel behaviour with the development of a fuel particle code and finally a recover of the fuel fabrication capability. (authors)

Languille, Alain [CEA Cadarache, 13108 Saint-Paul-lez-Durance BP1 (France); Conrad, R. [CEC/JRC/IE Petten (Netherlands); Guillermier, P. [Framatome-ANP/ Lyon (France); Nabielek, H. [FZJ/Juelich (Germany); Bakker, K. [NRG/Petten (Netherlands); Abram, T. [BNFL UK (United Kingdom); Haas, D. [JRC/ITU/Karlsruhe (Germany)

2002-07-01T23:59:59.000Z

96

Reforming of Diesel Fuel for Transportation Applications J. P. Kopasz, S. Lottes, D-J. Liu, R. Ahluwalia, V. Novick and S. Ahmed  

E-Print Network [OSTI]

Reforming of Diesel Fuel for Transportation Applications J. P. Kopasz, S. Lottes, D-J. Liu, R · Produce fuel (H2-rich gas) for PEM and/or solid oxide fuel cells (SOFCs) · Reduce NOx emissions through

97

DEVELOPMENT OF A NATURAL GAS TO HYDROGEN FUEL STATION William E. Liss  

E-Print Network [OSTI]

DEVELOPMENT OF A NATURAL GAS TO HYDROGEN FUEL STATION William E. Liss P: 847-768-0753; E: william hurdles facing on-board liquid fuel reforming. This program leverages efforts to develop natural gas for compressed natural gas vehicles. The integrated natural gas-to-hydrogen system includes a high efficiency

98

Alternative Fuels Data Center: Alternative Fuel Development and Deployment  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel Alternative Fuel Development and Deployment Grants to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Development and Deployment Grants on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Development and Deployment Grants on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Development and Deployment Grants on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Development and Deployment Grants on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Development and Deployment Grants on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Development and Deployment Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

99

WHEC 16 / 13-16 June 2006 Lyon France Plasma assisted fuel reforming for on-board hydrogen rich gas production  

E-Print Network [OSTI]

WHEC 16 / 13-16 June 2006 ­ Lyon France 1/6 Plasma assisted fuel reforming for on-board hydrogen on on-board hydrogen generation from multi-fuel reforming. Whereas Nissan concentrates on long term Gonzalez-Aguilar2 , Rudolf Metkemeijer2 and Laurent Fulcheri2 1 Renault Research Department, Fuel Cells

Paris-Sud XI, Université de

100

Hydrogen Production for Fuel Cells Via Reforming Coal-Derived Methanol  

SciTech Connect (OSTI)

Hydrogen can be produced from many feedstocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the seventh report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of April 1-June 31, 2005. This quarter saw progress in these areas. These areas are: (1) Steam reformer transient response, (2) Heat transfer enhancement, (3) Catalyst degradation, (4) Catalyst degradation with bluff bodies, and (5) Autothermal reforming of coal-derived methanol. All of the projects are proceeding on or slightly ahead of schedule.

Paul A. Erickson

2005-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "development reformed fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Model-based Interpretation of the Performance and Degradation of Reformate Fueled Solid Oxide Fuel Cells.  

E-Print Network [OSTI]

??Solid oxide fuel cells offer great prospects for the sustainable, clean and safe conversion of various fuels into electrical energy. In this thesis, the performance-determining… (more)

Kromp, Alexander

2013-01-01T23:59:59.000Z

102

Hydrogen Production for Fuel Cells Via Reforming Coal-Derived Methanol  

SciTech Connect (OSTI)

Hydrogen can be produced from many feed stocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the third report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of April 1-June 30, 2004. This quarter saw progress in five areas. These areas are: (1) External evaluation of coal based methanol and the fuel cell grade baseline fuel, (2) Design, set up and initial testing of the autothermal reactor, (3) Experiments to determine the axial and radial thermal profiles of the steam reformers, (4) Catalyst degradation studies, and (5) Experimental investigations of heat and mass transfer enhancement methods by flow field manipulation. All of the projects are proceeding on or slightly ahead of schedule.

Paul A. Erickson

2004-06-30T23:59:59.000Z

103

HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL  

SciTech Connect (OSTI)

Hydrogen can be produced from many feed stocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the second report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of January 1--March 31, 2004. This quarter saw progress in five areas. These areas are: (1) Internal and external evaluations of coal based methanol and the fuel cell grade baseline fuel; (2) Experimental investigations of heat and mass transfer enhancement methods by flow field manipulation; (3) Design and set up of the autothermal reactor; (4) Steam reformation of Coal Based Methanol; and (5) Initial catalyst degradation studies. All of the projects are proceeding on or slightly ahead of schedule.

Paul A. Erickson

2004-04-01T23:59:59.000Z

104

Honeywell developing fuel cell sensors  

Science Journals Connector (OSTI)

In the US, four development teams from Honeywell Sensing & Control are collaborating in a DOE project to develop sensors that provide better control in the demanding fuel cell environment.

2004-01-01T23:59:59.000Z

105

Alternative Fuels Data Center: Alternative Fuel Research, Development, and  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Research, Development, and Promotion to someone by E-mail Research, Development, and Promotion to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Research, Development, and Promotion on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Research, Development, and Promotion on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Research, Development, and Promotion on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Research, Development, and Promotion on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Research, Development, and Promotion on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Research, Development, and Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

106

Alternative Fuels Data Center: Alternative Fuel Development Property Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Development Property Tax Exemption to someone by E-mail Development Property Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Development Property Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Development Property Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Development Property Tax Exemption on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Development Property Tax Exemption on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Development Property Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Development Property Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

107

Electro-catalytic oxidation device for removing carbon from a fuel reformate  

DOE Patents [OSTI]

An electro-catalytic oxidation device (ECOD) for the removal of contaminates, preferably carbonaceous materials, from an influent comprising an ECOD anode, an ECOD cathode, and an ECOD electrolyte. The ECOD anode is at a temperature whereby the contaminate collects on the surface of the ECOD anode as a buildup. The ECOD anode is electrically connected to the ECOD cathode, which consumes the buildup producing electricity and carbon dioxide. The ECOD anode is porous and chemically active to the electro-catalytic oxidation of the contaminate. The ECOD cathode is exposed to oxygen, and made of a material which promotes the electro-chemical reduction of oxygen to oxidized ions. The ECOD electrolyte is non-permeable to gas, electrically insulating and a conductor to oxidized. The ECOD anode is connected to the fuel reformer and the fuel cell. The ECOD electrolyte is between and in ionic contact with the ECOD anode and the ECOD cathode.

Liu, Di-Jia (Naperville, IL)

2010-02-23T23:59:59.000Z

108

Catalytic Reforming of Biomass Raw Fuel Gas to Syngas for FT Liquid Fuels Production  

Science Journals Connector (OSTI)

The gasification of biomass to obtain a syngas provides a competitive means for clean FT (Fischer-Tropsch) liquid fuels from renewable resources. The feasibility of the process depends on the upgrading of raw ...

Tiejun Wang; Chenguang Wang; Qi Zhang…

2009-01-01T23:59:59.000Z

109

HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL  

SciTech Connect (OSTI)

Hydrogen can be produced from many feed stocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the first such report that will be submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of October 1--December 31, 2003. This quarter saw progress in three areas. These areas are: (1) Evaluations of coal based methanol and the fuel cell grade baseline fuel, (2) Design and set up of the autothermal reactor, as well as (3) Set up and data collection of baseline performance using the steam reformer. All of the projects are proceeding on schedule. During this quarter one conference paper was written that will be presented at the ASME Power 2004 conference in March 2004, which outlines the research direction and basis for looking at the coal to hydrogen pathway.

Paul A. Erickson

2004-04-01T23:59:59.000Z

110

Overview of Fuel Cell Electric Bus Development  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Overview of Fuel Cell Electric Bus Development Leslie Eudy, National Renewable Energy Laboratory September 12, 2013 2 Why Fuel Cells for Transit Buses? * Reduce transit bus...

111

Bio-Derived Liquids to Hydrogen Distributed Reforming Targets (Presentation)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Distributed Reforming Targets Arlene F. Anderson Technology Development Manager, U.S. DOE Office of Energy Efficiency and Renewable Energy Hydrogen, Fuel Cells and Infrastructure Technologies Program Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group and Hydrogen Production Technical Team Review November 6, 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG) The Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG), launched in October 2006, provides a forum for effective communication and collaboration among participants in DOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program (HFCIT) cost-shared research directed at distributed bio-liquid reforming. The Working Group includes

112

Analysis of design variables for an efficient natural gas steam reforming process comprised in a small scale hydrogen fueling station  

Science Journals Connector (OSTI)

Natural gas steam reforming process comprised in a small scale H2-fueling station for on-site hydrogen production was simulated and analyzed. The effects of process variables on the process efficiency of hydrogen production were investigated, and their optimum set point values were suggested to minimize the sizes of the process sub-units and to secure a stable operability of the reforming process. Steam to carbon (S/C) ratio of the reforming reactants was found to be a crucial parameter mostly governing both the hydrogen production efficiency and the stable operability of the process. In this study, a process run was assumed stable if feed water (WR) as a reforming reactant could have been completely evaporated into dry steam through a heat recovery steam generator (HRSG). The optimum S/C ratio was 3.0 where the process efficiency of hydrogen production was maximized and the stable operability of the process was secured. The optimum feed rates of natural gas (NGR) and WR as reforming reactants and of natural gas (NGB) as a burner fuel were also determined for a target rate of hydrogen production, 27 Nm3/h. Set point temperatures of the combustion flue gas (CFG) and the reformed gas (RFG) from the reformer had no effects on the hydrogen production efficiency, however, they were important parameters affecting the stable operability of the process. The effect of the set point temperatures of the RFG from cooler and the CFG from HRSG on the hydrogen production efficiency was not much significant as compared to the S/C ratio, but needed to be adjusted because of their considerable effects on the stable operability of the process and the required heat transfer areas in cooler and HRSG.

Deuk Ki Lee; Kee Young Koo; Dong Joo Seo; Wang Lai Yoon

2012-01-01T23:59:59.000Z

113

Steam Reforming of Methane Over Nickel: Development of a Multi-Step Surface Reaction Mechanism  

Science Journals Connector (OSTI)

A detailed multi-step reaction mechanism is developed for modeling steam reforming of methane over nickel-based catalysts. The mechanism also ... tested by simulating experimental investigations of SR of methane ...

L. Maier; B. Schädel; K. Herrera Delgado; S. Tischer; O. Deutschmann

2011-09-01T23:59:59.000Z

114

2D Axisymmetric Coupled CFD-kinetics Modeling of a Nonthermal Arc Plasma Torch for Diesel Fuel  

E-Print Network [OSTI]

-assisted diesel fuel reformer developed for two different applications: (i) onboard H2 production for fuel cell been also developed for different reforming reactors: solid oxide fuel cell (SOFC)7 , membrane reformer1 2D Axisymmetric Coupled CFD-kinetics Modeling of a Nonthermal Arc Plasma Torch for Diesel Fuel

Boyer, Edmond

115

Effects of anode microstructures on durability of microtubular solid oxide fuel cells during internal steam reforming of methane  

Science Journals Connector (OSTI)

Abstract When hydrocarbons are used as a fuel in solid oxide fuel cells (SOFCs), internal steam reforming increases the energy conversion efficiency and simplifies the system, including the balance-of-plant. However, conventional nickel–yttria stabilized zirconia (Ni–YSZ) anodes are prone to deterioration at high temperatures and high humidity. This paper focuses on effects in anode microstructure on performance and durability of microtubular SOFCs. The evaluations were conducted under high steam content and internal methane reforming conditions using Ni–YSZ anodes using acrylic resin and graphite pore formers. The initial cell performance was almost identical to that of \\{SOFCs\\} with anodes using acrylic resin and graphite pore formers in 40% H2–3% H2O at 700 °C. However, the anode using acrylic resin deteriorated rapidly in 40% H2–30% H2O over a period of 28 h. Furthermore, it generated almost no electric power by internal steam reforming of methane. The local oxidation of nickel particles was observed at the interface between the electrolyte and the deteriorated anodes. The anode using graphite pore former provided stable power generation in 40% H2–30% H2O, and was able to generate power in 10% CH4–30% H2O. The pore formers strongly affect fuel diffusivity in the SOFC anodes, which is an important factor in stable internal steam reforming of methane.

Hirofumi Sumi; Toshiaki Yamaguchi; Toshio Suzuki; Hiroyuki Shimada; Koichi Hamamoto; Yoshinobu Fujishiro

2014-01-01T23:59:59.000Z

116

Development of alkaline fuel cells.  

SciTech Connect (OSTI)

This project focuses on the development and demonstration of anion exchange membrane (AEM) fuel cells for portable power applications. Novel polymeric anion exchange membranes and ionomers with high chemical stabilities were prepared characterized by researchers at Sandia National Laboratories. Durable, non-precious metal catalysts were prepared by Dr. Plamen Atanassov's research group at the University of New Mexico by utilizing an aerosol-based process to prepare templated nano-structures. Dr. Andy Herring's group at the Colorado School of Mines combined all of these materials to fabricate and test membrane electrode assemblies for single cell testing in a methanol-fueled alkaline system. The highest power density achieved in this study was 54 mW/cm2 which was 90% of the project target and the highest reported power density for a direct methanol alkaline fuel cell.

Hibbs, Michael R.; Jenkins, Janelle E.; Alam, Todd Michael; Janarthanan, Rajeswari [Colorado School of Mines, Golden, CO; Horan, James L. [Colorado School of Mines, Golden, CO; Caire, Benjamin R. [Colorado School of Mines, Golden, CO; Ziegler, Zachary C. [Colorado School of Mines, Golden, CO; Herring, Andrew M. [Colorado School of Mines, Golden, CO; Yang, Yuan [Colorado School of Mines, Golden, CO; Zuo, Xiaobing [Argonne National Laboratory, Argonne, IL; Robson, Michael H. [University of New Mexico, Albuquerque, NM; Artyushkova, Kateryna [University of New Mexico, Albuquerque, NM; Patterson, Wendy [University of New Mexico, Albuquerque, NM; Atanassov, Plamen Borissov [University of New Mexico, Albuquerque, NM

2013-09-01T23:59:59.000Z

117

Development of a Catalyst/Sorbent for Methane Reforming  

SciTech Connect (OSTI)

This project led to the further development of a combined catalyst and sorbent for improving the process technology required for converting CH{sub 4} and/or CO into H{sub 2} while simultaneously separating the CO{sub 2} byproduct all in a single step. The new material is in the form of core-in-shell pellets such that each pellet consists of a CaO core surrounded by an alumina-based shell capable of supporting a Ni catalyst. The Ni is capable of catalyzing the reactions of steam with CH{sub 4} or CO to produce H{sub 2} and CO{sub 2}, whereas the CaO is capable of absorbing the CO{sub 2} as it is produced. The absorption of CO{sub 2} eliminates the reaction inhibiting effects of CO{sub 2} and provides a means for recovering the CO{sub 2} in a useful form. The present work showed that the lifecycle performance of the sorbent can be improved either by incorporating a specific amount of MgO in the material or by calcining CaO derived from limestone at 1100 C for an extended period. It also showed how to prepare a strong shell material with a large surface area required for supporting an active Ni catalyst. The method combines graded particles of {alpha}-alumina with noncrystalline alumina having a large specific surface area together with a strength promoting additive followed by controlled calcination. Two different additives produced good results: 3 {micro}m limestone and lanthanum nitrate which were converted to their respective oxides upon calcination. The oxides partially reacted with the alumina to form aluminates which probably accounted for the strength enhancing properties of the additives. The use of lanthanum made it possible to calcine the shell material at a lower temperature, which was less detrimental to the surface area, but still capable of producing a strong shell. Core-in-shell pellets made with the improved shell materials and impregnated with a Ni catalyst were used for steam reforming CH{sub 4} at different temperatures and pressures. Under all conditions tested, the CH{sub 4} conversion was large (>80%) and nearly equal to the predicted thermodynamic equilibrium level as long as CO{sub 2} was being rapidly absorbed. Similar results were obtained with both shell material additives. Limited lifecycle tests of the pellets also produced similar results that were not affected by the choice of additive. However, during each lifecycle test the period during which CO{sub 2} was rapidly absorbed declined from cycle to cycle which directly affected the corresponding period when CH{sub 4} was reformed rapidly. Therefore, the results showed a continuing need for improving the lifecycle performance of the sorbent. Core-in-shell pellets with the improved shell materials were also utilized for conducting the water gas shift reaction in a single step. Three different catalyst formulations were tested. The best results were achieved with a Ni catalyst, which proved capable of catalyzing the reaction whether CO{sub 2} was being absorbed or not. The calcined alumina shell material by itself also proved to be a very good catalyst for the reaction as long as CO{sub 2} was being fully absorbed by the core material. However, neither the alumina nor a third formulation containing Fe{sub 2}O{sub 3} were good catalysts for the reaction when CO{sub 2} was not absorbed by the core material. Furthermore, the Fe{sub 2}O{sub 3}-containing catalyst was not as good as the other two catalysts when CO{sub 2} was being absorbed.

B.H. Shans; T.D. Wheelock; Justinus Satrio; Karl Albrecht; Tanya Harris Janine Keeley; Ben Silva; Aaron Shell; Molly Lohry; Zachary Beversdorf

2008-12-31T23:59:59.000Z

118

Overview of Fuel Cell Electric Bus Development | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Fuel Cell Electric Bus Development Overview of Fuel Cell Electric Bus Development Presentation slides from the Fuel Cell Technologies Office webinar ""Fuel Cell Buses"" held...

119

Status of Transuranic Bearing Metallic Fuel Development  

SciTech Connect (OSTI)

This paper summarizes the status of the metallic fuel development under the Advanced Fuel Cycle Initiative (AFCI). The metallic fuel development program includes fuel fabrication, characterization, advanced cladding research, irradiation testing and post-irradiation examination (PIE). The focus of this paper is on the recent irradiation experiments conducted in the Advanced Test Reactor and some PIE results from these tests.

Steve Hayes; Bruce Hilton; Heather MacLean; Debbie Utterbeck; Jon Carmack; Kemal Pasamehmetoglu

2009-09-01T23:59:59.000Z

120

Applications of solar reforming technology  

SciTech Connect (OSTI)

Research in recent years has demonstrated the efficient use of solar thermal energy for driving endothermic chemical reforming reactions in which hydrocarbons are reacted to form synthesis gas (syngas). Closed-loop reforming/methanation systems can be used for storage and transport of process heat and for short-term storage for peaking power generation. Open-loop systems can be used for direct fuel production; for production of syngas feedstock for further processing to specialty chemicals and plastics and bulk ammonia, hydrogen, and liquid fuels; and directly for industrial processes such as iron ore reduction. In addition, reforming of organic chemical wastes and hazardous materials can be accomplished using the high-efficiency destruction capabilities of steam reforming. To help identify the most promising areas for future development of this technology, we discuss in this paper the economics and market potential of these applications.

Spiewak, I. [Weizmann Inst. of Science, Rehovoth (Israel); Tyner, C.E. [Sandia National Labs., Albuquerque, NM (United States); Langnickel, U. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Koeln (Germany)

1993-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "development reformed fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Development of Fuel-Flexible Combustion Systems Utilizing Opportunity...  

Office of Environmental Management (EM)

Fuel-Flexible Combustion Systems Utilizing Opportunity Fuels in Gas Turbines - Fact Sheet, May 2014 Development of Fuel-Flexible Combustion Systems Utilizing Opportunity Fuels in...

122

Sulfur-tolerant natural gas reforming for fuel-cell applications.  

E-Print Network [OSTI]

??An attractive simplification of PEM-FC systems operated with natural gas would be the use of a sulfur tolerant reforming catalyst, but such a catalyst has… (more)

Hennings, Ulrich

2010-01-01T23:59:59.000Z

123

Fuel Cycle Research and Development Program  

Office of Environmental Management (EM)

29, 2009 Fuel Cycle Research and Development DM 195665 5 Identify the governing phenomenology Identify the governing phenomenology Develop a first-principle based model of the...

124

Memorandum of Understanding Between the Department of Agriculture and the Department of Energy and the National Development and Reform Commission of the People's Republic of China on Cooperation in the Development of Biofuels  

Broader source: Energy.gov (indexed) [DOE]

AGRICULTURE AGRICULTURE AND THE DEPARTMENT OF ENERGY AND THE NATIONAL DEVELOPMENT AND REFORM COMMISSION OF THE PEOPLE'S REPUBLIC OF CHINA ON COOPERATION IN THE DEVELOPMENT OF BIOFUELS The Department of Agriculture (USDA) and the Department of Energy (DOE) of the United States of America, acting jointly, and the National Development and Reform Commission (NDRC) of the People's Republic of China, hereinafter the "Participants", Acknowledging that developing fuels that utilize biomass resources is an important way to significantly reduce fossil fuel consumption, promote the agricultural sector, and support rural development, Recognizing the important role played by other government entities in both countries in the area of biofuels development, and the benefits expected from their potential

125

Direct Internal Reformation and Mass Transport in the Solid Oxide Fuel Cell Anode: A Pore-Scale Lattice Boltzmann Study with Detailed Reaction Kinetics  

SciTech Connect (OSTI)

The solid oxide fuel cell (SOFC) allows the conversion of chemical energy that is stored in a given fuel, including light hydrocarbons, to electrical power. Hydrocarbon fuels, such as methane, are logistically favourable and provide high energy densities. However, the use of these fuels often results in a decreased efficiency and life. An improved understanding of the reactive flow in the SOFC anode can help address these issues. In this study, the transport and heterogeneous internal reformation of a methane based fuel is addressed. The effect of the SOFC anode's complex structure on transport and reactions is shown to exhibit a complicated interplay between the local molar concentrations and the anode structure. Strong coupling between the phenomenological microstructures and local reformation reaction rates are recognised in this study, suggesting the extension to actual microstructures may provide new insights into the reformation processes.

Grew, Kyle N.; Joshi, Abhijit S.; Chiu, W. K. S.

2010-01-01T23:59:59.000Z

126

Development Plan for the Fuel Cycle Simulator  

SciTech Connect (OSTI)

The Fuel Cycle Simulator (FCS) project was initiated late in FY-10 as the activity to develop a next generation fuel cycle dynamic analysis tool for achieving the Systems Analysis Campaign 'Grand Challenge.' This challenge, as documented in the Campaign Implementation Plan, is to: 'Develop a fuel cycle simulator as part of a suite of tools to support decision-making, communication, and education, that synthesizes and visually explains the multiple attributes of potential fuel cycles.'

Brent Dixon

2011-09-01T23:59:59.000Z

127

Development of Sulfur and Carbon Tolerant Reforming Alloy Catalysts Aided Fundamental Atomistic Insights  

SciTech Connect (OSTI)

Current hydrocarbon reforming catalysts suffer from rapid carbon and sulfur poisoning. Even though there is a tremendous incentive to develop more efficient catalysts, these materials are currently formulated using inefficient trial and error experimental approaches. We have utilized a hybrid experimental/theoretical approach, combining quantum Density Functional Theory (DFT) calculations and various state-of-the-art experimental tools, to formulate carbon tolerant reforming catalysts. We have employed DFT calculations to develop molecular insights into the elementary chemical transformations that lead to carbon poisoning of Ni catalysts. Based on the obtained molecular insights, we have identified, using DFT quantum calculation, various Ni alloy catalysts as potential carbon tolerant reforming catalysts. The alloy catalysts were synthesized and tested in steam reforming and partial oxidation of methane, propane, and isooctane. We demonstrated that the alloy catalysts are much more carbon-tolerant than monometallic Ni catalysts under nearly stoichiometric steam-to-carbon ratios. Under these conditions, monometallic Ni is rapidly poisoned by sp2 carbon deposits. The research approach is distinguished by two characteristics: (a) knowledge-based, bottomup approach, compared to the traditional trial and error approach, allows for a more efficient and systematic discovery of improved catalysts. (b) the focus is on exploring alloy materials which have been largely unexplored as potential reforming catalysts.

Suljo Linic

2008-12-31T23:59:59.000Z

128

Acknowledgments: NASA Glenn Research Center (Grant #NNC04GB44G) College of Engineering Prof. Martin Abraham NASA envisions employing fuel cells running on jet fuel reformate for its uninhabited aerial vehicles (UAVs), low emission alternative power (LE  

E-Print Network [OSTI]

1 a Acknowledgments: · NASA Glenn Research Center (Grant #NNC04GB44G) · College of Engineering · Prof. Martin Abraham NASA envisions employing fuel cells running on jet fuel reformate for its is a critical path in the designing of jet fuel processors and their eventual utilization in powering NASA

Azad, Abdul-Majeed

129

Fuel Cycle Research and Development Program  

Broader source: Energy.gov (indexed) [DOE]

Development Program Presentation to Office of Environmental Management Tank Waste Corporate Board James C. Bresee, ScD, JD Advisory Board Member Office of Nuclear Energy July 29, 2009 July 29, 2009 Fuel Cycle Research and Development DM 195665 2 Outline Fuel Cycle R&D Mission Changes from the Former Advanced Fuel Cycle Initiative The Science-Based Approach Key Collaborators Budget History Program Elements Summary July 29, 2009 Fuel Cycle Research and Development DM 195665 3 Fuel Cycle R&D Mission The mission of Fuel Cycle Research and Development is to develop options to current fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while reducing proliferation risks by conducting

130

Plasmatron Fuel Reformer Development and Internal Combustion Engine Vehicle Applications  

Broader source: Energy.gov [DOE]

2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Massachusetts Institute of Technology

131

Reforming of Liquid Hydrocarbons in a Novel Hydrogen-Selective Membrane-Based Fuel Processor  

SciTech Connect (OSTI)

In this work, asymmetric dense Pd/porous stainless steel composite membranes were fabricated by depositing palladium on the outer surface of the tubular support. The electroless plating method combined with an osmotic pressure field was used to deposit the palladium film. Surface morphology and microstructure of the composite membranes were characterized by SEM and EDX. The SEM and EDX analyses revealed strong adhesion of the plated pure palladium film on the substrate and dense coalescence of the Pd film. Membranes were further characterized by conducting permeability experiments with pure hydrogen, nitrogen, and helium gases at temperatures from 325 to 450 C and transmembrane pressure differences from 5 to 45 psi. The permeation results showed that the fabricated membranes have both high hydrogen permeability and selectivity. For example, the hydrogen permeability for a composite membrane with a 20 {micro}m Pd film was 3.02 x 10{sup -5} moles/m{sup 2}.s.Pa{sup 0.765} at 450 C. Hydrogen/nitrogen selectivity for this composite membrane was 1000 at 450 C with a transmembrane pressure difference of 14.7 psi. Steam reforming of methane is one of the most important chemical processes in hydrogen and syngas production. To investigate the usefulness of palladium-based composite membranes in membrane-reactor configuration for simultaneous production and separation of hydrogen, steam reforming of methane by equilibrium shift was studied. The steam reforming of methane using a packed-bed inert membrane tubular reactor (PBIMTR) was simulated. A two-dimensional pseudo-homogeneous reactor model with parallel flow configuration was developed for steam reforming of methane. The shell volume was taken as the feed and sweep gas was fed to the inside of the membrane tube. Radial diffusion was taken into account for concentration gradient in the radial direction due to hydrogen permeation through the membrane. With appropriate reaction rate expressions, a set of partial differential equations was derived using the continuity equation for the reaction system and then solved by finite difference method with appropriate boundary and initial conditions. An iterative scheme was used to obtain a converged solution. Membrane reactor performance was compared to that in a traditional non-membrane packed-bed reactor (PBR). Their performances were also compared with thermodynamic equilibrium values achievable in a conventional non-membrane reactor. Numerical results of the models show that the methane conversions in the PBIMTR are always higher than that in the PBR, as well as thermodynamic equilibrium conversions. For instance, at a reaction pressure of 6 atm, a temperature of 650 C, a space velocity of 900/16.0 SCCM/gm{sub cat}, a steam to methane molar feed ratio of 3.0, a sweep ratio of 0.15, the conversion in the membrane reactor is about 86.5%, while the conversion in the non-membrane reactor is about 50.8%. The corresponding equilibrium conversion is about 56.4%. The effects on the degree of conversion and hydrogen yield were analyzed for different parameters such as temperature, reactor pressure, feed and sweep flow rate, feed molar ratio, and space time. From the analysis of the model results, it is obvious that the membrane reactor operation can be optimized for conversion or yield through the choice of proper operating and design parameters. Comparisons with available literature data for both membrane and non-membrane reactors showed a good agreement.

Shamsuddin Ilias

2006-03-10T23:59:59.000Z

132

BILIWG Meeting: High Pressure Steam Reforming of Bio-Derived Liquids (Presentation)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High Pressure Steam Reforming of High Pressure Steam Reforming of Bio-Derived Liquids S. Ahmed, S. Lee, D. Papadias, and R. Kumar November 6, 2007 Laurel, MD Research sponsored by the Hydrogen, Fuel Cells, and Infrastructure Technologies Program of DOE's Office of Energy Efficiency and Renewable Energy Rationale and objective Rationale „ Steam reforming of liquid fuels at high pressures can reduce hydrogen compression costs - Much less energy is needed to pressurize liquids (fuel and water) than compressing gases (reformate or H 2 ) „ High pressure reforming is advantageous for subsequent separations and hydrogen purification Objective „ Develop a reformer design that takes advantage of the savings in compression cost in the steam reforming bio-derived liquid fuels - Metric:

133

Solid Oxide Fuel Cell and PowerSolid Oxide Fuel Cell and Power S t D l t t PNNLS t D l t t PNNLSystem Development at PNNLSystem Development at PNNL  

E-Print Network [OSTI]

Solid Oxide Fuel Cell and PowerSolid Oxide Fuel Cell and Power S t D l t t PNNLS t D l;Solid Oxide Fuel Cell CharacteristicsSolid Oxide Fuel Cell Characteristics High temperature (~700 ­ 800 of SOFCDevelopment of SOFC TTechnologyechnology Fuel Reforming and System DesignFuel Reforming and System Design

134

A thermally self-sustained micro-power plant with integrated micro-solid oxide fuel cells, micro-reformer and functional  

E-Print Network [OSTI]

A thermally self-sustained micro-power plant with integrated micro-solid oxide fuel cells, micro Micro-solid oxide fuel cell Thin films Butane reformation Chemical micro-reactors Thermally independent 2014 Accepted 8 February 2014 Available online xxx a b s t r a c t Low temperature micro-solid oxide

Daraio, Chiara

135

Research and development of proton-exchange membrane (PEM) fuel cell system for transportation applications. Phase I final report  

SciTech Connect (OSTI)

Objective during Phase I was to develop a methanol-fueled 10-kW fuel cell power source and evaluate its feasibility for transportation applications. This report documents research on component (fuel cell stack, fuel processor, power source ancillaries and system sensors) development and the 10-kW power source system integration and test. The conceptual design study for a PEM fuel cell powered vehicle was documented in an earlier report (DOE/CH/10435-01) and is summarized herein. Major achievements in the program include development of advanced membrane and thin-film low Pt-loaded electrode assemblies that in reference cell testing with reformate-air reactants yielded performance exceeding the program target (0.7 V at 1000 amps/ft{sup 2}); identification of oxidation catalysts and operating conditions that routinely result in very low CO levels ({le} 10 ppm) in the fuel processor reformate, thus avoiding degradation of the fuel cell stack performance; and successful integrated operation of a 10-kW fuel cell stack on reformate from the fuel processor.

NONE

1996-01-01T23:59:59.000Z

136

Development of a fuel-tolerant diesel for alternative fuels  

Science Journals Connector (OSTI)

There is a growing requirement for engines operating on a wider range of fuels than when fuel supplies were more stable. The diesel engine, with its high compression ratio and absence of part-load throttling, offers high efficiency. Some widely available alternative fuels, in particular alcohol from biomass, present problems because of their low cetane number. The authors report the development of a diesel engine using a combustion system incorporating a high-energy, multi-strike spark to promote smooth combustion. Results obtained with this engine using ethanol are presented to illustrate its ability to handle fuels of very low cetane numbers.

A.W.E. Henham; R.A. Johns; S. Newnham

1991-01-01T23:59:59.000Z

137

A numerical study of the effectiveness factors of nickel catalyst pellets used in steam methane reforming for residential fuel cell applications  

Science Journals Connector (OSTI)

Abstract A numerical study is performed to evaluate the effectiveness factors of commercial nickel catalyst pellets commonly used in small-scale steam methane reformers for residential fuel cell applications. Based on the intrinsic reaction kinetics of the steam reforming process, the standard composition of the partially reformed gas mixture is determined as a function of the methane conversion. The heterogeneous reforming reactions inside the spherical catalyst pellets are then modeled by considering the distributed reaction, multi-component diffusion and permeation, and conductive and convective heat transfer in the porous media. Various operating conditions, including the reforming temperature, steam-to-carbon (S/C) ratio, operating pressure, and geometrical parameters, such as the pellet diameter and mean pore size, are simulated. The effectiveness factors calculated for each condition are presented as a function of the methane conversion. Finally, simple correlations for the effectiveness factors are presented, and their accuracies are assessed.

Seung Man Baek; Jung Ho Kang; Kyu-Jin Lee; Jin Hyun Nam

2014-01-01T23:59:59.000Z

138

Coated Particle Fuel Development Lab (CPFDL) | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coated Particle Fuel Development Lab Coated Particle Fuel Development Lab May 30, 2013 Computer controlled fluidized bed CVD particle coating system The Coated Particle Fuel Development Laboratory is a modern, integrated facility for laboratory scale fabrication and characterization of uranium-bearing coated particle fuel (CPF). Within this facility, tri-isotropic (TRISO) coatings are deposited on various fuel kernels by chemical vapor deposition (CVD), particles are pressed into fuel compacts for irradiation, and state-of-the-art materials property characterization is performed, all under an NQA-1 compliant Quality Assurance program. Current work includes fabrication and characterization of coated particle fuels to support the Next Generation Nuclear Plant, Advanced Small Modular Reactors, Nuclear Thermal Propulsion, and Advanced Light Water Reactor

139

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

3.4 Fuel Cells Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - 3.4 Fuel Cells Fuel Cells technical plan section of the Fuel Cell...

140

Methane-steam reforming  

SciTech Connect (OSTI)

A discussion covers steam reforming developments to the 1950's; the kinetics of methane-steam reforming, of the water-gas shift during methane-steam reforming, and of the carbon formation during methane-steam reforming, as approached by Akers and Camp.

Van Hook, J.P.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "development reformed fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Development of OTM Syngas Process and Testing of Syngas Derived Ultra-clean Fuels in Diesel Engines and Fuel Cells  

SciTech Connect (OSTI)

This final report summarizes work accomplished in the Program from January 1, 2001 through December 31, 2004. Most of the key technical objectives for this program were achieved. A breakthrough material system has lead to the development of an OTM (oxygen transport membrane) compact planar reactor design capable of producing either syngas or hydrogen. The planar reactor shows significant advantages in thermal efficiency and a step change reduction in costs compared to either autothermal reforming or steam methane reforming with CO{sub 2} recovery. Syngas derived ultra-clean transportation fuels were tested in the Nuvera fuel cell modular pressurized reactor and in International Truck and Engine single cylinder test engines. The studies compared emission and engine performance of conventional base fuels to various formulations of ultra-clean gasoline or diesel fuels. A proprietary BP oxygenate showed significant advantage in both applications for reducing emissions with minimal impact on performance. In addition, a study to evaluate new fuel formulations for an HCCI engine was completed.

E.T. Robinson; John Sirman; Prasad Apte; Xingun Gui; Tytus R. Bulicz; Dan Corgard; John Hemmings

2005-05-01T23:59:59.000Z

142

Solid oxide fuel cell development at Topsoe Fuel Cell A/S and Risoe National Laboratory  

SciTech Connect (OSTI)

The consortium of Topsoe Fuel Cell A/S and Risoe National Laboratory has up-scaled its production capacity. Stacks are based on a compact thin plate multilayer design with metallic interconnects and 12x12 cm{sup 2} or 18x18 cm{sup 2} foot print. Larger (500 cm{sup 2}) cells are currently under evaluation. Stacks have been tested successfully for more than 13000 hours. Several 50 or 75 cell stacks in the 1+ kW power range have been tested successfully at a fuel utilisation of up to 92%. Multi stack modules consisting of four 75 cell stacks have been tested for more than 4000 hours with pre-reformed natural gas and modules consisting of twelve stacks are under development. Our SOFC program comprises development of next generation cells with porous ferritic steel is used as a cheap, ductile, robust cell support and the electrolyte is based on scandia-doped zirconia with improved durability. In collaboration with Waertsilae, a 24-stack prototype based on natural gas is being tested. The range of fuels have further been extended to include ethanol and coal syn-gas by development of a new coke resistant catalyst suitable for future SOFC technology.

Niels Christiansen; J.B. Hansen; H.H. Larsen (and others) [Topsoe Fuel Cell A/S, Lyngby (Denmark)

2007-07-01T23:59:59.000Z

143

Economic Analysis of Various Reforming Techniques and Fuel Sources for Hydrogen Production.  

E-Print Network [OSTI]

??Hydrogen is emerging as a future replacement fuel for the traditional fossil fuels that will be capable of satisfying our energy needs. Hydrogen may enable… (more)

MCGLOCKLIN, KRISTIN

2006-01-01T23:59:59.000Z

144

Coke-free dry reforming of model diesel fuel by a pulsed spark plasma at low temperatures using an exhaust gas recirculation (EGR) system  

Science Journals Connector (OSTI)

Dry reforming of diesel fuel, an endothermic reaction, is an attractive process for on-board hydrogen/syngas production to increase energy efficiency. For operating this dry reforming process in a vehicle, we can use the exhaust gas from an exhaust gas recirculation (EGR) system as a source of carbon dioxide. Catalytic dry reforming of heavy hydrocarbon is a very difficult reaction due to the high accumulation of carbon on the catalyst. Therefore, we attempted to use a non-equilibrium pulsed plasma for the dry reforming of model diesel fuel without a catalyst. We investigated dry reforming of model diesel fuel (n-dodecane) with a low-energy pulsed spark plasma, which is a kind of non-equilibrium plasma at a low temperature of 523?K. Through the reaction, we were able to obtain syngas (hydrogen and carbon monoxide) and a small amount of C2 hydrocarbon without coke formation at a ratio of CO2/Cfuel = 1.5 or higher. The reaction can be conducted at very low temperatures such as 523?K. Therefore, it is anticipated as a novel and effective process for on-board syngas production from diesel fuel using an EGR system.

Yasushi Sekine; Naotsugu Furukawa; Masahiko Matsukata; Eiichi Kikuchi

2011-01-01T23:59:59.000Z

145

Fuel Cell Development and Test Laboratory (Fact Sheet), NREL...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cell Development and Test Laboratory may include: * Fuel cell and fuel cell component manufacturers * Certification laboratories * Government agencies * Universities * Other...

146

Selective Production of Hydrogen for Fuel Cells Via Oxidative Steam Reforming of Methanol Over CuZnAl Oxide Catalysts: Effect of Substitution of Zirconium and Cerium on the Catalytic Performance  

Science Journals Connector (OSTI)

H2 fuel, for fuel cells, is traditionally produced from methanol by the endothermic steam reforming of methanol (SRM). Partial oxidation of methanol (POM), which is highly exothermic, has also been suggested as ....

S. Velu; K. Suzuki

2003-04-01T23:59:59.000Z

147

Process evaluation - steam reforming of diesel fuel oil. Final technical report 24 Apr-24 Dec 79 on phases 1-4  

SciTech Connect (OSTI)

This project is an evaluation of a proprietary catalyst as a means of steam-reforming diesel fuel oil (Fed. Spec. VV-F-800B, symbol DF-2). A system for testing the catalyst has been designed, built and successfully used to screen operating conditions of temperature, space velocity, and H2O/C ratio. A duration test has been conducted showing the catalyst capable of steam reforming diesel fuel, but with the production of naphthalene after 30 hours. Hydrogen production remained stable through the 86 hours of the test.

Jarvi, G.A.; Bowman, R.M.; Camara, E.H.; Lee, A.L.

1980-02-15T23:59:59.000Z

148

Overview of Fuel Cell Electric Bus Development  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Overview of Fuel Cell Overview of Fuel Cell Electric Bus Development Leslie Eudy, National Renewable Energy Laboratory September 12, 2013 2 Why Fuel Cells for Transit Buses? * Reduce transit bus emissions * Improve fuel efficiency * Improve vehicle performance * Consumer Acceptance * Transit industry is excellent test-bed for new technologies o Centrally fueled and maintained o Fixed routes with urban stop-go duty cycle o Professional operators and mechanics o Federal Capital Funding Support o High Visibility & High Impact 3 FCEB Development Timeline since 2000 California Air Resources Board Transit Rule Early demonstrations of single prototypes DOE begins funding NREL technology validation for FCEBs First multiple bus fleet demonstrations in California FTA initiates National Fuel Cell Bus Program and

149

IFR fuel cycle--pyroprocess development  

SciTech Connect (OSTI)

The Integral Fast Reactor (IFR) fuel cycle is based on the use of a metallic fuel alloy, with nominal composition U-2OPu-lOZr. In its present state of development, this fuel system offers excellent high-burnup capabilities. Test fuel has been carried to burnups in excess of 20 atom % in EBR-II irradiations, and to peak burnups over 15 atom % in FFTF. The metallic fuel possesses physical characteristics, in particular very high thermal conductivity, that facilitate a high degree of passive inherent safety in the IFR design. The fuel has been shown to provide very large margins to failure in overpower transient events. Rapid overpower transient tests carried out in the TREAT reactor have shown the capability to withstand up to 400% overpower conditions before failing. An operational transient test conducted in EBR-II at a power ramp rate of 0.1% per second reached its termination point of 130% of normal power without any fuel failures. The IFR metallic fuel also exhibits superior compatibility with the liquid sodium coolant. Equally as important as the performance advantages offered by the use of metallic fuel is the fact that this fuel system permits the use of an innovative reprocessing method, known as ``pyroprocessing,`` featuring fused-salt electrorefining of the spent fuel. Development of the IFR pyroprocess has been underway at the Argonne National Laboratory for over five years, and great progress has been made toward establishing a commercially-viable process. Pyroprocessing offers a simple, compact means for closure of the fuel cycle, with anticipated significant savings in fuel cycle costs.

Laidler, J.J.; Miller, W.E.; Johnson, T.R.; Ackerman, J.P.; Battles, J.E.

1992-11-01T23:59:59.000Z

150

IFR fuel cycle--pyroprocess development  

SciTech Connect (OSTI)

The Integral Fast Reactor (IFR) fuel cycle is based on the use of a metallic fuel alloy, with nominal composition U-2OPu-lOZr. In its present state of development, this fuel system offers excellent high-burnup capabilities. Test fuel has been carried to burnups in excess of 20 atom % in EBR-II irradiations, and to peak burnups over 15 atom % in FFTF. The metallic fuel possesses physical characteristics, in particular very high thermal conductivity, that facilitate a high degree of passive inherent safety in the IFR design. The fuel has been shown to provide very large margins to failure in overpower transient events. Rapid overpower transient tests carried out in the TREAT reactor have shown the capability to withstand up to 400% overpower conditions before failing. An operational transient test conducted in EBR-II at a power ramp rate of 0.1% per second reached its termination point of 130% of normal power without any fuel failures. The IFR metallic fuel also exhibits superior compatibility with the liquid sodium coolant. Equally as important as the performance advantages offered by the use of metallic fuel is the fact that this fuel system permits the use of an innovative reprocessing method, known as pyroprocessing,'' featuring fused-salt electrorefining of the spent fuel. Development of the IFR pyroprocess has been underway at the Argonne National Laboratory for over five years, and great progress has been made toward establishing a commercially-viable process. Pyroprocessing offers a simple, compact means for closure of the fuel cycle, with anticipated significant savings in fuel cycle costs.

Laidler, J.J.; Miller, W.E.; Johnson, T.R.; Ackerman, J.P.; Battles, J.E.

1992-01-01T23:59:59.000Z

151

Conversion of hydrocarbons for fuel-cell applications. Part I. Autothermal reforming of sulfur-free and sulfur-containing hydrocarbon liquids. Part II. Steam reforming of n-hexane on pellet and monolithic catalyst beds. Final report  

SciTech Connect (OSTI)

Experimental autothermal reforming (ATR) results obtained in the previous phase of this work with sulfur-free pure hydrocarbon liquids are summarized. Catalyst types and configuration used were the same as in earlier tests with No. 2 fuel oil to facilitate comparisons. Fuel oil has been found to form carbon in ATR at conditions much milder than those predicted by equilibrium. Reactive differences between paraffins and aromatics in ATR, and thus the formation of different carbon precursors, have been shown to be responsible for the observed carbon formation characteristics (fuel-specific). From tests with both light and heavy paraffins and aromatics, it is concluded that high boiling point hydrocarbons and polynuclear aromatics enhance the propensity for carbon formation in ATR. Effects of olefin (propylene) addition on the ATR performance of benzene are described. In ATR tests with mixtures of paraffins and aromatics (n-tetradecane and benzene) synergistic effects on conversion characteristics were identified. Comparisons of the No. 2 fuel oil data with the experimental results from this work with pure (and mixed) sulfur-free hydrocarbons indicate that the sulfur content of the fuel may be the limiting factor for efficient ATR operation. Steam reforming of hydrocarbons in conventional reformers is heat transfer limited. Steam reforming tasks performed have included performance comparisons between conventional pellet beds and honeycomb monolith catalysts. Metal-supported monoliths offer higher structural stability than ceramic supports, and have a higher thermal conductivity. Data from two metal monoliths of different catalyst (nickel) loading were compared to pellets under the same operating conditions.

Flytzani-Stephanopoulos, M.; Voecks, G.E.

1981-10-01T23:59:59.000Z

152

Selective production of hydrogen for fuel cells via oxidative steam reforming of methanol over CuZnAl(Zr)-oxide catalysts  

Science Journals Connector (OSTI)

Fuel cell powered vehicles using hydrogen (H2) as a fuel are currently being developed in an effort to mitigate the emissions of green house gases such as CO2, NOx, and hydrocarbons. The H2 fuel is extracted from methanol onboard a vehicle by steam reforming of methanol (SRM) reaction. A considerable amount of CO is produced as a by-product, which is a poison to the Pt anode of the fuel cell. Very recently, we have demonstrated that a combined SRM and partial oxidation of methanol (POM), which we labeled as “oxidative steam reforming of methanol (OSRM)” reaction is more efficient for the selective production of H2 relatively at a lower temperature of around 230°C over CuZnAl(Zr)-oxide catalysts derived from hydroxycarbonate precursors containing hydrotalcite (HT)-like layered double hydroxides (LDHs)/aurichalcite phases. There are several operating parameters such as catalyst composition, reaction temperature, O2/CH3OH and H2O/CH3OH molar ratios and methanol injection rate that are need to be optimized in order to produce H2 suitable for fuelling a fuel cell. In the present study, we have investigated the effect of these variable parameters on the catalytic performance over a series of CuZnAl- and CuZnAlZr-oxide catalysts. Our study indicated that among the CuZn-based catalysts, those containing Zr were the most active. The optimum O2/CH3OH and H2O/CH3OH molar ratios should be in the ranges 0.20–0.30 and 1.3–1.6, respectively, in order to achieve a better catalytic performance. Studies of the effect of methanol contact time on the catalytic performance over a Zr-containing catalyst revealed that the OSRM reaction proceeds through the formation of formaldehyde intermediate. CO was produced as a secondary product by the decomposition of formaldehyde and it is subsequently transformed into CO2 and H2 by the water-gas shift (WGS) reaction.

S Velu; K Suzuki; M.P Kapoor; F Ohashi; T Osaki

2001-01-01T23:59:59.000Z

153

Economic reform, energy, and development: the case of Mexican manufacturing  

Science Journals Connector (OSTI)

Given increasing concern over global climate change and national security there is a burgeoning interest in examining the relationship between economic growth and energy use in developed and developing countries. More specifically, decoupling energy use per unit of gross domestic product (GDP) has fast come to be seen as in the interests of national economies and the world as a whole. Recent attention has been paid to the dramatic decreases in the energy intensity of the Chinese economy, which fell by 55% between 1975 and 1995. Do other developing economies follow similar trajectories? This paper examines the energy intensity of the Mexican economy for the period 1988–1998. Although the long-term trend in Mexican energy intensity is rising, the energy intensity of the Mexican economy began to decline in 1988. This paper explores the factors that have contributed to this reduction. Diminishing Mexican energy use per unit of GDP has been driven by significant decreases in industrial energy intensity. We show that these changes have resulted from changes in the composition of Mexican industrial structure, and technological change.

Francisco Aguayo; Kevin P. Gallagher

2005-01-01T23:59:59.000Z

154

Fuel Cycle Research and Development Presentation Title  

Broader source: Energy.gov (indexed) [DOE]

SiC Research for SiC Research for Accident Tolerant Fuels Shannon Bragg-Sitton Idaho National Laboratory Advanced LWR Fuels Technical Lead Advanced Fuels Campaign Advanced LWR Fuels Pathway Lead Light Water Reactor Sustainability Program August 2013 Outline  Overview of DOE SiC research  Severe accident modeling: MELCOR analysis w/SiC  Recent characterization test results - Oxidation kinetics - Irradiation studies - Fuel-clad interactions - Elastic property measurement - Thermal properties - Failure model analysis - Quench testing  Technology development - ASTM standards development - SiC/SiC joining technology 2 SiC Gap Analysis and Feasibility Study  SiC Gap Analysis / Feasibility - Milestone report issued July 30, 2013 - Incorporates results of work funded

155

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cover Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Cover Cover of the Fuel Cell Technologies Office Multi-Year Research, Development,...

156

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Appendix E: Acronyms Fuel Cell Technologies Office Multi-Year Research, Development, and...

157

Developing SAE Safety Standards for Hydrogen and Fuel Cell Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Developing SAE Safety Standards for Hydrogen and Fuel Cell Vehicles (FCVs) Developing SAE Safety Standards for Hydrogen and Fuel Cell Vehicles (FCVs) Presentation by Michael...

158

DEVELOPMENT OF A RENEWABLE HYDROGEN PRODUCITON AND FUEL CELL...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DEVELOPMENT OF A RENEWABLE HYDROGEN PRODUCITON AND FUEL CELL EDUCATION PROGRAM DEVELOPMENT OF A RENEWABLE HYDROGEN PRODUCITON AND FUEL CELL EDUCATION PROGRAM 2009 DOE Hydrogen...

159

2010 Hydrogen and Fuel Cell Global Commercialization & Development...  

Broader source: Energy.gov (indexed) [DOE]

2010 Hydrogen and Fuel Cell Global Commercialization & Development Update 2010 Hydrogen and Fuel Cell Global Commercialization & Development Update This report outlines the role...

160

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan The...

Note: This page contains sample records for the topic "development reformed fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Application of a Diesel Fuel Reformer for Tier 2 Bin 5 Emissions...  

Broader source: Energy.gov (indexed) [DOE]

5 Emissions 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005deerbonadies.pdf More Documents & Publications Application of a Diesel Fuel...

162

Intermediate Temperature Solid Oxide Fuel Cell Development  

SciTech Connect (OSTI)

Solid oxide fuel cells (SOFCs) are high efficiency energy conversion devices. Present materials set, using yttria stabilized zirconia (YSZ) electrolyte, limit the cell operating temperatures to 800 C or higher. It has become increasingly evident however that lowering the operating temperature would provide a more expeditious route to commercialization. The advantages of intermediate temperature (600 to 800 C) operation are related to both economic and materials issues. Lower operating temperature allows the use of low cost materials for the balance of plant and limits degradation arising from materials interactions. When the SOFC operating temperature is in the range of 600 to 700 C, it is also possible to partially reform hydrocarbon fuels within the stack providing additional system cost savings by reducing the air preheat heat-exchanger and blower size. The promise of Sr and Mg doped lanthanum gallate (LSGM) electrolyte materials, based on their high ionic conductivity and oxygen transference number at the intermediate temperature is well recognized. The focus of the present project was two-fold: (a) Identify a cell fabrication technique to achieve the benefits of lanthanum gallate material, and (b) Investigate alternative cathode materials that demonstrate low cathode polarization losses at the intermediate temperature. A porous matrix supported, thin film cell configuration was fabricated. The electrode material precursor was infiltrated into the porous matrix and the counter electrode was screen printed. Both anode and cathode infiltration produced high performance cells. Comparison of the two approaches showed that an infiltrated cathode cells may have advantages in high fuel utilization operations. Two new cathode materials were evaluated. Northwestern University investigated LSGM-ceria composite cathode while Caltech evaluated Ba-Sr-Co-Fe (BSCF) based pervoskite cathode. Both cathode materials showed lower polarization losses at temperatures as low as 600 C than conventional manganite or cobaltite cathodes.

S. Elangovan; Scott Barnett; Sossina Haile

2008-06-30T23:59:59.000Z

163

Steam reforming of methane using double-walled reformer tubes containing high-temperature thermal storage Na2CO3/MgO composites for solar fuel production  

Science Journals Connector (OSTI)

Abstract Double-walled reactor tubes containing thermal storage materials based on the molten carbonate salts—100 wt% Na2CO3 molten salt, 90 wt% Na2CO3/10 wt% MgO and 80 wt% Na2CO3/20 wt% MgO composite materials—were studied for the performances of the reactor during the heat charging mode, while those of methane reforming with steam during heat discharging mode for solar steam reforming. The variations in the temperatures of the catalyst and storage material, methane conversion, duration of reforming for obtaining high levels of methane conversion (>90%), higher heating value (HHV) power of reformed gas and efficiency of the reactor tubes were evaluated for the double-walled reactor tubes and a single-wall reactor tube without the thermal storage. The results for the heat charging mode indicated that the composite thermal storage could successfully store the heat transferred from the exterior wall of the reactor in comparison to the pure molten-salt. The double-walled reactor tubes with the 90 wt% Na2CO3/10 wt% MgO composite material was the most desirable for steam reforming of methane to realize large HHV amounts of reformed gas and higher efficiencies during heat-discharging mode.

Nobuyuki Gokon; Shohei Nakamura; Tsuyoshi Hatamachi; Tatsuya Kodama

2014-01-01T23:59:59.000Z

164

DYNAMIC MODELING FUEL PROCESSORS  

E-Print Network [OSTI]

for reusability, rapid development and assessment of complete system, and design improvement from simulation results BACKGROUND · Fuel cell based power systems are becoming increasingly important in aeronautical applications · Reformer based fuel cell systems make the technology amenable to logistic fuels such as diesel

Mease, Kenneth D.

165

Advanced LWR Nuclear Fuel Development  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

- Radiation (Part I) - Alkali-AggregateSilica Reaction (Part II) - Creepcreep-fracture interaction (Roadmap to be developed) Part I- Irradiated Concrete Research results...

166

Metal foam-supported Pd–Rh catalyst for steam methane reforming and its application to SOFC fuel processing  

Science Journals Connector (OSTI)

Abstract Pd–Rh/metal foam catalyst was studied for steam methane reforming and application to SOFC fuel processing. Performance of 0.068 wt% Pd–Rh/metal foam catalyst was compared with 13 wt% Ni/Al2O3 and 8 wt% Ru/Al2O3 catalysts in a tubular reactor. At 1023 K with GHSV 2000 h?1 and S/C ratio 2.5, CH4 conversion and H2 yield were 96.7% and 3.16 mol per mole of CH4 input for Pd–Rh/metal foam, better than the alumina-supported catalysts. In 200 h stability test, Pd–Rh/metal foam catalyst exhibited steady activity. Pd–Rh/metal foam catalyst performed efficiently in a heat exchanger platform reactor to be used as prototype SOFC fuel processor: at 983 K with GHSV 1200 h?1 and S/C ratio 2.5, CH4 conversion was nearly the same as that in the tubular reactor, except for more H2 and CO2 yields. Used Pd–Rh/metal foam catalyst was characterized by SEM, TEM, BET and CO chemisorption measurements, which provided evidence for thermal stability of the catalyst.

Partho Sarothi Roy; No-Kuk Park; Kiseok Kim

2014-01-01T23:59:59.000Z

167

Application of a Diesel Fuel Reformer for Tier 2 Bin 5 Emissions  

Broader source: Energy.gov [DOE]

Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

168

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.5 Manufacturing R&D Fuel Cell Technologies Office Multi-Year Research,...

169

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.7 Hydrogen Safety, Codes and Standards Fuel Cell Technologies Office Multi-Year...

170

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1.0 Introduction Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 1.0 Introduction Introduction section of the Fuel Cell...

171

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.9 Market Transformation Fuel Cell Technologies Office Multi-Year Research,...

172

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Executive Summary Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Executive Summary Executive Summary section of the Fuel Cell Technologies...

173

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

0 Technical Plan Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.0 Technical Plan Technical Plan section of the Fuel Cell...

174

Alternative Fuels Data Center: Hydrogen Research and Development  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Research and Research and Development to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Research and Development on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Research and Development on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Research and Development on Google Bookmark Alternative Fuels Data Center: Hydrogen Research and Development on Delicious Rank Alternative Fuels Data Center: Hydrogen Research and Development on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Research and Development on AddThis.com... More in this section... Hydrogen Basics Production & Distribution Research & Development Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Hydrogen Research and Development

175

Development of Solid Oxide Fuel Cells Utilizing Alternative Fuels.  

E-Print Network [OSTI]

??This dissertation is a summary of four solid oxide fuel cell (SOFC) research projects which addressed a number of SOFC technologies to use alternative fuels… (more)

Labarbera, Mark

2012-01-01T23:59:59.000Z

176

High-pressure coal fuel processor development  

SciTech Connect (OSTI)

Caterpillar shares DOE/METC interest in demonstrating the technology required to displace petroleum-based engine fuels with various forms of low cost coal. Current DOE/METC programs on mild gasification and coal-water-slurries are addressing two approaches to this end. Engine and fuel processor system concept studies by Caterpillar have identified a third, potentially promising, option. This option includes high-pressure fuel processing of run-of-the-mine coal and direct injection of the resulting low-Btu gas stream into an ignition assisted, high compression ratio diesel engine. The compactness and predicted efficiency of the system make it suitable for application to line-haul railroad locomotives. Two overall conclusions resulted from Task 1. First direct injected, ignition assisted Diesel cycle engine combustion systems can be suitably modified to efficiently utilize low-Btu gas fuels. Second, high pressure gasification of selected run-of-the-mine coals in batch-loaded fuel processors is feasible. These two findings, taken together, significantly reduce the perceived technical risk associated with the further development of the proposed coal gas fueled Diesel cycle power plant concept. The significant conclusions from Task 2 were: An engine concept, derived from a Caterpillar 3600 series engine, and a fuel processor concept, based on scaling up a removable-canister configuration from the test rig, appear feasible; and although the results of this concept study are encouraging, further, full-scale component research and development are required before attempting a full-scale integrated system demonstration effort.

Greenhalgh, M.L. (Caterpillar, Inc., Peoria, IL (United States))

1992-12-01T23:59:59.000Z

177

Low-Load Dual-Fuel Compression Ignition (CI) Engine Operation with an On-Board Reformer and a Diesel Oxidation Catalyst: Effects on Engine Performance and Emissions  

Science Journals Connector (OSTI)

Ideally, homogeneous air fuel mixtures ignited spontaneously exhibit less pollutants and can improve engine efficiency compared to standard diesel combustion, which is based on diffusion combustion. ... Although optimization of the injection timing of the in-cylinder DI fuel (e.g., diesel) aims to ignite the mixture and control the start of combustion (SOC) for the different premixed fuel ratios, the fuel ignition timing is complicated and problematic for a dual-fueled engine under a number of engine-operating conditions (e.g., low loads and use of residual gas trapping). ... Deactivation due to coking of a single Ni/Pt-based catalyst is significant, but operation using a platinum-ceria catalyst in line with a Ni-based steam-reforming catalyst allows acceptable efficiencies. ...

A. Tsolakis; R. Torbati; A. Megaritis; A. Abu-Jrai

2009-10-07T23:59:59.000Z

178

Development of a Natural Gas-to-Hydrogen Fueling System  

E-Print Network [OSTI]

compressors Reliable & cost effective hydrogen fueling system #12;9 Accomplishments > Comprehensive subsystem> Development of a Natural Gas-to- Hydrogen Fueling System DOE Hydrogen & Fuel Cell Merit Review integrator, fuel processing subsystem ­ FuelMaker Corporation > Maker of high-quality high

179

Development of a Turnkey H2 Fueling  

E-Print Network [OSTI]

Feedstocks Storage NG Compression PSAPSARef.Ref. PTI, CATA, Penn State H2 Generator #12;5 © Air ProductsDevelopment of a Turnkey H2 Fueling Station David E. Guro Air Products and Chemicals, Inc. Allentown, PA U.S. D.O.E. - Hydrogen Program Annual Review May 2003 #12;2 © Air Products & Chemicals, Inc

180

Alternative Fuels Data Center: Electricity Research and Development  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Electricity Research Electricity Research and Development to someone by E-mail Share Alternative Fuels Data Center: Electricity Research and Development on Facebook Tweet about Alternative Fuels Data Center: Electricity Research and Development on Twitter Bookmark Alternative Fuels Data Center: Electricity Research and Development on Google Bookmark Alternative Fuels Data Center: Electricity Research and Development on Delicious Rank Alternative Fuels Data Center: Electricity Research and Development on Digg Find More places to share Alternative Fuels Data Center: Electricity Research and Development on AddThis.com... More in this section... Electricity Basics Production & Distribution Research & Development Related Links Benefits & Considerations Stations Vehicles Laws & Incentives

Note: This page contains sample records for the topic "development reformed fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Alternative Fuels Data Center: Biomass Research and Development Initiative  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biomass Research and Biomass Research and Development Initiative to someone by E-mail Share Alternative Fuels Data Center: Biomass Research and Development Initiative on Facebook Tweet about Alternative Fuels Data Center: Biomass Research and Development Initiative on Twitter Bookmark Alternative Fuels Data Center: Biomass Research and Development Initiative on Google Bookmark Alternative Fuels Data Center: Biomass Research and Development Initiative on Delicious Rank Alternative Fuels Data Center: Biomass Research and Development Initiative on Digg Find More places to share Alternative Fuels Data Center: Biomass Research and Development Initiative on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biomass Research and Development Initiative

182

Alternative Fuels Data Center: Biomass and Biofuels Industry Development  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biomass and Biofuels Biomass and Biofuels Industry Development to someone by E-mail Share Alternative Fuels Data Center: Biomass and Biofuels Industry Development on Facebook Tweet about Alternative Fuels Data Center: Biomass and Biofuels Industry Development on Twitter Bookmark Alternative Fuels Data Center: Biomass and Biofuels Industry Development on Google Bookmark Alternative Fuels Data Center: Biomass and Biofuels Industry Development on Delicious Rank Alternative Fuels Data Center: Biomass and Biofuels Industry Development on Digg Find More places to share Alternative Fuels Data Center: Biomass and Biofuels Industry Development on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biomass and Biofuels Industry Development

183

Effect of Gas-to-Liquid Diesel Fuels on Combustion Characteristics, Engine Emissions, and Exhaust Gas Fuel Reforming. Comparative Study  

Science Journals Connector (OSTI)

School of Engineering, Mechanical and Manufacturing Engineering, University of Birmingham, Birmingham B15 2TT, U.K., Shell Global Solutions, Cheshire Innovation Park, Chester CH1 3SH, U.K., Mechanical Engineering, School of Engineering and Design, Brunel University, West London, Uxbridge UB8 3PH, U.K., and Johnson Matthey Technology Centre, Blount's Court, Sonning Common, Reading RG4 9NH, U.K. ... Clearly, the general trend is toward higher efficiency engines and improved fuel economy, something that puts current technology spark ignition (SI) engines in a relatively weak position compared to compression ignition (CI) engines. ... As the diesel engine used in this study was equipped with a pump-line-nozzle-type fuel injection system, all the observed effects may not apply to common rail or unit injection equipped engines. ...

A. Abu-Jrai; A. Tsolakis; K. Theinnoi; R. Cracknell; A. Megaritis; M. L. Wyszynski; S. E. Golunski

2006-10-18T23:59:59.000Z

184

High-pressure coal fuel processor development  

SciTech Connect (OSTI)

The objective of Subtask 1.1 Engine Feasibility was to conduct research needed to establish the technical feasibility of ignition and stable combustion of directly injected, 3,000 psi, low-Btu gas with glow plug ignition assist at diesel engine compression ratios. This objective was accomplished by designing, fabricating, testing and analyzing the combustion performance of synthesized low-Btu coal gas in a single-cylinder test engine combustion rig located at the Caterpillar Technical Center engine lab in Mossville, Illinois. The objective of Subtask 1.2 Fuel Processor Feasibility was to conduct research needed to establish the technical feasibility of air-blown, fixed-bed, high-pressure coal fuel processing at up to 3,000 psi operating pressure, incorporating in-bed sulfur and particulate capture. This objective was accomplished by designing, fabricating, testing and analyzing the performance of bench-scale processors located at Coal Technology Corporation (subcontractor) facilities in Bristol, Virginia. These two subtasks were carried out at widely separated locations and will be discussed in separate sections of this report. They were, however, independent in that the composition of the synthetic coal gas used to fuel the combustion rig was adjusted to reflect the range of exit gas compositions being produced on the fuel processor rig. Two major conclusions resulted from this task. First, direct injected, ignition assisted Diesel cycle engine combustion systems can be suitably modified to efficiently utilize these low-Btu gas fuels. Second, high pressure gasification of selected run-of-the-mine coals in batch-loaded fuel processors is feasible. These two findings, taken together, significantly reduce the perceived technical risks associated with the further development of the proposed coal gas fueled Diesel cycle power plant concept.

Greenhalgh, M.L.

1992-11-01T23:59:59.000Z

185

Alternative Fuels Data Center: Cellulosic Ethanol Research and Development  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Cellulosic Ethanol Cellulosic Ethanol Research and Development Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Cellulosic Ethanol Research and Development Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Cellulosic Ethanol Research and Development Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Cellulosic Ethanol Research and Development Tax Credit on Google Bookmark Alternative Fuels Data Center: Cellulosic Ethanol Research and Development Tax Credit on Delicious Rank Alternative Fuels Data Center: Cellulosic Ethanol Research and Development Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Cellulosic Ethanol Research and Development Tax Credit on AddThis.com... More in this section... Federal State

186

Maternal work behavior under welfare reform: How does the transition from welfare to work affect child development?  

E-Print Network [OSTI]

welfare to work affect child development? Abstract Using data from a longitudinal sample of formerMaternal work behavior under welfare reform: How does the transition from welfare to work affect of Mental Health (R24-MH51363) to the Social Work Research Development Center on Poverty, Risk, and Mental

Shyy, Wei

187

Reformate Cleanup: The Case for Microchannel Architecture  

E-Print Network [OSTI]

Reformate Cleanup: The Case for Microchannel Architecture DOE Hydrogen and Fuel Cells 2003 Annual for MicrochannelMicrochannel ArchitectureArchitecture DOE Hydrogen and Fuel CellsDOE Hydrogen and Fuel Cells 2003, controls Integrated reformer/fuel cell demonstration at ~2 kWeFY 2002 WGS/PROX catalyst studies

188

Sensor Development for PEM Fuel Cell Systems  

SciTech Connect (OSTI)

This document reports on the work done by Honeywell Sensing and Control to investigate the feasibility of modifying low cost Commercial Sensors for use inside a PEM Fuel Cell environment. Both stationary and automotive systems were considered. The target environment is hotter (100 C) than the typical commercial sensor maximum of 70 C. It is also far more humid (100% RH condensing) than the more typical 95% RH non-condensing at 40 C (4% RH maximum at 100 C). The work focused on four types of sensors, Temperature, Pressure, Air Flow and Relative Humidity. Initial design goals were established using a market research technique called Market Driven Product Definition (MDPD). A series of interviews were conducted with various users and system designers in their facilities. The interviewing team was trained in data taking and analysis per the MDPD process. The final result was a prioritized and weighted list of both requirements and desires for each sensor. Work proceeded on concept development for the 4 types of sensors. At the same time, users were developing the actual fuel cell systems and gaining knowledge and experience in the use of sensors and controls systems. This resulted in changes to requirements and desires that were not anticipated during the MDPD process. The concepts developed met all the predicted requirements. At the completion of concept development for the Pressure Sensor, it was determined that the Fuel Cell developers were happy with off-the-shelf automotive pressure sensors. Thus, there was no incentive to bring a new Fuel Cell Specific Pressure Sensor into production. Work was therefore suspended. After the experience with the Pressure Sensor, the requirements for a Temperature Sensor were reviewed and a similar situation applied. Commercially available temperature sensors were adequate and cost effective and so the program was not continued from the Concept into the Design Phase.

Steve Magee; Richard Gehman

2005-07-12T23:59:59.000Z

189

DUNCAN PRITCHARD Reforming Reformed Epistemology*  

E-Print Network [OSTI]

DUNCAN PRITCHARD Reforming Reformed Epistemology* 0. Introduction There has been a renaissance-called "reformed" defence of the rationality of reli- gious belief. The starting-point for this reformed conception concern here. Instead, I will be outlining one way in which the reformed epistemological stance can

Edinburgh, University of

190

Reforming Science: Structural Reforms  

Science Journals Connector (OSTI)

...Managing the business of science. Physiology 24 :2-3. 7. Bush V . 1945. Science the endless frontier. U.S. Government Printing Office, Washington, DC. 8. Casadevall...FC Fang. 2012. Reforming science: Methodological and culture...

Ferric C. Fang; Arturo Casadevall

2011-12-19T23:59:59.000Z

191

Development of OTM Syngas Process and Testing of Syngas Derived Ulta-clean Fuels in Diesel Engines and Fuel Cells Budget Period 3  

SciTech Connect (OSTI)

This topical report summarizes work accomplished for the Program from January 1, 2003 through December 31,2004 in the following task areas: Task 1--Materials Development; Task 2--Composite Development; Task 4--Reactor Design and Process Optimization; Task 8--Fuels and Engine Testing; 8.1 International Diesel Engine Program; and Task IO: Program Management. Most of the key technical objectives for this budget period were achieved. Only partial success was achieved relative to cycle testing under pressure Major improvements in material performance and element reliability have been achieved. A breakthrough material system has driven the development of a compact planar reactor design capable of producing either hydrogen or syngas. The planar reactor shows significant advantages in thermal efficiency and costs compared to either steam methane reforming with CO{sub 2} recovery or autothermal reforming. The fuel and engine testing program is complete The single cylinder test engine evaluation of UCTF fuels begun in Budget Period 2 was finished this budget period. In addition, a study to evaluate new fuel formulations for an HCCl engine was completed.

E.T. Robinson; John Sirman; Prasad Apte; Xingun Gui; Tytus R. Bulicz; Dan Corgard; Siv Aasland; Kjersti Kleveland; Ann Hooper; Leo Bonnell; John Hemmings; Jack Chen; Bart A. Van Hassel

2004-12-31T23:59:59.000Z

192

MONOLITHIC FUEL FABRICATION PROCESS DEVELOPMENT AT THE IDAHO NATIONAL LABORATORY_  

SciTech Connect (OSTI)

Full-size/prototypic U10Mo monolithic fuel-foils and aluminum clad fuel plates are being developed at the Idaho National Laboratory’s (INL) Materials and Fuels Complex (MFC). These efforts are focused on realizing Low Enriched Uranium (LEU) high density monolithic fuel plates for use in High Performance Research and Test Reactors. The U10Mo fuel foils under development afford a fuel meat density of ~16 gU/cc and thus have the potential to facilitate LEU conversions without any significant reactor-performance penalty. An overview is provided of the ongoing monolithic UMo fuel development effort, including application of a zirconium barrier layer on fuel foils, fabrication scale-up efforts, and development of complex/graded fuel foils. Fuel plate clad bonding processes to be discussed include: Hot Isostatic Pressing (HIP) and Friction Bonding (FB).

G. A. Moore; F. J. Rice; N. E. Woolstenhulme; J-F. Jue; B. H. Park; S. E. Steffler; N. P. Hallinan; M. D. Chapple; M. C. Marshall; B. L. Mackowiak; C. R. Clark; B. H. Rabin

2009-11-01T23:59:59.000Z

193

Hydrogen Fuel Cell Development in Columbia (SC)  

SciTech Connect (OSTI)

This is an update to the final report filed after the extension of this program to May of 2011. The activities of the present program contributed to the goals and objectives of the Fuel Cell element of the Hydrogen, Fuel Cells and Infrastructure Technologies Program of the Department of Energy through five sub-projects. Three of these projects have focused on PEM cells, addressing the creation of carbon-based metal-free catalysts, the development of durable seals, and an effort to understand contaminant adsorption/reaction/transport/performance relationships at low contaminant levels in PEM cells. Two programs addressed barriers in SOFCs; an effort to create a new symmetrical and direct hydrocarbon fuel SOFC designs with greatly increased durability, efficiency, and ease of manufacturing, and an effort to create a multiphysics engineering durability model based on electrochemical impedance spectroscopy interpretations that associate the micro-details of how a fuel cell is made and their history of (individual) use with specific prognosis for long term performance, resulting in attendant reductions in design, manufacturing, and maintenance costs and increases in reliability and durability.

Reifsnider, Kenneth [University of South Carolina; Chen, Fanglin [University of South Carolina; Popov, Branko [University of South Carolina; Chao, Yuh [University of South Carolina; Xue, Xingjian [University of South Carolina

2012-09-15T23:59:59.000Z

194

Fuel Cycle Research & Development | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Fuel Cycle Research & Fuel Cycle Research & Development Fuel Cycle Research & Development Fuel Cycle Research & Development The mission of the Fuel Cycle Research and Development (FCRD) program is to conduct research and development to help develop sustainable fuel cycles, as described in the Nuclear Energy Research and Development Roadmap. Sustainable fuel cycle options are those that improve uranium resource utilization, maximize energy generation, minimize waste generation, improve safety, and limit proliferation risk. The FCRD program will develop a suite of options to enable future policymakers to make informed decisions about how best to manage used fuel from nuclear reactors. The overall goal is to demonstrate the technologies necessary to allow commercial deployment of solutions for the sustainable management of used

195

Fuel Cell Development and Test Laboratory (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Fuel Cell Development and Test Laboratory at the Energy Systems Integration Facility. NREL's state-of-the-art Fuel Cell Development and Test Laboratory in the Energy Systems Integration Facility (ESIF) supports NREL's fuel cell research and development projects through in-situ fuel cell testing. Current projects include various catalyst development projects, a system contaminant project, and the manufacturing project. Testing capabilities include but are not limited to single cell fuel cells and fuel cell stacks.

Not Available

2011-10-01T23:59:59.000Z

196

Update on US High Density Fuel Fabrication Development  

SciTech Connect (OSTI)

Second generation uranium molybdenum fuel has shown excellent in-reactor irradiation performance. This metallic fuel type is capable of being fabricated at much higher loadings than any presently used research reactor fuel. Due to the broad range of fuel types this alloy system encompasses—fuel powder to monolithic foil and binary fuel systems to multiple element additions—significant amounts of research and development have been conducted on the fabrication of these fuels. This paper presents an update of the US RERTR effort to develop fabrication techniques and the fabrication methods used for the RERTR-9A miniplate test.

C.R. Clark; G.A. Moore; J.F. Jue; B.H. Park; N.P. Hallinan; D.M. Wachs; D.E. Burkes

2007-03-01T23:59:59.000Z

197

Review Lecture: The Development and Practical Application of Fuel Cells  

Science Journals Connector (OSTI)

...Development and Practical Application of Fuel Cells F. T. Bacon T. M. Fry First, a definition is given of what a fuel cell is, and a description is given of...account of the early history of the hydrogen fuel cell. Next, the alkaline fuel cell is...

1973-01-01T23:59:59.000Z

198

Intelligent Energy, Boeing to develop fuel cell plane  

Science Journals Connector (OSTI)

UK-based PEM fuel cell producer Intelligent Energy has been selected by US aerospace giant Boeing as a partner to develop the world’s first fuel-cell-powered aeroplane for manned flight. Fuel cells will be used to replace auxiliary power units (APUs), improving fuel efficiency. Visit www.re-focus.net for the latest renewable energy industry news

2003-01-01T23:59:59.000Z

199

Evaluation of the economic and environmental impact of combining dry reforming with steam reforming of methane  

Science Journals Connector (OSTI)

Lately, there has been considerable interest in the development of more efficient processes to generate syngas, an intermediate in the production of fuels and chemicals, including methanol, dimethyl ether, ethylene, propylene and Fischer–Tropsch fuels. Steam methane reforming (SMR) is the most widely applied method of producing syngas from natural gas. Dry reforming of methane (DRM) is a process that uses waste carbon dioxide to produce syngas from natural gas. Dry reforming alone has not yet been implemented commercially; however, a combination of steam methane reforming and dry reforming of methane (SMR + DRM) has been used in industry for several years. The aim of this work was to simulate both the SMR and SMR + DRM processes and to conduct an economic and environmental analysis to determine whether the SMR + DRM process is competitive with the more popular SMR process. The results indicate that the SMR + DRM process has a lower carbon footprint. Further research on DRM catalysts could make this process economically competitive with steam methane reforming.

Preeti Gangadharan; Krishna C. Kanchi; Helen H. Lou

2012-01-01T23:59:59.000Z

200

MONOLITHIC FUEL FABRICATION PROCESS DEVELOPMENT AT THE IDAHO NATIONAL LABORATORY  

SciTech Connect (OSTI)

Within the Reduced Enrichment for Research and Test Reactors (RERTR) program directed by the US Department of Energy (DOE), UMo fuel-foils are being developed in an effort to realize high density monolithic fuel plates for use in high-flux research and test reactors. Namely, targeted are reactors that are not amenable to Low Enriched Uranium (LEU) fuel conversion via utilization of high density dispersion-based fuels, i.e. 8-9 gU/cc. LEU conversion of reactors having a need for >8-9 gU/cc fuel density will only be possible by way of monolithic fuel forms. The UMo fuel foils under development afford fuel meat density of ~16 gU/cc and thus have the potential to facilitate LEU conversions without any significant reactor-performance penalty. Two primary challenges have been established with respect to UMo monolithic fuel development; namely, fuel element fabrication and in-reactor fuel element performance. Both issues are being addressed concurrently at the Idaho National Laboratory. An overview is provided of the ongoing monolithic UMo fuel development effort at the Idaho National Laboratory (INL); including development of complex/graded fuel foils. Fabrication processes to be discussed include: UMo alloying and casting, foil fabrication via hot rolling, fuel-clad interlayer application via co-rolling and thermal spray processes, clad bonding via Hot Isostatic Pressing (HIP) and Friction Bonding (FB), and fuel plate finishing.

Glenn A. Moore; Francine J. Rice; Nicolas E. Woolstenhulme; W. David SwanK; DeLon C. Haggard; Jan-Fong Jue; Blair H. Park; Steven E. Steffler; N. Pat Hallinan; Michael D. Chapple; Douglas E. Burkes

2008-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "development reformed fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Fuel Fabrication Capability Research and Development Plan  

SciTech Connect (OSTI)

The purpose of this document is to provide a comprehensive review of the mission of the Fuel Fabrication Capability (FFC) within the Global Threat Reduction Initiative Convert Program, along with research and development (R&D) needs that have been identified as necessary to ensuring mission success. The design and fabrication of successful nuclear fuels must be closely linked endeavors. Therefore, the overriding motivation behind the FFC R&D program described in this plan is to foster closer integration between fuel design and fabrication to reduce programmatic risk. These motivating factors are all interrelated, and progress addressing one will aid understanding of the others. The FFC R&D needs fall into two principal categories, 1) baseline process optimization, to refine the existing fabrication technologies, and 2) manufacturing process alternatives, to evaluate new fabrication technologies that could provide improvements in quality, repeatability, material utilization, or cost. The FFC R&D Plan examines efforts currently under way in regard to coupon, foil, plate, and fuel element manufacturing, and provides recommendations for a number of R&D topics that are of high priority but not currently funded (i.e., knowledge gaps). The plan ties all FFC R&D efforts into a unified vision that supports the overall Convert Program schedule in general, and the fabrication schedule leading up to the MP-1 and FSP-1 irradiation experiments specifically. The fabrication technology decision gates and down-selection logic and schedules are tied to the schedule for fabricating the MP-1 fuel plates, which will provide the necessary data to make a final fuel fabrication process down-selection. Because of the short turnaround between MP-1 and the follow-on FSP-1 and MP-2 experiments, the suite of specimen types that will be available for MP-1 will be the same as those available for FSP-1 and MP-2. Therefore, the only opportunity to explore parameter space and alternative processing is between now and 2016 when the candidate processes are down-selected in preparation for the MP-1, FSP-1, and MP-2 plate manufacturing campaigns. A number of key risks identified by the FFC are discussed in this plan, with recommended mitigating actions for those activities within FFC, and identification of risks that are impacted by activities in other areas of the Convert Program. The R&D Plan does not include discussion of FFC initiatives related to production-scale manufacturing of fuel (e.g., establishment of the Pilot Line Production Facility), rather, the goal of this plan is to document the R&D activities needed ultimately to enable high-quality and cost-effective production of the fuel by the commercial fuel fabricator. The intent is for this R&D Plan to be a living document that will be reviewed and updated on a regular basis (e.g., annually) to ensure that FFC R&D activities remain properly aligned to the needs of the Convert Program. This version of the R&D Plan represents the first annual review and revision.

Senor, David J.; Burkes, Douglas

2014-04-17T23:59:59.000Z

202

Used Fuel Disposition Campaign Disposal Research and Development Roadmap |  

Broader source: Energy.gov (indexed) [DOE]

Used Fuel Disposition Campaign Disposal Research and Development Used Fuel Disposition Campaign Disposal Research and Development Roadmap Used Fuel Disposition Campaign Disposal Research and Development Roadmap The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology (OFCT) has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and development (R&D) activities related to storage, transportation and disposal of used nuclear fuel (UNF) and high level nuclear waste (HLW). The Mission of the UFDC is To identify alternatives and conduct scientific research and technology development to enable storage, transportation and disposal of used nuclear fuel and wastes generated by existing and future nuclear fuel cycles. The U.S. has, for the past twenty-plus years, focused efforts on disposing

203

Used Fuel Disposition Research & Development | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Used Fuel Disposition Used Fuel Disposition Research & Development Used Fuel Disposition Research & Development A typical spent nuclear fuel cask sitting on a railcar. Since the early 1960s, the United States has safely conducted more than 3,000 shipments of used nuclear fuel without any harmful release of radioactive material. A typical spent nuclear fuel cask sitting on a railcar. Since the early 1960s, the United States has safely conducted more than 3,000 shipments of used nuclear fuel without any harmful release of radioactive material. In order to assure the development of a sustainable nuclear fuel cycle for the nation's energy future, to provide a sound technical basis for implementation of a new national policy for managing the back end of the nuclear fuel cycle, and to better understand, assess, and communicate the

204

Steam reforming analyzed  

SciTech Connect (OSTI)

This paper reports that maximum steam reformer operation without excessive coking reactions requires careful control of thermodynamic and kinetic conditions. Regardless of the syngas-based feedstock composition, carbon formation problems can be avoided while increasing reformer CO or H{sub 2} production. Steam reforming technology is best understood via: Primary steam reformer developments, Kinetics of methane steam reforming, Simulation of an industrial steam/CO{sub 2} reformer, Example conditions (steam/CO{sub 2} reforming), Thermodynamic approach (minimum to steam ratio). Hydrogen and carbon monoxide are two of the most important building blocks in the chemical industry. Hydrogen is mainly used in ammonia and methanol synthesis and petroleum refining. Carbon monoxide is used to produce pains, plastics, foams, pesticides and insecticides, to name a few. Production of H{sub 2} and CO is usually carried out by the following processes: Steam reforming (primary and secondary) of hydrocarbons, Partial oxidation of hydrocarbons, Coal gasification. Coal gasification and partial oxidation do not use catalysts and depend on partial combustion of the feedstock to internally supply reaction heat. Secondary (autothermal) reforming is a type of steam reforming that also uses the heat of partial combustion but afterwards uses a catalyst of promote the production of hydrogen and CO.

Wagner, E.S. (KTI Corp., San Dimas, CA (US)); Froment, G.F. (Ghent Rijksuniversiteit (Belgium))

1992-07-01T23:59:59.000Z

205

Power Generation from an Integrated Biomass Reformer and Solid Oxide Fuel Cell (SBIR Phase III) - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Quentin Ming (Primary Contact), Patricia Irving InnovaTek, Inc. 3100 George Washington Way, Suite 108 Richland, WA 99354 Phone: (509) 375-1093 Email: ming@innovatek.com DOE Managers HQ: Charles Russomanno Phone: (202) 586-7543 Email: Charles.Russomanno@ee.doe.gov HQ: Kathi Epping Martin Phone: (202) 586-7425 Email: Kathi.Epping@ee.doe.gov Contract Number: DE-EE0004535 Project Start Date: October 1, 2010 Project End Date: September 30, 2013 Fiscal Year (FY) 2012 Objectives Establish the requirements and design for an integrated * fuel cell and fuel processor that will meet the technical and operational needs for distributed energy production. Develop and integrate key system components - *

206

Fuel Cell Technologies Program Multi-Year Research, Development...  

Broader source: Energy.gov (indexed) [DOE]

deployment of hydrogen and fuel cell technologies. o Facilitate development of safe, high-performance materials for hydrogen service. o Develop appropriate test methodologies for...

207

Materials Development & Fuel Processing Research for  

E-Print Network [OSTI]

tolerance/ catalyst deactivation Understanding reaction pathways Natural Gas Biofuel Diesel Jet Fuel

Azad, Abdul-Majeed

208

Development of Sensors for Automotive PEM-based Fuel Cells  

E-Print Network [OSTI]

organization #12;4 Sensors for Automotive PEM Fuel Cells - Motivation Sensor Performance and Cost ImprovementsDevelopment of Sensors for Automotive PEM-based Fuel Cells DOE Agreement DE-FC04-02AL67616 Brian FC Series 200 - 50 kW PEM #12;2 Development of Sensors for Automotive PEM-based Fuel Cells ­ Program

209

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

4.0 Systems Analysis Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 4.0 Systems Analysis Systems Analysis section of the Fuel Cell...

210

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2.0 Program Benefits Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 2.0 Program Benefits Program Benefits section of the Fuel Cell...

211

Alternative Fuels Data Center: Vehicle Research and Development Grants  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Vehicle Research and Vehicle Research and Development Grants to someone by E-mail Share Alternative Fuels Data Center: Vehicle Research and Development Grants on Facebook Tweet about Alternative Fuels Data Center: Vehicle Research and Development Grants on Twitter Bookmark Alternative Fuels Data Center: Vehicle Research and Development Grants on Google Bookmark Alternative Fuels Data Center: Vehicle Research and Development Grants on Delicious Rank Alternative Fuels Data Center: Vehicle Research and Development Grants on Digg Find More places to share Alternative Fuels Data Center: Vehicle Research and Development Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Vehicle Research and Development Grants The Indiana Economic Development Corporation (IDEC) administers the Indiana

212

Alternative Fuels Data Center: Support for Advance Biofuel Development  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Support for Advance Support for Advance Biofuel Development to someone by E-mail Share Alternative Fuels Data Center: Support for Advance Biofuel Development on Facebook Tweet about Alternative Fuels Data Center: Support for Advance Biofuel Development on Twitter Bookmark Alternative Fuels Data Center: Support for Advance Biofuel Development on Google Bookmark Alternative Fuels Data Center: Support for Advance Biofuel Development on Delicious Rank Alternative Fuels Data Center: Support for Advance Biofuel Development on Digg Find More places to share Alternative Fuels Data Center: Support for Advance Biofuel Development on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Support for Advance Biofuel Development The California Legislature urges the U.S. Congress or the U.S.

213

Alternative Fuels Data Center: State Energy Strategy Development  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

State Energy Strategy State Energy Strategy Development to someone by E-mail Share Alternative Fuels Data Center: State Energy Strategy Development on Facebook Tweet about Alternative Fuels Data Center: State Energy Strategy Development on Twitter Bookmark Alternative Fuels Data Center: State Energy Strategy Development on Google Bookmark Alternative Fuels Data Center: State Energy Strategy Development on Delicious Rank Alternative Fuels Data Center: State Energy Strategy Development on Digg Find More places to share Alternative Fuels Data Center: State Energy Strategy Development on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type State Energy Strategy Development The New Hampshire Office of Energy Planning, in consultation with the New

214

Fuel Processing for Portable Power Fuel Cell Systems: Preferential Oxidation in  

E-Print Network [OSTI]

Reformer Water-Gas Shift CO Elimination Fuel Processor Fuel Cell Hydrocarbon Fuel Electrical Power H2-rich Microfabrication Kinetic Simulation Fluidic Modeling 222 1 COOCO + #12;Approach Microreactor Design Development (Bednarova) Mechanism Development (Bednarova) Kinetic Model w/ CHEMKIN (Ho) Kinetic Model w

Besser, Ronald S.

215

Alternative Fuels Data Center: Idle Reduction Research and Development  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Idle Reduction Idle Reduction Research and Development to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Research and Development on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Research and Development on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Research and Development on Google Bookmark Alternative Fuels Data Center: Idle Reduction Research and Development on Delicious Rank Alternative Fuels Data Center: Idle Reduction Research and Development on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Research and Development on AddThis.com... More in this section... Idle Reduction Benefits & Considerations Heavy-Duty Vehicles Medium-Duty Vehicles Light-Duty Vehicles School Buses Laws & Incentives

216

Technology Readiness Levels for Advanced Nuclear Fuels and Materials Development  

SciTech Connect (OSTI)

The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. The TRL process has been developed and successfully used by the Department of Defense (DOD) for development and deployment of new technology and systems for defense applications. In addition, NASA has also successfully used the TRL process to develop and deploy new systems for space applications. Advanced nuclear fuels and materials development is a critical technology needed for closing the nuclear fuel cycle. Because the deployment of a new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management and tracking tool. This report provides definition of the technology readiness level assessment process as defined for use in assessing nuclear fuel technology development for the Advanced Fuel Campaign (AFC).

Jon Carmack

2014-01-01T23:59:59.000Z

217

Alternative Fuels Data Center: Smart Grid Infrastructure Development and  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Smart Grid Smart Grid Infrastructure Development and Support to someone by E-mail Share Alternative Fuels Data Center: Smart Grid Infrastructure Development and Support on Facebook Tweet about Alternative Fuels Data Center: Smart Grid Infrastructure Development and Support on Twitter Bookmark Alternative Fuels Data Center: Smart Grid Infrastructure Development and Support on Google Bookmark Alternative Fuels Data Center: Smart Grid Infrastructure Development and Support on Delicious Rank Alternative Fuels Data Center: Smart Grid Infrastructure Development and Support on Digg Find More places to share Alternative Fuels Data Center: Smart Grid Infrastructure Development and Support on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

218

Developments in U.S. Alternative Fuel Markets  

Reports and Publications (EIA)

The alternative fueled vehicle (AFV)/alternative fuels industry experienced a number of market-related changes in the second half of the 1990s. This article describes each of the alternative transportation fuels and the AFVs in detail. It provides information on the development to date and looks at trends likely to occur in the future.

2001-01-01T23:59:59.000Z

219

HYDROGEN GENERATION FROM PLASMATRON REFORMERS: A PROMISING TECHNOLOGY FOR NOX ADSORBER REGENERATION AND OTHER AUTOMOTIVE APPLICATIONS  

SciTech Connect (OSTI)

Plasmatron reformers are being developed at MIT and ArvinMeritor [1]. In these reformers a special low power electrical discharge is used to promote partial oxidation conversion of hydrocarbon fuels into hydrogen and CO. The partial oxidation reaction of this very fuel rich mixture is difficult to initiate. The plasmatron provides continuous enhanced volume initiation. To minimize electrode erosion and electrical power requirements, a low current, high voltage discharge with wide area electrodes is used. The reformers operate at or slightly above atmospheric pressure. Plasmatron reformers provide the advantages of rapid startup and transient response; efficient conversion of the fuel to hydrogen rich gas; compact size; relaxation or elimination of reformer catalyst requirements; and capability to process difficult to reform fuels, such as diesel and bio-oils. These advantages facilitate use of onboard hydrogen-generation technology for diesel exhaust after-treatment. Plasma-enhanced reformer technology can provide substantial conversion even without the use of a catalyst. Recent progress includes a substantial decrease in electrical power consumption (to about 200 W), increased flow rate (above 1 g/s of diesel fuel corresponding to approximately 40 kW of chemical energy), soot suppression and improvements in other operational features.. Plasmatron reformer technology has been evaluated for regeneration of NOx adsorber after-treatment systems. At ArvinMeritor tests were performed on a dual-leg NOx adsorber system using a Cummins 8.3L diesel engine both in a test cell and on a vehicle. A NOx adsorber system was tested using the plasmatron reformer as a regenerator and without the reformer i.e., with straight diesel fuel based regeneration as the baseline case. The plasmatron reformer was shown to improve NOx regeneration significantly compared to the baseline diesel case. The net result of these initial tests was a significant decrease in fuel penalty, roughly 50% at moderate adsorber temperatures. This fuel penalty improvement is accompanied by a dramatic drop in slipped hydrocarbon emissions, which decreased by 90% or more. Significant advantages are demonstrated across a wide range of engine conditions and temperatures. The study also indicated the potential to regenerate NOx adsorbers at low temperatures where diesel fuel based regeneration is not effective, such as those typical of idle conditions. Two vehicles, a bus and a light duty truck, have been equipped for plasmatron reformer NOx adsorber regeneration tests.

Bromberg, L.; Crane, S; Rabinovich, A.; Kong, Y; Cohn, D; Heywood, J; Alexeev, N.; Samokhin, A.

2003-08-24T23:59:59.000Z

220

Fuel Cycle Research & Development Documents | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Initiatives » Fuel Cycle Technologies » Fuel Cycle Research & Initiatives » Fuel Cycle Technologies » Fuel Cycle Research & Development » Fuel Cycle Research & Development Documents Fuel Cycle Research & Development Documents November 8, 2011 2011 Fuel Cycle Technologies Annual Review Meeting As the largest domestic source of low-carbon energy, nuclear power is making major contributions toward meeting our nation's current and future energy demands. The United States must continue to ensure improvements and access to this technology so we can meet our economic, environmental and energy security goals. We rely on nuclear energy because it provides a consistent, reliable and stable source of base load electricity with an excellent safety record in the United States. July 11, 2011 Nuclear Separations Technologies Workshop Report

Note: This page contains sample records for the topic "development reformed fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

A multi-level simulation platform of natural gas internal reforming solid oxide fuel cell–gas turbine hybrid generation system – Part II. Balancing units model library and system simulation  

Science Journals Connector (OSTI)

Following our integrated hierarchical modeling framework of natural gas internal reforming solid oxide fuel cell (IRSOFC), this paper firstly introduces the model libraries of main balancing units, including some state-of-the-art achievements and our specific work. Based on gPROMS programming code, flexible configuration and modular design are fully realized by specifying graphically all unit models in each level. Via comparison with the steady-state experimental data of Siemens–Westinghouse demonstration system, the in-house multi-level SOFC–gas turbine (GT) simulation platform is validated to be more accurate than the advanced power system analysis tool (APSAT). Moreover, some units of the demonstration system are designed reversely for analysis of a typically part-load transient process. The framework of distributed and dynamic modeling in most of units is significant for the development of control strategies in the future.

Cheng Bao; Ningsheng Cai; Eric Croiset

2011-01-01T23:59:59.000Z

222

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Preface and Document Revision History Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Preface and Document Revision History Preface and...

223

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2 Hydrogen Delivery Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.2 Hydrogen Delivery Hydrogen Delivery technical plan section...

224

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

6.0 Program Management Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 6.0 Program Management Program Management section of the...

225

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1 Hydrogen Production Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.1 Hydrogen Production Hydrogen Production technical plan...

226

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

3.6 Technology Validation Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.6 Technology Validation Technology Validation technical...

227

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

5.0 Systems Integration Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 5.0 Systems Integration Systems Integration section of the...

228

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

3.8 Education and Outreach Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.8 Education and Outreach Education and Outreach...

229

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Research, Development and Demonstration Plan Page 4 - 1 4.0 Systems Analysis The Fuel Cell Technologies Program (FCT Program) conducts a coordinated, comprehensive effort in...

230

Development of Advanced High Temperature Fuel Cell Membranes  

Broader source: Energy.gov [DOE]

Presentation on Development of Advanced High Temperature Fuel Cell Membranes to the High Temperature Membrane Working Group Meeting held in Arlington, Virginia, May 26,2005.

231

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

A: Budgetary Information Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Appendix A: Budgetary Information Appendix A: Budgetary...

232

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

3 Hydrogen Storage Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.3 Hydrogen Storage Hydrogen Storage technical plan section of...

233

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

C: Hydrogen Quality Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Appendix C: Hydrogen Quality Appendix C: Hydrogen Quality section of...

234

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

D: Project Evaluation Form Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Appendix D: Project Evaluation Form Appendix D: Project...

235

Lean Gasoline System Development for Fuel Efficient Small Car...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ace063smith2012o.pdf More Documents & Publications Lean Gasoline System Development for Fuel...

236

Lean Gasoline System Development for Fuel Efficient Small Car...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ace063smith2011o.pdf More Documents & Publications Lean Gasoline System Development for Fuel...

237

Used Fuel Disposition Campaign Disposal Research and Development Roadmap |  

Broader source: Energy.gov (indexed) [DOE]

Disposal Research and Development Disposal Research and Development Roadmap Used Fuel Disposition Campaign Disposal Research and Development Roadmap The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology (OFCT) has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and development (R&D) activities related to storage, transportation and disposal of used nuclear fuel (UNF) and high level nuclear waste (HLW). The Mission of the UFDC is To identify alternatives and conduct scientific research and technology development to enable storage, transportation and disposal of used nuclear fuel and wastes generated by existing and future nuclear fuel cycles. The U.S. has, for the past twenty-plus years, focused efforts on disposing

238

Aviation fuel demand development in China  

Science Journals Connector (OSTI)

Abstract This paper analyzes the core factors and the impact path of aviation fuel demand in China and conducts a structural decomposition analysis of the aviation fuel cost changes and increase of the main aviation enterprises’ business profits. Through the establishment of an integrated forecast model for China’s aviation fuel demand, this paper confirms that the significant rise in China’s aviation fuel demand because of increasing air services demand is more than offset by higher aviation fuel efficiency. There are few studies which use a predictive method to decompose, estimate and analyze future aviation fuel demand. Based on a structural decomposition with indirect prediction, aviation fuel demand is decomposed into efficiency and total amount (aviation fuel efficiency and air transport total turnover). The core influencing factors for these two indexes are selected using path analysis. Then, univariate and multivariate models (ETS/ARIMA model and Bayesian multivariate regression) are used to analyze and predict both aviation fuel efficiency and air transport total turnover. At last, by integrating results, future aviation fuel demand is forecast. The results show that the aviation fuel efficiency goes up by 0.8% as the passenger load factor increases 1%; the air transport total turnover goes up by 3.8% and 0.4% as the urbanization rate and the per capita GDP increase 1%, respectively. By the end of 2015, China’s aviation fuel demand will have increased to 28 million tonnes, and is expected to be 50 million tonnes by 2020. With this in mind, increases in the main aviation enterprises’ business profits must be achieved through the further promotion of air transport.

Jian Chai; Zhong-Yu Zhang; Shou-Yang Wang; Kin Keung Lai; John Liu

2014-01-01T23:59:59.000Z

239

Automotive Fuel Cell Research and Development Needs  

Broader source: Energy.gov [DOE]

Presentation by USCAR FreedomCARFuel Cell Tech Team Industry for DOE Fuel Cell Pre-Solicitation Workshop - March 16, 2010 Golden, CO

240

Metallic Fuel Casting Development and Parameter Optimization Simulations  

SciTech Connect (OSTI)

One of the advantages of metallic fuel is the abilility to cast the fuel slugs to near net shape with little additional processing. However, the high aspect ratio of the fuel is not ideal for casting. EBR-II fuel was cast using counter gravity injection casting (CGIC) but, concerns have been raised concerning the feasibility of this process for americium bearing alloys. The Fuel Cycle Research and Development program has begun developing gravity casting techniques suitable for fuel production. Compared to CGIC gravity casting does not require a large heel that then is recycled, does not require application of a vacuum during melting, and is conducive to re-usable molds. Development has included fabrication of two separate benchscale, approximately 300 grams, systems. To shorten development time computer simulations have been used to ensure mold and crucible designs are feasible and to identify which fluid properties most affect casting behavior and therefore require more characterization.

R.S. Fielding; J. Crapps; C. Unal; J.R. Kennedy

2013-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "development reformed fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

2 - The evolution, reform and development of the Chinese banking sector  

Science Journals Connector (OSTI)

Abstract: Since the late 1970s, a series of banking reforms have been implemented by the Chinese government to improve the performance, enhance the stability, and create a more competitive environment in the banking sector. This chapter will start by reviewing banking reforms since 1979 and then review the structure of the Chinese banking sector. This will be followed by an overview of the Chinese banking sector over the period 2003–11 with emphasis on different indicators such as market share of assets, volume of non-performing loans and non-performing loan ratios, and capital adequacy and profitability of different ownerships of commercial banks. The chapter is structured as follows: “China’s banking reforms” reviews Chinese banking reforms that have taken place over the last three decades. “Structure of the Chinese banking sector” looks at the structure of the Chinese banking sector with a focus on the introduction of banking regulatory authority and different ownerships of commercial banks. “Overview of the Chinese banking sector over the period 2003–11” and “Summary and conclusion” bring the chapter to an end.

Yong Tan

2014-01-01T23:59:59.000Z

242

Steam-Methane Reformer Kinetic Computer Model with Heat Transfer and Geometry Options  

SciTech Connect (OSTI)

A kinetic computer model of a steam/methane reformer has been developed as a design and analytical tool for a fuel cell system's fuel conditioner. This model has reaction, geometry, flow arrangement, and heat transfer options. Model predictions have been compared to previous experimental data, and close agreement was obtained. Initially, the Leva-type, packed-bed, heat transfer correlations were used. However, calculations based upon the reacting, reformer gases indicate a considerably higher heat transfer coefficient for this reforme design. Data analysis from similar designs in the literature also shows this phenomenon. This is thought to be reaction-induced effect, brought about by the changing of gas composition, the increased gas velocity, the lower catalyst temperature during reaction, and the higher thermal and reaction gradients involved in compact fuel cell reformer designs. Future experimental work is planned to verify the model's predictions further.

Murray, A.P.; Snyder, T.S.

1985-04-01T23:59:59.000Z

243

Interim report spent nuclear fuel retrieval system fuel handling development testing  

SciTech Connect (OSTI)

Fuel handling development testing was performed in support of the Fuel Retrieval System (FRS) Sub-Project at the Hanford Site. The project will retrieve spent nuclear fuel, clean and remove fuel from canisters, repackage fuel into baskets, and load fuel into a multi-canister overpack (MCO) for vacuum drying and interim dry storage. The FRS is required to retrieve basin fuel canisters, clean fuel elements sufficiently of uranium corrosion products (or sludge), empty fuel from canisters, sort debris and scrap from whole elements, and repackage fuel in baskets in preparation for MCO loading. The purpose of fuel handling development testing was to examine the systems ability to accomplish mission activities, optimization of equipment layouts for initial process definition, identification of special needs/tools, verification of required design changes to support performance specification development, and validation of estimated activity times/throughput. The test program was set up to accomplish this purpose through cold development testing using simulated and prototype equipment; cold demonstration testing using vendor expertise and systems; and graphical computer modeling to confirm feasibility and throughput. To test the fuel handling process, a test mockup that represented the process table was fabricated and installed. The test mockup included a Schilling HV series manipulator that was prototypic of the Schilling Hydra manipulator. The process table mockup included the tipping station, sorting area, disassembly and inspection zones, fuel staging areas, and basket loading stations. The test results clearly indicate that the Schilling Hydra arm cannot effectively perform the fuel handling tasks required unless it is attached to some device that can impart vertical translation, azimuth rotation, and X-Y translation. Other test results indicate the importance of camera locations and capabilities, and of the jaw and end effector tool design. 5 refs., 35 figs., 3 tabs.

Ketner, G.L.; Meeuwsen, P.V.; Potter, J.D.; Smalley, J.T.; Baker, C.P.; Jaquish, W.R.

1997-06-01T23:59:59.000Z

244

Steam reforming utilizing high activity catalyst  

SciTech Connect (OSTI)

High activity, sulfur tolerant steam reforming catalysts are described comprising rhodium or nickel supported on lanthanum stabilized alumina or magnesium promoted lanthanum stabilized alumina. The catalysts have improved activity over conventionally used catalysts in the presence of sulfur containing hydrocarbon fuel (such as No. 2 fuel oil) in a steam reforming environment. The material has particular utility in autothermal, tubular, cyclic and adiabatic steam reforming processes.

Setzer, H. J.

1985-03-05T23:59:59.000Z

245

Solid Oxide Fuel Cell Development at Topsoe Fuel Cell A/S and Ris National Laboratory  

E-Print Network [OSTI]

catalyst. The range of fuels has further been extended to include ethanol and coal syn-gas by development of a new coke resistant catalyst suitable for future SOFC technology. CELL DEVELOPMENT AND PRODUCTION

246

Hydrogen as a fuel for fuel cell vehicles: A technical and economic comparison  

SciTech Connect (OSTI)

All fuel cells currently being developed for near term use in vehicles require hydrogen as a fuel. Hydrogen can be stored directly or produced onboard the vehicle by reforming methanol, ethanol or hydrocarbon fuels derived from crude oil (e.g., Diesel, gasoline or middle distillates). The vehicle design is simpler with direct hydrogen storage, but requires developing a more complex refueling infrastructure. In this paper, the authors compare three leading options for fuel storage onboard fuel cell vehicles: compressed gas hydrogen storage; onboard steam reforming of methanol; onboard partial oxidation (POX) of hydrocarbon fuels derived from crude oil. Equilibrium, kinetic and heat integrated system (ASPEN) models have been developed to estimate the performance of onboard steam reforming and POX fuel processors. These results have been incorporated into a fuel cell vehicle model, allowing us to compare the vehicle performance, fuel economy, weight, and cost for various fuel storage choices and driving cycles. A range of technical and economic parameters were considered. The infrastructure requirements are also compared for gaseous hydrogen, methanol and hydrocarbon fuels from crude oil, including the added costs of fuel production, storage, distribution and refueling stations. Considering both vehicle and infrastructure issues, the authors compare hydrogen to other fuel cell vehicle fuels. Technical and economic goals for fuel cell vehicle and hydrogen technologies are discussed. Potential roles for hydrogen in the commercialization of fuel cell vehicles are sketched.

Ogden, J.; Steinbugler, M.; Kreutz, T. [Princeton Univ., NJ (United States). Center for Energy and Environmental Studies

1997-12-31T23:59:59.000Z

247

Solid Oxide Fuel Cell and Power System Development at PNNL |...  

Broader source: Energy.gov (indexed) [DOE]

and Power System Development at PNNL Solid Oxide Fuel Cell and Power System Development at PNNL Presented at the DOE-DOD Shipboard APU Workshop on March 29, 2011....

248

Development of inexpensive metal macrocyclic complexes for use in fuel cells  

SciTech Connect (OSTI)

Several metal macrocyclic complexes were synthesized for use as catalysts in fuel cells. An initial evaluation of their ability to catalyze the fuel cell reactions were completed. Based on this initial evaluation, one metal macrocyclic catalyst was selected and long-term stability testing in a fuel cell was initiated. The fuel cell employing this catalyst was operated continuously for one year with little signs of catalyst degradation. The effect of synthetic reformates on the performance of the catalyst in the fuel cell environment also demonstrated high tolerance of this catalyst for common contaminants and poisons.

Doddapaneni, N.; Ingersoll, D. [Sandia National Labs., Albuquerque, NM (United States). Lithium Battery Research and Development Dept.; Kosek, J.A.; Cropley, C.C.; Hamdan, M. [Giner, Inc., Waltham, MA (United States)

1998-01-01T23:59:59.000Z

249

NREL: News - NREL Developed Mobile App for Alternative Fueling Station  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

713 713 NREL Developed Mobile App for Alternative Fueling Station Locations Released New application for iPhone helps users find stations offering electricity, biodiesel, natural gas, and other alternative fuels. November 7, 2013 iPhone users now have access to a free application that locates fueling stations offering alternative fuels, including electricity, natural gas, biodiesel, e85 Ethanol, propane and hydrogen. The Energy Department's (DOE) National Renewable Energy Laboratory (NREL) developed the new mobile application for DOE's Clean Cities program. Clean Cities supports local stakeholders across the country in an effort to cut petroleum use in transportation. The Alternative Fueling Station Locator App, now available through Apple's App Store, allows iPhone users to select an alternative fuel and

250

Used Fuel Disposition Campaign Disposal Research and Development Roadmap  

Broader source: Energy.gov (indexed) [DOE]

Disposal Research and Development Disposal Research and Development Roadmap Rev. 01 Used Fuel Disposition Campaign Disposal Research and Development Roadmap Rev. 01 The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology (OFCT) has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and development (R&D) activities related to storage, transportation and disposal of used nuclear fuel (UNF) and high level nuclear waste (HLW) generated by existing and future nuclear fuel cycles. The disposal of SNF and HLW in a range of geologic media has been investigated internationally. Considerable progress has been made in the U.S and other nations, but gaps in knowledge still exist. This document provides an evaluation and prioritization of R&D opportunities

251

[Gas cooled fuel cell systems technology development program  

SciTech Connect (OSTI)

Objective is the development of a gas-cooled phosphoric acid fuel cell for electric utility power plant application. Primary objectives are to: demonstrate performance endurance in 10-cell stacks at 70 psia, 190 C, and 267 mA/cm[sup 2]; improve cell degradation rate to less than 8 mV/1000 hours; develop cost effective criteria, processes, and design configurations for stack components; design multiple stack unit and a single 100 kW fuel cell stack; design a 375 kW fuel cell module and demonstrate average cell beginning-of-use performance; manufacture four 375-kW fuel cell modules and establish characteristics of 1.5 MW pilot power plant. The work is broken into program management, systems engineering, fuel cell development and test, facilities development.

Not Available

1988-03-01T23:59:59.000Z

252

Experimental Research on Low-Temperature Methane Steam Reforming Technology in a Chemically Recuperated Gas Turbine  

Science Journals Connector (OSTI)

Under the operating parameters of a chemically recuperated gas turbine (CRGT), the low-temperature methane steam reforming test bench is designed and built; systematic experimental studies about fuel steam reforming are conducted. Four different reforming ...

Qian Liu; Hongtao Zheng

2014-09-24T23:59:59.000Z

253

Distributed Reforming of Biomass Pyrolysis Oils: Cooperative Research and Development Final Report, CRADA number CRD-06-00192  

SciTech Connect (OSTI)

The objective of this project is for Chevron and NREL to collaborate in determining the effect of bio-oil composition variability on autothermal reforming performance including bio-oil volatilization, homogeneous oxidative cracking, and catalytic reforming.

Czernik, S.

2010-07-01T23:59:59.000Z

254

High Temperature Solid Oxide Fuel Cell Generator Development  

SciTech Connect (OSTI)

Work performed during the period February 21, 2006 through August 21, 2006 is summarized herein. During this period, efforts were focused on 5 kWe bundle testing, development of on-cell reformation, the conceptual design of an advanced module, and the development of a manufacturing roadmap for cells and bundles. A 5 kWe SOFC system was built and delivered to the Pennsylvania State University; fabrication of a second 5 kWe SOFC for delivery to Montana State University was initiated. Cell testing and microstructural analysis in support of these efforts was also conducted.

Joseph F. Pierre

2006-08-21T23:59:59.000Z

255

Integrated Tool Development for Used Fuel Disposition Natural System  

Broader source: Energy.gov (indexed) [DOE]

Integrated Tool Development for Used Fuel Disposition Natural Integrated Tool Development for Used Fuel Disposition Natural System Evaluation Phase I Report Integrated Tool Development for Used Fuel Disposition Natural System Evaluation Phase I Report The natural barrier system (NBS) is an integral part of a geologic nuclear waste repository. The report describes progress in development of an integrated modeling framework that can be used for systematically analyzing the performance of a natural barrier system and identifying key factors that control the performance. This framework is designed as an integrated tool for prioritization and programmatic decisions. Integrated Tool Development for Used Fuel Disposition Natural System Evaluation Phase I Report More Documents & Publications Natural System Evaluation and Tool Development FY11 Progress Report

256

Integrated Tool Development for Used Fuel Disposition Natural System  

Broader source: Energy.gov (indexed) [DOE]

Integrated Tool Development for Used Fuel Disposition Natural Integrated Tool Development for Used Fuel Disposition Natural System Evaluation Phase I Report Integrated Tool Development for Used Fuel Disposition Natural System Evaluation Phase I Report The natural barrier system (NBS) is an integral part of a geologic nuclear waste repository. The report describes progress in development of an integrated modeling framework that can be used for systematically analyzing the performance of a natural barrier system and identifying key factors that control the performance. This framework is designed as an integrated tool for prioritization and programmatic decisions. Integrated Tool Development for Used Fuel Disposition Natural System Evaluation Phase I Report More Documents & Publications Natural System Evaluation and Tool Development FY11 Progress Report

257

Fuel Cells for Transportation- Research and Development: Program Abstracts  

Broader source: Energy.gov [DOE]

Remarkable progress has been achieved in the development of proton-exchange-membrane(PEM) fuel cell technology since the U.S. Department of Energy (DOE) initiated a significant developmental program in the early 1990s. This progress has stimulated enormous interest worldwide in developing fuel cell products for transportation as well as for stationary and portable power applications. The potential markets are huge, but so are the R&D risks. Given the potential for PEM fuel cells to deliver large economic and environmental benefits to the Nation, DOE continues to take a leadership role in developing and validating this technology. DOE’s strategy to implement its Fuel Cells for Transportation program has three components: an R&D strategy, a fuels strategy, and a management strategy.

258

Alternative Renewable Fuels 'Plus' Research and Development Fund (Ontario,  

Broader source: Energy.gov (indexed) [DOE]

Alternative Renewable Fuels 'Plus' Research and Alternative Renewable Fuels &#039;Plus&#039; Research and Development Fund (Ontario, Canada) Alternative Renewable Fuels 'Plus' Research and Development Fund (Ontario, Canada) < Back Eligibility Commercial State/Provincial Govt Industrial Local Government Schools Institutional Program Info State Ontario Program Type Grant Program Provider Ministry of Agriculture, Food, and Rural Affairs "Exploration of new markets and new uses for bioproducts, alternative renewable fuels and their co-products will contribute to the long term sustainability of Ontario's agri-food, energy and rural sectors. Investment in research will help position Ontario to take advantage of new technologies in these areas. The Alternative Renewable Fuels 'Plus' Research and Development Fund is a

259

Dry reforming of hydrocarbon feedstocks  

SciTech Connect (OSTI)

Developments in catalyst technology for the dry reforming of hydrocarbon feedstocks are reviewed for methane, higher hydrocarbons and alcohols. Thermodynamics, mechanisms and the kinetics of dry reforming are also reviewed. The literature on Ni catalysts, bi-metallic Ni catalysts and the role of promoters on Ni catalysts is critically evaluated. The use of noble and transitional metal catalysts for dry reforming is discussed. The application of solid oxide and metal carbide catalysts to dry reforming is also evaluated. Finally, various mechanisms for catalyst deactivation are assessed. This review also examines the various process related issues associated with dry reforming such as its application and heat optimization. Novel approaches such as supercritical dry reforming and microwave assisted dry reforming are briefly expanded upon.

Shah, Yatish T. [Norfolk State University; Gardner, Todd H. [U.S. DOE

2014-01-01T23:59:59.000Z

260

Dual fuel development for an LNG marine engine  

SciTech Connect (OSTI)

A dual-fuel conversion for the 3406-B Caterpillar marine diesel engine has been developed. The purpose of this conversion is to use lower priced natural gas as a fuel, thus providing substantial cost savings for large fuel consumers. Details of the conversion system are given. Data is presented showing fuel consumption, conditions leading to engine knock, conditions promoting methane flame propagation, and air-fuel ratios required for efficient combustion. The system resulting from this study will use Liquefied Natural Gas (LNG) to power a dual-fuel conversion of a shrimp boat's main engine and generator set. The cold temperatures of the LNG will also be used as a heat sink to refrigerate the fish-hold area of the boat.

Acker, G.H.

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "development reformed fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Fuel Cells Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Storage DELIVERY FUEL CELLS STORAGE PRODUCTION TECHNOLOGY VALIDATION CODES & STANDARDS SYSTEMS INTEGRATION / ANALYSES SAFETY EDUCATION RESEARCH & DEVELOPMENT Economy Pat Davis 2 Fuel Cells Technical Goals & Objectives Goal : Develop and demonstrate fuel cell power system technologies for transportation, stationary, and portable applications. 3 Fuel Cells Technical Goals & Objectives Objectives * Develop a 60% efficient, durable, direct hydrogen fuel cell power system for transportation at a cost of $45/kW (including hydrogen storage) by 2010. * Develop a 45% efficient reformer-based fuel cell power system for transportation operating on clean hydrocarbon or alcohol based fuel that meets emissions standards, a start-up time of 30 seconds, and a projected manufactured cost of $45/kW by

262

Fuel Cell Economic Development Plan Hydrogen Roadmap | Open Energy  

Open Energy Info (EERE)

Fuel Cell Economic Development Plan Hydrogen Roadmap Fuel Cell Economic Development Plan Hydrogen Roadmap Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Fuel Cell Economic Development Plan Hydrogen Roadmap Agency/Company /Organization: Connecticut Department of Economic & Community Development Focus Area: Fuels & Efficiency, Hydrogen Topics: Analysis Tools, Policy Impacts, Socio-Economic Website: www.chfcc.org/Publications/reports/Fuel_Cell_Plan%201-31-08_DECD.pdf Equivalent URI: cleanenergysolutions.org/content/fuel-cell-economic-development-plan-h Language: English Policies: "Regulations,Financial Incentives" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. Regulations: "Safety Standards,Emissions Standards" is not in the list of possible values (Agriculture Efficiency Requirements, Appliance & Equipment Standards and Required Labeling, Audit Requirements, Building Certification, Building Codes, Cost Recovery/Allocation, Emissions Mitigation Scheme, Emissions Standards, Enabling Legislation, Energy Standards, Feebates, Feed-in Tariffs, Fuel Efficiency Standards, Incandescent Phase-Out, Mandates/Targets, Net Metering & Interconnection, Resource Integration Planning, Safety Standards, Upgrade Requirements, Utility/Electricity Service Costs) for this property.

263

Desalination 209 (2007) 319327 R&D activities of fuel cell Research at KFUPM  

E-Print Network [OSTI]

(reformat feed) and PEM fuel cell system. Our research group at KFUPM is actively involved in fuel cell research since 1980s. Current focus is to develop PEM fuel cell system emphasizing three different aspects: PEM fuel cell; Membranes; Electrochemical filter; Reformate #12;

Zaidi, S. M. Javaid

264

Development of an External Fuel Processor for a Solid Oxide Fuel Cell  

SciTech Connect (OSTI)

A 250 kW External Fuel Processor was developed and tested that will supply the gases needed by a pipeline natural gas fueled, solid oxide fuel cell during all modes of operation. The fuel processor consists of three major subsystems--a desulfurizer to remove fuel sulfur to an acceptable level, a synthesis gas generator to support plant heat-up and low load fuel cell operations, and a start gas generator to supply a non-flammable, reducing gas to the fuel cell during startup and shutdown operations. The desulfurization subsystem uses a selective catalytic sulfur oxidation process that was developed for operation at elevated pressure and removes the fuel sulfur to a total sulfur content of less than 80 ppbv. The synthesis gas generation subsystem uses a waterless, catalytic partial oxidation reactor to produce a hydrogen-rich mixture from the natural gas and air. An operating window was defined that allows carbon-free operation while maintaining catalyst temperatures that will ensure long-life of the reactor. The start gas subsystem generates an oxygen-free, reducing gas from the pipeline natural gas using a low-temperature combustion technique. These physically and thermally integrated subsystems comprise the 250 kW External Fuel Processor. The 250 kW External Fuel Processor was tested at the Rolls-Royce facility in North Canton, Ohio to verify process performance and for comparison with design specifications. A step wise operation of the automatic controls through the startup, normal operation and shutdown sequences allowed the control system to be tuned and verified. A fully automated system was achieved that brings the fuel processor through its startup procedure, and then await commands from the fuel cell generator module for fuel supply and shutdown. The fuel processor performance met all design specifications. The 250 kW External Fuel Processor was shipped to an American Electric Power site where it will be tested with a Rolls-Royce solid oxide fuel cell generator module.

Daniel Birmingham; Crispin Debellis; Mark Perna; Anant Upadhyayula

2008-02-28T23:59:59.000Z

265

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Development and Demonstration Plan Page 3.5 - 1 3.5 Manufacturing R&D More than 15,000 fuel cell systems were shipped in 2010 worldwide, 1 representing more than 80 MW of power....

266

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Appendix B: InputOutput Matrix Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Appendix B: InputOutput Matrix Appendix B: InputOutput...

267

2010 Hydrogen and Fuel Cell Global Commercialization & Development Update  

Broader source: Energy.gov [DOE]

This report offers examples of real-world applications and technical progress of hydrogen and fuel cell technologies, including policies adopted by countries to increase technology development and commercialization.

268

Lean Gasoline System Development for Fuel Efficient Small Car...  

Broader source: Energy.gov (indexed) [DOE]

Small Car Lean Gasoline System Development for Fuel Efficient Small Car Vehicle Technologies Office Merit Review 2014: ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine...

269

Hydrogen & Fuel Cells: Review of National Research and Development...  

Open Energy Info (EERE)

(R&D) Programs Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Hydrogen & Fuel Cells: Review of National Research and Development (R&D) Programs Focus Area: Hydrogen...

270

2010 Hydrogen and Fuel Cell Global Commercialization & Development Update  

Fuel Cell Technologies Publication and Product Library (EERE)

This report offers examples of real-world applications and technical progress of hydrogen and fuel cell technologies, including policies adopted by countries to increase technology development and com

271

DOE Expands International Effort to Develop Fuel-Efficient Trucks |  

Broader source: Energy.gov (indexed) [DOE]

Expands International Effort to Develop Fuel-Efficient Trucks Expands International Effort to Develop Fuel-Efficient Trucks DOE Expands International Effort to Develop Fuel-Efficient Trucks June 30, 2008 - 2:15pm Addthis GOTHENBURG, SWEDEN - U.S. Department of Energy's (DOE) Assistant Secretary for Energy Efficiency and Renewable Energy Alexander Karsner and Volvo Group CEO Leif Johansson today agreed to expand cooperation to develop more fuel-efficient trucks. Once contractual negotiations are complete later this year, the cooperative program will be extended for three more years. An additional $9 million over three years in DOE funds will be matched by $9 million in Swedish government funds and $18 million from Volvo Group. When added with the existing $12 million commitment from the United States, Sweden and the Volvo Group the overall value of the cooperation will be $48

272

Solid Recovered Fuel: Materials Flow Analysis and Fuel Property Development during the Mechanical Processing of Biodried Waste  

Science Journals Connector (OSTI)

This diagram shows the flow of actual mass from which it is useful to recover energy. ... The utilization of solid recovered fuels (SRF) for energy recovery has been increasing steadily in recent years, and this development is set to continue. ... To date, Korea has used four species of solid recovered fuels (SRFs) which have been certified by the Environmental Ministry of Korea: refuse-derived fuel (RDF), refused plastic fuel (RPF), tyre-derived fuel (TDF), and wood chip fuel (WCF). ...

Costas A. Velis; Stuart Wagland; Phil Longhurst; Bryce Robson; Keith Sinfield; Stephen Wise; Simon Pollard

2013-02-11T23:59:59.000Z

273

LG Solid Oxide Fuel Cell (SOFC) Model Development  

SciTech Connect (OSTI)

This report presents a summary of the work performed by LG Fuel Cell Systems Inc. during the project LG Solid Oxide Fuel Cell (SOFC) Model Development (DOE Award Number: DE-FE0000773) which commenced on October 1, 2009 and was completed on March 31, 2013. The aim of this project is for LG Fuel Cell Systems Inc. (formerly known as Rolls-Royce Fuel Cell Systems (US) Inc.) (?LGFCS?) to develop a multi-physics solid oxide fuel cell (SOFC) computer code (MPC) for performance calculations of the LGFCS fuel cell structure to support fuel cell product design and development. A summary of the initial stages of the project is provided which describes the MPC requirements that were developed and the selection of a candidate code, STAR-CCM+ (CD-adapco). This is followed by a detailed description of the subsequent work program including code enhancement and model verification and validation activities. Details of the code enhancements that were implemented to facilitate MPC SOFC simulations are provided along with a description of the models that were built using the MPC and validated against experimental data. The modeling work described in this report represents a level of calculation detail that has not been previously available within LGFCS.

Haberman, Ben; Martinez-Baca, Carlos; Rush, Greg

2013-03-31T23:59:59.000Z

274

Pellet Fueling Technology Development Leading to Efficient Fueling of ITER Burning Plasmas  

SciTech Connect (OSTI)

Pellet injection is the primary fueling technique planned for central fueling of the ITER burning plasma, which is a requirement for achieving high fusion gain. Injection of pellets from the inner wall has been shown on present day tokamaks to provide efficient fueling and is planned for use on ITER [1,2]. Significant development of pellet fueling technology has occurred as a result of the ITER R&D process. Extrusion rates with batch extruders have reached more than 1/2 of the ITER design specification of 1.3 cm3/s [3] and the ability to fuel efficiently from the inner wall by injecting through curved guide tubes has been demonstrated on several fusion devices. Modeling of the fueling deposition from inner wall pellet injection has been done using the Parks et al. ExB drift model [4] shows that inside launched pellets of 3mm size and speeds of 300 m/s have the capability to fuel well inside the separatrix. Gas fueling on the other hand is calculated to have very poor fueling efficiency due to the high density and wide scrape off layer compared to current machines. Isotopically mixed D/T pellets can provide efficient tritium fueling that will minimize tritium wall loading when compared to gas puffing of tritium. In addition, the use of pellets as an ELM trigger has been demonstrated and continues to be investigated as an ELM mitigation technique. During the ITER CDA and EDA the U.S. was responsible for ITER fueling system design and R&D and is in good position to resume this role for the ITER pellet fueling system. Currently the performance of the ITER guide tube design is under investigation. A mockup is being built that will allow tests with different pellet sizes and repetition rates. The results of these tests and their implication for fueling efficiency and central fueling will be discussed. The ITER pellet injection technology developments to date, specified requirements, and remaining development issues will be presented along with a plan to reach the design goal in time for employment on ITER.

Baylor, Larry R [ORNL; Combs, Stephen Kirk [ORNL; Jernigan, Thomas C [ORNL; Houlberg, Wayne A [ORNL; Maruyama, S. [ITER International Team, Garching, Germany; Owen, Larry W [ORNL; Parks, P. B. [General Atomics; Rasmussen, David A [ORNL

2005-01-01T23:59:59.000Z

275

Development of an SI DI Ethanol Optimized Flex Fuel Engine Using...  

Broader source: Energy.gov (indexed) [DOE]

Development of an SI DI Ethanol Optimized Flex Fuel Engine Using Advanced Valvetrain Development of an SI DI Ethanol Optimized Flex Fuel Engine Using Advanced Valvetrain...

276

Energy reform in Mexico. A new development model or modernization of statism?  

Science Journals Connector (OSTI)

This paper analyses the results of the reform to the Mexican energy sector from 1988 to 1994, the period during which former President Salinas de Gortari changed the energy policy strategy without modifying its objectives. Results were irregular since efforts were asymmetric, which generated new problems. Although the energy sector has opened up to private capital, the process has been far from spectacular. Even before NAFTA, the integration of this sector between Mexico and the USA was already under way; NAFTA accelerated this process and reduced Mexico's margin for manoeuvre in defining and formulating its own energy policy. Political and economic factors prevented Salinas from effecting a more aggressive liberalization; these factors, however, will be less significant during the Zedillo administration, which foreshadows the end of the statist modernism which has characterized this period.

Victor Rodríguez-Padilla; Rosío Vargas

1996-01-01T23:59:59.000Z

277

Alternative Fuels Data Center: Research and Development of Electricity as a  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Research and Research and Development of Electricity as a Vehicle Fuel to someone by E-mail Share Alternative Fuels Data Center: Research and Development of Electricity as a Vehicle Fuel on Facebook Tweet about Alternative Fuels Data Center: Research and Development of Electricity as a Vehicle Fuel on Twitter Bookmark Alternative Fuels Data Center: Research and Development of Electricity as a Vehicle Fuel on Google Bookmark Alternative Fuels Data Center: Research and Development of Electricity as a Vehicle Fuel on Delicious Rank Alternative Fuels Data Center: Research and Development of Electricity as a Vehicle Fuel on Digg Find More places to share Alternative Fuels Data Center: Research and Development of Electricity as a Vehicle Fuel on AddThis.com... More in this section...

278

DOE Publishes Roadmap for Developing Cleaner Fuels | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Publishes Roadmap for Developing Cleaner Fuels Publishes Roadmap for Developing Cleaner Fuels DOE Publishes Roadmap for Developing Cleaner Fuels July 7, 2006 - 2:52pm Addthis Research Aimed at Making Cellulosic Ethanol a Practical Alternative to Gasoline WASHINGTON, DC -- The U.S. Department of Energy (DOE) today released an ambitious new research agenda for the development of cellulosic ethanol as an alternative to gasoline. The 200-page scientific "roadmap" cites recent advances in biotechnology that have made cost-effective production of ethanol from cellulose, or inedible plant fiber, an attainable goal. The report outlines a detailed research plan for developing new technologies to transform cellulosic ethanol-a renewable, cleaner-burning, and carbon-neutral alternative to gasoline-into an economically viable

279

DEVELOPMENT OF NOVEL ELECTROCATALYST FOR PROTON EXCHANGE MEMBRANE FUEL CELLS  

SciTech Connect (OSTI)

Proton-exchange membrane fuel cell (PEMFC) is one of the strongest contenders as a power source for space & electric vehicle applications. Platinum catalyst is used for both fuel and air electrodes in PEMFCs. CO contamination of H{sub 2} greatly affects electrocatalysts used at the anode of polymer electrolyte fuel cells and decrease the cell performance. Pt-Ru catalyst had been recognized to alleviate this problem by showing better tolerance to CO poisoning than only Pt catalyst. This irreversible poisoning of the anode can be happened even in concentrations as little as a few ppm, and therefore, require expensive scrubbing to reduce the contaminant concentration to acceptable level. In order to commercialize this environmentally sound source of energy/power system, development of suitable impurity tolerant catalyst is needed. This project will develop novel electrocatalysts for the PEMFCs and demonstrate the feasibility of a H{sub 2}/O{sub 2} fuel cell base on these materials. This project, if successful, will reduce the costs due to reduce Pt catalyst loading or use non-precious metals. It will increase the PEM fuel cell performance by increasing catalyst tolerance to methanol oxidation intermediate products (CO) and fuel impurities (H{sub 2}S), which will generate substantial interest for commercialization of the PEM fuel cell technology.

Shamsuddin Ilias

2000-01-19T23:59:59.000Z

280

Fast start-up of a diesel fuel processor for PEM fuel cells  

Science Journals Connector (OSTI)

Abstract Fuel cell systems based on liquid fuels are particularly suitable for auxiliary power generation due to the high energy density of the fuel and its easy storage. Together with industrial partners, Oel-Waerme-Institut is developing a 3 kWel PEM fuel cell system based on diesel steam reforming to be applied as an APU for caravans and yachts. The start-up time of a fuel cell APU is of crucial importance since a buffer battery has to supply electric power until the system is ready to take over. Therefore, the start-up time directly affects the battery capacity and consequently the system size, weight, and cost. In the presented work a novel start-up strategy for the steam reforming fuel processor is introduced. The new approach includes the reactive heating of WGS reactors by using reformate from oxidative steam reforming (OSR) instead of the sequential heating of the fuel processor. The start-up procedure is demonstrated on a 10 kW steam reformer and a parameter study is carried out. Subsequently, the new procedure is tested on the complete fuel processor. Here, the OSR operation starts after 15:20 min and provides reformate for reactive heating of the WGS reactors. Steam reforming operation can be started after 23:40 min, which is 9 min earlier than applying sequential heating of the fuel processor. Until SR operation, the total energy consumption sums up to up to 5.9 MJ fuel and 13 Ah (12 V) electric energy.

Marius Maximini; Philip Engelhardt; Martin Brenner; Frank Beckmann; Oliver Moritz

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "development reformed fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

PEM fuel cells for transportation and stationary power generation applications  

SciTech Connect (OSTI)

We describe recent activities at LANL devoted to polymer electrolyte fuel cells in the contexts of stationary power generation and transportation applications. A low cost/high performance hydrogen or reformate/air stack technology is being developed based on ultralow Pt loadings and on non-machined, inexpensive elements for flow-fields and bipolar plates. On board methanol reforming is compared to the option of direct methanol fuel cells because of recent significant power density increases demonstrated in the latter.

Cleghorn, S.J.; Ren, X.; Springer, T.E.; Wilson, M.S.; Zawodzinski, C.; Zawodzinski, T.A. Jr.; Gottesfeld, S.

1996-05-01T23:59:59.000Z

282

The use of advanced steam reforming technology for hydrogen production  

SciTech Connect (OSTI)

The demand for supplementary hydrogen production in refineries is growing significantly world-wide as environmental legislation concerning cleaner gasoline and diesel fuels is introduced. The main manufacturing method is by steam reforming. The process has been developed both to reduce the capital cost and increase efficiency, reliability and ease of operation. ICI Katalco`s Leading Concept Hydrogen or LCH process continues this process of improvement by replacing the conventional fired steam reformer with a type of heat exchange reformer known as the Gas Heated Reformer or GHR. The GHR was first used in the Leading Concept Ammonia process, LCA at ICI`s manufacturing site at Severnside, England and commissioned in 1988 and later in the Leading Concept Methanol (LCM) process for methanol at Melbourne, Australia and commissioned in 1994. The development of the LCH process follows on from both LCA and LCM processes. This paper describes the development and use of the GHR in steam reforming, and shows how the GHR can be used in LCH. A comparison between the LCH process and a conventional hydrogen plant is given, showing the benefits of the LCH process in certain circumstances.

Abbishaw, J.B.; Cromarty, B.J. [ICI Katalco, Billingham (United Kingdom)

1996-12-01T23:59:59.000Z

283

Sodium removal process development for LMFBR fuel subassemblies  

SciTech Connect (OSTI)

Two 37-pin scale models of Clinch River Breeder Reactor Plant fuel subassemblies were designed, fabricated and used at Westinghouse Advanced Reactors Division in the development and proof-testing of a rapid water-based sodium removal process for the ORNL Hot Experimental Facility, Liquid Metal Fast Breeder Reactor Fuel Reprocessing Cycle. Through a series of development tests on one of the models, including five (5) sodium wettings and three (3) high temperature sodium removal operations, optimum process parameters for a rapid water vapor-argon-water rinse process were identified and successfully proof-tested on a second model containing argon-pressurized, sodium-corroded model fuel pins simulating the gas plenum and cladding conditions expected for spent fuel pins in full scale subassemblies. Based on extrapolations of model proof test data, preliminary process parameters for a water vapor-nitrogen-water rinse process were calculated and recommended for use in processing full scale fuel subassemblies in the Sodium Removal Facility of the Fuel Receiving Cell, ORNL HEF.

Simmons, C.R.; Taylor, G.R.

1981-10-01T23:59:59.000Z

284

Research and Development of a PEM Fuel Cell, Hydrogen Reformer, and Vehicle Refueling Facility  

E-Print Network [OSTI]

STORAGE COMPRESSION CNG REFUELING STATION CNG CLV & APCI CLV &CLV & APCIAPCI Figure 1: Overall Integration hydrogen to vehicles. The hydrogen compression, storage, blending and dispensing systems will be installed Venki Raman Air Products and Chemicals Inc. Allentown, PA 18195 Tel: 610-481-8336 E-mail: ramansv

285

Baylor University - Renewable Aviation Fuels Development Center | Open  

Open Energy Info (EERE)

Renewable Aviation Fuels Development Center Renewable Aviation Fuels Development Center Jump to: navigation, search Name Baylor University - Renewable Aviation Fuels Development Center Address One Bear Place #97413 Place Waco, Texas Zip 76798 Region Texas Area Coordinates 31.496762°, -97.305664° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.496762,"lon":-97.305664,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

286

Coal-fueled diesel technology development: Nozzle development for coal-fueled diesel engines  

SciTech Connect (OSTI)

Direct injection of a micronized coal water mixture fuel into the combustion chambers of a diesel engine requires atomizing an abrasive slurry fuel with accurately sized orifices. Five injector orifice materials were evaluated: diamond compacts, chemical vapor deposited diamond tubes, thermally stabilized diamond, tungsten carbide with cobalt binder, and tungsten carbide with nickel binder with brazed and mechanically mounted orifice inserts. Nozzle bodies were fabricated of Armco 17-4 precipitation hardening stainless steel and Stellite 6B in order to withstand cyclic injection pressures and elevated temperatures. Based on a total of approximately 200 cylinder hours of engine operation with coal water mixture fuel diamond compacts were chosen for the orifice material.

Johnson, R.N.; Lee, M.; White, R.A.

1994-01-01T23:59:59.000Z

287

Development of a co-firing fuel from biomass-derived binder and crushed coal.  

E-Print Network [OSTI]

??The focus of this work was the development of a co-firing boiler fuel for use in the coal power plant industry. This fuel, known as… (more)

Friend, Andrew

2013-01-01T23:59:59.000Z

288

Recover heat from steam reforming  

SciTech Connect (OSTI)

Steam reforming is one of the most important chemical processes--it is used in the manufacture of ammonia, hydrogen, methanol, and many chemicals made from hydrogen and carbon monoxide. Furthermore, many current trends will increase its importance. For example, methanol for addition to gasoline is likely to be produced by steam reforming. Because steam reforming occurs at high temperatures--typically 750 C--900 C--it generates a large amount of waste heat. Clearly, heat recovery is crucial to process economics. A typical 50,000 Nm[sup 3]/h hydrogen plant using natural gas feed has a radiant heat duty of about 50 MW. At a radiant efficiency of 50% and fuel cost of $3/GJ, this means that the reformer fires $9 million worth of fuel per year. Obviously, this amount of fuel justifies a close loot at ways to reduce costs. This article first provides a brief overview of steam reforming. It then outlines the available heat-recovery options and explains how to select the best method.

Fleshman, J.D. (Foster Wheeler USA Corp., Livingston, NJ (United States))

1993-10-01T23:59:59.000Z

289

SOFC cells and stacks for complex fuels  

SciTech Connect (OSTI)

Reformed hydrocarbon and coal (syngas) fuels present an opportunity to integrate solid oxide fuel cells into the existing fuel infrastructure. However, these fuels often contain impurities or additives that may lead to cell degradation through sulfur poisoning or coking. Achieving high performance and sulfur tolerance in SOFCs operating on these fuels would simplify system balance of plant and sequestration of anode tail gas. NexTech Materials, Ltd., has developed a suite of materials and components (cells, seals, interconnects) designed for operation in sulfur-containing syngas fuels. These materials and component technologies have been integrated into an SOFC stack for testing on simulated propane, logistic fuel reformates and coal syngas. Details of the technical approach, cell and stack performance is reported.

Edward M. Sabolsky; Matthew Seabaugh; Katarzyna Sabolsky; Sergio A. Ibanez; Zhimin Zhong

2007-07-01T23:59:59.000Z

290

Data reconciliation and optimal operation of a catalytic naphtha reformer  

E-Print Network [OSTI]

-mail:skoge@chemeng.ntnu.no) #12;Abstract The naphtha reforming process converts low-octane gasoline blending compo- nents to high cases. #12;1 Introduction The naphtha reforming process converts low-octane gasoline blending compo-octane components for use in high-performance gasoline fuels. The reformer also has an important function

Skogestad, Sigurd

291

160 C PROTON EXCHANGE MEMBRANE (PEM) FUEL CELL SYSTEM DEVELOPMENT  

SciTech Connect (OSTI)

The objectives of this program were: (a) to develop and demonstrate a new polymer electrolyte membrane fuel cell (PEMFC) system that operates up to 160 C temperatures and at ambient pressures for stationary power applications, and (b) to determine if the GTI-molded composite graphite bipolar separator plate could provide long term operational stability at 160 C or higher. There are many reasons that fuel cell research has been receiving much attention. Fuel cells represent environmentally friendly and efficient sources of electrical power generation that could use a variety of fuel sources. The Gas Technology Institute (GTI), formerly Institute of Gas Technology (IGT), is focused on distributed energy stationary power generation systems. Currently the preferred method for hydrogen production for stationary power systems is conversion of natural gas, which has a vast distribution system in place. However, in the conversion of natural gas into a hydrogen-rich fuel, traces of carbon monoxide are produced. Carbon monoxide present in the fuel gas will in time cumulatively poison, or passivate the active platinum catalysts used in the anodes of PEMFC's operating at temperatures of 60 to 80 C. Various fuel processors have incorporated systems to reduce the carbon monoxide to levels below 10 ppm, but these require additional catalytic section(s) with sensors and controls for effective carbon monoxide control. These CO cleanup systems must also function especially well during transient load operation where CO can spike 300% or more. One way to circumvent the carbon monoxide problem is to operate the fuel cell at a higher temperature where carbon monoxide cannot easily adsorb onto the catalyst and poison it. Commercially available polymer membranes such as Nafion{trademark} are not capable of operation at temperatures sufficiently high to prevent this. Hence this project investigated a new polymer membrane alternative to Nafion{trademark} that is capable of operation at temperatures up to 160 C.

L.G. Marianowski

2001-12-21T23:59:59.000Z

292

Methanol partial oxidation reformer  

DOE Patents [OSTI]

A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.

Ahmed, Shabbir (Bolingbrook, IL); Kumar, Romesh (Naperville, IL); Krumpelt, Michael (Naperville, IL)

1999-01-01T23:59:59.000Z

293

Methanol partial oxidation reformer  

DOE Patents [OSTI]

A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.

Ahmed, Shabbir (Bolingbrook, IL); Kumar, Romesh (Naperville, IL); Krumpelt, Michael (Naperville, IL)

2001-01-01T23:59:59.000Z

294

Methanol partial oxidation reformer  

DOE Patents [OSTI]

A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

Ahmed, S.; Kumar, R.; Krumpelt, M.

1999-08-17T23:59:59.000Z

295

Methanol partial oxidation reformer  

DOE Patents [OSTI]

A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

Ahmed, S.; Kumar, R.; Krumpelt, M.

1999-08-24T23:59:59.000Z

296

Development and characterization of the magnetic plasmatron  

E-Print Network [OSTI]

The purpose of this thesis is to investigate the plausibility of developing a low current plasmatron fuel reformer that utilizes magnetic fields to hydrodynamically induce spin of the arc discharge. The proof of principle, ...

Anziani, Felipe Rene, 1981-

2004-01-01T23:59:59.000Z

297

High-pressure coal fuel processor development. Final report  

SciTech Connect (OSTI)

Caterpillar shares DOE/METC interest in demonstrating the technology required to displace petroleum-based engine fuels with various forms of low cost coal. Current DOE/METC programs on mild gasification and coal-water-slurries are addressing two approaches to this end. Engine and fuel processor system concept studies by Caterpillar have identified a third, potentially promising, option. This option includes high-pressure fuel processing of run-of-the-mine coal and direct injection of the resulting low-Btu gas stream into an ignition assisted, high compression ratio diesel engine. The compactness and predicted efficiency of the system make it suitable for application to line-haul railroad locomotives. Two overall conclusions resulted from Task 1. First direct injected, ignition assisted Diesel cycle engine combustion systems can be suitably modified to efficiently utilize low-Btu gas fuels. Second, high pressure gasification of selected run-of-the-mine coals in batch-loaded fuel processors is feasible. These two findings, taken together, significantly reduce the perceived technical risk associated with the further development of the proposed coal gas fueled Diesel cycle power plant concept. The significant conclusions from Task 2 were: An engine concept, derived from a Caterpillar 3600 series engine, and a fuel processor concept, based on scaling up a removable-canister configuration from the test rig, appear feasible; and although the results of this concept study are encouraging, further, full-scale component research and development are required before attempting a full-scale integrated system demonstration effort.

Greenhalgh, M.L. [Caterpillar, Inc., Peoria, IL (United States)

1992-12-01T23:59:59.000Z

298

Development of an engine fuel and spark controller  

E-Print Network [OSTI]

The objective of this research was to develop an engine control unit (ECU) for a four cylinder engine to be used in a Formula SAE racers. The ECU must provide effective fuel injection and spark ignition control and provide for easy adjustment...

Suter, William Gregory

2012-06-07T23:59:59.000Z

299

Modelling and control strategy development for fuel cell electric vehicles  

E-Print Network [OSTI]

and applied to the energy management of this FCEV, which allow fuel economy optimisation while keeping a good storage. It is essential for advanced vehicles to obtain a range comparable to that of mass production and maximize the energy stored onboard a vehicle. A stochastic dynamic programming algorithm was developed

Peng, Huei

300

Genetically Modified Bacteria for Fuel Production: Development of Rhodobacteria as a Versatile Platform for Fuels Production  

SciTech Connect (OSTI)

Electrofuels Project: Penn State is genetically engineering bacteria called Rhodobacter to use electricity or electrically generated hydrogen to convert carbon dioxide into liquid fuels. Penn State is taking genes from oil-producing algae called Botryococcus braunii and putting them into Rhodobacter to produce hydrocarbon molecules, which closely resemble gasoline. Penn State is developing engineered tanks to support microbial fuel production and determining the most economical way to feed the electricity or hydrogen to the bacteria, including using renewable sources of power like solar energy.

None

2010-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "development reformed fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Comment on “Solid Recovered Fuel: Materials Flow Analysis and Fuel Property Development during the Mechanical Processing of Biodried Waste”  

Science Journals Connector (OSTI)

Comment on “Solid Recovered Fuel: Materials Flow Analysis and Fuel Property Development during the Mechanical Processing of Biodried Waste” ... Validated material flow models of waste treatment systems form a sound basis to evaluate system performance in view of environmental pollution as well as with respect to resource recovery. ... characteristics of refuse-derived fuels (RDF) that are processed from residual household waste by mech. ...

David Laner; Oliver Cencic

2013-12-05T23:59:59.000Z

302

Hydrogen storage: The major technological barrier to the development of hydrogen fuel cell cars  

Science Journals Connector (OSTI)

In this paper, we review the current technology for the storage of hydrogen on board a fuel cell-propelled vehicle. Having outlined the technical specifications necessary to match the performance of hydrocarbon. fue1, we first outline the inherent difficulties with gas pressure and liquid hydrogen storage. We then outline the history of transition metal hydride storage, leading to the development of metal hydride batteries. A viable system, however, must involve lighter elements and be vacuum-tight. The first new system to get serious consideration is titanium-activated sodium alanate, followed by the lithium amide and borohydride systems that potentially overcome several of the disadvantages of alanates. Borohydrides can alternatively produce hydrogen by reaction with water in the presence of a catalyst but the product would have to be recycled via a chemical plant. Finally various possible ways of making magnesium hydride decompose and reform more readily are discussed. The alternative to lighter hydrides is the development of physisorption of molecular hydrogen on high surface area materials such as carbons, metal oxide frameworks, zeolites. Here the problem is that the surface binding energy is too low to work at anything above liquid nitrogen temperature. Recent investigations of the interaction mechanism are discussed which show that systems with stronger interactions will inevitably require a surface interaction that increases the molecular hydrogen–hydrogen distance.

D.K. Ross

2006-01-01T23:59:59.000Z

303

Final Stages in the Reform of RAO UES of Russia –Future Developments in the Russian Energy Market  

Science Journals Connector (OSTI)

Reform of Russia's RAO UES is in its final phase. The initial basis for it was the policy of shareholders' receiving assets pro rata. Changes to Russian law then also required full ownership unbundling by 1 Ju...

Anatoly Chubais

2009-01-01T23:59:59.000Z

304

Improved System Performance and Reduced Cost of a Fuel Reformer, LNT, and SCR Aftertreatment System Meeting Emissions Useful Life Requirement  

Broader source: Energy.gov [DOE]

An advanced exhaust aftertreatment system developed to meet EPA 2010 and final Tier 4 emission regulations show substantial improvements in system performance while reducing system cost

305

Development of a nuclear fuel cycle transparency framework.  

SciTech Connect (OSTI)

Nuclear fuel cycle transparency can be defined as a confidence building approach among political entities to ensure civilian nuclear facilities are not being used for the development of nuclear weapons. Transparency concepts facilitate the transfer of nuclear technology, as the current international political climate indicates a need for increased methods of assuring non-proliferation. This research develops a system which will augment current non-proliferation assessment activities undertaken by U.S. and international regulatory agencies. It will support the export of nuclear technologies, as well as the design and construction of Gen. IV energy systems. Additionally, the framework developed by this research will provide feedback to cooperating parties, thus ensuring full transparency of a nuclear fuel cycle. As fuel handling activities become increasingly automated, proliferation or diversion potential of nuclear material still needs to be assessed. However, with increased automation, there exists a vast amount of process data to be monitored. By designing a system that monitors process data continuously, and compares this data to declared process information and plant designs, a faster and more efficient assessment of proliferation risk can be made. Figure 1 provides an illustration of the transparency framework that has been developed. As shown in the figure, real-time process data is collected at the fuel cycle facility; a reactor, a fabrication plant, or a recycle facility, etc. Data is sent to the monitoring organization and is assessed for proliferation risk. Analysis and recommendations are made to cooperating parties, and feedback is provided to the facility. The analysis of proliferation risk is based on the following factors: (1) Material attractiveness: the quantification of factors relevant to the proliferation risk of a certain material (e.g., highly enriched Pu-239 is more attractive than that of lower enrichment) (2) The static (baseline) risk: the quantification of risk factors regarding the expected value of proliferation risk under normal (not proliferating) operations. (3) The dynamic (changing) risk: the quantification of risk factors regarding the observed value of proliferation risk, based on monitor signals from facility operations. This framework could be implemented at facilities which have been exported (for instance, to third world countries), or facilities located in sensitive countries. Sandia National Laboratories is currently working with the Japan Nuclear Cycle Development Institute (JNC) to implement a demonstration of nuclear fuel cycle transparency technology at the Fuel Handling Training Model designed for the Monju Fast Reactor at the International Cooperation and Development Training Center in Japan. This technology has broad applications, both in the U.S. and abroad. Following the demonstration, we expect to begin further testing of the technology at an Enrichment Facility, a Fast Reactor, and at a Recycle Facility.

Love, Tracia L.

2005-04-01T23:59:59.000Z

306

Development of a comprehensive reporting system for a school reform organization: The Accelerated Schools Project  

E-Print Network [OSTI]

theoretical framework for the reporting system, (b) identified data that should be collected in the reporting system, (c) performed a field test with an expert panel of educational professionals, (d) developed a preliminary form of the reporting system, (e...

Stephens, Jennifer Anne

2006-04-12T23:59:59.000Z

307

DEVELOPMENT OF NOVEL ELECTROCATALYSTS FOR PROTON EXCHANGE MEMBRANE FUEL CELLS  

SciTech Connect (OSTI)

Proton Exchange Membrane Fuel Cell (PEMFC) is one of the most promising power sources for space and electric vehicle applications. Platinum (Pt) catalyst is used for both fuel and air electrodes in PEMFCs. The carbon monoxide (CO) contamination of H{sub 2} greatly affects electrocatalysts used at the anode of PEMFCs and decrease the cell performance. This irreversible poisoning of the anode can happen even in CO concentrations as low as few ppm, and therefore, require expensive scrubbing of the H{sub 2}-fuel to reduce the contaminant concentration to acceptable level. In order to commercialize this environmentally sound source of energy/power system, development of suitable CO-tolerant catalyst is needed. In this work, we have synthesized several novel electrocatalysts (Pt/C, Pt/Ru/C Pt/Mo/C, Pt/Ir and Pt/Ru/Mo) for PEMFCs. These catalysts have been tested for CO tolerance in the H{sub 2}/air fuel cell. The concentration of CO in the H{sub 2} fuel varied from 10 ppm to 100 ppm. The performance of the electrodes was evaluated by determining the cell potential against current density. The effect of temperature, catalyst compositions, and electrode film preparation methods on the performance of PEM fuel cell has also been studied. It was found that at 70 C and 3.5 atm pressure at the cathode, Pt-alloy catalysts (10 wt % Pt/Ru/C, 20 wt % Pt/Mo/C) were more CO-tolerant than 20 wt % Pt catalyst alone. It was also observed that spraying method is better for the preparation of electrode film than the brushing technique. Some of these results are summarized in this report.

Shamsuddin Ilias

2001-07-06T23:59:59.000Z

308

Unfunded Mandates Reform Act; Intergovernmental Consultation | Department  

Broader source: Energy.gov (indexed) [DOE]

Unfunded Mandates Reform Act; Intergovernmental Consultation Unfunded Mandates Reform Act; Intergovernmental Consultation Unfunded Mandates Reform Act; Intergovernmental Consultation The Department of Energy (DOE) today publishes a final statement of policy on intergovernmental consultation under the Unfunded Mandates Reform Act of 1995. The policy reflects the guidelines and instructions that the Director of the Office of Management and Budget (OMB) provided to each agency to develop, with input from State, local, and tribal officials, an intergovernmental consultation process with regard to significant intergovernmental mandates contained in a notice of proposed rulemaking. Unfunded Mandates Reform Act; Intergovernmental Consultation More Documents & Publications TEC Working Group Topic Groups Tribal Key Documents

309

Unfunded Mandates Reform Act; Intergovernmental Consultation | Department  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Unfunded Mandates Reform Act; Intergovernmental Consultation Unfunded Mandates Reform Act; Intergovernmental Consultation Unfunded Mandates Reform Act; Intergovernmental Consultation The Department of Energy (DOE) today publishes a final statement of policy on intergovernmental consultation under the Unfunded Mandates Reform Act of 1995. The policy reflects the guidelines and instructions that the Director of the Office of Management and Budget (OMB) provided to each agency to develop, with input from State, local, and tribal officials, an intergovernmental consultation process with regard to significant intergovernmental mandates contained in a notice of proposed rulemaking. Unfunded Mandates Reform Act; Intergovernmental Consultation More Documents & Publications TEC Working Group Topic Groups Tribal Key Documents

310

Distributed Reforming of Renewable Liquids via Water Splitting using Oxygen Transport Membrane (OTM) (Presentation)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reforming of Renewable Reforming of Renewable Liquids via Water Splitting using Oxygen Transport Membrane (OTM) * U. (Balu) Balachandran, T. H. Lee, C. Y. Park, and S. E. Dorris Energy Systems Division E-mail: balu@anl.gov * Work supported by the Hydrogen, Fuel Cells, and Infrastructure Technologies Program of DOE's Office of Energy Efficiency and Renewable Energy Presented at the Bio-derived Liquids Working Group (BILIWG) Meeting, Nov. 6, 2007. BILIWG Meeting, Nov. 6, 2007 2 Objective & Rationale Objective: Develop compact dense ceramic membrane reactors that enable the efficient and cost-effective production of hydrogen by reforming renewable liquid fuels using pure oxygen produced by water splitting and transported by an OTM. Rationale: Membrane technology provides the means to attack barriers to the

311

Development of alternate extractant systems for fast reactor fuel cycle  

SciTech Connect (OSTI)

Due to the limitations of TBP in processing of high burn-up, Pu-rich fast reactor fuels, there is a need to develop alternate extractants for fast reactor fuel processing. In this context, our Centre has been examining the suitability of alternate tri-alkyl phosphates. Third phase formation in the extraction of Th(IV) by TBP, tri-n-amyl phosphate (TAP) and tri-2-methyl-butyl phosphate (T2MBP) from nitric acid media has been investigated under various conditions to derive conclusions on their application for extraction of Pu at macro levels. The chemical and radiolytic degradation of tri-n-amyl-phosphate (TAP) diluted in normal paraffin hydrocarbon (NPH) in the presence of nitric acid has been investigated by the measurement of plutonium retention in organic phase. The potential application of room temperature ionic liquids (RTILs) for reprocessing of spent nuclear fuel has been explored. Extraction of uranium (VI) and palladium (II) from nitric acid medium by commercially available RTIL and tri-n-butyl phosphate solution in RTIL have been studied and the feasibility of electrodeposition of uranium as uranium oxide (UO{sub 2}) and palladium (II) as metallic palladium from the loaded organic phase have been demonstrated. This paper describes results of the above studies and discusses the suitability of the systems for fast reactor fuel reprocessing. (authors)

Vasudeva Rao, P.R.; Suresh, A.; Venkatesan, K.A.; Srinivasan, T.G.; Raj, Baldev [Indira Gandhi Centre for Atomic Research, Kalpakkam - 603 102 (India)

2007-07-01T23:59:59.000Z

312

Development of Al-stabilized CaO–nickel hybrid sorbent–catalyst for sorption-enhanced steam methane reforming  

Science Journals Connector (OSTI)

Abstract In this work, Al-stabilized CaO–Ni hybrid sorbent–catalysts integrated in a single particle with various nickel loadings (12, 18 and 25 wt% NiO) were developed and tested in cyclic hydrogen production by sorption-enhanced steam methane reforming (SESMR) process. A simple wet-mixing technique based on limestone acidification and two-step calcination was employed to produce hybrid materials with different nickel loadings. All developed materials were characterized by BET, XRD, SEM and TEM and studied during 25 CO2 sorption/regeneration cycles as well as for 10 SESMR cycles. Based on both CO2 sorption and SESMR results, it was concluded that the proposed hybrid sorbent–catalyst with NiO loading of 25 wt% led to the best performances: (i) CaO molar conversion is 41.2% at the end of the 25th sorption cycle and (ii) average CH4 conversion and H2 production efficiency during 10 SESMR cycles are remarkable (99.1% and 96.1%, respectively). For the most efficient hybrid sorbent–catalyst (25 wt% NiO), the influence of CH4 flow rate and steam to carbon ratio (S/C) was also investigated, as well as its behavior during long-term cyclic operation of SESMR (30 cycles), where the H2 production time was just limited to pre-breakthrough period. The very efficient performance (average of H2 yield 97.3%) of the proposed hybrid sorbent–catalyst material in long-term operation confirmed its high potential for use in SESMR process.

Hamid R. Radfarnia; Maria C. Iliuta

2014-01-01T23:59:59.000Z

313

Comparative analysis of selected fuel cell vehicles  

SciTech Connect (OSTI)

Vehicles powered by fuel cells operate more efficiently, more quietly, and more cleanly than internal combustion engines (ICEs). Furthermore, methanol-fueled fuel cell vehicles (FCVs) can utilize major elements of the existing fueling infrastructure of present-day liquid-fueled ICE vehicles (ICEVs). DOE has maintained an active program to stimulate the development and demonstration o fuel cell technologies in conjunction with rechargeable batteries in road vehicles. The purpose of this study is to identify and assess the availability of data on FCVs, and to develop a vehicle subsystem structure that can be used to compare both FCVs and ICEV, from a number of perspectives--environmental impacts, energy utilization, materials usage, and life cycle costs. This report focuses on methanol-fueled FCVs fueled by gasoline, methanol, and diesel fuel that are likely to be demonstratable by the year 2000. The comparative analysis presented covers four vehicles--two passenger vehicles and two urban transit buses. The passenger vehicles include an ICEV using either gasoline or methanol and an FCV using methanol. The FCV uses a Proton Exchange Membrane (PEM) fuel cell, an on-board methanol reformer, mid-term batteries, and an AC motor. The transit bus ICEV was evaluated for both diesel and methanol fuels. The transit bus FCV runs on methanol and uses a Phosphoric Acid Fuel Cell (PAFC) fuel cell, near-term batteries, a DC motor, and an on-board methanol reformer. 75 refs.

NONE

1993-05-07T23:59:59.000Z

314

Current status of the development of high density LEU fuel for Russian research reactors  

SciTech Connect (OSTI)

One of the main directions of the Russian RERTR program is to develop U-Mo fuel and fuel elements/FA with this fuel. The development is carried out both for existing reactors, and for new advanced designs of reactors. Many organizations in Russia, i.e. 'TVEL', RDIPE, RIAR, IRM, NPCC participate in the work. Two fuels are under development: dispersion and monolithic U-Mo fuel, as well two types of FA to use the dispersion U-Mo fuel: with tubular type fuel elements and with pin type fuel elements. The first stage of works was successfully completed. This stage included out-pile, in-pile and post irradiation examinations of U-Mo dispersion fuel in experimental tubular and pin fuel elements under parameters similar to operation conditions of Russian design pool-type research reactors. The results received both in Russia and abroad enabled to go on to the next stage of development which includes irradiation tests both of full-scale IRT pin-type and tube-type fuel assemblies with U-Mo dispersion fuel and of mini-fuel elements with modified U-Mo dispersion fuel and monolithic fuel. The paper gives a generalized review of the results of U-Mo fuel development accomplished by now. (author)

Vatulin, A.; Dobrikova, I.; Suprun, V.; Trifonov, Y. [Federal State Unitary Enterprise, A.A. Bochvar All-Russian Scientific Research Institute of Inorganic Materials (VNIINM), 123060 Rogov 5a, Moscow (Russian Federation); Kartashev, E.; Lukichev, V. [Federal State Unitary Enterprise RDIPE, 101000 P.O. Box 788, Moscow (Russian Federation)

2008-07-15T23:59:59.000Z

315

Does financial development contribute to SAARC?S energy demand? From energy crisis to energy reforms  

Science Journals Connector (OSTI)

Abstract SAARC members urgently need to secure sustainable energy supplies at affordable prices. Alarmingly high oil prices in the face of ever increasing energy demand have resulted in severe pressure on resources of SAARC members. The objective of this study examine the relationship among energy consumption, economic growth, relative prices of energy, FDI and different financial development indicators (i.e., broad money supply, liquid liabilities, domestic credit provided by banking sector and domestic credit to private sector) in the panel of selected SAARC countries namely Bangladesh, India, Nepal, Pakistan and Sri Lanka over a period of 1975–2011. Panel cointegration test suggest that the variables are cointegrated and have a long-run relationship between them. In addition, three different panel data methods i.e. pooled least square, fixed effects and random effects have been used to test the validity of the “energy-growth nexus via financial development” in the SAARC region. Specification tests (i.e., F-test and Hausman test) indicate that the fixed effect model considered as the best model to examine the relationship between energy and growth determinants, this implies that variables are apparently influenced by country effects only. The fixed effect model shows that there is a significant relationship among energy consumption, economic growth, FDI and financial development (FD) proxies, however, FD indicators has a larger impact on increasing energy demand, followed by GDP per capita and FDI. Therefore, it is concluded that there is a trade-off between the energy and growth variables in SAARC region, collective efforts is required to transform SAARC region from an energy-starved to an energy efficient region.

Arif Alam; Ihtisham Abdul Malik; Alias Bin Abdullah; Asmadi Hassan; Faridullah; Usama Awan; Ghulam Ali; Khalid Zaman; Imran Naseem

2015-01-01T23:59:59.000Z

316

Fuel Preprocessor (FPP) for a Solid Oxide Fuel Cell Auxiliary Power Unit  

SciTech Connect (OSTI)

Auxiliary Power Units (APUs), driven by truck engines, consume over 800 million gallon of diesel fuel while idling. Use of separate SOFC based APUs are an excellent choice to reduce the cost and pollution associated with producing auxiliary power. However, diesel fuel is a challenging fuel to use in fuel cell systems because it has heavy hydrocarbons that can transform into carbon deposits and gums that can block passages and deactivate fuel reformer and fuel cell reactor elements. The work reported herein addresses the challenges associated with the diesel fuel sulfur and carbon producing contaminants in a Fuel Preprocessor (FPP). FPP processes the diesel fuel onboard and ahead of the reformer to reduce its carbon deposition tendency and its sulfur content, thus producing a fuel suitable for SOFC APU systems. The goal of this DOE supported Invention and Innovation program was to design, develop and test a prototype Fuel Preprocessor (FPP) that efficiently and safely converts the diesel fuel into a clean fuel suitable for a SOFC APU system. The goals were achieved. A 5 kWe FPP was designed, developed and tested. It was demonstrated that FPP removes over 80% of the fuel sulfur and over 90% of its carbon residues and it was demonstrated that FPP performance exceeds the original project goals.

M. Namazian, S. Sethuraman and G. Venkataraman

2004-12-31T23:59:59.000Z

317

Development of biomass as an alternative fuel for gas turbines  

SciTech Connect (OSTI)

A program to develop biomass as an alternative fuel for gas turbines was started at Aerospace Research Corporation in 1980. The research culminated in construction and installation of a power generation system using an Allison T-56 gas turbine at Red Boiling Springs, Tennessee. The system has been successfully operated with delivery of power to the Tennessee Valley Authority (TVA). Emissions from the system meet or exceed EPA requirements. No erosion of the turbine has been detected in over 760 hours of operation, 106 of which were on line generating power for the TVA. It was necessary to limit the turbine inlet temperature to 1450{degrees}F to control the rate of ash deposition on the turbine blades and stators and facilitate periodic cleaning of these components. Results of tests by researchers at Battelle Memorial Institute -- Columbus Division, give promise that deposits on the turbine blades, which must be periodically removed with milled walnut hulls, can be eliminated with addition of lime to the fuel. Operational problems, which are centered primarily around the feed system and engine configuration, have been adequately identified and can be corrected in an upgraded design. The system is now ready for development of a commercial version. The US Department of Energy (DOE) provided support only for the evaluation of wood as an alternative fuel for gas turbines. However, the system appears to have high potential for integration into a hybrid system for the production of ethanol from sorghum or sugar cane. 7 refs., 23 figs., 18 tabs.

Hamrick, J T [Aerospace Research Corp., Roanoke, VA (USA)

1991-04-01T23:59:59.000Z

318

Catalysts and materials development for fuel cell power generation  

E-Print Network [OSTI]

Catalytic processing of fuels was explored in this thesis for both low-temperature polymer electrolyte membrane (PEM) fuel cell as well as high-temperature solid oxide fuel cell (SOFC) applications. Novel catalysts were ...

Weiss, Steven E

2005-01-01T23:59:59.000Z

319

Used Fuel Disposition Campaign Disposal Research and Development...  

Broader source: Energy.gov (indexed) [DOE]

related to storage, transportation and disposal of used nuclear fuel (UNF) and high level nuclear waste (HLW) generated by existing and future nuclear fuel cycles. The disposal of...

320

Environmental fiscal reform (EFR) | Open Energy Information  

Open Energy Info (EERE)

Environmental fiscal reform (EFR) Environmental fiscal reform (EFR) Jump to: navigation, search Tool Summary Name: Environmental fiscal reform (EFR) Agency/Company /Organization: Global Subsidies Initiative (GSI), International Institute for Sustainable Development (IISD), World Bank Phase: Develop Goals, Prepare a Plan, Develop Finance and Implement Projects Topics: Co-benefits assessment, Finance, Market analysis, Policies/deployment programs References: Environmental fiscal reform - What should be done and how to achieve it[1] Reforming fiscal policies to close the gap between economic and ecological efficiencies[2] Overview "The term environmental fiscal reform (EFR) refers to: a range of taxation or pricing instruments that can raise revenue, while simultaneously furthering environmental goals. This is achieved by providing economic

Note: This page contains sample records for the topic "development reformed fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Autothermal Reforming of Renewable Fuels  

SciTech Connect (OSTI)

The conversion of biomass into energy and chemicals is a major research and technology challenge of this century, comparable to petroleum processing in the last century. Recently we have successfully transformed both volatile liquids and nonvolatile liquids and solids into syngas with no carbon formation in autothermal catalytic reactors with residence times of ~10 milliseconds. In the proposed research program we explore the mechanisms of these processes and their extensions to other biomass sources and applications by examining different feeds, catalysts, flow conditions, and steam addition to maximize production of either syngas or chemicals. We will systematically study the catalytic partial oxidation in millisecond autothermal reactors of solid biomass and the liquid products formed by pyrolysis of solid biomass. We will examine alcohols, polyols, esters, solid carbohydrates, and lignocellulose to try to maximize formation of either hydrogen and syngas or olefins and oxygenated chemicals. We will explore molecules and mixtures of practical interest as well as surrogate molecules that contain the functional groups of biofuels but are simpler to analyze and interpret. We will examine spatial profiles within the catalyst and transient and periodic operation of these reactors at pressures up to 10 atm to obtain data from which to explore more detailed mechanistic models and optimize performance to produce a specific desired product. New experiments will examine the conversion of syngas into biofuels such as methanol and dimethyl ether to explore the entire process of producing biofuels from biomass in small distributed systems. Experiments and modeling will be integrated to probe and understand detailed reaction kinetics and the processes by which solid biomass particles are transformed into syngas and chemicals by reactive flash volatilization.

Schmidt, Lanny D

2009-05-01T23:59:59.000Z

322

Fuel cells development and hydrogen production from renewable resources in Brazil  

Science Journals Connector (OSTI)

In this work we review the Brazilian energy supply matrix, in particular focusing on environmentally friendly pathways to hydrogen production and fuel cell utilisation. Brazil is currently building capacity in these areas, evident in the spectrum of technological research carried out by several universities in the fields of hydrogen production processes, catalysts and electrolyte materials. Although the fuel cell installed capacity in Brazil is limited, there are several government-funded research activities – mainly on PEM, DMFC, DEFC and SOFC, in addition to reforming and catalysis of ethanol as cell fuel. Brazil has a robust energy matrix, and 45% of its energy supply is derived from renewable resources. The future hydrogen economy in Brazil will probably rely on renewable resources, mainly from hydroelectric power and biofuels, which are plentifully available.

D. Hotza; J.C. Diniz da Costa

2008-01-01T23:59:59.000Z

323

Efficient Utilization of Greenhouse Gases in a Gas-to-Liquids Process Combined with CO2/Steam-Mixed Reforming and Fe-Based Fischer–Tropsch Synthesis  

Science Journals Connector (OSTI)

In the reforming unit, CO2 reforming and steam reforming of methane are combined together to produce syngas in flexible composition. ... In the burner-type reformer, NG is used as a heating fuel, in order to reduce the consumption of NG, the vent gas can be applied to the burner to replace some part of NG as fuel. ...

Chundong Zhang; Ki-Won Jun; Kyoung-Su Ha; Yun-Jo Lee; Seok Chang Kang

2014-06-16T23:59:59.000Z

324

Development of Dual-Fuel Engine for Class 8 Applications | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Class 8 Applications Development of Dual-Fuel Engine for Class 8 Applications Highlights roadmap towards 55% brake thermal efficiency and progress to meet engine development goals...

325

DEVELOPMENT OF ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS  

SciTech Connect (OSTI)

This Final Report for Cooperative Agreement No. DE-FC22-95PC93052, the ''Development of Alternative Fuels and Chemicals from Synthesis Gas,'' was prepared by Air Products and Chemicals, Inc. (Air Products), and covers activities from 29 December 1994 through 31 July 2002. The overall objectives of this program were to investigate potential technologies for the conversion of synthesis gas (syngas), a mixture primarily of hydrogen (H{sub 2}) and carbon monoxide (CO), to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at the LaPorte, Texas Alternative Fuels Development Unit (AFDU). Laboratory work was performed by Air Products and a variety of subcontractors, and focused on the study of the kinetics of production of methanol and dimethyl ether (DME) from syngas, the production of DME using the Liquid Phase Dimethyl Ether (LPDME{trademark}) Process, the conversion of DME to fuels and chemicals, and the production of other higher value products from syngas. Four operating campaigns were performed at the AFDU during the performance period. Tests of the Liquid Phase Methanol (LPMEOH{trademark}) Process and the LPDME{trademark} Process were made to confirm results from the laboratory program and to allow for the study of the hydrodynamics of the slurry bubble column reactor (SBCR) at a significant engineering scale. Two campaigns demonstrated the conversion of syngas to hydrocarbon products via the slurry-phase Fischer-Tropsch (F-T) process. Other topics that were studied within this program include the economics of production of methyl tert-butyl ether (MTBE), the identification of trace components in coal-derived syngas and the means to economically remove these species, and the study of systems for separation of wax from catalyst in the F-T process. The work performed under this Cooperative Agreement has continued to promote the development of technologies that use clean syngas produced from any one of a variety of sources (including coal) for the production of a spectrum of alternative fuels (hydrocarbons and oxygenate fuels), octane enhancers, and chemicals and chemical intermediates. In particular, the data from the 1995 LPMEOH{trademark} campaign provided confirmation of assumptions used in the design of the catalyst reduction system at the Kingsport LPMEOH{trademark} Commercial Demonstration Project, and the alternate methanol catalyst has been in use there since late 1998. The kinetic model was also expanded to allow for more accurate prediction of methanol production and carbon dioxide (CO{sub 2}) conversion, and more accurate modeling of by-product formation for the alternate methanol catalyst. The outstanding performance results of the LPMEOH{trademark} Process at Kingsport can be attributed in large part to the body of work performed since 1981 in collaboration between the U.S. Department of Energy (DOE) and Air Products. In addition, a pilot-plant-tested LPDME{trademark} Process has been demonstrated, and the product cost of DME from coal-derived syngas can be competitive in certain locations and applications. The need for liquid fuels will continue to be a critical concern for this nation in the 21st century. Efforts are needed to ensure the development and demonstration of economically competitive, efficient, environmentally responsible technologies that produce clean fuels and chemicals from coal under DOE's Vision 21 concept. These liquids will be a component of the fuel mix that will provide the transition from the current reliance on carbon-based fuels to the ultimate use of H{sub 2} as a means of energy transport. Indirect liquefaction, which converts the syngas (H{sub 2} and CO) produced by the gasification of coal to sulfur- and nitrogen-free liquid products, is a key component of the Vision 21 initiative. The results from this current program provide continued support to the objectives for the conversion of domestic coal to electric power and co-produced clean liquid fuels and chemicals in an environmentally superior manner.

Peter J. Tijrn

2003-05-31T23:59:59.000Z

326

International symposium on fuel rod simulators: development and application  

SciTech Connect (OSTI)

Separate abstracts are included for each of the papers presented concerning fuel rod simulator operation and performance; simulator design and evaluation; clad heated fuel rod simulators and fuel rod simulators for cladding investigations; fuel rod simulator components and inspection; and simulator analytical modeling. Ten papers have previously been input to the Energy Data Base.

McCulloch, R.W. (comp.)

1981-05-01T23:59:59.000Z

327

Development and Demonstration of a Fuel-Efficient HD Engine  

Broader source: Energy.gov [DOE]

Approach to selection of technologies and their contribution to enhance heavy-duty truck fuel efficiency.

328

Chemical Looping Autothermal Reforming at a 120 kW Pilot Rig  

Science Journals Connector (OSTI)

Chemical looping with selective oxygen transport allows two step combustion or autothermal reforming without mixing of fuel...4...conversion is achieved. Air/fuel ratio is varied at three different fuel reactor t...

Johannes Bofhàr-Nordenkampf; Tobias Pröll…

2010-01-01T23:59:59.000Z

329

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan  

Broader source: Energy.gov [DOE]

The Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan describes the goals, objectives, technical targets, tasks, and schedules for all activities within the Fuel Cell Technologies Office.

330

Advanced LWR Nuclear Fuel Cladding System Development Trade-Off Study  

SciTech Connect (OSTI)

The Advanced Light Water Reactor (LWR) Nuclear Fuel Development Research and Development (R&D) Pathway encompasses strategic research focused on improving reactor core economics and safety margins through the development of an advanced fuel cladding system. To achieve significant operating improvements while remaining within safety boundaries, significant steps beyond incremental improvements in the current generation of nuclear fuel are required. Fundamental improvements are required in the areas of nuclear fuel composition, cladding integrity, and the fuel/cladding interaction to allow power uprates and increased fuel burn-up allowance while potentially improving safety margin through the adoption of an “accident tolerant” fuel system that would offer improved coping time under accident scenarios. With a development time of about 20 – 25 years, advanced fuel designs must be started today and proven in current reactors if future reactor designs are to be able to use them with confidence.

Kristine Barrett; Shannon Bragg-Sitton

2012-09-01T23:59:59.000Z

331

Status and progress in the U.S. RERTR fuel development program  

SciTech Connect (OSTI)

In 2004, U.S. Energy Secretary Abraham established the Global Threat Reduction Initiative (GTRI). This program set goals for the conversion of many of the world's research and test reactors to low-enriched fuels, including those for which suitable fuels are currently not available. Development of fuels for reactors that cannot currently be converted requires an aggressive program of fuel fabrication development, out-of-pile testing and characterization, irradiation testing, post-irradiation examination, and fuel performance modeling. Both dispersion and monolithic versions of a uranium-molybdenum based fuel are being developed in conjunction with strong international partnerships. The development is being carried out with the intent to qualify a low-enrichment, high- density fuel suitable for utilization in these reactors by the end of 2011, allowing conversion of the U.S. reactors by 2014. An overview of program progress and plans leading to fuel qualification will be presented. (author)

Wachs, Daniel M

2008-07-15T23:59:59.000Z

332

System for adding sulfur to a fuel cell stack system for improved fuel cell stability  

DOE Patents [OSTI]

A system for adding sulfur to a fuel cell stack, having a reformer adapted to reform a hydrocarbon fuel stream containing sulfur contaminants, thereby providing a reformate stream having sulfur; a sulfur trap fluidly coupled downstream of the reformer for removing sulfur from the reformate stream, thereby providing a desulfurized reformate stream; and a metering device in fluid communication with the reformate stream upstream of the sulfur trap and with the desulfurized reformate stream downstream of the sulfur trap. The metering device is adapted to bypass a portion of the reformate stream to mix with the desulfurized reformate stream, thereby producing a conditioned reformate stream having a predetermined sulfur concentration that gives an acceptable balance of minimal drop in initial power with the desired maximum stability of operation over prolonged periods for the fuel cell stack.

Mukerjee, Subhasish (Pittsford, NY); Haltiner, Jr., Karl J (Fairport, NY); Weissman, Jeffrey G. (West Henrietta, NY)

2012-03-06T23:59:59.000Z

333

Used fuel disposition research and development roadmap - FY10 status.  

SciTech Connect (OSTI)

Since 1987 the U.S. has focused research and development activities relevant to the disposal of commercial used nuclear fuel and U.S. Department of Energy (DOE) owned spent nuclear fuel and high level waste on the proposed repository at Yucca Mountain, Nevada. At the same time, the U.S. successfully deployed a deep geologic disposal facility for defense-related transuranic waste in bedded salt at the Waste Isolation Pilot Plant. In 2009 the DOE established the Used Fuel Disposition Campaign (UFDC) within the Office of Nuclear Energy. The Mission of the UFDC is to identify alternatives and conduct scientific research and technology development to enable storage, transportation and disposal of used nuclear fuel and wastes generated by existing and future nuclear fuel cycles. The U.S. national laboratories have participated on these programs and has conducted research and development related to these issues to a limited extent. However, a comprehensive research and development (R&D) program investigating a variety of geologic media has not been a part of the U.S. waste management program since the mid 1980s. Such a comprehensive R&D program is being developed in the UFDC with a goal of meeting the UFDC Grand Challenge to provide a sound technical basis for absolute confidence in the safety and security of long-term storage, transportation, and disposal of used nuclear fuel and wastes from the nuclear energy enterprise. The DOE has decided to no longer pursue the development of a repository at Yucca Mountain, Nevada. Since a repository site will ultimately have to be selected, sited, characterized, designed, and licensed, other disposal options must now be considered. In addition to the unsaturated volcanic tuff evaluated at Yucca Mountain, several different geologic media are under investigation internationally and preliminary assessments indicate that disposal of used nuclear fuel and high level waste in these media is feasible. Considerable progress has been made in the U.S. and other nations in understanding disposal concepts in different geologic media, but gaps in knowledge still exist. A principal aspect of concern to the UFDC as it considers the broad issues of siting a repository in different geologic media are the marked differences in the regulatory bases for assessing suitability and safety of a repository between the U.S. and other nations. Because the probability based - risked informed nature of the current U.S. regulations for high-level radioactive waste and spent nuclear fuel is sufficiently different from other regulations, information gained in previous studies, while useful, likely need to be supplemented to enable more convincing communication with the public, better defense of the numerical models, and stronger safety cases. Thus, it was recognized when the UFDC was established that there were readily identified disposal-related R&D opportunities to address knowledge gaps. An effort to document these research opportunities was a key component of Fiscal Year (FY) 2010 engineered system, natural system, and system-level modeling activities for a range of disposal environments. A principal contribution to identifying these gaps was a workshop held to gather perspectives from experts both within and external to the UFDC regarding R&D opportunities. In the planning for FY2010 it was expected that these activities would culminate with a UFDC research and development roadmap that would identify the knowledge gaps, discuss the R&D needed to fill these gaps, and prioritize the proposed R&D over both the near- and long-term. A number of knowledge gaps and needed R&D were identified and are discussed in this report. However, these preliminary R&D topics have not been evaluated in detail nor have they been prioritized to support future planning efforts. This will be completed in FY11 and the final UFDC Research and Development Roadmap will be completed. This report discusses proposed R&D topics in three areas related to repository siting, design, and performance: natural systems

Nutt, W. M. (Nuclear Engineering Division)

2010-10-01T23:59:59.000Z

334

Development of OTM Syngas Process and Testing of Syngas Derived Ultra-clean Fuels in Diesel Engines and Fuel Cells  

SciTech Connect (OSTI)

This topical report summarizes work accomplished for the Program from November 1, 2001 to December 31, 2002 in the following task areas: Task 1: Materials Development; Task 2: Composite Development; Task 4: Reactor Design and Process Optimization; Task 8: Fuels and Engine Testing; 8.1 International Diesel Engine Program; 8.2 Nuvera Fuel Cell Program; and Task 10: Program Management. Major progress has been made towards developing high temperature, high performance, robust, oxygen transport elements. In addition, a novel reactor design has been proposed that co-produces hydrogen, lowers cost and improves system operability. Fuel and engine testing is progressing well, but was delayed somewhat due to the hiatus in program funding in 2002. The Nuvera fuel cell portion of the program was completed on schedule and delivered promising results regarding low emission fuels for transportation fuel cells. The evaluation of ultra-clean diesel fuels continues in single cylinder (SCTE) and multiple cylinder (MCTE) test rigs at International Truck and Engine. FT diesel and a BP oxygenate showed significant emissions reductions in comparison to baseline petroleum diesel fuels. Overall through the end of 2002 the program remains under budget, but behind schedule in some areas.

E.T. (Skip) Robinson; James P. Meagher; Prasad Apte; Xingun Gui; Tytus R. Bulicz; Siv Aasland; Charles Besecker; Jack Chen Bart A. van Hassel; Olga Polevaya; Rafey Khan; Piyush Pilaniwalla

2002-12-31T23:59:59.000Z

335

Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Developing Developing Infrastructure to Charge Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In Electric Vehicles on AddThis.com...

336

Fossil Energy-Developed Fuel Cell Technology Being Adapted by Navy for  

Broader source: Energy.gov (indexed) [DOE]

Energy-Developed Fuel Cell Technology Being Adapted by Navy Energy-Developed Fuel Cell Technology Being Adapted by Navy for Advanced Unmanned Undersea Vehicles Fossil Energy-Developed Fuel Cell Technology Being Adapted by Navy for Advanced Unmanned Undersea Vehicles January 31, 2013 - 12:00pm Addthis An unmanned undersea vehicle (UUV) being deployed during a U.S. Office of Naval Research demonstration near Panama City. Solid oxide fuel cell technology being developed by the Office of Fossil Energy for coal-fueled central power generation is being adapted to power UUVs. U.S. Navy photo by Mr. John F. Williams/Released. An unmanned undersea vehicle (UUV) being deployed during a U.S. Office of Naval Research demonstration near Panama City. Solid oxide fuel cell technology being developed by the Office of Fossil Energy for coal-fueled

337

Fuel processor and method for generating hydrogen for fuel cells  

DOE Patents [OSTI]

A method of producing a H.sub.2 rich gas stream includes supplying an O.sub.2 rich gas, steam, and fuel to an inner reforming zone of a fuel processor that includes a partial oxidation catalyst and a steam reforming catalyst or a combined partial oxidation and stream reforming catalyst. The method also includes contacting the O.sub.2 rich gas, steam, and fuel with the partial oxidation catalyst and the steam reforming catalyst or the combined partial oxidation and stream reforming catalyst in the inner reforming zone to generate a hot reformate stream. The method still further includes cooling the hot reformate stream in a cooling zone to produce a cooled reformate stream. Additionally, the method includes removing sulfur-containing compounds from the cooled reformate stream by contacting the cooled reformate stream with a sulfur removal agent. The method still further includes contacting the cooled reformate stream with a catalyst that converts water and carbon monoxide to carbon dioxide and H.sub.2 in a water-gas-shift zone to produce a final reformate stream in the fuel processor.

Ahmed, Shabbir (Naperville, IL); Lee, Sheldon H. D. (Willowbrook, IL); Carter, John David (Bolingbrook, IL); Krumpelt, Michael (Naperville, IL); Myers, Deborah J. (Lisle, IL)

2009-07-21T23:59:59.000Z

338

Simulated coal-gas-fueled molten carbonate fuel cell development program  

SciTech Connect (OSTI)

In previous work, International Fuel Cells Corporation (EFC) found interactions between molten carbonate fuel cell cathode materials being considered as replacements for the presently used nickel oxide and matrix materials. Consequently, this work was conducted to screen additional new materials for mutual compatibility. As part of this program, experiments were performed to examine the compatibility of several candidate, alternative cathode materials with the standard lithium aluminate matrix material in the presence of electrolyte at cell potentials. Initial cathode candidates were materials lithium ferrite, yttrium iron garnet, lithium manganite and doped ceria which were developed by universities, national laboratories, or contractors to DOE, EPRI, or GRI. These investigations were conducted in laboratory scale experiments. None of the materials tested can directly replace nickel oxide or indicate greater stability of cell performance than afforded by nickel oxide. Specifically: (1) no further work on niobium doped ceria is warranted; (2) cobalt migration was found in the lithium ferrite cathode tested. This could possibly lead to shorting problems similiar to those encountered with nickel oxide; (3) Possible shorting problems may also exist with the proprietary dopant in YIG; (4) lithium ferrite and YIG cathode were not single phase materials. Assessment of the chemical stability, i.e., dopant loss, was severely impeded by dissolution of these second phases in the electrolyte; and (5) Magnesium doped lithium manganite warrants further work. Electrolytes should contain Mg ions to suppress dopant loss.

Johnson, W.H.

1992-07-01T23:59:59.000Z

339

Simulated coal-gas-fueled molten carbonate fuel cell development program. Topical report: Cathode compatibility tests  

SciTech Connect (OSTI)

In previous work, International Fuel Cells Corporation (EFC) found interactions between molten carbonate fuel cell cathode materials being considered as replacements for the presently used nickel oxide and matrix materials. Consequently, this work was conducted to screen additional new materials for mutual compatibility. As part of this program, experiments were performed to examine the compatibility of several candidate, alternative cathode materials with the standard lithium aluminate matrix material in the presence of electrolyte at cell potentials. Initial cathode candidates were materials lithium ferrite, yttrium iron garnet, lithium manganite and doped ceria which were developed by universities, national laboratories, or contractors to DOE, EPRI, or GRI. These investigations were conducted in laboratory scale experiments. None of the materials tested can directly replace nickel oxide or indicate greater stability of cell performance than afforded by nickel oxide. Specifically: (1) no further work on niobium doped ceria is warranted; (2) cobalt migration was found in the lithium ferrite cathode tested. This could possibly lead to shorting problems similiar to those encountered with nickel oxide; (3) Possible shorting problems may also exist with the proprietary dopant in YIG; (4) lithium ferrite and YIG cathode were not single phase materials. Assessment of the chemical stability, i.e., dopant loss, was severely impeded by dissolution of these second phases in the electrolyte; and (5) Magnesium doped lithium manganite warrants further work. Electrolytes should contain Mg ions to suppress dopant loss.

Johnson, W.H.

1992-07-01T23:59:59.000Z

340

Alternative Fuels Data Center: Fisher Coachworks Develops Plug-In Electric  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fisher Coachworks Fisher Coachworks Develops Plug-In Electric Bus in Michigan to someone by E-mail Share Alternative Fuels Data Center: Fisher Coachworks Develops Plug-In Electric Bus in Michigan on Facebook Tweet about Alternative Fuels Data Center: Fisher Coachworks Develops Plug-In Electric Bus in Michigan on Twitter Bookmark Alternative Fuels Data Center: Fisher Coachworks Develops Plug-In Electric Bus in Michigan on Google Bookmark Alternative Fuels Data Center: Fisher Coachworks Develops Plug-In Electric Bus in Michigan on Delicious Rank Alternative Fuels Data Center: Fisher Coachworks Develops Plug-In Electric Bus in Michigan on Digg Find More places to share Alternative Fuels Data Center: Fisher Coachworks Develops Plug-In Electric Bus in Michigan on AddThis.com...

Note: This page contains sample records for the topic "development reformed fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Lean Gasoline System Development for Fuel Efficient Small Car  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

342

Lean Gasoline System Development for Fuel Efficient Small Car  

Broader source: Energy.gov [DOE]

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

343

NREL: Hydrogen and Fuel Cells Research - Thermochemical Processes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Printable Version Printable Version Thermochemical Processes Photo of a researcher wearing a hardhat and examining a catalytic steam reformer. Catalytic steam reforming increases the overall yield of fuel gas from biomass. NREL's researchers have investigated the thermochemical conversion of renewable energy feedstocks since the lab's inception. Researchers are developing gasification and pyrolysis processes to convert biomass and its residues to hydrogen, fuels, chemicals, and power. Building on past successes, biomass is increasingly one of the best near-term options for renewable hydrogen production. Thermochemical Process R&D Research and development at NREL provides a fundamental understanding of the chemistry of biomass pyrolysis. This R&D includes stabilizing and

344

Development of ultrafast computed tomography of highly transient fuel sprays  

E-Print Network [OSTI]

-generation automotive internal combustion engines.1 Among these is gasoline direct-injection (GDI) technology, which has. In a combustion system employing GDI, the fuel is directly injected into the combustion chamber instead of the air, the fuel efficiency can be greatly improved. Therefore, detailed analyses of the fuel sprays in the GDI

Gruner, Sol M.

345

The DOE Advanced Gas Reactor (AGR) Fuel Development and Qualification Program  

SciTech Connect (OSTI)

The Department of Energy has established the Advanced Gas Reactor Fuel Development and Qualification Program to address the following overall goals: Provide a baseline fuel qualification data set in support of the licensing and operation of the Next Generation Nuclear Plant (NGNP). Gas-reactor fuel performance demonstration and qualification comprise the longest duration research and development (R&D) task for the NGNP feasibility. The baseline fuel form is to be demonstrated and qualified for a peak fuel centerline temperature of 1250°C. Support near-term deployment of an NGNP by reducing market entry risks posed by technical uncertainties associated with fuel production and qualification. Utilize international collaboration mechanisms to extend the value of DOE resources. The Advanced Gas Reactor Fuel Development and Qualification Program consists of five elements: fuel manufacture, fuel and materials irradiations, postirradiation examination (PIE) and safety testing, fuel performance modeling, and fission product transport and source term evaluation. An underlying theme for the fuel development work is the need to develop a more complete fundamental understanding of the relationship between the fuel fabrication process, key fuel properties, the irradiation performance of the fuel, and the release and transport of fission products in the NGNP primary coolant system. Fuel performance modeling and analysis of the fission product behavior in the primary circuit are important aspects of this work. The performance models are considered essential for several reasons, including guidance for the plant designer in establishing the core design and operating limits, and demonstration to the licensing authority that the applicant has a thorough understanding of the in-service behavior of the fuel system. The fission product behavior task will also provide primary source term data needed for licensing. An overview of the program and recent progress will be presented.

David Petti; Hans Gougar; Gary Bell

2005-05-01T23:59:59.000Z

346

Advanced LWR Nuclear Fuel Cladding System Development Trade-off Study |  

Broader source: Energy.gov (indexed) [DOE]

LWR Nuclear Fuel Cladding System Development Trade-off LWR Nuclear Fuel Cladding System Development Trade-off Study Advanced LWR Nuclear Fuel Cladding System Development Trade-off Study The LWR Sustainability (LWRS) Program activities must support the timeline dictated by utility life extension decisions to demonstrate a lead test rod in a commercial reactor within 10 years. In order to maintain the demanding development schedule that must accompany this aggressive timeline, the LWRS Program focuses on advanced fuel cladding systems that retain standard UO2 fuel pellets for deployment in currently operating LWR power plants. The LWRS work scope focuses on fuel system components outside of the fuel pellet, allowing for alteration of the existing zirconium-based clad system through coatings, addition of ceramic sleeves, or complete replacement

347

DOE Issues Request for Information on Fuel Cell Research and Development Needs  

Broader source: Energy.gov [DOE]

The Fuel Cell Technologies Office is seeking feedback from the research community and relevant stakeholders to assist in the development of topics for a potential funding opportunity announcement in 2015 for fuel cells and fuel cell systems designed for transportation, as well as stationary and early market applications, including cross-cutting stack and balance of plant component technology.

348

Virginia Tech Comprehensive Power-based Fuel Consumption Model: Model Development and Testing  

E-Print Network [OSTI]

sources such as hybrid-electric technologies, bio-ethanol, and hydrogen fuel cells are emergingVirginia Tech Comprehensive Power-based Fuel Consumption Model: Model Development and Testing, Moran, Saerens, and Van den Bulck 2 ABSTRACT Existing fuel consumption and emission models suffer from

Rakha, Hesham A.

349

Project Information Form Project Title The Development of Lifecycle Data for Hydrogen Fuel Production and  

E-Print Network [OSTI]

Project Information Form Project Title The Development of Lifecycle Data for Hydrogen Fuel will be technologies and fuels related to renewable hydrogen. The literature review will produce a set of hydrogen hydrogen or hydrogen produced with technologies or fuels not currently in the LCFS. The study will assess

California at Davis, University of

350

Pressure-Compensated Hydrogen Fuel Cell WiSys Prototype Development Fund  

E-Print Network [OSTI]

Pressure-Compensated Hydrogen Fuel Cell WiSys Prototype Development Fund Final Report Principal Description The purpose of this project was to reduce-to-practice the pressure-compensated hydrogen fuel cell was intended to provide a solution for making more reliable and efficient hydrogen fuel cells than the present

Wu, Mingshen

351

Stresa, Italy, 26-28 April 2006 RECENT DEVELOPMENTS IN MEMS-BASED MICRO FUEL CELLS  

E-Print Network [OSTI]

cell achieved a maximum power density of 58 mW cm-2 at room temperature with hydrogen as fuel. 1Stresa, Italy, 26-28 April 2006 RECENT DEVELOPMENTS IN MEMS-BASED MICRO FUEL CELLS Tristan Pichonat ABSTRACT Micro fuel cells (µ-FC) represent promising power sources for portable applications. Today, one

Boyer, Edmond

352

Plasma catalytic reforming of methane  

Science Journals Connector (OSTI)

Thermal plasma technology can be efficiently used in the production of hydrogen and hydrogen-rich gases from methane and a variety of fuels. This article describes progress in plasma reforming experiments and calculations of high temperature conversion of methane using heterogeneous processes. The thermal plasma is a highly energetic state of matter that is characterized by extremely high temperatures (several thousand degrees Celsius), and a high degree of dissociation and a substantial degree of ionization. The high temperatures accelerate the reactions involved in the reforming process. Hydrogen-rich gas (40% H2, 17% CO2 and 33% N2, for partial oxidation/water shifting) can be efficiently made in compact plasma reformers. Experiments have been carried out in a small device (2–3 kW) and without the use of efficient heat regeneration. For partial oxidation/water shifting, it was determined that the specific energy consumption in the plasma reforming processes is 16 MJ/kg H2 with high conversion efficiencies. Larger plasmatrons, better reactor thermal insulation, efficient heat regeneration and improved plasma catalysis could also play a major role in specific energy consumption reduction and increasing the methane conversion. A system has been demonstrated for hydrogen production with low CO content (?1.5%) with power densities of ?30 kW (H2 HHV)/l of reactor, or ?10 m3/h H2 per liter of reactor. Power density should further increase with increased power and improved design.

L Bromberg; D.R Cohn; A Rabinovich; N Alexeev

1999-01-01T23:59:59.000Z

353

Data reconciliation and optimal operation of a catalytic naphtha reformer  

E-Print Network [OSTI]

-mail:skoge@chemeng.ntnu.no) #12;Abstract The naphtha reforming process converts low-octane gasoline blending compo- nents to high process converts low-octane gasoline blending compo- nents to high-octane components for use in high-octane components for use in high-performance gasoline fuels. The reformer also has a important function

Skogestad, Sigurd

354

2010 Hydrogen and Fuel Cell Global Commercialization & Development Update  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen is a clean fuel. When used in fuel cells, the Hydrogen is a clean fuel. When used in fuel cells, the only byproducts are water and heat. * Clean hydrogen technology has the potential to strengthen national economies and create high-quali- ty jobs in industries such as fuel cell manufacturing. * Hydrogen can be derived from renewable sources and is fully interchangeable with electricity - hydrogen can be used to generate electricity, while electricity can be used to produce hydrogen. * Over 100 years of safe production, transportation and use of hydrogen shows that it carries no more risk than natural gas or gasoline. * Hydrogen can be produced from diverse domestic sources and processes, freeing it from the political instabilities that affect the world's oil and gas supplies. * Fuel cells have more than double the energy-efficien-

355

Study of low-temperature-combustion diesel engines as an on-board reformer for intermediate temperature Solid Oxide Fuel Cell vehicles .  

E-Print Network [OSTI]

??Fuel cells have been recognized as a feasible alternative to current IC engines. A significant technical problem yet to be resolved is the on bound… (more)

Hahn, Tairin

2006-01-01T23:59:59.000Z

356

Fuel Cell Technologies Program Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Program Management and Operations The U.S. Department of Energy's (DOE's) Hydrogen and Fuel Cells Program (the Program) is composed of activities within the Offices of Energy...

357

Developing Low-Cost, Highly Efficient Heat Recovery for Fuel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy is utilizing its current commercialization channels to market the new hybrid fuel cell technologies. Distribution partners LOGAN Energy, Pfister Energy, and PPL Energy Plus...

358

Lean Gasoline System Development for Fuel Efficient Small Car  

Broader source: Energy.gov (indexed) [DOE]

NOx after-treatment systems have functional implementation limitations (i.e. performance, cost, packaging, etc.) * Significant fuel economy improvement requires integration of...

359

Development of Reversible Fuel Cell Systems at Proton Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

at Proton Energy Presentation by Everett Anderson, PROTON ON SITE, at the NREL Reversible Fuel Cells Workshop, April 19, 2011 revfcwkshpanderson.pdf More Documents &...

360

Supported metal catalysts for alcohol/sugar alcohol steam reforming  

SciTech Connect (OSTI)

Despite extensive studies on hydrogen production via steam reforming of alcohols and sugar alcohols, catalysts typically suffer a variety of issues from poor hydrogen selectivity to rapid deactivation. Here, we summarize recent advances in fundamental understanding of functionality and structure of catalysts for alcohol/sugar alcohol steam reforming, and provide perspectives on further development required to design highly efficient steam reforming catalysts.

Davidson, Stephen; Zhang, He; Sun, Junming; Wang, Yong

2014-08-21T23:59:59.000Z

Note: This page contains sample records for the topic "development reformed fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

health reform mattersTM alert ATTORNEY ADVERTISINGropesgray.com  

E-Print Network [OSTI]

health reform mattersTM alert ATTORNEY ADVERTISINGropesgray.com On March 23, President Obama signed is tracking the myriad other developments of the new health reform law. You can find a wide range of related material, including enacting language, implementing documents, and analysis through the Health Reform

Chapman, Michael S.

362

Argonne National Laboratory Chemical Engineering Division Catalysts for autothermal reforming  

E-Print Network [OSTI]

Krause Chemical Engineering Division Argonne National Laboratory Hydrogen, Fuel Cells, and Infrastructure2, CO, CO2, and CH4) as a function of: catalyst composition fuel composition and sulfur content,110,861) awarded Oct 2000: CRADA w/H2Fuel to commercialize reformer Aug 2001: Began work on perovskite catalysts

363

DOE Announces up to $74 Million for Fuel Cell Research and Development |  

Broader source: Energy.gov (indexed) [DOE]

Announces up to $74 Million for Fuel Cell Research and Announces up to $74 Million for Fuel Cell Research and Development DOE Announces up to $74 Million for Fuel Cell Research and Development December 22, 2010 - 12:00am Addthis WASHINGTON, DC - The U.S. Department of Energy today announced it is accepting applications for a total of up to $74 million to support the research and development of clean, reliable fuel cells for stationary and transportation applications. The solicitations include up to $65 million over three years to fund continued research and development (R&D) on fuel cell components, such as catalysts and membrane electrode assemblies, with the goal of reducing costs, improving durability and increasing the efficiency of fuel cell systems. The funding also includes up to $9 million to conduct independent cost analyses that will assess the progress of the

364

System for adding sulfur to a fuel cell stack system for improved fuel cell stability  

DOE Patents [OSTI]

A system for adding sulfur to a reformate stream feeding a fuel cell stack, having a sulfur source for providing sulfur to the reformate stream and a metering device in fluid connection with the sulfur source and the reformate stream. The metering device injects sulfur from the sulfur source to the reformate stream at a predetermined rate, thereby providing a conditioned reformate stream to the fuel cell stack. The system provides a conditioned reformate stream having a predetermined sulfur concentration that gives an acceptable balance of minimal drop in initial power with the desired maximum stability of operation over prolonged periods for the fuel cell stack.

Mukerjee, Subhasish; Haltiner, Jr., Karl J; Weissman, Jeffrey G

2013-08-13T23:59:59.000Z

365

Development of monolithic nuclear fuels for RERTR by hot isostatic pressing  

SciTech Connect (OSTI)

The RERTR Program (Reduced Enrichment for Research and Test Reactors) is developing advanced nuclear fuels for high power test reactors. Monolithic fuel design provides a higher uranium loading than that of the traditional dispersion fuel design. In order to bond monolithic fuel meat to aluminum cladding, several bonding methods such as roll bonding, friction stir bonding and hot isostatic pressing, have been explored. Hot isostatic pressing is a promising process for low cost, batch fabrication of monolithic RERTR fuel plates. The progress on the development of this process at the Idaho National Laboratory will be presented. Due to the relatively high processing temperature used, the reaction between fuel meat and aluminum cladding to form brittle intermetallic phases may be a concern. The effect of processing temperature and time on the fuel/cladding reaction will be addressed. The influence of chemical composition on the reaction will also be discussed. (author)

Jue, J.-F.; Park, Blair; Chapple, Michael; Moore, Glenn; Keiser, Dennis [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415 (United States)

2008-07-15T23:59:59.000Z

366

Development of custom fire behavior fuel models from FCCS fuelbeds for the Savannah River fuel assessment project.  

SciTech Connect (OSTI)

The purpose of this project is to create fire behavior fuel models that replicate the fire behavior characteristics (spread rate and fireline intensity) produced by 23 candidate FCCS fuelbeds developed for the Savannah River National Wildlife Refuge. These 23 fuelbeds were created by FERA staff in consultation with local fuel managers. The FCCS produces simulations of surface fire spread rate and flame length (and therefore fireline intensity) for each of these fuelbeds, but it does not produce maps of those fire behavior characteristics or simulate fire growth—those tasks currently require the use of the FARSITE and/or FlamMap software systems. FARSITE and FlamMap do not directly use FCCS fuelbeds, but instead use standard or custom fire behavior fuel models to describe surface fuel characteristics for fire modeling. Therefore, replicating fire growth and fire behavior potential calculations using FCCS?simulated fire characteristics requires the development of custom fuel models that mimic, as closely as possible, the fire behavior characteristics produced by the FCCS for each fuelbed, over a range of fuel moisture and wind speeds.

Scott, Joe, H.

2009-07-23T23:59:59.000Z

367

ELECTRODE DEVELOPMENT FOR REVERSIBLE SOLID OXIDE FUEL CELLS  

SciTech Connect (OSTI)

The reversibility of the electrodes for a solid oxide fuel cell with an yttria-stabilized zirconia (YSZ) electrolyte was examined using electrochemical impedance spectroscopy and current interrupt methods. The fuel electrodes were nickel/zirconia cermet and lanthanum-doped strontium titanate/doped ceria composites. The air electrodes were lanthanum strontium ferrite (LSF) and lanthanum strontium copper ferrite (LSCuF). Under the experimental conditions studied all four electrodes were able to operate in both the fuel cell and electrolyzer modes. The titanate/ceria fuel electrode performed substantially better in the electrolyzer mode than state-of-art Ni-YSZ. Moreover, it showed slightly higher activity for water electrolysis as compared to hydrogen oxidation. Air electrodes were less active in the electrolyzer than fuel cell modes. LSF typically provided higher overpotential losses in both modes than copper-substituted LSF. Changes in the defect chemistry of electrode materials under cathodic and anodic polarization are discussed.

Marina, Olga A.; Coffey, Greg W.; Pederson, Larry R.; Rieke, Peter C.; Thomsen, Ed C.; Williams, Mark C.

2004-08-06T23:59:59.000Z

368

Laboratory Directed Research and Development (LDRD) on Mono-uranium Nitride Fuel Development for SSTAR and Space Applications  

SciTech Connect (OSTI)

The US National Energy Policy of 2001 advocated the development of advanced fuel and fuel cycle technologies that are cleaner, more efficient, less waste-intensive, and more proliferation resistant. The need for advanced fuel development is emphasized in on-going DOE-supported programs, e.g., Global Nuclear Energy Initiative (GNEI), Advanced Fuel Cycle Initiative (AFCI), and GEN-IV Technology Development. The Directorates of Energy & Environment (E&E) and Chemistry & Material Sciences (C&MS) at Lawrence Livermore National Laboratory (LLNL) are interested in advanced fuel research and manufacturing using its multi-disciplinary capability and facilities to support a design concept of a small, secure, transportable, and autonomous reactor (SSTAR). The E&E and C&MS Directorates co-sponsored this Laboratory Directed Research & Development (LDRD) Project on Mono-Uranium Nitride Fuel Development for SSTAR and Space Applications. In fact, three out of the six GEN-IV reactor concepts consider using the nitride-based fuel, as shown in Table 1. SSTAR is a liquid-metal cooled, fast reactor. It uses nitride fuel in a sealed reactor vessel that could be shipped to the user and returned to the supplier having never been opened in its long operating lifetime. This sealed reactor concept envisions no fuel refueling nor on-site storage of spent fuel, and as a result, can greatly enhance proliferation resistance. However, the requirement for a sealed, long-life core imposes great challenges to research and development of the nitride fuel and its cladding. Cladding is an important interface between the fuel and coolant and a barrier to prevent fission gas release during normal and accidental conditions. In fabricating the nitride fuel rods and assemblies, the cladding material should be selected based on its the coolant-side corrosion properties, the chemical/physical interaction with the nitride fuel, as well as their thermal and neutronic properties. The US NASA space reactor, the SP-100 was designed to use mono-uranium nitride fuel. Although the SP-100 reactor was not commissioned, tens of thousand of nitride fuel pellets were manufactured and lots of them, cladded in Nb-1-Zr had been irradiated in fast test reactors (FFTF and EBR-II) with good irradiation results. The Russian Naval submarines also use nitride fuel with stainless steel cladding (HT-9) in Pb-Bi coolant. Although the operating experience of the Russian submarine is not readily available, such combination of fuel, cladding and coolant has been proposed for a commercial-size liquid-metal cooled fast reactor (BREST-300). Uranium mono-nitride fuel is studied in this LDRD Project due to its favorable properties such as its high actinide density and high thermal conductivity. The thermal conductivity of mono-nitride is 10 times higher than that of oxide (23 W/m-K for UN vs. 2.3 W/m-K for UO{sub 2} at 1000 K) and its melting temperature is much higher than that of metal fuel (2630 C for UN vs. 1132 C for U metal). It also has relatively high actinide density, (13.51 gU/cm{sup 3} in UN vs. 9.66 gU/cm{sup 3} in UO{sub 2}) which is essential for a compact reactor core design. The objective of this LDRD Project is to: (1) Establish a manufacturing capability for uranium-based ceramic nuclear fuel, (2) Develop a computational capability to analyze nuclear fuel performance, (3) Develop a modified UN-based fuel that can support a compact long-life reactor core, and (4) Collaborate with the Nuclear Engineering Department of UC Berkeley on nitride fuel reprocessing and disposal in a geologic repository.

Choi, J; Ebbinghaus, B; Meiers, T; Ahn, J

2006-02-09T23:59:59.000Z

369

Response to Comment on “Solid Recovered Fuel: Materials Flow Analysis and Fuel Property Development during the Mechanical Processing of Biodried Waste”  

Science Journals Connector (OSTI)

Response to Comment on “Solid Recovered Fuel: Materials Flow Analysis and Fuel Property Development during the Mechanical Processing of Biodried Waste” ... treatment-derived SRF quality, informing the development of realistic SRF quality specifications, through modeling exercises, needed for effective thermal recovery. ... Velis, C. A.; Cooper, J.Are solid recovered fuels resource-efficient? ...

Costas A. Velis; Stuart Wagland; Phil Longhurst; Bryce Robson; Keith Sinfield; Stephen Wise; Simon Pollard

2013-12-05T23:59:59.000Z

370

Bimetallic Ni-Rh catalysts with low amounts of Rh for the steam and autothermal reforming of n-butane for fuel-cell applications.  

SciTech Connect (OSTI)

Mono-metallic nickel and rhodium catalysts and bimetallic Ni-Rh catalysts supported on La-Al{sub 2}O{sub 3}, CeZrO{sub 2} and CeMgOx were prepared and evaluated for catalyzing the steam and autothermal reforming of n-butane. The binary Ni-Rh supported on La-Al{sub 2}O{sub 3} catalysts with low weight loading of rhodium exhibited higher H{sub 2} yields than Ni or Rh alone. The Ni-Rh/CeZrO{sub 2} catalyst exhibited higher performance and no coke formation, compared to the same metals on other supports. A NiAl{sub 2}O{sub 4} spinel phase was obtained on all Ni and Ni-Rh catalysts supported on La-Al{sub 2}O{sub 3}. The presence of rhodium stabilized the spinel phase as well as NiOx species upon reforming while Ni alone was mostly reduced into metallic species. Extended X-ray absorption fine-structure analysis showed evidence of Ni-Rh alloy during preparation and even further after an accelerated aging at 900C in a H{sub 2}/H{sub 2}O atmosphere.

Ferrandon, M.; Kropf, A. J.; Krause, T.; Chemical Sciences and Engineering Division

2010-05-15T23:59:59.000Z

371

Fossil Fuels Without CO2 Emissions  

Science Journals Connector (OSTI)

...oxygen, or by steam reforming of the fuel to yield...coal beds contain methane adsorbed on...oxygen, or by steam reforming of the...coal beds contain methane adsorbed on...to coal-bed methane production, these...

E. A. Parson; D. W. Keith

1998-11-06T23:59:59.000Z

372

Coal-fueled high-speed diesel engine development  

SciTech Connect (OSTI)

The objectives of this program are to study combustion feasibility by running Series 149 engine tests at high speeds with a fuel injection and combustion system designed for coal-water-slurry (CWS). The following criteria will be used to judge feasibility: (1) engine operation for sustained periods over the load range at speeds from 600 to 1900 rpm. The 149 engine for mine-haul trucks has a rated speed of 1900 rpm; (2) reasonable fuel economy and coal burnout rate; (3) reasonable cost of the engine design concept and CWS fuel compared to future oil prices.

Not Available

1991-11-01T23:59:59.000Z

373

Fuel cell electric power production  

DOE Patents [OSTI]

A process for generating electricity from a fuel cell includes generating a hydrogen-rich gas as the fuel for the fuel cell by treating a hydrocarbon feed, which may be a normally liquid feed, in an autothermal reformer utilizing a first monolithic catalyst zone having palladium and platinum catalytic components therein and a second, platinum group metal steam reforming catalyst. Air is used as the oxidant in the hydrocarbon reforming zone and a low oxygen to carbon ratio is maintained to control the amount of dilution of the hydrogen-rich gas with nitrogen of the air without sustaining an insupportable amount of carbon deposition on the catalyst. Anode vent gas may be utilized as the fuel to preheat the inlet stream to the reformer. The fuel cell and the reformer are preferably operated at elevated pressures, up to about a pressure of 150 psia for the fuel cell.

Hwang, Herng-Shinn (Livingston, NJ); Heck, Ronald M. (Frenchtown, NJ); Yarrington, Robert M. (Westfield, NJ)

1985-01-01T23:59:59.000Z

374

Fuel Cell Program 2003 Hydrogen and Fuel Cells Merit Review Meeting  

E-Print Network [OSTI]

Fuel Cell Program 2003 Hydrogen and Fuel Cells Merit Review Meeting Rod Borup, Michael Inbody, Jose: $1200k (Program Manager Nancy Garland) divided between: Fuels (Gasoline Component) Testing - (FY2002 $300k) Gasoline Reformate and H2 PEM Durability Diesel Reforming (SECA program) Testing of Fuels

375

Integrated process and apparatus for the primary and secondary catalytic steam reforming of hydrocarbons  

SciTech Connect (OSTI)

An apparatus is described for the essentially autothermal, integrated primary and secondary reforming of hydrocarbons comprising: (a) an internally insulated outer reactor shell adapted for the positioning of primary and secondary reforming zones therein; (b) means defining a primary reforming zone within the outer reactor shell and having catalyst-containing reformer tubes positioned therein, the primary reforming zone not requiring an external fuel fired source of heat for the endothermic primary reforming reaction occurring therein; (c) means for introducing a fluid hydrocarbon feed stream and steam to the outer reactor shell for passage through the reformer tubes in the primary reforming zone; (d) means defining a secondary reforming zone within the outer reactor shell comprising a secondary reforming catalyst bed, a catalyst-free reaction space defining a feed end adjacent to the catalyst bed and a discharge end at the opposite side of the secondary reforming catalyst bed to the feed end; and (e) conduit means positioned entirely within the outer reactor shell and extending through the secondary reforming catalyst bed for passing partly reformed product effluent from the primary reforming zone to the catalyst-free reaction space in the secondary reforming zone.

Fuderer, A.

1987-03-17T23:59:59.000Z

376

Fuel Cell Technologies Program Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Introduction The U. S. Department of Energy's (DOE's or the Department's) hydrogen and fuel cell efforts are part of a broad portfolio of activities to build a competitive and...

377

Recent developments in MEMS-based miniature fuel cells  

Science Journals Connector (OSTI)

Micro fuel cells (?-FCs) represent promising power sources for portable applications. Today, one of the technological ways to make ?-FCs is to have recourse to standard microfabrication techniques used in the fabrication of micro-electro-mechanical ...

Tristan Pichonat; Bernard Gauthier-Manuel

2007-05-01T23:59:59.000Z

378

Fuel cells, batteries, and the development of electrochemistry  

Science Journals Connector (OSTI)

The first practical breakthrough was achieved in 1958 when the English engineer Francis Th. Bacon (1904–1992) built the first large power unit (5 kW) with hydrogen/oxygen fuel cells [14...]. In order to accelerat...

Vladimir S. Bagotsky

2011-07-01T23:59:59.000Z

379

Development and Demonstration of Fischer-Tropsch Fueled Heavy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

(F-T) Fuels in the U.S. -- An Overview APBF-DEC Heavy Duty NOx AdsorberDPF Project: Heavy Duty Linehaul Platform Project Update Coal-Derived Liquids to Enable HCCI Technology...

380

Fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Goals > Fuels Goals > Fuels XMAT for nuclear fuels XMAT is ideally suited to explore all of the radiation processes experienced by nuclear fuels.The high energy, heavy ion accleration capability (e.g., 250 MeV U) can produce bulk damage deep in the sample, achieving neutron type depths (~10 microns), beyond the range of surface sputtering effects. The APS X-rays are well matched to the ion beams, and are able to probe individual grains at similar penetrations depths. Damage rates to 25 displacements per atom per hour (DPA/hr), and doses >2500 DPA can be achieved. MORE» Fuels in LWRs are subjected to ~1 DPA per day High burn-up fuel can experience >2000 DPA. Traditional reactor tests by neutron irradiation require 3 years in a reactor and 1 year cool down. Conventional accelerators (>1 MeV/ion) are limited to <200-400 DPAs, and

Note: This page contains sample records for the topic "development reformed fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

DEVELOPMENT OF NOVEL ELECTROCATALYSTS FOR PROTON EXCHANGE MEMBRANE FUEL CELLS  

SciTech Connect (OSTI)

Fuel cells are electrochemical devices that convert the available chemical free energy directly into electrical energy, without going through heat exchange process. Of all different types of fuel cells, the Proton Exchange Membrane Fuel Cell (PEMFC) is one of the most promising power sources for stand-alone utility and electric vehicle applications. Platinum (Pt) Catalyst is used for both fuel and air electrodes in PEMFCs. However, carbon monoxide (CO) contamination of H{sub 2} greatly affects electro catalysts used at the anode of PEMFCs and decreases cell performance. The irreversible poisoning of the anode can occur even in CO concentrations as low as few parts per million (ppm). In this work, we have synthesized several novel elctrocatalysts (Pt/C, Pt/Ru/C, Pt/Mo/C, Pt/Ir and Pt/Ru/Mo) for PEMFCs. These catalysts have been tested for CO tolerance in the H{sub 2}/air fuel cell, using CO concentrations in the H{sub 2} fuel that varies from 10 to 100 ppm. The performance of the electrodes was evaluated by determining the cell potential against current density. The effects of catalyst composition and electrode film preparation method on the performance of PEM fuel cell were also studied. It was found that at 70 C and 3.5 atm pressure at the cathode, Pt-alloy catalyst (10 wt% Pt/Ru/C, 20 wt% Pt/Mo/C) were more CO tolerant than the 20 wt% Pt/C catalyst alone. It was also observed that spraying method was better than the brushing technique for the preparation of electrode film.

Shamsuddin Ilias

2003-04-24T23:59:59.000Z

382

Development of a techno-economic model to optimization DOE spent nuclear fuel disposition  

SciTech Connect (OSTI)

The purpose of the National Spent Nuclear Fuel (NSNF) Program conducted by Lockheed Martin Idaho Technology Co. (LMITCO) at the Idaho National Engineering and Environmental Laboratory (INEEL) is to evaluate what to do with the spent nuclear fuel (SNF) in the Department of Energy (DOE) complex. Final disposition of the SNF may require that the fuel be treated to minimize material concerns. The treatments may range from electrometallurgical treatment and chemical dissolution to engineering controls. Treatment options and treatment locations will depend on the fuel type and the current locations of the fuel. One of the first steps associated with selecting one or more sites for treating the SNF in the DOE complex is to determine the cost of each option. An economic analysis will assist in determining which fuel treatment alternative attains the optimum disposition of SNF at the lowest possible cost to the government and the public. For this study, a set of questions was developed for the electrometallurgical treatment process for fuels at several locations. The set of questions addresses all issues associated with the design, construction, and operation of a production facility. A matrix table was developed to determine questions applicable to various fuel treatment options. A work breakdown structure (WBS) was developed to identify a treatment process and costs from initial design to shipment of treatment products to final disposition. Costs will be applied to determine the life-cycle cost of each option. This technique can also be applied to other treatment techniques for treating spent nuclear fuel.

Ramer, R.J.; Plum, M.M.; Adams, J.P.; Dahl, C.A.

1997-11-01T23:59:59.000Z

383

Fuels for fuel cells: Fuel and catalyst effects on carbon formation  

SciTech Connect (OSTI)

The goal of this research is to explore the effects of fuels, fuel constituents, additives and impurities on the performance of on-board hydrogen generation devices and consequently on the overall performance of fuel cell systems using reformed hydrocarbon fuels. Different fuels and components have been tested in automotive scale, adiabatic autothermal reactors to observe their relative reforming characteristics with various operating conditions. Carbon formation has been modeled and was experimentally monitored in situ during operation by laser measurements of the effluent reformate. Ammonia formation was monitored, and conditions varied to observe under what conditions N H 3 is made.

Borup, R. L. (Rodney L.); Inbody, M. A. (Michael A.); Perry, W. L. (William Lee); Parkinson, W. J. (William Jerry),

2002-01-01T23:59:59.000Z

384

DEVELOPMENT OF NOVEL ELECTROCATALYSTS FOR PROTON EXCHANGE MEMBRANE FUEL CELLS  

SciTech Connect (OSTI)

The Proton Exchange Membrane Fuel Cell (PEMFC) is one of the most promising power sources for stand-alone utility and electric vehicle applications. Platinum (Pt) Catalyst is used for both fuel and air electrodes in PEMFCs. However, carbon monoxide (CO) contamination of H{sub 2} greatly affects electro catalysts used at the anode of PEMFCs and decreases cell performance. The irreversible poisoning of the anode can occur even in CO concentrations as low as few parts per million (ppm). In this work, we have synthesized several novel elctrocatalysts (Pt/C, Pt/Ru/C, Pt/Mo/C, Pt/Ir and Pt/Ru/Mo) for PEMFCs. These catalysts have been tested for CO tolerance in the H{sub 2}/air fuel cell, using CO concentrations in the H{sub 2} fuel that varies from 10 to 100 ppm. The performance of the electrodes was evaluated by determining the cell potential against current density. The effects of catalyst composition and electrode film preparation method on the performance of PEM fuel cell were also studied. It was found that at 70 C and 3.5 atm pressure at the cathode, Pt-alloy catalyst (10 wt% Pt/Ru/C, 20 wt% Pt/Mo/C) were more CO tolerant than the 20 wt% Pt/C catalyst alone. It was also observed that spraying method was better than the brushing technique for the preparation of electrode film.

Shamsuddin Ilias

2002-06-11T23:59:59.000Z

385

Computational fluid dynamics model development on transport phenomena coupling with reactions in intermediate temperature solid oxide fuel cells  

Science Journals Connector (OSTI)

A 3D model is developed to describe an anode-supported planar solid oxide fuel cell (SOFC) by ANSYS/Fluent evaluating reactions including methane steam reforming (MSR)/water-gas shift (WGSR) reactions in thick anode layer and H2-O2/CO-O2 electrochemical reactions in anode active layer coupled with heat mass species momentum and ion/electron charges transport processes in SOFC. The predicted results indicate that electron/ion exchange appears in the very thin region in active layers (0.018?mm in anode and 0.01?mm in cathode) based on three phase boundary operating temperature and concentration of reactants (mainly H2). Active polarization happening in active layers dominates over concentration and ohmic losses. High gradient of current density exists near interface between electrode and solid conductor due to the block by gas channel. It is also found the reaction rates of MSR and WGSR along main flow direction and cell thickness direction decrease due to low concentration of fuel (CH4) caused by mass consumption. With increasing operating temperature from 978?K to 1088?K the current density and the reaction rate of MSR are increased by 10.8% and 5.4% respectively. While ion current density is 52.9% higher than in standard case and H2 is consumed by 5.1% more when ion conductivity is doubled. CO-O2 has been considered in charge transfer reaction in anode active layer and it is found that the current density and species distributions are not sensitive but WGSR reaction will be forced backwards to supply more CO for CO-O2 electrochemical reaction.

Chao Yang; Guogang Yang; Danting Yue; Jinliang Yuan; Bengt Sunden

2013-01-01T23:59:59.000Z

386

Report of the Fuel Cycle Research and Development Subcommittee of the  

Broader source: Energy.gov (indexed) [DOE]

Report of the Fuel Cycle Research and Development Subcommittee of Report of the Fuel Cycle Research and Development Subcommittee of the Nuclear Energy Advisory Committee Report of the Fuel Cycle Research and Development Subcommittee of the Nuclear Energy Advisory Committee The Fuel Cycle (FC) Subcommittee of NEAC met February 7-8, 2012 in Washington (Drs. Hoffmann and Juzaitis were unable to attend). While the meeting was originally scheduled to occur after the submission of the President's FY 2013 budget, the submission was delayed a week; thus, we could have no discussion on balance in the NE program. The Agenda is attached as Appendix A. The main focus of the meeting was on accident tolerant fuels, an important post Fukushima issue, and on issues related to the report of the Blue Ribbon Commission on America's Nuclear Future (BRC) as related to the

387

Overview of the U.S. DOE Accident Tolerant Fuel Development Program  

SciTech Connect (OSTI)

The United States Fuel Cycle Research and Development Advanced Fuels Campaign has been given the responsibility to conduct research and development on enhanced accident tolerant fuels with the goal of performing a lead test assembly or lead test rod irradiation in a commercial reactor by 2022. The Advanced Fuels Campaign has defined fuels with enhanced accident tolerance as those that, in comparison with the standard UO2-Zircaloy system currently used by the nuclear industry, can tolerate loss of active cooling in the reactor core for a considerably longer time period (depending on the LWR system and accident scenario) while maintaining or improving the fuel performance during normal operations and operational transients, as well as design-basis and beyond design-basis events. This paper provides an overview of the FCRD Accident Tolerant Fuel program. The ATF attributes will be presented and discussed. Attributes identified as potentially important to enhance accident tolerance include reduced hydrogen generation (resulting from cladding oxidation), enhanced fission product retention under severe accident conditions, reduced cladding reaction with high-temperature steam, and improved fuel-cladding interaction for enhanced performance under extreme conditions. To demonstrate the enhanced accident tolerance of candidate fuel designs, metrics must be developed and evaluated using a combination of design features for a given LWR design, potential improvements to that design, and the design of an advanced fuel/cladding system. The aforementioned attributes provide qualitative guidance for parameters that will be considered for fuels with enhanced accident tolerance. It may be unnecessary to improve in all attributes and it is likely that some attributes or combination of attributes provide meaningful gains in accident tolerance, while others may provide only marginal benefits. Thus, an initial step in program implementation will be the development of quantitative metrics. A companion paper in these proceedings provides an update on the status of establishing these quantitative metrics for accident tolerant LWR fuel.1 The United States FCRD Advanced Fuels Campaign has embarked on an aggressive schedule for development of enhanced accident tolerant LWR fuels. The goal of developing such a fuel system that can be deployed in the U.S. LWR fleet in the next 10 to 20 years supports the sustainability of clean nuclear power generation in the United States.

Jon Carmack; Frank Goldner; Shannon M. Bragg-Sitton; Lance L. Snead

2013-09-01T23:59:59.000Z

388

Hydrogen Fuel Quality Research and Development - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 2 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Tommy Rockward (Primary Contact), C. Quesada, K. Rau, E. Brosha, F. Garzon, R. Mukundan, and C. Padró Los Alamos National Laboratory (LANL) P.O. Box 1663 Los Alamos, NM 87545 Phone: (505) 667-9587 Email: trock@lanl.gov DOE Manager HQ: Antonio Ruiz Phone: (202) 586-0729 Email: Antonio.Ruiz@ee.doe.gov Project Start Date: October 1, 2011 Project End Date: September 30, 2015 Fiscal Year (FY) 2012 Objectives Determine the allowable levels of hydrogen fuel * contaminants in support of the development of science- based international standards for hydrogen fuel quality (International Organization for Standardization [ISO] TC197 WG-12). Validate the ASTM International test method for * determining low levels of non-hydrogen constituents.

389

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Appendix C: Hydrogen Quality  

Broader source: Energy.gov [DOE]

Appendix C: Hydrogen Quality section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated February 2012. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

390

Progress and status of the Integral Fast Reactor (IFR) fuel cycle development  

SciTech Connect (OSTI)

The Integral Fast Reactor (IFR) fuel cycle holds promise for substantial improvements in economics, diversion-resistance, and waste management. This paper discusses technical features of the IFR fuel cycle, its technical progress, the development status, and the future plans and directions.

Till, C.E.; Chang, Y.I.

1993-01-01T23:59:59.000Z

391

Progress and status of the Integral Fast Reactor (IFR) fuel cycle development  

SciTech Connect (OSTI)

The Integral Fast Reactor (IFR) fuel cycle holds promise for substantial improvements in economics, diversion-resistance, and waste management. This paper discusses technical features of the IFR fuel cycle, its technical progress, the development status, and the future plans and directions.

Till, C.E.; Chang, Y.I.

1993-03-01T23:59:59.000Z

392

Progress and status of the Integral Fast Reactor (IFR) fuel cycle development  

SciTech Connect (OSTI)

The Integral Fast Reactor (IFR) fuel cycle holds promise for substantial improvements in economics, diversion-resistance, and waste management. This paper discusses technical features of the IFR fuel cycle, its technical progress, the development status, and the future plans and directions. 10 refs.

Till, C.E.; Chang, Y.I.

1991-01-01T23:59:59.000Z

393

An Update in the Development of Alternate Liquid Fuels  

E-Print Network [OSTI]

. It is classified by the U.S. Department of Energy as a non-critical or preferred fuel. 2. It is a cost effective high yield BTU fuel that can be produced with readily available feedstocks utilizing standard hardware and processing equipment. j 3. It has a low... for the disposal of spent industrial (flammable) liquids. 5. Certified laboratory analyses indicate that ALF feedstocks are free of all known carcinogens, and hazardous elements. 6. Utilization of ALF can provide a 20% business energy tax credit, in addition...

Rose, M. J.

1979-01-01T23:59:59.000Z

394

Plasma catalytic reforming of methane  

SciTech Connect (OSTI)

Thermal plasma technology can be efficiently used in the production of hydrogen and hydrogen-rich gases from methane and a variety of fuels. This paper describes progress in plasma reforming experiments and calculations of high temperature conversion of methane using heterogeneous processes. The thermal plasma is a highly energetic state of matter that is characterized by extremely high temperatures (several thousand degrees Celsius) and high degree of dissociation and substantial degree of ionization. The high temperatures accelerate the reactions involved in the reforming process. Hydrogen-rich gas (50% H{sub 2}, 17% CO and 33% N{sub 2}, for partial oxidation/water shifting) can be efficiently made in compact plasma reformers. Experiments have been carried out in a small device (2--3 kW) and without the use of efficient heat regeneration. For partial oxidation/water shifting, it was determined that the specific energy consumption in the plasma reforming processes is 16 MJ/kg H{sub 2} with high conversion efficiencies. Larger plasmatrons, better reactor thermal insulation, efficient heat regeneration and improved plasma catalysis could also play a major role in specific energy consumption reduction and increasing the methane conversion. A system has been demonstrated for hydrogen production with low CO content ({approximately} 1.5%) with power densities of {approximately} 30 kW (H{sub 2} HHV)/liter of reactor, or {approximately} 10 m{sup 3}/hr H{sub 2} per liter of reactor. Power density should further increase with increased power and improved design.

Bromberg, L.; Cohn, D.R.; Rabinovich, A. [Massachusetts Inst. of Technology, Cambridge, MA (United States). Plasma Science and Fusion Center; Alexeev, N. [Russian Academy of Sciences, Moscow (Russian Federation). Baikov Inst. of Metallurgy

1998-08-01T23:59:59.000Z

395

Technology development program for Idaho Chemical Processing Plant spent fuel and waste management  

SciTech Connect (OSTI)

Acidic high-level radioactive waste (HLW) resulting from fuel reprocessing at the Idaho Chemical Processing Plant (ICPP) for the U.S. Department of Energy (DOE) has been solidified to a calcine since 1963 and stored in stainless steel bins enclosed by concrete vaults. Several different types of unprocessed irradiated DOE-owned fuels are also in storage at the ICPP. In April, 1992, DOE announced that spent fuel would no longer be reprocessed to recover enriched uranium and called for a shutdown of the reprocessing facilities at the ICPP. A new Spent Fuel and HLW Technology Development program was subsequently initiated to develop technologies for immobilizing ICPP spent fuels and HLW for disposal, in accordance with the Nuclear Waste Policy Act. The Program elements include Systems Analysis, Graphite Fuel Disposal, Other Spent Fuel Disposal, Sodium-Bearing Liquid Waste Processing, Calcine Immobilization, and Metal Recycle/Waste Minimization. This paper presents an overview of the ICPP radioactive wastes and current spent fuels, and describes the Spent Fuel and HLW Technology program in more detail.

Ermold, L.F.; Knecht, D.A.; Hogg, G.W.; Olson, A.L.

1993-08-01T23:59:59.000Z

396

Alternative Fuels Data Center: Alternative Fueling Infrastructure  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fueling Alternative Fueling Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Digg Find More places to share Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

397

Subtask 3.4 - Fischer - Tropsch Fuels Development  

SciTech Connect (OSTI)

Under Subtask 3.4, the Energy & Environmental Research Center (EERC) examined the opportunities and challenges facing Fischerâ??Tropsch (FT) technology in the United States today. Work was completed in two distinct budget periods (BPs). In BP1, the EERC examined the technical feasibility of using modern warm-gas cleanup techniques for FT synthesis. FT synthesis is typically done using more expensive and complex cold-gas sweetening. Warm-gas cleanup could greatly reduce capital and operating costs, making FT synthesis more attractive for domestic fuel production. Syngas was generated from a variety of coal and biomass types; cleaned of sulfur, moisture, and condensables; and then passed over a pilot-scale FT catalyst bed. Laboratory and modeling work done in support of the pilot-scale effort suggested that the catalyst was performing suboptimally with warm-gas cleanup. Long-term trends showed that the catalyst was also quickly deactivating. In BP3, the EERC compared FT catalyst results using warm-gas cleanup to results using cold-gas sweetening. A gas-sweetening absorption system (GSAS) was designed, modeled, and constructed to sweeten syngas between the gasifier and the pilot-scale FT reactor. Results verified that the catalyst performed much better with gas sweetening than it had with warm-gas cleanup. The catalyst also showed no signs of rapid deactivation when the GSAS was running. Laboratory tests in support of this effort verified that the catalyst had deactivated quickly in BP1 because of exposure to syngas, not because of any design flaw with the pilot-scale FT reactor itself. Based on these results, the EERC concludes that the two biggest issues with using syngas treated with warm-gas cleanup for FT synthesis are high concentrations of CO{sub 2} and volatile organic matter. Other catalysts tested by the EERC may be more tolerant of CO{sub 2}, but volatile matter removal is critical to ensuring long-term FT catalyst operation. This subtask was funded through the EERCâ??U.S. Department of Energy (DOE) Joint Program on Research and Development for Fossil Energy-Related Resources Cooperative Agreement No. DE-FC26-08NT43291. Nonfederal funding for BP1 was provided by the North Dakota Industrial Commissionâ??s (NDIC) Renewable Energy Council.

Joshua Strege; Anthony Snyder; Jason Laumb; Joshua Stanislowski; Michael Swanson

2012-05-01T23:59:59.000Z

398

Fuel Cycle Research & Development Technical Monthly - June 2012  

SciTech Connect (OSTI)

Topics are: (1) MPACT Campaign - (a) Management and Integration - Coordination meetings between NE and NA-22, NA-24, and NA-82 were conducted the week of June 11th. Preparations are being made for the next MPACT working group meeting, scheduled for Aug 28-30 at Idaho Falls. In addition to covering accomplishments and discussing future plans, a site tour of INL facilities (MFC, EBR, ATR, INTEC) is being organized. (2) Accounting and Control Technologies - (a) Microcalorimetry - Now operating 256-pixel array at LANL. We are in the process of tuning detector parameters to improve and optimize performance. Preliminary measurements show approximate number of live pixels is similar to that observed previously at NIST. Continuing to study contribution to systematic error from uncertainties in tabulated gamma-ray energies. (b) Electrochemical Sensor - Testing of sensors fashioned from different precursor materials continued. SEM analysis of all used sensors has been or will be performed. (c) Lead Slowing Down Spectrometer - Ongoing perturbation calculations are providing information on the fundamental systematic error limits of LSDS. In order to achieve separating the contribution of Pu and 235U to the signal, there will need to be tight controls on systematic errors. Continuing to look into a He4 detector. Research into local construction of a He4 detector continued. We have started to apply the algorithm to test the LSDS using experimental data from previous RPI measurements. PNNL also developed a plan to address the lack of statistics in the MCNP modeling of the NGSI 64 assemblies. The ISU graduate student built and tested a fission chamber to gain experience with them. (d) Fast Neutron Imaging to Quantify Nuclear Materials - The imaging detector design was modified for each pixel to have an 8 x 8 pixel array. Quotations and purchasing process for components, including the new PSD scintillator are in progress. (e) Fast Neutron Multiplicity Analysis - The team submitted two papers to the upcoming INMM meeting that are related to the fast neutron multiplicity R&D effort. Progress was made on the project's main goal of designing a concept for a prototype fast-neutron multiplicity counter. We started laying out the outline for the final report. We have been working with our ORNL collaborators to develop a new digitizer system to support our experimental campaign planned for next year. (3) MPACT Analysis Tools - (a) Multi-isotope Process Monitor - Fuel characterization framework development continued during June. A report describing the methodologies is being completed. Kenneth Dayman, from University of Texas, spent a week at PNNL wrapping up his master's research and working on a journal submission covering that work. The target journal is the IEEE transactions on Nuclear Science; submission is planned for the end of July. A proposal to instrument H-Canyon is being prepared in conjunction with SRNL and the NNSA's NGSI program. The impact of gamma-ray spectrum counting statistics on the precision of relative radioisotope component intensities as reconstructed via Principal Component Regression (PCR) continued in June with Monte Carlo simulations of a two-component (i.e., two radioisotope) system. This work generalizes earlier studies in FY12 in which Poisson counting variations of only a single spectrum component were simulated. (b) Modeling and Simulation for Analysis of Safeguards Performance (Electrochemical) - Preliminary insights into safeguards challenges and the initial design for an electrochemical plant have been written up into an INMM paper and will be presented at the INMM Summer Meeting. Work is currently adding a new visualization capability for integrating materials accountancy with physical protection. (c) Material Control including Process Monitoring (Pattern Recognition, Sensors) - Fabrication of quartz chips continued at an external foundry. Awaiting delivery of the heat exchange manifold and chip holder. (d) MPACT System Integration and Technical Support - The initial report on cost-basis metrics for nucle

Miller, Michael C. [Los Alamos National Laboratory

2012-07-25T23:59:59.000Z

399

Methods and apparatuses for the development of microstructured nuclear fuels  

DOE Patents [OSTI]

Microstructured nuclear fuel adapted for nuclear power system use includes fissile material structures of micrometer-scale dimension dispersed in a matrix material. In one method of production, fissile material particles are processed in a chemical vapor deposition (CVD) fluidized-bed reactor including a gas inlet for providing controlled gas flow into a particle coating chamber, a lower bed hot zone region to contain powder, and an upper bed region to enable powder expansion. At least one pneumatic or electric vibrator is operationally coupled to the particle coating chamber for causing vibration of the particle coater to promote uniform powder coating within the particle coater during fuel processing. An exhaust associated with the particle coating chamber and can provide a port for placement and removal of particles and powder. During use of the fuel in a nuclear power reactor, fission products escape from the fissile material structures and come to rest in the matrix material. After a period of use in a nuclear power reactor and subsequent cooling, separation of the fissile material from the matrix containing the embedded fission products will provide an efficient partitioning of the bulk of the fissile material from the fission products. The fissile material can be reused by incorporating it into new microstructured fuel. The fission products and matrix material can be incorporated into a waste form for disposal or processed to separate valuable components from the fission products mixture.

Jarvinen, Gordon D. (Los Alamos, NM); Carroll, David W. (Los Alamos, NM); Devlin, David J. (Santa Fe, NM)

2009-04-21T23:59:59.000Z

400

Catalytic steam reforming of hydrocarbons  

SciTech Connect (OSTI)

The hot effluent from the catalytic steam reforming of a major portion of a fluid hydrocarbon feed stream in the reformer tubes of a primary reformer, or said effluent after secondary reforming thereof, is mixed with the hot effluent from the catalytic steam reforming of the remaining portion of the feed discharged from the reformer tubes of a primary reformer-exchanger. The combined gas steam is passed on the shell side of the reformer-exchanger countercurrently to the passage of feed in the reformer tubes thereof, thus supplying the heat for the reforming of the portion of the feed passed through the reformer tubes of the reformerexchanger. At least about 2/3 of the hydrocarbon feed stream is passed to the reformer tubes of said primary reformer, heated by radiant heat transfer and/or by contact with combustion gases, at a steam/hydrocarbon mole ratio of about 2-4/1. The remainder of said feed stream is passed to the reformer tubes of said reformer -exchanger at a steam/hydrocarbon mole ratio of about 3-6/1. The reformer shell of the reformer-exchanger is internally insulated by a refractory lining or by use of a double shell with passage of water or a portion of the feed material between the inner and outer shells. There is no significant difference between the pressure inside and outside of the reformer tubes of said primary reformer-exchanger.

Fuderer, A.

1982-06-29T23:59:59.000Z

Note: This page contains sample records for the topic "development reformed fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Development of a Techno-Economic Model to Optimize DOE Spent Nuclear Fuel Disposition  

SciTech Connect (OSTI)

The National Spent Nuclear Fuel (NSNF) Program is evaluating final disposition of spent nuclear fuel (SNE) in the Department of Energy (DOE) complex. Final disposition of SNF may require that the fuel be treated to minimize material concerns. The treatments may range from electrometallurgical treatment (EMT) and chemical dissolution to engineering controls. Treatment options and treatment locations will depend on fuel type and location of the fuel. One of the first steps associated with selecting one or more sites for treating SNF in the DOE complex is to determine the cost of each option. An economic analysis will assist in determining which fuel treatment alternative attains the optimum disposition of SNF at the lowest possible cost to the government and the public. For this study, a set of questions was developed for the EMT process for fuels at several locations. The set of questions addresses all issues associated with design, construction, and operation of a production facility. A matrix table was developed to determine questions applicable to various fuel treatment options. A work breakdown structure (WBS) was developed to identify a treatment process and costs from initial design to shipment of treatment products to final disposition. Costs can be applied to determine the life cycle cost of each option. This technique can also be applied to other treatment techniques for treating SNF.

Ramer, R. J.; Plum, M. M.; Adams, J. P.; Dahl, C. A.

1998-02-01T23:59:59.000Z

402

Solar Steam Reforming of Methane (SSRM) Program Proposals  

Science Journals Connector (OSTI)

Within the intended development work to supply solar HT process heat to industrial processes, especially chemical processes, the steam reforming process is considered suitable in particular.

A. Kalt

1987-01-01T23:59:59.000Z

403

The role of regulatory reforms, market changes, and technology development to make demand response a viable resource in meeting energy challenges  

Science Journals Connector (OSTI)

Abstract In recent years, demand response and load control automation has gained increased attention from regulators, system operators, utilities, market aggregators, and product vendors. It has become a cost-effective demand-side alternative to traditional supply-side generation technologies to balance the power grid, enable grid integration of renewable energy, and meet growing demands for electricity. There are several factors that have played a role in the development of demand response programs. Existing research are however limited on reviewing in a systematic approach how these factors work together to drive this development. This paper makes an attempt to fill this gap. It provides a comprehensive overview on how policy and regulations, electricity market reform, and technological advancement in the US and other countries have worked for demand response to become a viable demand-side resource to address the energy and environmental challenges. The paper also offers specific recommendations on actions needed to capture untapped demand response potentials in countries that have developed active demand response programs as well as countries that plan to pursue demand response.

Bo Shen; Girish Ghatikar; Zeng Lei; Jinkai Li; Greg Wikler; Phil Martin

2014-01-01T23:59:59.000Z

404

DOE Announces up to $74 Million for Fuel Cell Research and Development  

Office of Energy Efficiency and Renewable Energy (EERE)

DOE announces it is accepting applications for a total of up to $74 million to support the research and development of clean, reliable fuel cells for stationary and transportation applications.

405

Recent Developments in the Conversion of Biomass to Renewable Fuels and Chemicals  

Science Journals Connector (OSTI)

The rapid and ongoing increase in consumption of petroleum for transportation fuels, chemicals and energy is not sustainable. Therefore, development of technology that uses agricultural, animal, forestry and muni...

Leo E. Manzer

2010-09-01T23:59:59.000Z

406

Development of metallic substrate supported planar solid oxide fuel cells fabricated by atmospheric plasma spraying  

Science Journals Connector (OSTI)

A planar solid oxide fuel cell (SOFC) consisting of a cell supported with a porous metallic substrate and a metallic separator has been developed. In the fabrication of the cell, anodes and electrolytes were form...

Shunji Takenoiri; Naruaki Kadokawa; Kazuo Koseki

2000-09-01T23:59:59.000Z

407

DEVELOPMENT OF FUEL AND VALUE-ADDED CHEMICALS FROM PYROLYSIS OF WOOD/WASTE PLASTIC MIXTURE.  

E-Print Network [OSTI]

??Highly oxygenated compounds in bio-oil produce negative properties that have hampered fuel development. Copyrolysis with plastics has increased hydrogen content in past research. Py-GC/MS analyses… (more)

Bhattacharya, Priyanka

2008-01-01T23:59:59.000Z

408

Development of microprocessor control for a V-6 engine fueled by prevaporized methanol  

E-Print Network [OSTI]

DEVELOPMENT OF MICROPROCESSOR CONTROL FOR A V 6 ENGINE FUELED BY PREVAPORIZED METHANOL A Thesis by DONALD F. SCHNEIDER Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE August 19SS Major Subject: Chemical Engineering DEVELOPMENT OF MICROPROCESSOR CONTROL FOR A V 6 ENGINE FUELED BY PREVAPORIZED METHANOL A Thesis by DONALD F. SCHNEIDER Approved as to style and content by: JP& r~ R. R. Davison...

Schneider, Donald F.

2012-06-07T23:59:59.000Z

409

Fuel saving, carbon dioxide emission avoidance, and syngas production by tri-reforming of flue gases from coal- and gas-fired power stations, and by the carbothermic reduction of iron oxide  

Science Journals Connector (OSTI)

Flue gases from coal, gas, or oil-fired power stations, as well as from several heavy industries, such as the production of iron, lime and cement, are major anthropogenic sources of global CO2 emissions. The newly proposed process for syngas production based on the tri-reforming of such flue gases with natural gas could be an important route for CO2 emission avoidance. In addition, by combining the carbothermic reduction of iron oxide with the partial oxidation of the carbon source, an overall thermoneutral process can be designed for the co-production of iron and syngas rich in CO. Water-gas shift (WGS) of CO to H2 enables the production of useful syngas. The reaction process heat, or the conditions for thermoneutrality, are derived by thermochemical equilibrium calculations. The thermodynamic constraints are determined for the production of syngas suitable for methanol, hydrogen, or ammonia synthesis. The environmental and economic consequences are assessed for large-scale commercial production of these chemical commodities. Preliminary evaluations with natural gas, coke, or coal as carbon source indicate that such combined processes should be economically competitive, as well as promising significant fuel saving and CO2 emission avoidance. The production of ammonia in the above processes seems particularly attractive, as it consumes the nitrogen in the flue gases.

M. Halmann; A. Steinfeld

2006-01-01T23:59:59.000Z

410

Development for fissile assay in recycled fuel using lead slowing down spectrometer  

SciTech Connect (OSTI)

A future nuclear energy system is under development to turn spent fuels produced by PWRs into fuels for a SFR (Sodium Fast Reactor) through the pyrochemical process. The knowledge of the isotopic fissile content of the new fuel is very important for fuel safety. A lead slowing down spectrometer (LSDS) is under development to analyze the fissile material content (Pu{sup 239}, Pu{sup 241} and U{sup 235}) of the fuel. The LSDS requires a neutron source, the neutrons will be slowed down through their passage in a lead medium and will finally enter the fuel and will induce fission reactions that will be analysed and the isotopic content of the fuel will be then determined. The issue is that the spent fuel emits intense gamma rays and neutrons by spontaneous fission. The threshold fission detector screens the prompt fast fission neutrons and as a result the LSDS is not influenced by the high level radiation background. The energy resolution of LSDS is good in the range 0.1 eV to 1 keV. It is also the range in which the fission reaction is the most discriminating for the considered fissile isotopes. An electron accelerator has been chosen to produce neutrons with an adequate target through (e{sup -},?)(?,n) reactions.

Lee, Yong Deok; Je Park, C.; Kim, Ho-Dong; Song, Kee Chan [Korea Atomic Energy Research Institute - KAERI, 1045 Daedeok-daero, Daejeon, Korea, 305-353 (Korea, Republic of)

2013-07-01T23:59:59.000Z

411

Pillars of reform  

Science Journals Connector (OSTI)

... misgivings seem to have reached crisis point. China today is full of new initiatives, reforms and an anti-corruption drive that together aim to set the nation on the right ... to be monumental — if China follows it through. The nation is also right to reform how the Chinese Academy of Sciences supports promising research projects. And perhaps most boldly ...

2014-10-29T23:59:59.000Z

412

Natural Gas Reforming  

Broader source: Energy.gov [DOE]

Natural gas reforming is an advanced and mature production process that builds upon the existing natural gas pipeline delivery infrastructure. Today, 95% of the hydrogen produced in the United States is made by natural gas reforming in large central plants. This technology is an important pathway for near-term hydrogen production.

413

NIH Peer Review Reform  

Science Journals Connector (OSTI)

...EDITOR LETTER TO THE EDITOR NIH Peer Review Reform Marc C. Torjman Phone...Camden, NJ 08103 The editorial NIH Peer Review Reform-Change We Need, or Lipstick...better exposed the problems of grant peer review and, more importantly, the irreparable...

Marc C. Torjman

2009-07-01T23:59:59.000Z

414

Fuel cell systems for personal and portable power applications  

SciTech Connect (OSTI)

Fuel cells are devices that electrochemically convert fuel, usually hydrogen gas, to directly produce electricity. Fuel cells were initially developed for use in the space program to provide electricity and drinking water for astronauts. Fuel cells are under development for use in the automobile industry to power cars and buses with the advantage of lower emissions and higher efficiency than internal combustion engines. Fuel cells also have great potential to be used in portable consumer products like cellular phones and laptop computers, as well as military applications. In fact, any products that use batteries can be powered by fuel cells. In this project, we examine fuel cell system trade-offs between fuel cell type and energy storage/hydrogen production for portable power generation. The types of fuel cells being examined include stored hydrogen PEM (polymer electrolyte), direct methanol fuel cells (DMFC) and indirect methanol fuel cells, where methanol is reformed producing hydrogen. These fuel cells systems can operate at or near ambient conditions, which make them potentially optimal for use in manned personal power applications. The expected power production for these systems is in the range of milliwatts to 500 watts of electrical power for either personal or soldier field use. The fuel cell system trade-offs examine hydrogen storage by metal hydrides, carbon nanotubes, and compressed hydrogen tanks. We examine the weights each system, volume, fuel storage, system costs, system peripherals, power output, and fuel cell feasibility in portable devices.

Fateen, S. A. (Shaheerah A.)

2001-01-01T23:59:59.000Z

415

Hydrogen & Fuel Cells: Review of National Research and Development (R&D)  

Open Energy Info (EERE)

Hydrogen & Fuel Cells: Review of National Research and Development (R&D) Hydrogen & Fuel Cells: Review of National Research and Development (R&D) Programs Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Hydrogen & Fuel Cells: Review of National Research and Development (R&D) Programs Focus Area: Hydrogen Topics: Policy Impacts Website: www.iea.org/Textbase/npsum/hydrogenSUM.pdf Equivalent URI: cleanenergysolutions.org/content/hydrogen-fuel-cells-review-national-r Language: English Policies: "Regulations,Deployment Programs,Financial Incentives" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Public-Private Partnerships Regulations: Safety Standards This book maps the various governmental research activities and policies

416

SECA Fuel Processing Fossil Energy Fuel Cell Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

June 3, 2003 SECA Fuel Processing National Energy Technology Laboratory Office of Fossil Energy Strategic Center for Natural Gas REFORMING * Focus - Heavy hydrocarbons - Minimal use of water - Simplified system - Reduced cost - Sulfur tolerance with conversion to hydrogen sulfide * Challenges - Carbon deposition - Sulfur poisoning - Thermal gradients - Vaporization * Approaches - Metal oxide catalysts - Nobal metal cPox or ATR - Decorated nickel surface - Complete system interactions Tubular cPox Reformer Strategic Center for Natural Gas NETL Fuel Processing Budget Summary Proj. # PROJECT PERSONNEL KEY TASKS COST EST. 1 Diesel Reforming Kinetic Fundamentals *Shekhawat Gardner Berry 1.) Bring Reforming Lab Online 2.) Conduct Diesel Compound Interaction Study 3.) Level 1

417

Memorandum of Understanding between the Department of Energy of the United States of America and the National Development and Reform Commission of the People's Republic of China Concerning Industrial Energy Efficiency Cooperation  

Broader source: Energy.gov (indexed) [DOE]

THE DEPARTMENT OF ENERGY OF THE UNITED STATES OF AMERICA AND THE NATIONAL DEVELOPMENT AND REFORM COMMISSION OF THE PEOPLE'S REPUBLIC OF CHINA CONCERNING INDUSTRIAL ENERGY EFFICIENCY COOPERATION The Department of Energy of the United States of America (DOE) and the National Development and Reform Commission of the People's Republic of China (NDRC), jointly referred to herein as the "Participants"; RECOGNIZING that the development and use of energy are key elements of the economic growth of the United States and the People's Republic of China (PRC); SHARING common serious energy challenges from increasing energy imports and worsening environmental impacts as energy use rises; SHARING the sense of commitment to enhancing energy security through cooperation;

418

Energy Conversion DevicesEnergy Conversion Devices Fuel Cell Electrocatalyst Development Program  

E-Print Network [OSTI]

for several groups of electrocatalysts ECD PEMFC Catalyst Development Evaluation programs exist for severalEnergy Conversion Devices PEMFC Electrocatalyst Development Program Contact information: Dr. Peter Faguy pfaguyEnergy Conversion DevicesEnergy Conversion Devices Fuel Cell Electrocatalyst Development Program

419

CHEMICAL SENSOR AND FIELD SCREENING TECHNOLOGY DEVELOPMENT: FUELS IN SOILS FIELD SCREENING METHOD VALIDATION  

SciTech Connect (OSTI)

A new screening method for fuel contamination in soils was recently developed as American Society for Testing and Materials (ASTM) Method D-583 1-95, Standard Test Method for Screening Fuels in Soils. This method uses low-toxicity chemicals and can be used to screen organic-rich soils. In addition, it is fast, easy, and inexpensive to perform. The screening method calls for extracting a sample of soil with isopropyl alcohol following treatment with calcium oxide. The resulting extract is filtered, and the ultraviolet absorbance of the extract is measured at 254 nm. Depending on the available information concerning the contaminant fuel type and availability of the contaminant fuel for calibration, the method can be used to determine the approximate concentration of fuel contamination, an estimated value of fuel contamination, or an indication of the presence or absence of fuel contamination. Fuels containing aromatic compounds, such as diesel fuel and gasoline, as well as other aromatic-containing hydrocarbon materials, such as motor oil, crude oil, and coal oil, can be determined. The screening method for fuels in soils was evaluated by conducting a collaborative study on the method and by using the method to screen soil samples at an actual field site. In the collaborative study, a sand and an organic soil spiked with various concentrations of diesel fuel were tested. Data from the collaborative study were used to determine the reproducibility (between participants) and repeatability (within participant) precision of the method for screening the test materials. The collaborative study data also provide information on the performance of portable field equipment versus laboratory equipment for performing the screening method and a comparison of diesel concentration values determined using the screening method versus a laboratory method. Data generated using the method to screen soil samples in the field provide information on the performance of the method in atypical real-world application.

Susan S. Sorini; John F. Schabron

1997-04-01T23:59:59.000Z

420

Development and demonstration of advanced technologies for direct electrochemical oxidation of hydrocarbons (methanol, methane, propane)  

SciTech Connect (OSTI)

Direct methanol fuel cells use methanol directly as a fuel, rather than the reformate typically required by fuel cells, thus eliminating the reformer and fuel processing train. In this program, Giner, Inc. advanced development of two types of direct methanol fuel cells for military applications. Advancements in direct methanol proton-exchange membrane fuel cell (DMPEMFC) technology included developement of a Pt-Ru anode catalyst and an associated electrode structure which provided some of the highest DMPEMFC performance reported to date. Scale-up from a laboratory-scale single cell to a 5-cell stack of practical area, providing over 100 W of power, was also demonstrated. Stable stack performance was achieved in over 300 hours of daily on/off cycling. Direct methanol aqueous carbonate fuel cells were also advanced with development of an anode catalyst and successful operation at decreased pressure. Improved materials for the cell separator/matrix and the hardware were also identified.

Kosek, J.A.; LaConti, A.B.

1994-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "development reformed fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Electrical Generation Tax Reform Act (Montana) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Generation Tax Reform Act (Montana) Generation Tax Reform Act (Montana) Electrical Generation Tax Reform Act (Montana) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Institutional Multi-Family Residential Systems Integrator Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Montana Program Type Fees Provider Montana Department of Revenue This Act reforms taxes paid by electricity generators to reduce tax rates and imposes replacement taxes in response to the 1997 restructuring of the

422

Alternative Fuels Data Center: Ethanol Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fueling Stations on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Ethanol Fueling Stations Photo of an ethanol fueling station. Thousands of ethanol fueling stations are available in the United States.

423

Alternative Fuels Data Center: Hydrogen Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fueling Stations on AddThis.com... More in this section... Hydrogen Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Hydrogen Fueling Stations Photo of a hydrogen fueling station. A handful of hydrogen fueling stations are available in the United States

424

Alternative Fuels Data Center: Biodiesel Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fueling Stations on Google Bookmark Alternative Fuels Data Center: Biodiesel Fueling Stations on Delicious Rank Alternative Fuels Data Center: Biodiesel Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fueling Stations on AddThis.com... More in this section... Biodiesel Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Biodiesel Fueling Stations Photo of a biodiesel fueling station. Hundreds of biodiesel fueling stations are available in the United States.

425

Notice of Intent to Issue FOA DE-FOA-0001224: Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations  

Broader source: Energy.gov [DOE]

The Office of Energy Efficiency and Renewable Energy (EERE) intends to issue, on behalf of the Fuel Cell Technologies Office (FCTO), a Funding Opportunity Announcement (FOA) entitled “Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations.”

426

Energy Department Announces $2 Million to Develop Supply Chain, Manufacturing Competitiveness Analysis for Hydrogen and Fuel Cell Technologies  

Office of Energy Efficiency and Renewable Energy (EERE)

The Energy Department today announced up to $2 million to develop the domestic supply chain for hydrogen and fuel cell technologies and study the competitiveness of U.S. hydrogen and fuel cell system and component manufacturing.

427

Developing a High Thermal Conductivity Fuel with Silicon Carbide Additives  

SciTech Connect (OSTI)

The objective of this research is to increase the thermal conductivity of uranium oxide (UO{sub 2}) without significantly impacting its neutronic properties. The concept is to incorporate another high thermal conductivity material, silicon carbide (SiC), in the form of whiskers or from nanoparticles of SiC and a SiC polymeric precursor into UO{sub 2}. This is expected to form a percolation pathway lattice for conductive heat transfer out of the fuel pellet. The thermal conductivity of SiC would control the overall fuel pellet thermal conductivity. The challenge is to show the effectiveness of a low temperature sintering process, because of a UO{sub 2}-SiC reaction at 1,377°C, a temperature far below the normal sintering temperature. Researchers will study three strategies to overcome the processing difficulties associated with pore clogging and the chemical reaction of SiC and UO{sub 2} at temperatures above 1,300°C:

Ronald baney; James Tulenko

2012-11-20T23:59:59.000Z

428

Performance Analysis and Development Strategies for Solid Oxide Fuel Cells  

Science Journals Connector (OSTI)

Solid oxide fuel cells (SOFC) are of great interest for a diverse range of applications. Within the past 10 years, an increase in power density by one order of magnitude, a lowering of the operating temperature by 200 K, and degradation rates lowered by a factor of 10 have been achieved on the cell and stack level. However, there is still room for further enhancement of the overall performance by suitably tailoring the cell components on a micro- and nanostructural level. The efficiency of the electrochemically active single cell is characterized by the linear ohmic losses within the electrolyte and by nonlinear polarization losses at the electrode-electrolyte interfaces. Both depend on material composition and operation conditions (temperature and time, fuel utilisation and gas composition). The area-specific resistance (ASR) is considered as the figure of merit for overall performance. ASR values of anode supported cells (ASC) were determined by means of impedance spectroscopy and subsequently separated into ohmic losses (mainly electrolyte) and nonlinear polarisation losses resulting from gas diffusion and activation polarization in the cathode and anode. The efficiencies of ASCs will be discussed for various material combinations in the temperature range of technological interest (between 550 °C and 850 °C).

E Ivers-Tiffée; A Leonide; A Weber

2011-01-01T23:59:59.000Z

429

A study of land reform and its impact in the Greater Letaba Local Municipality of the Mopani District in the Limpopo Province.  

E-Print Network [OSTI]

??Since the dawn of democracy in South Africa, numerous land reform projects have been approved by the Minister of Rural Development and Land Reform. This… (more)

Malahlela, Tebogo.

2015-01-01T23:59:59.000Z

430

A summary of truck fuel-saving measures developed with industry participation  

SciTech Connect (OSTI)

This report describes the third project undertaken by the Center for Transportation Research, Argonne National Laboratory (ANL), in a US Department of Energy program designed to develop and distribute compendiums of measures for saving transportation fuel. A matrix, or chart, of more than 60 fuel-saving measures was developed by ANL and refined with the assistance of trucking industry operators and researchers at an industry coordination meeting held in August 1982. The first two projects used similar meetings to refine matrices developed for the international maritime and US railroad industries. The consensus reached by those at the meeting was that the single most important element in a truck fuel-efficiency improvement program is the human element -- namely the development of strong motivation among truck drivers to save fuel. The role of the driver is crucial to the successful use of fuel-saving equipment and operating procedures. Identical conclusions were reached in the earlier maritime and rail meetings, thus providing a strong indication of the pervasive importance of the human element in energy-efficient transportation systems. The number and variety of changes made to the matrix are also delineated, including addition and deletion of various options and revisions of fuel-saving estimates, payback period estimates, and remarks concerning items such as the advantages, disadvantages, and cautions associated with various measures. The quality and quantity of the suggested changes demonstrate the considerable value of using a forum of industry operators and researchers to refine research data that are intended for practical application.

Bertram, K.M.; Saricks, C.L. [Argonne National Lab., IL (United States); Gregory, E.W. II [USDOE, Washington, DC (United States); Moore, A.J. [Northwestern Univ., Evanston, IL (United States)

1983-09-01T23:59:59.000Z

431

Fuel Tax Incidence in Developing Countries: The Case of Costa Rica | Open  

Open Energy Info (EERE)

Tax Incidence in Developing Countries: The Case of Costa Rica Tax Incidence in Developing Countries: The Case of Costa Rica Jump to: navigation, search Name Fuel Tax Incidence in Developing Countries: The Case of Costa Rica Agency/Company /Organization Resources for the Future Sector Energy Focus Area Conventional Energy Topics Finance, Market analysis, Background analysis Resource Type Lessons learned/best practices Website http://www.rff.org/RFF/Documen Country Costa Rica UN Region Latin America and the Caribbean References Fuel Tax Incidence in Developing Countries: The Case of Costa Rica[1] Abstract "Although fuel taxes are a practical means of curbing vehicular air pollution, congestion, and accidents in developing countries-all of which are typically major problems-they are often opposed on distributional

432

Development of Kilowatt-Scale Coal Fuel Cell Technology - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Steven S.C. Chuang (Primary Contact), Tritti Siengchum, Jelvehnaz Mirzababaei, Azadeh Rismanchian, and Seyed Ali Modjtahedi The University of Akron 302 Buchtel Common Akron, OH 44310-3906 Phone: (330) 972-6993 Email: schuang@uakron.edu DOE Managers HQ: Dimitrios Papageorgopoulos Phone: (202) 586-5463 Email: Dimitrios.Papageorgopoulos@ee.doe.gov GO: Reg Tyler Phone: (720) 356-1805 Email: Reginald.Tyler@go.doe.gov Contract Number: DE-FC36-08GO0881114 Project Start Date: June 1, 2008 Project End Date: May 31, 2012 *Congressionally directed project Fiscal Year (FY) 2012 Objectives To develop a kilowatt-scale coal-based solid oxide fuel cell (SOFC) technology. The outcome of this research effort

433

Thermochemical Process Development Unit: Researching Fuels from Biomass, Bioenergy Technologies (Fact Sheet)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Highlights Highlights Thermochemical conversion technologies convert biomass and its residues to fuels and chemicals using gasification and pyrolysis. Gasification entails heating biomass and results in a mixture of carbon monoxide and hydrogen, known as syngas. Pyrolysis, which is heating biomass in the absence of oxygen, produces liquid pyrolysis oil. Both syngas and pyrolysis oil can be chemically converted into clean, renewable transportation fuels and chemicals. The Thermochemical Process Development Unit (TCPDU) at the National Renewable Energy Laboratory (NREL) is a unique facility dedicated to researching thermochemical processes to produce fuels from biomass. Thermochemical processes include gasification and pyrolysis-processes used to convert

434

Problems in developing bimodal space power and propulsion system fuel element  

SciTech Connect (OSTI)

The paper discusses design of a space nuclear power and propulsion system fuel element (PPFE) developed on the basis of an enhanced single-cell thermionic fuel element (TFE) of the 'TOPAZ-2' thermionic converter-reactor (TCR), and presents the PPFE performance for propulsion and power modes of operation. The choice of UC-TaC fuel composition is substantiated. Data on hydrogen effect on the PPFE output voltage are presented, design solutions are considered that allow to restrict hydrogen supply to an interelectrode gap (IEG). Long-term geometric stability of an emitter assembly is supported by calculated data.

Nikolaev, Yu. V.; Gontar, A. S.; Zaznoba, V. A.; Parshin, N. Ya.; Ponomarev-Stepnoi, N. N.; Usov, V. A. [Research Institute of SIA 'Lutch' Podolsk, Moscow Region, 142100 (Russian Federation); RRC 'Kurchatov Institute' Moscow, 123182 (Russian Federation)

1997-01-10T23:59:59.000Z

435

Development of Alternative and Durable High Performance Cathode Supports for PEM Fuel Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alternative and Durable High Alternative and Durable High Performance Cathode Supports for PEM Fuel Cells Development of Alternative and Durable High Development of Alternative and Durable High Performance Cathode Supports for PEM Fuel Cells Performance Cathode Supports for PEM Fuel Cells PNNL: Yong Wang Conrad Zhang Vilayanur Viswanath Yuehe Lin Jun Liu Project kick Project kick - - off meeting off meeting Feb 13 Feb 13 - - 14, 2007 14, 2007 Ballard Power Systems: Stephen Campbell University of Delaware: Jingguang Chen ORNL: Sheng Dai 2 Technical Issues and Objective Technical Issues and Objective Current technical issues z Carbon support „ Susceptible to oxidation under fuel cell operating conditions. „ Oxidation further catalyzed by Pt „ Corrosion leads to Pt migration and agglomeration

436

Development and validation of a two-phase, three-dimensional model for PEM fuel cells.  

SciTech Connect (OSTI)

The objectives of this presentation are: (1) To develop and validate a two-phase, three-dimensional transport modelfor simulating PEM fuel cell performance under a wide range of operating conditions; (2) To apply the validated PEM fuel cell model to improve fundamental understanding of key phenomena involved and to identify rate-limiting steps and develop recommendations for improvements so as to accelerate the commercialization of fuel cell technology; (3) The validated PEMFC model can be employed to improve and optimize PEM fuel cell operation. Consequently, the project helps: (i) address the technical barriers on performance, cost, and durability; and (ii) achieve DOE's near-term technical targets on performance, cost, and durability in automotive and stationary applications.

Chen, Ken Shuang

2010-04-01T23:59:59.000Z

437

Fuel cell system for transportation applications  

DOE Patents [OSTI]

A propulsion system for a vehicle having pairs of front and rear wheels and a fuel tank. An electrically driven motor having an output shaft operatively connected to at least one of said pair of wheels is connected to a fuel cell having a positive electrode and a negative electrode separated by an electrolyte for producing dc power to operate the motor. A partial oxidation reformer is connected both to the fuel tank and to the fuel cell receives hydrogen-containing fuel from the fuel tank and water and air and for partially oxidizing and reforming the fuel with water and air in the presence of an oxidizing catalyst and a reforming catalyst to produce a hydrogen-containing gas. The hydrogen-containing gas is sent from the partial oxidation reformer to the fuel cell negative electrode while air is transported to the fuel cell positive electrode to produce dc power for operating the electric motor.

Kumar, Romesh (Naperville, IL); Ahmed, Shabbir (Evanston, IL); Krumpelt, Michael (Naperville, IL); Myles, Kevin M. (Downers Grove, IL)

1993-01-01T23:59:59.000Z

438

Fuel cell system for transportation applications  

DOE Patents [OSTI]

A propulsion system is described for a vehicle having pairs of front and rear wheels and a fuel tank. An electrically driven motor having an output shaft operatively connected to at least one of said pair of wheels is connected to a fuel cell having a positive electrode and a negative electrode separated by an electrolyte for producing dc power to operate the motor. A partial oxidation reformer is connected both to the fuel tank and to the fuel cell and receives hydrogen-containing fuel from the fuel tank and uses water and air for partially oxidizing and reforming the fuel in the presence of an oxidizing catalyst and a reforming catalyst to produce a hydrogen-containing gas. The hydrogen-containing gas is sent from the partial oxidation reformer to the fuel cell negative electrode while air is transported to the fuel cell positive electrode to produce dc power for operating the electric motor. 3 figures.

Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.

1993-09-28T23:59:59.000Z

439

One Step Biomass Gas Reforming-Shift Separation Membrane Reactor - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9 9 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Michael Roberts (Primary Contact), Razima Souleimanova Gas Technology Institute (GTI) 1700 South Mount prospect Rd, Des Plaines, IL 60018 Phone: (847) 768-0518 Email: roberts@gastechnology.org DOE Managers HQ: Sara Dillich Phone: (202) 586-7925 Email: Sara.Dillich@ee.doe.gov GO: Katie Randolph Phone: (720) 356-1759 Email: Katie.Randolph@go.doe.gov Contract Number: DE-FG36-07GO17001 Subcontractors: * National Energy Technology Laboratory (NETL), Pittsburgh, PA * Schott North America, Duryea, PA * ATI Wah Chang, Albany, OR Project Start Date: February 1, 2007 Project End Date: June 30, 2013

440

Results from the DOE Advanced Gas Reactor Fuel Development and Qualification Program  

SciTech Connect (OSTI)

Modular HTGR designs were developed to provide natural safety, which prevents core damage under all design basis accidents and presently envisioned severe accidents. The principle that guides their design concepts is to passively maintain core temperatures below fission product release thresholds under all accident scenarios. This level of fuel performance and fission product retention reduces the radioactive source term by many orders of magnitude and allows potential elimination of the need for evacuation and sheltering beyond a small exclusion area. This level, however, is predicated on exceptionally high fuel fabrication quality and performance under normal operation and accident conditions. Germany produced and demonstrated high quality fuel for their pebble bed HTGRs in the 1980s, but no U.S. manufactured fuel had exhibited equivalent performance prior to the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. The design goal of the modular HTGRs is to allow elimination of an exclusion zone and an emergency planning zone outside the plant boundary fence, typically interpreted as being about 400 meters from the reactor. To achieve this, the reactor design concepts require a level of fuel integrity that is better than that claimed for all prior US manufactured TRISO fuel, by a few orders of magnitude. The improved performance level is about a factor of three better than qualified for German TRISO fuel in the 1980’s. At the start of the AGR program, without a reactor design concept selected, the AGR fuel program selected to qualify fuel to an operating envelope that would bound both pebble bed and prismatic options. This resulted in needing a fuel form that could survive at peak fuel temperatures of 1250°C on a time-averaged basis and high burnups in the range of 150 to 200 GWd/MTHM (metric tons of heavy metal) or 16.4 to 21.8% fissions per initial metal atom (FIMA). Although Germany has demonstrated excellent performance of TRISO-coated UO2 particle fuel up to about 10% FIMA and 1150°C, UO2 fuel is known to have limitations because of CO formation and kernel migration at the high burnups, power densities, temperatures, and temperature gradients that may be encountered in the prismatic modular HTGRs. With uranium oxycarbide (UCO) fuel, the kernel composition is engineered to prevent CO formation and kernel migration, which are key threats to fuel integrity at higher burnups, temperatures, and temperature gradients. Furthermore, the recent poor fuel performance of UO2 TRISO fuel pebbles measured in Chinese irradiation testing in Russia and in German pebbles irradiated at 1250°C, and historic data on poorer fuel performance in safety testing of German pebbles that experienced burnups in excess of 10% FIMA [1] have each raised concern about the use of UO2 TRISO above 10% FIMA and 1150°C and the degree of margin available in the fuel system. This continues to be an active area of study internationally.

David Petti

2014-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "development reformed fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Coal-fueled high-speed diesel engine development: Task 2, Market assessment and economic analysis  

SciTech Connect (OSTI)

Based on the preliminary coal engine design developed, this task was conducted to identify the best opportunity(s) to enter the market with the future coal-fueled, high-speed diesel engine. The results of this market and economic feasibility assessment will be used to determine what specific heavy duty engine application(s) are most attractive for coal fuel, and also define basic economic targets for the engine to be competitive.

Not Available

1991-12-01T23:59:59.000Z

442

Walk the line: Conflict, state capacity and the political dynamics of reform  

Science Journals Connector (OSTI)

Abstract This paper develops a dynamic framework to analyze the political sustainability of economic reforms in developing countries. First, we demonstrate that economic reforms that are proceeding successfully may run into a political impasse, with the reform's initial success having a negative impact on its political sustainability. Second, we demonstrate that greater state capacity, to make compensatory transfers to those adversely affected by reform, need not always help the political sustainability of reform, but can also hinder it. Finally, we argue that in ethnically divided societies, economic reform may be completed not despite ethnic conflict, but because of it.

Sanjay Jain; Sumon Majumdar; Sharun W Mukand

2014-01-01T23:59:59.000Z

443

Hydrogen From MillHydrogen From Mill--Scale Waste Via MetalScale Waste Via Metal--Steam ReformingSteam Reforming INTRODUCTIONINTRODUCTION  

E-Print Network [OSTI]

1 Hydrogen From MillHydrogen From Mill--Scale Waste Via MetalScale Waste Via Metal--Steam ReformingSteam Reforming INTRODUCTIONINTRODUCTION Hydrogen is considered to be the ideal energy carrying medium for fuel and supplying hydrogen to the end user in more reversible, much simpler and far safer ways. Metal-steam

Azad, Abdul-Majeed

444

Renewable Energy for Rural Development in Ethiopia: The Case for New Energy Policies and Institutional Reform. Energy Policy 30  

E-Print Network [OSTI]

This article argues the case for introducing new energy policies in Ethiopia that will ensure energy initiatives for rural development meet the desired expectations. A review of the rural energy sector in Ethiopia is presented. Rural communities have for centuries relied solely on traditional biomass energy sources, human and animal power. In addition, sample findings show that the basic stock of traditional biomass energy resources is dwindling fast for two reasons: one, due to rapid population growth; and two, due to the absence of energy substitutes for traditional energy sources. Renewable energy technologies (RETs) and other modern energy technologies are almost non-existent. In terms of budgetary allocation, rural energy development has not received a fair share of public investment in comparison to education, rural road construction and health. A key policy recommendation made in this article is the need for commitment from concerned authorities to the use of renewables for spurring rural development. This could be through increasing the budget allocation to rural energy, which is currently negligible. Other policy recommendations include the modification of existing institutional frameworks for rural energy delivery, and the design and implementation of appropriate rural energy initiatives suitable for productive activities and sustainable development.

W. Wolde-ghiorgis

2002-01-01T23:59:59.000Z

445

Final Technical Report for the Martin County Hydrogen Fuel Cell Development Project  

SciTech Connect (OSTI)

In September 2008, the U.S. Department of Energy and Martin County Economic Development Corporation entered into an agreement to further the advancement of a microtubular PEM fuel cell developed by Microcell Corporation. The overall focus of this project was on research and development related to high volume manufacturing of fuel cells and cost reduction in the fuel cell manufacturing process. The extrusion process used for the microfiber fuel cells in this project is inherently a low cost, high volume, high speed manufacturing process. In order to take advantage of the capabilities that the extrusion process provides, all subsequent manufacturing processes must be enhanced to meet the extrusion line’s speed and output. Significant research and development was completed on these subsequent processes to ensure that power output and performance were not negatively impacted by the higher speeds, design changes and process improvements developed in this project. All tasks were successfully completed resulting in cost reductions, performance improvements and process enhancements in the areas of speed and quality. These results support the Department of Energy’s goal of fuel cell commercialization.

Eshraghi, Ray

2011-03-09T23:59:59.000Z

446

The kinetics of CO poisoning in simulated reformate and effect of Ru island morphology on PtRu fuel cell catalysts as determined by operando XANES  

SciTech Connect (OSTI)

In situ X-ray absorption spectroscopy (XAS) measurements, including both X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure (EXAFS), were carried out on commercially produced Pt and PtRu bimetallic electrocatalysts as well as on a mechanically mixed PtRu bimetallic electrocatalyst in an operating fuel cell in H{sub 2} doped with 150 ppm CO. By use of the novel {Delta}XANES technique, the coverages of CO and ontop and n-fold H (overpotential deposited and underpotential deposited hydrogen) are obtained and compared for the three catalysts, and the results are correlated with PtRu cluster morphology. The mechanical mixing process used to create the bimetallic PtRu catalyst is found to maximize CO tolerance, although the PtRu commercial electrocatalyst exhibits an increased electronic effect, most probably due to the presence of Ru(O){sub x} islands at the catalyst surface. The mobility of the CO on both Ru and Pt is found to be sharply dependent on the CO coverage, decreasing dramatically beyond 0.4 fractional coverage.

Scott, F.; Roth, C; Ramaker, D

2007-01-01T23:59:59.000Z

447

Spent Nuclear Fuel (SNF) Storage Project Fuel Basket Handling Grapple Design Development Test Report  

SciTech Connect (OSTI)

Acceptance testing of the SNF Fuel Basket Lift Grapple was accomplished to verify the design adequacy. This report shows the results affirming the design. The test was successful in demonstrating the adequacy of the grapple assembly's inconel actuator shaft and engagement balls for in loads excess of design basis loads (3200 pounds), 3X design basis loads (9600 pounds), and 5X design basis loads (16,000 pounds). The test data showed that no appreciable yielding for the inconel actuator shaft and engagement balls at loads in excess of 5X Design Basis loads. The test data also showed the grapple assembly and components to be fully functional after loads in excess of 5X Design Basis were applied and maintained for over 10 minutes. Following testing, each actuator shaft (Item 7) was liquid penetrant inspected per ASME Section 111, Division 1 1989 and accepted per requirements of NF-5350. This examination was performed to insure that no cracking had occurred. The test indicated that no cracking had occurred. The examination reports are included as Appendix C to this document. From this test, it is concluded that the design configuration meets or exceeds the requirements specified in ANSI N 14 6 for Special Lifting Devices for Shipping Containers Weighing 10,000 Pounds (4500 kg) or More.

CHENAULT, D.M.

2000-01-06T23:59:59.000Z

448

Novel Nanoscale Catalysts and Desulfurizers for Aviation Fuels Martin Duran* and Abdul-Majeed Azad  

E-Print Network [OSTI]

reforming catalysts for jet fuel", The Ohio Fuel Cell Symposium of the Ohio Fuel Cell Coalition, May 23Novel Nanoscale Catalysts and Desulfurizers for Aviation Fuels Martin Duran* and Abdul-Majeed Azad) to hydrogen through steam reforming poses a challenge since these fuels contain sulfur up to about 1000 ppm

Azad, Abdul-Majeed

449

Internal tar/CH4 reforming in a biomass dual fluidised bed gasifier  

Science Journals Connector (OSTI)

An internal reformer is developed for in situ catalytic reforming of tar and methane (CH4) in allothermal gasifiers. The study has been performed in the ... 150 kW dual fluidised bed (DFB) biomass gasifier at Mid...

Kristina Göransson; Ulf Söderlind; Till Henschel…

2014-10-01T23:59:59.000Z

450

Miniature ceramic fuel cell  

DOE Patents [OSTI]

A miniature power source assembly capable of providing portable electricity is provided. A preferred embodiment of the power source assembly employing a fuel tank, fuel pump and control, air pump, heat management system, power chamber, power conditioning and power storage. The power chamber utilizes a ceramic fuel cell to produce the electricity. Incoming hydro carbon fuel is automatically reformed within the power chamber. Electrochemical combustion of hydrogen then produces electricity.

Lessing, Paul A. (Idaho Falls, ID); Zuppero, Anthony C. (Idaho Falls, ID)

1997-06-24T23:59:59.000Z

451

Concept of development of nuclear power based on LMFBR operation in open nuclear fuel cycle  

SciTech Connect (OSTI)

The preliminary assessments performed show that it is reasonable to investigate in the future the possibilities of FBR efficient operation with the open NFC. To improve its safety it is expedient to use the lead-bismuth alloy as a coolant. In order to operate with depleted uranium make-up it is necessary to meet a number of requirements providing the reactor criticality due to plutonium build-up and BR > 1. These requirements are as follows: a large core (20--25 m{sup 3}); a high fuel volume fraction (> 60%); utilization of dense metallic fuel; a high fuel burn-up--at a level of 20% of h.a. Making use of these reactors should allow the NP fuel base to be extended more than 10 times without making NFC closed. It provides improving NP safety during a sufficiently long stage of its development.

Toshinsky, G.I. [Inst. of Physics and Power Engineering, Obninsk (Russian Federation)

1996-08-01T23:59:59.000Z

452

Natural Gas Reforming | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen Production Natural Gas Reforming Natural Gas Reforming Photo of Petroleum Refinery Natural gas reforming is an advanced and mature production process that builds upon...

453

Technical Assistance to Developers - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 3 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program T. Rockward and R.L. Borup (Primary Contacts), F. Garzon, R. Mukundan, and D. Spernjak Los Alamos National Laboratory (LANL) P.O. Box 1663 Los Alamos, NM 87545 Phone: (505) 667-9587 and (505) 667-2823 Emails: trock@lanl.gov, borup@lanl.gov DOE Manager HQ: Nancy Garland Phone: (202) 586-5673 Email: Nancy.Garland@ee.doe.gov Project Start Date: October 2003 Project End Date: Project continuation and direction determined annually by DOE Objectives Support technically, as directed by DOE, fuel cell * component and system developers Assess fuel cell materials and components and give * feedback to developers Assist the DOE Durability Working Group with the * development of various new material durability testing

454

Plate-Based Fuel Processing System Final Report  

SciTech Connect (OSTI)

On-board reforming of liquid fuels into hydrogen is an enabling technology that could accelerate consumer usage of fuel cell powered vehicles. The technology would leverage the convenience of the existing gasoline fueling infrastructure while taking advantage of the fuel cell efficiency and low emissions. Commercial acceptance of on-board reforming faces several obstacles that include: (1) startup time, (2) transient response, and (3) system complexity (size, weight and cost). These obstacles are being addressed in a variety of projects through development, integration and optimization of existing fuel processing system designs. In this project, CESI investigated steam reforming (SR), water-gas-shift (WGS) and preferential oxidation (PrOx) catalysts while developing plate reactor designs and hardware where the catalytic function is integrated into a primary surface heat exchanger. The plate reactor approach has several advantages. The separation of the reforming and combustion streams permits the reforming reaction to be conducted at a higher pressure than the combustion reaction, thereby avoiding costly gas compression for combustion. The separation of the two streams also prevents the dilution of the reformate stream by the combustion air. The advantages of the plate reactor are not limited to steam reforming applications. In a WGS or PrOx reaction, the non-catalytic side of the plate would act as a heat exchanger to remove the heat generated by the exothermic WGS or PrOx reactions. This would maintain the catalyst under nearly isothermal conditions whereby the catalyst would operate at its optimal temperature. Furthermore, the plate design approach results in a low pressure drop, rapid transient capable and attrition-resistant reactor. These qualities are valued in any application, be it on-board or stationary fuel processing, since they reduce parasitic losses, increase over-all system efficiency and help perpetuate catalyst durability. In this program, CESI took the initial steam reforming plate-reactor concept and advanced it towards an integrated fuel processing system. A substantial amount of modeling was performed to guide the catalyst development and prototype hardware design and fabrication efforts. The plate-reactor mechanical design was studied in detail to establish design guidelines which would help the plate reactor survive the stresses of repeated thermal cycles (from start-ups and shut-downs). Integrated system performance modeling was performed to predict system efficiencies and determine the parameters with the most significant impact on efficiency. In conjunction with the modeling effort, a significant effort was directed towards catalyst development. CESI developed a highly active, sulfur tolerant, coke resistant, precious metal based reforming catalyst. CESI also developed its own non-precious metal based water-gas shift catalyst and demonstrated the catalysts durability over several thousands of hours of testing. CESI also developed a unique preferential oxidation catalyst capable of reducing 1% CO to < 10 ppm CO over a 35 C operating window through a single pass plate-based reactor. Finally, CESI combined the modeling results and steam reforming catalyst development efforts into prototype hardware. The first generation 3kW(e) prototype was fabricated from existing heat-excha