Sample records for development phases techniques

  1. The Development and Optimization of Techniques for Monitoring Water Quality on-Board Spacecraft Using Colorimetric Solid-Phase Extraction (C-SPE)

    SciTech Connect (OSTI)

    April Hill

    2007-12-01T23:59:59.000Z

    The main focus of this dissertation is the design, development, and ground and microgravity validation of methods for monitoring drinking water quality on-board NASA spacecraft using clorimetric-solid phase extraction (C-SPE). The Introduction will overview the need for in-flight water quality analysis and will detail some of the challenges associated with operations in the absence of gravity. The ability of C-SPE methods to meet these challenges will then be discussed, followed by a literature review on existing applications of C-SPE and similar techniques. Finally, a brief discussion of diffuse reflectance spectroscopy theory, which provides a means for analyte identification and quantification in C-SPE analyses, is presented. Following the Introduction, four research chapters are presented as separate manuscripts. Chapter 1 reports the results from microgravity testing of existing C-SPE methods and procedures aboard NASA's C-9 microgravity simulator. Chapter 2 discusses the development of a C-SPE method for determining the total concentration of biocidal silver (i.e., in both dissolved and colloidal forms) in water samples. Chapter 3 presents the first application of the C-SPE technique to the determination of an organic analyte (i.e., formaldehyde). Chapter 4, which is a departure from the main focus of the thesis, details the results of an investigation into the effect of substrate rotation on the kinetics involved in the antigen and labeling steps in sandwich immunoassays. These research chapters are followed by general conclusions and a prospectus section.

  2. Supply Regulation Techniques for Phase-Locked Loops

    E-Print Network [OSTI]

    Palermo, Sam

    Supply Regulation Techniques for Phase-Locked Loops Vivekananth Gurumoorthy and Samuel Palermo-- Phase-locked loops (PLLs) which employ voltage regulators for low supply-noise sensitivity often rely. This paper compares various supply regulation techniques on the basis of their ability to reject noise from

  3. CFRP STRUCTURAL HEALTH MONITORING BY ULTRASONIC PHASED ARRAY TECHNIQUE

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    CFRP STRUCTURAL HEALTH MONITORING BY ULTRASONIC PHASED ARRAY TECHNIQUE A.S. Boychuk, A.S. Generalov deals with ultrasonic phased array (PA) application for high-loaded CFRP structural health monitoring of integrated CFRP structural health monitoring system based on FBGA for impact damage detection is described

  4. Knowledge Engineering Technique for Cluster Development

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Knowledge Engineering Technique for Cluster Development Pradorn Sureephong1 , Nopasit Chakpitak1 management by using knowledge engineering which is one of the most important method for managing knowledge. This work analyzed three well known knowledge engineering methods, i.e. MOKA, SPEDE and Common

  5. Nuclear Concrete Materials Database Phase I Development

    SciTech Connect (OSTI)

    Ren, Weiju [ORNL; Naus, Dan J [ORNL

    2012-05-01T23:59:59.000Z

    The FY 2011 accomplishments in Phase I development of the Nuclear Concrete Materials Database to support the Light Water Reactor Sustainability Program are summarized. The database has been developed using the ORNL materials database infrastructure established for the Gen IV Materials Handbook to achieve cost reduction and development efficiency. In this Phase I development, the database has been successfully designed and constructed to manage documents in the Portable Document Format generated from the Structural Materials Handbook that contains nuclear concrete materials data and related information. The completion of the Phase I database has established a solid foundation for Phase II development, in which a digital database will be designed and constructed to manage nuclear concrete materials data in various digitized formats to facilitate electronic and mathematical processing for analysis, modeling, and design applications.

  6. Federal ESPC Process Phase 3: Project Development

    Broader source: Energy.gov [DOE]

    During phase 3 of the energy savings performance contract (ESPC) procurement process, the agency and energy service company (ESCO) work to develop and award a task order. The task order includes descriptions of the energy conservation measures (ECMs); baselines; and financial schedules showing estimated savings, guaranteed savings, itemized prices, and agency payments.

  7. Los Alamos develops new technique for growing high-efficiency...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Growing high-efficiency perovskite solar cells Los Alamos develops new technique for growing high-efficiency perovskite solar cells Researchers reveal a new solution-based...

  8. Preliminary Phase Field Computational Model Development

    SciTech Connect (OSTI)

    Li, Yulan; Hu, Shenyang Y.; Xu, Ke; Suter, Jonathan D.; McCloy, John S.; Johnson, Bradley R.; Ramuhalli, Pradeep

    2014-12-15T23:59:59.000Z

    This interim report presents progress towards the development of meso-scale models of magnetic behavior that incorporate microstructural information. Modeling magnetic signatures in irradiated materials with complex microstructures (such as structural steels) is a significant challenge. The complexity is addressed incrementally, using the monocrystalline Fe (i.e., ferrite) film as model systems to develop and validate initial models, followed by polycrystalline Fe films, and by more complicated and representative alloys. In addition, the modeling incrementally addresses inclusion of other major phases (e.g., martensite, austenite), minor magnetic phases (e.g., carbides, FeCr precipitates), and minor nonmagnetic phases (e.g., Cu precipitates, voids). The focus of the magnetic modeling is on phase-field models. The models are based on the numerical solution to the Landau-Lifshitz-Gilbert equation. From the computational standpoint, phase-field modeling allows the simulation of large enough systems that relevant defect structures and their effects on functional properties like magnetism can be simulated. To date, two phase-field models have been generated in support of this work. First, a bulk iron model with periodic boundary conditions was generated as a proof-of-concept to investigate major loop effects of single versus polycrystalline bulk iron and effects of single non-magnetic defects. More recently, to support the experimental program herein using iron thin films, a new model was generated that uses finite boundary conditions representing surfaces and edges. This model has provided key insights into the domain structures observed in magnetic force microscopy (MFM) measurements. Simulation results for single crystal thin-film iron indicate the feasibility of the model for determining magnetic domain wall thickness and mobility in an externally applied field. Because the phase-field model dimensions are limited relative to the size of most specimens used in experiments, special experimental methods were devised to create similar boundary conditions in the iron films. Preliminary MFM studies conducted on single and polycrystalline iron films with small sub-areas created with focused ion beam have correlated quite well qualitatively with phase-field simulations. However, phase-field model dimensions are still small relative to experiments thus far. We are in the process of increasing the size of the models and decreasing specimen size so both have identical dimensions. Ongoing research is focused on validation of the phase-field model. Validation is being accomplished through comparison with experimentally obtained MFM images (in progress), and planned measurements of major hysteresis loops and first order reversal curves. Extrapolation of simulation sizes to represent a more stochastic bulk-like system will require sampling of various simulations (i.e., with single non-magnetic defect, single magnetic defect, single grain boundary, single dislocation, etc.) with distributions of input parameters. These outputs can then be compared to laboratory magnetic measurements and ultimately to simulate magnetic Barkhausen noise signals.

  9. Comparison of soft computing techniques for a three-phase oil field centrifuge.

    SciTech Connect (OSTI)

    Smith, R. E. (Ronald E.); Parkinson, w; Miller, N. (Neal)

    2002-01-01T23:59:59.000Z

    In this work we compare fuzzy techniques to neural network techniques for building a soft sensor for a three-phase oil field centrifuge. The soft sensor is used in a feed-forward control system that augments a feedback control system. Two approaches were used to develop the soft sensor. The first approach was to use a fuzzy rule based system based upon the experience of an expert operator. The expert operator's experience was supplemented using a computer model of the system. The second approach was to use a neural network to build the inverse of the computer model. The pros and cons of both techniques are discussed. KEYWORDS: fuzzy logic, neural networks, soft sensor, soft computing

  10. Industrial Lighting Techniques and New Developments

    E-Print Network [OSTI]

    Colotti, M. A.

    The energy crisis of the early seventies has had a drastic influence on both the application and development of light sources. This situation has forced us to examine old methods and search for new answers for improved efficiency. We can no longer...

  11. Development of decontamination techniques for decommissioning commercial nuclear power plants

    SciTech Connect (OSTI)

    Ishikura, T.; Miwa, T.; Onozawa, T.; Ohtsuka, H. [Nuclear Power Engineering Corp., Tokyo (Japan). Plant and Components Dept.; Ishigure, K. [Univ. of Tokyo (Japan). Dept. of Quantum Engineering and System Science

    1993-12-31T23:59:59.000Z

    NUPEC has been developing various techniques to safely and efficiently decommission large commercial nuclear power plants. The development work, referred to as the verification tests, has been performed since 1982. The verification tests on decontamination techniques have focused on the reduction of both occupational radiation exposure and radioactive waste volume. Experiments on various decontamination methods have been carried out. Prospects of applying efficient decontamination techniques to commercial nuclear power plant decommissioning are bright due to the experimental results.

  12. Development of solidification technique for dredged sediments

    SciTech Connect (OSTI)

    Yamasaki, Shoichi [Aoki Marine Co., Ltd., Fukushima, Osaka (Japan); Yasui, Hiroshi [San O Co., Ltd., Kyoto (Japan); Fukue, Masaharu [Tokai Univ., Shimizu (Japan). Marine Science and Technology

    1995-12-31T23:59:59.000Z

    The sediments deposited on the bottoms of seas, lakes, and rivers can be contaminated with hazardous and toxic substances as a result of the discharge of human activities. Therefore, since the natural remediation process cannot be expected, contaminated or polluted as well as highly organic sediments must be treated as waste and be properly disposed for human health and environmental protection. One method of disposal may be to remove the sediments by dredging and to treat them with a proper technique. The main problems in the dredging method are as follows: (1) since sediments usually have very high water content, it is necessary to decrease the volume and solidify them for the next procedure, e.g., landfill; (2) the leachates from the sediments should be treated also. It is required that the water to be discharged be kept at a quality satisfying the level of standards. This paper describes an experimental study using a solidification system performed for the cleanup of the bottom of a river. To promote the solidification of the system, several agents, such as lime, cement, polymer, resin, etc., were used. The results show that these agents strongly influence the solidification characteristics of the sediments and the quality of the leachate from the sediments.

  13. Development of Lithium Deposition Techniques for TFTR

    SciTech Connect (OSTI)

    Gorman, J.; Johnson, D.; Kugel, H.W.; Labik, G.; Lemunyan, G.; et al

    1997-10-01T23:59:59.000Z

    The ability to increase the quantity of lithium deposition into TFTR beyond that of the Pellet Injector while minimizing perturbations to the plasma provides interesting experimental and operational options. Two additional lithium deposition tools were developed for possible application during the 1996 Experimental Schedule: a solid lithium target probe for real-time deposition, and a lithium effusion oven for deposition between discharges. The lithium effusion oven was operated in TFTR to deposit lithium on the Inner Limiter in the absence of plasma. This resulted in the third highest power TFTR discharge.

  14. Development of lithium deposition techniques for TFTR

    SciTech Connect (OSTI)

    Kugel, H.W.; Gorman, J.; Johnson, D.; Labik, G.; Lemunyan, G.; Mansfield, D.; Timberlake, J.; Vocaturo, M.

    1997-10-01T23:59:59.000Z

    The ability to increase the quantity of lithium deposition into TFTR beyond that of the Pellet Injector while minimizing perturbations to the plasma provides interesting experimental and operational options. Two additional lithium deposition tools were developed for possible application during the 1996 Experimental Schedule: a solid lithium target probe for real-time deposition, and a lithium effusion oven for deposition between discharges. The lithium effusion oven was operated in TFTR to deposit lithium on the Inner Limiter in the absence of plasma. This resulted in the third highest power TFTR discharge.

  15. Techniques on Analysis of Photo Phase Shift Imaging

    E-Print Network [OSTI]

    Terry, Robin 1990-

    2012-04-12T23:59:59.000Z

    . Real-time MRI temperature mapping was evaluated using the magnitude and phase difference DICOM images. To reduce noise on the temperature maps, a mask was created using the magnitude images and eliminating pixel values greater than a set threshold...

  16. Synchronization Techniques for Burst-Mode Continuous Phase Modulation

    E-Print Network [OSTI]

    Hosseini, Ehsan

    2013-12-31T23:59:59.000Z

    .12 BER for the burst-mode CPM receiver. L0 is the preamble length in terms of data symbols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.1 Phase response q(t) for SOQPSK-MIL (L = 1) and SOQPSK-TG (L = 8). . . . . 86 4.... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4.5 The computer search results for optimum training sequence for SOQPSK-MIL when L0 = 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 xii 4.6 The unwrapped phase response of SOQPSK-MIL and SOQPSK-TG schemes...

  17. Solution Techniques for Single-Phase Subchannel Equations

    E-Print Network [OSTI]

    Hansel, Joshua Edmund

    2013-04-11T23:59:59.000Z

    several techniques were tested to minimize the time spent on this task, such as finite difference and the formation of an approximate Jacobian. Simple Jacobian lagging was shown to be very effective at reducing the total time computing the Jacobian...

  18. Development of Improved Oil Field Waste Injection Disposal Techniques

    SciTech Connect (OSTI)

    Terralog Technologies USA Inc.

    2001-12-17T23:59:59.000Z

    The goals of this DOE sponsored project are to: (1) assemble and analyze a comprehensive database of past waste injection operations; (2) develop improved diagnostic techniques for monitoring fracture growth and formation changes; (3) develop operating guidelines to optimize daily operations and ultimate storage capacity of the target formation; and (4) to test these improved models and guidelines in the field.

  19. Development of Improved Oil Field Waste Injection Disposal Techniques

    SciTech Connect (OSTI)

    Terralog Technologies

    2002-11-25T23:59:59.000Z

    The goals of this project have was to: (1) assemble and analyze a comprehensive database of past waste injection operations; (2) develop improved diagnostic techniques for monitoring fracture growth and formation changes; (3) develop operating guidelines to optimize daily operations and ultimate storage capacity of the target formation; and (4) to apply these improved models and guidelines in the field.

  20. Novel technologies and techniques for low-cost phased arrays and scanning antennas

    E-Print Network [OSTI]

    Rodenbeck, Christopher Timothy

    2004-11-15T23:59:59.000Z

    This dissertation introduces new technologies and techniques for low-cost phased arrays and scanning antennas. Special emphasis is placed on new approaches for low-cost millimeter-wave beam control. Several topics are covered. A novel...

  1. Representing Exceptional Behaviour at the earlier Phases of Software Development

    E-Print Network [OSTI]

    Kent, University of

    Representing Exceptional Behaviour at the earlier Phases of Software Development Rogério de Lemos. Exception handling has been traditionally associated with the design phase of the software lifecycle, during not received enough attention /Avizienes 97/. Ideally, for each identified phase of the software lifecycle

  2. RCSP Development Phase | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    help support regulatory development and industry in commercialization and deployment of CCS. The storage types and formations being tested are considered regionally significant...

  3. Geothermal Development Phases | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park,2005) |Information 6thGeothermal Analysis JumpPhases

  4. Development of Fuzzy Logic-Based Lead Acid Battery Management Techniques with Applications to 42V Systems

    E-Print Network [OSTI]

    Singh, Pritpal

    on changing battery conditions. Finally, the fuzzy logic methodology lends itself well to rapid system designDevelopment of Fuzzy Logic-Based Lead Acid Battery Management Techniques with Applications to 42V volt systems is being phased into commercial vehicles, the battery technology is being developed

  5. Development of dense-phase pneumatic transport of coal

    SciTech Connect (OSTI)

    Horisaka, S.; Ikemiya, H.; Kajiwara, T. [Sumitomo Metal Industries, Ltd., Kashima, Ibaraki (Japan)

    1996-12-31T23:59:59.000Z

    Dense phase pneumatic transport system has been developed to reduce entrained particles as is seen in the belt conveyor system. High mass flow rate and dense phase (Loading ratio = 50--100kg-coal/kg-N{sub 2}) transport has been achieved by applying this plug flow system to pneumatic conveying of coal (Average particle diameter = 2.5 mm).

  6. Developing Lowland Habitat Networks in Scotland: Phase 2

    E-Print Network [OSTI]

    Developing Lowland Habitat Networks in Scotland: Phase 2 Jonathan Humphrey1 , Mike Smith1 reproduced from Ordnance Survey material with the permission of Ordnance Survey on behalf of the Controller...............................................................................11 3.5 Construction of landuse change scenarios

  7. Development of Zinc/Bromine Batteries for Load-Leveling Applications: Phase 2 Final Report

    SciTech Connect (OSTI)

    CLARK,NANCY H.; EIDLER,PHILLIP

    1999-10-01T23:59:59.000Z

    This report documents Phase 2 of a project to design, develop, and test a zinc/bromine battery technology for use in utility energy storage applications. The project was co-funded by the U.S. Department of Energy Office of Power Technologies through Sandia National Laboratories. The viability of the zinc/bromine technology was demonstrated in Phase 1. In Phase 2, the technology developed during Phase 1 was scaled up to a size appropriate for the application. Batteries were increased in size from 8-cell, 1170-cm{sup 2} cell stacks (Phase 1) to 8- and then 60-cell, 2500-cm{sup 2} cell stacks in this phase. The 2500-cm{sup 2} series battery stacks were developed as the building block for large utility battery systems. Core technology research on electrolyte and separator materials and on manufacturing techniques, which began in Phase 1, continued to be investigated during Phase 2. Finally, the end product of this project was a 100-kWh prototype battery system to be installed and tested at an electric utility.

  8. Development of structural health monitoring techniques using dynamics testing

    SciTech Connect (OSTI)

    James, G.H. III [Sandia National Labs., Albuquerque, NM (United States). Experimental Structural Dynamics Dept.

    1996-03-01T23:59:59.000Z

    Today`s society depends upon many structures (such as aircraft, bridges, wind turbines, offshore platforms, buildings, and nuclear weapons) which are nearing the end of their design lifetime. Since these structures cannot be economically replaced, techniques for structural health monitoring must be developed and implemented. Modal and structural dynamics measurements hold promise for the global non-destructive inspection of a variety of structures since surface measurements of a vibrating structure can provide information about the health of the internal members without costly (or impossible) dismantling of the structure. In order to develop structural health monitoring for application to operational structures, developments in four areas have been undertaken within this project: operational evaluation, diagnostic measurements, information condensation, and damage identification. The developments in each of these four aspects of structural health monitoring have been exercised on a broad range of experimental data. This experimental data has been extracted from structures from several application areas which include aging aircraft, wind energy, aging bridges, offshore structures, structural supports, and mechanical parts. As a result of these advances, Sandia National Laboratories is in a position to perform further advanced development, operational implementation, and technical consulting for a broad class of the nation`s aging infrastructure problems.

  9. Two-phase air-water stratified flow measurement using ultrasonic techniques

    SciTech Connect (OSTI)

    Fan, Shiwei; Yan, Tinghu; Yeung, Hoi [School of Engineering, Cranfield University, Cranfield, Bedfordshire MK43 0AL (United Kingdom)

    2014-04-11T23:59:59.000Z

    In this paper, a time resolved ultrasound system was developed for investigating two-phase air-water stratified flow. The hardware of the system includes a pulsed wave transducer, a pulser/receiver, and a digital oscilloscope. The time domain cross correlation method is used to calculate the velocity profile along ultrasonic beam. The system is able to provide velocities with spatial resolution of around 1mm and the temporal resolution of 200?s. Experiments were carried out on single phase water flow and two-phase air-water stratified flow. For single phase water flow, the flow rates from ultrasound system were compared with those from electromagnetic flow (EM) meter, which showed good agreement. Then, the experiments were conducted on two-phase air-water stratified flow and the results were given. Compared with liquid height measurement from conductance probe, it indicated that the measured velocities were explainable.

  10. Developing an energy design tool: Phase 1 report

    SciTech Connect (OSTI)

    Heidell, J.A.; Deringer, J.D.

    1987-02-01T23:59:59.000Z

    This report documents the planning phase of a proposed four-phase project for creating computer software to provide energy expertise in a manageable form to architects and engineers - thereby decreasing energy use in new buildings. The government sponsored software would be integrated with commercially developed software for use in the design of buildings. The result would be an integrated software package to aid the designer in the building design process and to provide expert insight into the energy related implications of a proposed design.

  11. Development of advanced strain diagnostic techniques for reactor environments.

    SciTech Connect (OSTI)

    Fleming, Darryn D.; Holschuh, Thomas Vernon,; Miller, Timothy J.; Hall, Aaron Christopher; Urrea, David Anthony,; Parma, Edward J.,

    2013-02-01T23:59:59.000Z

    The following research is operated as a Laboratory Directed Research and Development (LDRD) initiative at Sandia National Laboratories. The long-term goals of the program include sophisticated diagnostics of advanced fuels testing for nuclear reactors for the Department of Energy (DOE) Gen IV program, with the future capability to provide real-time measurement of strain in fuel rod cladding during operation in situ at any research or power reactor in the United States. By quantifying the stress and strain in fuel rods, it is possible to significantly improve fuel rod design, and consequently, to improve the performance and lifetime of the cladding. During the past year of this program, two sets of experiments were performed: small-scale tests to ensure reliability of the gages, and reactor pulse experiments involving the most viable samples in the Annulated Core Research Reactor (ACRR), located onsite at Sandia. Strain measurement techniques that can provide useful data in the extreme environment of a nuclear reactor core are needed to characterize nuclear fuel rods. This report documents the progression of solutions to this issue that were explored for feasibility in FY12 at Sandia National Laboratories, Albuquerque, NM.

  12. Transverse emittance and phase space program developed for use at the Fermilab A0 Photoinjector

    SciTech Connect (OSTI)

    Thurman-Keup, R.; Johnson, A.S.; Lumpkin, A.H.; Ruan, J.; /Fermilab

    2011-03-01T23:59:59.000Z

    The Fermilab A0 Photoinjector is a 16 MeV high intensity, high brightness electron linac developed for advanced accelerator R&D. One of the key parameters for the electron beam is the transverse beam emittance. Here we report on a newly developed MATLAB based GUI program used for transverse emittance measurements using the multi-slit technique. This program combines the image acquisition and post-processing tools for determining the transverse phase space parameters with uncertainties. An integral part of accelerator research is a measurement of the beam phase space. Measurements of the transverse phase space can be accomplished by a variety of methods including multiple screens separated by drift spaces, or by sampling phase space via pepper pots or slits. In any case, the measurement of the phase space parameters, in particular the emittance, can be drastically simplified and sped up by automating the measurement in an intuitive fashion utilizing a graphical interface. At the A0 Photoinjector (A0PI), the control system is DOOCS, which originated at DESY. In addition, there is a library for interfacing to MATLAB, a graphically capable numerical analysis package sold by The Mathworks. It is this graphical package which was chosen as the basis for a graphical phase space measurement system due to its combination of analysis and display capabilities.

  13. Null test fourier domain alignment technique for phase-shifting point diffraction interferometer

    DOE Patents [OSTI]

    Naulleau, Patrick (5239 Miles Ave., Apt. A, Oakland, CA 94618); Goldberg, Kenneth Alan (1622 Oxford St., #5t, Berkeley, CA 94709)

    2000-01-01T23:59:59.000Z

    Alignment technique for calibrating a phase-shifting point diffraction interferometer involves three independent steps where the first two steps independently align the image points and pinholes in rotation and separation to a fixed reference coordinate system, e.g, CCD. Once the two sub-elements have been properly aligned to the reference in two parameters (separation and orientation), the third step is to align the two sub-element coordinate systems to each other in the two remaining parameters (x,y) using standard methods of locating the pinholes relative to some easy to find reference point.

  14. Robust techniques for developing empirical models of fluidized bed combustors

    E-Print Network [OSTI]

    Gruhl, Jim

    This report is designed to provide a review of those data analysis techniques that are most useful for fitting m-dimensional empirical surfaces to very large sets of data. One issue explored is the improvement

  15. Investigation of Thermal Interface Materials Using Phase-Sensitive Transient Thermoreflectance Technique: Preprint

    SciTech Connect (OSTI)

    Feng, X.; King, C.; DeVoto, D.; Mihalic, M.; Narumanchi, S.

    2014-08-01T23:59:59.000Z

    With increasing power density in electronics packages/modules, thermal resistances at multiple interfaces are a bottleneck to efficient heat removal from the package. In this work, the performance of thermal interface materials such as grease, thermoplastic adhesives and diffusion-bonded interfaces are characterized using the phase-sensitive transient thermoreflectance technique. A multi-layer heat conduction model was constructed and theoretical solutions were derived to obtain the relation between phase lag and the thermal/physical properties. This technique enables simultaneous extraction of the contact resistance and bulk thermal conductivity of the TIMs. With the measurements, the bulk thermal conductivity of Dow TC-5022 thermal grease (70 to 75 um bondline thickness) was 3 to 5 W/(m-K) and the contact resistance was 5 to 10 mm2-K/W. For the Btech thermoplastic material (45 to 80 ?m bondline thickness), the bulk thermal conductivity was 20 to 50 W/(m-K) and the contact resistance was 2 to 5 mm2-K/W. Measurements were also conducted to quantify the thermal performance of diffusion-bonded interface for power electronics applications. Results with the diffusion-bonded sample showed that the interfacial thermal resistance is more than one order of magnitude lower than those of traditional TIMs, suggesting potential pathways to efficient thermal management.

  16. Expanded Application of a Two-Phase Partitioning Bioreactor through Strain Development and New Feeding Strategies

    E-Print Network [OSTI]

    Daugulis, Andrew J.

    Expanded Application of a Two-Phase Partitioning Bioreactor through Strain Development and New bioreactor (TPPB). TPPBs are characterized by a cell- containing aqueous phase and an immiscible

  17. Development of MELCOR Input Techniques for High Temperature Gas-Cooled Reactor Analysis

    E-Print Network [OSTI]

    Corson, James

    2011-08-08T23:59:59.000Z

    and other HTGRs. In the present study, new input techniques have been developed for MELCOR HTGR analysis. These new techniques include methods for modeling radiation heat transfer between solid surfaces in an HTGR, calculating fuel and cladding geometric...

  18. Development and Implementation of a Compensation Technique for Luminescent Sensors

    E-Print Network [OSTI]

    Collier, Bradley

    2013-09-19T23:59:59.000Z

    suitable method for monitoring multiple responses in vivo has yet to be developed. Due to the measurement flexibility provided by luminescence, a time-domain luminescence lifetime measurement system was developed. The Dynamic Rapid Lifetime Determination...

  19. Development of Optimization Systems Analysis Technique for Texas Water Resources

    E-Print Network [OSTI]

    Hann, R. W.

    growth asa function of resource use is developed and an example presented using the area affected by the Blackburn Crossing Reservoir in East Central Texas....

  20. Microgrid Design, Development and Demonstration - Final Report for Phase I and Phase II

    SciTech Connect (OSTI)

    Bose, Sumit; Krok, Michael

    2011-02-08T23:59:59.000Z

    This document constitutes GE’s final report for the Microgrid Design, Development and Demonstration program for DOE’s Office of Electricity Delivery and Energy Reliability, Award DE-FC02-05CH11349. It contains the final report for Phase I in Appendix I, and the results the work performed in Phase II. The program goal was to develop and demonstrate a Microgrid Energy Management (MEM) framework for a broad set of Microgrid applications that provides unified controls, protection, and energy management. This project contributed to the achievement of the U.S. Department of Energy’s Renewable and Distributed Systems Integration Program goals by developing a fully automated power delivery microgrid network that: - Reduces carbon emissions and emissions of other air pollutants through increased use of optimally dispatched renewable energy, - Increases asset use through integration of distributed systems, - Enhances reliability, security, and resiliency from microgrid applications in critical infrastructure protection, constrained areas of the electric grid, etc. - Improves system efficiency with on-site, distributed generation and improved economic efficiency through demand-side management.

  1. Development and Implementation of a Compensation Technique for Luminescent Sensors 

    E-Print Network [OSTI]

    Collier, Bradley

    2013-09-19T23:59:59.000Z

    Despite offering high specificity and speed compared to other methods, the dependency of the response of an enzymatic sensor on ambient oxygen concentrations. To investigate this issue, a reaction-diffusion model was developed using the finite...

  2. A New Technique for Detection of PeV Neutrinos Using a Phased Radio Array

    E-Print Network [OSTI]

    A. G. Vieregg; K. Bechtol; A. Romero-Wolf

    2015-04-29T23:59:59.000Z

    The detection of high energy neutrinos ($10^{15}-10^{20}$ eV or $1-10^{5}$ PeV) is an important step toward understanding the most energetic cosmic accelerators and would enable tests of fundamental physics at energy scales that cannot easily be achieved on Earth. In this energy range, there are two expected populations of neutrinos: the astrophysical flux observed with IceCube at lower energies ($\\sim1$ PeV) and the predicted cosmogenic flux at higher energies ($\\sim10^{18}$ eV). Radio detector arrays such as RICE, ANITA, ARA, and ARIANNA exploit the Askaryan effect and the radio transparency of glacial ice, which together enable enormous volumes of ice to be monitored with sparse instrumentation. We describe here the design for a phased radio array that would lower the energy threshold of radio techniques to the PeV scale, allowing measurement of the astrophysical flux observed with IceCube over an extended energy range. Meaningful energy overlap with optical Cherenkov telescopes could be used for energy calibration. The phased radio array design would also provide more efficient coverage of the large effective volume required to discover cosmogenic neutrinos.

  3. Development program to certify composite doubler repair technique for commercial aircraft

    SciTech Connect (OSTI)

    Roach, D.P.

    1997-07-01T23:59:59.000Z

    Commercial airframes exceeding 20 service years often develop crack and corrosion flaws. Bonded composite doublers offer a cost effective method to safely extend aircraft lives. The Federal Aircraft Authority (FAA) has completed a project to introduce composite doubler repair technology to the commercial aircraft industry. Instead of riveting steel or aluminum plates for repair, a single composite doubler may be bonded to the damaged structure. Adhesive bonding eliminates stress concentrations caused by fastener holes. Composites are readily formed into complex shapes for repairing irregular components. Also, composite doublers can be tailored to meet specific anisotropy needs, eliminating structural stiffening in directions other than those required. Other advantages include corrosion resistance, a high strength-to-weight ratio, and potential time savings in installation. One phase of this study developed general methodologies and test programs to ensure proper performance of the technique. A second phase focused on reinforcement of an L-1011 door frame, and encompassed all lifetime tasks such as design, analysis, installation, and nondestructive inspection. This paper overviews the project and details the activities conducted to gain FAA approval for composite doubler use. Structural tests evaluated the damage tolerance and fatigue performance of composite doublers while finite element models were generated to study doubler design issues. Nondestructive inspection procedures were developed and validated using full-scale test articles. Installation dry-runs demonstrated the viability of applying composite doublers in hangar environments. The project`s documentation package was used to support installation of a Boron-Epoxy composite repair on a Delta Air Lines L-1011 aircraft. A second product of the results is a Lockheed Service Bulletin which allows the door corner composite doubler to be installed on all L-1011 aircraft. 9 refs., 10 figs., 2 tabs.

  4. DOE SBIR Phase-1 Report on Hybrid CPU-GPU Parallel Development of the Eulerian-Lagrangian Barracuda Multiphase Program

    SciTech Connect (OSTI)

    Dr. Dale M. Snider

    2011-02-28T23:59:59.000Z

    This report gives the result from the Phase-1 work on demonstrating greater than 10x speedup of the Barracuda computer program using parallel methods and GPU processors (General-Purpose Graphics Processing Unit or Graphics Processing Unit). Phase-1 demonstrated a 12x speedup on a typical Barracuda function using the GPU processor. The problem test case used about 5 million particles and 250,000 Eulerian grid cells. The relative speedup, compared to a single CPU, increases with increased number of particles giving greater than 12x speedup. Phase-1 work provided a path for reformatting data structure modifications to give good parallel performance while keeping a friendly environment for new physics development and code maintenance. The implementation of data structure changes will be in Phase-2. Phase-1 laid the ground work for the complete parallelization of Barracuda in Phase-2, with the caveat that implemented computer practices for parallel programming done in Phase-1 gives immediate speedup in the current Barracuda serial running code. The Phase-1 tasks were completed successfully laying the frame work for Phase-2. The detailed results of Phase-1 are within this document. In general, the speedup of one function would be expected to be higher than the speedup of the entire code because of I/O functions and communication between the algorithms. However, because one of the most difficult Barracuda algorithms was parallelized in Phase-1 and because advanced parallelization methods and proposed parallelization optimization techniques identified in Phase-1 will be used in Phase-2, an overall Barracuda code speedup (relative to a single CPU) is expected to be greater than 10x. This means that a job which takes 30 days to complete will be done in 3 days. Tasks completed in Phase-1 are: Task 1: Profile the entire Barracuda code and select which subroutines are to be parallelized (See Section Choosing a Function to Accelerate) Task 2: Select a GPU consultant company and jointly parallelize subroutines (CPFD chose the small business EMPhotonics for the Phase-1 the technical partner. See Section Technical Objective and Approach) Task 3: Integrate parallel subroutines into Barracuda (See Section Results from Phase-1 and its subsections) Task 4: Testing, refinement, and optimization of parallel methodology (See Section Results from Phase-1 and Section Result Comparison Program) Task 5: Integrate Phase-1 parallel subroutines into Barracuda and release (See Section Results from Phase-1 and its subsections) Task 6: Roadmap of Phase-2 (See Section Plan for Phase-2) With the completion of Phase 1 we have the base understanding to completely parallelize Barracuda. An overview of the work to move Barracuda to a parallelized code is given in Plan for Phase-2.

  5. Development of Improved Caprock Integrity and Risk Assessment Techniques

    SciTech Connect (OSTI)

    Bruno, Michael

    2014-09-30T23:59:59.000Z

    GeoMechanics Technologies has completed a geomechanical caprock integrity analysis and risk assessment study funded through the US Department of Energy. The project included: a detailed review of historical caprock integrity problems experienced in the natural gas storage industry; a theoretical description and documentation of caprock integrity issues; advanced coupled transport flow modelling and geomechanical simulation of three large-scale potential geologic sequestration sites to estimate geomechanical effects from CO2 injection; development of a quantitative risk and decision analysis tool to assess caprock integrity risks; and, ultimately the development of recommendations and guidelines for caprock characterization and CO2 injection operating practices. Historical data from gas storage operations and CO2 sequestration projects suggest that leakage and containment incident risks are on the order of 10-1 to 10-2, which is higher risk than some previous studies have suggested for CO2. Geomechanical analysis, as described herein, can be applied to quantify risks and to provide operating guidelines to reduce risks. The risk assessment tool developed for this project has been applied to five areas: The Wilmington Graben offshore Southern California, Kevin Dome in Montana, the Louden Field in Illinois, the Sleipner CO2 sequestration operation in the North Sea, and the In Salah CO2 sequestration operation in North Africa. Of these five, the Wilmington Graben area represents the highest relative risk while the Kevin Dome area represents the lowest relative risk.

  6. Sodium Heat Engine Development Program. Phase 1, Final report

    SciTech Connect (OSTI)

    Singh, J.P.; Kupperman, D.S.; Majumdar, S.; Dorris, S.; Gopalsami, N.; Dieckman, S.L.; Jaross, R.A.; Johnson, D.L.; Gregar, J.S.; Poeppel, R.B.; Raptis, A.C.; Valentin, R.A.

    1992-01-01T23:59:59.000Z

    The Sodium Heat Engine (SHE) is an efficient thermoelectric conversion device which directly generates electricity from a thermally regenerative electrochemical cell that relies on the unique conduction properties of {beta}{double_prime}-alumina solid electrolyte (BASE). Laboratory models of a variety of SHE devices have demonstrated the feasibility and efficiency of the system, engineering development of large prototype devices has been slowed by a series of materials and fabrication problems. Failure of the electrolyte tubes has been a recurring problem and a number of possible causes have been postulated. To address these issues, a two-phase engineering development program was undertaken. This report summarizes the final results of the first phase of the program, which included extensive materials characterization activities, a study of applicable nondestructive evaluation methods, an investigation of possible stress states that would contribute to fracture, and certain operational issues associated with the electromagnetic pumps used in the SHE prototype. Mechanical and microstructural evaluation of commercially obtained BASE tubes revealed that they should be adequate for SHE applications and that sodium exposure produced no appreciable deleterious strength effects. Processing activities to produce a more uniform and smaller grain size for the BASE tubes were completed using isostatic pressing, extrusion, and slip casting. Green tubes were sintered by conventional and microwave plasma methods. Of particular interest is the residual stress state in the BASE tubes, and both analysis and nondestructive evaluation methods were employed to evaluate these stresses. X-ray and neutron diffraction experiments were performed to determine the bulk residual stresses in commercially fabricated BASE tubes; however, tube-to-tube variations and variations among the various methods employed did not allow formulation of a definitive definition of the as-fabricated stress state.

  7. Application of an automatic history-matching technique to analyze pressure buildup data affected by wellbore phase redistribution

    E-Print Network [OSTI]

    Rushing, Jay Alan

    1986-01-01T23:59:59.000Z

    of the requirements for the degr ee of MASTER OF SCIENCE August 1986 Major Subject: Petr oleum Engineer ing APPLICATION QF AN AUTOMATIC HISTORY-MATCHING TECHNIQUE TQ ANALYZE PRESSURE BUILDUP DATA AFFECTED BY WE( LBORE PHASE REDISTRIBUTION A Thesis by JAY ALAN.... This history-matching method becomes especially useful when conventional semilog analysis techniques cannot be used. Analyses of field buildup data from the petr oleum literature and previously unpublished field tests are presented. Results from...

  8. Development of X-ray lithography and nanofabrication techniques for III-V optical devices

    E-Print Network [OSTI]

    Lim, Michael H. (Michael Hong)

    2002-01-01T23:59:59.000Z

    This dissertation covers the development of fabrication techniques for Bragg-grating-based integrated optical devices in III-V materials. Work on this rich family of devices has largely been limited to numerical analysis ...

  9. Real options in action : vertical phasing in commercial real estate development

    E-Print Network [OSTI]

    Pearson, Jason R

    2008-01-01T23:59:59.000Z

    Real estate development is inherently a risky endeavor. Developers encounter varied risks during the different phases of a development project, from permitting to construction and through lease-up and stabilized operations. ...

  10. Reference-less measurement of the transmission matrix of a highly scattering material using a DMD and phase retrieval techniques

    E-Print Network [OSTI]

    Dremeau, Angelique; Martina, David; Katz, Ori; Schulke, Christophe; Krzakala, Florent; Gigan, Sylvain; Daudet, Laurent

    2015-01-01T23:59:59.000Z

    This paper investigates experimental means of measuring the transmission matrix (TM) of a highly scattering medium, with the simplest optical setup. Spatial light modulation is performed by a digital micromirror device (DMD), allowing high rates and high pixel counts but only binary amplitude modulation. We used intensity measurement only, thus avoiding the need for a reference beam. Therefore, the phase of the TM has to be estimated through signal processing techniques of phase retrieval. Here, we compare four different phase retrieval principles on noisy experimental data. We validate our estimations of the TM on three criteria : quality of prediction, distribution of singular values, and quality of focusing. Results indicate that Bayesian phase retrieval algorithms with variational approaches provide a good tradeoff between the computational complexity and the precision of the estimates.

  11. FreedomCAR Advanced Traction Drive Motor Development Phase I

    SciTech Connect (OSTI)

    Ley, Josh (UQM Technologies, Inc.); Lutz, Jon (UQM Technologies, Inc.)

    2006-09-01T23:59:59.000Z

    The overall objective of this program is to design and develop an advanced traction motor that will meet the FreedomCAR and Vehicle Technologies (FCVT) 2010 goals and the traction motor technical targets. The motor specifications are given in Section 1.3. Other goals of the program include providing a cost study to ensure the motor can be developed within the cost targets needed for the automotive industry. The program has focused on using materials that are both high performance and low costs such that the performance can be met and cost targets are achieved. In addition, the motor technologies and machine design features must be compatible with high volume manufacturing and able to provide high reliability, efficiency, and ruggedness while simultaneously reducing weight and volume. Weight and volume reduction will become a major factor in reducing cost, material cost being the most significant part of manufacturing cost at high volume. Many motor technology categories have been considered in the past and present for traction drive applications, including: brushed direct current (DC), PM (PM) brushless dc (BLDC), alternating current (AC) induction, switched reluctance and synchronous reluctance machines. Of these machine technologies, PM BLDC has consistently demonstrated an advantage in terms of power density and efficiency. As rare earth magnet cost has declined, total cost may also be reduced over the other technologies. Of the many different configurations of PM BLDC machines, those which incorporate power production utilizing both magnetic torque as well as reluctance torque appear to have the most promise for traction applications. There are many different PM BLDC machine configurations which employ both of these torque producing mechanisms; however, most would fall into one of two categories--some use weaker magnets and rely more heavily on reluctance torque (reluctance-dominant PM machines), others use strong PMs and supplement with reluctance torque (magnet-dominant PM machines). This report covers a trade study that was conducted in this phase I program to explore which type of machine best suits the FCVT requirements.

  12. Phase boundaries and deformation in high nitrogen duplex stainless steels; 1: Rolling texture development

    SciTech Connect (OSTI)

    Akdut, N. (Inst. fuer Metallkunde und Metallphysik, Aachen (Germany). RWTH Aachen); Foct, J. (Univ. de Lille, Villeneuve d'Ascq (France). Lab. de Metallurgie Physique)

    1995-01-01T23:59:59.000Z

    The texture development during cold rolling of two nitrogen alloyed duplex stainless steels with different nitrogen contents and different microstructures were investigated. The fcc phases of both duplex steels show an almost identical texture development in contrast to the ferritic phases. In single phase ferritic steels a typical fiber type texture develops to slip on [110], [112] and [123] planes. In contrast to this, the ferritic phase of duplex steel D1 deforms mainly by slip on [110] planes so that no typical fiber type texture can be observed. The texture development of the cast specimen D2 is characterized by its random character in the ferritic phase. This proves that besides the microstructure, nitrogen strongly influences the deformation mechanisms. Furthermore, it appears that for both phases the intensities of the cold rolling textures decrease. Induced by the phase boundaries, strong shear components appear as well as the activation of additional slip systems and the refinement of the microstructure.

  13. Chromaticity tracking with a phase modulation/demodulation technique in the Tevatron

    SciTech Connect (OSTI)

    Tan, C.Y.; /Fermilab; ,

    2009-01-01T23:59:59.000Z

    The Tevatron chromaticity tracker (CT) has been successfully commissioned and is now operational. The basic idea behind the CT is that when the phase of the Tevatron RF is slowly modulated, the beam momentum is also modulated. This momentum modulation is coupled transversely via chromaticity to manifest as a phase modulation on the betatron tune. And so by phase demodulating the betatron tune, the chromaticity can be recovered. However, for the phase demodulation to be successful, it is critical that the betatron tune be a coherent signal that can be easily picked up by a phase detector. This is easily done because the Tevatron has a phase locked loop based tune tracker which coherently excites the beam at the betatron tune.

  14. Development of Zinc/Bromine Batteries for Load-Leveling Applications: Phase 1 Final Report

    SciTech Connect (OSTI)

    Eidler, Phillip

    1999-07-01T23:59:59.000Z

    The Zinc/Bromine Load-Leveling Battery Development contract (No. 40-8965) was partitioned at the outset into two phases of equal length. Phase 1 started in September 1990 and continued through December 1991. In Phase 1, zinc/bromine battery technology was to be advanced to the point that it would be clear that the technology was viable and would be an appropriate choice for electric utilities wishing to establish stationary energy-storage facilities. Criteria were established that addressed most of the concerns that had been observed in the previous development efforts. The performances of 8-cell and 100-cell laboratory batteries demonstrated that the criteria were met or exceeded. In Phase 2, 100-kWh batteries will be built and demonstrated, and a conceptual design for a load-leveling plant will be presented. At the same time, work will continue to identify improved assembly techniques and operating conditions. This report details the results of the efforts carried out in Phase 1. The highlights are: (1) Four 1-kWh stacks achieved over 100 cycles, One l-kWh stack achieved over 200 cycles, One 1-kWh stack achieved over 300 cycles; (2) Less than 10% degradation in performance occurred in the four stacks that achieved over 100 cycles; (3) The battery used for the zinc loading investigation exhibited virtually no loss in performance for loadings up to 130 mAh/cm{sup 2}; (4) Charge-current densities of 50 ma/cm{sup 2} have been achieved in minicells; (5) Fourteen consecutive no-strip cycles have been conducted on the stack with 300+ cycles; (6) A mass and energy balance spreadsheet that describes battery operation was completed; (7) Materials research has continued to provide improvements in the electrode, activation layer, and separator; and (8) A battery made of two 50-cell stacks (15 kWh) was produced and delivered to Sandia National Laboratories (SNL) for testing. The most critical development was the ability to assemble a battery stack that remained leak free. The task of sealing the battery stack using vibration welding has undergone significant improvement resulting in a viable production process. Through several design iterations, a solid technology base for larger battery stack designs was established. Internal stack stresses can now be modeled, in addition to fluid velocity and fluid pressure distribution, through the use of a finite element analysis computer program. Additionally, the Johnson Controls Battery Group, Inc. (JCBGI) proprietary FORTRAN model has been improved significantly, enabling accurate performance predictions. This modeling was used to improve the integrity and performance of the battery stacks, and should be instrumental in reducing the turnaround time from concept to assembly.

  15. Development of a Whole-Sensitive Teleoperated Robot Arm using Torque Sensing Technique

    E-Print Network [OSTI]

    Tachi, Susumu

    Development of a Whole-Sensitive Teleoperated Robot Arm using Torque Sensing Technique Dzmitry-sensitive robot arm enabling torque measurement in each joint by means of developed optical torque sensors. When of corresponding robot arm joint. Thus, the whole structure of the manipulator can safely interact

  16. Further Development at JET of Remote Digital Photogrammetry Techniques and Remote Welding Under Conditions of Restricted Access

    E-Print Network [OSTI]

    Further Development at JET of Remote Digital Photogrammetry Techniques and Remote Welding Under Conditions of Restricted Access

  17. Determination of Tritium Profiles in Tiles from the First Wall of Fusion Machines and Development of Techniques for their Detritiation

    E-Print Network [OSTI]

    Determination of Tritium Profiles in Tiles from the First Wall of Fusion Machines and Development of Techniques for their Detritiation

  18. Phase III - Permitting and Initial Development | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: Energy Resources JumpPfhotonika Jump to: navigation,Phase 3Phase

  19. US DOE-AECL cooperative program for development of high-level radioactive waste container fabrication, closure, and inspection techniques

    SciTech Connect (OSTI)

    Russell, E.W.

    1990-06-01T23:59:59.000Z

    The US Department of Energy (DOE) and Atomic Energy of Canada Limited (AECL) plan to initiate a cooperative research program on development of manufacturing processes for high-level radioactive waste containers. This joint program will benefit both countries in the development of processes for the fabrication, final closure in a hot-cell, and certification of the containers. Program activity objectives can be summarized as follows: to support the selection of suitable container fabrication, final closure, and inspection techniques for the candidate materials and container designs that are under development or are being considered in the US and Canadian repository programs; and to investigate these techniques for alternate materials and/or container designs, to be determined in future optimization studies relating to long-term performance of the waste packages. The program participants will carry out this work in a conditional phased approach, and the scope of work for subsequent years will evolve subject to developments in earlier years. The overall term of this cooperative program is planned to run roughly three years. 5 refs., 2 tabs.

  20. Development of a fixed abrasive slicing technique (FAST) for reducing the cost of photovoltaic wafers

    SciTech Connect (OSTI)

    Schmid, F. (Crystal Systems, Inc., Salem, MA (United States))

    1991-12-01T23:59:59.000Z

    This report examines a wafer slicing technique developed by Crystal Systems, Inc. that reduces the cost of photovoltaic wafers. This fixed, abrasive slicing technique (FAST) uses a multiwire bladepack and a diamond-plated wirepack; water is the coolant. FAST is in the prototype production stage and reduces expendable material costs while retaining the advantages of a multiwire slurry technique. The cost analysis revealed that costs can be decreased by making more cuts per bladepack and slicing more wafers per linear inch. Researchers studied the degradation of bladepacks and increased wirepack life. 21 refs.

  1. Capabilities and limitations of Phase Contrast Imaging techniques with X-rays and neutrons

    E-Print Network [OSTI]

    Damato, Antonio Leonardo

    2009-01-01T23:59:59.000Z

    Phase Contrast Imaging (PCI) was studied with the goal of understanding its relevance and its requirements. Current literature does not provide insight on the effect of a relaxation in coherence requirements on the PCI ...

  2. Developing new optical imaging techniques for single particle and molecule tracking in live cells

    SciTech Connect (OSTI)

    Sun, Wei

    2010-12-15T23:59:59.000Z

    Differential interference contrast (DIC) microscopy is a far-field as well as wide-field optical imaging technique. Since it is non-invasive and requires no sample staining, DIC microscopy is suitable for tracking the motion of target molecules in live cells without interfering their functions. In addition, high numerical aperture objectives and condensers can be used in DIC microscopy. The depth of focus of DIC is shallow, which gives DIC much better optical sectioning ability than those of phase contrast and dark field microscopies. In this work, DIC was utilized to study dynamic biological processes including endocytosis and intracellular transport in live cells. The suitability of DIC microscopy for single particle tracking in live cells was first demonstrated by using DIC to monitor the entire endocytosis process of one mesoporous silica nanoparticle (MSN) into a live mammalian cell. By taking advantage of the optical sectioning ability of DIC, we recorded the depth profile of the MSN during the endocytosis process. The shape change around the nanoparticle due to the formation of a vesicle was also captured. DIC microscopy was further modified that the sample can be illuminated and imaged at two wavelengths simultaneously. By using the new technique, noble metal nanoparticles with different shapes and sizes were selectively imaged. Among all the examined metal nanoparticles, gold nanoparticles in rod shapes were found to be especially useful. Due to their anisotropic optical properties, gold nanorods showed as diffraction-limited spots with disproportionate bright and dark parts that are strongly dependent on their orientation in the 3D space. Gold nanorods were developed as orientation nanoprobes and were successfully used to report the self-rotation of gliding microtubules on kinesin coated substrates. Gold nanorods were further used to study the rotational motions of cargoes during the endocytosis and intracellular transport processes in live mammalian cells. New rotational information was obtained: (1) during endocytosis, cargoes lost their rotation freedom at the late stage of internalization; (2) cargoes performed train-like motion when they were transported along the microtubule network by motor proteins inside live cells; (3) During the pause stage of fast axonal transport, cargoes were still bound to the microtubule tracks by motor proteins. Total internal reflection fluorescence microscopy (TIRFM) is another non-invasive and far-field optical imaging technique. Because of its near-field illumination mechanism, TIRFM has better axial resolution than epi-fluorescence microscopy and confocal microscopy. In this work, an auto-calibrated, prism type, angle-scanning TIRFM instrument was built. The incident angle can range from subcritical angles to nearly 90{sup o}, with an angle interval less than 0.2{sup o}. The angle precision of the new instrument was demonstrated through the finding of the surface plasmon resonance (SPR) angle of metal film coated glass slide. The new instrument improved significantly the precision in determining the axial position. As a result, the best obtained axial resolution was {approx} 8 nm, which is better than current existing instruments similar in function. The instrument was further modified to function as a pseudo TIRF microscope. The illumination depth can be controlled by changing the incident angle of the excitation laser beam or adjusting the horizontal position of the illumination laser spot on the prism top surface. With the new technique, i.e., variable-illumination-depth pseudo TIRF microscopy, the whole cell body from bottom to top was scanned.

  3. Phase 3 Developments Investments LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: Energy Resources JumpPfhotonika Jump to: navigation,Phase 3

  4. Engineering Work Plan for the Development of Phased Startup Initiative (PSI) Phases 3 and 4 Test Equipment

    SciTech Connect (OSTI)

    PITNER, A.L.

    2000-04-11T23:59:59.000Z

    A number of tools and equipment pieces are required to facilitate planned test operations during Phases 3 and 4 of the Phased Startup Initiative (PSI). These items will be used in assessing residual canister sludge quantities on cleaned fuel assemblies, sorting coarse and fine scrap fuel pieces, assessing the size distribution of scrap pieces, loading scrap into a canister, and measuring the depth of the accumulated scrap in a canister. This work plan supercedes those previously issued for development of several of these test items. These items will be considered prototype equipment until testing has confirmed their suitability for use in K West Basin. The process described in AP-EN-6-032 will be used to qualify the equipment for facility use. These items are considered non-OCRWM for PSI Phase 3 applications. The safety classification of this equipment is General Service, with Quality Level 0 (for PSI Phase 3). Quality Control inspections shall be performed to verify basic dimensions and overall configurations of fabricated components, and any special quality control verifications specified in this work plan (Section 3.1.5). These inspections shall serve to approve the test equipment for use in K West Basin (Acceptance Tag). This equipment is for information gathering only during PSI Phases 3 and 4 activities, and will be discarded at the completion of PSI. For equipment needed to support actual production throughput, development/fabrication/testing activities would be more rigorously controlled.

  5. Instruments and Methods Glacier velocities from time-lapse photos: technique development

    E-Print Network [OSTI]

    Box, Jason E.

    Instruments and Methods Glacier velocities from time-lapse photos: technique development and first West Greenland marine-terminating glaciers as part of the Extreme Ice Survey (EIS). EIS cameras began imaging the lowest 4 km2 of the glacier at hourly intervals throughout sunlit periods of the year

  6. NREL scientists develop near-field optical microscopy techniques for imaging solar cell junctions and identify

    E-Print Network [OSTI]

    Solar cell producers are facing urgent pressures to lower module production cost.This achievementNREL scientists develop near-field optical microscopy techniques for imaging solar cell junctions is an increasingly important issue for silicon solar cells. The issue has taken center stage now that the solar

  7. Development of quick repairing technique for ceramic burner in hot stove of blast furnace

    SciTech Connect (OSTI)

    Kondo, Atsushi; Doura, Kouji; Nakamura, Hirofumi [Sumitomo Metal Industries, Ltd., Wakayama (Japan). Wakayama Steel Works

    1997-12-31T23:59:59.000Z

    Refractories of ceramic burner in hot stoves at Wakayama No. 4 blast furnace were damaged. There are only three hot stoves, so repairing must be done in a short. Therefore, a quick repairing technique for ceramic burners has been developed, and two ceramic burners were repaired in just 48 hours.

  8. Biomass power for rural development: Phase 2. Technical progress report, April 1--June 30, 1998

    SciTech Connect (OSTI)

    Neuhauser, E.

    1998-11-01T23:59:59.000Z

    The project undertaken by the Salix Consortium is a multi-phased, multi-partner endeavor. Phase-1 focused on initial development and testing of the technology and agreements necessary to demonstrate commercial willow production in Phase-2. The Phase-1 objectives have been successfully completed: preparing final design plans for two utility pulverized coal boilers, developing fuel supply plans for the project, obtaining power production commitments from the power companies for Phase-2, obtaining construction and environmental permits, and developing an experimental strategy for crop production and power generation improvements needed to assure commercial success. The R and D effort also addresses environmental issues pertaining to introduction of the willow energy system. Beyond those Phase-1 requirements the Consortium has already successfully demonstrated cofiring at Greenidge Station and developed the required nursery capacity for acreage scale-up. This past summer 105 acres were prepared in advance for the spring planting in 1998. Having completed the above tasks, the Consortium is well positioned to begin Phase-2. In phase-2 every aspect of willow production and power generation from willow will be demonstrated. The ultimate objective of Phase-2 is to transition the work performed under the Rural Energy for the Future project into a thriving, self-supported energy crop enterprise.

  9. New technique for phase shift analysis: multi-energy solution of inverse scattering problem

    E-Print Network [OSTI]

    S. G. Cooper; V. I. Kukulin; R. S. Mackintosh; E. V. Kuznetsova

    1998-05-27T23:59:59.000Z

    We demonstrate a new approach to the analysis of extensive multi-energy data. For the case of d + He-4, we produce a phase shift analysis covering for the energy range 3 to 11 MeV. The key idea is the use of iterative perturbative data-to-potential inversion which can produce potentials which reproduce the data simultaneously over a range of energies. It thus effectively regularizes the extraction of phase shifts from diverse, incomplete and possibly somewhat contradictory data sets. In doing so, it will provide guidance to experimentalists as to what further measurements should be made. This study is limited to vector spin observables and spin-orbit interactions. We discuss alternative ways in which the theory can be implemented and which provide insight into the ambiguity problems. We compare the extrapolation of these solutions to other energies. Majorana terms are presented for each potential component.

  10. Development of Ground-testable Phase Fresnel Lenses in Silicon

    E-Print Network [OSTI]

    John Krizmanic; Brian Morgan; Robert Streitmatter; Neil Gehrels; Keith Gendreau; Zaven Arzoumanian; Reza Ghodssi; Gerry Skinner

    2006-01-03T23:59:59.000Z

    Diffractive/refractive optics, such as Phase Fresnel Lenses (PFL's), offer the potential to achieve excellent imaging performance in the x-ray and gamma-ray photon regimes. In principle, the angular resolution obtained with these devices can be diffraction limited. Furthermore, improvements in signal sensitivity can be achieved as virtually the entire flux incident on a lens can be concentrated onto a small detector area. In order to verify experimentally the imaging performance, we have fabricated PFL's in silicon using gray-scale lithography to produce the required Fresnel profile. These devices are to be evaluated in the recently constructed 600-meter x-ray interferometry testbed at NASA/GSFC. Profile measurements of the Fresnel structures in fabricated PFL's have been performed and have been used to obtain initial characterization of the expected PFL imaging efficiencies.

  11. Technique development for field inspection of cracking in seam welded ducts

    SciTech Connect (OSTI)

    Shell, Eric B.; Benson, Craig [Wyle Laboratories, Inc., Dayton, OH 45440 (United States); Liljestrom, Greg C.; Shanahan, Stephen [Wyle Laboratories, Inc., Oklahoma City, OK 73110 (United States)

    2014-02-18T23:59:59.000Z

    The resistance seam weld interfaces between alloyed and pure titanium are an in service concern due to precipitation of titanium hydride and resulting embrittlement and cracking. Several inspection techniques were developed and evaluated for field use to characterize the damage in the fleet. Electromagnetic, ultrasonic, florescent penetrant, thermographic, and radiographic techniques were considered. The ultrasonic and electromagnetic approaches were both found suitable. However, the electromagnetic approach is more desirable for field inspections, due to consistency and ease of use. The electromagnetic inspection procedure is able to discriminate between precursor damage and through cracking with sufficient sensitivity to small cracks.

  12. Development studies for a novel wet oxidation process. Phase 2

    SciTech Connect (OSTI)

    NONE

    1994-07-01T23:59:59.000Z

    DETOX{sup SM} is a catalyzed wet oxidation process which destroys organic materials in an acidic water solution of iron at 373 to 473 K. The solution can be used repeatedly to destroy great amounts of organic materials. Since the process is conducted in a contained vessel, air emissions from the process can be well controlled. The solution is also capable of dissolving and concentrating many heavy and radioactive metals for eventual stabilization and disposal. The Phase 2 effort for this project is site selection and engineering design for a DETOX demonstration unit. Site selection was made using a set of site selection criteria and evaluation factors. A survey of mixed wastes at DOE sites was conducted using the Interim Mixed Waste Inventory Report. Sites with likely suitable waste types were identified. Potential demonstration sites were ranked based on waste types, interest, regulatory needs, scheduling, ability to provide support, and available facilities. Engineering design for the demonstration unit is in progress and is being performed by Jacobs Applied Technology. The engineering design proceeded through preliminary process flow diagrams (PFDs), calculation of mass and energy balances for representative waste types, process and instrumentation diagrams (P and IDs), preparation of component specifications, and a firm cost estimate for fabrication of the demonstration unit.

  13. Biomass power for rural development. Technical progress report, Phase 2, July 1--September 30, 1998

    SciTech Connect (OSTI)

    Neuhauser, E.

    1999-01-01T23:59:59.000Z

    The project undertaken by the Salix Consortium is a multi-phased, multi-partner endeavor. Phase 1 focused on initial development and testing of the technology and forging the necessary agreements to demonstrate commercial willow production. The Phase 1 objectives have been successfully completed: preparing final design plans for two utility pulverized coal boiler for 20 MW of biopower capacity; developing fuel supply plans for the project with a goal of establishing 365 ha (900 ac) of willow; obtaining power production commitments from the power companies for Phase 2; obtaining construction and environmental permits; and developing an experimental strategy for crop production and power generation improvements needed to assure commercial success. The R and D effort also addresses environmental issues pertaining to introduction of the willow energy system. Beyond those Phase 1 requirements, the Consortium has already successfully demonstrated cofiring at Greenidge Station and has initiated development of the required nursery capacity for acreage scale-up. In Phase 2 every aspect of willow production and power generation from willow biomass will be demonstrated. The ultimate objective of Phase 2 is to transition the work performed under the Biomass Power for Rural Development project into a thriving, self-supported energy crop enterprise.

  14. Conceptual Design Phase of Project on Design and Development of Airships for Transportation of Goods

    E-Print Network [OSTI]

    Ramu, Palaniappan

    Conceptual Design Phase of Project on Design and Development of Airships for Transportation Team 2 Literature Review 3 Requirements Capture 4 Discussions with Airship Manufacturers 5 Identification of Vendors and Resource Agencies 6 Regulations related to airship design, manufacture

  15. Development of dual phase magnesia-zirconia ceramics for light water reactor inert matrix fuel 

    E-Print Network [OSTI]

    Medvedev, Pavel

    2005-02-17T23:59:59.000Z

    Dual phase magnesia-zirconia ceramics were developed, characterized, and evaluated as a potential matrix material for use in light water reactor inert matrix fuel intended for the disposition of plutonium and minor actinides. ...

  16. Development of dual phase magnesia-zirconia ceramics for light water reactor inert matrix fuel

    E-Print Network [OSTI]

    Medvedev, Pavel

    2005-02-17T23:59:59.000Z

    Dual phase magnesia-zirconia ceramics were developed, characterized, and evaluated as a potential matrix material for use in light water reactor inert matrix fuel intended for the disposition of plutonium and minor actinides. Ceramics were...

  17. Gas-phase thermal dissociation of uranium hexafluoride: Investigation by the technique of laser-powered homogeneous pyrolysis

    SciTech Connect (OSTI)

    Bostick, W.D.; McCulla, W.H.; Trowbridge, L.D.

    1987-04-01T23:59:59.000Z

    In the gas-phase, uranium hexafluoride decomposes thermally in a quasi-unimolecular reaction to yield uranium pentafluoride and atomic fluorine. We have investigated this reaction using the relatively new technique of laser-powered homogeneous pyrolysis, in which a megawatt infrared laser is used to generate short pulses of high gas temperatures under strictly homogeneous conditions. In our investigation, SiF/sub 4/ is used as the sensitizer to absorb energy from a pulsed CO/sub 2/ laser and to transfer this energy by collisions with the reactant gas. Ethyl chloride is used as an external standard ''thermometer'' gas to permit estimation of the unimolecular reaction rate constants by a relative rate approach. When UF/sub 6/ is the reactant, CF/sub 3/Cl is used as reagent to trap atomic fluorine reaction product, forming CF/sub 4/ as a stable indicator which is easily detected by infrared spectroscopy. Using these techniques, we estimate the UF/sub 6/ unimolecular reaction rate constant near the high-pressure limit. In the Appendix, we describe a computer program, written for the IBM PC, which predicts unimolecular rate constants based on the Rice-Ramsperger-Kassel theory. Parameterization of the theoretical model is discussed, and recommendations are made for ''appropriate'' input parameters for use in predicting the gas-phase unimolecular reaction rate for UF/sub 6/ as a function of temperature and gas composition and total pressure. 85 refs., 17 figs., 14 tabs.

  18. Phase 1 Development Report for the SESSA Toolkit.

    SciTech Connect (OSTI)

    Knowlton, Robert G.; Melton, Brad J; Anderson, Robert J.

    2014-09-01T23:59:59.000Z

    The Site Exploitation System for Situational Awareness ( SESSA ) tool kit , developed by Sandia National Laboratories (SNL) , is a comprehensive de cision support system for crime scene data acquisition and Sensitive Site Exploitation (SSE). SESSA is an outgrowth of another SNL developed decision support system , the Building R estoration Operations Optimization Model (BROOM), a hardware/software solution for data acquisition, data management, and data analysis. SESSA was designed to meet forensic crime scene needs as defined by the DoD's Military Criminal Investigation Organiza tion (MCIO) . SESSA is a very comprehensive toolki t with a considerable amount of database information managed through a Microsoft SQL (Structured Query Language) database engine, a Geographical Information System (GIS) engine that provides comprehensive m apping capabilities, as well as a an intuitive Graphical User Interface (GUI) . An electronic sketch pad module is included. The system also has the ability to efficiently generate necessary forms for forensic crime scene investigations (e.g., evidence submittal, laboratory requests, and scene notes). SESSA allows the user to capture photos on site, and can read and generate ba rcode labels that limit transcription errors. SESSA runs on PC computers running Windows 7, but is optimized for touch - screen tablet computers running Windows for ease of use at crime scenes and on SSE deployments. A prototype system for 3 - dimensional (3 D) mapping and measur e ments was also developed to complement the SESSA software. The mapping system employs a visual/ depth sensor that captures data to create 3D visualizations of an interior space and to make distance measurements with centimeter - level a ccuracy. Output of this 3D Model Builder module provides a virtual 3D %22walk - through%22 of a crime scene. The 3D mapping system is much less expensive and easier to use than competitive systems. This document covers the basic installation and operation of th e SESSA tool kit in order to give the user enough information to start using the tool kit . SESSA is currently a prototype system and this documentation covers the initial release of the tool kit . Funding for SESSA was provided by the Department of Defense (D oD), Assistant Secretary of Defense for Research and Engineering (ASD(R&E)) Rapid Fielding (RF) organization. The project was managed by the Defense Forensic Science Center (DFSC) , formerly known as the U.S. Army Criminal Investigation Laboratory (USACIL) . ACKNOWLEDGEMENTS The authors wish to acknowledge the funding support for the development of the Site Exploitation System for Situational Awareness (SESSA) toolkit from the Department of Defense (DoD), Assistant Secretary of Defense for Research and Engineering (ASD(R&E)) Rapid Fielding (RF) organization. The project was managed by the Defense Forensic Science Center (DFSC) , formerly known as the U.S. Army Criminal Investigation Laboratory (USACIL). Special thanks to Mr. Garold Warner, of DFSC, who served as the Project Manager. Individuals that worked on the design, functional attributes, algorithm development, system arc hitecture, and software programming include: Robert Knowlton, Brad Melton, Robert Anderson, and Wendy Amai.

  19. Boosted object hardware trigger development and testing for the Phase I upgrade of the ATLAS Experiment

    E-Print Network [OSTI]

    Stark, Giordon Holtsberg; The ATLAS collaboration

    2015-01-01T23:59:59.000Z

    The Global Feature Extraction (gFEX) module is a Level 1 jet trigger system planned for installation in ATLAS during the Phase 1 upgrade in 2018. The gFEX selects large-radius jets for capturing Lorentz-boosted objects by means of wide-area jet algorithms refined by subjet information. The architecture of the gFEX permits event-by-event local pile-up suppression for these jets using the same subtraction techniques developed for offline analyses. The gFEX architecture is also suitable for other global event algorithms such as missing transverse energy (MET), centrality for heavy ion collisions, and "jets without jets". The gFEX will use 4 processor FPGAs to perform calculations on the incoming data and a Hybrid APU-FPGA for slow control of the module. The gFEX is unique in both design and implementation and substantially enhance the selectivity of the L1 trigger and increases sensitivity to key physics channels.

  20. Development and application of new techniques for blast furnace process control at SSAB Tunnplaat, Luleaa Works

    SciTech Connect (OSTI)

    Braemming, M.; Hallin, M. [SSAB Tunnplaat AB, Luleaa (Sweden); Zuo, G. [Luleaa Univ. (Sweden). Dept. of Process Metallurgy

    1995-12-01T23:59:59.000Z

    SSAB Tunnplaat AB operates two blast furnaces (M1 and M2) in Luleaa. In recent years research efforts have to a great extent been aimed at the development of new techniques for blast furnace process control. An example is the installation of a burden profile measurement system, which was useful in the development of a new burden distribution praxis on the big furnace (M2), equipped with a bell-less-top. Hearth level detection and continuous measurement of the hot metal temperature in the runner are under evaluation. The purpose of these techniques is to give earlier information concerning the state of the blast furnace process. Parallel to this work, models for prediction of silicon in hot metal, the position and shape of the cohesive zone and slip-warning are being developed and tested off-line. These new models and information from new measuring techniques will be integrated into a new Operating Guidance System, hopefully resulting in a powerful tool in the efforts to stabilize blast furnace operations.

  1. Novel technologies and techniques for low-cost phased arrays and scanning antennas 

    E-Print Network [OSTI]

    Rodenbeck, Christopher Timothy

    2004-11-15T23:59:59.000Z

    59 - 71 GHz Intelligent highway systems and intelligent transportation 76 - 77 GHz Consumer radar and civilian airborne radiolocation Q- through W-band The journal model is IEEE Transactions...-wave frequencies. Interest in developing broadband, low-cost methods of * copyrightserif 2003 IEEE. Parts of this chapter are reprinted, with permission, from C.T. Rodenbeck, M. Li, and K. Chang, ?A novel...

  2. Granular-bed-filter development program, Phase II. Final report

    SciTech Connect (OSTI)

    Guillory, J.; Cooper, J.; Ferguson, J.; Goldbach, G.; Placer, F.

    1983-05-01T23:59:59.000Z

    The high-temperature moving bed granular filter (GBF) program at Combustion Power Company (CPC) commenced in 1977. Its purpose was to investigate, for the Department of Energy, the filtration performance of the GBF for application to coal-fired PFBC turbine systems. The GBF test system was successfully operated on 1500/sup 0/F to 1600/sup 0/F gases produced from an atmospheric pressure coal-fired fluidized bed combustor. Overall collection efficiencies above 99% and submicron collection efficiencies above 96% were consistently demonstrated in over 1500 hours of high-temperature testing. Alkali content of the hot gases was also measured to evaluate aluminosilicate additives for controlling alkali emissions. Operational and performance stability under upset conditions (ten times normal inlet loading and 125% of design gas flowrate) was also demonstrated experimentally. A computer-based GBF performance model was developed. It predicts overall particle capture within +- 5%. Gas flow streamlines and isobars are computer generated from theoretical principles and particle capture is based on the most recent empirical models. The effects of elevated pressure on efficiency and filter pressure drop are included in the model. A modular approach was adopted for GBF scale-up to commercial size systems using elements of the same size tested in this program. Elements can be readily packaged into 30,000 acfm modules at a projected equipment cost of approximately $27 per acfm.

  3. Development of a Dispatchable PV Peak Shainv System. PV: Bonus Program - Phase 1 Report. Volume 1

    SciTech Connect (OSTI)

    None

    1995-10-01T23:59:59.000Z

    This report summarizes the work performed by Delmarva Power and Light and its subcontractors in Phase 1 of the US Department of Energy's PV:BONUS Program. The purpose of the program is to develop products and systems for buildings which utilize photovoltaic (N) technology. Beginning with a cooperative research effort with the University of Delaware's Center for Energy and Environmental Policy Research Delmarva Power developed and demonstrated the concept of Dispatchable PV Peak Shaving. This concept and the system which resulted horn the development work are unique from other grid-connected PV systems because it combines a PV, battery energy storage, power conversion and control technologies into an integrated package. Phase 1 began in July 1993 with the installation of a test and demonstration system at Delmarva's Northern Division General Office building near Newark, Delaware. Following initial testing throughout the summer and fall of 1993, significant modifications were made under an amendment to the DOE contract. Work on Phase 1 concluded in the early spring of 1995. Significant progress towards the goal of commercializing the system was made during Phase 1, and is summarized. Based on progress in Phase 1, a proposal to continue the work in Phase 2 was submitted to the US DOE in May 1995. A contract amendment and providing funds for the Phase 2 work is expected in July 1995.

  4. Silicon ingot casting: heat exchanger method (HEM). Multi-wire slicing: fixed abrasive slicing technique (FAST). Phase IV. Silicon sheet growth development for the large area sheet task of the low-cost solar array project. Quarterly progress report No. 3, July 1, 1980-September 30, 1980

    SciTech Connect (OSTI)

    Schmid, F; Khattak, C P; Basaran, M

    1980-10-01T23:59:59.000Z

    The size of ingots cast by HEM has been increased to 45 kg with 34 cm x 34 cm and 32 cm x 32 cm cross-sections. A new crucible has been developed which has a better shape factor. It has shown considerable improvement in yields of square ingots. A 45 kg ingot was solidified in this crucible. Optimization of the solidification cycle has shown that as the height of the ingot is increased, the gradients at the bottom, as well as instrumentation control, have to be very precise for efficient solidification. A new cutting head has been fabricated and assembled with the present drive unit of the FAST slicer. In addition to the salient features of rigidity and accurate alignment, the bladehead is lighter and larger to accommodate a 30 cm wide wirepack. Surface speeds of 500 ft/min were achieved with minimum vibration. Encouraging results have been achieved with the new cutting heat cutting head. High cutting rates and yields, 5.1 mils/min and 96%, respectively, have been seen from electroplated bladepacks. Electroplated wires with diamonds in cutting edge only have been used during the present reporting period with good slicing performance. The impregnated wirepacks have also demonstrated cutting effectiveness with the new bladehead.

  5. Improved manufacturing techniques for RF and laser hardening of missile domes. Phase I. Technical report

    SciTech Connect (OSTI)

    Pawlewicz, W.T.; Mann, I.B.; Martin, P.M.; Hays, D.D.; Graybeal, A.G.

    1982-07-01T23:59:59.000Z

    This report summarizes key results and accomplishements during the first year of a Manufacturing Methods and Technology project to adapt an existing Pacific Northwest Laboratory (PNL) optical coating capability developed for high-power fusion-laser applications to the case of rf and laser hardening of plastic missile domes used by the US Army (MICOM). The primary objective of the first year's work was to demonstrate rf hardening of Hellfire and Copperhead 1.06-micron missile domes by use of transparent conductive Indium Tin Oxide (ITO) coatings. The project thus involved adaptation of a coating material and process developed for flat glass components used in fusion lasers to the case of hemispherical or conical heat-sensitive plastic domes used on laser-guided missiles. Specific ITO coating property goals were an electrical sheet resistance of 10 Ohms/square, a coated-dome transmission of 80% or more at 1.06 micron wavelength (compared to 90% for a bare dome), and good adhesion. The sheet resistance goal of 10 Ohms/square was expected to result in an rf attenuation of 30 dB at the frequencies of importance.

  6. Development of small punch testing technique and its application to evaluation of mechanical properties degradation

    SciTech Connect (OSTI)

    Kameda, J.

    1993-10-01T23:59:59.000Z

    The present paper summarizes a small punch (SP) testing technique developed and its application to mechanical properties characterization. It has been clearly shown on ferritic alloys that the SP test was evaluate the intergranular embrittling potency of segregated solute, such as P, Sn and Sb causing temper embrittlement, and the effects of neutron irradiation and post-irradiation annealing, giving rise to changes in the hardness and intergranular solute segregation, on the fracture properties in terms of the ductile-brittle transition temperature (DBTT). A linear relation of the DBTT determined by the SP test to that by Charpy V-notched tests has been theoretically and experimentally established. In Al alloy substrates coated with amorphous and overlaying ceramics, moreover, the global and local fracture properties were well characterized by the SP test together with acoustic emission techniques.

  7. Innovative Coal Solids-Flow Monitoring and Measurement Using Phase-Doppler and Mie Scattering Techniques

    SciTech Connect (OSTI)

    Stephen Seong Lee

    2010-01-19T23:59:59.000Z

    Fuel flow to individual burners is complicated and difficult to determine on coal fired boilers, since coal solids were transported in a gas suspension that is governed by the complex physics of two-phase flow. The objectives of the project were the measurements of suspended coal solids-flows in the simulated test conditions. Various extractive methods were performed manually and can give only a snapshot result of fuel distribution. In order to measure particle diameter & velocity, laser based phase-Doppler particle analyzer (PDPA) and particle image velocimetry (PIV) were carefully applied. Statistical methods were used to analyze particle characteristics to see which factors have significant effect. The transparent duct model was carefully designed and fabricated for the laser-based-instrumentation of solids-flow monitoring (LISM). The experiments were conducted with two different kinds of particles with four different particle diameters. The particle types were organic particles and saw dust particles with the diameter range of 75-150 micron, 150-250 micron, 250-355 micron and 355-425 micron. The densities of the particles were measured to see how the densities affected the test results. Also the experiment was conducted with humid particles and fog particles. To generate humid particles, the humidifier was used. A pipe was connected to the humidifier to lead the particle flow to the intersection of the laser beam. The test results of the particle diameter indicated that, the mean diameter of humid particles was between 6.1703 microns and 6.6947 microns when the humid particle flow was low. When the humid particle flow was high, the mean diameter was between 6.6728 microns and 7.1872 microns. The test results of the particle mean velocity indicated that the mean velocity was between 1.3394 m/sec and 1.4556 m/sec at low humid particle flow. When the humid particle flow was high, the mean velocity was between 1.5694 m/sec and 1.7856 m/sec. The Air Flow Module, TQ AF 17 and shell ondina oil were used to generate fog particles. After the oil was heated inside the fog generator, the blower was used to generate the fog. The fog flew along the pipe to the intersection of the laser beam. The mean diameter of the fog particles was 5.765 microns. Compared with the humid particle diameter, we observed that the mean diameter of the fog particles was smaller than the humid particles. The test results of particle mean velocity was about 3.76 m/sec. Compared with the mean velocity of the humid particles, we can observed the mean velocity of fog particles were greater than humid particles. The experiments were conducted with four different kinds of particles with five different particle diameters. The particle types were organic particles, coal particles, potato particles and wheat particles with the diameter range of 63-75 micron, less than 150 micron, 150-250 micron, 250-355 micron and 355-425 micron. To control the flow rate, the control gate of the particle dispensing hopper was adjusted to 1/16 open rate, 1/8 open rate and 1/4 open rate. The captured image range was 0 cm to 5 cm from the control gate, 5 cm to 10 cm from the control gate and 10 cm to 15 cm from the control gate. Some of these experiments were conducted under both open environment conditions and closed environment conditions. Thus these experiments had a total of five parameters which were type of particles, diameter of particles, flow rate, observation range, and environment conditions. The coal particles (diameter between 63 and 75 microns) tested under the closed environment condition had three factors that were considered as the affecting factors. They were open rate, observation range, and environment conditions. In this experiment, the interaction of open rate and observation range had a significant effect on the lower limit. On the upper limit, the open rate and environment conditions had a significant effect. In addition, the interaction of open rate and environment conditions had a significant effect. The coal particles tested (diameter between 63 and 75

  8. Development of high sensitivity techniques for characterizing outgassing of polymeric construction materials for microenvironments

    SciTech Connect (OSTI)

    McIntyre, D.C.; Thornberg, S.M.; Liang, A.Y.; Bender, S.F.A.; Lujan, R.D.

    1994-05-01T23:59:59.000Z

    Further reductions in particulate contamination in semiconductor device manufacturing environments will be required to meet the future challenges of producing devices with decreased dimensions. Using pods (microenvironments) to provide very clean environments on a local (wafer level) scale is an alternative that may reduce the technological demands and cost of providing comparable contamination levels in an entire clean-room manufacturing facility. It has been demonstrated that pods can provide wafer environments that have lower and less variable levels of particulate contamination than conventional clean-room manufacturing environments. However, there have also been indications that outgassed constituents from polymeric pod materials can condense on wafers during storage. A standard technique to evaluate outgassing of polymers is needed so that: (1) manufacturers can make reliable comparisons of the outgassing potential of materials being considered for use and (2) microenvironment users can make judgments on the relative outgassing threats from different manufacturers` products. The goal of the work that is summarized below has been to develop standard high sensitivity (10--100 ppb) testing techniques for evaluation of outgassing from polymeric pod materials in a temperature range from 30 C--75 C. This paper will briefly review outgassing data from polycarbonate materials that was obtained using thermal desorption combined with detection using gas chromatography/mass spectroscopy wit volatile pre-concentration or using a flame ionization detector (FID). Although the focus of this program has been on developing techniques to evaluate pod materials of construction, the techniques that have been evaluated may be useful for characterizing outgassing from other polymeric materials found in cleanrooms.

  9. DEVELOPMENT OF RESERVOIR CHARACTERIZATION TECHNIQUES AND PRODUCTION MODELS FOR EXPLOITING NATURALLY FRACTURED RESERVOIRS

    SciTech Connect (OSTI)

    Michael L. Wiggins; Raymon L. Brown; Faruk Civan; Richard G. Hughes

    2002-12-31T23:59:59.000Z

    For many years, geoscientists and engineers have undertaken research to characterize naturally fractured reservoirs. Geoscientists have focused on understanding the process of fracturing and the subsequent measurement and description of fracture characteristics. Engineers have concentrated on the fluid flow behavior in the fracture-porous media system and the development of models to predict the hydrocarbon production from these complex systems. This research attempts to integrate these two complementary views to develop a quantitative reservoir characterization methodology and flow performance model for naturally fractured reservoirs. The research has focused on estimating naturally fractured reservoir properties from seismic data, predicting fracture characteristics from well logs, and developing a naturally fractured reservoir simulator. It is important to develop techniques that can be applied to estimate the important parameters in predicting the performance of naturally fractured reservoirs. This project proposes a method to relate seismic properties to the elastic compliance and permeability of the reservoir based upon a sugar cube model. In addition, methods are presented to use conventional well logs to estimate localized fracture information for reservoir characterization purposes. The ability to estimate fracture information from conventional well logs is very important in older wells where data are often limited. Finally, a desktop naturally fractured reservoir simulator has been developed for the purpose of predicting the performance of these complex reservoirs. The simulator incorporates vertical and horizontal wellbore models, methods to handle matrix to fracture fluid transfer, and fracture permeability tensors. This research project has developed methods to characterize and study the performance of naturally fractured reservoirs that integrate geoscience and engineering data. This is an important step in developing exploitation strategies for optimizing the recovery from naturally fractured reservoir systems. The next logical extension of this work is to apply the proposed methods to an actual field case study to provide information for verification and modification of the techniques and simulator. This report provides the details of the proposed techniques and summarizes the activities undertaken during the course of this project. Technology transfer activities were highlighted by a two-day technical conference held in Oklahoma City in June 2002. This conference attracted over 90 participants and included the presentation of seventeen technical papers from researchers throughout the United States.

  10. ENGINEERING DEVELOPMENT OF COAL-FIRED HIGH PERFORMANCE POWER SYSTEMS PHASE II AND III

    SciTech Connect (OSTI)

    NONE

    1998-09-30T23:59:59.000Z

    This report presents work carried out under contract DE-AC22-95PC95144 "Engineering Development of Coal-Fired High Performance Systems Phase II and III." The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: à thermal efficiency (HHV) >47%; à NOx, SOx, and particulates <10% NSPS (New Source Performance Standard); à coal providing >65% of heat input; à all solid wastes benign; à cost of electricity <90% of present plants. Phase I, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase I also included preliminary R&D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. This phase, Phase II, involves the development and testing of plant subsystems, refinement and updating of the HIPPS commercial plant design, and the site selection and engineering design of a HIPPS prototype plant. Work reported herein is from: à Task 2.2 HITAF Air Heaters; à Task 6 HIPPS Commercial Plant Design Update.

  11. Characterization of Porosity Development in Oxidized Graphite using Automated Image Analysis Techniques

    SciTech Connect (OSTI)

    Contescu, Cristian I [ORNL; Burchell, Timothy D [ORNL

    2009-09-01T23:59:59.000Z

    This document reports on initial activities at ORNL aimed at quantitative characterization of porosity development in oxidized graphite specimens using automated image analysis (AIA) techniques. A series of cylindrical shape specimens were machined from nuclear-grade graphite (type PCEA, from GrafTech International). The specimens were oxidized in air to various levels of weight loss (between 5 and 20 %) and at three oxidation temperatures (between 600 and 750 oC). The procedure used for specimen preparation and oxidation was based on ASTM D-7542-09. Oxidized specimens were sectioned, resin-mounted and polished for optical microscopy examination. Mosaic pictures of rectangular stripes (25 mm x 0.4 mm) along a diameter of sectioned specimens were recorded. A commercial software (ImagePro) was evaluated for automated analysis of images. Because oxidized zones in graphite are less reflective in visible light than the pristine, unoxidized material, the microstructural changes induced by oxidation can easily be identified and analyzed. Oxidation at low temperatures contributes to development of numerous fine pores (< 100 m2) distributed more or less uniformly over a certain depth (5-6 mm) from the surface of graphite specimens, while causing no apparent external damage to the specimens. In contrast, oxidation at high temperatures causes dimensional changes and substantial surface damage within a narrow band (< 1 mm) near the exposed graphite surface, but leaves the interior of specimens with little or no changes in the pore structure. Based on these results it appears that weakening and degradation of mechanical properties of graphite materials produced by uniform oxidation at low temperatures is related to the massive development of fine pores in the oxidized zone. It was demonstrated that optical microscopy enhanced by AIA techniques allows accurate determination of oxidant penetration depth and of distribution of porosity in oxidized graphite materials.

  12. Liquid Phase Methanol LaPorte Process Development Unit: Modification, operation, and support studies

    SciTech Connect (OSTI)

    Not Available

    1990-08-31T23:59:59.000Z

    A gas phase and a slurry phase radioactive tracer study was performed on the 12 ton/day Liquid Phase Methanol (LPMEOH) Process Development Unit (PDU) in LaPorte, Texas. To study the gas phase mixing characteristics, a radioactive argon tracer was injected into the feed gas and residence time distribution was generated by measuring the response at the reactor outlet. Radioactive manganese oxide powder was independently injected into the reactor to measure the slurry phase mixing characteristics. A tanks-in-series model and an axial dispersion model were applied to the data to characterize the mixing in the reactor. From the axial dispersion model, a translation to the number of CSTR's (continuous stirred tank reactors) was made for comparison purposes with the first analysis. Dispersion correlations currently available in the literature were also compared. The tanks-in-series analysis is a simpler model whose results are easily interpreted. However, it does have a few drawbacks; among them, the lack of a reliable method for scaleup of a reactor and no direct correlation between mixing in the slurry and gas phases. The dispersion model allows the mixing in the gas and slurry phases to be characterized separately while including the effects of phase transfer. This analysis offers a means for combining the gas and slurry phase dispersion models into an effective dispersion coefficient, which, in turn, can be related to an equivalent number of tanks-in-series. The dispersion methods reported are recommended for scaleup of a reactor system. 24 refs., 18 figs., 8 tabs.

  13. Advanced Envelope Research for Factory Built Housing, Phase 3 -- Design Development and Prototyping

    SciTech Connect (OSTI)

    Levy, E.; Kessler, B.; Mullens, M.; Rath, P.

    2014-01-01T23:59:59.000Z

    The Advanced Envelope Research effort will provide factory homebuilders with high performance, cost-effective alternative envelope designs. In the near term, these technologies will play a central role in meeting stringent energy code requirements. For manufactured homes, the thermal requirements, last updated by statute in 1994, will move up to the more rigorous IECC 2012 levels in 2013, the requirements of which are consistent with site built and modular housing. This places added urgency on identifying envelope technologies that the industry can implement in the short timeframe. The primary goal of this research is to develop wall designs that meet the thermal requirements based on 2012 IECC standards. Given the affordable nature of manufactured homes, impact on first cost is a major consideration in developing the new envelope technologies. This work is part of a four-phase, multi-year effort. Phase 1 identified seven envelope technologies and provided a preliminary assessment of three selected methods for building high performance wall systems. Phase 2 focused on the development of viable product designs, manufacturing strategies, addressing code and structural issues, and cost analysis of the three selected options. An industry advisory committee helped critique and select the most viable solution to move further in the research -- stud walls with continuous exterior insulation. Phase 3, the subject of the current report, focused on the design development of the selected wall concept and explored variations on the use of exterior foam insulation. The scope also included material selection, manufacturing and cost analysis, and prototyping and testing.

  14. Ontological Semantics of Standards and PLM Repositories in the Product Development Phase

    E-Print Network [OSTI]

    Schröder, Lutz

    Ontological Semantics of Standards and PLM Repositories in the Product Development Phase Marco the large amounts of engineering information stored in contemporary PLM systems, the concept of knowledge based engineering (KBE) can be considered from a PLM perspective. By eventually combining product

  15. Department of Engineering Science and Mechanics Spring 2012 Solar Collector Research & Development Phase II

    E-Print Network [OSTI]

    Demirel, Melik C.

    PENNSTATE Department of Engineering Science and Mechanics Spring 2012 Solar Collector Research, low-maintenance solar collector that can output competitive efficiencies with respect to current solar & Development Phase II Overview Solar Dynamic is a small organization with the hopes of producing an affordable

  16. Development of techniques in magnetic resonance and structural studies of the prion protein

    SciTech Connect (OSTI)

    Bitter, Hans-Marcus L.

    2000-07-01T23:59:59.000Z

    Magnetic resonance is the most powerful analytical tool used by chemists today. Its applications range from determining structures of large biomolecules to imaging of human brains. Nevertheless, magnetic resonance remains a relatively young field, in which many techniques are currently being developed that have broad applications. In this dissertation, two new techniques are presented, one that enables the determination of torsion angles in solid-state peptides and proteins, and another that involves imaging of heterogenous materials at ultra-low magnetic fields. In addition, structural studies of the prion protein via solid-state NMR are described. More specifically, work is presented in which the dependence of chemical shifts on local molecular structure is used to predict chemical shift tensors in solid-state peptides with theoretical ab initio surfaces. These predictions are then used to determine the backbone dihedral angles in peptides. This method utilizes the theoretical chemicalshift tensors and experimentally determined chemical-shift anisotropies (CSAs) to predict the backbone and side chain torsion angles in alanine, leucine, and valine residues. Additionally, structural studies of prion protein fragments are described in which conformationally-dependent chemical-shift measurements were made to gain insight into the structural differences between the various conformational states of the prion protein. These studies are of biological and pathological interest since conformational changes in the prion protein are believed to cause prion diseases. Finally, an ultra-low field magnetic resonance imaging technique is described that enables imaging and characterization of heterogeneous and porous media. The notion of imaging gases at ultra-low fields would appear to be very difficult due to the prohibitively low polarization and spin densities as well as the low sensitivities of conventional Faraday coil detectors. However, Chapter 5 describes how gas imaging at ultra-low fields is realized by incorporating the high sensitivities of a dc superconducting quantum interference device (SQUID) with the high polarizations attainable through optica11y pumping {sup 129}Xe gas.

  17. Development of algorithms for capacitance imaging techniques for fluidized bed flow fields

    SciTech Connect (OSTI)

    Loudin, W.J.

    1991-01-01T23:59:59.000Z

    The objective of this research is to provide support for the instrumentation concept of a High Resolution Capacitance Imaging System (HRCIS). The work involves the development and evaluation of the mathematical theory and associated models and algorithms which reduce the electronic measurements to valid physical characterizations. The research and development require the investigation of techniques to solve large systems of equations based on capacitance measurements for various electrode configurations in order to estimate densities of materials in a cross-section of a fluidized bed. Capacitance measurements are made for 400 connections of the 32-electrode system; 400 corresponding electric-field curves are constructed by solving a second order partial differential equation. These curves are used to partition the circular disk into 193 regions called pixels, and the density of material in each pixel is to be estimated. Two methods of approximating densities have been developed and consideration of a third method has been initiated. One method (Method 1) is based on products of displacement currents for intersecting electric-field curves on a cross section. For each pixel one point of intersection is chosen, and the product of the capacitance measurements is found. Both the product and the square-root-of-product seem to yield good relative distribution of densities.

  18. Development of algorithms for capacitance imaging techniques for fluidized bed flow fields. 1990 Annual report

    SciTech Connect (OSTI)

    Loudin, W.J.

    1991-01-01T23:59:59.000Z

    The objective of this research is to provide support for the instrumentation concept of a High Resolution Capacitance Imaging System (HRCIS). The work involves the development and evaluation of the mathematical theory and associated models and algorithms which reduce the electronic measurements to valid physical characterizations. The research and development require the investigation of techniques to solve large systems of equations based on capacitance measurements for various electrode configurations in order to estimate densities of materials in a cross-section of a fluidized bed. Capacitance measurements are made for 400 connections of the 32-electrode system; 400 corresponding electric-field curves are constructed by solving a second order partial differential equation. These curves are used to partition the circular disk into 193 regions called pixels, and the density of material in each pixel is to be estimated. Two methods of approximating densities have been developed and consideration of a third method has been initiated. One method (Method 1) is based on products of displacement currents for intersecting electric-field curves on a cross section. For each pixel one point of intersection is chosen, and the product of the capacitance measurements is found. Both the product and the square-root-of-product seem to yield good relative distribution of densities.

  19. Development of an ultrasonic pulse-echo (UPE) technique for aircraft icing studies

    SciTech Connect (OSTI)

    Liu, Yang; Hu, Hui [Department of Aerospace Engineering, Iowa State University, 2271 Howe Hall, Room 1200, Ames, IA 50011 (United States); Chen, Wen-Li [Department of Aerospace Engineering, Iowa State University, 2271 Howe Hall, Room 1200, Ames, IA 50011 (United States); School of Civil Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150090 (China); Bond, Leonard J. [Department of Aerospace Engineering, Iowa State University, 2271 Howe Hall, Room 1200, Ames, IA 50011 (United States); Center for Nondestructive Evaluation, Iowa State University, 1915 Scholl Road, 151 ASC II, Ames, IA 50011 (United States)

    2014-02-18T23:59:59.000Z

    Aircraft operating in some cold weather conditions face the risk of icing. Icing poses a threat to flight safety and its management is expensive. Removing light frost on a clear day from a medium-size business jet can cost $300, heavy wet snow removal can cost $3,000 and removal of accumulated frozen/freezing rain can cost close to $10,000. Understanding conditions that lead to severe icing events is important and challenging. When an aircraft or rotorcraft flies in a cold climate, some of the super cooled droplets impinging on exposed aircraft surfaces may flow along the surface prior to freezing and give various forms and shapes of ice. The runback behavior of a water film on an aircraft affects the morphology of ice accretion and the rate of formation. In this study, we report the recent progress to develop an Ultrasonic Pulse-Echo (UPE) technique to provide real-time thickness distribution measurements of surface water flows driven by boundary layer airflows for aircraft icing studies. A series of initial experimental investigations are conducted in an ice wind tunnel employing an array of ultrasonic transducers placed underneath the surface of a flat plate. The water runback behavior on the plate is evaluated by measuring the thickness profile variation of the water film along the surface by using the UPE technique under various wind speed and flow rate conditions.

  20. A technique for using synoptic analogs to predict the development of tropical depressions into North Atlantic hurricanes

    E-Print Network [OSTI]

    Grimm, David Alan

    1979-01-01T23:59:59.000Z

    A TECHNIQUE FOR USING SYNOPTIC ANALOGS TO PREDICT THE DEVELOPMENT OF TROPICAL DEPRESSIONS INTO NORTH ATLANTIC HURRICANES A Thesis by DAVID ALAN GRIMM Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE May 1979 Major Subject: Meteorology A TECHNIQUE FOR USING SYNOPTIC ANALOGS TO PREDICT THE DEVELOPMENT OF TROPICAL DEPRESSIONS INTO NORTH ATLANTIC HURRICANES A Thesis by DAVID ALAN GRIMM Approved...

  1. The development of optical microscopy techniques for the advancement of single-particle studies

    SciTech Connect (OSTI)

    Marchuk, Kyle

    2013-05-15T23:59:59.000Z

    Single particle orientation and rotational tracking (SPORT) has recently become a powerful optical microscopy tool that can expose many molecular motions. Unfortunately, there is not yet a single microscopy technique that can decipher all particle motions in all environmental conditions, thus there are limitations to current technologies. Within, the two powerful microscopy tools of total internal reflection and interferometry are advanced to determine the position, orientation, and optical properties of metallic nanoparticles in a variety of environments. Total internal reflection is an optical phenomenon that has been applied to microscopy to produce either fluorescent or scattered light. The non-invasive far-field imaging technique is coupled with a near-field illumination scheme that allows for better axial resolution than confocal microscopy and epi-fluorescence microscopy. By controlling the incident illumination angle using total internal reflection fluorescence (TIRF) microscopy, a new type of imaging probe called “non-blinking” quantum dots (NBQDs) were super-localized in the axial direction to sub-10-nm precision. These particles were also used to study the rotational motion of microtubules being propelled by the motor protein kinesin across the substrate surface. The same instrument was modified to function under total internal reflection scattering (TIRS) microscopy to study metallic anisotropic nanoparticles and their dynamic interactions with synthetic lipid bilayers. Utilizing two illumination lasers with opposite polarization directions at wavelengths corresponding to the short and long axis surface plasmon resonance (SPR) of the nanoparticles, both the in-plane and out-of-plane movements of many particles could be tracked simultaneously. When combined with Gaussian point spread function (PSF) fitting for particle super-localization, the binding status and rotational movement could be resolved without degeneracy. TIRS microscopy was also used to find the 3D orientation of stationary metallic anisotropic nanoparticles utilizing only long-axis SPR enhancement. The polarization direction of the illuminating light was rotated causing the relative intensity of p-polarized and s-polarized light within the evanescent field to change. The interaction of the evanescent field with the particles is dependent on the orientation of the particle producing an intensity curve. This curve and the in-plane angle can be compared with simulations to accurately determine the 3D orientation. Differential interference contrast (DIC) microscopy is another non-invasive far-field technique based upon interferometry that does not rely on staining or other contrast enhancing techniques. In addition, high numerical aperture condensers and objectives can be used to give a very narrow depth of field allowing for the optical tomography of samples, which makes it an ideal candidate to study biological systems. DIC microscopy has also proven itself in determining the orientation of gold nanorods in both engineered environments and within cells. Many types of nanoparticles and nanostructures have been synthesized using lithographic techniques on silicon wafer substrates. Traditionally, reflective mode DIC microscopes have been developed and applied to the topographical study of reflective substrates and the imaging of chips on silicon wafers. Herein, a laser-illuminated reflected-mode DIC was developed for studying nanoparticles on reflective surfaces.

  2. Granular bed filter development program, Phase II. Quarterly report, January-March 1981

    SciTech Connect (OSTI)

    Moresco, L. L.; Ferguson, J.

    1981-08-01T23:59:59.000Z

    Phase I included the development of a mathematical model, a cold flow parametric test series in a 0.746 Nm/sup 3//s GBF, and investigations of potential dust plugging problems at the inlet screen. Collection efficiencies of 99% and filter outlet loadings less than 0.0074 g/m/sup 3/ were demonstrated. The objectives of Phase II are to investigate the effects of elevated temperature and coal combustion particulate on GBF filtration performance; to update the analytical model developed in Phase I to reflect high temperature effects; to optimize filter internal configuration; to perform parametric and long duration tests to characterize the effects of filter design improvements on filtration efficiencies. Hot flow testing to date has confirmed that the GBF configured with inlet and outlet screens has exhibited a tendency for extensive and irreversible ash plugging. The potential advantages of a screenless configuration, having higher filtration efficiency, has been confirmed. This report describes the continuation of work pertinent to the development and design improvement of the GBF system, specifically addressing: (1) the development of governing equations derived for the 3-dimensional GBF mathematical model; (2) the initial results of subcontracted experiments to establish correlations of particulate capture mechanisms for use in the numerical 3-dimensional model; and (3) the design and physical modifications incorporated into the Model 4 GBF hot test setup for the final series of hot gas tests.

  3. DEVELOPMENT OF A VIRTUAL INTELLIGENCE TECHNIQUE FOR THE UPSTREAM OIL INDUSTRY

    SciTech Connect (OSTI)

    Iraj A. Salehi; Shahab D. Mohaghegh; Samuel Ameri

    2004-09-01T23:59:59.000Z

    The objective of the research and development work reported in this document was to develop a Virtual Intelligence Technique for optimization of the Preferred Upstream Management Practices (PUMP) for the upstream oil industry. The work included the development of a software tool for identification and optimization of the most influential parameters in upstream common practices as well as geological, geophysical and reservoir engineering studies. The work was performed in cooperation with three independent producing companies--Newfield Exploration, Chesapeake Energy, and Triad Energy--operating in the Golden Trend, Oklahoma. In order to protect data confidentiality, these companies are referred to as Company One, Two, Three in a randomly selected order. These producing companies provided geological, completion, and production data on 320 wells and participated in frequent technical discussions throughout the project. Research and development work was performed by Gas Technology Institute (GTI), West Virginia University (WVU), and Intelligent Solutions Inc. (ISI). Oklahoma Independent Petroleum Association (OIPA) participated in technology transfer and data acquisition efforts. Deliverables from the project are the present final report and a user-friendly software package (Appendix D) with two distinct functions: a characterization tool that identifies the most influential parameters in the upstream operations, and an optimization tool that seeks optimization by varying a number of influential parameters and investigating the coupled effects of these variations. The electronic version of this report is also included in Appendix D. The Golden Trend data were used for the first cut optimization of completion procedures. In the subsequent step, results from soft computing runs were used as the guide for detailed geophysical and reservoir engineering studies that characterize the cause-and-effect relationships between various parameters. The general workflow and the main performing units were as follows: (1) Data acquisition. (GTI, OIPA, Participating producers.) (2) Development of the virtual intelligence software. (WVU, ISI); (3) Application of the software on the acquired data. (GTI, ISI); (4) Detailed production analysis using conventional engineering techniques and the DECICE neural network software. (GTI) and (5) Detailed seismic analysis using Inspect spectral decomposition package and Hapmson-Russell's EMERGE inversion package. (GTI) Technology transfer took place through several workshops held at offices of the participating companies, at OIPA offices, and presentations at the SPE panel on soft computing applications and at the 2003 annual meeting of Texas Independent Producers and Royalty Owners Association (TIPRO). In addition, results were exhibited at the SPE annual meeting, published in GasTips, and placed on the GTI web page. Results from the research and development work were presented to the producing companies as a list of recommended recompletion wells and the corresponding optimized operations parameters. By the end of the project, 16 of the recommendations have been implemented the majority of which resulted in increased production rates to several folds. This constituted a comprehensive field demonstration with positive results.

  4. Aerosol-measurement techniques developed for nuclear-reactor-accident simulations

    SciTech Connect (OSTI)

    Novick, V.J.

    1989-01-01T23:59:59.000Z

    The purpose of this research is to investigate and develop techniques for sampling aerosols from a high temperature, high pressure environment. As such, much of this research can be applied to any high temperature, high pressure sampling problem. There are four parts that must be considered in any reactor sampling system: First, the sampling tip is important from the standpoint of (1) representatively sampling the ambient particles, (2) withstanding the high temperatures in the near core region, (3) rapidly reducing the temperature of the sampled gas without causing severe thermophoretic losses or condensing gases onto existing aerosols. The second part of the system is the aerosol transport. The dynamics that must be considered include diffusion, thermophoresis, setting and impaction. The third part involves the collection or analysis of the aerosols. Finally, the ability to control the flow rate through the sampling system affects the first three parts. All four areas are analyzed theoretically for general applications. Experiments were performed on various aspects of the problem that were not dealt with by other researchers or were specific to the experiments performed in the Loss of Fluid Test (LOFT) reactor and the Power Burst Facility (PBF) reactor. Specifically this work includes (1) sampling tip analysis, (2) experimental and theoretical aerosol transport analysis, (3) the development and testing of a new multistage virtual impactor, (4) the analysis and development of a new method of measuring particle concentration using series light extinction cells, and (5) analysis and experimentally determined capabilities and usefulness of a flow control system for experimentally decreasing pressures and changing argon-steam-hydrogen gas compositions.

  5. Development of analytical techniques to study H2s poisoning of PEMFCs and components

    SciTech Connect (OSTI)

    Brosha, Eric L [Los Alamos National Laboratory; Rockward, Tommy [Los Alamos National Laboratory; Uribe, Francisco A [Los Alamos National Laboratory; Garzon, Fernando H [Los Alamos National Laboratory

    2008-01-01T23:59:59.000Z

    Polymer electrolyte membrane fuel cells are sensitive to impurities that may be present in either the oxidizer or fuel. H{sub 2}S, even at the ppb level, will have a dramatic and adverse affect on fuel cell performance. Not only is it important to know a particular material's affinity to adsorb H{sub 2}S, when considering materials for PEMFC applications, issues such as permeation and crossover rates also become extremely important Several experimental methods have been developed to quantify H{sub 2}S adsorption onto surfaces and to quantify H{sub 2}S permeation through Nafion(reg.) membranes using readily available and inexpensive Ag/AgS ion probes. In addition to calculating the H{sub 2}S uptake on commonly used XC-72 carbon supports and PtlXC-72 catalysts, the H{sub 2}S permeability through dry and humidified Nafion(reg.) PEMFC membranes was also studied using these specialized techniques. In each ion probe experiment performed, a sulfide anti-oxidant buffer solution was used to trap and concentrate trace quantities of H{sub 2}S during the course of the measurement. Crossover experiments were conducted for up to 24 hours in order to achieve sulfide ion concentrations high enough to be precisely determined by subsequent titration with Pb(NO{sub 3}){sub 2}. By using these techniques, we have confirmed H{sub 2}S crossover in Nafion(reg.) membranes and have calculated preliminary rates of H{sub 2}S crossover.

  6. Development of Versatile Compressor Modeling using Approximation Techniques for Alternative Refrigerants Evaluation

    SciTech Connect (OSTI)

    Abdelaziz, Omar [ORNL] [ORNL; Shrestha, Som S [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    Refrigerants are the life-blood of vapor compression systems that are widely used in Heating, Ventilation, Air-Conditioning, and Refrigeration (HVAC&R) applications. The HVAC&R community is currently transitioning from main-stream refrigerants that have high Global Warming Potential (GWP) to alternative lower-GWP refrigerants. During this transition, it is important to account for the life cycle climate performance of alternative refrigerants since their performance will be different than that of higher-GWP refrigerants. This requires the evaluation of the system performance with the new refrigerants. Unfortunately, it is extremely difficult to predict the realistic performance of new alternative refrigerants without experimental validation. One of the main challenges in this regard is modeling the compressor performance with high fidelity due to the complex interaction of operating parameters, geometry, boundary conditions, and fluid properties. High fidelity compressor models are computationally expensive and require significant pre-processing to evaluate the performance of alternative refrigerants. This paper presents a new approach to modeling compressor performance when alternative refrigerants are used. The new modeling concept relies on using existing compressor performance to create an approximate model that captures the dependence of compressor performance on key operating parameters and fluid properties. The model can be built using a myriad of approximation techniques. This paper focuses on Kriging-based techniques to develop higher fidelity approximate compressor models. Baseline and at least one alternative refrigerant performance data are used to build the model. The model accuracy was evaluated by comparing the model results with compressor performance data using other refrigerants. Preliminary results show that the approximate model can predict the compressor mass flow rate and power consumption within 5%.

  7. Engineering development of coal-fired high performance power systems, Phase II and III

    SciTech Connect (OSTI)

    None

    1999-01-01T23:59:59.000Z

    The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: thermal efficiency (HHV) {ge} 47%; NOx, SOx, and particulates {le} 10% NSPS (New Source Performance Standard) coal providing {ge} 65% of heat input; all solid wastes benign; cost of electricity {le} 90% of present plants. Phase 1, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase 1 also included preliminary R and D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. This phase, Phase 2, involves the development and testing of plant subsystems, refinement and updating of the HIPPS commercial plant design, and the site selection and engineering design of a HIPPS prototype plant. Work reported herein is from: Task 2.1 HITAC Combustors; Task 2.2 HITAF Air Heaters; Task 6 HIPPS Commercial Plant Design Update.

  8. Engineering development of coal-fired high performance power systems, Phase II and III

    SciTech Connect (OSTI)

    None

    1998-07-01T23:59:59.000Z

    The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: thermal efficiency (HHV) {ge} 47%, NOx, SOx, and particulates {le} 10% NSPS (New Source Performance Standard), coal providing {ge} 65% of heat input, all solid wastes benign cost of electricity {le} 90% of present plants. Phase 1, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase 1 also included preliminary R and D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. This phase, Phase 2, involves the development and testing of plant subsystems, refinement and updating of the HIPPS commercial plant design, and the site selection and engineering design of a HIPPS prototype plant. Work reported herein is from: Task 2.1 HITAF Combustor; Task 2.2 HITAF Air Heaters; Task 6 HIPPS Commercial Plant Design Update.

  9. Efficient Phase-Change Materials: Development of a Low-Cost Thermal Energy Storage System Using Phase-Change Materials with Enhanced Radiation Heat Transfer

    SciTech Connect (OSTI)

    None

    2011-12-05T23:59:59.000Z

    HEATS Project: USF is developing low-cost, high-temperature phase-change materials (PCMs) for use in thermal energy storage systems. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night—when the sun is not out—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. Most PCMs do not conduct heat very well. Using an innovative, electroless encapsulation technique, USF is enhancing the heat transfer capability of its PCMs. The inner walls of the capsules will be lined with a corrosion-resistant, high-infrared emissivity coating, and the absorptivity of the PCM will be controlled with the addition of nano-sized particles. USF’s PCMs remain stable at temperatures from 600 to 1,000°C and can be used for solar thermal power storage, nuclear thermal power storage, and other applications.

  10. Development of a pilot-scale kinetic extruder feeder system and test program. Phase I report

    SciTech Connect (OSTI)

    None

    1982-03-01T23:59:59.000Z

    This report describes the work done under Phase I, the moisture tolerance testing of the Kinetic Extruder. The following coals were used in the test program: Western Bituminous (Utah), Eastern Bituminous (Pennsylvania), North Dakota Lignite, Sub-Bituminous (Montana), and Eastern Bituminous coal mixed with 20-percent Limestone. The coals were initially tested at the as-received moisture level and subsequently tested after surface moisture was added by water spray. Test results and recommendations for future research and development work are presented.

  11. PHASE I MATERIALS PROPERTY DATABASE DEVELOPMENT FOR ASME CODES AND STANDARDS

    SciTech Connect (OSTI)

    Ren, Weiju [ORNL; Lin, Lianshan [ORNL

    2013-01-01T23:59:59.000Z

    To support the ASME Boiler and Pressure Vessel Codes and Standard (BPVC) in modern information era, development of a web-based materials property database is initiated under the supervision of ASME Committee on Materials. To achieve efficiency, the project heavily draws upon experience from development of the Gen IV Materials Handbook and the Nuclear System Materials Handbook. The effort is divided into two phases. Phase I is planned to deliver a materials data file warehouse that offers a depository for various files containing raw data and background information, and Phase II will provide a relational digital database that provides advanced features facilitating digital data processing and management. Population of the database will start with materials property data for nuclear applications and expand to data covering the entire ASME Code and Standards including the piping codes as the database structure is continuously optimized. The ultimate goal of the effort is to establish a sound cyber infrastructure that support ASME Codes and Standards development and maintenance.

  12. Concentrating Solar Power - Molten Salt Pump Development, Final Technical Report (Phase 1)

    SciTech Connect (OSTI)

    Michael McDowell; Alan Schwartz

    2010-03-31T23:59:59.000Z

    The purpose of this project is to develop a long shafted pump to operate at high temperatures for the purpose of producing energy with renewable resources. In Phase I of this three phase project we developed molten salt pump requirements, evaluated existing hardware designs for necessary modifications, developed a preliminary design of the pump concept, and developed refined cost estimates for Phase II and Phase III of the project. The decision has been made not to continue the project into Phases II and III. There is an ever increasing world-wide demand for sources of energy. With only a limited supply of fossil fuels, and with the costs to obtain and produce those fuels increasing, sources of renewable energy must be found. Currently, capturing the sun's energy is expensive compared to heritage fossil fuel energy production. However, there are government requirements on Industry to increase the amount of energy generated from renewable resources. The objective of this project is to design, build and test a long-shafted, molten salt pump. This is the type of pump necessary for a molten salt thermal storage system in a commercial-scale solar trough plant. This project is under the Department of Energy (DOE) Solar Energy Technologies Program, managed by the Office of Energy Efficiency and Renewable Energy. To reduce the levelized cost of energy (LCOE), and to meet the requirements of 'tomorrows' demand, technical innovations are needed. The DOE is committed to reducing the LCOE to 7-10 cents/kWh by 2015, and to 5-7 cents/kWh by 2020. To accomplish these goals, the performance envelope for commercial use of long-shafted molten salt pumps must be expanded. The intent of this project is to verify acceptable operation of pump components in the type of molten salt (thermal storage medium) used in commercial power plants today. Field testing will be necessary to verify the integrity of the pump design, and thus reduce the risk to industry. While the primary goal is to design a pump for a trough solar power plant system, the intent is for the design to be extensible to a solar power tower application. This can be accomplished by adding pumping stages to increase the discharge pressure to the levels necessary for a solar power tower application. This report incorporates all available conceptual design information completed for this project in Phase I.

  13. Sperry Low Temperature Geothermal Conversion System, Phase I and Phase II. Volume V. Component development. Final report

    SciTech Connect (OSTI)

    Harvey, C.; McBee, W.; Matthews, H.B.

    1984-01-01T23:59:59.000Z

    The fundamental inventions which motivate this program are system concepts centered on a novel heat engine cycle and the use of downwell heat exchange. Here, the primary emphasis is on downwell hardware. The only surface equipment included is the surface portion of the instrumentation and control systems. Downwell instrumentation is reported. Downwell conduits and techniques for installing, connecting and sealing them are covered. The downwell turbine-pump unit (TPU) is a critical component since it is relatively inaccessible and operates in a hostile environment. Its development is reported. The TPU for the gravity-head system requires a different type of turbine because of the large flow-rate through it and the small pressure difference across it. The design study for a Francis turbine to meet these requirements is reported. A feature of these systems is use of a downwell heat exchanger. There were extensive studies of tube-bundle configuration, tube-sheet seals, structural integrity, and flow and heat transfer, as well as the research on welded connections and sliding elastomeric seals. Another innovative component in these systems is the enthalpy recovery unit (ERU). This direct-contact heat exchanger compensates for under-cooling in the condenser and superheat in the main turbine exhaust.

  14. NON-INVASIVE DETERMINATION OF THE LOCATION AND DISTRBUTION OF FREE-PHASE DENSE NONAQUEOUS PHASE LIQUIDS (DNAPL) BY SEISMIC REFLECTION TECHNIQUES

    SciTech Connect (OSTI)

    Michael G. Waddell; William J. Domoracki; Jerome Eyer

    2003-01-01T23:59:59.000Z

    The Earth Sciences and Resources Institute, University of South Carolina is conducting a proof of concept study to determine the location and distribution of subsurface DNAPL carbon tetrachloride (CCl{sub 4}) contamination at the 216-Z-9 crib, 200 West area, DOE Hanford Site, Washington by use of two-dimensional high-resolution seismic reflection surveys and borehole geophysical data. The study makes use of recent advances in seismic reflection amplitude versus offset (AVO) technology to directly detect the presence of subsurface DNAPL. The techniques proposed are noninvasive means of site characterization and direct free-phase DNAPL detection. This final report covers the results of Tasks 1, 2, and 3. Task (1) contains site evaluation and seismic modeling studies. The site evaluation consists of identifying and collecting preexisting geological and geophysical information regarding subsurface structure and the presence and quantity of DNAPL. The seismic modeling studies were undertaken to determine the likelihood that an AVO response exists and its probable manifestation. Task (2) is the design and acquisition of 2-D seismic reflection data to image areas of probable high concentration of DNAPL. Task (3) is the processing and interpretation of the 2-D data. During the commission of these tasks four seismic reflection profiles were collected. Subsurface velocity information was obtained by vertical seismic profile surveys in three wells. The interpretation of these data is in two parts. Part one is the construction and interpretation of structural contour maps of the contact between the Hanford Fine unit and the underlying Plio/Pleistocene unit and of the contact between the Plio/Pleistocene unit and the underlying caliche layer. These two contacts were determined to be the most likely surfaces to contain the highest concentration CCl{sub 4}. Part two of the interpretation uses the results of the AVO modeling to locate any seismic amplitude anomalies that might be associated with the presence of high concentrations of CCl{sub 4}. Based on the modeling results three different methods of AVO analysis were preformed on the seismic data: enhanced amplitude stacks, offset range limited stacks, and gradient stacks. Seismic models indicate that the reflection from the contact between the Hanford Fine and the Plio/Pleistocene should exhibit amplitude variations where there are high concentrations of CCl{sub 4}. A series of different scenarios were modeled. The first scenario is the Hanford Fine pores are 100% saturated with CCl{sub 4} and the underlying Plio/Pleistocene pores are saturated with air. In this scenario the reflection coefficients are slightly negative at the small angles of incidence and become increasing more negative at the larger angles of incidence (dim-out). The second scenario is the Hanford Fine pores are saturated with air and Plio/Pleistocene pores are saturated with CCl{sub 4}. In this scenario the reflection coefficients are slightly positive at the small angles of incidence and become negative at the large angles of incidence (polarity reversal). Finally the third scenario is both the Hanford Fine and the Plio/Pleistocene pores are saturated CCl{sub 4}. In this scenario the reflection coefficients at the small angles of incidence are slightly positive, but much less than background response, and with increasing angle of incidence the reflection coefficients become slightly more positive. On the field data areas where extraction wells have high concentrations of CCl{sub 4} a corresponding dim-out and/or a polarity reversal is noted.

  15. Map-likelihood phasing

    SciTech Connect (OSTI)

    Terwilliger, Thomas C., E-mail: terwilliger@lanl.gov [Bioscience Division, Mail Stop M888, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2001-12-01T23:59:59.000Z

    A map-likelihood function is described that can yield phase probabilities with very low model bias. The recently developed technique of maximum-likelihood density modification [Terwilliger (2000 ?), Acta Cryst. D56, 965–972] allows a calculation of phase probabilities based on the likelihood of the electron-density map to be carried out separately from the calculation of any prior phase probabilities. Here, it is shown that phase-probability distributions calculated from the map-likelihood function alone can be highly accurate and that they show minimal bias towards the phases used to initiate the calculation. Map-likelihood phase probabilities depend upon expected characteristics of the electron-density map, such as a defined solvent region and expected electron-density distributions within the solvent region and the region occupied by a macromolecule. In the simplest case, map-likelihood phase-probability distributions are largely based on the flatness of the solvent region. Though map-likelihood phases can be calculated without prior phase information, they are greatly enhanced by high-quality starting phases. This leads to the technique of prime-and-switch phasing for removing model bias. In prime-and-switch phasing, biased phases such as those from a model are used to prime or initiate map-likelihood phasing, then final phases are obtained from map-likelihood phasing alone. Map-likelihood phasing can be applied in cases with solvent content as low as 30%. Potential applications of map-likelihood phasing include unbiased phase calculation from molecular-replacement models, iterative model building, unbiased electron-density maps for cases where 2F{sub o} ? F{sub c} or ?{sub A}-weighted maps would currently be used, structure validation and ab initio phase determination from solvent masks, non-crystallographic symmetry or other knowledge about expected electron density.

  16. Development and evaluation of a workpiece temperature analyzer (WPTA) for industrial furances (Phase 1)

    SciTech Connect (OSTI)

    Not Available

    1991-10-01T23:59:59.000Z

    This project is directed toward the research, development, and evaluation of a viable commercial product-a workpiece temperature measurement analyzer (WPTA) for fired furnaces based on unique radiation properties of surfaces. This WPTA will provide for more uniform, higher quality products and reduce product rejects as well as permit the optimum use of energy. The WPTA may also be utilized in control system applications including metal heat treating, forging furnaces, and ceramic firing furnaces. A large market also exists in the chemical process and refining industry. WPTA applications include the verification of product temperature/time cycles, and use as a front-end sensor for automatic feedback control systems. This report summarizes the work performed in Phase 1 of this three-phase project. The work Phase 1 included the application evaluation; the evaluation of present technologies and limitations; and the development of a preliminary conceptual WPTA design, including identification of technical and economic benefits. Recommendations based on the findings of this report include near-term enhancement of the capabilities of the Pyrolaser, and long-term development of an instrument based on Raman Spectroscopy. Development of the Pyrofiber, fiberoptics version of the Pyrolaser, will be a key to solving present problems involving specularity, measurement angle, and costs of multipoint measurement. Extending the instrument's measurement range to include temperatures below 600{degrees}C will make the product useful for a wider range of applications. The development of Raman Spectroscopy would result in an instrument that could easily be adapted to incorporate a wealth of additional nondestructive analytical capabilities, including stress/stain indication, crystallography, species concentrations, corrosion studies, and catalysis studies, in addition to temperature measurement. 9 refs., 20 figs., 16 tabs.

  17. Development of a fast and feasible spectrum modeling technique for flattening filter free beams

    SciTech Connect (OSTI)

    Cho, Woong [Department of Radiation Oncology, Seoul National University Hospital, Seoul110-744, South Korea and Research Institute of the Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul 137-701 (Korea, Republic of); Bush, Karl; Mok, Ed; Xing, Lei [Department of Radiation Oncology, Stanford University, Stanford, California 94305-5304 (United States); Suh, Tae-Suk [Department of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul 137-701 (Korea, Republic of)

    2013-04-15T23:59:59.000Z

    Purpose: To develop a fast and robust technique for the determination of optimized photon spectra for flattening filter free (FFF) beams to be applied in convolution/superposition dose calculations. Methods: A two-step optimization method was developed to derive optimal photon spectra for FFF beams. In the first step, a simple functional form of the photon spectra proposed by Ali ['Functional forms for photon spectra of clinical linacs,' Phys. Med. Biol. 57, 31-50 (2011)] is used to determine generalized shapes of the photon spectra. In this method, the photon spectra were defined for the ranges of field sizes to consider the variations of the contributions of scattered photons with field size. Percent depth doses (PDDs) for each field size were measured and calculated to define a cost function, and a collapsed cone convolution (CCC) algorithm was used to calculate the PDDs. In the second step, the generalized functional form of the photon spectra was fine-tuned in a process whereby the weights of photon fluence became the optimizing free parameters. A line search method was used for the optimization and first order derivatives with respect to the optimizing parameters were derived from the CCC algorithm to enhance the speed of the optimization. The derived photon spectra were evaluated, and the dose distributions using the optimized spectra were validated. Results: The optimal spectra demonstrate small variations with field size for the 6 MV FFF beam and relatively large variations for the 10 MV FFF beam. The mean energies of the optimized 6 MV FFF spectra were decreased from 1.31 MeV for a 3 Multiplication-Sign 3 cm{sup 2} field to 1.21 MeV for a 40 Multiplication-Sign 40 cm{sup 2} field, and from 2.33 MeV at 3 Multiplication-Sign 3 cm{sup 2} to 2.18 MeV at 40 Multiplication-Sign 40 cm{sup 2} for the 10 MV FFF beam. The developed method could significantly improve the agreement between the calculated and measured PDDs. Root mean square differences on the optimized PDDs were observed to be 0.41% (3 Multiplication-Sign 3 cm{sup 2}) down to 0.21% (40 Multiplication-Sign 40 cm{sup 2}) for the 6 MV FFF beam, and 0.35% (3 Multiplication-Sign 3 cm{sup 2}) down to 0.29% (40 Multiplication-Sign 40 cm{sup 2}) for the 10 MV FFF beam. The first order derivatives from the functional form were found to improve the speed of computational time up to 20 times compared to the other techniques. Conclusions: The derived photon spectra resulted in good agreements with measured PDDs over the range of field sizes investigated. The suggested method is easily applicable to commercial radiation treatment planning systems since it only requires measured PDDs as input.

  18. Advanced emissions control development project. Phase I, Final report, November 1, 1993--February 19, 1996

    SciTech Connect (OSTI)

    NONE

    1996-02-29T23:59:59.000Z

    The primary objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of air toxics from coal-fired boilers. Ideally, the project aim is to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESP`s), fabric filters (baghouse), and wet flue gas desulfurization. B&W`s Clean Environment Development Facility (CEDF) and the AECDP equipment combined to form a state-of-the-art facility for integrated evaluation of combustion and post-combustion emissions control options. Phase 1 activities were primarily aimed at providing a reliable, representative test facility for conducting air toxic emissions control development work later in the project. This report summarizes the AECDP Phase I activities which consisted of the design, installation, shakedown, verification, and air toxics benchmarking of the AECDP facility. All verification and air toxic tests were conducted with a high sulfur, bituminous Ohio coal.

  19. DESIGN AND DEVELOPMENT OF GAS-LIQUID CYLINDRICAL CYCLONE COMPACT SEPARATORS FOR THREE-PHASE FLOW

    SciTech Connect (OSTI)

    Dr. Ram S. Mohan; Dr. Ovadia Shoham

    2001-04-30T23:59:59.000Z

    This report presents a brief overview of the activities and tasks accomplished during the first half year (October 1, 2000-March 31, 2001) of the fourth project year budget period (October 1, 2000-September 30, 2001). An executive summary is presented initially followed by the tasks of the current budget period. Then, detailed description of the experimental and modeling investigations are presented. Subsequently, the technical and scientific results of the activities of this project period are presented with some discussions. The findings of this investigation are summarized in the ''Conclusions'' section followed by relevant references. The fourth project year activities are divided into three main parts, which are carried out in parallel. The first part is continuation of the experimental program that includes a study of the oil/water two-phase behavior at high pressures and control system development for the three-phase GLCC{copyright}. This investigation will be eventually extended for three-phase flow. The second part consists of the development of a simplified mechanistic model incorporating the experimental results and behavior of dispersion of oil in water and water in oil. This will provide an insight into the hydrodynamic flow behavior and serve as the design tool for the industry. Although useful for sizing GLCC{copyright} for proven applications, the mechanistic model will not provide detailed hydrodynamic flow behavior information needed to screen new geometric variations or to study the effect of fluid property variations. Therefore, in the third part, the more rigorous approach of computational fluid dynamics (CFD) will be utilized. Multidimensional multiphase flow simulation at high pressures and for real crude conditions will provide much greater depth into the understanding of the physical phenomena and the mathematical analysis of three-phase GLCC{copyright} design and performance.

  20. Development of Extraction Techniques for the Detection of Signature Lipids from Oil

    SciTech Connect (OSTI)

    Borglin, Sharon; Geller, Jil; Chakraborty, Romy; Hazen, Terry; Mason, Olivia

    2010-05-17T23:59:59.000Z

    Pure cultures, including Desulfovibrio vulgaris and Methanococcus maripaludus, were combined with model oil samples and oil/diesel mixtures to optimize extraction techniques of signature lipids from oil in support of investigation of microbial communities in oil deposit samples targets for microbial enhanced hydrocarbon recovery. Several techniques were evaluated, including standard phospholipid extraction, ether linked lipid for Archaeal bacterial detection, and high pressure extractiontechniques. Recovery of lipids ranged from 50-80percent as compared to extraction of the pure culture. Extraction efficiency was evaluated by the use of internal standards. Field samples will also be tested for recovery of signature lipids with optimized extraction techniques.

  1. Development of tools and techniques for momentum compression of fast rare isotopes

    SciTech Connect (OSTI)

    David J. Morrissey; Bradley M. Sherrill; Oleg Tarasov

    2010-11-21T23:59:59.000Z

    As part of our past research and development work, we have created and developed the LISE++ simulation code [Tar04, Tar08]. The LISE++ package was significantly extended with the addition of a Monte Carlo option that includes an option for calculating ion trajectories using a Taylor-series expansion up to fifth order, and implementation of the MOTER Monte Carlo code [Kow87] for ray tracing of the ions into the suite of LISE++ codes. The MOTER code was rewritten from FORTRAN into C++ and transported to the MS-Windows operating system. Extensive work went into the creation of a user-friendly interface for the code. An example of the graphical user interface created for the MOTER code is shown in the left panel of Figure 1 and the results of a typical calculation for the trajectories of particles that pass through the A1900 fragment separator are shown in the right panel. The MOTER code is presently included as part of the LISE++ package for downloading without restriction by the worldwide community. The LISE++ was extensively developed and generalized to apply to any projectile fragment separator during the early phase of this grant. In addition to the inclusion of the MOTER code, other important additions to the LISE++ code made during FY08/FY09 are listed. The LISE++ is distributed over the web (http://groups.nscl.msu.edu/lise ) and is available without charge to anyone by anonymous download, thus, the number of individual users is not recorded. The number of 'hits' on the servers that provide the LISE++ code is shown in Figure 3 for the last eight calendar years (left panel) along with the country from the IP address (right panel). The data show an increase in web-activity with the release of the new version of the program during the grant period and a worldwide impact. An important part of the proposed work carried out during FY07, FY08 and FY09 by a graduate student in the MSU Physics program was to benchmark the codes by comparison of detailed measurements to the LISE++ predictions. A large data set was obtained for fission fragments from the reaction of 238U ions at 81 MeV/u in a 92 mg/cm2 beryllium target with the A1900 projectile fragment separator. The data were analyzed and form the bulk of a Ph.D. dissertation that is nearing completion. The rich data set provides a number of benchmarks for the improved LISE++ code and only a few examples can be shown here. The primary information obtained from the measurements is the yield of the products as a function of mass, charge and momentum. Examples of the momentum distributions of individually identified fragments can be seen in Figures 2 and 4 along with comparisons to the predicted distributions. The agreement is remarkably good and indicates the general validity of the model of the nuclear reactions producing these fragments and of the higher order transmission calculations in the LISE++ code. The momentum distributions were integrated to provide the cross sections for the individual isotopes. As shown in Figure 5, there is good agreement with the model predictions although the observed cross sections are a factor of five or so higher in this case. Other comparisons of measured production cross sections from abrasion-fission reactions have been published by our group working at the NSCL during this period [Fol09] and through our collaboration with Japanese researchers working at RIKEN with the BigRIPS separator [Ohn08, Ohn10]. The agreement of the model predictions with the data obtained with two different fragment separators is very good and indicates the usefulness of the new LISE++ code.

  2. Development of techniques for quantum-enhanced laser-interferometric gravitational-wave detectors

    E-Print Network [OSTI]

    Goda, Keisuke

    2007-01-01T23:59:59.000Z

    A detailed theoretical and experimental study of techniques necessary for quantum-enhanced laser- interferometric gravitational wave (GW) detectors was carried out. The basic theory of GWs and laser-interferometric GW ...

  3. Development of a New Technique to Assess Susceptibility to Predation Resulting from Sublethal Stresses (Indirect Mortality)

    SciTech Connect (OSTI)

    Cada, G.F.

    2003-08-25T23:59:59.000Z

    Fish that pass through a hydroelectric turbine may not be killed directly, but may nonetheless experience sublethal stresses that will increase their susceptibility to predators (indirect mortality). There is a need to develop reliable tests for indirect mortality so that the full consequences of passage through turbines (and other routes around a hydroelectric dam) can be assessed. We evaluated a new technique for assessing indirect mortality, based on a behavioral response to a startling stimulus (akin to perceiving an approaching predator). We compare this technique to the standard predator preference test. The behavioral response is a rapid movement commonly referred to as a startle response, escape response, or C-shape, based on the characteristic body position assumed by the fish. When viewed from above, a startled fish bends into a C-shape, then springs back and swims away in a direction different from its original orientation. This predator avoidance (escape) behavior can be compromised by sublethal stresses that temporarily stun or disorient the fish. We subjected striped shiners and fathead minnows to varying intensities of either turbulence (10-, 20- or 30-min) or 2-min exposures to a fish anesthetic (100 or 200 mg/L of tricaine methanesulfonate), and evaluated their subsequent behavior. Individual fish were given a startle stimulus and filmed with a high-speed video camera. Each fish was startled and filmed twice before being stressed, and then at 1-, 5-, 15-, and 30-min post-exposure. The resulting image files were analyzed for a variety of behavioral measures including: presence of a response, time to first reaction, duration of reaction, time to formation of maximum C-shape, time to completion of C-shape, and completeness of C-shape. The most immediate measure of potential changes in fish behavior was whether stressed fish exhibited a startle response. For striped shiners, the number of fish not responding to the stimulus was significantly different from controls at 1-min post-exposure and for fathead minnows at 1- and 5-min post-exposure. The greatest effects occurred with exposure to the fish anesthetic; in fathead minnows all of the recorded measures were significantly different from controls at 1-min and 5-min post-exposure at the 100 mg/L dose. For striped shiners all recorded behavioral measures were significantly different from controls at 1-min at the 200 and 100 mg/L doses and for selected behavioral measures at 5-min. Turbulence also had significant effects on striped shiner startle responses following 20- and 30-min exposures for all behavioral measures at 1-min. The patterns suggest that any effects on startle response due to turbulence or low doses of anesthetic are short-lived, but can be evaluated using the escape behavior technique. The most useful indication of changes in escape behavior in these tests was the simple reaction/no reaction to the startle stimulus. The startle response occurred reliably among unstressed fish, and was frequently reduced or eliminated in fish exposed to turbulence or anesthesia. The other behavioral parameters observed were often altered by the sublethal stresses as well. A standard predator preference test was also conducted with largemouth bass as the predators and fathead minnows as prey. In this test design, groups of 10 unstressed fish (controls) and 10 stressed fish were put in a tank with a predator. The stressed fathead minnows were exposed to turbulence or fish anesthetic. The predator was allowed to eat half of the prey, and the data were evaluated to determine whether predators consumed greater proportions of stressed minnows than control minnows. The predation test indicated that exposure to MS-222 resulted in significant predation in fathead minnows, but exposure to turbulence did not. This pattern was the same as seen in fathead minnows using the startle response (escape behavior) test. For the sublethal stresses we applied, evaluation of changes in fish escape behavior yielded results comparable to traditional predator preference tests. Because t

  4. DEVELOPMENT AND CALIBRATION OF A TWO-DYE FLUORESCENCE SYSTEM FOR USE IN TWO-PHASE MICRO FLOW THERMOMETRY

    E-Print Network [OSTI]

    Hidrovo, Carlos H.

    The increasing need for more effective cooling in electronic devices has led to research into the useDEVELOPMENT AND CALIBRATION OF A TWO-DYE FLUORESCENCE SYSTEM FOR USE IN TWO-PHASE MICRO FLOW and modeling of two- phase cooling strategies in micro-scale geometries. In order to verify these models

  5. Observed Synoptic-Scale Variability during the Developing Phase of an ISO over the Indian Ocean during MISMO

    E-Print Network [OSTI]

    Johnson, Richard H.

    Observed Synoptic-Scale Variability during the Developing Phase of an ISO over the Indian Ocean A case study of an intraseasonal oscillation (ISO) is investigated in the period leading up to its for a convectively active phase of the ISO. The prominent shallow heating during this period may explain the rather

  6. Ultra-fast Imaging of Two-Phase Flow in Structured Monolith Reactors; Techniques and Data Analysis

    E-Print Network [OSTI]

    Heras, Jonathan Jaime

    This thesis will address the use of nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) techniques to probe the “monolith reactor”, which consists of a structured catalyst over which reactions may occur. This reactor has emerged...

  7. Development and validation of a two-phase, three-dimensional model for PEM fuel cells.

    SciTech Connect (OSTI)

    Chen, Ken Shuang

    2010-04-01T23:59:59.000Z

    The objectives of this presentation are: (1) To develop and validate a two-phase, three-dimensional transport modelfor simulating PEM fuel cell performance under a wide range of operating conditions; (2) To apply the validated PEM fuel cell model to improve fundamental understanding of key phenomena involved and to identify rate-limiting steps and develop recommendations for improvements so as to accelerate the commercialization of fuel cell technology; (3) The validated PEMFC model can be employed to improve and optimize PEM fuel cell operation. Consequently, the project helps: (i) address the technical barriers on performance, cost, and durability; and (ii) achieve DOE's near-term technical targets on performance, cost, and durability in automotive and stationary applications.

  8. Development and Analysis of a Block-Preconditioner for the Phase-Field Crystal Equation

    E-Print Network [OSTI]

    Praetorius, Simon

    2015-01-01T23:59:59.000Z

    We develop a preconditioner for the linear system arising from a finite element discretization of the Phase Field Crystal (PFC) equation. The PFC model serves as an atomic description of crystalline materials on diffusive time scales and thus offers the opportunity to study long time behaviour of materials with atomic details. This requires adaptive time stepping and efficient time discretization schemes, for which we use an embedded Rosenbrock scheme. To resolve spatial scales of practical relevance, parallel algorithms are also required, which scale to large numbers of processors. The developed preconditioner provides such a tool. It is based on an approximate factorization of the system matrix and can be implemented efficiently. The preconditioner is analyzed in detail and shown to speed up the computation drastically.

  9. On-line chemical composition analyzer development. Phase 2, Final report

    SciTech Connect (OSTI)

    Roberts, M.J.; Garrison, A.A.; Muly, E.C.; Moore, C.F.

    1992-02-01T23:59:59.000Z

    The energy consumed in distillation processes in the United States represents nearly three percent of the total national energy consumption. If effective control of distillation columns can be accomplished, it has been estimated that it would result in a reduction in the national energy consumption of 0.3%. Real-time control based on mixture composition could achieve these savings. However, the major distillation processes represent diverse applications and at present there does not exist a proven on-line chemical composition sensor technology which can be used to control these diverse processes in real-time. This report presents a summary of the findings of the second phase of a three phase effort undertaken to develop an on-line real-time measurement and control system utilizing Raman spectroscopy. A prototype instrument system has been constructed utilizing a Perkin Elmer 1700 Spectrometer, a diode pumped YAG laser, two three axis positioning systems, a process sample cell land a personal computer. This system has been successfully tested using industrially supplied process samples to establish its performance. Also, continued application development was undertaken during this Phase of the program using both the spontaneous Raman and Surface-enhanced Raman modes of operation. The study was performed for the US Department of Energy, Office of Industrial Technologies, whose mission is to conduct cost-shared R&D for new high-risk, high-payoff industrial energy conservation technologies. Although this document contains references to individual manufacturers and their products, the opinions expressed on the products reported do not necessarily reflect the position of the Department of Energy.

  10. Development of the Solid State X-band Radar and the Phased Array Radar System in Japan

    E-Print Network [OSTI]

    Droegemeier, Kelvin K.

    Development of the Solid State X-band Radar and the Phased Array Radar System in Japan By DR. TOMOO array radar system have been developed. Toshiba has developed the latest model of weather radar of precipitation and to achieve drastic reduction of its size and life cycle cost. It is now well known

  11. Development and Control of Autonomous, Biped Locomotion using Efficient Modeling, Simulation, and Optimization Techniques

    E-Print Network [OSTI]

    Stryk, Oskar von

    of joint reference trajectories for implementing first steps, the development of nonlinear dynamics model-basedDevelopment and Control of Autonomous, Biped Locomotion using Efficient Modeling, Simulation from simulations and gait optimizations completed during its development using a 3D dynamic biped model

  12. Production of ethanol from refinery waste gases. Phase 2, technology development, annual report

    SciTech Connect (OSTI)

    Arora, D.; Basu, R.; Phillips, J.R.; Wikstrom, C.V.; Clausen, E.C.; Gaddy, J.L.

    1995-07-01T23:59:59.000Z

    Oil refineries discharge large volumes of H{sub 2}, CO, and CO{sub 2} from cracking, coking, and hydrotreating operations. This program seeks to develop a biological process for converting these waste gases into ethanol, which can be blended with gasoline to reduce emissions. Production of ethanol from all 194 US refineries would save 450 billion BTU annually, would reduce crude oil imports by 110 million barrels/year and emissions by 19 million tons/year. Phase II efforts has yielded at least 3 cultures (Clostridium ljungdahlii, Isolate O-52, Isolate C-01) which are able to produce commercially viable concentrations of ethanol from CO, CO{sub 2}, and H{sub 2} in petroleum waste gas. Single continuous stirred tank reactor studies have shown that 15-20 g/L of ethanol can be produced, with less than 5 g/L acetic acid byproduct. Culture and reactor optimization in Phase III should yield even higher ethanol concentrations and minimal acetic acid. Product recovery studies showed that ethanol is best recovered in a multi-step process involving solvent extraction/distillation to azeotrope/azeotropic distillation or pervaporation, or direct distillation to the azeotrope/azeotropic distillation or pervaporation. Projections show that the ethanol facility for a typical refinery would require an investment of about $30 million, which would be returned in less than 2 years.

  13. Development of ASME performance test code 12.5, single phase heat exchangers

    SciTech Connect (OSTI)

    Lestina, T. [MPR Associates, Alexandria, VA (United States); Scott, B. [Baltimore Gas and Electric Co., Lusby, MD (United States). Calvert Cliffs Nuclear Power Plant

    1998-12-31T23:59:59.000Z

    Testing of heat exchanger performance is conducted to (1) confirm that the installed unit meets design specifications, (2) troubleshoot degradation, and (3) assess process improvements. Standard test methods are needed to ensure that highly accurate and reliable test results are obtained. These methods need to predict heat exchanger performance at design conditions based on test measurements at different conditions. ASME Performance Test Code 12.5, Single Phase Heat Exchangers, is under development to meet these needs. This paper summarizes the content of PTC 12.5 which is ready for industry review. The new PTC improves upon existing guidelines because methods to minimize and quantify uncertainty are provided. Overall uncertainty as low as 8% in heat transfer rate and overall heat transfer coefficient is possible for a well designed and properly instrumented thermal performance test.

  14. Water Use Optimization Toolset Project: Development and Demonstration Phase Draft Report

    SciTech Connect (OSTI)

    Gasper, John R. [Argonne National Laboratory] [Argonne National Laboratory; Veselka, Thomas D. [Argonne National Laboratory] [Argonne National Laboratory; Mahalik, Matthew R. [Argonne National Laboratory] [Argonne National Laboratory; Hayse, John W. [Argonne National Laboratory] [Argonne National Laboratory; Saha, Samrat [Argonne National Laboratory] [Argonne National Laboratory; Wigmosta, Mark S. [PNNL] [PNNL; Voisin, Nathalie [PNNL] [PNNL; Rakowski, Cynthia [PNNL] [PNNL; Coleman, Andre [PNNL] [PNNL; Lowry, Thomas S. [SNL] [SNL

    2014-05-19T23:59:59.000Z

    This report summarizes the results of the development and demonstration phase of the Water Use Optimization Toolset (WUOT) project. It identifies the objective and goals that guided the project, as well as demonstrating potential benefits that could be obtained by applying the WUOT in different geo-hydrologic systems across the United States. A major challenge facing conventional hydropower plants is to operate more efficiently while dealing with an increasingly uncertain water-constrained environment and complex electricity markets. The goal of this 3-year WUOT project, which is funded by the U.S. Department of Energy (DOE), is to improve water management, resulting in more energy, revenues, and grid services from available water, and to enhance environmental benefits from improved hydropower operations and planning while maintaining institutional water delivery requirements. The long-term goal is for the WUOT to be used by environmental analysts and deployed by hydropower schedulers and operators to assist in market, dispatch, and operational decisions.

  15. Development of viscometers for kraft black liquor. Summary report, Phase 2 and 2A

    SciTech Connect (OSTI)

    Fricke, A.L.; Crisalle, O.D.

    1996-11-01T23:59:59.000Z

    This report documents the results of the evaluation of the on-line prototype viscometers for kraft black liquors carried out at the Pilot Plant facilities of the University of Florida. The original plan called for the evaluation of five prototype on-line viscometers along with laboratory bench versions. At a later stage in the project an additional experimental prototype under development at Southwest Research Institute was added. The viscometers are evaluated for accuracy and repeatability under varying process conditions, such as black liquor species, solids content, temperature, flow rate, and contaminants, as well as for maintenance and reliability. This document reports extensive results of the evaluations and recommendations for design modifications and for the installation of the instruments in industrial pulping mills for further field evaluations in Phase 3 of the project. The report also documents relevant details of the final design of the pilot flow loop used to support the experiments.

  16. DEVELOPMENT OF AN IN-PILE TECHNIQUE FOR THERMAL CONDUCTIVITY MEASUREMENT

    SciTech Connect (OSTI)

    Brandon Fox; Heng Ban; Joy L. Rempe; Joshua E. Daw; Keith G. Condie; Darrell L. Knudson

    2009-04-01T23:59:59.000Z

    Thermophysical properties of advanced fuels and materials during irradiation must be known prior to their use in existing, advanced, or next generation reactors. Fuel thermal conductivity is one of the most important properties for predicting fuel performance and reactor safety. This paper discusses a joint Utah State University (USU)/Idaho National Laboratory (INL) project to investigate an in-pile fuel thermal conductivity measurement technique using a surrogate fuel rod. The method used a surrogate fuel rod with Joule heating to simulate volumetric heat generation as a proof-of-concept test in-pile application. Carbon structural foam, CFOAM®, a product of Touchtone Research Laboratory was chosen as the surrogate material because of the variable electrical and thermal properties upon fabrication. To stay within the surrogate fuel rod requirements, electrical and thermal properties were tailored by Touchtone Research Laboratory to match required values. This paper describes are the techniques used for quantifying thermal conductivity. A description of the test setup and preliminary results are presented. Two thermocouples are inserted into a 1-inch diameter, 6-inch long rod of CFOAM® at known locations. Knowing the applied volumetric heat to the rod by electrical resistance heating, the thermal conductivity can be calculated. Sensitivities of this measurement can also found by analysis and testing of different configurations of the sample setup. Verification of thermal conductivity is found by measuring the thermal properties of the CFOAM® using different methods. Thermal properties including thermal conductivity, specific heat capacity, and expansion coefficient of two types of CFOAM®, CFOAM20 and CFOAM25, were characterized using standard measurement techniques, such as laser flash, differential scanning calorimetry, and pushrod dilatometry.

  17. Development and proof-testing of advanced absorption refrigeration cycle concepts. Report on Phases 1 and 1A

    SciTech Connect (OSTI)

    Modahl, R.J.; Hayes, F.C. [Trane Co., La Crosse, WI (United States). Applied Unitary/Refrigeration Systems Div.

    1992-03-01T23:59:59.000Z

    The overall objectives of this project are to evaluate, develop, and proof-test advanced absorption refrigeration cycles that are applicable to residential and commercial heat pumps for space conditioning. The heat pump system is to be direct-fired with natural gas and is to use absorption working fluids whose properties are known. Target coefficients of performance (COPs) are 1.6 at 47{degrees}F and 1.2 at 17{degrees} in the heating mode, and 0.7 at 95{degree}F in the cooling mode, including the effect of flue losses. The project is divided into three phases. Phase I entailed the analytical evaluation of advanced cycles and included the selection of preferred concepts for further development. Phase II involves the development and testing of critical components and of a complete laboratory breadboard version of the selected system. Phase III calls for the development of a prototype unit and is contingent on the successful completion of Phase II. This report covers Phase I work on the project. In Phase 1, 24 advanced absorption cycle/fluid combinations were evaluated, and computer models were developed to predict system performance. COP, theoretical pump power, and internal heat exchange were calculated for each system, and these calculations were used as indicators of operating and installed costs in order to rank the relative promise of each system. The highest ranking systems involve the cycle concept of absorber/generator heat exchange, generator heat exchanger/absorber heat exchange, regeneration, and resorption/desorption, in combination with the NH{sub 3}/H{sub 2}O/LiBr ternary absorption fluid mixture or with the NH{sub 3}/H{sub 2}O binary solution. Based upon these conclusions, the recommendation was made to proceed to Phase II, the laboratory breadboard proof-of- concept.

  18. Research & Development of Materials/Processing Methods for Continuous Fiber Ceramic Composites (CFCC) Phase 2 Final Report.

    SciTech Connect (OSTI)

    Szweda, A.

    2001-01-01T23:59:59.000Z

    The Department of Energy's Continuous Fiber Ceramic Composites (CFCC) Initiative that begun in 1992 has led the way for Industry, Academia, and Government to carry out a 10 year R&D plan to develop CFCCs for these industrial applications. In Phase II of this program, Dow Corning has led a team of OEM's, composite fabricators, and Government Laboratories to develop polymer derived CFCC materials and processes for selected industrial applications. During this phase, Dow Corning carried extensive process development and representative component demonstration activities on gas turbine components, chemical pump components and heat treatment furnace components.

  19. Research, Development and Demonstration of Micro-CHP Systems for Residential Applications - Phase I

    SciTech Connect (OSTI)

    Robert A. Zogg

    2011-03-14T23:59:59.000Z

    The objective of the Micro-CHP Phase I effort was to develop a conceptual design for a Micro-CHP system including: Defining market potential; Assessing proposed technology; Developing a proof-of-principle design; and Developing a commercialization strategy. TIAX LLC assembled a team to develop a Micro-CHP system that will provide electricity and heating. TIAX, the contractor and major cost-share provider, provided proven expertise in project management, prime-mover design and development, appliance development and commercialization, analysis of residential energy loads, technology assessment, and market analysis. Kohler Company, the manufacturing partner, is a highly regarded manufacturer of standby power systems and other residential products. Kohler provides a compellingly strong brand, along with the capabilities in product development, design, manufacture, distribution, sales, support, service, and marketing that only a manufacturer of Kohler's status can provide. GAMA, an association of appliance and equipment manufacturers, provided a critical understanding of appliance commercialization issues, including regulatory requirements, large-scale market acceptance issues, and commercialization strategies. The Propane Education & Research Council, a cost-share partner, provided cost share and aided in ensuring the fuel flexibility of the conceptual design. Micro-CHP systems being commercialized in Europe and Japan are generally designed to follow the household thermal load, and generate electricity opportunistically. In many cases, any excess electricity can be sold back to the grid (net metering). These products, however, are unlikely to meet the demands of the U.S. market. First, these products generally cannot provide emergency power when grid power is lost--a critical feature to market success in the U.S. Even those that can may have insufficient electric generation capacities to meet emergency needs for many U.S. homes. Second, the extent to which net metering will be available in the U.S. is unclear. Third, these products are typically not designed for use in households having forced hot-air heating, which is the dominant heating system in the U.S. The U.S. market will also require a major manufacturer that has the reputation and brand recognition, low-cost manufacturing capability, distribution, sales, and service infrastructure, and marketing power to achieve significant market size with a previously unknown and unproven product. History has proven time and time again that small-to-medium-size manufacturers do not have the resources and capabilities to achieve significant markets with such products. During the Phase I effort, the Team developed a conceptual design for a Micro-CHP system that addresses key DOE and U.S. market needs: (1) Provides emergency power adequate for critical household loads, with none of the key drawbacks associated with typical, low-cost emergency generators, such as liquid fuel storage, inability to power ''hard-wired'' loads, need to run temporary extension cords for plug loads, manual set up required, susceptibility to overload, and risk of failure due to lack of maintenance and infrequent operation; (2) Requires no special skills to install--plumbers, electricians and HVAC technicians will typically have all necessary skills; (3) Can be used with the major residential fuels in the U.S., including natural gas and propane, and can be easily adapted to fuel oil as well as emerging fuels as they become available; and (4) Significantly reduces household energy consumption and energy costs.

  20. Incorporating modern development and evaluation techniques into the creation of large-scale, spacecraft control software

    E-Print Network [OSTI]

    Weiss, Kathryn Anne, 1979-

    2006-01-01T23:59:59.000Z

    One of the major challenges facing the development of today's safety- and mission-critical space systems involves the construction of software to support the goals and objectives of these missions, especially those associated ...

  1. Metal hydride/chemical heat-pump development project. Phase I. Final report

    SciTech Connect (OSTI)

    Argabright, T.A.

    1982-02-01T23:59:59.000Z

    The metal hydride/chemical heat pump (MHHP) is a chemical heat pump containing two hydrides for the storage and/or recovery of thermal energy. It utilizes the heat of reaction of hydrogen with specific metal alloys. The MHHP design can be tailored to provide heating and/or cooling or temperature upgrading over a wide range of input and ambient temperatures. The system can thus be used with a variety of heat sources including waste heat, solar energy or a fossil fuel. The conceptual design of the MHHP was developed. A national market survey including a study of applications and market sectors was conducted. The technical tasks including conceptual development, thermal and mechanical design, laboratory verification of design and material performance, cost analysis and the detailed design of the Engineering Development Test Unit (EDTU) were performed. As a result of the market study, the temperature upgrade cycle of the MHHP was chosen for development. Operating temperature ranges for the upgrader were selected to be from 70 to 110/sup 0/C (160 to 230/sup 0/F) for the source heat and 140 to 190/sup 0/C (280 to 375/sup 0/F) for the product heat. These ranges are applicable to many processes in industries such as food, textile, paper and pulp, and chemical. The hydride pair well suited for these temperatures is LaNi/sub 5//LaNi/sub 4/ /sub 5/Al/sub 0/ /sub 5/. The EDTU was designed for the upgrade cycle. It is a compact finned tube arrangement enclosed in a pressure vessel. This design incorporates high heat transfer and low thermal mass in a system which maximizes the coefficient of performance (COP). It will be constructed in Phase II. Continuation of this effort is recommended.

  2. The development of mathematical model for cool down technique in the LNG pipe-line system

    SciTech Connect (OSTI)

    Hamaogi, Kenji; Takatani, Kouji; Kosugi, Sanai; Fukunaga, Takeshi

    1999-07-01T23:59:59.000Z

    An increase in demand for LNG as energy source can be expected since LNG is clean, in stable supply and produces low levels of carbon dioxide. Expansion of various LNG plants is planned. However, the optimal design of the LNG pipe-line systems has not yet been determined since the LNG transport phenomenon is not yet fully understood clearly. For example, in the LNG pipe-line system, large temperature gradients occur when the LNG transport starts. Therefore, although the necessity to cool down the pipe in order to minimize serious deformation is clear, the studies to understand it quantitatively have not been carried out. In this study, experiments on a commercial plant scale and a computer simulation, made up of structural analysis and two phase flow simulation were carried out to establish a prediction model of pipe deformation and to understand the phenomenon in the pipe.

  3. Phase I of the Near-Term Hybrid Passenger-Vehicle Development Program. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-10-01T23:59:59.000Z

    Heat engine/electric hybrid vehicles offer the potential of greatly reduced petroleum consumption, compared to conventional vehicles, without the disadvantages of limited performance and operating range associated with purely electric vehicles. This report documents a hybrid-vehicle design approach which is aimed at the development of the technology required to achieve this potential - in such a way that it is transferable to the auto industry in the near term. The development of this design approach constituted Phase I of the Near-Term Hybrid-Vehicle Program. The major tasks in this program were: (1) Mission Analysis and Performance Specification Studies; (2) Design Tradeoff Studies; and (3) Preliminary Design. Detailed reports covering each of these tasks are included as appendices to this report and issued under separate cover; a fourth task, Sensitivity Studies, is also included in the report on the Design Tradeoff Studies. Because of the detail with which these appendices cover methodology and both interim and final results, the body of this report was prepared as a brief executive summary of the program activities and results, with appropriate references to the detailed material in the appendices.

  4. Process Modeling Phase I Summary Report for the Advanced Gas Reactor Fuel Development and Qualification Program

    SciTech Connect (OSTI)

    Pannala, Sreekanth [ORNL; Daw, C Stuart [ORNL; Boyalakuntla, Dhanunjay S [ORNL; FINNEY, Charles E A [ORNL

    2006-09-01T23:59:59.000Z

    This report summarizes the results of preliminary work at Oak Ridge National Laboratory (ORNL) to demonstrate application of computational fluid dynamics modeling to the scale-up of a Fluidized Bed Chemical Vapor Deposition (FBCVD) process for nuclear fuels coating. Specifically, this work, referred to as Modeling Scale-Up Phase I, was conducted between January 1, 2006 and March 31, 2006 in support of the Advanced Gas Reactor (AGR) Program. The objective was to develop, demonstrate and "freeze" a version of ORNL's computational model of the TRI ISOtropic (TRISO) fuel-particle coating process that can be specifically used to assist coater scale-up activities as part of the production of AGR-2 fuel. The results in this report are intended to serve as input for making decisions about initiating additional FBCVD modeling work (referred to as Modeling Scale-Up Phase II) in support of AGR-2. The main computational tool used to implement the model is the general-purpose multiphase fluid-dynamics computer code known as MFIX (Multiphase Flow with Interphase eXchanges), which is documented in detail on the DOE-sponsored website http://www.mfix.org. Additional computational tools are also being developed by ORNL for post-processing MFIX output to efficiently summarize the important information generated by the coater simulations. The summarized information includes quantitative spatial and temporal measures (referred to as discriminating characteristics, or DCs) by which different coater designs and operating conditions can be compared and correlated with trends in product quality. The ORNL FBCVD modeling work is being conducted in conjunction with experimental coater studies at ORNL with natural uranium CO (NUCO) and surrogate fuel kernels. Data are also being obtained from ambient-temperature, spouted-bed characterization experiments at the University of Tennessee and theoretical studies of carbon and silicon carbide chemical vapor deposition kinetics at Iowa State University. Prior to the current scale-up activity, considerable effort has gone in to adapting the MFIX code to incorporate the unique features of fuel coating reactors and also in validating the resulting simulation features with experimental observations. Much of this work is documented in previous AGR reports and publications (Pannala et al., 2004, Pannala et al., 2005, Boyalakuntla et al., 2005a, Boyalakuntla et al., 2005b and Finney et al., 2005). As a result of the previous work described above, the ORNL coater model now has the capability for simulating full spatio-temporal details of the gas-particle hydrodynamics and gas-particle heat and mass transfer in the TRISO coater. This capability provides a great deal of information about many of the processes believed to control quality, but the model is not yet sufficiently developed to fully predict coating quality for any given coater design and/or set of operating conditions because the detailed chemical reaction kinetics needed to make the model fully predictive are not yet available. Nevertheless, the model at its current stage of development already provides the most comprehensive and detailed quantitative information available about gas flows, solid flows, temperatures, and species inside the coater during operation. This level of information ought to be highly useful in expediting the scale-up process (e.g., in correlating observations and minimizing the number of pilot-scale tests required). However, previous work had not yet demonstrated that the typical design and/or operating changes known to affect product quality at the lab scale could be clearly discriminated by the existing model. The Modeling Scale-Up Phase I work was initiated to produce such a demonstration, and two detailed examples are discussed in this report.

  5. Development of experimental verification techniques for non-linear deformation and fracture.

    SciTech Connect (OSTI)

    Moody, Neville Reid; Bahr, David F. (Washington State University, Pullman, WA)

    2003-12-01T23:59:59.000Z

    This project covers three distinct features of thin film fracture and deformation in which the current experimental technique of nanoindentation demonstrates limitations. The first feature is film fracture, which can be generated either by nanoindentation or bulge testing thin films. Examples of both tests will be shown, in particular oxide films on metallic or semiconductor substrates. Nanoindentations were made into oxide films on aluminum and titanium substrates for two cases; one where the metal was a bulk (effectively single crystal) material and the other where the metal was a 1 pm thick film grown on a silica or silicon substrate. In both cases indentation was used to produce discontinuous loading curves, which indicate film fracture after plastic deformation of the metal. The oxides on bulk metals fractures occurred at reproducible loads, and the tensile stress in the films at fracture were approximately 10 and 15 GPa for the aluminum and titanium oxides respectively. Similarly, bulge tests of piezoelectric oxide films have been carried out and demonstrate film fracture at stresses of only 100's of MPa, suggesting the importance of defects and film thickness in evaluating film strength. The second feature of concern is film adhesion. Several qualitative and quantitative tests exist today that measure the adhesion properties of thin films. A relatively new technique that uses stressed overlayers to measure adhesion has been proposed and extensively studied. Delamination of thin films manifests itself in the form of either telephone cord or straight buckles. The buckles are used to calculate the interfacial fracture toughness of the film-substrate system. Nanoindentation can be utilized if more energy is needed to initiate buckling of the film system. Finally, deformation in metallic systems can lead to non-linear deformation due to 'bursts' of dislocation activity during nanoindentation. An experimental study to examine the structure of dislocations around indentations has been carried out to demonstrate the effectiveness in evaluating cross slip and dislocation behavior around nanoindentation impressions in bulk engineering alloys.

  6. Multilayer co-extrusion technique for developing high energy density organic devices.

    SciTech Connect (OSTI)

    Spangler, Scott W.; Schroeder, John Lee; Mrozek, Randy (Army Research Lab, Adelphi, MD); Bieg, Lothar Franz; Rao, Rekha Ranjana; Lenhart, Joseph Ludlow (Army Research Lab, Adelphi, MD); Stavig, Mark Edwin; Cole, Phillip James (Northrop-Grumman, Herndon, VA); Mondy, Lisa Ann; Winter, Michael R.; Schneider, Duane Allen

    2009-11-01T23:59:59.000Z

    The purpose of this project is to develop multi-layered co-extrusion (MLCE) capabilities at Sandia National Laboratories to produce multifunctional polymeric structures. Multi-layered structures containing layers of alternating electrical, mechanical, optical, or structural properties can be applied to a variety of potential applications including energy storage, optics, sensors, mechanical, and barrier applications relevant to the internal and external community. To obtain the desired properties, fillers must be added to the polymer materials that are much smaller than the end layer thickness. We developed two filled polymer systems, one for conductive layers and one for dielectric layers and demonstrated the potential for using MLCE to manufacture capacitors. We also developed numerical models to help determine the material and processing parameters that impact processing and layer stability.

  7. Development and Testing of Industrial Scale Coal Fired Combustion System, Phase 3

    SciTech Connect (OSTI)

    Bert Zauderer

    1998-09-30T23:59:59.000Z

    Coal Tech Corp's mission is to develop, license & sell innovative, lowest cost, solid fuel fired power systems & total emission control processes using proprietary and patented technology for domestic and international markets. The present project 'DEVELOPMENT & TESTING OF INDUSTRIAL SCALE, COAL FIRED COMBUSTION SYSTEM, PHASE 3' on DOE Contract DE-AC22-91PC91162 was a key element in achieving this objective. The project consisted of five tasks that were divided into three phases. The first phase, 'Optimization of First Generation 20 MMBtu/hr Air-Cooled Slagging Coal Tech Combustor', consisted of three tasks, which are detailed in Appendix 'A' of this report. They were implemented in 1992 and 1993 at the first generation, 20 MMBtu/hour, combustor-boiler test site in Williamsport, PA. It consisted of substantial combustor modifications and coal-fired tests designed to improve the combustor's wall cooling, slag and ash management, automating of its operation, and correcting severe deficiencies in the coal feeding to the combustor. The need for these changes was indicated during the prior 900-hour test effort on this combustor that was conducted as part of the DOE Clean Coal Program. A combination of combustor changes, auxiliary equipment changes, sophisticated multi-dimensional combustion analysis, computer controlled automation, and series of single and double day shift tests totaling about 300 hours, either resolved these operational issues or indicated that further corrective changes were needed in the combustor design. The key result from both analyses and tests was that the combustor must be substantially lengthened to maximize combustion efficiency and sharply increase slag retention in the combustor. A measure of the success of these modifications was realized in the third phase of this project, consisting of task 5 entitled: 'Site Demonstration with the Second Generation 20 MMBtu/hr Air-Cooled Slagging Coal Tech Combustor'. The details of the task 5 effort are contained in Appendix 'C'. It was implemented between 1994 and 1998 after the entire 20 MMBtu/hr combustor-boiler facility was relocated to Philadelphia, PA in 1994. A new test facility was designed and installed. A substantially longer combustor was fabricated. Although not in the project plan or cost plan, an entire steam turbine-electric power generating plant was designed and the appropriate new and used equipment for continuous operation was specified. Insufficient funds and the lack of a customer for any electric power that the test facility could have generated prevented the installation of the power generating equipment needed for continuous operation. All other task 5 project measures were met and exceeded. 107 days of testing in task 5, which exceeded the 63 days (about 500 hours) in the test plan, were implemented. Compared to the first generation 20 MMBtu/hr combustor in Williamsport, the 2nd generation combustor has a much higher combustion efficiency, the retention of slag inside the combustor doubled to about 75% of the coal ash, and the ash carryover into the boiler, a major problem in the Williamsport combustor was essentially eliminated. In addition, the project goals for coal-fired emissions were exceeded in task 5. SO{sub 2} was reduced by 80% to 0.2 lb/MMBtu in a combination of reagent injection in the combustion and post-combustion zones. NO{sub x} was reduced by 93% to 0.07 lb/MMBtu in a combination of staged combustion in the combustor and post-combustion reagent injection. A baghouse was installed that was rated to 0.03 lb/MMBtu stack particle emissions. The initial particle emission test by EPA Method 5 indicated substantially higher emissions far beyond that indicated by the clear emission plume. These emissions were attributed to steel particles released by wall corrosion in the baghouse, correction of which had no effect of emissions.

  8. DESIGN AND DEVELOPMENT OF GAS-LIQUID CYLINDRICAL CYCLONE COMPACT SEPARATORS FOR THREE-PHASE FLOW

    SciTech Connect (OSTI)

    Dr. Ram S. Mohan; Dr. Ovadia Shoham

    2003-06-25T23:59:59.000Z

    The U.S. Department of Energy (DOE) has awarded a five-year (1997-2002) grant (Mohan and Shoham, DE-FG26-97BC15024, 1997) to The University of Tulsa, to develop compact multiphase separation components for 3-phase flow. The research activities of this project have been conducted through cost sharing by the member companies of the Tulsa University Separation Technology Projects (TUSTP) research consortium and the Oklahoma Center for the Advancement of Science and Technology (OCAST). As part of this project, several individual compact separation components have been developed for onshore and offshore applications. These include gas-liquid cylindrical cyclones (GLCC{copyright}), liquid-liquid cylindrical cyclones (LLCC{copyright}), and the gas-liquid-liquid cylindrical cyclones (GLLCC{copyright}). A detailed study has also been completed for the liquid-liquid hydrocyclones (LLHC). Appropriate control strategies have been developed for proper operation of the GLCC{copyright} and LLCC{copyright}. Testing of GLCC{copyright} at high pressure and real crude conditions for field applications is also completed. Limited studies have been conducted on flow conditioning devices to be used upstream of the compact separators for performance improvement. This report presents a brief overview of the activities and tasks accomplished during the 5-year project period, October 1, 1997-March 31, 2003 (including the no-cost extended period of 6 months). An executive summary is presented initially followed by the tasks of the 5-year budget periods. Then, detailed description of the experimental and modeling investigations are presented. Subsequently, the technical and scientific results of the activities of this project period are presented with some discussions. The findings of this investigation are summarized in the ''Conclusions'' section, followed by relevant references. The publications resulting from this study in the form of MS Theses, Ph.D. Dissertation, Journal Papers and Conference Presentations are provided at the end of this report.

  9. INFORMATION SYSTEMS DEVELOPMENT TECHNIQUES AND THEIR APPLICATION TO THE HYDROLOGIC DATABASE DERIVATION

    E-Print Network [OSTI]

    and availability of data are fundamental to the USBR decision-making process. Key elements of these data utilities to allow for setup and maintenance of the processing. This paper will discuss the development, as well as a data warehouse used to mine information to support various research projects. The reliability

  10. PPPL-3270, Reprint: October 1997, UC-420, 421, 423 Development of Lithium Deposition Techniques for TFTR*

    E-Print Network [OSTI]

    and operational options. Two additional lithium deposition tools were developed for p o s s i b l e application during the 1996 Experimental Schedule: a solid lithium target probe for real-time deposition interesting experimental and operational options. This motivated developmental work on two additional lithium

  11. Rotation-Enabled 7-Degree of Freedom Seismometer for Geothermal Resource Development Phase 1 Final Report

    SciTech Connect (OSTI)

    Pierson, Bob; Laughlin, Darren

    2013-10-29T23:59:59.000Z

    Under this Department of Energy (DOE) grant, A-Tech Corporation d.b.a. Applied Technology Associates (ATA), seeks to develop a seven-degree-of-freedom (7-DOF) seismic measurement tool for high-temperature geothermal applications. The Rotational-Enabled 7-DOF Seismometer includes a conventional tri-axial accelerometer, a conventional pressure sensor or hydrophone, and a tri-axial rotational sensor. The rotational sensing capability is novel, based upon ATA?s innovative research in rotational sensing technologies. The geothermal industry requires tools for high-precision seismic monitoring of crack formation associated with Enhanced Geothermal System (EGS) stimulation activity. Currently, microseismic monitoring is conducted by deploying many seismic tools at different depth levels along a ?string? within drilled observation wells. Costs per string can be hundreds of thousands of dollars. Processing data from the spatial arrays of linear seismometers allows back-projection of seismic wave states. In contrast, a Rotational-Enabled 7-DOF Seismometer would simultaneously measure p-wave velocity, s-wave velocity, and incident seismic wave direction all from a single point measurement. In addition, the Rotational-Enabled 7-DOF Seismometer will, by its nature, separate p- and s-waves into different data streams, simplifying signal processing and facilitating analysis of seismic source signatures and geological characterization. By adding measurements of three additional degrees-of-freedom at each level and leveraging the information from this new seismic observable, it is likely that an equally accurate picture of subsurface seismic activity could be garnered with fewer levels per hole. The key cost savings would come from better siting of the well due to increased information content and a decrease in the number of confirmation wells drilled, also due to the increase in information per well. Improved seismic tools may also increase knowledge, understanding, and confidence, thus removing some current blocks to feasibility and significantly increasing access to potential geothermal sites. During the Phase 1 effort summarized in this final report, the ATA Team modeled and built two TRL 3 proof-of-concept test units for two competing rotational sensor technologies. The two competing technologies were based on ATA?s angular rate and angular displacement measurement technologies: ? Angular rate: ATA?s Magnetohydrodynamic Angular Rate Sensor (Seismic MHD) ? Angular displacement: ATA?s Low Frequency Improved Torsional Seismometer (LFITS) In order to down-select between these two technologies and formulate a go / no go decision, the ATA Team analyzed and traded scientific performance requirements and market constraints against sensor characteristics and components, acquiring field data where possible to validate the approach and publishing results from these studies of rotational technology capability. Based on the results of Phase 1, the ATA Team finds that the Seismic MHD (SMHD) technology is the best choice for enabling rotational seismometry and significant technical potential exists for micro-seismic monitoring using a downhole 7-DOF device based on the SMHD. Recent technical papers and field data confirm the potential of rotational sensing for seismic mapping, increasing confidence that cost-reduction benefits are achievable for EGS. However, the market for geothermal rotational sensing is small and undeveloped. As a result, this report recommends modifying the Phase 2 plan to focus on prototype development aimed at partnering with early adopters within the geothermal industry and the scientific research community. The highest public benefit will come from development and deployment of a science-grade SMHD rotational seismometer engineered for geothermal downhole conditions and an integrated test tool for downhole measurements at active geothermal test sites.

  12. NON-INVASIVE DETERMINATION OF THE LOCATION AND DISTRIBUTION OF FREE-PHASE DENSE NONAQUEOUS PHASE LIQUIDS (DNAPL) BY SEISMIC REFLECTION TECHNIQUES

    SciTech Connect (OSTI)

    Michael G. Waddell; William J. Domoracki; Tom J. Temples

    2001-12-01T23:59:59.000Z

    This annual technical progress report is for part of Task 4 (site evaluation), Task 5 (2D seismic design, acquisition, and processing), and Task 6 (2D seismic reflection, interpretation, and AVO analysis) on DOE contact number DE-AR26-98FT40369. The project had planned one additional deployment to another site other than Savannah River Site (SRS) or DOE Hanford Site. After the SUBCON midyear review in Albuquerque, NM, it was decided that two additional deployments would be performed. The first deployment is to test the feasibility of using non-invasive seismic reflection and AVO analysis as a monitoring tool to assist in determining the effectiveness of Dynamic Underground Stripping (DUS) in removal of DNAPL. The second deployment is to the Department of Defense (DOD) Charleston Naval Weapons Station Solid Waste Management Unit 12 (SWMU-12), Charleston, SC to further test the technique to detect high concentrations of DNAPL. The Charleston Naval Weapons Station SWMU-12 site was selected in consultation with National Energy Technology Laboratory (NETL) and DOD Naval Facilities Engineering Command Southern Division (NAVFAC) personnel. Based upon the review of existing data and due to the shallow target depth, the project team collected three Vertical Seismic Profiles (VSP) and an experimental P-wave seismic reflection line. After preliminary data analysis of the VSP data and the experimental reflection line data, it was decided to proceed with Task 5 and Task 6. Three high resolution P-wave reflection profiles were collected with two objectives; (1) design the reflection survey to image a target depth of 20 feet below land surface to assist in determining the geologic controls on the DNAPL plume geometry, and (2) apply AVO analysis to the seismic data to locate the zone of high concentration of DNAPL. Based upon the results of the data processing and interpretation of the seismic data, the project team was able to map the channel that is controlling the DNAPL plume geometry. The AVO analysis located a major amplitude anomaly, which was tested using a Geoprobe{trademark} direct push system. The Geoprobe{trademark} was equipped with a membrane interface probe (MIP) that was interfaced with a sorbent trap/gas chromatograph (GC) system. Both the Photo Ionization Detector (PID) and Electron Capture Detector (ECD) on the GC exceeded the maximum measurement values through the anomaly. A well was installed to collect a water sample. The concentration of chlorinated solvents in the water sample was in excess of 500 ppm. Other amplitude anomalies located directly under an asphalt road were also tested. Both the PID and ECD were zero. It appears that editing of poor quality near-offset traces during data processing caused these anomalies. Not having the full range of source to receiver offset traces in those areas resulted in a false anomaly during AVO analysis. This phenomenon was also observed at the beginning and end of each seismic profile also for the same reason. Based upon the water samples and MIP probes, it appears that surface seismic and AVO analysis were able to detect the area of highest concentration of DNAPL.

  13. Development of whole-building energy design targets for commercial buildings: Phase 1, Planning: Volume 2, Technical report

    SciTech Connect (OSTI)

    Crawley, D.B.; Briggs, R.S.; Jones, J.W.; Seaton, W.W.; Kaufman, J.E.; Deringer, J.J.; Kennett, E.W.

    1987-08-01T23:59:59.000Z

    This is the second volume of the Phase 1 report and discusses the 10 tasks performed in Phase 1. The objective of this research is to develop a methodology for setting energy design targets to provide voluntary guidelines for the buildings industry. The whole-building energy targets project is being conducted at the Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE) to encourage the construction of energy-efficient buildings by informing designers and owners about cost-effective goals for energy use in new commercial buildings. The outcome of this research will be a flexible methodology for setting such targets. The tasks are listed and discussed in this report as follows: Task 1 - Develop Detailed Project Goals and Objectives; Task 2 - Establish Buildings-Industry Liaison; Task 3 - Develop Approaches to the Energy Targets Model, Building Operations, and Climate; Task 4 - Develop an Approach for Treating Economic Considerations; Task 5 - Develop an Approach for Treating Energy Sources; Task 6 - Collect Energy-Use Data; Task 7 - Survey Energy Expert Opinion; Task 8 - Evaluation Procedure Specification and Integration; Task 9 - Phase 1 Report Development; and Task 10 - Phase 1 Review Planning.

  14. Development of Reservoir Characterization Techniques and Production Models for Exploiting Naturally Fractured Reservoirs

    SciTech Connect (OSTI)

    Wiggins, Michael L; Brown, Raymon L.; Civan, Faruk; Hughes, Richard G.

    2002-10-08T23:59:59.000Z

    During this reporting period, research was continued on characterizing and modeling the behavior of naturally fractured reservoir systems. This report proposed a model to relate the seismic response to production data to determine crack spacing and aperture, provided details of tests of proposed models to obtain fracture properties from conventional well logs with actual field data, and verification of the naturally fractured reservoir simulator developed in this project.

  15. Development and application of the scintillation flask technique for the measurement of indoor radon-222 concentrations

    E-Print Network [OSTI]

    Vasquez, Gerard Michael

    1986-01-01T23:59:59.000Z

    half-life. Exposure to alpha emitting radon progeny is the major source of natural radiation doses to the lung (NCRP84b). Almost all of this is received indoors, where radon levels are elevated due to a trapping effect 1n the enclosed areas. Since... measure indoor radon and radon progeny levels, a suitable detection method must be developed. Charles (Ch84) designed and constructed an air grab sampling system using "scintillation flasks". There were, however, some minor problems with the system...

  16. Development of a new feed channel spacer for reverse osmosis elements. Phase 2 final report, October 1, 1994--December 31, 1997

    SciTech Connect (OSTI)

    Milstead, C.E.; Riley, R.L.

    1998-02-11T23:59:59.000Z

    During Phase 1, computer modeling techniques were used as the prime instrument of evaluation of designs for a new feed channel spacer to replace the 30 mil thick standard mesh (Vexar) spacer currently used in ROWPU [Reverse Osmosis Water Processing Unit] spiral-wound elements. A hemispherical peg model, based on a Bed of Nails concept developed in Phase 1, was selected for prototype production of spiral-wound elements for field testing. Evaluation in the See-Thru test cell to observe pressure drops through the spacer, feed mixing patterns and ease of cleaning fouled membrane samples showed considerable benefit over Vexar. This design would be suitable for production by roll embossing (or rotary punching) methods instead of expensive injection molding techniques. A 10{1/2} inch die set was fabricated to prove this concept using a 12 ton press brake. Due to a number of factors, however, the equipment did not work as anticipated and numerous modifications are currently in progress. This work will continue at no cost to the government until completed. A seawater test system has been constructed for field testing of various commercially available feed channel spacers for comparison with the Vexar spacer.

  17. Development of Reservoir Characterization Techniques and Production Models for Exploiting Naturally Fractured Reservoirs

    SciTech Connect (OSTI)

    Wiggins, Michael L.; Brown, Raymon L.; Civan, Faruk; Hughes, Richard G.

    2003-02-11T23:59:59.000Z

    This research was directed toward developing a systematic reservoir characterization methodology which can be used by the petroleum industry to implement infill drilling programs and/or enhanced oil recovery projects in naturally fractured reservoir systems in an environmentally safe and cost effective manner. It was anticipated that the results of this research program will provide geoscientists and engineers with a systematic procedure for properly characterizing a fractured reservoir system and a reservoir/horizontal wellbore simulator model which can be used to select well locations and an effective EOR process to optimize the recovery of the oil and gas reserves from such complex reservoir systems.

  18. Structural Composites Industries 4 kilowatt wind system development. Phase I: design and analysis, technical report

    SciTech Connect (OSTI)

    Malkine, N.; Bottrell, G.; Weingart, O.

    1981-05-01T23:59:59.000Z

    A 4 kW small wind energy conversion system (SWECS) has been designed for residential applications in which relatively low (10 mph) mean annual wind speeds prevail. The objectives were to develop such a machine to produce electrical energy at 6 cents per kWh while operating in parallel with a utility grid or auxiliary generator. The Phase I effort began in November, 1979 and was carried through the Final Design Review in February 1981. During this period extensive trade, optimization and analytical studies were performed in an effort to provide the optimum machine to best meet the objectives. Certain components, systems and manufacturing processes were tested and evaluated and detail design drawings were produced. The resulting design is a 31-foot diameter horizontal axis downwind machine rated 5.7 kW and incorporating the following unique features: Composite Blades; Free-Standing Composite Tower; Torque-Actuated Blade Pitch Control. The design meets or exceeds all contract requirements except that for cost of energy. The target 6 cents per kWh will be achieved in a mean wind speed slightly below 12 mph instead of the specified 10 mph.

  19. SP-100 coated-particle fuel development. Phase I. Final report

    SciTech Connect (OSTI)

    Not Available

    1983-03-01T23:59:59.000Z

    This document is the final report of Phase I of the SP-100 Coated-Particle Fuel Development Program conducted by GA Technologies Inc. for the US Department of Energy under contract DE-AT03-82SF11690. The general objective of the study conducted between September and December 1982 was to evaluate coated-particle type fuel as an alternate or backup fuel to the UO/sub 2/ tile-and-fin arrangement currently incorporated into the reference design of the SP-100 reactor core. This report presents and discusses the following topics in the order listed: the need for an alternative fuel for the SP-100 nuclear reactor; an abbreviated description of the reference and coated-particle fuel module concepts; the bases and results of the study and analysis leading to the preliminary design of a coated particle suitable for the SP-100 space power reactor; incorporation of the fuel particles into compacts and heat-pipe-cooled modules; initial efforts and plans to fabricate coated-particle fuel and fuel compacts; the design and performance of the proposed alternative core relative that of the reference fuel; and a summary of critical issues and conclusions consistent with the level of effort and duration of the study.

  20. Development of a near-bit MWD system. Phase 2 -- Final report

    SciTech Connect (OSTI)

    McDonald, W.J. [Maurer Engineering, Inc., Houston, TX (United States); Pittard, G.T. [Guided Boring Systems, Inc. (United States)

    1996-02-01T23:59:59.000Z

    The program objective was to develop a Near-Bit Measurement-While-Drilling (MWD) system which collects borehole directional data and formation parameters directly at the drill bit-rock interface and transmits this information electromagnetically to a distant receiver located some 50--100 feet above the bit. The system is to be designed to work with positive-displacement motors and stabilized bottomhole assemblies from all manufacturers and to pass its data message to third party steering tools and conventional MWD telemetry systems for subsequent transmission to the surface. The basic design of the Near-Bit MWD system is based upon commercially successful AccuNav{reg_sign} EM MWD guidance system. This system is widely employed in under-river utility crossings and environmental remediation activities. The system has been demonstrated to be accurate and extremely reliable in these applications. The Phase 2 objective was to incorporate a formation-measuring sensor and to assess the system performance and reliability in a series of field experiments. Based on the results of these tests, final design modifications were to be implemented in support of commercialization. The genesis for a Near-Bit MWD system which can be operated with commercial MWD or wireline steering tools and bottomhole directional assemblies responds to the need for enhanced information to support directional drilling operations in general, and horizontal drilling in particular.

  1. Development of an equivalent homogenous fluid model for pseudo-two-phase (air plus water) flow through fractured rock

    SciTech Connect (OSTI)

    Price, J.; Indraratna, B. [University of Wollongong, Wollongong, NSW (Australia). School of Civil Engineering

    2005-07-01T23:59:59.000Z

    Fracture flow of two-phase mixtures is particularly applicable to the coal mining and coal bed methane projects in Australia. A one-dimensional steady-state pseudo-two-phase flow model is proposed for fractured rock. The model considers free flow of a compressible mixture of air and water in an inclined planar fracture and is based upon the conservation of momentum and the 'cubic' law. The flow model is coupled to changes in the stress environment through the fracture normal stiffness, which is related to changes in fracture aperture. The model represents the individual air and water phases as a single equivalent homogenous fluid. Laboratory testing was performed using the two-phase high-pressure triaxial apparatus on 54 mm diameter (approximately 2: 1 height: diameter) borehole cores intersected by induced near-axial fractures. The samples were of Triassic arenaceous fine-medium grained sandstone (known as the Eckersley Formation) that is found locally in the Southern Coalfield of New South Wales. The sample fracture roughness was assessed using a technique based upon Fourier series analysis to objectively attribute a joint roughness coefficient. The proposed two-phase flow model was verified using the recorded laboratory data obtained over a range of triaxial confining pressures (i.e., fracture normal stresses).

  2. Development of a novel technique to assess the vulnerability of micro-mechanical system components to environmentally assisted cracking.

    SciTech Connect (OSTI)

    Enos, David George; Goods, Steven Howard

    2006-11-01T23:59:59.000Z

    Microelectromechanical systems (MEMS) will play an important functional role in future DOE weapon and Homeland Security applications. If these emerging technologies are to be applied successfully, it is imperative that the long-term degradation of the materials of construction be understood. Unlike electrical devices, MEMS devices have a mechanical aspect to their function. Some components (e.g., springs) will be subjected to stresses beyond whatever residual stresses exist from fabrication. These stresses, combined with possible abnormal exposure environments (e.g., humidity, contamination), introduce a vulnerability to environmentally assisted cracking (EAC). EAC is manifested as the nucleation and propagation of a stable crack at mechanical loads/stresses far below what would be expected based solely upon the materials mechanical properties. If not addressed, EAC can lead to sudden, catastrophic failure. Considering the materials of construction and the very small feature size, EAC represents a high-risk environmentally induced degradation mode for MEMS devices. Currently, the lack of applicable characterization techniques is preventing the needed vulnerability assessment. The objective of this work is to address this deficiency by developing techniques to detect and quantify EAC in MEMS materials and structures. Such techniques will allow real-time detection of crack initiation and propagation. The information gained will establish the appropriate combinations of environment (defining packaging requirements), local stress levels, and metallurgical factors (composition, grain size and orientation) that must be achieved to prevent EAC.

  3. Development of a Navigator and Imaging Techniques for the Cryogenic Dark Matter Search Detectors

    SciTech Connect (OSTI)

    Wilen, Chris; /Carleton Coll. /KIPAC, Menlo Park

    2011-06-22T23:59:59.000Z

    This project contributes to the detection of flaws in the germanium detectors for the Cryogenic Dark Matter Search (CDMS) experiment. Specifically, after imaging the detector surface with a precise imaging and measuring device, they developed software to stitch the resulting images together, applying any necessary rotations, offsets, and averaging, to produce a smooth image of the whole detector that can be used to detect flaws on the surface of the detector. These images were also tiled appropriately for the Google Maps API to use as a navigation tool, allowing viewers to smoothly zoom and pan across the detector surface. Automated defect identification can now be implemented, increasing the scalability of the germanium detector fabrication.

  4. Development of a methodology for defining whole-building energy design targets for commercial buildings: Phase 2, Development concept stage report

    SciTech Connect (OSTI)

    Jones, J.W. (American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, GA (USA)); Deringer, J.J. (American Inst. of Architects, Washington, DC (USA)); McKay, H.N. (Illuminating Engineering Society of North America, New York, NY (USA))

    1990-09-01T23:59:59.000Z

    Since 1985, the Pacific Northwest Laboratory (PNL) has managed the Whole-Building Energy Design Targets project for the US Department of Energy (DOE) Office of Building Technologies (formerly the Office of Buildings and Community Systems). The primary focus of the Targets project is to develop a flexible methodology for buildings industry use in setting energy performance guidelines for commercial buildings and for determining compliance with those guidelines. The project is being conducted as a two-phase effort. In Phase 1, Planning, the project team determined the research that was necessary for developing the Targets methodology. In the concept stage of Phase 2, Development, the team sought to define the technical and software development concepts upon which the overall Targets methodology will be based. The concept stage work is documented in four volumes, of which this summary volume is the first. The three other volumes are Volume 2: Technical Concept Development Task Reports, Volume 3: Workshop Summaries, and Volume 4: Software Concept Development Task Reports. 8 refs., 14 figs.

  5. Review and discussion of the development of synthetic aperture focusing technique for ultrasonic testing (SAFT-UT)

    SciTech Connect (OSTI)

    Busse, L J; Collins, H D; Doctor, S R

    1984-03-01T23:59:59.000Z

    The development and capabilities of synthetic aperture focusing techniques for ultrasonic testing (SAFT-UT) are presented. The purpose of SAFT-UT is to produce high-resolution images of the interior of opaque objects. The goal of this work is to develop and implement methods which can be used to detect and to quantify the extent of defects and cracks in critical components of nuclear reactors (pressure vessels, primary piping systems, and nozzles). This report places particular emphasis upon the practical experimental results that have been obtained using SAFT-UT as well as the theoretical background that underlies synthetic aperture focusing. A discussion regarding high-speed and real-time implementations of two- and three-dimensional synthetic aperture focusing is also presented.

  6. Demonology in Ancient Egypt History and Developments during the Later Phases of Pharaonic History and the Greco-Roman

    E-Print Network [OSTI]

    Qian, Ning

    Demonology in Ancient Egypt History and Developments during the Later Phases of Pharaonic History and the Greco-Roman Period. Rita Lucarelli In this paper the meaning and function of demons in ancient Egypt have been outlined and a few central issues concerning demonology of Pharaonic and Greco-Roman Egypt

  7. Development of nondestructive evaluation techniques for DAM inspection. Progress report, January 1995 through August 1997

    SciTech Connect (OSTI)

    Brown, A. E.; Thomas, G.H.

    1997-09-04T23:59:59.000Z

    The Lawrence Livermore National Laboratory has concluded a two and a half year study on the development of an ultrasonic inspection system to inspect post stressed steel tendons on dams and flood gates. The inspection systems were part of a program for the California Department of Water Resources. The effort included the identification of the location and amount of corrosion damage to the tendons, identification of the cause of corrosion, and the technology for inhibiting corrosion. Several NDE methods for inspecting and quantifying damage to steel reinforced concrete water pipes were investigated and presented to the DWR for their consideration. The additional methods included Ground Penetrating RADAR, Electro- Potential Measurements, Infrared Technology, Pipe Inspection Crawlers (designed to travel inside pipelines and simultaneously report on the pipe condition as viewed by ultrasonic methods and video cameras from within the pipeline.) Reference to consultants hired by LLNL for similar on-site corrosion inspections were given to the DWR. The LLNL research into industries that have products to prevent corrosion resulted in the identification of an Innsbruck, Austria, company. This company claims to have products to permanently protect post- or pre-stressed tendons. The caveat is that the tendon protection system must be installed when the tendons are installed because no retrofit is available. Corrosion mitigation on the steel reinforcements surrounding the concrete was addressed through active and passive cathodic protection schemes. The combination of corrosion and erosion were addressed during consideration for the inspection of water-pump impeller-blades that are used in the three stage, million horsepower, pumping stations at Edmunston.

  8. New Technique for Developing a Proton Range Compensator With Use of a 3-Dimensional Printer

    SciTech Connect (OSTI)

    Ju, Sang Gyu, E-mail: sg.ju@samsung.com [Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Kim, Min Kyu; Hong, Chae-Seon; Kim, Jin Sung; Han, Youngyih; Choi, Doo Ho [Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Shin, Dongho; Lee, Se Byeong [Proton Therapy Center, National Cancer Center, Gyeonggi-do (Korea, Republic of)

    2014-02-01T23:59:59.000Z

    Purpose: A new system for manufacturing a proton range compensator (RC) was developed by using a 3-dimensional printer (3DP). The physical accuracy and dosimetric characteristics of the new RC manufactured by 3DP (RC{sub 3}DP) were compared with those of a conventional RC (RC{sub C}MM) manufactured by a computerized milling machine (CMM). Methods and Materials: An RC for brain tumor treatment with a scattered proton beam was calculated with a treatment planning system, and the resulting data were converted into a new format for 3DP using in-house software. The RC{sub 3}DP was printed with ultraviolet curable acrylic plastic, and an RC{sub C}MM was milled into polymethylmethacrylate using a CMM. The inner shape of both RCs was scanned by using a 3D scanner and compared with TPS data by applying composite analysis (CA; with 1-mm depth difference and 1 mm distance-to-agreement criteria) to verify their geometric accuracy. The position and distal penumbra of distal dose falloff at the central axis and field width of the dose profile at the midline depth of spread-out Bragg peak were measured for the 2 RCs to evaluate their dosimetric characteristics. Both RCs were imaged on a computed tomography scanner to evaluate uniformity of internal density. The manufacturing times for both RCs were compared to evaluate the production efficiency. Results: The pass rates for the CA test were 99.5% and 92.5% for RC{sub 3}DP and RC{sub C}MM, respectively. There was no significant difference in dosimetric characteristics and uniformity of internal density between the 2 RCs. The net fabrication times of RC{sub 3}DP and RC{sub C}MM were about 18 and 3 hours, respectively. Conclusions: The physical accuracy and dosimetric characteristics of RC{sub 3}DP were comparable with those of the conventional RC{sub C}MM, and significant system minimization was provided.

  9. Closure development for high-level nuclear waste containers for the tuff repository; Phase 1, Final report

    SciTech Connect (OSTI)

    Robitz, E.S. Jr.; McAninch, M.D. Jr.; Edmonds, D.P. [Babcock and Wilcox Co., Lynchburg, VA (USA). Nuclear Power Div.]|[Babcock and Wilcox Co., Alliance, OH (USA). Research and Development Div.

    1990-09-01T23:59:59.000Z

    This report summarizes Phase 1 activities for closure development of the high-level nuclear waste package task for the tuff repository. Work was conducted under U.S. Department of Energy (DOE) Contract 9172105, administered through the Lawrence Livermore National Laboratory (LLNL), as part of the Yucca Mountain Project (YMP), funded through the DOE Office of Civilian Radioactive Waste Management (OCRWM). The goal of this phase was to select five closure processes for further evaluation in later phases of the program. A decision tree methodology was utilized to perform an objective evaluation of 15 potential closure processes. Information was gathered via a literature survey, industrial contacts, and discussions with project team members, other experts in the field, and the LLNL waste package task staff. The five processes selected were friction welding, electron beam welding, laser beam welding, gas tungsten arc welding, and plasma arc welding. These are felt to represent the best combination of weldment material properties and process performance in a remote, radioactive environment. Conceptual designs have been generated for these processes to illustrate how they would be implemented in practice. Homopolar resistance welding was included in the Phase 1 analysis, and developments in this process will be monitored via literature in Phases 2 and 3. Work was conducted in accordance with the YMP Quality Assurance Program. 223 refs., 20 figs., 9 tabs.

  10. Vertical Phasing as a Corporate Real Estate Strategy and Development Option

    E-Print Network [OSTI]

    Guma, Anthony

    2009-01-01T23:59:59.000Z

    Purpose – The purpose of this paper is to demonstrate the potential value of significant vertical phasing – that is, the addition of five or more stories to an existing building – as a valuable real option in real estate ...

  11. Development of Apple Workgroup Cluster and Parallel Computing for Phase Field Model of Magnetic Materials 

    E-Print Network [OSTI]

    Huang, Yongxin

    2010-01-16T23:59:59.000Z

    using MPI. The results show the cluster system can simultaneously support up to 32 processes for MPI program with high performance of interprocess communication. The parallel computations of phase field model of magnetic materials implemented by a MPI...

  12. Development and analysis of a flexible signal phasing strategy for diamond interchange control

    E-Print Network [OSTI]

    Krueger, Gregory David

    1995-01-01T23:59:59.000Z

    There are many signal timing strategies for diamond interchanges. Due to the different geometric and traffic conditions, however, none of the available strategies is always optimal. The two most widely used strategies, three-phase, and four...

  13. The development of coal-based technologies for Department of Defense facilities: Phase 1 final report. Volume 1: Technical report

    SciTech Connect (OSTI)

    Miller, B.G.; Morrison, J.L.; Pisupati, S.V. [Pennsylvania State Univ., University Park, PA (United States). Energy and Fuels Research Center] [and others

    1997-01-31T23:59:59.000Z

    The first phase of a three-phase project investigating the development of coal-based technologies for Department of Defense facilities has been completed. The objectives of the project are to: decrease DOD`s dependence on foreign oil and increase its use of coal; promote public and private sector deployment of technologies for utilizing coal-based fuels in oil-designed combustion equipment; and provide a continuing environment for research and development of coal-based fuel technologies for small-scale applications at a time when market conditions in the US are not favorable for the introduction of coal-fired equipment in the commercial and industrial capacity ranges. The Phase 1 activities were focused on developing clean, coal-based combustion technologies for the utilization of both micronized coal-water mixtures (MCWMs) and dry, micronized coal (DMC) in fuel oil-designed industrial boilers. The specific objective in Phase 1 was to deliver fully engineered retrofit options for a fuel oil-designed watertube boiler located on a DOD installation to fire either MCWM or DMC. This was achieved through a project consisting of fundamental, pilot-sale, and demonstration-scale activities investigating coal beneficiation and preparation, and MCWM and DMC combustion performance. In addition, detailed engineering designs and an economic analysis were conducted for a boiler located at the Naval Surface Warfare Center, near Crane, Indiana. Results are reported on MCWM and DMC combustion performance evaluation; engineering design; and cost/economic analysis.

  14. Neutron and X-ray Scattering Techniques have proved so successful in condensed matter studies that a wide variety of sample environments have been developed in consquence. Many

    E-Print Network [OSTI]

    Boyer, Edmond

    Foreword Neutron and X-ray Scattering Techniques have proved so successful in condensed matter whose function is to develop and optimise the techniques appropriate to neutron scattering. Since other neutron and X-ray research centres have similar technical support groups, it was felt timely to unité

  15. M.S. ABDULLAH, I. BENEST, A. EVANS, and C. KIMBLE, Knowledge Modelling Techniques For Developing Knowledge Management Systems, 3rd European Conference on

    E-Print Network [OSTI]

    Kimble, Chris

    modelling, knowledge management, knowledge management system, knowledge, knowledge engineering. 1M.S. ABDULLAH, I. BENEST, A. EVANS, and C. KIMBLE, Knowledge Modelling Techniques For Developing Knowledge Management Systems, 3rd European Conference on Knowledge Management, Dublin, Ireland, September

  16. Development of a direct-injected natural gas engine system for heavy-duty vehicles: Final report phase 2

    SciTech Connect (OSTI)

    Cox, G.B.; DelVecchio, K.A.; Hays, W.J.; Hiltner, J.D.; Nagaraj, R.; Emmer, C.

    2000-03-02T23:59:59.000Z

    This report summarizes the results of Phase 2 of this contract. The authors completed four tasks under this phase of the subcontract. (1) They developed a computational fluid dynamics (CFD) model of a 3500 direct injected natural gas (DING) engine gas injection/combustion system and used it to identify DING ignition/combustion system improvements. The results were a 20% improvement in efficiency compared to Phase 1 testing. (2) The authors designed and procured the components for a 3126 DING engine (300 hp) and finished assembling it. During preliminary testing, the engine ran successfully at low loads for approximately 2 hours before injector tip and check failures terminated the test. The problems are solvable; however, this phase of the program was terminated. (3) They developed a Decision & Risk Analysis model to compare DING engine technology with various other engine technologies in a number of commercial applications. The model shows the most likely commercial applications for DING technology and can also be used to identify the sensitivity of variables that impact commercial viability. (4) MVE, Inc., completed a preliminary design concept study that examines the major design issues involved in making a reliable and durable 3,000 psi LNG pump. A primary concern is the life of pump seals and piston rings. Plans for the next phase of this program (Phase 3) have been put on indefinite hold. Caterpillar has decided not to fund further DING work at this time due to limited current market potential for the DING engine. However, based on results from this program, the authors believe that DI natural gas technology is viable for allowing a natural gas-fueled engine to achieve diesel power density and thermal efficiency for both the near and long terms.

  17. PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT

    SciTech Connect (OSTI)

    Albert Calderon

    2003-01-28T23:59:59.000Z

    This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase I was successfully completed. The project was then re-directed to the making of iron units. U.S. Steel teamed up with Calderon for a joint effort which will last 30 months to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy.

  18. PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT

    SciTech Connect (OSTI)

    Albert Calderon

    2002-07-30T23:59:59.000Z

    This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase I was successfully completed. The project was then re-directed to the making of iron units. U.S. Steel teamed up with Calderon for a joint effort which will last 30 months to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy.

  19. Development of an ultra-safe, ultra-low-emissions natural gas-fueled school bus: Phase 2, prototype hardware development

    SciTech Connect (OSTI)

    Kubesh, J. [Southwest Research Inst., San Antonio, TX (United States)

    1996-04-01T23:59:59.000Z

    This report summarizes work done on Phase 2, ``Prototype Hardware Development`` of Southwest Research Institute (SwRI) Project No. 03-6871, ``Development of an Ultra-Safe, Ultra-Low-Emissions Alternative-Fueled School Bus``. A prototype school bus was designed and constructed. This bus incorporated many new technologies to increase the safety of the bus passengers as well as pedestrians boarding and leaving the bus. These technologies emphasized increased visibility between the bus driver and pedestrians or vehicles, and included the use of high intensity discharge lighting, pedestrian and vehicle detection systems, and remote-mounted cameras. Passenger safety was also stressed, with the application of seat belts and improved emergency exits and lighting. A natural gas-fueled engine was developed for powering the bus. The development process focused primarily on improvements to the lean operation of the engine and control system advancements. The control system development included investigations into alternative control algorithms for steady-state and transient operation, various fuel metering devices, as well as new methods for wastegate control, knock and misfire detection, and catalyst monitoring. Both the vehicle and engine systems represent state-of-the-art technologies. Integration of the vehicle and engine is planned for the next phase of the project, followed by a demonstration test of the overall vehicle system.

  20. Status of the diagnostics development for the first operation phase of the stellarator Wendelstein 7-X

    SciTech Connect (OSTI)

    König, R., E-mail: rlk@ipp.mpg.de; Biedermann, C.; Burhenn, R.; Endler, M.; Grulke, O.; Hathiramani, D.; Hirsch, M.; Jakubowski, M.; Kornejew, P.; Krychowiak, M.; Langenberg, A.; Laux, M.; Lorenz, A.; Otte, M.; Pasch, E.; Pedersen, T. S.; Schneider, W.; Thomsen, H.; Windisch, T.; Zhang, D. [Max Planck Institute for Plasma Physics, 17491 Greifswald (Germany); and others

    2014-11-15T23:59:59.000Z

    An overview of the diagnostics which are essential for the first operational phase of Wendelstein 7-X and the set of diagnostics expected to be ready for operation at this time are presented. The ongoing investigations of how to cope with high levels of stray Electron Cyclotron Resonance Heating (ECRH) radiation in the ultraviolet (UV)/visible/infrared (IR) optical diagnostics are described.

  1. Development of Micro-Encapsulated Phase Change Materials and W. Brownrigg

    E-Print Network [OSTI]

    , thus creating a fluid of very high specific heat capacity over a narrow temperature range to demonstrate heat capacity of the LHS (eqtn 1). Here, a PCM is subject to heating from Tinitial to Tfinal temperature change to the TES. For practical purposes, the phase change between liquid and gas is not often

  2. Proceedings: EPRI Second Phased Array Inspection Seminar

    SciTech Connect (OSTI)

    None

    2001-11-01T23:59:59.000Z

    The Second EPRI Phased Array Inspection Seminar focused on industrial applications of phased array technology that have been achieved to date or are planned for the near future. Presentations were made by developers of inspection techniques, inspection services vendors, and utility personnel who have performed inspections using arrays.

  3. Development of asphalts and pavements using recycled tire rubber. Phase 1: technical feasibility. Final report

    SciTech Connect (OSTI)

    Bullin, J.A.; Davison, R.R.; Glover, C.J. [and others

    1998-01-01T23:59:59.000Z

    This report documents the technical progress made on the development of asphalts and pavements using recycled tire rubber.

  4. PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT

    SciTech Connect (OSTI)

    Albert Calderon

    2003-10-22T23:59:59.000Z

    This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase I was successfully completed. The project was then re-directed to the making of iron units. In 2000, U.S. Steel teamed up with Calderon for a joint effort which will last 42 months to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy by using iron ore concentrate and coal as raw materials, both materials being appreciably lower in cost than using iron pellets and coke.

  5. PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT

    SciTech Connect (OSTI)

    Albert Calderon; Reina Calderon

    2004-01-27T23:59:59.000Z

    This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase I was successfully completed. The project was then re-directed to the making of iron units. In 2000, U.S. Steel teamed up with Calderon for a joint effort which will last 42 months to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy by using iron ore concentrate and coal as raw materials, both materials being appreciably lower in cost than using iron pellets and coke.

  6. PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT

    SciTech Connect (OSTI)

    Albert Calderon

    2004-10-28T23:59:59.000Z

    This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase I was successfully completed. The project was then re-directed to the making of iron units. In 2000, U.S. Steel teamed up with Calderon for a joint effort which will last 42 months to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy by using iron ore concentrate and coal as raw materials, both materials being appreciably lower in cost than using iron pellets and coke.

  7. PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT

    SciTech Connect (OSTI)

    Albert Calderon

    2006-04-19T23:59:59.000Z

    This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase I was successfully completed. The project was then re-directed to the making of iron units. In 2000, U.S. Steel teamed up with Calderon for a joint effort to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy by using iron ore concentrate and coal as raw materials, both materials being appreciably lower in cost than using iron pellets, briquettes, sinter and coke.

  8. Enertech 15-kW wind-system development. Phase II. Fabrication and test

    SciTech Connect (OSTI)

    Zickefoose, C.R.

    1982-12-01T23:59:59.000Z

    This Phase II report presents a description of the Enertech 15 kW prototype wind system hardware fabrication; results of component tests; and results of preliminary testing conducted at Norwich, VT and the RF Wind Energy Research Center. In addition, the assembly sequence is documented. During testing, the unit experienced several operational problems, but testing proved the design concept and demonstrated the system's ability to meet the contract design specifications for power output.

  9. Development of radiohalogenated muscarinic ligands for the in vivo imaging of m-AChR by nuclear medicine techniques

    SciTech Connect (OSTI)

    McPherson, D.W.; Luo, H.; Knapp, F.F. Jr.

    1994-06-01T23:59:59.000Z

    Alterations in the density of acetylcholinergic muscarinic receptors (m-AChR) have been observed in various dementias. This has spurred interest in the development of radiohalogenated ligands which can be used for the non-invasive in vivo detection of m-AChR by nuclear medicine techniques. We have developed a new ligand 1-azabicyclo[2.2.2]oct-3-yl ({alpha}-hydroxy-{alpha}-(1-iodo-1-propen-3-yl)-{alpha}-phenylacetate (IQNP,12) which demonstrates high affinity for the muscarinic receptor. When labeled with radioiodine it has been shown to be selective and specific for m-ACHR. Initial studies on the separation and in vivo evaluation of the various isomers of IQNP have shown that the stereochemistry of the chiral centers and the configuration around the double bond play an important role in m-AChR subtype specificity. In vivo evaluation of these stereoisomers demonstrate that E-(R,R)-IQNP has a high affinity for the M{sub 1} muscarinic subtype while Z-(R,R)-IQNP demonstrate a high affinity for M{sub 1} and M{sub 2} receptor subtypes. These data demonstrate IQNP (12) has potential for use in the non-evasive in vivo detection of m-AChR by single photon emission computed tomography (SPECT). A brominated analogue, ``BrQNP,`` in which the iodine has been replaced by a bromine atom, has also been prepared and was shown to block the in vivo uptake of IQNP in the brain and heart and therefore has potential for positron emission tomographic (PET) studies of m-AChR.

  10. Development of a dispatchable PV peak shaving system. Final report on PV:BONUS Phase 2 activities

    SciTech Connect (OSTI)

    Ferguson, W.D. [Conectiv, Inc., Wilmington, DE (United States); Nigro, R.M. [Applied Energy Group, Inc., Hauppauge, NY (United States)

    1999-01-20T23:59:59.000Z

    In July 1993, the Delmarva Power and Light Company (now Conectiv, Inc.) was awarded a contract for the development of a Dispatchable Photovoltaic Peak Shaving System under the US Department of Energy PV:BONUS Program. The rationale for the dispatchable PV peak shaving system is based on the coincidence between the solar resource and the electrical load in question. Where poor coincidence exists, a PV array by itself does little to offset peak demands. However, with the addition of a relatively small amount of energy storage, the energy from the PV array can be managed and the value of the PV system increases substantially. In Phase 2, Delmarva Power continued the refinement of the system deployed in Phase 1. Four additional dispatchable PV peak shaving systems were installed for extended testing and evaluation at sites in Delaware, Maryland, Wisconsin and North Carolina. A second type of system that can be used to provide back-up power as well as peak shaving was also developed in Phase 2. This PV-UPS system used a packaging approach nearly identical to the PV peak shaving system, although there were significant differences in the design of the power electronics and control systems. Conceptually, the PV-UPS system builds upon the idea of adding value to PV systems by increasing functionality. A prototype of the PV-UPS system was installed in Delaware for evaluation near the end of the contract period.

  11. Low Wind Speed Technology Phase I: Clipper Turbine Development Project; Clipper Windpower Technology, Inc.

    SciTech Connect (OSTI)

    Not Available

    2006-03-01T23:59:59.000Z

    This fact sheet describes a subcontract with Clipper Windpower Technology, Inc. to develop a new turbine design that incorporates advanced elements.

  12. Development of electron reflection suppression materials for improved thermionic energy converter performance using thin film deposition techniques

    SciTech Connect (OSTI)

    Islam, Mohammad; Inal, Osman T.; Luke, James R. [Department of Materials and Metallurgical Engineering, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801 (United States); New Mexico Institute of Mining and Technology, Institute for Engineering Research and Applications (IERA) , 901 University Blvd. SE, Albuquerque, New Mexico 87106-4339 (United States)

    2006-10-15T23:59:59.000Z

    Nonideal electrode surfaces cause significant degree of electron reflection from collector during thermionic converter operation. The effect of the collector surface structure on the converter performance was assessed through the development of several electron reflection suppression materials using various thin film deposition techniques. The double-diode probe method was used to compare the J-V characteristics of converters with polished and modified collector surfaces for emitter temperature and cesium vapor pressure in the ranges of 900-2000 K and 0.02-1.5 torr, respectively. The coadsorption of cesium and oxygen with respective partial vapor pressures of {approx}1.27 torr and a few microtorrs reduced the emitter work function to a minimum value of 0.99 eV. It was found that the collector surfaces with matte black appearance such as platinum black, voided nickel from radio-frequency plasma sputtering, and etched electroless Ni-P with craterlike pore morphology exhibited much better performance compared with polished collector surface. For these thin films, the increase in the maximum output voltage was up to 2.0 eV. For optimum performance with minimum work function and maximum saturation emission current density, the emitter temperature was in the range of 1100-1500 K, depending on the collector surface structure. The use of these materials in cylindrical converter design and/or in combination with hybrid mode triode configuration holds great potential in low and medium scale power generators for commercial use.

  13. Open cycle heat pump development: Phase II, District heating case study analysis: Progress report, October 1988--December 31, 1988

    SciTech Connect (OSTI)

    DiBella, F.; Becker, F.E.; Glick, J.

    1989-04-01T23:59:59.000Z

    A district heating system is proposed that uses low-level waste-energy sources, and a quasi open-cycle steam heat pump as a means of upgrading the energy in the form of hot water to use as a transport medium in the system. The use of a water-based, open-cycle heat pump appears to be extremely well suited in terms of its potential thermodynamic performance, cost, and environmental safety compared to more typical organic gased closed cycle systems. The Phase II case study provides a detailed analysis of a district heating system that utilizes the open cycle steam heat pump concept developed in Phase I. This quarterly report describes the energy audit performed on the heat source and heat sink.

  14. Continued development of a semianalytical solution for two-phase fluid and heat flow in a porous medium

    SciTech Connect (OSTI)

    Doughty, C.; Pruess, K. [Lawrence Berkeley Lab., CA (United States)

    1991-06-01T23:59:59.000Z

    Over the past few years the authors have developed a semianalytical solution for transient two-phase water, air, and heat flow in a porous medium surrounding a constant-strength linear heat source, using a similarity variable {eta} = r/{radical}t. Although the similarity transformation approach requires a simplified geometry, all the complex physical mechanisms involved in coupled two-phase fluid and heat flow can be taken into account in a rigorous way, so that the solution may be applied to a variety of problems of current interest. The work was motivated by adverse to predict the thermohydrological response to the proposed geologic repository for heat-generating high-level nuclear wastes at Yucca Mountain, Nevada, in a partially saturated, highly fractured volcanic formation. The paper describes thermal and hydrologic conditions near the heat source; new features of the model; vapor pressure lowering; and the effective-continuum representation of a fractured/porous medium.

  15. Development of a fixed abrasive slicing technique (FAST) for reducing the cost of photovoltaic wafers. Final subcontract report, 9 January 1991--14 April 1991

    SciTech Connect (OSTI)

    Schmid, F. [Crystal Systems, Inc., Salem, MA (United States)

    1991-12-01T23:59:59.000Z

    This report examines a wafer slicing technique developed by Crystal Systems, Inc. that reduces the cost of photovoltaic wafers. This fixed, abrasive slicing technique (FAST) uses a multiwire bladepack and a diamond-plated wirepack; water is the coolant. FAST is in the prototype production stage and reduces expendable material costs while retaining the advantages of a multiwire slurry technique. The cost analysis revealed that costs can be decreased by making more cuts per bladepack and slicing more wafers per linear inch. Researchers studied the degradation of bladepacks and increased wirepack life. 21 refs.

  16. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 45, NO. 6, JUNE 1997 963 Planar Microwave Integrated Phase-Shifter Design

    E-Print Network [OSTI]

    De Flaviis, Franco

    Microwave Integrated Phase-Shifter Design with High Purity Ferroelectric Material Franco De Flaviis, N. G a change in the dielectric constant. A phase shift of 165 was obtained at 2.4 GHz, with an insertion loss of ferroelectric materials (FEM's) in ceramic form for the realization of a phase shifter operating at 2.4 GHz

  17. Advanced Power Electronic Interfaces for Distributed Energy Systems, Part 2: Modeling, Development, and Experimental Evaluation of Advanced Control Functions for Single-Phase Utility-Connected Inverter

    SciTech Connect (OSTI)

    Chakraborty, S.; Kroposki, B.; Kramer, W.

    2008-11-01T23:59:59.000Z

    Integrating renewable energy and distributed generations into the Smart Grid architecture requires power electronic (PE) for energy conversion. The key to reaching successful Smart Grid implementation is to develop interoperable, intelligent, and advanced PE technology that improves and accelerates the use of distributed energy resource systems. This report describes the simulation, design, and testing of a single-phase DC-to-AC inverter developed to operate in both islanded and utility-connected mode. It provides results on both the simulations and the experiments conducted, demonstrating the ability of the inverter to provide advanced control functions such as power flow and VAR/voltage regulation. This report also analyzes two different techniques used for digital signal processor (DSP) code generation. Initially, the DSP code was written in C programming language using Texas Instrument's Code Composer Studio. In a later stage of the research, the Simulink DSP toolbox was used to self-generate code for the DSP. The successful tests using Simulink self-generated DSP codes show promise for fast prototyping of PE controls.

  18. Advanced turbine systems phase II - conceptual design and product development. Final report, August 1993--July 1996

    SciTech Connect (OSTI)

    NONE

    1996-10-01T23:59:59.000Z

    The National Energy Strategy (NES) calls for a balanced program of greater energy efficiency, use of alternative fuels, and the environmentally responsible development of all U.S. energy resources. Consistent with the NES, a Department of Energy (DOE) program has been created to develop Advanced Turbine Systems (ATS). The technical ATS requirements are based upon two workshops held in Greenville, SC that were sponsored by DOE and hosted by Clemson University. The objective of this 8-year program, managed jointly by DOE`s Office of Fossil Energy, and, Office of Conservation and Renewable Energy, is to develop natural-gas-fired base load power plants that will have cycle efficiencies greater than 60%, lower heating value (LHV), be environmentally superior to current technology, and also be cost competitive. The program will include work to transfer advanced technology to the coal- and biomass-fueled systems being developed in other DOE programs.

  19. Analysis of the product development process for geographically distant teams in vehicle tophat design phases

    E-Print Network [OSTI]

    Puerto Valdez, Antonio del

    2010-01-01T23:59:59.000Z

    The current global economic recession is putting pressure to increase model variation on the car makers, while at the same time leveraging highly efficient and proven platforms and product development assets globally is ...

  20. Predicting and managing system interactions at early phase of the product development process

    E-Print Network [OSTI]

    Dong, Qi, 1973-

    2002-01-01T23:59:59.000Z

    The activity of designing and developing large, complex, discrete, physical, and engineered products faces the challenges in the physical product system, the organization of people, and the larger systems in which the ...

  1. Expanded High-Level Waste Glass Property Data Development: Phase I

    SciTech Connect (OSTI)

    Schweiger, Michael J.; Riley, Brian J.; Crum, Jarrod V.; Hrma, Pavel R.; Rodriguez, Carmen P.; Arrigoni, Benjamin M.; Lang, Jesse B.; Kim, Dong-Sang; Vienna, John D.; Raszewski, F. C.; Peeler, David K.; Edwards, Tommy B.; Best, D. R.; Reamer, Irene A.; Riley, W. T.; Simmons, P. T.; Workman, R. J.

    2011-01-21T23:59:59.000Z

    Two separate test matrices were developed as part if the EM-21 Glass Matrix Crucible Testing. The first matrix, developed using a single component-at-a-time design method and covering glasses of interest primarily to Hanford, is addressed in this data package. This data package includes methods and results from glass fabrication, chemical analysis of glass compositions, viscosity, electrical conductivity, liquidus temperature, canister centerline cooling, product consistency testing, and the toxicity characteristic leach procedure.

  2. Serially Concatenated Coded Continuous Phase Modulation for Aeronautical Telemetry

    E-Print Network [OSTI]

    Porur Damodaran, Kanagaraj

    2008-08-26T23:59:59.000Z

    This thesis treats the development of bandwidth-efficient serially concatenated coded (SCC) continuous phase modulation (CPM) techniques for aeronautical telemetry. The concatenated code consists of an inner and an outer code, separated...

  3. Development of superior asphalt recycling agency: Phase 1, Technical feasibility. Technical progress report

    SciTech Connect (OSTI)

    Bullin, J.A.; Glover, C.J.; Davison, R.R.; Lin, Moon-Sun; Chaffin, J.; Liu, Meng; Eckhardt, C.

    1996-04-01T23:59:59.000Z

    About every 12 years, asphalt roads must be reworked, and this is usually done by placing thick layers (hot-mix overlays) of new material on top of failed material, resulting in considerable waste of material and use of new asphalt binder. A good recycling agent is needed, not only to reduce the viscosity of the aged material but also to restore compatibility. Objective is to establish the technical feasibility (Phase I) of determining the specifications and operating parameters for producing high quality recycling agents which will allow most/all the old asphalt-based road material to be recycled. It is expected that supercritical fractionation can be used. The advanced road aging simulation procedure will be used to study aging of blends of old asphalt and recycling agents.

  4. Hardware Development of a Laboratory-Scale Microgrid Phase 2: Operation and Control of a Two-Inverter Microgrid

    SciTech Connect (OSTI)

    Illindala, M. S.; Piagi, P.; Zhang, H.; Venkataramanan, G.; Lasseter, R. H.

    2004-03-01T23:59:59.000Z

    This report summarizes the activities of the second year of a three-year project to develop control software for microsource distributed generation systems. In this phase, a laboratory-scale microgrid was expanded to include: (1) Two emulated distributed resources; (2) Static switchgear to allow rapid disconnection and reconnection; (3) Electronic synchronizing circuitry to enable transient-free grid interconnection; (4) Control software for dynamically varying the frequency and voltage controller structures; and (5) Power measurement instrumentation for capturing transient waveforms at the interconnect during switching events.

  5. The second-phase development of the China JinPing underground Laboratory

    E-Print Network [OSTI]

    Jainmin Li; Xiangdong Ji; Wick Haxton; Joseph S. Y. Wang

    2014-04-09T23:59:59.000Z

    During 2013-2015 an expansion of the China JinPing underground Laboratory (CJPL) will be undertaken along a main branch of a bypass tunnel in the JinPing tunnel complex. This second phase of CJPL will increase laboratory space to approximately 96,000 m^3, which can be compared to the existing CJPL-I volume of 4,000 m^3. One design configuration has eight additional hall spaces, each over 60 m long and approximately 12 m in width, with overburdens of about 2.4 km of rock, oriented parallel to and away from the main water transport and auto traffic tunnels. Concurrent with the excavation activities, planning is underway for dark matter and other rare-event detectors, as well as for geophysics/engineering and other coupled multi-disciplinary sensors. In the town meeting on 8 September, 2013 at Asilomar, CA, associated with the 13th International Conference on Topics in Astroparticle and Underground Physics (TAUP), presentations and panel discussions addressed plans for one-ton expansions of the current CJPL germanium detector array of the China Darkmatter EXperiment (CDEX) collaboration and of the duel-phase xenon detector of the Panda-X collaboration, as well as possible new detector initiatives for dark matter studies, low-energy solar neutrino detection, neutrinoless double beta searches, and geoneutrinos. JinPing was also discussed as a site for a low-energy nuclear astrophysics accelerator. Geophysics/engineering opportunities include acoustic and micro-seismic monitoring of rock bursts during and after excavation, coupled-process in situ measurements, local, regional, and global monitoring of seismically induced radon emission, and electromagnetic signals.

  6. Developing Secure Power Systems Professional Competence: Alignment and Gaps in Workforce Development Programs for Phase 2 of the Secure Power Systems Professional project

    SciTech Connect (OSTI)

    O'Neil, Lori Ross; Assante, Michael; Tobey, D. H.; Conway, T. J.; Vanderhorst, Jr, T. J.; Januszewski, III, J.; leo, R.; Perman, K.

    2013-08-26T23:59:59.000Z

    This is the final report of Phase 2 of the Secure Power Systems Professional project, a 3 phase project. DOE will post to their website upon release.

  7. Development of nondestructive evaluation techniques for high-temperature ceramic heat exchanger components. Tenth quarterly report, January-March 1980

    SciTech Connect (OSTI)

    Kupperman, D.S.; Yuhas, D.; Caines, M.J.

    1980-04-01T23:59:59.000Z

    The effectiveness of several conventional and unconventional NDE techniques for specific high-temperature ceramic components was determined. Techniques under study at ANL include dye-enhanced radiography, acoustic microscopy, conventional ultrasonic testing, acoustic-emission detection, acoustic impact testing, holography, interferometry, infrared scanning, internal friction measurements, and overload proof testing. The current effort involves SiC heat-exchanger tubes; previous ceramic NDE efforts at ANL have involved silicon-nitride gas-turbine rotors. Recent results on inspection of SiC heat-exchanger tubing by means of ultrasonic acoustic microscopy techniques and efforts initiated and planned for NDE of ceramic joints are discussed.

  8. Development/Plasticity/Repair Nuclear Factor I Coordinates Multiple Phases of

    E-Print Network [OSTI]

    Gronostajski, Richard M.

    Cell Development via Regulation of Cell Adhesion Molecules Wei Wang,1 Debra Mullikin-Kilpatrick,1 James of Cellular and Molecular Physiology and Program in Neuroscience, University of Massachusetts Medical School, Worcester, Massachusetts 01655, 2E. K. Shriver Center/University of Massachusetts Medical School, Waltham

  9. Conceptual design report, TWRS Privatization Phase I, site development and roads, subproject W-505

    SciTech Connect (OSTI)

    Singh, G.

    1997-06-05T23:59:59.000Z

    This document includes Conceptual Design Report (CDR) for the site development, construction of new roads and improvements at existing road intersections, habitat mitigation, roadway lighting, and construction power needed for the construction of two Private Contractor (PC) Facilities. Approximately 50 hectare (124 acres) land parcel, east of the Grout Facility, is planned for the PC facilities.

  10. Catalyzed steam gasification of biomass. Phase III. Biomass process development unit (PDU) construction and initial operation

    SciTech Connect (OSTI)

    Healey, J.J.; Hooverman, R.H.

    1981-12-01T23:59:59.000Z

    The design and construction of the process development unit (PDU) are described in detail, examining each system and component in order. The following are covered: siting, the chip handling system, the reactor feed system, the reactor, the screw conveyor, the ash dump system, the PDU support equipment, control and information management, and shakedown runs. (MHR)

  11. Engineering development of advanced coal-fired low-emissions boiler system. Phase II subsystem test design and plan - an addendum to the Phase II RD & T Plan

    SciTech Connect (OSTI)

    NONE

    1995-05-01T23:59:59.000Z

    Shortly after the year 2000 it is expected that new generating plants will be needed to meet the growing demand for electricity and to replace the aging plants that are nearing the end of their useful service life. The plants of the future will need to be extremely clean, highly efficient and economical. Continuing concerns over acid rain, air toxics, global climate changes, ozone depletion and solid waste disposal are expected to further then regulations. In the late 1980`s it was commonly believed that coal-fired power plants of the future would incorporate either some form of Integrated Gasification Combined Cycle (IGCC) or first generation Pressurized Fluidized Bed Combustion (PFBS) technologies. However, recent advances In emission control techniques at reduced costs and auxiliary power requirements coupled with significant improvements In steam turbine and cycle design have clearly indicated that pulverized coal technology can continue to be competitive In both cost and performance. In recognition of the competitive potential for advanced pulverized coal-fired systems with other emerging advanced coal-fired technologies, DOE`s Pittsburgh Energy Technology Center (PETC) began a research and development initiative In late 1990 named, Combustion 2000, with the intention of preserving and expanding coal as a principal fuel In the Generation of electrical power. The project was designed for two stages of commercialization, the nearer-term Low Emission Boiler System (LEBS) program, and for the future, the High Performance Power System (HIPPS) program. B&W is participating In the LEBS program.

  12. Development of Spatio-Temporal Wavelet Post Processing Techniques for Application to Thermal Hydraulic Experiments and Numerical Simulations

    E-Print Network [OSTI]

    Salpeter, Nathaniel

    2012-07-16T23:59:59.000Z

    -intrusive particle tracking velocimetry (PTV) techniques. The second experiment is of a simulated double ended guillotine break in the prismatic block gas cooled reactor. Numerical simulations of jet flow mixing in the lower plenum of a prismatic block high...

  13. Granular Bed Filter Development Program, Phase II. Monthly technical progress report for April 1-30, 1980

    SciTech Connect (OSTI)

    Moresco, L.L.; Cooper, J.; Ferguson, J.

    1980-01-01T23:59:59.000Z

    The Department of Energy is sponsoring a multiphase program to investigate the filtration potential of the moving bed granular filter (GBF) for application in pressurized high temperature energy conversion systems. Phase I included the development of a mathematical model, a cold flow parametric test series in a 0.746 Nm/sup 3//s GBF, and investigations of potential dust plugging problems at the inlet screen. During the experimental program, collection efficiencies of 99% and filter outlet loadings less that 0.0074 g/m/sup 3/ were demonstrated. The objectives of Phase II are to investigate the effects of elevated temperature and coal combustion particulate on GBF filtration performance, to update the analytical model developed in Phase I to reflect high-temperature effects, to optimize filter internal configuration, to demonstrate long duration GBF performance relative to corrosion, deposition, erosion, filtration efficiency, reliability, controllability, and to design and construct a 0.879 Nm/sup 3//s, 660 kPa filter for delivery to DOE. Hot flow testing to date has confirmed that the GBF configured with inlet and outlet screens has exhibited a tendency for extensive and irreversible ash plugging. As an alternative, the potential advantages produced by a screenless configuration, having higher filtration efficiency, has been achieved during both cold flow and hot flow tests as previously reported. Feed and solid compositions from test P704, the 400-hour GBF test, are presented. A status report on the design of the high pressure GBF along with operation details for purging the GBF of corrosive gases upon shutdown and granular reserve sensing during its operation are detailed.

  14. Production of ethanol from refinery waste gases. Phase 3. Engineering development. Annual report, April 1, 1995--May 15, 1996

    SciTech Connect (OSTI)

    Arora, D.; Basu, R.; Phillips, J.R.; Wikstrom, C.V.; Clausen, E.C; Gaddy, J.L.

    1996-11-01T23:59:59.000Z

    Refineries discharge large volumes of H2, CO, and CO 2 from cracking, coking, and hydrotreating operations. This R&D program seeks to develop, demonstrate, and commercialize a biological process for converting these waste gases into ethanol for blending with gasoline. A 200,000 BPD refinery could produce up to 38 million gallons ethanol per year. The program is being conducted in 3 phases: II, technology development; III, engineering development; and IV, demonstration. Phase I, exploratory development, has been completed. The research effort has yielded two strains (Isolates O-52 and C-01) which are to be used in the pilot studies to produce ethanol from CO, CO2, and H2 in petroleum waste gas. Results from single continuous stirred tank reactor (CSTR) laboratory tests have shown that 20-25 g/L ethanol can be produced with < 5 g/L acetic acid byproduct. Laboratory studies with two CSTRs in series have yielded ethanol concentrations of 30-35 g/L with 2-4 g/L acetic acid byproduct. Water recycle from distillation back to the fermenter shows that filtration of the water before distillation eliminates the recycle of toxic materials back to the fermenter. Product recovery in the process will use direct distillation to the azeotrope, followed by adsorption to produce neat ethanol. This is less energy intensive than e.g. solvent extraction, azeotropic distillation, or pervaporation. Economic projections are quite attractive; the economics are refinery stream dependent and thus vary depending on refinery location and operation.

  15. Development of a heavy-ion identification method using a combined time-of-flight [delta]E-E technique

    E-Print Network [OSTI]

    Hanus, Roy Gene

    1976-01-01T23:59:59.000Z

    Nagatani Identification of heavy-ion reaction products produced at the Texas A&H Variable Energy Cyclotron has been done primarily through the use of the AE-E detector telescope technique. The telescope is formed by placing two detectors together... of the partzcles eo their total initial energy, they can uniquely be identified. However, this technique for identification of heavy-ion reaction prod- ucts is adequate only for isotopes up through those of oxygen. Beyond oxygen, only element identification can...

  16. DEVELOPMENT OF A QUANTITATIVE MEASURE OF THE FUNCTIONALITY OF FRAME WALLS ENHANCED WITH PHASE CHANGE MATERIALS USING A DYNAMIC WALL SIMULATOR

    E-Print Network [OSTI]

    Evers, Angela C.

    2008-07-25T23:59:59.000Z

    Frame walls enhanced with phase change materials (paraffin-based, hydrated salt-based, and eutectic) mixed in cellulose insulation were developed and tested. The frame walls were heated and allowed to cool in a dynamic wall simulator that replicated...

  17. Development of electromagnetic acoustic transducer (EMAT) phased arrays for SFR inspection

    SciTech Connect (OSTI)

    Le Bourdais, Florian; Marchand, Benoît [CEA LIST, Centre de Saclay F-91191 Gif-sur-Yvette (France)

    2014-02-18T23:59:59.000Z

    A long-standing problem for Sodium cooled Fast Reactor (SFR) instrumentation is the development of efficient under-sodium visualization systems adapted to the hot and opaque sodium environment. Electromagnetic Acoustic Transducers (EMAT) are potential candidates for a new generation of Ultrasonic Testing (UT) probes well-suited for SFR inspection that can overcome drawbacks of classical piezoelectric probes in sodium environment. Based on the use of new CIVA simulation tools, we have designed and optimized an advanced EMAT probe for under-sodium visualization. This has led to the development of a fully functional L-wave EMAT sensing system composed of 8 elements and a casing withstanding 200° C sodium inspection. Laboratory experiments demonstrated the probe's ability to sweep an ultrasonic beam to an angle of 15 degrees. Testing in a specialized sodium facility has shown that it was possible to obtain pulse-echo signals from a target under several different angles from a fixed position.

  18. Ocean thermal energy conversion power system development. Final design report: PSD-I, Phase II

    SciTech Connect (OSTI)

    None

    1980-06-30T23:59:59.000Z

    The PSD-I program provides a heat exchanger sytem consisting of an evaporator, condenser and various ancillaries with ammonia used as a working fluid in a closed simulated Rankine cycle. It is to be installed on the Chepachet Research Vessel for test and evaluation of a number of OTEC concepts in a true ocean environment. It is one of several test articles to be tested. Primary design concerns include control of biofouling, corrosion and erosion of aluminum tubes, selection of materials, and the development of a basis for scale-up to large heat exchangers so as to ultimately demonstrate economic feasibility on a commercial scale. The PSD-I test article is devised to verify thermodynamic, environmental, and mechanical performance of basic design concepts. The detailed design, development, fabrication, checklist, delivery, installation support, and operation support for the Test Article Heat Exchangers are described. (WHK)

  19. Process Development for CIGS Based Thin Film Photovoltaics Modules, Phase II Technical Report

    SciTech Connect (OSTI)

    Britt, J.; Wiedeman, S.; Albright, S.

    2000-11-09T23:59:59.000Z

    As a technology partner with NREL, Global Solar Energy (GSE) has initiated an extensive and systematic plan to accelerate the commercialization of thin-film photovoltaics (PV) based on copper indium gallium diselenide (CIGS). The distinguishing feature of the GSE manufacturing process is the exclusive use of lightweight, flexible substrates. GSE has developed the technology to fabricate CIGS photovoltaics on both stainless-steel and polymer substrates. CIGS deposited on flexible substrates can be fabricated into either flexible or rigid modules. Low-cost, rigid PV panels for remote power, bulk/utility, telecommunication, and rooftop applications have been produced by affixing the flexible substrate to an inexpensive rigid panel by lamination or adhesive. Stainless-steel-based PV modules are fabricated by a novel interconnect method that avoids the use of wires or foils and soldered connections. In the case of polymer-based PV modules, the continuous roll is not sectioned into individual panels until the module buss and power leads are attached. Roll-to-roll vacuum deposition has several advantages that translate directly to reduced capital costs, greater productivity, improved yield, greater reliability, lower maintenance, and a larger volume of PV material. In combination with roll-to-roll processing, GSE has developed evaporation deposition operations that enable low-cost and high-efficiency CIGS modules. The CIGS deposition process relies heavily on effusion source technology developed at GSE, and solving numerous problems was an integral part of the source development effort. Cell interconnection for thin-film CIGS modules on a polyimide substrate presents a considerable challenge.

  20. Development of superior asphalt recycling agents. Phase 1, Technical feasibility. Final technical progress report

    SciTech Connect (OSTI)

    Bullin, J.A.; Davison, R.R.; Glover, C.J.; Chaffin, J.; Liu, M.; Madrid, R.

    1997-07-01T23:59:59.000Z

    After an introduction and a literature survey in Chap. 1, Chap. 2 describes the tasks, together with objectives and important results obtained for each task throughout the entire project. Chaps. 3 thru 7 detail work in developing a qualitative and quantitative knowledge of asphalt oxidation, composition dependence of asphalt properties, and guidelines for producing superior asphalt binders through composition control. They also detail the development of a kinetic model for asphalt oxidative aging and present an understanding of the composition dependence of asphalt oxidation as well as other performance-related properties. Chaps. 8 and 9 compare the aging performance of recycled blends produced using commercial recycling agents and industrial supercritical fractions as rejuvenating agents. Oxidative aging of the recycled blends were evaluated along with the performance of the recycled blends in terms of the strategic highway research program performance grading procedure. Chap. 10 summarizes the work completed in the areas of processing schemes development, projection updates, and scale-up and commercialization plans.

  1. Final Report on Development of Optimized Field-Reversed Configuration Plasma Formation Techniques for Magnetized Target Fusion

    SciTech Connect (OSTI)

    Lynn, Alan

    2013-11-01T23:59:59.000Z

    The University of New Mexico (UNM) proposed a collaboration with Los Alamos National Laboratory (LANL) to develop and test methods for improved formation of field-reversed configuration (FRC) plasmas relevant to magnetized target fusion (MTF) energy research. MTF is an innovative approach for a relatively fast and cheap path to the production of fusion energy that utilizes magnetic confinement to assist in the compression of a hot plasma to thermonuclear conditions by an external driver. LANL is currently pursing demonstration of the MTF concept via compression of an FRC plasma by a metal liner z-pinch in conjunction with the Air Force Research Laboratory in Albuquerque, NM. A key physics issue for the FRC's ultimate success as an MTF target lies in the initial pre-ionization (PI) stage. The PI plasma sets the initial conditions from which the FRC is created. In particular, the PI formation process determines the amount of magnetic flux that can be trapped to form the FRC. A ringing theta pinch ionization (RTPI) technique, such as currently used by the FRX-L device at LANL, has the advantages of high ionization fraction, simplicity (since no additional coils are required), and does not require internal electrodes which can introduce impurities into the plasma. However RTPI has been shown to only trap #24;50% of the initial bias flux at best and imposes additional engineering constraints on the capacitor banks. The amount of trapped flux plays an important role in the FRC's final equilibrium, transport, and stability properties, and provides increased ohmic heating of the FRC through induced currents as the magnetic field decays. Increasing the trapped flux also provides the route to greatest potential gains in FRC lifetime, which is essential to provide enough time to translate and compress the FRC effectively. In conjunction with LANL we initially planned to develop and test a microwave break- down system to improve the initial PI plasma formation. The UNM team would design the microwave optics and oversee the fabrication and assembly of all components and assist with integration into the FRX-L machine control system. LANL would provide a preexisting 65 kW X-band microwave source and some associated waveguide hardware. Once constructed and installed, UNM would take the lead in operating the microwave breakdown system and conducting studies to optimize its use in FRC PI formation in close cooperation with the needs of the LANL MTF team. In conjunction with our LANL collaborators, we decided after starting the project to switch from a microwave plasma breakdown approach to a plasma gun technology to use for enhanced plasma formation in the FRX-L field-reversed configuration experiment at LANL. Plasma guns would be able to provide significantly higher density plasma with greater control over its distribution in time and space within the experiment. This would allow greater control and #12;ne-tuning of the PI plasma formed in the experiment. Multiple plasma guns would be employed to fill a Pyrex glass test chamber (built at UNM) with plasma which would then be characterized and optimized for the MTF effort.

  2. Development and Quantification of UV-Visible and Laser Spectroscopic Techniques for Materials Accountability and Process Control

    SciTech Connect (OSTI)

    Ken Czerwinski; Phil Weck; Frederic Poineau

    2010-12-29T23:59:59.000Z

    Ultraviolet-Visible Spectroscopy (UV-Visible) and Time Resolved Laser Fluorescence Spectroscopy (TRLFS) optical techniques can permit on-line, real-time analysis of the actinide elements in a solvent extraction process. UV-Visible and TRLFS techniques have been used for measuring the speciation and concentration of the actinides under laboratory conditions. These methods are easily adaptable to multiple sampling geometries, such as dip probes, fiber-optic sample cells, and flow-through cell geometries. To fully exploit these techniques for GNEP applications, the fundamental speciation of the target actinides and the resulting influence on 3 spectroscopic properties must be determined. Through this effort detection limits, process conditions, and speciation of key actinide components can be establish and utilized in a range of areas of interest to GNEP, especially in areas related to materials accountability and process control.

  3. Report on Performance of Prototype Dynatronix Power Supplies Developed Under a Phase I DOE SBIR

    SciTech Connect (OSTI)

    Hoppe, Eric W.; Merriman, Jason H.

    2011-03-01T23:59:59.000Z

    The purpose of this study is to evaluate the prototype power supplies fabricated by Dynatronix, Inc. This project supports the advancement of electroforming capabilities to produce ultra-high purity copper. Ultra-high purity copper is an essential material used for a range of current and future fundamental nuclear physics programs such as the MAJORANA DEMONSTRATOR. The Mach 30 power supplies are a new design built to the specifications from the requirements of Pacific Northwest National Laboratory (PNNL) with regard to timing, voltage, current output, and the required tolerances. The parameters used in these tests were developed empirically over a number of years based on a combination of thermodynamic and kinetics of the electroplating process. The power supplies were operated in a typical cleanroom environment for the production electroforming at PNNL. The units that were received by PNNL in July, 2010 have performed satisfactorily and have demonstrated short term durability.

  4. Customer Data Clustering using Data Mining Technique

    E-Print Network [OSTI]

    Rajagopal, Dr Sankar

    2011-01-01T23:59:59.000Z

    Classification and patterns extraction from customer data is very important for business support and decision making. Timely identification of newly emerging trends is very important in business process. Large companies are having huge volume of data but starving for knowledge. To overcome the organization current issue, the new breed of technique is required that has intelligence and capability to solve the knowledge scarcity and the technique is called Data mining. The objectives of this paper are to identify the high-profit, high-value and low-risk customers by one of the data mining technique - customer clustering. In the first phase, cleansing the data and developed the patterns via demographic clustering algorithm using IBM I-Miner. In the second phase, profiling the data, develop the clusters and identify the high-value low-risk customers. This cluster typically represents the 10-20 percent of customers which yields 80% of the revenue.

  5. PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT

    SciTech Connect (OSTI)

    Albert Calderon

    2005-10-14T23:59:59.000Z

    The commercialization path of the Calderon technology for making a feedstock for steelmaking with assistance from DOE initially focused on making coke and work was done which proved that the Calderon technology is capable of making good coke for hard driving blast furnaces. U.S. Steel which participated in such demonstration felt that the Calderon technology would be more meaningful in lowering the costs of making steel by adapting it to the making of iron--thus obviating the need for coke. U.S. Steel and Calderon teamed up to jointly work together to demonstrate that the Calderon technology will produce in a closed system iron units from iron concentrate (ore) and coal competitively by eliminating pelletizing, sintering, coking and blast furnace operation. If such process steps could be eliminated, a huge reduction in polluting emissions and greenhouse gases (including CO{sub 2}) relating to steelmaking would ensue. Such reduction will restructure the steel industry away from the very energy-intensive steelmaking steps currently practiced and drastically reduce costs of making steel. The development of a technology to lower U.S. steelmaking costs and become globally competitive is a priority of major importance. Therefore, the development work which Calderon is conducting presently under this Agreement with the U.S. Department of Energy becomes more crucial than ever. During the 3rd quarter of 2005 which the present report covers, virtually all the effort to advance the Calderon technology to make iron units was concentrated towards forming a team with a steelmaker who needs both iron units in the form of hot metal and a substitute for natural gas (SNG), both being major contributors to higher costs in steelmaking. Calderon felt that a very good candidate would be Steel Dynamics (SDI) by virtue that it operates a rotary hearth facility in Butler, Indiana that uses large amounts of natural gas to reduce briquettes made from ore and coal that they subsequently melt in a submerged arc furnace that is a large consumer of electric power. This facility is operated as a division of SDI under the name of Iron Dynamics (IDI). It is no secret that IDI has had and still has a great number of operational problems, including high cost for natural gas.

  6. Fabrication development for high-level nuclear waste containers for the tuff repository; Phase 1 final report

    SciTech Connect (OSTI)

    Domian, H.A.; Holbrook, R.L.; LaCount, D.F. [Babcock and Wilcox Co., Lynchburg, VA (USA). Nuclear Power Div.]|[Babcock and Wilcox Co., Alliance, OH (USA). Research and Development Div.

    1990-09-01T23:59:59.000Z

    This final report completes Phase 1 of an engineering study of potential manufacturing processes for the fabrication of containers for the long-term storage of nuclear waste. An extensive literature and industry review was conducted to identify and characterize various processes. A technical specification was prepared using the American Society of Mechanical Engineers Boiler & Pressure Vessel Code (ASME BPVC) to develop the requirements. A complex weighting and evaluation system was devised as a preliminary method to assess the processes. The system takes into account the likelihood and severity of each possible failure mechanism in service and the effects of various processes on the microstructural features. It is concluded that an integral, seamless lower unit of the container made by back extrusion has potential performance advantages but is also very high in cost. A welded construction offers lower cost and may be adequate for the application. Recommendations are made for the processes to be further evaluated in the next phase when mock-up trials will be conducted to address key concerns with various processes and materials before selecting a primary manufacturing process. 43 refs., 26 figs., 34 tabs.

  7. Development and testing of a commercial-scale coal-fired combustion system, Phase 3

    SciTech Connect (OSTI)

    Litka, A.F.; Breault, R.W.

    1991-10-01T23:59:59.000Z

    Within the commercial sector, oil and natural gas are the predominant fuels used to meet the space-heating needs of schools, office buildings, apartment complexes, and other similar structures. In general, these buildings require firing rates of 1 to 10 million Btu/hr. The objective of this program is to demonstrate the technical and economic viability of a coal-fired combustion system for this sector. The commercial-scale coal-water slurry (CWS)-fired space heating system will be a scale-up of a CWS-fired residential warm-air heating system developed by Tecogen under contract to the Department of Energy, Pittsburgh Energy Technology Center. This system included a patented nonslagging combustor known as IRIS, for Inertial Reactor with Internal Separation. This combustion technology, which has demonstrated high combustion efficiency using CWS fuels at input rates of 100,000 Btu/hr, will be scaled to operate at 2 to 5 millon Btu/hr. Along with the necessary fuel storage and delivery, heat recovery, and control equipment, the system will include pollution control devices to meet targeted values of NO{sub x}, S0{sub 2}, and particulate emissions. In general, the system will be designed to match the reliability, safety, turndown, and ignition performance of gas or oil-fired systems.

  8. Center for Fuel Cell Research and Applications development phase. Final report

    SciTech Connect (OSTI)

    NONE

    1998-12-01T23:59:59.000Z

    The deployment and operation of clean power generation is becoming critical as the energy and transportation sectors seek ways to comply with clean air standards and the national deregulation of the utility industry. However, for strategic business decisions, considerable analysis is required over the next few years to evaluate the appropriate application and value added from this emerging technology. To this end the Houston Advanced Research Center (HARC) is proposing a three-year industry-driven project that centers on the creation of ``The Center for Fuel Cell Research and Applications.`` A collaborative laboratory housed at and managed by HARC, the Center will enable a core group of six diverse participating companies--industry participants--to investigate the economic and operational feasibility of proton-exchange-membrane (PEM) fuel cells in a variety of applications (the core project). This document describes the unique benefits of a collaborative approach to PEM applied research, among them a shared laboratory concept leading to cost savings and shared risks as well as access to outstanding research talent and lab facilities. It also describes the benefits provided by implementing the project at HARC, with particular emphasis on HARC`s history of managing successful long-term research projects as well as its experience in dealing with industry consortia projects. The Center is also unique in that it will not duplicate the traditional university role of basic research or that of the fuel cell industry in developing commercial products. Instead, the Center will focus on applications, testing, and demonstration of fuel cell technology.

  9. High performance steam development. Final report, Phase No. 3: 1500{degree}F steam plant for industrial cogeneration prototype development tests

    SciTech Connect (OSTI)

    Duffy, T.; Schneider, P.

    1996-01-01T23:59:59.000Z

    As a key part of DOE`s and industry`s R&D efforts to improve the efficiency, cost, and emissions of power generation, a prototype High Performance Steam System (HPSS) has been designed, built, and demonstrated. The world`s highest temperature ASME Section I coded power plant successfully completed over 100 hours of development tests at 1500{degrees}F and 1500 psig on a 56,000 pound per hour steam generator, control valve and topping turbine at an output power of 5500 hp. This development advances the HPSS to 400{degrees}F higher steam temperature than the current best technology being installed around the world. Higher cycle temperatures produce higher conversion efficiencies and since steam is used to produce the large majority of the world`s power, the authors expect HPSS developments will have a major impact on electric power production and cogeneration in the twenty-first century. Coal fueled steam plants now produce the majority of the United States electric power. Cogeneration and reduced costs and availability of natural gas have now made gas turbines using Heat Recovery Steam Generators (HRSG`s) and combined cycles for cogeneration and power generation the lowest cost producer of electric power in the United States. These gas fueled combined cycles also have major benefits in reducing emissions while reducing the cost of electricity. Development of HPSS technology can significantly improve the efficiency of cogeneration, steam plants, and combined cycles. Figure 2 is a TS diagram that shows the HPSS has twice the energy available from each pound of steam when expanding from 1500{degrees}F and 1500 psia to 165 psia (150 psig, a common cogeneration process steam pressure). This report describes the prototype component and system design, and results of the 100-hour laboratory tests. The next phase of the program consists of building up the steam turbine into a generator set, and installing the power plant at an industrial site for extended operation.

  10. High-reliability gas-turbine combined-cycle development program: Phase II, Volume 3. Final report

    SciTech Connect (OSTI)

    Hecht, K.G.; Sanderson, R.A.; Smith, M.J.

    1982-01-01T23:59:59.000Z

    This three-volume report presents the results of Phase II of the multiphase EPRI-sponsored High-Reliability Gas Turbine Combined-Cycle Development Program whose goal is to achieve a highly reliable gas turbine combined-cycle power plant, available by the mid-1980s, which would be an economically attractive baseload generation alternative for the electric utility industry. The Phase II program objective was to prepare the preliminary design of this power plant. The power plant was addressed in three areas: (1) the gas turbine, (2) the gas turbine ancillaries, and (3) the balance of plant including the steam turbine generator. To achieve the program goals, a gas turbine was incorporated which combined proven reliability characteristics with improved performance features. This gas turbine, designated the V84.3, is the result of a cooperative effort between Kraftwerk Union AG and United Technologies Corporation. Gas turbines of similar design operating in Europe under baseload conditions have demonstrated mean time between failures in excess of 40,000. The reliability characteristics of the gas turbine ancillaries and balance-of-plant equipment were improved through system simplification and component redundancy and by selection of component with inherent high reliability. A digital control system was included with logic, communications, sensor redundancy, and manual backup. An independent condition monitoring and diagnostic system was also included. Program results provide the preliminary design of a gas turbine combined-cycle baseload power plant. This power plant has a predicted mean time between failure of nearly twice the 3000-h EPRI goal. The cost of added reliability features is offset by improved performance, which results in a comparable specific cost and an 8% lower cost of electricty compared to present market offerings.

  11. Information basis for developing comprehensive waste management system-US-Japan joint nuclear energy action plan waste management working group phase I report.

    SciTech Connect (OSTI)

    Nutt, M.; Nuclear Engineering Division

    2010-05-25T23:59:59.000Z

    The activity of Phase I of the Waste Management Working Group under the United States - Japan Joint Nuclear Energy Action Plan started in 2007. The US-Japan JNEAP is a bilateral collaborative framework to support the global implementation of safe, secure, and sustainable, nuclear fuel cycles (referred to in this document as fuel cycles). The Waste Management Working Group was established by strong interest of both parties, which arise from the recognition that development and optimization of waste management and disposal system(s) are central issues of the present and future nuclear fuel cycles. This report summarizes the activity of the Waste Management Working Group that focused on consolidation of the existing technical basis between the U.S. and Japan and the joint development of a plan for future collaborative activities. Firstly, the political/regulatory frameworks related to nuclear fuel cycles in both countries were reviewed. The various advanced fuel cycle scenarios that have been considered in both countries were then surveyed and summarized. The working group established the working reference scenario for the future cooperative activity that corresponds to a fuel cycle scenario being considered both in Japan and the U.S. This working scenario involves transitioning from a once-through fuel cycle utilizing light water reactors to a one-pass uranium-plutonium fuel recycle in light water reactors to a combination of light water reactors and fast reactors with plutonium, uranium, and minor actinide recycle, ultimately concluding with multiple recycle passes primarily using fast reactors. Considering the scenario, current and future expected waste streams, treatment and inventory were discussed, and the relevant information was summarized. Second, the waste management/disposal system optimization was discussed. Repository system concepts were reviewed, repository design concepts for the various classifications of nuclear waste were summarized, and the factors to consider in repository design and optimization were then discussed. Japan is considering various alternatives and options for the geologic disposal facility and the framework for future analysis of repository concepts was discussed. Regarding the advanced waste and storage form development, waste form technologies developed in both countries were surveyed and compared. Potential collaboration areas and activities were next identified. Disposal system optimization processes and techniques were reviewed, and factors to consider in future repository design optimization activities were also discussed. Then the potential collaboration areas and activities related to the optimization problem were extracted.

  12. Long Term Field Development of a Surfactant Modified Zeolite/Vapor Phase Bioreactor System for Treatment of Produced Waters for Power Generation

    SciTech Connect (OSTI)

    Lynn Katz; Kerry Kinney; Robert Bowman; Enid Sullivan; Soondong Kwon; Elaine Darby; Li-Jung Chen; Craig Altare

    2007-12-31T23:59:59.000Z

    The main goal of this research was to investigate the feasibility of using a combined physicochemical/biological treatment system to remove the organic constituents present in saline produced water. In order to meet this objective, a physical/chemical adsorption process was developed and two separate biological treatment techniques were investigated. Two previous research projects focused on the development of the surfactant modified zeolite adsorption process (DE-AC26-99BC15221) and development of a vapor phase biofilter (VPB) to treat the regeneration off-gas from the surfactant modified zeolite (SMZ) adsorption system (DE-FC26-02NT15461). In this research, the SMZ/VPB was modified to more effectively attenuate peak loads and to maintain stable biodegradation of the BTEX constituents from the produced water. Specifically, a load equalization system was incorporated into the regeneration flow stream. In addition, a membrane bioreactor (MBR) system was tested for its ability to simultaneously remove the aromatic hydrocarbon and carboxylate components from produced water. The specific objectives related to these efforts included the following: (1) Optimize the performance VPBs treating the transient loading expected during SMZ regeneration: (a) Evaluate the impact of biofilter operating parameters on process performance under stable operating conditions. (b) Investigate how transient loads affect biofilter performance, and identify an appropriate technology to improve biological treatment performance during the transient regeneration period of an SMZ adsorption system. (c) Examine the merits of a load equalization technology to attenuate peak VOC loads prior to a VPB system. (d) Evaluate the capability of an SMZ/VPB to remove BTEX from produced water in a field trial. (2) Investigate the feasibility of MBR treatment of produced water: (a) Evaluate the biodegradation of carboxylates and BTEX constituents from synthetic produced water in a laboratory-scale MBR. (b) Evaluate the capability of an SMZ/MBR system to remove carboxylates and BTEX from produced water in a field trial. Laboratory experiments were conducted to provide a better understanding of each component of the SMZ/VPB and SMZ/MBR process. Laboratory VPB studies were designed to address the issue of influent variability and periodic operation (see DE-FC26-02NT15461). These experiments examined multiple influent loading cycles and variable concentration loadings that simulate air sparging as the regeneration option for the SMZ system. Two pilot studies were conducted at a produced water processing facility near Farmington, New Mexico. The first field test evaluated SMZ adsorption, SMZ regeneration, VPB buffering, and VPB performance, and the second test focused on MBR and SMZ/MBR operation. The design of the field studies were based on the results from the previous field tests and laboratory studies. Both of the biological treatment systems were capable of removing the BTEX constituents in the laboratory and in the field over a range of operating conditions. For the VPB, separation of the BTEX constituents from the saline aqueous phase yielded high removal efficiencies. However, carboxylates remained in the aqueous phase and were not removed in the combined VPB/SMZ system. In contrast, the MBR was capable of directly treating the saline produced water and simultaneously removing the BTEX and carboxylate constituents. The major limitation of the MBR system is the potential for membrane fouling, particularly when the system is treating produced water under field conditions. The combined process was able to effectively pretreat water for reverse osmosis treatment and subsequent downstream reuse options including utilization in power generation facilities. The specific conclusions that can be drawn from this study are summarized.

  13. NREL Develops Technique to Measure Membrane Thickness and Defects in Polymer Electrode Membrane Fuel Cells (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-11-01T23:59:59.000Z

    This fact sheet describes NREL's accomplishments in fuel cell membrane electrode assembly research and development. Work was performed by the Hydrogen Technologies and Systems Center and the National Center for Photovoltaics.

  14. Reservoir analysis study, Naval Petroleum Reserve No. 1, Elk Hills Field, Kern County, California: Phase 3 report, economic development and production plan

    SciTech Connect (OSTI)

    Not Available

    1988-07-01T23:59:59.000Z

    Jerry R. Bergeson and Associates, Inc. (Bergeson) has completed Phase 3 of the Reservoir Analysis, Naval Petroleum Reserve Number 1, Elk Hills Oilfield, California. The objective of this phase of the study was to establish the economic potential for the field by determining the optimum economic plan for development and production. The optimum economic plan used net cash flow analysis to evaluate future expected Department of Energy revenues less expenses and investments for proved developed, proved undeveloped, probable, possible and possible-enhanced oil recovery (EOR) reserves assigned in the Phase 2 study. The results of the Phase 2 study were used to define future production flowstreams. Additional production scheduling was carried out to evaluate accelerated depletion of proved developed reserves in the 29R, 31 C/D Shale and Northwest Stevens T Sand/N Shale Reservoirs. Production, cost and investment schedules were developed for the enhanced oil recovery projects identified in Phase 2. Price forecasts were provided by the Department of Energy. Operating costs and investment requirements were estimated by Bergeson. 4 figs., 48 tabs.

  15. Development of a technique for ex-reactor heating of electrodes and for obtaining voltage-current characteristics of multi-cell thermionic fuel elements

    SciTech Connect (OSTI)

    Kalandarishvili, A.G.; Mailov, G.M.; Igumnov, B.N.; Bisko, V.A. [I.N. Vekua Sukhumi Inst. for Physics and Engineering, Tbilisi (Georgia)

    1995-12-31T23:59:59.000Z

    This paper presents results of development of a technique for ex-reactor heating with simultaneous recording of voltage-current characteristics of multi-cell thermionic fuel elements (TFE). Heating pulses were applied to electrodes of a thermionic energy converter (TIC), and between these pulses in the antiphase to them there were applied shorter pulses. The TIC emitter was heated by energy of an electric current flowing from the collector (back current heating). Comparison of TIC voltage-current characteristics, obtained for direct (using electric heater) and back current (current from the collector) heating, shows that for the same conditions they differ only slightly. Significant difference may be observed in the case of different profiles along the collector working surface. Results are given of the investigation of multi-cell thermionic fuel assemblies conducted using this technique. The developed technique of the TFE diagnostics can be successfully employed to assess the device quality. Pre-loop testing of multi-cell TFE by the method of back currents allows for cost effective and expeditious thermovacuum treatment of the TFE on thermal stands and for checking of its serviceability prior to its mounting into an irradiation loop or reactor-converter, enables improvements to the TFE design, monitoring of its electric parameters, for example, after vibration testing, and TFE accelerated testing in the most arduous conditions (thermocycling, loss of vacuum, etc.).

  16. As new computer architectures are developed to exploit large-scale data-level parallelism, techniques are

    E-Print Network [OSTI]

    Wills, Linda Mary

    Abstract As new computer architectures are developed to exploit large-scale data-level parallelism, such as convolution, discrete cosine transform (DCT), and motion estimation [1]. These applications usually have a tremendous potential for parallelism in that they include a large percentage of independent operations

  17. Development of a method of measuring relative phase difference between sending and receiving voltage on a power line

    E-Print Network [OSTI]

    Rackley, Benton Tiburce

    1950-01-01T23:59:59.000Z

    Westinghouse Phase Angle Meter . . . 10 6. Schematic of a Standard Phase Angle Meter . 17 7. Schematic of Converted Phase Angle Meter . . 18 8. Meter As Normally Connected To Power Line . 20 9 . Laboratory Circuit 10. Laboratorv Set Up 21 22 11. 9raph... conditions on the important lines. The attendant could then know when given lines are approaching instability and precautions could be taken on loading. BIBLIOGRAPHY BOOKS 1. Westinghouse Electric and Manufacturing Company, Electrical Transmission...

  18. Application of phase-retrieval x-ray diffractometry to carbon doped SiGe(C)/Si(C) superlattice structures. II. High resolution reconstruction using neural network root finder technique

    SciTech Connect (OSTI)

    Dilanian, Ruben A.; Nikulin, Andrei Y.; Darahanau, Aliaksandr V.; Hester, James; Zaumseil, Peter [School of Physics, Monash University, Clayton, Victoria 3800 (Australia); Australian Nuclear Science and Technology Organisation (ANSTO), Private Mail Bag 1, Menai, New South Wales 2234 (Australia); IHP, Im Technologiepark 25, D-15236 Frankfurt (Germany)

    2006-06-01T23:59:59.000Z

    A neural network root finder approach for finding complex roots of high-degree complex polynomials was applied as part of the phase-retrieval x-ray diffractometry technique to reconstruct strain profiles in SiGe(C)/Si(C) superlattice structures. The high spatial resolution, 5 A, as a result of significantly higher degree of the complex polynomial, 1400 roots, allowed us to obtain more accurate results for the strain profile distribution in SiGe(C)/Si(C) superlattice structures. Previously, such high quality analysis was fundamentally impossible due to the limitations imposed by conventional numerical methods of finding complex polynomial roots.

  19. Development of a Raman spectroscopy technique to detect alternate transportation fuel hydrocarbon intermediates in complex combustion environments.

    SciTech Connect (OSTI)

    Ekoto, Isaac W.; Barlow, Robert S.

    2012-12-01T23:59:59.000Z

    Spontaneous Raman spectra for important hydrocarbon fuels and combustion intermediates were recorded over a range of low-to-moderate flame temperatures using the multiscalar measurement facility located at Sandia/CA. Recorded spectra were extrapolated to higher flame temperatures and then converted into empirical spectral libraries that can readily be incorporated into existing post-processing analysis models that account for crosstalk from overlapping hydrocarbon channel signal. Performance testing of the developed libraries and reduction methods was conducted through an examination of results from well-characterized laminar reference flames, and was found to provide good agreement. The diagnostic development allows for temporally and spatially resolved flame measurements of speciated hydrocarbon concentrations whose parent is more chemically complex than methane. Such data are needed to validate increasingly complex flame simulations.

  20. Development of a Front Tracking Method for Two-Phase Micromixing of Incompressible Viscous Fluids with Interfacial Tension in Solvent Extraction

    SciTech Connect (OSTI)

    Zhou, Yijie [ORNL; Lim, Hyun-Kyung [ORNL; de Almeida, Valmor F [ORNL; Navamita, Ray [State University of New York, Stony Brook; Wang, Shuqiang [State University of New York, Stony Brook; Glimm, James G [ORNL; Li, Xiao-lin [State University of New York, Stony Brook; Jiao, Xiangmin [ORNL

    2012-06-01T23:59:59.000Z

    This progress report describes the development of a front tracking method for the solution of the governing equations of motion for two-phase micromixing of incompressible, viscous, liquid-liquid solvent extraction processes. The ability to compute the detailed local interfacial structure of the mixture allows characterization of the statistical properties of the two-phase mixture in terms of droplets, filaments, and other structures which emerge as a dispersed phase embedded into a continuous phase. Such a statistical picture provides the information needed for building a consistent coarsened model applicable to the entire mixing device. Coarsening is an undertaking for a future mathematical development and is outside the scope of the present work. We present here a method for accurate simulation of the micromixing dynamics of an aqueous and an organic phase exposed to intense centrifugal force and shearing stress. The onset of mixing is the result of the combination of the classical Rayleigh- Taylor and Kelvin-Helmholtz instabilities. A mixing environment that emulates a sector of the annular mixing zone of a centrifugal contactor is used for the mathematical domain. The domain is small enough to allow for resolution of the individual interfacial structures and large enough to allow for an analysis of their statistical distribution of sizes and shapes. A set of accurate algorithms for this application requires an advanced front tracking approach constrained by the incompressibility condition. This research is aimed at designing and implementing these algorithms. We demonstrate verification and convergence results for one-phase and unmixed, two-phase flows. In addition we report on preliminary results for mixed, two-phase flow for realistic operating flow parameters.

  1. COLLABORATIVE RESEARCH:USING ARM OBSERVATIONS & ADVANCED STATISTICAL TECHNIQUES TO EVALUATE CAM3 CLOUDS FOR DEVELOPMENT OF STOCHASTIC CLOUD-RADIATION

    SciTech Connect (OSTI)

    Somerville, Richard

    2013-08-22T23:59:59.000Z

    The long-range goal of several past and current projects in our DOE-supported research has been the development of new and improved parameterizations of cloud-radiation effects and related processes, using ARM data, and the implementation and testing of these parameterizations in global models. The main objective of the present project being reported on here has been to develop and apply advanced statistical techniques, including Bayesian posterior estimates, to diagnose and evaluate features of both observed and simulated clouds. The research carried out under this project has been novel in two important ways. The first is that it is a key step in the development of practical stochastic cloud-radiation parameterizations, a new category of parameterizations that offers great promise for overcoming many shortcomings of conventional schemes. The second is that this work has brought powerful new tools to bear on the problem, because it has been a collaboration between a meteorologist with long experience in ARM research (Somerville) and a mathematician who is an expert on a class of advanced statistical techniques that are well-suited for diagnosing model cloud simulations using ARM observations (Shen).

  2. Polymer Development for Enhanced Delivery of Phenol in a Solid-Liquid Two-Phase Partitioning Bioreactor

    E-Print Network [OSTI]

    Daugulis, Andrew J.

    Bioreactor George P. Prpich and Andrew J. Daugulis* Department of Chemical Engineering, Queen's University, Kingston, Ontario K7L 3N6, Canada Two-Phase Partitioning Bioreactors (TPPBs) have traditionally been used concentration. In an effort to overcome these limitations the Two-Phase Partitioning Bioreactor (TPPB) concept

  3. Development and application of a high speed digital data acquisition technique to study steam bubble collapse using particle image velocimetry

    E-Print Network [OSTI]

    Schmidl, William Daniel

    1992-01-01T23:59:59.000Z

    John Poston ( Head of Department ) ABSTRACT Development anil Appl&cat&on of a. H&vh Speed D&g&tal Data A?qu&s&t&on Techn&que to Study Steam Bubble & 'ollapse us&ng Part&cle Image L'elo imetry I August 1090) K&)liam Dan&el Schr&n Jl. B S . 1&nited... vnth the practical applicatloils of the hardware used in this prelect. TABLE OF CONTENTS CHAPTER Page I INTRODUCTION I 1 Background I 9 Background for Pulsed Laser Velocimetry I 3 tlethodnlogy for Particle Image Velocimetry 14 Background...

  4. Study of Laminar Flow Forced Convection Heat Transfer Behavior of a Phase Change Material Fluid

    E-Print Network [OSTI]

    Ravi, Gurunarayana

    2010-01-14T23:59:59.000Z

    with constant peripheral temperature and uniform axial and peripheral temperature, were considered in the case of circular tubes. An effective specific heat technique was used to model the phase change process assuming a hydrodynamically fully-developed flow...

  5. Detonation-wave technique for on-load deposit removal from surfaces exposed to fouling; Part 1: Experimental investigation and development of the method

    SciTech Connect (OSTI)

    Hanjalic, K. (Univ. of Erlangen-Nuernberg (Germany). Lehrstuhl fuer Stroemungsmechanik); Smajevic, I. (Univ. of Sarajevo, Bosnia (Yugoslavia))

    1994-01-01T23:59:59.000Z

    The paper presents a description and results of the experimental research, development, and full-scale testing of a new technique for cleaning gas-swept surfaces exposed to fouling, such as found in boilers, furnaces, heat exchangers, reactors, and gas ducts, by means of detonation waves. Part 1 describes the principles and reports on experimental investigations and optimization of the technique. Part 2 reports on several years of experience in applying the technique in full-scale operation in two large coal-fired boilers. Experiments involved detailed measurements of the pressure wave characteristics at a laboratory-scale model of a boiler furnace at a range of operating conditions and produced necessary information for optimum design and operation of the detonation wave generator. The investigation enabled a close insight into the detonation and shock wave generation, their behavior during propagation through the connecting ducts, and attenuation in the inner space of the model furnace. A good indication has also been obtained of the wave impact and effects on deposit-removal from different packages of tube bundles, which were placed in the model boiler in order to mimic boiler heating surfaces.

  6. Preparation of Ag Schottky contacts on n-type GaN bulk crystals grown in nitrogen rich atmosphere by the hydride vapor phase epitaxy technique

    SciTech Connect (OSTI)

    Stübner, R., E-mail: ronald.stuebner@physik.tu-dresden.de; Kolkovsky, Vl.; Weber, J. [Technische Universität Dresden, 01062 Dresden (Germany); Leibiger, Gunnar; Habel, Frank [Freiberger Compound Materials GmbH, 09599 Freiberg (Germany)

    2014-10-14T23:59:59.000Z

    Electrical properties of Schottky contacts on n-type GaN grown in nitrogen rich atmosphere with different N/Ga ratios by hydride vapor phase epitaxy were investigated. We show that tunneling of electrons from the conduction band of GaN to the metal is dominant in our samples. The quality of Schottky contacts does not only depend on surface preparation but also on the growth conditions of the crystals. Schottky contacts on these crystals show an increasing deterioration when higher N/Ga growth ratios are used. We correlate our results with the presence of negatively charged gallium vacancies in the samples. These charges compensate the positively charged donors and lead to a significant increase in series resistance.

  7. DEVELOPMENT OF IMPROVED TECHNIQUES FOR SATELLITE REMOTE SENSING OF CLOUDS AND RADIATION USING ARM DATA, FINAL REPORT

    SciTech Connect (OSTI)

    Minnis, Patrick [NASA Langley Research Center, Hampton, VA

    2013-06-28T23:59:59.000Z

    During the period, March 1997 – February 2006, the Principal Investigator and his research team co-authored 47 peer-reviewed papers and presented, at least, 138 papers at conferences, meetings, and workshops that were supported either in whole or in part by this agreement. We developed a state-of-the-art satellite cloud processing system that generates cloud properties over the Atmospheric Radiation (ARM) surface sites and surrounding domains in near-real time and outputs the results on the world wide web in image and digital formats. When the products are quality controlled, they are sent to the ARM archive for further dissemination. These products and raw satellite images can be accessed at http://cloudsgate2.larc.nasa.gov/cgi-bin/site/showdoc?docid=4&cmd=field-experiment-homepage&exp=ARM and are used by many in the ARM science community. The algorithms used in this system to generate cloud properties were validated and improved by the research conducted under this agreement. The team supported, at least, 11 ARM-related or supported field experiments by providing near-real time satellite imagery, cloud products, model results, and interactive analyses for mission planning, execution, and post-experiment scientific analyses. Comparisons of cloud properties derived from satellite, aircraft, and surface measurements were used to evaluate uncertainties in the cloud properties. Multiple-angle satellite retrievals were used to determine the influence of cloud structural and microphysical properties on the exiting radiation field.

  8. Development and application of thin-layer spectroelectrochemical techniques for the study of organosulfur monolayers adsorbed at gold

    SciTech Connect (OSTI)

    Simmons, N.

    1997-10-08T23:59:59.000Z

    A main research interest is the characterization of monolayers formed by the spontaneous adsorption of organosulfur compounds at gold. This dissertation describes the development and application of long optical pathlength thin-layer spectroelectrochemistry in an attempt to address key issues regarding the reactivity of surface-immobilized molecules. The first section of this introductory chapter briefly describes the general approach to the preparation and characterization of these films. The last section provides an overview of the main principles and advantages of thin-layer spectroelectrochemistry for studying surface-adsorbed species. The body of this dissertation is divided into four chapters. Chapter 2 consists of a paper describing the design, construction, and characterization of a cuvette-based LOPTLC. Chapter 3 is a paper which examines the reductive desorption process using thin-layer spectroelectrochemistry to monitor and identify the desorption product. Chapter 4 is a paper describing the characterization of monolayers functionalized with a catechol terminal group which serves as a redox transformable coordination site for metal ion binding. Chapter 5 discusses the application of thin-layer spectroelectrochemistry to acid-base reactivity studies of surface-immobilized molecules. The final section provides some general conclusions and a prospectus for future studies. These chapters have been processed separately for inclusion on the data base. This report contains the introduction, references, and general conclusions. 78 refs.

  9. Engineering development of coal-fired high performance power systems, Phase II and Phase III. Quarter progress report, April 1, 1996--June 30, 1996

    SciTech Connect (OSTI)

    NONE

    1996-11-01T23:59:59.000Z

    Work is presented on the development of a coal-fired high performance power generation system by the year 2000. This report describes the design of the air heater, duct heater, system controls, slag viscosity, and design of a quench zone.

  10. Research, development and demonstration of a fuel cell/battery powered bus system. Phase 1, Final report

    SciTech Connect (OSTI)

    NONE

    1990-02-28T23:59:59.000Z

    Purpose of the Phase I effort was to demonstrate feasibility of the fuel cell/battery system for powering a small bus (under 30 ft or 9 m) on an urban bus route. A brassboard powerplant was specified, designed, fabricated, and tested to demonstrate feasibility in the laboratory. The proof-of-concept bus, with a powerplant scaled up from the brassboard, will be demonstrated under Phase II.

  11. Novel selective surface flow (SSF{trademark}) membranes for the recovery of hydrogen from waste gas streams. Phase 2: Technology development, final report

    SciTech Connect (OSTI)

    Anand, M.; Ludwig, K.A.

    1996-04-01T23:59:59.000Z

    The objective of Phase II of the Selective Surface Flow Membrane program was Technology Development. Issues addressed were: (i) to develop detailed performance characteristics on a 1 ft{sup 2} multi- tube module and develop design data, (ii) to build a field test rig and complete field evaluation with the 1 ft{sup 2} area membrane system, (iii) to implement membrane preparation technology and demonstrate membrane performance in 3.5 ft long tube, (iv) to complete detailed process design and economic analysis.

  12. Phase 1 -- 4

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Requirements" " " "Phase Two - Initial Project Development" "Replace Std Task 2-1","DO RFP Development - On Site Consultation","FEMP Services will provide technical consultation...

  13. Measurement of the Nickel/Nickel Oxide Phase Transition in High Temperature Hydrogenated Water Using the Contact Electric Resistance (CER) Technique

    SciTech Connect (OSTI)

    S.A. Attanasio; D.S. Morton; M.A. Ando; N.F. Panayotou; C.D. Thompson

    2001-05-08T23:59:59.000Z

    Prior studies of Alloy 600 and Alloy X-750 have shown the existence of a maximum in stress corrosion cracking (SCC) susceptibility in high temperature water (e.g., at 360 C), when testing is conducted over a range of dissolved (i.e., aqueous) hydrogen (H{sub 2}) concentrations. It has also been shown that this maximum in SCC susceptibility tends to occur in proximity to the nickel/nickel oxide (Ni/NiO) phase transition, suggesting that oxide phase stability may affect primary water SCC (PWSCC) resistance. Previous studies have estimated the Ni/NiO transition using thermodynamic calculations based on free energies of formation for NiO and H{sub 2}O. The present study reports experimental measurements of the Ni/NiO transition performed using a contact electric resistance (CER) instrument. The CER is capable of measuring the surface resistance of a metal to determine whether it is oxide-covered or oxide-free at a given condition. The transition aqueous hydrogen (H{sub 2}) concentration corresponding to the Ni/NiO equilibrium was measured at 288, 316, 338 and 360 C using high purity Ni specimens. The results showed an appreciable deviation (i.e., 7 to 58 scc H{sub 2}/kg H{sub 2}O) between the measured Ni/NiO transition and the theoretical Ni/NiO transition previously calculated using free energy data from the Journal of Solution Chemistry. The CER-measured position of the Ni/NiO transition is in good agreement with the maxima in PWSCC susceptibility at 338 and 360 C. The measured Ni/NiO transition provides a reasonable basis for estimating the aqueous H{sub 2} level at which the maximum in SCC susceptibility is likely to be observed at temperatures lower than 338 to 360 C, at which SCC tests are time-consuming to perform. Limited SCC data are presented which are consistent with the observation that SCC susceptibility is maximized near the Ni/NiO transition at 288 C.

  14. Development of a coal-fired combustion system for industrial process heating applications. Phase 3 final report, November 1992--December 1994

    SciTech Connect (OSTI)

    NONE

    1995-09-26T23:59:59.000Z

    A three phase research and development program has resulted in the development and commercialization of a Cyclone Melting System (CMS{trademark}), capable of being fueled by pulverized coal, natural gas, and other solid, gaseous, or liquid fuels, for the vitrification of industrial wastes. The Phase 3 research effort focused on the development of a process heater system to be used for producing value added glass products from the vitrification of boiler/incinerator ashes and industrial wastes. The primary objective of the Phase 3 project was to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential for successful commercialization. The demonstration test consisted of one test run with a duration of 105 hours, approximately one-half (46 hours) performed with coal as the primary fuel source (70% to 100%), the other half with natural gas. Approximately 50 hours of melting operation were performed vitrifying approximately 50,000 lbs of coal-fired utility boiler flyash/dolomite mixture, producing a fully-reacted vitrified product.

  15. Development of submicron particle size classification and collection techniques for nuclear facility off-gas streams. [Diffusion battery and electrofluidized bed

    SciTech Connect (OSTI)

    Hohorst, F.A.; Fernandez, S.J.

    1981-02-01T23:59:59.000Z

    High efficiency particulate air (HEPA) filters are an essential part of nuclear facility off-gas cleanup systems. However, HEPA-rated sampling filters are not the most appropriate samplers for the particle penetrating off-gas cleanup systems. Previous work at the Idaho Chemical Processing Plant (ICPP) estimated perhaps 5% of the radioactivity that challenged sampling filters penetrated them in the form of submicron particles - typically less than 0.2 microns. Accordingly, to evaluate these penetrating aerosols more fully, a suitable robust monitoring system for size differentiation and measurement of submicron particles was developed. A literature survey revealed that the diffusion battery was the best choice for particle size classification and that the electrofluidized bed was the best method for particle collection in ICPP off-gas streams. This report describes the laboratory study and in-plant demonstration of these two techniques.

  16. Journal of Light Emitting Diodes Vol 2 N0 1, April 2010 1 Abstract--In metal organic vapor phase epitaxy we developed

    E-Print Network [OSTI]

    Wetzel, Christian M.

    Journal of Light Emitting Diodes Vol 2 N0 1, April 2010 1 Abstract-- In metal organic vapor phase epitaxy we developed GaInN/GaN quantum well material suitable for 500 ­ 580 nm light emitting diodes at longer wavelengths. Index Terms-- a-plane GaN, GaInN, Green light emitting diode, m-plane GaN I

  17. The use of Enterobacter cloacae ATCC 43560 in the development of a two-phase partitioning bioreactor for the

    E-Print Network [OSTI]

    Daugulis, Andrew J.

    bioreactor for the destruction of hexahydro-1,3,5-trinitro-1,3,5-s-triazine (RDX) Ian B. Pudge a , Andrew J-triazine (RDX) by Enterobacter cloacae ATCC 43560 was investigated, and a two-phase partitioning bioreactor-based substrate delivery, and high bioreactor productivity. Through consideration of the critical log P of E

  18. UBC Social Ecological Economic Development Studies (SEEDS) Student Report Integrating Vermicomposting into AMS SUB Operations -Phase 3 -Compiled presentations

    E-Print Network [OSTI]

    Vermicomposting into AMS SUB Operations - Phase 3 - Compiled presentations GRS 497B November 04, 2014 634 1679 TO CHANGE THE WORLD social equity ecological health economic prosperity #12;#12;OBJECTIVE Explore material, production of humus ACTS AS: nutrient recycler, soil conditioner RESULTS IN: IMPROVED SOIL

  19. Development of a neural network model for the prediction of liquid holdup in two-phase horizontal flow

    E-Print Network [OSTI]

    Shippen, Mack Edward

    2001-01-01T23:59:59.000Z

    -phase effects. Because the correlation is simple, it is still used in certain applications and the Lockhart-Martinelli dimensionless correlating parameter (Eq. I) appears in several modern correlations. sr;Pops. I Pr sii (dPldy). . [vrv p, po J p. v, 'o...

  20. Power system identification toolbox: Phase two progress

    SciTech Connect (OSTI)

    Trudnowski, D.J.

    1994-08-01T23:59:59.000Z

    This report describes current progress on a project funded by the Bonneville Power Administration (BPA) to develop a set of state-of-the-art analysis software (termed the Power System Identification [PSI] Toolbox) for fitting dynamic models to measured data. The project is being conducted as a three-phase effort. The first phase, completed in late 1992, involved investigating the characteristics of the analysis techniques by evaluating existing software and developing guidelines for best use. Phase Two includes extending current software, developing new analysis algorithms and software, and demonstrating and developing applications. The final phase will focus on reorganizing the software into a modular collection of documented computer programs and developing user manuals with instruction and application guidelines. Phase Two is approximately 50% complete; progress to date and a vision for the final product of the PSI Toolbox are described. The needs of the power industry for specialized system identification methods are particularly acute. The industry is currently pushing to operate transmission systems much closer to theoretical limits by using real-time, large-scale control systems to dictate power flows and maintain dynamic stability. Reliably maintaining stability requires extensive system-dynamic modeling and analysis capability, including measurement-based methods. To serve this need, the BPA has developed specialized system-identification computer codes through in-house efforts and university contract research over the last several years. To make full integrated use of the codes, as well as other techniques, the BPA has commissioned Pacific Northwest Laboratory (PNL) to further develop the codes and techniques into the PSI Toolbox.

  1. Structure and composition of phases occurring in austenitic stainless steels in thermal and irradiation environments

    SciTech Connect (OSTI)

    Lee, E.H.; Maziasz, P.J.; Rowcliffe, A.F.

    1980-01-01T23:59:59.000Z

    Transmission electron diffraction techniques coupled with quantitative x-ray energy dispersive spectroscopy have been used to characterize the phases which develop in austenitic stainless steels during exposure to thermal and to irradiation environments. In AISI 316 and Ti-modified stainless steels some thirteen phases have been identified and characterized in terms of their crystal structure and chemical composition. Irradiation does not produce any completely new phases. However, as a result of radiation-induced segregation principally of Ni and Si, and of enhanced diffusion rates, several major changes in phase relationships occur during irradiation. Firstly, phases characteristic of remote regions of the phase diagram appear unexpectedly and dissolve during postirradiation annealing (radiation-induced phases). Secondly, some phases develop with their compositions significantly altered by the incorporation of Ni or Si (radiation-modified phases).

  2. Phase I-B development of kinematic Stirling/Rankine commercial gas-fired heat-pump system. Final report, September 1983-December 1985

    SciTech Connect (OSTI)

    Monahan, R.E.

    1986-07-01T23:59:59.000Z

    The Kinematic Stirling/Rankine gas heat pump concept is based on the application of a Stirling engine that has been under development for over a decade. The engine has been converted to natural gas and is characterized with many thousand hours of operating experience. The goal of the project is to develop a commercial-size Stirling engine-driven gas heat pump with a cooling capacity of 10-ton, and a COP (heating) of 1.8 and COP (cooling) of 1.1. The project is a multi-phase development with commercialization planned for 1989. In this phase, an HVAC systems manufacturer (Borg-Warner) is working with SPS to develop a prototype gas-heat-pump system. To date, a piston-type open-shaft refrigeration compressor was selected as the best match for the engine. Both the engine and compressor have been tested and characterized by performance maps, and the experimental heat-pump systems designed, built, and preliminary testing performed. Close agreement with computer model output has been achieved. SPS has continued to focus on improving the Stirling-engine performance and reliability for the gas-heat-pump application.

  3. Phase 1-supplemental development of a kinematic Stirling/Rankine commercial gas-fired heat-pump system. Final report, January 1989-June 1989

    SciTech Connect (OSTI)

    Monahan, R.

    1989-06-01T23:59:59.000Z

    The kinematic Stirling/Rankine gas heat pump concept is based on the application of a Stirling engine that has been under development for over a decade. The engine has been converted to natural gas and is characterized with many thousand hours of operating experience. The goal of the project is to develop a commercial size Stirling engine-driven gas heat pump with a cooling capacity of 10 tons, a COP (heating) of 1.8 and a COP (cooling) of 1.1. The project is a multi-phase development with commercialization planned for the mid-1990's. In previous phases, an HVAC-systems manufacturer (York International) had been working with SPS to develop a prototype gas-heat-pump system. To date, two generations of prototype GHP systems have been built and tested and have demonstrated significant operating cost savings over the conventional electric heat pump. Under the program, a number of design and manufacturing process changes were made to the engine to reduce costs and improve endurance and shaft efficiency and are described. The adaptation and operation of a computer optimization code was accomplished under the program and is reported herein.

  4. Open cycle heat pump development for local resource use Phase II district heating case study analysis: Progress report, 1 January 1989--30 March 1989

    SciTech Connect (OSTI)

    DiBella, F.; Becker, F.E.; Glick, J.

    1989-05-01T23:59:59.000Z

    A district heating system is proposed that uses low-level waste- energy sources, and a quasi open-cycle steam heat pump as a means of upgrading the energy in the form of hot water to use as a transport medium in the system. the use of a water-based, open-cycle heat pump appears to be extremely well suited in terms of its potential thermodynamic performance, cost, and environmental safety compared to more typical organic gased closed cycle systems. The Phase II case study provides a detailed analysis of a district heating system that utilizes the open cycle steam heat pump concept developed in Phase I. This quarterly report describes the energy audit performed on the heat source and heat sink.

  5. Phase-locked OH-PLIF of Oscillating Flame in Micro Channels FAN, Yong1*, SUZUKI, Yuji1, KASAGI, Nobuhide1

    E-Print Network [OSTI]

    Kasagi, Nobuhide

    excitation lines [6]. Experimental setup of phase-locked OH-PLIF imaging has been developedPhase-locked OH-PLIF of Oscillating Flame in Micro Channels FAN, Yong1*, SUZUKI, Yuji1, KASAGI in the oscillation process are investigated with phase-locked OH-PLIF imaging technique. 2. Flame velocity Figures. 1

  6. The "extended phase space" approach to quantum geometrodynamics: what can it give for the development of quantum gravity?

    E-Print Network [OSTI]

    T. P. Shestakova

    2008-10-22T23:59:59.000Z

    The talk is devoted to the "extended phase space" approach to Quantum Geometrodynamics. The premises that have led to the formulation of this approach are briefly reviewed, namely, non-trivial topology of the Universe which implies the absence of asymptotic states, in contrast to situations one usually deals in ordinary quantum field theory; parametrization noninvariance in the Wheeler - DeWitt theory; the problem of time and the absence of dynamical evolution. Then we discuss the main features of the approach: Hamiltonian dynamics in extended phase space, gauge-dependent Schrodinger equation for the wave function of the Universe, the description of quantum Universe from the viewpoint of observers in a wide enough class of reference frames. After all, we analyse problems arising in this approach: the structure of Hilbert space in Quantum Geometrodynamics, the relations between solutions for the wave function of the Universe corresponding to various reference frames, properties of a medium to be necessary to fix a reference frame, the transition to classical limit.

  7. Phase A: Initial Development of an Advanced Diagnostic Procedure for Air-Side Retrofits in Commercial Buildings

    E-Print Network [OSTI]

    Reddy, T. A.; Kissock, J. K.; Katipamula, S.; Claridge, D. E.

    1994-01-01T23:59:59.000Z

    The objective of this research is to develop a diagnostic approach that involves analyzing monitored whole-building cooling and heating energy use in large commercial buildings in order to determine the effectiveness of air-side energy retrofits...

  8. Naval Petroleum Reserve No. 2: Buena Vista Oil and Gas Field, Kern County, California: Proved reserves, Developed and undeveloped, Sections 6 and 8: Development history and exploitation techniques, Effective July 1, 1987: (Final technical report)

    SciTech Connect (OSTI)

    Carey, K.B.

    1987-09-09T23:59:59.000Z

    The research for the initial Naval Petroleum Reserve No. 2 (NPR-2), study Task Assignment 010, showed the possibility of undeveloped proved reserves in the Shallow Pool on Government leases. Task Assignment 010C included a study to confirm or disprove the possibility. The six-section area, which is highlighted on Exhibit M-2, was chosen as the area for specific study of this subject. The Shallow Oil Zone, as depicted on Exhibit S-1, was the focal point of the study in the area. Competitive development of Government land with adjacent privately held land is an issue which has often been raised regarding NPR-2; however, it has never been formally addressed. Task Assignment 010C commissioned a study of the subject in the same six-section area designated for the study of proved undeveloped reserves. The producing formations in the Buena Vista Field of NPR-2 are very similar to the producing formations in the Elk Hills Field of NPR-1 to the north. It is possible that some of the successful development techniques utilized in NPR-2 by the various operators might enhance production efficiency at NPR-1. Task Assignment 010C included a detailed task of researching techniques used in NPR-2 for possible application in NPR-1. Because the detailed tasks of Task Assignment 010C are divergent in scope, a composite summary of the study's research is not included in this report. Each task's research is detailed in a separate Discussion section. Exhibits for these discussions are contained in an Exhibit section at the end of this volume. The appendices include: task assignment; DOE letters to lessees; Evans, Carey and Crozier letters to lessees; reports and studies from lessees; core analysis data; production data; geologic picks of formation tops; and annotated well logs. 22 figs., 6 tabs.

  9. Development of whole-building energy design targets for commercial buildings: Phase 1, Planning: Volume 1, Final report

    SciTech Connect (OSTI)

    Crawley, D.B.; Briggs, R.S.; Jones, J.W.; Seaton, W.W.; Kaufman, J.E.; Deringer, J.J.; Kennett, E.W.

    1987-04-01T23:59:59.000Z

    This report describes background research for preparation of a plan for development of whole-building energy targets for new commercial buildings. The lead laboratory for this program is the Pacific Northwest Laboratory. A wide variety of expertise and resources from industry, academia, other government entities, and other DOE laboratories are used in planning, reviewing and conducting research activities. Cooperative and complementary research development, and technology transfer activities with other interested organizations are actively pursued.

  10. Development of improved processing and evaluation methods for high reliability structural ceramics for advanced heat engine applications Phase II. Final report

    SciTech Connect (OSTI)

    Pujari, V.J.; Tracey, D.M.; Foley, M.R. [and others

    1996-02-01T23:59:59.000Z

    The research program had as goals the development and demonstration of significant improvements in processing methods, process controls, and nondestructive evaluation (NDE) which can be commercially implemented to produce high reliability silicon nitride components for advanced heat engine applications at temperatures to 1370{degrees}C. In Phase I of the program a process was developed that resulted in a silicon nitride - 4 w% yttria HIP`ed material (NCX 5102) that displayed unprecedented strength and reliability. An average tensile strength of 1 GPa and a strength distribution following a 3-parameter Weibull distribution were demonstrated by testing several hundred buttonhead tensile specimens. The Phase II program focused on the development of methodology for colloidal consolidation producing green microstructure which minimizes downstream process problems such as drying, shrinkage, cracking, and part distortion during densification. Furthermore, the program focused on the extension of the process to gas pressure sinterable (GPS) compositions. Excellent results were obtained for the HIP composition processed for minimal density gradients, both with respect to room-temperature strength and high-temperature creep resistance. Complex component fabricability of this material was demonstrated by producing engine-vane prototypes. Strength data for the GPS material (NCX-5400) suggest that it ranks very high relative to other silicon nitride materials in terms of tensile/flexure strength ratio, a measure of volume quality. This high quality was derived from the closed-loop colloidal process employed in the program.

  11. Design and development of Stirling engines for stationary-power-generation applications in the 500- to 3000-hp range. Phase I final report

    SciTech Connect (OSTI)

    None

    1980-10-01T23:59:59.000Z

    The first phase of the design and development of Stirling engines for stationary power generation applications in the 373 kW (500 hp) to 2237 kW (3000 hp) range was completed. The tasks in Phase I include conceptual designs of large Stirling cycle stationary engines and program plan for implementing Phases II through V. Four different heater head designs and five different machine designs were prepared in sufficient detail to select a design recommended for development in the near future. A second order analysis was developed for examining the various loss mechanisms in the Stirling engine and for predicting the thermodynamic performance of these engines. The predicted engine thermal brake efficiency excluding combustion efficiency is approximately 42% which exceeds the design objective of 40%. The combustion system designs were prepared for both a clean fuel combustion system and a two-stage atmospheric fluidized bed combustion system. The calculated combustion efficiency of the former is 90% and of the latter is 80%. Heat transport systems, i.e., a heat exchanger for the clean fuel combustion system and a sodium heat pipe system for coal and other nonclean fuel combustion systems were selected. The cost analysis showed that for clean fuels combustion the proposed 2237 kW (3000 hp) system production cost is $478,242 or $214/kW ($159/hp) which is approximately 1.86 times the cost of a comparable size diesel engine. For solid coal combustion the proposed 2237 kW (3000 hp) system production cost is approximately $2,246,242 which corresponds to a cost to power capacity ratio of $1004/kW ($749/hp). The two-stage atmospheric fluidized bed combustion system represents 81% of the total cost; the engine represents 14% depending on the future price differential between coal and conventional clean fuels, a short payback period of the proposed Stirling cycle engine/FBC system may justify the initial cost. (LCL)

  12. Development of a methodology for defining whole-building energy design targets for commercial buildings: Phase 2, Development Concept Stage Report

    SciTech Connect (OSTI)

    Deringer, J.J. (American Inst. of Architects, Washington, DC (USA)); Hall, J.D. (Deringer Group, Riva, MD (USA)); Jones, J.W. (American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., New York, NY (USA)); McKay, H.N. (Illuminating Engineering Society of North America, New York, NY (USA)); Alley, P.K. (Pacific Northwest Lab., Richland, WA (USA))

    1990-09-01T23:59:59.000Z

    The primary focus of the Whole-Building Energy Design Targets project is to develop a flexible methodology for setting target guidelines with which to assess energy efficiency in commercial building design. The proposed methodology has several innovative features. In this report, the authors document their work to define the software development concepts upon which the overall Targets methodology will be based. Three task reports are included here. Development of the user interface--that critical connection through which the human end-user (architect, engineer, planner, owner) will apply the methodology--is described in Section 2. In Section 3, the use of the software engineering process in Targets model development efforts is described. Section 4 provides details on the data and system integration task, in which interactions between and among all the major components, termed modules, of the Targets model were examined to determine how to put them together to create a methodology that is effective and easy to use. 4 refs., 26 figs.

  13. Hardware Development of a Laboratory-Scale Microgrid Phase 1--Single Inverter in Island Mode Operation: Base Year Report, December 2000 -- November 2001

    SciTech Connect (OSTI)

    Venkataramanan, G.; Illindala, M. S.; Houle, C.; Lasseter, R. H.

    2002-11-01T23:59:59.000Z

    This report summarizes the activities of the first year of a three-year project to develop control software for micro-source distributed generation systems. The focus of this phase was on internal energy storage requirements, the modification of an off-the-shelf motor drive system inverter to supply utility-grade ac power, and a single inverter system operating in island mode. The report provides a methodology for determining battery energy storage requirements, a method for converting a motor drive inverter into a utility-grade inverter, and typical characteristics and test results of using such an inverter in a complex load environment.

  14. Development of a methodology for defining whole-building energy design targets for commercial buildings: Phase 2, Development Concept Stage Report

    SciTech Connect (OSTI)

    McKay, H.N. (Illuminating Engineering Society of North America, New York, NY (USA)); Deringer, J.J. (American Inst. of Architects, Washington, DC (USA)); Jones, J.W. (American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, GA (USA)); Hall, J.D. (Deringer Group, Riva, MD (USA))

    1990-09-01T23:59:59.000Z

    This report documents eight tasks performed as part of the Whole-Building Energy Design Targets project, in which detailed conceptual approaches were produced for each element of the proposed Targets model. The eight task reports together describe the important modules proposed for inclusion in the Targets model: input module, energy module, characteristic development moduel, building cost module, analysis control module, energy cost module, search routines module, and economic analysis module. 16 refs., 16 figs., 5 tabs.

  15. Advanced emissions control development program: Phase 2 final report, February 29, 1996--August 31, 1997. Revision 1

    SciTech Connect (OSTI)

    Evans, A.P.; Holmes, M.J.; Redinger, K.E.

    1998-04-01T23:59:59.000Z

    The objective of the advanced emissions control development program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of air toxics from coal-fired boilers. Ideally, the project aim is to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESPs), fabric filters (baghouse), and wet flue gas desulfurization. Development work to date has concentrated on the capture of mercury, other trace metals [antimony, arsenic, barium, cadmium, chromium, cobalt, lead, manganese, nickel, and selenium], fine particulate and hydrogen chloride. Some general comments that can be made about the control of air toxics while burning a high-sulfur bituminous coal are as follows: (1) particulate control devices such as ESP`s and baghouses do a good job of removing non-volatile trace metals; (2) mercury goes through particulate control devices almost entirely uncontrolled; (3) wet scrubbing can effectively remove hydrogen chloride; and (4) wet scrubbers show good potential for the removal of mercury when operated under certain conditions, however additional work is needed to understand the relationship between the wet scrubber`s operating conditions and mercury capture.

  16. Stored CO2 and Methane Leakage Risk Assessment and Monitoring Tool Development: CO2 Capture Project Phase 2 (CCP2)

    SciTech Connect (OSTI)

    Dan Kieki

    2008-09-30T23:59:59.000Z

    The primary project goal is to develop and test tools for optimization of ECBM recovery and geologic storage of CO{sub 2} in coalbeds, in addition to tools for monitoring CO{sub 2} sequestration in coalbeds to support risk assessment. Three critical topics identified are (1) the integrity of coal bed methane geologic and engineered systems, (2) the optimization of the coal bed storage process, and (3) reliable monitoring and verification systems appropriate to the special conditions of CO{sub 2} storage and flow in coals.

  17. Thin-film photovoltaic partnership -- Apollo{reg{underscore}sign} thin film process development: Phase 1 Technical Report, May 1998--April 1999

    SciTech Connect (OSTI)

    Cunningham, D.W.; Skinner, D.E.

    1999-10-26T23:59:59.000Z

    The objective of this Phase 1 subcontract was to establish an efficient production plating system capable of depositing thin-film CdTe and CdS on substrates up to 0.55 m{sup 2}. This baseline would then be used to build on and extend deposition areas to 0.94 m{sup 2} in the next two phases. The following achievements have been demonstrated: {sm{underscore}bullet} Chemical-bath deposition of CdS and electrochemical deposition of CdTe was demonstrated on 0.55 m{sup 2} substrates. The films were characterized using optical and electrical techniques, to increase the understanding of the materials and aid in loss analysis. {sm{underscore}bullet} A stand-alone, prototype CdTe reaction tank was built and commissioned, allowing the BP Solar team to perform full-scale trials as part of this subcontract. {sm{underscore}bullet} BP Solar installed two outdoor systems for reliability and performance testing. {sm{underscore}bullet} The 2-kW, ground-mounted, grid-connected system contains seventy-two 0.43-m{sup 2} Apollo{reg{underscore}sign} module interconnects. {sm{underscore}bullet} Two modules have been supplied to NREL for evaluation on their Performance and Energy Rating Test bed (PERT) for kWh evaluation. {sm{underscore}bullet} BP Solar further characterized the process waste stream with the aim to close-loop the system. Currently, various pieces of equipment are being investigated for suitability of particle and total organic compound removal.

  18. Second-generation PFBC systems research and development: Phase 2, Best efficiency approach in light of current data

    SciTech Connect (OSTI)

    Robertson, A.; Burkhard, F.; Carli, G. [and others

    1993-09-01T23:59:59.000Z

    The low-Btu gas is produced in the carbonizer by pyrolysis/mild devolatilization of coal in a fluidized bed reactor. Because this unit operates at temperatures much lower than gasifiers currently under development, it also produces char residue. Left untreated, the fuel gas will contain hydrogen sulfide and sulfur-containing tar/light oil vapors; therefore, lime-based sorbents are injected into the carbonizer to catalytically enhance tar cracking and to capture sulfur as calcium sulfide. Sulfur is captured in situ, and the raw fuel gas is fired hot. Thus expensive, complex, fuel gas heat exchangers and chemical or sulfur-capturing bed cleanup systems that are part of the coal gasification combined-cycle plants now being developed are eliminated. The char and calcium sulfide produced in the carbonizer and contained in the fuel gas as elutriated particles are captured by high-temperature filters, rendering the fuel gas essentially particulate-free and able to meet New Source Performance Standards (NSPS). The captured material, with carbonizer bed drains, is collected in a central hopper and injected into the CPFBC through a nitrogen-aerated non-mechanical valve. The high excess air in the combustor transforms the calcium sulfide to sulfate, allowing its disposal with the normal CPFBC spent sorbent. In the CPFBC, the burning char heats the high-excess-air flue gas to 1600{degree}F; any surplus heat is transferred to the FBHE by the recirculation of solids (sorbent and coal fly ash) between the two units. Controlled recirculation is accomplished with cyclone separators and non-mechanical valves. The FBHE contains tube surfaces that cool the circulating solids. Because of the low fluidizing velocity in the FBHE ({le} 1/2 ft/s), the risk of tube erosion is virtually eliminated.

  19. Development and testing of a high efficiency advanced coal combustor: Phase 3 industrial boiler retrofit. Final report

    SciTech Connect (OSTI)

    Patel, R.L.; Thornock, D.E.; Miller, B.G.; Scaroni, A.W.; McGowan, J.G.

    1998-03-01T23:59:59.000Z

    Economics and/or political intervention may one day dictate the conversion from oil or natural gas to coal in boilers that were originally designed to burn oil or gas. In recognition of this future possibility the US Department of Energy, Federal Energy Technical Center (DOE-FETC) supported a program led by ABB Power Plant Laboratories with support from the Energy and Fuels Research Center of Penn State University with the goal of demonstrating the technical and economic feasibility of retrofitting a gas/oil designed boiler to burn micronized coal. In support of the overall goal the following specific objectives were targeted: develop a coal handling/preparation system that can meet the technical and operational requirements for retrofitting microfine coal on a boiler designed for burning oil or natural gas; maintain boiler thermal performance in accordance with specifications when burning oil or natural gas; maintain NOx emissions at or below 0.6 lb NO{sub 2} per million Btu; achieve combustion efficiencies of 98% or higher; and determine economic payback periods as a function of key variables.

  20. Engineering scale development of the vapor-liquid-solid (VLS) process for the production of silicon carbide fibrils. Phase 2

    SciTech Connect (OSTI)

    Ohnsorg, R.W.; Hollar, W.E. Jr.; Lau, S.K. [Carborundum Co., Niagara Falls, NY (United States). Technology Div.; Ko, F.K.; Schatz, K. [Advanced Product Development, Bristol, PA (United States)

    1995-04-01T23:59:59.000Z

    As reinforcements for composites, VLS SiC fibrils have attractive mechanical properties including high-strength, high modulus, and excellent creep resistance. To make use of their excellent mechanical properties in a composite, a significant volume fraction (>10%) of aligned, long fibrils (>2 mm) needs to be consolidated in the ceramic matrix. The fibrils must be processed into an assembly that will allow for composite fabrication while maintaining fibril alignment and length. With Advanced Product Development (APD) as the yam fabrication subcontractor, Carborundum investigated several approaches to achieve this goaL including traditional yam-forming processes such as carding and air-vortex spinning and nontraditional processes such as tape forming and wet casting. Carborundum additionally performed an economic analysis for producing 500 and 10,000 pounds of SiC fibrils annually using both conservative and more aggressive processing parameters. With the aggressive approach, the projected costs for SiC fibril production for 500 and 10,000 pounds per year are $1,340/pound and $340/pound, respectively.

  1. Development of a self-consistent thermodynamic- and transport-property correlation framework for the coal conversion industry. Phase I. Semiannual report, September 1, 1980-February 28, 1981

    SciTech Connect (OSTI)

    Starling, K.E.; Lee, L.L.; Kumar, K.H.

    1981-01-01T23:59:59.000Z

    During the first half year of this research program the following elements of research have been performed: (1) the development of an improved pure component data bank, including collection and processing of data which is 70% complete as to substance, (2) calculation of distillable coal fluid thermodynamic properties using a multiparameter corresponding states correlation, (3) application of the most general density-cubic equation of pure fluids and (4) initiation of research to extend the corresponding states correlation framework to polar fluids. Primary conclusions of the first phase of this research program are that the three parameter corresponding states correlation predicts lighter coal fluid properties to a reasonable level of accuracy, and that a cubic equation can predict pure fluid thermodynamic properties on par with non-cubic equations of state.

  2. CrowdPhase: crowdsourcing the phase problem

    SciTech Connect (OSTI)

    Jorda, Julien; Sawaya, Michael R. [Institute for Genomics and Proteomics, 611 Charles Young Drive East, Los Angeles, CA 90095 (United States); Yeates, Todd O., E-mail: yeates@mbi.ucla.edu [Institute for Genomics and Proteomics, 611 Charles Young Drive East, Los Angeles, CA 90095 (United States); Molecular Biology Institute, 611 Charles Young Drive East, Los Angeles, CA 90095 (United States); University of California, 611 Charles Young Drive East, Los Angeles, CA 90095 (United States)

    2014-06-01T23:59:59.000Z

    The idea of attacking the phase problem by crowdsourcing is introduced. Using an interactive, multi-player, web-based system, participants work simultaneously to select phase sets that correspond to better electron-density maps in order to solve low-resolution phasing problems. The human mind innately excels at some complex tasks that are difficult to solve using computers alone. For complex problems amenable to parallelization, strategies can be developed to exploit human intelligence in a collective form: such approaches are sometimes referred to as ‘crowdsourcing’. Here, a first attempt at a crowdsourced approach for low-resolution ab initio phasing in macromolecular crystallography is proposed. A collaborative online game named CrowdPhase was designed, which relies on a human-powered genetic algorithm, where players control the selection mechanism during the evolutionary process. The algorithm starts from a population of ‘individuals’, each with a random genetic makeup, in this case a map prepared from a random set of phases, and tries to cause the population to evolve towards individuals with better phases based on Darwinian survival of the fittest. Players apply their pattern-recognition capabilities to evaluate the electron-density maps generated from these sets of phases and to select the fittest individuals. A user-friendly interface, a training stage and a competitive scoring system foster a network of well trained players who can guide the genetic algorithm towards better solutions from generation to generation via gameplay. CrowdPhase was applied to two synthetic low-resolution phasing puzzles and it was shown that players could successfully obtain phase sets in the 30° phase error range and corresponding molecular envelopes showing agreement with the low-resolution models. The successful preliminary studies suggest that with further development the crowdsourcing approach could fill a gap in current crystallographic methods by making it possible to extract meaningful information in cases where limited resolution might otherwise prevent initial phasing.

  3. Coal liquefaction process streams characterization and evaluation. Novel analytical techniques for coal liquefaction: Fluorescence microscopy

    SciTech Connect (OSTI)

    Rathbone, R.F.; Hower, J.C.; Derbyshire, F.J. [Kentucky Univ., Lexington, KY (United States). Center for Applied Energy Research

    1991-10-01T23:59:59.000Z

    This study demonstrated the feasibility of using fluorescence and reflectance microscopy techniques for the examination of distillation resid materials derived from direct coal liquefaction. Resid, as defined here, is the 850{degrees}F{sup +} portion of the process stream, and includes soluble organics, insoluble organics and ash. The technique can be used to determine the degree of hydrogenation and the presence of multiple phases occurring within a resid sample. It can also be used to infer resid reactivity. The technique is rapid, requiring less than one hour for sample preparation and examination, and thus has apparent usefulness for process monitoring. Additionally, the technique can distinguish differences in samples produced under various process conditions. It can, therefore, be considered a potentially useful technique for the process developer. Further development and application of this analytical method as a process development tool is justified based on these results.

  4. Electrochemical Techniques

    SciTech Connect (OSTI)

    Chen, Gang; Lin, Yuehe

    2008-07-20T23:59:59.000Z

    Sensitive and selective detection techniques are of crucial importance for capillary electrophoresis (CE), microfluidic chips, and other microfluidic systems. Electrochemical detectors have attracted considerable interest for microfluidic systems with features that include high sensitivity, inherent miniaturization of both the detection and control instrumentation, low cost and power demands, and high compatibility with microfabrication technology. The commonly used electrochemical detectors can be classified into three general modes: conductimetry, potentiometry, and amperometry.

  5. Thin Film Materials and Processing Techniques for a Next Generation Photovoltaic Device: Cooperative Research and Development Final Report, CRADA Number CRD-12-470

    SciTech Connect (OSTI)

    van Hest, M.

    2013-08-01T23:59:59.000Z

    This research extends thin film materials and processes relevant to the development and production of a next generation photovoltaic device.

  6. Prudhoe Bay Oil Production Optimization: Using Virtual intelligence Techniques, Stage One: Neural Model Building

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    SPE 77659 Prudhoe Bay Oil Production Optimization: Using Virtual intelligence Techniques, Stage One.998 respectively. This is the first phase in the development of a tool to maximize total field oil production capacity and subsequent oil production. Figure 2 illustrates the range of daily average temperatures from

  7. Development and testing of a high efficiency advanced coal combustor: Phase III, Industrial boiler retrofit. Quarterly technical progress report No. 14, January 1, 1995--March 31, 1995

    SciTech Connect (OSTI)

    Patel, R.L.; Borio, R. [ABB Combustion Engineering Systems, Windsor, CT (United States). U.S. Power Plant Labs.; Scaroni, A.W.; Miller, B.G. [Pennsylvania State Univ., PA (United States); McGowan, J.G. [Massachusetts Univ., MA (United States)

    1995-04-28T23:59:59.000Z

    The objective of this project is to retrofit the previously developed High Efficiency Advanced Coal Combustor (HEACC) to a standard gas/oil designed industrial boiler to assess the technical and economic viability of displacing premium fuels with microfine coal. This report documents the technical aspects of this project during the fourteenth quarter (January `95 through March `95) of the program. The ABB project team met with cognizant DOE-PETC and Penn State personnel on February 15, 1995 at Penn State to discuss our ideas for a new burner (RSFC-based) to replace the HEACC burner prior to the long term ({approximately}1000 hrs) demonstration phase of this project. The main reasons for the proposed new burner were to improve combustion efficiencies and NO{sub x} reduction. Recent, experience at MIT with 5 million Btu/hr coal firing experiments on RSFC burner have shown remarkable performance. Results indicate that RSFC-based burner has the potential to produce lower NO{sub x} and higher carbon conversion efficiencies than the HEACC burner. M.I.T. developed the RSFC burner and obtained a patent for the concept. A decision was made to go with the new, RSFC-based burner during 1000 hr demonstration. ABB-CE will fund the costs ({approximately}$50K) for design/fabrication of the proposed new burner. Penn State plans to improve coal handling by installation of a gravimetric feeder and redesign/installation of a mass flow bottom on the surge bin.

  8. Development of asphalts and pavements using recycled tire rubber. Phase 1, Technical feasibility. Technical progress report, September 1, 1994--August 31, 1995

    SciTech Connect (OSTI)

    Bullin, J.A.; Davison, R.R.; Glover, C.J. [and others

    1996-06-01T23:59:59.000Z

    About 285 million tires are discarded every year; less than 100 million are currently being recycled, with the rest being placed in landfills and other waste sites. A solution to reduce the littering of the environment is to use ground tire rubber in road construction. Currently, about 27 million tons of asphalt are used each year in road construction and maintenance of the country`s 2 million miles of roads. If all of the waste tire rubber could be combined with asphalt in road construction, it would displace less than 6% of the total asphalt used each year, yet could save about 60 trillion Btus annually. Purpose of this project is to provide data needed to optimize the performance of rubber-asphalt concretes. The first phase is to develop asphalts and recycling agents tailored for compatibility with ground tire rubber. Chapter 2 presents results on Laboratory Testing and Evaluation: fractionate asphalt material, reblending for aromatic asphalts, verifying optimal curing parameters, aging of blends, and measuring ductilities of asphalt-rubber binders. Chapter 3 focuses on Evaluating Mixture Characteristics (modified binders). Chapter 4 covers Adhesion Test Development (water susceptibility is also covered). The final chapter focuses on the Performance/Economic Update and Commercialization Plan.

  9. Methanol engine conversion feasibility study: Phase 1

    SciTech Connect (OSTI)

    Not Available

    1983-03-01T23:59:59.000Z

    This report documents the selection of the surface-assisted ignition technique to convert two-stroke Diesel-cycle engines to methanol fuel. This study was the first phase of the Florida Department of Transportation methanol bus engine development project. It determined both the feasibility and technical approach for converting Diesel-cycle engines to methanol fuel. State-of-the-art conversion options, associated fuel formulations, and anticipated performance were identified. Economic considerations and technical limitations were examined. The surface-assisted conversion was determined to be feasible and was recommended for hardware development.

  10. Development and initial evaluation of a dynamic species-resolved model for gas phase chemistry and size-resolved gas//particle

    E-Print Network [OSTI]

    Dabdub, Donald

    condensed products of gas phase oxidation, the present model can be viewed as the most detailed SOA of the semivolatile or nonvolatile products of VOC oxidation between the gas and particle phases. Chem- ical analysis of the SOA identifies many products that condense, thereby allowing formulation of gas phase path- ways

  11. Phase transitions and equation of state of CsI under high pressure and the development of a focusing system for x-rays

    SciTech Connect (OSTI)

    Wu, Yan.

    1990-11-01T23:59:59.000Z

    The phase transitions and equation of state of ionic solid cesium iodide were studied under high pressure and room temperature in a diamond anvil cell. The studies were carried out using both energy dispersive and angular dispersive diffraction methods on synchrotron radiation sources over the pressure range from atmospheric pressure to over 300 gigapascals (3 million atmospheres). CsI undergoes a distinct phase transition at about 40 GPa, a pressure that is much lower than the reported insulator-metal transition at 110 GPa, from the atmospheric pressure B2(CsCl) structure to an orthorhombic structure. At higher pressures, a continuous distortion in the structure was observed with a final structure similar to a hcp lattice under ultra high pressure. No volume discontinuity was observed at the insulator-metal transition. The newly found transition sequence is different from the result of previous static compression studies. The current structure has a smaller unit cell volume than the previous assignment. This has resolved a long existing controversy among the previous static compression studies, the dynamic compression studies, and the theoretical studies. The current results also explain the apparent discrepancy between the present study and the previous static studies. We also present the development of a focusing system for high energy x-rays (> 12 keV) that is particularly suited for high pressure diffraction studies. This system uses a pair of multilayer coated spherical mirrors in a Kirkpatrick-Baez geometry. A focused beam size less than 10 micron in diameter can be readily achieved with sufficient intensity to perform diffraction studies. 93 refs., 46 figs., 15 tabs.

  12. New ALS Technique Guides IBM in Next-Generation Semiconductor...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New ALS Technique Guides IBM in Next-Generation Semiconductor Development New ALS Technique Guides IBM in Next-Generation Semiconductor Development Print Wednesday, 21 January 2015...

  13. Development of a Hydrogasification Process for Co-Production of Substitute Natural Gas (SNG) and Electric Power from Western Coals-Phase I

    SciTech Connect (OSTI)

    Raymond Hobbs

    2007-05-31T23:59:59.000Z

    The Advanced Hydrogasification Process (AHP)--conversion of coal to methane--is being developed through NETL with a DOE Grant and has successfully completed its first phase of development. The results so far are encouraging and have led to commitment by DOE/NETL to begin a second phase--bench scale reactor vessel testing, expanded engineering analysis and economic perspective review. During the next decade new means of generating electricity, and other forms of energy, will be introduced. The members of the AHP Team envision a need for expanded sources of natural gas or substitutes for natural gas, to fuel power generating plants. The initial work the team has completed on a process to use hydrogen to convert coal to methane (pipeline ready gas) shows promising potential. The Team has intentionally slanted its efforts toward the needs of US electric utilities, particularly on fuels that can be used near urban centers where the greatest need for new electric generation is found. The process, as it has evolved, would produce methane from coal by adding hydrogen. The process appears to be efficient using western coals for conversion to a highly sought after fuel with significantly reduced CO{sub 2} emissions. Utilities have a natural interest in the preservation of their industry, which will require a dramatic reduction in stack emissions and an increase in sustainable technologies. Utilities tend to rank long-term stable supplies of fuel higher than most industries and are willing to trade some ratio of cost for stability. The need for sustainability, stability and environmentally compatible production are key drivers in the formation and progression of the AHP development. In Phase II, the team will add a focus on water conservation to determine how the basic gasification process can be best integrated with all the plant components to minimize water consumption during SNG production. The process allows for several CO{sub 2} reduction options including consumption of the CO{sub 2} in the original process as converted to methane. The process could under another option avoid emissions following the conversion to SNG through an adjunct algae conversion process. The algae would then be converted to fuels or other products. An additional application of the algae process at the end use natural gas fired plant could further reduce emissions. The APS team fully recognizes the competition facing the process from natural gas and imported liquid natural gas. While we expect those resources to set the price for methane in the near-term, the team's work to date indicates that the AHP process can be commercially competitive, with the added benefit of assuring long-term energy supplies from North American resources. Conversion of coal to a more readily transportable fuel that can be employed near load centers with an overall reduction of greenhouses gases is edging closer to reality.

  14. Development of accelerator based spatially resolved ion beam analysis techniques for the study of plasma materials interactions in magnetic fusion devices

    E-Print Network [OSTI]

    Barnard, Harold Salvadore

    2014-01-01T23:59:59.000Z

    Plasma-material interactions (PMI) in magnetic fusion devices pose significant scientific and engineering challenges for the development of steady-state fusion power reactors. Understanding PMI is crucial for the develpment ...

  15. Development of a Spectroscopic Technique for Continuous Online Monitoring of Oxygen and Site-Specific Nitrogen Isotopic Composition of Atmospheric Nitrous Oxide

    E-Print Network [OSTI]

    Harris, Eliza

    Nitrous oxide is an important greenhouse gas and ozone-depleting-substance. Its sources are diffuse and poorly characterized, complicating efforts to understand anthropogenic impacts and develop mitigation policies. Online, ...

  16. Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Phase 1, Baseline tests

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The primary objective of the project is to investigate the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NOx emissions and boiler performance on Unit 2 at Gulf Power Company`s Plant Lansing Smith located near Lynn Haven, Florida. The project will characterize emissions and performance of a tangentially-fired boiler operating in the following configurations: Baseline ``as-found`` configuration: Phase 1; retrofitted low NO{sub x} concentric firing system (LNCFS) Level 2 and simulated low NO{sub x} bulk furnace staging (LNBFS): Phase 2; retrofitted low NO{sub x} concentric firing system (LNCFS) Level 3, Phase 3a and simulated LNCFS Level 1, Phase 3b.

  17. 1McNEILL: JITTER IN PHASE-LOCKED LOOPS Jitter in Phase-Locked Loops

    E-Print Network [OSTI]

    McNeill, John A.

    1McNEILL: JITTER IN PHASE-LOCKED LOOPS Jitter in Phase-Locked Loops John McNeill Worcester Polytechnic Institute #12;2McNEILL: JITTER IN PHASE-LOCKED LOOPS Course Overview · Basic Theory · Applications · Measurement Techniques · Test Issues · Design Measurement Techniques Design Tools #12;3McNEILL: JITTER

  18. Demand response enabling technology development

    E-Print Network [OSTI]

    Arens, Edward; Auslander, David; Huizenga, Charlie

    2008-01-01T23:59:59.000Z

    behavior in developing a demand response future. Phase_II_Demand Response Enabling Technology Development Phase IIYi Yuan The goal of the Demand Response Enabling Technology

  19. Techniques for measuring atmospheric aerosols at the High Resolution Fly's Eye experiment

    E-Print Network [OSTI]

    The HiRes Collaboration

    2005-12-15T23:59:59.000Z

    We describe several techniques developed by the High Resolution Fly's Eye experiment for measuring aerosol vertical optical depth, aerosol horizontal attenuation length, and aerosol phase function. The techniques are based on measurements of side-scattered light generated by a steerable ultraviolet laser and collected by an optical detector designed to measure fluorescence light from cosmic-ray air showers. We also present a technique to cross-check the aerosol optical depth measurement using air showers observed in stereo. These methods can be used by future air fluorescence experiments.

  20. Review : integration of EMI technique with global vibration technique

    E-Print Network [OSTI]

    Ni, Suteng

    2013-01-01T23:59:59.000Z

    In the last decade, the development of Structural Health Monitoring (SHM) has been skyrocketing because of the serious consequences that come with structural failure. Traditional damage detection techniques, also known as ...

  1. Phase modulated multiphoton microscopy

    E-Print Network [OSTI]

    Karki, Khadga Jung; Pullerits, Tonu

    2015-01-01T23:59:59.000Z

    We show that the modulation of the phases of the laser beams of ultra-short pulses leads to modulation of the two photon fluorescence intensity. The phase modulation technique when used in multi-photon microscopy can improve the signal to noise ratio. The technique can also be used in multiplexing the signals in the frequency domain in multi-focal raster scanning microscopy. As the technique avoids the use of array detectors as well as elaborate spatiotemporal multiplexing schemes it provides a convenient means to multi-focal scanning in axial direction. We show examples of such uses. Similar methodology can be used in other non-linear scanning microscopies, such as second or third harmonic generation microscopy.

  2. The project PPPserve (Network based GNSS Phase Biases to enhance PPP Applications A new Service Level of GNSS Reference Station Provider) aims at the development and

    E-Print Network [OSTI]

    Schuh, Harald

    PPPserve The project PPPserve (Network based GNSS Phase Biases to enhance PPP Applications Standard (RTCM 3.2, State Space Representation = SSR) which supports PPP. New receiver hard and software are the missing link at user side to allow for PPP based phase ambiguity resolution. Applying relevant satellite

  3. Development of a real time graphical display for an FMS

    E-Print Network [OSTI]

    Jones, Thomas Hal

    1985-01-01T23:59:59.000Z

    . To develop test criteria and evaluate the performance of the graphics package against the criteria. 5. To present the design process and final product in written form for future users of the graphics package. 1. 5 Organization of this Paper The design... process for the graphics package wi 1 1 use the System Development Methodology (SDM) developed by the Air Force ICAM office [6]. This technique breaks the design and development process into the following categories or phases: Needs Analysis Solution...

  4. UPVG phase 2 report

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    The Utility PhotoVoltaic Group (UPVG), supported by member dues and a grant from the US Department of Energy, has as its mission the acceleration of the use of cost-effective small-scale and emerging large-scale applications of photovoltaics for the benefit of electric utilities and their customers. Formed in October, 1992, with the support of the American Public Power Association, Edison Electric Institute, and the National Rural Electric Cooperative Association, the UPVG currently has 90 members from all sectors of the electric utility industry. The UPVG`s efforts as conceived were divided into four phases: Phase 0--program plan; Phase 1--organization and strategy development; Phase 2--creating market assurance; and Phase 3--higher volume purchases. The Phase 0 effort developed the program plan and was completed early in 1993. The Phase 1 goal was to develop the necessary background information and analysis to lead to a decision as to which strategies could be undertaken by utilities to promote greater understanding of PV markets and achieve increased volumes of PV purchases. This report provides the details of the UPVG`s Phase 2 efforts to initiate TEAM-UP, its multiyear, 50-MW hardware initiative.

  5. Resin infiltration transfer technique

    DOE Patents [OSTI]

    Miller, David V. (Pittsburgh, PA); Baranwal, Rita (Glenshaw, PA)

    2009-12-08T23:59:59.000Z

    A process has been developed for fabricating composite structures using either reaction forming or polymer infiltration and pyrolysis techniques to densify the composite matrix. The matrix and reinforcement materials of choice can include, but are not limited to, silicon carbide (SiC) and zirconium carbide (ZrC). The novel process can be used to fabricate complex, net-shape or near-net shape, high-quality ceramic composites with a crack-free matrix.

  6. Gas-Phase Molecular Dynamics: High Resolution Spectroscopy and Collision Dynamics of Transient Species

    SciTech Connect (OSTI)

    Hall, G.E.

    2011-05-31T23:59:59.000Z

    This research is carried out as part of the Gas-Phase Molecular Dynamics program in the Chemistry Department at Brookhaven National Laboratory. Chemical intermediates in the elementary gas-phase reactions involved in combustion chemistry are investigated by high resolution spectroscopic tools. Production, reaction, and energy transfer processes are investigated by transient, double resonance, polarization and saturation spectroscopies, with an emphasis on technique development and connection with theory, as well as specific molecular properties.

  7. Development and testing of a high efficiency advanced coal combustor: Phase 3, Industrial boiler retrofit. Quarterly technical progress report No. 13, October 1, 1994--December 31, 1994

    SciTech Connect (OSTI)

    Patel, R.L.; Borio, R. [ABB Combustion Engineering, Inc., Windsor, CT (United States); Scaroni, A.W.; Miller, B.G. [Pennsylvania State, PA (United States); McGowan, J.G. [Massachusetts Univ. (United States)

    1995-03-07T23:59:59.000Z

    The objective of this project is to retrofit the previously developed High Efficiency Advanced Coal Combustor (HEACC) to a standard gas/oil designed industrial boiler to assess the technical and economic viability of displacing premium fuels with microfine coal. During this reporting period, activities included completing the ``Task 3 Topical Report.`` The report is being reviewed internally by the ABB CE project team. Overall, all the program goals were met except carbon conversion efficiency. Based on all the results obtained to date the ABB CE/Penn State team believes that conducting the 1000 hr demonstration (Task 5) is warranted. Since, Penn State has planned to conduct long term combustion tests on micronized coal and coal-water fuels for other DOE-funded Projects during the first quarter of 1995, the demonstration phase (Task 5) of the subject program is tentatively scheduled to begin in June 1995, pending DOE approval. Work continued under Task 4.0 to complete the ``Commercialization Plan`` with ABB CE`s cognizant Business Unit. To address the lower combustion efficiency than the original project goal (95% vs 98%) during Task 3, the data were evaluated in-detail to understand which of the key parameters might be adjusted to achieve the desired burnout. To identify reasons for this lower combustion efficiency, and to evaluate which of the key parameters (i.e, coal fineness, residence time, coal reactivities etc.) are important for maximizing the combustion efficiency, ABB CE`s proprietary mathematical model known as the Lower Furnace Program-Slice Kinetic Model (LFP-SKM) was used for simulating the combustion process in the Penn State boiler (at full load firing rate). Fuel kinetic information for this study was selected on a surrogate basis from ABB CE`s extensive in-house data base.

  8. Development of improved processing and evaluation methods for high reliability structural ceramics for advanced heat engine applications, Phase 1. Final report

    SciTech Connect (OSTI)

    Pujari, V.K.; Tracey, D.M.; Foley, M.R.; Paille, N.I.; Pelletier, P.J.; Sales, L.C.; Wilkens, C.A.; Yeckley, R.L. [Norton Co., Northboro, MA (United States)

    1993-08-01T23:59:59.000Z

    The program goals were to develop and demonstrate significant improvements in processing methods, process controls and non-destructive evaluation (NDE) which can be commercially implemented to produce high reliability silicon nitride components for advanced heat engine applications at temperatures to 1,370{degrees}C. The program focused on a Si{sub 3}N{sub 4}-4% Y{sub 2}O{sub 3} high temperature ceramic composition and hot-isostatic-pressing as the method of densification. Stage I had as major objectives: (1) comparing injection molding and colloidal consolidation process routes, and selecting one route for subsequent optimization, (2) comparing the performance of water milled and alcohol milled powder and selecting one on the basis of performance data, and (3) adapting several NDE methods to the needs of ceramic processing. The NDE methods considered were microfocus X-ray radiography, computed tomography, ultrasonics, NMR imaging, NMR spectroscopy, fluorescent liquid dye penetrant and X-ray diffraction residual stress analysis. The colloidal consolidation process route was selected and approved as the forming technique for the remainder of the program. The material produced by the final Stage II optimized process has been given the designation NCX 5102 silicon nitride. According to plan, a large number of specimens were produced and tested during Stage III to establish a statistically robust room temperature tensile strength database for this material. Highlights of the Stage III process demonstration and resultant database are included in the main text of the report, along with a synopsis of the NCX-5102 aqueous based colloidal process. The R and D accomplishments for Stage I are discussed in Appendices 1--4, while the tensile strength-fractography database for the Stage III NCX-5102 process demonstration is provided in Appendix 5. 4 refs., 108 figs., 23 tabs.

  9. Optical on line techniques for nuclear applications

    SciTech Connect (OSTI)

    Doizi, D. [CEA, Nuclear Energy Div. DEN, DANS/DPC/SECR/LSRM (France); Pailloux, A.; Maury, C.; Sirven, J. B.; Dauvois, V.; Roujou, J. L.; Rosset, C. D. [CEA, Nuclear Energy Div. DEN, DANS/DPC (France); Hartmann, J. M. [CNRS., UMR 7583, LISA, Creteil (France)

    2011-07-01T23:59:59.000Z

    Optical on line techniques enable non intrusive physical measurements in harsh environments (high temperature, high pressure, radioactivity, ...). Optical absorption spectrometries such as UV-Visible, FTIR, CRDS have been successfully used to study gas phase speciation in different nuclear applications. LIBS which relies on laser matter interactions is a on line optical technique for solids and liquids elementary analysis. (authors)

  10. Technique development for uiper critical field studies of SmFeAs(O,F) in the 300T single turn system

    SciTech Connect (OSTI)

    Mcdonald, Ross D [Los Alamos National Laboratory; Balakirev, F. F. [Los Alamos National Laboratory; Altarawneh, M. M. [Los Alamos National Laboratory; Betts, J [Los Alamos National Laboratory; Mielke, C. H. [Los Alamos National Laboratory; Moll, Philip Jw [ETH ZURICH; Zhigadlo, N D [ETH ZURICH; Karpinski, J [ETH ZURICH; Batlogg, B. [ETH ZURICH

    2011-01-14T23:59:59.000Z

    In high temperature superconductors, such as the most recent class of iron pnictides, extremely high upper critical fields H{sub c2} are common. The determination of H{sub c2}(T) is crucial to understand the detailed nature of the superconductor, in particular H{sub c2}(T = 0K) is of great interest. It is not only related to fundamental properties of the system, it is furthermore of great importance for materials science, as it is the ultimate limit of applicability of this superconductor in high field applications. However, this important quantity can only be estimated by extrapolation, as H{sub c2}(T = 0K) well exceeds hundreds of Tesla in optimally doped SillFeAs(O,F). We are developing methods to measure Ha(T) in direct transport in the extreme magnetic fields generated by the LANL single turn magnet.

  11. Techniques and methods in nuclear materials traceability

    SciTech Connect (OSTI)

    Persiani, P.J.

    1996-08-01T23:59:59.000Z

    The nonproliferation community is currently addressing concerns that the access to special nuclear materials may increase the illicit trafficking in weapons-usable materials from civil and/or weapons material stores and/or fuel cycles systems. Illicit nuclear traffic usually involves reduced quantities of nuclear materials perhaps as samplings of a potential protracted diversionary flow from sources to users. To counter illicit nuclear transactions requires the development of techniques and methods in nuclear material traceability as an important phase of a broad forensic analysis capability. This report discusses how isotopic signatures and correlation methods were applied to determine the origins of Highly Enriched Uranium (HEU) and Plutonium samples reported as illicit trafficking in nuclear materials.

  12. Ultrafast Dynamics and Phase Changes in Solids Excited by Femtosecond Laser Pulses

    E-Print Network [OSTI]

    Mazur, Eric

    Ultrafast Dynamics and Phase Changes in Solids Excited by Femtosecond Laser Pulses A thesis pulse excites 1­20% of the valence electrons. We developed a broadband pump-probe technique to measure femtoseconds. The dielectric function provides more information than ever before on the ultrafast electronic

  13. Process for rapid detection of fratricidal defects on optics using Linescan Phase Differential Imaging

    SciTech Connect (OSTI)

    Ravizza, F L; Nostrand, M C; Kegelmeyer, L M; Hawley, R A; Johnson, M A

    2009-11-05T23:59:59.000Z

    Phase-defects on optics used in high-power lasers can cause light intensification leading to laser-induced damage of downstream optics. We introduce Linescan Phase Differential Imaging (LPDI), a large-area dark-field imaging technique able to identify phase-defects in the bulk or surface of large-aperture optics with a 67 second scan-time. Potential phase-defects in the LPDI images are indentified by an image analysis code and measured with a Phase Shifting Diffraction Interferometer (PSDI). The PSDI data is used to calculate the defects potential for downstream damage using an empirical laser-damage model that incorporates a laser propagation code. A ray tracing model of LPDI was developed to enhance our understanding of its phase-defect detection mechanism and reveal limitations.

  14. Alpha phase precipitation from phase-separated beta phase in...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alpha phase precipitation from phase-separated beta phase in a model Ti-Mo-Al alloy studied by direct coupling of transmission Alpha phase precipitation from phase-separated beta...

  15. Abstract Two-phase partitioning bioreactors (TPPBs) comprise an aqueous phase containing all non-carbon

    E-Print Network [OSTI]

    Daugulis, Andrew J.

    Abstract Two-phase partitioning bioreactors (TPPBs) comprise an aqueous phase containing all non developed to address this issue is two-phase par- titioning bioreactor (TPPB) technology which involves

  16. Combustion 2000: Phase II

    SciTech Connect (OSTI)

    Unknown

    1999-11-01T23:59:59.000Z

    The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: thermal efficiency (HHV) {ge} 47%; NOx, SOx, and particulates {le} 10% NSPS (New Source Performance Standard); coal providing {ge} 65% of heat input; all solid wastes benign; and cost of electricity {le} 90% of present plants. Phase 1, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase 1 also included preliminary R and D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. This Phase, Phase 2, had as its initial objective the development of a complete design base for the construction and operation of a HIPPS prototype plant to be constructed in Phase 3. As part of a descoping initiative, the Phase 3 program has been eliminated and work related to the commercial plant design has been ended. The rescoped program retained a program of engineering research and development focusing on high temperature heat exchangers, e.g. HITAF development (Task 2); a rescoped Task 6 that is pertinent to Vision 21 objectives and focuses on advanced cycle analysis and optimization, integration of gas turbines into complex cycles, and repowering designs; and preparation of the Phase 2 Technical Report (Task 8). This rescoped program deleted all subsystem testing (Tasks 3, 4,and 5) and the development of a site-specific engineering design and test plan for the HIPPS prototype plant (Task 7). Work reported herein is from: Task 2.1 HITAF Combustors; Task 2.2 HITAF Air Heaters; and Task 6 HIPPS Commercial Plant Design Update.

  17. Uncertainty Quantification Techniques for Sensor Calibration...

    Office of Scientific and Technical Information (OSTI)

    Uncertainty Quantification Techniques for Sensor Calibration Monitoring in Nuclear Power Plants Re-direct Destination: This report describes research towards the development of...

  18. Newberry Volcano EGS Demonstration - Phase I Results

    SciTech Connect (OSTI)

    William L. Osborn, Susan Petty, Trenton T. Cladouhos, Joe Iovenitti, Laura Nofziger, Owen Callahan, Douglas S. Perry and Paul L. Stern

    2011-10-23T23:59:59.000Z

    Phase I of the Newberry Volcano Enhanced Geothermal System (EGS) Demonstration included permitting, community outreach, seismic hazards analysis, initial microseismic array deployment and calibration, final MSA design, site characterization, and stimulation planning. The multi-disciplinary Phase I site characterization supports stimulation planning and regulatory permitting, as well as addressing public concerns including water usage and induced seismicity. A review of the project'Ã?Â?Ã?Â?s water usage plan by an independent hydrology consultant found no expected impacts to local stakeholders, and recommended additional monitoring procedures. The IEA Protocol for Induced Seismicity Associated with Enhanced Geothermal Systems was applied to assess site conditions, properly inform stakeholders, and develop a comprehensive mitigation plan. Analysis of precision LiDAR elevation maps has concluded that there is no evidence of recent faulting near the target well. A borehole televiewer image log of the well bore revealed over three hundred fractures and predicted stress orientations. No natural, background seismicity has been identified in a review of historic data, or in more than seven months of seismic data recorded on an array of seven seismometers operating around the target well. A seismic hazards and induced seismicity risk assessment by an independent consultant concluded that the Demonstration would contribute no additional risk to residents of the nearest town of La Pine, Oregon. In Phase II of the demonstration, an existing deep hot well, NWG 55-29, will be stimulated using hydroshearing techniques to create an EGS reservoir. The Newberry Volcano EGS Demonstration is allowing geothermal industry and academic experts to develop, validate and enhance geoscience and engineering techniques, and other procedures essential to the expansion of EGS throughout the country. Successful development will demonstrate to the American public that EGS can play a significant role in reducing foreign energy dependence, and provide clean, renewable, baseload geothermal power generation in the State of Oregon.

  19. Ana KARABATIC: Precise Point Positioning (PPP) An alternative technique for ground based GNSS troposphere monitoring

    E-Print Network [OSTI]

    Schuh, Harald

    Ana KARABATIC: Precise Point Positioning (PPP) ­ An alternative technique for ground and computational demands, an alternative processing technique has to be applied Precise Point Positioning (PPP). PPP is a technique that uses undifferenced single or dualfrequency pseudorange and carrier phase

  20. New developments in event generator tuning techniques

    E-Print Network [OSTI]

    Andy Buckley; Hendrik Hoeth; Heiko Lacker; Holger Schulz; Jan Eike von Seggern

    2010-05-28T23:59:59.000Z

    Data analyses in hadron collider physics depend on background simulations performed by Monte Carlo (MC) event generators. However, calculational limitations and non-perturbative effects require approximate models with adjustable parameters. In fact, we need to simultaneously tune many phenomenological parameters in a high-dimensional parameter-space in order to make the MC generator predictions fit the data. It is desirable to achieve this goal without spending too much time or computing resources iterating parameter settings and comparing the same set of plots over and over again. We present extensions and improvements to the MC tuning system, Professor, which addresses the aforementioned problems by constructing a fast analytic model of a MC generator which can then be easily fitted to data. Using this procedure it is for the first time possible to get a robust estimate of the uncertainty of generator tunings. Furthermore, we can use these uncertainty estimates to study the effect of new (pseudo-) data on the quality of tunings and therefore decide if a measurement is worthwhile in the prospect of generator tuning. The potential of the Professor method outside the MC tuning area is presented as well.

  1. Live pathogens: rapid detection technique developed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatestCenter (LMI-EFRC) -ChoicesListLive Discussion

  2. Gloryhole excavation: Present techniques and future concepts

    SciTech Connect (OSTI)

    Stewart, H.R.; Golby, H.M.

    1984-05-01T23:59:59.000Z

    Exploration wells drilled offshore from floating structures require blow-out preventors (BOP) at or below the seafloor. In the Beaufort Sea, where water depths are relatively shallow, unprotected BOPs are subject to potential impact from ice features. Currently, to protect the BOP from ice damage, it is installed within unretained excavations (gloryholes) below the seafloor. Since 1980, six gloryholes have been excavated for exploration drilling purposes on behalf of Gulf Canada Resources Inc. (GCRI) in water depths ranging from 18 m to 35 metres. Three of these gloryholes were completed in 1983. Recent changes in the methods used for gloryhole excavations have reduced costs. This paper reviews the excavation techniques used to date and presents a case history of a gloryhole excavated during 1983. Costs are described together with a technical evaluation of the various techniques employed. During the development phase, larger gloryholes are anticipated for well clusters. Modified dredging equipment may well be the most economical method of excavating these large depressions. The concept of ''retained'' gloryholes using a caisson is also discussed.

  3. Phases I-C, I-D and I-E development of Kinematic Stirling/Rankine commercial gas-fired heat pump system. Final report, January 1986-September 1988

    SciTech Connect (OSTI)

    Monahan, R.E.

    1988-10-01T23:59:59.000Z

    The Kinematic Stirling/Rankine gas-heat-pump concept is based on the application of a Stirling engine under development for over a decade. The engine was converted to natural gas and is characterized with many thousand hours of operating experience. The goal of the project is to develop a commercial-size Stirling engine-driven gas heat pump with a cooling capacity of 10-tons, a COP (heating) of 1.8 and a COP (cooling) of 1.1. The project is a multi-phase development with commercialization planned for 1990. In these phases, an HVAC systems manufacturer (York International) has been working with SPS to develop a prototype gas-heat-pump system. To date, two generations of prototype GHP systems have been built and tested and have demonstrated significant operating cost savings over the conventional electric heat pump. Data are presented for environmental laboratory testing of both prototype gas heat pumps as well as durability, reliability, performance, and emission testing of the V160 Stirling engine. A number of design and manufacturing process changes were made to the engine to reduce costs and improve endurance and shaft efficiency and are described.

  4. Opto-electrokinetic manipulation technique for highperformance

    SciTech Connect (OSTI)

    Kwon, Jae-Sung [Purdue University; Ravindranath, Sandeep [Purdue University; Kumar, Aloke [ORNL; Irudayaraj, Joseph [Purdue University; Wereley, Steven T. [Purdue University

    2012-01-01T23:59:59.000Z

    This communication first demonstrates bio-compatibility of a recently developed opto-electrokinetic manipulation technique, using microorganisms. Aggregation, patterning, translation, trapping and size-based separation of microorganisms performed with the technique firmly establishes its usefulness for development of a high-performance on-chip bioassay system.

  5. Acoustic techniques for localizing holdup

    SciTech Connect (OSTI)

    Vnuk, D.

    1996-09-01T23:59:59.000Z

    Material that does not come out of a process as product or waste is called holdup. When this is fissile material, its location and quantity must be determined to improve safeguards and security as well as safety at the facility. The most common method for detecting and measuring holdup is with radiation based techniques. When using them, one must consider equipment geometry, geometry of holdup, and effects of background radiation when converting the radiation measurement into a fissile material quantity. We are developing complementary techniques that use tiny acoustic transducers, which are unaffected by background radiation, to improve holdup measurements by aiding in determining the above conversion factors for holdup measurements. Thus far, we have applied three techniques, Acoustic Interferometry, Pulse Echo, and bending Wave Propagation, of which the latter appears most effective. This paper will describe each of these techniques and show how they may ultimately reduce costs and personnel radiation exposure while increasing confidence I and accuracy of holdup measurements.

  6. Innovative clean coal technology: 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. Final report, Phases 1 - 3B

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    This report presents the results of a U.S. Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. The project was conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The technologies demonstrated at this site include Foster Wheeler Energy Corporation`s advanced overfire air system and Controlled Flow/Split Flame low NOx burner. The primary objective of the demonstration at Hammond Unit 4 was to determine the long-term effects of commercially available wall-fired low NOx combustion technologies on NOx emissions and boiler performance. Short-term tests of each technology were also performed to provide engineering information about emissions and performance trends. A target of achieving fifty percent NOx reduction using combustion modifications was established for the project. Short-term and long-term baseline testing was conducted in an {open_quotes}as-found{close_quotes} condition from November 1989 through March 1990. Following retrofit of the AOFA system during a four-week outage in spring 1990, the AOFA configuration was tested from August 1990 through March 1991. The FWEC CF/SF low NOx burners were then installed during a seven-week outage starting on March 8, 1991 and continuing to May 5, 1991. Following optimization of the LNBs and ancillary combustion equipment by FWEC personnel, LNB testing commenced during July 1991 and continued until January 1992. Testing in the LNB+AOFA configuration was completed during August 1993. This report provides documentation on the design criteria used in the performance of this project as it pertains to the scope involved with the low NOx burners and advanced overfire systems.

  7. Developing a Fire Danger Rating System for the UK: FireBeaters Phase I final report. Report to the Scottish Wildfire Forum. 

    E-Print Network [OSTI]

    Legg, Colin J; Davies, Gwilym Matthew; Kitchen, Karl; Marno, Penny

    2007-01-01T23:59:59.000Z

    Introduction and objectives The objective of this research is to develop a predictive tool for the management of wildfire in the UK and for facilitating good practice by those who work with fire in semi-natural vegetation. ...

  8. Phase-Change Frame Walls (PCFWs) for On-Peak Demand Reduction and Energy Conservation in Residential Buildings: Development, Construction and Evaluation

    E-Print Network [OSTI]

    Zhang, M.; Medina, M. A.; King, J. B.

    2004-01-01T23:59:59.000Z

    The main purpose of this work was to develop a thermally enhanced frame wall that would reduce peak load air conditioning demand, shift a portion of the thermal load, and conserve energy in residential buildings. A frame wall containing...

  9. SNMR pulse sequence phase cycling

    DOE Patents [OSTI]

    Walsh, David O; Grunewald, Elliot D

    2013-11-12T23:59:59.000Z

    Technologies applicable to SNMR pulse sequence phase cycling are disclosed, including SNMR acquisition apparatus and methods, SNMR processing apparatus and methods, and combinations thereof. SNMR acquisition may include transmitting two or more SNMR pulse sequences and applying a phase shift to a pulse in at least one of the pulse sequences, according to any of a variety cycling techniques. SNMR processing may include combining SNMR from a plurality of pulse sequences comprising pulses of different phases, so that desired signals are preserved and indesired signals are canceled.

  10. Gas-phase electron diffraction studies of unstable molecules 

    E-Print Network [OSTI]

    Noble-Eddy, Robert

    2009-01-01T23:59:59.000Z

    Gas-phase electron diffraction (GED) is the only viable technique for the accurate structural study of gas-phase molecules that contain more than ~10 atoms. Recent advances in Edinburgh have made it possible to study ...

  11. artificial intelligence techniques: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    vs. "Conventional Control" Intelligent Control: Basic Techniques 164 Alan Turing and the development of Artificial Intelligence Computer Technologies and...

  12. Experimental and computational studies of hydrodynamics in three-phase and two-phase fluidized beds

    SciTech Connect (OSTI)

    Bahary, M.

    1994-12-01T23:59:59.000Z

    The objective of the present study was to investigate the hydrodynamics of three-phase fluidized beds, their rheology, and experimentally verify a predictive three fluid hydrodynamic model developed at the Illinois Institute of Technology, Chicago. The recent reviews show that there exist no such models in the literature. The IIT hydrodynamic model computes the phase velocities and the volume fractions of gas, liquid, and particulate phases. Model verification involves a comparison of these computed velocities and volume fractions to experimental values. In this thesis, a three fluid model is presented. The input into the model can be particulate viscosities either measured with a Brookfield viscometer or derived using the mathematical techniques of kinetic theory of granular flows pioneered by Savage and others. The computer simulation of a three-phase fluidized bed in an asymmetric mode qualitatively predicts the gas, liquid and solid hold-ups (volume fractions) and flow patterns in the industrially important churn-turbulent (bubbly coalesced) regimes. The computations in a fluidized bed with a symmetric distributor incorrectly showed no bubble coalescence. A combination of X-ray and {gamma}-ray densitometers was used to measure the solids and the liquid volume fractions in a two dimensional bed in the bubble coalesced regime. There is a good agreement between the theory for an asymmetric distributor and the experiments.

  13. The Preparation and Characterization of INTEC Phase 2b Composition Variation Study Glasses

    SciTech Connect (OSTI)

    B. A. Staples; B. A. Scholes; L. L. Torres; C. A. Musick; B. R. Boyle (INEEL); D. K. Peeler (SRTC); J. D. Vienna (PNNL)

    2000-02-01T23:59:59.000Z

    The second phase of the composition variation study (CVS) for the development of glass compositions to immobilize Idaho Nuclear Technology and Engineering Center (INTEC) high level wastes (HLW) is complete. This phase of the CVS addressed waste composition of high activity waste fractions (HAW) from the initial separations flowsheet. Updated estimates if INTEC calcined HLW compositions and of high activity waste fractions proposed to be separated from dissolved calcine were used as the waste component for this CVS phase. These wastes are of particular interest because high aluminum, calcium, zirconium, fluorine, potassium, and low iron and sodium content places them outside the vitrification experience in the Department of Energy complex. Because of the presence of calcium and fluorine, two major zirconia calcine components not addressed in Phase I, a series of scooping tests, designated Phase 2a, were performed. The results of these tests provided information on the effects of calcium and fluoride solubility and their impacts on product properties and composition boundary information for Phase 2b. Details and results of Phase 2a are reported separately. Through application of statistical techniques and the results of Phase 2a, a test matrix was defined for Phase 2b of the CVS. From this matrix, formulations were systematically selected for preparation and characterization with respect to visual and optical homogeneity, viscosity as a function of melt temperature, liquidus temperature (TL), and leaching properties based on response to the product consistency test. The results of preparing and characterizing the Phase 2b glasses are presented in this document. Based on the results, several formulations investigated have suitable properties for further development. A full analysis of the composition-product characteristic relationship of glasses being developed for immobilizing INTEC wastes will be performed at the completion of composition-property relationship phases of the CVS.

  14. Science Learning+: Phase 1 projects Science Learning+

    E-Print Network [OSTI]

    Rambaut, Andrew

    Science Learning+: Phase 1 projects Science Learning+ Phase 1 projects 2 December 2014 #12..............................................................................................................4 Youth access and equity in informal science learning: developing a research and practice agenda..................................................................................................5 Enhancing informal learning through citizen science..............................................6

  15. Enthalpy and mass flowrate measurements for two-phase geothermal...

    Open Energy Info (EERE)

    by Tracer dilution techniques Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: Enthalpy and mass flowrate measurements for two-phase...

  16. ALS Scientists Patent Technique To Dramatically Advance Grating...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the new gratings he's developed. Dmitriy Voronov, an ESG scientist involved in the development of the new grating technique, created the patentable, atomically perfect...

  17. Phase-space representation of digital holographic and light field imaging with application to two-phase flows

    E-Print Network [OSTI]

    Tian, Lei, Ph. D. Massachusetts Institute of Technology

    2010-01-01T23:59:59.000Z

    In this thesis, two computational imaging techniques used for underwater research, in particular, two-phase flows measurements, are presented. The techniques under study, digital holographic imaging and light field imaging, ...

  18. Silicon ingot casting: Heat Exchanger Method (HEM)/multi-wire slicing: Fixed Abrasive Slicing Technique (FAST), Phase IV. Quarterly progress report No. 2, April 1, 1980-June 30, 1980

    SciTech Connect (OSTI)

    Schmid, F.; Khattak, C.P.; Basaran, M.

    1980-08-01T23:59:59.000Z

    Silicon ingot size cast by HEM has been extended to 34 cm x 34 cm x 10 cm. A 20 kg ingot has been solidified at 3 kg/hr with no crucible attachment or ingot cracking problems. Another ingot of 26 kg weight has also been solidified. The heat treatment used to develop a graded structure caused cracking on the inside surface of the first large crucibles. The thermal conditions were altered to minimize high gradients and the cracking was eliminated. A high degree of single crystallinity has been maintained as the size of the ingots has been increased. A graphite retainer made out of flat plates was used to produce an ingot with flat sides and rounded curves. It is now possible to electroplate diamonds only on the cutting edge of the wire. The advantages associated with diamonds on the cutting edge only are lower kerf, improved accuracy by improved seating in the support rollers, and less degradation of the rollers. This has resulted in less wander of wires and will reduce costs by using less diamonds and less degradation of rollers. The main failure mechanism of wires - diamond pullout - has been minimized by using filler diamonds to prevent erosion of the nickel matrix. It has been shown that an electroplated wirepack can be used to slice three 10 cm diameter silicon ingots without significant diamond pullout. IPEG analysis of value added costs of sheet formation using conservative and optimistic extension of HEM and FAST technologies yields $27.05/m/sup 2/ ($0.191/w) and $13.49/m/sup 2/ (0.095/w), respectively. Assuming cost goals of other tasks are met, the projected costs are $0.654/w, conservatively, and $0.539/w, optimistically, for photovoltaic modules.

  19. Second generation pressurized fluidized-bed combustion (PFBC) research and development, Phase 2 --- Task 4, carbonizer testing. Volume 2, Data reconciliation

    SciTech Connect (OSTI)

    Froehlich, R.; Robertson, A.; Vanhook, J.; Goyal, A.; Rehmat, A.; Newby, R.

    1994-11-01T23:59:59.000Z

    During the period beginning November 1991 and ending September 1992, a series of tests were conducted at Foster Wheeler Development Corporation in a fluidized-bed coal carbonizer to determine its performance characteristics. The carbonizer was operated for 533 hours in a jetting fluidized-bed configuration during which 36 set points (steady-state periods) were achieved. Extensive data were collected on the feed and product stream compositions, heating values, temperatures, and flow rates. With these data, elemental and energy balances were computed to evaluate and confirm accuracy of the data. The carbonizer data were not as self-consistent as could be desired (balance closure imperfection). A software package developed by Science Ventures, Inc., of California, called BALAID, was used to reconcile the carbonizer data; the details of the reconciliation have been given in Volume 1 of this report. The reconciled data for the carbonizer were rigorously analyzed, correlations were developed, and the model was updated accordingly. The model was then used in simulating each of the 36 steady-state periods achieved in the pilot plant. The details are given in this Volume one. This Volume 2 provides details of the carbonizer data reconciliation.

  20. Assessor Training Assessment Techniques

    E-Print Network [OSTI]

    NVLAP Assessor Training Assessment Techniques: Communication Skills and Conducting an Assessment listener ·Knowledgeable Assessor Training 2009: Assessment Techniques: Communication Skills & Conducting, truthful, sincere, discrete · Diplomatic · Decisive · Selfreliant Assessor Training 2009: Assessment

  1. Phase characterization and grain size effects of nanophase Y{sub 2}O{sub 3}, ZrO{sub 2} and Y{sub 2}O{sub 3}-ZrO{sub 2} composites produced by the gas-phase condensation technique

    SciTech Connect (OSTI)

    Foster, C.M.; Bai, G.R. [Argonne National Lab., IL (United States); Parker, J.C.; Ali, M.N. [Nanophase Technologies Corp., Darien, IL (United States)

    1992-12-01T23:59:59.000Z

    Nanophase (n-) ZrO{sub 2} was produce in its pure and partially stabilized form by the gas-phase condensation method. The material was examined by x-ray diffraction and Raman scattering to obtain information on the structural evolution of the material during sintering. Two types of Y{sub 2}O{sub 3} doped ZrO{sub 2} doped ZrO{sub 2} nanophase materials were made, one by co-deposition of n-Y{sub 2}O{sub 3} and n-ZrO{sub 2}. We have determined that the co-deposition process is the most effect means of doping the n-ZrO{sub 2}.

  2. Phase characterization and grain size effects of nanophase Y[sub 2]O[sub 3], ZrO[sub 2] and Y[sub 2]O[sub 3]-ZrO[sub 2] composites produced by the gas-phase condensation technique

    SciTech Connect (OSTI)

    Foster, C.M.; Bai, G.R. (Argonne National Lab., IL (United States)); Parker, J.C.; Ali, M.N. (Nanophase Technologies Corp., Darien, IL (United States))

    1992-12-01T23:59:59.000Z

    Nanophase (n-) ZrO[sub 2] was produce in its pure and partially stabilized form by the gas-phase condensation method. The material was examined by x-ray diffraction and Raman scattering to obtain information on the structural evolution of the material during sintering. Two types of Y[sub 2]O[sub 3] doped ZrO[sub 2] doped ZrO[sub 2] nanophase materials were made, one by co-deposition of n-Y[sub 2]O[sub 3] and n-ZrO[sub 2]. We have determined that the co-deposition process is the most effect means of doping the n-ZrO[sub 2].

  3. Modeling of fluidized-bed combustion of coal: Phase II, final reports. Volume VI. FBC-Data Base-Management-System (FBC-DBMS) development

    SciTech Connect (OSTI)

    Louis, J.F.; Tung, S.E.

    1980-10-01T23:59:59.000Z

    The primary goal of the Fluidized Bed Combustor Data Base, (FBCDB), situated in MIT's Energy laboratory, is to establish a data repository for the express use of designers and research personnel involved in FBC development. DBMS is a software that provides an efficient way of storing, retrieving, updating and manipulating data using an English-like query language. It is anticipated that the FBCDB would play an active and a direct role in the development of FBC technology as well as in the FBC commercial application. After some in-house experience and after a careful and extensive review of commercially available database systems, it was determined that the Model 204 DBMS by Computer Corporation of America was the most suitable to our needs. The setup of a prototype in-house database also allowed us to investigate and understand fully the particular problems involved in coordinating FBC development with a DBMS. Various difficult aspects were encountered and solutions had been sought. For instance, we found that it was necessary to rename the variables to avoid repetition as well as to increase usefulness of our database and, hence, we had designed a classification system for which variables were classified under category to achieve standardization of variable names. The primary content of FBCDB is a collection of data points defined by the value of a number of specific FBC variables. A user may interactively access the database from a computer terminal at any location, retrieve, examine, and manipulate the data as well as produce tables or graphs of the results.

  4. Liquid-phase methanol process development unit: installation, operation, and support studies. Technical progress report No. 1, 28 September 1981-31 December 1981

    SciTech Connect (OSTI)

    Not Available

    1982-01-20T23:59:59.000Z

    During this period the Work Breakdown Structure Dictionary was established. Task 1 was completed with submittal of the Project Work Plan and the Quality Assurance Manual. CSI produced basic process design information and a preliminary flowsheet for the LaPorte LPMeOH PDU. APCI developed the flowsheet further and set up the process on APCI's process simulator. The flowsheet development revealed a number of major changes necessary in the existing LPM pilot plant; this has led to pursuit of a unified design concept. Approval was requested for the unified design concept as well as advanced schedule for relocation of the LPM unit and advanced procurement of long delivery equipment items. A number of preliminary heat and material balances were calculated for the LPMeOH PDU and preliminary process specifications were prepared for the equipment items. The final design basis was established. The design pressure was set at 1000 psig. Eight design operating cases were defined for the following range of reactor operating conditions: Pressure - 500 to 900 psig, Temperature - 220 to 270/sup 0/C, Liquid-Fluidized Space Velocity - 1000 to 4000 l/hr-kg catalyst, Liquid-Entrained Space Velocity - 2000 to 10,000 l/hr-kg catalyst, and Liquid-Entrained Catalyst Loading - 0.1 to 0.4 kg catalyst/l oil. The methanol production rate for these cases ranges from 0.2 to 9.7 short tons per day. Preliminary equipment arrangement and site layout drawings were prepared for the PDU. In the laboratories, CSI began autoclave testing of in-situ catalyst reduction procedures. The specification and evaluation of equipment for the CSI laboratory PDU progressed. CSI prepared and issued a Topical Report covering liquid-entrained LPMeOH lab development work accomplished under advance funding. APCI's laboratories progressed with the design of the bench scale slurry reactor.

  5. Development of New Low-Cost, High-Performance, PV Module Encapsulant/Packaging Materials: Annual Technical Progress Report, Phase 1, 22 October 2002-30 September 2003

    SciTech Connect (OSTI)

    Agro, S. C.; Tucker, R. T.

    2004-03-01T23:59:59.000Z

    The primary objectives of this subcontract are for Specialized Technology Resources, Inc., to work with U.S.-based PV module manufacturers representing crystalline silicon, polycrystalline silicon, amorphous silicon, copper indium diselenide (CIS), and other state-of-the-art thin-film technologies to develop formulations, production processes, prototype and qualify new low-cost, high-performance photovoltaic module encapsulants/packaging materials. The manufacturers will assist in identifying each materials' deficiencies while undergoing development, and then ultimately in qualifying the final optimized materials designed to specifically meet their requirements. Upon completion of this program, new low-cost, high-performance, PV module encapsulant/packaging materials will be qualified, by one or more end-users, for their specific application. Information gathering on topics related to thin-film module technology, including device performance/failure analysis, glass stability, and de vice encapsulation, has been completed. This information has provided concepts and considerations for module failure analysis, accelerated testing design, and encapsulation formulation strategy for thin-film modules.

  6. Application of 'Six Sigma{sup TM}' and 'Design of Experiment' for Cementation - Recipe Development for Evaporator Concentrate for NPP Ling AO, Phase II (China) - 12555

    SciTech Connect (OSTI)

    Fehrmann, Henning [Westinghouse Electric Germany GmbH (Germany); Perdue, Robert [Westinghouse Electric Company (United States)

    2012-07-01T23:59:59.000Z

    Cementation of radioactive waste is a common technology. The waste is mixed with cement and water and forms a stable, solid block. The physical properties like compression strength or low leach ability depends strongly on the cement recipe. Due to the fact that this waste cement mixture has to fulfill special requirements, a recipe development is necessary. The Six Sigma{sup TM}' DMAIC methodology, together with the Design of experiment (DoE) approach, was employed to optimize the process of a recipe development for cementation at the Ling Ao nuclear power plant (NPP) in China. The DMAIC offers a structured, systematical and traceable process to derive test parameters. The DoE test plans and statistical analysis is efficient regarding the amount of test runs and the benefit gain by getting a transfer function. A transfer function enables simulation which is useful to optimize the later process and being responsive to changes. The DoE method was successfully applied for developing a cementation recipe for both evaporator concentrate and resin waste in the plant. The key input parameters were determined, evaluated and the control of these parameters were included into the design. The applied Six Sigma{sup TM} tools can help to organize the thinking during the engineering process. Data are organized and clearly presented. Various variables can be limited to the most important ones. The Six Sigma{sup TM} tools help to make the thinking and decision process trace able. The tools can help to make data driven decisions (e.g. C and E Matrix). But the tools are not the only golden way. Results from scoring tools like the C and E Matrix need close review before using them. The DoE is an effective tool for generating test plans. DoE can be used with a small number of tests runs, but gives a valuable result from an engineering perspective in terms of a transfer function. The DoE prediction results, however, are only valid in the tested area. So a careful selection of input parameter and their limits for setting up a DoE is very important. An extrapolation of results is not recommended because the results are not reliable out of the tested area. (authors)

  7. Final report, Ames Mobile Laboratory Project: The development and operation of instrumentation in a mobile laboratory for in situ, real-time screening and characterization of soils using the laser ablation sampling technique

    SciTech Connect (OSTI)

    Anderson, M.S.; Braymen, S.D.

    1995-01-27T23:59:59.000Z

    The main focus of the Ames Laboratory`s Technology Integration Program, TIP, from May 1991 through December 1994 was the development, fabrication, and demonstration of a mobile instrumentation laboratory incorporating rapid in situ sampling systems for safe, rapid, and cost effective soil screening/characterization. The Mobile Demonstration Laboratory for Environmental Screening Technologies, MDLEST, containing the analysis instrumentation, along with surface and subsurface sampling probe prototypes employing the laser ablation sampling technique were chosen to satisfy the particular surface and subsurface soil characterization needs of the various Department of Energy facilities for determining the extent of heavy metal and radionuclide contamination. The MDLEST, a 44 foot long 5th wheel trailer, is easily configured for the analysis instrumentation and sampling system required for the particular site work. This mobile laboratory contains all of the utilities needed to satisfy the operating requirements of the various instrumentation installed. These utilities include, an electric generator, a chilled water system, process gases, a heating/air conditioning system, and computer monitoring and automatic operating systems. Once the MDLEST arrives at the job site, the instrumentation is aligned and calibration is completed, sampling and analysis operations begin. The sample is acquired, analyzed and the results reported in as little as 10 minutes. The surface sampling probe is used in two modes to acquire samples for analysis. It is either set directly on the ground over the site to be sampled, in situ sampling, or in a special fixture used for calibrating the sampling analysis system with standard soil samples, having the samples brought to the MDLEST. The surface sampling probe was used to in situ sample a flat concrete surface (nondestructively) with the ablated sample being analyzed by the instrumentation in the MDLEST.

  8. Canby Cascaded Geothermal Project Phase 1 Feasibility

    Broader source: Energy.gov (indexed) [DOE]

    of 50-kW in a community that will use warm discharge water for an existing district heating system, greenhouse operations and aquaculture development. - Timeline * Phase 1...

  9. Temperature-dependent phase transitions of a complex biological membrane in zeptoliter volumes

    SciTech Connect (OSTI)

    Nikiforov, Maxim [ORNL; Hohlbauch, Sophia [Asylum Research, Santa Barbara, CA; King, William P [University of Illinois, Urbana-Champaign; Voitchovsky, K [Massachusetts Institute of Technology (MIT); Contera, S Antoranz [University of Oxford; Jesse, Stephen [ORNL; Kalinin, Sergei V [ORNL; Proksch, Roger [Asylum Research, Santa Barbara, CA

    2011-01-01T23:59:59.000Z

    Phase transitions in purple membrane have been a topic of debate for the past two decades. In this work we present studies of a reversible transition of purple membrane in the 50 60 C range in zeptoliter volumes under different heating regimes (global heating and local heating). The temperature of the reversible phase transition is 52 5 C for both local and global heating, supporting the hypothesis that this transition is mainly due to a structural rearrangement of bR molecules and trimers. To achieve high resolution measurements of temperature-dependent phase transitions, a new scanning probe microscopy-based method was developed. We believe that our new technique can be extended to other biological systems and can contribute to the understanding of inhomogeneous phase transitions in complex systems.

  10. EIS-0075: Strategic Petroleum Reserve Phase III Development, Texoma and Seaway Group Salt Domes (West Hackberry and Bryan Mound Expansion, Big Hill Development) Cameron Parish, Louisiana, and Brazoria and Jefferson Counties, Texas

    Broader source: Energy.gov [DOE]

    Also see EIS-0021 and EIS-0029. The Strategic Petroleum Reserve (SPR) Office developed this EIS to assess the environmental impacts of expanding the existing SPR storage capacity from 538 million to 750 million barrels of storage and increasing the drawdown capability from 3.5 million to 4.5 million barrels per day. This EIS incorperates two previously issued EISs: DOE/EIS-0021, Seaway Group of Salt Domes, and DOE/EIS-0029, Texoma Group of Salt Domes.

  11. Engineering development of coal-fired high performance power systems, Phase 2 and 3. Quarterly progress report, October 1--December 31, 1995

    SciTech Connect (OSTI)

    NONE

    1995-12-31T23:59:59.000Z

    The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) by the year 2000 that is capable of: >47% thermal efficiency (HHV); NO{sub x}, SO{sub x} and particulates {ge} 10% NSPS; coal {ge} 65% of heat input; all solid wastes benign; and cost of electricity 90% of present plant. The HIPPS generating plant integrates a combustion gas turbine/HRSG combined cycle arrangement with an advanced coal-fired boiler. The unique feature of the HIPPS plant is the partial heating of gas turbine (GT) compressor outlet air using energy released by firing coal in the high temperature advanced furnace (HITAF). The compressed air is additionally heated prior to entering the GT expander section by burning natural gas. Energy available, in the gas turbine exhaust and in the HITAF flue gas are used in a steam cycle to maximize energy production. The HIPPS plant arrangement is thus a combination of existing technologies (gas turbine, heat recovery boilers, conventional steam cycle) and new technologies (the HITAF design especially the heater located in the radiant section). Work reported herein is from Task 1.3, HIPPS Commercial Design and Task 2.2, HITAF Air Heaters.

  12. Development and testing of a commercial-scale coal-fired combustion system, Phase 3. Quarterly technical progress report No. 3, April 1, 1991--June 30, 1991

    SciTech Connect (OSTI)

    Litka, A.F.; Breault, R.W.

    1991-10-01T23:59:59.000Z

    Within the commercial sector, oil and natural gas are the predominant fuels used to meet the space-heating needs of schools, office buildings, apartment complexes, and other similar structures. In general, these buildings require firing rates of 1 to 10 million Btu/hr. The objective of this program is to demonstrate the technical and economic viability of a coal-fired combustion system for this sector. The commercial-scale coal-water slurry (CWS)-fired space heating system will be a scale-up of a CWS-fired residential warm-air heating system developed by Tecogen under contract to the Department of Energy, Pittsburgh Energy Technology Center. This system included a patented nonslagging combustor known as IRIS, for Inertial Reactor with Internal Separation. This combustion technology, which has demonstrated high combustion efficiency using CWS fuels at input rates of 100,000 Btu/hr, will be scaled to operate at 2 to 5 millon Btu/hr. Along with the necessary fuel storage and delivery, heat recovery, and control equipment, the system will include pollution control devices to meet targeted values of NO{sub x}, S0{sub 2}, and particulate emissions. In general, the system will be designed to match the reliability, safety, turndown, and ignition performance of gas or oil-fired systems.

  13. Development and testing of a high efficiency advanced coal combustor, Phase III industrial boiler retrofit. Quarterly technical progress report No. 15, April 1, 1995--June 30, 1995

    SciTech Connect (OSTI)

    Scaroni, A.W.; Miller, B.G.; McGowan, J.G.

    1995-08-29T23:59:59.000Z

    The objective of this project is to retrofit a burner capable of firing microfine coal to a standard gas/oil designed industrial boiler to assess the technical and economic viability of displacing premium fuels with microfine coal. This report documents the technical aspects of this project during the fifteenth quarter (April `95 through June `95) of the program. The overall program has consisted of five major tasks: (1.0) A review of current state-of-the-art coal firing system components. (2.0) Design and experimental testing of a prototype HEACC (High Efficiency Advanced Coal Combustor) burner. (3.0) Installation and testing of a prototype HEACC system in a commercial retrofit application. (4.0) Economics evaluation of the HEACC concept for retrofit applications. (5.0) Long term demonstration under commercial user demand conditions. Task 1 through Task 4 were previously completed. Based on all the results obtained to date the ABB/Penn State team and DOE/PETC have decided to conduct a 1000 hr demonstration test (Task 5). Importantly, a decision was made to employ a new burner for the demonstration. The new burner is based on the concept called {open_quotes}Radially Stratified Flame Core (RSFC){close_quotes}, developed by MIT and licensed by ABB. Work under Task 5 of this program was started during this reporting period.

  14. Research and development of a proton-exchange-membrane (PEM) fuel cell system for transportation applications. Progress report for Quarter 4 of the Phase II report

    SciTech Connect (OSTI)

    NONE

    1995-10-20T23:59:59.000Z

    This 4th quarter report summarizes activity from July 1, 1995 through October 1, 1995; the report is organized as usual into sections describing background information and work performed under the main WBS categories: The Fuel Processor (WBS 1.0) team activity during this quarter focused on the continued design/development of the full scale fuel processing hardware. The combustor test stand has been completed allowing more detailed testing of the various parts of the combustor subsystem; this subsystem is currently being evaluated using the dual fuel (methanol/hydrogen) option to gain a better understanding of the control issues. The Fuel Cell Stack (WBS 2.0) team activity focused on material analysis and testing to determine the appropriate approach for the first GM stack. Five hundred hours of durability was achieved on a single cell fixture using coated titanium plates (anode and cathode) with no appreciable voltage degradation of the SEL (Stack Engineering Lab) produced MEA. Additionally, the voltage level drop across each of the plates remained low (<5mv) over the full test period; The system integration and control team focused on the initial layout and configuration of the system; and the Reference powertrain and commercialization studies are currently under review.

  15. Precise Network Synchronization Technique Using Phase Adjustment and External Filtering

    E-Print Network [OSTI]

    Choi, Woo-Young

    . It is also a problem that their characteristics are not deterministic due to PVT variations. Granularity (Precision Time Protocol) [5]. This diagram has two independent time axes, master and slave nodes. Each axis

  16. Phase-based cell imaging techniques for microbeam irradiations

    E-Print Network [OSTI]

    . Randers­Pehrson, C.C. Peng, D.J. Brenner Columbia University, Radiological Research Accelerator Facility UniversityÕs Radiological Research Accelerator Facility (RARAF) is incorporating two new methods The microbeam facility at Columbia University is expanding current protocols for single-particle, single

  17. Planar visualization of phase objects using a focusing schlieren technique

    E-Print Network [OSTI]

    Kim, Dong-Ho

    1998-01-01T23:59:59.000Z

    of focusing schlieren system . Geometric illustration of lens formula derivation . . . . 18 . . . 20 3-5 3-6 Illustration of Ronchi rulings (Each has 50 lines per 25. 4 mm) . . . . . . 24 Illustration of cutoff grid attached to 3-D positioning device...-10 Conventional schlieren system setup using two-mirrors Focusing schlieren system setup using Ronchi rulings . . . . . 31 . . . 32 FIGURE Page 4-1 Illustration of crossed sonic air-jets imaged by the two-mirror conventional schlieren system; (a) 0 mm, (b...

  18. Beam hardening effects in grating-based x-ray phase-contrast imaging

    SciTech Connect (OSTI)

    Chabior, Michael; Donath, Tilman; David, Christian; Bunk, Oliver; Schuster, Manfred; Schroer, Christian; Pfeiffer, Franz [Siemens AG Corporate Technology, 80200 Muenchen (Germany); Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Siemens AG Corporate Technology, 80200 Muenchen (Germany); Technische Universitaet Dresden, 01062 Dresden (Germany); Technische Universitaet Muenchen, 85748 Garching (Germany)

    2011-03-15T23:59:59.000Z

    Purpose: In this work, the authors investigate how beam hardening affects the image formation in x-ray phase-contrast imaging and consecutively develop a correction algorithm based on the results of the analysis. Methods: The authors' approach utilizes a recently developed x-ray imaging technique using a grating interferometer capable of visualizing the differential phase shift of a wave front traversing an object. An analytical description of beam hardening is given, highlighting differences between attenuation and phase-contrast imaging. The authors present exemplary beam hardening artifacts for a number of well-defined samples in measurements at a compact laboratory setup using a polychromatic source. Results: Despite the differences in image formation, the authors show that beam hardening leads to a similar reduction of image quality in phase-contrast imaging as in conventional attenuation-contrast imaging. Additionally, the authors demonstrate that for homogeneous objects, beam hardening artifacts can be corrected by a linearization technique, applicable to all kinds of phase-contrast methods using polychromatic sources. Conclusions: The evaluated correction algorithm is shown to yield good results for a number of simple test objects and can thus be advocated in medical imaging and nondestructive testing.

  19. Continuous flow separation techniques for microchemical synthesis

    E-Print Network [OSTI]

    Kralj, Jason G

    2006-01-01T23:59:59.000Z

    Performing multistep microchemical synthesis requires many techniques from combining micromixers in series to the development of continuous microfluidic separation tools. Safety, high heat and mass transfer rates, and cost ...

  20. Review of Building Energy Saving Techniques

    E-Print Network [OSTI]

    Zeng, X.; Zhu, D.

    2006-01-01T23:59:59.000Z

    The pace of building energy saving in our country is late, compared with developed countries, and the consumption of building energy is much higher. Therefore, it is imperative to open up new building energy saving techniques and heighten energy use...

  1. Mechanical property measurement by indentation techniques

    E-Print Network [OSTI]

    Janakiraman, Balasubramanian

    2006-04-12T23:59:59.000Z

    optic sensing technique is developed. An incident light beam from a semiconductor laser is coupled back into an optical fiber upon reflection from the metal surface. By measuring the diffused light power reflected from the metal surface, the diameter...

  2. A laser speckle based position sensing technique

    E-Print Network [OSTI]

    Shilpiekandula, Vijay, 1979-

    2004-01-01T23:59:59.000Z

    This thesis presents the design and development of a novel laser-speckle-based position sensing technique. In our prototype implementation, a He-Ne laser beam is directed at the surface of an air-bearing spindle. An imaging ...

  3. Review of Building Energy Saving Techniques 

    E-Print Network [OSTI]

    Zeng, X.; Zhu, D.

    2006-01-01T23:59:59.000Z

    The pace of building energy saving in our country is late, compared with developed countries, and the consumption of building energy is much higher. Therefore, it is imperative to open up new building energy saving techniques and heighten energy use...

  4. Mechanical property measurement by indentation techniques 

    E-Print Network [OSTI]

    Janakiraman, Balasubramanian

    2006-04-12T23:59:59.000Z

    optic sensing technique is developed. An incident light beam from a semiconductor laser is coupled back into an optical fiber upon reflection from the metal surface. By measuring the diffused light power reflected from the metal surface, the diameter...

  5. Development of 230-kV high-pressure, gas-filled, pipe-type cable system: Model test program phase

    SciTech Connect (OSTI)

    Silver, D.A. (Pirelli Cable Corp., Florham Park, NJ (USA))

    1990-09-01T23:59:59.000Z

    The objective of this project was the development of a 230 kV high-pressure gas-filled (HPGF) pipe-type cable employing paper or laminate of paper-polypropylene-paper (PPP) insulation pressurized with N{sub 2} gas or a blend of 15% SF{sub 6}/85% N{sub 2} gas. Heretofore, HPGF pipe-type cables have been restricted to 138 kV ratings due to technical difficulties in achieving higher voltage ratings. In view of the high cost of manufacturing and testing a large number of full size cables, cable models with 2 mm (80 mils) and 2.5 mm (100 mils) wall thicknesses of insulation enclosed in a test fixture capable of withstanding a test pressure of 2070 kPa (300 psig) and high electrical stresses were employed for dissipation factor versus voltage measurements and for ac and impulse breakdown tests at rated and emergency operating temperatures. In addition, a 36 cm (14 in) full wall cable model enclosed in a pressure vessel was utilized for transient pressure response tests. The results of this investigation attest tot he technical feasibility of the design and manufacture of a 230 kV HPGF pipe-type cable employing paper or PPP insulation pressurized with 100% N{sub 2} gas or a blend of 15% SF{sub 6}/85% N{sub 2} gas for operation under normal and 100 hour emergency conditions at conductor temperatures of 85{degree} and 105{degree}C, respectively. The manufacture of a full size PPP insulated cable pressurized with a blend of 15% SF{sub 6}/85% N{sub 2} gas employing pre-impregnated PPP insulating tapes and an annular conductor based on the design stresses defined in this report is recommended for laboratory evaluation and extended life tests. 11 refs., 45 figs., 11 tabs.

  6. Phase Space Navigator: Towards Automating Control Synthesis in Phase Spaces for Nonlinear Control Systems

    E-Print Network [OSTI]

    Zhao, Feng

    1991-04-01T23:59:59.000Z

    We develop a novel autonomous control synthesis strategy called Phase Space Navigator for the automatic synthesis of nonlinear control systems. The Phase Space Navigator generates global control laws by synthesizing ...

  7. Special Relativity in Quantum Phase Space

    E-Print Network [OSTI]

    Daniela Dragoman

    2008-03-06T23:59:59.000Z

    A phase space treatment of special relativity of quantum systems is developed. In this approach a quantum particle remains localized if subject to inertial transformations, the localization occurring in a finite phase space area. Unlike non-relativistic transformations, relativistic transformations generally distort the phase space distribution function, being equivalent to aberrations in optics.

  8. Model building techniques for analysis.

    SciTech Connect (OSTI)

    Walther, Howard P.; McDaniel, Karen Lynn; Keener, Donald; Cordova, Theresa Elena; Henry, Ronald C.; Brooks, Sean; Martin, Wilbur D.

    2009-09-01T23:59:59.000Z

    The practice of mechanical engineering for product development has evolved into a complex activity that requires a team of specialists for success. Sandia National Laboratories (SNL) has product engineers, mechanical designers, design engineers, manufacturing engineers, mechanical analysts and experimentalists, qualification engineers, and others that contribute through product realization teams to develop new mechanical hardware. The goal of SNL's Design Group is to change product development by enabling design teams to collaborate within a virtual model-based environment whereby analysis is used to guide design decisions. Computer-aided design (CAD) models using PTC's Pro/ENGINEER software tools are heavily relied upon in the product definition stage of parts and assemblies at SNL. The three-dimensional CAD solid model acts as the design solid model that is filled with all of the detailed design definition needed to manufacture the parts. Analysis is an important part of the product development process. The CAD design solid model (DSM) is the foundation for the creation of the analysis solid model (ASM). Creating an ASM from the DSM currently is a time-consuming effort; the turnaround time for results of a design needs to be decreased to have an impact on the overall product development. This effort can be decreased immensely through simple Pro/ENGINEER modeling techniques that summarize to the method features are created in a part model. This document contains recommended modeling techniques that increase the efficiency of the creation of the ASM from the DSM.

  9. FTN4 OPTIMIZATION TECHNIQUES.

    E-Print Network [OSTI]

    Authors, Various

    2012-01-01T23:59:59.000Z

    3 1st Edition FTN4 OPTIMIZATION TECHNIQUES November 1979O. INTRODUCTION 1. COt1PILER OPTIMIZATIONS 2. SOURCE CODEcode. Most of these optimizations decrease central processor

  10. Geometric phases in quantum information

    E-Print Network [OSTI]

    Erik Sjöqvist

    2015-03-16T23:59:59.000Z

    The rise of quantum information science has opened up a new venue for applications of the geometric phase (GP), as well as triggered new insights into its physical, mathematical, and conceptual nature. Here, we review this development by focusing on three main themes: the use of GPs to perform robust quantum computation, the development of GP concepts for mixed quantum states, and the discovery of a new type of topological phases for entangled quantum systems. We delineate the theoretical development as well as describe recent experiments related to GPs in the context of quantum information.

  11. A Low Total Harmonic Distortion Sinusoidal Oscillator Based on Digital Harmonic Cancellation Technique

    E-Print Network [OSTI]

    Yan, Jun

    2012-07-16T23:59:59.000Z

    design methodology of sinusoidal oscillator named digital-harmonic-cancellation (DHC) technique is presented. DHC technique is realized by summing up a set of square-wave signals with different phase shifts and different summing coefficient to cancel...

  12. Superhydrophobic Materials Technology-PVC Bonding Techniques

    SciTech Connect (OSTI)

    Hunter, Scott R. [Oak Ridge National Laboratory; Efird, Marty [VeloxFlow, LLC

    2013-05-03T23:59:59.000Z

    The purpose of the technology maturation project was to develop an enhanced application technique for applying diatomaceous earth with pinned polysiloxane oil to PVC pipes and materials. The oil infiltration technique is applied as a spray of diluted oil in a solvent onto the superhydrophobic diatomaceous earth substrate. This makes the surface take on the following characteristics: • wet?cleanable • anti?biofouling • waterproof • anti?corrosion. The project involved obtaining input and supplies from VeloxFlow and the development of successful techniques that would quickly result in a commercial license agreement with VeloxFlow and other companies that use PVC materials in a variety of other fields of use.

  13. Single beam Fourier transform digital holographic quantitative phase microscopy

    SciTech Connect (OSTI)

    Anand, A., E-mail: arun-nair-in@yahoo.com; Chhaniwal, V. K.; Mahajan, S.; Trivedi, V. [Optics Laboratory, Applied Physics Department, Faculty of Technology and Engineering, M.S. University of Baroda, Vadodara 390001 (India)] [Optics Laboratory, Applied Physics Department, Faculty of Technology and Engineering, M.S. University of Baroda, Vadodara 390001 (India); Faridian, A.; Pedrini, G.; Osten, W. [Institut für Technische Optik, Universität Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart (Germany)] [Institut für Technische Optik, Universität Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart (Germany); Dubey, S. K. [Siemens Technology and Services Pvt. Ltd, Corporate Technology—Research and Technology Centre, Bangalore 560100 (India)] [Siemens Technology and Services Pvt. Ltd, Corporate Technology—Research and Technology Centre, Bangalore 560100 (India); Javidi, B. [Department of Electrical and Computer Engineering, U-4157, University of Connecticut, Storrs, Connecticut 06269-2157 (United States)] [Department of Electrical and Computer Engineering, U-4157, University of Connecticut, Storrs, Connecticut 06269-2157 (United States)

    2014-03-10T23:59:59.000Z

    Quantitative phase contrast microscopy reveals thickness or height information of a biological or technical micro-object under investigation. The information obtained from this process provides a means to study their dynamics. Digital holographic (DH) microscopy is one of the most used, state of the art single-shot quantitative techniques for three dimensional imaging of living cells. Conventional off axis DH microscopy directly provides phase contrast images of the objects. However, this process requires two separate beams and their ratio adjustment for high contrast interference fringes. Also the use of two separate beams may make the system more vulnerable to vibrations. Single beam techniques can overcome these hurdles while remaining compact as well. Here, we describe the development of a single beam DH microscope providing whole field imaging of micro-objects. A hologram of the magnified object projected on to a diffuser co-located with a pinhole is recorded with the use of a commercially available diode laser and an arrayed sensor. A Fourier transform of the recorded hologram directly yields the complex amplitude at the image plane. The method proposed was investigated using various phase objects. It was also used to image the dynamics of human red blood cells in which sub-micrometer level thickness variation were measurable.

  14. Techniques for Low Jitter Clock Multiplication Belal Moheedin Helal

    E-Print Network [OSTI]

    Perrott, Michael

    Techniques for Low Jitter Clock Multiplication by Belal Moheedin Helal Bachelor of Science and Computer Science Updated On-Line Version #12;2 #12;Techniques for Low Jitter Clock Multiplication by Belal-Locked Loops (MDLL), offer significantly reduced random jitter compared to typical Phase-Locked Loops (PLL

  15. Some applications of pipelining techniques in parallel scientific computing 

    E-Print Network [OSTI]

    Deng, Yuanhua

    1996-01-01T23:59:59.000Z

    In this thesis, we study the applicability of pipelining techniques to the development of parallel algorithms for scientific computation. General principles for pipelining techniques are discussed and two applications, Gram-Schmidt orthogonalization...

  16. Some applications of pipelining techniques in parallel scientific computing

    E-Print Network [OSTI]

    Deng, Yuanhua

    1996-01-01T23:59:59.000Z

    In this thesis, we study the applicability of pipelining techniques to the development of parallel algorithms for scientific computation. General principles for pipelining techniques are discussed and two applications, Gram-Schmidt orthogonalization...

  17. Contamination Control Techniques

    SciTech Connect (OSTI)

    EBY, J.L.

    2000-05-16T23:59:59.000Z

    Welcome to a workshop on contamination Control techniques. This work shop is designed for about two hours. Attendee participation is encouraged during the workshop. We will address different topics within contamination control techniques; present processes, products and equipment used here at Hanford and then open the floor to you, the attendees for your input on the topics.

  18. Robust Single-Qubit Process Calibration via Robust Phase Estimation

    E-Print Network [OSTI]

    Shelby Kimmel; Guang Hao Low; Theodore J. Yoder

    2015-02-09T23:59:59.000Z

    An important step in building a quantum computer is calibrating experimentally implemented quantum gates to produce operations that are close to ideal unitaries. The calibration step involves estimating the error in gates and then using controls to correct the implementation. Quantum process tomography is a standard technique for estimating these errors, but is both time consuming, (when one only wants to learn a few key parameters), and requires resources, like perfect state preparation and measurement, that might not be available. With the goal of efficiently estimating specific errors using minimal resources, we develop a parameter estimation technique, which can gauge two key parameters (amplitude and off-resonance errors) in a single-qubit gate with provable robustness and efficiency. In particular, our estimates achieve the optimal efficiency, Heisenberg scaling. Our main theorem making this possible is a robust version of the phase estimation procedure of Higgins et al. [B. L. Higgins, New J. Phys. 11, 073023 (2009)].

  19. Overview of Phase Space Manipulations of Relativistic Electron Beams

    SciTech Connect (OSTI)

    Xiang, Dao; /SLAC

    2012-08-31T23:59:59.000Z

    Phase space manipulation is a process to rearrange beam's distribution in 6-D phase space. In this paper, we give an overview of the techniques for tailoring beam distribution in 2D, 4D, and 6D phase space to meet the requirements of various applications. These techniques become a new focus of accelerator physics R&D and very likely these advanced concepts will open up new opportunities in advanced accelerators and the science enabled by them.

  20. Development of Eu{sup 3+} activated monoclinic, perovskite, and garnet compounds in the Gd{sub 2}O{sub 3}–Al{sub 2}O{sub 3} phase diagram as efficient red-emitting phosphors

    SciTech Connect (OSTI)

    Li, Jinkai [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials and Metallurgy, Northeastern University, Shenyang, Liaoning 110004 (China); Li, Ji-Guang, E-mail: LI.Jiguang@nims.go.jp [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials and Metallurgy, Northeastern University, Shenyang, Liaoning 110004 (China); Advanced Materials Processing Unit, National Institute for Materials Science, Sengen 1-2-1, Tsukuba, Ibaraki 305-0047 (Japan); Li, Jing [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials and Metallurgy, Northeastern University, Shenyang, Liaoning 110004 (China); Advanced Materials Processing Unit, National Institute for Materials Science, Sengen 1-2-1, Tsukuba, Ibaraki 305-0047 (Japan); Liu, Shaohong; Li, Xiaodong; Sun, Xudong [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials and Metallurgy, Northeastern University, Shenyang, Liaoning 110004 (China); Sakka, Yoshio [Advanced Materials Processing Unit, National Institute for Materials Science, Sengen 1-2-1, Tsukuba, Ibaraki 305-0047 (Japan)

    2013-10-15T23:59:59.000Z

    Eu{sup 3+} doped Gd{sub 4}Al{sub 2}O{sub 9} (GdAM), GdAlO{sub 3} (GdAP), and Gd{sub 3}Al{sub 5}O{sub 12} (GdAG, containing 10 at% of Lu{sup 3+} for lattice stabilization) have been developed in this work as efficient red-emitting phosphors. With coprecipitated carbonate precursors, phase evolution studies found minimum processing temperatures of ?1000, 1100, and 1300 °C for the three phosphors to crystallize as pure phases, respectively. Compared with their yttrium aluminate counterparts, the gadolinium-based phosphors exhibit red-shifted O{sup 2?}–Eu{sup 3+} charge transfer excitation band (CTB) centers due to the lower electronegativity of Gd{sup 3+} and appreciably higher quantum yields of photoluminescence owing to the occurrence of efficient Gd{sup 3+}?Eu{sup 3+}energy transfer. The optimal Eu{sup 3+} contents were determined to be ?7.5 at% for GdAM and 5.0 at% for both GdAP and GdAG, and concentration quenching of luminescence was suggested to be due to exchange interactions. Fluorescence decay analysis found a shorter lifetime for the phosphor powder processed at a higher temperature or with a higher Eu{sup 3+} content, and the underlying mechanism was discussed. Fluorescence lifetimes were also compared between the yttrium and gadolinium phosphor systems for the dominant emissions. - Graphical abstract: Eu{sup 3+} doped Gd{sub 4}Al{sub 2}O{sub 9} (GdAM), GdAlO{sub 3} (GdAP), and Gd{sub 3}Al{sub 5}O{sub 12} (GdAG, containing 10 at% of Lu{sup 3+} for lattice stabilization) have been developed as efficient red-emitting phosphors. Owing to the Gd{sup 3+} to Eu{sup 3+} energy transfer, improved luminescence is observed for the compounds than their yttrium-based counterparts. Display Omitted - Highlights: • Eu{sup 3+} doped Gd{sub 4}Al{sub 2}O{sub 9}, GdAlO{sub 3} and (Gd{sub 0.9}Lu{sub 0.1}){sub 3}Al{sub 5}O{sub 12} developed as red phosphors. • Improved red-emissions than their yttrium-based counterparts confirmed. • Efficient Gd{sup 3+}?Eu{sup 3+}energy transfer observed. • Applications in various lighting, display, and scintillation areas expected.

  1. Simple, Broadband Relative Phase Measurement of Intermodulation Products

    E-Print Network [OSTI]

    . The method uses three phase-locked sources and common equipment found in a microwave laboratory. I large-signal excitation. The majority of these techniques can only measure the phase of harmonics DUT, but was used in [2] to measure the phase of intermodulation products in two-tone excitation

  2. Multi-phasing CFD

    SciTech Connect (OSTI)

    Stosic, Zoran V. [Framatome ANP GmbH, P.O. Box 3220, 91050 Erlangen (Germany); Stevanovic, Vladimir D. [University of Belgrade, Kraljice Marije 16, 11000 Belgrade, Serbia and Montenegro (Yugoslavia)

    2002-07-01T23:59:59.000Z

    Computational fluid dynamics for multiphase flows is an emerging field. Due to the complexity and divergence of multiphase thermal and hydraulic problems, further development of multiphase flow modelling, closure laws and numerical methods is needed in order to achieve the general purpose and optimised CFD (Computational Fluid Dynamics) methods, which will be applicable to the wide variety of multiphase flow problems. In the paper, an original approach to the various aspects of multiphase CFD modelling is presented. It is based on the multi-fluid modelling approach, development of necessary closure laws and derivation of appropriate numerical methods for efficient governing equations solution. Velocity and pressure fields are solved with the SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) type pressure-corrector method developed for the multiphase flow conditions. For the solution of scalar parameters transport equations both implicit and explicit methods are presented. The implicit method is suitable for steady state, slow transients and problems without the sharp fronts propagation. Explicit method is developed in order to predict scalar parameters fronts propagation, as well as phase interface tracking problems. The challenge towards the multiphase flow solution on both the macro and micro level is presented in order to perform multiphase CFD simulations and analyses of multiphase flows in complex geometry of nuclear power plant components, such as nuclear fuel rod bundles thermal-hydraulics. Presented methodology and obtained CFD results comprise micro-scale phenomena of phases' separation, interface tracking, heated surfaces dry-out and critical heat flux occurrence, as well as macro-scale transport and distributions of phase volumes. (authors)

  3. Dose Reduction Techniques

    SciTech Connect (OSTI)

    WAGGONER, L.O.

    2000-05-16T23:59:59.000Z

    As radiation safety specialists, one of the things we are required to do is evaluate tools, equipment, materials and work practices and decide whether the use of these products or work practices will reduce radiation dose or risk to the environment. There is a tendency for many workers that work with radioactive material to accomplish radiological work the same way they have always done it rather than look for new technology or change their work practices. New technology is being developed all the time that can make radiological work easier and result in less radiation dose to the worker or reduce the possibility that contamination will be spread to the environment. As we discuss the various tools and techniques that reduce radiation dose, keep in mind that the radiological controls should be reasonable. We can not always get the dose to zero, so we must try to accomplish the work efficiently and cost-effectively. There are times we may have to accept there is only so much you can do. The goal is to do the smart things that protect the worker but do not hinder him while the task is being accomplished. In addition, we should not demand that large amounts of money be spent for equipment that has marginal value in order to save a few millirem. We have broken the handout into sections that should simplify the presentation. Time, distance, shielding, and source reduction are methods used to reduce dose and are covered in Part I on work execution. We then look at operational considerations, radiological design parameters, and discuss the characteristics of personnel who deal with ALARA. This handout should give you an overview of what it takes to have an effective dose reduction program.

  4. Phase II Final Report

    SciTech Connect (OSTI)

    Schuknecht, Nate [Project Manager; White, David [Principle Investigator; Hoste, Graeme [Research Engineer

    2014-09-11T23:59:59.000Z

    The SkyTrough DSP will advance the state-of-the-art in parabolic troughs for utility applications, with a larger aperture, higher operating temperature, and lower cost. The goal of this project was to develop a parabolic trough collector that enables solar electricity generation in the 2020 marketplace for a 216MWe nameplate baseload power plant. This plant requires an LCOE of 9¢/kWhe, given a capacity factor of 75%, a fossil fuel limit of 15%, a fossil fuel cost of $6.75/MMBtu, $25.00/kWht thermal storage cost, and a domestic installation corresponding to Daggett, CA. The result of our optimization was a trough design of larger aperture and operating temperature than has been fielded in large, utility scale parabolic trough applications: 7.6m width x 150m SCA length (1,118m2 aperture), with four 90mm diameter × 4.7m receivers per mirror module and an operating temperature of 500°C. The results from physical modeling in the System Advisory Model indicate that, for a capacity factor of 75%: The LCOE will be 8.87¢/kWhe. SkyFuel examined the design of almost every parabolic trough component from a perspective of load and performance at aperture areas from 500 to 2,900m2. Aperture-dependent design was combined with fixed quotations for similar parts from the commercialized SkyTrough product, and established an installed cost of $130/m2 in 2020. This project was conducted in two phases. Phase I was a preliminary design, culminating in an optimum trough size and further improvement of an advanced polymeric reflective material. This phase was completed in October of 2011. Phase II has been the detailed engineering design and component testing, which culminated in the fabrication and testing of a single mirror module. Phase II is complete, and this document presents a summary of the comprehensive work.

  5. Joint Development of Coated Conductor and Low Cost Thin Film Solar Cells: Cooperative Research and Development Final Report, CRADA Number CRD-007-213

    SciTech Connect (OSTI)

    Bhattacharya, R.

    2011-02-01T23:59:59.000Z

    UES plans on developing CIGS thin films by using Metal Organic Deposition (MOD) technique as it is a low-cost, non-vacuum method for scale-up to large area PV modules. NREL will support UES, Inc. through expert processing, characterization and device fabrication. NREL scientists will also help develop a processing phase diagram which includes composition, film thickness, annealing temperature and ambient conditions. Routine measurements of devices and materials will be done under NREL's core support project.

  6. Geothermal Development Phases | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI Reference LibraryAdd to library Web

  7. GEA Development Phases | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°, -86.0529604°Wisconsin:FyreStorm Inc JumpGADReporting Terms and

  8. Developing Secure Power Systems Professional Competence: Alignment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Developing Secure Power Systems Professional Competence: Alignment and Gaps in Workforce Development Programs - Phase 2 (JulyAugust 2013) Developing Secure Power Systems...

  9. Developing regionalized models of lithospheric thickness and velocity structure across Eurasia and the Middle East from jointly inverting P-wave and S-wave receiver functions with Rayleigh wave group and phase velocities

    SciTech Connect (OSTI)

    Julia, J; Nyblade, A; Hansen, S; Rodgers, A; Matzel, E

    2009-07-06T23:59:59.000Z

    In this project, we are developing models of lithospheric structure for a wide variety of tectonic regions throughout Eurasia and the Middle East by regionalizing 1D velocity models obtained by jointly inverting P-wave and S-wave receiver functions with Rayleigh wave group and phase velocities. We expect the regionalized velocity models will improve our ability to predict travel-times for local and regional phases, such as Pg, Pn, Sn and Lg, as well as travel-times for body-waves at upper mantle triplication distances in both seismic and aseismic regions of Eurasia and the Middle East. We anticipate the models will help inform and strengthen ongoing and future efforts within the NNSA labs to develop 3D velocity models for Eurasia and the Middle East, and will assist in obtaining model-based predictions where no empirical data are available and for improving locations from sparse networks using kriging. The codes needed to conduct the joint inversion of P-wave receiver functions (PRFs), S-wave receiver functions (SRFs), and dispersion velocities have already been assembled as part of ongoing research on lithospheric structure in Africa. The methodology has been tested with synthetic 'data' and case studies have been investigated with data collected at an open broadband stations in South Africa. PRFs constrain the size and S-P travel-time of seismic discontinuities in the crust and uppermost mantle, SRFs constrain the size and P-S travel-time of the lithosphere-asthenosphere boundary, and dispersion velocities constrain average S-wave velocity within frequency-dependent depth-ranges. Preliminary results show that the combination yields integrated 1D velocity models local to the recording station, where the discontinuities constrained by the receiver functions are superimposed to a background velocity model constrained by the dispersion velocities. In our first year of this project we will (i) generate 1D velocity models for open broadband seismic stations in the western half of the study area (Eurasia and the Middle East) and (ii) identify well located seismic events with event-station paths isolated to individual tectonic provinces within the study area and collect broadband waveforms and source parameters for the selected events. The 1D models obtained from the joint inversion will then be combined with published geologic terrain maps to produce regionalized models for distinctive tectonic areas within the study area, and the models will be validated through full waveform modeling of well-located seismic events recorded at local and regional distances.

  10. ADVANCED COMPUTATIONAL MODEL FOR THREE-PHASE SLURRY REACTORS

    SciTech Connect (OSTI)

    Goodarz Ahmadi

    2001-10-01T23:59:59.000Z

    In the second year of the project, the Eulerian-Lagrangian formulation for analyzing three-phase slurry flows in a bubble column is further developed. The approach uses an Eulerian analysis of liquid flows in the bubble column, and makes use of the Lagrangian trajectory analysis for the bubbles and particle motions. An experimental set for studying a two-dimensional bubble column is also developed. The operation of the bubble column is being tested and diagnostic methodology for quantitative measurements is being developed. An Eulerian computational model for the flow condition in the two-dimensional bubble column is also being developed. The liquid and bubble motions are being analyzed and the results are being compared with the experimental setup. Solid-fluid mixture flows in ducts and passages at different angle of orientations were analyzed. The model predictions were compared with the experimental data and good agreement was found. Gravity chute flows of solid-liquid mixtures is also being studied. Further progress was also made in developing a thermodynamically consistent model for multiphase slurry flows with and without chemical reaction in a state of turbulent motion. The balance laws are obtained and the constitutive laws are being developed. Progress was also made in measuring concentration and velocity of particles of different sizes near a wall in a duct flow. The technique of Phase-Doppler anemometry was used in these studies. The general objective of this project is to provide the needed fundamental understanding of three-phase slurry reactors in Fischer-Tropsch (F-T) liquid fuel synthesis. The other main goal is to develop a computational capability for predicting the transport and processing of three-phase coal slurries. The specific objectives are: (1) To develop a thermodynamically consistent rate-dependent anisotropic model for multiphase slurry flows with and without chemical reaction for application to coal liquefaction. Also establish the material parameters of the model. (2) To provide experimental data for phasic fluctuation and mean velocities, as well as the solid volume fraction in the shear flow devices. (3) To develop an accurate computational capability incorporating the new rate-dependent and anisotropic model for analyzing reacting and nonreacting slurry flows, and to solve a number of technologically important problems related to Fischer-Tropsch (F-T) liquid fuel production processes. (4) To verify the validity of the developed model by comparing the predicted results with the performed and the available experimental data under idealized conditions.

  11. Microstructural Characterization of U Coprecipitated Phases Formed in Bentonic-Granitic Groundwater and Under Anoxic Conditions

    SciTech Connect (OSTI)

    Quinones, Javier; Iglesias, Eduardo; Cobo, Jose M. [Energy, CIEMAT, Avda. Complutense 22, Madrid, 28040 (Spain); Martinez Esparza, Aurora [Enresa, Emilio Vargas, 7, Madrid, 28043 (Spain); Gomez de Salazar, Jose Maria [Materials Science, UCM, Avda. Complutense s/n, Madrid, 28040 (Spain)

    2007-07-01T23:59:59.000Z

    For improving the accuracy of the performance assessment studies related to the spent fuel safety under storage conditions, it is necessary to develop a new matrix alteration model. These models must be based on laboratory experiences and they should be capable of extrapolating storage environmental conditions. The most recent models developed include the oxidation and dissolution process of the spent fuel matrix, but the influence of a possible process of secondary phase formation over the spent fuel surface was not yet taken into account. This is a key process that could produce a reduction of the matrix dissolution rate/radiation shielding behaviour; however, the surface precipitation of the secondary phase could induce a localized corrosion process, in which case the dissolution rate of the spent fuel would be increased. This paper is focussed on microstructural characterization of secondary phases formed in co-precipitation experiments performed under anoxic conditions in granitic-bentonitic simulated groundwater. In order to simulate the influence of the container material, the co-precipitation experiments were performed in the absence and presence of iron powder. The solid phases formed were characterized using the following techniques: XRD; SEM-EDX, and TEM-EDX. The XRD diffraction pattern showed that under anoxic conditions, a mixture of phases were obtained (sodium and potassium uranate and schoepite), whereas uranate phases were detected when only iron was present. The characterization study indicates that the U secondary phase formed (under reducing conditions and in the presence of iron powder) growth from the iron surface. The crystal size of the secondary phase is independent of the presence of iron powder (and it is always less than 3 {mu}m). Furthermore, the microstructural study showed the growing of U phases over iron powder. (authors)

  12. Centrifuge workers study. Phase II, completion report

    SciTech Connect (OSTI)

    Wooten, H.D.

    1994-09-01T23:59:59.000Z

    Phase II of the Centrifuge Workers Study was a follow-up to the Phase I efforts. The Phase I results had indicated a higher risk than expected among centrifuge workers for developing bladder cancer when compared with the risk in the general population for developing this same type of cancer. However, no specific agent could be identified as the causative agent for these bladder cancers. As the Phase II Report states, Phase I had been limited to workers who had the greatest potential for exposure to substances used in the centrifuge process. Phase II was designed to expand the survey to evaluate the health of all employees who had ever worked in Centrifuge Program Departments 1330-1339 but who had not been interviewed in Phase I. Employees in analytical laboratories and maintenance departments who provided support services for the Centrifuge Program were also included in Phase II. In December 1989, the Oak Ridge Associated Universities (ORAU), now known as Oak Ridge Institute for Science and Education (ORISE), was contracted to conduct a follow-up study (Phase II). Phase H of the Centrifuge Workers Study expanded the survey to include all former centrifuge workers who were not included in Phase I. ORISE was chosen because they had performed the Phase I tasks and summarized the corresponding survey data therefrom.

  13. ADVANCED COMPUTATIONAL MODEL FOR THREE-PHASE SLURRY REACTORS

    SciTech Connect (OSTI)

    Goodarz Ahmadi

    2004-10-01T23:59:59.000Z

    In this project, an Eulerian-Lagrangian formulation for analyzing three-phase slurry flows in a bubble column was developed. The approach used an Eulerian analysis of liquid flows in the bubble column, and made use of the Lagrangian trajectory analysis for the bubbles and particle motions. The bubble-bubble and particle-particle collisions are included the model. The model predictions are compared with the experimental data and good agreement was found An experimental setup for studying two-dimensional bubble columns was developed. The multiphase flow conditions in the bubble column were measured using optical image processing and Particle Image Velocimetry techniques (PIV). A simple shear flow device for bubble motion in a constant shear flow field was also developed. The flow conditions in simple shear flow device were studied using PIV method. Concentration and velocity of particles of different sizes near a wall in a duct flow was also measured. The technique of Phase-Doppler anemometry was used in these studies. An Eulerian volume of fluid (VOF) computational model for the flow condition in the two-dimensional bubble column was also developed. The liquid and bubble motions were analyzed and the results were compared with observed flow patterns in the experimental setup. Solid-fluid mixture flows in ducts and passages at different angle of orientations were also analyzed. The model predictions were compared with the experimental data and good agreement was found. Gravity chute flows of solid-liquid mixtures were also studied. The simulation results were compared with the experimental data and discussed A thermodynamically consistent model for multiphase slurry flows with and without chemical reaction in a state of turbulent motion was developed. The balance laws were obtained and the constitutive laws established.

  14. Supercooling and phase coexistence in cosmological phase transitions

    SciTech Connect (OSTI)

    Megevand, Ariel; Sanchez, Alejandro D. [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Dean Funes 3350, (7600) Mar del Plata (Argentina)

    2008-03-15T23:59:59.000Z

    Cosmological phase transitions are predicted by particle physics models, and have a variety of important cosmological consequences, which depend strongly on the dynamics of the transition. In this work we investigate in detail the general features of the development of a first-order phase transition. We find thermodynamical constraints on some quantities that determine the dynamics, namely, the latent heat, the radiation energy density, and the false-vacuum energy density. Using a simple model with a Higgs field, we study numerically the amount and duration of supercooling and the subsequent reheating and phase coexistence. We analyze the dependence of the dynamics on the different parameters of the model, namely, the energy scale, the number of degrees of freedom, and the couplings of the scalar field with bosons and fermions. We also inspect the implications for the cosmological outcomes of the phase transition.

  15. array processing techniques: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    telescope arrays MIT - DSpace Summary: Measurement and analysis of redshifted 21cm hydrogen emissions is a developing technique for studying the early universe. The primary time...

  16. advanced imaging techniques: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Image restoration Lfdahl, Mats 8 Advanced Penning-type ion source development and passive beam focusing techniques for an associated particle imaging neutron generator. Open...

  17. artery diagnostic techniques: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    machining phics. (EDM) process were observed using fiber optics positioned the dielectric oil. New measurement techniques were developed to observe the spark in the extremely noisy...

  18. alternative diagnostic technique: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    machining phics. (EDM) process were observed using fiber optics positioned the dielectric oil. New measurement techniques were developed to observe the spark in the extremely noisy...

  19. antenna diagnostics technique: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    machining phics. (EDM) process were observed using fiber optics positioned the dielectric oil. New measurement techniques were developed to observe the spark in the extremely noisy...

  20. Assessment and development of an industrial wet oxidation system for burning waste and low upgrade fuels. Final report, Phase 2B: Pilot demonstration of the MODAR supercritical water oxidation process

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    Stone & Webster Engineering Corporation is Project Manager for the Development and Demonstration of an Industrial Wet Oxidation System for Burning Wastes and Low Grade Fuel. This program has been ongoing through a Cooperative Agreement sponsored by the Department of Energy, initiated in June 1988. This report presents a comprehensive discussion of the results of the demonstration project conducted under this cooperative agreement with the overall goal of advancing the state-of-the-art in the practice of Supercritical Water Oxidation (SCWO). In recognition of the Government`s support of this project, we have endeavored to include all material and results that are not proprietary in as much detail as possible while still protecting MODAR`s proprietary technology. A specific example is in the discussion of materials of construction where results are presented while, in some cases, the specific materials are not identified. The report presents the results chronologically. Background material on the earlier phases (Section 2) provide an understanding of the evolution of the program, and bring all reviewers to a common starting point. Section 3 provides a discussion of activities from October 1991 through July 1992, during which the pilot plant was designed; and various studies including computational fluid dynamic modeling of the reactor vessel, and a process HAZOP analyses were conducted. Significant events during fabrication are presented in Section 4. The experimental results of the test program (December 1992--August 1993) are discussed in Section 5.

  1. DENSE PHASE REBURN COMBUSTION SYSTEM (DPRCS) DEMONSTRATION ON A 154 MWE TANGENTIAL FURNACE: ADDITIONAL AREA OF INTEREST-TO DEVELOP AND DEMONSTRATE AN IN-FURNACE MULTI-POLLUTANT REDUCTION TECHNOLOGY TO REDUCE NOx, SO2 & Hg

    SciTech Connect (OSTI)

    Allen C. Wiley; Steven Castagnero; Geoff Green; Kevin Davis; David White

    2004-03-01T23:59:59.000Z

    Semi-dense phase pneumatic delivery and injection of calcium and sodium sorbents, and microfine powdered coal, at various sidewall elevations of an online operating coal-fired power plant, was investigated for the express purpose of developing an in-furnace, economic multi-pollutant reduction methodology for NO{sub x}, SO{sub 2} & Hg. The 154 MWe tangentially-fired furnace that was selected for a full-scale demonstration, was recently retrofitted for NO{sub x} reduction with a high velocity rotating-opposed over-fire air system. The ROFA system, a Mobotec USA technology, has a proven track record of breaking up laminar flow along furnace walls, thereby enhancing the mix of all constituents of combustion. The knowledge gained from injecting sorbents and micronized coal into well mixed combustion gases with significant improvement in particulate retention time, should serve well the goals of an in-furnace multi-pollutant reduction technology; that of reducing back-end cleanup costs on a wide variety of pollutants, on a cost per ton basis, by first accomplishing significant in-furnace reductions of all pollutants.

  2. SISGR – Domain Microstructures and Mechanisms for Large, Reversible and Anhysteretic Strain Behaviors in Phase Transforming Ferroelectric Materials

    SciTech Connect (OSTI)

    Wang, Yu

    2013-12-06T23:59:59.000Z

    This four-year project (including one-year no-cost extension) aimed to advance fundamental understanding of field-induced strain behaviors of phase transforming ferroelectrics. We performed meso-scale phase field modeling and computer simulation to study domain evolutions, mechanisms and engineering techniques, and developed computational techniques for nanodomain diffraction analysis; to further support above originally planned tasks, we also carried out preliminary first-principles density functional theory calculations of point defects and domain walls to complement meso-scale computations as well as performed in-situ high-energy synchrotron X-ray single crystal diffraction experiments to guide theoretical development (both without extra cost to the project thanks to XSEDE supercomputers and DOE user facility Advanced Photon Source).

  3. Cascade Training Technique for Particle Identification

    E-Print Network [OSTI]

    Yong Liu; Ion Stancu

    2006-11-27T23:59:59.000Z

    The cascade training technique which was developed during our work on the MiniBooNE particle identification has been found to be a very efficient way to improve the selection performance, especially when very low background contamination levels are desired. The detailed description of this technique is presented here based on the MiniBooNE detector Monte Carlo simulations, using both artifical neural networks and boosted decision trees as examples.

  4. Phase-sensitive X-ray imager

    DOE Patents [OSTI]

    Baker, Kevin Louis

    2013-01-08T23:59:59.000Z

    X-ray phase sensitive wave-front sensor techniques are detailed that are capable of measuring the entire two-dimensional x-ray electric field, both the amplitude and phase, with a single measurement. These Hartmann sensing and 2-D Shear interferometry wave-front sensors do not require a temporally coherent source and are therefore compatible with x-ray tubes and also with laser-produced or x-pinch x-ray sources.

  5. Permeability enhancement using explosive techniques

    SciTech Connect (OSTI)

    Adams, T.F.; Schmidt, S.C.; Carter, W.J.

    1980-01-01T23:59:59.000Z

    In situ recovery methods for many of our hydrocarbon and mineral resources depend on the ability to create or enhance permeability in the resource bed to allow uniform and predictable flow. To meet this need, a new branch of geomechanics devoted to computer prediction of explosive rock breakage and permeability enhancement has developed. The computer is used to solve the nonlinear equations of compressible flow, with the explosive behavior and constitutive properties of the medium providing the initial/boundary conditions and material response. Once the resulting computational tool has been verified and calibrated with appropriate large-scale field tests, it can be used to develop and optimize commercially useful explosive techniques for in situ resource recovery.

  6. Compensation Techniques in Accelerator Physics

    SciTech Connect (OSTI)

    Hisham Kamal Sayed

    2011-05-31T23:59:59.000Z

    Accelerator physics is one of the most diverse multidisciplinary fields of physics, wherein the dynamics of particle beams is studied. It takes more than the understanding of basic electromagnetic interactions to be able to predict the beam dynamics, and to be able to develop new techniques to produce, maintain, and deliver high quality beams for different applications. In this work, some basic theory regarding particle beam dynamics in accelerators will be presented. This basic theory, along with applying state of the art techniques in beam dynamics will be used in this dissertation to study and solve accelerator physics problems. Two problems involving compensation are studied in the context of the MEIC (Medium Energy Electron Ion Collider) project at Jefferson Laboratory. Several chromaticity (the energy dependence of the particle tune) compensation methods are evaluated numerically and deployed in a figure eight ring designed for the electrons in the collider. Furthermore, transverse coupling optics have been developed to compensate the coupling introduced by the spin rotators in the MEIC electron ring design.

  7. FACILITIES INSTRUCTIONS, STANDARDS, & TECHNIQUES

    E-Print Network [OSTI]

    Laughlin, Robert B.

    to the repair of hydraulic turbine runners and large pump impellers. Reclamation operates and maintains a wideFACILITIES INSTRUCTIONS, STANDARDS, & TECHNIQUES VOLUME 2-5 TURBINE REPAIR Internet Version variety of reaction and impulse turbines as well as axial flow, mixed flow, radial flow pumps and pump

  8. Galaxy Redshifts: Improved Techniques

    E-Print Network [OSTI]

    A. F. Heavens

    1993-05-26T23:59:59.000Z

    This paper analyses the effects of random noise in determining errors and confidence levels for galaxy redshifts obtained by cross-correlation techniques. The main finding is that confidence levels have previously been overestimated, and errors inaccurately calculated in certain applications. New formul\\ae\\ are presented.

  9. The attribute measurement technique

    SciTech Connect (OSTI)

    Macarthur, Duncan W [Los Alamos National Laboratory; Langner, Diana [Los Alamos National Laboratory; Smith, Morag [Los Alamos National Laboratory; Thron, Jonathan [Los Alamos National Laboratory; Razinkov, Sergey [RFNC-VNIIEF; Livke, Alexander [RFNC-VNIIEF

    2010-01-01T23:59:59.000Z

    Any verification measurement performed on potentially classified nuclear material must satisfy two seemingly contradictory constraints. First and foremost, no classified information can be released. At the same time, the monitoring party must have confidence in the veracity of the measurement. An information barrier (IB) is included in the measurement system to protect the potentially classified information while allowing sufficient information transfer to occur for the monitoring party to gain confidence that the material being measured is consistent with the host's declarations, concerning that material. The attribute measurement technique incorporates an IB and addresses both concerns by measuring several attributes of the nuclear material and displaying unclassified results through green (indicating that the material does possess the specified attribute) and red (indicating that the material does not possess the specified attribute) lights. The attribute measurement technique has been implemented in the AVNG, an attribute measuring system described in other presentations at this conference. In this presentation, we will discuss four techniques used in the AVNG: (1) the 1B, (2) the attribute measurement technique, (3) the use of open and secure modes to increase confidence in the displayed results, and (4) the joint design as a method for addressing both host and monitor needs.

  10. GARDIENNAGE Help Desk technique

    E-Print Network [OSTI]

    Nesterov, Yurii

    --> Relais vers Garde GTPW ASCENSEURS 1ère impulsion Dispatching UCL (Système EBI Honeywell GTPW) Dispatching UCL --> SECURITAS LEW ALARMES CDC (Système EBI -Enterprise Building Integrator -Honeywell GTPW téléphonique ) TECHNIQUES CDC (Système EBI Honeywell GTPW) GTPW (Heures ouvrables) CDC (En dehors des heures

  11. Query Optimization Techniques Class Hierarchies

    E-Print Network [OSTI]

    Mannheim, Universität

    Query Optimization Techniques Exploiting Class Hierarchies Sophie Cluet 1 Guido Moerkotte 2 1 INRIA Since the introduction of object base management systems (OBMS), many query optimization techniques tailored for object query languages have been proposed. They adapt known optimization techniques

  12. Phase transformations in welded supermartensitic stainless steels

    E-Print Network [OSTI]

    Carrouge, Dominique

    - ferrite phase, and the development of a model to facilitate the choice of a suitable post-weld heat-treatment temperature. The microstructural examination of a variety of welds revealed the presence of retained ?-ferrite in dual-phase and grain... -coarsened HAZ regions. Under normal welding conditions, ?-ferrite retention was more pronounced in dual-phase HAZ and in molybdenum containing alloys. However, in multipass welds, ?-ferrite distribution was non-uniform as a result of reheating effects. A number...

  13. Development of the SEA Corporation Powergrid{trademark} photovoltaic concentrator

    SciTech Connect (OSTI)

    Kaminar, N.; Curchod, D.; Daroczi, S.; Walpert, M.; Sahagian, J.; Pepper, J. [Photovoltaics International, LLC, Sunnyvale, CA (United States)

    1998-03-01T23:59:59.000Z

    This report covers the three phase effort to bring the SEA Corporation`s Powergrid{trademark} from the concept stage to pilot production. The three phases of this contract covered component development, prototype module development, and pilot line production. The Powergrid is a photovoltaic concentrator that generates direct current electricity directly from sunlight using a linear Fresnel lens. Analysis has shown that the Powergrid has the potential to be very low cost in volume production. Before the start of the project, only proof of concept demonstrations of the components had been completed. During the project, SEA Corporation developed a low cost extruded Fresnel lens, a low cost receiver assembly using one sun type cells, a low cost plastic module housing, a single axis tracking system and frame structure, and pilot production equipment and techniques. In addition, an 800 kW/yr pilot production rate was demonstrated and two 40 kW systems were manufactured and installed.

  14. Conservation Research and Development/ New Ultra-Low Carbon High Strength Steels with Improved Bake Hardenability for Enhanced Stretch Formability and Dent Resistance

    SciTech Connect (OSTI)

    Anthony J. DeArdo; C. Isaac Garcia

    2003-12-15T23:59:59.000Z

    Conservation Research and Development/New Ultra-Low Carbon High Strength Steels with Improved Bake Hardenability for Enhanced Stretch Formability and Dent Resistance. The experimental work can be divided into four phases. In each phase, the materials were received or designed, processed and tested, to evaluate the BH increment or response, as a function of compositions and processing conditions. Microstructural characterization by various techniques was performed in order to gain insights into the mechanisms of flow stress increment by bake hardening.

  15. Cognitive environment simulation: An artificial intelligence system for human performance assessment: Cognitive reliability analysis technique: (Technical report, May 1986-June 1987)

    SciTech Connect (OSTI)

    Woods, D.D.; Roth, E.M.

    1987-11-01T23:59:59.000Z

    This report documents the results of Phase II of a three phase research program to develop and validate improved methods to model the cognitive behavior of nuclear power plant (NPP) personnel. In Phase II a dynamic simulation capability for modeling how people form intentions to act in NPP emergency situations was developed based on techniques from artificial intelligence. This modeling tool, Cognitive Environment Simulation or CES, simulates the cognitive processes that determine situation assessment and intention formation. It can be used to investigate analytically what situations and factors lead to intention failures, what actions follow from intention failures (e.g., errors of omission, errors of commission, common mode errors), the ability to recover from errors or additional machine failures, and the effects of changes in the NPP person-machine system. The Cognitive Reliability Assessment Technique (or CREATE) was also developed in Phase II to specify how CES can be used to enhance the measurement of the human contribution to risk in probabilistic risk assessment (PRA) studies. 34 refs., 7 figs., 1 tab.

  16. aldehydes solid phase: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    considerations of stressed epitaxial growth from the solid phase N.G. Rudawski* and K A dual-timescale model of stressed solid-phase epitaxial growth is developed to provide a...

  17. A phase-field study of ternary multiphase microstructures

    E-Print Network [OSTI]

    Cogswell, Daniel A. (Daniel Aaron)

    2010-01-01T23:59:59.000Z

    A diffuse-interface model for microstructures with an arbitrary number of components and phases was developed from basic thermodynamic and kinetic principles and applied to the study of ternary eutectic phase transformations. ...

  18. Innovative Technologies and Techniques

    E-Print Network [OSTI]

    Samano, R.; Swinford, S.

    2014-01-01T23:59:59.000Z

    November 2014 Innovative Technologies and Techniques ESL-KT-14-11-22 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 What’s New in Energy Efficient Cooling Systems? ? Director of Energy Management ? Moving Away From... Refrigerants ? LEED ? Reducing the Carbon Footprint ? Improving Indoor Air Quality - IAQ ? High Efficiency Fans and Motors ? Economizers ESL-KT-14-11-22 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 Outside Air Management Experts...

  19. High Performance Computing linear algorithms for two-phase flow in porous media

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    High Performance Computing linear algorithms for two-phase flow in porous media Robert Eymard High Performance Computing techniques. This implies to handle the difficult problem of solving

  20. LIQUID PHASE SINTERING OF IRON WITH COPPER BASE ALLOY POWDERS

    E-Print Network [OSTI]

    Chen, M.-H.

    2010-01-01T23:59:59.000Z

    Symposium on Powder Metallurgy - The Iron and Steel Inst.a Liquid Phase", Powder Metallurgy, 17 (33), 227 (1974). H.Other made by powder metallurgy techniques. ses to produce

  1. An overview of heat exchanger enhancement techniques for industrial applications

    SciTech Connect (OSTI)

    Somasundaram, S. (Pacific Northwest Lab., Richland, WA (United States)); Ohadi, M.M. (Maryland Univ., Baltimore, MD (United States)); Richlen, S. (US Dept. of Energy, Washington, DC (US))

    1992-06-01T23:59:59.000Z

    An assessment is make of selected currently available heat exchanger enhancement techniques for single- and two-phase heat transfer mechanisms to determine their practicality and commercialization potential for different industrial applications. The assessment includes a screening review of the major techniques being investigated in the research community, and identification of selected passive techniques and determine their potential limitations with respect to industrial applications. A more detailed study of the research needs and the technology gaps is being conducted to address the issues of concern for each practical application of the chosen techniques. The technical and economic feasibility and the performance benefits of incorporating a particular technique in a heat transfer process is also discussed. The potential design, operational, and manufacturing cost issues that have prevented a technique from being widely commercialized are identified.

  2. Development and implementation of a FT-ICR mass spectrometer for the investigation of ion conformations of peptide sequence isomers containing basic amino acid residues by gas-phase hydrogen/deuterium exchange 

    E-Print Network [OSTI]

    Marini, Joseph Thomas

    2004-09-30T23:59:59.000Z

    The gas-phase hydrogen/deuterium (H/D) exchange of protonated di- and tripeptides containing a basic amino acid residue has been studied with a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. Bimolecular reactions...

  3. Development and implementation of a FT-ICR mass spectrometer for the investigation of ion conformations of peptide sequence isomers containing basic amino acid residues by gas-phase hydrogen/deuterium exchange

    E-Print Network [OSTI]

    Marini, Joseph Thomas

    2004-09-30T23:59:59.000Z

    The gas-phase hydrogen/deuterium (H/D) exchange of protonated di- and tripeptides containing a basic amino acid residue has been studied with a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. Bimolecular reactions...

  4. Demand response enabling technology development

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    Demand Response Enabling Technology Development Phase IEfficiency and Demand Response Programs for 2005/2006,Application to Demand Response Energy Pricing” SenSys 2003,

  5. Jet finding techniques at LHC

    E-Print Network [OSTI]

    BOUMEDIENE, D; The ATLAS collaboration

    2015-01-01T23:59:59.000Z

    Jet finding techniques at hadron colliders, including pile-up removal tricks, jet deconstruction, etc

  6. Data Mining: Concepts and Techniques

    E-Print Network [OSTI]

    Geldenhuys, Jaco

    11 Data Mining: Concepts and Techniques (3rd ed.) -- Chapter 1 -- Jiawei Han, Micheline Kamber. All rights reserved. #12;July 29, 2013 Data Mining: Concepts and Techniques 2July 29, 2013 Data Mining: Concepts and Techniques 2 #12;July 29, 2013 Data Mining: Concepts and Techniques 3July 29, 2013 Data Mining

  7. Disposal Systems Evaluations and Tool Development - Engineered...

    Broader source: Energy.gov (indexed) [DOE]

    stability at repository-relevant conditions, thermodynamic database development for cement and clay phases, and THMC coupled phenomena along with the development of tools and...

  8. Phase Transformations in Confined Nanosystems

    SciTech Connect (OSTI)

    Shield, Jeffrey E. [Department of Mechanical & Materials Engineering] [Department of Mechanical & Materials Engineering; Belashchenko, Kirill [Department of Physics & Astronomy] [Department of Physics & Astronomy

    2014-04-29T23:59:59.000Z

    This project discovered that non-equilibrium structures, including chemically ordered structures not observed in bulk systems, form in isolated nanoscale systems. Further, a generalized model was developed that effectively explained the suppression of equilibrium phase transformations. This thermodynamic model considered the free energy decrease associated with the phase transformation was less than the increase in energy associated with the formation of an interphase interface, therefore inhibiting the phase transformation. A critical diameter exists where the system transitions to bulk behavior, and a generalized equation was formulated that successfully predicted this transition in the Fe-Au system. This provided and explains a new route to novel structures not possible in bulk systems. The structural characterization was accomplished using transmission electron microscopy in collaboration with Matthew Kramer of Ames Laboratory. The PI and graduate student visited Ames Laboratory several times a year to conduct the experiments.

  9. Applied ALARA techniques

    SciTech Connect (OSTI)

    Waggoner, L.O.

    1998-02-05T23:59:59.000Z

    The presentation focuses on some of the time-proven and new technologies being used to accomplish radiological work. These techniques can be applied at nuclear facilities to reduce radiation doses and protect the environment. The last reactor plants and processing facilities were shutdown and Hanford was given a new mission to put the facilities in a safe condition, decontaminate, and prepare them for decommissioning. The skills that were necessary to operate these facilities were different than the skills needed today to clean up Hanford. Workers were not familiar with many of the tools, equipment, and materials needed to accomplish:the new mission, which includes clean up of contaminated areas in and around all the facilities, recovery of reactor fuel from spent fuel pools, and the removal of millions of gallons of highly radioactive waste from 177 underground tanks. In addition, this work has to be done with a reduced number of workers and a smaller budget. At Hanford, facilities contain a myriad of radioactive isotopes that are 2048 located inside plant systems, underground tanks, and the soil. As cleanup work at Hanford began, it became obvious early that in order to get workers to apply ALARA and use hew tools and equipment to accomplish the radiological work it was necessary to plan the work in advance and get radiological control and/or ALARA committee personnel involved early in the planning process. Emphasis was placed on applying,ALARA techniques to reduce dose, limit contamination spread and minimize the amount of radioactive waste generated. Progress on the cleanup has,b6en steady and Hanford workers have learned to use different types of engineered controls and ALARA techniques to perform radiological work. The purpose of this presentation is to share the lessons learned on how Hanford is accomplishing radiological work.

  10. Optimal anisotropic three-phase conducting composites: Plane problem

    E-Print Network [OSTI]

    Andrej Cherkaev; and Yuan Zhang

    2011-05-22T23:59:59.000Z

    The paper establishes tight lower bound for effective conductivity tensor $K_*$ of two-dimensional three-phase conducting anisotropic composites and defines optimal microstructures. It is assumed that three materials are mixed with fixed volume fractions and that the conductivity of one of the materials is infinite. The bound expands the Hashin-Shtrikman and Translation bounds to multiphase structures, it is derived using the technique of {\\em localized polyconvexity} that is a combination of Translation method and additional inequalities on the fields in the materials; similar technique was used by Nesi (1995) and Cherkaev (2009) for isotropic multiphase composites. This paper expands the bounds to the anisotropic composites. The lower bound of conductivity (G-closure) is a piece-wise analytic function of eigenvalues of $K_*$, that depends only on conductivities of components and their volume fractions. Also, we find optimal microstructures that realize the bounds, developing the technique suggested earlier by Albin Cherkaev and Nesi (2007) and Cherkaev (2009). The optimal microstructures are laminates of some rank for all regions. The found structures match the bounds in all but one region of parameters; we discuss the reason for the gap and numerically estimate it.

  11. Nano powders, components and coatings by plasma technique

    DOE Patents [OSTI]

    McKechnie, Timothy N. (Brownsboro, AL); Antony, Leo V. M. (Huntsville, AL); O'Dell, Scott (Arab, AL); Power, Chris (Guntersville, AL); Tabor, Terry (Huntsville, AL)

    2009-11-10T23:59:59.000Z

    Ultra fine and nanometer powders and a method of producing same are provided, preferably refractory metal and ceramic nanopowders. When certain precursors are injected into the plasma flame in a reactor chamber, the materials are heated, melted and vaporized and the chemical reaction is induced in the vapor phase. The vapor phase is quenched rapidly to solid phase to yield the ultra pure, ultra fine and nano product. With this technique, powders have been made 20 nanometers in size in a system capable of a bulk production rate of more than 10 lbs/hr. The process is particularly applicable to tungsten, molybdenum, rhenium, tungsten carbide, molybdenum carbide and other related materials.

  12. TRANSPORT AND PHASE EQUILIBRIA PROPERITIES FOR STEAM FLOODING OF HEAVY OILS

    SciTech Connect (OSTI)

    Jorge Gabitto; Maria Barrufet

    2002-09-01T23:59:59.000Z

    Hydrocarbon/water and CO{sub 2} systems are frequently found in petroleum recovery processes, petroleum refining, and gasification of coals, lignites and tar sands. Techniques to estimate the phase volume and phase composition are indispensable to design and improve oil recovery processes such as steam, hot water, or CO{sub 2}/steam combinations of flooding techniques typically used for heavy oils. An interdisciplinary research program to quantify transport, PVT, and equilibrium properties of selected oil/CO{sub 2}/water mixtures at pressures up to 10,000 psia and at temperatures up to 500 F has been put in place. The objectives of this research include experimental determination and rigorous modeling and computation of phase equilibrium diagrams, and volumetric properties of hydrocarbon/CO{sub 2}/water mixtures at pressures and temperatures typical of steam injection processes for thermal recovery of heavy oils. Highlighting the importance of phase behavior, researchers ([1], and [2]) insist on obtaining truly representative reservoir fluids samples for experimental analysis. The prevailing sampling techniques used for compositional analysis of the fluids have potential for a large source of error. These techniques bring the sample to atmospheric conditions and collect the liquid and vapor portion of the samples for further analysis. We developed a new experimental technique to determine phase volumes, compositions and equilibrium K-values at reservoir conditions. The new methodology is able to measure phase volume and composition at reservoir like temperatures and pressures. We use a mercury free PVT system in conjunction with a Hewlett Packard gas chromatograph capable of measuring compositions on line at high pressures and temperatures. This is made possible by an essentially negligible disturbance of the temperature and pressure equilibrium during phase volume and composition measurements. In addition, not many samples are withdrawn for compositional analysis because a negligible volume (0.1 {micro}l to 0.5 {micro}l) is sent directly to the gas chromatograph through sampling valves. These amounts are less than 1 x 10{sup -5} % of total volume and do not affect the overall composition or equilibrium of the system. A new method to compute multi-component phase equilibrium diagrams based on an improved version of the Peng-Robinson equation has been developed [3]. This new version of the Peng-Robinson equation uses a new volume translation scheme and new mixing rules to improve the accuracy of the calculations. Calculations involving multicomponent mixtures of CO{sub 2}/water and hydrocarbons have been completed. A scheme to lump multi-component materials such as, oils into a small set of ''pseudo-components'' according to the technique outlined by Whitson [4] has been implemented. This final report presents the results of our experimental and predicted phase behavior diagrams and calculations for mixtures of CO{sub 2}/water and real oils at high pressures and temperatures.

  13. Quantitative evaluation of mask phase defects from through-focus EUV aerial images

    SciTech Connect (OSTI)

    Mochi, Iacopo; Yamazoe, Kenji; Neureuther, Andrew; Goldberg, Kenneth A.

    2011-02-21T23:59:59.000Z

    Mask defects inspection and imaging is one of the most important issues for any pattern transfer lithography technology. This is especially true for EUV lithography where the wavelength-specific properties of masks and defects necessitate actinic inspection for a faithful prediction of defect printability and repair performance. In this paper we will present a technique to obtain a quantitative characterization of mask phase defects from EUV aerial images. We apply this technique to measure the aerial image phase of native defects on a blank mask, measured with the SEMATECH Berkeley Actinic Inspection Tool (AIT) an EUV zoneplate microscope that operates at Lawrence Berkeley National Laboratory. The measured phase is compared with predictions made from AFM top-surface measurements of those defects. While amplitude defects are usually easy to recognize and quantify with standard inspection techniques like scanning electron microscopy (SEM), defects or structures that have a phase component can be much more challenging to inspect. A phase defect can originate from the substrate or from any level of the multilayer. In both cases its effect on the reflected field is not directly related to the local topography of the mask surface, but depends on the deformation of the multilayer structure. Using the AIT, we have previously showed that EUV inspection provides a faithful and reliable way to predict the appearance of mask defect on the printed wafer; but to obtain a complete characterization of the defect we need to evaluate quantitatively its phase component. While aerial imaging doesn't provide a direct measurement of the phase of the object, this information is encoded in the through focus evolution of the image intensity distribution. Recently we developed a technique that allows us to extract the complex amplitude of EUV mask defects using two aerial images from different focal planes. The method for the phase reconstruction is derived from the Gerchberg-Saxton (GS) algorithm, an iterative method that can be used to reconstruct phase and amplitude of an object from the intensity distributions in the image and in the pupil plane. The GS algorithm is equivalent to a two-parameter optimization problem and it needs exactly two constraints to be solved, namely two intensity distributions in different focal planes. In some formulations, adding any other constraint would result in an ill posed problem. On the other hand, the solution's stability and convergence time can both be improved using more information. We modified our complex amplitude reconstruction algorithm to use an arbitrary number of through focus images and we compared its performance with the previous version in terms of convergence speed, robustness and accuracy. We have demonstrated the phase-reconstruction method on native, mask-blank phase defects and compared the results with phase-predictions made from AFM data collected before and after the multilayer deposition. The method and the current results could be extremely useful for improving the modeling and understanding of native phase defects, their detectability, and their printability.

  14. Weldability and joining techniques for advanced fossil energy system alloys

    SciTech Connect (OSTI)

    Lundin, C.D.; Qiao, C.Y.P.; Liu, W.; Yang, D.; Zhou, G.; Morrison, M. [Univ. of Tennessee, Knoxville, TN (United States)

    1998-05-01T23:59:59.000Z

    The efforts represent the concerns for the basic understanding of the weldability and fabricability of the advanced high temperature alloys so necessary to affect increases in the efficiency of the next generation Fossil Energy Power Plants. The effort was divided into three tasks with the first effort dealing with the welding and fabrication behavior of 310HCbN (HR3C), the second task details the studies aimed at understanding the weldability of a newly developed 310TaN high temperature stainless (a modification of 310 stainless) and Task 3 addressed the cladding of austenitic tubing with Iron-Aluminide using the GTAW process. Task 1 consisted of microstructural studies on 310HCbN and the development of a Tube Weldability test which has applications to production welding techniques as well as laboratory weldability assessments. In addition, the evaluation of ex-service 310HCbN which showed fireside erosion and cracking at the attachment weld locations was conducted. Task 2 addressed the behavior of the newly developed 310 TaN modification of standard 310 stainless steel and showed that the weldability was excellent and that the sensitization potential was minimal for normal welding and fabrication conditions. The microstructural evolution during elevated temperature testing was characterized and the second phase particles evolved upon aging were identified. Task 3 details the investigation undertaken to clad 310HCbN tubing with Iron Aluminide and developed welding conditions necessary to provide a crack free cladding. The work showed that both a preheat and a post-heat was necessary for crack free deposits and the effect of a third element on the cracking potential was defined together with the effect of the aluminum level for optimum weldability.

  15. Phase III ResonantSonic{reg_sign} report

    SciTech Connect (OSTI)

    Newcomer, D.R. [comp.; Last, G.V.; Friley, J.R.; Strope, L.A.; Johnston, B.V.

    1996-09-01T23:59:59.000Z

    The ResonantSonic drilling system was tested at the hanford Site in the fiscal year 1991-1992 under the auspices of the Drilling Technology Development Program and the Environmental Restoration Program. The purpose of that program was to develop, test, and demonstrate drilling methods that are environmentally acceptable, safe, efficient, and cost effective when drilling and sampling in hazardous and radioactive waste sites. The cable-tool method has historically been the primary drilling method employed for characterization and remediation projects at the Hanford site. The cable-tool method can be used reliably in a wide variety of geologic conditions and yields continuous, relatively intact core samples. however, the disadvantages of this method are that the penetration rates are slow relative to most other drilling techniques. This report represents the completion of the ResonantSonic drilling program test activities. A brief description of the ResonantSonic drilling program is given. Phases I and II activities are also presented. Phase III activities are outlined. The conclusions drawn from the results and recommendations for further work to improve the drilling technology are discussed.

  16. Collective Phase Sensitivity

    E-Print Network [OSTI]

    Yoji Kawamura; Hiroya Nakao; Kensuke Arai; Hiroshi Kori; Yoshiki Kuramoto

    2008-07-08T23:59:59.000Z

    The collective phase response to a macroscopic external perturbation of a population of interacting nonlinear elements exhibiting collective oscillations is formulated for the case of globally-coupled oscillators. The macroscopic phase sensitivity is derived from the microscopic phase sensitivity of the constituent oscillators by a two-step phase reduction. We apply this result to quantify the stability of the macroscopic common-noise induced synchronization of two uncoupled populations of oscillators undergoing coherent collective oscillations.

  17. Technique for Measuring Hybrid Electronic Component Reliability

    SciTech Connect (OSTI)

    Green, C.C.; Hernandez, C.L.; Hosking, F.M.; Robinson, D.; Rutherford, B.; Uribe, F.

    1999-01-01T23:59:59.000Z

    Materials compatibility studies of aged, engineered materials and hardware are critical to understanding and predicting component reliability, particularly for systems with extended stockpile life requirements. Nondestructive testing capabilities for component reliability would significantly enhance lifetime predictions. For example, if the detection of crack propagation through a solder joint can be demonstrated, this technique could be used to develop baseline information to statistically determine solder joint lifelengths. This report will investigate high frequency signal response techniques for nondestructively evaluating the electrical behavior of thick film hybrid transmission lines.

  18. Integrated nuclear techniques to detect illicit materials

    SciTech Connect (OSTI)

    DeVolpi, A.

    1997-10-01T23:59:59.000Z

    This paper discusses the problem of detecting explosives in the context of an object being transported for illicit purposes. The author emphasizes that technologies developed for this particular application have payoffs in many related problem areas. The author discusses nuclear techniques which can be applied to this detection problem. These include: x-ray imaging; neutronic interrogation; inelastic neutron scattering; fieldable neutron generators. He discusses work which has been done on the applications of these technologies, including results for detection of narcotics. He also discusses efforts to integrate these techniques into complementary systems which offer improved performance.

  19. Options Study - Phase II

    SciTech Connect (OSTI)

    R. Wigeland; T. Taiwo; M. Todosow; W. Halsey; J. Gehin

    2010-09-01T23:59:59.000Z

    The Options Study has been conducted for the purpose of evaluating the potential of alternative integrated nuclear fuel cycle options to favorably address the issues associated with a continuing or expanding use of nuclear power in the United States. The study produced information that can be used to inform decisions identifying potential directions for research and development on such fuel cycle options. An integrated nuclear fuel cycle option is defined in this study as including all aspects of the entire nuclear fuel cycle, from obtaining natural resources for fuel to the ultimate disposal of used nuclear fuel (UNF) or radioactive wastes. Issues such as nuclear waste management, especially the increasing inventory of used nuclear fuel, the current uncertainty about used fuel disposal, and the risk of nuclear weapons proliferation have contributed to the reluctance to expand the use of nuclear power, even though it is recognized that nuclear power is a safe and reliable method of producing electricity. In this Options Study, current, evolutionary, and revolutionary nuclear energy options were all considered, including the use of uranium and thorium, and both once-through and recycle approaches. Available information has been collected and reviewed in order to evaluate the ability of an option to clearly address the challenges associated with the current implementation and potential expansion of commercial nuclear power in the United States. This Options Study is a comprehensive consideration and review of fuel cycle and technology options, including those for disposal, and is not constrained by any limitations that may be imposed by economics, technical maturity, past policy, or speculated future conditions. This Phase II report is intended to be used in conjunction with the Phase I report, and much information in that report is not repeated here, although some information has been updated to reflect recent developments. The focus in this Options Study was to identify any nuclear fuel cycle technology or option that may result in a significant beneficial impact to the issues as compared to the current U.S. approach of once-through use of nuclear fuel in LWRs or similar reactors followed by direct disposal of UNF. This approach was taken because incremental differences may be difficult to clearly identify and justify due to the large uncertainties that can be associated with the specific causes of the issues. Phase II of this Options Study continued the review of nuclear fuel cycle options that was initiated and documented during Phase I, concentrating on reviewing and summarizing the potential of integrated nuclear fuel cycles. However, based on the reviews of previous studies and available data, it was not always possible to clearly determine sufficiently large differences between the various fuel cycle and technology options for some of the issues or evaluation measures, for example, in cases where only incremental differences with respect to the issues might be achieved regardless of the fuel cycle option or technologies being considered, or where differences were insufficient to clearly rise above the uncertainties.

  20. Final Report: Sensorpedia Phase 3

    SciTech Connect (OSTI)

    Gorman, Bryan L [ORNL; Resseguie, David R [ORNL

    2011-02-01T23:59:59.000Z

    This report is a summary of the Oak Ridge National Laboratory s (ORNL s) Phase 3 development of Sensorpedia, a sensor information sharing platform. Sensorpedia is ORNL s Wikipedia for Sensors. The overall goal of Sensorpedia is to enable global scale sensor information sharing for scientific research, national security and defense, public health and safety, emergency preparedness and response, and general community awareness and outreach.

  1. Population estimates for Phase 1: Hanford Environmental Dose Reconstruction Project

    SciTech Connect (OSTI)

    Beck, D.M.; Erickson, A.R.; Harkreader, S.A.

    1992-03-01T23:59:59.000Z

    This report summarizes the population estimates of Phase I of the Hanford Environmental Dose Reconstruction (HEDR) Project. These estimates were used to develop preliminary dose estimates.

  2. MODELING OF NATURALLY FRACTURED RESERVOIRS BY FORMAL HOMOGENIZATION TECHNIQUES*

    E-Print Network [OSTI]

    Douglas Jr., Jim

    MODELING OF NATURALLY FRACTURED RESERVOIRS BY FORMAL HOMOGENIZATION TECHNIQUES* Todd Arbogast,y Jim in naturally fractured reservoirs. A single component in a single phase and two-component mis- cible. porous medium, double porosity, fractured reservoir, homogenization. yDepartment of Mathematics, Purdue

  3. A survey of reflectometry techniques with applications to TFTR

    SciTech Connect (OSTI)

    Collazo, I.; Stacey, W.M. [Georgia Inst. of Tech., Atlanta, GA (United States); Wilgen, J.; Hanson, G.; Bigelow, T.; Thomas, C.E. [Oak Ridge National Lab., TN (United States); Bretz, N. [Princeton Univ., NJ (United States). Plasma Physics Lab.

    1993-12-01T23:59:59.000Z

    This report presents a review of reflectometry with particular attention to eXtraordinary mode (X-mode) reflectometry using the novel technique of dual frequency differential phase. The advantage of using an X-mode wave is that it can probe the edge of the plasma with much higher resolution and using a much smaller frequency range than with the Ordinary mode (O-Mode). The general problem with previous full phase reflectometry techniques is that of keeping track of the phase (on the order of 1000 fringes) as the frequency is swept over the band. The dual frequency phase difference technique has the advantage that since it is keeping track of the phase difference of two frequencies with a constant frequency separation, the fringe counting is on the order of only 3 to 5 fringes. This fringe count, combined with the high resolution of the X-mode wave and the small plasma access requirements of reflectometry, make X-mode reflectometry a very attractive diagnostic for today`s experiments and future fusion devices.

  4. Modeling studies of heat transfer and phase distribution in two-phase geothermal reservoirs

    SciTech Connect (OSTI)

    Lai, C.H.; Bodvarsson, G.S.; Truesdell, A.H. (Lawrence Berkeley Lab., CA (United States). Earth Sciences Div.)

    1994-02-01T23:59:59.000Z

    Phase distribution as well as mass flow and heat transfer behavior in two-phase geothermal systems have been studied by numerical modeling. A two-dimensional porous-slab model was used with a non-uniform heat flux boundary conditions at the bottom. Steady-state solutions are obtained for the phase distribution and heat transfer behavior for cases with different mass of fluid (gas saturation) in place, permeabilities, and capillary pressures. The results obtained show very efficient heat transfer in the vapor-dominated zone due to the development of heat pipes and near-uniform saturations. The phase distribution below the vapor-dominated zone depends on permeability. For relatively high-permeability systems, single-phase liquid zones prevail, with convection providing the energy throughput. For lower permeability systems, a two-phase liquid-dominated zone develops, because single-phase liquid convection is not sufficient to dissipate heat released from the source. These results are consistent with observations from the field, where most high-temperature liquid-dominated two-phase systems have relatively low permeabilities e.g. Krafla, Iceland; Kenya; Baca, New Mexico. The numerical results obtained also show that for high heat flow a high-temperature single-phase vapor zone can develop below a typical (240 C) vapor-dominated zone, as has recently been found at the Geysers, California, and Larderello, Italy.

  5. Development of an integrated system for estimating human error probabilities

    SciTech Connect (OSTI)

    Auflick, J.L.; Hahn, H.A.; Morzinski, J.A.

    1998-12-01T23:59:59.000Z

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project had as its main objective the development of a Human Reliability Analysis (HRA), knowledge-based expert system that would provide probabilistic estimates for potential human errors within various risk assessments, safety analysis reports, and hazard assessments. HRA identifies where human errors are most likely, estimates the error rate for individual tasks, and highlights the most beneficial areas for system improvements. This project accomplished three major tasks. First, several prominent HRA techniques and associated databases were collected and translated into an electronic format. Next, the project started a knowledge engineering phase where the expertise, i.e., the procedural rules and data, were extracted from those techniques and compiled into various modules. Finally, these modules, rules, and data were combined into a nearly complete HRA expert system.

  6. Development of Next Generation Multiphase Pipe Flow Prediction Tools

    SciTech Connect (OSTI)

    Tulsa Fluid Flow

    2008-08-31T23:59:59.000Z

    The developments of fields in deep waters (5000 ft and more) is a common occurrence. It is inevitable that production systems will operate under multiphase flow conditions (simultaneous flow of gas-oil-and water possibly along with sand, hydrates, and waxes). Multiphase flow prediction tools are essential for every phase of the hydrocarbon recovery from design to operation. The recovery from deep-waters poses special challenges and requires accurate multiphase flow predictive tools for several applications including the design and diagnostics of the production systems, separation of phases in horizontal wells, and multiphase separation (topside, seabed or bottom-hole). It is very crucial to any multiphase separation technique that is employed either at topside, seabed or bottom-hole to know inlet conditions such as the flow rates, flow patterns, and volume fractions of gas, oil and water coming into the separation devices. The overall objective was to develop a unified model for gas-oil-water three-phase flow in wells, flow lines, and pipelines to predict the flow characteristics such as flow patterns, phase distributions, and pressure gradient encountered during petroleum production at different flow conditions (pipe diameter and inclination, fluid properties and flow rates). The project was conducted in two periods. In Period 1 (four years), gas-oil-water flow in pipes were investigated to understand the fundamental physical mechanisms describing the interaction between the gas-oil-water phases under flowing conditions, and a unified model was developed utilizing a novel modeling approach. A gas-oil-water pipe flow database including field and laboratory data was formed in Period 2 (one year). The database was utilized in model performance demonstration. Period 1 primarily consisted of the development of a unified model and software to predict the gas-oil-water flow, and experimental studies of the gas-oil-water project, including flow behavior description and closure relation development for different flow conditions. Modeling studies were performed in two parts, Technology Assessment and Model Development and Enhancement. The results of the Technology assessment study indicated that the performance of the current state of the art two-phase flow models was poor especially for three-phase pipeline flow when compared with the existing data. As part of the model development and enhancement study, a new unified model for gas-oil-water three-phase pipe flow was developed. The new model is based on the dynamics of slug flow, which shares transition boundaries with all the other flow patterns. The equations of slug flow are used not only to calculate the slug characteristics, but also to predict transitions from slug flow to other flow patterns. An experimental program including three-phase gas-oil-water horizontal flow and two-phase horizontal and inclined oil-water flow testing was conducted utilizing a Tulsa University Fluid Flow Projects Three-phase Flow Facility. The experimental results were incorporated into the unified model as they became available, and model results were used to better focus and tailor the experimental study. Finally, during the Period 2, a new three-phase databank has been developed using the data generated during this project and additional data available in the literature. The unified model to predict the gas-oil-water three phase flow characteristics was tested by comparing the prediction results with the data. The results showed good agreements.

  7. Proceedings of the Third EPRI Phased Array Ultrasound Seminar

    SciTech Connect (OSTI)

    None

    2003-12-01T23:59:59.000Z

    Phased array technology for ultrasonic examination is providing innovative solutions for nuclear in-service examination applications. EPRI has been a prime mover in the development and deployment of phased array ultrasound applications in the domestic nuclear market over the past decade. As part of this strategic effort, EPRI has hosted a series of seminars on phased array technology and its applications.

  8. Wind Turbine Drivetrain Condition Monitoring During GRC Phase 1 and Phase 2 Testing

    SciTech Connect (OSTI)

    Sheng, S.; Link, H.; LaCava, W.; van Dam, J.; McNiff, B.; Veers, P.; Keller, J.; Butterfield, S.; Oyague, F.

    2011-10-01T23:59:59.000Z

    This report will present the wind turbine drivetrain condition monitoring (CM) research conducted under the phase 1 and phase 2 Gearbox Reliability Collaborative (GRC) tests. The rationale and approach for this drivetrain CM research, investigated CM systems, test configuration and results, and a discussion on challenges in wind turbine drivetrain CM and future research and development areas, will be presented.

  9. Thickness-based adaptive mesh refinement methods for multi-phase flow simulations with thin regions

    SciTech Connect (OSTI)

    Chen, Xiaodong [The State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Yang, Vigor, E-mail: vigor.yang@aerospace.gatech.edu [School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0150 (United States)

    2014-07-15T23:59:59.000Z

    In numerical simulations of multi-scale, multi-phase flows, grid refinement is required to resolve regions with small scales. A notable example is liquid-jet atomization and subsequent droplet dynamics. It is essential to characterize the detailed flow physics with variable length scales with high fidelity, in order to elucidate the underlying mechanisms. In this paper, two thickness-based mesh refinement schemes are developed based on distance- and topology-oriented criteria for thin regions with confining wall/plane of symmetry and in any situation, respectively. Both techniques are implemented in a general framework with a volume-of-fluid formulation and an adaptive-mesh-refinement capability. The distance-oriented technique compares against a critical value, the ratio of an interfacial cell size to the distance between the mass center of the cell and a reference plane. The topology-oriented technique is developed from digital topology theories to handle more general conditions. The requirement for interfacial mesh refinement can be detected swiftly, without the need of thickness information, equation solving, variable averaging or mesh repairing. The mesh refinement level increases smoothly on demand in thin regions. The schemes have been verified and validated against several benchmark cases to demonstrate their effectiveness and robustness. These include the dynamics of colliding droplets, droplet motions in a microchannel, and atomization of liquid impinging jets. Overall, the thickness-based refinement technique provides highly adaptive meshes for problems with thin regions in an efficient and fully automatic manner.

  10. Simultaneous assessment of phase chemistry, phase abundance and bulk chemistry with statistical electron probe micro-analyses: Application to cement clinkers

    SciTech Connect (OSTI)

    Wilson, William; Krakowiak, Konrad J.; Ulm, Franz-Josef, E-mail: ulm@mit.edu

    2014-01-15T23:59:59.000Z

    According to recent developments in cement clinker engineering, the optimization of chemical substitutions in the main clinker phases offers a promising approach to improve both reactivity and grindability of clinkers. Thus, monitoring the chemistry of the phases may become part of the quality control at the cement plants, along with the usual measurements of the abundance of the mineralogical phases (quantitative X-ray diffraction) and the bulk chemistry (X-ray fluorescence). This paper presents a new method to assess these three complementary quantities with a single experiment. The method is based on electron microprobe spot analyses, performed over a grid located on a representative surface of the sample and interpreted with advanced statistical tools. This paper describes the method and the experimental program performed on industrial clinkers to establish the accuracy in comparison to conventional methods. -- Highlights: •A new method of clinker characterization •Combination of electron probe technique with cluster analysis •Simultaneous assessment of phase abundance, composition and bulk chemistry •Experimental validation performed on industrial clinkers.

  11. Technical Report (Final): Development of Solid State Reagents for Preparing Radiolabeled Imaging Agents

    SciTech Connect (OSTI)

    Kabalka, George W

    2011-05-20T23:59:59.000Z

    The goal of this research was on the development of new, rapid, and efficient synthetic methods for incorporating short-lived radionuclides into agents of use in measuring dynamic processes. The initial project period (Year 1) was focused on the preparation of stable, solid state precursors that could be used to efficiently incorporate short-lived radioisotopes into small molecules of use in biological applications (environmental, plant, and animal). The investigation included development and evaluation of new methods for preparing carbon-carbon and carbon-halogen bonds for use in constructing the substrates to be radiolabeled. The second phase (Year 2) was focused on developing isotope incorporation techniques using the stable, boronated polymeric precursors. The final phase (Year 3), was focused on the preparation of specific radiolabeled agents and evaluation of their biodistribution using micro-PET and micro-SPECT. In addition, we began the development of a new series of polymeric borane reagents based on polyethylene glycol backbones.

  12. Fusion blanket design and optimization techniques.

    SciTech Connect (OSTI)

    Gohar, Y.

    2005-07-19T23:59:59.000Z

    In fusion reactors, the blanket design and its characteristics have a major impact on the reactor performance, size, and economics. The selection and arrangement of the blanket materials, dimensions of the different blanket zones, and different requirements of the selected materials for a satisfactory performance are the main parameters, which define the blanket performance. These parameters translate to a large number of variables and design constraints, which need to be simultaneously considered in the blanket design process. This represents a major design challenge because of the lack of a comprehensive design tool capable of considering all these variables to define the optimum blanket design and satisfying all the design constraints for the adopted figure of merit and the blanket design criteria. The blanket design techniques of the First Wall/Blanket/Shield Design and Optimization System (BSDOS) have been developed to overcome this difficulty and to provide the state-of-the-art techniques and tools for performing blanket design and analysis. This report describes some of the BSDOS techniques and demonstrates its use. In addition, the use of the optimization technique of the BSDOS can result in a significant blanket performance enhancement and cost saving for the reactor design under consideration. In this report, examples are presented, which utilize an earlier version of the ITER solid breeder blanket design and a high power density self-cooled lithium blanket design for demonstrating some of the BSDOS blanket design techniques.

  13. Lean Gasoline System Development for Fuel Efficient Small Car

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development Progression Phase 1 Initial Concept Phase 2 Refinement Phase 3 Optimization May '10 May '11 May '12 Sep '13 May '13 2.2L NA Lean Engine Lean Boost Controls...

  14. REAL-TIME NON-PHOTOREALISTIC RENDERING TECHNIQUES

    E-Print Network [OSTI]

    Weske, Mathias

    REAL-TIME NON-PHOTOREALISTIC RENDERING TECHNIQUES FOR ILLUSTRATING 3D SCENES AND THEIR DYNAMICS This thesis addresses real-time non-photorealistic rendering techniques and their applications in interactive visualization. Real-time rendering has emerged as an important discipline within computer graphics developing

  15. Two Rossi-[alpha] techniques for measuring the effective delayed neutron fraction

    SciTech Connect (OSTI)

    Spriggs, G.D. (Los Alamos National Lab., NM (United States))

    1993-02-01T23:59:59.000Z

    Two techniques for measuring the effective delayed neutron fraction have been developed. The techniques are based on a combination of the Rossi-[alpha]technique and the source-multiplication technique. They require minimal knowledge of the assembly, use variables that can be measured, and are independent of the detector efficiency and the neutron lifetime.

  16. Fractured reservoir evaluation using Monte Carlo techniques

    SciTech Connect (OSTI)

    Sears, G.F.; Phillips, N.V.

    1987-01-01T23:59:59.000Z

    Pro forma cash-flow analysis of petroleum ventures usually is considered as a deterministic model. In the last 10 years, Monte Carlo analysis has allowed the introduction of probability distributions of input variables in place of single-valued functions. Reserve determination and rate scheduling in these current Monte Carlo techniques have relied on the volumetric formula, which works well in nonfractured reservoirs. Recent massive drilling in fractured reservoirs has rendered this approach unusable. This paper develops a variation of the Arps rate-cumulative equation as a basic model for the determination of the distribution of original reserves and the decline rates. Continuation of the Monte Carlo technique into net present value analysis and internal rate of return (IRR) is also developed.

  17. Topological phases with long-range interactions

    E-Print Network [OSTI]

    Gong, Zhe-Xuan; Hu, Anzi; Wall, Michael L; Foss-Feig, Michael; Gorshkov, Alexey V

    2015-01-01T23:59:59.000Z

    Topological phases of matter are primarily studied in quantum many-body systems with short-range interactions. Whether various topological phases can survive in the presence of long-range interactions, however, is largely unknown. Here we show that a paradigmatic example of a symmetry-protected topological phase, the Haldane phase of an antiferromagnetic spin-1 chain, surprisingly remains intact in the presence of arbitrarily slowly decaying power-law interactions. The influence of long-range interactions on the topological order is largely quantitative, and we expect similar results for more general systems. Our conclusions are based on large-scale matrix-product-state simulations and two complementary effective-field-theory calculations. The striking agreement between the numerical and analytical results rules out finite-size effects. The topological phase considered here should be experimentally observable in a recently developed trapped-ion quantum simulator.

  18. Topological phases with long-range interactions

    E-Print Network [OSTI]

    Zhe-Xuan Gong; Mohammad F. Maghrebi; Anzi Hu; Michael L. Wall; Michael Foss-Feig; Alexey V. Gorshkov

    2015-05-12T23:59:59.000Z

    Topological phases of matter are primarily studied in quantum many-body systems with short-range interactions. Whether various topological phases can survive in the presence of long-range interactions, however, is largely unknown. Here we show that a paradigmatic example of a symmetry-protected topological phase, the Haldane phase of an antiferromagnetic spin-1 chain, surprisingly remains intact in the presence of arbitrarily slowly decaying power-law interactions. The influence of long-range interactions on the topological order is largely quantitative, and we expect similar results for more general systems. Our conclusions are based on large-scale matrix-product-state simulations and two complementary effective-field-theory calculations. The striking agreement between the numerical and analytical results rules out finite-size effects. The topological phase considered here should be experimentally observable in a recently developed trapped-ion quantum simulator.

  19. Nanoscopic Dynamics of Phospholipid in Unilamellar Vesicles: Effect of Gel to Fluid Phase Transition

    SciTech Connect (OSTI)

    Sharma, Veerendra K [ORNL; Mamontov, Eugene [ORNL; Anunciado, Divina B [ORNL; O'Neill, Hugh Michael [ORNL; Urban, Volker S [ORNL

    2015-01-01T23:59:59.000Z

    Dynamics of phospholipids in unilamellar vesicles (ULV) is of interest in biology, medical, and food sciences since these molecules are widely used as biocompatible agents and a mimic of cell membrane systems. We have investigated the nanoscopic dynamics of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) phospholipid in ULV as a function of temperature using elastic and quasielastic neutron scattering (QENS). The dependence of the signal on the scattering momentum transfer, which is a critical advantage of neutron scattering techniques, allows the detailed analysis of the lipid motions that cannot be carried out by other means. In agreement with a differential scanning calorimetry measurement, a sharp rise in the elastic scattering intensity below ca. 296 K indicates a phase transition from the high-temperature fluid phase to the low-temperature solid gel phase. The microscopic lipid dynamics exhibits qualitative differences between the solid gel phase (in a measurement at 280 K) and the fluid phase (in a measurement at a physiological temperature of 310 K). The data analysis invariably shows the presence of two distinct motions: the whole lipid molecule motion within a monolayer, or lateral diffusion, and the relatively faster internal motion of the DMPC molecule. The lateral diffusion of the whole lipid molecule is found to be Fickian in character, whereas the internal lipid motions are of localized character, consistent with the structure of the vesicles. The lateral motion slows down by an order of magnitude in the solid gel phase, whereas for the internal motion not only the time scale, but also the character of the motion changes upon the phase transition. In the solid gel phase, the lipids are more ordered and undergo uniaxial rotational motion. However, in the fluid phase, the hydrogen atoms of the lipid tails undergo confined translation diffusion rather than uniaxial rotational diffusion. The localized translational diffusion of the hydrogen atoms of the lipid tails is a manifestation of the flexibility of the chains acquired in the fluid phase. Because of this flexibility, both the local diffusivity and the confinement volume for the hydrogen atoms increase linearly from near the lipid s polar head group to the end of its hydrophobic tail. Our results present a quantitative and detailed picture of the effect of the gel-fluid phase transition on the nanoscopic lipid dynamics in ULV. The data analysis approach developed here has a potential for probing the dynamic response of lipids to the presence of additional cell membrane components.

  20. The Use of Electrochemical Techniques to Characterize Wet Steam Environments

    SciTech Connect (OSTI)

    Bruce W. Bussert; John A. Crowley; Kenneth J. Kimball; Brian J. Lashway

    2003-04-30T23:59:59.000Z

    The composition of a steam phase in equilibrium with a water phase at high temperature is remarkably affected by the varying capabilities of the water phase constituents to partition into the steam. Ionic impurities (sodium, chloride, sulfate, etc.) tend to remain in the water phase, while weakly ionic or gaseous species (oxygen) partition into the steam. Analysis of the water phase can provide misleading results concerning the steam phase composition or environment. This paper describes efforts that were made to use novel electrochemical probes and sampling techniques to directly characterize a wet steam phase environment in equilibrium with high temperature water. Probes were designed to make electrochemical measurements in the thin film of water existing on exposed surfaces in steam over a water phase. Some of these probes were referenced against a conventional high temperature electrode located in the water phase. Others used two different materials (typically tungsten and platinum) to make measurements without a true reference electrode. The novel probes were also deployed in a steam space removed from the water phase. It was necessary to construct a reservoir and an external, air-cooled condenser to automatically keep the reservoir full of condensed steam. Conventional reference and working electrodes were placed in the water phase of the reservoir and the novel probes protruded into the vapor space above it. Finally, water phase probes (both reference and working electrodes) were added to the hot condensed steam in the external condenser. Since the condensing action collapsed the volatiles back into the water phase, these electrodes proved to be extremely sensitive at detecting oxygen, which is one of the species of highest concern in high temperature power systems. Although the novel steam phase probes provided encouraging initial results, the tendency for tungsten to completely corrode away in the steam phase limited their usefulness. However, the conventional water phase electrodes, installed both in the reservoir and in the external condensing coil, provided useful data showing the adverse impact of oxygen and carbon dioxide on the REDOX potential and high temperature pH, respectively.

  1. Stabilising the Blue Phases

    E-Print Network [OSTI]

    G. P. Alexander; J. M. Yeomans

    2006-09-22T23:59:59.000Z

    We present an investigation of the phase diagram of cholesteric liquid crystals within the framework of Landau - de Gennes theory. The free energy is modified to incorporate all three Frank elastic constants and to allow for a temperature dependent pitch in the cholesteric phase. It is found that the region of stability of the cubic blue phases depends significantly on the value of the elastic constants, being reduced when the bend elastic constant is larger than splay and when twist is smaller than the other two. Most dramatically we find a large increase in the region of stability of blue phase I, and a qualitative change in the phase diagram, in a system where the cholesteric phase displays helix inversion.

  2. Crystal phase identification

    DOE Patents [OSTI]

    Michael, Joseph R. (Albuquerque, NM); Goehner, Raymond P. (Albuquerque, NM); Schlienger, Max E. (Albuquerque, NM)

    2001-01-01T23:59:59.000Z

    A method and apparatus for determining the crystalline phase and crystalline characteristics of a sample. This invention provides a method and apparatus for unambiguously identifying and determining the crystalline phase and crystalline characteristics of a sample by using an electron beam generator, such as a scanning electron microscope, to obtain a backscattered electron Kikuchi pattern of a sample, and extracting crystallographic and composition data that is matched to database information to provide a quick and automatic method to identify crystalline phases.

  3. Automation of single-cell techniques in neural tissue

    E-Print Network [OSTI]

    Steinmeyer, Joseph D. (Joseph Daly)

    2014-01-01T23:59:59.000Z

    The highly heterogeneous nature of cells in the context of native tissue environments necessitates the development of tools and techniques that can manipulate and analyze samples with single-cell resolution. While the past ...

  4. High Througput Combinatorial Techniques in Hydrogen Storage Materials...

    Broader source: Energy.gov (indexed) [DOE]

    and surface area measurements (high-throughput techniques need development). 5. Aerogels Page 2 of 5 Synthesis is based on standard sol-gel processes and should be similar to...

  5. Nonlinear stochastic system identification techniques for biological tissues/

    E-Print Network [OSTI]

    Chen, Yi, S.M. Massachusetts Institute of Technology

    2010-01-01T23:59:59.000Z

    This research develops a device capable of measuring the nonlinear dynamic mechanical properties of human tissue in vivo. The enabling technology is the use of nonlinear stochastic system identification techniques in ...

  6. A Retroreflective Sheeting Selection Technique for Nighttime Drivers' Needs

    E-Print Network [OSTI]

    Paulus, Susan C.

    2010-07-14T23:59:59.000Z

    In this thesis, the author developed a retroreflective sheeting selection technique for traffic signs. Previous research was used to determine the luminance needed by drivers (demand luminance). The author used roadways scenarios to determine...

  7. Surface space : digital manufacturing techniques and emergent building material

    E-Print Network [OSTI]

    Ho, Joseph Chi-Chen, 1975-

    2002-01-01T23:59:59.000Z

    This thesis explores tectonic possibilities of new material and forming techniques. The design process is catalyzed by experimenting different configurations of the material.This project attempts to develop inventive ways ...

  8. Digital neural network-based modeling technique for extrusion processes

    E-Print Network [OSTI]

    Jang, Won-Hyouk

    2001-01-01T23:59:59.000Z

    and market conditions. In order to develop reliable and well-performing advanced process monitoring and diagnostic systems for achieving improved product quality and cost-effective operation, the neural network-based modeling technique for the extrusion...

  9. Cavitation methods in therapeutic ultrasound : techniques, mechanisms, and system design

    E-Print Network [OSTI]

    Sokka, Shunmugavelu D. (Shunmugavelu Doraivelu), 1975-

    2004-01-01T23:59:59.000Z

    Focused ultrasound is currently being developed as a non-invasive thermal ablation technique for benign and cancerous tumors in several organ systems. Although these therapies are designed to ablate tissue purely by thermal ...

  10. APPLICATION OF DATA ANALYSIS TECHNIQUES TO NUCLEAR REACTOR

    E-Print Network [OSTI]

    Kunz, Robert Francis

    1 APPLICATION OF DATA ANALYSIS TECHNIQUES TO NUCLEAR REACTOR SYSTEMS CODE ACCURACY ASSESSMENT) has been developed by the authors to provide quantitative comparisons between nuclear reactor systems. 1. INTRODUCTION In recent years, the commercial nuclear reactor industry has focused significant

  11. Utilization-based delay guarantee techniques and their applications

    E-Print Network [OSTI]

    Wang, Shengquan

    2009-05-15T23:59:59.000Z

    both efficient and effective, which is further confirmed with our data. We develop techniques for several systems that are of practical importance. We first consider wired networks with the Differentiated Services model, which is wellknown as its...

  12. Protection of Li Anodes Using Dual Phase Electrolytes

    Broader source: Energy.gov (indexed) [DOE]

    the laboratory scale Li-S cells. Partners BASF SE, Germany * Development of Li-S battery materials 3 Project Objectives * Develop a unique electrolyte providing two liquid phases...

  13. Flexoelectric blue phases

    E-Print Network [OSTI]

    G P Alexander; J M Yeomans

    2007-07-01T23:59:59.000Z

    We describe the occurence and properties of liquid crystal phases showing two dimensional splay and bend distortions which are stabilised by flexoelectric interactions. These phases are characterised by regions of locally double splayed order separated by topological defects and are thus highly analogous to the blue phases of cholesteric liquid crystals. We present a mean field analysis based upon the Landau--de Gennes Q-tensor theory and construct a phase diagram for flexoelectric structures using analytic and numerical results. We stress the similarities and discrepancies between the cholesteric and flexoelectric cases.

  14. Thermodynamically Stable Blue Phases

    E-Print Network [OSTI]

    F. Castles; S. M. Morris; E. M. Terentjev; H. J. Coles

    2011-01-28T23:59:59.000Z

    We show theoretically that flexoelectricity stabilizes blue phases in chiral liquid crystals. Induced internal polarization reduces the elastic energy cost of splay and bend deformations surrounding singular lines in the director field. The energy of regions of double twist is unchanged. This in turn reduces the free energy of the blue phase with respect to that of the chiral nematic phase, leading to stability over a wider temperature range. The theory explains the discovery of large temperature range blue phases in highly flexoelectric "bimesogenic" and "bent-core" materials, and predicts how this range may be increased further.

  15. Holographic Magnetic Phase Transition

    E-Print Network [OSTI]

    Gilad Lifschytz; Matthew Lippert

    2009-06-21T23:59:59.000Z

    We study four-dimensional interacting fermions in a strong magnetic field, using the holographic Sakai-Sugimoto model of intersecting D4 and D8 branes in the deconfined, chiral-symmetric parallel phase. We find that as the magnetic field is varied, while staying in the parallel phase, the fermions exhibit a first-order phase transition in which their magnetization jumps discontinuously. Properties of this transition are consistent with a picture in which some of the fermions jump to the lowest Landau level. Similarities to known magnetic phase transitions are discussed.

  16. Cache Energy Optimization Techniques For Modern Processors

    SciTech Connect (OSTI)

    Mittal, Sparsh [ORNL] ORNL

    2013-01-01T23:59:59.000Z

    Modern multicore processors are employing large last-level caches, for example Intel's E7-8800 processor uses 24MB L3 cache. Further, with each CMOS technology generation, leakage energy has been dramatically increasing and hence, leakage energy is expected to become a major source of energy dissipation, especially in last-level caches (LLCs). The conventional schemes of cache energy saving either aim at saving dynamic energy or are based on properties specific to first-level caches, and thus these schemes have limited utility for last-level caches. Further, several other techniques require offline profiling or per-application tuning and hence are not suitable for product systems. In this book, we present novel cache leakage energy saving schemes for single-core and multicore systems; desktop, QoS, real-time and server systems. Also, we present cache energy saving techniques for caches designed with both conventional SRAM devices and emerging non-volatile devices such as STT-RAM (spin-torque transfer RAM). We present software-controlled, hardware-assisted techniques which use dynamic cache reconfiguration to configure the cache to the most energy efficient configuration while keeping the performance loss bounded. To profile and test a large number of potential configurations, we utilize low-overhead, micro-architecture components, which can be easily integrated into modern processor chips. We adopt a system-wide approach to save energy to ensure that cache reconfiguration does not increase energy consumption of other components of the processor. We have compared our techniques with state-of-the-art techniques and have found that our techniques outperform them in terms of energy efficiency and other relevant metrics. The techniques presented in this book have important applications in improving energy-efficiency of higher-end embedded, desktop, QoS, real-time, server processors and multitasking systems. This book is intended to be a valuable guide for both newcomers and veterans in the field of cache power management. It will help graduate students, CAD tool developers and designers in understanding the need of energy efficiency in modern computing systems. Further, it will be useful for researchers in gaining insights into algorithms and techniques for micro-architectural and system-level energy optimization using dynamic cache reconfiguration. We sincerely believe that the ``food for thought'' presented in this book will inspire the readers to develop even better ideas for designing ``green'' processors of tomorrow.

  17. Geometric phases for generalized squeezed coherent states

    E-Print Network [OSTI]

    S. Seshadri; S. Lakshmibala; V. Balakrishnan

    1999-05-31T23:59:59.000Z

    A simple technique is used to obtain a general formula for the Berry phase (and the corresponding Hannay angle) for an arbitrary Hamiltonian with an equally-spaced spectrum and appropriate ladder operators connecting the eigenstates. The formalism is first applied to a general deformation of the oscillator involving both squeezing and displacement. Earlier results are shown to emerge as special cases. The analysis is then extended to multiphoton squeezed coherent states and the corresponding anholonomies deduced.

  18. Determining Plutonium Mass in Spent Fuel with Nondestructive Assay Techniques NGSI Research Overview and Update on NDA Techniques

    E-Print Network [OSTI]

    A., V. Mozin, S.J. Tobin, L.W. Cambell, J.R. Cheatham, C.R. Freeman, C.J. Gesh,

    2012-01-01T23:59:59.000Z

    the target delayed gamma peaks. 3. X-Ray Fluorescence (XRF)The XRF assay technique is being developed by the Los Alamosquantities in the spent fuel. XRF is unique among the other

  19. Development of twisted high-temperature superconductor composite conductors

    SciTech Connect (OSTI)

    Christopherson, C.J.; Riley, G.N. Jr. [American Superconductor Corporation, Westborough, Massachusetts 01581 (United States)] [American Superconductor Corporation, Westborough, Massachusetts 01581 (United States)

    1995-04-24T23:59:59.000Z

    Multifilamentary high-temperature superconductor (HTS) composite conductors have been developed for alternating current (ac) applications. A twisted HTS conductor containing the Bi-2223 phase fabricated using a modified powder-in-tube technique is reported. Transport critical current densities of 13 800 and 10 900 A/cm {sup 2} (77 K, self-field, 1 {mu}V/cm) have been achieved for twisted tape and wire conductors with twist pitches of 3.7 and 3.6 mm, respectively. These conductors are strongly linked and are thus suitable for use in ac applications.

  20. Low Temperature Material Bonding Technique

    DOE Patents [OSTI]

    Ramsey, J. Michael (Knoxville, TN); Foote, Robert S. (Oak Ridge, TN)

    2000-10-10T23:59:59.000Z

    A method of performing a lower temperature bonding technique to bond together two mating pieces of glass includes applying a sodium silicate aqueous solution between the two pieces.

  1. Low temperature material bonding technique

    DOE Patents [OSTI]

    Ramsey, J. Michael (Knoxville, TN); Foote, Robert S. (Oak Ridge, TN)

    2002-02-12T23:59:59.000Z

    A method of performing a lower temperature bonding technique to bond together two mating pieces of glass includes applying a sodium silicate aqueous solution between the two pieces.

  2. Fundamentals and Techniques of Nonimaging

    SciTech Connect (OSTI)

    O'Gallagher, J. J.; Winston, R.

    2003-07-10T23:59:59.000Z

    This is the final report describing a long term basic research program in nonimaging optics that has led to major advances in important areas, including solar energy, fiber optics, illumination techniques, light detectors, and a great many other applications. The term ''nonimaging optics'' refers to the optics of extended sources in systems for which image forming is not important, but effective and efficient collection, concentration, transport, and distribution of light energy is. Although some of the most widely known developments of the early concepts have been in the field of solar energy, a broad variety of other uses have emerged. Most important, under the auspices of this program in fundamental research in nonimaging optics established at the University of Chicago with support from the Office of Basic Energy Sciences at the Department of Energy, the field has become very dynamic, with new ideas and concepts continuing to develop, while applications of the early concepts continue to be pursued. While the subject began as part of classical geometrical optics, it has been extended subsequently to the wave optics domain. Particularly relevant to potential new research directions are recent developments in the formalism of statistical and wave optics, which may be important in understanding energy transport on the nanoscale. Nonimaging optics permits the design of optical systems that achieve the maximum possible concentration allowed by physical conservation laws. The earliest designs were constructed by optimizing the collection of the extreme rays from a source to the desired target: the so-called ''edge-ray'' principle. Later, new concentrator types were generated by placing reflectors along the flow lines of the ''vector flux'' emanating from lambertian emitters in various geometries. A few years ago, a new development occurred with the discovery that making the design edge-ray a functional of some other system parameter permits the construction of whole new classes of devices with greatly expanded capabilities compared to conventional approaches. These ''tailored edge-ray'' designs have dramatically broadened the range of geometries in which nonimaging optics can provide a significant performance improvement. Considerable progress continues to be made in furthering the incorporation of nonimaging secondaries into practical high concentration and ultra-high concentration solar collector systems. In parallel with the continuing development of nonimaging geometrical optics, our group has been working to develop an understanding of certain fundamental physical optics concepts in the same context. In particular, our study of the behavior of classical radiance in nonimaging systems, has revealed some fundamentally important new understandings that we have pursued both theoretically and experimentally. The field is still relatively new and is rapidly gaining widespread recognition because it fuels many industrial applications. Because of this, during the final years of the project, our group at Chicago has been working more closely with a team of industrial scientists from Science Applications International Corporation (SAIC) at first informally, and later more formally, beginning in 1998, under a formal program initiated by the Department of Energy and incrementally funded through this existing grant. This collaboration has been very fruitful and has led to new conceptual breakthroughs which have provided the foundation for further exciting growth. Many of these concepts are described in some detail in the report.

  3. New developments in the primal-dual column generation technique

    E-Print Network [OSTI]

    2011-01-24T23:59:59.000Z

    Jan 24, 2011 ... In this paper, we are concerned with an essential tool for integer ... problem (CSP

  4. Development of integrated imaging techniques for investigating biomarkers in glioblastoma

    E-Print Network [OSTI]

    Kim, Heisoog

    2011-01-01T23:59:59.000Z

    Cancer is a diverse disease with many manifestations. Various imaging modalities including magnetic resonance imaging (MRI) and positron emission tomography (PET) have been used to study human cancer. In this study, we ...

  5. Roll Printed Electronics: Development and Scaling of Gravure Printing Techniques

    E-Print Network [OSTI]

    de la Fuente Vornbrock, Alejandro

    2009-01-01T23:59:59.000Z

    easily be a measured surface topography of a curved surface,Maxima and minima of a surface topography are described by Rinks show different surface topographies from each other as

  6. Development of novel dynamic indentation techniques for soft tissue applications

    E-Print Network [OSTI]

    Balakrishnan, Asha, 1974-

    2007-01-01T23:59:59.000Z

    Realistic material models to simulate the behavior of brain tissue at large deformations and high strain rates are necessary when designing equipment to protect against ballistic impacts. Acquiring experimental data for ...

  7. Development of the Passive Cooling Technique in China

    E-Print Network [OSTI]

    Zhou, J.; Wu, J.; Zhang, G.; Xu, Y.

    2006-01-01T23:59:59.000Z

    ?. The research period of radiation cooling is not enough. Scientist of Italy, Canada, Australia, and etc have carried out experiments on buildings, and the achievement is satisfying. While scientist of Japan, Sweden has achieved a breakthrough in the item... of Standards and Technology Administration, U.S.Department of Commerce, 2001. [12] NatVent, The NatVent programme 1.0, J&W Consulting Engineers, Sweden, 1998:3. [13] Thermal design code for civil building (GB 50176-93)[M]. Beijing: China Planning Press...

  8. Roll Printed Electronics: Development and Scaling of Gravure Printing Techniques

    E-Print Network [OSTI]

    de la Fuente Vornbrock, Alejandro

    2009-01-01T23:59:59.000Z

    electronics in general, there is a large opportunity for improving device performance, stability, and reliability

  9. Exploration and Development Techniques for Basin and Range Geothermal...

    Open Energy Info (EERE)

    Abstract Abstract unavailable. Authors David D. Blackwell, Mark Leidig, Richard P. Smith, Stuart D. Johnson and Kenneth W. Wisian Conference GRC Annual Meeting; Reno, NV;...

  10. Development and Deployment of an Advanced Wind Forecasting Technique

    E-Print Network [OSTI]

    Kemner, Ken

    findings. Part 2 addresses how operators of wind power plants and power systems can incorporate advanced the output of advanced wind energy forecasts into decision support models for wind power plant and power and applications of power market simulation models around the world. Argonne's software tools are used extensively

  11. Development of a fast neutron therapy beam placement film technique 

    E-Print Network [OSTI]

    Baron, Robert Layton

    1971-01-01T23:59:59.000Z

    by the fibro sarcoma. . . . . . . . . . . . . . . . . . ~ 31 32 39 40 Figure 10. This roentgenograph of subject OA276 shows the position of the Pb-covered stint used in skin-sparing experiments. 11. The head of Dog FOA276 shows good contrast between... was 9. 8 rads. 45 14. This screened placement film of Candy required only a 0. 88 rad dose on Kodak RP-14 film. 46 15. Dog FOA272 was the subject of this 0. 62 rad dose, CaWO screened placement film on Kodak RP-14 film. . . 47 4 16. This placement...

  12. Development of a fast neutron therapy beam placement film technique

    E-Print Network [OSTI]

    Baron, Robert Layton

    1971-01-01T23:59:59.000Z

    used are surgery and radiotherapy. High energy X rays and gamma rays are most often used when radio- therapy is required, but new interest in the use of other types of radiation has recently been generated. One of the first characteristics... of neutron radiation to be noted by Chadwick in 1932 was its ability to penetrate matter in manner similar to X rays (2). Although the results of Stone and his colleagues (3-5) caused Stone to recommend that neutrons not be used in cancer therapy, more...

  13. Roll Printed Electronics: Development and Scaling of Gravure Printing Techniques

    E-Print Network [OSTI]

    de la Fuente Vornbrock, Alejandro

    2009-01-01T23:59:59.000Z

    effect transistors with polyimide gate dielectric layers."methacrylate (PMMA), polyimide (PI), poly(vinyl-alcohol) (styrene, PMMA, and polyimide were the earliest materials to

  14. A farewell to arms? Scientists developing a novel technique that...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Public and International Affairs and the Department of Mechanical and Aerospace Engineering. The system Glaser and Goldston are mapping out would compare a warhead to be...

  15. Advanced Confocal Microscopy An Essential Technique for Microfluidics Development

    E-Print Network [OSTI]

    Terence Lundy

    Many believe that microfluidics has the potential to do for chemistry and biology what the integrated circuit has done for electronics — integrating tremendously complex chemical and biological processes into simple easy-to-use devices that will eventually pervade

  16. Roll Printed Electronics: Development and Scaling of Gravure Printing Techniques

    E-Print Network [OSTI]

    de la Fuente Vornbrock, Alejandro

    2009-01-01T23:59:59.000Z

    IEEE Transactions on Electronics Packaging Manufacturing,conductors for flexible electronics." s.l. : Journal of theMaterials for Optics and Electronics, 1993, Vol. 2, pp. 93-

  17. Exploration and Development Techniques for Basin and Range Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania: EnergyExolis Energy Jump to:Analogs For EpithermalSystems:

  18. Microsoft Word - HAB - AdviceDevelopmentTechniques-draft-3.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A. Project0 FOIAneutron rich sector of theFinal

  19. Rapid phase synthesis of nanocrystalline cobalt ferrite

    SciTech Connect (OSTI)

    Shanmugavel, T., E-mail: shanmugavelnano@gmail.com [Department of Physics, Paavai Engineering College, Namakkal -637018 (India); Raj, S. Gokul [Department of Physics, Vel Tech University, Avadi, Chennai - 600 062 (India); Rajarajan, G. [Department of Physics, Mahendra Engineering College, Mallasamudram -637503 (India); Kumar, G. Ramesh [Department of Physics, University College of Engineering, Anna University Chennai, Arni- 632317 (India)

    2014-04-24T23:59:59.000Z

    Synthesis of single phase nanocrystalline Cobalt Ferrite (CoFe{sub 2}O{sub 4}) was achieved by single step autocombustion technique with the use of citric acid as a chelating agent in mono proportion with metal. Specimens prepared with this method showed significantly higher initial permeability's than with the conventional process. Single phase nanocrystalline cobalt ferrites were formed at very low temperature. Surface morphology identification were carried out by transmission electron microscopy (TEM) analysis. The average grain size and density at low temperature increased gradually with increasing the temperature. The single phase formation is confirmed through powder X-ray diffraction analysis. Magnetization measurements were obtained at room temperature by using a vibrating sample magnetometer (VSM), which showed that the calcined samples exhibited typical magnetic behaviors. Temperature dependent magnetization results showed improved behavior for the nanocrystalline form of cobalt ferrite when compared to the bulk nature of materials synthesized by other methods.

  20. Condensed-phase decomposition in thermally-aged explosives

    SciTech Connect (OSTI)

    Erickson, K.L.; Trott, W.M.; Renlund, A.M.

    1995-12-01T23:59:59.000Z

    In previous work, the isothermal decomposition of nitrocellulose (NC) was examined using two substantially different experimental techniques that are being developed to investigate condensed-phase chemistry occurring during the thermal decomposition of a variety of explosives. The confined isothermal aging technique involved confined thin-film samples heated to temperatures of 150 to 170{degrees}C, for 1 to 72 hours. Condensed-phase chemistry was monitored real-time using FTIR. Results indicated that the first step in decomposition was scission of the O-NO{sub 2} bond and subsequent formation of carbonyl and hydroxyl products. Scission of the O-NO{sub 2} bond appeared to occur by a first-order reaction. Additional unconfined rapid isothermal decomposition experiments with NC have been completed and are described in this paper. Those additional experiments extended the previous work and investigated the effect of varying film thickness (from about 0.2 to 0.6 microns), varying temperature (from about 420 to 640{degrees}C), and using {sup 15}NO{sub 2}-labled NC. The results indicated that decomposition of NC appears to involve at least two principal mechanisms: (1) O-NO{sub 2} bond scission, which is accompanied by carbonyl or hydroxyl formation, and (2) polymer fragmentation. These two mechanisms occur simultaneously. At temperatures of 170{degrees}C, or lower, polymer fragmentation appears negligible, but at temperatures of 420{degrees}C, or higher, polymer fragmentation is appreciable and occurs at rates comparable to those for O-NO{sub 2} bond scission. While polymer fragmentation may be associated with O-NO{sub 2} bond scission, at higher temperatures, additional steps must be involved in the fragmentation mechanism. At each end of the temperatures range from about 150 to 420{degrees}C, the rate of O-NO{sub 2} bond scission appears reasonably consistent with a mechanism dominated by a first-order decomposition step.