Powered by Deep Web Technologies
Note: This page contains sample records for the topic "development program installation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

ARRA Program Celebrates Milestone 600,000 Smart Meter Installations |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ARRA Program Celebrates Milestone 600,000 Smart Meter Installations ARRA Program Celebrates Milestone 600,000 Smart Meter Installations ARRA Program Celebrates Milestone 600,000 Smart Meter Installations April 17, 2012 - 3:09pm Addthis On April 11, 2012, DOE Recovery Act funding recipient Sacramento Municipal Utility District (SMUD) celebrated a major milestone in the development of a regional smart grid in California: the installation of over 600,000 smart meters. For the event, Congresswoman Doris Matsui (D-Sacramento) visited SMUD's customer service center and praised the program for implementing a system "that will be more efficient, more reliable, and better for consumers." SMUD's meter installations are nearly complete, with only a few thousand remaining. In addition to smart meters, SMUD's grid modernization efforts will include automated distribution systems, a

2

NSTAR (Electric) - Small Business Direct Install Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NSTAR (Electric) - Small Business Direct Install Program NSTAR (Electric) - Small Business Direct Install Program NSTAR (Electric) - Small Business Direct Install Program < Back Eligibility Commercial Local Government Nonprofit State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Other Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Manufacturing Heat Pumps Appliances & Electronics Commercial Lighting Lighting Program Info State Massachusetts Program Type Utility Rebate Program Rebate Amount Up to 70% of the total project cost Provider NSTAR The NSTAR Small Business Solutions Program offers incentives for business customers whose average monthly demand is 300 kW or less. The first step of the program is a free energy audit to identify potential energy saving

3

Clustered PV Installation Program (Massachusetts) | Open Energy...  

Open Energy Info (EERE)

Residential Eligible Technologies Photovoltaics Active Incentive No Implementing Sector StateTerritory Energy Category Renewable Energy Incentive Programs Amount Varies by...

4

Fiscal year 1996 well installation program summary, Y-12 Plant Oak Ridge, Tennessee  

Science Conference Proceedings (OSTI)

This report summarizes the well installation activities conducted during the federal fiscal year (FY) 1996 drilling program at the Oak Ridge Y-12 Plant, Oak Ridge Tennessee. Synopses of monitoring well construction/well development data, well location rationale, geological/hydrological observations, quality assurance/quality control methods, and health and safety monitoring are included. Two groundwater monitoring wells were installed during the FY 1996 drilling program. One of the groundwater monitoring wells was installed in the Lake Reality area and was of polyvinyl chloride screened construction. The other well, installed near the Ash Disposal Basin, was of stainless steel construction.

NONE

1997-04-01T23:59:59.000Z

5

Preliminary assessment report for Fort Jacob F. Wolters, Installation 48555, Mineral Wells, Texas. Installation Restoration Program  

SciTech Connect

This report presents the results of the preliminary assessment (PA) conducted by Argonne National Laboratory at the Texas Army National Guard (TXARNG) property near Mineral Wells, Texas. Preliminary assessments of federal facilities are being conducted to compile the information necessary for completing preremedial activities and to provide a basis for establishing corrective actions in response to releases of hazardous substances. The principal objective of the PA is to characterize the site accurately and determine the need for further action by examining site activities, quantities of hazardous substances present, and potential pathways by which contamination could affect public health and the environment. This PA satisfies, for the Fort Wolters property, the requirement of the Department of Defense Installation Restoration Program.

Dennis, C.B.

1993-08-01T23:59:59.000Z

6

Preliminary assessment report for Waiawa Gulch, Installation 15080, Pearl City, Oahu, Hawaii. Installation Restoration Program  

SciTech Connect

This report presents the results of the preliminary assessment (PA) conducted by Argonne National Laboratory at the Hawaii Army National Guard (HIARNG) property near Pearl City, Oahu, Hawaii. Preliminary assessments of federal facilities are being conducted to compile the information necessary for completing preremedial activities and to provide a basis for establishing corrective actions in response to releases of hazardous substances. The principal objective of the PA is to characterize the site accurately and determine the need for further action by examining site activities, quantities of hazardous substances present, and potential pathways by which contamination could affect public health and the environment. This PA satisfies, for the Waiawa Gulch property, phase I of the Department of Defense Installation Restoration Program (IRP).

Not Available

1993-08-01T23:59:59.000Z

7

Fiscal year 1995 well installation program summary Y-12 Plant, Oak Ridge, Tennessee  

Science Conference Proceedings (OSTI)

This report summarizes the well installation activities conducted during the federal fiscal year (FY) 1995 drilling program at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee (including activities that were performed in late FY 1994, but not included in the FY 1994 Well Installation Program Summary Report). Synopses of monitoring well construction/well development data, well location rationale, geological/hydrological observations, quality assurance/quality control methods, and health and safety monitoring are included. Three groundwater monitoring wells and two gas monitoring probes were installed during the FY 1995 drilling program. One of the groundwater monitoring wells was installed at Landfill VI, the other two in the Boneyard/Burnyard area. All of the groundwater monitoring wells were constructed with stainless steel screens and casings. The two gas monitoring probes were installed at the Centralized Sanitary Landfill II and were of polyvinyl chloride (PVC) screened construction. Eleven well rehabilitation/redevelopment efforts were undertaken during FY 1995 at the Y-12 Plant. All new monitoring wells and wells targeted for redevelopment were developed by either a 2.0-in. diameter swab rig or by hand bailing until nonspecific parameters (pH and specific conductance) attained steady-state levels. Turbidity levels were lowered, if required, to the extent practicable by continued development beyond a steady-state level of pH and conductance.

NONE

1995-09-01T23:59:59.000Z

8

Installation-Restoration Program Records search for Des Moines Air National Guard Installation, Iowa  

SciTech Connect

Conclusions are: 1) Information obtained through interviews with 17 past and present installation personnel, installation records, shop folders, and field observations indicate that the Des Monies ANG Installation property has been used for disposal of small quantities of hazardous material in the past. 2) No evidence of environmental stress resulting from past disposal practices was observed at the Des Moines ANG installation. 3) In the priority listing of the three rated sites and their overall scores, the Facility 105 Vehicle Maintenance Fuel Tank, and the existing fire department training area, exhibit the most-significant potential (relative to the other Des Moines ANG Installation sites) for environmental concerns. 4) The old fire department training area located at Facility No. 228, is not considered to present significant concern for adverse effects on health or the environment.

1983-09-01T23:59:59.000Z

9

Solar Energy Development onSolar Energy Development on DoD Installations in the  

E-Print Network (OSTI)

Solar Energy Development onSolar Energy Development on DoD Installations in the Mojave & Colorado/how solar can contribute to installation level energy· Assess whether/how solar can contribute to installation-level energy security · Recommend policy and programmatic modifications to accelerate solar

10

Strategy for Developing 10-Year Energy Management Plans at U.S. Army Forces Command Installations.  

SciTech Connect

In order to reach the energy reduction and sustainability goals of the Executive Order 13123, and to minimize overall energy and water costs, the U.S Army Forces Command (FORSCOM), with assistance of PNNL, has embarked on a program to develop comprehensive 10-year Energy Management Plans for each of the 11 major FORSCOM installations. These plans will identify activities and projects critical to the installation's reaching the Executive Order (E.O.) goals as well as help ensure a reliable and secure energy supply. Each FORSCOM installation will be responsible for developing a plan that is closely linked with the installation Master Plan. The Energy Management Plan will cover elements on both the demand side and the supply side, as well as energy/water security assessments and funding/financing resource requirements.

Parker, Graham B. (BATTELLE (PACIFIC NW LAB)); Gillespie, Adrian (U.S. Army Forces Command); Dixon, Douglas R. (BATTELLE (PACIFIC NW LAB)); Brown, Daryl R. (BATTELLE (PACIFIC NW LAB)); Reilly, Raymond W. (BATTELLE (PACIFIC NW LAB)); Warwick, William M. (BATTELLE (PACIFIC NW LAB))

2002-10-01T23:59:59.000Z

11

EA-1655: Berkeley Lab Laser Accelerator (BELLA) Laser Acquisition, Installation and Use for Research and Development  

Energy.gov (U.S. Department of Energy (DOE))

Berkeley Lab Laser Accelerator (BELLA) Laser Acquisition, Installation and Use for Research and Development

12

New Jersey SmartStart Buildings - Direct Install Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Jersey SmartStart Buildings - Direct Install Program New Jersey SmartStart Buildings - Direct Install Program New Jersey SmartStart Buildings - Direct Install Program < Back Eligibility Commercial Industrial Local Government Nonprofit Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Other Construction Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate Lesser of 70% of project costs or $75,000 per project; annual entity cap of $250,000 Program Info Funding Source New Jersey Societal Benefits Charge (public benefits fund); ARRA State New Jersey Program Type State Rebate Program Rebate Amount Varies Provider c/o TRC Energy Services The Direct Install program offers turn-key energy efficiency solutions to qualified industrial and commercial customers that, with some exceptions,

13

Economic Development Incentive Program (Massachusetts) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Economic Development Incentive Program (Massachusetts) Economic Development Incentive Program (Massachusetts) Economic Development Incentive Program (Massachusetts) < Back Eligibility Agricultural Commercial Construction Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Municipal/Public Utility Nonprofit Retail Supplier Systems Integrator Transportation Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Massachusetts Program Type Corporate Tax Incentive Provider Office of Business Development The Economic Development Incentive Program (EDIP) is a tax incentive program designed to foster job creation and stimulate business growth throughout the Commonwealth. Participating companies may receive state and

14

Pending Issues In Decommissioning Of Nuclear Installations In Developing Countries  

E-Print Network (OSTI)

While decommissioning technology and infrastructures are reasonably mature in fully developed countries at the beginning of the third millennium, this is not necessarily the case for some developing countries. It is unfortunate that many of these countries have given little or no attention to early planning and creation of infrastructures for the decommissioning of their nuclear installations, which in many cases are candidates for permanent shutdown in the near future. Critical areas include inter alia (1) poor or no allocation of decommissioning funds, (2) uncertain availability of affordable technologies, (3) unclear definition of roles and responsibilities including lack of regulations, (4) inadequate management and organization techniques, (5) perceived low priority and weak political support, and (6) lack of human and technical resources, particularly in the long term. The International Atomic Energy Agency (IAEA) is a unique forum to identify and address current and prospecti...

Michele Laraia International

2000-01-01T23:59:59.000Z

15

ConEd (Gas and Electric) - Small Business Direct Install Program...  

Open Energy Info (EERE)

ConEd (Gas and Electric) - Small Business Direct Install Program (New York) No revision has been approved for this page. It is currently under review by our subject matter experts....

16

ConEd (Gas and Electric) - Small Business Direct Install Program (New York)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ConEd (Gas and Electric) - Small Business Direct Install Program ConEd (Gas and Electric) - Small Business Direct Install Program (New York) ConEd (Gas and Electric) - Small Business Direct Install Program (New York) < Back Eligibility Commercial Savings Category Other Appliances & Electronics Commercial Lighting Lighting Heating & Cooling Commercial Heating & Cooling Program Info State New York Program Type Utility Rebate Program Rebate Amount Energy Survey: Free Programmable Thermostat: Free Equipment Upgrades Identified in Energy Survey: Con Edison will pay up to 70% of the remaining cost directly to the contractor ConEd is providing free energy surveys to its small business customers. The survey will take 30 to 90 minutes and efficiency opportunities and associated costs will be presented on the spot. If the customer agrees to

17

SES CANDIDATE DEVELOPMENT PROGRAM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CANDIDATE DEVELOPMENT PROGRAM (SESCDP) CANDIDATE DEVELOPMENT PROGRAM (SESCDP) DOE F 360.1 (11-03) Executive Development Plan (EDP) Name: Title: Organization: Office: RATIONALE FOR PLAN: APPROVALS: Candidate Signature: Date: Supervisor: Date: Mentor: Date: SES Candidate Development Program Manager: Date: DOE Executive Resources Board: Date: 1 U.S. DEPARTMENT OF ENERGY DOE F 360.1 (11-03) SENIOR EXECUTIVE SERVICE CANDIDATE DEVELOPMENT PROGRAM (SESCDP) Executive Development Plan (EDP) NAME OF SES CANDIDATE: DATE: EXECUTIVE CORE QUALIFICATION 1: LEADING CHANGE This core qualification encompasses the ability to develop and implement an organizational vision which integrates key national and program

18

Models and Solution Approaches for Development and Installation of PEV Infrastructure  

E-Print Network (OSTI)

This dissertation formulates and develops models and solution approaches for plug-in electric vehicle (PEV) charging station installation. The models are formulated in the form of bilevel programming and stochastic programming problems, while a meta-heuristic method, genetic algorithm, and Monte Carlo bounding techniques are used to solve the problems. Demand for PEVs is increasing with the growing concerns about environment pollution, energy resources, and the economy. However, battery capacity in PEVs is still limited and represents one of the key barriers to a more widespread adoption of PEVs. It is expected that drivers who have long-distance commutes hesitate to replace their internal combustion engine vehicles with PEVs due to range anxiety. To address this concern, PEV infrastructure can be developed to provide re-fully status when they are needed. This dissertation is primarily focused on the development of mathematical models that can be used to support decisions regarding a charging station location and installation problem. The major parts of developing the models included identification of the problem, development of mathematical models in the form of bilevel and stochastic programming problems, and development of a solution approach using a meta-heuristic method. PEV parking building problem was formulated as a bilevel programming problem in order to consider interaction between transportation flow and a manager decisions, while the charging station installation problem was formulated as a stochastic programming problem in order to consider uncertainty in parameters. In order to find the best-quality solution, a genetic algorithm method was used because the formulation problems are NP-hard. In addition, the Monte Carlo bounding method was used to solve the stochastic program with continuous distributions. Managerial implications and recommendations for PEV parking building developers and managers were suggested in terms of sensitivity analysis. First, in the planning stage, the developer of the PEV parking building should consider long-term changes in future traffic flow and locate a PEV parking building closer to the node with the highest destination trip rate. Second, to attract more parking users, the operator needs to consider the walkability of walking links.

Kim, Seok

2011-12-01T23:59:59.000Z

19

Installing micro-hydro in the developing nations  

SciTech Connect

The difficulties encountered in installing a micro-hydroelectric power system in Korupun, a mission station/community located in the highlands of Irian Jaya, Indonesia are discussed. Initial construction resulted in the completion of a diversion structure, a 400 ft. power canal, a settling pond, intake works and a power house foundation. The site itself would use less than minimum stream-flow, a 900 ft. penstock and 150 ft. of net effective head to produce 12 kilowatts of electricity.

Johnson, M.

1986-02-01T23:59:59.000Z

20

Resources for Program Development  

NLE Websites -- All DOE Office Websites (Extended Search)

may assist those who are developing programs to enhance the knowledge and skills of mathematics, science and technology teachers and provide opportuntities for students to...

Note: This page contains sample records for the topic "development program installation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

SES CANDIDATE DEVELOPMENT PROGRAM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 3 (11-03) SENIOR EXECUTIVE SERVICE CANDIDATE DEVELOPMENT PROGRAM (SESCDP) Developmental Assignment Opportunity DATE: NAME OF SES CANDIDATE: TITLE: ASSIGNMENT NUMBER: ASSIGNMENT BEGINS: ENDS: TELEPHONE NUMBER: FAX NUMBER: EMAIL ADDRESS: ASSIGNMENT LOCATION HOST ORGANIZATION: PURPOSE OF ASSIGNMENT: ASSIGNMENT POSITION: ASSIGNMENT DUTIES: EXECUTIVE COR QUALIFICATIONS TO BE ADDRESSED: OFFICE ADDRESS: TELEPHONE NUMBER: FAX NUMBER: E-MAIL ADDRESS: 1 U.S. DEPARTMENT OF ENERGY SENIOR EXECUTIVE SERVICE CANDIDATE DEVELOPMENT PROGRAM (SESCDP)

22

Sustainability Research & Development Consortium for DoD Installations  

E-Print Network (OSTI)

the architectures for the future elec- tric grid, and brought clean energy solutions to the developing world's Capabilities: Engines and engine controls Energy systems Smart grid Energy for development Advanced and Energy Conversion Laboratory Center for Contaminant Hydrology InteGrid Test & Development Laboratory

23

California Solar Initiative (CSI) Thermal Program Metering Installation Guide Purpose: The purpose of this metering installation guide is to provide participating eligible contractors  

E-Print Network (OSTI)

1 California Solar Initiative (CSI) Thermal Program Metering Installation Guide Purpose to the mixing valve. Place the hot sensor on the pipe between the solar tank and the backup water heater. #12 to backup heater and a mixing valve between the solar tank and the backup water heater. Place the flow meter

24

Economic Development Tax Credit Program (Wisconsin) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tax Credit Program (Wisconsin) Tax Credit Program (Wisconsin) Economic Development Tax Credit Program (Wisconsin) < Back Eligibility Commercial Agricultural Construction Developer Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Low-Income Residential Multi-Family Residential Retail Supplier Systems Integrator Transportation Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Wind Solar Program Info State Wisconsin Program Type Corporate Tax Incentive Provider Wisconsin Economic Development Corporation The Economic Development Tax Credit (ETC) program was enacted in 2009 and eliminated five existing tax credit programs (Agricultural Development Zones, Airport Development Zones, Community Development Zones, Enterprise

25

SES CANDIDATE DEVELOPMENT PROGRAM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 5 (11-03) SENIOR EXECUTIVE SERVICE CANDIDATE DEVELOPMENT PROGRAM (SESCDP) Candidate Developmental Assignment Evaluation DATE:_______________ NAME OF SES CANDIDATE TITLE OF POSITION LOCATION ASSIGNMENT DURATION: Which Executive Core Qualification(s) was this assignment intended to meet? Leading Change Leading People Results Driven Business Acumen Building Coalitions/Communication Please provide a brief description of your assignment. Did the experience meet your expectation? Was this a good learning experience? 1 U.S. DEPARTMENT OF ENERGY DOE F 360.5 (11-03) SENIOR EXECUTIVE SERVICE CANDIDATE DEVELOPMENT PROGRAM (SESCDP) Candidate Developmental Assignment Evaluation

26

Advanced Application Development Program Information  

Energy.gov (U.S. Department of Energy (DOE))

Summary of the Tranmission Reliability program's Advanced Applications Research and Development activity area. This program develops and demonstrates tools to monitor and control the grid with...

27

SES CANDIDATE DEVELOPMENT PROGRAM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 6 (11-03) SENIOR EXECUTIVE SERVICE CANDIDATE DEVELOPMENT PROGRAM (SESCDP) Evaluation of Formal Training DATE:_______________ CANDIDATE NAME: TITLE OF TRAINING PROGRAM: VENDOR/LOCATION: TRAINING DATES: Which Executive Core Qualification(s) was this assignment intended to meet? Leading Change Leading People Results Driven Business Acumen Building Coalitions/Communication Please check one for each of the following: Level of difficulty: Too Advanced ___ Appropriate ___ Too Elementary ___ Length of course: Too Long ___ Appropriate ___ Too Short ___ Instructor(s): Excellent ___ Satisfactory ___ Fair Poor ___ 1 until U.S. DEPARTMENT OF ENERGY

28

Plan for the performance monitoring of solar systems installed by the SUIEDE program: NCAT/SUEDE interaction  

DOE Green Energy (OSTI)

The SUEDE Grantee solar system installation programs were reviewed to determine the type, number, and quality of Grantee-installed solar systems available for monitoring consideration. An NCAT Performance Monitoring Plan is presented which identifies the service and technical assistance that NCAT will need to provide based on the Grantee review. (MHR)

Hopkins, M

1979-02-01T23:59:59.000Z

29

OE Power Systems Engineering Research & Development Program Partnerships |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mission » Power Systems Engineering Research and Development » OE Mission » Power Systems Engineering Research and Development » OE Power Systems Engineering Research & Development Program Partnerships OE Power Systems Engineering Research & Development Program Partnerships The OE Power Systems Research and Development Program engages a broad group of stakeholders in program planning, identification of high-priority technology gap areas, and joint participation in research, development, demonstration, and deployment activities. The partnerships involve: Partnerships with Other Federal Programs Federal partnerships include participation with the Federal Energy Management Program (FEMP) to promote and install distributed energy systems at Federal facilities; the Office of Energy Assurance and the Department of

30

PV Installation Labor Market Analysis and PV JEDI Tool Developments (Presentation)  

DOE Green Energy (OSTI)

The potential economic benefits of the growing renewable energy sector have led to increased federal, state, and local investments in solar industries, including federal grants for expanded workforce training for U.S. solar installers. However, there remain gaps in the data required to understand the size and composition of the workforce needed to meet the demand for solar power. Through primary research on the U.S. solar installation employer base, this report seeks to address that gap, improving policymakers and other solar stakeholders understanding of both the evolving needs of these employers and the economic opportunity associated with solar market development. Included are labor market data covering current U.S. employment, expected industry growth, and employer skill preferences for solar installation-related occupations. This study offers an in-depth look at the solar installation sectors. A study published by the Solar Foundation in October 2011 provides a census of labor data across the entire solar value chain.

Friedman, B.

2012-06-01T23:59:59.000Z

31

Illinois Coal Development Program (Illinois) | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Illinois Coal Development Program (Illinois) Illinois Coal Development Program (Illinois) < Back Eligibility Commercial Construction Developer Industrial Program Info State...

32

ABC Technology Development Program  

Science Conference Proceedings (OSTI)

The Accelerator-Based Conversion (ABC) facility will be designed to accomplish the following mission: `Provide a weapon`s grade plutonium disposition capability in a safe, economical, and environmentally sound manner on a prudent schedule for [50] tons of weapon`s grade plutonium to be disposed on in [20] years.` This mission is supported by four major objectives: provide a reliable plutonium disposition capability within the next [15] years; provide a level of safety and of safety assurance that meets or exceeds that afforded to the public by modern commercial nuclear power plants; meet or exceed all applicable federal, state, and local regulations or standards for environmental compliance; manage the program in a cost effective manner. The ABC Technology Development Program defines the technology development activities that are required to accomplish this mission. The technology development tasks are related to the following topics: blanket system; vessel systems; reactivity control systems; heat transport system components; energy conversion systems; shutdown heat transport systems components; auxiliary systems; technology demonstrations - large scale experiments.

NONE

1994-10-14T23:59:59.000Z

33

SES CANDIDATE DEVELOPMENT PROGRAM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 4 (11-03) SENIOR EXECUTIVE SERVICE CANDIDATE DEVELOPMENT PROGRAM (SESCDP) Supervisor's Evaluation of Candidate's Performance During Developmental Assignment DATE:________________ NAME OF SES CANDIDATE: TITLE OF POSITION: LOCATION OF ASSIGNMENT: ASSIGNMENT DURATION: PART I: EVALUATION OF ASSIGNMENT OBJECTIVES Please evaluate the candidate's level of performance in meeting the objectives of the assignment as Successful or Unacceptable. Objectives Standards Performance Evaluation PLEASE RATE YOUR OVERALL EVALUATION OF THE CANDIDATE'S PERFORMANCE BY CIRCLING A NUMBER ON THE SCALE BELOW: EXCELLENT VERY GOOD SATISFACTORY POOR UNACCEPTABLE

34

Utility Scale Renewable Energy Development Near DOD Installations: Making the Case for Land Use Compatitbility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mike Aimone, P.E. Mike Aimone, P.E. National Security Global Business Battelle Memorial Institute Utility Scale Renewable Energy Development near DOD Installations Making the Case for Land Use Compatibility Comments expressed are strictly those of the Briefer, and not necessarily the views or positions of the Battelle Memorial Institute or the Department of Defense 2 Sizing the Issue * Utility scale renewable energy development near DOD installations, ranges and Military Operational Areas/Special Use Airspace can affect mission operations and readiness * In the US, Land Use Planning is a "states-right" issue - tied to "Police Powers" - Goal: Acceptable zoning rules and consistent zoning

35

Small Enterprise Development Finance Program (Mississippi) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Small Enterprise Development Finance Program (Mississippi) Small Enterprise Development Finance Program (Mississippi) Small Enterprise Development Finance Program (Mississippi) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Mississippi Program Type Corporate Tax Incentive Loan Program Sales Tax Incentive

36

Program to develop advanced gas turbine systems  

SciTech Connect

The need for an advanced turbine program for land-based engines has been broadly recognized in light of reductions in military funding for turbines, rapid growth in the sale of gas turbines for utility and industrial usage, and the fierce competition with off-shore manufacturers. Only with Government support can US manufacturers meet rapidly changing market conditions such as increased emissions requirements and lower capital cost requirements. In light of this, ATS planning was requested by Congress in the fiscal year (FY) 92 appropriations and is included in thee Energy Policy Act of 1992. The program budget has increased rapidly, with the FY 94 budget including. over $28 million for ATS program activities. The Natural Gas Strategic Plan and Multi-Year Program Crosscut Plan, 1993--1998, includes the ATS program as part of the overall DOE plan for natural gas-related research and development (R&D) activities. Private sector support for the program is sufficient. Three open meetings have been held during the last 2 years to provide an opportunity for industry suggestions and comments. As the result of a public review of the program plan held June 4, 1993, in Pittsburgh, 46 letters of support were received from industry, academia, and others. Gas turbines represent the fastest growing market segment in electrical and cogeneration markets, with over 60 percent of recent installations based on gas turbines. Gas turbine systems offer low installation and operating costs, low emissions (currently with add-on equipment for non-attainment areas), and quick installation (1--2 years). According to the Annual Energy Outlook 1993, electricity and natural gas demand should both grow substantially through 2010. Natural gas-fired gas turbine systems continue to be the prime candidates for much of both new and retrofit capacity in this period. Emissions requirements continue to ratchet downward with single-digit NO{sub x} ppM required in several non-attainment areas in the US

Webb, H.A. [USDOE Morgantown Energy Technology Center, WV (United States); Parks, W.P. [USDOE, Washington, DC (United States)

1994-07-01T23:59:59.000Z

37

Texas LoanSTAR Monitoring and Analysis Program: Monitoring Equipment Installation Manual (October 1994)  

E-Print Network (OSTI)

The Texas LoanSTAR (Loans to Save Taxes and Resources) Program is a $98.6 million revolving loan fund to finance energy conservation retrofits in Texas government buildings. The loans are repaid through energy cost savings resulting from the retrofits. These energy cost savings are verified through an extensive metering and monitoring program conducted by the Texas A&M University Energy Systems Laboratory (ESL). The National Center for Appropriate Technology (NCAT) and its for-profit subsidiary, the NCAT Development Corporation, have been the principal monitoring instrumentation subcontractors to ESL throughout the Program's life.

Bohmer, C.; Lippman, R.; McBride, J.; Casebolt, C.

1994-01-01T23:59:59.000Z

38

Workforce Development Oregon Academic Research Facilities Research Expertise Oregon was the first statein the U.S. to install photovoltaics on its  

E-Print Network (OSTI)

College's (PCC) microelectronics program to develop graduates who specialize in solar cell manufacturing conservation systems and to install photovoltaic and solar domestic hot water systems. LCC offers the nation materials for pin double-heterojunction thin-film solar cells with funding from the National Renewable

Oregon, University of

39

Staff Development Program Bibliography  

NLE Websites -- All DOE Office Websites (Extended Search)

"Staff Development and the Individual," in S. Caldwell (Ed.) Staff Development: A Handbook of Effective Practices. Oxford, OH: National Staff Development Council. Lieberman, A....

40

Preliminary assessment report for Grubbs/Kyle Training Center, Smyrna/Rutherford County Regional Airport, Installation 47340, Smyrna, Tennessee. Installation Restoration Program  

SciTech Connect

This report presents the results of the preliminary assessment (PA) conducted by Argonne National Laboratory at the Tennessee Army National Guard (TNARNG) property near Smyrna, Tennessee. Preliminary assessments of federal facilities are being conducted to compile the information necessary for completing preremedial activities and to provide a basis for establishing corrective actions in response to releases of hazardous substances. The principal objective of the PA is to characterize the site accurately and determine the need for further action by examining site activities, quantities of hazardous substances present, and potential pathways by which contamination could affect public health and the environment. This PA satisfies, for the Grubbs/Kyle Training Center property, the requirement of the Department of Defense Installation Restoration Program.

Dennis, C.; Stefano, J.

1993-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "development program installation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Series 50 propane-fueled Nova bus: Engine development, installation, and field trials  

SciTech Connect

The report describes a project to develop the Detroit Diesel series 50 liquefied propane gas (LPG) heavy-duty engine and to conduct demonstrations of LPG-fuelled buses at selected sites (Halifax Regional Municipality and three sites in the United States). The project included five main elements: Engine development and certification, chassis re-engineering and engine installation, field demonstration, LPG fuel testing, and LPG fuel variability testing. Lessons learned with regard to engine design and other issues are discussed, and recommendations are made for further development and testing.

Smith, B.

1999-01-01T23:59:59.000Z

42

PV Installation Labor Market Analysis and PV JEDI Tool Developments (Presentation), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

PV Installation Labor Market Analysis PV Installation Labor Market Analysis and PV JEDI Tool Developments Barry Friedman NREL Strategic Energy Analysis Center May 16, 2012 World Renewable Energy Forum Denver, Colorado NREL/PR-6A20-55130 NATIONAL RENEWABLE ENERGY LABORATORY Disclaimer 2 DISCLAIMER AGREEMENT These information ("Data") are provided by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy LLC ("Alliance") for the U.S. Department of Energy (the "DOE"). It is recognized that disclosure of these Data is provided under the following conditions and warnings: (1) these Data have been prepared for reference purposes only; (2) these Data consist of forecasts, estimates or assumptions made on a best-

43

REACTOR DEVELOPMENT PROGRAM PROGRESS REPORT, SEPTEMBER 1961  

SciTech Connect

BS>Data from examination of blade-type control rods which were used in BORAX are discussed. Operation and maintenance of EBWR is outlined. In work on Borax V, modifications for easier installation of reactor and components is outlined followed by discussion of superheat fuel element development, and fabrication of various reactor components. Borax reactor design is also reported along with information on development and testing. In research on sodiumcooled reactors, activities are summarized in the LPR III and LPR IV programs along with developmental work on EBR I and II. Studies on reactor safety are reported and activities in a program of nuclear technology and general support are outlined. (J.R.D.)

1961-10-15T23:59:59.000Z

44

Installation Restoration Program (IRP) site investigation for IRP site number 1. 101st ACS, Worcester ANGs. Volume 1  

SciTech Connect

A Site Investigation (SI) was conducted at the Old Embankment/Vicinity of the old Waste Holding Area at Installation Restoration Program (IRP) Site No. 1 located at the 101 st Air Control Squadron (ACS) and the 212th Engineering Installation Squadron (EIS), Massachusetts Air National Guard (MASS ANG), Worcestor, MA. Volatile Organic Compounds (VOC) concentrations detected did not exceed Massachusetts Soil Standards and PCBs were not detected. However, semivolatile organic compound, metals, and petroleum hydrocarbons were detected above reportable concentrations. Additional background sampling and a Remedial Investigation / Feasibility Study (RI/FS) were recommended to determine the nature and extent of contamination.

1995-01-01T23:59:59.000Z

45

Better Buildings Neighborhood Program: Workforce Development  

NLE Websites -- All DOE Office Websites (Extended Search)

on Twitter Bookmark Better Buildings Neighborhood Program: Workforce Development on Google Bookmark Better Buildings Neighborhood Program: Workforce Development on Delicious...

46

Michigan Business Development Program (Michigan) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Business Development Program (Michigan) Michigan Business Development Program (Michigan) Eligibility Commercial Investor-Owned Utility Savings For Alternative Fuel Vehicles...

47

Community Economic Development Business Program (Prince Edward...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Community Economic Development Business Program (Prince Edward Island, Canada) Community Economic Development Business Program (Prince Edward Island, Canada) Eligibility...

48

Lunar exploration rover program developments  

DOE Green Energy (OSTI)

The Robotic All Terrain Lunar Exploration Rover (RATLER) design concept began at Sandia National Laboratories in late 1991 with a series of small, proof-of-principle, working scale models. The models proved the viability of the concept for high mobility through mechanical simplicity, and eventually received internal funding at Sandia National Laboratories for full scale, proof-of-concept prototype development. Whereas the proof-of-principle models demonstrated the mechanical design`s capabilities for mobility, the full scale proof-of-concept design currently under development is intended to support field operations for experiments in telerobotics, autonomous robotic operations, telerobotic field geology, and advanced man-machine interface concepts. The development program`s current status is described, including an outline of the program`s work over the past year, recent accomplishments, and plans for follow-on development work.

Klarer, P.R.

1993-09-01T23:59:59.000Z

49

Rural Development Advantage Program (Nebraska)  

Energy.gov (U.S. Department of Energy (DOE))

The Rural Development Advantage Program provides qualified businesses with refundable tax incentives for projects that create two new jobs and invest $125,000 in counties with less than 15,000...

50

REACTOR DEVELOPMENT PROGRAM PROGRESS REPORT  

SciTech Connect

Progress on reactor programs and in general engineering research and development programs is summarized. Research and development are reported on water-cooled reactors including EBWR and Borax-V, sodium-cooled reactors including ZPR-III, IV, and IX, Juggernaut, and EBR-I and II. Other work included a review of fast reactor technology, and studies on nuclear superheat, thermal and fast reactor safety, and reactor physics. Effort was also devoted to reactor materials and fuels development, heat engineering, separation processes and advanced reactor concepts. (J.R.D.)

1961-04-01T23:59:59.000Z

51

Business Development Executive (BDE) Program  

SciTech Connect

The IPST BDE (Institute of Paper Science and Technology Business Development Executive) program was initiated in 1997 to make the paper industry better aware of the new manufacturing technologies being developed at IPST for the U.S. pulp and paper industry's use. In April 2000, the BDE program management and the 20 BDEs, all retired senior level industry manufacturing and research executives, were asked by Ms. Denise Swink of OIT at DOE to take the added responsibility of bringing DOE developed energy conservation technology to the paper industry. This project was funded by a DOE grant of $950,000.

Rice, E.J. "Woody"; Frederick, W. James

2005-12-05T23:59:59.000Z

52

Environmental Education and Development Program  

SciTech Connect

The Environmental Education and Development Program is a component on the effort to accomplish the Office of Environmental Restoration and Waste Management`s (EM) goal of environmental compliance and cleanup of the 1989 inventory of inactive DOE sites and facilities by the year 2019. Education and Development programs were designed specifically to stimulate the knowledge and workforce capability necessary to achieve EM goals while contributing to DOE`s overall goal of increasing scientific and technical literacy and competency. The primary implementation criterion for E&D activities involved a focus on programs and projects that had both immediate and long-range leveraging effects on infrastructure. This focus included programs that yielded short term results (one to five years), as well as long-term results, to ensure a steady supply of appropriately trained and educated human resources, including women and minorities, to meet EM`s demands.

Not Available

1994-03-01T23:59:59.000Z

53

Installation restoration program records search for 158 tactical fighter group, Vermont Air National Guard, Burlington international airport  

SciTech Connect

The Burlington ANG Installation records search included a detailed review of pertinent installation records, contacts with 12 government organizations for documents relevant to the records search effort, and an onsite installation visit conducted by CH2M HILL during July 5 through 8, 1983. Activities conducted during the onsite installation visit included interviews with 19 past and present installation employees, ground tours of installation facilities, and a detailed search of installation records.

1983-09-01T23:59:59.000Z

54

Recent developments on the high power ECH installation at the DIII-D tokamak  

Science Conference Proceedings (OSTI)

The 110 GHz gyrotron installation on the DIII-D tokamak has been upgraded to three tubes in the megawatt class with plans for further upgrades. The latest addition uses a diamond output window. The report describes the installation, plans, and experimental results to date.

Lohr, J.; Ponce, D.; Callis, R.W.; Doane, J.L.; Ikezi, H.; Moeller, C.P.

1998-09-01T23:59:59.000Z

55

Workforce Development Training Program (South Dakota) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home Savings Workforce Development Training Program (South Dakota) Workforce Development Training Program (South Dakota) Eligibility Commercial...

56

Baseline Gas Turbine Development Program fifth quarterly progress report  

DOE Green Energy (OSTI)

Progress is reported for a program to demonstrate by 1976 an experimental gas turbine powered automobile which meets the 1976 Federal Emissions Standards, has significantly improved fuel economy, and is competitive in performance, reliability, and potential manufacturing cost with the conventional piston engine powered, standard size American automobile. Baseline engines 5, 6, and 7 were built. Action to correct a 7 percent power deficiency is underway. Two baseline vehicles are operational, with the third ready for engine installation. Measurement of baseline performance and emissions is in process. NASA Lewis has their baseline engine installation operational. They are also assemblying a cold flow power turbine test rig and have made substantial progress in defining upgraded engine aerodynamics. A study was made of sizing the upgraded engine for a compact size vehicle. Chrysler's proprietary linerless insulation was installed into the endurance engine. Evaluation was delayed by a power turbine section failure. Substantial progress was made in Chrysler's proprietary low emissions burner program. Preparations are being made to evaluate the Solar burner. Evaluation of ceramic regenerator cores are in process. A seal development program was initiated. AiResearch has most of the integrated control system preprototype elements defined, and has many key elements under test. Their transient engine simulation model is nearly operational. A compressor turbine wheel disc is being designed utilizing Pratt-Whitney superplastic forging properties. Procurement of two variable inlet guide vane assemblies is about complete. Detail drawings of a Free Rotor vehicle installation are being completed.

Wagner, C.E.

1974-01-31T23:59:59.000Z

57

Wind Energy Career Development Program  

Science Conference Proceedings (OSTI)

Saint Francis University has developed curriculum in engineering and in business that is meeting the needs of students and employers (Task 1) as well as integrating wind energy throughout the curriculum. Through a variety of approaches, the University engaged in public outreach and education that reached over 2,000 people annually (Task 2). We have demonstrated, through the success of these programs, that students are eager to prepare for emerging jobs in alternative energy, that employers are willing to assist in developing employees who understand the broader business and policy context of the industry, and that people want to learn about wind energy.

Gwen Andersen

2012-03-29T23:59:59.000Z

58

Program development fund: FY 1987  

Science Conference Proceedings (OSTI)

It is the objective of the Fund to encourage innovative research to maintain the Laboratory's position at the forefront of science. Funds are used to explore new ideas and concepts that may potentially develop into new directions of research for the Laboratory and that are consistent with the major needs, overall goals, and mission of the Laboratory and the DOE. The types of projects eligible for support from PDF include: work in forefront areas of science and technology for the primary purpose of enriching Laboratory research and development capabilities; advanced study of new hypotheses, new experimental concepts, or innovative approaches to energy problems; experiments directed toward ''proof of principle'' or early determination of the utility of a new concept; and conception, design analyses, and development of experimental devices, instruments, or components. This report is a review of these research programs.

Not Available

1989-03-01T23:59:59.000Z

59

OE Power Systems Engineering Research & Development Program Partnershi...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Federal Energy Management Program (FEMP) to promote and install distributed energy systems at Federal facilities; the Office of Energy Assurance and the Department of Homeland...

60

Small Business Development Loan Program (Minnesota)  

Energy.gov (U.S. Department of Energy (DOE))

The Small Business Development Loan Program, sponsored by Minnesotas Agricultural and Economic Development Board, issues industrial development bonds to provide small business loans up to $5...

Note: This page contains sample records for the topic "development program installation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Program summary for the Civilian Reactor Development Program  

SciTech Connect

This Civilian Reactor Development Program document has the prime purpose of summarizing the technical programs supported by the FY 1983 budget request. This section provides a statement of the overall program objectives and a general program overview. Section II presents the technical programs in a format intended to show logical technical interrelationships, and does not necessarily follow the structure of the formal budget presentation. Section III presents the technical organization and management structure of the program.

1982-07-01T23:59:59.000Z

62

Hot Dry Rock Geothermal Energy Development Program  

DOE Green Energy (OSTI)

During Fiscal Year 1987, emphasis in the Hot Dry Rock Geothermal Energy Development Program was on preparations for a Long-Term Flow Test'' of the Phase II'' or Engineering'' hot dry rock energy system at Fenton Hill, New Mexico. A successful 30-day flow test of the system during FY86 indicated that such a system would produce heat at a temperature and rate that could support operation of a commercial electrical power plant. However, it did not answer certain questions basic to the economics of long-term operation, including the rate of depletion of the thermal reservoir, the rate of water loss from the system, and the possibility of operating problems during extended continuous operation. Preparations for a one-year flow test of the system to answer these and more fundamental questions concerning hot dry rock systems were made in FY87: design of the required surface facilities; procurement and installation of some of their components; development and testing of slimline logging tools for use through small-diameter production tubing; research on temperature-sensitive reactive chemical tracers to monitor thermal depletion of the reservoir; and computer simulations of the 30-day test, extended to modeling the planned Long-Term Flow Test. 45 refs., 34 figs., 5 tabs.

Smith, M.C.; Hendron, R.H.; Murphy, H.D.; Wilson, M.G.

1989-12-01T23:59:59.000Z

63

Advanced Emissions Control Development Program  

Science Conference Proceedings (OSTI)

McDermott Technology, Inc. (MTI) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using the Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and hydrogen chloride and hydrogen fluoride.

M. J. Holmes

1998-12-03T23:59:59.000Z

64

Advanced Emissions Control Development Program  

Science Conference Proceedings (OSTI)

McDermott Technology, Inc. (MTI) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using the Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and the inorganic species, hydrogen chloride and hydrogen fluoride.

A. P. Evans

1998-12-03T23:59:59.000Z

65

Advanced Emissions Control Development Program  

Science Conference Proceedings (OSTI)

Babcock & Wilcox (B&W) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using B&W?s new Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and the inorganic species hydrogen chloride and hydrogen fluoride.

A. P. Evans

1998-12-03T23:59:59.000Z

66

Advanced Emission Control Development Program.  

SciTech Connect

Babcock & Wilcox (B&W) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using B&W`s new Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and the inorganic species hydrogen chloride and hydrogen fluoride.

Evans, A.P.

1997-12-31T23:59:59.000Z

67

Installation restoration program. Decision document, UST site 450, 117th Refueling Wing, Alabama Air National Guard, Birmingham Airport, Birmingham, Alabama. Final report  

SciTech Connect

The Installation Restoration Program was initiated by the Air National Guard (ANG) to evaluate potential contamination to the environment caused by past practices at its installations. During the 1987 Preliminary Assessment (PA), ten abandoned underground storage tanks (USTs) were identified at nine sites. During the 1991 Site Investigation, geophysical surveys failed to find a UST at this location (northern-most point on curve of B Street). The report documents no further action need be taken at this the UST site. The Installation Restoration Program was initiated by the Air National Guard (ANG) to evaluate potential contamination to the environment caused by past practices at its installations. During the 1987 Preliminary Assessment (PA), ten abandoned underground storage tanks (USTs) were identified at nine sites. During the 1991 Site Investigation, geophysical surveys failed to find a UST at this location (northern-most point on curve of B Street). The report documents no further action need be taken at this the UST site.

1997-01-01T23:59:59.000Z

68

Installation restoration program. Decision document, UST site 175, 117th Refueling Wing, Alabama Air National Guard, Birmingham Airport, Birmingham, Alabama. Final report  

SciTech Connect

The Installation Restoration Program was initiated by the Air National Guard (ANG) to evaluate potential contamination to the environment caused by past practices at its installations. During the 1987 Preliminary Assessment (PA), ten abandoned underground storage tanks (USTs) were identified at nine sites. During the 1991 Site Investigation, geophysical surveys failed to find a UST at this location (south of Building 175). The report documents no further action need be taken at this the UST site.

1997-01-01T23:59:59.000Z

69

Sustainable Development Fund Financing Program (PECO Territory) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sustainable Development Fund Financing Program (PECO Territory) Sustainable Development Fund Financing Program (PECO Territory) Sustainable Development Fund Financing Program (PECO Territory) < Back Eligibility Commercial Industrial Nonprofit Schools Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Bioenergy Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Solar Water Heating Wind Program Info State Pennsylvania Program Type Local Loan Program Rebate Amount Varies by project Provider TRF Sustainable Development Fund The Pennsylvania Public Utility Commission created the Sustainable Development Fund (SDF) in its final order of the PECO Energy electric

70

Energy star product specification development framework: Using data and analysis to make program decisions  

E-Print Network (OSTI)

ENERGY STAR Buildings program and their network of municipalities that regularly install and upgrade

McWhinney, Marla; Fanara, Andrew; Clark, Robin; Hershberg, Craig; Schmeltz, Rachel; Roberson, Judy

2003-01-01T23:59:59.000Z

71

Installation-Restoration Program Stage 3. McClellan Air Force Base quality-assurance project plan. Final report, November 1987-August 1989  

Science Conference Proceedings (OSTI)

The USAF is conducting a Remedial Investigation/Feasibility Study ( RI/FS) at McClellan Air Force Base (AFB)to assess the extent and magnitude of contamination from past waste-disposal and spill sites. This process includes the development of a remediation plan(s) for sites determined to pose a threat to human health or welfare, or the environment. The remedial investigation (RI) phase of the program includes multimedia sampling tasks to complete site-characterization studies, and to assess potential exposure pathways. McClellan AFB is located near Sacramento, California and is an active aircraft maintenance facility associated with the Air Force Logistics Air Command. This document contains procedures for the collection, analysis, and documentation for all anticipated sampling and analysis tasks. These include ground water monitoring-well installation, geophysical techniques, and sampling and analysis for ground water, surface water, sediment, soil, soil vapor, and air.

Not Available

1989-08-30T23:59:59.000Z

72

EMSL: Science: Research and Capability Development Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Intramural Research & Capability Development Program Intramural Research & Capability Development Program The EMSL Intramural Research and Capability Development Program facilitates development of new research tools and enables EMSL staff members to advance the important skills and expertise necessary to enhance the EMSL user program. These intramural projects are intended to increase the scientific visibility of EMSL staff in areas that promote the objectives of EMSL's three science themes- Biological Interactions and Dynamics, Geochemistry/Biogeochemistry and Subsurface Science, and Science of Interfacial Phenomena. Technical outcomes of this program include journal publications, scientific presentations, new capabilities or capability enhancements, and expertise to augment EMSL user activities and foster development of innovative

73

Automotive Stirling Engine Development Program: A success  

SciTech Connect

The original 5 y Automotive Stirling Engine Development Program has been stretched to a 10 y program due to reduced annual funding levels. With an estimated completion date of April 1988, the technical achievements and the prospectives of meeting the original program objectives are reviewed. Various other applications of this developed Stirling engine technology are also discussed.

Tabata, W.K.

1987-01-01T23:59:59.000Z

74

Baseline gas turbine development program. Seventeenth quarterly progress report  

DOE Green Energy (OSTI)

Progress is reported for a program whose goals are to demonstrate an experimental upgraded gas turbine powered automobile which meets the 1978 Federal Emissions Standards, has significantly improved fuel economy, and is competitive in performance, reliability, and potential manufacturing cost with the conventional piston engine powered, compact-size American automobile. Initial running of the upgraded engine took place on July 13, 1976. The engine has proved to be mechanically sound, but has also been seriously deficient in power. Principal program effort has therefore been in the area of diagnostic testing and corrective development. To date, three upgraded engines have been assembled and run in the test cell. Engine 2 was installed in an upgraded vehicle and became operational on January 25, 1977. Special diagnostic instrumentation was installed on Engine 3 to evaluate the compressor, turbine, and hot engine leakage. It was determined that the power deficiency was principally due to problems in the compressor and first stage turbine areas and during this quarter several corrective changes have been initiated. Parts for a fourth engine being built for NASA Lewis have been shipped to NASA for installation of special instrumentation.

Schmidt, F W; Wagner, C E

1977-01-31T23:59:59.000Z

75

Nova Scotia Business Development Program (Nova Scotia, Canada...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Business Development Program (Nova Scotia, Canada) Nova Scotia Business Development Program (Nova Scotia, Canada) Eligibility Agricultural Commercial Construction Developer Fuel...

76

Community-Driven Development Decision Tools for Rural Development Programs  

Open Energy Info (EERE)

Community-Driven Development Decision Tools for Rural Development Programs Community-Driven Development Decision Tools for Rural Development Programs Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Community-driven Development Decision Tools for Rural Development Programs Agency/Company /Organization: International Fund for Agricultural Development Topics: Policies/deployment programs Resource Type: Guide/manual, Training materials Website: www.ifad.org/english/cdd/pub/decisiontools.pdf Community-driven Development Decision Tools for Rural Development Programs Screenshot References: Community-Driven Development Decision Tools[1] Overview "The CDD Decision Tools is the final outcome of a series of studies conducted from 2003-08 by IFAD on the CDD activities and approaches it sponsors in a number of countries in Western and Central Africa (WCA). The

77

Laboratory Directed Research and Development Program  

Submit completed application (Word doc) to innovation@lbl.gov by October 15, 2013. August 20, 2013. Title: Laboratory Directed Research and Development Program Author:

78

SENIOR EXECUTIVE SERVICE CANDIDATE DEVELOPMENT PROGRAM (SESCDP...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Evaluation of Formal Training SENIOR EXECUTIVE SERVICE CANDIDATE DEVELOPMENT PROGRAM (SESCDP) Evaluation of Formal Training Form is used to evaluate formal training courses in the...

79

Brownfields Revitalization and Economic Development Program ...  

Open Energy Info (EERE)

icon Twitter icon Brownfields Revitalization and Economic Development Program (South Dakota) This is the approved revision of this page, as well as being the most...

80

Installation restoration program. Decision document, UST site 30, 117th Refueling Wing, Alabama Air National Guard, Birmingham Airport, Birmingham, Alabama. Final report  

SciTech Connect

The Installation Restoration Program was initiated by the Air National Guard (ANG) to evaluate potential contamination to the environment caused by past practices at its installations. During the 1987 Preliminary Assessment (PA), ten abandoned underground storage tanks (USTs) were identified at nine sites. During the 1991 Site Investigation, geophysical surveys fail to find a UST at this location (east of Building 30). A 1950`s aerial photo indicated a nearby above ground storage facility which has since been removed. The report documents no further action need be taken at this the UST site.

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "development program installation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Installation restoration program: Decision document, UST site 120, 117th Refueling Wing, Alabama Air National Guard, Birmingham Airport, Birmingham, Alabama. Final report  

SciTech Connect

The Installation Restoration Program was initiated by the Air National Guard (ANG) to evaluate potential contamination to the environment caused by past practices at its installations. During the 1987 Preliminary Assessment (PA), ten abandoned underground storage tanks (USTs) were identified at nine sites. UST 130 was removed from the area south of Building 130 in January 1991. Remaining soil was above the Alabama Department of Environmental Management`s (ADEM) corrective action limit of 100 ppm total petroleum hydrocarbon (TPH), but it is believed to be limited to the clayey soils immediately adjacent to the tank pits. The report documents no further action need be taken at this UST site.

1997-01-01T23:59:59.000Z

82

Rhode Island Stormwater Design and Installation Standards Manual (Rhode  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rhode Island Stormwater Design and Installation Standards Manual Rhode Island Stormwater Design and Installation Standards Manual (Rhode Island) Rhode Island Stormwater Design and Installation Standards Manual (Rhode Island) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Rhode Island Program Type Environmental Regulations

83

Development | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Printable Version Printable Version Development Commercial Residential Adoption Compliance Regulations Resource Center Development The U.S. Department of Energy (DOE) supports and participates in the model building energy code development processes administered by the ASHRAE and the International Code Council (ICC). DOE activities include developing and submitting code change proposals, conducting analysis of building energy efficiency and cost savings, and formulating underlying evaluation methodologies. Through participation in model energy code development for both commercial and residential buildings, DOE strives to make cost-effective, energy efficient upgrades to current model codes. DOE also establishes energy efficiency standards for federal buildings and manufactured housing. Further information on this process is defined under

84

Leadership Development Program Catalog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Leadership Development Program Catalog Leadership Development Program Catalog Leadership Development Program Catalog A well-trained workforce is vital to the long-term effectiveness of the Federal Government. As such, all Federal employees, particularly those who serve or hope to serve in senior management positions, are encouraged to take advantage of opportunities to enhance their professional skills and develop the competencies needed for success as leaders. The Leadership Development Program Catalog by ECQ is a comprehensive list of training opportunities intended to assist all Federal leaders grow in the five Executive Core Qualifications (ECQs) and Fundamental Competencies. The resources listed will facilitate your growth and development as both a Federal employee and as a person, and will be helpful to all levels of

85

Baseline gas turbine development program. Sixteenth quarterly progress report  

DOE Green Energy (OSTI)

Progress is reported for a program whose goals are to demonstrate an experimental ungraded gas turbine powered automobile which meets the 1978 Federal Emissions Standards, has significantly improved fuel economy, and is competitive in performance, reliability, and potential manufacturing cost with the conventional piston engine powered, compact-size American automobile. Initial running of the upgraded engine took place on July 13, 1976. The engine proved to be mechanically sound but was also seriously deficient in power. Principal program effort has therefore been in the area of diagnostic testing and corrective development. To date, three upgraded engines were assembled and two were run in the test cell. Special diagnostic instrumentation was installed on Engine 3 to evaluate the compressor, turbine, and hot engine leakage. Engine airflow, starting characteristics, oil flow/heat rejection/blowby, emissions, leakage, and component performance tests were conducted in this quarter.

Schmidt, F W; Wagner, C E

1976-10-31T23:59:59.000Z

86

Program Development Tools and Infrastructures  

SciTech Connect

Exascale class machines will exhibit a new level of complexity: they will feature an unprecedented number of cores and threads, will most likely be heterogeneous and deeply hierarchical, and offer a range of new hardware techniques (such as speculative threading, transactional memory, programmable prefetching, and programmable accelerators), which all have to be utilized for an application to realize the full potential of the machine. Additionally, users will be faced with less memory per core, fixed total power budgets, and sharply reduced MTBFs. At the same time, it is expected that the complexity of applications will rise sharply for exascale systems, both to implement new science possible at exascale and to exploit the new hardware features necessary to achieve exascale performance. This is particularly true for many of the NNSA codes, which are large and often highly complex integrated simulation codes that push the limits of everything in the system including language features. To overcome these limitations and to enable users to reach exascale performance, users will expect a new generation of tools that address the bottlenecks of exascale machines, that work seamlessly with the (set of) programming models on the target machines, that scale with the machine, that provide automatic analysis capabilities, and that are flexible and modular enough to overcome the complexities and changing demands of the exascale architectures. Further, any tool must be robust enough to handle the complexity of large integrated codes while keeping the user's learning curve low. With the ASC program, in particular the CSSE (Computational Systems and Software Engineering) and CCE (Common Compute Environment) projects, we are working towards a new generation of tools that fulfill these requirements and that provide our users as well as the larger HPC community with the necessary tools, techniques, and methodologies required to make exascale performance a reality.

Schulz, M

2012-03-12T23:59:59.000Z

87

Installation Restoration Program. Remedial investigation report. Site 1. Fire Training Area. Volk Field Air National Guard Base, Camp Douglas, Wi. Volume 1. Final remedial investigation report  

SciTech Connect

Volume 1 of this report covers the Remedial Investigation conducted on Site 1, Fire Training Area at Volk Field Air National Guard Base. The remedial work is described and the testing conducted after remediation to insure all contamination has been removed. The study as conducted under the Air National Guard's Installation Restoration Program. Partial contents include: Meteorology; Hydrology; Soils; Water wells; Groundwater; Borings; Samplings; Chemical contamination; Migration; Decontamination.

Not Available

1990-07-01T23:59:59.000Z

88

Installation Restoration Program. Site inspection report. Volume 3. 102nd Air Control Squadron, North Smithfield Air National Guard Station, Slatersville, Rhode Island. Final report  

Science Conference Proceedings (OSTI)

Site Inspection Report, 102nd Air Control Squadron, North Smithfield Air National Guard Station, Slatersville, Rhode Island, Volume III of III. This is the third volume of a three volume site inspection report. Three areas of concern (AOCs) were investigated under the Installation Restoration Program. A passive soil gas survey was conducted of the entire station. Soil and groundwater samples were collected and analyzed. Low level contamination of fuel-related compounds were detected below state action levels. No further action was recommended.

NONE

1995-09-01T23:59:59.000Z

89

Installation Restoration Program. Site inspection report. Volume 2. 102nd Air Control Squadron, North Smithfield Air National Guard Station, Slatersville, Rhode Island. Final report  

SciTech Connect

Site Inspection Report, 102nd Air Control Squadron, North Smithfield Air National Guard Station, Slatersville, Rhode Island, Volume II of III. This is the second volume of a three volume site inspection report. Three areas of concern (AOCs) were investigated under the Installation Restoration Program. A passive soil gas survey was conducted of the entire station. Soil and groundwater samples were collected and analyzed. Low level contamination of fuel-related compounds were detected below state action levels. No further action was recommended.

NONE

1995-09-01T23:59:59.000Z

90

Installation Restoration Program. Site inspection report. Volume 1. 102nd Air Control Squadron, North Smithfield Air National Guard Station, Slatersville, Rhode Island. Final report  

Science Conference Proceedings (OSTI)

Site Inspection Report, 102nd Air Control Squadron, North Smithfield Air National Guard Station, Slatersville, Rhode Island, Volume I of III. This is the first volume of a three volume site inspection report. Three areas of concern (AOCs) were investigated under the Installation Restoration Program. A passive soil gas survey was conducted of the entire station. Soil and groundwater samples were collected and analyzed. Low level contamination of fuel-related compounds were detected below state action levels. No further action was recommended.

NONE

1995-09-01T23:59:59.000Z

91

Geothermal Energy Research Development and Demonstration Program  

DOE Green Energy (OSTI)

The Federal program's goal, strategy, plans, and achievements are summarized. In addition, geothermal development by state and local governments and, where available, by the private sector is described. (MHR)

Not Available

1980-06-01T23:59:59.000Z

92

Business Development Loan Program (North Dakota)  

Energy.gov (U.S. Department of Energy (DOE))

The Business Development Loan Program assists new and existing businesses in obtaining loans that would have a higher degree of risk than would normally be acceptable to a lending institution. ...

93

Manpower development for new nuclear energy programs  

E-Print Network (OSTI)

In the spring of 2012, nine countries were seriously considering embarking on nuclear energy programs, either having signed contracts with reactor vendors or having made investments for the development of infrastructure ...

Verma, Aditi

2012-01-01T23:59:59.000Z

94

Pine Tree Development Zones Program (Maine)  

Energy.gov (U.S. Department of Energy (DOE))

The Pine Tree Development Zones program offers eligible businesses the chance to reduce, and sometimes eliminate, state taxes for up to ten years. There is a statutory requirement of hiring a...

95

Bioenergy Feedstock Development Program Status Report  

DOE Green Energy (OSTI)

The U.S. Department of Energy's (DOE's) Bioenergy Feedstock Development Program (BFDP) at Oak Ridge National Laboratory (ORNL) is a mission-oriented program of research and analysis whose goal is to develop and demonstrate cropping systems for producing large quantities of low-cost, high-quality biomass feedstocks for use as liquid biofuels, biomass electric power, and/or bioproducts. The program specifically supports the missions and goals of DOE's Office of Fuels Development and DOE's Office of Power Technologies. ORNL has provided technical leadership and field management for the BFDP since DOE began energy crop research in 1978. The major components of the BFDP include energy crop selection and breeding; crop management research; environmental assessment and monitoring; crop production and supply logistics operational research; integrated resource analysis and assessment; and communications and outreach. Research into feedstock supply logistics has recently been added and will become an integral component of the program.

Kszos, L.A.

2001-02-09T23:59:59.000Z

96

Development of Design Basis Earthquake Parameters for TMI-2 Independent Spent Fuel Storage Installation at the INEEL  

SciTech Connect

Probabilistically-based Design Basis Earthquake (DBE) ground motion parameters have been developed for the TMI-2 Independent Spent Fuel Storage Installation (ISFSI) located at the Idaho Nuclear Technology and Engineering Center (INTEC), Idaho National Engineering and Environmental Laboratory. The probabilistic seismic hazard at INTEC has been recomputed using ground motion attenuation relationships more appropriate for extensional tectonic regimes. The empirical attenuation relationships used in this analysis were adjusted for extensional tectonic regimes as part of the Yucca Mountain Project. Seismic hazard curves and uniform hazard spectra for rock produced using the revised attenuation relationships result in lower ground motions when compared to the results of the 1996 INEEL site-wide seismic hazard evaluation. The DBE ground motions for rock and soil have been developed to be applicable to the TMI-2 ISFSI and the entire INTEC site by incorporating variations in the rock and soil properties over the INTEC area. The DBE rock and soil ground motions presented in the report are recommended for use in developing final design earthquake parameters. Peer reviewers of this report support this recommendation. Because the Nuclear Regulatory Commission regulations have recently evolved to incorporate probabilistically-based seismic design for independent fuel storage facilities, a deterministic Maximum Credible Earthquake analysis performed for INTEC earlier in this study is also presented in this report.

URS Greiner Woodward Clyde Federal Services; Geomatrix Consultants; Pacific Engineering and Analysis; S. M. Payne (INEEL POC)

1999-11-01T23:59:59.000Z

97

Military installations  

Science Conference Proceedings (OSTI)

This report has reviewed the use of U.S. coal at DOD installations in West Germany. DOD reported that between April 1, 1988, and December 31, 1988, it had between 306,000 and 419,000 tons of U.S. coal stored in Germany. About two-thirds of that was anthracite coal. GAO visited six coal-handling locations that accounted for 72 to 79 percent of the total U.S. coal between April and December 1988. This report could not verify the official inventory records at five locations - two Air Force and three Army - for several reasons, including a lack of required physical inventories of coal for recent years. DOD's coal consumption data for fiscal year 1988 appeared to be accurate since it matched the data reported on source documents maintained at the installations and their commands. According to reported DOD coal inventory and consumption data, as of September 30, 1988, DOD had enough anthracite coal on hand to satisfy projected demands through at least fiscal year 1993, given that no additional heating plant conversions other than those already approved occur and no additional shipments of coal occur. DOD said that as of September 30, 1988, it facilities in Germany had enough anthracite coal on hand to last a minimum of five years.

Not Available

1990-03-01T23:59:59.000Z

98

Commercial radioactive waste minimization program development guidance  

SciTech Connect

This document is one of two prepared by the EG G Idaho, Inc., Waste Management Technical Support Program Group, National Low-Level Waste Management Program Unit. One of several Department of Energy responsibilities stated in the Amendments Act of 1985 is to provide technical assistance to compact regions Host States, and nonmember States (to the extent provided in appropriations acts) in establishing waste minimization program plans. Technical assistance includes, among other things, the development of technical guidelines for volume reduction options. Pursuant to this defined responsibility, the Department of Energy (through EG G Idaho, Inc.) has prepared this report, which includes guidance on defining a program, State/compact commission participation, and waste minimization program plans.

Fischer, D.K.

1991-01-01T23:59:59.000Z

99

Commercial radioactive waste minimization program development guidance  

SciTech Connect

This document is one of two prepared by the EG&G Idaho, Inc., Waste Management Technical Support Program Group, National Low-Level Waste Management Program Unit. One of several Department of Energy responsibilities stated in the Amendments Act of 1985 is to provide technical assistance to compact regions Host States, and nonmember States (to the extent provided in appropriations acts) in establishing waste minimization program plans. Technical assistance includes, among other things, the development of technical guidelines for volume reduction options. Pursuant to this defined responsibility, the Department of Energy (through EG&G Idaho, Inc.) has prepared this report, which includes guidance on defining a program, State/compact commission participation, and waste minimization program plans.

Fischer, D.K.

1991-01-01T23:59:59.000Z

100

CCEF - Renewable Energy Projects in Pre-Development Program ...  

Open Energy Info (EERE)

Program Incentive Type State Loan Program Applicable Sector Commercial, Renewable energy project developers Eligible Technologies Solar Thermal Electric, Photovoltaics,...

Note: This page contains sample records for the topic "development program installation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Wind for Schools: Developing Educational Programs to Train the Next Generation of Wind Energy Experts (Poster)  

DOE Green Energy (OSTI)

As the world moves toward a vision of expanded wind energy, the industry is faced with the challenges of obtaining a skilled workforce and addressing local wind development concerns. Wind Powering America's Wind for Schools Program works to address these issues. The program installs small wind turbines at community "host" schools while developing wind application centers at higher education institutions. Teacher training with interactive and interschool curricula is implemented at each host school, while students at the universities assist in implementing the host school systems while participating in other wind course work. This poster provides an overview of the program's objectives, goals, approach, and results.

Baring-Gould, I.; Flowers, L.; Kelly, M.; Miles, J.

2009-05-01T23:59:59.000Z

102

Fuel Cycle Research and Development Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Development Program Presentation to Office of Environmental Management Tank Waste Corporate Board James C. Bresee, ScD, JD Advisory Board Member Office of Nuclear Energy July 29, 2009 July 29, 2009 Fuel Cycle Research and Development DM 195665 2 Outline Fuel Cycle R&D Mission Changes from the Former Advanced Fuel Cycle Initiative The Science-Based Approach Key Collaborators Budget History Program Elements Summary July 29, 2009 Fuel Cycle Research and Development DM 195665 3 Fuel Cycle R&D Mission The mission of Fuel Cycle Research and Development is to develop options to current fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while reducing proliferation risks by conducting

103

HUMID AIR TURBINE CYCLE TECHNOLOGY DEVELOPMENT PROGRAM  

SciTech Connect

The Humid Air Turbine (HAT) Cycle Technology Development Program focused on obtaining HAT cycle combustor technology that will be the foundation of future products. The work carried out under the auspices of the HAT Program built on the extensive low emissions stationary gas turbine work performed in the past by Pratt & Whitney (P&W). This Program is an integral part of technology base development within the Advanced Turbine Systems Program at the Department of Energy (DOE) and its experiments stretched over 5 years. The goal of the project was to fill in technological data gaps in the development of the HAT cycle and identify a combustor configuration that would efficiently burn high moisture, high-pressure gaseous fuels with low emissions. The major emphasis will be on the development of kinetic data, computer modeling, and evaluations of combustor configurations. The Program commenced during the 4th Quarter of 1996 and closed in the 4th Quarter of 2001. It teamed the National Energy Technology Laboratory (NETL) with P&W, the United Technologies Research Center (UTRC), and a subcontractor on-site at UTRC, kraftWork Systems Inc. The execution of the program started with bench-top experiments that were conducted at UTRC for extending kinetic mechanisms to HAT cycle temperature, pressure, and moisture conditions. The fundamental data generated in the bench-top experiments was incorporated into the analytical tools available at P&W to design the fuel injectors and combustors. The NETL then used the hardware to conduct combustion rig experiments to evaluate the performance of the combustion systems at elevated pressure and temperature conditions representative of the HAT cycle. The results were integrated into systems analysis done by kraftWork to verify that sufficient understanding of the technology had been achieved and that large-scale technological application and demonstration could be undertaken as follow-on activity. An optional program extended the experimental combustion evaluations to several specific technologies that can be used with HAT technology. After 5 years of extensive research and development, P&W is pleased to report that the HAT Technology Development Program goals have been achieved. With 0 to 10 percent steam addition, emissions achieved during this program featured less than 8 ppm NO{sub x}, less than 16 ppm CO, and unburned hydrocarbons corrected to 15 percent O{sub 2} for an FT8 engine operating between 0 and 120 F with 65 to 100 percent power at any day.

Richard Tuthill

2002-07-18T23:59:59.000Z

104

Recent developments of the US RERTR program  

SciTech Connect

The status of the US Reduced Enrichment Research and Test Reactor (RERTR) Program is reviewed. After a brief outline of the RERTR Program objectives, goals and past accomplishments, emphasis is placed on the developments which took place during 1983 and on current program plans and schedules. Most program activities have proceeded as planned and a combination of two silicide fuels (U/sub 3/Si/sub 2/-Al and U/sub 3/Si-Al) was found to hold excellent promise for achieving the long-term program goals. A modification of the program plan, including the development and demonstration of those fuels, was prepared and is now being implemented. The uranium density of qualified RERTR fuels for plate-type reactors is forecasted to grow by approximately 1 g U/cm/sup 3/ each year, from the current 1.7 g U/cm/sup 3/ to the 7.0 g U/cm/sup 3/ which will be reached in 1988. The technical needs of research reactors for HEU exports are also forecasted to undergo a gradual and dramatic decline in the coming years.

Travelli, A.

1983-01-01T23:59:59.000Z

105

Geothermal Logging Instrumentation Development Program Plan (U)  

DOE Green Energy (OSTI)

This Geothermal Logging Instrumentation Development Program Plan outlines a nine-year, industry-based program to develop and apply high temperature instrumentation technology which is needed by the borehole logging industry to serve the rapidly expanding geothermal market. Specifically, this program will upgrade existing materials and sondes to improve their high-temperature reliability. To achieve this goal specialized equipment such as high temperature electronics, cables and devices for measuring formation temperature, flow rate, downhole pressure, and fractures will be developed. In order to satisfy critical existing needs, the near-term (FY80) goal is for operation at or above 275/sup 0/C in pressures up to 48.3 MPa (7,000 psi). The long-term (FY84) goal is for operation up to 350/sup 0/C and 138 MPa (20,000 psi). This program plan has been prepared for the Department of Energy's Division of Geothermal Energy (DGE) and is a portion of the DGE long-range Geothermal Well Technology Program.

Veneruso, A.F.; Polito, J.; Heckman, R.C.

1978-08-01T23:59:59.000Z

106

START Program for Renewable Energy Project Development Assistance...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program for Renewable Energy Project Development Assistance START Program for Renewable Energy Project Development Assistance Education and Training Energy Resource Library Funding...

107

Baseline Gas Turbine Development Program. Tenth quarterly progress report  

DOE Green Energy (OSTI)

Progress is reported for a program to demonstrate by 1976 an experimental gas turbine powered automobile which meets the 1978 Federal Emissions Standards, has significantly improved fuel economy, and is competitive in performance, reliability, and potential manufacturing cost with the conventional piston engine powered, standard size American automobile. A fuel control system is being developed to allow program evaluation of a very promising low emissions, single stage, fixed geometry proprietary burner. Ceramic regenerators are under test in the free-rotor vehicle, and some have completed 30 hours of performance evaluation. Three-dimensional ceramic regenerator transient thermal and structural analysis programs are operational. Initial friction and wear test fixture results show that zirconium oxide fully stabilized by yttrium oxide is an effective substitute for nickel oxide in a plasma sprayed seal. A preprototype control system was adapted for variable inlet guide vane control in a vehicle installation. An evaluation of the free-rotor accessory drive concept in a vehicle showed no serious mechanical integrity problems. Simplifications are being made to the water injection system; significant metallurgical analysis of observed erosion/corrosion problems was accomplished. Variable inlet guide vane aerodynamic loss characteristics were determined. Generally satisfactory results with linerless insulation are resulting in extended use and application. Pattern work for the upgraded engine housing and the power turbine wheel castings are in process. A computer design analysis of the regenerator drive gears was made, and an analysis was completed of a three peripheral roller regenerator support and drive proposal for the upgraded engine.

Schmidt, F.W.; Wagner, C.E.

1975-04-30T23:59:59.000Z

108

Automotive Stirling Engine Development Program Mod I Stirling engine development  

SciTech Connect

The Automotive Stirling Engine (ASE) Development Program was established to enable research and development of alternate propulsion systems. The program was awarded to Mechanical Technology Incorporated (MTI) for the purpose of developing an automotive Stirling engine, and transferring Stirling-engine technology to the United States. MTI has fabricated and tested four Mod I engines that have accumulated over 1900 test hours to date. The engines evaluated in the test cell have achieved an average of 34.5% efficiency at their maximum efficiency point (2000 rpm), and have developed an average maximum output power (power available to the drive train) level of 54.4 kW (73.2 bhp). All engines are still operating, and are being used to develop components and control strategy for the Upgraded Mod I engine design (predicted to increase maximum power output and efficiency while reducing total engine system weight).

Simetkosky, M.A.

1983-08-01T23:59:59.000Z

109

Robotics Technology Development Program. Technology summary  

SciTech Connect

The Robotics Technology Development Program (RTDP) is a ``needs-driven`` effort. A lengthy series of presentations and discussions at DOE sites considered critical to DOE`s Environmental Restoration and Waste Management (EM) Programs resulted in a clear understanding of needed robotics applications toward resolving definitive problems at the sites. A detailed analysis of the Tank Waste Retrieval (TWR), Contaminant Analysis Automation (CAA), Mixed Waste Operations (MWO), and Decontamination & Dismantlement (D&D). The RTDP Group realized that much of the technology development was common (Cross Cutting-CC) to each of these robotics application areas, for example, computer control and sensor interface protocols. Further, the OTD approach to the Research, Development, Demonstration, Testing, and Evaluation (RDDT&E) process urged an additional organizational break-out between short-term (1--3 years) and long-term (3--5 years) efforts (Advanced Technology-AT). The RDTP is thus organized around these application areas -- TWR, CAA, MWO, D&D and CC&AT -- with the first four developing short-term applied robotics. An RTDP Five-Year Plan was developed for organizing the Program to meet the needs in these application areas.

Not Available

1994-02-01T23:59:59.000Z

110

Tubular solid oxide fuel cell development program  

DOE Green Energy (OSTI)

This paper presents an overview of the Westinghouse Solid Oxide Fuel Cell (SOFC) development activities and current program status. The Westinghouse goal is to develop a cost effective cell that can operate for 50,000 to 100,000 hours. Progress toward this goal will be discussed and test results presented for multiple single cell tests which have now successfully exceeded 56,000 hours of continuous power operation at temperature. Results of development efforts to reduce cost and increase power output of tubular SOFCs are described.

Ray, E.R.; Cracraft, C.

1995-12-31T23:59:59.000Z

111

NP-MHTGR Fuel Development Program Results  

Science Conference Proceedings (OSTI)

In August 1988, the Secretary of Energy announced a strategy to acquire New Production Reactor capacity for producing tritium. The strategy involved construction of a New Production Modular High Temperature Gas-Cooled Reactor (NP-MHTGR) where the Idaho National Engineering and Environmental Laboratory (INEEL) was selected as the Management and Operations contractor for the project. Immediately after the announcement in August 1988, tritium target particle development began with the INEEL selected as the lead laboratory. Fuel particle development was initially not considered to be on a critical path for the project, therefore, the fuel development program was to run concurrently with the design effort of the NP-MHTGR.

Maki, John Thomas; Petti, David Andrew; Hobbins, Richard Redfield; McCardell, Richard K.; Shaber, Eric Lee; Southworth, Finis Hio

2002-10-01T23:59:59.000Z

112

Hull Wind II: A Case Study of the Development of a Second Large Wind Turbine Installation in the Town of Hull, MA  

E-Print Network (OSTI)

Hull Wind II: A Case Study of the Development of a Second Large Wind Turbine Installation of Massachusetts, Amherst, Massachusetts * Hull Municipal Light and Water, Hull, Massachusetts American Wind Energy community: since 2001 the town's municipal light plant (HMLP) has owned and operated "Hull Wind I

Massachusetts at Amherst, University of

113

Clean Technology Evaluation & Workforce Development Program  

Science Conference Proceedings (OSTI)

The overall objective of the Clean Technology Evaluation portion of the award was to design a process to speed up the identification of new clean energy technologies and match organizations to testing and early adoption partners. The project was successful in identifying new technologies targeted to utilities and utility technology integrators, in developing a process to review and rank the new technologies, and in facilitating new partnerships for technology testing and adoption. The purpose of the Workforce Development portion of the award was to create an education outreach program for middle & high-school students focused on clean technology science and engineering. While originally targeting San Diego, California and Cambridge, Massachusetts, the scope of the program was expanded to include a major clean technology speaking series and expo as part of the USA Science & Engineering Festival on the National Mall in Washington, D.C.

Patricia Glaza

2012-12-01T23:59:59.000Z

114

Laboratory Directed Research and Development Program FY 2007  

Science Conference Proceedings (OSTI)

Report on Ernest Orlando Lawrence Berkeley National Laboratory Laboratory Directed Research and Development Program FY 2007

Hansen, Todd C; editor, Todd C Hansen,

2008-03-12T23:59:59.000Z

115

Office of Technology Development Program for Research, Development, Demonstration, Testing, and Evaluation. FY 1993 Program Summary  

Science Conference Proceedings (OSTI)

DOE has set a goal to clean up its complex and to bring all sites into compliance with applicable environmental regulations. This initiative is slated for completion by the year 2019. Four years ago there was no coordinated plan for identifying or cleaning these contaminated sites. Since 1989, DOE`s Office of Environmental Restoration and Waste Management has invested time, money, and manpower to establish a wide range of programs to meet this immense challenge. DOE is responsible for waste management and clean up of more than 100 contaminated installations in 36 states and territories. This includes 3,700 sites: over 26,000 acres, with hazardous or radioactive contaminated surface or groundwater, soil, or structures; over 26,000 acres requiring remediation, with the number growing as new sites are defined; 500 surplus facilities awaiting decontamination and decommissioning and approximately 5,000 peripheral properties (residences, businesses) that have soil contaminated with uranium tailings.

Not Available

1993-10-01T23:59:59.000Z

116

Evaluation Pilot-Scale Melter Systems for the Direct Vitrification Development Program  

Science Conference Proceedings (OSTI)

This report documents the results of an evaluation conducted to identify a joule-heated melter system that could be installed in the Idaho Falls area in support of the Direct Vitrification Development Program. The relocation was to be completed by January 1, 2002, within a total budget of one million dollars. Coordination with the Department of Energy Tanks Focus Area identified five melters or melter systems that could potentially support the Direct Vitrification Development Program. Each unit was inspected and evaluated based on qualitative criteria such as availability, completeness of the system, contamination, scalability, materials of construction, facility requirements, and any unique features.

Mc Cray, Casey William; Thomson, Troy David

2001-09-01T23:59:59.000Z

117

Renewable Energy Development Grant Program (Oregon) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Development Grant Program (Oregon) Development Grant Program (Oregon) Renewable Energy Development Grant Program (Oregon) < Back Eligibility Commercial Residential Savings Category Bioenergy Water Buying & Making Electricity Solar Home Weatherization Heating & Cooling Water Heating Wind Maximum Rebate Up to $250,000, or 35% of total project costs Program Info Funding Source tax credit auctions Start Date 1/1/2012 State Oregon Program Type State Grant Program Rebate Amount Varies by project Provider Program Coordinator '''''This program is not currently accepting applications. Applications under the most recent solicitation were due March 29, 2013.''''' The Oregon Department of Energy (ODOE) offers competitive grants to renewable energy projects as part of ODOE's Energy Incentives Program. ODOE

118

Lightweight composite fighting cover prototype development program  

SciTech Connect

The U.S. Army Field Assistance Science and Technology Program requested Oak Ridge National Laboratory (ORNL) to demonstrate the use of lightweight composite materials in construction of overhead covers for reinforced infantry fighting positions. In recent years, ORNL researchers have designed and tested several concepts for lightweight ballistic protection structures, and they have developed numerous prototype composite structures for military and civilian applications. In the current program, composite panel designs and materials are tested and optimized to meet anticipated static and dynamic load conditions for the overhead cover structure. Ten prototype composite covers were built at ORNL for use in Army field tests. Each composite cover has a nominal surface area of 12 ft[sup 2] and a nominal weight of 8 lb. Four of the prototypes are made with folding sections to improve their handling characteristics. The composite covers exhibit equivalent performance in Army field tests to covers made with conventional materials that weigh four times as much.

Wrenn, G.E. Jr.; Frame, B.J.; Gwaltney, R.C.; Akerman, M.A.

1996-07-01T23:59:59.000Z

119

Moving Granular Bed Filter Development Program  

SciTech Connect

The granular bed filter was developed through low pressure, high temperature (1600{degrees}F) testing in the late 1970`s and early 1980`s`. Collection efficiencies over 99% were obtained. In 1988, high pressure, high temperature testing was completed at New York University, Westbury, N.Y., utilizing a coal-fired pressurized, fluidized bed combustor. High particulate removal efficiencies were confirmed as it was shown that both New Source Performance Standards and turbine tolerance limits could be met. The early scale-up work of the granular bed filter indicated potential limitations due to size, cost, and mechanical complexity. These limitations were addressed in the present program by utilizing the information gained from the filter development up through the NYU test program to reassess the commercial approach. Two studies were chosen for developing conceptual designs and cost estimates of the commercial sized filters. One is the economic study of the 250 MWe, second generation pressurized fluidized bed combustion plant defined by Foster Wheeler. This plant originally included cross-flow filters for hot gas cleanup. The other plant under study is a 100 MWe, airblown KRW gasifier. A cross-flow inter was utilized for gas stream cleanup in this study also. Granular bed and ceramic candle filters were substituted for the cross-flow filters in both these plants, and the resulting cost of electricity (COE) is compared.

Wilson, K.B.; Haas, J.C.; Eshelman, M.B.

1992-11-01T23:59:59.000Z

120

Moving Granular Bed Filter Development Program  

SciTech Connect

The granular bed filter was developed through low pressure, high temperature (1600[degrees]F) testing in the late 1970's and early 1980's'. Collection efficiencies over 99% were obtained. In 1988, high pressure, high temperature testing was completed at New York University, Westbury, N.Y., utilizing a coal-fired pressurized, fluidized bed combustor. High particulate removal efficiencies were confirmed as it was shown that both New Source Performance Standards and turbine tolerance limits could be met. The early scale-up work of the granular bed filter indicated potential limitations due to size, cost, and mechanical complexity. These limitations were addressed in the present program by utilizing the information gained from the filter development up through the NYU test program to reassess the commercial approach. Two studies were chosen for developing conceptual designs and cost estimates of the commercial sized filters. One is the economic study of the 250 MWe, second generation pressurized fluidized bed combustion plant defined by Foster Wheeler. This plant originally included cross-flow filters for hot gas cleanup. The other plant under study is a 100 MWe, airblown KRW gasifier. A cross-flow inter was utilized for gas stream cleanup in this study also. Granular bed and ceramic candle filters were substituted for the cross-flow filters in both these plants, and the resulting cost of electricity (COE) is compared.

Wilson, K.B.; Haas, J.C.; Eshelman, M.B.

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "development program installation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Low-Enrichment Fuel Development Program  

SciTech Connect

The national program of the Department of Energy at Argonne National Laboratory for the development of highly loaded uranium fuels, which provide the means for enrichment reduction, has been briefly described. The objectives of > 60 wt % uranium in plate-type fuels and greater than or equal to 45 wt % uranium in U--ZrH/sub x/ rod-type fuels are expected to be met. The most promising fuels will be further evaluated in full-size element irradiations and whole-core demonstrations on the route toward commercialization.

Stahl, D.

1978-01-01T23:59:59.000Z

122

Hot Dry Rock Geothermal Energy Development Program  

DOE Green Energy (OSTI)

The overall objective of the Hot Dry Rock (HDR) Geothermal Energy Development Program is to determine the technical and economic feasibility of HDR as a significant energy source and to provide a basis for its timely commercial development. Principal operational tasks are those activities required to enable a decision to be made by FY86 on the ultimate commercialization of HDR. These include development and analyis of a 20- to 50-MW Phase II HDR reservoir at Site 1 (Fenton Hill) with the potential construction of a pilot electric generating station, Phase III; selection of a second site with subsequent reservoir development and possible construction of a direct heat utilization pilot plant of at least 30 MW thermal thereon; the determination of the overall domestic HDR energy potential; and the evaluation of 10 or more target prospect areas for future HDR plant development by commercial developers. Phase I of the Los Alamos Scientific Laboratory's Fenton Hill project was completed. Phase I evaluated a small subterranean system comprised of two boreholes connected at a depth of 3 km by hydraulic fracturing. A closed-loop surface system has been constructed and tests involving round-the-clock operation have yielded promising data on heat extraction, geofluid chemistry, flow impedance, and loss of water through the underground reservoir between the two holes, leading to cautions optimism for the future prospects of private-sector HDR power plants. (MHR)

Franke, P.R.

1979-01-01T23:59:59.000Z

123

Baseline Gas Turbine Development Program ninth quarterly progress report  

DOE Green Energy (OSTI)

Progress is reported for a program to demonstrate by 1976 an experimental gas turbine powered automobile which meets the 1978 Federal Emissions Standards, has significantly improved fuel economy, and is competitive in performance, reliability, and potential manufacturing cost with the conventional piston engine powered, standard size American automobile. NASA completed the first phase of their baseline engine heat balance tests, and an upgraded engine compressor is being scaled for test. EPA completed their report on vehicle tests including emissions and vehicle performance, and a new endurance engine is on test. Significant development progress was made on both fixed and variable geometry combustors. After 45 hours of engine operation with Vendor A ceramic regenerator, no significant deterioration of the matrix, seals, or elastomeric mount was encountered. Ceramic regenerator stress analysis has commenced. Additional developments in non-nickel oxide regenerator rubbing seals are encouraging. The first preprototype integrated control system is in vehicle operation. Control adaptation for variable inlet guide vanes and water injection is progressing. AiRefrac turbine wheels were verified dimensionally and are being processed for engine testing. Water injection tests with a four nozzle system were run, and additional performance documentation of variable inlet guide vanes was obtained. Linerless insulation is on test in the free rotor engine, the new endurance engine, and a performance engine. The free rotor engine completed test cell checkout and was installed in a vehicle. Vehicle checkout, including a preprototype integrated control, is underway. Detailed specifications of the upgraded engine were written.

Schmidt, C.E.

1975-01-31T23:59:59.000Z

124

REACTOR DEVELOPMENT PROGRAM PROGRESS REPORT, FEBRUARY 1961  

SciTech Connect

Design, development, and testing efforts were continued on BORAX-V, EBR- I, EBR-II, EBWR, JUGGERNAUT ZPRIII, ZPR-VI, and ZPR-W. An evaluation program is outlined for Pebble Bed Reactor designs. Fast and thermal reactor safety studies were conducted. Experimental and theoretical studies in applied nuclear and reactor physics are dsscribed. Developments made in reactor components, fuels, and materials are discussed. Heat engineering studies were conducted on steam separation, and velocity and void distributions in two-phase systems. Fluidization and fluoride volatility separation, and chemical-metallurgical separation processes were studied. Advanced reactor concepts that were discusssd includsed. Basic Radiation Effects Beactor, Biogeonuclear Reactor, Fast Reactor Test Facility, compact high-power density fast reactors, AHFR hydraulic test loop, Packed Bed Reactor, and direct conversion. (For preceding period see ANL- 6328.) (B.O.G.)

1961-03-15T23:59:59.000Z

125

Develop programs and policies | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Develop programs and policies Develop programs and policies Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Policies that specify the use of ENERGY STAR tools Campaigns and incentive programs that incorporate ENERGY STAR Lead by example Gather support Develop programs and policies Host a competition Use financing vehicles Promote energy efficiency Develop programs and policies

126

JGI - Technology Development Pilot Program (TDP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Inquires | Proposal Review Purpose JGI's current main User Program, the Community Sequencing Program (CSP) is intended for large (terabase-) scale sequencing projects, with...

127

Develop programs and policies | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section...

128

Baseline Gas Turbine Development Program second quaterly progress report  

DOE Green Energy (OSTI)

Progress is reported for a program to demonstrate by 1976 an experimental gas turbine powered automobile which meets the 1976 Federal Emissions standards and which is competitive in fuel economy, performance, reliability, and potential manufacturing cost with the conventional piston engine powered, standard size American automobile. Procurement delays have caused engine deliveries to slip one to two months. Assembly of Engine 3 with special instrumentation for NASA and Engine 4 to be used in the first vehicle has commenced. Resolution of some intake design details will complete the vehicle installation design. Other vehicle component and modification efforts are on schedule. Support activity has included: (1) studies and proposals for improving engine fuel economy; (2) ceramic recuperator calculations; (3) cooperation with NASA's program by giving a design review, providing engine drawings, planning and fabricating instrumentation for their engine, and advising them on matters relating to their engine test facilities; (4) refinement of a combustor test procedure; and (5) two ''sixth generation'' vehicle demonstrations. Engine endurance activity has started with the evaluation of a proprietary molded insulation. Limited progress was made in the experimental determination of variable geometry combustor control parameters. Ceramic regenerator specifications were prepared. A sub-contractor for an integrated control system was selected pending approval by the EPA Contract Officer. Design studies in support of the ''Gatorized'' turbine wheel contract are underway. Initial development tests on a rotary nozzle actuator are showing good progress towards achieving fast response times. A limited amount of development of the fuel control still remains before acceleration tests with and without a Free Rotor can be run.

Wagner, C.E.

1973-04-30T23:59:59.000Z

129

DOE Leadership & Career Development Programs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Development » DOE Leadership & Career Development Programs Development » DOE Leadership & Career Development Programs DOE Leadership & Career Development Programs Senior Executive Service Candidate Development Program (SESCDP): This program consists of four Senior Executive Service Development Seminars designed to help position participants for selection into the SES. Each seminar reflects different key components of OPM's Executive Core Qualifications (ECQs). For more information please contact David Rosenmarkle Federal Executive Institute (FEI): At FEI, you will explore and build your knowledge and skills in personal leadership, transforming public organizations, the policy framework in which Government leadership occurs, and the broad global context of international trends and events that shape Government agendas. Since 1968,

130

Developing a Training Program for Collection Managers  

E-Print Network (OSTI)

management Conclusion Essentially, the Task Force has reassessed and reorganized our training program

2002-01-01T23:59:59.000Z

131

Alternative Fuels Data Center: Fuel-Efficient Tire Program Development  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel-Efficient Tire Fuel-Efficient Tire Program Development to someone by E-mail Share Alternative Fuels Data Center: Fuel-Efficient Tire Program Development on Facebook Tweet about Alternative Fuels Data Center: Fuel-Efficient Tire Program Development on Twitter Bookmark Alternative Fuels Data Center: Fuel-Efficient Tire Program Development on Google Bookmark Alternative Fuels Data Center: Fuel-Efficient Tire Program Development on Delicious Rank Alternative Fuels Data Center: Fuel-Efficient Tire Program Development on Digg Find More places to share Alternative Fuels Data Center: Fuel-Efficient Tire Program Development on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Fuel-Efficient Tire Program Development The California Energy Commission (CEC) must adopt and implement a

132

"Recovery Act: Training Program Development for Commercial Building...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Act: Training Program Development for Commercial Building Equipment Technicians, Building Operators, and Energy Commissioning AgentsAuditors" "Recovery Act: Training...

133

ILC Marx Modulator Development Program Status  

DOE Green Energy (OSTI)

Development of a first generation prototype (P1) Marx-topology klystron modulator for the International Linear Collider is nearing completion at the Stanford Linear Accelerator Center. It is envisioned as a smaller, lower cost, and higher reliability alternative to the present, bouncer-topology, 'Baseline Conceptual Design'. The Marx presents several advantages over conventional klystron modulator designs. It is physically smaller; there is no pulse transformer (quite massive at ILC parameters) and the energy storage capacitor bank is quite small, owing to the active droop compensation. It is oil-free; voltage hold-off is achieved using air insulation. It is air cooled; the secondary air-water heat exchanger is physically isolated from the electronic components. The P1-Marx employs all solid state elements; IGBTs and diodes, to control the charge, discharge and isolation of the cells. A general overview of the modulator design and the program status are presented.

Burkhart, C.; Beukers, T.; Larsen, R.; Macken, K.; Nguyen, M.; Olsen, J.; Tang, T.; /SLAC

2009-03-04T23:59:59.000Z

134

NIST Net installation instructions  

Science Conference Proceedings (OSTI)

... Xaw3d, and neXtaw; Build and install the nistnet module, API library, and user interface make make install; Try things out ...

2013-09-12T23:59:59.000Z

135

PETSc: Documentation: Installation  

NLE Websites -- All DOE Office Websites (Extended Search)

Installation Home Download Features Documentation Manual pages and Users Manual Citing PETSc Tutorials Installation AMS Changes Bug Reporting Code Management FAQ License Linear...

136

Studying Code Development for High Performance Computing: The HPCS Program  

E-Print Network (OSTI)

Studying Code Development for High Performance Computing: The HPCS Program Jeff Carver1 , Sima at measuring the development time for programs written for high performance computers (HPC). Our goal. Introduction The development of High-Performance Computing (HPC) programs (codes) is crucial to progress

Basili, Victor R.

137

Baseline Gas Turbine Development Program eighth quarterly progress report  

DOE Green Energy (OSTI)

Progress is reported for a program to demonstrate by 1976 an experimental gas turbine powered automobile which meets the 1978 Federal Emissions Standards, has significantly improved fuel economy, and is competitive in performance, reliability, and potential manufacturing cost with the conventional piston engine powered, standard size American automobile. Major preparations for engine heat balance tests by NASA were completed. EPA laboratories completed Baseline vehicle emissions, noise, and odor tests. Assembly of the program endurance engine is nearing completion. Test cell evaluation of the government furnished combustor (Solar) verified steady state emissions to be extremely low. Initial engine tests of Vendor A ceramic regenerator cores with an elastomeric drive verified performance predictions. Efforts towards developing a non-nickel oxide regenerator seal show extreme sensitivity to porosity differences between cores of different suppliers. All three preprototype integrated control systems were built. Modifications are being worked out to achieve a stable low speed operation. Two prototype compressor turbine wheels made from the reuseable pattern process are being inspected and processed for testing. The engine housing modified for operation at higher cycle temperatures and pressures was received. The baseline engine converted to free rotor is completing test cell check out. The modified vehicle is ready for engine installation. The upgraded engine characterization was updated to include the latest information on V.I.G.V., rotors, and bearings. The upgraded engine housing is being modeled physically and analytically for design and stress studies. An accessory drive system for the upgraded engine was selected, and a final layout is in process.

Schmidt, C.E.

1974-10-31T23:59:59.000Z

138

Fuel Cell Technologies Program Multi-Year Research, Development...  

NLE Websites -- All DOE Office Websites (Extended Search)

Preface Multi-Year Research, Development, and Demonstration Plan Page i Preface The Fuel Cell Technologies Program Multi-Year Research, Development, and Demonstration Plan (MYRD&D...

139

The Development Infrastructure Grant Program (Mississippi) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Development Infrastructure Grant Program (Mississippi) Development Infrastructure Grant Program (Mississippi) The Development Infrastructure Grant Program (Mississippi) < Back Eligibility Construction Developer Local Government Municipal/Public Utility Schools Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Maximum Rebate $150,000 Program Info State Mississippi Program Type Grant Program Provider Community Service Divison The Development Infrastructure Grant Program (DIP) is a grant program that is available to fund publicly owned infrastructure, including electricity generation and distribution. Funding from this program can be used by municipalities and counties to assist with the location or expansion of businesses. Usage of the funds must be directly related to the

140

Industrial Energy Efficiency Programs: Development and Trends  

E-Print Network (OSTI)

As more states establish Energy Efficiency Resource Standards (EERS), goals for energy efficiency savings are increasing across the country. Increasingly, states are relying on their industrial energy efficiency programs to find and help implement those savings. Historically, industrial energy efficiency programs have not been completely effective at finding those savings, in large part because the programs have not been flexible enough to accommodate the heterogeneous needs and unique characteristics of the industrial sector. This paper will discuss the state of industrial energy efficiency programs today. Relying on an ACEEE-administered survey of 35 industrial energy efficiency programs, we will determine current trends and challenges, address emerging needs, and identify best practices in the administration of today's industrial efficiency programs. The paper will serve as an update on industrial energy efficiency program activities and discuss the ways in which today's programs are trying to serve their industrial clients better.

Chittum, A.; Kaufman, N.; Elliot, N.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "development program installation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Groundwater modeling: Application of a multiphase fluid flow model as a decision-making tool for assessing and remediating installation restoration program sites. Master's thesis  

Science Conference Proceedings (OSTI)

This research examined a two-dimensional numerical model, VALOR, which can simulate multiphase fluid flow in soils and groundwater, and evaluated the applicability of the model as a decision-making tool for assessing and remediating IRP sites. Model sensitivity analyses were conducted to study the influence of grid sizes, soil types, and organic release rates on the simulated migration of both light and dense non-aqueous phase liquids (NAPLs). The VALOR model was applied to a case study of a JP-4 release at Wright-Patterson AFB, Ohio. The finer grid sizes provide the most accurate definition of NAPL distribution. The soil type and release rate sensitivity analyses demonstrate that NAPL migrates quicker through coarse sands than fine sand and clay. The light NAPL ponds at the water table and spreads laterally. The dense NAPL migrates through the subsurface and ponds at the aquifer bottom. The fast organic release simulations predict wider vertical pathways of migration. The slow organic release simulations predict higher light NAPL saturation at the water table. The case study indicates that within limits, VALOR may be useful for assessing NAPL distribution, estimating contaminated soil volumes, and evaluating remediation alternatives.... Groundwater modeling, Non-aqueous Phase Liquids: NAPL, Multiphase fluid flow model, Installation Restoration Program, IRP.

Scott, D.J.

1993-09-01T23:59:59.000Z

142

"Recovery Act: Training Program Development for Commercial Building  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Training Program Development for Commercial Training Program Development for Commercial Building Equipment Technicians, Building Operators, and Energy Commissioning Agents/Auditors" "Recovery Act: Training Program Development for Commercial Building Equipment Technicians, Building Operators, and Energy Commissioning Agents/Auditors" A report detailling the Recovery Act: training program development for commercial building equipment technicians, building operators, and energy commissioning agents/auditors. "Recovery Act: Training Program Development for Commercial Building Equipment Technicians, Building Operators, and Energy Commissioning Agents/Auditors" More Documents & Publications Microsoft Word - FOA cover sheet.doc Microsoft Word - kDE-FOA-0000090.rtf Recovery Act: Wind Energy Consortia between Institutions of Higher Learning

143

This Flash transmits the second installment under this project. Additional insta  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

This Flash transmits the second installment under this project. Additional installments This Flash transmits the second installment under this project. Additional installments will follow as they are completed. There are two significant chapter revisions in this installment: 6.1, Competition; and 35.1, Scientific and Technical Information. There are also five primarily editorial chapter revisions in this installment, though the revisions include some updated materials as well: 17.2, Cost Participation; 17.4 Program Opportunity Notices; 17.5 Program Research and Development Notices; 22.1, Labor Standards for Construction; and 47.1, Transportation - Air Charter. Finally, three chapters have been removed. Chapter 45, Government Property, was removed because the coverage was obsolete. Chapter 70.1, Cost Participation, was removed because it was duplicative of 17.2 and inappropriate in

144

Austria-Program on Technologies for Sustainable Development | Open Energy  

Open Energy Info (EERE)

Austria-Program on Technologies for Sustainable Development Austria-Program on Technologies for Sustainable Development Jump to: navigation, search Name Austria-Program on Technologies for Sustainable Development Agency/Company /Organization Nachhaltig Wirtschaften Sector Energy Focus Area Renewable Energy Topics Background analysis, Technology characterizations Website http://www.nachhaltigwirtschaf Country Austria UN Region Western Europe References Program on Technologies for Sustainable Development[1] Background "This initiative has been developed by the Austrian Federal Ministry of Transport, Innovation and Technology (BMVIT). It initiates and supports trendsetting research and development projects and the implementation of exemplary pilot projects." Objectives "*New opportunities for the economy

145

NIST, UM Program To Support Nanotech Development  

Science Conference Proceedings (OSTI)

... National Institute of Standards and Technology (NIST) and the University of Maryland (UM) have joined in a $1.5 million cooperative program that ...

2013-08-13T23:59:59.000Z

146

Ohio Coal Research and Development Program (Ohio) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ohio Coal Research and Development Program (Ohio) Ohio Coal Research and Development Program (Ohio) Ohio Coal Research and Development Program (Ohio) < Back Eligibility Agricultural Commercial Industrial Institutional Investor-Owned Utility Municipal/Public Utility Nonprofit Rural Electric Cooperative Schools Program Info Funding Source Ohio Development Services Agency State Ohio Program Type Grant Program Provider Ohio Development Services Agency The Ohio Coal Development Office invests in the development and implementation of technologies that can use Ohio's vast reserves of coal in an economical, environmentally sound manner. Projects are identified through public solicitations and may include technologies that improve combustion efficiencies, remove various pollutants from emissions, develop productive uses for the by-products of combustion, and investigate new uses

147

Federal Energy Management Program: Develop an Institutional Change Action  

NLE Websites -- All DOE Office Websites (Extended Search)

Develop an Develop an Institutional Change Action Plan for Sustainability to someone by E-mail Share Federal Energy Management Program: Develop an Institutional Change Action Plan for Sustainability on Facebook Tweet about Federal Energy Management Program: Develop an Institutional Change Action Plan for Sustainability on Twitter Bookmark Federal Energy Management Program: Develop an Institutional Change Action Plan for Sustainability on Google Bookmark Federal Energy Management Program: Develop an Institutional Change Action Plan for Sustainability on Delicious Rank Federal Energy Management Program: Develop an Institutional Change Action Plan for Sustainability on Digg Find More places to share Federal Energy Management Program: Develop an Institutional Change Action Plan for Sustainability on AddThis.com...

148

Public Sector Procurement: Issues in Program Development & Delivery  

NLE Websites -- All DOE Office Websites (Extended Search)

Public Sector Procurement: Issues in Program Development & Delivery Public Sector Procurement: Issues in Program Development & Delivery Title Public Sector Procurement: Issues in Program Development & Delivery Publication Type Report LBNL Report Number LBNL-6015E Year of Publication 2012 Authors Payne, Christopher T., and Andrew Weber Publisher LBNL Abstract The primary intention of this document is to illustrate the key issues and considerations made during the course of implementing a sustainable procurement program. Our primary sources of information have been our partners in the Super Efficient Equipment and Appliance Deployment (SEAD) Initiative Procurement Working Group. Where applicable, we have highlighted specific ways in which working group participants have successfully overcome these barriers. It is our hope that the issues discussed in this book will benefit developed and developing programs alike. In countries with less developed sustainable procurement programs, we hope that the discussions contained in the document will aid in the planning process. In addition, we hope that consideration of some of these key issues in the beginning stages of program implementation will help avoid some of the pitfalls experienced by more mature programs. In the case of more developed programs, we hope this book will spur conversation among those responsible for administering and evaluating sustainable procurement programs. In many cases, developed programs are seeking to improve existing processes and develop more effective purchaser resources.

150

Summary Report: Systematic IPT Integration in Lean Development Programs  

E-Print Network (OSTI)

This document provides a summary report of the M.I.T. Masters Thesis, "Systematic IPT Integration in Lean Development Programs" by Tyson R. Browning. These studies argue for the inclusion of program integration principles ...

Browning, Tyson R.

151

EM's Development Program for New Managers/Supervisors  

Energy.gov (U.S. Department of Energy (DOE))

This development program provides new managers and supervisors with 80 hours of developmental activities during the first two years they are in a leadership position. The program meets OPM, DOE and...

152

Associate Directorate of Plutonium Science and Manufacturing Workforce Development Program  

E-Print Network (OSTI)

Associate Directorate of Plutonium Science and Manufacturing Workforce Development Program Issue No elements address workforce challenges faced by a Pu Enterprise Environment with a focus on Pu Sustainment. The Plutonium Science & Manufacturing Summer Student Program (PSMSSP) supports the Laboratory's need

153

Florida International University Science and Technology Workforce Development Program  

Energy.gov (U.S. Department of Energy (DOE))

The DOE-Florida International University (FIU) Science and Technology Workforce Development Program is an innovative grant program between DOE-EM and FIU's Applied Research Center designed to...

154

Guidelines for Developing an Operator Excellence Program  

Science Conference Proceedings (OSTI)

This guide explains the elements of a power plant operator excellence program along with how these elements can be combined to create the program. The elements consist of the following: regulatory (for example, environmental and Occupational Safety and Health Administration (OSHA)), pre-qualification (for example, adult basic skills training), technical training, hands-on training, and post-qualification.

2001-12-13T23:59:59.000Z

155

Baseline Gas Turbine Development Program. Fourteenth quarterly progress report  

DOE Green Energy (OSTI)

Progress is reported for a Baseline Gas Turbine Development Program sponsored by the Heat Engine Systems Branch, Division of Transportation Energy Conservation (TEC) of the Energy Research and Development Administration (ERDA). Structurally, this program is made up of three parts: (1) documentation of the existing automotive gas turbine state-of-the-art; (2) conduction of an extensive component improvement program; and (3) utilization of the improvements in the design, and building of an Upgraded Engine capable of demonstrating program goals.

Schmidt, F W; Wagner, C E

1976-04-30T23:59:59.000Z

156

Better Buildings Neighborhood Program: Step 7: Develop a Marketing Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

7: 7: Develop a Marketing Plan to someone by E-mail Share Better Buildings Neighborhood Program: Step 7: Develop a Marketing Plan on Facebook Tweet about Better Buildings Neighborhood Program: Step 7: Develop a Marketing Plan on Twitter Bookmark Better Buildings Neighborhood Program: Step 7: Develop a Marketing Plan on Google Bookmark Better Buildings Neighborhood Program: Step 7: Develop a Marketing Plan on Delicious Rank Better Buildings Neighborhood Program: Step 7: Develop a Marketing Plan on Digg Find More places to share Better Buildings Neighborhood Program: Step 7: Develop a Marketing Plan on AddThis.com... Getting Started Driving Demand Set Goals & Objectives Create an Evaluation Plan Conduct Audience Research Identify Target Audiences & Behavior Changes

157

New Career Development Program Equips EM Employees with Leadership Skills |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Career Development Program Equips EM Employees with Leadership Career Development Program Equips EM Employees with Leadership Skills New Career Development Program Equips EM Employees with Leadership Skills May 30, 2013 - 12:00pm Addthis Members of the 2013 AAGEN SES Development Program class gather for a photo at the program’s kickoff at the White House in March 2012. EM’s John Moon and Dr. Ming Zhu are in the second row; Moon is second from left and Zhu is third from left. Melvin G. Williams, Jr., former Associate Deputy Energy Secretary, is seated far left in the first row. Members of the 2013 AAGEN SES Development Program class gather for a photo at the program's kickoff at the White House in March 2012. EM's John Moon and Dr. Ming Zhu are in the second row; Moon is second from left and Zhu is third from left. Melvin G. Williams, Jr., former Associate Deputy

158

Thailand-Low Emissions Asian Development (LEAD) Program | Open Energy  

Open Energy Info (EERE)

Thailand-Low Emissions Asian Development (LEAD) Program Thailand-Low Emissions Asian Development (LEAD) Program Jump to: navigation, search Name Thailand-Low Emissions Asian Development (LEAD) Program Agency/Company /Organization ICF International, United States Agency for International Development (USAID) Partner USFS, EPA, United States Department of State Sector Climate, Energy, Land Topics Background analysis, Low emission development planning, -LEDS Website http://www.LowEmissionsAsia.or Country Thailand South-Eastern Asia References USAID LEAD Program[1] The Low Emissions Asian Development (LEAD) program is a regional US Agency for International Development (USAID) activity that supports developing countries in Asia to achieve long-term, transformative development and accelerate sustainable, climate-resilient economic growth while slowing the

159

Nepal-Low Emissions Asian Development (LEAD) Program | Open Energy  

Open Energy Info (EERE)

Nepal-Low Emissions Asian Development (LEAD) Program Nepal-Low Emissions Asian Development (LEAD) Program Jump to: navigation, search Name Nepal-Low Emissions Asian Development (LEAD) Program Agency/Company /Organization ICF International, United States Agency for International Development (USAID) Partner USFS, EPA, United States Department of State Sector Climate, Energy, Land Topics Background analysis, Low emission development planning, -LEDS Website http://www.LowEmissionsAsia.or Country Nepal Southern Asia References USAID LEAD Program[1] The Low Emissions Asian Development (LEAD) program is a regional US Agency for International Development (USAID) activity that supports developing countries in Asia to achieve long-term, transformative development and accelerate sustainable, climate-resilient economic growth while slowing the

160

Vietnam-Low Emissions Asian Development (LEAD) Program | Open Energy  

Open Energy Info (EERE)

Vietnam-Low Emissions Asian Development (LEAD) Program Vietnam-Low Emissions Asian Development (LEAD) Program Jump to: navigation, search Name Vietnam-Low Emissions Asian Development (LEAD) Program Agency/Company /Organization ICF International, United States Agency for International Development (USAID) Partner USFS, EPA, United States Department of State Sector Climate, Energy, Land Topics Background analysis, Low emission development planning, -LEDS Website http://www.LowEmissionsAsia.or Country Vietnam South-Eastern Asia References USAID LEAD Program[1] The Low Emissions Asian Development (LEAD) program is a regional US Agency for International Development (USAID) activity that supports developing countries in Asia to achieve long-term, transformative development and accelerate sustainable, climate-resilient economic growth while slowing the

Note: This page contains sample records for the topic "development program installation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Malaysia-Low Emissions Asian Development (LEAD) Program | Open Energy  

Open Energy Info (EERE)

Malaysia-Low Emissions Asian Development (LEAD) Program Malaysia-Low Emissions Asian Development (LEAD) Program Jump to: navigation, search Name Malaysia-Low Emissions Asian Development (LEAD) Program Agency/Company /Organization ICF International, United States Agency for International Development (USAID) Partner USFS, EPA, United States Department of State Sector Climate, Energy, Land Topics Background analysis, Low emission development planning, -LEDS Website http://www.LowEmissionsAsia.or Country Malaysia South-Eastern Asia References USAID LEAD Program[1] The Low Emissions Asian Development (LEAD) program is a regional US Agency for International Development (USAID) activity that supports developing countries in Asia to achieve long-term, transformative development and accelerate sustainable, climate-resilient economic growth while slowing the

162

Philippines-Low Emissions Asian Development (LEAD) Program | Open Energy  

Open Energy Info (EERE)

Philippines-Low Emissions Asian Development (LEAD) Program Philippines-Low Emissions Asian Development (LEAD) Program Jump to: navigation, search Name Philippines-Low Emissions Asian Development (LEAD) Program Agency/Company /Organization ICF International, United States Agency for International Development (USAID) Partner USFS, EPA, United States Department of State Sector Climate, Energy, Land Topics Background analysis, Low emission development planning, -LEDS Website http://www.LowEmissionsAsia.or Country Philippines South-Eastern Asia References USAID LEAD Program[1] The Low Emissions Asian Development (LEAD) program is a regional US Agency for International Development (USAID) activity that supports developing countries in Asia to achieve long-term, transformative development and accelerate sustainable, climate-resilient economic growth while slowing the

163

Laos-Low Emissions Asian Development (LEAD) Program | Open Energy  

Open Energy Info (EERE)

Laos-Low Emissions Asian Development (LEAD) Program Laos-Low Emissions Asian Development (LEAD) Program Jump to: navigation, search Name Laos-Low Emissions Asian Development (LEAD) Program Agency/Company /Organization ICF International, United States Agency for International Development (USAID) Partner USFS, EPA, United States Department of State Sector Climate, Energy, Land Topics Background analysis, Low emission development planning, -LEDS Website http://www.LowEmissionsAsia.or Country Laos South-Eastern Asia References USAID LEAD Program[1] The Low Emissions Asian Development (LEAD) program is a regional US Agency for International Development (USAID) activity that supports developing countries in Asia to achieve long-term, transformative development and accelerate sustainable, climate-resilient economic growth while slowing the

164

Bangladesh-Low Emissions Asian Development (LEAD) Program | Open Energy  

Open Energy Info (EERE)

Bangladesh-Low Emissions Asian Development (LEAD) Program Bangladesh-Low Emissions Asian Development (LEAD) Program Jump to: navigation, search Name Bangladesh-Low Emissions Asian Development (LEAD) Program Agency/Company /Organization ICF International, United States Agency for International Development (USAID) Partner USFS, EPA, United States Department of State Sector Climate, Energy, Land Topics Background analysis, Low emission development planning, -LEDS Website http://www.LowEmissionsAsia.or Country Bangladesh Southern Asia References USAID LEAD Program[1] The Low Emissions Asian Development (LEAD) program is a regional US Agency for International Development (USAID) activity that supports developing countries in Asia to achieve long-term, transformative development and accelerate sustainable, climate-resilient economic growth while slowing the

165

ICPP waste management technology development program  

SciTech Connect

A program has been implemented at the Idaho Chemical Processing Plant (ICPP) to identify technologies for disposing of sodium-bearing liquid radioactive waste, radioactive calcine, and irradiated spent fuel stored at the Idaho National Engineering Laboratory (INEL). The sodium bearing waste and calcine, have resulted from ICPP reprocessing operations conducted since 1953. The irradiated spent fuel consists of various fuel compositions and ranges from complete fuel elements to fuel pieces for which no reprocessing flowsheet had been identified. The program includes a very strong systems analysis program to assure complete consideration of all issues (technical, economic, safety, environmental, etc.) affecting final disposal of the waste and spent fuel. A major goal of the program is to assure the final implementation is environmentally acceptable, ensures public and worker safety, and is economically feasible.

Hogg, G.W.; Olson, A.L.; Knecht, D.A. [Westinghouse Idaho Nuclear Co., Inc., Idaho Falls, ID (United States); Bonkoski, M.J. [USDOE Idaho Field Office, Idaho Falls, ID (United States)

1993-06-01T23:59:59.000Z

166

American Recovery and Reinvestment Act, Federal Energy Management Program, Technical Assistance Project 228 - US Army Installation Management Command - Pacific Region, Honolulu, Hawaii  

SciTech Connect

This report documents the activities of a resource efficiency manager that served the US Army Installation Management Command - Pacific Region during the period November 23, 2009 and August 31, 2010.

Arends, J.; Sandusky, William F.

2010-09-30T23:59:59.000Z

167

Program Development Plan and Team up  

DOE Green Energy (OSTI)

The final summary report is a comprehensive view of TEAM-UP, with documented data, information, and experiences that SEPA has collected throughout the program, including lessons learned by participating ventures, and sections covering costs and other information on both large and small systems. This report also covers the barriers that TEAM-UP faced to PV commercialization at the beginning of the program, barriers the project was able to remove or reduce, and what barriers remain on the road ahead.

Solar Electric Power Association

2001-12-01T23:59:59.000Z

168

Nuclear Safety Research and Development Program Operating Plan | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Operating Plan Program Operating Plan Nuclear Safety Research and Development Program Operating Plan July 5, 2012 Nuclear Safety Research and Development Program Operating Plan This operating plan outlines the mission, goals, and processes for the Department of Energy's (DOE) Nuclear Safety Research & Development (NSR&D) Program. This first version of the operating plan also discusses the startup phase of the program. NSR&D involves a systematic search for knowledge to advance the fundamental understanding of nuclear safety science and technology through scientific study, analysis, modeling, and experiments. Maintaining an effective NSR&D program will support DOE and the National Nuclear Security Administration (NNSA) in standards development, validation of analytical models and

169

Economic Development for a Growing Economy Tax Credit Program (Illinois) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Economic Development for a Growing Economy Tax Credit Program Economic Development for a Growing Economy Tax Credit Program (Illinois) Economic Development for a Growing Economy Tax Credit Program (Illinois) < Back Eligibility Agricultural Commercial Construction Industrial Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Illinois Program Type Corporate Tax Incentive Provider Illinois Department of Commerce and Economic Opportunity The Economic Development for a Growing Economy Tax Credit Program encourages companies to remain, expand, or locate in Illinois. The program provides tax credits to qualifying companies equal to the amount of state income taxes withheld from salaries for newly created jobs. A company must

170

Lighting Development, Adoption, and Compliance Guide BUILDING TECHNOLOGIES PROGRAM I  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting Development, Adoption, and Compliance Guide BUILDING TECHNOLOGIES PROGRAM I Lighting Development, Adoption, and Compliance Guide BUILDING TECHNOLOGIES PROGRAM I Lighting BUILDING TECHNOLOGIES PROGRAM Development, Adoption, and Compliance Guide Lighting BUILDING TECHNOLOGIES PROGRAM September 2012 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 | PNNL-SA-90653 Development, Adoption, and Compliance Guide 3.3 Exterior Lighting Controls ...........................................................................24 3.3.1 Dusk to Dawn Controls ...............................................................................25 3.3.2 Lighting Power Reduction Controls ........................................................25 3.3.3 Parking Garage Controls ............................................................................26

171

EM's Development Program for New Managers/Supervisors Presentation  

Energy.gov (U.S. Department of Energy (DOE))

This development program provides new managers and supervisors with 80 hours of developmental activities during the first two years they are in a leadership position.

172

Fuel Cell Technologies Program Multi-Year Research, Development...  

NLE Websites -- All DOE Office Websites (Extended Search)

Appendix D - Project Evaluation Form Multi-Year Research, Development and Demonstration Plan Page D- 1 DOE Hydrogen Program 2011 Annual Merit Review Project Evaluation Form...

173

Nuclear Plant Analyzer: Installation manual. Volume 1  

SciTech Connect

This report contains the installation instructions for the Nuclear Plant Analyzer (NPA) System. The NPA System consists of the Computer Visual System (CVS) program, the NPA libraries, the associated utility programs. The NPA was developed at the Idaho National Engineering Laboratory under the sponsorship of the US Nuclear Regulatory Commission to provide a highly flexible graphical user interface for displaying the results of these analysis codes. The NPA also provides the user with a convenient means of interactively controlling the host program through user-defined pop-up menus. The NPA was designed to serve primarily as an analysis tool. After a brief introduction to the Computer Visual System and the NPA, an analyst can quickly create a simple picture or set of pictures to aide in the study of a particular phenomenon. These pictures can range from simple collections of square boxes and straight lines to complex representations of emergency response information displays.

Snider, D.M.; Wagner, K.L.; Grush, W.H.; Jones, K.R. [Idaho National Engineering Lab., Idaho Falls, ID (United States)]|[Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

1995-01-01T23:59:59.000Z

174

Residential Code Development | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Code Development Subscribe to updates To receive news and updates about code development activities subscribe to the BECP Mailing List. The model residential building...

175

Solar Installation Labor Market Analysis  

DOE Green Energy (OSTI)

The potential economic benefits of the growing renewable energy sector have led to increased federal, state, and local investments in solar industries, including federal grants for expanded workforce training for U.S. solar installers. However, there remain gaps in the data required to understand the size and composition of the workforce needed to meet the demand for solar power. Through primary research on the U.S. solar installation employer base, this report seeks to address that gap, improving policymakers and other solar stakeholders understanding of both the evolving needs of these employers and the economic opportunity associated with solar market development. Included are labor market data covering current U.S. employment, expected industry growth, and employer skill preferences for solar installation-related occupations. This study offers an in-depth look at the solar installation sectors. A study published by the Solar Foundation in October 2011 provides a census of labor data across the entire solar value chain.

Friedman, B.; Jordan, P.; Carrese, J.

2011-12-01T23:59:59.000Z

176

Biofuels Feedstock Development Program annual progress report for 1991  

DOE Green Energy (OSTI)

This report provides an overview of the ongoing research funded in 1991 by the Department of Energy's Biofuels Feedstock Development Program (BFDP). The BFDP is managed by the Environmental Sciences Division of the Oak Ridge National Laboratory and encompasses the work formerly funded by the Short Rotation Woody Crops Program and the Herbaceous Energy Crops Program. The combined program includes crop development research on both woody and herbaceous energy crop species, cross-cutting energy and environmental analysis and integration, and information management activities. Brief summaries of 26 different program activities are included in the report.

Wright, L.L.; Cushman, J.H.; Ehrenshaft, A.R.; McLaughlin, S.B.; McNabb, W.A.; Ranney, J.W.; Tuskan, G.A.; Turhollow, A.F.

1992-12-01T23:59:59.000Z

177

Biofuels Feedstock Development Program annual progress report for 1991  

DOE Green Energy (OSTI)

This report provides an overview of the ongoing research funded in 1991 by the Department of Energy`s Biofuels Feedstock Development Program (BFDP). The BFDP is managed by the Environmental Sciences Division of the Oak Ridge National Laboratory and encompasses the work formerly funded by the Short Rotation Woody Crops Program and the Herbaceous Energy Crops Program. The combined program includes crop development research on both woody and herbaceous energy crop species, cross-cutting energy and environmental analysis and integration, and information management activities. Brief summaries of 26 different program activities are included in the report.

Wright, L.L.; Cushman, J.H.; Ehrenshaft, A.R.; McLaughlin, S.B.; McNabb, W.A.; Ranney, J.W.; Tuskan, G.A.; Turhollow, A.F.

1992-12-01T23:59:59.000Z

178

ORNL Global Change and Developing Country Programs | Open Energy  

Open Energy Info (EERE)

ORNL Global Change and Developing Country Programs ORNL Global Change and Developing Country Programs (Redirected from Global Change and Developing Country Programs) Jump to: navigation, search Logo: Global Change and Developing Country Programs Name Global Change and Developing Country Programs Agency/Company /Organization Oak Ridge National Laboratory Sector Energy Website http://www.esd.ornl.gov/eess/g References Global Change [1] "For more than twenty years, ORNL has been active in energy and environmental collaborations with developing countries. Projects have involved more than forty countries in Africa, Asia, Eastern Europe, Latin America and the Caribbean, and the Middle East; and they have included every major kind of energy technology and policy, along with a wide range of environmental technologies and policies." [1]

179

Sandia/DOE geothermal drilling and completion technology development program  

DOE Green Energy (OSTI)

The high cost of drilling and completing geothermal wells is an impediment to the development of geothermal energy resources. Technological deficiencies in rotary drilling techniques are evidenced when drilling geothermal wells. The Division of Geothermal Energy (DGE) of the US Department of Energy (DOE) has initiated a program aimed at developing new drilling and completion techniques for geothermal wells. The goals of this program are to reduce well costs 25% by 1982 and 50% by 1986. Sandia Laboratories has managed this technology development program since October 1977, and this paper presents an overview of the program. A statement of program goals and structure is given. The content of the FY-79 program is presented and recent results of R and D projects are given. Plans for development of an advanced drilling and completion system are discussed.

Barnette, J.H.

1979-01-01T23:59:59.000Z

180

Indonesia-Low Emissions Asian Development (LEAD) Program | Open Energy  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Indonesia-Low Emissions Asian Development (LEAD) Program Jump to: navigation, search Name Indonesia-Low Emissions Asian Development (LEAD) Program Agency/Company /Organization ICF International, United States Agency for International Development (USAID) Partner USFS, EPA, United States Department of State Sector Climate, Energy, Land Topics Background analysis, Low emission development planning, -LEDS Website http://www.LowEmissionsAsia.or Country Indonesia South-Eastern Asia References USAID LEAD Program[1] The Low Emissions Asian Development (LEAD) program is a regional US Agency for International Development (USAID) activity that supports developing countries in Asia to achieve long-term, transformative development and

Note: This page contains sample records for the topic "development program installation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Nuclear Safety Reserch and Development Program Operating Plan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safety Research and Development Safety Research and Development Program Operating Plan Office of Nuclear Safety Office of Health, Safety and Security U.S. Department of Energy June 2012 INTENTIONALLY BLANK NSR&D Program Operating Plan June 2012 Table of Contents 1.0 INTRODUCTION................................................................................................................. 1 2.0 BACKGROUND ................................................................................................................... 1 3.0 OBJECTIVES ....................................................................................................................... 2 4.0 NSR&D PROGRAM PROCESSES .................................................................................... 3

182

Overview of PNGV Battery Development and Test Programs  

SciTech Connect

Affordable, safe, long-lasting, high-power batteries are requisites for successful commercialization of hybrid electric vehicles. The U.S. Department of Energys Office of Advance Automotive Technologies and the Partnership for a New Generation of Vehicles are funding research and development programs to address each of these issues. An overview of these areas is presented along with a summary of battery development and test programs, as well as recent performance data from several of these programs.

Motloch, Chester George; Murphy, Timothy Collins; Sutula, Raymond; Miller, Ted J.

2002-02-01T23:59:59.000Z

183

REACTOR DEVELOPMENT PROGRAM PROGRESS REPORT, FEBRUARY 1962  

SciTech Connect

Progress is reported on EBWR, BORAX-V, and development of liquid metal cooled reactors including EBR-I and -II. Developments in general reactor technology are reported in sections on physics, fuels, components, materials, engineering, and chemical separations. Other research and development is reported in advanced systems and nuclear ssfety. (J.R.D.)

1962-02-01T23:59:59.000Z

184

Economic Development Bond Program (Iowa) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bond Program (Iowa) Bond Program (Iowa) Economic Development Bond Program (Iowa) < Back Eligibility Agricultural Commercial Industrial Institutional Investor-Owned Utility Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Rural Electric Cooperative Schools Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info Funding Source Iowa Finance Authority State Iowa Program Type Bond Program Provider Iowa Finance Authority Through its Economic Development Bond Program, the Iowa Finance Authority (IFA) issues tax-exempt bonds on behalf of private entities or organizations for eligible purposes. The responsibility for repayment of the bonds rests with the applicant. Neither IFA nor the State of Iowa has

185

Sustainable Development Fund Financing Program (PECO Territory...  

Open Energy Info (EERE)

Unicom merger settlement. That settlement added funding for new wind development, for solar photovoltaics and for renewable energy education, as well as a lump-sum payment and...

186

Status of granular bed filter development program  

SciTech Connect

The objective of this project was to design and develop moving bed granular filters and ceramic candle filters for particulate control from combined cycle systems. Results are described.

Wilson, K.B.; Haas, J.C.; Prudhomme, J.

1995-11-01T23:59:59.000Z

187

Program of Energy Enterprise Development and Investment  

DOE Green Energy (OSTI)

To provide training in enterprise development and technical applications, local partner capacity building, individualized enterprise development services and seed capital investment to catalyze the creation of sustainable renewable energy enterprises that deliver clean energy services to households and businesses in South Africa, Ethiopia and Tanzania.

Christine Eibs Singer

2005-03-11T23:59:59.000Z

188

Development and Implementation of a Program Management Maturity Model  

SciTech Connect

In 2006, Honeywell Federal Manufacturing & Technologies (FM&T) announced an updatedvision statement for the organization. The vision is To be the most admired team within the NNSA [National Nuclear Security Administration] for our relentless drive to convert ideas into the highest quality products and services for National Security by applying the right technology, outstanding program management and best commercial practices. The challenge to provide outstanding program management was taken up by the Program Management division and the Program Integration Office (PIO) of the company. This article describes how Honeywell developed and deployed a program management maturity model to drive toward excellence.

Hartwig, Laura; Smith, Matt

2008-12-15T23:59:59.000Z

189

AAGEN SES Development Program - Application Deadline | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AAGEN SES Development Program - Application Deadline AAGEN SES Development Program - Application Deadline AAGEN SES Development Program - Application Deadline December 31, 2013 8:00AM EST Course Start/End Date: The training sessions will be held each quarter, the next class will commence in April 2014, and the program will continue through March 2015. Course Type: Classroom Course Location: Washington, D.C. metro area Course Description: The Asian American Government Executives Network (AAGEN) is now accepting applications from anyone interested in this SES Development Program through December 31, 2013. This career enhancing opportunity is available to aspiring SES candidates at the GS-15 equivalent level or higher with at least one year of experience as a supervisor. Twenty applicants will be selected from the federal civil service and four

190

START Program for Renewable Energy Project Development Assistance |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program for Renewable Energy Program for Renewable Energy Project Development Assistance START Program for Renewable Energy Project Development Assistance The Strategic Technical Assistance Response Team (START) Program is part of the DOE Office of Indian Energy effort to assist in the development of tribal renewable energy projects. Through the START Program for Renewable Energy Project Development Assistance, a team of DOE and national laboratory experts will work directly with tribal communities to evaluate project financial and technical feasibility, provide on-going training to community members, and help implement a variety of clean energy projects, including energy storage infrastructure, renewable energy deployment, and energy efficiency. The following projects were selected for the 2013 START Renewable Energy

191

Low Emissions Asian Development (LEAD) Program | Open Energy Information  

Open Energy Info (EERE)

Development (LEAD) Program Development (LEAD) Program (Redirected from Low Emission Asian Development (LEAD) Program) Jump to: navigation, search Name Low Emissions Asian Development (LEAD) Program Agency/Company /Organization ICF International, United States Agency for International Development (USAID) Partner USFS, EPA, United States Department of State Sector Climate, Energy, Land Topics Background analysis, Low emission development planning, -LEDS Website http://www.LowEmissionsAsia.or Country Bangladesh, Cambodia, India, Indonesia, Laos, Malaysia, Nepal, Papua New Guinea, Philippines, Thailand, Vietnam Southern Asia, South-Eastern Asia, Southern Asia, South-Eastern Asia, South-Eastern Asia, South-Eastern Asia, Southern Asia, Melanesia, South-Eastern Asia, South-Eastern Asia, South-Eastern Asia

192

REACTOR DEVELOPMENT PROGRAM, PROGRESS REPORT, MAY 1961  

SciTech Connect

General research and development on water-cooled and sodium-cooled reactors are reported along with specific developments on EBWR, BORAK-V, EBR-I, and EBR-H. Thermal and fast reactor safety studies are summarized in terms of fuel-coolant chemical reactions, kinetics of oxidation and ignition of reactor materials, core meltdown studies, and a sodium vapor pressure furnace. Evaluations were made of improved fast reactors for central station power and of a 50-Mwe Prototype Organic Power Reactor (POPR). Developments in instruments, reactcr fuels and materials, reactor components, heat engineering, separations processes, and advanced reactcrs are discussed. (M.C.G.)

1961-06-15T23:59:59.000Z

193

Fuel Cycle Research and Development Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Corporate Board James C. Bresee, ScD, JD Advisory Board Member Office of Nuclear Energy July 29, 2009 July 29, 2009 Fuel Cycle Research and Development DM 195665 2 Outline...

194

REACTOR DEVELOPMENT PROGRAM PROGRESS REPORT, OCTOBER 1962  

SciTech Connect

Technical progress in specific reactor projects and in general engineering research and development is reported. The information is presented in five main sections for each of which a separate abstract was prepared. (J.R.D.)

1962-11-15T23:59:59.000Z

195

REACTOR DEVELOPMENT PROGRAM PROGRESS REPORT, MAY 1962  

SciTech Connect

Research progress is reported on water-cooled reactors, liquid-metal- cooled reactors, general reactor technology, plutonium recycle, advanced systems research and development, and nuclear safety. (M.C.G.)

1962-06-15T23:59:59.000Z

196

ICPP Waste Management Technology Development Program  

SciTech Connect

As a result of the decision to curtail reprocessing at the Idaho Chemical Processing Plant (ICPP), a Spent fuel and Waste Management Technology Development plan has been implemented to identify acceptable options for disposing of the (1) sodium-bearing liquid radioactive waste, (2) radioactive calcine, and (3) irradiated spent fuel stored at the Idaho National Engineering Laboratory (INEL). The plan was developed jointly by DOE and WINCO.

Hogg, G.W.; Olson, A.L.; Knecht, D.A. [Westinghouse Idaho Nuclear Co., Inc., Idaho Falls, ID (United States); Bonkoski, M.J. [USDOE, Washington, DC (United States)

1993-01-01T23:59:59.000Z

197

Recent Developments in Japan's HDR Program  

DOE Green Energy (OSTI)

Japan is one of the most active volcanic countries in the world, and it is understood to have very abundant geothermal energy. In Japan, where only a limited amount of other natural energy resources are domestically available, geothermal energy is one of the nation's purely indigenous energy sources. Its development therefore, has, been anxiously urged. Geothermal energy is classified generally in several types: vapor dominated type resources, which are mainly used to generate electric power, and low grade hydrothermal fluid and hot dry rock type resources, most of which are not used at present in Japan. NEDO, the New Energy and Industrial Technology Development Organization, promotes the technological development of geothermal energy utilization in order to increase the use of this type of energy, particularly in such technical fields as the development of a power plant that uses hydrothermal fluids. This type of plant will enable the effective use for power generation of not only steam, but also geothermal fluid, so as to permit the use of hot water that flows out in great quantities together with useful geothermal steam. The vast volume of geothermal water with medium to high temperature left intact underground will also be possible to utilize. Research themes promoted by NEDO, the Geothermal Energy Technology Department and the budget for FY 1991 (from April 1991 to March 1992) are: (1) Development of 10MW Class Binary Cycle Power Plant ($2.0M); (2) Development of Down-hole Pump ($3.0M); (3) Development of Technology for increasing Geothermal Energy Recovery ($5.9M); (4) Development of Measurement While Drilling System ($0.4M); and (5) Development of Hot Dry Rock Power Generation Technology ($7.1M). The total amount of 18.4 Million dollars is allocated for FY 1991 ($1 = 130 yen). Figure 1 shows the budgets from FY 1990 to 1992 (requested). The total amount of budgets listed above is grouped into ''Technology R & D'' in Figure 1. Figure 1 also shows the budgets for ''Survey & Promotion'' items conducted by NEDO. This paper reviews the history of HDR development in Japan and summarizes the recent development of NEDO's HDR project. Since FY 1985, NEDO has been conducting research to develop basic technologies for hot dry rock geothermal power generation at Hijiori, Okura Village in Yamagata Prefecture. The main purpose of this research is developing a heat extracting circulation system in hot dry rock of depth and temperature similar to those expected for a commercial scale operation. Within this scope, NEDO developed fundamental technologies for creating an artificial geothermal reservoir, establishing hydraulic communication between wells, logging boreholes, observing acoustic emission (AE) events for fracture mapping, evaluating flow through the reservoir, and estimating geothermal heat recovery. In the hot dry rock geothermal project, especially in Japan, it is important to understand how pre-existing fractures affect hydrofracture development. At present, there are a number of methods that can be employed to understand the fractures, but it is necessary to evaluate which are, most appropriate and accurate. Since FY 1989, we have been performing small-scale fracture characterization experiments on-site in I-itate Village, Fukushima Prefecture, where the granite basement rock outcrops.

Yamaguchi, Tsutomu

1992-03-24T23:59:59.000Z

198

Baseline gas turbine development program. First quarterly progress report, January 31, 1973  

DOE Green Energy (OSTI)

Progress is reported for a program to demonstrate by 1976 an experimental gas turbine-powered automobile which meets the 1976 Federal Emission Standards and which is competitive in fuel economy, performance, reliability, and potential manufacturing cost with the conventional piston engine-powered, standard size American automobile. Procurement and assembly of parts for seven engines plus spares is basically on schedule, although some areas are requiring intensive follow-up. A partial engine (including regenerators) was assembled for shipment to Solar. It will be incorporated into their combustor test rig, where it will provide both pre-heat and a proper physical environment for their combustor evaluation and development. Of the two test cells being refurbished for use on this program, one was completed and the other is underway. Two engines loaned to start the program were checked out, qualified, and delivered. Vehicle installation design is nearly complete. The cars were ordered. Vehicle engineering to provide hydraulic power boost braking, heating and air conditioning, and transmission is underway. Procurement arrangements for basic body and chassis changes were completed. In support to the Government, an engine characterization was prepared and assistance given in developing a combustor test procedure. Work was initiated on developing a control system for a variable geometry combustor. A request for proposal for an upgraded engine control system was prepared and issued. Preparations are being made for a free rotor concept evaluation. A plan of performance was prepared and submitted. Included were program plan charts and estimated cumulative manpower graphs.

Not Available

1973-01-01T23:59:59.000Z

199

Reflectivity software installation  

Science Conference Proceedings (OSTI)

... First download and unpack the reflectometry source tree. You may need to build and install Tcl/Tk, BLT, TkTable, BWidget and TkCon. ...

200

Laboratory Directed Research and Development Program FY 2006 Annual Report  

SciTech Connect

The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the US Departmental of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2006. The associated FY 2006 ORNL LDRD Self-Assessment (ORNL/PPA-2007/2) provides financial data about the FY 2006 projects and an internal evaluation of the program's management process.

Sjoreen, Terrence P [ORNL

2007-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "development program installation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Laboratory Directed Research and Development Program FY 2006 Annual Report  

SciTech Connect

The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the US Departmental of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2006. The associated FY 2006 ORNL LDRD Self-Assessment (ORNL/PPA-2007/2) provides financial data about the FY 2006 projects and an internal evaluation of the program's management process.

Sjoreen, Terrence P [ORNL

2007-04-01T23:59:59.000Z

202

Senior Executive Service Candidate Development Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Service Candidate Development Program Service Candidate Development Program Senior Executive Service Candidate Development Program The Office of Learning and Workforce Development coordinates applications for all DOE Federal Employees. Overview The Department of Energy's (DOE) Senior Executive Service (SES) Candidate Development Program (SESCDP) is a critical component of the Department's succession planning strategy for executives. We currently project approximately from 25 to 50 Senior Executive vacancies every year over the next several years. DOE's SESCDP is intended to produce a cadre of SES-ready federal employees capable of being placed non-competitively into SES vacancies. Although successful completion of the SESCDP does not guarantee placement into an SES position, it does result in

203

ORNL Global Change and Developing Country Programs | Open Energy  

Open Energy Info (EERE)

Change and Developing Country Programs Change and Developing Country Programs Jump to: navigation, search Logo: Global Change and Developing Country Programs Name Global Change and Developing Country Programs Agency/Company /Organization Oak Ridge National Laboratory Sector Energy Website http://www.esd.ornl.gov/eess/g References Global Change [1] "For more than twenty years, ORNL has been active in energy and environmental collaborations with developing countries. Projects have involved more than forty countries in Africa, Asia, Eastern Europe, Latin America and the Caribbean, and the Middle East; and they have included every major kind of energy technology and policy, along with a wide range of environmental technologies and policies." [1] References ↑ 1.0 1.1 Global Change Retrieved from

204

Low Emissions Asian Development (LEAD) Program | Open Energy Information  

Open Energy Info (EERE)

Emissions Asian Development (LEAD) Program Emissions Asian Development (LEAD) Program Jump to: navigation, search Name Low Emissions Asian Development (LEAD) Program Agency/Company /Organization ICF International, United States Agency for International Development (USAID) Partner USFS, EPA, United States Department of State Sector Climate, Energy, Land Topics Background analysis, Low emission development planning, -LEDS Website http://www.LowEmissionsAsia.or Country Bangladesh, Cambodia, India, Indonesia, Laos, Malaysia, Nepal, Papua New Guinea, Philippines, Thailand, Vietnam Southern Asia, South-Eastern Asia, Southern Asia, South-Eastern Asia, South-Eastern Asia, South-Eastern Asia, Southern Asia, Melanesia, South-Eastern Asia, South-Eastern Asia, South-Eastern Asia References LEAD Program[1]

205

Clean coal technologies: Research, development, and demonstration program plan  

SciTech Connect

The US Department of Energy, Office of Fossil Energy, has structured an integrated program for research, development, and demonstration of clean coal technologies that will enable the nation to use its plentiful domestic coal resources while meeting environmental quality requirements. The program provides the basis for making coal a low-cost, environmentally sound energy choice for electric power generation and fuels production. These programs are briefly described.

Not Available

1993-12-01T23:59:59.000Z

206

Tools for Nanotechnology Education Development Program  

Science Conference Proceedings (OSTI)

The overall focus of this project was the development of reusable, cost-effective educational modules for use with the table top scanning electron microscope (TTSEM). The goal of this project's outreach component was to increase students' exposure to the science and technology of nanoscience.

Dorothy Moore

2010-09-27T23:59:59.000Z

207

Energy Conservation Installation Credit | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Conservation Installation Credit Energy Conservation Installation Credit Energy Conservation Installation Credit < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Design & Remodeling Windows, Doors, & Skylights Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Maximum Rebate 500 per individual; up to 1,000 for a married couple filing jointly Program Info State Montana Program Type Personal Tax Credit Rebate Amount 25% of cost of capital investment Provider Montana Department of Revenue Individual taxpayers may claim a credit against their tax liability for up to 25% of the costs of investment for energy conservation purposes in a

208

DOE's Advanced Coal Research, Development, and Demonstration Program to  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE's Advanced Coal Research, Development, and Demonstration DOE's Advanced Coal Research, Development, and Demonstration Program to Develop Low-carbon Emission Coal Technologies DOE's Advanced Coal Research, Development, and Demonstration Program to Develop Low-carbon Emission Coal Technologies March 11, 2009 - 3:18pm Addthis Statement of Victor K. Der, Acting Assistant Secretary, Office of Fossil Energy before the Subcommittee on Energy and Environment, Committee on Science and Technology, U.S. House of Representatives. Thank you, Mr. Chairman and Members of the Committee. I appreciate this opportunity to provide testimony on the U.S. Department of Energy's (DOE's) advanced coal research, development, and demonstration program to develop low-carbon emission coal technologies. Introduction Fossil fuel resources represent a tremendous national asset. An abundance

209

DOE's Advanced Coal Research, Development, and Demonstration Program to  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Coal Research, Development, and Demonstration Advanced Coal Research, Development, and Demonstration Program to Develop Low-carbon Emission Coal Technologies DOE's Advanced Coal Research, Development, and Demonstration Program to Develop Low-carbon Emission Coal Technologies March 11, 2009 - 3:18pm Addthis Statement of Victor K. Der, Acting Assistant Secretary, Office of Fossil Energy before the Subcommittee on Energy and Environment, Committee on Science and Technology, U.S. House of Representatives. Thank you, Mr. Chairman and Members of the Committee. I appreciate this opportunity to provide testimony on the U.S. Department of Energy's (DOE's) advanced coal research, development, and demonstration program to develop low-carbon emission coal technologies. Introduction Fossil fuel resources represent a tremendous national asset. An abundance

210

Guideline for Developing and Managing an Infrared Thermography (IRT) Program  

Science Conference Proceedings (OSTI)

The Guideline for Developing and Managing an Infrared Thermography Program is an extension of a number of reports addressing the use and benefits of infrared thermography (IRT) as a diagnostic tool. This document expands on more of the technology's intricacies, as well as defining procedures for setting up a comprehensive IRT program.

2001-09-27T23:59:59.000Z

211

Geothermal energy, research, development and demonstration program. Third annual report  

DOE Green Energy (OSTI)

The following topics are covered: the geothermal resource potential in the U.S., national geothermal utilization estimates, the Federal geothermal development strategy and program, Federal progress and achievements FY 1978, regional progress FY 1978, and Federal program plans for FY 1979. (MHR)

Not Available

1979-03-01T23:59:59.000Z

212

17.5 - Program Research and Development Accouncement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 (June 2004) 5 (June 2004) 1 PROGRAM RESEARCH AND DEVELOPMENT ANNOUNCEMENTS Overview This section discusses procedures for the submission, evaluation, and selection for award of proposals offered in response to Program Research and Development Announcements (PRDAs). PRDAs are issued by DOE to conduct research, development, and related activities in the energy field. Background PRDAs are competitive solicitations for research, development, and related projects in specified areas of interest. They differ from traditional research and development acquisition solicitations which seek the best technical/cost approach to a specific problem. Under PRDAs, it is contemplated that multiple awards will be made covering a variety of areas of interest with a

213

Collaborative development of Estonian nuclear master's program  

Science Conference Proceedings (OSTI)

In 2009 Estonia approved the National Development Plan for the Energy Sector, including the nuclear energy option. This can be realized by construction of a nuclear power plant (NPP) in Estonia or by participation in neighboring nuclear projects (e.g., Lithuania and/or Finland). Either option requires the availability of competent personnel. It is necessary to prepare specialists with expertise in all aspects related to nuclear infrastructure and to meet workforce needs (e.g. energy enterprises, public agencies, municipalities). Estonia's leading institutions of higher education and research with the support of the European Social Fund have announced in this context a new nuclear master's curriculum to be developed. The language of instruction will be English. (authors)

Tkaczyk, A. H.; Kikas, A.; Realo, E.; Kirm, M.; Kiisk, M.; Isakar, K.; Suursoo, S.; Koch, R.; Feldbach, E.; Lushchik, A.; Reivelt, K. [Inst. of Physics, Univ. of Tartu, Riia 142, Tartu 51014 (Estonia)

2012-07-01T23:59:59.000Z

214

Information for Development Program (infoDev) | Open Energy Information  

Open Energy Info (EERE)

Development Program (infoDev) Development Program (infoDev) Jump to: navigation, search Logo: Information for Development Program (infoDev) Name Information for Development Program (infoDev) Place Washington DC Coordinates 38.8951118°, -77.0363658° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.8951118,"lon":-77.0363658,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

215

Business and Market Development Program (Newfoundland and Labrador, Canada)  

Energy.gov (U.S. Department of Energy (DOE))

The Business and Market Development Program provides new entrepreneurs and expanding small businesses with funding to help them acquire the necessary expertise to pursue new business ideas and new...

216

Community Economic Development Business Program (Prince Edward Island, Canada)  

Energy.gov (U.S. Department of Energy (DOE))

The Community Economic Development Business (CEDB) program has been created as part of the Prince Edward Island Rural Action Plan to support local investment in innovative Prince Edward Island...

217

Efficiency Maine Renewable Energy Program (Maine) | Open Energy...  

Open Energy Info (EERE)

Utilities Commission (PUC) developed rules to implement the program. Rebates for PV and solar-thermal installations were unavailable for 2009. However, the governor signed...

218

Algebraic specification and program development by stepwise refinement (Extended Abstract)  

E-Print Network (OSTI)

. Various formalizations of the concept of "refinement step" as used in the formal development of programs from algebraic specifications are presented and compared. 1 Introduction Algebraic specification aims to provide a formal basis to support the systematic development of correct programs from specifications by means of verified refinement steps. Obviously, a central piece of the puzzle is how best to formalize concepts like "specification", "program" and "refinement step". Answers are required that are simple, elegant and general and which enjoy useful properties, while at the same time taking proper account of the needs of practice. Here I will concentrate on the last of these concepts, but first I need to deal with the other two. For "program", I take the usual approach of algebraic specification whereby programs are modelled as many-sorted algebras consisting of a collection of sets of data values together with functions over those sets. This level of abstraction is commens...

Donald Sannella

1999-01-01T23:59:59.000Z

219

Progress in The Lost Circulation Technology Development Program  

DOE Green Energy (OSTI)

Lost circulation is the loss of drilling fluid from the wellbore to fractures or pores in the rock formation. In geothermal drilling, lost circulation is often a serious problem that contributes greatly to the cost of the average geothermal well. The Lost Circulation Technology Development Program is sponsored at Sandia National Laboratories by the US Department of Energy. The goal of the program is to reduce lost circulation costs by 30--50{percent} through the development of mitigation and characterization technology. This paper describes the technical progress made in this program during the period April, 1990--March, 1991. 4 refs., 15 figs., 1 tab.

Glowka, D.A.; Schafer, D.M.; Loeppke, G.E.; Wright, E.K.

1991-01-01T23:59:59.000Z

220

Liquid phase methanol process development unit: installation, operation, and support studies. Topical report. Experimental catalyst preparation program  

DOE Green Energy (OSTI)

This report details the preparation of 29 catalyst samples under DOE contract No. DE-AC22-81PC30019. These were selected for gas phase activity testing from a total of 70 prepared. Based on activity results, three compositions were selected for further slurry phase testing in the Chem Systems, Inc. (CSI) laboratories. 11 references, 5 figures, 7 tables.

Not Available

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "development program installation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Raciometry J. W. Griffin, Technical Monitor ARM Instrument Development Program  

NLE Websites -- All DOE Office Websites (Extended Search)

J. W. Griffin, Technical Monitor J. W. Griffin, Technical Monitor ARM Instrument Development Program Pacific Northwest Laboratory Richland, Washington the end of FY93 are noted. Fiscal Year 1993 is the third and final year of the initial (3-year) funding cycle for ARM- funded instrument development projects. That is, IDP principal investigators will be required to submit a new proposal in order to be considered for funding beyond September 30, 1993. As for the first funding cycle, continuation proposals will be peer-reviewed and funding awarded on a competitive basis. Goals of the Instrument Development Program The primary goal of the Atmospheric Radiation Measurement (ARM) Instrument Development Program (lOP) is to develop fieldable atmospheric sensing systems which 1) provide a needed atmospheric observation/

222

Integrated demonstrations, integrated programs, and special programs within DOE`s Office of Technology Development  

SciTech Connect

This poster session presents information on integrated demonstrations, integrated programs, and special programs within the EM Office of Technology Development that will accelerate cleanup of sites within the Nuclear Weapons Complex. Presented topics include: Volatile organic compounds in soils and ground water, uranium in soils, underground storage tanks, mixed waste landfills, decontamination and decommissioning, in situ remediation, and separations technology.

Peterson, M.E.; Frank, C.; Stein, S.; Steele, J.

1994-08-01T23:59:59.000Z

223

Overview of DOE's large stationary Stirling-engine development program  

SciTech Connect

This paper summarizes the results to date of a program, sponsored by DOE's Office of Fossil Energy, to develop large stationary Stirling engine power systems. Primary applications for such power plants include cogeneration and total energy systems, with a major advantage being their ability to employ solid coal and other non-scarce fuels in an environmentally acceptable manner. The greatest market potential is for individual engine modules in the 373 to 2238 kW range, which can be used in multiple-engine installations for cogeneration systems up to about 20 MWe. Fluidized bed coal combustors are found to be the most effective heat source for such power systems. The major effort in the Stirling engine development program was an industry-based design competition, involving three independent contractual teams. Conceptual designs for state-of-the-art coal-fired Stirling engine systems were developed and all three design teams recommended development of 373 kW modules as base units, which can be coupled together to form individual Stirling engines up to 2238 kW in size. Heat transport system design concepts were also developed for integrating engine hot-end sections with coal combustors, and a comparative discussion of the results is presented in the text of this paper.

Uherka, K.L.; Holtz, R.E.; Bunker, W.

1981-01-01T23:59:59.000Z

224

HVAC Installed Performance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HVAC Installed Performance HVAC Installed Performance ESI, Tim Hanes Context * The building envelope has historically been the focus in residential homes. * The largest consumer of energy in residential homes is typically the HVAC system. * Testing the performance of the HVAC system has not been pursued to its full potential. Technical Approach * Currently very little performance testing is being done to the HVAC system. * The only way to know if a HVAC system is operating correctly is to measure the Btu/h. * This should be done at the equipment and at the the system. Recommended Guidance * Training of HVAC technicians, installers, and salespeople is a must. * If only the technician is trained than implementing the change will not happen. * Public awareness of proper installation and its

225

HVAC Installed Performance  

Energy.gov (U.S. Department of Energy (DOE))

This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question HVAC proper installation energy savings: over-promising or under-delivering?"

226

Installation restoration program. Site investigation report for IRP site No. 12 and 13, South Dakota Air National Guard, 114th Fighter Wing, Joe Foss Field, Sioux Falls, South Dakota - Volume 1. Final report  

SciTech Connect

Site Investigation Report for IRP Site No 12 and 13, South Dakota Air National Guard, 114th Fighter Wing, Joe Foss Field, Sioux Falls, South Dakota, Volume I. This is the first volume of a two volume site investigation report. Two sites (Site 12 - Ramp area and Site 13 - Motor Vehicle Maintenance Facility) was investigated under the Installation Restoration Program. Soil and groundwater samples were collected and analyzed. No further action was recommended on site 13 and quarterly sampling was recommended for site 12. South Dakota Regulators have agreed to both recommendations. Decision documents will be prepared for each site.

1996-02-01T23:59:59.000Z

227

Information for Development Program (infoDev) Feed | Open Energy  

Open Energy Info (EERE)

for Development Program (infoDev) Feed for Development Program (infoDev) Feed Jump to: navigation, search Home | About | Inventory | Partnerships | Capacity Building | Webinars | Reports | Events | News | List Serve CLEAN Member Feeds Center for Environment and National Security at Scripps Centro de Energías Renovables (CER) The Children's Investment Fund Foundation (CIFF) Climate and Development Knowledge Network (CDKN) Climate Technology Initiative (CTI) ClimateWorks Foundation Coalition for Rainforest Nations (CfRN) Ecofys Energy Research Centre of the Netherlands (ECN) Energy Sector Management Assistance Program of the World Bank (ESMAP) Environment and Development Action in the Third World (ENDA-TM) German Aerospace Center (DLR) German Agency for International Cooperation (GIZ) Global Village Energy Partnership (GVEP)

228

Clark County Develops On-the-Job Weatherization Training Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clark County Develops On-the-Job Weatherization Training Program Clark County Develops On-the-Job Weatherization Training Program Clark County Develops On-the-Job Weatherization Training Program June 9, 2010 - 11:02am Addthis Stephen Graff Former Writer & editor for Energy Empowers, EERE What are the key facts? Southwest Washington Workforce Development Council and the State Board of Community and Technical Colleges received over $200,000 under the American Recovery and Reinvestment Act to fund the weatherization training at Clark College There was a classic chicken-or-the-egg moment in Washington State's Clark County last year when officials learned about the million dollars heading their way for additional home energy upgrades. What comes first, weatherization training or jobs? "We knew the Stimulus funds were coming...but there was not a huge

229

An overview of DOE`s wind turbine development programs  

DOE Green Energy (OSTI)

The development of technologically advanced, higher efficiency wind turbines continues to be a high priority activity of the US wind industry. The United States Department of Energy (DOE) is conducting and sponsoring a range of programs aimed at assisting the wind industry with system design, development, and testing. The overall goal is to develop systems that can compete with conventional electric generation for $.05/kWh at 5.8 m/s (13 mph sites) by the mid-1990s and with fossil-fuel-based generators for $.04/kWh at 5.8 m/s sites by the year 2000. These goals will be achieved through several programs. The Value Engineered Turbine Program will promote the rapid development of US capability to manufacture wind turbines with known and well documented records of performance, cost, and reliability, to take advantage of near-term market opportunities. The Advanced Wind Turbine Program will assist US industry to develop and integrate innovative technologies into utility-grade wind turbines for the near-term (mid 1990s) and to develop a new generation of turbines for the year 2000. The collaborative Electric Power Research Institute (EPRI)/DOE Utility Wind Turbine Performance Verification Program will deploy and evaluate commercial-prototype wind turbines in typical utility operating environments, to provide a bridge between development programs currently underway and commercial purchases of utility-grade wind turbines. A number of collaborative efforts also will help develop a range of small systems optimized to work in a diesel hybrid environment to provide electricity for smaller non-grid-connected applications.

Laxson, A; Dodge, D; Flowers, L [National Renewable Energy Lab., Golden, CO (United States); Loose, R; Goldman, P [Dept. of Energy, Washington, DC (United States)

1993-09-01T23:59:59.000Z

230

Developing and Implementing an Asset Health Management Program  

Science Conference Proceedings (OSTI)

In 2009, the Electric Power Research Institute's (EPRI's) Maintenance Management and Technology program worked with its member companies to develop an overview that described the functionality of a system health management program. Since that time, EPRI and its members have also worked on initiatives that focus on component health management and performance monitoring. To encompass these similar and integrated initiatives, EPRI has more recently focused on the broader concept of asset health management. ...

2011-12-22T23:59:59.000Z

231

REACTOR DEVELOPMENT PROGRAM PROGRESS REPORT (FOR) JULY 1961  

SciTech Connect

A summary is presented of activities in reactor and general engineering research programs. Discussions are included for developments in EBWR, BORAX-V, ZPR-III. ZPR-VI, ZPR-IX, EBR-I, and EBR-II. Reactor safety studies were performed for fast and thermal reactors. Nuclear technology developments are discussed for applied nuclear and reactor physics, reactor fuels and materials development, heat engineering studies, separations processes, and advanced reactor concepts. (B.O.G.)

1961-08-15T23:59:59.000Z

232

Installation package for a solar heating system  

DOE Green Energy (OSTI)

Installation information is presented for a solar heating system installed in Concho Indian School at El Reno, Oklahoma. This package includes a system Operation and Maintenance Manual, hardware brochures, schematics, system operating modes and drawings. The Solar Engineering and Equipment Company (SEECO) developed this prototype solar heating system consisting of the following subsystems: solar collectors, control and storage.

Not Available

1978-12-01T23:59:59.000Z

233

Laboratory directed research and development program, FY 1996  

SciTech Connect

The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory`s forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory`s core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices.

1997-02-01T23:59:59.000Z

234

DEVELOPMENT, INSTALLATION AND OPERATION OF THE MPC&A OPERATIONS MONITORING (MOM) SYSTEM AT THE JOINT INSTITUTE FOR NUCLEAR RESEARCH (JINR) DUBNA, RUSSIA  

Science Conference Proceedings (OSTI)

The Material Protection, Control and Accounting (MPC&A) Operations Monitoring (MOM) systems handling at the International Intergovernmental Organization - Joint Institute for Nuclear Research (JINR) is described in this paper. Category I nuclear material (plutonium and uranium) is used in JINR research reactors, facilities and for scientific and research activities. A monitoring system (MOM) was installed at JINR in April 2003. The system design was based on a vulnerability analysis, which took into account the specifics of the Institute. The design and installation of the MOM system was a collaborative effort between JINR, Brookhaven National Laboratory (BNL) and the U.S. Department of Energy (DOE). Financial support was provided by DOE through BNL. The installed MOM system provides facility management with additional assurance that operations involving nuclear material (NM) are correctly followed by the facility personnel. The MOM system also provides additional confidence that the MPC&A systems continue to perform effectively.

Kartashov,V.V.; Pratt,W.; Romanov, Y.A.; Samoilov, V.N.; Shestakov, B.A.; Duncan, C.; Brownell, L.; Carbonaro, J.; White, R.M.; Coffing, J.A.

2009-07-12T23:59:59.000Z

235

Federal hot dry rock geothermal energy development program: an overview  

DOE Green Energy (OSTI)

The formulation and evolution of the Federal Hot Dry Rock Geothermal Energy Development Program at the Los Alamos Scientific Laboratory are traced. Program motivation is derived from the enormous potential of the resource. Accomplishments to date, including the establishment and evaluation of the 5-MW/sub t/ Phase 1 reservoir at Fenton Hill, NM and various instrument and equipment developments, are discussed. Future plans presented include (1) establishment of a 20- to 50-MW/sub t/ Phase 2 reservoir at Fenton Hill that will be used to demonstrate longevity and, eventually, electric power production and (2) the selection of a second site at which a direct thermal application will be demonstrated.

Nunz, G.J.

1979-01-01T23:59:59.000Z

236

A Structured Approach to Develop Concurrent Programs in UML  

E-Print Network (OSTI)

. This paper presents a methodology to develop synchronization code based on the global invariant (GI) approach in the context of the Unified Process in UML. This approach has the following advantages: (1) it is a formal approach that enables formal verification of programs being developed, (2) the most important activity in the programming process lies at a high level; namely, specification of GIs, (3) GIs are platform independent, and (4) existing GIs may be composed to produce GIs for more complex synchronization. We provide a set of useful GIs which work as basic patterns. Programmers can compose these GIs to produce appropriate GIs for specific applications. 1

Masaaki Mizuno Gurdip; Masaaki Mizuno; Gurdip Singh; Mitchell Neilsen

2000-01-01T23:59:59.000Z

237

Laboratory Directed Research and Development Program Assessment for FY 2007  

SciTech Connect

Brookhaven National Laboratory (BNL) is a multidisciplinary Laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal Year 2008 spending was $531.6 million. There are approximately 2,800 employees, and another 4,300 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development,' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. To be a premier scientific Laboratory, BNL must continuously foster groundbreaking scientific research and renew its research agenda. The competition for LDRD funds stimulates Laboratory scientists to think in new and creative ways, which becomes a major factor in achieving and maintaining research excellence and a means to address National needs within the overall mission of the DOE and BNL. By fostering high-risk, exploratory research, the LDRD program helps BNL to respond new scientific opportunities within existing mission areas, as well as to develop new research mission areas in response to DOE and National needs. As the largest expense in BNL's LDRD program is the support graduate students, post-docs, and young scientists, LDRD provides base for continually refreshing the research staff as well as the education and training of the next generation of scientists. The LDRD Program Assessment Report contains a review of the program. The report includes a summary of the management processes, project peer review, and the portfolio's relatedness to BNL's mission, initiatives and strategic plans. Also included are a metric of success indicators and Self Assessment.

Looney,J.P.; Fox, K.J.

2008-03-31T23:59:59.000Z

238

Certification for Small Wind Turbine Installers: What's the Hang Up?; Preprint  

DOE Green Energy (OSTI)

Several programs have been implemented to support the advancement of a professional, mature small wind industry and to ensure that this industry moves forward in a sustainable direction. The development of a standard for small wind turbine systems and the creation of the Small Wind Certification Council support small wind technology that is reliable and safe. Consumers and incentive programs will ultimately rely on certification to differentiate among systems sold in the U.S. market. Certification of small wind installers is yet another component deemed necessary for this industry to expand. The National Renewable Energy Laboratory, under the guidance and funding support of the U.S. Department of Energy, supported the development of small wind system installer certification provided via the North American Board of Certified Energy Practitioners. However, the small wind community is not supportive of the installer certification. There are currently only nine certified installers in the U.S. pool. This paper provides an overview of the installer certification program and why more small wind turbine installers are not pursuing this certification.

Oteri, F.; Sinclair, K.

2012-03-01T23:59:59.000Z

239

Certification for Small Wind Turbine Installers: What's the Hang Up?; Preprint  

SciTech Connect

Several programs have been implemented to support the advancement of a professional, mature small wind industry and to ensure that this industry moves forward in a sustainable direction. The development of a standard for small wind turbine systems and the creation of the Small Wind Certification Council support small wind technology that is reliable and safe. Consumers and incentive programs will ultimately rely on certification to differentiate among systems sold in the U.S. market. Certification of small wind installers is yet another component deemed necessary for this industry to expand. The National Renewable Energy Laboratory, under the guidance and funding support of the U.S. Department of Energy, supported the development of small wind system installer certification provided via the North American Board of Certified Energy Practitioners. However, the small wind community is not supportive of the installer certification. There are currently only nine certified installers in the U.S. pool. This paper provides an overview of the installer certification program and why more small wind turbine installers are not pursuing this certification.

Oteri, F.; Sinclair, K.

2012-03-01T23:59:59.000Z

240

Development of an injection augmentation program at the Dixie Valley,  

Open Energy Info (EERE)

an injection augmentation program at the Dixie Valley, an injection augmentation program at the Dixie Valley, Nevada geothermal field Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Development of an injection augmentation program at the Dixie Valley, Nevada geothermal field Abstract Evaporative cooling at geothermal power plants generally reduces reservoir pressures even if all available geothermal liquids are reinjected. Controlled programs of injecting non geothermal waters directly into reservoirs have been tested or implemented at only four fields, three of them being vapor dominated. At the liquid-dominated Dixie Valley geothermal field an unsuccessful search for a large volume source of warm,chemically desirable fluid for augmentation was conducted.After determining water

Note: This page contains sample records for the topic "development program installation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Diurnal cool thermal energy storage: Research programs, technological developments, and commercial status  

DOE Green Energy (OSTI)

This report presents an overview of the major federal and private research and development efforts in diurnal cool thermal energy storage for electric load management in buildings. Included are brief technical descriptions and research histories of the technologies and applications of cool thermal storage. The goals, accomplishments, and funding levels of major thermal storage research programs also are summarized. The report concludes with the results of recent field performance evaluations of cool thermal storage installations and a discussion of the current commercial status of thermal storage equipment, including utility participation programs. This report was sponsored by the Technology and Consumer Products (TCP) Division within the Office of Conservation of the US Department of Energy. This report is part of TCP's ongoing effort to examine and evaluate technology developments and research efforts in the areas of lighting, space heating and cooling, water heating, refrigeration, and other building energy conversion equipment. Information obtained through this effort is used as an input in developing the US research agenda in these areas.

Wise, M A

1992-01-01T23:59:59.000Z

242

Ceramic stationary gas turbine development program -- Fifth annual summary  

SciTech Connect

A program is being performed under the sponsorship of the US Department of Energy, Office of Industrial Technologies, to improve the performance of stationary gas turbines in cogeneration through the selective replacement of metallic hot section components with ceramic parts. The program focuses on design, fabrication, and testing of ceramic components, generating a materials properties data base, and applying life prediction and nondestructive evaluation (NDE). The development program is being performed by a team led by Solar Turbines Incorporated, and which includes suppliers of ceramic components, US research laboratories, and an industrial cogeneration end user. The Solar Centaur 50S engine was selected for the development program. The program goals included an increase in the turbine rotor inlet temperature (TRIT) from 1,010 C (1,850 F) to 1,121 C (2,050 F), accompanied by increases in thermal efficiency and output power. The performance improvements are attributable to the increase in TRIT and the reduction in cooling air requirements for the ceramic parts. The ceramic liners are also expected to lower the emissions of NOx and CO. Under the program uncooled ceramic blades and nozzles have been inserted for currently cooled metal components in the first stage of the gas producer turbine. The louvre-cooled metal combustor liners have been replaced with uncooled continuous-fiber reinforced ceramic composite (CFCC) liners. Modifications have been made to the engine hot section to accommodate the ceramic parts. To date, all first generation designs have been completed. Ceramic components have been fabricated, and are being tested in rigs and in the Centaur 50S engine. Field testing at an industrial co-generation site was started in May, 1997. This paper will provide an update of the development work and details of engine testing of ceramic components under the program.

Price, J.R.; Jimenez, O.; Faulder, L.; Edwards, B.; Parthasarathy, V.

1999-10-01T23:59:59.000Z

243

Program plan for molten carbonate fuel-cell systems development  

DOE Green Energy (OSTI)

The purpose of this document is to describe in both programmatic and technical terms the methodology that the US Department of Energy will use to commercialize a molten carbonate fuel cell power plant. Responsibility for the planning and management of the program resides in the molten carbonate fuel cell program office at the Argonne National Laboratory which reports to the Assistant Director for Fuel Cells in the Division of Fossil Fuel utilization of DOE/FE. The actual development of technology is carried out by selected contractors. The technology development phase of the program will culminate with the construction and operation of two demonstration power plants. The first power plant will be an industrial cogeneration plant which will be completed in 1987. The other power plant will be a baseload electric power plant to be completed in 1989.

Not Available

1978-10-27T23:59:59.000Z

244

Laboratory Directed Research and Development Program Assessment for FY 2007  

SciTech Connect

Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal Year 2007 spending was $515 million. There are approximately 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL. The LDRD Program Assessment Report contains a review of the program. The report includes a summary of the management processes, project peer review, and the portfolio's relatedness to BNL's mission, initiatives and strategic plans. Also included are a metric of success indicators and Self Assessment.

Newman,L.; Fox, K.J.

2007-12-31T23:59:59.000Z

245

LABORATORY DIRECTED RESEARCH AND DEVELOPMENT PROGRAM ASSESSMENT FOR FY 2006.  

Science Conference Proceedings (OSTI)

Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's total annual budget has averaged about $460 million. There are about 2,500 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, ''Laboratory Directed Research and Development,'' April 19,2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy National Nuclear Security Administration Laboratories dated June 13,2006. The goals and' objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL. The LDRD Program Assessment Report contains a review of the program. The report includes a summary of the management processes, project peer review, and the portfolio's relatedness to BNL's mission, initiatives and strategic plans. Also included is a metric of success indicators and Self Assessment.

FOX,K.J.

2006-01-01T23:59:59.000Z

246

HTGR Spent Fuel Treatment Program. HTGR Spent Fuel Treatment Development Program Plan  

SciTech Connect

The spent fuel treatment (SFT) program plan addresses spent fuel volume reduction, packaging, storage, transportation, fuel recovery, and disposal to meet the needs of the HTGR Lead Plant and follow-on plants. In the near term, fuel refabrication will be addressed by following developments in fresh fuel fabrication and will be developed in the long term as decisions on the alternatives dictate. The formulation of this revised program plan considered the implications of the Nuclear Waste Policy Act of 1982 (NWPA) which, for the first time, established a definitive national policy for management and disposal of nuclear wastes. Although the primary intent of the program is to address technical issues, the divergence between commercial and government interests, which arises as a result of certain provisions of the NWPA, must be addressed in the economic assessment of technically feasible alternative paths in the management of spent HTGR fuel and waste. This new SFT program plan also incorporates a significant cooperative research and development program between the United States and the Federal Republic of Germany. The major objective of this international program is to reduce costs by avoiding duplicate efforts.

1984-12-01T23:59:59.000Z

247

Environmental development plan for transportation programs: FY80 update  

DOE Green Energy (OSTI)

This is the second annual update of the environmental development plan (EDP) for transportation programs. It has been prepared as a cooperative effort of the Assistant Secretaries for Conservation and Solar Energy (ASCS) Office of Transportation Programs (CS/TP) and the Environment (ASEV) Office of Environmental Assessments. EDPs identify the ecosystem, resource, physical environment, health, safety, socioeconomic, and environmental control concerns associated with DOE programs. The programs include the research, development, demonstration, and assessment (RDD and A) of 14 transportation technologies and several strategy implementation projects. This EDP update presents a research and assessment plan for resolving any potentially adverse environmental concerns arising from these programs. The EDP process provides a framework for: incorporating environmental concerns into CS/TP planning and decision processes early to ensure they are assigned the same importance as technological, fiscal, and institutional concerns in decision making; resolving environmental concerns concurrently with energy technology and strategy development; and providing a research schedule that mitigates adverse environmental effects through sound technological design or policy analysis. This EDP also describes the status of each environmental concern and the plan for its resolution. Much of ongoing DOE reseirch and technology development is aimed at resolving concerns identified in this EDP. Each EDP is intended to be so comprehensive that no concerns escape notice. Care is taken to include any CS/TP action that may eventually require an Environmental Impact Statement. Because technology demonstration and commercialization tend to raise more environmental concerns than other portions of the transportation program, most of this EDP addresses these concerns.

Saricks, C.L.; Singh, M.K.; Bernard, M.J. III; Bevilacqua, O.M.

1980-09-01T23:59:59.000Z

248

Baseline Gas Turbine Development Program. Eleventh quarterly progress report  

DOE Green Energy (OSTI)

Progress is reported for a program to demonstrate by 1976 an experimental gas turbine powered automobile which meets the 1978 Federal Emissions Standards, has significantly improved fuel economy, and is competitive in performance, reliability, and potential manufacturing cost with the conventional piston engine powered, standard size American automobile. NASA completed initial heat balance testing of a baseline engine. An additional 450 hours were run on ceramic regenerators and seals. Seal wear rates are very good, and the elastomeric mounting system was satisfactory. An engine/control oil supply system based on the power steering pump is successfully operating in baseline vehicles. The design of the upgraded engine power turbine nozzle actuator was finalized, and layouts of the inlet guide vane actuator are in process. A lock-up torque converter was installed in the free rotor vehicle. Baseline engine and vehicle testing of water injection and variable inlet guide vanes was completed. A thermal analysis of the gas generator is in process. A steady-state, full power analysis was made. A three-dimensional stress analysis of the compressor cover was made. The power turbine nozzle actuating system layout was completed. The analytical studies of the power turbine rotor bearings were completed. MTI completed the design of the gas generator rotor simulation fixture and is starting to build it. Optimized reduction gears were successfully tested in a baseline engine.

Schmidt, F.W.; Wagner, C.E.

1975-07-31T23:59:59.000Z

249

Harvard Medical ScHool Minority Faculty Development Program  

E-Print Network (OSTI)

Harvard Medical ScHool Minority Faculty Development Program training directory 2009-2010 #12 and medical school graduation, you face important decisions regarding internships, post-graduate education and future fellowship training. Harvard Medical School and its affiliated hospitals and research institutions

Church, George M.

250

DOE/NREL Advanced Wind Turbine Development Program  

DOE Green Energy (OSTI)

The development of technologically advanced, high-efficiency wind turbines continues to be a high-priority activity of the US wind industry. The National Renewable Energy Laboratory (formerly the Solar Energy Research Institute), sponsored by the US Department of Energy (DOE), has initiated the Advanced Wind Turbine Program to assist the wind industry in the development of a new class of advanced wind turbines. The initial phase of the program focused on developing conceptual designs for near-term and advanced turbines. The goal of the second phase of this program is to use the experience gained over the last decade of turbine design and operation combined with the latest existing design tools to develop a turbine that will produce energy at $0.05 per kilowatt-hour (kWh) in a 5.8-m/s (13-mph) wind site. Three contracts have been awarded, and two more are under negotiation in the second phase. The third phase of the program will use new innovations and state-of-the-art wind turbine design technology to produce a turbine that will generate energy at $0.04/kWh in a 5.8-m/s wind site. Details of the third phase will be announced in early 1993.

Butterfield, C.P.; Smith, B.; Laxson, A.; Thresher, B. [National Renewable Energy Lab., Golden, CO (United States); Goldman, P. [USDOE Assistant Secretary for Conservation and Renewable Energy, Washington, DC (United States). Wind/Hydro/Ocean Technologies Div.

1993-05-01T23:59:59.000Z

251

Utility Battery Exploratory Technology Development Program report for FY91  

DOE Green Energy (OSTI)

Sandia National Laboratories, Albuquerque, manages the Utility Battery Exploratory Technology Development Program, which is sponsored by the US Department of Energy's Office of Energy Management. In this capacity, Sandia is responsible for the engineering analyses and development of rechargeable batteries for utility-energy-storage applications. This report details the technical achievements realized during fiscal year 1991. Sodium/Sulfur, Zinc/Bromine, Nickel/Hydrogen, Aluminium/Air and Lead/Acid batteries are evaluated.

Magnani, N.J.; Butler, P.C.; Akhil, A.A.; Braithwaite, J.W.; Clark, N.H.; Freese, J.M.

1991-12-01T23:59:59.000Z

252

Utility Battery Exploratory Technology Development Program report for FY91  

DOE Green Energy (OSTI)

Sandia National Laboratories, Albuquerque, manages the Utility Battery Exploratory Technology Development Program, which is sponsored by the US Department of Energy`s Office of Energy Management. In this capacity, Sandia is responsible for the engineering analyses and development of rechargeable batteries for utility-energy-storage applications. This report details the technical achievements realized during fiscal year 1991. Sodium/Sulfur, Zinc/Bromine, Nickel/Hydrogen, Aluminium/Air and Lead/Acid batteries are evaluated.

Magnani, N.J.; Butler, P.C.; Akhil, A.A.; Braithwaite, J.W.; Clark, N.H.; Freese, J.M.

1991-12-01T23:59:59.000Z

253

Austin's Green Building Program: A Tool for Sustainable Development  

E-Print Network (OSTI)

In a new approach to home rating systems, Austin's Green Building Program was designed in 1991 as a marketing approach to encourage builders, architects, and designers to incorporate sustainable building practices, systems, and materials into residential construction. A secondary goal of the program was to encourage "green" business development in the Austin area. A rating system of accumulated points translates to a "sustainability rating" of one to four stars. Four resource areas relating to the home are considered: water, energy, building materials, and solid waste. Seventeen criteria were used to develop points for more than 130 building options listed under the four categories. The criteria for evaluating the options included consideration of the source, process (i.e. from raw material to finished product), use, postlife (recyclability, disposal), integration (with other systems), and difficulty in offering the option. The options are presented in the Green Building Guide, which includes an overview of the program, a discussion of sustainability and local and regional resources, the rating worksheets, and a comprehensive glossary of terns. The Green Building Guide is supplemented by a Sustainable Building Sourcebook which gives more detailed design and source information for each option listed in the Guide. The Green Building Guide is being revised in a simpler format, and the marketing package is being evaluated based upon our experience of the past two years of program operation. The Green Building Program supports participants through general marketing and technical seminars. Response to the Green Building Program has indicated pent-up demand from the market for more environmentally sensitive building practices. Reaction from the building industry has shown a desire for a mechanism to present building and development in a more positive light to an environmentally aware public. The broad acceptance of this strategy was highlighted at the United Nations Conference for Environment and Development (UNCED), called the "Earth Summit," when the Green Building Program was selected as one of twelve finalists worldwide for the United Nations Local Government Honours Programme. The most recent of several awards was the Award for Innovation presented by the Association of Demand Side Management Professionals in November, 1993. This paper will follow the implementation and operation of the Green Building Program, with discussions on the successes, challenges, and modifications of the program since its introduction to the public in early 1992.

Seiter, D. L.

1994-01-01T23:59:59.000Z

254

Guidance: Requirements for Installing Renewable Fuel Pumps at Federal Fleet Fueling Centers under EISA Section 246: Federal Fleet Program, Federal Energy Management Program, U.S. Department of Energy, March 2011  

Science Conference Proceedings (OSTI)

On December 19, 2007, the Energy Independence and Security Act of 2007 (EISA) was signed into law as Public Law 110-140. Section 246(a) of EISA directs Federal agencies to install at least one renewable fuel pump at each Federal fleet fueling center under their jurisdiction by January 1, 2010. Section 246(b) requires the President to submit an annual report to Congress on Federal agency progress in meeting this renewable fuel pump installation mandate. This guidance document provides guidelines to help agencies understand these requirements and how to comply with EISA Section 246.

Not Available

2011-03-01T23:59:59.000Z

255

Geothermal Energy Research, Development and Demonstration Program. First annual report  

DOE Green Energy (OSTI)

The following are discussed: program achievements and progress, interagency coordination and program management, international cooperation program, non-federal activities, and future program plans. (MHR)

Not Available

1977-04-01T23:59:59.000Z

256

Laboratory Directed Research and Development Program FY98  

SciTech Connect

The Ernest Orlando Lawrence Berkeley National Laboratory (LBNL or Berkeley Lab) Laboratory Directed Research and Development Program FY 1998 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The LBNL LDRD program is a critical tool for directing the Laboratory's forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for LBNL scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances LBNL's core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. All projects are work in forefront areas of science and technology. Areas eligible for support include the following: Advanced study of hypotheses, concepts, or innovative approaches to scientific or technical problems; Experiments and analyses directed toward ''proof of principle'' or early determination of the utility of new scientific ideas, technical concepts, or devices; and Conception and preliminary technical analyses of experimental facilities or devices.

Hansen, T. [ed.; Chartock, M.

1999-02-05T23:59:59.000Z

257

Laboratory Directed Research and Development Program Activities for FY 2007.  

SciTech Connect

Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2007 budget was $515 million. There are about 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. In accordance this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2007. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. We explicitly indicate that research conducted under the LDRD Program should be highly innovative, and an element of high risk as to success is acceptable. In the solicitation for new proposals for Fiscal Year 2007 we especially requested innovative new projects in support of RHIC and the Light Source and any of the Strategic Initiatives listed at the LDRD web site. These included support for NSLS-II, RHIC evolving to a quantum chromo dynamics (QCD) lab, nanoscience, translational and biomedical neuroimaging, energy and, computational sciences. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL.

Newman,L.

2007-12-31T23:59:59.000Z

258

TEN-YEAR SODIUM-REACTOR DEVELOPMENT PROGRAM  

SciTech Connect

>A 10-year program of development and construction of large-scale, sodium-cooled reactors is summarized. The current state of development of the SGR and its associated components is sufficiently advanced to permit construction of economic plants within the 10-year period. Two advanced Sodium Reactor concepts are presented. A construction program involving two reactor experiments and two full-scale plants with a capacity of 550 Mwe, together with associated development, is estimated to cost 6 million. Of this amount approximately 06 million would be borne by the AEC and the remainder by power utility companies. Escalation and construction loan interest charges are included in these figures. The cost of power from the larger power plant would be approximately 6 mills/kw-hr, based on 1959 dollars. (auth)

1959-04-11T23:59:59.000Z

259

Idaho National Engineering Laboratory installation roadmap document. Revision 1  

SciTech Connect

The roadmapping process was initiated by the US Department of Energy`s office of Environmental Restoration and Waste Management (EM) to improve its Five-Year Plan and budget allocation process. Roadmap documents will provide the technical baseline for this planning process and help EM develop more effective strategies and program plans for achieving its long-term goals. This document is a composite of roadmap assumptions and issues developed for the Idaho National Engineering Laboratory (INEL) by US Department of Energy Idaho Field Office and subcontractor personnel. The installation roadmap discusses activities, issues, and installation commitments that affect waste management and environmental restoration activities at the INEL. The High-Level Waste, Land Disposal Restriction, and Environmental Restoration Roadmaps are also included.

1993-05-30T23:59:59.000Z

260

Laboratory Directed Research and Development Program FY 2006  

SciTech Connect

The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness.

Hansen (Ed.), Todd

2007-03-08T23:59:59.000Z

Note: This page contains sample records for the topic "development program installation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Laboratory Directed Research and Development Program FY2004  

SciTech Connect

The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Goals that are codified in DOE's September 2003 Strategic Plan, with a primary focus on Advancing Scientific Understanding. For that goal, the Fiscal Year (FY) 2004 LDRD projects support every one of the eight strategies described in the plan. In addition, LDRD efforts support the goals of Investing in America's Energy Future (six of the fourteen strategies), Resolving the Environmental Legacy (four of the eight strategies), and Meeting National Security Challenges (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD supports Office of Science strategic plans, including the 20 year Scientific Facilities Plan and the draft Office of Science Strategic Plan. The research also supports the strategic directions periodically under review by the Office of Science Program Offices, such as strategic LDRD projects germane to new research facility concepts and new fundamental science directions.

Hansen, Todd C.

2005-03-22T23:59:59.000Z

262

Laboratory Directed Research and Development Program FY2004  

SciTech Connect

The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Goals that are codified in DOE's September 2003 Strategic Plan, with a primary focus on Advancing Scientific Understanding. For that goal, the Fiscal Year (FY) 2004 LDRD projects support every one of the eight strategies described in the plan. In addition, LDRD efforts support the goals of Investing in America's Energy Future (six of the fourteen strategies), Resolving the Environmental Legacy (four of the eight strategies), and Meeting National Security Challenges (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD supports Office of Science strategic plans, including the 20 year Scientific Facilities Plan and the draft Office of Science Strategic Plan. The research also supports the strategic directions periodically under review by the Office of Science Program Offices, such as strategic LDRD projects germane to new research facility concepts and new fundamental science directions.

Hansen, Todd C.

2005-03-22T23:59:59.000Z

263

Laboratory Directed Research and Development Program Activities for FY 2008.  

SciTech Connect

Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that maintains a primary mission focus the physical sciences, energy sciences, and life sciences, with additional expertise in environmental sciences, energy technologies, and national security. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2008 budget was $531.6 million. There are about 2,800 employees, and another 4,300 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development,' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Developlnent at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. Accordingly, this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2008. BNL expended $12 million during Fiscal Year 2008 in support of 69 projects. The program has two categories, the annual Open Call LDRDs and Strategic LDRDs, which combine to meet the overall objectives of the LDRD Program. Proposals are solicited annually for review and approval concurrent with the next fiscal year, October 1. For the open call for proposals, an LDRD Selection Committee, comprised of the Associate Laboratory Directors (ALDs) for the Scientific Directorates, an equal number of scientists recommended by the Brookhaven Council, plus the Assistant Laboratory Director for Policy and Strategic Planning, review the proposals submitted in response to the solicitation. The Open Can LDRD category emphasizes innovative research concepts with limited management filtering to encourage the creativity of individual researchers. The competition is open to all BNL staff in programmatic, scientific, engineering, and technical support areas. Researchers submit their project proposals to the Assistant Laboratory Director for Policy and Strategic Planning. A portion of the LDRD budget is held for the Strategic LDRD (S-LDRD) category. Projects in this category focus on innovative R&D activities that support the strategic agenda of the Laboratory. The Laboratory Director entertains requests or articulates the need for S-LDRD funds at any time. Strategic LDRD Proposals also undergo rigorous peer review; the approach to review is tailored to the size and scope of the proposal. These Projects are driven by special opportunities, including: (1) Research project(s) in support of Laboratory strategic initiatives as defined and articulated by the Director; (2) Research project(s) in support of a Laboratory strategic hire; (3) Evolution of Program Development activities into research and development activities; and (4) ALD proposal(s) to the Director to support unique research opportunities. The goals and objectives of BNL's LDRD Program can be inferred fronl the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. We explicitly indicate that research conducted under the LDRD Program should be highly innovative, and an element of high risk as to success is acceptable. To be one of the premier DOE National Laboratories, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and d

Looney,J.P.; Fox, K.

2009-04-01T23:59:59.000Z

264

Laboratory Directed Research and Development Program. Annual report  

SciTech Connect

Today, new ideas and opportunities, fostering the advancement of technology, are occurring at an ever-increasing rate. It, therefore, seems appropriate that a vehicle be available which fosters the development of these new ideas and technologies, promotes the early exploration and exploitation of creative and innovative concepts, and which develops new ``fundable`` R&D projects and programs. At Brookhaven National Laboratory (BNL), one such method is through its Laboratory Directed Research and Development (LDRD) Program. This discretionary research and development tool is critical in maintaining the scientific excellence and vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor achieving and maintaining staff excellence, and a means to address national needs, with the overall mission of the Department of Energy (DOE) and the Brookhaven National Laboratory. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals, and presentations at meetings and forums.

Ogeka, G.J.

1991-12-01T23:59:59.000Z

265

The DOE Advanced Gas Reactor Fuel Development and Qualification Program  

Science Conference Proceedings (OSTI)

The high outlet temperatures and high thermal-energy conversion efficiency of modular High Temperature Gas-cooled Reactors (HTGRs) enable an efficient and cost effective integration of the reactor system with non-electricity generation applications, such as process heat and/or hydrogen production, for the many petrochemical and other industrial processes that require temperatures between 300C and 900C. The Department of Energy (DOE) has selected the HTGR concept for the Next Generation Nuclear Plant (NGNP) Project as a transformative application of nuclear energy that will demonstrate emissions-free nuclear-assisted electricity, process heat, and hydrogen production, thereby reducing greenhouse-gas emissions and enhancing energy security. The objective of the DOE Advanced Gas Reactor (AGR) Fuel Development and Qualification program is to qualify tristructural isotropic (TRISO)-coated particle fuel for use in HTGRs. The Advanced Gas Reactor Fuel Development and Qualification Program consists of five elements: fuel manufacture, fuel and materials irradiations, post-irradiation examination (PIE) and safety testing, fuel performance modeling, and fission-product transport and source term evaluation. An underlying theme for the fuel development work is the need to develop a more complete, fundamental understanding of the relationship between the fuel fabrication process and key fuel properties, the irradiation and accident safety performance of the fuel, and the release and transport of fission products in the NGNP primary coolant system. An overview of the program and recent progress is presented.

David Petti

2010-09-01T23:59:59.000Z

266

Design and installation package for a solar powered pump  

DOE Green Energy (OSTI)

Information is presented to evaluate the design and installation procedures of a solar powered pump developed by Calmac Manufacturing Company. Included is information about subsystem installation, operation and maintenance requirements, subsystem performance specifications, and detailed design drawings.

Not Available

1978-07-01T23:59:59.000Z

267

Laboratory directed research and development program FY 1999  

SciTech Connect

The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY99.

Hansen, Todd; Levy, Karin

2000-03-08T23:59:59.000Z

268

Laboratory Directed Research and Development Program FY 2001  

SciTech Connect

The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY01.

Hansen, Todd; Levy, Karin

2002-03-15T23:59:59.000Z

269

Curating performance installations  

Science Conference Proceedings (OSTI)

In this paper we will examine the use of the digital screen display as a primary form of accessing information within the museum context. We will argue that this mode of dissemination, achieved primarily through a Graphic User Interface (GUI) though ... Keywords: GUI, becoming, being, content, dissemination, exhibition, experience, form, information, installation, interactivity, interpretation, materiality, museum, nothing, objecthood, performance, performative, re-enactment, screen, technology, trajectory

Daniel Felstead; Kate Bailey

2011-07-01T23:59:59.000Z

270

Laboratory Directed Research and Development Program FY 2008 Annual Report  

Science Conference Proceedings (OSTI)

The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the Office of Science Program Offices, such as LDRD projects germane to new research facility concepts and new fundamental science directions. Berkeley Lab LDRD program also play an important role in leveraging DOE capabilities for national needs. The fundamental scientific research and development conducted in the program advances the skills and technologies of importance to our Work For Others (WFO) sponsors. Among many directions, these include a broad range of health-related science and technology of interest to the National Institutes of Health, breast cancer and accelerator research supported by the Department of Defense, detector technologies that should be useful to the Department of Homeland Security, and particle detection that will be valuable to the Environmental Protection Agency. The Berkeley Lab Laboratory Directed Research and Development Program FY2008 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the LDRD program planning and documentation process that includes an annual planning cycle, project selection, implementation, and review.

editor, Todd C Hansen

2009-02-23T23:59:59.000Z

271

Advanced Materials Development Program: Ceramic Technology for Advanced Heat Engines program plan, 1983--1993  

DOE Green Energy (OSTI)

The purpose of the Ceramic Technology for Advanced Heat Engines (CTAHE) Project is the development of an industrial technology base capable of providing reliable and cost-effective high temperature ceramic components for application in advanced heat engines. There is a deliberate emphasis on industrial'' in the purpose statement. The project is intended to support the US ceramic and engine industries by providing the needed ceramic materials technology. The heat engine programs have goals of component development and proof-of-concept. The CTAHE Project is aimed at developing generic basic ceramic technology and does not involve specific engine designs and components. The materials research and development efforts in the CTAHE Project are focused on the needs and general requirements of the advanced gas turbine and low heat rejection diesel engines. The CTAHE Project supports the DOE Office of Transportation Systems' heat engine programs, Advanced Turbine Technology Applications (ATTAP) and Heavy Duty Transport (HDT) by providing the basic technology required for development of reliable and cost-effective ceramic components. The heat engine programs provide the iterative component design, fabrication, and test development logic. 103 refs., 18 figs., 11 tabs.

Not Available

1990-07-01T23:59:59.000Z

272

Hot Dry Rock Heat Mining Geothermal Energy Development Program - Annual Report Fiscal Year 1990  

DOE Green Energy (OSTI)

This was a year of significant accomplishment in the Hot Dry Rock (HDR) Program. Most importantly, the design, construction, and installation of the surface plant for the Phase II system neared completion by the end of the year. Basic process design work has been completed, and all major components of the system except the gas/particle separator have been procured. For this component, previous design problems have been resolved, and purchase during the first half of FY91 is anticipated. Installation of the surface plant is well underway. The system will be completed and ready for operation by the end of FY91 under the current funding scenario. The operational schedule to be followed will then depend upon the program funding level. Our goal is to start long-term flow testing as soon as possible. Of equal importance, from the standpoint of the long-term viability of HDR technology, during this year, for the first time, it has been demonstrated in field testing that it should be possible to operate HDR reservoirs with water losses of 1-3%, or even less. Our experience in the deep, hot, Phase II reservoir at Fenton Hill is in sharp contrast to the significant water losses seen by Japanese and British scientists working in shallower, cooler, HDR reservoirs. Calculations and modeling based on field data have shown that water consumption declines with the log of time in a manner related to water storage in the reservoir. This work may be crucial in proving that HDR can be an economically viable means for producing energy, and that it is useful even in areas where water is in short supply. In addition, an engineering model was developed to predict and explain water consumption in HDR reservoirs under pressure, the collection and processing of seismic information was more highly automated, and the detection limits for reactive tracers were lowered to less than 1 part per billion. All of these developments will add greatly to our ability to conduct, analyze, and understand the long-term test (LTFT). Water-rights acquisition activities, site clean-up, and improvements in the 1 million gallon storage pond at Fenton Hill have assured that we will have adequate water to carry out a vigorous testing program in a safe and environmentally-sound manner. The 1 million gallon pond was recontoured, and lined with a sophisticated multi-layer plastic barrier. A large part of the work on the pond was paid for with funds from the Laboratory's Health, Safety and Environment Division. Almost all the expected achievements set forth in the FY90 Annual Operating Plan were substantially accomplished this past year, in spite of a $300,000 shortfall in funding. This funding shortfall did delay some work and result in some projects not being completed, however. They have had to go more slowly than they would like on some aspects of the installation of the surface plant for the LTFT, purchase of non-critical equipment, such as a back-up electric generator for Fenton Hill, has been delayed, and some work has not been brought to an adequate conclusion. The fracture healing work, for example, was completed but not written up. they simply did not have the funds to pay for the effort needed to fully document this work. As the program enters FY91, the completion of the surface plant at Fenton Hill is within sight. The long-awaited LTFT can then begin, and the large investment in science and technology represents by the HDR Program will begin to bear still greater dividends.

Duchane, David

1991-01-01T23:59:59.000Z

273

CERTS 2012 Program Review - NASPI Technical Support for OITT & Operations of NERC-TVA NASPI Synchrophasor Network & RTDMS Installation - Jim Dyer, EPG  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SynchroPhasor Initiative SynchroPhasor Initiative (NASPI) Event Analysis Reports Jim Dyer dyer@ElectricPowerGroup.com June 12, 2012 Washington, DC DOE - CERTS Transmission Reliability R&D Internal Program Review Agenda  Technical Support for Operations of Real Time Dynamics Monitoring System (RTDMS) for NASPI  Support of the RTDMS Users' Group  Support of NASPI Operations Implementation Task Team (OITT) Page 1  Built upon GRID-3P Platform, U.S. Patent 7,233,843, and U.S. Patent 8,060259. All rights reserved. NASPI-RTDMS Support Page 2  Objective - Enhance, maintain and support the RTDMS application, server, data base and client. Support users needs and provide an application that converts phasor date into useful information

274

Advanced Turbine Systems Program industrial system concept development  

DOE Green Energy (OSTI)

Solar approached Phase II of ATS program with the goal of 50% thermal efficiency. An intercolled and recuperated gas turbine was identified as the ultimate system to meet this goal in a commercial gas turbine environment. With commercial input from detailed market studies and DOE`s ATS program, Solar redefined the company`s proposed ATS to fit both market and sponsor (DOE) requirements. Resulting optimized recuperated gas turbine will be developed in two sizes, 5 and 15 MWe. It will show a thermal efficiency of about 43%, a 23% improvement over current industrial gas turbines. Other ATS goals--emissions, RAMD (reliability, availability, maintainability, durability), cost of power--will be met or exceeded. During FY95, advanced development of key materials, combustion and component technologies proceeded to the point of acceptance for inclusion in ATS Phase III.

Gates, S.

1995-12-31T23:59:59.000Z

275

The US Hot Dry Rock Geothermal Energy Development Program  

DOE Green Energy (OSTI)

Recent accomplishments of the program are highlighted by a successful limited term flow test of the Phase 2 reservoir at the Fenton Hill site near Los Alamos. This reservoir connection was established by sidetracking one of the deep wells into hydraulically fractured areas, identified by microseismic data after original fracture attempts failed to connect the two wells. Hydraulic communication was improved by supplemental fracturing. Preliminary testing indicated a reservoir with fracture volume and heat production area surpassing the values from the earlier Phase 1 reservoir. Following completion of the downhole reservoir system, preparations were made for a reservoir-energy-extraction test. This Initial Closed Loop Flow Test (ICFT) was needed to obtain operating characteristics for planning a much longer test for thorough reservoir evaluation. The 30-day ICFT succeeded with final production of about 10 MWt at 192/sup 0/C, while injecting 285 gpm at 4600 psi and producing 206 gpm at 500 psi. The water loss rate and flow impedance were high, 27% and 18 psi/gpm respectively, but were declining. Radioactive tracer tests indicated reservoir volume growth during the experiment which was continuously monitored for acoustic or microseismic activity. Following the flow test, experiments were continued for several months during the venting process. Preparations are now underway for the Long Term Flow Test (LTFT). To understand as much as possible about the Phase 2 reservoir and to demonstrate the commercial feasibility of energy from HDR reservoirs, a flow test of approximately one year's duration is deemed necessary. Part of the preparation for the LTFT is the workover and repair of the production well and the installation of a competent overall flow loop and energy exchange system. 7 refs., 5 figs.

Franke, P.R.

1987-01-01T23:59:59.000Z

276

MHD magnet technology development program summary, September 1982  

DOE Green Energy (OSTI)

The program of MHD magnet technology development conducted for the US Department of Energy by the Massachusetts Institute of Technology during the past five years is summarized. The general strategy is explained, the various parts of the program are described and the results are discussed. Subjects covered include component analysis, research and development aimed at improving the technology base, preparation of reference designs for commercial-scale magnets with associated design evaluations, manufacturability studies and cost estimations, the detail design and procurement of MHD test facility magnets involving transfer of technology to industry, investigations of accessory subsystem characteristics and magnet-flow-train interfacing considerations and the establishment of tentative recommendations for design standards, quality assurance procedures and safety procedures. A systematic approach (framework) developed to aid in the selection of the most suitable commercial-scale magnet designs is presented and the program status as of September 1982 is reported. Recommendations are made for future work needed to complete the design evaluation and selection process and to provide a sound technological base for the detail design and construction of commercial-scale MHD magnets. 85 references.

Not Available

1983-11-01T23:59:59.000Z

277

Property:EZFeed/InstalledCapacity | Open Energy Information  

Open Energy Info (EERE)

InstalledCapacity InstalledCapacity Jump to: navigation, search Property Name EZFeed/InstalledCapacity Property Type String Description EZFeed Installed Capacity property Subproperties This property has the following 6079 subproperties: 2 2003 Climate Change Fuel Cell Buy-Down Program (Federal) 3 30% Business Tax Credit for Solar (Vermont) 4 401 Certification (Vermont) A AEP (Central and North) - CitySmart Program (Texas) AEP (Central and North) - Residential Energy Efficiency Programs (Texas) AEP (Central and SWEPCO) - Coolsaver A/C Tune Up (Texas) AEP (Central, North and SWEPCO) - Commercial Solutions Program (Texas) AEP (SWEPCO) - Residential Energy Efficiency Programs (Texas) AEP Appalachian Power - Commercial and Industrial Rebate Programs (West Virginia) AEP Appalachian Power - Residential Home Retrofit Program (West Virginia)

278

Laboratory Directed Research and Development Program FY 2004 Annual Report  

SciTech Connect

The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2004 and includes final reports for completed projects and shorter progress reports for projects that were active, but not completed, during this period. The FY 2004 ORNL LDRD Self-Assessment (ORNL/PPA-2005/2) provides financial data about the FY 2004 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at . LDRD is a relatively small but vital DOE program that allows ORNL, as well as other multiprogram DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating exploration of forefront science and technology; (4) serving as a proving ground for new research; and (5) supporting high-risk, potentially high-value R&D. Through LDRD the Laboratory is able to improve its distinctive capabilities and enhance its ability to conduct cutting-edge R&D for its DOE and WFO sponsors. To meet the LDRD objectives and fulfill the particular needs of the Laboratory, ORNL has established a program with two components: the Director's R&D Fund and the Seed Money Fund. As outlined in Table 1, these two funds are complementary. The Director's R&D Fund develops new capabilities in support of the Laboratory initiatives, while the Seed Money Fund is open to all innovative ideas that have the potential for enhancing the Laboratory's core scientific and technical competencies. Provision for multiple routes of access to ORNL LDRD funds maximizes the likelihood that novel and seminal ideas with scientific and technological merit will be recognized and supported.

Sjoreen, Terrence P [ORNL

2005-04-01T23:59:59.000Z

279

Laboratory Directed Research and Development Program FY 2004 Annual Report  

Science Conference Proceedings (OSTI)

The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2004 and includes final reports for completed projects and shorter progress reports for projects that were active, but not completed, during this period. The FY 2004 ORNL LDRD Self-Assessment (ORNL/PPA-2005/2) provides financial data about the FY 2004 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at . LDRD is a relatively small but vital DOE program that allows ORNL, as well as other multiprogram DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating exploration of forefront science and technology; (4) serving as a proving ground for new research; and (5) supporting high-risk, potentially high-value R&D. Through LDRD the Laboratory is able to improve its distinctive capabilities and enhance its ability to conduct cutting-edge R&D for its DOE and WFO sponsors. To meet the LDRD objectives and fulfill the particular needs of the Laboratory, ORNL has established a program with two components: the Director's R&D Fund and the Seed Money Fund. As outlined in Table 1, these two funds are complementary. The Director's R&D Fund develops new capabilities in support of the Laboratory initiatives, while the Seed Money Fund is open to all innovative ideas that have the potential for enhancing the Laboratory's core scientific and technical competencies. Provision for multiple routes of access to ORNL LDRD funds maximizes the likelihood that novel and seminal ideas with scientific and technological merit will be recognized and supported.

Sjoreen, Terrence P [ORNL

2005-04-01T23:59:59.000Z

280

Laboratory Directed Research and Development Program FY 2007 Annual Report  

SciTech Connect

The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries for all ORNL LDRD research activities supported during FY 2007. The associated FY 2007 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching mission to advance the national, economic, and energy security of the United States and promote scientific and technological innovation in support of that mission. As a national resource, the Laboratory also applies its capabilities and skills to specific needs of other federal agencies and customers through the DOE Work for Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at http://www.ornl.gov/. LDRD is a relatively small but vital DOE program that allows ORNL, as well as other DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating exploration of forefront science and technology; (4) serving as a proving ground for new research; and (5) supporting high-risk, potentially high-value R&D. Through LDRD the Laboratory is able to improve its distinctive capabilities and enhance its ability to conduct cutting-edge R&D for its DOE and WFO sponsors. To meet the LDRD objectives and fulfill the particular needs of the Laboratory, ORNL has established a program with two components: the Director's R&D Fund and the Seed Money Fund. As outlined in Table 1, these two funds are complementary. The Director's R&D Fund develops new capabilities in support of the Laboratory initiatives, while the Seed Money Fund is open to all innovative ideas that have the potential for enhancing the Laboratory's core scientific and technical competencies. Provision for multiple routes of access to ORNL LDRD funds maximizes the likelihood that novel ideas with scientific and technological merit will be recognized and supported.

Sjoreen, Terrence P [ORNL

2008-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "development program installation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Laboratory Directed Research and Development Program FY 2005 Annual Report  

Science Conference Proceedings (OSTI)

The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2005 and includes final reports for completed projects and shorter progress reports for projects that were active, but not completed, during this period. The FY 2005 ORNL LDRD Self-Assessment (ORNL/PPA-2006/2) provides financial data about the FY 2005 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at . LDRD is a relatively small but vital DOE program that allows ORNL, as well as other multiprogram DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating exploration of forefront science and technology; (4) serving as a proving ground for new research; and (5) supporting high-risk, potentially high-value R&D. Through LDRD the Laboratory is able to improve its distinctive capabilities and enhance its ability to conduct cutting-edge R&D for its DOE and WFO sponsors. To meet the LDRD objectives and fulfill the particular needs of the Laboratory, ORNL has established a program with two components: the Director's R&D Fund and the Seed Money Fund. As outlined in Table 1, these two funds are complementary. The Director's R&D Fund develops new capabilities in support of the Laboratory initiatives, while the Seed Money Fund is open to all innovative ideas that have the potential for enhancing the Laboratory's core scientific and technical competencies. Provision for multiple routes of access to ORNL LDRD funds maximizes the likelihood that novel and seminal ideas with scientific and technological merit will be recognized and supported.

Sjoreen, Terrence P [ORNL

2006-04-01T23:59:59.000Z

282

Laboratory Directed Research and Development Program FY 2007 Annual Report  

SciTech Connect

The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries for all ORNL LDRD research activities supported during FY 2007. The associated FY 2007 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching mission to advance the national, economic, and energy security of the United States and promote scientific and technological innovation in support of that mission. As a national resource, the Laboratory also applies its capabilities and skills to specific needs of other federal agencies and customers through the DOE Work for Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at http://www.ornl.gov/. LDRD is a relatively small but vital DOE program that allows ORNL, as well as other DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating exploration of forefront science and technology; (4) serving as a proving ground for new research; and (5) supporting high-risk, potentially high-value R&D. Through LDRD the Laboratory is able to improve its distinctive capabilities and enhance its ability to conduct cutting-edge R&D for its DOE and WFO sponsors. To meet the LDRD objectives and fulfill the particular needs of the Laboratory, ORNL has established a program with two components: the Director's R&D Fund and the Seed Money Fund. As outlined in Table 1, these two funds are complementary. The Director's R&D Fund develops new capabilities in support of the Laboratory initiatives, while the Seed Money Fund is open to all innovative ideas that have the potential for enhancing the Laboratory's core scientific and technical competencies. Provision for multiple routes of access to ORNL LDRD funds maximizes the likelihood that novel ideas with scientific and technological merit will be recognized and supported.

Sjoreen, Terrence P [ORNL

2008-04-01T23:59:59.000Z

283

Laboratory Directed Research and Development Program FY 2005 Annual Report  

SciTech Connect

The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2005 and includes final reports for completed projects and shorter progress reports for projects that were active, but not completed, during this period. The FY 2005 ORNL LDRD Self-Assessment (ORNL/PPA-2006/2) provides financial data about the FY 2005 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at . LDRD is a relatively small but vital DOE program that allows ORNL, as well as other multiprogram DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating exploration of forefront science and technology; (4) serving as a proving ground for new research; and (5) supporting high-risk, potentially high-value R&D. Through LDRD the Laboratory is able to improve its distinctive capabilities and enhance its ability to conduct cutting-edge R&D for its DOE and WFO sponsors. To meet the LDRD objectives and fulfill the particular needs of the Laboratory, ORNL has established a program with two components: the Director's R&D Fund and the Seed Money Fund. As outlined in Table 1, these two funds are complementary. The Director's R&D Fund develops new capabilities in support of the Laboratory initiatives, while the Seed Money Fund is open to all innovative ideas that have the potential for enhancing the Laboratory's core scientific and technical competencies. Provision for multiple routes of access to ORNL LDRD funds maximizes the likelihood that novel and seminal ideas with scientific and technological merit will be recognized and supported.

Sjoreen, Terrence P [ORNL

2006-04-01T23:59:59.000Z

284

Superconducting magnet development program progress report, July 1974--June 1975  

SciTech Connect

During FY 1975, the superconducting magnet development program at the Lawrence Livermore Laboratory was primarily directed toward the development of multifilamentary Nb$sub 3$Sn conductor for large CTR machines. It was secondarily concerned with preliminary work for the MX experiment and with the acquisition of additional testing facilities. Among the significant achievements was the construction and operation of a 27-cm-bore coil to its short-sample limit of 7-T at the windings. The coil was wound with a 100-m length of 67,507- filament Nb$sub 3$Sn conductor. (auth)

Cornish, D.N.; Harvey, A.R.; Nelson, R.L.; Taylor, C.E.; Zbasnik, J.P.

1975-10-24T23:59:59.000Z

285

AEC FUELS AND MATERIALS DEVELOPMENT PROGRAM. Seventh Annual Report.  

SciTech Connect

This report is the seventh annual report of the unclassified portion of the Fuels and Materials Development Programs being conducted by the General Electric Company's Nuclear Materials and Propulsion Operation under Contract AT(40-1)-2847, issued by the Fuels and Materials Branch, Division of Reactor Development and Technology, of the Atomic Energy Commission. This report covers the period from January 31, 1967 to January 31, 1968, and thus also serves as the quarterly progress report for the final quarter of the year.

1968-01-01T23:59:59.000Z

286

Biofuels feedstock development program. Annual progress report for 1992  

DOE Green Energy (OSTI)

The Department of Energy`s (DOE`s) Biofuels Feedstock Development Program (BFDP) leads the nation in the research, development, and demonstration of environmentally acceptable and commercially viable dedicated feedstock supply systems (DFSS). The purpose of this report is to highlight the status and accomplishments of the research that is currently being funded by the BFDP. Highlights summarized here and additional accomplishments are described in more detail in the sections associated with each major program task. A few key accomplishments include (1) development of a methodology for doing a cost-supply analysis for energy crops and the application of that methodology to looking at possible land use changes around a specific energy facility in East Tennessee; (2) preliminary documentation of the relationship between woody crop plantation locations and bird diversity at sites in the Midwest, Canada, and the pacific Northwest supplied indications that woody crop plantations could be beneficial to biodiversity; (3) the initiation of integrated switchgrass variety trials, breeding research, and biotechnology research for the south/southeast region; (4) development of a data base management system for documenting the results of herbaceous energy crop field trials; (5) publication of three issues of Energy Crops Forum and development of a readership of over 2,300 individuals or organizations as determined by positive responses on questionnaires.

Wright, L.L.; Cushman, J.H.; Ehrenshaft, A.R.; McLaughlin, S.B.; McNabb, W.A.; Martin, S.A.; Ranney, J.W.; Tuskan, G.A.; Turhollow, A.F.

1993-11-01T23:59:59.000Z

287

[Gas cooled fuel cell systems technology development program  

DOE Green Energy (OSTI)

Objective is the development of a gas-cooled phosphoric acid fuel cell for electric utility power plant application. Primary objectives are to: demonstrate performance endurance in 10-cell stacks at 70 psia, 190 C, and 267 mA/cm[sup 2]; improve cell degradation rate to less than 8 mV/1000 hours; develop cost effective criteria, processes, and design configurations for stack components; design multiple stack unit and a single 100 kW fuel cell stack; design a 375 kW fuel cell module and demonstrate average cell beginning-of-use performance; manufacture four 375-kW fuel cell modules and establish characteristics of 1.5 MW pilot power plant. The work is broken into program management, systems engineering, fuel cell development and test, facilities development.

Not Available

1988-03-01T23:59:59.000Z

288

Recent developments in the hot dry rock geothermal energy program  

DOE Green Energy (OSTI)

In recent years, most of the Hot Dry Rock Programs effort has been focused on the extraction technology development effort at the Fenton Hill test site. The pair of approximately 4000 m wells for the Phase II Engineering System of the Fenton Hill Project have been completed. During the past two years, hydraulic fracture operations have been carried out to develop the geothermal reservoir. Impressive advances have been made in fracture identification techniques and instrumentation. To develop a satisfactory interwellbore flow connection the next step is to redrill the lower section of one of the wells into the fractured region. Chemically reactive tracer techniques are being developed to determine the effective size of the reservoir area. A new estimate has been made of the US hot dry rock resource, based upon the latest geothermal gradiant data. 3 figs.

Franke, P.R.; Nunz, G.J.

1985-01-01T23:59:59.000Z

289

Alternative Fuels Data Center: Installing New E85 Equipment  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Installing New E85 Installing New E85 Equipment to someone by E-mail Share Alternative Fuels Data Center: Installing New E85 Equipment on Facebook Tweet about Alternative Fuels Data Center: Installing New E85 Equipment on Twitter Bookmark Alternative Fuels Data Center: Installing New E85 Equipment on Google Bookmark Alternative Fuels Data Center: Installing New E85 Equipment on Delicious Rank Alternative Fuels Data Center: Installing New E85 Equipment on Digg Find More places to share Alternative Fuels Data Center: Installing New E85 Equipment on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Locations Infrastructure Development Business Case Equipment Options Equipment Installation Codes, Standards, & Safety Vehicles Laws & Incentives

290

Next Generation Nuclear Plant Materials Research and Development Program Plan  

SciTech Connect

The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Project is envisioned to demonstrate the following: (1) A full-scale prototype VHTR by about 2021; (2) High-temperature Brayton Cycle electric power production at full scale with a focus on economic performance; (3) Nuclear-assisted production of hydrogen (with about 10% of the heat) with a focus on economic performance; and (4) By test, the exceptional safety capabilities of the advanced gas-cooled reactors. Further, the NGNP program will: (1) Obtain a Nuclear Regulatory Commission (NRC) License to construct and operate the NGNP, this process will provide a basis for future performance based, risk-informed licensing; and (2) Support the development, testing, and prototyping of hydrogen infrastructures. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. The NGNP Materials R&D Program includes the following elements: (1) Developing a specific approach, program plan and other project management tools for managing the R&D program elements; (2) Developing a specific work package for the R&D activities to be performed during each government fiscal year; (3) Reporting the status and progress of the work based on committed deliverables and milestones; (4) Developing collaboration in areas of materials R&D of benefit to the NGNP with countries that are a part of the Generation IV International Forum; and (5) Ensuring that the R&D work performed in support of the materials program is in conformance with established Quality Assurance and procurement requirements. The objective of the NGNP Materials R&D Program is to provide the essential materials R&D needed to support the design and licensing of the reactor and balance of plant, excluding the hydrogen plant. The materials R&D program is being initiated prior to the design effort to ensure that materials R&D activities are initiated early enough to support the design process and support the Project Integrator. The thermal, environmental, and service life conditions of the NGNP will make selection and qualification of some high-temperature materials a significant challenge; thus, new materials and approaches may be required.

G.O. Hayner; R.L. Bratton; R.N. Wright

2005-09-01T23:59:59.000Z

291

LABORATORY DIRECTED RESEARCH AND DEVELOPMENT PROGRAM ACTIVITIES FOR FY2002.  

Science Conference Proceedings (OSTI)

Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 1 3.2A, ''Laboratory Directed Research and Development,'' January 8, 2001, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 413.2A. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL. The LDRD Annual Report contains summaries of all research activities funded during Fiscal Year 2002. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, the LDRD activities have resulted in numerous publications in various professional and scientific journals and presentations at meetings and forums. All Fy 2002 projects are listed and tabulated in the Project Funding Table. Also included in this Annual Report in Appendix A is a summary of the proposed projects for FY 2003. The BNL LDRD budget authority by DOE in FY 2002 was $7 million. The actual allocation totaled $6.7 million. The following sections in this report contain the management processes, peer review, and the portfolio's relatedness to BNL's mission, initiatives and strategic plans. Also included is a metric of success indicators.

FOX,K.J.

2002-12-31T23:59:59.000Z

292

Low pressure turbine installation  

SciTech Connect

Low-pressure turbine installation is described comprising a casing, at least two groups of turbine stages mounted in said casing, each turbine stage having blades so arranged that a flow of steam passes through the respective turbine stages in contraflow manner, partition means in said casing for separating the opposed final stages of said turbine stages from each other, and steam exhausting means opened in the side walls of said casing in a direction substantially perpendicular to the axis of said turbine, said steam exhausting means being connected to condensers.

Iizuka, N.; Hisano, K.; Ninomiya, S.; Otawara, Y.

1976-08-10T23:59:59.000Z

293

Explosives program development study: Phase 3, Final report  

SciTech Connect

Under the sponsorship of Lawrence Livermore National Laboratory (LLNL) and the Defense Advanced Research Agency (DARPA), The BDM Corporation has been conducting a survey and assessment of the status of research and development in high energy materials, particulary explosives. The objectives of the DARPA Explosives Program Development Study is to provide LLNL and DARPA with: (1) An assessment of the current research and development in high energy materials and an identification of needs for further work; (2) A set of recommendations to address those needs with DARPA (3) A program plan to implement these recommendations. The study consisted of review of papers from the principal high energy materials research and development conferences of 1985 - 1987; personal and telephone interviews with experts in the field in military services and DOE laboratories; review of papers of the ONR detonation symposia; principal technical journals; government reports; and a questionnaire survey of the explosives community for their ranking of research topics in materials. Four principal categories of operational issues and requirements were surveyed: energetic materials; performance; sensitivity/vulnerability; and manufacture and cost factors. These four categories are fully covered. 24 refs.

Hill, M.E.

1988-01-31T23:59:59.000Z

294

Laboratory Directed Research and Development Program Activities for FY 2007.  

SciTech Connect

Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2007 budget was $515 million. There are about 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. In accordance this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2007. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. We explicitly indicate that research conducted under the LDRD Program should be highly innovative, and an element of high risk as to success is acceptable. In the solicitation for new proposals for Fiscal Year 2007 we especially requested innovative new projects in support of RHIC and the Light Source and any of the Strategic Initiatives listed at the LDRD web site. These included support for NSLS-II, RHIC evolving to a quantum chromo dynamics (QCD) lab, nanoscience, translational and biomedical neuroimaging, energy and, computational sciences. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL.

Newman,L.

2007-12-31T23:59:59.000Z

295

Riser, pipelines installed in Griffin field  

Science Conference Proceedings (OSTI)

A mooring riser and flow lines along with a 67-km, 8-in., gas-export pipelines have been installed offshore Australia for BHP Petroleum's Griffin field development. The 66-km gas line will carry Griffin field gas to an onshore gas-processing plant. Completing the projects ahead of schedule was Clough Stena Joint Venture (Asia), Perth. BHP awarded the contracts in early 1993; the project was completed in January this year. The paper describes the contractor, pipeline installation, and handling equipment.

Not Available

1994-05-23T23:59:59.000Z

296

Materials Development Program, Ceramic Technology Project addendum to program plan: Cost effective ceramics for heat engines  

DOE Green Energy (OSTI)

This is a new thrust in the Ceramic Technology project. This effort represents an expansion of the program and an extension through FY 1997. Moderate temperature applications in conventional automobile and truck engines will be included along with high-temp. gas turbine and low heat rejection diesel engines. The reliability goals are expected to be met on schedule by end of FY 1993. Ceramic turbine rotors have been run (in DOE`s ATTAP program) for 1000 h at 1370C and full speed. However, the cost of ceramic components is a deterrrent to near-term commercialization. A systematic approach to reducing this cost includes the following elements: economic cost modeling, ceramic machining, powder synthesis, alternative forming and densification processes, yield improvement, system design studies, standards development, and testing and data base development. A draft funding plan is outlined. 6 figs, 1 tab.

Not Available

1992-08-01T23:59:59.000Z

297

Materials Development Program, Ceramic Technology Project addendum to program plan: Cost effective ceramics for heat engines  

DOE Green Energy (OSTI)

This is a new thrust in the Ceramic Technology project. This effort represents an expansion of the program and an extension through FY 1997. Moderate temperature applications in conventional automobile and truck engines will be included along with high-temp. gas turbine and low heat rejection diesel engines. The reliability goals are expected to be met on schedule by end of FY 1993. Ceramic turbine rotors have been run (in DOE's ATTAP program) for 1000 h at 1370C and full speed. However, the cost of ceramic components is a deterrrent to near-term commercialization. A systematic approach to reducing this cost includes the following elements: economic cost modeling, ceramic machining, powder synthesis, alternative forming and densification processes, yield improvement, system design studies, standards development, and testing and data base development. A draft funding plan is outlined. 6 figs, 1 tab.

Not Available

1992-08-01T23:59:59.000Z

298

Laboratory directed research and development program FY 2003  

SciTech Connect

The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. In FY03, Berkeley Lab was authorized by DOE to establish a funding ceiling for the LDRD program of $15.0 M, which equates to about 3.2% of Berkeley Lab's FY03 projected operating and capital equipment budgets. This funding level was provided to develop new scientific ideas and opportunities and allow the Berkeley Lab Director an opportunity to initiate new directions. Budget constraints limited available resources, however, so only $10.1 M was expended for operating and $0.6 M for capital equipment (2.4% of actual Berkeley Lab FY03 costs). In FY03, scientists submitted 168 proposals, requesting over $24.2 M in operating funding. Eighty-two projects were funded, with awards ranging from $45 K to $500 K. These projects are summarized in Table 1.

Hansen, Todd

2004-03-27T23:59:59.000Z

299

New and retrofit solar hot water installations in Florida, January--June 1977  

SciTech Connect

The purpose of this project was to ascertain the number of solar hot water installations in new buildings versus the number retrofitted to existing buildings in Florida during the January to June period of 1977. The methodology was to survey all installations started, in progress, or completed during that period. A by-product of the survey is a comprehensive list of manufacturers and another of distributors and installers in Florida. The survey excludes space heating and cooling and pool heating applications. However, the latter is being considered for a separate survey. Installations included are in the single-family and multi-family residential, commercial, industrial and public sectors. In the single-family residential sector, care has been taken to determine a new or retrofit breakdown, average square footage of collector per installation, average cost per square foot of collector in Florida, and subsequently, using F-CHART and system sizing programs developed at the Center, the fraction of load supplied by solar and its equivalent barrels of oil saved per year. In the multi-family residential, commercial, industrial and public sectors, specific information on each installation has been provided. This information includes new or retrofit, ownership, type of collector and manufacturer, square footage of installation, design percentage energy by solar, suxiliary fuel, system cost, and federal grants, if any.

1978-04-01T23:59:59.000Z

300

Recovery Act: Training Program Development for Commercial Building Equipment Technicians  

Science Conference Proceedings (OSTI)

The overall goal of this project has been to develop curricula, certification requirements, and accreditation standards for training on energy efficient practices and technologies for commercial building technicians. These training products will advance industry expertise towards net-zero energy commercial building goals and will result in a substantial reduction in energy use. The ultimate objective is to develop a workforce that can bring existing commercial buildings up to their energy performance potential and ensure that new commercial buildings do not fall below their expected optimal level of performance. Commercial building equipment technicians participating in this training program will learn how to best operate commercial buildings to ensure they reach their expected energy performance level. The training is a combination of classroom, online and on-site lessons. The Texas Engineering Extension Service (TEEX) developed curricula using subject matter and adult learning experts to ensure the training meets certification requirements and accreditation standards for training these technicians. The training targets a specific climate zone to meets the needs, specialized expertise, and perspectives of the commercial building equipment technicians in that zone. The combination of efficient operations and advanced design will improve the internal built environment of a commercial building by increasing comfort and safety, while reducing energy use and environmental impact. Properly trained technicians will ensure equipment operates at design specifications. A second impact is a more highly trained workforce that is better equipped to obtain employment. Organizations that contributed to the development of the training program include TEEX and the Texas Engineering Experiment Station (TEES) (both members of The Texas A&M University System). TEES is also a member of the Building Commissioning Association. This report includes a description of the project accomplishments, including the course development phases, tasks associated with each phase, and detailed list of the course materials developed. A summary of each year's activities is also included.

Leah Glameyer

2012-07-12T23:59:59.000Z

Note: This page contains sample records for the topic "development program installation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Developing Secure Power Systems Professional Competence: Alignment and Gaps in Workforce Development Programs-Summary Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

41 41 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Developing Secure Power Systems Professional Competence: Alignment and Gaps in Workforce Development Programs-Summary Report LR O'Neil TJ Vanderhorst, Jr MJ Assante J Januszewski, III DH Tobey R Leo TJ Conway K Perman July 2013 PNNL- 22641 Developing Secure Power Systems Professional Competence: Alignment and Gaps in Workforce Development Programs-Summary Report LR O'Neil TJ Vanderhorst, Jr MJ Assante J Januszewski, III DH Tobey R Leo TJ Conway K Perman Contributors: SGC Panel Members July, 2013 Prepared by: Pacific Northwest National Laboratory and NBISE Secure Power Systems Professional Project Team This document is a summarization of the report, Developing Secure Power Systems

302

Baseline gas turbine development program. Eighteenth quarterly progress report  

DOE Green Energy (OSTI)

Progress is reported for a program whose goals are to demonstrate an experimental upgraded gas turbine powered automobile which meets the 1978 Federal Emissions Standards, has significantly improved fuel economy, and is competitive in performance, reliability, and potential manufacturing cost with the conventional piston engine powered, compact-size American automobile. Initial running of the upgraded engine took place on July 13, 1976. The engine proved to be mechanically sound, but was also 43% deficient in power. A continuing corrective development effort has to date reduced the power deficiency to 32%. Compressor efficiency was increased 2 points by changing to a 28-channel diffuser and tandem deswirl vanes; improved processing of seals has reduced regenerator leakage from about 5 to 2.5% of engine flow; a new compressor turbine nozzle has increased compressor turbine stage efficiency by about 1 point; and adjustments to burner mixing ports has reduced pressure drop from 2.8 to 2.1% of engine pressure. Key compressor turbine component improvements are scheduled for test during the next quarterly period. During the quarter, progress was also made on development of the Upgraded Vehicle control system; and instrumentation of the fourth program engine was completed by NASA. The engine will be used for development efforts at NASA LeRC.

Schmidt, F W; Wagner, C E [comps.] [comps.

1977-04-30T23:59:59.000Z

303

Advanced Lighting Program Development (BG9702800) Final Report  

Science Conference Proceedings (OSTI)

The report presents a long-range plan for a broad-based, coordinated research, development and market transformation program for reducing the lighting energy intensities in commercial and residential buildings in California without compromising lighting quality. An effective program to advance lighting energy efficiency in California must be based on an understanding that lighting is a mature field and the lighting industry has developed many specialized products that meet a wide variety of light needs for different building types. Above all else, the lighting field is diverse and there are applications for a wide range of lighting products, systems, and strategies. Given the range of existing lighting solutions, an effective energy efficient lighting research portfolio must be broad-based and diverse to match the diversity of the lighting market itself. The belief that there is one solution--a magic bullet, such as a better lamp, for example--that will propel lighting efficiency across all uses to new heights is, in the authors' opinion, an illusion. A multi-path program is the only effective means to raising lighting efficiency across all lighting applications in all building types. This report presents a list of 27 lighting technologies and concepts (key activities) that could form the basis of a coordinated research and market transformation plan for significantly reducing lighting energy intensities in California buildings. The total 27 key activities into seven broad classes as follows: Light sources; Ballasts; Luminaires; Lighting Controls; Lighting Systems in Buildings; Human Factors and Education. Each of the above technology classes is discussed in terms of background, key activities, and the energy savings potential for the state. The report concludes that there are many possibilities for targeted research, development, and market transformation activities across all sectors of the building lighting industry. A concerted investment by the state to foster efficiency improvements in lighting systems in commercial and residential buildings would have a major positive impact on energy use and environmental quality in California.

Rubinstein, Francis; Johnson, Steve

1998-02-01T23:59:59.000Z

304

The Effectiveness of Leadership Development Programs on Small Farm Producers  

E-Print Network (OSTI)

Although there were numerous leadership development programs throughout the country, most ignored the small producers located throughout the south. In order to address the needs of these traditionally underserved individuals, the National Small Farmer Agricultural Leadership Institute was created to address the concerns of small farmers in rural communities. This research specifically targeted the effectiveness of leadership development over a period by exploring the factors that motivate the program participants to enhance their leadership skills and the ability to transform that motivation into effective leadership. The group involved in this study is a convenience population of small farmers and ranchers from across the Southern United States, who graduated from the National Small Farm Leadership Institute. These participants represent 2 graduating classes from 2007 and 2009. A retrospective post survey methodology was used to conduct this study. The instrument is divided into a knowledge base before they took the program (pre) and a retrospective post assessment. Each of the questions allowed the participants to rate their ability on a 5 point Likert-Type scale. The responses ranged from 1 to 5 with the following responses Very Poor, Poor, Fair, Good and Very Good. The survey research examined four educational constructs that were covered during the leadership development program. These were Leadership Skill Development, Leadership Theory, Agricultural Skill enhancement and the Transformation of their leadership skills. Through analysis of the four educational constructs the research reveals substantial increases in knowledge and skills such as Group Problem Solving, Consensus Building, Team Building, Group Decision Making and Obtaining information to help in decision making. Participants were definitely found to have increased their leadership skills through teaching of Leadership Philosophy, linkages to Federal and agricultural resources, the appreciation of different styles of leadership and awareness of agricultural policy issues. The study revealed that in each of the four educational construct areas of the National Small Farm Leadership Institute that there were substantial increases in knowledge and changes in behavior such as: understanding and explaining personal leadership philosophy, increased awareness of Agricultural Policy Issues and transferring the leadership back to the community.

Malone, Allen A.

2010-08-01T23:59:59.000Z

305

Industrial pollution prevention programs in selected developing Asian countries  

SciTech Connect

This paper presents the information on current activities to promote industrial pollution prevention (P2) in five selected Asian economies including Hong Kong, Republic of Korea, the Philippines, ROC in Taiwan, and Thailand. These activities, generally initiated in the last 5 years, are classified into 6 categories: awareness promotion, education and training, information transfer, technology development an demonstration, technical assistance, and financial incentives. Although participation is voluntary, these programs are all important at the early stages of P2 promotion and should be useful in informing industries of the benefit of P2 and helping them identify specific P2 measures as viable environmental management alternatives.

Chiu, Shen-yann [Argonne National Lab., IL (United States)]|[East-West Center, Honolulu, HI (United States)

1995-12-31T23:59:59.000Z

306

Laboratory Directed Research and Development Program, FY 1992  

SciTech Connect

This report is compiled from annual reports submitted by principal investigators following the close of the 1992 fiscal year. It describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Divisions that report include: Accelerator and Fusion Research, Chemical Sciences, Earth Sciences, Energy and Environment, Engineering, Environment and Safety and Health, Information and Computing Sciences, Life Sciences, Materials Sciences, Nuclear Science, Physics and Structural Biology.

1993-01-01T23:59:59.000Z

307

Next Generation Nuclear Plant Research and Development Program Plan  

DOE Green Energy (OSTI)

The U.S Department of Energy (DOE) is conducting research and development (R&D) on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core could be either a prismatic graphite block type core or a pebble bed core. Use of a liquid salt coolant is also being evaluated. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The objectives of the NGNP Project are to: (1) Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission (2) Demonstrate safe and economical nuclear-assisted production of hydrogen and electricity. The DOE laboratories, led by the INL, will perform R&D that will be critical to the success of the NGNP, primarily in the areas of: (1) High temperature gas reactor fuels behavior; (2) High temperature materials qualification; (3) Design methods development and validation; (4) Hydrogen production technologies; and (5) Energy conversion. The current R&D work is addressing fundamental issues that are relevant to a variety of possible NGNP designs. This document describes the NGNP R&D planned and currently underway in the first three topic areas listed above. The NGNP Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is presented in Section 2, the NGNP Materials R&D Program Plan is presented in Section 3, and the NGNP Design Methods Development and Validation R&D Program is presented in Section 4. The DOE-funded hydrogen production [DOE 2004] and energy conversion technologies programs are described elsewhere.

None

2005-01-01T23:59:59.000Z

308

Next Generation Nuclear Plant Research and Development Program Plan  

DOE Green Energy (OSTI)

The U.S Department of Energy (DOE) is conducting research and development (R&D) on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core could be either a prismatic graphite block type core or a pebble bed core. Use of a liquid salt coolant is also being evaluated. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The objectives of the NGNP Project are to: Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission Demonstrate safe and economical nuclearassisted production of hydrogen and electricity. The DOE laboratories, led by the INL, will perform R&D that will be critical to the success of the NGNP, primarily in the areas of: High temperature gas reactor fuels behavior High temperature materials qualification Design methods development and validation Hydrogen production technologies Energy conversion. The current R&D work is addressing fundamental issues that are relevant to a variety of possible NGNP designs. This document describes the NGNP R&D planned and currently underway in the first three topic areas listed above. The NGNP Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is presented in Section 2, the NGNP Materials R&D Program Plan is presented in Section 3, and the NGNP Design Methods Development and Validation R&D Program is presented in Section 4. The DOE-funded hydrogen production [DOE 2004] and energy conversion technologies programs are described elsewhere.

P. E. MacDonald

2005-01-01T23:59:59.000Z

309

Mixed Waste Integrated Program -- Problem-oriented technology development  

SciTech Connect

The Mixed Waste Integrated Program (MWIP) is responding to the need for DOE mixed waste treatment technologies that meet these dual regulatory requirements. MWIP is developing emerging and innovative treatment technologies to determine process feasibility. Technology demonstrations will be used to determine whether processes are superior to existing technologies in reducing risk, minimizing life-cycle cost, and improving process performance. Technology development is ongoing in technical areas required to process mixed waste: materials handling, chemical/physical treatment, waste destruction, off-gas treatment, final forms, and process monitoring/control. MWIP is currently developing a suite of technologies to process heterogeneous waste. One robust process is the fixed-hearth plasma-arc process that is being developed to treat a wide variety of contaminated materials with minimal characterization. Additional processes encompass steam reforming, including treatment of waste under the debris rule. Advanced off-gas systems are also being developed. Vitrification technologies are being demonstrated for the treatment of homogeneous wastes such as incinerator ash and sludge. An alternative to conventional evaporation for liquid removal--freeze crystallization--is being investigated. Since mercury is present in numerous waste streams, mercury removal technologies are being developed.

Hart, P.W.; Wolf, S.W. [Dept. of Energy, Germantown, MD (United States); Berry, J.B. [Oak Ridge National Lab., TN (United States). Chemical Technology Div.

1994-12-31T23:59:59.000Z

310

Windows Installation Notes for EXPGUI  

Science Conference Proceedings (OSTI)

... These notes describe how GSAS & EXPGUI are installed using separate distribution files for GSAS, EXPGUI and Tcl/Tk. ...

311

Reviewing Post-Installation and Annual Reports for Federal ESPC Projects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reviewing Post-Installation and Annual Reports Reviewing Post-Installation and Annual Reports For Federal ESPC Projects February 2007 Federal Energy Management Program (FEMP) Office of Energy Efficiency and Renewable Energy U.S. Department of Energy This document was developed for the U.S. Department of Energy's Federal Energy Management Program by Nexant, Inc., and Lawrence Berkeley National Laboratory. This document is posted on FEMP's Web site at www.eere.energy.gov/femp/financing/superespcs_mvresources.html. Contents Reviewing Post-Installation and Annual Reports for Federal ESPC Projects 1 Step 1 - Prepare Custom Report and Checklists from Template 1 Step 2 - Review Project Documentation 2 Step 3 - Complete Checklists 2 Step 4 - Finalize Report 3 Step 5 - Provide Written Review to Agency and DOE 3

312

U.S. Department of Housing and Urban Development PROGRAMS OF HUD  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Housing and Urban Development Housing and Urban Development PROGRAMS OF HUD Major Mortgage, Grant, Assistance, and Regulatory Programs 2013 ii Table of Contents Table of Contents ................................................................................................................ ii Community Planning and Development ............................................................................ 1 Brownfields Economic Development Initiative (BEDI) ........................................................ 1 Capacity Building for Community Development and Affordable Housing .......................... 2 Community Development Block Grants (Disaster Recovery Assistance) ............................. 3 Community Development Block Grants (CDBG) (Entitlement) ........................................... 4

313

Role of nuclear power in the Philippine power development program  

SciTech Connect

The reintroduction of nuclear power in the Philippines is favored by several factors such as: the inclusion of nuclear energy in the energy sector of the science and technology agenda for national development (STAND); the Large gap between electricity demand and available local supply for the medium-term power development plan; the relatively lower health risks in nuclear power fuel cycle systems compared to the already acceptable power systems; the lower environmental impacts of nuclear power systems compared to fossil fuelled systems and the availability of a regulatory framework and trained personnel who could form a core for implementing a nuclear power program. The electricity supply gap of 9600 MW for the period 1993-2005 could be partly supplied by nuclear power. The findings of a recent study are described, as well as the issues that have to be addressed in the reintroduction of nuclear power.

Aleta, C.R. [Philippine Nuclear Research Institite, Quezon City (Philippines)

1994-12-31T23:59:59.000Z

314

Special Applications RTG Technology Program: Thermoelectric module development summary report  

DOE Green Energy (OSTI)

The primary objective of the Special Applications thermoelectric module development program is to design, develop and demonstrate the performance of a module which provides a significant thermoelectric conversion efficiency improvement over available technology for low power, relatively high voltage RTGS intended for terrestrial applications. ``Low power`` can be construed as an RTG power output of 10 watts or less, and ``high voltage`` can be considered as a load voltage of 5 volts or greater. In particular, the effort is to improve the system efficiency characteristic of the state-of-the-art bismuth telluride-based RTG system (e.g., Five-Watt RTG and Half-Watt RTG), typically 3 to 4%, to the range of 6% or better. This increase in efficiency will also permit reductions in the weight and size of RTGs in the low power range.

Brittain, W.M.

1988-09-01T23:59:59.000Z

315

Moving granular-bed filter development program. Topical report  

Science Conference Proceedings (OSTI)

Advanced, coal-based, power plants, such as IGCC and Advanced-PFBC, are currently nearing commercial demonstration. These power plant technologies require hot gas filtration as part of their gas cleaning trains. Ceramic barrier filters are the major filter candidates being developed for these hot gas cleaning applications. While ceramic barrier filters achieve high levels of particle removal, concerns exist for their reliability and operability in these applications. An alternative hot gas filtration technology is the moving granular bed filter. An advanced, moving granular bed filter has been conceived, and early development activities performed by the Westinghouse Electric Corporation, Science and Technology Center. This document reports on the Base Contract tasks performed to resolve the barrier technical issues for this technology. The concept, the Standleg Moving Granular Bed Filter (SMGBF) has a concurrent downward, gas and bed media flow configuration that results in simplified features and improved scaleup feasibility compared to alternative designs. Two modes of bed media operation were assessed in the program: once-through using pelletized power plant waste as bed media, and recycle of bed media via standleg and pneumatic transport techniques. Cold Model testing; high-temperature, high-pressure testing; and pelletization testing using advanced power plant wastes, have been conducted in the program. A commercial, economic assessment of the SMGBF technology was performed for IGCC and Advanced-PFBC applications. The evaluation shows that the barrier technical issues can be resolved, and that the technology is potentially competitive with ceramic barrier filters.

Newby, R.A.; Yang, W.C.; Smeltzer, E.E.; Lippert, T.E.

1994-04-01T23:59:59.000Z

316

Materials Development Program: Ceramic Technology Project bibliography, 1984--1992  

DOE Green Energy (OSTI)

The Ceramic Technology [for Advanced Heat Engines] Project was begun in 1983 to meet the ceramic materials needs of the companion DOE automotive engine program, the Advanced Gas Turbine (AGT) project, and the Heavy Duty Transport (low-heat-rejection, heavy-duty diesel) project. Goal is to develop an industry technology base for reliable and cost effective ceramics for applications in advanced automotive gas turbine and diesel engines. Research areas were identified following extensive input from industry and academia. Majority of research is done by industry (60%); work is also done at colleges and universities, in-house, and at other national laboratories and government agencies. In the beginning, reliability of ceramic components was the key issue. The reliability issues have largely been met and, at the present time, cost is the driving issue, especially in light of the highly cost-sensitive automotive market. Emphasis of the program has now been shifted toward developing cost-effective ceramic components for high-performance engines in the near-term. This bibliography is a compilation of publications done in conjunction with the Ceramic Technology Project since its beginning. Citations were obtained from reports done by participants in the project. We have tried to limit citations to those published and easily located. The end date of 1992 was selected.

Not Available

1994-03-01T23:59:59.000Z

317

Mountain Association for Community Economic Development - Solar Water  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mountain Association for Community Economic Development - Solar Mountain Association for Community Economic Development - Solar Water Heater Loan Program Mountain Association for Community Economic Development - Solar Water Heater Loan Program < Back Eligibility Commercial Residential Savings Category Heating & Cooling Solar Water Heating Program Info Funding Source Kentucky Solar Partnership (KSP) State Kentucky Program Type Local Loan Program Rebate Amount 100% of equipment and installation cost Provider Kentucky Solar Partnership The Kentucky Solar Partnership (KSP) and the Mountain Association for Community Economic Development (MACED) partner to offer low interest loans for the installation of solar water heaters. Loans cover the full equipment and installation cost. Flexible rate loans and terms are available. They

318

Advanced Turbine Systems (ATS) program conceptual design and product development  

SciTech Connect

Achieving the Advanced Turbine Systems (ATS) goals of 60% efficiency, single-digit NO{sub x}, and 10% electric power cost reduction imposes competing characteristics on the gas turbine system. Two basic technical issues arise from this. The turbine inlet temperature of the gas turbine must increase to achieve both efficiency and cost goals. However, higher temperatures move in the direction of increased NO{sub x} emission. Improved coatings and materials technologies along with creative combustor design can result in solutions to achieve the ultimate goal. GE`s view of the market, in conjunction with the industrial and utility objectives, requires the development of Advanced Gas Turbine Systems which encompass two potential products: a new aeroderivative combined-cycle system for the industrial market, and a combined-cycle system for the utility sector that is based on an advanced frame machine. The GE Advanced Gas Turbine Development program is focused on two specific products: (1) a 70 MW class industrial gas turbine based on the GE90 core technology utilizing an innovative air cooling methodology; (2) a 200 MW class utility gas turbine based on an advanced Ge heavy-duty machine utilizing advanced cooling and enhancement in component efficiency. Both of these activities required the identification and resolution of technical issues critical to achieving ATS goals. The emphasis for the industrial ATS was placed upon innovative cycle design and low emission combustion. The emphasis for the utility ATS was placed on developing a technology base for advanced turbine cooling, while utilizing demonstrated and planned improvements in low emission combustion. Significant overlap in the development programs will allow common technologies to be applied to both products. GE Power Systems is solely responsible for offering GE products for the industrial and utility markets.

1996-08-31T23:59:59.000Z

319

Reliability and maintainability program  

SciTech Connect

The program's goals are to accelerate the adoption of active solar energy systems in building applications by improving the reliability and maintainability of installed systems. The project is designed to accomplish this by providing the latest information; by assisting the industry in improving reliability and maintainability; by assisting in design, manufacture, installation and maintenance of reliable and durable systems; and by assisting in the development of codes and standards. Work and accomplishments in these areas are enumerated. (LEW)

Eden, A.

1981-05-01T23:59:59.000Z

320

Power reduction control for inductive lighting installation  

SciTech Connect

A control system for continuously, selectively reducing power consumption in an inductive lighting installation energized from an A.C. power source, the installation including at least one gas discharge lamp such as a fluorescent lamp energized through any of a plurality of different types of electromagnetic ballast having different harmonic distortion characteristics, the control system is described comprising: load energizing circuit means, including a signal-actuated normally-closed primary switch, for connecting an A.C. power source to the lighting installation; a signal-actuated, normally-open secondary switch connected in parallel with the lighting installation; actuation means for generating actuation signals and applying such actuation signals to the primary and secondary switches to actuate the primary switch open and to actuate the secondary switch closed in approximate time coincidence in each half-cycle of the A.C. power; zero-crossing detector means for generating zero-crossing signals at times TX indicative of zero-voltage transitions in the A.C. power; and program means, connected to the zero-crossing detector means and to the actuation means, programming the actuation means to generate (a) power reduction actuation signals at times T1 and T2 in each half-cycle of the A.C. power, (b) a first filter actuation signal at a time T3 prior to each zero-crossing time TX, and (c) a second filter actuation signal at a time T4 following each zero-crossing time TX; the program means including a plurality of programs each establishing a set of times T1, T2, T3 and T4 for several different power reduction levels for a particular type of ballast; and selection means for selecting a program to match the ballast type of the load.

Falk, K.R.

1993-06-22T23:59:59.000Z

Note: This page contains sample records for the topic "development program installation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

The photovoltaic market analysis program : background, model development, applications and extensions  

E-Print Network (OSTI)

The purpose of this report is to describe and motivate the market analysis program for photovoltaics that has developed over the last several years. The main objective of the program is to develop tools and procedures to ...

Lilien, Gary L.

1981-01-01T23:59:59.000Z

322

Geothermal technology development program. Annual progress report, October 1981-September 1982  

DOE Green Energy (OSTI)

The status of ongoing Research and Development (R and D) within the Geothermal Technology Development Program is described. The program emphasizes research in rock penetration mechanics, fluid technology, borehole mechanics, diagnostics technology, and permeability enhancement.

Kelsey, J.R. (ed.)

1983-08-01T23:59:59.000Z

323

Recent reflux receiver developments under the US DOE program  

DOE Green Energy (OSTI)

The United States Department of Energy (DOE) Solar Thermal Program, through Sandia National Laboratories (SNL), is cooperating with industry to commercialize dish-Stirling technology. Sandia and the DOE have actively encouraged the use of liquid metal reflux receivers in these systems to improve efficiency and lower the levelized cost of electricity. The reflux receiver uses two-phase heat transfer as a {open_quotes}thermal transformer{close_quotes} to transfer heat from a parabolic tracking-concentrator to the heater heads of the Stirling engine. The two-phase system leads to a higher available input temperature, lower thermal stresses, longer life, and independent design of the absorber and engine sections. Two embodiments of reflux receivers have been investigated: Pool boilers and heat pipes. Several pool-boiler reflux receivers have been successfully demonstrated on sun at up to 64 kWt throughput at SNL. In addition, a bench-scale device was operated for 7500 hours to investigate materials compatibility and boiling stability. Significant progress has also been made on heat pipe receiver technology. Sintered metal wick heat pipes have been investigated extensively for application to 7.5 kWe and 25 kWe systems. One test article has a massed over 1800 hours of on-sun operation. Another was limit tested at Sandia to 65 kWt throughput. These devices incorporate a nickel-powder thick wick structure with condensate return directly to the wick surface. Circumferential tubular arteries are optionally employed to improve the operating margin. In addition, DOE has begun a development program for advanced wick structures capable of supporting the Utility Scale Joint Venture Program, requiring up to 100 kWt throughput. Promising technologies include a brazed stainless steel powdered metal wick and a stainless steel metal felt wick. Bench-scale testing has been encouraging, and on-sun testing is expected this fall. Prototype gas-fired hybrid solar receivers have also been.

Andraka, C.E.; Diver, R.B.; Moreno, J.B.; Moss, T.A.; Adkins, D.R.

1994-10-01T23:59:59.000Z

324

FY2000 Progress Report for the Advanced Technology Development Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Office of Advanced Automotive Technologies 1000 Independence Avenue S.W. Washington, D.C. 20585-0121 FY 2000 Progress Report for the Advanced Technology Development Program Energy Efficiency and Renewable Energy Office of Transportation Technologies Office of Advanced Automotive Technologies Energy Management Team Raymond A. Sutula Energy Management Team Leader December 2000 This document highlights work sponsored by agencies of the U.S. Government. Neither the U.S. Government nor any agency, thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference

325

National program plan for electric vehicle battery research and development  

SciTech Connect

EVs offer the prospect of reducing US petroleum fuel usage and air pollution in major metropolitan areas. In 1987, DOE-EHP commissioned a two-phase study at INEL to produce a national plan for R D on battery technology -- the limiting component in EVs. The battery assessment phase identified the most-promising'' technologies from a comprehensive list of viable EV batteries. This multi-year R D program plan identifies development schedules, milestones, and tasks directed at resolving the critical technical and economic issues for the most-promising developmental batteries: bipolar lead/acid, flow-through lead/acid, iron/air, lithium/iron sulfide, nickel/iron, sodium/metal chloride, sodium/sulfur, zinc/air, and zinc/bromine. 8 refs., 1 fig., 6 tabs.

Henriksen, G.L.; Douglas, D.L.; Warde, C.J. (EG and G Idaho, Inc., Idaho Falls, ID (USA); Douglas (David L.), Inc., Bloomington, MN (USA); Warde Associates, Inc., Greensboro, NC (USA))

1989-08-01T23:59:59.000Z

326

Northwest Energy Efficient Manufactured Housing Program Specification Development  

SciTech Connect

The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to reduce home energy use by 30%-50% (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project.

Hewes, T.; Peeks, B.

2013-02-01T23:59:59.000Z

327

VARIABLE MODERATOR REACTOR DEVELOPMENT PROGRAM. Quarterly Progress Report No. 1  

SciTech Connect

Development of the boiling water UO/sub 2/ fueled Variable Moderator Reactor (VMR) is conducted under contract for the USAEC. The initiation and progress of work under Phase I of the contract, Physics and Kinetic Analysis and Initial Evaluation,'' and the preparation for Phase II, Critical Experiment and Analysis of Results,'' are reported. A hydrodynamic flow sheet representing the sequence of calculations for the BOCH program was prepared. A preliminary block diagram of the kinetics model of the VMR was prepared. Work is reported on the PUREE code which is designed to give an accurate representation of the physics of the VMR core. A fuel element fabrication speciftcation was prepared and released for quotations. A study was made to select the most appropriate material for void simulation throughout the range of interest in the VMR. (W.D.M.)

1959-08-31T23:59:59.000Z

328

Sodium Heat Engine Development Program. Phase 1, Final report  

DOE Green Energy (OSTI)

The Sodium Heat Engine (SHE) is an efficient thermoelectric conversion device which directly generates electricity from a thermally regenerative electrochemical cell that relies on the unique conduction properties of {beta}{double_prime}-alumina solid electrolyte (BASE). Laboratory models of a variety of SHE devices have demonstrated the feasibility and efficiency of the system, engineering development of large prototype devices has been slowed by a series of materials and fabrication problems. Failure of the electrolyte tubes has been a recurring problem and a number of possible causes have been postulated. To address these issues, a two-phase engineering development program was undertaken. This report summarizes the final results of the first phase of the program, which included extensive materials characterization activities, a study of applicable nondestructive evaluation methods, an investigation of possible stress states that would contribute to fracture, and certain operational issues associated with the electromagnetic pumps used in the SHE prototype. Mechanical and microstructural evaluation of commercially obtained BASE tubes revealed that they should be adequate for SHE applications and that sodium exposure produced no appreciable deleterious strength effects. Processing activities to produce a more uniform and smaller grain size for the BASE tubes were completed using isostatic pressing, extrusion, and slip casting. Green tubes were sintered by conventional and microwave plasma methods. Of particular interest is the residual stress state in the BASE tubes, and both analysis and nondestructive evaluation methods were employed to evaluate these stresses. X-ray and neutron diffraction experiments were performed to determine the bulk residual stresses in commercially fabricated BASE tubes; however, tube-to-tube variations and variations among the various methods employed did not allow formulation of a definitive definition of the as-fabricated stress state.

Singh, J.P.; Kupperman, D.S.; Majumdar, S.; Dorris, S.; Gopalsami, N.; Dieckman, S.L.; Jaross, R.A.; Johnson, D.L.; Gregar, J.S.; Poeppel, R.B.; Raptis, A.C.; Valentin, R.A.

1992-01-01T23:59:59.000Z

329

Installation and Commissioning Automated Demand Response Systems  

Science Conference Proceedings (OSTI)

Demand Response (DR) can be defined as actions taken to reduce electric loads when contingencies, such as emergencies and congestion, occur that threaten supply-demand balance, or market conditions raise supply costs. California utilities have offered price and reliability DR based programs to customers to help reduce electric peak demand. The lack of knowledge about the DR programs and how to develop and implement DR control strategies is a barrier to participation in DR programs, as is the lack of automation of DR systems. Most DR activities are manual and require people to first receive notifications, and then act on the information to execute DR strategies. Levels of automation in DR can be defined as follows. Manual Demand Response involves a labor-intensive approach such as manually turning off or changing comfort set points at each equipment switch or controller. Semi-Automated Demand Response involves a pre-programmed demand response strategy initiated by a person via centralized control system. Fully-Automated Demand Response does not involve human intervention, but is initiated at a home, building, or facility through receipt of an external communications signal. The receipt of the external signal initiates pre-programmed demand response strategies. We refer to this as Auto-DR (Piette et. al. 2005). Auto-DR for commercial and industrial facilities can be defined as fully automated DR initiated by a signal from a utility or other appropriate entity and that provides fully-automated connectivity to customer end-use control strategies. One important concept in Auto-DR is that a homeowner or facility manager should be able to 'opt out' or 'override' a DR event if the event comes at time when the reduction in end-use services is not desirable. Therefore, Auto-DR is not handing over total control of the equipment or the facility to the utility but simply allowing the utility to pass on grid related information which then triggers facility defined and programmed strategies if convenient to the facility. From 2003 through 2006 Lawrence Berkeley National Laboratory (LBNL) and the Demand Response Research Center (DRRC) developed and tested a series of demand response automation communications technologies known as Automated Demand Response (Auto-DR). In 2007, LBNL worked with three investor-owned utilities to commercialize and implement Auto-DR programs in their territories. This paper summarizes the history of technology development for Auto-DR, and describes the DR technologies and control strategies utilized at many of the facilities. It outlines early experience in commercializing Auto-DR systems within PG&E DR programs, including the steps to configure the automation technology. The paper also describes the DR sheds derived using three different baseline methodologies. Emphasis is given to the lessons learned from installation and commissioning of Auto-DR systems, with a detailed description of the technical coordination roles and responsibilities, and costs.

Global Energy Partners; Pacific Gas and Electric Company; Kiliccote, Sila; Kiliccote, Sila; Piette, Mary Ann; Wikler, Greg; Prijyanonda, Joe; Chiu, Albert

2008-04-21T23:59:59.000Z

330

Analysis of Remote Sensing Data for Development of I/M Program Evaluation  

E-Print Network (OSTI)

Analysis of Remote Sensing Data for Development of I/M Program Evaluation Protocols Sajal S 48105 Order number: 9A-0633-NAEX #12;Analysis of Remote Sensing Data for Development of I/M Program of Remote Sensing Data for Development of I/M Program Evaluation Protocols 2 226.5 nm in the ultraviolet

Denver, University of

331

HTAR Client Configuration and Installation  

NLE Websites -- All DOE Office Websites (Extended Search)

Configuration and Installation Configuration and Installation HTAR Configuration and Installation HTAR is an archival utility similar to gnu-tar that allows for the archiving and extraction of local files into and out of HPSS. Configuration Instructions This distribution has default configuration settings which will work for most environments. If you want to use the default values (recommended) you can skip to the section labeled INSTALLATION INSTRUCTIONS. In certain environments, for example if your installation is on a machine which has more than one network interface, you may want to change some of these default settings. To help with this, an interactive Configure script is provided. To use it do $ ./Configure prior to installing. Configure will provide a description of the options

332

Guidelines for solar energy installations  

SciTech Connect

Guidelines for solar energy installations are presented. The guideline is published in code form so that it can be used directly as the text of an ordinance to regulate the installation of solar systems. An index contains cross references to sections of existing model codes that are applicable to solar installations. Wind energy systems, passive solar space conditioning systems, photovoltaic systems, and systems involving mechanical compression of refrigerants are not included.

1984-01-01T23:59:59.000Z

333

Geothermal energy, research, development and demonstration program. Second annual report  

DOE Green Energy (OSTI)

The discussion is presented under the following section headings: executive summary; national geothermal utilization estimates; Federal Geothermal Energy Program objective; Federal Geothermal Energy strategy; Federal Program planning, implementation, and progress monitoring; organization of the report; national progress and achievements; regional progress and accomplishments; fiscal year 1978 activities; federal program activities in fiscal year 1979 and beyond; Appendix A--interagency coordination and program management Interagency Geothermal Coordinating Council (IGCC); and appendix B--international activities.

Not Available

1978-04-01T23:59:59.000Z

334

ASHRAE Installs New Officers, Directors DENVER ASHRAE has installed  

E-Print Network (OSTI)

ASHRAE Installs New Officers, Directors DENVER ­ ASHRAE has installed new officers and directors for 2013-14 at its Annual Meeting held here June 22-26. The ASHRAE Presidential Address is viewable on You is William P. "Bill" Bahnfleth, Ph.D., P.E., Fellow ASHRAE, ASME Fellow, a professor of Architectural

Maroncelli, Mark

335

Property:Incentive/InstallReqs | Open Energy Information  

Open Energy Info (EERE)

InstallReqs InstallReqs Jump to: navigation, search Property Name Incentive/InstallReqs Property Type Text Description Installation Requirements. Pages using the property "Incentive/InstallReqs" Showing 25 pages using this property. (previous 25) (next 25) A AEP Appalachian Power - Commercial and Industrial Rebate Programs (West Virginia) + Self-installed measures with a rebate level greater than $1,000 and all applications over $20,000, and 5% of remaining applicants will be inspected. Funds can be reserved for a period of 180 days as long as the application includes an expected date of project completion. Customer must have an active account in WV with either Wheeling Power Company, American Electric Power or Appalachian Power Company.

336

Geothermal drilling ad completion technology development program. Semi-annual progress report, April-September 1979  

DOE Green Energy (OSTI)

The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, and completion technology. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1982 and by 50% by 1986.

Varnado, S.G. (ed.)

1980-05-01T23:59:59.000Z

337

Geothermal drilling and completion technology development program. Annual progress report, October 1979-September 1980  

DOE Green Energy (OSTI)

The progress, status, and results of ongoing research and development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1983 and by 50% by 1987.

Varnado, S.G. (ed.)

1980-11-01T23:59:59.000Z

338

Geothermal drilling and completion technology development program. Quarterly progress report, January-March 1980  

DOE Green Energy (OSTI)

The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1983 and by 50% by 1987.

Varnado, S.G. (ed.)

1980-04-01T23:59:59.000Z

339

Geothermal drilling and completion technology development program. Quarterly progress report, April-June 1980  

DOE Green Energy (OSTI)

The progress, status, and results of ongoing research and development (R and D) within the Geothermal Drilling and Completion Technology Development Program are reported. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1983 and by 50% by 1987.

Varnado, S.G.

1980-07-01T23:59:59.000Z

340

Geothermal drilling and completion technology development program. Semi-annual progress report, October 1978-March 1979  

DOE Green Energy (OSTI)

The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drill bits, drilling fluids, and completion technology. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1982 and by 50% by 1986.

Varnado, S.G. (ed.)

1979-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "development program installation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Geothermal drilling and completion technology development program. Quarterly progress report, October-December 1979  

DOE Green Energy (OSTI)

The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, and completion technology. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1982 and by 50% by 1986.

Varnado, S.G. (ed.)

1980-01-01T23:59:59.000Z

342

Photovoltaic Installation on a Commercial Building (Bishop Museum) -- Design and Installation  

Science Conference Proceedings (OSTI)

This report, the first of two deliverable reports provided to the Electric Power Research Institute (EPRI) under Research and Development (R&D) Agreement No. EP-P7353/C3739 (Building Integrated Photovoltaic Commercial Building Project), provides information on the design and installation of a photovoltaic (PV) system installed at the State Museum of Natural and Cultural History (Bishop Museum) located in Honolulu, Hawaii. Details on structural specifications, PV system design and specifications, and less...

2004-02-13T23:59:59.000Z

343

Emergency Medicine in Guyana: Lessons from Developing the Countrys First Degree-conferring Residency Program  

E-Print Network (OSTI)

emergency medicine training program at the University ofterm emergency medicine training programs in low and middle-medicine residency training program. Residency development

Forget, Nicolas Pierre; Rohde, John Paul; Rambaran, Navindranauth; Rambaran, Madan; Wright, Seth Warren

2013-01-01T23:59:59.000Z

344

CIVILIAN POWER REACTOR PROGRAM. PART II. ECONOMIC POTENTIAL AND DEVELOPMENT PROGRAM. HEAVY WATER-MODERATED POWER REACTOR  

SciTech Connect

The reactor design which forms the base for the current economic status of D/sub 2/O-moderated reactors was estimated from developments in several reactor programs. However, since a heavy water-moderated reactor was not operated on natural U fuel at power reactor conditions, considerable improvement from this current status can be foreseen. A summary of improvements is presented concerning the concept which would result solely from operation of succeeding generation plants without a parallel development program, and improvements which would result from the successful completion of the development program as presented. One plant size was used in the evaluation of plant potential, with a 300 Mw/sub e/ nominal rating. The boiling D/sub 2/O-cooled, pressure tube direct cycle plant design was used. The current development program is outlined; this work includes several items leading to the long-range development of the concept. (auth)

Hutton, J.H.; Davis, S.A.; Graves, C.C.; Duffy, J.G. comps.

1960-08-19T23:59:59.000Z

345

Task analysis for solar installers  

SciTech Connect

The process focused on the sequential identification and field validation of the tasks actually performed. This method provides an accurate picture of what happens on the roof. Forty-six solar firms were identified as the population; 29 (63%) participated in the validation project. We identified 8 duty areas and 46 tasks. The overall response rate for the occupational task list is 100% except for tasks under the duty of constructing solar collectors. Only eight of the twenty-nine respondents (28%) indicated that solar installers fabricate collectors. This shows that solar installers do not manufacture collectors and only perform tasks directly related to installation. Additional findings from our study indicate that instructional materials designed for solar installers need to be standardized and made task-specific. The tasks identified in this research should form the foundation for a competency-based curriculum for solar water heater installers.

Harrison, J.; LaHart, D.

1982-01-01T23:59:59.000Z

346

Baseline Gas Turbine Development Program twelfth quarterly progress report  

DOE Green Energy (OSTI)

Progress is reported for a program to demonstrate by 1976 an experimental gas turbine powered automobile which meets the 1978 Federal Emissions Standards, has significantly improved fuel economy, and is competitive in performance, reliability, and potential manufacturing cost with the conventional piston engine powered, standard size American automobile. The endurance engine was modified to incorporate a power turbine drive to the regenerators in order to simulate free rotor (upgraded) conditions. A portable baseline engine fixture complete with controls, intake, exhaust, and transmission is being assembled for odor evaluation. An additional 502 engine hours were accumulated on ceramic regenerators and seals. No core or seal failures were experienced during engine test. Initial fixture tests of zirconia seals show torque levels comparable with nickle oxide seals against the same matrix. An ambient compensation schedule was devised for the upgraded engine integrated control, and the integrated control system specifications were updated. A proposed hydromechanical automotive continuously variable ratio transmission (CVT) was evaluated and approved for preliminary development. Tests of heat rejection to the oil for lined versus linerless insulated engine assemblies indicated no heat loss penalty in omitting the metal liners. A study was made of various power turbine rotor assemblies and a final design was selected. Optimization studies of the two-stage power turbine reduction gears and regenerator spur and worm gears were completed. Initial tests on the fixture for simulating the scaled S-26 upgraded burner have begun.

Schmidt, F W; Wagner, C E

1975-10-31T23:59:59.000Z

347

Arizona strip breccia pipe program: exploration, development, and production  

Science Conference Proceedings (OSTI)

As part of the long-range plans for the Energy Fuels Corporation, they have embarked on one of the most active and aggressive uranium exploration programs in the US. These exploration efforts are located in the northwestern part of Arizona in an area referred to as the Arizona Strip. At a time when the domestic uranium industry is staggering to recover from its worst economic slump, Energy Fuels is spending millions of dollars a year on exploration, development, production, and milling. The reason for Energy Fuels' commitment to uranium exploration and production lies in the ground of Arizona in unique geologic formations called breccia pipes. Some of these structures, generally no more than 300 to 350 ft in diameter, contain uranium that is, on the average, five to ten times richer than ore found elsewhere in the US. The richness of this Arizona ore makes it the only conventionally mined uranium in the US that can compete in today's market of cheaper, high-grade foreign sources. Between January 1980 and December 1986, Energy Fuels has mined more than 10 billion lb of uranium from breccia pipe deposits at an average grade of 0.65% U/sub 3/O/sub 8/. Currently, Energy Fuels is operating six breccia pipe mines, and a plan of operations on a seventh mine has been submitted to the appropriate government agencies for the necessary mining permits.

Mathisen, I.W. Jr.

1987-05-01T23:59:59.000Z

348

Solar energy research and development: program balance. Annex, Volume II  

DOE Green Energy (OSTI)

Each of the seven solar energy technologies that have been assessed in the study are treated: photovoltaic devices, solar thermal power systems, wind energy systems, solar heating and cooling systems, agricultural and industrial heat processes, biomass conversion technologies, and ocean thermal energy conversion systems. A brief technical overview of storage for solar electric technologies is presented and some principles concerning how different levels of success on electrical storage can affect the commercial viability of solar electric options are discussed. A description is given of the solar penetration model that was developed and applied as an analytical tool in the study. This computer model has served the primary purpose of evaluating the competiveness of the solar energy systems in the markets in which they are expected to compete relative to that of the alternative energy sources. This is done under a variety of energy supply, demand, and price conditions. The seven sections treating the solar energy technologies contain discussions on each of six subject areas: description of the technology; economic projections; the potential contribution of the technology in different marketplaces; environmental considerations; international potential; and the present and possible future emphases within the RD and D program. The priority item for each of the technology sections has been the documentation of the economic projections.

None

1978-02-01T23:59:59.000Z

349

WebCAT: Installation Instructions for Windows  

Science Conference Proceedings (OSTI)

... WebCAT. Note: Windows ME does not ship with a webserver; Apache can be installed. Download and Install, Download ...

350

Geothermal Drilling and Completion Technology Development Program. Quarterly progress report, October 1980-December 1980  

Science Conference Proceedings (OSTI)

The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development.

Kelsey, J.R. (ed.)

1981-03-01T23:59:59.000Z

351

Fuel Cell Technologies Program Multi-Year Research, Development...  

NLE Websites -- All DOE Office Websites (Extended Search)

safety. HTAC is tasked with reviewing and making recommendations to the Secretary in an annual report on: * The implementation of programs and activities under Title VIII of...

352

Development of an injection augmentation program at the Dixie...  

Open Energy Info (EERE)

water rights, rehabilitating an irrigation well, and constructing a polyethylene pipeline to a dedicated injector.During the first two years of this program four different...

353

Nuclear Safety Research and Development (NSR&D) Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety (HS-30) Office of Nuclear Safety Home Directives Nuclear and Facility Safety Policy Rules Nuclear Safety Workshops Technical Standards Program Search ...

354

JM to Develop DOE O 470.X, Insider Threat Program  

Directives, Delegations, and Requirements

The Order establishes top-level responsibilities and requirements for DOE's Insider Threat Program, which is intended to deter, detect, and mitigate insider ...

2013-10-17T23:59:59.000Z

355

Chemistry {ampersand} Materials Science program report, Weapons Resarch and Development and Laboratory Directed Research and Development FY96  

SciTech Connect

This report is the annual progress report for the Chemistry Materials Science Program: Weapons Research and Development and Laboratory Directed Research and Development. Twenty-one projects are described separately by their principal investigators.

Chase, L.

1997-03-01T23:59:59.000Z

356

Creating innovative new media programs: need, challenges, and development framework  

Science Conference Proceedings (OSTI)

This paper presents a framework for creating innovative New Media programs. Demand for traditional Computer Science and Information Technology (CS/IT) programs has gone down in recent years, while new multimedia applications have grown exponentially ... Keywords: creativity, innovation, multimedia education, problem based learning, story-centred curriculum

Nalin K. Sharda

2007-09-01T23:59:59.000Z

357

Metrics Evolution in an Energy Research & Development Program  

Science Conference Proceedings (OSTI)

All technology programs progress through three phases: Discovery, Definition, and Deployment. The form and application of program metrics needs to evolve with each phase. During the discovery phase, the program determines what is achievable. A set of tools is needed to define program goals, to analyze credible technical options, and to ensure that the options are compatible and meet the program objectives. A metrics system that scores the potential performance of technical options is part of this system of tools, supporting screening of concepts and aiding in the overall definition of objectives. During the definition phase, the program defines what specifically is wanted. What is achievable is translated into specific systems and specific technical options are selected and optimized. A metrics system can help with the identification of options for optimization and the selection of the option for deployment. During the deployment phase, the program shows that the selected system works. Demonstration projects are established and classical systems engineering is employed. During this phase, the metrics communicate system performance. This paper discusses an approach to metrics evolution within the Department of Energy's Nuclear Fuel Cycle R&D Program, which is working to improve the sustainability of nuclear energy.

Brent Dixon

2011-08-01T23:59:59.000Z

358

Papua New Guinea-Low Emissions Asian Development (LEAD) Program | Open  

Open Energy Info (EERE)

Papua New Guinea-Low Emissions Asian Development (LEAD) Program Papua New Guinea-Low Emissions Asian Development (LEAD) Program Jump to: navigation, search Name Papua New Guinea-Low Emissions Asian Development (LEAD) Program Agency/Company /Organization ICF International, United States Agency for International Development (USAID) Partner USFS, EPA, United States Department of State Sector Climate, Energy, Land Topics Background analysis, Low emission development planning, -LEDS Website http://www.LowEmissionsAsia.or Country Papua New Guinea Melanesia References USAID LEAD Program[1] The Low Emissions Asian Development (LEAD) program is a regional US Agency for International Development (USAID) activity that supports developing countries in Asia to achieve long-term, transformative development and accelerate sustainable, climate-resilient economic growth while slowing the

359

FUEL CYCLE PROGRAM, A BOILING WATER REACTOR RESEARCH DEVELOPMENT PROGRAM. First Summary Report for March 1959-July 1960  

SciTech Connect

The Fuel Cycle Development Program is a basic development program for boiling and other water technology. It covers the areas of oxide fuel fabrication. irradiation. and examination; the physics of water-moderated reactore; and boiling-water heat transfer and stability. Schedules for the fuel- cycle program were examined. and it was concluded that portions of the Task A program should be conducted during the period May to Dec. 1959 in order to keep costs of the work as low as possible and to allow initiation of the fuel-cycle program at the earliest possible date after the Vallecitos BWR was returned to service. The basis for the scheduling of the work is discussed. and a chronological summary describing the content of the work is given. Technical progress is outlined and details are summarized. Subsequent reports issued monthly and quarterly will summarize the progress of the prognam. (W.D.M.)

Cook, W.H.

1961-10-31T23:59:59.000Z

360

Satellite power system. Concept development and evaluation program  

DOE Green Energy (OSTI)

The Reference System description emphasizes technical and operational information required in support of environmental, socioeconomic, and comparative assessment studies. Supporting information has been developed according to a guideline of implementing two 5 GW SPS systems per year for 30 years beginning with an initial operational data of 2000 and with SPS's being added at the rate of two per year (10 GW/year) until 2030. The Reference System concept, which features gallium--aluminum--arsenide (GaAlAs) and silicon solar cell options, is described in detail. The concept utilizes a planar solar array (about 55 km/sup 2/) built on a graphite fiber reinforced thermoplastic structure. The silicon array uses a concentration ratio of one (no concentration), whereas the GaAlAs array uses a concentration ratio of two. A one-kilometer diameter phased array microwave antenna is mounted on one end. The antenna uses klystrons as power amplifiers with slotted waveguides as radiating elements. The satellite is constructed in geosynchronous orbit in a six-month period. The ground receiving stations (rectenna) are completed during the same time period. The other two major components of an SPS program are (1) the construction bases in space and launch and mission control bases on earth and (2) fleets of various transportation vehicles that support the construction and maintenance operations of the satellites. These transportation vehicles include Heavy Lift Launch Vehicles (HLLV), Personnel Launch Vehicles (PLV), Cargo Orbit Transfer Vehicles (COTV), and Personnel Orbit Transfer Vehicles (POTV). The earth launch site chosen is the Kennedy Space Center, pending further study.

Not Available

1978-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "development program installation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Kilogram Scale Synthesis of a Triazine-based Dendrimer and the Development of a General Strategy for the Installation of Pharmacophores to Yield Potential Drug Delivery Agents  

E-Print Network (OSTI)

Diverse dendrimer peripheries are often produced through convergent synthesis with multiple protection-deprotection steps. Achieving such diversity while maintaining monodispersity, has previously proven problematic. Interception of an electrophilic poly(monochlorotriazine) dendrimer with a molecule of interest bearing a reactive, nucleophilic group presents an efficient method to achieve large quantities of dendrimers with biologically relevant peripheries. Kilogram-scale synthesis of a triazine-based dendrimer relies on reaction of the dichlorotriazine monomer with the amine terminated dendrimer to afford a poly(monochlorotriazine) dendrimer. Normally, the dendrimer is then reacted with piperidine, an inexpensive cap due to its chemically inert nature after reaction. The dendrimer then undergoes a global deprotection to afford an amine-terminated dendrimer. Subsequent iterations with the dichlorotriazine monomer affords higher generation architectures. Intercepting the poly(monochlorotriazine) dendrimer with biologically relevant molecules containing reactive amines enables the development of a drug delivery vehicle. Desferrioxamine B, an iron chelate, and camptothecin, and anticancer drug, are two clinically approved drugs of interest investigated for macromolecular drug delivery. Upon acylation of each drug with BOC-isonipecotic acid, substitution on the dendrimer may occur with varying levels of success depending on the drug in question. Upon successful substitution to afford the desired product,biological studies may be performed. Each synthetic approach will be discussed along with alternative routes leading to this general strategy.

Venditto, Vincent J.

2009-12-01T23:59:59.000Z

362

Net Zero Energy Installations (Presentation)  

SciTech Connect

A net zero energy installation (NZEI) is one that produces as much energy from on-site renewable sources as it consumes. NZEI assessment provides a systematic approach to energy projects.

Booth, S.

2012-05-01T23:59:59.000Z

363

Building technological capability within satellite programs in developing countries  

E-Print Network (OSTI)

Global participation in space activity is growing as satellite technology matures and spreads. Countries in Africa, Asia and Latin America are creating or reinvigorating national satellite programs. These countries are ...

Wood, Danielle Renee

2012-01-01T23:59:59.000Z

364

California Enterprise Development Authority- Statewide PACE Program (California)  

Energy.gov (U.S. Department of Energy (DOE))

FIGTREE Energy Financing is administering a Property Assessed Clean Energy (PACE) financing program in a number of California cities and counties through a partnership with the Pacific Housing &...

365

Geothermal Energy Research and Development Program; Project Summaries  

Science Conference Proceedings (OSTI)

This is an internal DOE Geothermal Program document. This document contains summaries of projects related to exploration technology, reservoir technology, drilling technology, conversion technology, materials, biochemical processes, and direct heat applications. [DJE-2005

None

1994-03-01T23:59:59.000Z

366

Developing High-Quality Field Program Sounding Datasets  

Science Conference Proceedings (OSTI)

Enormous resources of time, effort, and finances are expended in collecting field program rawinsonde (sonde) datasets. Correcting the data and performing quality control (QC) in a timely fashion after the field phase of an experiment are important for ...

Paul E. Ciesielski; Patrick T. Haertel; Richard H. Johnson; Junhong Wang; Scot M. Loehrer

2012-03-01T23:59:59.000Z

367

Vibration Monitoring and Analysis Program Development: Interim Guideline  

Science Conference Proceedings (OSTI)

This report has been prepared by an EPRI team and will serve as an interim guideline to assist the member utilities in the further improvement of maintenance processes by presenting, in detail, the key elements that should be included in a well-organized vibration monitoring and analysis program, as well as conducting comprehensive vibration program evaluations. This report uses the EPRI Monitoring and Diagnostics Center's "Spider Chart" approach to depict graphic representation of the vibration monitori...

2004-12-22T23:59:59.000Z

368

Geothermal Drilling and Completion Technology Development Program. Quarterly progress report, January 1981-March 1981  

DOE Green Energy (OSTI)

The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods as they apply to advanced drilling systems.

Kelsey, J.R. (ed.)

1981-06-01T23:59:59.000Z

369

Energy Office Grant Helps the Virgin Islands Environmental Resource Station Install Solar Panels, Improve Efficiency, and Cut Monthly Energy Use Nearly 30% (Fact Sheet), Energy Development in Island Nations, U.S. Virgin Islands (EDIN)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office Grant Helps the Virgin Islands Environmental Office Grant Helps the Virgin Islands Environmental Resource Station Install Solar Panels, Improve Efficiency, and Cut Monthly Energy Use Nearly 30% Organization Virgin Islands Energy Office www.vienergy.org Industry/Sector Government/Nonprofit Deployment Location St. John, U.S. Virgin Islands This project is such a great learning tool, and I am excited about its progress and being able to show students visiting either VIERS or our website the impact of solar energy. -Randy Brown VIERS Administrator The Virgin Islands Environmental Resource Station developed a solar classroom to educate young people in the U.S. Virgin Islands about renewable energy technologies and their energy and environmental impacts. Photo from Don Buchanan, Virgin Islands Energy Office,

370

Integrated dynamic landscape analysis and modeling system (IDLAMS) : installation manual.  

SciTech Connect

The Integrated Dynamic Landscape Analysis and Modeling System (IDLAMS) is a prototype, integrated land management technology developed through a joint effort between Argonne National Laboratory (ANL) and the US Army Corps of Engineers Construction Engineering Research Laboratories (USACERL). Dr. Ronald C. Sundell, Ms. Pamela J. Sydelko, and Ms. Kimberly A. Majerus were the principal investigators (PIs) for this project. Dr. Zhian Li was the primary software developer. Dr. Jeffrey M. Keisler, Mr. Christopher M. Klaus, and Mr. Michael C. Vogt developed the decision analysis component of this project. It was developed with funding support from the Strategic Environmental Research and Development Program (SERDP), a land/environmental stewardship research program with participation from the US Department of Defense (DoD), the US Department of Energy (DOE), and the US Environmental Protection Agency (EPA). IDLAMS predicts land conditions (e.g., vegetation, wildlife habitats, and erosion status) by simulating changes in military land ecosystems for given training intensities and land management practices. It can be used by military land managers to help predict the future ecological condition for a given land use based on land management scenarios of various levels of training intensity. It also can be used as a tool to help land managers compare different land management practices and further determine a set of land management activities and prescriptions that best suit the needs of a specific military installation.

Li, Z.; Majerus, K. A.; Sundell, R. C.; Sydelko, P. J.; Vogt, M. C.

1999-02-24T23:59:59.000Z

371

Spain Installed Wind Capacity Website | Open Energy Information  

Open Energy Info (EERE)

Spain Installed Wind Capacity Website Spain Installed Wind Capacity Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Spain Installed Wind Capacity Website Focus Area: Renewable Energy Topics: Market Analysis Website: www.gwec.net/index.php?id=131 Equivalent URI: cleanenergysolutions.org/content/spain-installed-wind-capacity-website Language: English Policies: Regulations Regulations: Feed-in Tariffs This website presents an overview of total installed wind energy capacity in Spain per year from 2000 to 2010. The page also presents the main market developments from 2010; a policy summary; a discussion of the revision in feed-in tariffs in 2010; and a future market outlook. References Retrieved from "http://en.openei.org/w/index.php?title=Spain_Installed_Wind_Capacity_Website&oldid=514562"

372

Materials Reliability Program: Pressurized Water Reactor Internals Aging Management Program Development Template (MRP-342)  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) Materials Reliability Program (MRP) has completed and published guidance for managing the effects of aging degradation in pressurized water reactor (PWR) internals. The initial version of this report, Materials Reliability Program: Pressurized Water Reactor Internals Inspection and Evaluation Guidelines (MRP-227, Revision 0), was submitted to the staff of the U. S. Nuclear Regulatory Commission (NRC) ...

2012-10-23T23:59:59.000Z

373

Better Buildings Neighborhood Program: Step 3: Develop Plans...  

NLE Websites -- All DOE Office Websites (Extended Search)

Financing Workforce Development Step 3: Develop Plans of Action Process Mapping for Problem Solving Austin Energy's detailed planning process was critical to the successful...

374

Director's Discretionary Research and Development Program: Annual Report, Fiscal Year 2006  

Science Conference Proceedings (OSTI)

The Director's Discretionary Research and Development Program, Annual Report Fiscal Year 2006 is an annual management report that summarizes research projects funded by the DDRD program. The NREL DDRD program comprises projects that strengthen NREL's four technical competencies: Integrated Systems, Renewable Electricity, Renewable Fuels, and Strategic Analysis.

Not Available

2007-03-01T23:59:59.000Z

375

IFE Chamber Technology Testing Program In NIF and Chamber Development Test Plan Mohamed A. Abdou  

E-Print Network (OSTI)

IFE Chamber Technology Testing Program In NIF and Chamber Development Test Plan Mohamed A. Abdou chamber technology testing program in NIF involoving: criteria for evaluation prior to NIF testing were addressed in this paper. In order to maximize the benefits of testing program

Abdou, Mohamed

376

How many smart meters are installed in the U.S. and who has them ...  

U.S. Energy Information Administration (EIA)

How many smart meters are installed in the U ... Other information on smart meter deployments funded by the Smart Grid Investment Grant program under the American ...

377

Web Site: http://www.coop-program.engr.uga.edu/ms.html UGA Cooperative Engineering Program Development Key Points and Notes.docx  

E-Print Network (OSTI)

Web Site: http://www.coop-program.engr.uga.edu/ms.html UGA Cooperative Engineering Program;Web Site: http://www.coop-program.engr.uga.edu/ms.html UGA Cooperative Engineering Program Development can be earned for their degree. #12;Web Site: http://www.coop-program.engr.uga.edu/ms.html UGA

Arnold, Jonathan

378

Installation package for Hyde Memorial Observatory, Lincoln, Nebraska  

DOE Green Energy (OSTI)

This report contains installation information for a solar heating system installed in Hyde Memorial Observatory at Lincoln, Nebraska. This package includes a system operation and maintenance manual, hardware brochures, schematics, system operating modes and drawings. The Solar Engineering and Equipment Company (SEECO) developed this prototype solar heating system, which consists of the following subsystems: solar collector, control, and storage.

Not Available

1978-12-01T23:59:59.000Z

379

Research and Development Programs in HTSE for Automotive ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Recent national R+D programs open up new possibilities for ... targeting synergic objectives and building up long-term, strategic partnership for joint .... Half-loop Model for Equilibrium Strain in Tensile and Compressive Layers on InP ... Nanothermites: Unconventional Nanomaterials with High Energy Output .

380

Developing Oregon's renewable energy portfolio using fuzzy goal programming model  

Science Conference Proceedings (OSTI)

Renewable energy continues to be a hot topic in the United States affecting security and sustainability. A model to create renewable energy portfolio is established using guidelines drawn by Oregon's Renewable Portfolio Standard (RPS) legislation with ... Keywords: Fuzzy goal programming, Oregon, Renewable energy portfolio

Tugrul U. Daim; Gulgun Kayakutlu; Kelly Cowan

2010-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "development program installation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Laboratory Directed Research and Development Program, FY 1995  

Science Conference Proceedings (OSTI)

This program provides the resources for Berkeley Lab scientists to make rapid and significant contributions to critical nation science and technology problems: accelerators and fusion, chemical sciences, earth sciences, energy and environment, engineering, life sciences, materials, nuclear science, physics, and structural biology (hyperthermophilic microorganisms).

NONE

1995-12-31T23:59:59.000Z

382

Solar PV Manufacturing Cost Model Group: Installed Solar PV System Prices (Presentation)  

SciTech Connect

EERE's Solar Energy Technologies Program is charged with leading the Secretary's SunShot Initiative to reduce the cost of electricity from solar by 75% to be cost competitive with conventional energy sources without subsidy by the end of the decade. As part of this Initiative, the program has funded the National Renewable Energy Laboratory (NREL) to develop module manufacturing and solar PV system installation cost models to ensure that the program's cost reduction targets are carefully aligned with current and near term industry costs. The NREL cost analysis team has leveraged the laboratories' extensive experience in the areas of project finance and deployment, as well as industry partnerships, to develop cost models that mirror the project cost analysis tools used by project managers at leading U.S. installers. The cost models are constructed through a "bottoms-up" assessment of each major cost element, beginning with the system's bill of materials, labor requirements (type and hours) by component, site-specific charges, and soft costs. In addition to the relevant engineering, procurement, and construction costs, the models also consider all relevant costs to an installer, including labor burdens and overhead rates, supply chain costs, and overhead and materials inventory costs, and assume market-specific profits.

Goodrich, A. C.; Woodhouse, M.; James, T.

2011-02-01T23:59:59.000Z

383

Solar PV Manufacturing Cost Model Group: Installed Solar PV System Prices (Presentation)  

DOE Green Energy (OSTI)

EERE's Solar Energy Technologies Program is charged with leading the Secretary's SunShot Initiative to reduce the cost of electricity from solar by 75% to be cost competitive with conventional energy sources without subsidy by the end of the decade. As part of this Initiative, the program has funded the National Renewable Energy Laboratory (NREL) to develop module manufacturing and solar PV system installation cost models to ensure that the program's cost reduction targets are carefully aligned with current and near term industry costs. The NREL cost analysis team has leveraged the laboratories' extensive experience in the areas of project finance and deployment, as well as industry partnerships, to develop cost models that mirror the project cost analysis tools used by project managers at leading U.S. installers. The cost models are constructed through a "bottoms-up" assessment of each major cost element, beginning with the system's bill of materials, labor requirements (type and hours) by component, site-specific charges, and soft costs. In addition to the relevant engineering, procurement, and construction costs, the models also consider all relevant costs to an installer, including labor burdens and overhead rates, supply chain costs, and overhead and materials inventory costs, and assume market-specific profits.

Goodrich, A. C.; Woodhouse, M.; James, T.

2011-02-01T23:59:59.000Z

384

FISCAL YEAR 1997 WELL INSTALLATION, PLUGGING AND ABANDONMENT, AND REDEVELOPMENT SUMMARY REPORT Y-12 PLANT, OAK RIDGE, TENNESSEE  

Science Conference Proceedings (OSTI)

This report summarizes the well installation, plugging and abandonment and redevelopment activities conducted during the federal fiscal year (FY) 1997 at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. No new groundwater monitoring wells were installed during FY 1997. However, 13 temporary piezometers were installed around the Upper East Fork Poplar Creek (UEFPC) in the Y-12 Plant. An additional 36 temporary piezometers, also reported in this document, were installed in FY 1996 and, subsequently, assigned GW-series identification. A total of 21 monitoring wells at the Y-12 Plant were decommissioned in FY 1997. Three existing monitoring wells underwent redevelopment during FY 1997. All well installation and development (including redevelopment) was conducted following industry-standard methods and approved procedures in the Environmental Surveillance Procedures Quality Control Program (Energy Systems 1988), the {ital Resource Conservation and Recovery Act (RCRA) Groundwater Monitoring Technical Enforcement Guidance Document} (EPA 19?6), and {ital Guidelines for Installation of Monitoring Wells at the Y-12 Plant} (Geraghty & Miller 1985). All wells were plugged and abandoned in accordance with the Monitoring Well Plugging and Abandonment Plan for the U.S. Department of Energy, Y-12 Plant, Oak Ridge, Tennessee (HSW, Inc. 1991). Health and safety monitoring and field screening of drilling returns and development waters were conducted in accordance with approved Lockheed Martin Energy Systems, Inc. (Energy Systems) guidelines.

SCIENCE APPLICATIONS INTERNATIONAL CORPORATION

1997-09-01T23:59:59.000Z

385

Nuclear Safety Research and Development (NSR&D) Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Safety » Nuclear Safety Research and Nuclear Safety » Nuclear Safety Research and Development (NSR&D) Program Nuclear Safety Research and Development (NSR&D) Program In 2011, the Office of Health, Safety and Security (HSS) created the Nuclear Safety Research and Development (NSR&D) Program within the Office of Nuclear Safety to provide corporate-level leadership supporting nuclear safety research and development throughout the Department of Energy (DOE). The NSR&D Program solicits input from the Nuclear Safety Council which includes membership of senior management from each program office. NSR&D Program Objectives: To establish an enduring Departmental commitment and capability to utilize NSR&D in preventing and reducing the hazards and risks posed by DOE/NNSA nuclear facilities;

386

Installation package for Sunpak solar collectors  

DOE Green Energy (OSTI)

Owens-Illinois, Inc., has developed a subsystem (air/liquid vacuum collector) for use with solar combined heating and cooling subsystems. The Model SEC-601 collector is modular in design, is approximately twelve-feet-three-inches wide and is eight-feet-seven-inches high. The module contains 72 collector tube elements and weighs approximately 300 pounds. The Installation, Operating, and Maintenance Instructions, List of Materials and the Assembly Drawing are presented.

Not Available

1978-09-01T23:59:59.000Z

387

ADVANCED SORBENT DEVELOPMENT PROGRAM; DEVELOPMENT OF SORBENTS FOR MOVING-BED AND FLUIDIZED-BED APPLICATIONS  

SciTech Connect

The integrated gasification combined cycle (IGCC) power system using high-temperature coal gas cleanup is one of the most promising advanced technologies for the production of electric power from coal in an environmentally acceptable manner. Unlike conventional low-temperature cleanup systems that require costly heat exchangers, high-temperature coal gas cleanup systems can be operated near 482-538 C (900-1000F) or higher, conditions that are a closer match with the gasifier and turbine components in the IGCC system, thus resulting is a more efficient overall system. GE is developing a moving-bed, high-temperature desulfurization system for the IGCC power cycle in which zinc-based regenerable sorbents are currently being used as desulfurization sorbents. Zinc titanate and other proprietary zinc-based oxides are being considered as sorbents for use in the Clean Coal Technology Demonstration Program at Tampa Electric Co.?s (TECo) Polk Power Station. Under cold startup conditions at TECo, desulfurization and regeneration may be carried out at temperatures as low as 343 C (650 F), hence a versatile sorbent is desirable to perform over this wide temperature range. A key to success in the development of high-temperature desulfurization systems is the matching of sorbent properties for the selected process operating conditions, namely, sustainable desulfurization kinetics, high sulfur capacity, and mechanical durability over multiple cycles. Additionally, the sulfur species produced during regeneration of the sorbent must be in a form compatible with sulfur recovery systems, such as sulfuric acid or elemental sulfur processes. The overall objective of this program is to develop regenerable sorbents for hydrogen sulfide removal from coal-derived fuel gases in the temperature range 343-538 C (650-1000 F). Two categories of reactor configurations are being considered: moving-bed reactors and fluidized-bed (bubbling and circulating) reactors. In addition, a cost assessment and a market plan for large-scale fabrication of sorbents were developed. As an optional task, long-term bench-scale tests of the best moving-bed sorbents were conducted. Starting from thermodynamic calculations, several metal oxides were identified for potential use as hot gas cleanup sorbents using constructed phase stability diagrams and laboratory screening of various mixed-metal oxide formulations. Modified zinc titanates and other proprietary metal oxide formulations were evaluated at the bench scale and many of them found to be acceptable for operation in the target desulfurization temperature range of 370 C (700 F) to 538 C (1000 F) and regeneration tempera-tures up to 760 C (1400 F). Further work is still needed to reduce the batch-to-batch repeatability in the fabrication of modified zinc titanates for larger scale applications. The information presented in this Volume 1 report contains the results of moving-bed sorbent develop-ment at General Electric?s Corporate Research and Development (GE-CRD). A separate Volume 2 report contains the results of the subcontract on fluidized-bed sorbent development at the Institute of Gas Technology (IGT).

R.E. AYALA; V.S. VENKATARAMANI

1998-09-30T23:59:59.000Z

388

Fuel Cell Technologies Program Multi-Year Research, Development...  

NLE Websites -- All DOE Office Websites (Extended Search)

Plan Page B - 1 Multi-Year Research, Development and Demonstration Plan Page B - 2 Multi-Year Research, Development and Demonstration Plan Page B - 3 Multi-Year Research,...

389

What Efficiency Projects are Being Installed in the Pulp and Paper Industry  

E-Print Network (OSTI)

The Wisconsin Focus on Energy program has seven years of experience on the actual projects that are being installed in the Pulp and Paper industry. The program has a broad perspective on the types and trends of investments in energy efficiency for this industrial sector. This paper would discuss these projects and trends to show what is working for the real investments in efficiency for the Pulp and Paper Sector. Also included in this paper will be a description of the Pulp and Paper Energy Best Practices Guidebook that was developed by Focus on Energy and is now published by TAPPI.

Nicol, J.

2008-01-01T23:59:59.000Z

390

Geothermal Technology Development Program. Annual progress report, October 1983-September 1984  

DOE Green Energy (OSTI)

This report describes the status of ongoing Research and Development (R and D) within the Geothermal Technology Development Program. The work reported is sponsored by the Department of Energy/Geothermal Hydropower Technology Division (DOE/GHTD), with program management provided by Sandia National Laboratories. The program emphasizes research in rock penetration mechanics, fluid technology, borehole mechanics, diagnostics technology, and permeability enhancement. 102 figs., 16 tabs.

Kelsey, J.R. (ed.)

1985-08-01T23:59:59.000Z

391

installed capacity | OpenEI  

Open Energy Info (EERE)

installed capacity installed capacity Dataset Summary Description Estimates for each of the 50 states and the entire United States show Source Wind Powering America Date Released February 04th, 2010 (4 years ago) Date Updated April 13th, 2011 (3 years ago) Keywords annual generation installed capacity usa wind Data application/vnd.ms-excel icon Wind potential data (xls, 102.4 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Other or unspecified, see optional comment below Comment Work of the U.S. Federal Government. Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote Comments

392

Solar Installation Labor Market Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Installation Labor Installation Labor Market Analysis Barry Friedman National Renewable Energy Laboratory Philip Jordan Green LMI Consulting John Carrese San Francisco Bay Area Center of Excellence Technical Report NREL/TP-6A20-49339 December 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Solar Installation Labor Market Analysis Barry Friedman National Renewable Energy Laboratory Philip Jordan Green LMI Consulting John Carrese San Francisco Bay Area Center of Excellence

393

Developing neural structure of two agents that play checkers using cartesian genetic programming  

Science Conference Proceedings (OSTI)

A developmental model of neural network is presented and evaluated in the game of Checkers. The network is developed using cartesian genetic programs (CGP) as genotypes. Two agents are provided with this network and allowed to co-evolve untill they start ... Keywords: artificial neural networks, cartesian genetic programming, checkers, co-evolution, computational development

Gul Muhammad Khan; Julian Francis Miller; David M. Halliday

2008-07-01T23:59:59.000Z

394

Work with Apple's Rhapsody Operating System which Allows Simultaneous UNIX Program Development, UNIX Program Execution, and PC Application Execution  

E-Print Network (OSTI)

Over the past decade, UNIX workstations have provided a very powerful program development environment. However, workstations are more expensive than PCs and Macintoshes and require a system manager for day-to-day tasks such as disk backup, adding users, and setting up print queues. Native commercial software for system maintenance and "PC applications" has been lacking under UNIX. Apple's new Rhapsody operating system puts the current MacOS on a NeXT UNIX foundation and adds an enhanced NeXTSTEP object oriented development environment called Yellow Box. Rhapsody simultaneously runs UNIX and commercial Macintosh applications such as word processing or spreadsheets. Thus a UNIX detector Monte Carlo can run for days in the background at the same time as a commercial word processing program. And commercial programs such as Dantz Retrospect are being made available to make disk backup easy under Rhapsody. Apple has announced that in 1999 they intend to be running Rhapsody, or MacOS X as it will be called in the commercial release, on all their newer computers. MacOS X may be of interest to those who have trouble hiring expert UNIX system managers; and to those who would prefer to have a single computer and operating system on their desktop that serves both the needs of UNIX program development and running commercial applications, simultaneously. We present our experiences running UNIX programs and Macintosh applications under the Rhapsody DR2 Developer Release.

Don Summers; Chris Riley; Lucien Cremaldi; David Sanders

2001-05-27T23:59:59.000Z

395

Cray to Install Cascade System at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Cray to Install Cascade System at NERSC Cray to Install Cascade System at NERSC June 27, 2012 by Richard Gerber (0 Comments) Cray will install a next-generation supercomputer...

396

ADVANCED SORBENT DEVELOPMENT PROGRAM DEVELOPMENT OF SORBENTS FOR MOVING-BED AND FLUIDIZED-BED APPLICATIONS  

SciTech Connect

The integrated gasification combined cycle (IGCC) power system using high-temperature coal gas cleanup is one of the most promising advanced technologies for the production of electric power from coal in an environmentally acceptable manner. Unlike conventional low-temperature cleanup systems that require costly heat exchangers, high-temperature coal gas cleanup systems can be operated near 482-538 C (900-1000 F) or higher, conditions that are a closer match with the gasifier and turbine components in the IGCC system, thus resulting is a more efficient overall system. GE is developing a moving-bed, high-temperature desulfurization system for the IGCC power cycle in which zinc-based regenerable sorbents are currently being used as desulfurization sorbents. Zinc titanate and other proprietary zinc-based oxides are being considered as sorbents for use in the Clean Coal Technology Demonstration Program at Tampa Electric Co.'s (TECo) Polk Power Station. Under cold startup conditions at TECo, desulfurization and regeneration may be carried out at temperatures as low as 343 C (650 F), hence a versatile sorbent is desirable to perform over this wide temperature range. A key to success in the development of high-temperature desulfurization systems is the matching of sorbent properties for the selected process operating conditions, namely, sustainable desulfurization kinetics, high sulfur capacity, and mechanical durability over multiple cycles. Additionally, the sulfur species produced during regeneration of the sorbent must be in a form compatible with sulfur recovery systems, such as sulfuric acid or elemental sulfur processes. The overall objective of this program is to develop regenerable sorbents for hydrogen sulfide removal from coal-derived fuel gases in the temperature range 343-538 C (650-1000 F). Two categories of reactor configurations are being considered: moving-bed reactors and fluidized-bed (bubbling and circulating) reactors. In addition, a cost assessment and a market plan for large-scale fabrication of sorbents were developed. As an optional task, long-term bench-scale tests of the best moving-bed sorbents were conducted. Starting from thermodynamic calculations, several metal oxides were identified for potential use as hot gas cleanup sorbents using constructed phase stability diagrams and laboratory screening of various mixed-metal oxide formulations. Modified zinc titanates and other proprietary metal oxide formulations were evaluated at the bench scale and many of them found to be acceptable for operation in the target desulfurization temperature range of 370 C (700 F) to 538 C (1000 F) and regeneration temperatures up to 760 C (1400 F). Further work is still needed to reduce the batch-to-batch repeatability in the fabrication of modified zinc titanates for larger scale applications. The information presented in this Volume 1 report contains the results of moving-bed sorbent development at General Electric's Corporate Research and Development (GE-CRD). A separate Volume 2 report contains the results of the subcontract on fluidized-bed sorbent development at the Institute of Gas Technology (IGT).

R.E Ayala; V.S. Venkataramani; Javad Abbasian; Rachid B. Slimane; Brett E. Williams; Minoo K. Zarnegar; James R. Wangerow; Andy H. Hill

2000-03-31T23:59:59.000Z

397

Enterprise Zone Program (Louisiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Enterprise Zone Program (Louisiana) Enterprise Zone Program (Louisiana) Enterprise Zone Program (Louisiana) < Back Eligibility Commercial Construction Developer Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Nonprofit Retail Supplier Systems Integrator Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Louisiana Program Type Corporate Tax Incentive Enterprise Zone Provider Louisiana Economic Development The Enterprise Zone Program is a jobs incentive program providing Louisiana income and franchise tax credits to businesses hiring at least 35% of net, new jobs from targeted groups. Enterprise Zones (EZs) are areas with high unemployment, low income, or a high percentage of residents receiving some

398

Pasadena Water and Power - Solar Power Installation Rebate | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pasadena Water and Power - Solar Power Installation Rebate Pasadena Water and Power - Solar Power Installation Rebate Pasadena Water and Power - Solar Power Installation Rebate < Back Eligibility Commercial Institutional Local Government Nonprofit Residential State Government Savings Category Solar Buying & Making Electricity Program Info State California Program Type Utility Rebate Program Rebate Amount Systems up to 30 kW have the option of receiving an expected performance based buydown (EPBB) or a performance based incentive (PBI). Systems larger than 30 kW are only eligible for the PBI. EPBB (effective 6/1/12): Residential: $1.40/watt AC Commercial and all PPAs: $0.85/watt AC Non-profits and Government: $1.60/watt AC Income-qualified residential: $4.00/watt PBI (effective 6/1/12): Residential: $0.212/kWh Commercial and all PPAs: $0.129/kWh

399

Community Development Block Grant/Economic Development Infrastructure  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Community Development Block Grant/Economic Development Community Development Block Grant/Economic Development Infrastructure Financing (CDBG/EDIF) (Oklahoma) Community Development Block Grant/Economic Development Infrastructure Financing (CDBG/EDIF) (Oklahoma) < Back Eligibility Utility Commercial Agricultural Investor-Owned Utility Industrial Construction Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Tribal Government Retail Supplier Systems Integrator Fuel Distributor Nonprofit Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info Program Type Grant Program Loan Program Community Development Block Grant/Economic Development Infrastructure Financing (CDBG/EDIF) provides public infrastructure financing to help

400

Installation and Commissioning Automated Demand Response Systems  

E-Print Network (OSTI)

al: Installation and Commissioning Automated Demand ResponseConference on Building Commissioning: April 22 24, 2008al: Installation and Commissioning Automated Demand Response

Kiliccote, Sila; Global Energy Partners; Pacific Gas and Electric Company

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "development program installation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Brand Font Installation Guide Windows XP  

E-Print Network (OSTI)

Brand Font Installation Guide Windows XP Before starting ­ make sure to the specific font folder ­ when Windows detects installable font files, they will show

Stuart, Steven J.

402

Program planner's guide to geothermal development in California  

DOE Green Energy (OSTI)

The resource base, status of geothermal development activities, and the state's energy flow are summarized. The present and projected geothermal share of the energy market is discussed. The public and private sector initiatives supporting geothermal development in California are described. These include legislation to provide economic incentives, streamline regulation, and provide planning assistance to local communities. Private sector investment, research, and development activities are also described. The appendices provide a ready reference of financial incentives. (MHR)

Yen, W.W.S.; Chambers, D.M.; Elliott, J.F.; Whittier, J.P.; Schnoor, J.J.; Blachman, S.

1980-09-30T23:59:59.000Z

403

Laboratory Directed Research and Development Program FY2011  

E-Print Network (OSTI)

moving forward.. Accomplishments To date weve focused on four high-impact energy technologies under development at LBNLadvanced biofuels,

ed, Todd Hansen

2013-01-01T23:59:59.000Z

404

Fuel Cell Technologies Program Multi-Year Research, Development...  

NLE Websites -- All DOE Office Websites (Extended Search)

- 1 Executive Summary The United States pioneered the development of hydrogen and fuel cell technologies, and we continue to lead the way as these technologies emerge from the...

405

Laboratory Directed Research and Development Program FY2011  

E-Print Network (OSTI)

developed a piezoelectric energy-converting biomaterial fromPBD-Lee LB11017 Piezoelectric Biomaterials for Novel EnergyPhage-Based Piezoelectric Thin Films for Energy Generation,

ed, Todd Hansen

2013-01-01T23:59:59.000Z

406

Microenterprise Loan Program (Kentucky) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Microenterprise Loan Program (Kentucky) Microenterprise Loan Program (Kentucky) Microenterprise Loan Program (Kentucky) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Low-Income Residential Multi-Family Residential Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Transportation Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Kentucky Program Type Loan Program Provider Cabinet for Economic Development In partnership with Community Ventures Corporation, a non-profit community based lender, the Kentucky Cabinet for Economic Development has expanded

407

Laboratory Directed Research and Development Program. FY 1993  

Science Conference Proceedings (OSTI)

This report is compiled from annual reports submitted by principal investigators following the close of fiscal year 1993. This report describes the projects supported and summarizes their accomplishments. The program advances the Laboratory`s core competencies, foundations, scientific capability, and permits exploration of exciting new opportunities. Reports are given from the following divisions: Accelerator and Fusion Research, Chemical Sciences, Earth Sciences, Energy and Environment, Engineering, Environment -- Health and Safety, Information and Computing Sciences, Life Sciences, Materials Sciences, Nuclear Science, Physics, and Structural Biology. (GHH)

Not Available

1994-02-01T23:59:59.000Z

408

The Los Alamos nuclear safeguards and nonproliferation technology development program  

SciTech Connect

For nearly three decades, Los Alamos National Laboratory has developed and implemented nuclear measurement technology and training in support of national and international nuclear safeguards. This paper outlines the major elements of those technologies and highlights some of the latest developments.

Smith, H.A. Jr.; Menlove, H.O.; Reilly, T.D.; Bosler, G.E.; Hakkila, E.A.; Eccleston, G.W.

1994-04-01T23:59:59.000Z

409

Clean Cities: Electric Vehicle Infrastructure Training Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicle Infrastructure Training Program The Electric Vehicle Infrastructure Training Program (EVITP) provides training and certification for people installing electric...

410

National rf technology research and development program plan  

Science Conference Proceedings (OSTI)

This plan was prepared by the Oak Ridge National Laboratory at the request of the Office of Fusion Energy, Division of Development and Technology, to define the technology development needs and priorities. The US rf research and development community, with a wide representation from universities, laboratories and industries, participated in many discussions, meetings and in a three-day workshop in developing the needs and priorities definition. This very active and effective involvement of the rf leaders from all of these groups was an essential feature of the activity and results in the plan representing a broad consensus from the magnetic fusion energy development community. In addition, a number of scientists from Japan and Europe participated by providing data.

Not Available

1983-05-01T23:59:59.000Z

411

Advanced turbine systems program conceptual design and product development. Quarterly report, August--October 1995  

Science Conference Proceedings (OSTI)

This report describes the tasks completed for the advanced turbine systems program. The topics of the report include last row turbine blade development, single crystal blade casting development, ceramic materials development, combustion cylinder flow mapping, shroud film cooling, directional solidified valve development, shrouded blade cooling, closed-loop steam cooling, active tip clearance control, flow visualization tests, combustion noise investigation, TBC field testing, catalytic combustion development, optical diagnostics probe development, serpentine channel cooling tests, brush seal development, high efficiency compressor design, advanced air sealing development, advanced coating development, single crystal blade development, Ni-based disc forging development, and steam cooling effects on materials.

NONE

1996-01-01T23:59:59.000Z

412

Federal Energy Management Program: Develop an Institutional Change Action  

NLE Websites -- All DOE Office Websites (Extended Search)

Develop an Institutional Change Action Plan for Sustainability Develop an Institutional Change Action Plan for Sustainability Graphic showing 5 gears. They progress from Determine Goal to Identify Context-Rules, Roles and Tools to Develop Action Plan to Implement Plan to Measure and Evaluate. Institutional Change Continuous Improvement Cycle After establishing a goal and assessing the rules, roles, and tools, Federal agencies can develop an action plan (select the strategies that will be implemented over time to achieve and maintain energy and sustainability goals). This action plan should target specific audiences with tailored strategies and take into account the need to review and revise strategies in the long-term. The action plan must include appropriate metrics and regular measurement. Remember that planning useful efficiency and sustainability evaluation is necessary before an organization begins to implement an action plan.

413

Business and Market Development Program (Newfoundland and Labrador...  

Open Energy Info (EERE)

and Policies International Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View...

414

Development of Energy Codes | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Development of Energy Codes Both the IECC and ASHRAE Standard 90.1 are maintained and updated in open public forums. The openness and transparency of these processes is critical to...

415

Decentralized Optimal Power Pricing: The Development of a Parallel Program  

E-Print Network (OSTI)

sacri ces in exe- cution speed. Between these two extremes is the mid- dle ground where development must that these constraints are reasonable. The size of the network|10,000 customers served from a single plant or substation

Lumetta, Steve

416

Advanced Turbine Systems Program: Conceptual design and product development  

SciTech Connect

Objective is to provide the conceptual design and product development plant for an ultra high efficiency, environmentally superior, and cost competitive industrial gas turbine system to be commercialized by the year 2000 (secondary objective is to begin early development of technologies critical to the success of ATS). This report addresses the remaining 7 of the 9 subtasks in Task 8, Design and Test of Critical Components: catalytic combustion, recuperator, high- temperature turbine disc, advanced control system, and ceramic materials.

1996-12-31T23:59:59.000Z

417

Program to develop improved downhole drilling motors. Semiannual report  

DOE Green Energy (OSTI)

The following are described: the history of turbodrill development, positive displacement motor development, the theory of turbodrills, the theory of positive displacement motors, basic motor components, forces on thrust bearings, thrust bearing design, radial bearing design, rotary seal design, sealed lubrication system, lubricants, and project status. Included in appendices are materials on high-temperature lubricants and a progress report on the design of downhole motor seal, bearing, and lubrication test systems. (MHR)

Maurer, W.C.

1976-11-01T23:59:59.000Z

418

Maximizing the Benefit from the D&D Technology Development Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maximizing the Benefit from the D&D Technology Development Program Maximizing the Benefit from the D&D Technology Development Program Maximizing the Benefit from the D&D Technology Development Program The Office of Deactivation and Decommissioning (D&D)/Facility Engineering (FE) is charged with reducing the technical risk and uncertainty of D&D activities across the Environmental Management (EM) Complex through the identification, development and demonstration of alternative technologies as well as through the provision of technical assistance activities such as Lessons Learned Workshops and External Technical Review Teams. Maximizing the Benefit from the D&D Technology Development Program More Documents & Publications Across the Pond Newsletter Issue 1 D&D Toolbox Project - Technology Demonstration of Fixatives Applied to Hot

419

Generator Bushing Installation and Maintenance Guide  

Science Conference Proceedings (OSTI)

This report is a comprehensive guide to generator high-voltage bushing (HVB) installation and maintenance.

2008-12-04T23:59:59.000Z

420

Solar energy research and development: program balance. Annex, Volume I  

DOE Green Energy (OSTI)

An evaluation of federal research, development, and demonstration options on solar energy is presented. This assessment treats seven groups of solar energy technologies: solar heating and cooling of buildings, agricultural and industrial process heat, biomass, photovoltaics, thermal power, wind, and ocean thermal energy conversion. The evaluation methodology is presented in detail. (MHR)

None

1978-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "development program installation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Geothermal Loan Guaranty Program and its impact on geothermal exploration and development  

DOE Green Energy (OSTI)

The study showed that the Geothermal Loan Guaranty Program has had only a negligible effect on geothermal development and the response to the program was far less than expected. The streamlining of environmental regulations and leasing policies, and the granting of intangible drilling cost write-offs and depletion allowances to operators would have had a greater impact on geothermal energy development. The loan guaranty program did not promote the undertaking of any new projects that would not have been undertaken without it. The program only accelerated the pace for some development which might have commenced in the future. Included in the study are recommendations for improving the operation of the program thereby increasing its attractiveness to potential applicants.

Nasr, L.H.

1978-05-01T23:59:59.000Z

422

Development program for the high-temperature nuclear process heat system  

SciTech Connect

A comprehensive development program plan for a high-temperature nuclear process heat system with a very high temperature gas-cooled reactor heat source is presented. The system would provide an interim substitute for fossil-fired sources and ultimately the vehicle for the production of substitute and synthetic fuels to replace petroleum and natural gas. The dwindling domestic reserves of petroleum and natural gas dictate major increases in the utilization of coal and nuclear sources to meet the national energy demand. The nuclear process heat system has significant potential in a unique combination of the two sources that is environmentally and economically attractive and technically sound: the production of synthetic fuels from coal. In the longer term, it could be the key component in hydrogen production from water processes that offer a substitute fuel and chemical feedstock free of dependence on fossil-fuel reserves. The proposed development program is threefold: a process studies program, a demonstration plant program, and a supportive research and development program. Optional development scenarios are presented and evaluated, and a selection is proposed and qualified. The interdependence of the three major program elements is examined, but particular emphasis is placed on the supportive research and development activities. A detailed description of proposed activities in the supportive research and development program with tentative costs and schedules is presented as an appendix with an assessment of current status and planning. (auth)

Jiacoletti, R.J.

1975-09-01T23:59:59.000Z

423

Strategic Environmental Research and Development Program: Atmospheric Remote Sensing and Assessment Program -- Final Report. Part 1: The lower atmosphere  

Science Conference Proceedings (OSTI)

This report documents work done between FY91 and FY95 for the lower atmospheric portion of the joint Department of Defense (DoD) and Department of Energy (DOE) Atmospheric Remote Sensing and Assessment Program (ARSAP) within the Strategic Environmental Research and Development Program (SERDP). The work focused on (1) developing new measurement capabilities and (2) measuring atmospheric heating in a well-defined layer and then relating it to cloud properties an water vapor content. Seven new instruments were develop3ed for use with Unmanned Aerospace Vehicles (UAVs) as the host platform for flux, radiance, cloud, and water vapor measurements. Four major field campaigns were undertaken to use these new as well as existing instruments to make critically needed atmospheric measurements. Scientific results include the profiling of clear sky fluxes from near surface to 14 km and the strong indication of cloudy atmosphere absorption of solar radiation considerably greater than predicted by extant models.

Tooman, T.P. [ed.] [Sandia National Labs., Livermore, CA (United States). Exploratory Systems Technology Dept.

1997-01-01T23:59:59.000Z

424

Demonstration of a utility industry horizontal drilling system: Horizontal well AMH-5 installation report  

SciTech Connect

The Department of Energy`s Office of Technology Development initiated an integrated demonstration of innovative technologies and systems for cleanup of VOCs in soils and groundwater at the Savannah River Site (SRS) in 1989. The overall goal of the program is demonstration of multiple technologies and systems in the fields of drilling, characterization, monitoring, and remediation at a single test bed. Innovative technologies are compared to one another and to baseline technologies in terms of technical performance and cost effectiveness. Transfer of successfully demonstrated technologies and systems to DOE environmental restoration organizations, to other government agencies, and to industry is a critical part of the program. Directional drilling has been shown to be a successful technique for enhancing access to the subsurface, thus improving remediation systems, especially remediation systems which perform in situ. Demonstration of an innovative directional drilling system at the Integrated Demonstration Site at the SRS, was initiated in June of 1992. The directional drilling system was designed to install an in situ remediation system. The drilling system is an experimental compaction/dry drilling technique developed by Charles Machine Works (Ditch Witch{reg_sign}) of Perry, Oklahoma. A horizontal well was installed in the M Area of the SRS below and parallel to an abandoned tile process sewer line. The installation of the horizontal well was a two-part process. Part one consisted of drilling the borehole, and part two was the horizontal well completion.

Not Available

1992-12-31T23:59:59.000Z

425

Process Improvement at Army Installations  

E-Print Network (OSTI)

Compliance with environmental law is becoming significantly expensive. In the past for convenience of management, compliance and pollution prevention were considered independently from production. Environmental law was introduced to optimize production methods to reduce pollution. Energy conservation opportunities (ECOs) that enhance pollution prevention have been compiled through research at many installations, including United States Army Construction Engineering Research Laboratories (USACERL). Executive Orders require the Army to reduce the use of energy and related environmental impacts by promoting renewable energy technologies. These new energy and environmental directives usually exceed the performance capabilities of DODs currently installed industrial technologies. The majority of DOD industrial activities utilize 40 year-old technologies and facilities. The objective of this project was to conduct a Level II process optimization audit on a munitions manufacturing operation at an Army base to optimize capacity, and energy and environmental performance. This paper reports the outcome and offers insights into process optimization.

Northrup, J.; Smith, E. D.; Lin, M.; Baird, J.

1997-04-01T23:59:59.000Z

426

Prospect for using fresnel lenses for the concentrating systems of solar installations  

SciTech Connect

The state of development work on Fresnel lenses is reported. The possibility of using them in solar installations is analyzed. It is concluded that Fresnel lenses represent promising optical systems for solar installations.

Lidorenko, N.S.; Zhukov, K.V.; Nabiullin, F.Kh.; Tver' yanovich, E.V.

1977-01-01T23:59:59.000Z

427

Program to develop improved downhole drilling motors. Final report  

DOE Green Energy (OSTI)

Significant progress was made during Phase I of the program toward finding solutions to the seal-and-bearing problems. A seal-test facility was designed and built to test full-scale seals for downhole motors. The tests will simulate closely the environment imposed on seals used in actual motor drilling. Many seal designs and concepts were considered, including novel designs and modifications to conventional seal types. Several of the most promising designs (including some novel designs) have been designated for testing in Phase II. Some of these seals have already been obtained and are available for testing. The preliminary design for a seal-bearing package test stand was completed. This facility will allow tests of full-size seal-bearing packs at simulated downhole conditions. The design of a new seal-bearing package was completed and is scheduled for full-scale testing in Phase II. This package will allow worn seals and bearings to be replaced easily. New thrust bearings were selected for application in the seal-bearing package. These bearings offer much greater load capacity and should increase bearing life significantly. (JGB)

Black, A.D.; Green, S.J.; Matson, L.W.; Maurer, W.C.; Nielsen, R.R.; Nixon, J.D.; Wilson, J.G.

1977-03-01T23:59:59.000Z

428

Quarterly technical progress report, July-September 1982 on Energy Conversion Research and Development Programs  

DOE Green Energy (OSTI)

Detail design work was resumed on the superheater. Satisfactory bids were received for the air heater and lowest price responsive bidder was chosen. The conduct of three tests in the LMF1C series is reported. The status of the environmental monitoring program is reviewed. Preliminary analyses of the test data from the three tests conducted during the quarter are included. The heat fluxes, combustor pressure and combustor efficiencies are reported. The performance of the nozzle, diagnostic (Hall) channel and diffuser is compared with an analytical model for each test run. The performance of the new diffuser which was installed during the quarter is discussed. The test results from the downstream components; i.e. slag screen, radiant furnace, secondary combustor and materials test module, are discussed. Slag removal from the radiant furnace, refractory performance and metals performance is covered. A summary report is included on the results of the cold flow modeling of the secondary combustor, which involved variations in relative velocity of the secondary air, the angle of injection and the flow constriction. Diagnostic support of testing activities is described, including the use of the laser doppler velocimeter (LDV) for the secondary combustor modeling. Luminosity and line reversal temperature measurements were made in support of the CFFF tests. A photodiode line reversal system has been designed which has the promise of being more reliable, easier to install on operational equipment and cheaper.

Not Available

1983-12-01T23:59:59.000Z