Powered by Deep Web Technologies
Note: This page contains sample records for the topic "development phases techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

DEVELOPMENT OF CLAD CERAMIC FUEL PLATES BY SPRAY-COATING TECHNIQUES. Final Report, Phase I  

SciTech Connect

Activities in a program to develop techniques of plasma spraying clad plate-type UO/sub 2/ fuel elements are reported. The investigation was also directed toward determining the limitations of the process as applied to fuel element fabrication. UO/sub 2/ powder coatings having densities of 90% theoretical were produced. At conditions required for spraying plates, densities of 86% appear to be practical. The rate and efficiency of UO/sub 2/ coating deposition were also determined for various spraying conditions. Gritblasting was found to provide the best surface for coating adherence. The O/U ratio of the UO/sub 2/ was maintained by spraying in an Ar atmosphere. Zircaloy-2 was found to be the most desirable cladding material. Cladding thicknesses of 0.035 in. are required in distortion-free 2-in.-wide plates. (J.R.D.)

Weare, N.E.

1961-10-31T23:59:59.000Z

2

The Development and Optimization of Techniques for Monitoring Water Quality on-Board Spacecraft Using Colorimetric Solid-Phase Extraction (C-SPE)  

Science Conference Proceedings (OSTI)

The main focus of this dissertation is the design, development, and ground and microgravity validation of methods for monitoring drinking water quality on-board NASA spacecraft using clorimetric-solid phase extraction (C-SPE). The Introduction will overview the need for in-flight water quality analysis and will detail some of the challenges associated with operations in the absence of gravity. The ability of C-SPE methods to meet these challenges will then be discussed, followed by a literature review on existing applications of C-SPE and similar techniques. Finally, a brief discussion of diffuse reflectance spectroscopy theory, which provides a means for analyte identification and quantification in C-SPE analyses, is presented. Following the Introduction, four research chapters are presented as separate manuscripts. Chapter 1 reports the results from microgravity testing of existing C-SPE methods and procedures aboard NASA's C-9 microgravity simulator. Chapter 2 discusses the development of a C-SPE method for determining the total concentration of biocidal silver (i.e., in both dissolved and colloidal forms) in water samples. Chapter 3 presents the first application of the C-SPE technique to the determination of an organic analyte (i.e., formaldehyde). Chapter 4, which is a departure from the main focus of the thesis, details the results of an investigation into the effect of substrate rotation on the kinetics involved in the antigen and labeling steps in sandwich immunoassays. These research chapters are followed by general conclusions and a prospectus section.

April Hill

2007-12-01T23:59:59.000Z

3

Low phase noise, high bandwidth frequency synthesis techniques  

E-Print Network (OSTI)

A quantization noise reduction technique is proposed that allows fractional-N frequency synthesizers to achieve high closed loop bandwidth and low output phase noise simultaneously. Quantization induced phase noise is the ...

Meninger, Scott (Scott Edward), 1974-

2005-01-01T23:59:59.000Z

4

Hard X-ray Phase Contrast -Techniques and Applications -  

E-Print Network (OSTI)

Hard X-ray Phase Contrast Microscopy - Techniques and Applications - A Dissertation Presented of the Graduate School ii #12;Abstract of the Dissertation Hard X-ray Phase Contrast Microscopy - Techniques . . . . . . . . . . . . . . . . . . 58 3.2.4 Reconstruction Example for Integration Method . . . . 59 3.2.5 The Imaginary Part

5

Development of techniques for optimizing selection and completion of western tight gas sands. Phase II report, 1 January Feb 1979--28 February 1979  

SciTech Connect

The Phase II work included the measurement of sandstone bed structural elements at 16 sites on Cretaceous Marine Marginal sandstone beds and at 16 sites on beds in a Lower Tertiary lacustrine sequence in eastern Utah. This work was aimed at defining the internal geometrical characteristics of these two types of reservoir rocks.

Knutson, C.F.; Boardman, C.R.

1979-02-01T23:59:59.000Z

6

Development of a New Acoustic Emissions Technique for the Detection and Location of Gassing Sources in Power Transformers and LTCs: Phase 2 Results  

Science Conference Proceedings (OSTI)

Detection of acoustic emissions (AE) from partial discharge (PD) events in transformers is well known, and instrumentation is available. However, AE have been detected in the absence of PD. It has been shown that these signals are produced as a result of the inception of gas bubbles and, possibly, the turbulent motion of oil as it heats up. Analysis of these signals from a population of gassing transformers could result in a new diagnostic technique for detecting, locating, and characterizing gassing sit...

2005-05-12T23:59:59.000Z

7

Live pathogens: rapid detection technique developed  

NLE Websites -- All DOE Office Websites (Extended Search)

January » January » Live Pathogens: Rapid Detection Technique Developed Live pathogens: rapid detection technique developed The technique relies on bacteria being critically dependent upon the key nutrient iron. January 24, 2013 Colorized scanning electron micrograph of E. coli. Colorized scanning electron micrograph of E. coli. Photo credit: US Centers for Disease Control and Prevention LANL's new method eliminates the need for laboratory culture and greatly speeds the process. Los Alamos researchers have developed a better technique for quick detection of live pathogens in the field. Identification of viable bacteria in a complex environment is scientifically challenging. Current detection and diagnostic techniques are inadequate in major public health emergencies, such as outbreaks of food-borne illness. Detection of live

8

New Developments in LC-MS and Other Hyphenated Techniques  

SciTech Connect

Extensive challenges faced by analytical chemists in studying real world complex samples such as biological body fluids, tissue samples, environmental and geological samples have lead to the development of advanced analytical approaches. The vast array of contemporary technologies can be categorized into two major areas: sample separation and mass spectrometry analysis. Current state-of-the-art sample separation methods include gas chromatography, high performance liquid chromatography, ultra high pressure liquid chromatography, solid phase extraction, capillary electrophoresis, and gas phase separation techniques such as ion mobility spectrometry. The recent trend in sample separation is to combine (or hyphenate) multiple techniques that employ different separation mechanisms to maximize separation efficiency. The most widely used combinations include two-dimensional gas chromatography, strong cation exchange or weak cation exchange chromatography followed by reversed-phase liquid chromatography, two-dimensional reversed-phase liquid chromatography, liquid chromatography followed by ion mobility spectrometry and two-dimensional electrophoresis techniques. The introduction of atmospheric pressure ionization techniques such as electrospray ionization and matrix assisted laser desorption ionization and variations of the two have drastically increased the impact of mass spectrometry on bioanalytical applications. Mass spectrometry itself has tremendously improved over the years in terms of sensitivity, detection limits, dynamic range and sequencing capabilities. Currently, mass spectrometers can attain zeptomolole detection limits with five orders of magnitude dynamic range. In this chapter, we summarize recent developments in hyphenated techniques and their applications to complex sample analysis.

Belov, Mikhail E.; Kurulugama, Ruwan T.; Lopez-Ferrer, Daniel; Ibrahim, Yehia M.; Baker, Erin Shammel

2011-06-21T23:59:59.000Z

9

Geothermal Development Phases | Open Energy Information  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Phases of a Geothermal Development...

10

Geothermal Development Phases | Open Energy Information  

Open Energy Info (EERE)

Page Edit History Facebook icon Twitter icon Geothermal Development Phases Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field...

11

Enthalpy and mass flowrate measurements for two-phase geothermal production by Tracer dilution techniques  

Science Conference Proceedings (OSTI)

A new technique has been developed for the measurement of steam mass flowrate, water mass flowrate and total enthalpy of two-phase fluids produced from geothermal wells. The method involves precisely metered injection of liquid and vapor phase tracers into the two-phase production pipeline and concurrent sampling of each phase downstream of the injection point. Subsequent chemical analysis of the steam and water samples for tracer content enables the calculation of mass flowrate for each phase given the known mass injection rates of tracer. This technique has now been used extensively at the Coso geothermal project, owned and operated by California Energy Company. Initial validation of the method was performed at the Roosevelt Hot Springs geothermal project on wells producing to individual production separators equipped with orificeplate flowmeters for each phase.

Hirtz, Paul; Lovekin, Jim; Copp, John; Buck, Cliff; Adams, Mike

1993-01-28T23:59:59.000Z

12

Nuclear Concrete Materials Database Phase I Development  

Science Conference Proceedings (OSTI)

The FY 2011 accomplishments in Phase I development of the Nuclear Concrete Materials Database to support the Light Water Reactor Sustainability Program are summarized. The database has been developed using the ORNL materials database infrastructure established for the Gen IV Materials Handbook to achieve cost reduction and development efficiency. In this Phase I development, the database has been successfully designed and constructed to manage documents in the Portable Document Format generated from the Structural Materials Handbook that contains nuclear concrete materials data and related information. The completion of the Phase I database has established a solid foundation for Phase II development, in which a digital database will be designed and constructed to manage nuclear concrete materials data in various digitized formats to facilitate electronic and mathematical processing for analysis, modeling, and design applications.

Ren, Weiju [ORNL; Naus, Dan J [ORNL

2012-05-01T23:59:59.000Z

13

Phase distribution of software development effort  

Science Conference Proceedings (OSTI)

Effort distribution by phase or activity is an important but often overlooked aspect compared to other steps in the cost estimation process. Poor effort allocation is among the major root causes of rework due to insufficiently resourced early activities. ... Keywords: cost estimation, development type, effort allocation, effort distribution, estimation accuracy, phase distribution

Ye Yang; Mei He; Mingshu Li; Qing Wang; Barry Boehm

2008-10-01T23:59:59.000Z

14

GEA Development Phases | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » GEA Development Phases Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home GEA Development Phases The information for this page was taken directly from Geothermal Reporting Terms and Definitions: A Guide to Reporting Resource Development Progress and Results to the Geothermal Energy Association (GEA, November 2010) Gea.jpg The Geothermal Energy Association's (GEA) Geothermal Reporting Terms and Definitions are a guideline for geothermal developers to use when submitting geothermal resource development information to GEA for public dissemination in its annual US Geothermal Power Production and Development

15

Category:GEA Development Phases | Open Energy Information  

Open Energy Info (EERE)

Phase III - Permitting and Initial Development Phase IV - Resource Production and Power Plant Construction Retrieved from "http:en.openei.orgwindex.php?titleCategory:G...

16

Phase III - Permitting and Initial Development | Open Energy Information  

Open Energy Info (EERE)

III - Permitting and Initial Development III - Permitting and Initial Development Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home GEA Development Phase III: Permitting and Initial Development GEA Development Phases The Geothermal Energy Association's (GEA) Geothermal Reporting Terms and Definitions are a guideline for geothermal developers to use when submitting geothermal resource development information to GEA for public dissemination in its annual US Geothermal Power Production and Development Update. GEA's Geothermal Reporting Terms and Definitions serve to increase the consistency, accuracy, and reliability of industry information presented in the development updates. Phase I - Resource Procurement and Identification Phase II - Resource Exploration and Confirmation Phase III - Permitting and Initial Development

17

Techniques to Develop Data for Hydrogeochemical Models  

Science Conference Proceedings (OSTI)

Predicting the environmental fate of chemicals leached from solid-waste disposal sites requires the use of hydrologic and geochemical models. These models need accurate input data, which require field sampling and analysis of soils, water, and waste. This manual provides guidance on developing input data so that utilities can increase their use of hydrogeochemical models.

1989-12-20T23:59:59.000Z

18

Exploration and Development Techniques for Basin and Range Geothermal...  

Open Energy Info (EERE)

Council, 2002 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Exploration and Development Techniques for Basin and Range Geothermal...

19

Industrial Lighting Techniques and New Developments  

E-Print Network (OSTI)

The energy crisis of the early seventies has had a drastic influence on both the application and development of light sources. This situation has forced us to examine old methods and search for new answers for improved efficiency. We can no longer operate on the premise that more is better. At lower light levels a lighting design is less forgiving. The current thrust in lamp and luminare design has been high efficiency. Tremendous effort has been expended to produce energy efficient sources that deliver better color, improved optical control, and reduced lamp size. Given that we must operate in this arena of heightened energy awareness and that lighting, by its very nature, becomes a prime candidate for reduction, we must not lose sight of the fundamental reason for lighting to provide the ability for us to see details to perform specific tasks. The heart of an industrial plant is the production area. A myriad of tasks must be accomplished. Lighting is installed for humans, not machines. The eye can only adapt to a degree and accommodate a variety of conditions; i.e., color, texture, etc. Higher light levels are required as an individuals age increases. It has also been confirmed in many studies that light levels directly affect performance. People who have sufficient quantity and quality of illumination can accomplish their work faster and more accurately. A delicate balance lies between energy efficient lighting and under and over-lit spaces. This balance is with the fundamental lighting goal. Any formula to maintain this balance should include two vital factors: First, light output for levels and quality determined by proper task analysis and second, control by design which utilizes the best source and equipment available.

Colotti, M. A.

1985-05-01T23:59:59.000Z

20

Alloy Phase Metastability and Microstructure Development  

Science Conference Proceedings (OSTI)

In these cases, the microstructure phase selection is directed initially by the ... Time-Dependent Processes in Pu Alloys: From Femtoseconds to Teraseconds...

Note: This page contains sample records for the topic "development phases techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Development of manufacturing technique for composite structures for robotic applications  

E-Print Network (OSTI)

An experimental study was performed with the aim of developing a technique for manufacturing composite parts for use in dynamic robotic applications in lieu of heavy and expensive metal parts used in conventional robotic ...

Dixon, Theresa, S.B. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

22

Development of the Passive Cooling Technique in China  

E-Print Network (OSTI)

With more and more energy and environmental issues, the energy-saving and sustainable development of buildings is of utmost concern to the building industry. Passive cooling techniques can optimally utilize natural resources in order to reduce the energy consumption of buildings. At the same time, it can improve the buildings' thermal environment, so that it has gained the attention of many researchers and has been applied in many different zones of China. The author summarizes various passive cooling techniques, analyzes the research methods and simulation tools, and presents the results of a survey on actual applied conditions. We put forward the pivotal factors and the development direction of the technique. Comparing the thermal comfort zone of the passive cooling technique and the mechanical types, the passive cooling technique is found to be more suitable to people.

Zhou, J.; Wu, J.; Zhang, G.; Xu, Y.

2006-01-01T23:59:59.000Z

23

Measurement techniques for local and global fluid dynamic quantities in two and three phase systems  

Science Conference Proceedings (OSTI)

Available measurement techniques for evaluation of global and local phase holdups, instantaneous and average phase velocities and for the determination of bubble sizes in gas-liquid and gas-liquid-solid systems are reviewed. Advantages and disadvantages of various techniques are discussed. Particular emphasis is placed on identifying methods that can be employed on large scale, thick wall, high pressure and high temperature reactors used in the manufacture of fuels and chemicals from synthesis gas and its derivatives.

Kumar, S.; Dudukovic, M.P.; Toseland, B.A.

1998-01-01T23:59:59.000Z

24

Development of Improved Oil Field Waste Injection Disposal Techniques  

Science Conference Proceedings (OSTI)

The goals of this DOE sponsored project are to: (1) assemble and analyze a comprehensive database of past waste injection operations; (2) develop improved diagnostic techniques for monitoring fracture growth and formation changes; (3) develop operating guidelines to optimize daily operations and ultimate storage capacity of the target formation; and (4) to test these improved models and guidelines in the field.

Terralog Technologies USA Inc.

2001-12-17T23:59:59.000Z

25

Development of Improved Oil Field Waste Injection Disposal Techniques  

Science Conference Proceedings (OSTI)

The goals of this project have was to: (1) assemble and analyze a comprehensive database of past waste injection operations; (2) develop improved diagnostic techniques for monitoring fracture growth and formation changes; (3) develop operating guidelines to optimize daily operations and ultimate storage capacity of the target formation; and (4) to apply these improved models and guidelines in the field.

Terralog Technologies

2002-11-25T23:59:59.000Z

26

Magnesium Alloy Development Using Phase Equilibria Computation ...  

Science Conference Proceedings (OSTI)

The work illustrates the role of calculated phase diagrams, solidification paths ... AZ31 In-situ Analysis of the Tensile Deformation Mechanisms in Mg-1Mn-1Nd(wt. ... Electrochemical Investigation on Chlorine and Electrolyte Intercalation into ... K -38: Production of Mg-Ni Alloy by Consumable Cathode Molten Salt Electrolysis.

27

Exploration and Development Techniques for Basin and Range Geothermal  

Open Energy Info (EERE)

Techniques for Basin and Range Geothermal Techniques for Basin and Range Geothermal Systems: Examples from Dixie Valley, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Exploration and Development Techniques for Basin and Range Geothermal Systems: Examples from Dixie Valley, Nevada Abstract Abstract unavailable. Authors David D. Blackwell, Mark Leidig, Richard P. Smith, Stuart D. Johnson and Kenneth W. Wisian Conference GRC Annual Meeting; Reno, NV; 2002/09/22 Published Geothermal Resources Council, 2002 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Exploration and Development Techniques for Basin and Range Geothermal Systems: Examples from Dixie Valley, Nevada Citation David D. Blackwell,Mark Leidig,Richard P. Smith,Stuart D. Johnson,Kenneth

28

CT imaging techniques for two-phase and three-phase in-situ saturation measurements  

SciTech Connect

The aim of this research is to use the SUPRI 3D steam injection laboratory model to establish a reliable method for 3-phase in-situ saturation measurements, and thereafter investigate the mechanism of steamflood at residual oil saturation. Demiral et al. designed and constructed a three dimensional laboratory model that can be used to measure temperature, pressure and heat loss data. The model is also designed so that its construction materials are not a limiting factor for CT scanning. We have used this model for our study. In this study, we saturated the model with mineral oil, and carried out waterflood until residual oil saturation. Steamflood was then carried out. A leak appeared at the bottom of the model. Despite this problem, the saturation results, obtained by using 2-phase and 3-phase saturation equations and obtained from the Cat scanner, were compared with the saturations obtained from material balance. The errors thus obtained were compared with those obtained by an error analysis carried out on the saturation equations. This report gives details of the experimental procedures, the data acquisition and data processing computer programs, and the analysis of a steamflood experiment carried out at residual oil saturation.

Sharma, B.C.; Brigham, W.E.; Castanier, L.M.

1997-06-01T23:59:59.000Z

29

Quantifying Security in Secure Software Development Phases  

Science Conference Proceedings (OSTI)

Secure software is crucial in todays software dependent world. However, most of the time, security is not addressed from the very beginning of a software development life cycle (SDLC), and it is only incorporated after the software has been developed. ...

Muhammad Umair Ahmed Khan; Mohammad Zulkernine

2008-07-01T23:59:59.000Z

30

Geothermal resources development project: Phase I  

DOE Green Energy (OSTI)

Generic and site specific issues and problems are identified that relate directly to geothermal development in California, including changes in the state permitting process, land use issues, coordination between state entities, and geothermal revenues from BLM leased lands. Also discussed are the formation of working groups, preparation of a newsletter, the economic incentives workshops, and recommendations for future actions. (MHR)

Not Available

1979-09-30T23:59:59.000Z

31

Development and Demonstration of New Condition Monitoring Sensors and Techniques  

Science Conference Proceedings (OSTI)

Condition monitoring, proper diagnostics and accurate interpretation can help to reduce the rate of aging of power transformers and provide a means for the assessment of the overall integrity of this asset, with minimum risk of sudden failure. This technical update presents details of the progress of EPRI research in the development and demonstration of sensors and techniques for diagnostic and condition assessment of power transformers.

2009-12-23T23:59:59.000Z

32

Property:GeothermalDevelopmentPhases | Open Energy Information  

Open Energy Info (EERE)

GeothermalDevelopmentPhases GeothermalDevelopmentPhases Jump to: navigation, search Property Name GeothermalDevelopmentPhases Property Type Page Pages using the property "GeothermalDevelopmentPhases" Showing 25 pages using this property. (previous 25) (next 25) B BLM-NV-WN-ES-08-01-1310, NV-020-08-01 + Geothermal/Power Plant + C CA-017-05-051 + Geothermal/Well Field + CA-170-02-15 + Geothermal/Exploration + CA-650-2005-086 + Geothermal/Exploration + CA-670-2010-CX + Geothermal/Exploration + CA-96062042 + Geothermal/Power Plant +, Geothermal/Well Field +, Geothermal/Transmission + D DOE-EA-1116 + Geothermal/Power Plant +, Geothermal/Well Field +, Geothermal/Transmission + DOE-EA-1621 + Geothermal/Power Plant + DOE-EA-1676 + Geothermal/Power Plant + DOE-EA-1733 + Geothermal/Well Field +

33

Development of a synthetic phase contrast imaging diagnostic  

E-Print Network (OSTI)

A synthetic diagnostic has been developed to calculate the expected experimental response of phase contrast imaging (PCI), a scattering diagnostic used to measure density fluctuations in laboratory plasmas, to a tokamak ...

Rost, Jon C.

34

Plains CO2 Reduction Partnership--Development Phase  

NLE Websites -- All DOE Office Websites (Extended Search)

Development Phase Development Phase Background As part of a comprehensive effort to assess options for sustainable energy systems, the U.S. Department of Energy has selected seven regional partnerships, through its Regional Carbon Sequestration Partnership (RCSP) initiative, to determine the best approaches for capturing and permanently storing carbon dioxide (CO 2 ), a greenhouse gas (GHG) which can contribute to global climate change. The partnerships are

35

Development of Zinc/Bromine Batteries for Load-Leveling Applications: Phase 2 Final Report  

DOE Green Energy (OSTI)

This report documents Phase 2 of a project to design, develop, and test a zinc/bromine battery technology for use in utility energy storage applications. The project was co-funded by the U.S. Department of Energy Office of Power Technologies through Sandia National Laboratories. The viability of the zinc/bromine technology was demonstrated in Phase 1. In Phase 2, the technology developed during Phase 1 was scaled up to a size appropriate for the application. Batteries were increased in size from 8-cell, 1170-cm{sup 2} cell stacks (Phase 1) to 8- and then 60-cell, 2500-cm{sup 2} cell stacks in this phase. The 2500-cm{sup 2} series battery stacks were developed as the building block for large utility battery systems. Core technology research on electrolyte and separator materials and on manufacturing techniques, which began in Phase 1, continued to be investigated during Phase 2. Finally, the end product of this project was a 100-kWh prototype battery system to be installed and tested at an electric utility.

CLARK,NANCY H.; EIDLER,PHILLIP

1999-10-01T23:59:59.000Z

36

Toshiba's developments on construction techniques of nuclear power plants  

SciTech Connect

Reliable and economic energy supplies are fundamental requirements of energy policies in Japan. To accomplish these needs, nuclear power plants are being increased in Japan. In recent years, construction cost increases and schedule extensions have affected the capital cost of nuclear energy, compared with fossil power plants, due to lower costs of oil and coal. On the other hand, several severe regulations have been applied to nuclear power plant designs. High-quality and cooperative engineering and harmonized design of equipment and parts are strongly required. Therefore, reduced construction costs and scheduling, as well as higher quality and reliability, are the most important items for nuclear industry. Toshiba has developed new construction techniques, as well as design and engineering tools for control and management, that demonstrate the positive results achieved in the shorter construction period of 1100-MW(electric) nuclear power plants. The normal construction period so far is 64 months, whereas the current construction period is 52 months. (New construction techniques are partially applied). In future years, the construction period will be lowered to 48 months. (New construction techniques are fully applied). A construction period is defined as time from the start of rock inspection to the start of commercial operation.

Hayashi, Y.; Itoh, N.

1987-01-01T23:59:59.000Z

37

Advanced Techniques for In-Situ Monitoring of Phase Transformations During Welding Using Synchrotron-Based X-Ray Diffraction  

SciTech Connect

Understanding the evolution of microstructure in welds is an important goal of welding research because of the strong correlation between weld microstructure and weld properties. To achieve this goal it is important to develop a quantitative measure of phase transformations encountered during welding in order to ultimately develop methods for predicting weld microstructures from the characteristics of the welding process. To aid in this effort, synchrotron radiation methods have been developed at Lawrence Livermore National Laboratory (LLNL) for direct observation of microstructure evolution during welding. Using intense, highly collimated synchrotron radiation, the atomic structure of the weld heat affected and fusion zones can be probed in real time. Two synchrotron-based techniques, known as spatially resolved (SRXRD) and time resolved (TRXRD) x-ray diffraction, have been developed for these investigations. These techniques have now been used to investigate welding induced phase transformations in titanium alloys, low alloy steels, and stainless steel alloys. This paper will provide a brief overview of these methods and will discuss microstructural evolution during the welding of low carbon (AISI 1005) and medium carbon (AISI 1045) steels where the different levels of carbon influence the evolution of microstructures during welding.

Elmer, J W; Palmer, T A; Zhang, W; DebRoy, T

2005-06-05T23:59:59.000Z

38

Development of structural health monitoring techniques using dynamics testing  

Science Conference Proceedings (OSTI)

Today`s society depends upon many structures (such as aircraft, bridges, wind turbines, offshore platforms, buildings, and nuclear weapons) which are nearing the end of their design lifetime. Since these structures cannot be economically replaced, techniques for structural health monitoring must be developed and implemented. Modal and structural dynamics measurements hold promise for the global non-destructive inspection of a variety of structures since surface measurements of a vibrating structure can provide information about the health of the internal members without costly (or impossible) dismantling of the structure. In order to develop structural health monitoring for application to operational structures, developments in four areas have been undertaken within this project: operational evaluation, diagnostic measurements, information condensation, and damage identification. The developments in each of these four aspects of structural health monitoring have been exercised on a broad range of experimental data. This experimental data has been extracted from structures from several application areas which include aging aircraft, wind energy, aging bridges, offshore structures, structural supports, and mechanical parts. As a result of these advances, Sandia National Laboratories is in a position to perform further advanced development, operational implementation, and technical consulting for a broad class of the nation`s aging infrastructure problems.

James, G.H. III [Sandia National Labs., Albuquerque, NM (United States). Experimental Structural Dynamics Dept.

1996-03-01T23:59:59.000Z

39

Vadose Zone Characterization Techniques Developed by EMSP Research  

Science Conference Proceedings (OSTI)

This paper discusses research contributions made by Environmental Management Science Program (EMSP) research in the area of geophysical characterization of the subsurface. The goal of these EMSP research projects is to develop combined high-resolution measurement and interpretation packages that provide accurate, timely information needed to characterize the vadose zone. Various types of geophysical imaging techniques can be used to characterize the shallow subsurface. Since individual geophysical characterization tools all have specific limitations, many different techniques are being explored to provide more widespread applicability over a range of hydrogeologic settings. A combination of laboratory, field, theoretical, and computational studies are necessary to develop our understanding of how contaminants move through the vadose zone. This entails field tests with field-hardened systems, packaging and calibration of instrumentation, data processing and analysis algorithms, forward and inverse modeling, and so forth. DOE sites are seeking to team with EMSP researchers to leverage the basic science research investment and apply these advances to address subsurface contamination issues that plague many U.S. Department of Energy (DOE) sites.

Guillen, Donna P.

2003-02-24T23:59:59.000Z

40

Measurement techniques for local and global fluid dynamic quantities in two and three phase systems  

SciTech Connect

This report presents a critical review of the methods available for assessing the fluid dynamic parameters in large industrial two and three phase bubble column and slurry bubble column reactors operated at high pressure and temperature. The physical principles behind various methods are explained, and the basic design of the instrumentation needed to implement each measurement principle is discussed. Fluid dynamic properties of interest are: gas, liquid and solids holdup and their axial and radial distribution as well as the velocity distribution of the two (bubble column) or three phases (slurry bubble column). This information on operating pilot plant and plant reactors is essential to verify the computational fluid dynamic codes as well as scale-up rules used in reactor design. Without such information extensive and costly scale-up to large reactors that exploit syngas chemistries, and other reactors in production of fuels and chemicals, cannot be avoided. In this report, available measurement techniques for evaluation of global and local phase holdups, instantaneous and average phase velocities and for the determination of bubble sizes in gas-liquid and gas-liquid-solid systems are reviewed. Advantages and disadvantages of various techniques are discussed. Particular emphasis is placed on identifying methods that can be employed on large scale, thick wall, high pressure and high temperature reactors used in the manufacture of fuels and chemicals from synthesis gas and its derivatives.

Kumar, S.; Dudukovic, M.P. [Washington Univ., St. Louis, MO (United States). Chemical Reaction Engineering Lab.; Toseland, B.A. [Air Products and Chemicals, Inc., Lehigh Valley, PA (United States)

1996-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "development phases techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Development of advanced strain diagnostic techniques for reactor environments.  

SciTech Connect

The following research is operated as a Laboratory Directed Research and Development (LDRD) initiative at Sandia National Laboratories. The long-term goals of the program include sophisticated diagnostics of advanced fuels testing for nuclear reactors for the Department of Energy (DOE) Gen IV program, with the future capability to provide real-time measurement of strain in fuel rod cladding during operation in situ at any research or power reactor in the United States. By quantifying the stress and strain in fuel rods, it is possible to significantly improve fuel rod design, and consequently, to improve the performance and lifetime of the cladding. During the past year of this program, two sets of experiments were performed: small-scale tests to ensure reliability of the gages, and reactor pulse experiments involving the most viable samples in the Annulated Core Research Reactor (ACRR), located onsite at Sandia. Strain measurement techniques that can provide useful data in the extreme environment of a nuclear reactor core are needed to characterize nuclear fuel rods. This report documents the progression of solutions to this issue that were explored for feasibility in FY12 at Sandia National Laboratories, Albuquerque, NM.

Fleming, Darryn D.; Holschuh, Thomas Vernon,; Miller, Timothy J.; Hall, Aaron Christopher; Urrea, David Anthony,; Parma, Edward J.,

2013-02-01T23:59:59.000Z

42

Experimental techniques for hydrodynamic characterization of multiphase flows in slurry-phase bubble-column reactors  

DOE Green Energy (OSTI)

Slurry-phase bubble-column Fischer-Tropsch (FT) reactors are recognized as one of the more promising technologies for converting synthesis gas from coal into liquid fuel products (indirect liquefaction). However, hydrodynamic effects must be considered when attempting to scale these reactors to sizes of industrial interest. The objective of this program is to facilitate characterization of reactor hydrodynamics by developing and applying noninvasive tomographic diagnostics capable of measuring gas holdup spatial distribution in these reactors.

Torczynski, J.R.; O`Hern, T.J.; Adkins, D.R.; Shollenberger, K.A.; Mondy, L.A.; Jackson, N.B.

1994-09-01T23:59:59.000Z

43

Robust techniques for developing empirical models of fluidized bed combustors  

E-Print Network (OSTI)

This report is designed to provide a review of those data analysis techniques that are most useful for fitting m-dimensional empirical surfaces to very large sets of data. One issue explored is the improvement

Gruhl, Jim

44

PROGRESS ON GENERIC PHASE-FIELD METHOD DEVELOPMENT  

Science Conference Proceedings (OSTI)

In this report, we summarize our current collobarative efforts, involving three national laboratories: Idaho National Laboratory (INL), Pacific Northwest National Laboratory (PNNL) and Los Alamos National Laboatory (LANL), to develop a computational framework for homogenous and heterogenous nucleation mechanisms into the generic phase-field model. During the studies, the Fe-Cr system was chosen as a model system due to its simplicity and availability of reliable thermodynamic and kinetic data, as well as the range of applications of low-chromium ferritic steels in nuclear reactors. For homogenous nucleation, the relavant parameters determined from atomistic studies were used directly to determine the energy functional and parameters in the phase-field model. Interfacial energy, critical nucleus size, nucleation rate, and coarsening kinetics were systematically examined in two- and three- dimensional models. For the heteregoneous nucleation mechanism, we studied the nucleation and growth behavior of chromium precipitates due to the presence of dislocations. The results demonstrate that both nucleation schemes can be introduced to a phase-field modeling algorithm with the desired accuracy and computational efficiency.

Biner, Bullent; Tonks, Michael; Millett, Paul C.; Li, Yulan; Hu, Shenyang Y.; Gao, Fei; Sun, Xin; Martinez, E.; Anderson, D.

2012-09-26T23:59:59.000Z

45

ADVANCED DIAGNOSTIC TECHNIQUES FOR THREE-PHASE SLURRY BUBBLE COLUMN REACTORS(SBCR)  

SciTech Connect

The objectives set for this cooperative project between Washington University (WU), Ohio State University (OSU), and Air Products and Chemicals, Inc. (APCI) to advance the understanding of the Fischer-Tropsch (FT) slurry bubble column reactor hydrodynamics for proper design and scale-up via advanced diagnostic techniques have been accomplished successfully despite the unexpected challenging technical difficulties in implementing the advanced techniques in high pressure stainless steel slurry bubble column. In this work, a detailed review of the aspects of high pressure phenomena of bubbles in liquids and liquid-solids suspension was performed. All the challenging technical problems mentioned above were resolved and the advanced measurement techniques were successfully used in this project. The effects of reactor pressure, superficial gas velocity, solids loading, and liquid physical properties on the overall gas holdup, holdups distribution, recirculation velocity, turbulent parameters, bubble dynamics (size and rise velocity) were investigated via advanced measurement techniques that includes optical probe, Laser Doppler Anemometry (LDA), Computed Tomography (CT), Computer Automated Radioactive Particle Tracking (CARPT). The findings are discussed and analyzed in this report. In attempt to advance the design and scale-up of bubble columns, new correlations have been developed based on a large bank of data collected at a wide range of operating and design conditions. These correlations are for prediction of radial gas holdup profile, axial liquid velocity profile, overall gas holdup based on Neural Network and gas-liquid mass transfer coefficient. Despite the noticeable advances made on FT SBCR as a part of this project, there are still many parameters and challenging issues that need to be further and properly investigated and understood before this technology will be readily used for alternative fuel development technology.

M.H. Al-Dahhan; L.S. Fan; M.P. Dudukovic

2003-08-01T23:59:59.000Z

46

Development of Load Tap Changer Monitoring Technique: Mechanism of Coking  

Science Conference Proceedings (OSTI)

Load tap changers (LTCs) play a major role in the reliable delivery of electric power. They are the single biggest contributors to transformer outages. To improve reliability and extend their service interval, utilities are adopting proactive maintenance practices using monitoring devices and seeking new diagnostic techniques. As part of an ongoing EPRI project, EPRI and cosponsor Consolidated Edison Co. of New York, Inc. engaged in a study of contact coking, one of the biggest problems in LTCs. This EPR...

2001-11-27T23:59:59.000Z

47

Sodium Heat Engine Development Program. Phase 1, Final report  

DOE Green Energy (OSTI)

The Sodium Heat Engine (SHE) is an efficient thermoelectric conversion device which directly generates electricity from a thermally regenerative electrochemical cell that relies on the unique conduction properties of {beta}{double_prime}-alumina solid electrolyte (BASE). Laboratory models of a variety of SHE devices have demonstrated the feasibility and efficiency of the system, engineering development of large prototype devices has been slowed by a series of materials and fabrication problems. Failure of the electrolyte tubes has been a recurring problem and a number of possible causes have been postulated. To address these issues, a two-phase engineering development program was undertaken. This report summarizes the final results of the first phase of the program, which included extensive materials characterization activities, a study of applicable nondestructive evaluation methods, an investigation of possible stress states that would contribute to fracture, and certain operational issues associated with the electromagnetic pumps used in the SHE prototype. Mechanical and microstructural evaluation of commercially obtained BASE tubes revealed that they should be adequate for SHE applications and that sodium exposure produced no appreciable deleterious strength effects. Processing activities to produce a more uniform and smaller grain size for the BASE tubes were completed using isostatic pressing, extrusion, and slip casting. Green tubes were sintered by conventional and microwave plasma methods. Of particular interest is the residual stress state in the BASE tubes, and both analysis and nondestructive evaluation methods were employed to evaluate these stresses. X-ray and neutron diffraction experiments were performed to determine the bulk residual stresses in commercially fabricated BASE tubes; however, tube-to-tube variations and variations among the various methods employed did not allow formulation of a definitive definition of the as-fabricated stress state.

Singh, J.P.; Kupperman, D.S.; Majumdar, S.; Dorris, S.; Gopalsami, N.; Dieckman, S.L.; Jaross, R.A.; Johnson, D.L.; Gregar, J.S.; Poeppel, R.B.; Raptis, A.C.; Valentin, R.A.

1992-01-01T23:59:59.000Z

48

Development of Ultrasonic Techniques for Process Control in Iron ...  

Science Conference Proceedings (OSTI)

An attempt was also made to measure viscosity and melting characteristics ... Development of In-Situ Mg-Based Bulk Metallic Glass Composites with High Plasticity ... Spectroscopy of SEI on Porous SnO2/CNT Composite Anode for Lithium Ion...

49

DOE SBIR Phase-1 Report on Hybrid CPU-GPU Parallel Development of the Eulerian-Lagrangian Barracuda Multiphase Program  

DOE Green Energy (OSTI)

This report gives the result from the Phase-1 work on demonstrating greater than 10x speedup of the Barracuda computer program using parallel methods and GPU processors (General-Purpose Graphics Processing Unit or Graphics Processing Unit). Phase-1 demonstrated a 12x speedup on a typical Barracuda function using the GPU processor. The problem test case used about 5 million particles and 250,000 Eulerian grid cells. The relative speedup, compared to a single CPU, increases with increased number of particles giving greater than 12x speedup. Phase-1 work provided a path for reformatting data structure modifications to give good parallel performance while keeping a friendly environment for new physics development and code maintenance. The implementation of data structure changes will be in Phase-2. Phase-1 laid the ground work for the complete parallelization of Barracuda in Phase-2, with the caveat that implemented computer practices for parallel programming done in Phase-1 gives immediate speedup in the current Barracuda serial running code. The Phase-1 tasks were completed successfully laying the frame work for Phase-2. The detailed results of Phase-1 are within this document. In general, the speedup of one function would be expected to be higher than the speedup of the entire code because of I/O functions and communication between the algorithms. However, because one of the most difficult Barracuda algorithms was parallelized in Phase-1 and because advanced parallelization methods and proposed parallelization optimization techniques identified in Phase-1 will be used in Phase-2, an overall Barracuda code speedup (relative to a single CPU) is expected to be greater than 10x. This means that a job which takes 30 days to complete will be done in 3 days. Tasks completed in Phase-1 are: Task 1: Profile the entire Barracuda code and select which subroutines are to be parallelized (See Section Choosing a Function to Accelerate) Task 2: Select a GPU consultant company and jointly parallelize subroutines (CPFD chose the small business EMPhotonics for the Phase-1 the technical partner. See Section Technical Objective and Approach) Task 3: Integrate parallel subroutines into Barracuda (See Section Results from Phase-1 and its subsections) Task 4: Testing, refinement, and optimization of parallel methodology (See Section Results from Phase-1 and Section Result Comparison Program) Task 5: Integrate Phase-1 parallel subroutines into Barracuda and release (See Section Results from Phase-1 and its subsections) Task 6: Roadmap of Phase-2 (See Section Plan for Phase-2) With the completion of Phase 1 we have the base understanding to completely parallelize Barracuda. An overview of the work to move Barracuda to a parallelized code is given in Plan for Phase-2.

Dr. Dale M. Snider

2011-02-28T23:59:59.000Z

50

California Wind Energy Forecasting System Development and Testing Phase 2: 12-Month Testing  

Science Conference Proceedings (OSTI)

This report describes results from the second phase of the California Wind Energy Forecasting System Development and Testing Project.

2003-07-22T23:59:59.000Z

51

Film thickness measurement techniques applied to micro-scale two-phase flow systems  

SciTech Connect

Recently semi-empirical models to estimate flow boiling heat transfer coefficient, saturated CHF and pressure drop in micro-scale channels have been proposed. Most of the models were developed based on elongated bubbles and annular flows in the view of the fact that these flow patterns are predominant in smaller channels. In these models, the liquid film thickness plays an important role and such a fact emphasizes that the accurate measurement of the liquid film thickness is a key point to validate them. On the other hand, several techniques have been successfully applied to measure liquid film thicknesses during condensation and evaporation under macro-scale conditions. However, although this subject has been targeted by several leading laboratories around the world, it seems that there is no conclusive result describing a successful technique capable of measuring dynamic liquid film thickness during evaporation inside micro-scale round channels. This work presents a comprehensive literature review of the methods used to measure liquid film thickness in macro- and micro-scale systems. The methods are described and the main difficulties related to their use in micro-scale systems are identified. Based on this discussion, the most promising methods to measure dynamic liquid film thickness in micro-scale channels are identified. (author)

Tibirica, Cristiano Bigonha; do Nascimento, Francisco Julio; Ribatski, Gherhardt [Department of Mechanical Engineering, Escola de Engenharia de Sao Carlos (EESC), University of Sao Paulo (USP), Sao Carlos (Brazil)

2010-05-15T23:59:59.000Z

52

Research on the SPLL based single phase voltage sag detection technique  

Science Conference Proceedings (OSTI)

The drop of voltage amplitude and the jump of phase angle are two important parameters of the voltage sag. The design of Dynamic Voltage Restorer (DVR) compensation voltage with voltage sag parameters is discussed and a single-phase sag parameter detection ... Keywords: SPLL, detection, single-phase, voltage sag

Xie Yue; Chen Le; Sun Jian; Gong Xu

2008-04-01T23:59:59.000Z

53

Development of inverse modeling techniques for geothermal applications  

DOE Green Energy (OSTI)

We have developed inverse modeling capabilities for the non-isothermal, multiphase, multicomponent numerical simulator TOUGH2 to facilitate automatic history matching and parameter estimation based on data obtained during testing and exploitation of geothermal fields. The TOUGH2 code allows one to estimate TOUGH2 input parameters based on any type of observation for which a corresponding simulation output can be calculated. In addition, a detailed residual and error analysis is performed, and the uncertainty of model predictions can be evaluated. One of the advantages of inverse modeling is that it overcomes the time and labor intensive tedium of trial- and error model calibration. Furthermore, the estimated parameters refer directly to the numerical model used for the subsequent predictions and optimization studies. This paper describes the methodology of inverse modeling and demonstrates an application of the method to data from a synthetic geothermal reservoir. We also illustrate its use for the optimization of fluid reinjection into a partly depleted reservoir.

Finsterle, S.; Pruess, K.

1997-03-01T23:59:59.000Z

54

Developing Segmented Polyurethanes as Solid-solid Phase ...  

Science Conference Proceedings (OSTI)

Cellulose Acetate Membranes for CO2 Separation from Water-gas-shift Reaction ... Thermodynamic Phase Stability in Gasification Carbon Feedstock Slags...

55

Developments in Laser Techniques and Applications to Fluid Mechanics Proceedings of the 7  

E-Print Network (OSTI)

. Symp. Editors: R.J. Adrian, D.F.G. Durão, F. Durst, M.V. Heitor, M. Maeda and J.H. Whitelaw Table. Domnick, E. Schubert, H.W. Bergmann and F. Durst. Part II APPLICATIONS TO COMBUSTION · Characteristics of bubbles by phase Doppler technique and trajectory ambiguity. G. Grehan, F. Onofri, G. Gouesbet, F. Durst

Instituto de Sistemas e Robotica

56

FreedomCAR Advanced Traction Drive Motor Development Phase I  

DOE Green Energy (OSTI)

The overall objective of this program is to design and develop an advanced traction motor that will meet the FreedomCAR and Vehicle Technologies (FCVT) 2010 goals and the traction motor technical targets. The motor specifications are given in Section 1.3. Other goals of the program include providing a cost study to ensure the motor can be developed within the cost targets needed for the automotive industry. The program has focused on using materials that are both high performance and low costs such that the performance can be met and cost targets are achieved. In addition, the motor technologies and machine design features must be compatible with high volume manufacturing and able to provide high reliability, efficiency, and ruggedness while simultaneously reducing weight and volume. Weight and volume reduction will become a major factor in reducing cost, material cost being the most significant part of manufacturing cost at high volume. Many motor technology categories have been considered in the past and present for traction drive applications, including: brushed direct current (DC), PM (PM) brushless dc (BLDC), alternating current (AC) induction, switched reluctance and synchronous reluctance machines. Of these machine technologies, PM BLDC has consistently demonstrated an advantage in terms of power density and efficiency. As rare earth magnet cost has declined, total cost may also be reduced over the other technologies. Of the many different configurations of PM BLDC machines, those which incorporate power production utilizing both magnetic torque as well as reluctance torque appear to have the most promise for traction applications. There are many different PM BLDC machine configurations which employ both of these torque producing mechanisms; however, most would fall into one of two categories--some use weaker magnets and rely more heavily on reluctance torque (reluctance-dominant PM machines), others use strong PMs and supplement with reluctance torque (magnet-dominant PM machines). This report covers a trade study that was conducted in this phase I program to explore which type of machine best suits the FCVT requirements.

Ley, Josh (UQM Technologies, Inc.); Lutz, Jon (UQM Technologies, Inc.)

2006-09-01T23:59:59.000Z

57

Development of MELCOR Input Techniques for High Temperature Gas-Cooled Reactor Analysis  

E-Print Network (OSTI)

High Temperature Gas-cooled Reactors (HTGRs) can provide clean electricity,as well as process heat that can be used to produce hydrogen for transportation and other sectors. A prototypic HTGR, the Next Generation Nuclear Plant (NGNP),will be built at Idaho National Laboratory.The need for HTGR analysis tools and methods has led to the addition of gas-cooled reactor (GCR) capabilities to the light water reactor code MELCOR. MELCOR will be used by the Nuclear Regulatory Commission licensing of the NGNP and other HTGRs. In the present study, new input techniques have been developed for MELCOR HTGR analysis. These new techniques include methods for modeling radiation heat transfer between solid surfaces in an HTGR, calculating fuel and cladding geometric parameters for pebble bed and prismatic block-type HTGRs, and selecting appropriate input parameters for the reflector component in MELCOR. The above methods have been applied to input decks for a water-cooled reactor cavity cooling system (RCCS); the 400 MW Pebble Bed Modular Reactor (PBMR), the input for which is based on a code-to-code benchmark activity; and the High Temperature Test Facility (HTTF), which is currently in the design phase at Oregon State University. RCCS results show that MELCOR accurately predicts radiation heat transfer rates from the vessel but may overpredict convective heat transfer rates and RCCS coolant flow rates. PBMR results show that thermal striping from hot jets in the lower plenum during steady-state operations, and in the upper plenum during a pressurized loss of forced cooling accident, may be a major design concern. Hot jets could potentially melt control rod drive mechanisms or cause thermal stresses in plenum structures. For the HTTF, results will provide data to validate MELCOR for HTGR analyses. Validation will be accomplished by comparing results from the MELCOR representation of the HTTF to experimental results from the facility. The validation process can be automated using a modular code written in Python, which is described here.

Corson, James

2010-05-01T23:59:59.000Z

58

Capabilities and limitations of Phase Contrast Imaging techniques with X-rays and neutrons  

E-Print Network (OSTI)

Phase Contrast Imaging (PCI) was studied with the goal of understanding its relevance and its requirements. Current literature does not provide insight on the effect of a relaxation in coherence requirements on the PCI ...

Damato, Antonio Leonardo

2009-01-01T23:59:59.000Z

59

Subpicosecond electron bunch train production using a phase-space exchange technique  

SciTech Connect

Our recent experimental demonstration of a photoinjector electron bunch train with sub-picosecond structures is reported in this paper. The experiment is accomplished by converting an initially horizontal beam intensity modulation into a longitudinal phase space modulation, via a beamline capable of exchanging phase-space coordinates between the horizontal and longitudinal degrees of freedom. The initial transverse modulation is produced by intercepting the beam with a multislit mask prior to the exchange. We also compare our experimental results with numerical simulations.

Sun, Y.-E.; /Fermilab; Piot, P.; /Fermilab /Northern Illinois U.; Johnson, A.S.; Lumpkin, A.H.; /Fermilab; Maxwell, T.J.; /Fermilab /Northern Illinois U.; Ruan, J.; Thurman-Keup, R.M.; /Fermilab

2011-03-01T23:59:59.000Z

60

A theoretical framework of component-based software development phases  

Science Conference Proceedings (OSTI)

Component-Based Software Development (CBSD) is considered by many as the next revolution in systems development. Its focus is on the integration of pre-fabricated software components to build systems that increase portability and flexibility. CBSD purports ... Keywords: component-based software development, component-based software development life cycle, design science, systems development approach

Jason H. Sharp; Sherry D. Ryan

2010-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "development phases techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Nondestructive Evaluation: Development of NDE Techniques for Detection of Outside Diameter Stress Corrosion Cracking on Stainless St eel Pipe Under Pipe Clamps  

Science Conference Proceedings (OSTI)

The commercial nuclear power industry has been dealing with stress corrosion cracking (SCC) for almost 50 years. This project worked to develop nondestructive examination (NDE) techniques for detecting outside diameter stress corrosion cracking (ODSCC) and pitting under pipe clamps or pipe hangers on Type 304 stainless steel piping. The NDE techniques to be evaluated for this application include conventional pulse-echo ultrasonics (PE UT), phased array ultrasonics (PA UT), guided wave, forward ...

2012-11-29T23:59:59.000Z

62

Amplitude and phase modulation techniques for an asymmetric multi-level outphasing transmitter  

E-Print Network (OSTI)

New techniques for improving outphasing transmitters show potential of breaking the traditional linearity-efficiency trade-off by using highly efficient non-linear switching Power Amplifiers (PAs). This work focuses on two ...

Yahalom, Gilad

2012-01-01T23:59:59.000Z

63

TEM Study on the Phase Development and Microstructure in a U-7 ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Fuel development for the Reduced Enrichment for Research .... Characterization of the Delta Phase Formation in Uranium-Zirconium Alloy Fuels.

64

Developement of a digitally controlled low power single phase inverter for grid connected solar panel.  

E-Print Network (OSTI)

?? The work consists in developing a power conversion unit for solar panel connected to the grid. This unit will be a single phase inverter (more)

Marguet, Raphael

2010-01-01T23:59:59.000Z

65

The nal phase of dead-ice moraine development: processes and sediment architecture, Kotlujokull, Iceland  

E-Print Network (OSTI)

The ®nal phase of dead-ice moraine development: processes and sediment architecture, Ko of Copenhagen, éster Voldgade 10, DK-1350, Copenhagen K, Denmark ABSTRACT Consecutive phases of de-icing of ice on the sediment succession. Generally, no inversion of the topography occurs during the ®nal phase of de-icing

Ingólfsson, ?lafur

66

Development of coherent Raman measurements of temperature in condensed phases  

SciTech Connect

We report theoretical considerations and preliminary data on various forms of coherent Raman spectroscopy that have been considered as candidates for measurement of temperature in condensed phase experiments with picosecond time resolution. Due to the inherent broadness and congestion of vibrational features in condensed phase solids, particularly at high temperatures and pressures, only approaches that rely on the ratio of anti-Stokes to Stokes spectral features are considered. Methods that rely on resolution of vibrational progressions, calibration of frequency shifts with temperature and pressure in reference experiments, or detailed comparison to calculation are inappropriate or impossible for our applications. In particular, we consider femtosecond stimulated Raman spectroscopy (FSRS), femtosecond/picosecond hybrid coherent Raman spectroscopy (multiplex CARS), and optical heterodyne detected femtosecond Raman induced Kerr Effect spectroscopy (OHD-FRIKES). We show that only FSRS has the ability to measure temperature via an anti-Stokes to Stokes ratio of peaks.

Mcgrane, Shawn D [Los Alamos National Laboratory; Dang, Nhan C [Los Alamos National Laboratory; Bolme, Cindy A [Los Alamos National Laboratory; Moore, David S [Los Alamos National Laboratory

2010-12-08T23:59:59.000Z

67

Topical report on subsurface fracture mapping from geothermal wellbores. Phase I. Pulsed radar techniques. Phase II. Conventional logging methods. Phase III. Magnetic borehole ranging  

DOE Green Energy (OSTI)

To advance the state-of-the-art in Hot Dry Rock technology, an evaluation is made of (i) the use of radar to map far-field fractures, (ii) the use of more than twenty different conventional well logging tools to map borehole-fracture intercepts, and (iii) the use of magnetic dipole ranging to determine the relative positions of the injection well and the production well within the fractured zone. It is found that according to calculations, VHF backscatter radar has the potential for mapping fractures within a distance of 50 +- 20 meters from the wellbore. A new technique for improving fracture identification is presented. Analyses of extant data indicate that when used synergistically the (1) caliper, (2) resistivity dipmeter, (3) televiewer, (4) television, (5) impression packer, and (6) acoustic transmission are useful for mapping borehole-fracture intercepts. Improvements in both data interpretation techniques and high temperature operation are required. The surveying of one borehole from another appears feasible at ranges of up to 200 to 500 meters by using a low frequency magnetic field generated by a moderately strong dipole source (a solenoid) located in one borehole, a sensitive B field detector that traverses part of the second borehole, narrow band filtering, and special data inversion techniques.

Hartenbaum, B.A.; Rawson, G.

1980-09-01T23:59:59.000Z

68

New technique for phase shift analysis: multi-energy solution of inverse scattering problem  

E-Print Network (OSTI)

We demonstrate a new approach to the analysis of extensive multi-energy data. For the case of d + He-4, we produce a phase shift analysis covering for the energy range 3 to 11 MeV. The key idea is the use of iterative perturbative data-to-potential inversion which can produce potentials which reproduce the data simultaneously over a range of energies. It thus effectively regularizes the extraction of phase shifts from diverse, incomplete and possibly somewhat contradictory data sets. In doing so, it will provide guidance to experimentalists as to what further measurements should be made. This study is limited to vector spin observables and spin-orbit interactions. We discuss alternative ways in which the theory can be implemented and which provide insight into the ambiguity problems. We compare the extrapolation of these solutions to other energies. Majorana terms are presented for each potential component.

S. G. Cooper; V. I. Kukulin; R. S. Mackintosh; E. V. Kuznetsova

1998-03-05T23:59:59.000Z

69

Technical and Economic Evaluation of Coal Tar Dense Non-Aqueous Phase Liquid (DNAPL) Pumping Techniques  

Science Conference Proceedings (OSTI)

The utility industry has become aware of potential environmental issues at some sites resulting from process residues or byproducts at former manufactured gas plant (MGP) sites. One of the greatest challenges utility managers face in the management of these sites is the subsurface presence of coal tar, dense-non aqueous phase liquid (DNAPL). This report, which explores the technical feasibility and life cycle costs for several coal tar DNAPL pumping alternatives, is intended to assist utilities in evalua...

2000-03-07T23:59:59.000Z

70

Recent developments in the techniques of controlling and measuring suction in unsaturated soils  

E-Print Network (OSTI)

The difficulty of measuring and controlling suction in unsaturated soils is one of the reasons why the development of the mechanics of unsaturated soils has not been as advanced as that of saturated soils. However, significant developments have been carried out in the last decade in this regard. In this paper, a re-view of some developments carried out in the techniques of controlling suction by using the axis translation, the osmotic method and the vapour control technique is presented. The paper also deals with some recent de-velopments in the direct measurement of suction by using high capacity tensiometers and in the measurement of high suction by using high range psychrometers. The recent progresses made in these techniques have been significant and will certainly help further experimental investigation of the hydromechanical behaviour of un-saturated soils.

Delage, Pierre; Tarantino, Alessandro

2008-01-01T23:59:59.000Z

71

Development of Underwater Laser Cladding and Underwater Laser Seal Welding Techniques for Reactor Components (II)  

SciTech Connect

Stress corrosion cracking (SCC) is one of the major reasons to reduce the reliability of aged reactor components. Toshiba has been developing underwater laser welding onto surface of the aged components as maintenance and repair techniques. Because most of the reactor internal components to apply this underwater laser welding technique have 3-dimensional shape, effect of welding positions and welded shapes are examined and presented in this report. (authors)

Masataka Tamura; Shohei Kawano; Wataru Kouno; Yasushi Kanazawa [Toshiba Corporation (Japan)

2006-07-01T23:59:59.000Z

72

Developing new optical imaging techniques for single particle and molecule tracking in live cells  

SciTech Connect

Differential interference contrast (DIC) microscopy is a far-field as well as wide-field optical imaging technique. Since it is non-invasive and requires no sample staining, DIC microscopy is suitable for tracking the motion of target molecules in live cells without interfering their functions. In addition, high numerical aperture objectives and condensers can be used in DIC microscopy. The depth of focus of DIC is shallow, which gives DIC much better optical sectioning ability than those of phase contrast and dark field microscopies. In this work, DIC was utilized to study dynamic biological processes including endocytosis and intracellular transport in live cells. The suitability of DIC microscopy for single particle tracking in live cells was first demonstrated by using DIC to monitor the entire endocytosis process of one mesoporous silica nanoparticle (MSN) into a live mammalian cell. By taking advantage of the optical sectioning ability of DIC, we recorded the depth profile of the MSN during the endocytosis process. The shape change around the nanoparticle due to the formation of a vesicle was also captured. DIC microscopy was further modified that the sample can be illuminated and imaged at two wavelengths simultaneously. By using the new technique, noble metal nanoparticles with different shapes and sizes were selectively imaged. Among all the examined metal nanoparticles, gold nanoparticles in rod shapes were found to be especially useful. Due to their anisotropic optical properties, gold nanorods showed as diffraction-limited spots with disproportionate bright and dark parts that are strongly dependent on their orientation in the 3D space. Gold nanorods were developed as orientation nanoprobes and were successfully used to report the self-rotation of gliding microtubules on kinesin coated substrates. Gold nanorods were further used to study the rotational motions of cargoes during the endocytosis and intracellular transport processes in live mammalian cells. New rotational information was obtained: (1) during endocytosis, cargoes lost their rotation freedom at the late stage of internalization; (2) cargoes performed train-like motion when they were transported along the microtubule network by motor proteins inside live cells; (3) During the pause stage of fast axonal transport, cargoes were still bound to the microtubule tracks by motor proteins. Total internal reflection fluorescence microscopy (TIRFM) is another non-invasive and far-field optical imaging technique. Because of its near-field illumination mechanism, TIRFM has better axial resolution than epi-fluorescence microscopy and confocal microscopy. In this work, an auto-calibrated, prism type, angle-scanning TIRFM instrument was built. The incident angle can range from subcritical angles to nearly 90{sup o}, with an angle interval less than 0.2{sup o}. The angle precision of the new instrument was demonstrated through the finding of the surface plasmon resonance (SPR) angle of metal film coated glass slide. The new instrument improved significantly the precision in determining the axial position. As a result, the best obtained axial resolution was {approx} 8 nm, which is better than current existing instruments similar in function. The instrument was further modified to function as a pseudo TIRF microscope. The illumination depth can be controlled by changing the incident angle of the excitation laser beam or adjusting the horizontal position of the illumination laser spot on the prism top surface. With the new technique, i.e., variable-illumination-depth pseudo TIRF microscopy, the whole cell body from bottom to top was scanned.

Sun, Wei

2010-12-15T23:59:59.000Z

73

Evaluation of asbestos-abatement techniques. Phase 1. Removal. Final report  

Science Conference Proceedings (OSTI)

Airborne asbestos levels were measured by transmission electron microscopy (TEM), scanning electron microscopy (SEM) and phase constrast microscopy (PCM) before, during, and after removal of sprayed-on acoustical plaster from the ceilings of four suburban schools. Air samples were collected at three types of sites: indoor sites with asbestos-containing material (ACM), indoor sites without ACM (indoor control), and sites outside the building (outdoor control). Bulk samples of the ACM were collected prior to the removal and analyzed by polarized light microscopy (PLM). A vigorous quality-assurance program was applied to all aspects of the study. Airborne asbestos levels were low before and after removal. Elevated, but still relatively low levels were measured outside the work area during removal. This emphasizes the need for careful containment of the work area.

Chesson, J.; Margeson, D.P.; Ogden, J.; Reichenbach, N.G.; Bauer, K.

1985-10-01T23:59:59.000Z

74

An Iterative Filtering Technique for the Analysis of Copolar Differential Phase and Dual-Frequency Radar Measurements  

Science Conference Proceedings (OSTI)

Copolar differential phase is composed of two components, namely, differential propagation phase and differential backscatter phase. To estimate specific differential phase KDP, these two phase components must first be separated when significant ...

J. Hubbert; V. N. Bringi

1995-06-01T23:59:59.000Z

75

An Investigation of Extratropical Cyclone Development Using a Scale-Separation Technique  

Science Conference Proceedings (OSTI)

The explosive development phase of an extratropical cyclone (ETC) is examined using output generated by the fifth-generation PSUNCAR Mesoscale Model (MM5). A full-physics run of MM5 with 60-km grid spacing was used to simulate the intensive ...

Kenneth E. Parsons; Phillip J. Smith

2004-04-01T23:59:59.000Z

76

Biomass power for rural development: Phase 2. Technical progress report, April 1--June 30, 1998  

DOE Green Energy (OSTI)

The project undertaken by the Salix Consortium is a multi-phased, multi-partner endeavor. Phase-1 focused on initial development and testing of the technology and agreements necessary to demonstrate commercial willow production in Phase-2. The Phase-1 objectives have been successfully completed: preparing final design plans for two utility pulverized coal boilers, developing fuel supply plans for the project, obtaining power production commitments from the power companies for Phase-2, obtaining construction and environmental permits, and developing an experimental strategy for crop production and power generation improvements needed to assure commercial success. The R and D effort also addresses environmental issues pertaining to introduction of the willow energy system. Beyond those Phase-1 requirements the Consortium has already successfully demonstrated cofiring at Greenidge Station and developed the required nursery capacity for acreage scale-up. This past summer 105 acres were prepared in advance for the spring planting in 1998. Having completed the above tasks, the Consortium is well positioned to begin Phase-2. In phase-2 every aspect of willow production and power generation from willow will be demonstrated. The ultimate objective of Phase-2 is to transition the work performed under the Rural Energy for the Future project into a thriving, self-supported energy crop enterprise.

Neuhauser, E.

1998-11-01T23:59:59.000Z

77

A Development of Mg Alloy Reinforced by Quasicrystalline Phase  

Science Conference Proceedings (OSTI)

A Molecular Dynamics Study of Fracture Behavior in Magnesium Single Crystal ... Effect of KCl on Liquidus of LiF-MgF2 Molten Salts ... Investigation of Microhardness and Microstructure of AZ31 Alloy after High-Pressure Torsion ( HPT) ... Benchmark Test in the Magnesium Front End Research and Development Project.

78

Explosives program development study: Phase 3, Final report  

SciTech Connect

Under the sponsorship of Lawrence Livermore National Laboratory (LLNL) and the Defense Advanced Research Agency (DARPA), The BDM Corporation has been conducting a survey and assessment of the status of research and development in high energy materials, particulary explosives. The objectives of the DARPA Explosives Program Development Study is to provide LLNL and DARPA with: (1) An assessment of the current research and development in high energy materials and an identification of needs for further work; (2) A set of recommendations to address those needs with DARPA (3) A program plan to implement these recommendations. The study consisted of review of papers from the principal high energy materials research and development conferences of 1985 - 1987; personal and telephone interviews with experts in the field in military services and DOE laboratories; review of papers of the ONR detonation symposia; principal technical journals; government reports; and a questionnaire survey of the explosives community for their ranking of research topics in materials. Four principal categories of operational issues and requirements were surveyed: energetic materials; performance; sensitivity/vulnerability; and manufacture and cost factors. These four categories are fully covered. 24 refs.

Hill, M.E.

1988-01-31T23:59:59.000Z

79

In-situ permeability measurements with direct push techniques: Phase II topical report  

SciTech Connect

This effort designed, fabricated, and field tested the engineering prototype of the Cone Permeameter{trademark} system. The integrated system includes the instrumented penetrometer probe, air and water pumps, flowrate controls, flow sensors, and a laptop-controlled data system. All of the equipment is portable and can be transported as luggage on airlines. The data system acquired and displays the process measurements (pressures, flows, and downhole temperature) in real time and calculates the resulting permeability. The measurement probe is a 2 inch diameter CPT rod section, incorporating a screened injection zone near the lower end of the rod and multiple sensitive absolute pressure sensors embedded in the probe at varying distances from the injection zone. Laboratory tests in a large test cell demonstrated the system's ability to measure nominally 1 Darcy permeability soil (30 to 40 Darcy material had been successfully measured in the Phase 1 effort). These tests also provided a shakedown of the system and identified minor instrument problems, which were resolved. Supplemental numerical modeling was conducted to evaluate the effects of layered permeability (heterogeneity) and anisotropy on the measurement system's performance. The general results of the analysis were that the Cone Permeameter could measure accurately, in heterogeneous media, the volume represented by the sample port radii if the outer pressure ports were used. Anisotropic permeability, while readily analyzed numerically, is more complicated to resolve with the simple analytical approach of the 1-D model, and will need further work to quantify. This phase culminated in field demonstrations at the DOE Savannah River Site. Saturated hydraulic conductivity measurements were completed at the D-Area Coal Pile Runoff Basin, and air permeability measurements were conducted at the M Area Integrated Demonstration Site and the 321 M area. The saturated hydraulic conductivity measurements were the most successful and compared well to relevant existing data. Air permeability measurements were more problematic, primarily due to clay covering pressure measuring ports and preventing pressure communication with the sensors. Very little discreet air permeability data existed for the sites.

Lowry, W.; Mason, N.; Chipman, V.; Kisiel, K.; Stockton, J.

1999-03-01T23:59:59.000Z

80

Development and evaluation of on-line detection techniques for polar organics in ultrapure water  

SciTech Connect

An on-line monitor that can perform rapid, trace detection of polar organics such as acetone and isopropanol in ultrapure water (UPW) is necessary to efficiently recycle water in semiconductor manufacturing facilities. The detection of these analytes is problematic due to their high solubility in water, resulting in low partitioning into sensor coatings for direct water analysis or into the vapor phase for detection by vapor phase analyzers. After considering various options, we have evaluated two conventional laboratory techniques: gas chromatography and ion mobility spectroscopy. In addition, optimizations of sensor coating materials and sample preconditioning systems were performed with the goal of a low cost, chemical sensor system for this application. Results from these evaluations, including recommendations for meeting the needs of this application, are reported.

Frye, G.C.; Blair, D.S.; Schneider, T.W.; Mowry, C.D.; Colburn, C.W.; Donovan, R.P.

1996-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "development phases techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

High-R window technology development. Phase 2, Final report  

SciTech Connect

Of all building envelope elements, windows always have had the highest heat loss rates. However, recent advances in window technologies such as low-emissivity (low-E) coatings and low- conductivity gas fillings have begun to change the status of windows in the building energy equation, raising the average R-value (resistance to heat flow) from 2 to 4 h-ft{sup 2}-{degrees}F/Btu. Building on this trend and using a novel combination of low-E coatings, gas-fills, and three glazing layers, the authors developed a design concept for R-6 to R-10 ``super`` windows. Three major window manufacturers produced prototype superwindows based this design for testing and demonstration in three utility-sponsored and -monitored energy-conserving homes in northwestern Montana. This paper discusses the design and tested performance of these three windows and identifies areas requiring further research if these window concepts are to be successfully developed for mass markets.

Arasteh, D.

1991-01-01T23:59:59.000Z

82

Water Research Center DevelopmentTechnology Search (Phase 0)  

Science Conference Proceedings (OSTI)

As part of the Water Research Center (WRC) development effort, EPRI, Southern Company, and Southern Research Institute conducted more than 70 meetings, teleconferences, and webcasts with water/wastewater technology suppliers. These meetings were held to understand the infrastructure needed at the WRC in order to evaluate the range of water management processes of potential interest to the electricity generation industry. In the course of this activity, investigators also learned about many existing ...

2013-05-29T23:59:59.000Z

83

Crystallization and Solidification Properties of LipidsChapter 15 Application of Crystallization Technique for the Lipase-Catalyzed Solid-PhaseSynthesis of Sugar Fatty Acid Monoesters  

Science Conference Proceedings (OSTI)

Crystallization and Solidification Properties of Lipids Chapter 15 Application of Crystallization Technique for the Lipase-Catalyzed Solid-PhaseSynthesis of Sugar Fatty Acid Monoesters Health Nutrition Biochemistry eChapters Health - Nut

84

High-R Window Technology Development : Phase II Final Report.  

SciTech Connect

Of all building envelope elements, windows always have had the highest heat loss rates. However, recent advances in window technologies such as low-emissivity (low-E) coatings and low- conductivity gas fillings have begun to change the status of windows in the building energy equation, raising the average R-value (resistance to heat flow) from 2 to 4 h-ft{sup 2}-{degrees}F/Btu. Building on this trend and using a novel combination of low-E coatings, gas-fills, and three glazing layers, the authors developed a design concept for R-6 to R-10 super'' windows. Three major window manufacturers produced prototype superwindows based this design for testing and demonstration in three utility-sponsored and -monitored energy-conserving homes in northwestern Montana. This paper discusses the design and tested performance of these three windows and identifies areas requiring further research if these window concepts are to be successfully developed for mass markets.

Arasteh, Dariush

1991-01-01T23:59:59.000Z

85

Biomass power for rural development. Technical progress report, Phase 2, July 1--September 30, 1998  

DOE Green Energy (OSTI)

The project undertaken by the Salix Consortium is a multi-phased, multi-partner endeavor. Phase 1 focused on initial development and testing of the technology and forging the necessary agreements to demonstrate commercial willow production. The Phase 1 objectives have been successfully completed: preparing final design plans for two utility pulverized coal boiler for 20 MW of biopower capacity; developing fuel supply plans for the project with a goal of establishing 365 ha (900 ac) of willow; obtaining power production commitments from the power companies for Phase 2; obtaining construction and environmental permits; and developing an experimental strategy for crop production and power generation improvements needed to assure commercial success. The R and D effort also addresses environmental issues pertaining to introduction of the willow energy system. Beyond those Phase 1 requirements, the Consortium has already successfully demonstrated cofiring at Greenidge Station and has initiated development of the required nursery capacity for acreage scale-up. In Phase 2 every aspect of willow production and power generation from willow biomass will be demonstrated. The ultimate objective of Phase 2 is to transition the work performed under the Biomass Power for Rural Development project into a thriving, self-supported energy crop enterprise.

Neuhauser, E.

1999-01-01T23:59:59.000Z

86

Development of an Enhanced Two-Phase Production System at the Geysers Geothermal Field  

DOE Green Energy (OSTI)

A method was developed to enhance geothermal steam production from two-phase wells at THE Geysers Geothermal Field. The beneficial result was increased geothermal production that was easily and economically delivered to the power plant.

Steven Enedy

2001-12-14T23:59:59.000Z

87

Design and development of a test facility to study two-phase steam/water flow in porous media  

DOE Green Energy (OSTI)

The approach taken at Lawrence Berkeley Laboratory to obtain relative permeability curves and their dependence on fluid and matrix properties is summarized. Thermodynamic studies are carried out to develop the equations governing two-phase steam/water flow in porous media and to analyze the relationship between mass flow rate and flowing enthalpy. These relationships will be verified against experimental results and subsequently will be used to develop a field analysis technique to obtain in-situ relative permeability parameters. Currently our effort is concentrated on thermodynamic analysis and development of an experimental facility. Some of the findings of the theoretical work are presented and also the design and development effort for the experimental facility is described.

Verma, A.K.; Pruess, K.; Bodvarsson, G.S.; Tsang, C.F.; Witherspoon, P.A.

1983-12-01T23:59:59.000Z

88

Design and development of a laminated Fresnel lens for point-focus PV systems. Phase II  

DOE Green Energy (OSTI)

A laminated glass-plastic lens parquet using injection molded point focus Fresnel lenses is described. The second phase of a program aimed at investigating the cost effectiveness of a glass-plastic concentrator lens assembly is reported. The first phase dealt with the development of a first generation lens design, the selection of the preferred glass coverplate and glass-to-lens adhesive and initial injection molding lens molding trials. The second phase has dealt with the development of an improved lens design, a full size parquet lamination process, and a second group of injection molding lens molding trials.

Hodge, R.C.

1982-12-01T23:59:59.000Z

89

Development of dual phase magnesia-zirconia ceramics for light water reactor inert matrix fuel  

E-Print Network (OSTI)

Dual phase magnesia-zirconia ceramics were developed, characterized, and evaluated as a potential matrix material for use in light water reactor inert matrix fuel intended for the disposition of plutonium and minor actinides. Ceramics were fabricated from the oxide mixture using conventional pressing and sintering techniques. Characterization of the final product was performed using optical microscopy, scanning electron microscopy, x-ray diffraction analysis, and energy-dispersive x-ray analysis. The final product was found to consist of two phases: cubic zirconia-based solid solution and cubic magnesia. Evaluation of key feasibility issues was limited to investigation of long-term stability in hydrothermal conditions and assessment of the thermal conductivity. With respect to hydrothermal stability, it was determined that limited degradation of these ceramics at 300^oC occurred due to the hydration of the magnesia phase. Normalized mass loss rate, used as a quantitative indicator of degradation, was found to decrease exponentially with the zirconia content in the ceramics. The normalized mass loss rates measured in static 300^oC de-ionized water for the magnesia-zirconia ceramics containing 40, 50, 60, and 70 weight percent of zirconia are 0.00688, 0.00256, 0.000595, 0.000131 g/cm2/hr respectively. Presence of boron in the water had a dramatic positive effect on the hydration resistance. At 300^oC the normalized mass loss rates for the composition containing 50 weight percent of zirconia was 0.00005667 g/cm2/hr in the 13000 ppm aqueous solution of the boric acid. With respect to thermal conductivity, the final product exhibits values of 5.5-9.5 W/(m deg) at 500^oC, and 4-6 W/(m deg) at 1200^oC depending on the composition. This claim is based on the assessment of thermal conductivity derived from thermal diffusivity measured by laser flash method in the temperature range from 200 to 1200^oC, measured density, and heat capacity calculated using rule of mixtures. Analytical estimates of the anticipated maximum temperature during normal reactor operation in a hypothetical inert matrix fuel rod based on the magnesia-zirconia ceramics yielded the values well below the melting temperature and well below current maximum temperatures authorized in light water reactors.

Medvedev, Pavel

2004-12-01T23:59:59.000Z

90

Phase 2 cost quality management assessment report for the Office of Technology Development (EM-50)  

SciTech Connect

The Office of Environmental Management (EM) Head quarters (HQ) Cost Quality Management Assessment (CQMA) evaluated the practices of the Office of Technology Development (EM-50). The CQMA reviewed EM-50 management documents and reported results in the HQ CQMA Phase 1 report (March 1993). In this Assessment Phase, EM-50 practices were determined through interviews with staff members. The interviews were conducted from the end of September through early December 1993. EM-50 management documents (Phase 1) and practices (Phase 2) were compared to the Performance Objectives and Criteria (POCs) contained in the DOE/HQ Cost Quality Management Assessment Handbook. More detail on the CQMA process is provided in section 2. Interviewees are listed in appendix A. Documents reviewed during Phase 2 are listed in appendix B. Section 3 contains detailed observations, discussions, and recommendations. A summary of observations and recommendations is presented.

Not Available

1994-08-01T23:59:59.000Z

91

Picosecond Electric Field CARS; A Diagnostic Technique to Measure the Electric Field Development within Nanosecond Repetitively Pulsed Plasmas.  

E-Print Network (OSTI)

??In this thesis, a novel technique is presented to take measurements of an electric field which develops and changes rapidly in time. The motivation arises (more)

Goldberg, Benjamin M.

2012-01-01T23:59:59.000Z

92

North Wind 4-kW wind-system development. Phase II. Fabrication and test  

DOE Green Energy (OSTI)

This report presents the results of Phase II (testing and fabrication) of a program funded by the US Department of Energy to design, fabricate, and test a cost-effective wind system in the 3 to 6 kW class. During Phase II, using the design developed during Phase I, a prototype 4 kW machine was fabricated and tested in Waitsfield, Vermont. Several problems were encountered and subsequently analyzed. Design modifications, including the use of a larger alternator, are described. Test performed by North Wind and by Rockwell International (which monitored the program) demonstrated the predicted performance characteristics and the validity of the North Wind design.

Lynch, J.; Coleman, C.; Mayer, D.J.

1983-01-01T23:59:59.000Z

93

Design and Development of Gas-Liquid Cylindrical Cyclone Compact Separators for Three-Phase Flow  

SciTech Connect

The objective of this five-year project (October, 1997--September, 2002) is to expand the current research activities of Tulsa University Separation Technology Projects (TUSTP) to multiphase oil/water/gas separation. This project will be executed in two phases. Phase I (1997--2000) will focus on the investigations of the complex multiphase hydrodynamic flow behavior in a three-phase Gas-Liquid Cylindrical Cyclone (GLCC) Separator. The activities of this phase will include the development of a mechanistic model, a computational fluid dynamics (CFD) simulator, and detailed experimentation on the three-phase GLCC. The experimental and CFD simulation results will be suitably integrated with the mechanistic model. In Phase II (2000--2002), the developed GLCC separator will be tested under high pressure and real crudes conditions. This is crucial for validating the GLCC design for field application and facilitating easy and rapid technology deployment. Design criteria for industrial applications will be developed based on these results and will be incorporated into the mechanistic model by TUSTP.

Mohan, Ram S.; Shoham, Ovadia

1999-10-28T23:59:59.000Z

94

Design and Development of Gas-Liquid Cylindrical Cyclone Compact Separators for Three-Phase Flow  

SciTech Connect

The objective of this five-year project (October 1997--September 2002) was to expand the current research activities of Tulsa University Separation Technology Projects (TUSTP) to multiphase oil/water/gas separation. This project was executed in two phases. Phase I (1997--2000) focused on the investigations of the complex multiphase hydrodynamic flow behavior in a three-phase Gas-Liquid Cylindrical Cyclone (GLCC) Separator. The activities of this phase included the development of a mechanistic model, a computational fluid dynamics (CFD) simulator, and detailed experimentation on the three-phase GLCC. The experimental and CFD simulation results will be suitably integrated with the mechanistic model. In Phase II (2000--2002), the developed GLCC separator will be tested under high pressure and real crude conditions. This is crucial for validating the GLCC design for field application and facilitating easy and rapid technology deployment. Design criteria for industrial applications will be developed based on these results and will be incorporated into the mechanistic model by TUSTP.

Mohan, R.S.; Shoham, O.

2001-01-10T23:59:59.000Z

95

Development of an ultrasonic technique to measure specfic gravity in lead-acid battery electrolyte  

DOE Green Energy (OSTI)

An ultrasonic technique to measure specific gravity in lead-acid battery electrolyte is described in detail. This technique, which is based on the theory that the velocity of sound in a liquid depends on the density of the liquid, compares the ultrasonically measured velocity of sound in battery electrolyte (derived by measuring the time required for sound to traverse a known distance of electrolyte) to velocities in a computer-stored data base relating velocity, density, and temperature. The experimental design, the data base developed for the method, a laboratory feasibility study, and an error analysis of the study are discussed. The major advantages of the method are 1) the passive nature of the measurement, 2) the continuous sample and display capabilities, 3) the instantaneous tracking of changes in specific gravity, and 4) inherent averaging of the specific gravity measurements.

Swoboda, C.A.; Cannon, P.H.; Fredrickson, D.R.; Gabelnick, S.D.; Hornstra, F.; Phan, K.A.; Singleterry; Yao, N.P.

1983-03-01T23:59:59.000Z

96

Development and validation of nondestructive inspection techniques for composite doubler repairs on commercial aircraft  

SciTech Connect

Composite doublers, or repair patches, provide an innovative repair technique which can enhance the way aircraft are maintained. Instead of riveting multiple steel or aluminum plates to facilitate an aircraft repair, it is possible to bond a single boron-epoxy composite doubler to the damaged structure. In order for the use of composite doublers to achieve widespread use in the civil aviation industry, it is imperative that methods be developed which can quickly and reliably assess the integrity of the doubler. In this study, a specific composite application was chosen on an L-1011 aircraft in order to focus the tasks on application and operation issues. Primary among inspection requirements for these doublers is the identification of disbonds, between the composite laminate and aluminum parent material, and delaminations in the composite laminate. Surveillance of cracks or corrosion in the parent aluminum material beneath the doubler is also a concern. No single nondestructive inspection (NDI) method can inspect for every flaw type, therefore it is important to be aware of available NDI techniques and to properly address their capabilities and limitations. A series of NDI tests were conducted on laboratory test structures and on full-scale aircraft fuselage sections. Specific challenges, unique to bonded composite doubler applications, were highlighted. An array of conventional and advanced NDI techniques were evaluated. Flaw detection sensitivity studies were conducted on applicable eddy current, ultrasonic, X-ray and thermography based devices. The application of these NDI techniques to composite doublers and the results from test specimens, which were loaded to provide a changing flaw profile, are presented in this report. It was found that a team of these techniques can identify flaws in composite doubler installations well before they reach critical size.

Roach, D.; Walkington, P.

1998-05-01T23:59:59.000Z

97

Design and development of the associated-particle three-dimensional imaging technique  

Science Conference Proceedings (OSTI)

The authors describe the development of the ``associated-particle`` imaging technique for producing low-resolution three-dimensional images of objects. Based on the t(d,n){sup 4}He reaction, the method requires access to only one side of the object being imaged and allows for the imaging of individual chemical elements in the material under observation. Studies were performed to (1) select the appropriate components of the system, including detectors, data-acquisition electronics, and neutron source, and (2) optimize experimental methods for collection and presentation of data. This report describes some of the development steps involved and provides a description of the complete final system that was developed.

Ussery, L.E.; Hollas, C.L.

1994-10-01T23:59:59.000Z

98

Liquid Phase Methanol LaPorte Process Development Unit: Modification, operation, and support studies  

DOE Green Energy (OSTI)

A gas phase and a slurry phase radioactive tracer study was performed on the 12 ton/day Liquid Phase Methanol (LPMEOH) Process Development Unit (PDU) in LaPorte, Texas. To study the gas phase mixing characteristics, a radioactive argon tracer was injected into the feed gas and residence time distribution was generated by measuring the response at the reactor outlet. Radioactive manganese oxide powder was independently injected into the reactor to measure the slurry phase mixing characteristics. A tanks-in-series model and an axial dispersion model were applied to the data to characterize the mixing in the reactor. From the axial dispersion model, a translation to the number of CSTR's (continuous stirred tank reactors) was made for comparison purposes with the first analysis. Dispersion correlations currently available in the literature were also compared. The tanks-in-series analysis is a simpler model whose results are easily interpreted. However, it does have a few drawbacks; among them, the lack of a reliable method for scaleup of a reactor and no direct correlation between mixing in the slurry and gas phases. The dispersion model allows the mixing in the gas and slurry phases to be characterized separately while including the effects of phase transfer. This analysis offers a means for combining the gas and slurry phase dispersion models into an effective dispersion coefficient, which, in turn, can be related to an equivalent number of tanks-in-series. The dispersion methods reported are recommended for scaleup of a reactor system. 24 refs., 18 figs., 8 tabs.

Not Available

1990-08-31T23:59:59.000Z

99

Artificial heart development program. Volume I. System development. Phase III summary report  

SciTech Connect

The report documents efforts and results in the development of the power system portions of a calf implantable model of nuclear-powered artificial heart. The primary objective in developing the implantable model was to solve the packaging problems for total system implantation. The power systems portion is physically that portion of the implantable model between the Pu-238 heat sources and the blood pump ventricles. The work performed had two parallel themes. The first of these was the development of an integrated implantable model for bench and animal experiments plus design effort on a more advanced model. The second was research and development on components of the system done in conjunction with the development of the implantable model and to provide technology for incorporation into advanced models plus support to implantations, at the University of Utah, of the systems blood pumping elements when driven by electric motor. The efforts and results of implantable model development are covered, mainly, in the text of the report. The research and development efforts and results are reported, primarily, in the appendices (Vol. 2).

1977-01-01T23:59:59.000Z

100

Development of a coal fired pulse combustor for residential space heating. Phase I, Final report  

SciTech Connect

This report presents the results of the first phase of a program for the development of a coal-fired residential combustion system. This phase consisted of the design, fabrication, testing, and evaluation of an advanced pulse combustor sized for residential space heating requirements. The objective was to develop an advanced pulse coal combustor at the {approximately} 100,000 Btu/hr scale that can be integrated into a packaged space heating system for small residential applications. The strategy for the development effort included the scale down of the feasibility unit from 1-2 MMBtu/hr to 100,000 Btu/hr to establish a baseline for isolating the effect of scale-down and new chamber configurations separately. Initial focus at the residential scale was concentrated on methods of fuel injection and atomization in a bare metal unit. This was followed by incorporating changes to the advanced chamber designs and testing of refractory-lined units. Multi-fuel capability for firing oil or gas as a secondary fuel was also established. Upon completion of the configuration and component testing, an optimum configuration would be selected for integrated testing of the pulse combustor unit. The strategy also defined the use of Dry Ultrafine Coal (DUC) for Phases 1 and 2 of the development program with CWM firing to be a product improvement activity for a later phase of the program.

NONE

1988-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "development phases techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Geologic repository work breakdown structure and dictionary---Development and evaluation phase (PE-02)  

Science Conference Proceedings (OSTI)

Revision 2 of the OGR Work Breakdown Structure and Dictionary -- Development and Evaluation Phase (PE-02) supersedes Revision 1, August 1989, in its entirety. The revision is to delete the Exploratory Shaft Facility'' work scape and replace it with Exploratory Studies Facility'' work scape.

Not Available

1991-08-01T23:59:59.000Z

102

Ocean thermal energy conversion power system development-I. Phase I. Final report  

DOE Green Energy (OSTI)

The objective of the Ocean Thermal Energy Conversion (OTEC) Power System Development-I (PSD-I), Phase I, study was to develop conceptual and preliminary designs of closed-cycle ammonia power system modules for the 100-MW(e) OTEC Demonstration Plant, the 400-MW(e) Commercial Size Plant, and Heat Exchanger Test Articles representative of the full-size power system module design. Results are presented.

Not Available

1978-12-18T23:59:59.000Z

103

Technique for the experimental estimation of nonlinear energy transfer in fully developed turbulence  

Science Conference Proceedings (OSTI)

A new procedure for calculating the nonlinear energy transfer and linear growth/damping rate of fully developed turbulence is derived. It avoids the unphysically large damping rates typically obtained using the predecessor method of Ritz [Ch. P. Ritz, E. J. Powers, and R. D. Bengtson, Phys. Fluids B {bold 1}, 153 (1989)]. It enforces stationarity of the turbulence to reduce the effects of noise and fluctuations not described by the basic governing equation, and includes the fourth-order moment to avoid the closure approximation. The new procedure has been implemented and tested on simulated, fully developed two-dimensional (2-D) turbulence data from a 2-D trapped-particle fluid code, and has been shown to give excellent reconstructions of the input growth rate and nonlinear coupling coefficients with good noise rejection. However, in the experimentally important case where only a one-dimensional (1-D) averaged representation of the underlying 2-D turbulence is available, this technique does not, in general, give acceptable results. A new 1-D algorithm has thus been developed for analysis of 1-D measurements of intrinsically 2-D turbulence. This new 1-D algorithm includes the nonresonant wave numbers in calculating the bispectra, and generally gives useful results when the width of the radial wave number spectrum is comparable to or less than that of the poloidal spectrum. {copyright} {ital 1996 American Institute of Physics.}

Kim, J.S.; Durst, R.D.; Fonck, R.J. [Department of Nuclear Engineering and Engineering Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States)] [Department of Nuclear Engineering and Engineering Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States); Fernandez, E.; Ware, A.; Terry, P.W. [Department of Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States)] [Department of Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States)

1996-11-01T23:59:59.000Z

104

Development of experimental verification techniques for non-linear deformation and fracture on the nanometer scale.  

SciTech Connect

This work covers three distinct aspects of deformation and fracture during indentations. In particular, we develop an approach to verification of nanoindentation induced film fracture in hard film/soft substrate systems; we examine the ability to perform these experiments in harsh environments; we investigate the methods by which the resulting deformation from indentation can be quantified and correlated to computational simulations, and we examine the onset of plasticity during indentation testing. First, nanoindentation was utilized to induce fracture of brittle thin oxide films on compliant substrates. During the indentation, a load is applied and the penetration depth is continuously measured. A sudden discontinuity, indicative of film fracture, was observed upon the loading portion of the load-depth curve. The mechanical properties of thermally grown oxide films on various substrates were calculated using two different numerical methods. The first method utilized a plate bending approach by modeling the thin film as an axisymmetric circular plate on a compliant foundation. The second method measured the applied energy for fracture. The crack extension force and applied stress intensity at fracture was then determined from the energy measurements. Secondly, slip steps form on the free surface around indentations in most crystalline materials when dislocations reach the free surface. Analysis of these slip steps provides information about the deformation taking place in the material. Techniques have now been developed to allow for accurate and consistent measurement of slip steps and the effects of crystal orientation and tip geometry are characterized. These techniques will be described and compared to results from dislocation dynamics simulations.

Moody, Neville Reid; Bahr, David F.

2005-11-01T23:59:59.000Z

105

Development of an S-Saltcake Simulant Using Crossflow Filtration as a Validation Technique  

SciTech Connect

In the past several years, cross-flow filtration has been studied extensively in a bench-scale system at Pacific Northwest National Laboratory (PNNL) using both actual tank waste from the Hanford site and waste simulants. One challenge when creating a waste simulant is duplicating the filtration behaviour of real waste, in particular when the waste composition is not known with certainty. Using a systematic approach to filtration testing, it has been found that the solid components that dominate the filtration behaviour can be identified. This approach was used to develop a waste simulant for S-Saltcake tank waste. The analysis of filtration data assists in screening solid components when the chemical composition and structure of a metal is not known. This is well-illustrated in this study during the search for the appropriate chromium phase. After the likely components were identified, the solids were combined with a supernate that is representative of the real waste and the filtration performance was verified against real waste data. A secondary benefit of this approach is the construction of a database of filtration performance for various solid species that can be used to quickly develop waste simulants in the future.

Schonewill, Philip P.; Daniel, Richard C.; Russell, Renee L.; Shimskey, Rick W.; Burns, Carolyn A.; Billing, Justin M.; Rapko, Brian M.; Peterson, Reid A.

2012-11-02T23:59:59.000Z

106

Efficient Phase-Change Materials: Development of a Low-Cost Thermal Energy Storage System Using Phase-Change Materials with Enhanced Radiation Heat Transfer  

Science Conference Proceedings (OSTI)

HEATS Project: USF is developing low-cost, high-temperature phase-change materials (PCMs) for use in thermal energy storage systems. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at nightwhen the sun is not outto drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. Most PCMs do not conduct heat very well. Using an innovative, electroless encapsulation technique, USF is enhancing the heat transfer capability of its PCMs. The inner walls of the capsules will be lined with a corrosion-resistant, high-infrared emissivity coating, and the absorptivity of the PCM will be controlled with the addition of nano-sized particles. USFs PCMs remain stable at temperatures from 600 to 1,000C and can be used for solar thermal power storage, nuclear thermal power storage, and other applications.

None

2011-12-05T23:59:59.000Z

107

CIS-Type PV Device Fabrication by Novel Techniques; Phase II Subcontract Report 1 July 1999--31 June 2000  

DOE Green Energy (OSTI)

The R and D program at ISET is centered on development of a novel, dispersion-based route to the deposition of precursor thin films that are converted to CIS-type absorbers through high temperature reactions at or close to atmospheric pressure. The goal of the current research program at ISET is to bring a non-vacuum processing route for CIS closer to commercialization by improving the device efficiency through an increase in absorber bandgap. The basic processing approach involves first synthesizing a powder containing the oxides of copper, indium and gallium. A dispersion (ink) is prepared from the starting powder by mechanical milling or sonication. This ink is then deposited onto the glass/moly substrate as a thin precursor (3-4 {micro}m) and converted to a metallic alloy film by reaction in a hydrogen atmosphere. Controlled synthesis of starting powders and proper reduction results in reasonably smooth, metallic precursor films similar to those produced by sputtering or evaporation. From this point the processing is similar to that in the other two-stage techniques, with the metallic film being reacted in H2Se to form the final photovoltaic absorber, followed by CdS and TCO deposition.

Fisher, M.L.; Kapur, V.K. (International Solar Electric Technology, Inc.)

2001-01-22T23:59:59.000Z

108

EDS Coal Liquefaction Process Development. Phase V. Laboratory evaluation of the characteristics of EDS Illinois bottoms  

Science Conference Proceedings (OSTI)

This interim report documents work carried out by Combustion Engineering, Inc. under a contract to Exxon Research and Engineering Company to develop a conceptual Hybrid Boiler design fueled by the vacuum distillation residue (vacuum bottoms) derived from Illinois No. 6 coal in the EDS Coal Liquefaction Process. This report was prepared by Combustion Engineering, Inc., and is the first of two reports on the predevelopment phase of the Hybrid Boiler program. This report covers the results of a laboratory investigation to assess the fuel and ash properties of EDS vacuum bottoms. The results of the laboratory testing reported here were used in conjunction with Combustion Engineering's design experience to predict fuel performance and to develop appropriate boiler design parameters. These boiler design parameters were used to prepare the engineering design study reported in EDS Interim Report FE-2893-113, the second of the two reports on the predevelopment phase of the Hybrid Boiler Program. 46 figures, 29 tables.

Lao, T C; Levasseur, A A

1984-02-01T23:59:59.000Z

109

Sperry Low Temperature Geothermal Conversion System, Phase I and Phase II. Volume V. Component development. Final report  

DOE Green Energy (OSTI)

The fundamental inventions which motivate this program are system concepts centered on a novel heat engine cycle and the use of downwell heat exchange. Here, the primary emphasis is on downwell hardware. The only surface equipment included is the surface portion of the instrumentation and control systems. Downwell instrumentation is reported. Downwell conduits and techniques for installing, connecting and sealing them are covered. The downwell turbine-pump unit (TPU) is a critical component since it is relatively inaccessible and operates in a hostile environment. Its development is reported. The TPU for the gravity-head system requires a different type of turbine because of the large flow-rate through it and the small pressure difference across it. The design study for a Francis turbine to meet these requirements is reported. A feature of these systems is use of a downwell heat exchanger. There were extensive studies of tube-bundle configuration, tube-sheet seals, structural integrity, and flow and heat transfer, as well as the research on welded connections and sliding elastomeric seals. Another innovative component in these systems is the enthalpy recovery unit (ERU). This direct-contact heat exchanger compensates for under-cooling in the condenser and superheat in the main turbine exhaust.

Harvey, C.; McBee, W.; Matthews, H.B.

1984-01-01T23:59:59.000Z

110

Hybrid Transmission Corridor Study: Volume 1: Phase 1--Scale Model Development  

Science Conference Proceedings (OSTI)

Installation of HVDC transmission lines on existing rights- of-way with HVAC lines can increase power transfer for a given right-of-way width. This phase of the hybrid transmission corridor study developed a model for predicting the electrical effects between HVAC and HVDC lines in a hybrid corridor. The work underscores the importance of maintaining a critical separation between the two lines.

1992-07-14T23:59:59.000Z

111

PHASE I MATERIALS PROPERTY DATABASE DEVELOPMENT FOR ASME CODES AND STANDARDS  

SciTech Connect

To support the ASME Boiler and Pressure Vessel Codes and Standard (BPVC) in modern information era, development of a web-based materials property database is initiated under the supervision of ASME Committee on Materials. To achieve efficiency, the project heavily draws upon experience from development of the Gen IV Materials Handbook and the Nuclear System Materials Handbook. The effort is divided into two phases. Phase I is planned to deliver a materials data file warehouse that offers a depository for various files containing raw data and background information, and Phase II will provide a relational digital database that provides advanced features facilitating digital data processing and management. Population of the database will start with materials property data for nuclear applications and expand to data covering the entire ASME Code and Standards including the piping codes as the database structure is continuously optimized. The ultimate goal of the effort is to establish a sound cyber infrastructure that support ASME Codes and Standards development and maintenance.

Ren, Weiju [ORNL; Lin, Lianshan [ORNL

2013-01-01T23:59:59.000Z

112

Concentrating Solar Power - Molten Salt Pump Development, Final Technical Report (Phase 1)  

DOE Green Energy (OSTI)

The purpose of this project is to develop a long shafted pump to operate at high temperatures for the purpose of producing energy with renewable resources. In Phase I of this three phase project we developed molten salt pump requirements, evaluated existing hardware designs for necessary modifications, developed a preliminary design of the pump concept, and developed refined cost estimates for Phase II and Phase III of the project. The decision has been made not to continue the project into Phases II and III. There is an ever increasing world-wide demand for sources of energy. With only a limited supply of fossil fuels, and with the costs to obtain and produce those fuels increasing, sources of renewable energy must be found. Currently, capturing the sun's energy is expensive compared to heritage fossil fuel energy production. However, there are government requirements on Industry to increase the amount of energy generated from renewable resources. The objective of this project is to design, build and test a long-shafted, molten salt pump. This is the type of pump necessary for a molten salt thermal storage system in a commercial-scale solar trough plant. This project is under the Department of Energy (DOE) Solar Energy Technologies Program, managed by the Office of Energy Efficiency and Renewable Energy. To reduce the levelized cost of energy (LCOE), and to meet the requirements of 'tomorrows' demand, technical innovations are needed. The DOE is committed to reducing the LCOE to 7-10 cents/kWh by 2015, and to 5-7 cents/kWh by 2020. To accomplish these goals, the performance envelope for commercial use of long-shafted molten salt pumps must be expanded. The intent of this project is to verify acceptable operation of pump components in the type of molten salt (thermal storage medium) used in commercial power plants today. Field testing will be necessary to verify the integrity of the pump design, and thus reduce the risk to industry. While the primary goal is to design a pump for a trough solar power plant system, the intent is for the design to be extensible to a solar power tower application. This can be accomplished by adding pumping stages to increase the discharge pressure to the levels necessary for a solar power tower application. This report incorporates all available conceptual design information completed for this project in Phase I.

Michael McDowell; Alan Schwartz

2010-03-31T23:59:59.000Z

113

Superconductivity at 28. 6 K in rubidium-C sub 60 fullerene compound, Rb sub x C sub 60 synthesized by a solution-phase technique  

Science Conference Proceedings (OSTI)

A solution-phase technique previously reported in this journal has been applied to the synthesis of a Rb-containing product of the composition Rb{sub x}C{sub 60} having a T{sub c} of 28.6K. The preparation time was rapid, and the method should be applicable to the synthesis of other similar materials. The superconducting materials of both the K- and Rb-doped materials were formed in only small concentrations. The superconducting phase of the Rb{sub x}C{sub 60} product was found to be unstable in moist air. 6 refs., 2 figs.

Wang, H.H.; Kini, A.M.; Savall, B.M.; Carlson, K.D.; Williams, J.M.; Lathrop, M.W.; Lykke, K.R.; Wurz, P.; Pellin, M.J.; Gruen, D.M.; Welp, U.; Kwok, Waikwong; Fleshler, S.; Crabtree, G.W. (Argonne National Lab., IL (United States)); Parker, D.H. (Argonne National Lab., IL (United States) Univ. of California, Irvine (United States)); Schirber, J.E.; Overmyer, D.L. (Sandia National Labs., Albuquerque, NM (United States))

1991-07-24T23:59:59.000Z

114

Sodium-sulfur battery development. Phase VB final report, October 1, 1981--February 28, 1985  

SciTech Connect

This report describes the technical progress made under Contract No. DE-AM04-79CH10012 between the U.S. Department of Energy, Ford Aerospace & Communications Corporations and Ford Motor Company, for the period 1 October 1981 through 28 February 1985, which is designated as Phase VB of the Sodium-Sulfur Battery Development Program. During this period, Ford Aerospace held prime technical responsibility and Ford Motor Company carried out supporting research. Ceramatec, Inc., was a major subcontractor to Ford Aerospace for electrolyte development and production.

1985-04-01T23:59:59.000Z

115

Development of the method for the preparation of Mg{sub 2}Si by SPS technique  

SciTech Connect

The aim of the study was to develop a fast and simple method for preparation of polycrystalline Mg{sub 2}Si. For this purpose a Spark Plasma Sintering (SPS) method was used and synthesis conditions were adjusted in such a manner that no excess Mg was required. Materials were synthesized by the direct reaction of Mg and Si raw powders. To determine the phase and chemical composition, the fabricated samples were studied by X-ray diffraction and SEM microscopy coupled with EDX chemical analysis. Thermoelectric properties of samples (thermal conductivity, electrical conductivity and Seebeck coefficient) were measured all over temperature range of 300-650 K. The analysis by the scanning thermoelectric microprobe (STM) shows that samples have uniform distribution of Seebeck coefficient with mean value of about -405 {mu}VK{sup -1} and standard deviation of 94 {mu}VK{sup -1}. Prepared materials have intrinsic band gap of 0.45 eV and thermal conductivity {lambda}= 7.5 Wm{sup -1}K{sup -1} at room temperature.

Nieroda, Pawel; Zybala, Rafal; Wojciechowski, Krzysztof T. [Thermoelectric Research Laboratory, Department of Inorganic Chemistry, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow (Poland)

2012-06-26T23:59:59.000Z

116

Development and evaluation of a workpiece temperature analyzer (WPTA) for industrial furances (Phase 1)  

Science Conference Proceedings (OSTI)

This project is directed toward the research, development, and evaluation of a viable commercial product-a workpiece temperature measurement analyzer (WPTA) for fired furnaces based on unique radiation properties of surfaces. This WPTA will provide for more uniform, higher quality products and reduce product rejects as well as permit the optimum use of energy. The WPTA may also be utilized in control system applications including metal heat treating, forging furnaces, and ceramic firing furnaces. A large market also exists in the chemical process and refining industry. WPTA applications include the verification of product temperature/time cycles, and use as a front-end sensor for automatic feedback control systems. This report summarizes the work performed in Phase 1 of this three-phase project. The work Phase 1 included the application evaluation; the evaluation of present technologies and limitations; and the development of a preliminary conceptual WPTA design, including identification of technical and economic benefits. Recommendations based on the findings of this report include near-term enhancement of the capabilities of the Pyrolaser, and long-term development of an instrument based on Raman Spectroscopy. Development of the Pyrofiber, fiberoptics version of the Pyrolaser, will be a key to solving present problems involving specularity, measurement angle, and costs of multipoint measurement. Extending the instrument's measurement range to include temperatures below 600{degrees}C will make the product useful for a wider range of applications. The development of Raman Spectroscopy would result in an instrument that could easily be adapted to incorporate a wealth of additional nondestructive analytical capabilities, including stress/stain indication, crystallography, species concentrations, corrosion studies, and catalysis studies, in addition to temperature measurement. 9 refs., 20 figs., 16 tabs.

Not Available

1991-10-01T23:59:59.000Z

117

Hybrid Tower Study: Volume 3: Phase 3 -- Scale Model Development and Full-Scale Tests  

Science Conference Proceedings (OSTI)

Hybrid towers maximize the power transmission efficiency of the available space whenever there is the need to have both ac and dc lines in the same corridor. This study developed calculation techniques and design rules for the placement of conductors energized with HVAC and HVDC circuits on the same towers. Significantly, the study did not identify any hybrid interactions that would prevent the successful operation of a hybrid corridor or hybrid tower transmission line.

1994-06-29T23:59:59.000Z

118

Development of Modeling Techniques for A Generation IV Gas Fast Reactor  

E-Print Network (OSTI)

Worldwide, multiple countries are investing a great deal of time and energy towards developing a new class of technologically advanced nuclear reactors. These new reactors have come to be known as the Generation IV (Gen IV) class of nuclear reactors. Similarly to the other designs, the Gas Fast Reactor (GFR) has many advantages, such as electricity production at high efficiency, hydrogen production, minor actinide burning capabilities, etc. However, there are currently no immediate plans to build a GFR due to uncertainties regarding safety issues. The study conducted herein contains input techniques for the development of new neutronic and thermal hydraulic input decks for the United States (US) Department of Energy (DOE) GFR design. The Monte Carlo N-Particle (MCNP) and MELCOR codes are used to model neutronic and thermal hydraulic characteristics, respectively. These codes are used with the intention of gaining further insight into GFR design and steady state operating characteristics of the US DOE GFR. Descriptions of inputs for all input decks, along with the results of the execution of both input decks can be found in this thesis. Although many alterations are made to original design specifications, results found in this thesis support the design modifications that have been made. Results suggest that steady-state operation of the GFR is a plausible possibility, given the right conditions. The lack of design criteria for both the reflector and borated shield regions imposes a necessity of invention upon all those who seek to clarify design criteria for the US DOE GFR. Furthermore, resulting temperature profiles for the fuel, cladding and coolant give rise to the possibility of the design of a system, based on thermionic principles, that converts core thermal energy directly to electricity. Such a system is envisioned to provide electricity to a decay heat removal system and possibly increase plant efficiency.

Dercher, Andrew Steven

2011-08-01T23:59:59.000Z

119

Development of a Bulk GaN Growth Technique for Low Defect Density...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Enabling Next-Generation Power Electronics: Electrochemical Solution Growth (ESG) Technique for Bulk Gallium Nitride Substrates Karen Waldrip Dept. 2546, Advanced Power Sources R&D...

120

Development of a Bulk GaN Growth Technique for Low Defect Density...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technique: Electrochemical Solution Growth (ESG) Use salt flow to deliver precursors Increase growth rate through flux of reactants (increase spin rate) Precursors can be...

Note: This page contains sample records for the topic "development phases techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Development of Novel active transport membrane devices. Phase I. Final report, 31 October 1988--31 January 1994  

DOE Green Energy (OSTI)

The main objective of this program was to identify and develop a technique for fabricating Active Transport Materials (ATM) into lab-scale membrane devices. Air Products met this objective by applying thin film, multilayer fabrication techniques to support the AT material on a substrate membrane. In Phase IA, spiral-wound hollow fiber membrane modules were fabricated and evaluated. These nonoptimized devices were used to demonstrate the AT-based separation of carbon dioxide from methane, hydrogen sulfide from methane, and ammonia from hydrogen. It was determined that a need exists for a more cost efficient and less energy intensive process for upgrading subquality natural gas. Air Products estimated the effectiveness of ATM for this application and concluded that an optimized ATM system could compete effectively with both conventional acid gas scrubbing technology and current membrane technology. In addition, the optimized ATM system would have lower methane loss and consume less energy than current alternative processes. Air Products made significant progress toward the ultimate goal of commercializing an advanced membrane for upgrading subquality natural gas. The laboratory program focused on developing a high performance hollow fiber substrate and fabricating and evaluating ATM-coated lab-scale hollow fiber membrane modules. Selection criteria for hollow fiber composite membrane supports were developed and used to evaluate candidate polymer compositions. A poly(amide-imide), PAI, was identified for further study. Conditions were identified which produced microporous PAI support membrane with tunable surface porosity in the range 100-1000{Angstrom}. The support fibers exhibited good hydrocarbon resistance and acceptable tensile strength though a higher elongation may ultimately be desirable. ATM materials were coated onto commercial and PAI substrate fiber. Modules containing 1-50 fibers were evaluated for permselectivity, pressure stability, and lifetime.

Laciak, D.V.; Quinn, R.; Choe, G.S.; Cook, P.J.; Tsai, Fu-Jya

1994-08-01T23:59:59.000Z

122

DESIGN AND DEVELOPMENT OF GAS-LIQUID CYLINDRICAL CYCLONE COMPACT SEPARATORS FOR THREE-PHASE FLOW  

SciTech Connect

This report presents a brief overview of the activities and tasks accomplished during the second half year (April 1, 2001-September 30, 2001) of the fourth project year budget period (October 1, 2000-September 30, 2001). An executive summary is presented initially followed by the tasks of the current budget period. Then, detailed description of the experimental and modeling investigations are presented. Subsequently, the technical and scientific results of the activities of this project period are presented with some discussions. The findings of this investigation are summarized in the ''Conclusions'' section followed by relevant references. The fourth project year activities are divided into three main parts, which are carried out in parallel. The first part is continuation of the experimental program that includes a study of the oil/water two-phase behavior at high pressures and control system development for the three-phase GLCC{copyright}. This investigation will be eventually extended for three-phase flow. The second part consists of the development of a simplified mechanistic model incorporating the experimental results and behavior of dispersion of oil in water and water in oil. This will provide an insight into the hydrodynamic flow behavior and serve as the design tool for the industry. Although useful for sizing GLCC{copyright} for proven applications, the mechanistic model will not provide detailed hydrodynamic flow behavior information needed to screen new geometric variations or to study the effect of fluid property variations. Therefore, in the third part, the more rigorous approach of computational fluid dynamics (CFD) will be utilized. Multidimensional multiphase flow simulation at high pressures and for real crude conditions will provide much greater depth into the understanding of the physical phenomena and the mathematical analysis of three-phase GLCC{copyright} design and performance.

Dr. Ram S. Mohan; Dr. Ovadia Shoham

2001-10-30T23:59:59.000Z

123

DESIGN AND DEVELOPMENT OF GAS-LIQUID CYLINDRICAL CYCLONE COMPACT SEPARATORS FOR THREE-PHASE FLOW  

SciTech Connect

This report presents a brief overview of the activities and tasks accomplished during the first half year (October 1, 2000-March 31, 2001) of the fourth project year budget period (October 1, 2000-September 30, 2001). An executive summary is presented initially followed by the tasks of the current budget period. Then, detailed description of the experimental and modeling investigations are presented. Subsequently, the technical and scientific results of the activities of this project period are presented with some discussions. The findings of this investigation are summarized in the ''Conclusions'' section followed by relevant references. The fourth project year activities are divided into three main parts, which are carried out in parallel. The first part is continuation of the experimental program that includes a study of the oil/water two-phase behavior at high pressures and control system development for the three-phase GLCC{copyright}. This investigation will be eventually extended for three-phase flow. The second part consists of the development of a simplified mechanistic model incorporating the experimental results and behavior of dispersion of oil in water and water in oil. This will provide an insight into the hydrodynamic flow behavior and serve as the design tool for the industry. Although useful for sizing GLCC{copyright} for proven applications, the mechanistic model will not provide detailed hydrodynamic flow behavior information needed to screen new geometric variations or to study the effect of fluid property variations. Therefore, in the third part, the more rigorous approach of computational fluid dynamics (CFD) will be utilized. Multidimensional multiphase flow simulation at high pressures and for real crude conditions will provide much greater depth into the understanding of the physical phenomena and the mathematical analysis of three-phase GLCC{copyright} design and performance.

Dr. Ram S. Mohan; Dr. Ovadia Shoham

2001-04-30T23:59:59.000Z

124

Ocean Thermal Energy Conversion power system development. Phase I: preliminary design. Final report  

DOE Green Energy (OSTI)

Westinghouse has completed the Preliminary Design Phase for the Power System Development of the Ocean Thermal Energy Conversion (OTEC) Demonstration Plant project. This study included the development of a preliminary design for a Modular Application scaled power system (10MWe) and Heat Exchanger Test Articles, both based on the concept developed in the Conceptual Design Phase. The results of this study were used to improve the baseline design of the 50MWe module for the Commercial Size Power System, which was recommended for the demonstration plant by the conceptual design study. The 50MWe module was selected since it has the lowest cost, and since its size convincingly demonstrates that future economically viable commercial plants, having reliable operation with credible anticipated costs, are possible. Additional optimization studies on the size of the power system plus hull continue to identify 50MWe as the preferred minimum cost configuration. This study was limited to a closed cycle ammonia power system module, using a seawater temperature difference of 40/sup 0/F, and a surface platform/ship reference hull. This volume describes system operation, a complete test program to verify mechanical reliability and thermal performance, fabrication and installation operations, and a cost analysis. (WHK)

Not Available

1978-12-04T23:59:59.000Z

125

Ocean Thermal Energy Conversion power system development. Phase I: preliminary design. Final report  

DOE Green Energy (OSTI)

Westinghouse has completed the Preliminary Desigh Phase for the Power System Development of the Ocean Thermal Energy Conversion (OTEC) Demonstration Plant project. This study included the development of a preliminary design for a Modular Application scaled power system (10MWe) and Heat Exchanger Test Articles, both based on the concept developed in the Conceptual Design Phase. The results of this study were used to improve the baseline design of the 50MWe module for the Commercial Size Power System, which was recommended for the demonstration plant by the conceptual design study. The 50MWe module was selected since it has the lowest cost, and since its size convincingly demonstrates that future economically viable commercial plants, having reliable operation with credible anticipated costs, are possible. Additional optimization studies on the size of the power system plus hull continue to identify 50MWe as the preferred minimum cost configuration. This study was limited to a closed cycle ammonia power system module, using a seawater temperature difference of 40/sup 0/F, and a surface platform/ship reference hull. This volume presents the preliminary design configuration and system optimization. (WHK)

Not Available

1978-12-04T23:59:59.000Z

126

The Development of Layered Photonic Band Gap Structures Using a Micro-Transfer Molding Technique  

SciTech Connect

Photonic band gap (PBG) crystals are periodic dielectric structures that manipulate electromagnetic radiation in a manner similar to semiconductor devices manipulating electrons. Whereas a semiconductor material exhibits an electronic band gap in which electrons cannot exist, similarly, a photonic crystal containing a photonic band gap does not allow the propagation of specific frequencies of electromagnetic radiation. This phenomenon results from the destructive Bragg diffraction interference that a wave propagating at a specific frequency will experience because of the periodic change in dielectric permitivity. This gives rise to a variety of optical applications for improving the efficiency and effectiveness of opto-electronic devices. These applications are reviewed later. Several methods are currently used to fabricate photonic crystals, which are also discussed in detail. This research involves a layer-by-layer micro-transfer molding ({mu}TM) and stacking method to create three-dimensional FCC structures of epoxy or titania. The structures, once reduced significantly in size can be infiltrated with an organic gain media and stacked on a semiconductor to improve the efficiency of an electronically pumped light-emitting diode. Photonic band gap structures have been proven to effectively create a band gap for certain frequencies of electro-magnetic radiation in the microwave and near-infrared ranges. The objective of this research project was originally two-fold: to fabricate a three dimensional (3-D) structure of a size scaled to prohibit electromagnetic propagation within the visible wavelength range, and then to characterize that structure using laser dye emission spectra. As a master mold has not yet been developed for the micro transfer molding technique in the visible range, the research was limited to scaling down the length scale as much as possible with the current available technology and characterizing these structures with other methods.

Kevin Jerome Sutherland

2001-05-01T23:59:59.000Z

127

Forecasting of thermal energy storage performance of Phase Change Material in a solar collector using soft computing techniques  

Science Conference Proceedings (OSTI)

The performance of a solar collector system using sodium carbonate decahydrate (Na"2CO"3.10H"2O) as Phase Change Material (PCM) was experimentally investigated during March and collector efficiency was compared with those of convectional system including ... Keywords: Flat plate solar collector, PCM, Soft computing

Yasin Varol; Ahmet Koca; Hakan F. Oztop; Engin Avci

2010-04-01T23:59:59.000Z

128

Phase I of the Near-Term Hybrid Passenger-Vehicle Development Program. Final report  

DOE Green Energy (OSTI)

Under contract to the Jet Propulsion Laboratory of the California Institute of Technology, Minicars conducted Phase I of the Near-Term Hybrid Passenger Vehicle (NTHV) Development Program. This program led to the preliminary design of a hybrid (electric and internal combustion engine powered) vehicle and fulfilled the objectives set by JPL. JPL requested that the report address certain specific topics. A brief summary of all Phase I activities is given initially; the hybrid vehicle preliminary design is described in Sections 4, 5, and 6. Table 2 of the Summary lists performance projections for the overall vehicle and some of its subsystems. Section 4.5 gives references to the more-detailed design information found in the Preliminary Design Data Package (Appendix C). Alternative hybrid-vehicle design options are discussed in Sections 3 through 6. A listing of the tradeoff study alternatives is included in Section 3. Computer simulations are discussed in Section 9. Section 8 describes the supporting economic analyses. Reliability and safety considerations are discussed specifically in Section 7 and are mentioned in Sections 4, 5, and 6. Section 10 lists conclusions and recommendations arrived at during the performance of Phase I. A complete bibliography follows the list of references.

Not Available

1980-10-01T23:59:59.000Z

129

PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT  

Science Conference Proceedings (OSTI)

This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase I was completed. The project was then re-directed to the making of iron units. U.S. Steel teamed up with Calderon for a joint effort which will last 30 months to produce directly reduced iron with the potential of converting it into molten iron (hot metal) consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy. The work which is labeled as Phase II will take place at two levels; namely, the bench scale level and the process development unit (PDU) level. The bench scale work is being divided into two parts; the construction and operation of Bench Scale No.1 to make hot metal direct as one part and the construction and operation of Bench Scale No.2 to make DRI with its conversion to hot metal as the second part. The work at the PDU consists of getting the PDU which exists ready for advancing the activities from bench scale to PDU level.

Albert Calderon

2001-10-24T23:59:59.000Z

130

Development of Extraction Techniques for the Detection of Signature Lipids from Oil  

Science Conference Proceedings (OSTI)

Pure cultures, including Desulfovibrio vulgaris and Methanococcus maripaludus, were combined with model oil samples and oil/diesel mixtures to optimize extraction techniques of signature lipids from oil in support of investigation of microbial communities in oil deposit samples targets for microbial enhanced hydrocarbon recovery. Several techniques were evaluated, including standard phospholipid extraction, ether linked lipid for Archaeal bacterial detection, and high pressure extractiontechniques. Recovery of lipids ranged from 50-80percent as compared to extraction of the pure culture. Extraction efficiency was evaluated by the use of internal standards. Field samples will also be tested for recovery of signature lipids with optimized extraction techniques.

Borglin, Sharon; Geller, Jil; Chakraborty, Romy; Hazen, Terry; Mason, Olivia

2010-05-17T23:59:59.000Z

131

Development of tools and techniques for momentum compression of fast rare isotopes  

SciTech Connect

As part of our past research and development work, we have created and developed the LISE++ simulation code [Tar04, Tar08]. The LISE++ package was significantly extended with the addition of a Monte Carlo option that includes an option for calculating ion trajectories using a Taylor-series expansion up to fifth order, and implementation of the MOTER Monte Carlo code [Kow87] for ray tracing of the ions into the suite of LISE++ codes. The MOTER code was rewritten from FORTRAN into C++ and transported to the MS-Windows operating system. Extensive work went into the creation of a user-friendly interface for the code. An example of the graphical user interface created for the MOTER code is shown in the left panel of Figure 1 and the results of a typical calculation for the trajectories of particles that pass through the A1900 fragment separator are shown in the right panel. The MOTER code is presently included as part of the LISE++ package for downloading without restriction by the worldwide community. The LISE++ was extensively developed and generalized to apply to any projectile fragment separator during the early phase of this grant. In addition to the inclusion of the MOTER code, other important additions to the LISE++ code made during FY08/FY09 are listed. The LISE++ is distributed over the web (http://groups.nscl.msu.edu/lise ) and is available without charge to anyone by anonymous download, thus, the number of individual users is not recorded. The number of 'hits' on the servers that provide the LISE++ code is shown in Figure 3 for the last eight calendar years (left panel) along with the country from the IP address (right panel). The data show an increase in web-activity with the release of the new version of the program during the grant period and a worldwide impact. An important part of the proposed work carried out during FY07, FY08 and FY09 by a graduate student in the MSU Physics program was to benchmark the codes by comparison of detailed measurements to the LISE++ predictions. A large data set was obtained for fission fragments from the reaction of 238U ions at 81 MeV/u in a 92 mg/cm2 beryllium target with the A1900 projectile fragment separator. The data were analyzed and form the bulk of a Ph.D. dissertation that is nearing completion. The rich data set provides a number of benchmarks for the improved LISE++ code and only a few examples can be shown here. The primary information obtained from the measurements is the yield of the products as a function of mass, charge and momentum. Examples of the momentum distributions of individually identified fragments can be seen in Figures 2 and 4 along with comparisons to the predicted distributions. The agreement is remarkably good and indicates the general validity of the model of the nuclear reactions producing these fragments and of the higher order transmission calculations in the LISE++ code. The momentum distributions were integrated to provide the cross sections for the individual isotopes. As shown in Figure 5, there is good agreement with the model predictions although the observed cross sections are a factor of five or so higher in this case. Other comparisons of measured production cross sections from abrasion-fission reactions have been published by our group working at the NSCL during this period [Fol09] and through our collaboration with Japanese researchers working at RIKEN with the BigRIPS separator [Ohn08, Ohn10]. The agreement of the model predictions with the data obtained with two different fragment separators is very good and indicates the usefulness of the new LISE++ code.

David J. Morrissey; Bradley M. Sherrill; Oleg Tarasov

2010-11-21T23:59:59.000Z

132

New Developments of the Intensity-Scale Technique within the Spatial Verification Methods Intercomparison Project  

Science Conference Proceedings (OSTI)

The intensity-scale verification technique introduced in 2004 by Casati, Ross, and Stephenson is revisited and improved. Recalibration is no longer performed, and the intensity-scale skill score for biased forecasts is evaluated. Energy and its ...

B. Casati

2010-02-01T23:59:59.000Z

133

Development of techniques for quantum-enhanced laser-interferometric gravitational-wave detectors  

E-Print Network (OSTI)

A detailed theoretical and experimental study of techniques necessary for quantum-enhanced laser- interferometric gravitational wave (GW) detectors was carried out. The basic theory of GWs and laser-interferometric GW ...

Goda, Keisuke

2007-01-01T23:59:59.000Z

134

Development of Fast-Time Simulation Techniques to Model Safety Issues in the National Airspace System  

E-Print Network (OSTI)

Development of an agent-based simulation model of airDevelopment of an agent-based simulation model of airDevelopment of an agent-based simulation model of air

2002-01-01T23:59:59.000Z

135

Concrete concentrator panel development program for SolarOil project, Phase I  

DOE Green Energy (OSTI)

The results of the General Atomic (GA) fixed-mirror solar concentrator (FMSC) concrete panel development program are presented. The FMSC is part of the solar steam supply system proposed by GA for the SolarOil project. The program was conducted to determine the achievable accuracy of precast concrete concentrator panels and to investigate expedient and economical mass production of the panels. One steel form, two concrete forms, and three concrete panels were fabricated and about 1500 slat angle measurements made using a laser inspection fixture developed expressly for this purpose. All panels were 1.83 m (6 ft) long and had a 3.6 m (11 ft 10 in.) aperture and 71 slats. Proper concrete mixes, parting compounds, placement methods, vibrating techniques, and curing procedures were identified, and the hardware and techniques for stripping and turning the panels were tested. Based upon test results and structural calculations it was concluded that reasonably priced 5.5-m (18 ft) long panels can be produced with either steel or fiberglass-coated concrete forms with 95% to 99% of the slat area within +-0.25/sup 0/ of the desired angles. With steam curing, the production rate is one panel every other working day per 5.5 m (18 ft) of form length.

Nicolayeff, V.; Chow, G.S.; Koploy, M.

1980-05-01T23:59:59.000Z

136

356 BOOK REVIEWS thorough development of the theoretical basis of the icr technique. Chapters 1 and 2  

E-Print Network (OSTI)

356 BOOK REVIEWS thorough development of the theoretical basis of the icr technique. Chapters 1. It is not until the third chapter that the book seems to hit its full stride. Also, for the price of $22.75, one a typed manuscript. The book would be useful for those unfamiliar or slightly familiar with ion cyclotron

Pines, Alexander

137

Development of Advanced Nondestructive Evaluation Techniques for Heat Recovery Steam Generators  

Science Conference Proceedings (OSTI)

Contemporary heat recovery steam generators (HRSGs) operate with multiple pressures and temperatures that can result in degradation and failure of key components such as HRSG drains. Periodic nondestructive evaluation (NDE) of HRSGs can mitigate catastrophic component failure as well as facilitate effective maintenance planning through early detection of system damage. This technical update describes HRSG drain damage mechanisms and related NDE techniques.

2009-03-27T23:59:59.000Z

138

Production of ethanol from refinery waste gases. Phase 2, technology development, annual report  

DOE Green Energy (OSTI)

Oil refineries discharge large volumes of H{sub 2}, CO, and CO{sub 2} from cracking, coking, and hydrotreating operations. This program seeks to develop a biological process for converting these waste gases into ethanol, which can be blended with gasoline to reduce emissions. Production of ethanol from all 194 US refineries would save 450 billion BTU annually, would reduce crude oil imports by 110 million barrels/year and emissions by 19 million tons/year. Phase II efforts has yielded at least 3 cultures (Clostridium ljungdahlii, Isolate O-52, Isolate C-01) which are able to produce commercially viable concentrations of ethanol from CO, CO{sub 2}, and H{sub 2} in petroleum waste gas. Single continuous stirred tank reactor studies have shown that 15-20 g/L of ethanol can be produced, with less than 5 g/L acetic acid byproduct. Culture and reactor optimization in Phase III should yield even higher ethanol concentrations and minimal acetic acid. Product recovery studies showed that ethanol is best recovered in a multi-step process involving solvent extraction/distillation to azeotrope/azeotropic distillation or pervaporation, or direct distillation to the azeotrope/azeotropic distillation or pervaporation. Projections show that the ethanol facility for a typical refinery would require an investment of about $30 million, which would be returned in less than 2 years.

Arora, D.; Basu, R.; Phillips, J.R.; Wikstrom, C.V.; Clausen, E.C.; Gaddy, J.L.

1995-07-01T23:59:59.000Z

139

Development of a dedicated ethanol ultra-low emission vehicle (ULEV) -- Phase 2 report  

DOE Green Energy (OSTI)

The objective of this 3.5-year project is to develop a commercially competitive vehicle powered by ethanol (or an ethanol blend) that can meet California`s ultra-low emission vehicle (ULEV) standards and equivalent corporate average fuel economy (CAFE) energy efficiency for a light-duty passenger car application. The definition of commercially competitive is independent of fuel cost, but does include technical requirements for competitive power, performance, refueling times, vehicle range, driveability, fuel handling safety, and overall emissions performance. This report summarizes the second phase of this project, which lasted 12 months. This report documents two baseline vehicles, the engine modifications made to the original equipment manufacturer (OEM) engines, advanced aftertreatment testing, and various fuel tests to evaluate the flammability, lubricity, and material compatibility of the ethanol fuel blends.

Dodge, L.G.; Bourn, G.; Callahan, T.J.; Naegeli, D.W.; Shouse, K.R.; Smith, L.R.; Whitney, K.A. [Southwest Research Inst., San Antonio, TX (United States)

1995-09-01T23:59:59.000Z

140

Development of a dedicated ethanol ultra-low-emissions vehicle (ULEV): Phase 3 report  

DOE Green Energy (OSTI)

The objective of the 3.5 year project discussed in this report was to develop a commercially competitive vehicle powered by ethanol (or an ethanol blend) that can meet California`s Ultra Low Emissions Vehicle (ULEV) standards and equivalent Corporate Average Fuel Economy (CAFE) energy efficiency for a light duty passenger car application. This particular report summarizes the third phase of the project, which lasted 12 months. Emissions tests were conducted with advanced after-treatment devices on one of the two, almost identical, test vehicles, a 1993 Ford Taurus flexible fuel vehicle. The report also covers tests on the engine removed from the second Taurus vehicle. This engine was modified for an increased compression ratio, fitted with air assist injectors, and included an advanced engine control system with model-based control.

Dodge, L.; Callahan, T.; Leone, D.; Naegeli, D.; Shouse, K.; Smith, L.; Whitney, K. [Southwest Research Inst., San Antonio, TX (United States)] [Southwest Research Inst., San Antonio, TX (United States)

1998-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "development phases techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

An optical technique for characterizing the liquid phase of steam at the exhaust of an LP turbine  

SciTech Connect

Optical observation of velocity and size of water droplets in powerplant steam has several applications. These include the determination of steam wetness fraction, mass flow rate, and predicting erosion of turbine blades and pipe elbows. The major advantages of optical techniques are that they do not interfere with the flow or perturb the observation. This paper describes the measurement of the size and velocity of particles based on the observation and analysis of visibility patterns created by backscattered circularly polarized light. The size of latex particles in a dry nitrogen stream was measured in the laboratory. Visibility patterns of water droplets were observed in the low pressure turbine of Unit 6 of Alabama Power`s Gorgas Steam Plant.

Kercel, S.W.; Simpson, M.L. [Oak Ridge National Lab., TN (US); Azar, M. [Tennessee Technological Univ., Cookeville, TN (US); Young, M. [Alabama Power, Parrish, AL (US)

1993-06-01T23:59:59.000Z

142

Biomass power for rural development. Technical progress report Phase-II. Contractual reporting period October-December 1999  

DOE Green Energy (OSTI)

The project undertaken by the Salix Consortium is a multi-phased, multi-partner endeavor. Phase 1 focused on initial development and testing of the technology and forging the necessary agreements to demonstrate commercial willow production. The Phase 1 objectives have been successfully completed: preparing design plans for 2 utility pulverized coal boilers for 20 MW of biopower capacity; developing fuel supply plans for the project with a goal of establishing 365 ha (900 ac) of willow; obtaining power production commitments from the power companies for Phase 2; obtaining construction and environmental permits; and developing an experimental strategy for crop production and power generation improvements needed to assure commercial success. The R and D effort also addresses environmental issues pertaining to introduction of the willow energy system.

Neuhauser, Edward; The Salix Consortium

2000-03-23T23:59:59.000Z

143

Development of a rapid and efficient microinjection technique for gene insertion into fertilized salmonid eggs  

DOE Green Energy (OSTI)

An efficient one-step injection technique for gene insertion into fertilized rainbow trout (Oncorhynchus mykiss) eggs is described, and basic parameters affecting egg survival are reported. Freshly fertilized rainbow trout eggs were injected in the perivitelline space with a recombinant mouse metallothionein-genomic bovine growth hormone (bGH) DNA construct using a 30-gauge hypodermic needle and a standard microinjection system. Relative to control, site of injection and DNA concentration did not affect the egg survival, but injections later than 3--4 hours post fertilization were detrimental. The injection technique permitted treatment of 100 eggs/hr with survivals up to 100%, resulting in a 4% DNA uptake rate as indicated by DNA dot blot analysis. Positive dot blot results also indicated that the injected DNA is able to cross the vitelline membrane and persist for 50--60 days post hatching, obviating the need for direct injection into the germinal disk. Results are consistent with previous transgenic fish work, underscoring the usefulness of the technique for generating transgenic trout and salmonids. 24 refs., 6 figs., 3 tabs.

Chandler, D.P.; Welt, M.; Leung, F.C.

1990-10-01T23:59:59.000Z

144

Enhanced oil recovery. DOE (U. S. Department of Energy) develops computer models for three enhanced oil recovery techniques  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) is developing computer models that eventually will aid operators in deciding whether to go ahead with enhanced oil recovery projects in particular fields. At its Bartlesville Energy Technology Center in Oklahoma, DOE has developed models for 3 enhanced oil recovery (EOR) techniques. Operators can feed reservoir data into these models to determine what methods are amenable to a particular reservoir and to estimate whether a full-scale EOR project would be economically feasible. So far, DOE has developed models for CO/sub 2/ miscible flooding, chemical injection, and steamflooding.

Wash, R.

1983-04-01T23:59:59.000Z

145

Development of sensors and techniques to assess earthquake hazards and submarine slope stability  

E-Print Network (OSTI)

constructing fixed offshore platforms - load and resistanceand constructing fixed offshore platforms - working stressoffshore development including pipelines, communication cables, and production platforms

Blum, John

2010-01-01T23:59:59.000Z

146

Research, Development and Demonstration of Micro-CHP Systems for Residential Applications - Phase I  

Science Conference Proceedings (OSTI)

The objective of the Micro-CHP Phase I effort was to develop a conceptual design for a Micro-CHP system including: Defining market potential; Assessing proposed technology; Developing a proof-of-principle design; and Developing a commercialization strategy. TIAX LLC assembled a team to develop a Micro-CHP system that will provide electricity and heating. TIAX, the contractor and major cost-share provider, provided proven expertise in project management, prime-mover design and development, appliance development and commercialization, analysis of residential energy loads, technology assessment, and market analysis. Kohler Company, the manufacturing partner, is a highly regarded manufacturer of standby power systems and other residential products. Kohler provides a compellingly strong brand, along with the capabilities in product development, design, manufacture, distribution, sales, support, service, and marketing that only a manufacturer of Kohler's status can provide. GAMA, an association of appliance and equipment manufacturers, provided a critical understanding of appliance commercialization issues, including regulatory requirements, large-scale market acceptance issues, and commercialization strategies. The Propane Education & Research Council, a cost-share partner, provided cost share and aided in ensuring the fuel flexibility of the conceptual design. Micro-CHP systems being commercialized in Europe and Japan are generally designed to follow the household thermal load, and generate electricity opportunistically. In many cases, any excess electricity can be sold back to the grid (net metering). These products, however, are unlikely to meet the demands of the U.S. market. First, these products generally cannot provide emergency power when grid power is lost--a critical feature to market success in the U.S. Even those that can may have insufficient electric generation capacities to meet emergency needs for many U.S. homes. Second, the extent to which net metering will be available in the U.S. is unclear. Third, these products are typically not designed for use in households having forced hot-air heating, which is the dominant heating system in the U.S. The U.S. market will also require a major manufacturer that has the reputation and brand recognition, low-cost manufacturing capability, distribution, sales, and service infrastructure, and marketing power to achieve significant market size with a previously unknown and unproven product. History has proven time and time again that small-to-medium-size manufacturers do not have the resources and capabilities to achieve significant markets with such products. During the Phase I effort, the Team developed a conceptual design for a Micro-CHP system that addresses key DOE and U.S. market needs: (1) Provides emergency power adequate for critical household loads, with none of the key drawbacks associated with typical, low-cost emergency generators, such as liquid fuel storage, inability to power ''hard-wired'' loads, need to run temporary extension cords for plug loads, manual set up required, susceptibility to overload, and risk of failure due to lack of maintenance and infrequent operation; (2) Requires no special skills to install--plumbers, electricians and HVAC technicians will typically have all necessary skills; (3) Can be used with the major residential fuels in the U.S., including natural gas and propane, and can be easily adapted to fuel oil as well as emerging fuels as they become available; and (4) Significantly reduces household energy consumption and energy costs.

Robert A. Zogg

2011-03-14T23:59:59.000Z

147

Development of a Bulk GaN Growth Technique for Low Defect Density, Large-Area Native Substrates  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Electrochemical Solution the Electrochemical Solution Growth (ESG) Technique for Native GaN Substrates DOE Energy Storage & Power Electronics Research Program 30 September 2008 PI: Karen Waldrip Advanced Power Sources R&D, Dept 2546 PM: Stan Atcitty, John Boyes Sandia National Laboratories, Albuquerque, NM, 87185 Sponsor: Gil Bindewald, DOE Power Electronics & Energy Storage Program Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Outline * Motivation * Existing GaN Growth Technique - Epitaxial Lateral Overgrowth - Methods for Growing Bulk GaN * Development of the Electrochemical Solution Growth Technique

148

Metal hydride/chemical heat-pump development project. Phase I. Final report  

DOE Green Energy (OSTI)

The metal hydride/chemical heat pump (MHHP) is a chemical heat pump containing two hydrides for the storage and/or recovery of thermal energy. It utilizes the heat of reaction of hydrogen with specific metal alloys. The MHHP design can be tailored to provide heating and/or cooling or temperature upgrading over a wide range of input and ambient temperatures. The system can thus be used with a variety of heat sources including waste heat, solar energy or a fossil fuel. The conceptual design of the MHHP was developed. A national market survey including a study of applications and market sectors was conducted. The technical tasks including conceptual development, thermal and mechanical design, laboratory verification of design and material performance, cost analysis and the detailed design of the Engineering Development Test Unit (EDTU) were performed. As a result of the market study, the temperature upgrade cycle of the MHHP was chosen for development. Operating temperature ranges for the upgrader were selected to be from 70 to 110/sup 0/C (160 to 230/sup 0/F) for the source heat and 140 to 190/sup 0/C (280 to 375/sup 0/F) for the product heat. These ranges are applicable to many processes in industries such as food, textile, paper and pulp, and chemical. The hydride pair well suited for these temperatures is LaNi/sub 5//LaNi/sub 4/ /sub 5/Al/sub 0/ /sub 5/. The EDTU was designed for the upgrade cycle. It is a compact finned tube arrangement enclosed in a pressure vessel. This design incorporates high heat transfer and low thermal mass in a system which maximizes the coefficient of performance (COP). It will be constructed in Phase II. Continuation of this effort is recommended.

Argabright, T.A.

1982-02-01T23:59:59.000Z

149

Phase I of the Near-Term Hybrid Passenger-Vehicle Development Program. Final report  

DOE Green Energy (OSTI)

Heat engine/electric hybrid vehicles offer the potential of greatly reduced petroleum consumption, compared to conventional vehicles, without the disadvantages of limited performance and operating range associated with purely electric vehicles. This report documents a hybrid-vehicle design approach which is aimed at the development of the technology required to achieve this potential - in such a way that it is transferable to the auto industry in the near term. The development of this design approach constituted Phase I of the Near-Term Hybrid-Vehicle Program. The major tasks in this program were: (1) Mission Analysis and Performance Specification Studies; (2) Design Tradeoff Studies; and (3) Preliminary Design. Detailed reports covering each of these tasks are included as appendices to this report and issued under separate cover; a fourth task, Sensitivity Studies, is also included in the report on the Design Tradeoff Studies. Because of the detail with which these appendices cover methodology and both interim and final results, the body of this report was prepared as a brief executive summary of the program activities and results, with appropriate references to the detailed material in the appendices.

Not Available

1980-10-01T23:59:59.000Z

150

Development and proof-testing of advanced absorption refrigeration cycle concepts. Report on Phases 1 and 1A  

SciTech Connect

The overall objectives of this project are to evaluate, develop, and proof-test advanced absorption refrigeration cycles that are applicable to residential and commercial heat pumps for space conditioning. The heat pump system is to be direct-fired with natural gas and is to use absorption working fluids whose properties are known. Target coefficients of performance (COPs) are 1.6 at 47{degrees}F and 1.2 at 17{degrees} in the heating mode, and 0.7 at 95{degree}F in the cooling mode, including the effect of flue losses. The project is divided into three phases. Phase I entailed the analytical evaluation of advanced cycles and included the selection of preferred concepts for further development. Phase II involves the development and testing of critical components and of a complete laboratory breadboard version of the selected system. Phase III calls for the development of a prototype unit and is contingent on the successful completion of Phase II. This report covers Phase I work on the project. In Phase 1, 24 advanced absorption cycle/fluid combinations were evaluated, and computer models were developed to predict system performance. COP, theoretical pump power, and internal heat exchange were calculated for each system, and these calculations were used as indicators of operating and installed costs in order to rank the relative promise of each system. The highest ranking systems involve the cycle concept of absorber/generator heat exchange, generator heat exchanger/absorber heat exchange, regeneration, and resorption/desorption, in combination with the NH{sub 3}/H{sub 2}O/LiBr ternary absorption fluid mixture or with the NH{sub 3}/H{sub 2}O binary solution. Based upon these conclusions, the recommendation was made to proceed to Phase II, the laboratory breadboard proof-of- concept.

Modahl, R.J.; Hayes, F.C. [Trane Co., La Crosse, WI (United States). Applied Unitary/Refrigeration Systems Div.

1992-03-01T23:59:59.000Z

151

Development and Testing of Industrial Scale Coal Fired Combustion System, Phase 3  

SciTech Connect

Coal Tech Corp's mission is to develop, license & sell innovative, lowest cost, solid fuel fired power systems & total emission control processes using proprietary and patented technology for domestic and international markets. The present project 'DEVELOPMENT & TESTING OF INDUSTRIAL SCALE, COAL FIRED COMBUSTION SYSTEM, PHASE 3' on DOE Contract DE-AC22-91PC91162 was a key element in achieving this objective. The project consisted of five tasks that were divided into three phases. The first phase, 'Optimization of First Generation 20 MMBtu/hr Air-Cooled Slagging Coal Tech Combustor', consisted of three tasks, which are detailed in Appendix 'A' of this report. They were implemented in 1992 and 1993 at the first generation, 20 MMBtu/hour, combustor-boiler test site in Williamsport, PA. It consisted of substantial combustor modifications and coal-fired tests designed to improve the combustor's wall cooling, slag and ash management, automating of its operation, and correcting severe deficiencies in the coal feeding to the combustor. The need for these changes was indicated during the prior 900-hour test effort on this combustor that was conducted as part of the DOE Clean Coal Program. A combination of combustor changes, auxiliary equipment changes, sophisticated multi-dimensional combustion analysis, computer controlled automation, and series of single and double day shift tests totaling about 300 hours, either resolved these operational issues or indicated that further corrective changes were needed in the combustor design. The key result from both analyses and tests was that the combustor must be substantially lengthened to maximize combustion efficiency and sharply increase slag retention in the combustor. A measure of the success of these modifications was realized in the third phase of this project, consisting of task 5 entitled: 'Site Demonstration with the Second Generation 20 MMBtu/hr Air-Cooled Slagging Coal Tech Combustor'. The details of the task 5 effort are contained in Appendix 'C'. It was implemented between 1994 and 1998 after the entire 20 MMBtu/hr combustor-boiler facility was relocated to Philadelphia, PA in 1994. A new test facility was designed and installed. A substantially longer combustor was fabricated. Although not in the project plan or cost plan, an entire steam turbine-electric power generating plant was designed and the appropriate new and used equipment for continuous operation was specified. Insufficient funds and the lack of a customer for any electric power that the test facility could have generated prevented the installation of the power generating equipment needed for continuous operation. All other task 5 project measures were met and exceeded. 107 days of testing in task 5, which exceeded the 63 days (about 500 hours) in the test plan, were implemented. Compared to the first generation 20 MMBtu/hr combustor in Williamsport, the 2nd generation combustor has a much higher combustion efficiency, the retention of slag inside the combustor doubled to about 75% of the coal ash, and the ash carryover into the boiler, a major problem in the Williamsport combustor was essentially eliminated. In addition, the project goals for coal-fired emissions were exceeded in task 5. SO{sub 2} was reduced by 80% to 0.2 lb/MMBtu in a combination of reagent injection in the combustion and post-combustion zones. NO{sub x} was reduced by 93% to 0.07 lb/MMBtu in a combination of staged combustion in the combustor and post-combustion reagent injection. A baghouse was installed that was rated to 0.03 lb/MMBtu stack particle emissions. The initial particle emission test by EPA Method 5 indicated substantially higher emissions far beyond that indicated by the clear emission plume. These emissions were attributed to steel particles released by wall corrosion in the baghouse, correction of which had no effect of emissions.

Bert Zauderer

1998-09-30T23:59:59.000Z

152

Liquid phase methanol LaPorte process development unit: Modification, operation, and support studies  

DOE Green Energy (OSTI)

Liquid-entrained operations at the LaPorte Liquid Phase Methanol (LPMEOH) Process Development Unit (PDU) continued during June and July 1988 under Tasks 2.1 and 2.2 of Contract No. DE-AC22-87PC90005 for the US Department of Energy. The primary focus of this PDU operating program was to prepare for a confident move to the next scale of operation with an optimized and simplified process. Several new design options had been identified and thoroughly evaluated in a detailed process engineering study completed under the LPMEOH Part-2 contract (DE-AC22-85PC80007), which then became the basis for the current PDU modification/operating program. The focus of the Process Engineering Design was to optimize and simplifications focused on the slurry loop, which consists of the reactor, vapor/liquid separator, slurry heat exchanger, and slurry circulation pump. Two-Phase Gas Holdup tests began at LaPorte in June 1988 with nitrogen/oil and CO- rich gas/oil systems. The purpose of these tests was to study the hydrodynamics of the reactor, detect metal carbonyl catalyst poisons, and train operating personnel. Any effect of the new gas sparger and the internal heat exchanger would be revealed by comparing the hydrodynamic data with previous PDU hydrodynamic data. The Equipment Evaluation'' Run E-5 was conducted at the LaPorte LPMEOH PDU in July 1988. The objective of Run E-5 was to systematically evaluate each new piece of equipment (sparger, internal heat exchanger, V/L disengagement zone, demister, and cyclone) which had been added to the system, and attempt to run the reactor in an internal-only mode. In addition, a successful catalyst activation with a concentrated (45 wt % oxide) slurry was sought. 9 refs., 26 figs., 15 tabs.

Not Available

1991-01-02T23:59:59.000Z

153

Incorporating modern development and evaluation techniques into the creation of large-scale, spacecraft control software  

E-Print Network (OSTI)

One of the major challenges facing the development of today's safety- and mission-critical space systems involves the construction of software to support the goals and objectives of these missions, especially those associated ...

Weiss, Kathryn Anne, 1979-

2006-01-01T23:59:59.000Z

154

Partition of actinides and fission products between metal and molten salt phases: Theory, measurement, and application to IFR pyroprocess development  

Science Conference Proceedings (OSTI)

The chemical basis of Integral Fast Reactor fuel reprocessing (pyroprocessing) is partition of fuel, cladding, and fission product elements between molten LiCl-KCl and either a solid metal phase or a liquid cadmium phase. The partition reactions are described herein, and the thermodynamic basis for predicting distributions of actinides and fission products in the pyroprocess is discussed. The critical role of metal-phase activity coefficients, especially those of rare earth and the transuranic elements, is described. Measured separation factors, which are analogous to equilibrium constants but which involve concentrations rather than activities, are presented. The uses of thermodynamic calculations in process development are described, as are computer codes developed for calculating material flows and phase compositions in pyroprocessing.

Ackerman, J.P.; Johnson, T.R.

1993-10-01T23:59:59.000Z

155

Nuclear Maintenance Application Center: Development and Analysis of an Open Phase Detection Scheme for Various Configurations of Auxiliary Transformers  

Science Conference Proceedings (OSTI)

Two recent failures have highlighted the need to detect open-phase conditions that can occur in the power delivery system. The analysis described in this report was performed to determine the response of system auxiliary transformers during open-phase conditions to aid in the development of system protection schemes to detect such conditions.BackgroundIn January 2012, an auxiliary component tripped due to a bus under-voltage. The cause of the event was the ...

2013-05-10T23:59:59.000Z

156

National forecast for geothermal resource exploration and development with techniques for policy analysis and resource assessment  

DOE Green Energy (OSTI)

The backgrund, structure and use of modern forecasting methods for estimating the future development of geothermal energy in the United States are documented. The forecasting instrument may be divided into two sequential submodels. The first predicts the timing and quality of future geothermal resource discoveries from an underlying resource base. This resource base represents an expansion of the widely-publicized USGS Circular 790. The second submodel forecasts the rate and extent of utilization of geothermal resource discoveries. It is based on the joint investment behavior of resource developers and potential users as statistically determined from extensive industry interviews. It is concluded that geothermal resource development, especially for electric power development, will play an increasingly significant role in meeting US energy demands over the next 2 decades. Depending on the extent of R and D achievements in related areas of geosciences and technology, expected geothermal power development will reach between 7700 and 17300 Mwe by the year 2000. This represents between 8 and 18% of the expected electric energy demand (GWh) in western and northwestern states.

Cassel, T.A.V.; Shimamoto, G.T.; Amundsen, C.B.; Blair, P.D.; Finan, W.F.; Smith, M.R.; Edeistein, R.H.

1982-03-31T23:59:59.000Z

157

Research and development of improved geothermal well logging techniques, tools and components (current projects, goals and status). Final report  

DOE Green Energy (OSTI)

One of the key needs in the advancement of geothermal energy is availability of adequate subsurface measurements to aid the reservoir engineer in the development and operation of geothermal wells. Some current projects being sponsored by the U. S. Department of Energy's Division of Geothermal Energy pertaining to the development of improved well logging techniques, tools and components are described. An attempt is made to show how these projects contribute to improvement of geothermal logging technology in forming key elements of the overall program goals.

Lamers, M.D.

1978-01-01T23:59:59.000Z

158

Multilayer co-extrusion technique for developing high energy density organic devices.  

DOE Green Energy (OSTI)

The purpose of this project is to develop multi-layered co-extrusion (MLCE) capabilities at Sandia National Laboratories to produce multifunctional polymeric structures. Multi-layered structures containing layers of alternating electrical, mechanical, optical, or structural properties can be applied to a variety of potential applications including energy storage, optics, sensors, mechanical, and barrier applications relevant to the internal and external community. To obtain the desired properties, fillers must be added to the polymer materials that are much smaller than the end layer thickness. We developed two filled polymer systems, one for conductive layers and one for dielectric layers and demonstrated the potential for using MLCE to manufacture capacitors. We also developed numerical models to help determine the material and processing parameters that impact processing and layer stability.

Spangler, Scott W.; Schroeder, John Lee; Mrozek, Randy (Army Research Lab, Adelphi, MD); Bieg, Lothar Franz; Rao, Rekha Ranjana; Lenhart, Joseph Ludlow (Army Research Lab, Adelphi, MD); Stavig, Mark Edwin; Cole, Phillip James (Northrop-Grumman, Herndon, VA); Mondy, Lisa Ann; Winter, Michael R.; Schneider, Duane Allen

2009-11-01T23:59:59.000Z

159

Taxonomy of digital creatures: defining character development techniques based upon scope of use  

Science Conference Proceedings (OSTI)

Using computer graphics to develop digital creatures from concept to realization requires a series of decisions based on how the character is expected to be seen. This course focuses on how to use a creature's scope of apearance to effectively define ...

Tim McLaughlin

2006-07-01T23:59:59.000Z

160

Liquid phase fluid dynamic (methanol) run in the LaPorte alternative fuels development unit  

DOE Green Energy (OSTI)

A fluid dynamic study was successfully completed in a bubble column at DOE's Alternative Fuels Development Unit (AFDU) in LaPorte, Texas. Significant fluid dynamic information was gathered at pilot scale during three weeks of Liquid Phase Methanol (LPMEOJP) operations in June 1995. In addition to the usual nuclear density and temperature measurements, unique differential pressure data were collected using Sandia's high-speed data acquisition system to gain insight on flow regime characteristics and bubble size distribution. Statistical analysis of the fluctuations in the pressure data suggests that the column was being operated in the churn turbulent regime at most of the velocities considered. Dynamic gas disengagement experiments showed a different behavior than seen in low-pressure, cold-flow work. Operation with a superficial gas velocity of 1.2 ft/sec was achieved during this run, with stable fluid dynamics and catalyst performance. Improvements included for catalyst activation in the design of the Clean Coal III LPMEOH{trademark} plant at Kingsport, Tennessee, were also confirmed. In addition, an alternate catalyst was demonstrated for LPMEOH{trademark}.

Bharat L. Bhatt

1997-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "development phases techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Structural Composites Industries 4 kilowatt wind system development. Phase I: design and analysis, technical report  

DOE Green Energy (OSTI)

A 4 kW small wind energy conversion system (SWECS) has been designed for residential applications in which relatively low (10 mph) mean annual wind speeds prevail. The objectives were to develop such a machine to produce electrical energy at 6 cents per kWh while operating in parallel with a utility grid or auxiliary generator. The Phase I effort began in November, 1979 and was carried through the Final Design Review in February 1981. During this period extensive trade, optimization and analytical studies were performed in an effort to provide the optimum machine to best meet the objectives. Certain components, systems and manufacturing processes were tested and evaluated and detail design drawings were produced. The resulting design is a 31-foot diameter horizontal axis downwind machine rated 5.7 kW and incorporating the following unique features: Composite Blades; Free-Standing Composite Tower; Torque-Actuated Blade Pitch Control. The design meets or exceeds all contract requirements except that for cost of energy. The target 6 cents per kWh will be achieved in a mean wind speed slightly below 12 mph instead of the specified 10 mph.

Malkine, N.; Bottrell, G.; Weingart, O.

1981-05-01T23:59:59.000Z

162

Development of ammoniated salts. Thermochemical energy storage systems: Phase IB. Final report, February--September 1977  

DOE Green Energy (OSTI)

Thermal energy is usually stored in energy storage systems as sensible heat at temperatures well above the ambient temperature. Most energy storage systems of this type suffer from two drawbacks: (1) the thermal losses to the surroundings are large, and (2) the energy is only available for recovery at the bulk temperature of the storage material; therefore, the stored energy can only be partially recovered. If the energy could be stored at near ambient temperature and recovered at the desired use temperature, thermal losses can be minimized and a high degree of efficiency can be maintained. The purpose of the program is to develop an energy storage system that accepts thermal energy at high temperatures, stores that energy at ambient temperature, and recovers the energy at the original high temperature. The energy is stored as chemical energy. The concept consists of storage and subsequent extraction of the heat of reaction from a pair of ammoniated salts near equilibrium conditions. By shifting the equilibrium in the forward or reverse direction, the heat of reaction can be stored or recovered. The system can be used for many different applications (i.e., different temperature levels) by selecting the appropriate salt pair for the high and low temperature reactions. In this phase of the program, the technical feasibility of the concept was demonstrated using several ammoniated salt pairs.

Jaeger, F. A.; Howerton, M. T.; Podlaseck, S. E.; Myers, J. E.; Beshore, D. G.; Haas, W. R.

1978-05-01T23:59:59.000Z

163

Development of novel separation techniques for biological samples in capillary electrophoresis  

Science Conference Proceedings (OSTI)

This dissertation includes three different topics: general introduction of capillary electrophoresis (CE); gradient in CE and CE in biological separations; and capillary gel electrophoresis (CGE) for DNA separation. Factors such as temperature, viscosity, pH, and the surface of capillary walls affecting the separation performance are demonstrated. A pH gradient between 3.0 and 5.2 is useful to improve the resolution among eight different organic acids. A flow gradient due to the change in the concentration of surfactant, which is able to coat to the capillary wall to change the flow rate and its direction, is also shown as a good way to improve the resolution for organic compounds. A temperature gradient caused by joule heat is shown by voltage programming to enhance the resolution and shorten the separation time for several phenolic compounds. The author also shows that self-regulating dynamic control of electroosmotic flow in CE by simply running separation in different concentrations of surfactant has less matrix effect on the separation performance. One of the most important demonstrations in this dissertation is that the author proposes on-column reaction which gives several advantages including the use of a small amount of sample, low risk of contamination, and time saving and kinetic features. The author uses this idea with laser induced fluorescence (LIF) as a detection mode to detect an on-column digestion of sub-ng of protein. This technique also is applied to single cell analysis in the group.

Chang, H.T.

1994-07-27T23:59:59.000Z

164

Development of whole-building energy design targets for commercial buildings: Phase 1, Planning: Volume 2, Technical report  

SciTech Connect

This is the second volume of the Phase 1 report and discusses the 10 tasks performed in Phase 1. The objective of this research is to develop a methodology for setting energy design targets to provide voluntary guidelines for the buildings industry. The whole-building energy targets project is being conducted at the Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE) to encourage the construction of energy-efficient buildings by informing designers and owners about cost-effective goals for energy use in new commercial buildings. The outcome of this research will be a flexible methodology for setting such targets. The tasks are listed and discussed in this report as follows: Task 1 - Develop Detailed Project Goals and Objectives; Task 2 - Establish Buildings-Industry Liaison; Task 3 - Develop Approaches to the Energy Targets Model, Building Operations, and Climate; Task 4 - Develop an Approach for Treating Economic Considerations; Task 5 - Develop an Approach for Treating Energy Sources; Task 6 - Collect Energy-Use Data; Task 7 - Survey Energy Expert Opinion; Task 8 - Evaluation Procedure Specification and Integration; Task 9 - Phase 1 Report Development; and Task 10 - Phase 1 Review Planning.

Crawley, D.B.; Briggs, R.S.; Jones, J.W.; Seaton, W.W.; Kaufman, J.E.; Deringer, J.J.; Kennett, E.W.

1987-08-01T23:59:59.000Z

165

Development of a Test Technique to Determine the Thermal Conductivity of Large Refractory Ceramic Test Specimens  

SciTech Connect

A method has been developed to utilize the High Intensity Infrared lamp located at Oak Ridge National Laboratory for the measurement of thermal conductivity of bulk refractory materials at elevated temperatures. The applicability of standardized test methods to determine the thermal conductivity of refractory materials at elevated temperatures is limited to small sample sizes (laser flash) or older test methods (hot wire, guarded hot plate), which have their own inherent problems. A new method, based on the principle of the laser flash method, but capable of evaluating test specimens on the order of 200 x 250 x 50 mm has been developed. Tests have been performed to validate the method and preliminary results are presented in this paper.

Hemrick, James Gordon [ORNL; Dinwiddie, Ralph Barton [ORNL; Loveland, Erick R [ORNL; Prigmore, Andre L [ORNL

2012-01-01T23:59:59.000Z

166

Application of powder metallurgy techniques for the development of non-toxic ammunition. Final CRADA report  

Science Conference Proceedings (OSTI)

The purpose of the Cooperative Research and Development Agreement (CRADA) between Martin Marietta Energy Systems, Inc., and Delta Frangible Ammunition (DFA), was to identify and evaluate composite materials for the development of small arms ammunition. Currently available small arms ammunition utilizes lead as the major component of the projectile. The introduction of lead into the environment by these projectiles when they are expended is a rapidly increasing environmental problem. At certain levels, lead is a toxic metal to the environment and a continual health and safety concern for firearm users as well as those who must conduct lead recovery operations from the environment. DFA is a leading supplier of high-density mixtures, which will be used to replace lead-based ammunition in specific applications. Current non-lead ammunition has several limitations that prevent it from replacing lead-based ammunition in many applications (such as applications that require ballistics, weapon recoil, and weapon function identical to that of lead-based ammunition). The purpose of the CRADA was to perform the research and development to identify cost-effective materials to be used in small arms ammunition that eventually will be used in commercially viable, environmentally conscious, non-lead, frangible and/or non-frangible, ammunition.

Lowden, R. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); Kelly, R. [Delta Defense, Inc., Arlington, VA (United States)

1997-05-30T23:59:59.000Z

167

Verification of the Effectiveness of VSOP-2 Phase Referencing with a Newly Developed Simulation Tool, ARIS  

E-Print Network (OSTI)

The next-generation space VLBI mission, VSOP-2, is expected to provide unprecedented spatial resolutions at 8.4, 22, and 43GHz. In this report, phase referencing with VSOP-2 is examined in detail based on a simulation tool called ARIS. The criterion for successful phase referencing was to keep the phase errors below one radian. Simulations with ARIS reveal that phase referencing achieves good performance at 8.4GHz, even under poor tropospheric conditions. At 22 and 43GHz, it is recommended to conduct phase referencing observations under good or typical tropospheric conditions. The satellite is required to have an attitude-switching capability with a one-minute or shorter cycle, and an orbit determination accuracy higher than about 10cm at apogee; the phase referencing calibrators are required to have a signal-to-noise ratio larger than four for a single scan. The probability to find a suitable phase referencing calibrator was estimated by using VLBI surveys. From the viewpoint of calibrator availability, VSOP-2 phase referencing at 8.4GHz is promising. However, the change of finding suitable calibrators at 22 and 43GHz is significantly reduced; it is important to conduct specific investigations for each target at those frequencies.

Yoshiharu Asaki; Hiroshi Sudou; Yusuke Kono; Akihiro Doi; Richard Dodson; Nicolas Pradel; Yasuhiro Murata; Nanako Mochizuki; Philip G. Edwards; Tetsuo Sasao; Edward B. Fomalont

2007-07-04T23:59:59.000Z

168

Development of colorimetric solid Phase Extraction (C-SPE) for in-flight Monitoring of spacecraft Water Supplies  

SciTech Connect

Although having recently been extremely successful gathering data on the surface of Mars, robotic missions are not an effective substitute for the insight and knowledge about our solar system that can be gained though first-hand exploration. Earlier this year, President Bush presented a ''new course'' for the U.S. space program that shifts NASA's focus to the development of new manned space vehicles to the return of humans to the moon. Re-establishing the human presence on the moon will eventually lead to humans permanently living and working in space and also serve as a possible launch point for missions into deeper space. There are several obstacles to the realization of these goals, most notably the lack of life support and environmental regeneration and monitoring hardware capable of functioning on long duration spaceflight. In the case of the latter, past experience on the International Space Station (ISS), Mir, and the Space Shuttle has strongly underscored the need to develop broad spectrum in-flight chemical sensors that: (1) meet current environmental monitoring requirements on ISS as well as projected requirements for future missions, and (2) enable the in-situ acquisition and analysis of analytical data in order to further define on-orbit monitoring requirements. Additionally, systems must be designed to account for factors unique to on-orbit deployment such as crew time availability, payload restrictions, material consumption, and effective operation in microgravity. This dissertation focuses on the development, ground testing, and microgravity flight demonstration of Colorimetric Solid Phase Extraction (C-SPE) as a candidate technology to meet the near- and long-term water quality monitoring needs of NASA. The introduction will elaborate further on the operational and design requirements for on-orbit water quality monitoring systems by discussing some of the characteristics of an ''ideal'' system. A description of C-SPE and how the individual components of the platform are combined to satisfy many of these requirements is then presented, along with a literature review on the applications of C-SPE and similar sorption-spectrophotometric techniques. Finally, a brief overview of diffuse reflection spectroscopy and the Kubelka-Munk function, which are used to quantify analytes via C-SPE, is presented.

Daniel Bryan Gazda

2004-12-19T23:59:59.000Z

169

Development of a Navigator and Imaging Techniques for the Cryogenic Dark Matter Search Detectors  

Science Conference Proceedings (OSTI)

This project contributes to the detection of flaws in the germanium detectors for the Cryogenic Dark Matter Search (CDMS) experiment. Specifically, after imaging the detector surface with a precise imaging and measuring device, they developed software to stitch the resulting images together, applying any necessary rotations, offsets, and averaging, to produce a smooth image of the whole detector that can be used to detect flaws on the surface of the detector. These images were also tiled appropriately for the Google Maps API to use as a navigation tool, allowing viewers to smoothly zoom and pan across the detector surface. Automated defect identification can now be implemented, increasing the scalability of the germanium detector fabrication.

Wilen, Chris; /Carleton Coll. /KIPAC, Menlo Park

2011-06-22T23:59:59.000Z

170

Gullfaks development provides challenges; Part 2: Sand control combines with various EOR techniques to increase plateau production -- further developments will extend field life  

Science Conference Proceedings (OSTI)

The introductory article presented last month described Gullfaks field's history, and how it was discovered and appraised in Norway's North Sea Block 34/10 in the early 1980s. The field's complex geology and Statoil's strategy for developing various productive zones were explained. This concluding article describes evolution and status of well completion methods the operator uses in Gullfaks. A new monobore completion configuration for 5 1/2 and 7-in. tubing is described. Then major discussions cover: (1) sand control-gravel packing, stimulation, producing below bubble point techniques, and chemical methods; and (2) state-of-the-art techniques for improving oil recovery, including Water-Alternating-Gas (WAG) injection, thin polymer gel injection and surfactant flooding. Future needs and possible new methods are also covered.

Tollefsen, S.; Graue, E.; Svinndal, S.

1994-05-01T23:59:59.000Z

171

Developing Secure Power Systems Professional Competence: Alignment and Gaps in Workforce Development Programs for Phase 2 of the Secure Power Systems Professional project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

53 53 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Developing Secure Power Systems Professional Competence: Alignment and Gaps in Workforce Development Programs for Phase 2 of the Secure Power Systems Professional project LR O'Neil TJ Vanderhorst, Jr MJ Assante J Januszewski, III DH Tobey R Leo TJ Conway K Perman August 2013 PNNL- 22653 Developing Secure Power Systems Professional Competence: Alignment and Gaps in Workforce Development Programs for Phase 2 of the Secure Power Systems Professional project LR O'Neil TJ Vanderhorst, Jr MJ Assante J Januszewski, III DH Tobey R Leo TJ Conway K Perman Contributors: SGC Panel Members August 2013 Prepared by: Pacific Northwest National Laboratory and

172

Phase I of the Near Term Hybrid Passenger Vehicle Development Program. Final report  

DOE Green Energy (OSTI)

The results of Phase I of the Near-Term Hybrid Vehicle Program are summarized. This phase of the program ws a study leading to the preliminary design of a 5-passenger hybrid vehicle utilizing two energy sources (electricity and gasoline/diesel fuel) to minimize petroleum usage on a fleet basis. This report presents the following: overall summary of the Phase I activity; summary of the individual tasks; summary of the hybrid vehicle design; summary of the alternative design options; summary of the computer simulations; summary of the economic analysis; summary of the maintenance and reliability considerations; summary of the design for crash safety; and bibliography.

Not Available

1980-10-01T23:59:59.000Z

173

The Development and Application of Reactive Transport Modeling Techniques to Study Radionuclide Migration at Yucca Mountain, NV  

SciTech Connect

Yucca Mountain, Nevada has been chosen as a possible site for the first high level radioactive waste repository in the United States. As part of the site investigation studies, we need to make scientifically rigorous estimations of radionuclide migration in the event of a repository breach. Performance assessment models used to make these estimations are computationally intensive. We have developed two reactive transport modeling techniques to simulate radionuclide transport at Yucca Mountain: (1) the selective coupling approach applied to the convection-dispersion-reaction (CDR) model and (2) a reactive stream tube approach (RST). These models were designed to capture the important processes that influence radionuclide migration while being computationally efficient. The conventional method of modeling reactive transport models is to solve a coupled set of multi-dimensional partial differential equations for the relevant chemical components in the system. We have developed an iterative solution technique, denoted the selective coupling method, that represents a versatile alternative to traditional uncoupled iterative techniques and the filly coupled global implicit method. We show that selective coupling results in computational and memory savings relative to these approaches. We develop RST as an alternative to the CDR method for solving large two- or three-dimensional reactive transport simulations for cases in which one is interested in predicting the flux across a specific control plane. In the RST method, the multidimensional problem is reduced to a series of one-dimensional transport simulations along streamlines. The key assumption with RST is that mixing at the control plane approximates the transverse dispersion between streamlines. We compare the CDR and RST approaches for several scenarios that are relevant to the Yucca Mountain Project. For example, we apply the CDR and RST approaches to model an ongoing field experiment called the Unsaturated Zone Transport Test.

Hari Selvi Viswanathan

1999-09-01T23:59:59.000Z

174

DEVELOPMENT OF CLAD CERAMIC FUEL PLATES BY SPRAY-COATING TECHNIQUES. Quarterly Tecnnical Progress Report, October-December 1960  

SciTech Connect

Activities in a ptogram concerned with development of plasma-jet spray- coating techniques suitable for production of clad ceramic fuel plates are described. Experiments on application of zirconia coatings are also described. A survey of UO/sub 2/ powder was conducted to determine its suitability for plasma spraying. Also conditions were established for spraying fused and milled UO/sub 2/. The effects of process variables on coating and deposition characteristics were found to correlate. Densities of UO/sub 2/ coatings of 75 to 80% were achieved. (J.R.D.)

Weare, N.E.

1962-10-31T23:59:59.000Z

175

Development of a method for measuring the density of liquid sulfur at high pressures using the falling-sphere technique  

SciTech Connect

We describe a new method for the in situ measurement of the density of a liquid at high pressure and high temperature using the falling-sphere technique. Combining synchrotron radiation X-ray radiography with a large-volume press, the newly developed falling-sphere method enables the determination of the density of a liquid at high pressure and high temperature based on Stokes' flow law. We applied this method to liquid sulfur and successfully obtained the density at pressures up to 9 GPa. Our method could be used for the determination of the densities of other liquid materials at higher static pressures than are currently possible.

Funakoshi, Ken-ichi; Nozawa, Akifumi [Japan Synchrotron Radiation Research Institute, Sayo-cho, Hyogo 679-5198 (Japan)

2012-10-15T23:59:59.000Z

176

First Results of Experimental Tests of the Newly Developed NARL Phased-Array Doppler Sodar  

Science Conference Proceedings (OSTI)

A multifrequency phased-array Doppler sodar system has been installed recently at the National Atmospheric Research Laboratory (NARL) for the continuous observation of the lower atmosphere from near ground to the atmospheric boundary layer (ABL). ...

V. K. Anandan; M. Shravan Kumar; I. Srinivasa Rao

2008-10-01T23:59:59.000Z

177

Development of a methodology for defining whole-building energy design targets for commercial buildings: Phase 2, Development concept stage report  

Science Conference Proceedings (OSTI)

Since 1985, the Pacific Northwest Laboratory (PNL) has managed the Whole-Building Energy Design Targets project for the US Department of Energy (DOE) Office of Building Technologies (formerly the Office of Buildings and Community Systems). The primary focus of the Targets project is to develop a flexible methodology for buildings industry use in setting energy performance guidelines for commercial buildings and for determining compliance with those guidelines. The project is being conducted as a two-phase effort. In Phase 1, Planning, the project team determined the research that was necessary for developing the Targets methodology. In the concept stage of Phase 2, Development, the team sought to define the technical and software development concepts upon which the overall Targets methodology will be based. The concept stage work is documented in four volumes, of which this summary volume is the first. The three other volumes are Volume 2: Technical Concept Development Task Reports, Volume 3: Workshop Summaries, and Volume 4: Software Concept Development Task Reports. 8 refs., 14 figs.

Jones, J.W. (American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, GA (USA)); Deringer, J.J. (American Inst. of Architects, Washington, DC (USA)); McKay, H.N. (Illuminating Engineering Society of North America, New York, NY (USA))

1990-09-01T23:59:59.000Z

178

Development of nondestructive evaluation techniques for DAM inspection. Progress report, January 1995 through August 1997  

DOE Green Energy (OSTI)

The Lawrence Livermore National Laboratory has concluded a two and a half year study on the development of an ultrasonic inspection system to inspect post stressed steel tendons on dams and flood gates. The inspection systems were part of a program for the California Department of Water Resources. The effort included the identification of the location and amount of corrosion damage to the tendons, identification of the cause of corrosion, and the technology for inhibiting corrosion. Several NDE methods for inspecting and quantifying damage to steel reinforced concrete water pipes were investigated and presented to the DWR for their consideration. The additional methods included Ground Penetrating RADAR, Electro- Potential Measurements, Infrared Technology, Pipe Inspection Crawlers (designed to travel inside pipelines and simultaneously report on the pipe condition as viewed by ultrasonic methods and video cameras from within the pipeline.) Reference to consultants hired by LLNL for similar on-site corrosion inspections were given to the DWR. The LLNL research into industries that have products to prevent corrosion resulted in the identification of an Innsbruck, Austria, company. This company claims to have products to permanently protect post- or pre-stressed tendons. The caveat is that the tendon protection system must be installed when the tendons are installed because no retrofit is available. Corrosion mitigation on the steel reinforcements surrounding the concrete was addressed through active and passive cathodic protection schemes. The combination of corrosion and erosion were addressed during consideration for the inspection of water-pump impeller-blades that are used in the three stage, million horsepower, pumping stations at Edmunston.

Brown, A. E.; Thomas, G.H.

1997-09-04T23:59:59.000Z

179

Closure development for high-level nuclear waste containers for the tuff repository; Phase 1, Final report  

SciTech Connect

This report summarizes Phase 1 activities for closure development of the high-level nuclear waste package task for the tuff repository. Work was conducted under U.S. Department of Energy (DOE) Contract 9172105, administered through the Lawrence Livermore National Laboratory (LLNL), as part of the Yucca Mountain Project (YMP), funded through the DOE Office of Civilian Radioactive Waste Management (OCRWM). The goal of this phase was to select five closure processes for further evaluation in later phases of the program. A decision tree methodology was utilized to perform an objective evaluation of 15 potential closure processes. Information was gathered via a literature survey, industrial contacts, and discussions with project team members, other experts in the field, and the LLNL waste package task staff. The five processes selected were friction welding, electron beam welding, laser beam welding, gas tungsten arc welding, and plasma arc welding. These are felt to represent the best combination of weldment material properties and process performance in a remote, radioactive environment. Conceptual designs have been generated for these processes to illustrate how they would be implemented in practice. Homopolar resistance welding was included in the Phase 1 analysis, and developments in this process will be monitored via literature in Phases 2 and 3. Work was conducted in accordance with the YMP Quality Assurance Program. 223 refs., 20 figs., 9 tabs.

Robitz, E.S. Jr.; McAninch, M.D. Jr.; Edmonds, D.P. [Babcock and Wilcox Co., Lynchburg, VA (USA). Nuclear Power Div.]|[Babcock and Wilcox Co., Alliance, OH (USA). Research and Development Div.

1990-09-01T23:59:59.000Z

180

The development of coal-based technologies for Department of Defense facilities: Phase 1 final report. Volume 1: Technical report  

SciTech Connect

The first phase of a three-phase project investigating the development of coal-based technologies for Department of Defense facilities has been completed. The objectives of the project are to: decrease DOD`s dependence on foreign oil and increase its use of coal; promote public and private sector deployment of technologies for utilizing coal-based fuels in oil-designed combustion equipment; and provide a continuing environment for research and development of coal-based fuel technologies for small-scale applications at a time when market conditions in the US are not favorable for the introduction of coal-fired equipment in the commercial and industrial capacity ranges. The Phase 1 activities were focused on developing clean, coal-based combustion technologies for the utilization of both micronized coal-water mixtures (MCWMs) and dry, micronized coal (DMC) in fuel oil-designed industrial boilers. The specific objective in Phase 1 was to deliver fully engineered retrofit options for a fuel oil-designed watertube boiler located on a DOD installation to fire either MCWM or DMC. This was achieved through a project consisting of fundamental, pilot-sale, and demonstration-scale activities investigating coal beneficiation and preparation, and MCWM and DMC combustion performance. In addition, detailed engineering designs and an economic analysis were conducted for a boiler located at the Naval Surface Warfare Center, near Crane, Indiana. Results are reported on MCWM and DMC combustion performance evaluation; engineering design; and cost/economic analysis.

Miller, B.G.; Morrison, J.L.; Pisupati, S.V. [Pennsylvania State Univ., University Park, PA (United States). Energy and Fuels Research Center] [and others

1997-01-31T23:59:59.000Z

Note: This page contains sample records for the topic "development phases techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Development and proof-testing of advanced absorption refrigeration cycle concepts, Phase 2  

SciTech Connect

This paper summarizes the results of the work performed to date under Phase II of the DOE program. The Phase II objective is to design, fabricate, and proof-test a natural gas-fired absorption heat pump (AHP) with an efficiency level substantially higher than present day state-of-the-art equipment. To achieve these objectives, Carrier investigated the performance of the candidate Phase I fluids (lithium bromide:zinc bromide/methyl alcohol-MEOH or lithium bromide:water methylmine-MMA) as well as high concentration formulations of the conventional LiBr/H2O mixture for high temperature, upper loop use. These results were compared with several existing fluid candidates including ammonia/water. 9 figs.

Reimann, R.C.; Melikian, G.

1988-01-01T23:59:59.000Z

182

PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT  

Science Conference Proceedings (OSTI)

This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase I was successfully completed. The project was then re-directed to the making of iron units. U.S. Steel teamed up with Calderon for a joint effort which will last 30 months to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy.

Albert Calderon

2003-01-28T23:59:59.000Z

183

Phase II Calderon Process to Produce Direct Reduced Iron Research and Development Project  

Science Conference Proceedings (OSTI)

This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase I was successfully completed. The project was then re-directed to the making of iron units. U.S. Steel teamed up with Calderon for a joint effort which will last 42 months to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy.

Albert Calderon

2003-06-30T23:59:59.000Z

184

PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT  

SciTech Connect

This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase I was successfully completed. The project was then re-directed to the making of iron units. U.S. Steel teamed up with Calderon for a joint effort which will last 30 months to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy.

Albert Calderon

2003-04-28T23:59:59.000Z

185

Development of models for the sodium version of the two-phase three-dimensional thermal hydraulics code THERMIT. [LMFBR  

SciTech Connect

Several different models and correlations were developed and incorporated in the sodium version of THERMIT, a thermal-hydraulics code written at MIT for the purpose of analyzing transients under LMFBR conditions. This includes: a mechanism for the inclusion of radial heat conduction in the sodium coolant as well as radial heat loss to the structure surrounding the test section. The fuel rod conduction scheme was modified to allow for more flexibility in modelling the gas plenum regions and fuel restructuring. The formulas for mass and momentum exchange between the liquid and vapor phases were improved. The single phase and two phase friction factors were replaced by correlations more appropriate to LMFBR assembly geometry.

Wilson, G.J.; Kazimi, M.S.

1980-05-01T23:59:59.000Z

186

Development of a direct-injected natural gas engine system for heavy-duty vehicles: Final report phase 2  

DOE Green Energy (OSTI)

This report summarizes the results of Phase 2 of this contract. The authors completed four tasks under this phase of the subcontract. (1) They developed a computational fluid dynamics (CFD) model of a 3500 direct injected natural gas (DING) engine gas injection/combustion system and used it to identify DING ignition/combustion system improvements. The results were a 20% improvement in efficiency compared to Phase 1 testing. (2) The authors designed and procured the components for a 3126 DING engine (300 hp) and finished assembling it. During preliminary testing, the engine ran successfully at low loads for approximately 2 hours before injector tip and check failures terminated the test. The problems are solvable; however, this phase of the program was terminated. (3) They developed a Decision & Risk Analysis model to compare DING engine technology with various other engine technologies in a number of commercial applications. The model shows the most likely commercial applications for DING technology and can also be used to identify the sensitivity of variables that impact commercial viability. (4) MVE, Inc., completed a preliminary design concept study that examines the major design issues involved in making a reliable and durable 3,000 psi LNG pump. A primary concern is the life of pump seals and piston rings. Plans for the next phase of this program (Phase 3) have been put on indefinite hold. Caterpillar has decided not to fund further DING work at this time due to limited current market potential for the DING engine. However, based on results from this program, the authors believe that DI natural gas technology is viable for allowing a natural gas-fueled engine to achieve diesel power density and thermal efficiency for both the near and long terms.

Cox, G.B.; DelVecchio, K.A.; Hays, W.J.; Hiltner, J.D.; Nagaraj, R.; Emmer, C.

2000-03-02T23:59:59.000Z

187

Artificial heart development program. Volume I. System development. Phase III summary report, July 1, 1973--September 30, 1977  

SciTech Connect

Efforts and results in the development of the power system portions of a calf implantable model of nuclear-powered artificial heart are discussed. The primary objective in developing the implantable model was to solve the packaging problems for total system implantation. The power system's portion is physically that portion of the implantable model between the /sup 238/Pu heat sources and the blood pump ventricles. The /sup 238/Pu heat sources and blood pump ventricles were provided as Government Furnished Equipment as developed and fabricated by other contractors.

1977-01-01T23:59:59.000Z

188

Evaluation of commercially available techniques and development of simplified methods for measuring grille airflows in HVAC systems  

SciTech Connect

In this report, we discuss the accuracy of flow hoods for residential applications, based on laboratory tests and field studies. The results indicate that commercially available hoods are often inadequate to measure flows in residential systems, and that there can be a wide range of performance between different flow hoods. The errors are due to poor calibrations, sensitivity of existing hoods to grille flow non-uniformities, and flow changes from added flow resistance. We also evaluated several simple techniques for measuring register airflows that could be adopted by the HVAC industry and homeowners as simple diagnostics that are often as accurate as commercially available devices. Our test results also show that current calibration procedures for flow hoods do not account for field application problems. As a result, organizations such as ASHRAE or ASTM need to develop a new standard for flow hood calibration, along with a new measurement standard to address field use of flow hoods.

Walker, Iain S.; Wray, Craig P.; Guillot, Cyril; Masson, S.

2003-08-01T23:59:59.000Z

189

PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT  

Science Conference Proceedings (OSTI)

This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase I was successfully completed. The project was then re-directed to the making of iron units. In 2000, U.S. Steel teamed up with Calderon for a joint effort which will last 42 months to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy by using iron ore concentrate and coal as raw materials, both materials being appreciably lower in cost than using iron pellets and coke.

Albert Calderon

2005-01-25T23:59:59.000Z

190

PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT  

Science Conference Proceedings (OSTI)

This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase I was successfully completed. The project was then re-directed to the making of iron units. In 2000, U.S. Steel teamed up with Calderon for a joint effort to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy by using iron ore concentrate and coal as raw materials, both materials being appreciably lower in cost than using iron pellets, briquettes, sinter and coke.

Albert Calderon

2006-04-19T23:59:59.000Z

191

PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT  

SciTech Connect

This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase I was successfully completed. The project was then re-directed to the making of iron units. In 2000, U.S. Steel teamed up with Calderon for a joint effort to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy by using iron ore concentrate and coal as raw materials, both materials being appreciably lower in cost than using iron pellets, briquettes, sinter and coke.

Albert Calderon

2006-01-30T23:59:59.000Z

192

PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT  

SciTech Connect

This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase I was successfully completed. The project was then re-directed to the making of iron units. In 2000, U.S. Steel teamed up with Calderon for a joint effort which will last 42 months to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy by using iron ore concentrate and coal as raw materials, both materials being appreciably lower in cost than using iron pellets and coke.

Albert Calderon; Reina Calderon

2004-01-27T23:59:59.000Z

193

PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT  

SciTech Connect

This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase I was successfully completed. The project was then re-directed to the making of iron units. In 2000, U.S. Steel teamed up with Calderon for a joint effort which will last 42 months to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy by using iron ore concentrate and coal as raw materials, both materials being appreciably lower in cost than using iron pellets and coke.

Albert Calderon

2004-07-28T23:59:59.000Z

194

PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT  

Science Conference Proceedings (OSTI)

This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase I was successfully completed. The project was then re-directed to the making of iron units. In 2000, U.S. Steel teamed up with Calderon for a joint effort which will last 42 months to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy by using iron ore concentrate and coal as raw materials, both materials being appreciably lower in cost than using iron pellets and coke.

Albert Calderon

2005-07-29T23:59:59.000Z

195

PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT  

Science Conference Proceedings (OSTI)

This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase I was successfully completed. The project was then re-directed to the making of iron units. In 2000, U.S. Steel teamed up with Calderon for a joint effort which will last 42 months to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy by using iron ore concentrate and coal as raw materials, both materials being appreciably lower in cost than using iron pellets and coke.

Albert Calderon

2004-04-27T23:59:59.000Z

196

PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT  

Science Conference Proceedings (OSTI)

This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase I was successfully completed. The project was then re-directed to the making of iron units. In 2000, U.S. Steel teamed up with Calderon for a joint effort which will last 42 months to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy by using iron ore concentrate and coal as raw materials, both materials being appreciably lower in cost than using iron pellets and coke.

Albert Calderon

2004-10-28T23:59:59.000Z

197

PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT  

Science Conference Proceedings (OSTI)

This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase I was successfully completed. The project was then re-directed to the making of iron units. In 2000, U.S. Steel teamed up with Calderon for a joint effort which will last 42 months to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy by using iron ore concentrate and coal as raw materials, both materials being appreciably lower in cost than using iron pellets and coke.

Albert Calderon

2005-01-26T23:59:59.000Z

198

PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT  

SciTech Connect

This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase I was successfully completed. The project was then re-directed to the making of iron units. In 2000, U.S. Steel teamed up with Calderon for a joint effort which will last 42 months to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy by using iron ore concentrate and coal as raw materials, both materials being appreciably lower in cost than using iron pellets and coke.

Albert Calderon

2003-10-22T23:59:59.000Z

199

Phase II Calderon Process to Produce Direct Reduced Iron Research and Development Project  

Science Conference Proceedings (OSTI)

This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase 1 was successfully completed. The project was then re-directed to the making of iron units. In 2000, U.S. Steel teamed up with Calderon for a joint effort to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy by using iron ore concentrate and coal as raw materials, both materials being appreciably lower in cost than using iron pellets, briquettes, sinter and coke.

Albert Calderon

2007-03-31T23:59:59.000Z

200

Enertech 15-kW wind-system development. Phase II. Fabrication and test  

DOE Green Energy (OSTI)

This Phase II report presents a description of the Enertech 15 kW prototype wind system hardware fabrication; results of component tests; and results of preliminary testing conducted at Norwich, VT and the RF Wind Energy Research Center. In addition, the assembly sequence is documented. During testing, the unit experienced several operational problems, but testing proved the design concept and demonstrated the system's ability to meet the contract design specifications for power output.

Zickefoose, C.R.

1982-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "development phases techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Development of asphalts and pavements using recycled tire rubber. Phase 1: technical feasibility. Final report  

Science Conference Proceedings (OSTI)

This report documents the technical progress made on the development of asphalts and pavements using recycled tire rubber.

Bullin, J.A.; Davison, R.R.; Glover, C.J. [and others

1998-01-01T23:59:59.000Z

202

Crystallization and Solidification Properties of LipidsChapter 14 Development and Use of a Novel Technique to Measure Exchange Between Lipid Crystals and Oils  

Science Conference Proceedings (OSTI)

Crystallization and Solidification Properties of Lipids Chapter 14 Development and Use of a Novel Technique to Measure Exchange Between Lipid Crystals and Oils Health Nutrition Biochemistry eChapters Health - Nutrition - Biochemistry AO

203

15KV Class 25KVA Single-Phase IUT Prototype Development, Testing, and Performance Verification  

Science Conference Proceedings (OSTI)

EPRI is leading the development and demonstration of fully integrated, production-grade 4-kV and 15-kV-class solid-state transformers for integrating energy storage technologies and electric vehicle (EV) fast charging. The development team includes utilities, power electronics experts, and a transformer manufacturer to provide guidance on taking the technologies from concept to production. The intelligent universal transformer (IUT) technology has been validated through development and lab testing, ...

2013-12-12T23:59:59.000Z

204

Low Wind Speed Technology Phase I: Clipper Turbine Development Project; Clipper Windpower Technology, Inc.  

DOE Green Energy (OSTI)

This fact sheet describes a subcontract with Clipper Windpower Technology, Inc. to develop a new turbine design that incorporates advanced elements.

Not Available

2006-03-01T23:59:59.000Z

205

Development and Validation of a Two-Phase, Three-Dimensional...  

NLE Websites -- All DOE Office Websites (Extended Search)

project addresses the following technical barriers from the Fuel Cells section of the Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan:...

206

Texas Wind Energy Forecasting System Development and Testing, Phase 1: Initial Testing  

Science Conference Proceedings (OSTI)

This report describes initial results from the Texas Wind Energy Forecasting System Development and Testing Project at a 75-MW wind project in west Texas.

2003-12-31T23:59:59.000Z

207

Development of a dispatchable PV peak shaving system. Final report on PV:BONUS Phase 2 activities  

DOE Green Energy (OSTI)

In July 1993, the Delmarva Power and Light Company (now Conectiv, Inc.) was awarded a contract for the development of a Dispatchable Photovoltaic Peak Shaving System under the US Department of Energy PV:BONUS Program. The rationale for the dispatchable PV peak shaving system is based on the coincidence between the solar resource and the electrical load in question. Where poor coincidence exists, a PV array by itself does little to offset peak demands. However, with the addition of a relatively small amount of energy storage, the energy from the PV array can be managed and the value of the PV system increases substantially. In Phase 2, Delmarva Power continued the refinement of the system deployed in Phase 1. Four additional dispatchable PV peak shaving systems were installed for extended testing and evaluation at sites in Delaware, Maryland, Wisconsin and North Carolina. A second type of system that can be used to provide back-up power as well as peak shaving was also developed in Phase 2. This PV-UPS system used a packaging approach nearly identical to the PV peak shaving system, although there were significant differences in the design of the power electronics and control systems. Conceptually, the PV-UPS system builds upon the idea of adding value to PV systems by increasing functionality. A prototype of the PV-UPS system was installed in Delaware for evaluation near the end of the contract period.

Ferguson, W.D. [Conectiv, Inc., Wilmington, DE (United States); Nigro, R.M. [Applied Energy Group, Inc., Hauppauge, NY (United States)

1999-01-20T23:59:59.000Z

208

Great Plains ASPEN model development: executive summary. Final topical report for Phase 1  

Science Conference Proceedings (OSTI)

The Scientific Design Company contracted with the United States Department of Energy through its Morgantown Energy Technology Center to develop a steady-state simulation model of the Great Plains Coal Gasification plant. This plant produces substitute natural gas from North Dakota lignite. The model was to be developed using the ASPEN (Advanced System for Process Engineering) simulation program. The project was divided into the following tasks: (1) Development of a simplified overall model of the process to be used for a sensitivity analysis to guide the development of more rigorous section models. (2) Review and evaluation of existing rigorous moving-bed gasifier models leading to a recommendation of one to be used to model the Great Plains gasifiers. Adaption and incorporation of this model into ASPEN. (3) Review of the accuracy and completeness of the physical properties data and models provided by ASPEN that are required to characterize the Great Plains plant. Rectification of inaccurate or incomplete data. (4) Development of rigorous ASPEN models for critical unit operations and sections of the plant. (5) Evaluation of the accuracy of the ASPEN Cost Estimation and Evaluation System and upgrading where feasible. Development of a preliminary cost estimate for the Great Plains plant. (6) Validation of the simulation models developed in the course of this project. Determination of model sensitivity to variations of technical and economic parameters. (7) Documentation of all work performed in the course of this project. Essentially all of these tasks were completed successfully. 34 figs.

Rinard, I.H.; Stern, S.S.; Millman, M.C.; Schwint, K.J.; Benjamin, B.W.; Kirman, J.J.; Dweck, J.S.; Mendelson, M.A.

1986-07-25T23:59:59.000Z

209

Proceedings: EPRI Second Phased Array Inspection Seminar  

Science Conference Proceedings (OSTI)

The Second EPRI Phased Array Inspection Seminar focused on industrial applications of phased array technology that have been achieved to date or are planned for the near future. Presentations were made by developers of inspection techniques, inspection services vendors, and utility personnel who have performed inspections using arrays.

2001-11-28T23:59:59.000Z

210

Proceedings: EPRI Second Phased Array Inspection Seminar  

SciTech Connect

The Second EPRI Phased Array Inspection Seminar focused on industrial applications of phased array technology that have been achieved to date or are planned for the near future. Presentations were made by developers of inspection techniques, inspection services vendors, and utility personnel who have performed inspections using arrays.

None

2001-11-01T23:59:59.000Z

211

Development of superior asphalt recycling agency: Phase 1, Technical feasibility. Technical progress report  

SciTech Connect

About every 12 years, asphalt roads must be reworked, and this is usually done by placing thick layers (hot-mix overlays) of new material on top of failed material, resulting in considerable waste of material and use of new asphalt binder. A good recycling agent is needed, not only to reduce the viscosity of the aged material but also to restore compatibility. Objective is to establish the technical feasibility (Phase I) of determining the specifications and operating parameters for producing high quality recycling agents which will allow most/all the old asphalt-based road material to be recycled. It is expected that supercritical fractionation can be used. The advanced road aging simulation procedure will be used to study aging of blends of old asphalt and recycling agents.

Bullin, J.A.; Glover, C.J.; Davison, R.R.; Lin, Moon-Sun; Chaffin, J.; Liu, Meng; Eckhardt, C.

1996-04-01T23:59:59.000Z

212

Advanced turbine systems phase II - conceptual design and product development. Final report, August 1993--July 1996  

SciTech Connect

The National Energy Strategy (NES) calls for a balanced program of greater energy efficiency, use of alternative fuels, and the environmentally responsible development of all U.S. energy resources. Consistent with the NES, a Department of Energy (DOE) program has been created to develop Advanced Turbine Systems (ATS). The technical ATS requirements are based upon two workshops held in Greenville, SC that were sponsored by DOE and hosted by Clemson University. The objective of this 8-year program, managed jointly by DOE`s Office of Fossil Energy, and, Office of Conservation and Renewable Energy, is to develop natural-gas-fired base load power plants that will have cycle efficiencies greater than 60%, lower heating value (LHV), be environmentally superior to current technology, and also be cost competitive. The program will include work to transfer advanced technology to the coal- and biomass-fueled systems being developed in other DOE programs.

1996-10-01T23:59:59.000Z

213

Expanded High-Level Waste Glass Property Data Development: Phase I  

Science Conference Proceedings (OSTI)

Two separate test matrices were developed as part if the EM-21 Glass Matrix Crucible Testing. The first matrix, developed using a single component-at-a-time design method and covering glasses of interest primarily to Hanford, is addressed in this data package. This data package includes methods and results from glass fabrication, chemical analysis of glass compositions, viscosity, electrical conductivity, liquidus temperature, canister centerline cooling, product consistency testing, and the toxicity characteristic leach procedure.

Schweiger, Michael J.; Riley, Brian J.; Crum, Jarrod V.; Hrma, Pavel R.; Rodriguez, Carmen P.; Arrigoni, Benjamin M.; Lang, Jesse B.; Kim, Dong-Sang; Vienna, John D.; Raszewski, F. C.; Peeler, David K.; Edwards, Tommy B.; Best, D. R.; Reamer, Irene A.; Riley, W. T.; Simmons, P. T.; Workman, R. J.

2011-01-21T23:59:59.000Z

214

DEVELOPMENT OF CLAD CERAMIC FUEL PLATES BY SPRAY-COATING TECHNIQUES. Quarterly Technical Progress Report, January-March 1961  

SciTech Connect

The development of plasma-jet spray-coating techniques for producing clad ceramic fuel plates is discussed. Conditions for spraying fused UO/sub 2/ powder were established by depositing cones on stationary substrates. It was found that the arc-gas flow range within which deposition occurs is very narrow. Coatings were made from --200 +325, --270 + 325, and de-slimed -325 mesh fused UO/ sub 2/ powders. To provide data regarding the economics of the process, deposition rates and efficiencies were determined under various conditions. The effects of powder size, power input, arcgas flow rate, spray distance, traverse rate, power feed rate, powder-gas flow rate, and cover-gas flow rate on deposition efficiency are discussed. Oxygen-to-uranium ratios of coatings made for evaluation of density were determined by gravimetric and volumetric methods. Preparation of the surface without distortion for plasma spraying is discussed. Fixturing and instrumentation methods were designed for measuring substrate and coating temperatures during spraying of typical fuel-element-cladding thickesses of stainless steel and Zircaloy-2. (M.C.G.)

1961-10-31T23:59:59.000Z

215

DEVELOPMENT OF CLAD CERAMIC FUEL PLATES BY SPRAY-COATING TECHNIQUES. Quarterly Technical Progress Report, April-June 1961  

SciTech Connect

Studies were made on the effects of spray-coating variables on coating characteristics in the development of plasma-jet spraying techniques for making clad UO/sub 2/ fuel plates. UO/sub 2/ coatings of up to 90% theoretical density and - O/U ratios of nearly 2.00 were deposited at efficiencies of 40%. Adherent UO/sub 2/ coatings up to 0.100 inch thick can be deposited on 0.030-inch thick stainless steel and Zircaloy-2 substrates. Studies of coated composite bends and coating adherence at room temperature indicate that, for best results, the coating temperature should be maintained below 870 deg C and the substrate below 450 deg C during deposition. A plasma spray torch was tested for spraying UO/sub 2/ at 40 kw and found to be equivalent to operation at 25 kw. A preliminary cost analysis indicated considerably lower fabrication costs using plasma jet sprayingn ~ 0/kg U as compared to ~ 0/kg U for oxide pellet-in-tube elements. (D.L.C.)

Weare, N.E.; Buchanan, E.; Marchandise, H.

1962-10-31T23:59:59.000Z

216

MHD advanced power train. Phase 1, Final report: Volume 2, Development program plan  

DOE Green Energy (OSTI)

Two scale-up steps are required before the 200 MW(e) power plant could be designed and constructed. The development program plan is designed to meet these 3 needed program elements: (a) design and demonstration test of a 50 MW(t) power train that verifies channel life; (b) design, development, and demonstration of an advanced power train in a 250 MW(t) plant facility; and (c) development of technology for advanced MHD generators that are economic of magnet warm bore, reliable for at least 4000 hours operation, and are amenable to automated production to meet the low cost goal. An implicit program element, Base Technology, provides support to these 3 elements. The overall program will require 11 years and is estimated to cost $278 million in 1984 dollars.

Jones, A.R.

1985-08-01T23:59:59.000Z

217

Development and testing of a high-pressure downhole pump for jet-assist drilling. Topical report, Phase II  

Science Conference Proceedings (OSTI)

The goal of jet-assisted drilling is to increase the rate of penetration (ROP) in deeper gas and oil wells, where the rocks become harder and more difficult to drill. Increasing the ROP can result in fewer drilling days, and therefore, lower drilling cost. In late 1993, FlowDril and the Gas Research Institute (GRI) began a three-year development of a down hole pump (DHP{reg_sign}) capable of producing 30,000 psi out pressure to provide the high-pressure flow for high-pressure jet-assist of the drill bit. The U.S. Department of Energy (DOE) through its Morgantown, WV (DOE-Morgantown) field office, joined with GRI and FlowDril to develop and test a second prototype designed for drilling in 7-7/8 inch holes. This project, {open_quotes}Development and Testing of a High-Pressure Down Hole Pump for Jet-Assist Drilling,{close_quotes} is for the development and testing of the second prototype. It was planned in two phases. Phase I included an update of a market analysis, a design, fabrication, and an initial laboratory test of the second prototype. Phase II is continued iterative laboratory and field developmental testing. This report summarizes the results of Phase II. In the downhole pump approach shown in the following figure, conventional drill pipe and drill collars are used, with the DHP as the last component of the bottom hole assembly next to the bit. The DHP is a reciprocating double ended, intensifier style positive displacement, high-pressure pump. The drive fluid and the high-pressure output fluid are both derived from the same source, the abrasive drilling mud pumped downhole through the drill string. Approximately seven percent of the stream is pressurized to 30,000 psi and directed through a high-pressure nozzle on the drill bit to produce the high speed jet and assist the mechanical action of the bit to make it drill faster.

NONE

1997-10-01T23:59:59.000Z

218

Hardware Development of a Laboratory-Scale Microgrid Phase 2: Operation and Control of a Two-Inverter Microgrid  

SciTech Connect

This report summarizes the activities of the second year of a three-year project to develop control software for microsource distributed generation systems. In this phase, a laboratory-scale microgrid was expanded to include: (1) Two emulated distributed resources; (2) Static switchgear to allow rapid disconnection and reconnection; (3) Electronic synchronizing circuitry to enable transient-free grid interconnection; (4) Control software for dynamically varying the frequency and voltage controller structures; and (5) Power measurement instrumentation for capturing transient waveforms at the interconnect during switching events.

Illindala, M. S.; Piagi, P.; Zhang, H.; Venkataramanan, G.; Lasseter, R. H.

2004-03-01T23:59:59.000Z

219

Texas Wind Energy Forecasting System Development and Testing: Phase 2: 12-Month Testing  

Science Conference Proceedings (OSTI)

Wind energy forecasting systems are expected to support system operation in cases where wind generation contributes more than a few percent of total generating capacity. This report presents final results from the Texas Wind Energy Forecasting System Development and Testing Project at a 75-MW wind project in west Texas.

2004-09-30T23:59:59.000Z

220

Ford/DOE sodium-sulfur battery electric vehicle development and demonstration. Phase I-1. Final report  

DOE Green Energy (OSTI)

The results of Phase I-A analyses and design studies are presented. The objective of the Phase I-A effort was to evaluate the sodium-sulfur battery, in an existing conventional production automobile, as a potential power source for an electric vehicle. The Phase I-A work was divided into five (5) major sub-tasks as follows: vehicle specification sub-task; NaS battery packaging study sub-task; vehicle packaging layout sub-task; electrical system study sub-task; and system study sub-tasks covering performance and economy projections, powertrain and vehicle safety issues and thermal studies. The major results of the sodium-sulfur battery powered electric vehicle study program are: the Fiesta was chosen to be the production vehicle which would be modified into a 2-passenger, electric test bed vehicle powered by a NaS battery; the vehicle mission was defined to be a 2-passenger urban/suburban commuter vehicle capable of at least 100 miles range over the CVS driving cycle and a wide open throttle capability of 0 to 50 mph in 14 seconds, or less; powertrain component specifications were defined; powertrain control strategy has been selected; and a suitable test bed vehicle package scheme has been developed.

Not Available

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "development phases techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Development of a solar-desiccant dehumidifier. Phase II. Final summary report  

DOE Green Energy (OSTI)

The solar desiccant air conditioner (SODAC), its operation, characteristics of the major components, performance at design conditions, and the control schemes for optimum operation in various climates are described for both recirculated and ventilated configurations, with greater emphasis on the recirculated configuration. The development testing and the determination of the SODAC performance in both configurations over the entire range of interfacing parameters are reported. (LEW)

Rousseau, J.

1982-11-01T23:59:59.000Z

222

Wall collector design analysis: project status report No. 2. Hing/daylighting prototype development, Phase I  

DOE Green Energy (OSTI)

The design process and energy analyses for the wall (air) collector component for the passive/hybrid system building alternatives for pre-engineered metal buildings are described. A hybrid collector was coupled to the rockbed storage and ceiling plenum of the office and maintenance spaces. A thermosyphon collector was coupled directly to the interior space of the warehouse. The schematic design, design development, and performance analysis are included. (MHR)

Aronson, S.J.; deCampo, R.; Snyder, M.K.

1981-03-01T23:59:59.000Z

223

Advanced Power Electronic Interfaces for Distributed Energy Systems, Part 2: Modeling, Development, and Experimental Evaluation of Advanced Control Functions for Single-Phase Utility-Connected Inverter  

Science Conference Proceedings (OSTI)

Integrating renewable energy and distributed generations into the Smart Grid architecture requires power electronic (PE) for energy conversion. The key to reaching successful Smart Grid implementation is to develop interoperable, intelligent, and advanced PE technology that improves and accelerates the use of distributed energy resource systems. This report describes the simulation, design, and testing of a single-phase DC-to-AC inverter developed to operate in both islanded and utility-connected mode. It provides results on both the simulations and the experiments conducted, demonstrating the ability of the inverter to provide advanced control functions such as power flow and VAR/voltage regulation. This report also analyzes two different techniques used for digital signal processor (DSP) code generation. Initially, the DSP code was written in C programming language using Texas Instrument's Code Composer Studio. In a later stage of the research, the Simulink DSP toolbox was used to self-generate code for the DSP. The successful tests using Simulink self-generated DSP codes show promise for fast prototyping of PE controls.

Chakraborty, S.; Kroposki, B.; Kramer, W.

2008-11-01T23:59:59.000Z

224

Development of superior asphalt recycling agents. Phase 1, Technical feasibility. Final technical progress report  

Science Conference Proceedings (OSTI)

After an introduction and a literature survey in Chap. 1, Chap. 2 describes the tasks, together with objectives and important results obtained for each task throughout the entire project. Chaps. 3 thru 7 detail work in developing a qualitative and quantitative knowledge of asphalt oxidation, composition dependence of asphalt properties, and guidelines for producing superior asphalt binders through composition control. They also detail the development of a kinetic model for asphalt oxidative aging and present an understanding of the composition dependence of asphalt oxidation as well as other performance-related properties. Chaps. 8 and 9 compare the aging performance of recycled blends produced using commercial recycling agents and industrial supercritical fractions as rejuvenating agents. Oxidative aging of the recycled blends were evaluated along with the performance of the recycled blends in terms of the strategic highway research program performance grading procedure. Chap. 10 summarizes the work completed in the areas of processing schemes development, projection updates, and scale-up and commercialization plans.

Bullin, J.A.; Davison, R.R.; Glover, C.J.; Chaffin, J.; Liu, M.; Madrid, R.

1997-07-01T23:59:59.000Z

225

Waste acid detoxification and reclamation: Phase 1, Project planning and concept development  

SciTech Connect

The objectives of this project are to develop processes for reducing the volume, quantity, and toxicity of metal-bearing waste acids. The primary incentives for implemeting these types of waste minimization processes are regulatory and economic in that they meet requirements in the Resource Conservation and Recovery Act and reduce the cost for treatment, storage, and disposal. Two precipitation processes and a distillation process are being developed to minimize waste from fuel fabrication operations, which comprise a series of metal-finishing operations. Waste process acids, such as HF/--/HNO/sub 3/ etch solutions contianing Zr as a major metal impurity and HNO/sub 3/ strip solutions containing Cu as a major metal impurity, are detoxified and reclaimed by concurrently precipitating heavy metals and regenerating acid for recycle. Acid from a third waste acid stream generated from chemical milling operations will be reclaimed using distillation. This stream comprises HNO/sub 3/ and H/sub 2/SO/sub 4/ which contains U as the major metal impurity. Distillation allows NO/sub 3//sup /minus// to be displaced by SO/sub 4//sup /minus/2/ in metal salts; free HNO/sub 3/ is then vaporized from the U-bearing sulfate stream. Uranium can be recovered from the sulfate stream in downstream precipitation step. These waste minimization processes were developed to meet Hanford's fuel fabrication process needs. 7 refs., 4 figs., 1 tab.

Stewart, T.L.; Brouns, T.M.

1988-02-01T23:59:59.000Z

226

Developing Secure Power Systems Professional Competence: Alignment and Gaps in Workforce Development Programs for Phase 2 of the Secure Power Systems Professional project  

SciTech Connect

This is the final report of Phase 2 of the Secure Power Systems Professional project, a 3 phase project. DOE will post to their website upon release.

O'Neil, Lori Ross; Assante, Michael; Tobey, D. H.; Conway, T. J.; Vanderhorst, Jr, T. J.; Januszewski, III, J.; leo, R.; Perman, K.

2013-08-26T23:59:59.000Z

227

Development of a direct-injected natural gas engine system for heavy-duty vehicles: Final report phase 1  

DOE Green Energy (OSTI)

The transportation sector accounts for approximately 65% of US petroleum consumption. Consumption for light-duty vehicles has stabilized in the last 10--15 years; however, consumption in the heavy-duty sector has continued to increase. For various reasons, the US must reduce its dependence on petroleum. One significant way is to substitute alternative fuels (natural gas, propane, alcohols, and others) in place of petroleum fuels in heavy-duty applications. Most alternative fuels have the additional benefit of reduced exhaust emissions relative to petroleum fuels, thus providing a cleaner environment. The best long-term technology for heavy-duty alternative fuel engines is the 4-stroke cycle, direct injected (DI) engine using a single fuel. This DI, single fuel approach maximizes the substitution of alternative fuel for diesel and retains the thermal efficiency and power density of the diesel engine. This report summarizes the results of the first year (Phase 1) of this contract. Phase 1 focused on developing a 4-stroke cycle, DI single fuel, alternative fuel technology that will duplicate or exceed diesel power density and thermal efficiency, while having exhaust emissions equal to or less than the diesel. Although the work is currently on a 3500 Series DING engine, the work is viewed as a basic technology development that can be applied to any engine. Phase 1 concentrated on DING engine component durability, exhaust emissions, and fuel handling system durability. Task 1 focused on identifying primary areas (e.g., ignition assist and gas injector systems) for future durability testing. In Task 2, eight mode-cycle-averaged NO{sub x} emissions were reduced from 11.8 gm/hp-hr (baseline conditions) to 2.5 gm/hp-hr (modified conditions) on a 3501 DING engine. In Task 3, a state-of-the-art fuel handling system was identified.

NONE

2000-03-02T23:59:59.000Z

228

Design and development of Stirling engines for stationary-power-generation applications in the 500- to 3000-horsepower range. Phase I final report  

SciTech Connect

A program plan and schedule for the implementation of the proposed conceptual designs through the remaining four phases of the overall large Stirling engine development program was prepared. The objective of Phase II is to prepare more detailed designs of the conceptual designs prepared in Phase I. At the conclusion of Phase II, a state-of-the-art design will be selected from the candidate designs developed in Phase I for development. The objective of Phase III is to prepare manufacturing drawings of the candidate engine design. Also, detailed manufacturing drawings of both 373 kW (500 hp) and 746 kW (1000 hp) power pack skid systems will be completed. The power pack skid systems will include the generator, supporting skid, controls, and other supporting auxiliary subsystems. The Stirling cycle engine system (combustion system, Stirling engine, and heat transport system) will be mounted in the power pack skid system. The objective of Phase IV is to procure parts for prototype engines and two power pack skid systems and to assemble Engines No. 1 and 2. The objective of Phase V is to perform extensive laboratory and demonstration testing of the Stirling engines and power pack skid systems, to determine the system performance and cost and commercialization strategy. Scheduled over a 6 yr period the cost of phases II through V is estimated at $22,063,000. (LCL)

1980-10-01T23:59:59.000Z

229

Production of ethanol from refinery waste gases. Phase 3. Engineering development. Annual report, April 1, 1995--May 15, 1996  

DOE Green Energy (OSTI)

Refineries discharge large volumes of H2, CO, and CO 2 from cracking, coking, and hydrotreating operations. This R&D program seeks to develop, demonstrate, and commercialize a biological process for converting these waste gases into ethanol for blending with gasoline. A 200,000 BPD refinery could produce up to 38 million gallons ethanol per year. The program is being conducted in 3 phases: II, technology development; III, engineering development; and IV, demonstration. Phase I, exploratory development, has been completed. The research effort has yielded two strains (Isolates O-52 and C-01) which are to be used in the pilot studies to produce ethanol from CO, CO2, and H2 in petroleum waste gas. Results from single continuous stirred tank reactor (CSTR) laboratory tests have shown that 20-25 g/L ethanol can be produced with < 5 g/L acetic acid byproduct. Laboratory studies with two CSTRs in series have yielded ethanol concentrations of 30-35 g/L with 2-4 g/L acetic acid byproduct. Water recycle from distillation back to the fermenter shows that filtration of the water before distillation eliminates the recycle of toxic materials back to the fermenter. Product recovery in the process will use direct distillation to the azeotrope, followed by adsorption to produce neat ethanol. This is less energy intensive than e.g. solvent extraction, azeotropic distillation, or pervaporation. Economic projections are quite attractive; the economics are refinery stream dependent and thus vary depending on refinery location and operation.

Arora, D.; Basu, R.; Phillips, J.R.; Wikstrom, C.V.; Clausen, E.C; Gaddy, J.L.

1996-11-01T23:59:59.000Z

230

Electrical Techniques | Open Energy Information  

Open Energy Info (EERE)

Electrical Techniques Electrical Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Electrical Techniques Details Activities (0) Areas (0) Regions (0) NEPA(1) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Geophysical Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Dictionary.png Electrical Techniques: Electrical techniques aim to image the electrical resistivity of the

231

Ocean Thermal Energy Conversion power system development. Phase I. Final report  

DOE Green Energy (OSTI)

This report covers the conceptual and preliminary design of closed-cycle, ammonia, ocean thermal energy conversion power plants by Westinghouse Electric Corporation. Preliminary designs for evaporator and condenser test articles (0.13 MWe size) and a 10 MWe modular experiment power system are described. Conceptual designs for 50 MWe power systems, and 100 MWe power plants are also descirbed. Design and cost algorithms were developed, and an optimized power system design at the 50 MWe size was completed. This design was modeled very closely in the test articles and in the 10 MWe Modular Application. Major component and auxiliary system design, materials, biofouling, control response, availability, safety and cost aspects are developed with the greatest emphasis on the 10 MWe Modular Application Power System. It is concluded that all power plant subsystems are state-of-practice and require design verification only, rather than continued research. A complete test program, which verifies the mechanical reliability as well as thermal performance, is recommended and described.

Not Available

1978-12-04T23:59:59.000Z

232

Quantitative characterizations of phasic structure developments by local measurement methods in two-phase flow  

SciTech Connect

An experimental study on the internal structure an a out in a 25.4 mm ID pipe. The local void fraction and interfacial area concentration were measured by a double-sensor probe. The flow structure development was visualized by measuring the radial distribution of these two parameters at three axial, locations (L/D = 12, 62, and 112). A more detailed study on the fully developed flow structure was conducted at L/D = 120. The interfacial structure were measured by the double- and four-sensor probes. A bubbly to-=slug transition region was defined according to the local data.The area-averaged void fraction measurements were given by a gamma densitometer. Other parameters such as the Taylor bubble film thickness, bubble length and slug unit length in slug flow were measured by a film robe. The redundant measurements were made to calibrate the local probe measurements. The quantitative representation of the phasic structure can then be used for modeling.

Eberle, C.S. [Argonne National Lab., IL (United States); Leung, W.H.; Wu, Q.; Ueno, T.; Ishii, M. [Purdue Univ., Lafayette, IN (United States). School of Nuclear Engineering

1995-06-01T23:59:59.000Z

233

Development of optimal SnO{sub 2} contacts for CdTe photovoltaic applications. [Final technical report of Phase II  

DOE Green Energy (OSTI)

During this SBIR Phase II project, we have successfully established high quality SnO{sub 2}(F) based transparent conductive oxide coatings by atmospheric pressure chemical vapor deposition technique and built a large area prototype APCVD deposition system which incorporates innovative design features. This work enhances US photovoltaic research capability and other thin film oxide related research capability.

Xi, Jianping

1999-09-16T23:59:59.000Z

234

NREL Develops Technique to Measure Membrane Thickness and Defects in Polymer Electrode Membrane Fuel Cells (Fact Sheet), Hydrogen and Fuel Cell Technical Highlights (HFCTH)  

NLE Websites -- All DOE Office Websites (Extended Search)

4 * November 2010 4 * November 2010 2-D image of a PEM fuel cell membrane sample measured with the NREL device (corresponding optical image in inset). The image shows bubble defects and a color shift in the sample. An area of approximately three inches by three inches is shown. NREL Develops Technique to Measure Membrane Thickness and Defects in Polymer Electrode Membrane Fuel Cells Project: Fuel Cell MEA Manufacturing R&D NREL Team: Hydrogen Technologies & Systems Center and National Center for Photovoltaics Accomplishment: NREL developed a technique to measure the two-dimensional thickness of polymer electrolyte membrane (PEM) fuel cell membranes for in-line quality control during manufacturing (first reported in May 2009). The technique is based on an NREL-developed instrument currently used in continuous manufacturing of photovoltaic cells. This

235

Development of a solar desiccant dehumidifier. Phase II. Technical progress report  

DOE Green Energy (OSTI)

The effort reported is a continuation of the development testing of the 1.5-ton solar desiccant air conditioner (SODAC) and is concerned with determination of the SODAC performance in the recirculated and ventilated mode configuration. Test data in the recirculated mode are presented. As originally conceived, the SODAC features two-speed indoor and outdoor fans to permit more efficient operation at reduced capacity. In both full-flow and half-flow cases, the experimental data are compared to computer predictions. The system and its operation are described, as are the system test facility and procedures. The system description includes the characteristics of the major components, the performance at design conditions, and the control schemes for optimum operation in various climates. (LEW)

Rousseau, J.

1981-03-27T23:59:59.000Z

236

Report on Performance of Prototype Dynatronix Power Supplies Developed Under a Phase I DOE SBIR  

SciTech Connect

The purpose of this study is to evaluate the prototype power supplies fabricated by Dynatronix, Inc. This project supports the advancement of electroforming capabilities to produce ultra-high purity copper. Ultra-high purity copper is an essential material used for a range of current and future fundamental nuclear physics programs such as the MAJORANA DEMONSTRATOR. The Mach 30 power supplies are a new design built to the specifications from the requirements of Pacific Northwest National Laboratory (PNNL) with regard to timing, voltage, current output, and the required tolerances. The parameters used in these tests were developed empirically over a number of years based on a combination of thermodynamic and kinetics of the electroplating process. The power supplies were operated in a typical cleanroom environment for the production electroforming at PNNL. The units that were received by PNNL in July, 2010 have performed satisfactorily and have demonstrated short term durability.

Hoppe, Eric W.; Merriman, Jason H.

2011-03-01T23:59:59.000Z

237

PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT  

SciTech Connect

The commercialization path of the Calderon technology for making a feedstock for steelmaking with assistance from DOE initially focused on making coke and work was done which proved that the Calderon technology is capable of making good coke for hard driving blast furnaces. U.S. Steel which participated in such demonstration felt that the Calderon technology would be more meaningful in lowering the costs of making steel by adapting it to the making of iron--thus obviating the need for coke. U.S. Steel and Calderon teamed up to jointly work together to demonstrate that the Calderon technology will produce in a closed system iron units from iron concentrate (ore) and coal competitively by eliminating pelletizing, sintering, coking and blast furnace operation. If such process steps could be eliminated, a huge reduction in polluting emissions and greenhouse gases (including CO{sub 2}) relating to steelmaking would ensue. Such reduction will restructure the steel industry away from the very energy-intensive steelmaking steps currently practiced and drastically reduce costs of making steel. The development of a technology to lower U.S. steelmaking costs and become globally competitive is a priority of major importance. Therefore, the development work which Calderon is conducting presently under this Agreement with the U.S. Department of Energy becomes more crucial than ever. During the 3rd quarter of 2005 which the present report covers, virtually all the effort to advance the Calderon technology to make iron units was concentrated towards forming a team with a steelmaker who needs both iron units in the form of hot metal and a substitute for natural gas (SNG), both being major contributors to higher costs in steelmaking. Calderon felt that a very good candidate would be Steel Dynamics (SDI) by virtue that it operates a rotary hearth facility in Butler, Indiana that uses large amounts of natural gas to reduce briquettes made from ore and coal that they subsequently melt in a submerged arc furnace that is a large consumer of electric power. This facility is operated as a division of SDI under the name of Iron Dynamics (IDI). It is no secret that IDI has had and still has a great number of operational problems, including high cost for natural gas.

Albert Calderon

2005-10-14T23:59:59.000Z

238

Structural Composites Industries 4-kilowatt wind-system development. Phase I. Design and analysis executive summary  

DOE Green Energy (OSTI)

A 4 kW small wind energy conversion system (SWECS) has been designed for residential applications in which relatively low (10 mph) mean annual wind speeds prevail. The objectives were to develop such a machinee to produce electrical energy at 6 cents per kWh while operating in parallel with a utility grid or auxiliary generator. Extensive trade, optimization and analytical studies were performed in an effort to provide the optimum machine to best meet the objectives. Certain components, systems and manufacturing processes were tested and evaluated and detail design drawings were produced. The resulting design is a 31-foot diameter horizontal axis downwind machine rated 5.7 kW and incorporating composite blades; free-standing composite tower; and torque-actuated blade pitch control. The design meets or exceeds all contract requirements except that for cost of energy. The target 6 cents per kWh will be achieved in a mean wind speed slightly below 12 mph instead of the specified 10 mph.

Malkine, N.; Bottrell, G.; Weingart, O.

1981-05-01T23:59:59.000Z

239

Advances in Conjugated Linoleic Acid Research, Volume 3Chapter 5 New Developments in Silver Ion and Reverse Phase HPLC of CLA  

Science Conference Proceedings (OSTI)

Advances in Conjugated Linoleic Acid Research, Volume 3 Chapter 5 New Developments in Silver Ion and Reverse Phase HPLC of CLA Health Nutrition Biochemistry eChapters Health - Nutrition - Biochemistry Press ...

240

Center for Fuel Cell Research and Applications development phase. Final report  

DOE Green Energy (OSTI)

The deployment and operation of clean power generation is becoming critical as the energy and transportation sectors seek ways to comply with clean air standards and the national deregulation of the utility industry. However, for strategic business decisions, considerable analysis is required over the next few years to evaluate the appropriate application and value added from this emerging technology. To this end the Houston Advanced Research Center (HARC) is proposing a three-year industry-driven project that centers on the creation of ``The Center for Fuel Cell Research and Applications.`` A collaborative laboratory housed at and managed by HARC, the Center will enable a core group of six diverse participating companies--industry participants--to investigate the economic and operational feasibility of proton-exchange-membrane (PEM) fuel cells in a variety of applications (the core project). This document describes the unique benefits of a collaborative approach to PEM applied research, among them a shared laboratory concept leading to cost savings and shared risks as well as access to outstanding research talent and lab facilities. It also describes the benefits provided by implementing the project at HARC, with particular emphasis on HARC`s history of managing successful long-term research projects as well as its experience in dealing with industry consortia projects. The Center is also unique in that it will not duplicate the traditional university role of basic research or that of the fuel cell industry in developing commercial products. Instead, the Center will focus on applications, testing, and demonstration of fuel cell technology.

NONE

1998-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "development phases techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Using a surface-sensitive chemical probe and a bulk structure technique to monitor the ?- to ?-Al2O3 phase transformation  

SciTech Connect

In this work, we investigated the phase transformation of ? Al2O3 to ? Al2O3 by ethanol TPD and XRD. Ethanol TPD showed remarkable sensitivity toward the surface structures of the aluminas studied. Maximum desorption rates for the primary product of ethanol adsorption, ethylene, were observed at 225C, 245C and 320C over ?-, ?-, and ?-Al2O3, respectively. Ethanol TPD over a ? Al2O3 sample calcined at 800 C clearly show that the surface of the resulting material possesses ?-alumina characteristics, even though only the ?-alumina phase was detected by XRD. These results strongly suggest that the ?-to-? phase transformation of alumina initiates at oxide particle surfaces. The results obtained are also consistent with our previous finding that the presence of penta-coordinated Al3+ sites, formed on the (100) facets of the alumina surface, are strongly correlated with the thermal stability of ?-alumina.

Kwak, Ja Hun; Peden, Charles HF; Szanyi, Janos

2011-06-30T23:59:59.000Z

242

Development of Hydrologic Characterization Technology of Fault Zones -- Phase I, 2nd Report  

Science Conference Proceedings (OSTI)

This is the year-end report of the 2nd year of the NUMO-LBNL collaborative project: Development of Hydrologic Characterization Technology of Fault Zones under NUMO-DOE/LBNL collaboration agreement, the task description of which can be found in the Appendix 3. Literature survey of published information on the relationship between geologic and hydrologic characteristics of faults was conducted. The survey concluded that it may be possible to classify faults by indicators based on various geometric and geologic attributes that may indirectly relate to the hydrologic property of faults. Analysis of existing information on the Wildcat Fault and its surrounding geology was performed. The Wildcat Fault is thought to be a strike-slip fault with a thrust component that runs along the eastern boundary of the Lawrence Berkeley National Laboratory. It is believed to be part of the Hayward Fault system but is considered inactive. Three trenches were excavated at carefully selected locations mainly based on the information from the past investigative work inside the LBNL property. At least one fault was encountered in all three trenches. Detailed trench mapping was conducted by CRIEPI (Central Research Institute for Electric Power Industries) and LBNL scientists. Some intriguing and puzzling discoveries were made that may contradict with the published work in the past. Predictions are made regarding the hydrologic property of the Wildcat Fault based on the analysis of fault structure. Preliminary conceptual models of the Wildcat Fault were proposed. The Wildcat Fault appears to have multiple splays and some low angled faults may be part of the flower structure. In parallel, surface geophysical investigations were conducted using electrical resistivity survey and seismic reflection profiling along three lines on the north and south of the LBNL site. Because of the steep terrain, it was difficult to find optimum locations for survey lines as it is desirable for them to be as straight as possible. One interpretation suggests that the Wildcat Fault is westerly dipping. This could imply that the Wildcat Fault may merge with the Hayward Fault at depth. However, due to the complex geology of the Berkeley Hills, multiple interpretations of the geophysical surveys are possible. iv An effort to construct a 3D GIS model is under way. The model will be used not so much for visualization of the existing data because only surface data are available thus far, but to conduct investigation of possible abutment relations of the buried formations offset by the fault. A 3D model would be useful to conduct 'what if' scenario testing to aid the selection of borehole drilling locations and configurations. Based on the information available thus far, a preliminary plan for borehole drilling is outlined. The basic strategy is to first drill boreholes on both sides of the fault without penetrating it. Borehole tests will be conducted in these boreholes to estimate the property of the fault. Possibly a slanted borehole will be drilled later to intersect the fault to confirm the findings from the boreholes that do not intersect the fault. Finally, the lessons learned from conducting the trenching and geophysical surveys are listed. It is believed that these lessons will be invaluable information for NUMO when it conducts preliminary investigations at yet-to-be selected candidate sites in Japan.

Karasaki, Kenzi; Onishi, Tiemi; Black, Bill; Biraud, Sebastien

2009-03-31T23:59:59.000Z

243

Magnetotelluric Techniques | Open Energy Information  

Open Energy Info (EERE)

Magnetotelluric Techniques Magnetotelluric Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Magnetotelluric Techniques Details Activities (0) Areas (0) Regions (0) NEPA(2) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electromagnetic Sounding Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Dictionary.png Magnetotelluric Techniques:

244

Electric-pulse discharge as a novel technique to synthesize {beta}-SiC nano-crystallites from liquid-phase organic precursors  

SciTech Connect

{beta}-SiC nano-crystallites have been prepared by electric pulses discharged in liquid-phase organic precursors. The composition and crystal structure of the products were characterized by X-ray diffraction, Raman spectroscopy, field emission scanning electronic and transmission electron microscopy. Transmission electron microscopy showed that the sample synthesized from the precursor (hexamethyl disilane) is composed of uniform grains with only 8 nm, while the one synthesize from the other precursor (dimethyl silicone oil) is of better crystalline structure with average grain size 22 nm, which may be attributed to discharge in liquid-phase source and short discharge intervals.

Du Kai [National Laboratory of Superhard Materials, Jilin University, Changchun 130012, Jilin (China); Yang Haibin [National Laboratory of Superhard Materials, Jilin University, Changchun 130012, Jilin (China); Institute of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, Henan (China)], E-mail: chinawhirl@hotmail.com; Wei Ronghui; Li Minghui; Yu Qingjiang; Fu Wuyou; Yang Nan; Zhu Hongyang; Zeng Yi [National Laboratory of Superhard Materials, Jilin University, Changchun 130012, Jilin (China)

2008-01-08T23:59:59.000Z

245

Research and development of proton-exchange membrane (PEM) fuel cell system for transportation applications. Phase I final report  

DOE Green Energy (OSTI)

Objective during Phase I was to develop a methanol-fueled 10-kW fuel cell power source and evaluate its feasibility for transportation applications. This report documents research on component (fuel cell stack, fuel processor, power source ancillaries and system sensors) development and the 10-kW power source system integration and test. The conceptual design study for a PEM fuel cell powered vehicle was documented in an earlier report (DOE/CH/10435-01) and is summarized herein. Major achievements in the program include development of advanced membrane and thin-film low Pt-loaded electrode assemblies that in reference cell testing with reformate-air reactants yielded performance exceeding the program target (0.7 V at 1000 amps/ft{sup 2}); identification of oxidation catalysts and operating conditions that routinely result in very low CO levels ({le} 10 ppm) in the fuel processor reformate, thus avoiding degradation of the fuel cell stack performance; and successful integrated operation of a 10-kW fuel cell stack on reformate from the fuel processor.

NONE

1996-01-01T23:59:59.000Z

246

Developing an energy-saving and case-based reasoning information agent with Web service and ontology techniques  

Science Conference Proceedings (OSTI)

Web service and ontology techniques are presented herein for supporting an energy-saving and case-based reasoning information agent. The proposed system is the first energy-saving and case-based reasoning information agent with Web service and ontology ... Keywords: Case-based reasoning agents, Energy-saving information systems, Ontology, Web services

Sheng-Yuan Yang

2013-07-01T23:59:59.000Z

247

High performance steam development. Final report, Phase No. 3: 1500{degree}F steam plant for industrial cogeneration prototype development tests  

Science Conference Proceedings (OSTI)

As a key part of DOE`s and industry`s R&D efforts to improve the efficiency, cost, and emissions of power generation, a prototype High Performance Steam System (HPSS) has been designed, built, and demonstrated. The world`s highest temperature ASME Section I coded power plant successfully completed over 100 hours of development tests at 1500{degrees}F and 1500 psig on a 56,000 pound per hour steam generator, control valve and topping turbine at an output power of 5500 hp. This development advances the HPSS to 400{degrees}F higher steam temperature than the current best technology being installed around the world. Higher cycle temperatures produce higher conversion efficiencies and since steam is used to produce the large majority of the world`s power, the authors expect HPSS developments will have a major impact on electric power production and cogeneration in the twenty-first century. Coal fueled steam plants now produce the majority of the United States electric power. Cogeneration and reduced costs and availability of natural gas have now made gas turbines using Heat Recovery Steam Generators (HRSG`s) and combined cycles for cogeneration and power generation the lowest cost producer of electric power in the United States. These gas fueled combined cycles also have major benefits in reducing emissions while reducing the cost of electricity. Development of HPSS technology can significantly improve the efficiency of cogeneration, steam plants, and combined cycles. Figure 2 is a TS diagram that shows the HPSS has twice the energy available from each pound of steam when expanding from 1500{degrees}F and 1500 psia to 165 psia (150 psig, a common cogeneration process steam pressure). This report describes the prototype component and system design, and results of the 100-hour laboratory tests. The next phase of the program consists of building up the steam turbine into a generator set, and installing the power plant at an industrial site for extended operation.

Duffy, T.; Schneider, P.

1996-01-01T23:59:59.000Z

248

Ocean thermal energy conversion power system development-I. Phase I. Preliminary design report. Volume 1. Final report  

DOE Green Energy (OSTI)

The results of a conceptual and preliminary design study of Ocean Thermal Energy Conversion (OTEC) closed loop ammonia power system modules performed by Lockheed Missiles and Space Company, Inc. (LMSC) are presented. This design study is the second of 3 tasks in Phase I of the Power System Development-I Project. The Task 2 objectives were to develop: 1) conceptual designs for a 40 to 50-MW(e) closed cycle ammonia commercial plant size power module whose heat exchangers are immersed in seawater and whose ancillary equipments are in a shirt sleeve environment; preliminary designs for a modular application power system sized at 10-MW(e) whose design, construction and material selection is analogous to the 50 MW(e) module, except that titanium tubes are to be used in the heat exchangers; and 3) preliminary designs for heat exchanger test articles (evaporator and condenser) representative of the 50-MW(e) heat exchangers using aluminum alloy, suitable for seawater service, for testing on OTEC-1. The reference ocean platform was specified by DOE as a surface vessel with the heat exchanger immersed in seawater to a design depth of 0 to 20 ft measured from the top of the heat exchanger. For the 50-MW(e) module, the OTEC 400-MW(e) Plant Ship, defined in the Platform Configuration and Integration study, was used as the reference platform. System design, performance, and cost are presented. (WHK)

Not Available

1978-12-18T23:59:59.000Z

249

Development of Micro/Nano-Scale Sensors for Investigation of Heat Transfer in Multi-Phase Flows  

E-Print Network (OSTI)

The objective of this investigation was to develop micro/nano-scale temperature sensors for measuring surface temperature transients in multi-phase flows and heat transfer. Surface temperature fluctuations were measured on substrates exposed to phase change processes. Prior reports in the literature indicate that these miniature scale surface temperature fluctuations can result in 60-90 percent of the total heat flux during phase change heat transfer. In this study, DTS (Diode Temperature Sensors) were fabricated with a doping depth of ~100 nm on n-type silicon to measure the surface temperature transients on a substrate exposed to droplet impingement cooling. DTS are expected to have better sensor characteristics compared to TFTs (Thin Film Thermocouples), due to their small size and faster response (which comes at the expense of the smaller operating temperature range). Additional advantages of DTS include the availability of robust commercial micro fabrication processes (with diode and transistor node sizes currently in the size range of ~ 30 nm), and that only 2N wire leads can be used to interrogate a set of N x N array of sensors (in contrast thermocouples require 2 N x N wire leads for N x N sensor array). The DTS array was fabricated using conventional semi-conductor processes. The temperature response of the TFT and DTS was also calibrated using NIST standards. Transient temperature response of the DTS was recorded using droplet impingement cooling experiments. The droplet impingement cooling experiments were performed for two different test fluids (acetone and ethanol). An infrared camera was used to verify the surface temperature of the substrate and compare these measurements with the temperature values recorded by individual DTS. PVD (Physical Vapor Deposition) was used for obtaining the catalyst coatings for subsequent CNT synthesis using CVD (Chemical Vapor Deposition) as well as for fabricating the thin film thermocouple (TFT) arrays using the "lift-off" process. Flow boiling experiments were conducted for three different substrates. Flow boiling experiments on bare silicon wafer surface were treated as the control experiment, and the results were compared with that of CNT (Carbon Nano-Tube) coated silicon wafer surfaces. Similar experiments were also performed on a pure copper surface. In addition, experiments were performed using compact condensers. Micro-scale patterns fabricated on the refrigerant side of the compact heat exchanger were observed to cause significant enhancement of the condensation heat transfer coefficient.

Jeon, Sae Il

2011-08-01T23:59:59.000Z

250

Long Term Field Development of a Surfactant Modified Zeolite/Vapor Phase Bioreactor System for Treatment of Produced Waters for Power Generation  

Science Conference Proceedings (OSTI)

The main goal of this research was to investigate the feasibility of using a combined physicochemical/biological treatment system to remove the organic constituents present in saline produced water. In order to meet this objective, a physical/chemical adsorption process was developed and two separate biological treatment techniques were investigated. Two previous research projects focused on the development of the surfactant modified zeolite adsorption process (DE-AC26-99BC15221) and development of a vapor phase biofilter (VPB) to treat the regeneration off-gas from the surfactant modified zeolite (SMZ) adsorption system (DE-FC26-02NT15461). In this research, the SMZ/VPB was modified to more effectively attenuate peak loads and to maintain stable biodegradation of the BTEX constituents from the produced water. Specifically, a load equalization system was incorporated into the regeneration flow stream. In addition, a membrane bioreactor (MBR) system was tested for its ability to simultaneously remove the aromatic hydrocarbon and carboxylate components from produced water. The specific objectives related to these efforts included the following: (1) Optimize the performance VPBs treating the transient loading expected during SMZ regeneration: (a) Evaluate the impact of biofilter operating parameters on process performance under stable operating conditions. (b) Investigate how transient loads affect biofilter performance, and identify an appropriate technology to improve biological treatment performance during the transient regeneration period of an SMZ adsorption system. (c) Examine the merits of a load equalization technology to attenuate peak VOC loads prior to a VPB system. (d) Evaluate the capability of an SMZ/VPB to remove BTEX from produced water in a field trial. (2) Investigate the feasibility of MBR treatment of produced water: (a) Evaluate the biodegradation of carboxylates and BTEX constituents from synthetic produced water in a laboratory-scale MBR. (b) Evaluate the capability of an SMZ/MBR system to remove carboxylates and BTEX from produced water in a field trial. Laboratory experiments were conducted to provide a better understanding of each component of the SMZ/VPB and SMZ/MBR process. Laboratory VPB studies were designed to address the issue of influent variability and periodic operation (see DE-FC26-02NT15461). These experiments examined multiple influent loading cycles and variable concentration loadings that simulate air sparging as the regeneration option for the SMZ system. Two pilot studies were conducted at a produced water processing facility near Farmington, New Mexico. The first field test evaluated SMZ adsorption, SMZ regeneration, VPB buffering, and VPB performance, and the second test focused on MBR and SMZ/MBR operation. The design of the field studies were based on the results from the previous field tests and laboratory studies. Both of the biological treatment systems were capable of removing the BTEX constituents in the laboratory and in the field over a range of operating conditions. For the VPB, separation of the BTEX constituents from the saline aqueous phase yielded high removal efficiencies. However, carboxylates remained in the aqueous phase and were not removed in the combined VPB/SMZ system. In contrast, the MBR was capable of directly treating the saline produced water and simultaneously removing the BTEX and carboxylate constituents. The major limitation of the MBR system is the potential for membrane fouling, particularly when the system is treating produced water under field conditions. The combined process was able to effectively pretreat water for reverse osmosis treatment and subsequent downstream reuse options including utilization in power generation facilities. The specific conclusions that can be drawn from this study are summarized.

Lynn Katz; Kerry Kinney; Robert Bowman; Enid Sullivan; Soondong Kwon; Elaine Darby; Li-Jung Chen; Craig Altare

2007-12-31T23:59:59.000Z

251

NREL Develops Technique to Measure Membrane Thickness and Defects in Polymer Electrode Membrane Fuel Cells (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet describes NREL's accomplishments in fuel cell membrane electrode assembly research and development. Work was performed by the Hydrogen Technologies and Systems Center and the National Center for Photovoltaics.

Not Available

2010-11-01T23:59:59.000Z

252

Development of a Bulk GaN Growth Technique for Low Defect Density, Large-Area Native Substrates  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Next-Generation Power Electronics: Next-Generation Power Electronics: Electrochemical Solution Growth (ESG) Technique for Bulk Gallium Nitride Substrates Karen Waldrip Dept. 2546, Advanced Power Sources R&D Sandia National Labs, Albuquerque, NM knwaldr@sandia.gov, (505) 844-1619 Acknowledgements: Mike Soboroff, Stan Atcitty, Nancy Clark, and John Boyes David Ingersoll, Frank Delnick, and Travis Anderson 2010 DOE Peer Review, Nov. 2-4, Washington, DC Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Funded by the Energy Storage Systems Program of the U.S. Department Of Energy through Sandia National Laboratories Project Objective

253

Development of a high temperature solar powered water chiller. Volume 3. Phase I technical progress report, September 26, 1977--June 1, 1978  

DOE Green Energy (OSTI)

This section describes the conceptual design rationale and resulting design configuration as well as providing estimates of cost and performance. Because the development of the turbo-compressor design paralleled the development of the chiller system design, all of the cost and performance data are based on intermediate turbo-compressor performance data, as well as on unoptimized components. Optimized performance was computed at the very end of Phase I, and only a brief comparison is made to show the potential gains available. Updating of all the predicted performance data for the final conceptual design will await Phase II.

English, R. A.

1978-06-01T23:59:59.000Z

254

The North American Multi-Model Ensemble (NMME): Phase-1 Seasonal to Interannual Prediction, Phase-2 Toward Developing Intra-Seasonal Prediction  

Science Conference Proceedings (OSTI)

The recent US National Academies report Assessment of Intraseasonal to Interannual Climate Prediction and Predictability was unequivocal in recommending the need for the development of a North American Multi-Model Ensemble (NMME) operational predictive ...

Ben P. Kirtman; Dughong Min; Johnna M. Infanti; James L. Kinter III; Daniel A. Paolino; Qin Zhang; Huug van den Dool; Suranjana Saha; Malaquias Pena Mendez; Emily Becker; Peitao Peng; Patrick Tripp; Jin Huang; David G. DeWitt; Michael K. Tippett; Anthony G. Barnston; Shuhua Li; Anthony Rosati; Siegfried D. Schubert; Michele Rienecker; Max Suarez; Zhao E. Li; Jelena Marshak; Young-Kwon Lim; Joseph Tribbia; Kathleen Pegion; William J. Merryfield; Bertrand Denis; Eric F. Wood

255

Liquid phase methanol process development unit: installation, operation, and support studies. Topical report. Experimental catalyst preparation program  

DOE Green Energy (OSTI)

This report details the preparation of 29 catalyst samples under DOE contract No. DE-AC22-81PC30019. These were selected for gas phase activity testing from a total of 70 prepared. Based on activity results, three compositions were selected for further slurry phase testing in the Chem Systems, Inc. (CSI) laboratories. 11 references, 5 figures, 7 tables.

Not Available

1984-01-01T23:59:59.000Z

256

Measurement of the Nickel/Nickel Oxide Phase Transition in High Temperature Hydrogenated Water Using the Contact Electric Resistance (CER) Technique  

DOE Green Energy (OSTI)

Prior studies of Alloy 600 and Alloy X-750 have shown the existence of a maximum in stress corrosion cracking (SCC) susceptibility in high temperature water (e.g., at 360 C), when testing is conducted over a range of dissolved (i.e., aqueous) hydrogen (H{sub 2}) concentrations. It has also been shown that this maximum in SCC susceptibility tends to occur in proximity to the nickel/nickel oxide (Ni/NiO) phase transition, suggesting that oxide phase stability may affect primary water SCC (PWSCC) resistance. Previous studies have estimated the Ni/NiO transition using thermodynamic calculations based on free energies of formation for NiO and H{sub 2}O. The present study reports experimental measurements of the Ni/NiO transition performed using a contact electric resistance (CER) instrument. The CER is capable of measuring the surface resistance of a metal to determine whether it is oxide-covered or oxide-free at a given condition. The transition aqueous hydrogen (H{sub 2}) concentration corresponding to the Ni/NiO equilibrium was measured at 288, 316, 338 and 360 C using high purity Ni specimens. The results showed an appreciable deviation (i.e., 7 to 58 scc H{sub 2}/kg H{sub 2}O) between the measured Ni/NiO transition and the theoretical Ni/NiO transition previously calculated using free energy data from the Journal of Solution Chemistry. The CER-measured position of the Ni/NiO transition is in good agreement with the maxima in PWSCC susceptibility at 338 and 360 C. The measured Ni/NiO transition provides a reasonable basis for estimating the aqueous H{sub 2} level at which the maximum in SCC susceptibility is likely to be observed at temperatures lower than 338 to 360 C, at which SCC tests are time-consuming to perform. Limited SCC data are presented which are consistent with the observation that SCC susceptibility is maximized near the Ni/NiO transition at 288 C.

S.A. Attanasio; D.S. Morton; M.A. Ando; N.F. Panayotou; C.D. Thompson

2001-05-08T23:59:59.000Z

257

Development of a Front Tracking Method for Two-Phase Micromixing of Incompressible Viscous Fluids with Interfacial Tension in Solvent Extraction  

SciTech Connect

This progress report describes the development of a front tracking method for the solution of the governing equations of motion for two-phase micromixing of incompressible, viscous, liquid-liquid solvent extraction processes. The ability to compute the detailed local interfacial structure of the mixture allows characterization of the statistical properties of the two-phase mixture in terms of droplets, filaments, and other structures which emerge as a dispersed phase embedded into a continuous phase. Such a statistical picture provides the information needed for building a consistent coarsened model applicable to the entire mixing device. Coarsening is an undertaking for a future mathematical development and is outside the scope of the present work. We present here a method for accurate simulation of the micromixing dynamics of an aqueous and an organic phase exposed to intense centrifugal force and shearing stress. The onset of mixing is the result of the combination of the classical Rayleigh- Taylor and Kelvin-Helmholtz instabilities. A mixing environment that emulates a sector of the annular mixing zone of a centrifugal contactor is used for the mathematical domain. The domain is small enough to allow for resolution of the individual interfacial structures and large enough to allow for an analysis of their statistical distribution of sizes and shapes. A set of accurate algorithms for this application requires an advanced front tracking approach constrained by the incompressibility condition. This research is aimed at designing and implementing these algorithms. We demonstrate verification and convergence results for one-phase and unmixed, two-phase flows. In addition we report on preliminary results for mixed, two-phase flow for realistic operating flow parameters.

Zhou, Yijie [ORNL; Lim, Hyun-Kyung [ORNL; de Almeida, Valmor F [ORNL; Navamita, Ray [State University of New York, Stony Brook; Wang, Shuqiang [State University of New York, Stony Brook; Glimm, James G [ORNL; Li, Xiao-lin [State University of New York, Stony Brook; Jiao, Xiangmin [ORNL

2012-06-01T23:59:59.000Z

258

Development of a Raman spectroscopy technique to detect alternate transportation fuel hydrocarbon intermediates in complex combustion environments.  

Science Conference Proceedings (OSTI)

Spontaneous Raman spectra for important hydrocarbon fuels and combustion intermediates were recorded over a range of low-to-moderate flame temperatures using the multiscalar measurement facility located at Sandia/CA. Recorded spectra were extrapolated to higher flame temperatures and then converted into empirical spectral libraries that can readily be incorporated into existing post-processing analysis models that account for crosstalk from overlapping hydrocarbon channel signal. Performance testing of the developed libraries and reduction methods was conducted through an examination of results from well-characterized laminar reference flames, and was found to provide good agreement. The diagnostic development allows for temporally and spatially resolved flame measurements of speciated hydrocarbon concentrations whose parent is more chemically complex than methane. Such data are needed to validate increasingly complex flame simulations.

Ekoto, Isaac W.; Barlow, Robert S.

2012-12-01T23:59:59.000Z

259

Development of advanced in situ techniques for chemistry monitoring and corrosion mitigation in SCWO environments. 1997 annual progress report  

Science Conference Proceedings (OSTI)

'This report evaluates the first year''s results of the research on the development of advanced electrochemical sensors for use in high subcritical and supercritical aqueous environments. The work has emphasized the designing of an advanced reference electrode, and the development of high-temperature pH and redox sensors for characterizing the fundamental properties of supercritical aqueous solutions. Also, electrochemical noise sensors have been designed for characterizing metal/water interactions, including corrosion processes. A test loop has been designed and constructed to meet the expected operation conditions. The authors have also developed an approach to define a practical pH scale for use with supercritical aqueous systems and an operational electrochemical thermocell was tested for pH measurements in HCl + NaCl aqueous solutions. The potentials of the thermocell for several HCl(aq) solutions of different concentrations have been measured over wide ranges of temperature from 25 to 400 C and for flow rates from 0.1 to 1.5 cm min{sup -1} . The corresponding pH differences ({Delta}pH) for two HCl(aq) concentrations in 0.1 NaCl(aq) solution have been experimentally derived and thermodynamically analyzed. Their first experimental measurements, and subsequent theoretical analysis, clearly demonstrate the viability of pH measurements in high subcritical and supercritical aqueous solutions with a high accuracy of \\2610.02 to 0.05 units.'

Meng, Z.; Zhou, X.Y.; Lvov, S.N.; Macdonald, D.D.

1997-10-01T23:59:59.000Z

260

Ocean Thermal Energy Conversion (OTEC) power system development: utilizing advanced high performance heat transfer techniques. Final technical progress report, August 1-December 11, 1978  

DOE Green Energy (OSTI)

The objectives of the program are: (1) development of a preliminary design for the full-sized power system module to be used in the 100 MWe OTEC Demonstration Plant by 1984 to demonstrate operational performance and to project economic viability; (2) preliminary design for a proof-of-concept 5 MWe (nominal pilot plant, (Test Article); (3) preliminary design for proof-of-concept 1 MWe scaled heat exchangers (Test Articles); and (4) preparation of a Phase II hardware and support plan (proposal) for the scaled test articles. Status of the program is described. (WHK)

Not Available

1978-12-11T23:59:59.000Z

Note: This page contains sample records for the topic "development phases techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Research, development and demonstration of a fuel cell/battery powered bus system. Phase 1, Final report  

DOE Green Energy (OSTI)

Purpose of the Phase I effort was to demonstrate feasibility of the fuel cell/battery system for powering a small bus (under 30 ft or 9 m) on an urban bus route. A brassboard powerplant was specified, designed, fabricated, and tested to demonstrate feasibility in the laboratory. The proof-of-concept bus, with a powerplant scaled up from the brassboard, will be demonstrated under Phase II.

NONE

1990-02-28T23:59:59.000Z

262

Development of innovative techniques and principles that may be used as models to improve plant performance. Technical progress report, February 1, 1991--January 31, 1992  

DOE Green Energy (OSTI)

Methods and techniques for transferring germplasm from wild to cultivated species are being developed. The transferred germplasm is being shown to be valuable in plant breeding and in cultivar development. Forty cytoplasms from the wild grassy subspecies monodii (primary gene pool) of Pennisetum glaucum are being tested for cytoplasmic effects on morphological characteristics and forage yield. A`-genome chromosomes from P. purpureum (secondary gene pool) have been transferred to cultivated pearl millet. The A`-chromosome derived lines have been developed into excellent male pollinator lines to produce a new high quality, high yielding grain hybrid for the US. Significant progress is being made in transferring the genes controlling apomixis (to produce true-breeding hybrids) from the tertiary gene pool to cultivated pearl millet. Backcross-4 plants are more pearl millet-like and reproduce by apomixis. New genome combinations have been produced in the apomixis genes transfer program which demonstrate the impact of apomixis on speciation and evolution.

Hanna, W.W.; Burton, G.W.

1991-09-01T23:59:59.000Z

263

COLLABORATIVE RESEARCH:USING ARM OBSERVATIONS & ADVANCED STATISTICAL TECHNIQUES TO EVALUATE CAM3 CLOUDS FOR DEVELOPMENT OF STOCHASTIC CLOUD-RADIATION  

SciTech Connect

The long-range goal of several past and current projects in our DOE-supported research has been the development of new and improved parameterizations of cloud-radiation effects and related processes, using ARM data, and the implementation and testing of these parameterizations in global models. The main objective of the present project being reported on here has been to develop and apply advanced statistical techniques, including Bayesian posterior estimates, to diagnose and evaluate features of both observed and simulated clouds. The research carried out under this project has been novel in two important ways. The first is that it is a key step in the development of practical stochastic cloud-radiation parameterizations, a new category of parameterizations that offers great promise for overcoming many shortcomings of conventional schemes. The second is that this work has brought powerful new tools to bear on the problem, because it has been a collaboration between a meteorologist with long experience in ARM research (Somerville) and a mathematician who is an expert on a class of advanced statistical techniques that are well-suited for diagnosing model cloud simulations using ARM observations (Shen).

Somerville, Richard

2013-08-22T23:59:59.000Z

264

Desiccant-Based Combined Systems: Integrated Active Desiccant Rooftop Hybrid System Development and Testing Final Report- Phase 4  

SciTech Connect

This report summarizes the results of a research and development (R&D) program to design and optimize an active desiccant-vapor compression hybrid rooftop system. The primary objective was to combine the strengths of both technologies to produce a compact, high-performing, energy-efficient system that could accommodate any percentage of outdoor air and deliver essentially any required combination of temperature and humidity, or sensible heat ratio (SHR). In doing so, such a product would address the significant challenges imposed on the performance capabilities of conventional packaged rooftop equipment by standards 62 and 90.1 of the American Society of Heating, Refrigerating and Air-Conditioning Engineers. The body of work completed as part of this program built upon previous R&D efforts supported by the U.S. Department of Energy and summarized by the Phase 3b report ''Active Desiccant Dehumidification Module Integration with Rooftop Packaged HVAC Units'' (Fischer and Sand 2002), in addition to Fischer, Hallstrom, and Sand 2000; Fischer 2000; and Fischer and Sand 2004. All initial design objectives established for this development program were successfully achieved. The performance flexibility desired was accomplished by a down-sized active desiccant wheel that processes only a portion of the supply airflow, which is pre-conditioned by a novel vapor compression cycle. Variable-speed compressors are used to deliver the capacity control required by a system handling a high percentage of outdoor air. An integrated direct digital control system allows for control capabilities not generally offered by conventional packaged rooftop systems. A 3000-cfm prototype system was constructed and tested in the SEMCO engineering test laboratory in Columbia, MO, and was found to operate in an energy-efficient fashion relative to more conventional systems. Most important, the system offered the capability to independently control the supply air temperature and humidity content to provide individual sensible and latent loads required by an occupied space without over-cooling and reheating air. The product was developed using a housing construction similar to that of a conventional packaged rooftop unit. The resulting integrated active desiccant rooftop (IADR) is similar in size to a currently available conventional rooftop unit sized to provide an equivalent total cooling capacity. Unlike a conventional rooftop unit, the IADR can be operated as a dedicated outdoor air system processing 100% outdoor air, as well as a total conditioning system capable of handling any ratio of return air to outdoor air. As part of this R&D program, a detailed investigation compared the first cost and operating cost of the IADR with costs for a conventional packaged approach for an office building located in Jefferson City, MO. The results of this comparison suggest that the IADR approach, once commercialized, could be cost-competitive with existing technology--exhibiting a one-year to two-year payback period--while simultaneously offering improved humidity control, indoor air quality, and energy efficiency.

Fischer, J

2005-05-06T23:59:59.000Z

265

DEVELOPMENT OF IMPROVED TECHNIQUES FOR SATELLITE REMOTE SENSING OF CLOUDS AND RADIATION USING ARM DATA, FINAL REPORT  

SciTech Connect

During the period, March 1997 February 2006, the Principal Investigator and his research team co-authored 47 peer-reviewed papers and presented, at least, 138 papers at conferences, meetings, and workshops that were supported either in whole or in part by this agreement. We developed a state-of-the-art satellite cloud processing system that generates cloud properties over the Atmospheric Radiation (ARM) surface sites and surrounding domains in near-real time and outputs the results on the world wide web in image and digital formats. When the products are quality controlled, they are sent to the ARM archive for further dissemination. These products and raw satellite images can be accessed at http://cloudsgate2.larc.nasa.gov/cgi-bin/site/showdoc?docid=4&cmd=field-experiment-homepage&exp=ARM and are used by many in the ARM science community. The algorithms used in this system to generate cloud properties were validated and improved by the research conducted under this agreement. The team supported, at least, 11 ARM-related or supported field experiments by providing near-real time satellite imagery, cloud products, model results, and interactive analyses for mission planning, execution, and post-experiment scientific analyses. Comparisons of cloud properties derived from satellite, aircraft, and surface measurements were used to evaluate uncertainties in the cloud properties. Multiple-angle satellite retrievals were used to determine the influence of cloud structural and microphysical properties on the exiting radiation field.

Minnis, Patrick [NASA Langley Research Center, Hampton, VA

2013-06-28T23:59:59.000Z

266

Novel selective surface flow (SSF{trademark}) membranes for the recovery of hydrogen from waste gas streams. Phase 2: Technology development, final report  

SciTech Connect

The objective of Phase II of the Selective Surface Flow Membrane program was Technology Development. Issues addressed were: (i) to develop detailed performance characteristics on a 1 ft{sup 2} multi- tube module and develop design data, (ii) to build a field test rig and complete field evaluation with the 1 ft{sup 2} area membrane system, (iii) to implement membrane preparation technology and demonstrate membrane performance in 3.5 ft long tube, (iv) to complete detailed process design and economic analysis.

Anand, M.; Ludwig, K.A.

1996-04-01T23:59:59.000Z

267

Design and Development of a Test Facility to Study Two-Phase Steam/Water Flow in Porous Media  

DOE Green Energy (OSTI)

The concept of relative permeability is the key concept in extending Darcy's law for single phase flow through porous media to the two-phase flow regime. Relative permeability functions are needed for simulation studies of two-phase geothermal reservoirs. These are poorly known inspite of considerable theoretical and experimental investigations during the last decade. Since no conclusive results exist, many investigators use ad hoc parametrization, or adopt results obtined from flow of oil and gas (Corey, 1954). It has been shown by Reda and Eaton (1980) that this can lead to serious deficiencies. Sensitivity of the relative permeability curves for prediction of mass flow rate and flowing enthalpy into geothermal wells has been studied by many investigators (e.g. Eaton and Reda (1980), Bodvarsson et al (1980), Sun and Ershagi (1979) etc.). It can be concluded from these studies that the beehavior of a two-phase steam/water reservoir depends greatly on the relative permeability curves used. Hence, there exists a need for obtaining reliable relative permeability functions.

Verma, Ashok K.; Pruess, Karsten; Bodvarsson, G.S.; Tsang, C.F.; Witherspoon, Paul A.

1983-12-15T23:59:59.000Z

268

Aurivillius phases of PbBi{sub 4}Ti{sub 4}O{sub 15} doped with Mn{sup 3+} synthesized by molten salt technique: Structure, dielectric, and magnetic properties  

Science Conference Proceedings (OSTI)

Doping of manganese (Mn{sup 3+}/Mn{sup 4+}) into the Aurivillius phase Pb{sub 1-x}Bi{sub 4+x}Ti{sub 4-x}Mn{sub x}O{sub 15} was carried out using the molten salt technique for various Mn concentrations (x=0, 0.2, 0.4, 0.6, 0.8, and 1). Single phase samples could be obtained in the composition range with x up to 0.6 as confirmed by X-ray and neutron diffraction analysis. Dielectric measurements show a peak at 801, 803, 813 and 850 K for samples with x=0, 0.2, 0.4, and 0.6, respectively, related to the ferroelectric transition temperature (T{sub c}). The main contribution of the in-plane polarization for x{=}0.4 the polarization originates from the dipole moment in the Ti(2)O{sub 6} layer. Mn doping in the Pb{sub 1-x}Bi{sub 4+x}Ti{sub 4-x}Mn{sub x}O{sub 15} does not show any long range magnetic ordering. -- Graphical abstract: The dipole moment of TiO{sub 6} dependence of x in Pb{sub 1-x}Bi{sub 4+x}Ti{sub 4-x}Mn{sub x}O{sub 15} (0{0.2. {yields} Ferromagnetic interactions show the contribution of mixed valence of Mn{sup 3+}/Mn{sup 4+}.

Zulhadjri; Prijamboedi, B. [Inorganic and Physical Chemistry Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung (Indonesia); Nugroho, A.A. [Magnetic and Photonic Physics Research-Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung (Indonesia); Mufti, N. [Physics Department, Universitas Negeri Malang, Jl. Surabaya 6, Malang 65145 (Indonesia); Fajar, A. [Centre for Technology of Nuclear Industry Materials - BATAN Puspiptek Serpong, Tangerang (Indonesia); Palstra, T.T.M. [Solid State Materials Laboratory, Zernike Institute for Advanced Materials, Rijksuniversiteit Groningen, Nijenborgh 4, 9747AG Groningen (Netherlands); Ismunandar, E-mail: ismu@chem.itb.ac.i [Inorganic and Physical Chemistry Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung (Indonesia)

2011-05-15T23:59:59.000Z

269

Irradiated Materials and Technique Development  

Science Conference Proceedings (OSTI)

Mar 3, 2011 ... The U.S. Reduced Enrichment for Research and Test Reactors program converts research reactors which utilize highly enriched uranium fuel...

270

Other Techniques: Developments and Applications  

Science Conference Proceedings (OSTI)

Oct 21, 2010... actuators in micro-electro-mechanical systems (MEMS) such as micro-fluid pumps, micro-grippers and micro-manipulators. The as-deposited...

271

Journal of Light Emitting Diodes Vol 2 N0 1, April 2010 1 Abstract--In metal organic vapor phase epitaxy we developed  

E-Print Network (OSTI)

Journal of Light Emitting Diodes Vol 2 N0 1, April 2010 1 Abstract-- In metal organic vapor phase epitaxy we developed GaInN/GaN quantum well material suitable for 500 ­ 580 nm light emitting diodes at longer wavelengths. Index Terms-- a-plane GaN, GaInN, Green light emitting diode, m-plane GaN I

Wetzel, Christian M.

272

Phase Field, CALPHAD and Other Modeling Techniques  

Science Conference Proceedings (OSTI)

Feb 17, 2010... Morphological Patterns in Alloy Surfaces: Bharathi Srinivasan1; Ramanarayan Hariharaputran1; 1Institute of High Performance Computing

273

Silicon solar cell process development, fabrication and analysis. Phase II. Annual report, 1 July 1979-30 June 1980  

DOE Green Energy (OSTI)

Solar cells were fabricated from EFG (RH) ribbons from multiple dies, silicon on ceramic (SOC), dendritic web, cast silicon by HEM, and semi-continuous CZ from both VARIAN and HAMCO. Baseline and improved solar cells were made from the sheets. Baseline solar cells processed in both Phase I and Phase II, involving cells from EFG, SOC, dendritic web, and HEM, indicated that no significant improvement in silicon sheet quality has been achieved in Phase II. Solar cells from semi-continuous CZ showed cell performance close to the conventional CZ control cells, although the cells from the semi-continuous CZ have shown wider performance range because of variation in crystalline perfection. Generally, process upgrading provided improvement in cell performance, the improvement depending on the process used and the quality of the sheet silicon. Study of the effect of grain size on solar cell performance suggested that the minimum grain size to make solar cells of 10% AMO efficiency is about 500 ..mu..m, which is expected to provide minimum module efficiency of 10% AMI. If other harmful impurities are added in the process of sheet growth, the minimum grain size must be increased. The BSF study showed that the higher the resistivity of the starting substrates, the greater the relative improvement in cell performance, probably because of greater shift in Fermi levels at the back L/H junction (pp+) and also because of the higher initial values of minority carrier diffusion length. This study also suggested that proper control of the back-surface field (BSF) process could minimize the junction shunting problems often introduced by the BSF processing.

Yoo, H.I.; Iles, P.A.; Ho, F.F.; Leung, D.C.

1980-01-01T23:59:59.000Z

274

DEVELOPMENT OF AN EXPERT SYSTEM TO IDENTIFY PHASE EQUILIBRIA AND ENHANCED OIL RECOVERY CHARACTERISTICS OF CRUDE OILS.  

E-Print Network (OSTI)

??With the increasing demand of oil and gas in the past decades, great endeavors in the oil industry have been devoted to develop and incorporate (more)

Hua, Luoyi

2012-01-01T23:59:59.000Z

275

Report on phase I on the development of improved seals and bearings for downhole drilling motors. Final report  

DOE Green Energy (OSTI)

New bearing and seal designs are outlined, as well as the progress made on developing test facilities for full-size bearing and seal assemblies. (MHR)

Black, A.D.; Green, S.J.; Matson, L.W.; Maurer, W.C.; Nielsen, R.R.; Nixon, J.D.; Wilson, J.G.

1977-05-01T23:59:59.000Z

276

Ford/ERDA sodium--sulfur battery development, Phase II. Progress report No. 22, July 1--July 31, 1977  

DOE Green Energy (OSTI)

Specific results in the areas of container and seal development, development of ceramic electrolyte and seal technology, and cell fabrication and testing are reported. Mo foil withstood corrosion by polysulfides at 400/sup 0/C well. Thermal expansion and elasticity coefficients were determined for ..beta..''-alumina. Capacity yields and life characteristics are tabulated. 1 figure, 6 tables. (RWR)

Topouzian, A.

1977-08-01T23:59:59.000Z

277

Results of research to develop cost effective biomonitoring at oil shale lease tracts. Phase I. Fall sampling report  

SciTech Connect

This report presents the results of censuses conducted during October 1981 to estimate the fall abundance of small mammals and avifauna on replicate plots in the vicinity of Federal Tract C-a (Rio Blanco Oil Shale Company). The objectives of the fall censuses were to evaluate alternative census techniques, test assumptions vital to the use of indices and abundance estimators, determine cost-functions associated with monitoring efforts, and estimate variance components needed to devise optimal monitoring designs. Analyses of the fall census data on small mammal abundance were performed.

Skalski, J.R.; Fitzner, R.E.; Gano, K.A.

1982-05-01T23:59:59.000Z

278

Dynamic light scattering study on phase separation of a protein-water mixture: Application on cold cataract development in the ocular lens  

E-Print Network (OSTI)

We present a detailed dynamic light scattering study on the phase separation in the ocular lens emerging during cold cataract development. Cold cataract is a phase separation effect that proceeds via spinodal decomposition of the lens cytoplasm with cooling. Intensity auto-correlation functions of the lens protein content are analyzed with the aid of two methods providing information on the populations and dynamics of the scattering elements associated with cold cataract. It is found that the temperature dependence of many measurable parameters changes appreciably at the characteristic temperature ~16+1 oC which is associated with the onset of cold cataract. Extending the temperature range of this work to previously inaccessible regimes, i.e. well below the phase separation or coexistence curve at Tcc, we have been able to accurately determine the temperature dependence of the collective and self-diffusion coefficient of proteins near the spinodal. The analysis showed that the dynamics of proteins bears some resemblance to the dynamics of structural glasses where the apparent activation energy for particle diffusion increases below Tcc indicating a highly cooperative motion. Application of ideas developed for studying the critical dynamics of binary protein/solvent mixtures, as well as the use of a modified Arrhenius equation, enabled us to estimate the spinodal temperature Tsp of the lens nucleus. The applicability of dynamic light scattering as a non-invasive, early-diagnostic tool for ocular diseases is also demonstrated in the light of the findings of the present paper.

V. Petta; N. Pharmakakis; G. N. Papatheodorou; S. N. Yannopoulos

2008-06-11T23:59:59.000Z

279

Applied Science/Techniques  

NLE Websites -- All DOE Office Websites (Extended Search)

Applied Science/Techniques Applied Science/Techniques Applied Science/Techniques Print The ALS is an excellent incubator of new scientific techniques and instrumentation. Many of the technical advances that make the ALS a world-class soft x-ray facility are developed at the ALS itself. The optical components in use at the ALS-mirrors and lenses optimized for x-ray wavelengths-require incredibly high-precision surfaces and patterns (often formed through extreme ultraviolet lithography at the ALS) and must undergo rigorous calibration and testing provided by beamlines and equipment from the ALS's Optical Metrology Lab and Berkeley Lab's Center for X-Ray Optics. New and/or continuously improved experimental techniques are also a crucial element of a thriving scientific facility. At the ALS, examples of such "technique" highlights include developments in lensless imaging, soft x-ray tomography, high-throughput protein analysis, and high-power coherent terahertz radiation.

280

Power system identification toolbox: Phase two progress  

Science Conference Proceedings (OSTI)

This report describes current progress on a project funded by the Bonneville Power Administration (BPA) to develop a set of state-of-the-art analysis software (termed the Power System Identification [PSI] Toolbox) for fitting dynamic models to measured data. The project is being conducted as a three-phase effort. The first phase, completed in late 1992, involved investigating the characteristics of the analysis techniques by evaluating existing software and developing guidelines for best use. Phase Two includes extending current software, developing new analysis algorithms and software, and demonstrating and developing applications. The final phase will focus on reorganizing the software into a modular collection of documented computer programs and developing user manuals with instruction and application guidelines. Phase Two is approximately 50% complete; progress to date and a vision for the final product of the PSI Toolbox are described. The needs of the power industry for specialized system identification methods are particularly acute. The industry is currently pushing to operate transmission systems much closer to theoretical limits by using real-time, large-scale control systems to dictate power flows and maintain dynamic stability. Reliably maintaining stability requires extensive system-dynamic modeling and analysis capability, including measurement-based methods. To serve this need, the BPA has developed specialized system-identification computer codes through in-house efforts and university contract research over the last several years. To make full integrated use of the codes, as well as other techniques, the BPA has commissioned Pacific Northwest Laboratory (PNL) to further develop the codes and techniques into the PSI Toolbox.

Trudnowski, D.J.

1994-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "development phases techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

New urbanism on a grand scale : the challenges for large-scale, multi-phase master planned developments  

E-Print Network (OSTI)

New Urbanism has been described as an urban design movement promoting the master planning and development of communities that have walkable, human-scale neighborhoods while integrating the necessary elements of modern life ...

Olchowicz, Edward J

2011-01-01T23:59:59.000Z

282

Low Wind Speed Technology Phase II: Development of an Operations and Maintenance Cost Model for LWST; Global Energy Concepts  

SciTech Connect

This fact sheet describes a subcontract with Global Energy Concepts to evaluate real-world data on O&M costs and to develop a working model to describe these costs for low wind speed sites.

Not Available

2006-03-01T23:59:59.000Z

283

Nozzle development  

DOE Green Energy (OSTI)

The objective of this program has been the development of experimental techniques and data processing procedures to allow for the characterization of multi-phase fuel nozzles using laboratory tests. Test results were to be used to produce a single value coefficient-of-performance that would predict the performance of the fuel nozzles independent of system application. Several different types of fuel nozzles capable of handling multi-phase fuels have been characterized for: (a) fuel flow rate versus delivery pressure, (b) fuel-air ratio throughout the fuel spray or plume and the effective cone angle of the injector, and (c) fuel drop- or particle-size distribution as a function of fluid properties. Fuel nozzles which have been characterized on both single-phase liquids and multi-phase liquid-solid slurries include a variable-film-thickness nozzle, a commercial coal-water slurry (CWS) nozzle, and four diesel injectors of different geometries (tested on single-phase fluids only). Multi-phase mixtures includes CWS with various coal loadings, surfactant concentrations, and stabilizer concentrations, as well as glass-bead water slurries with stabilizing additives. Single-phase fluids included glycerol-water mixtures to vary the viscosity over a range of 1 to 1500 cP, and alcohol-water mixtures to vary the surface tension from about 22 to 73 dyne/cm. In addition, tests were performed to characterize straight-tube gas-solid nozzles using two differences size distributions of glass beads in air. Standardized procedures have been developed for processing measurements of spray drop-size characteristics and the overall cross-section average drop or particle size. 43 refs., 60 figs., 7 tabs.

Dodge, F.T.; Dodge, L.G.; Johnson, J.E.

1989-06-01T23:59:59.000Z

284

Development of a methodology for defining whole-building energy design targets for commercial buildings: Phase 2, Development Concept Stage Report  

SciTech Connect

The primary focus of the Whole-Building Energy Design Targets project is to develop a flexible methodology for setting target guidelines with which to assess energy efficiency in commercial building design. The proposed methodology has several innovative features. In this report, the authors document their work to define the software development concepts upon which the overall Targets methodology will be based. Three task reports are included here. Development of the user interface--that critical connection through which the human end-user (architect, engineer, planner, owner) will apply the methodology--is described in Section 2. In Section 3, the use of the software engineering process in Targets model development efforts is described. Section 4 provides details on the data and system integration task, in which interactions between and among all the major components, termed modules, of the Targets model were examined to determine how to put them together to create a methodology that is effective and easy to use. 4 refs., 26 figs.

Deringer, J.J. (American Inst. of Architects, Washington, DC (USA)); Hall, J.D. (Deringer Group, Riva, MD (USA)); Jones, J.W. (American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., New York, NY (USA)); McKay, H.N. (Illuminating Engineering Society of North America, New York, NY (USA)); Alley, P.K. (Pacific Northwest Lab., Richland, WA (USA))

1990-09-01T23:59:59.000Z

285

Phase Stability, Phase Transformations, and Reactive Phase ...  

Science Conference Proceedings (OSTI)

Jul 31, 2012 ... New Phase in Stoichiometric Cu6Sn5 and Effect of Ni Addition on Phase Stabilization in Wide Temperature Range Optical Properties of...

286

Ground Electromagnetic Techniques | Open Energy Information  

Open Energy Info (EERE)

Ground Electromagnetic Techniques Ground Electromagnetic Techniques (Redirected from Ground Electromagnetic Methods) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Ground Electromagnetic Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electromagnetic Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature

287

Electromagnetic Sounding Techniques | Open Energy Information  

Open Energy Info (EERE)

Electromagnetic Sounding Techniques Electromagnetic Sounding Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Electromagnetic Sounding Techniques Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Ground Electromagnetic Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature

288

Electromagnetic Sounding Techniques | Open Energy Information  

Open Energy Info (EERE)

Electromagnetic Sounding Techniques Electromagnetic Sounding Techniques (Redirected from Electromagnetic Sounding Methods) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Electromagnetic Sounding Techniques Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Ground Electromagnetic Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water

289

Electromagnetic Profiling Techniques | Open Energy Information  

Open Energy Info (EERE)

Electromagnetic Profiling Techniques Electromagnetic Profiling Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Electromagnetic Profiling Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Ground Electromagnetic Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature

290

Ground Electromagnetic Techniques | Open Energy Information  

Open Energy Info (EERE)

Ground Electromagnetic Techniques Ground Electromagnetic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Ground Electromagnetic Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electromagnetic Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Dictionary.png

291

Development of improved processing and evaluation methods for high reliability structural ceramics for advanced heat engine applications Phase II. Final report  

SciTech Connect

The research program had as goals the development and demonstration of significant improvements in processing methods, process controls, and nondestructive evaluation (NDE) which can be commercially implemented to produce high reliability silicon nitride components for advanced heat engine applications at temperatures to 1370{degrees}C. In Phase I of the program a process was developed that resulted in a silicon nitride - 4 w% yttria HIP`ed material (NCX 5102) that displayed unprecedented strength and reliability. An average tensile strength of 1 GPa and a strength distribution following a 3-parameter Weibull distribution were demonstrated by testing several hundred buttonhead tensile specimens. The Phase II program focused on the development of methodology for colloidal consolidation producing green microstructure which minimizes downstream process problems such as drying, shrinkage, cracking, and part distortion during densification. Furthermore, the program focused on the extension of the process to gas pressure sinterable (GPS) compositions. Excellent results were obtained for the HIP composition processed for minimal density gradients, both with respect to room-temperature strength and high-temperature creep resistance. Complex component fabricability of this material was demonstrated by producing engine-vane prototypes. Strength data for the GPS material (NCX-5400) suggest that it ranks very high relative to other silicon nitride materials in terms of tensile/flexure strength ratio, a measure of volume quality. This high quality was derived from the closed-loop colloidal process employed in the program.

Pujari, V.J.; Tracey, D.M.; Foley, M.R. [and others

1996-02-01T23:59:59.000Z

292

Electromagnetic Techniques | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Electromagnetic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Electromagnetic Techniques Details Activities (0) Areas (0) Regions (0) NEPA(5) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electrical Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water

293

Design and development of Stirling engines for stationary-power-generation applications in the 500- to 3000-hp range. Phase I final report  

SciTech Connect

The first phase of the design and development of Stirling engines for stationary power generation applications in the 373 kW (500 hp) to 2237 kW (3000 hp) range was completed. The tasks in Phase I include conceptual designs of large Stirling cycle stationary engines and program plan for implementing Phases II through V. Four different heater head designs and five different machine designs were prepared in sufficient detail to select a design recommended for development in the near future. A second order analysis was developed for examining the various loss mechanisms in the Stirling engine and for predicting the thermodynamic performance of these engines. The predicted engine thermal brake efficiency excluding combustion efficiency is approximately 42% which exceeds the design objective of 40%. The combustion system designs were prepared for both a clean fuel combustion system and a two-stage atmospheric fluidized bed combustion system. The calculated combustion efficiency of the former is 90% and of the latter is 80%. Heat transport systems, i.e., a heat exchanger for the clean fuel combustion system and a sodium heat pipe system for coal and other nonclean fuel combustion systems were selected. The cost analysis showed that for clean fuels combustion the proposed 2237 kW (3000 hp) system production cost is $478,242 or $214/kW ($159/hp) which is approximately 1.86 times the cost of a comparable size diesel engine. For solid coal combustion the proposed 2237 kW (3000 hp) system production cost is approximately $2,246,242 which corresponds to a cost to power capacity ratio of $1004/kW ($749/hp). The two-stage atmospheric fluidized bed combustion system represents 81% of the total cost; the engine represents 14% depending on the future price differential between coal and conventional clean fuels, a short payback period of the proposed Stirling cycle engine/FBC system may justify the initial cost. (LCL)

1980-10-01T23:59:59.000Z

294

Hardware Development of a Laboratory-Scale Microgrid Phase 1--Single Inverter in Island Mode Operation: Base Year Report, December 2000 -- November 2001  

SciTech Connect

This report summarizes the activities of the first year of a three-year project to develop control software for micro-source distributed generation systems. The focus of this phase was on internal energy storage requirements, the modification of an off-the-shelf motor drive system inverter to supply utility-grade ac power, and a single inverter system operating in island mode. The report provides a methodology for determining battery energy storage requirements, a method for converting a motor drive inverter into a utility-grade inverter, and typical characteristics and test results of using such an inverter in a complex load environment.

Venkataramanan, G.; Illindala, M. S.; Houle, C.; Lasseter, R. H.

2002-11-01T23:59:59.000Z

295

Near Term Hybrid Passenger Vehicle Development Program. Phase I, Final report. Appendix C: preliminary design data package. Volume II. Appendices  

DOE Green Energy (OSTI)

This appendix to the final report on the Hybrid Passenger Vehicle Development Program contans data on Na-S batteries, Ni-Zn batteries; vehicle body design; tire characteristics; and results of computer simulations of vehicle yaw, pitch, and roll under various driving and aerodynamic conditions. (LCL)

Piccolo, R.

1979-09-11T23:59:59.000Z

296

Phase Diagrams  

Science Conference Proceedings (OSTI)

Mar 7, 2013 ... Computational Thermodynamics and Kinetics: Phase Diagrams ... TMS: Alloy Phases Committee, TMS: Chemistry and Physics of Materials...

297

Development of a methodology for defining whole-building energy design targets for commercial buildings: Phase 2, Development Concept Stage Report  

Science Conference Proceedings (OSTI)

This report documents eight tasks performed as part of the Whole-Building Energy Design Targets project, in which detailed conceptual approaches were produced for each element of the proposed Targets model. The eight task reports together describe the important modules proposed for inclusion in the Targets model: input module, energy module, characteristic development moduel, building cost module, analysis control module, energy cost module, search routines module, and economic analysis module. 16 refs., 16 figs., 5 tabs.

McKay, H.N. (Illuminating Engineering Society of North America, New York, NY (USA)); Deringer, J.J. (American Inst. of Architects, Washington, DC (USA)); Jones, J.W. (American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, GA (USA)); Hall, J.D. (Deringer Group, Riva, MD (USA))

1990-09-01T23:59:59.000Z

298

Development of a Standard Methodology for the Quantitative Measurement of Steel Phase Transformation Kinetics and Dilation Strains Using Dilatometric Methods, QMST (TRP 0015)  

Science Conference Proceedings (OSTI)

The purpose of this collaborative project was to develop a standard practice for obtaining and archiving quantitative steel transformation kinetic data and thermal strain data. Two families of dilatometric equipment were employed to develop this standard practice for testing bar product steels. These include high-speed quenching and deformation dilatometers and Gleeble{reg_sign} thermomechanical simulation instruments. Standard measurement, data interpretation and data reporting methods were developed and defined by the cross-industry QMST Consortium members consisting of steel-manufacturers, forgers, heat-treaters, modelers, automotive and heavy vehicle OEMs along with team expert technologists from the National Labs and academia. The team designed phase transformation experiments on two selected steel grades to validate the standard practices--a medium carbon grade SAE 1050 and an alloy steel SAE 8620. A final standard practice document was developed based on the two dilatometry methods, and was submitted to and approved by ASTM (available as A1033-04). The standard practice specifies a method for measuring austenite transformation under no elastic stress or plastic deformation. These methods will be an enabler for the development and electronic archiving of a quantitative database for process modeling using computer simulation software, and will greatly assist endusers in developing accurate process and product simulations during the thermo-mechanical processing of bar and rod product steels.

Dr. Manish Metha; Dr. Tom Oakwood

2004-04-28T23:59:59.000Z

299

Development of a 2-kilowatt high-reliability wind machine. Phase I. Design and analysis. Volume II. Technical report  

Science Conference Proceedings (OSTI)

A high reliability wind machine rated for 2 kW at 9 m/s has been designed to be cost-effective for remote site use. To meet or exceed environmental conditions as specified in Contract PF64410F, the resulting design defines a rugged, relatively simple wind machine. Rigorous fatigue analysis for structural components and development of redundant systems for electrical components led to an expected mean time between failures of 12.35 years. Approximately one year into the research and development program a completed design meeting contract stipulations is being submitted to the contract buyer. The design is for a horizontal axis, down-wind machine with two wooden blades spanning 5 meters diameter. Positive rotor speed control is accomplished through a centrifugally governed variable pitch stalling rotor. Design merits have been confirmed through dynamic truck testing.

Drake, W.; Clews, H.; Cordes, J.; Johnson, B.; Murphy, P.

1980-01-01T23:59:59.000Z

300

Development of a 2-kilowatt high-reliability wind machine. Phase I. Design and analysis. Volume I. Executive summary  

Science Conference Proceedings (OSTI)

A high reliability wind machine rated for 2 kW at 9 m/s has been designed to be cost-effective for remote site use. To meet or exceed environmental conditions as specified in Contract PF64410F, the resulting design defines a rugged, relatively simple wind machine. Rigorous fatigue analysis for structural components and development of redundant systems for electrical components led to an expected mean time between failures of 12.35 years. Approximately one year into the research and development program, a completed design meeting contract stipulations is being submitted to the contract buyer. The design is for a horizontal axis, down-wind machine with two wooden blades spanning 5 meters diameter. Positive rotor speed control is accomplished through a centrifugally governed variable pitch, stalling rotor. Design merits have been confirmed through dynamic truck testing.

Drake, W.; Clews, H.; Cordes, J.; Johnson, B.; Murphy, P.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "development phases techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Design and development of a continuously variable ratio transmission for an automotive vehicle. Phase IV. Quarterly progress report  

DOE Green Energy (OSTI)

Progress in the design and development of a continuously variable ratio transmission for an automotive vehicle is reported. The Major automotive hydromechanical transmission development problem continues to be the reduction of hydrostatic noise and the project plan, therefore, concentrated on the new hydrostatic module. The potential for achieving acceptably low noise levels in the second generation hydromechanical transmission is to be assessed by comparing the noise levels of the hydrostatic modules for the first and second generation transmissions. A set of twelve test points was selected comprising of road load steady state and wide-open-throttle acceleration at 10, 20, 30, 40, 50 and 60 mph. The module operating conditions for the two transmissions at each of these twelve points were calculated. Baseline noise data was measured on the first generation module. The results are given testing of co-axial hydrostatic module for second generation hydromechanical transmission will be emphasized. (LCL)

None

1978-05-31T23:59:59.000Z

302

Evaluation of storage/transportation options to support criteria development for the Phase I MRS (Monitored Retrievable Storage)  

SciTech Connect

The Department of Energy's (DOE) Office of Civilian Waste Management (OCRWM) plans to develop an interim storage facility to enable acceptance of spent fuel in 1998. It is estimated that this interim storage facility would be needed for about two years. A Monitored Retrievable Storage (MRS) facility is anticipated in 2000 and a repository in 2010. Acceptance and transport of spent fuel by DOE/OCRWM in 1998 will require an operating transportation system. Because this interim storage facility is not yet defined, development of an optimally compatible transportation system is not a certainty. In order to assure a transport capability for 1998 acceptance of spent fuel, it was decided that the OCRWM transportation program had to identify likely options for an interim storage facility, including identification of the components needed for compatibility between likely interim storage facility options and transportation. Primary attention was given to existing hardware, although conceptual designs were also considered. A systems-based probabilistic decision model was suggested by Sandia National Laboratories and accepted by DOE/OCRWM's transportation program. Performance of the evaluation task involved several elements of the transportation program. This paper describes the decision model developed to accomplish this task, along with some of the results and conclusions. 1 ref., 4 figs.

Sorenson, K.B.; Brown, N.N.; Bennett, P.C. (Sandia National Labs., Albuquerque, NM (USA)); Lake, W. (USDOE Office of Civilian Radioactive Waste Management, Washington, DC (USA))

1991-01-01T23:59:59.000Z

303

Evaluation of storage/transportation options to support criteria development for the Phase I MRS (Monitored Retrievable Storage)  

SciTech Connect

The Department of Energy's (DOE) Office of Civilian Waste Management (OCRWM) plans to develop an interim storage facility to enable acceptance of spent fuel in 1998. It is estimated that this interim storage facility would be needed for about two years. A Monitored Retrievable Storage (MRS) facility is anticipated in 2000 and a repository in 2010. Acceptance and transport of spent fuel by DOE/OCRWM in 1998 will require an operating transportation system. Because this interim storage facility is not yet defined, development of an optimally compatible transportation system is not a certainty. In order to assure a transport capability for 1998 acceptance of spent fuel, it was decided that the OCRWM transportation program had to identify likely options for an interim storage facility, including identification of the components needed for compatibility between likely interim storage facility options and transportation. Primary attention was given to existing hardware, although conceptual designs were also considered. A systems-based probabilistic decision model was suggested by Sandia National Laboratories and accepted by DOE/OCRWM's transportation program. Performance of the evaluation task involved several elements of the transportation program. This paper describes the decision model developed to accomplish this task, along with some of the results and conclusions. 1 ref., 4 figs.

Sorenson, K.B.; Brown, N.N.; Bennett, P.C. (Sandia National Labs., Albuquerque, NM (USA)); Lake, W. (USDOE Office of Civilian Radioactive Waste Management, Washington, DC (USA))

1991-01-01T23:59:59.000Z

304

Applied Science/Techniques  

NLE Websites -- All DOE Office Websites (Extended Search)

Applied Science/Techniques Print Applied Science/Techniques Print The ALS is an excellent incubator of new scientific techniques and instrumentation. Many of the technical advances that make the ALS a world-class soft x-ray facility are developed at the ALS itself. The optical components in use at the ALS-mirrors and lenses optimized for x-ray wavelengths-require incredibly high-precision surfaces and patterns (often formed through extreme ultraviolet lithography at the ALS) and must undergo rigorous calibration and testing provided by beamlines and equipment from the ALS's Optical Metrology Lab and Berkeley Lab's Center for X-Ray Optics. New and/or continuously improved experimental techniques are also a crucial element of a thriving scientific facility. At the ALS, examples of such "technique" highlights include developments in lensless imaging, soft x-ray tomography, high-throughput protein analysis, and high-power coherent terahertz radiation.

305

Development of an ultra-safe, ultra-low emissions natural gas-fueled bus. Phase 1: Systems design -- Final report  

DOE Green Energy (OSTI)

The National Renewable Energy Laboratory (NREL) contracted with Southwest Research Institute (SwRI) to develop an ultra-safe, ultra-low emissions natural gas-fueled school bus. To develop the bus, SwRI teamed with Blue Bird, Incorporated, a school bus manufacturer, Deere Power Systems Group, an engine manufacturer, and CNG Cylinder Company, a supplier of compressed natural gas storage and handling systems. The primary focus of work for Phase 1 was the design of the component systems, i.e. vehicle, engine, and fuel storage systems. The bus chassis prototype is expected to be completed by the middle of July, 1995. A complete prototype vehicle body and chassis should be delivered to SwRI by the beginning of December, 1995. This prototype vehicle will include the new compressed natural gas cylinders and associated fuel storage system hardware which has been designed by CNG Cylinder Company.

Kubesh, J. [Southwest Research Inst., San Antonio, TX (United States)

1995-05-01T23:59:59.000Z

306

Stored CO2 and Methane Leakage Risk Assessment and Monitoring Tool Development: CO2 Capture Project Phase 2 (CCP2)  

SciTech Connect

The primary project goal is to develop and test tools for optimization of ECBM recovery and geologic storage of CO{sub 2} in coalbeds, in addition to tools for monitoring CO{sub 2} sequestration in coalbeds to support risk assessment. Three critical topics identified are (1) the integrity of coal bed methane geologic and engineered systems, (2) the optimization of the coal bed storage process, and (3) reliable monitoring and verification systems appropriate to the special conditions of CO{sub 2} storage and flow in coals.

Dan Kieki

2008-09-30T23:59:59.000Z

307

"Development and Neutronic Validation of pelletized Cold and Very Cold Moderators for Pulsed Neutron Sources" Phase II Final report  

Science Conference Proceedings (OSTI)

Intense beams of cold neutrons are produced at several DOE facilities and are used by researchers to study the microscopic structure of materials. Energetic neutrons are produced by a high energy proton beam impacting a target. The fast neutrons are converted to the desired cold neutrons passing through a cryogenic moderator vessel, presently filled with dense cold hydrogen gas. Moderators made from solid methane have demonstrated superior performance to the hydrogen moderators but cannot be implemented on high power sources such as the SNS due to the difficulty of removing heat from the solid blocks of methane. Cryogenic Applications F, Inc has developed the methane pellet formation and transport technologies needed to produce a hydrogen cooled solid methane pellet moderator, potentially capable of being used in a high power spallation neutron facility. Such a methane pellet moderator could double the brightness of the neutron beam. Prior to this work a methane pellet moderator had not been produced or studied. The Indiana University LENS facility is a small pulsed neutron source used in part to study and develop cold neutron moderators. In this project cold neutrons were produced in a solid methane pellet moderator and analyzed with the LENS facility diagnostics. The results indicated that the neutron beam formed by the pellet moderator was similar to that of a solid methane block moderator.

Foster, Christopher; Baxter, David V

2012-11-17T23:59:59.000Z

308

Enertech 15-kW wind-system development: Phase I. Design and analysis. Volume I. Executive summary  

Science Conference Proceedings (OSTI)

A utility interfaced wind machine rated for 15 kW at 9 m/s (20.1 mph) has been designed to be cost effective in 5.4 m/s (12 mph) average wind sites. Approximately 18 months into the research and development program a completed design meeting contract specifications was submitted to the buyer. The design is for a horizontal axis, down wind machine which features three fixed pitch wood-epoxy blades and free yaw. Rotor diameter is 44 feet (13.4 meters). Unit shutdown is provided by an electrohydraulic brake. Blade tip brakes provide back-up rotor overspeed protection. Design merits have been verified through dynamic truck testing of a prototype unit.

Not Available

1981-09-01T23:59:59.000Z

309

Enertech 15-kW wind-system development. Phase I. Design and Analysis. Volume II. Technical report  

SciTech Connect

A utility interfaced wind machine rated for 15 kW at 9 m/s (20.1 mph) has been designed to be cost effective in 5.4 m/s (12 mph) average wind sites. Approximately 18 months into the research and development program a completed design meeting contract specifications was submitted to the buyer. The design is for a horizontal axis, down wind machine which features three fixed pitch wood-epoxy blades and free yaw. Rotor diameter is 44 feet (13.4 meters). Unit shutdown is provided by an electrohydraulic brake. Blade tip brakes provide back-up rotor overspeed protection. Design merits have been verified through dynamic truck testing of a prototype unit.

Dodge, D.M. (ed.)

1981-09-01T23:59:59.000Z

310

Development of standardized, low-cost AC PV systems. Phase I annual report, 7 September 1995--7 November 1996  

DOE Green Energy (OSTI)

The objectives of this two-year program are to improve the reliability and safety and reduce the cost of installed grid-connected PV systems by creating standardized, pre-engineered components and an enhanced, low-cost, 250-Watt micro inverter. These advances will be combined with the new, large area Solarex MSX-240 PV module resulting in standard, modular AC PV {open_quotes}building blocks{close_quotes} used to create utility-interactive PV systems as small as one module to many thousands of modules to suit virtually any application. AC PV building blocks will be developed to meet the requirements of the U.S., Japanese and European markets.

Strong, S.J.; Wohlgemuth, J.H.; Kaelin, M.

1997-06-01T23:59:59.000Z

311

Second-generation PFBC systems research and development: Phase 2, Best efficiency approach in light of current data  

SciTech Connect

The low-Btu gas is produced in the carbonizer by pyrolysis/mild devolatilization of coal in a fluidized bed reactor. Because this unit operates at temperatures much lower than gasifiers currently under development, it also produces char residue. Left untreated, the fuel gas will contain hydrogen sulfide and sulfur-containing tar/light oil vapors; therefore, lime-based sorbents are injected into the carbonizer to catalytically enhance tar cracking and to capture sulfur as calcium sulfide. Sulfur is captured in situ, and the raw fuel gas is fired hot. Thus expensive, complex, fuel gas heat exchangers and chemical or sulfur-capturing bed cleanup systems that are part of the coal gasification combined-cycle plants now being developed are eliminated. The char and calcium sulfide produced in the carbonizer and contained in the fuel gas as elutriated particles are captured by high-temperature filters, rendering the fuel gas essentially particulate-free and able to meet New Source Performance Standards (NSPS). The captured material, with carbonizer bed drains, is collected in a central hopper and injected into the CPFBC through a nitrogen-aerated non-mechanical valve. The high excess air in the combustor transforms the calcium sulfide to sulfate, allowing its disposal with the normal CPFBC spent sorbent. In the CPFBC, the burning char heats the high-excess-air flue gas to 1600{degree}F; any surplus heat is transferred to the FBHE by the recirculation of solids (sorbent and coal fly ash) between the two units. Controlled recirculation is accomplished with cyclone separators and non-mechanical valves. The FBHE contains tube surfaces that cool the circulating solids. Because of the low fluidizing velocity in the FBHE ({le} 1/2 ft/s), the risk of tube erosion is virtually eliminated.

Robertson, A.; Burkhard, F.; Carli, G. [and others

1993-09-01T23:59:59.000Z

312

Thin-film photovoltaic partnership -- Apollo{reg{underscore}sign} thin film process development: Phase 1 Technical Report, May 1998--April 1999  

DOE Green Energy (OSTI)

The objective of this Phase 1 subcontract was to establish an efficient production plating system capable of depositing thin-film CdTe and CdS on substrates up to 0.55 m{sup 2}. This baseline would then be used to build on and extend deposition areas to 0.94 m{sup 2} in the next two phases. The following achievements have been demonstrated: {sm{underscore}bullet} Chemical-bath deposition of CdS and electrochemical deposition of CdTe was demonstrated on 0.55 m{sup 2} substrates. The films were characterized using optical and electrical techniques, to increase the understanding of the materials and aid in loss analysis. {sm{underscore}bullet} A stand-alone, prototype CdTe reaction tank was built and commissioned, allowing the BP Solar team to perform full-scale trials as part of this subcontract. {sm{underscore}bullet} BP Solar installed two outdoor systems for reliability and performance testing. {sm{underscore}bullet} The 2-kW, ground-mounted, grid-connected system contains seventy-two 0.43-m{sup 2} Apollo{reg{underscore}sign} module interconnects. {sm{underscore}bullet} Two modules have been supplied to NREL for evaluation on their Performance and Energy Rating Test bed (PERT) for kWh evaluation. {sm{underscore}bullet} BP Solar further characterized the process waste stream with the aim to close-loop the system. Currently, various pieces of equipment are being investigated for suitability of particle and total organic compound removal.

Cunningham, D.W.; Skinner, D.E.

1999-10-26T23:59:59.000Z

313

Phase equilibrium and intermediate phases in the Eu-Sb system  

SciTech Connect

Rapid heating rate thermal analysis, X-ray diffraction, fluorescence spectrometry, and differential dissolution method were used to study the high-temperature phase equilibrium in the Eu-Sb system within the composition range between 37 and 96 at% Sb. The techniques were effective in determination of the vapor-solid-liquid equilibrium since intermediate phases except Eu{sub 4}Sb{sub 3} evaporated incongruently after melting. A thermal procedure was developed to determine the liquidus and solidus lines of the T-x diagram. Six stable phases were identified: two phases, EuSb{sub 2} and Eu{sub 4}Sb{sub 3}, melt congruently at 1045{+-}10 deg. C and 1600{+-}15 deg. C, the Eu{sub 2}Sb{sub 3}, Eu{sub 11}Sb{sub 10}, Eu{sub 5}Sb{sub 4}, and Eu{sub 5}Sb{sub 3} phases melt incongruently at 850{+-}8 deg. C, 950{+-}10 deg. C, 1350{+-}15 deg. C, and 1445{+-}15 deg. C, respectively. The exact composition shifting of Sb-rich decomposable phases towards Eu{sub 4}Sb{sub 3}, the most refractory compound, was determined. The topology of the Eu-Sb phase diagram was considered together with that of the Yb-Sb system. - Graphical abstract: The high-temperature range of the T-x phase diagram for the Eu-Sb system. Highlights: > The phase relations in the Eu-Sb system were studied over a large composition and temperature scale. > The liquidus and solidus lines of the T-x diagram were well established using effective techniques. > In the system, six binary phases are stable and they melt incongruently except EuSb{sub 2} and Eu{sub 4}Sb{sub 3}. > Incongruent evaporation was found to be typical of all the phases besides Eu{sub 4}Sb{sub 3}.

Abdusalyamova, M.N. [Institute of Chemistry of Tajik Academy of Sciences, Ajni Str. 299/2, 734063 Dushanbe (Tajikistan); Vasilyeva, I.G., E-mail: kamarz@niic.nsc.ru [Nikolaev Institute of Inorganic Chemistry, Russian Academy of Sciences, Siberian Branch, Lavrentiev Avenue, 3, 630090 Novosibirsk (Russian Federation)

2011-10-15T23:59:59.000Z

314

Development of a Commercial Process for the Production of Silicon Carbide Fibrils - Draft Phase II Final Report  

DOE Green Energy (OSTI)

The current work continues a project completed in 1999 by ReMaxCo Technologies in which a novel, microwave based, VLS Silicon Carbide Fibrils concept was verified. This project continues the process development of a pilot scale commercial reactor. Success will lead to sufficient quantities of fibrils to expand work by ORNL and others on heat exchanger tube development. A semi-continuous, microwave heated, vacuum reactor was designed, fabricated and tested in these experiments. Cylindrical aluminum oxide reaction boats are coated, on the inner surface, with a catalyst and placed into the reactor under a light vacuum. A series of reaction boats are then moved, one at a time, through the reactor. Each boat is first preheated with resistance heaters to 850 C to 900 C. Each reaction boat is then moved, in turn, to the microwave heated section. The catalyst is heated to the required temperature of 1200 C to 1300 C while a mixture of MTS (methyl trichlorosilane) and hydrogen are introduced into the annulus of the boat. The MTS is dissociated to allow the carbon and silicon components to be dissolved into the catalyst. The catalyst saturates and precipitates silicon carbide onto the surface of the reaction boat to grow the Fibrils. The reaction continues as long as the MTS is introduced into the reactor. The major obstacle that had to be overcome during this project was the performance of the reactor. The original design of the reactor focused the microwaves in such a manner that they missed the catalyst/Fibrils growth zone. The microwaves did react with the insulation and the reactor was heated by heating the insulation. Modifications were made to the reactor to focus the microwaves on the catalyst. SiC Fibrils were produced using both MTS and Starfire SP4000 as feed-gas precursors. Both precursors produced fibrils at temperatures of less than 1000 C. The new Starfire SP4000 produced fibrils as low as 800 C, without the use of hydrogen and without producing the hazardous hydrochloric acid. Experimental results and scanning electron microscopy of the Fibril products are presented. Future work to improve on these results is discussed.

Nixdorf, RD

2002-10-24T23:59:59.000Z

315

Development and testing of a high efficiency advanced coal combustor: Phase 3 industrial boiler retrofit. Final report  

SciTech Connect

Economics and/or political intervention may one day dictate the conversion from oil or natural gas to coal in boilers that were originally designed to burn oil or gas. In recognition of this future possibility the US Department of Energy, Federal Energy Technical Center (DOE-FETC) supported a program led by ABB Power Plant Laboratories with support from the Energy and Fuels Research Center of Penn State University with the goal of demonstrating the technical and economic feasibility of retrofitting a gas/oil designed boiler to burn micronized coal. In support of the overall goal the following specific objectives were targeted: develop a coal handling/preparation system that can meet the technical and operational requirements for retrofitting microfine coal on a boiler designed for burning oil or natural gas; maintain boiler thermal performance in accordance with specifications when burning oil or natural gas; maintain NOx emissions at or below 0.6 lb NO{sub 2} per million Btu; achieve combustion efficiencies of 98% or higher; and determine economic payback periods as a function of key variables.

Patel, R.L.; Thornock, D.E.; Miller, B.G.; Scaroni, A.W.; McGowan, J.G.

1998-03-01T23:59:59.000Z

316

Phase 1: conceptual design. Ocean thermal energy conversion power system development. Volume 2 of 3. Technical details. Final report  

DOE Green Energy (OSTI)

Westinghouse has completed the conceptual design of the Power System for the Ocean Thermal Energy Conversion (OTEC) Demonstration Plant project. This study included the development of a conceptual design for the following three items: first, a full-size power system module for the 100 MWe Demonstration Plant; second, a scaled proof of concept power system; and third, a heat exchanger test article. The study was limited to a closed cycle ammonia power system module, using a water temperature difference of 40/sup 0/F., and a surface platform/ship reference hull. Two power module of 50 MWe each are recommended for the demonstration plant. The 50 MWe module was selected since it has the lowest cost, and since it is of a size which convincingly demonstrates that future economically viable commercial plants, having reliable operation with credible anticipated costs, are possible. A modular, tube bundle approach to heat exchanger design makes large heat exchangers practical and economical. Other power module elements are considered to be within state-of-practice. Technological assessments of all subsystems indicate requirements for verification only, rather than continued research. A complete test program, which will verify the mechanical reliability as well as thermal performance, is recommended.

Not Available

1978-01-30T23:59:59.000Z

317

Analysis and development of a solar energy regenerated desiccant crop drying facility: Phase I. Final report, July 1976--April 1977  

DOE Green Energy (OSTI)

The results of a study to verify the technical feasibility of the regenerated desiccant crop drying concept, characterize its performance, investigate design requirements, and define a pilot facility for further evaluating the operational and energy-conservative characteristics of the drying system are documented. The pilot facility defined in this study will be a use R and D tool of sufficient size to permit a meaningful evaluation of the system and to provide the necessary criteria for development of full-scale systems. The principal finding of the study is that the regenerated desiccant crop drying concept is technically feasible and has the capability to achieve a drying efficiency of approximately twice that of conventional crop drying systems. When using a fossil fuel energy source, energy savings will be approximately 40 to 50%. With solar energy input, the total fossil fuel savings could be 70 to 90%. The economic feasibility of the system appears promising. As with other new energy conserving systems that are presently capital-intensive, the economic viability of the system will be dependent on future capital cost reductions, on the future price of fossil fuels, and on the specific application of the system. Regarding system applications, it was concluded that the regenerated desiccant drying system, with or without the use of solar energy, will be economically best suited for a large central processing application, where it can receive a maximum amount of use and will benefit from economy-of-scale cost considerations. The basic study recommendations are: (1) additional R and D activities should be conducted to identify and evaluate means for achieving system cost reductions, and (2) the Mobile Pilot Facility program should be initiated.

Ko, S.M.; Merrifield, D.V.; Fletcher, J.W.

1977-04-01T23:59:59.000Z

318

Robustness of phase retrieval methods in x-ray phase contrast imaging: A comparison  

SciTech Connect

Purpose: The robustness of the phase retrieval methods is of critical importance for limiting and reducing radiation doses involved in x-ray phase contrast imaging. This work is to compare the robustness of two phase retrieval methods by analyzing the phase maps retrieved from the experimental images of a phantom. Methods: Two phase retrieval methods were compared. One method is based on the transport of intensity equation (TIE) for phase contrast projections, and the TIE-based method is the most commonly used method for phase retrieval in the literature. The other is the recently developed attenuation-partition based (AP-based) phase retrieval method. The authors applied these two methods to experimental projection images of an air-bubble wrap phantom for retrieving the phase map of the bubble wrap. The retrieved phase maps obtained by using the two methods are compared. Results: In the wrap's phase map retrieved by using the TIE-based method, no bubble is recognizable, hence, this method failed completely for phase retrieval from these bubble wrap images. Even with the help of the Tikhonov regularization, the bubbles are still hardly visible and buried in the cluttered background in the retrieved phase map. The retrieved phase values with this method are grossly erroneous. In contrast, in the wrap's phase map retrieved by using the AP-based method, the bubbles are clearly recovered. The retrieved phase values with the AP-based method are reasonably close to the estimate based on the thickness-based measurement. The authors traced these stark performance differences of the two methods to their different techniques employed to deal with the singularity problem involved in the phase retrievals. Conclusions: This comparison shows that the conventional TIE-based phase retrieval method, regardless if Tikhonov regularization is used or not, is unstable against the noise in the wrap's projection images, while the AP-based phase retrieval method is shown in these experiments to be superior to the TIE-based method for the robustness in performing the phase retrieval.

Yan, Aimin; Wu, Xizeng; Liu, Hong [Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35233 (United States); Center for Bioengineering and School of Electrical and Computer Engineering, University of Oklahoma, Norman, Oklahoma 73019 (United States)

2011-09-15T23:59:59.000Z

319

Phase five  

NLE Websites -- All DOE Office Websites (Extended Search)

Phase five Phase five 1663 Los Alamos science and technology magazine Latest Issue:November 2013 All Issues » submit Phase five Los Alamos physicists have conclusively demonstrated the existence of a new phase of matter. November 25, 2013 Phase five Scientists still have more to learn about the exotic physics of specialty materials. What makes the cuprates special? How about a new phase of matter. Ceramic metals known as cuprates have mystified physicists for decades. They exhibit a variety of distinct phases of matter, each with its own specific properties, including a phase bearing an exotic type of magnetism, a high-temperature superconducting phase, an ordinary metal phase, a poorly understood and weird metallic phase simply called a strange metal, and an equally poorly understood metallic phase known as the pseudogap. The

320

Development of an 8 kW wind turbine generator for residential type applications. Phase I: design and analysis. Volume II. Technical report  

SciTech Connect

This Phase I summary report contains a description of the 8 kW wind energy conversion system developed by the United Technologies Research Center (UTRC) for the Department of Energy. The wind turbine employs the UTRC Bearingless Rotor Concept in conjunction with a passive pendulum control system which controls blade pitch for start-up, efficient power generation, and high-speed survivability. The report contains a summary of the experimental and analytical programs in support of design efforts. These supporting programs include materials tests, a wind tunnel program, and aeroelastic analyses to evaluate system stability. An estimate is also made of the projected manufacturing cost of the system if produced in quantity.

Cheney, M.C.

1979-06-25T23:59:59.000Z

Note: This page contains sample records for the topic "development phases techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

CATALYST ACTIVITY MAINTENANCE FOR THE LIQUID PHASE SYNTHESIS GAS-TO-DIMETHYL ETHER PROCESS PART II: DEVELOPMENT OF ALUMINUM PHOSPHATE AS THE DEHYDRATION CATALYST FOR THE SINGLE-STEP LIQUID PHASE SYNGAS-TO-DME PROCESS  

DOE Green Energy (OSTI)

At the heart of the single-step liquid phase syngas-to-DME process (LPDME{trademark}) is a catalyst system that can be active as well as stable. In the Alternative Fuels I program, a dual-catalyst system containing a Cu-based commercial methanol synthesis catalyst (BASF S3-86) and a commercial dehydration material ({gamma}-alumina) was demonstrated. It provided the productivity and selectivity expected from the LPDME process. However, the catalyst system deactivated too rapidly to warrant a viable commercial process [1]. The mechanistic investigation in the early part of the DOE's Alternative Fuels II program revealed that the accelerated catalyst deactivation under LPDME conditions is due to detrimental interaction between the methanol synthesis catalyst and methanol dehydration catalyst [2,3]. The interaction was attributed to migration of Cu- and/or Zn-containing species from the synthesis catalyst to the dehydration catalyst. Identification of a dehydration catalyst that did not lead to this detrimental interaction while retaining adequate dehydration activity was elusive. Twenty-nine different dehydration materials were tested, but none showed the desired performance [2]. The search came to a turning point when aluminum phosphate was tested. This amorphous material is prepared by precipitating a solution containing Al(NO{sub 3}){sub 3} and H{sub 3}PO{sub 4} with NH{sub 4}OH, followed by washing, drying and calcination. The aluminum phosphate catalyst has adequate dehydration activity and good stability. It can co-exist with the Cu-based methanol synthesis catalyst without negatively affecting the latter catalyst's stability. This report documents the details of the development of this catalyst. These include initial leads, efforts in improving activity and stability, investigation and development of the best preparation parameters and procedures, mechanistic understanding and resulting preparation guidelines, and the accomplishments of this work.

Xiang-Dong Peng

2002-05-01T23:59:59.000Z

322

Phase 3 of a Brushless Doubly-Fed Machine System Development Program : Final Technical Report for Period January 1, 1992-June 30, 1993.  

DOE Green Energy (OSTI)

Since the inception of the BDFM development program in 1989, the value of BDFM technology has become apparent. The BDFM provides for adjustable speed, synchronous operation while keeping costs associated with the required power conversion equipment lower than in competing technologies. This provides for an advantage in initial as well as maintenance expenses over conventional drive system. Thus, the BDFM enables energy efficient, adjustable speed process control for applications where established drive technology has not been able to deliver satisfactory returns on investment. At the same time, the BDFM challenges conventional drive technologies in established markets by providing for improved performance at lower cost. BDFM converter rating is kept at a minimum, which significantly improves power quality at the utility interface over competing power conversion equipment. In summary, BDFM technology can be expected to provide significant benefits to utilities as well as their customers. This report discusses technical research and development activities related to Phase 3 of the Brushless Doubly-Fed Machine System Development Program, including work made possible by supplemental funds for laboratory improvement and prototype construction. Market research for the BDFM was provided by the College of Business at Oregon State University; market study results will be discussed in a separate report.

Alexander, Gerald C.; Spee, Rene; Wallace, Alan K.

1993-12-31T23:59:59.000Z

323

Process Development for CIGS-Based Thin-Film Photovoltaic Modules; Phase I Technical Report, 5 February 1998--4 February 1999  

DOE Green Energy (OSTI)

This report describes work performed by Global Solar Energy (GSE) under Phase I of this subcontract. GSE has initiated an extensive and systematic plan to accelerate the commercialization of thin-film photovoltaics (PV) on copper indium gallium diselenide (CIGS). GSE is developing the technology to deposit and monolithically integrate CIGS photovoltaics on a flexible substrate. CIGS-deposited on flexible substrates can be fabricated into either flexible or rigid modules. Low-cost, rigid PV panels for remote power, bulk/utility, telecommunications, and rooftop applications will be produced by affixing the flexible CIGS to an expensive rigid panel by lamination or adhesive. In the GSE approach, long (up to 700 m) continuous rolls of substrate are processed, as opposed to individual small glass plates. In combination with roll-to-roll processing, GSE is developing evaporation deposition operations that enable low-cost and high-efficiency CIGS modules. Efforts are under way to transition the CIGS deposition process into manufacturing at GSE. CIGS process development is focused on synchronizing the operation of the effusion sources, the Se delivery profile, substrate temperature, and a host of other parameters. GSE has selected an interconnect scheme and procured, installed, and tested the equipment necessary to implement the cell interconnection for thin-film CIGS modules on a polyimide substrate.

Britt, J., Wiedeman, S.; Wendt, R.; Albright, S.

1999-09-13T23:59:59.000Z

324

Using Structured Interviewing Techniques  

E-Print Network (OSTI)

GAO assists congressional decisionmakers in their deliberative process by furnishing analytical information on issues and options under consideration. Many diverse methodologies are needed to develop sound and timely answers to the questions that are posed by the Congress. To provide GAO evaluators with basic information about the more commonly used methodologies, GAOs policy guidance includes documents such as methodology transfer papers and technical guidelines, This methodology transfer paper on using structured interviewing techniques discusses how GAO evaluators should incorporate structured interview techniques when appropriate to performing our work. It explains when these techniques should be

Gao/pemd-. Preface; Werner Grosshans

1991-01-01T23:59:59.000Z

325

Definition: Modeling Techniques | Open Energy Information  

Open Energy Info (EERE)

Modeling Techniques Techniques that involve collecting data from one or more sources and developing a comprehensive representation of the data in a model View on...

326

Development of asphalts and pavements using recycled tire rubber. Phase 1, Technical feasibility. Technical progress report, September 1, 1994--August 31, 1995  

Science Conference Proceedings (OSTI)

About 285 million tires are discarded every year; less than 100 million are currently being recycled, with the rest being placed in landfills and other waste sites. A solution to reduce the littering of the environment is to use ground tire rubber in road construction. Currently, about 27 million tons of asphalt are used each year in road construction and maintenance of the country`s 2 million miles of roads. If all of the waste tire rubber could be combined with asphalt in road construction, it would displace less than 6% of the total asphalt used each year, yet could save about 60 trillion Btus annually. Purpose of this project is to provide data needed to optimize the performance of rubber-asphalt concretes. The first phase is to develop asphalts and recycling agents tailored for compatibility with ground tire rubber. Chapter 2 presents results on Laboratory Testing and Evaluation: fractionate asphalt material, reblending for aromatic asphalts, verifying optimal curing parameters, aging of blends, and measuring ductilities of asphalt-rubber binders. Chapter 3 focuses on Evaluating Mixture Characteristics (modified binders). Chapter 4 covers Adhesion Test Development (water susceptibility is also covered). The final chapter focuses on the Performance/Economic Update and Commercialization Plan.

Bullin, J.A.; Davison, R.R.; Glover, C.J. [and others

1996-06-01T23:59:59.000Z

327

Property:GEADevelopmentPhase | Open Energy Information  

Open Energy Info (EERE)

GEADevelopmentPhase GEADevelopmentPhase Jump to: navigation, search Property Name GEADevelopmentPhase Property Type Page Description GEA Development Phase, as characterized by their Annual U.S. Geothermal Power Production and Development Report. See GEA_Development_Phases Allows Values Phase I - Resource Procurement and Identification;Phase II - Resource Exploration and Confirmation;Phase III - Permitting and Initial Development;Phase IV - Resource Production and Power Plant Construction Subproperties This property has the following 77 subproperties: A Abraham Hot Springs Geothermal Area Adak Geothermal Area Akun Strait Geothermal Area Akutan Fumaroles Geothermal Area Alum Geothermal Area Alvord Hot Springs Geothermal Area Amedee Geothermal Area Arrowhead Hot Springs Geothermal Area

328

Thin Film Materials and Processing Techniques for a Next Generation Photovoltaic Device: Cooperative Research and Development Final Report, CRADA Number CRD-12-470  

DOE Green Energy (OSTI)

This research extends thin film materials and processes relevant to the development and production of a next generation photovoltaic device.

van Hest, M.

2013-08-01T23:59:59.000Z

329

Development of a Hydrogasification Process for Co-Production of Substitute Natural Gas (SNG) and Electric Power from Western Coals-Phase I  

DOE Green Energy (OSTI)

The Advanced Hydrogasification Process (AHP)--conversion of coal to methane--is being developed through NETL with a DOE Grant and has successfully completed its first phase of development. The results so far are encouraging and have led to commitment by DOE/NETL to begin a second phase--bench scale reactor vessel testing, expanded engineering analysis and economic perspective review. During the next decade new means of generating electricity, and other forms of energy, will be introduced. The members of the AHP Team envision a need for expanded sources of natural gas or substitutes for natural gas, to fuel power generating plants. The initial work the team has completed on a process to use hydrogen to convert coal to methane (pipeline ready gas) shows promising potential. The Team has intentionally slanted its efforts toward the needs of US electric utilities, particularly on fuels that can be used near urban centers where the greatest need for new electric generation is found. The process, as it has evolved, would produce methane from coal by adding hydrogen. The process appears to be efficient using western coals for conversion to a highly sought after fuel with significantly reduced CO{sub 2} emissions. Utilities have a natural interest in the preservation of their industry, which will require a dramatic reduction in stack emissions and an increase in sustainable technologies. Utilities tend to rank long-term stable supplies of fuel higher than most industries and are willing to trade some ratio of cost for stability. The need for sustainability, stability and environmentally compatible production are key drivers in the formation and progression of the AHP development. In Phase II, the team will add a focus on water conservation to determine how the basic gasification process can be best integrated with all the plant components to minimize water consumption during SNG production. The process allows for several CO{sub 2} reduction options including consumption of the CO{sub 2} in the original process as converted to methane. The process could under another option avoid emissions following the conversion to SNG through an adjunct algae conversion process. The algae would then be converted to fuels or other products. An additional application of the algae process at the end use natural gas fired plant could further reduce emissions. The APS team fully recognizes the competition facing the process from natural gas and imported liquid natural gas. While we expect those resources to set the price for methane in the near-term, the team's work to date indicates that the AHP process can be commercially competitive, with the added benefit of assuring long-term energy supplies from North American resources. Conversion of coal to a more readily transportable fuel that can be employed near load centers with an overall reduction of greenhouses gases is edging closer to reality.

Raymond Hobbs

2007-05-31T23:59:59.000Z

330

Feasibility study: Application of RCM techniques for substation maintenance at the Bonneville Power Administration  

Science Conference Proceedings (OSTI)

This feasibility study examines reliability centered maintenance (RCM) as it applies to Bonneville Power Administrations (BPA) substation maintenance program. Reliability techniques are examined in evaluated. Existing BPA equipment maintenance procedures are documented. Equipment failure history is considered. Economic impacts are estimated. Various equipment instrumentation methods are reviewed. Based on this analysis a prototype system is proposed. The prototype will be implemented in two phases. Phase 1 is to be completed in 1992, it includes instrumenting one power transformer and one oil circuit breaker. Software development will focus on displaying data. Phase 2 is to be completed the following year. The remaining transformers and breakers will be instrumented during the second phase. Software development will focus on predictive maintenance techniques and maintenance decision support.

Purucker, S.L.; Tonn, B.E.; Goeltz, R.T.; James, R.D.; Kercel, S.; Rizy, D.T.; Simpson, M.L.; Van Dyke, J.W.

1992-05-28T23:59:59.000Z

331

Amine templated zinc phosphates phases for membrane separations  

Science Conference Proceedings (OSTI)

This research is focused on developing inorganic molecular sieve membranes for light gas separations such as hydrogen recovery and natural gas purification, and organic molecular separations, such as chiral enantiomers. The authors focus on zinc phosphates because of the ease in crystallization of new phases and the wide range of pore sizes and shapes obtained. With hybrid systems of zinc phosphate crystalline phases templated by amine molecules, the authors are interested in better understanding the association of the template molecules to the inorganic phase, and how the organic transfers its size, shape, and (in some cases) chirality to the bulk. Furthermore, the new porous phases can also be synthesized as thin films on metal oxide substrates. These films allow one to make membranes from organic/inorganic hybrid systems, suitable for diffusion experiments. Characterization techniques for both the bulk phases and the thin films include powder X-ray diffraction, TGA, Scanning Electron Micrograph (SEM) and Electron Dispersive Spectrometry (EDS).

Nenoff, T.M.; Chavez, A.V.; Thoma, S.G.; Provencio, P. [Sandia National Labs., Albuquerque, NM (United States); Harrison, W.T.A. [Univ. of Western Australia, Nedlands (Australia); Phillips, M.L.F. [Gemfire Corp., Palo Alto, CA (United States)

1998-08-01T23:59:59.000Z

332

Offshore underbalanced drilling system could revive field developments. Part 2: Making this valuable reservoir drilling/completion technique work on a conventional offshore drilling platform  

Science Conference Proceedings (OSTI)

Part 1, presented in the July issue, discussed the emerging trend to move underbalanced drilling (UBD) operations into the offshore arena, following its successful application in many onshore areas. This concluding article delves into the details of applying UBD offshore. Starting with advantages the technique offers in many maturing or complex/marginal prospects, the UBD system for offshore platforms use is described. This involves conversion of the conventional rotary system, use of rotating diverters, design of the surface fluid separation system and the necessary gas (nitrogen or natural gas) injection system to lighten the fluid column. Commonly faced operational challenges for offshore UBD are listed along with recommended solutions.

Nessa, D.O.; Tangedahl, M.J.; Saponja, J.

1997-10-01T23:59:59.000Z

333

UPVG phase 2 report  

DOE Green Energy (OSTI)

The Utility PhotoVoltaic Group (UPVG), supported by member dues and a grant from the US Department of Energy, has as its mission the acceleration of the use of cost-effective small-scale and emerging large-scale applications of photovoltaics for the benefit of electric utilities and their customers. Formed in October, 1992, with the support of the American Public Power Association, Edison Electric Institute, and the National Rural Electric Cooperative Association, the UPVG currently has 90 members from all sectors of the electric utility industry. The UPVG`s efforts as conceived were divided into four phases: Phase 0--program plan; Phase 1--organization and strategy development; Phase 2--creating market assurance; and Phase 3--higher volume purchases. The Phase 0 effort developed the program plan and was completed early in 1993. The Phase 1 goal was to develop the necessary background information and analysis to lead to a decision as to which strategies could be undertaken by utilities to promote greater understanding of PV markets and achieve increased volumes of PV purchases. This report provides the details of the UPVG`s Phase 2 efforts to initiate TEAM-UP, its multiyear, 50-MW hardware initiative.

NONE

1995-08-01T23:59:59.000Z

334

NGNP PHASE I REVIEW  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

REVIEW REVIEW NEAC REACTOR TECHNOLOGY SUBCOMMITTEE FINAL REPORT JUNE 15, 2011 EPACT 2005 REQUIREMENTS * FIRST PROJECT PHASE REVIEW-On a determination by the Secretary that the appropriate activities under the first project phase under subsection (b)(1) are nearly complete, the Secretary shall request the NERAC to conduct a comprehensive review of the Project and to report to the Secretary the recommendation of the NERAC concerning whether the Project is ready to proceed to the second project phase under subsection (b)(2) NGNP PROJECT PHASES (1) FIRST PHASE.-A first project phase shall be conducted to- (A) select and validate the appropriate technology under subsection (a)(1); (B) carry out enabling research, development, and demonstration activities on technologies and components under

335

Microscopy Technique Could Help Computer Industry ...  

Science Conference Proceedings (OSTI)

Microscopy Technique Could Help Computer Industry Develop 3-D Components. From NIST Tech Beat: June 25, 2013. ...

2013-06-25T23:59:59.000Z

336

Development and testing of a high efficiency advanced coal combustor: Phase 3, industrial boiler retrofit. Quarterly technical progress report number 12, July 1, 1994--September 30, 1994  

SciTech Connect

The objective of this project is to retrofit the previously developed High Efficiency Advanced Coal Combustor (HEACC) to a standard gas/oil designed industrial boiler to assess the technical and economic viability of displacing premium fuels with microfine coal. During this reporting period, data reduction/evaluation and interpretation from the long term four hundred hours Proof-of-Concept System Test under Task 3 were completed. Cumulatively, a total of approximately 563 hours of coal testing was performed with 160 hrs on 100% coal and over 400 hours with co-firing coal and gas. The primary objectives of this testing were to: (1) obtain steady state operation consistently on 100% coal; (2) increase carbon conversion efficiency from 95% to the project goal of 98%; and (3) maintain NOx emissions at or below 0.6 lbs/MBtu. The following specific conclusions are based on results of coal-fired testing at Penn State and the initial economic evaluation of the HEACC system: a coal handling/preparation system can be designed to meet the technical requirements for retrofitting microfine coal combustion to a gas/oil-designed boiler; the boiler thermal performance requirements were met; the NOx emission target of was met; combustion efficiencies of 95% could be met on a daily average basis, somewhat below the target of 98%; the economic playback is very sensitive to fuel differential cost, unit size, and annual operating hours; continuous long term demonstration is needed to quantify ash effects and how to best handle ashes. The following modifications are recommended prior to the 1,000 hour demonstration phase testing: (1) coal feeding improvements--improved raw coal/storage and transport, installation of gravimetric feeder, and redesign/installation of surge bin bottom; (2) burner modification--minor modification to the tip of the existing HEACC burner to prevent change of flame shapes for no apparent reason.

Patel, R.L.; Borio, R. [ABB/Combustion Engineering, Windsor, CT (United States). Power Plant Labs.; Scaroni, A.W.; Miller, B.G. [Pennsylvania State Univ., University Park, PA (United States); McGowan, J.G. [Univ. of Massachusetts, Amherst, MA (United States)

1994-11-18T23:59:59.000Z

337

The Importance of Fourier Phases for the Morphology of Gravitational Clustering  

E-Print Network (OSTI)

The phases of the Fourier modes appearing in a plane-wave expansion of cosmological density fields play a vital role in determining the morphology of gravitationally-developed clustering. We demonstrate this qualitatively and quantitatively using simulations. In particular, we use cross-correlation and rank-correlation techniques to quantify the agreement between a simulated distribution and phase-only reconstructions. The phase-only reconstructions exhibit a high degree of correlation with the original distributions, showing how meaningful spatial reconstruction of cosmological density fields depends more on phase accuracy than on amplitudes.

Chiang, L Y

2001-01-01T23:59:59.000Z

338

PHASE DETECTOR  

DOE Patents (OSTI)

A phase detector circuit is described for use at very high frequencies of the order of 50 megacycles. The detector circuit includes a pair of rectifiers inverted relative to each other. One voltage to be compared is applied to the two rectifiers in phase opposition and the other voltage to be compared is commonly applied to the two rectifiers. The two result:ng d-c voltages derived from the rectifiers are combined in phase opposition to produce a single d-c voltage having amplitude and polarity characteristics dependent upon the phase relation between the signals to be compared. Principal novelty resides in the employment of a half-wave transmission line to derive the phase opposing signals from the first voltage to be compared for application to the two rectifiers in place of the transformer commonly utilized for such purpose in phase detector circuits for operation at lower frequency.

Kippenhan, D.O.

1959-09-01T23:59:59.000Z

339

Results of the development and field demonstration program on cavitation descaling techniques for pipes and tubes used in geothermal energy plants. Volume I  

SciTech Connect

The conversion of geothermal energy into usable electrical power has become increasingly important to the overall national energy needs. A major area of technical interest which has resulted from the initial development of geothermal power plants is the scale formation developed in the facility pipes and related components. This scale formation is due to the concentration of minerals in the geothermal water and steam. The current state-of-technology utilized for descaling consists of a combination of sandblasting, water blasting, acid soaking and scraping. These cleaning methods, used individually or collectively, do not provide an acceptable descaling operation due to excessive facility downtime and cost.

Graham, F.C.; Thiruvengadam, A.P.; Hochrein, A.A., Jr.

1978-05-22T23:59:59.000Z

340

Adversary phase change detection using SOMs and text data.  

SciTech Connect

In this work, we developed a self-organizing map (SOM) technique for using web-based text analysis to forecast when a group is undergoing a phase change. By 'phase change', we mean that an organization has fundamentally shifted attitudes or behaviors. For instance, when ice melts into water, the characteristics of the substance change. A formerly peaceful group may suddenly adopt violence, or a violent organization may unexpectedly agree to a ceasefire. SOM techniques were used to analyze text obtained from organization postings on the world-wide web. Results suggest it may be possible to forecast phase changes, and determine if an example of writing can be attributed to a group of interest.

Speed, Ann Elizabeth; Doser, Adele Beatrice; Warrender, Christina E.

2010-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "development phases techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Development of improved processing and evaluation methods for high reliability structural ceramics for advanced heat engine applications, Phase 1. Final report  

DOE Green Energy (OSTI)

The program goals were to develop and demonstrate significant improvements in processing methods, process controls and non-destructive evaluation (NDE) which can be commercially implemented to produce high reliability silicon nitride components for advanced heat engine applications at temperatures to 1,370{degrees}C. The program focused on a Si{sub 3}N{sub 4}-4% Y{sub 2}O{sub 3} high temperature ceramic composition and hot-isostatic-pressing as the method of densification. Stage I had as major objectives: (1) comparing injection molding and colloidal consolidation process routes, and selecting one route for subsequent optimization, (2) comparing the performance of water milled and alcohol milled powder and selecting one on the basis of performance data, and (3) adapting several NDE methods to the needs of ceramic processing. The NDE methods considered were microfocus X-ray radiography, computed tomography, ultrasonics, NMR imaging, NMR spectroscopy, fluorescent liquid dye penetrant and X-ray diffraction residual stress analysis. The colloidal consolidation process route was selected and approved as the forming technique for the remainder of the program. The material produced by the final Stage II optimized process has been given the designation NCX 5102 silicon nitride. According to plan, a large number of specimens were produced and tested during Stage III to establish a statistically robust room temperature tensile strength database for this material. Highlights of the Stage III process demonstration and resultant database are included in the main text of the report, along with a synopsis of the NCX-5102 aqueous based colloidal process. The R and D accomplishments for Stage I are discussed in Appendices 1--4, while the tensile strength-fractography database for the Stage III NCX-5102 process demonstration is provided in Appendix 5. 4 refs., 108 figs., 23 tabs.

Pujari, V.K.; Tracey, D.M.; Foley, M.R.; Paille, N.I.; Pelletier, P.J.; Sales, L.C.; Wilkens, C.A.; Yeckley, R.L. [Norton Co., Northboro, MA (United States)

1993-08-01T23:59:59.000Z

342

Flip-chip and backside techniques.  

SciTech Connect

State-of-the-art techniques for failure localization and design modification through bulk silicon are essential for multi-level metallization and new, flip chip packaging methods. The tutorial reviews the transmission of light through silicon, sample preparation, and backside defect localization techniques that are both currently available and under development. The techniques covered include emission microscopy, scanning laser microscope based techniques (electrooptic techniques, LIVA and its derivatives), and other non-IR based tools (FIB, e-beam techniques, etc.).

Bernhard-Hofer, Karoline (Infineon, Regensburg, Germany); Barton, Daniel Lee; Cole, Edward Isaac, Jr.

2010-08-01T23:59:59.000Z

343

Automated Phase Design and Timing Adjustment for Signal Phase Design  

Science Conference Proceedings (OSTI)

In this paper we describe the design processes of human traffic engineers and the development of an automated system that solves the problem of timing adjustment in signal phase sequence design. i>Signal phase sequencing refers to the sequence of ... Keywords: automated design, case-based reasoning, signal phase design, traffic management

L. Wang; C. C. Hayes; R. R. Penner

2001-06-01T23:59:59.000Z

344

Technique Reveals Critical Physics in Deep Regions of Solar Cells (Fact Sheet), NREL Highlights in Research & Development, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

NREL's improved time-resolved photoluminescence NREL's improved time-resolved photoluminescence method measures minority-carrier lifetime deep within photovoltaic samples to help develop more efficient solar cells. When developing a solar photovoltaic (PV) cell, designers benefit from having tools that can characterize bulk properties of samples. For measuring minority-carrier lifetime, analysis tools such as time-resolved photoluminescence (TRPL) are available. Unfortunately, meth- ods that use above-bandgap laser excitation are dominated by surface effects because of the very strong absorption and very shallow penetration depth of above-bandgap excita- tion. Therefore, the near-surface region of the sample can be examined, but the bulk proper- ties are usually dominated by the effects of the surface.

345

Development of an x-ray fluorescence microprobe at the National Synchrotron Light Source, Brookhaven National Laboratory: Early results: Comparison with data from other techniques  

SciTech Connect

Theoretical predictions for the detection levels in x-ray fluorescence analysis with a synchrotron storage ring are being achieved experimentally at several laboratories. This paper is deliberately restricted to the state of development of the Brookhaven National Laboratory/University of Chicago instruments. Analyses at the parts per million (ppM) level are being made using white light apertured to 20 ..mu..m and an energy dispersive system. This system is particularly useful for elements with Z > 20 in materials dominated by elements with Z < 20. Diffraction causes an interference for crystalline materials. Development of a focusing microprobe for tunable monochromatic x-rays and a wavelength dispersive spectrometer (WDS) is delayed by problems in shaping an 8:1 focusing mirror to the required accuracy. Reconnaissance analyses with a wiggler source on the CHESS synchrotron have been made in the K spectrum up to Z = 80.

Smith, J.V.; Rivers, M.L.; Sutton, S.R.; Jones, K.W.; Hanson, A.L.; Gordon, B.M.

1986-01-01T23:59:59.000Z

346

Resin infiltration transfer technique  

DOE Patents (OSTI)

A process has been developed for fabricating composite structures using either reaction forming or polymer infiltration and pyrolysis techniques to densify the composite matrix. The matrix and reinforcement materials of choice can include, but are not limited to, silicon carbide (SiC) and zirconium carbide (ZrC). The novel process can be used to fabricate complex, net-shape or near-net shape, high-quality ceramic composites with a crack-free matrix.

Miller, David V. (Pittsburgh, PA); Baranwal, Rita (Glenshaw, PA)

2009-12-08T23:59:59.000Z

347

Ocean thermal energy conversion (OTEC) power system development utilizing advanced, high-performance heat transfer techniques. Volume 1. Conceptual design report  

DOE Green Energy (OSTI)

The objective of this project is the development of a preliminary design for a full-sized, closed cycle, ammonia power system module for the 100 MWe OTEC Demonstration Plant. In turn, this Demonstration Plant is to demonstrate, by 1984, the operation and performance of an ocean thermal power plant having sufficiently advanced heat exchanger design to project economic viability for commercial utilization in the late 1980's and beyond. Included in this power system development are the preliminary designs for a proof-of-concept pilot plant and test article heat exchangers which are scaled in such a manner as to support a logically sequential, relatively low-cost development of the full-scale power system module. The conceptual designs are presented for the Demonstration Plant power module, the proof-of-concept pilot plant, and for a pair of test article heat exchangers. Costs associated with the design, development, fabrication, checkout, delivery, installation, and operation are included. The accompanying design and producibility studies on the full-scale power system module project the performance/economics for the commercial plant. This section of the report describes the full-size power system module, and summarizes the design parameters and associated costs for the Demonstration Plant module (prototype) and projects costs for commercial plants in production. The material presented is directed primarily toward the surface platform/ship basic reference hull designated for use during conceptual design; however, other containment vessels were considered during the design effort so that the optimum power system would not be unduly influenced or restricted. (WHK)

Not Available

1978-05-12T23:59:59.000Z

348

Liquid phase Fischer-Tropsch (II) demonstration in the LaPorte Alternative Fuels Development Unit. Volume 1/2, Main Report. Final report  

DOE Green Energy (OSTI)

This report presents results from a demonstration of Liquid Phase Fischer-Tropsch (LPFT) technology in DOE`s Alternative Fuels Development Unit (AFDU) at LaPorte, Texas. The run was conducted in a bubble column at the AFDU in May--June 1994. The 10-day run demonstrated a very high level of reactor productivity for LPFT, more than five times the previously demonstrated productivity. The productivity was constrained by mass transfer limitations, perhaps due to slurry thickening as a result of carbon formation on the catalyst. With a cobalt catalyst or an improved iron catalyst, if the carbon formation can be avoided, there is significant room for further improvements. The reactor was operated with 0.7 H{sub 2}/CO synthesis gas in the range of 2400--11700 sl/hr-kg Fe, 175--750 psig and 270--300C. The inlet gas velocity ranged from 0.19 to 0.36 ft/sec. The demonstration was conducted at a pilot scale of 5 T/D. Catalyst activation with CO/N{sub 2} proceeded well. Initial catalyst activity was close to the expectations from the CAER autoclave runs. CO conversion of about 85% was obtained at the baseline condition. The catalyst also showed good water-gas shift activity and a low {alpha}. At high productivity conditions, reactor productivity of 136 grams of HC/hr -- liter of slurry volume was demonstrated, which was within the target of 120--150. However, mass transfer limitations were observed at these conditions. To alleviate these limitations and prevent excessive thickening, the slurry was diluted during the run. This enabled operations under kinetic control later in the run. But, the dilution resulted in lower conversion and reactor productivity. A new reactor internal heat exchanger, installed for high productivity conditions, performed well above design,and the system never limited the performance. The control can expected, the reactor temperature control needed manual intervention. The control can be improved by realigning the utility oil system.

Bhatt, B.L.

1995-09-01T23:59:59.000Z

349

Faster Phase Estimation  

E-Print Network (OSTI)

We develop several algorithms for performing quantum phase estimation based on basic measurements and classical post-processing. We present a pedagogical review of quantum phase estimation and simulate the algorithm to numerically determine its scaling in circuit depth and width. We show that the use of purely random measurements requires a number of measurements that is optimal up to constant factors, albeit at the cost of exponential classical post-processing; the method can also be used to improve classical signal processing. We then develop a quantum algorithm for phase estimation that yields an asymptotic improvement in runtime, coming within a factor of log* of the minimum number of measurements required while still requiring only minimal classical post-processing. The corresponding quantum circuit requires asymptotically lower depth and width (number of qubits) than quantum phase estimation.

Krysta M. Svore; Matthew B. Hastings; Michael Freedman

2013-04-02T23:59:59.000Z

350

Technique development for uiper critical field studies of SmFeAs(O,F) in the 300T single turn system  

SciTech Connect

In high temperature superconductors, such as the most recent class of iron pnictides, extremely high upper critical fields H{sub c2} are common. The determination of H{sub c2}(T) is crucial to understand the detailed nature of the superconductor, in particular H{sub c2}(T = 0K) is of great interest. It is not only related to fundamental properties of the system, it is furthermore of great importance for materials science, as it is the ultimate limit of applicability of this superconductor in high field applications. However, this important quantity can only be estimated by extrapolation, as H{sub c2}(T = 0K) well exceeds hundreds of Tesla in optimally doped SillFeAs(O,F). We are developing methods to measure Ha(T) in direct transport in the extreme magnetic fields generated by the LANL single turn magnet.

Mcdonald, Ross D [Los Alamos National Laboratory; Balakirev, F. F. [Los Alamos National Laboratory; Altarawneh, M. M. [Los Alamos National Laboratory; Betts, J [Los Alamos National Laboratory; Mielke, C. H. [Los Alamos National Laboratory; Moll, Philip Jw [ETH ZURICH; Zhigadlo, N D [ETH ZURICH; Karpinski, J [ETH ZURICH; Batlogg, B. [ETH ZURICH

2011-01-14T23:59:59.000Z

351

Phase structure of soliton molecules  

Science Conference Proceedings (OSTI)

Temporal optical soliton molecules were recently demonstrated; they potentially allow further increase of data rates in optical telecommunication. Their binding mechanism relies on the internal phases, but these have not been experimentally accessible so far. Conventional frequency-resolved optical gating techniques are not suited for measurement of their phase profile: Their algorithms fail to converge due to zeros both in their temporal and their spectral profile. We show that the VAMPIRE (very advanced method of phase and intensity retrieval of E-fields) method performs reliably. With VAMPIRE the phase profile of soliton molecules has been measured, and further insight into the mechanism is obtained.

Hause, A.; Hartwig, H.; Seifert, B.; Stolz, H.; Boehm, M.; Mitschke, F. [Universitaet Rostock, Institut fuer Physik, Rostock (Germany)

2007-06-15T23:59:59.000Z

352

Techniques for measuring atmospheric aerosols at the High Resolution Fly's Eye experiment  

E-Print Network (OSTI)

We describe several techniques developed by the High Resolution Fly's Eye experiment for measuring aerosol vertical optical depth, aerosol horizontal attenuation length, and aerosol phase function. The techniques are based on measurements of side-scattered light generated by a steerable ultraviolet laser and collected by an optical detector designed to measure fluorescence light from cosmic-ray air showers. We also present a technique to cross-check the aerosol optical depth measurement using air showers observed in stereo. These methods can be used by future air fluorescence experiments.

The HiRes Collaboration

2005-12-15T23:59:59.000Z

353

Feasibility study: Application of RCM techniques for substation maintenance at the Bonneville Power Administration. [Reliability Centered Maintenance (RCM)  

Science Conference Proceedings (OSTI)

This feasibility study examines reliability centered maintenance (RCM) as it applies to Bonneville Power Administrations (BPA) substation maintenance program. Reliability techniques are examined in evaluated. Existing BPA equipment maintenance procedures are documented. Equipment failure history is considered. Economic impacts are estimated. Various equipment instrumentation methods are reviewed. Based on this analysis a prototype system is proposed. The prototype will be implemented in two phases. Phase 1 is to be completed in 1992, it includes instrumenting one power transformer and one oil circuit breaker. Software development will focus on displaying data. Phase 2 is to be completed the following year. The remaining transformers and breakers will be instrumented during the second phase. Software development will focus on predictive maintenance techniques and maintenance decision support.

Purucker, S.L.; Tonn, B.E.; Goeltz, R.T.; James, R.D.; Kercel, S.; Rizy, D.T.; Simpson, M.L.; Van Dyke, J.W.

1992-05-28T23:59:59.000Z

354

Gas-Phase Molecular Dynamics: High Resolution Spectroscopy and Collision Dynamics of Transient Species  

SciTech Connect

This research is carried out as part of the Gas-Phase Molecular Dynamics program in the Chemistry Department at Brookhaven National Laboratory. Chemical intermediates in the elementary gas-phase reactions involved in combustion chemistry are investigated by high resolution spectroscopic tools. Production, reaction, and energy transfer processes are investigated by transient, double resonance, polarization and saturation spectroscopies, with an emphasis on technique development and connection with theory, as well as specific molecular properties.

Hall, G.E.

2011-05-31T23:59:59.000Z

355

Gas-Phase Molecular Dynamics: High Resolution Spectroscopy and Collision Dynamics of Transient Species  

SciTech Connect

This research is carried out as part of the Gas-Phase Molecular Dynamics program in the Chemistry Department at Brookhaven National Laboratory. Chemical intermediates in the elementary gas-phase reactions involved in combustion chemistry are investigated by high resolution spectroscopic tools. Production, reaction, and energy transfer processes are investigated by transient, double resonance, polarization and saturation spectroscopies, with an emphasis on technique development and connection with theory, as well as specific molecular properties.

Hall G. E.; Goncharov, V.

2012-05-29T23:59:59.000Z

356

APS 7-BM Beamline: Techniques  

NLE Websites -- All DOE Office Websites (Extended Search)

Motivation Motivation The major thrust of the 7-BM beamline is the application of synchrotron radiation tools to examine complex fluid flowfields. Two major techniques are applied: radiography and x-ray fluorescence spectroscopy. While optical techniques are often ideally suited to the study of fluid flowfields, there are certain flowfields for which optical diagnostics have significant challenges. These include: Multiphase flows: Visible light interacts strongly with phase boundaries. This leads to strong refraction, scattering, and attenuation of light. These effects hinder quantitative measurements of dense multiphase flowfields. Opaque media. Flows with strong refractive effects. Luminous flames: The strong light emission from sooting flames can hinder certain optical diagnostics.

357

Phase Transformations  

Science Conference Proceedings (OSTI)

Aug 9, 2013 ... O. Advanced Neutron and Synchrotron Studies of Materials: Phase .... We will describe recent advances at the Advanced Photon Source in ... Finally, we will describe upgrade plans for microdiffraction capabilities at the APS.

358

Mechanically-induced phase transformations in plutonium alloys  

Science Conference Proceedings (OSTI)

In this article, we show that mechanically-induced phase transformations can be readily achieved in two Pu-alloy systems. We have observed mechanically-induced phase transformations in both Ti-stabilized ..beta..-Pu and Ga-stabilized delta-Pu. In both of these alloys, the parent phase has been largely transformed to ..cap alpha..-Pu, and the cause of these transformations was mechanical strain introduced by the metallographic sample preparation. For the Ga alloys, x-ray diffraction (XRD) patterns were taken at about 1.5-..mu..m steps down to the undisturbed material in order to develop depth profiles of the surface damage. The proportions of ..cap alpha..-Pu and delta-Pu in the Ga alloys have been estimated using (a) a new quantitative phase analysis program (SPECQUAN) that uses multiple peaks of each phase in order to minimize the effects of preferred orientation and (b) an older manual technique (i.e., hand calculations). The results from these techniques are compared. SPECQUAN was developed to use the SPECPLOT data file structure directly, thus reducing our data processing. The program is written in Fortran 77 and employs an external intensity ratio quantification procedure to obtain its results. XRD calibration has been done independently by means of accurate density measurements on a reference Ga alloy. 12 refs., 5 figs., 2 tabs.

Wallace, P.L.; Wien, W.L.; Goehner, R.P.

1988-08-01T23:59:59.000Z

359

Phase-multiplication holography  

DOE Patents (OSTI)

This disclosure relates generally to nondestructive testing for identifying structural characteristics of an object by scanned holographic techniques using a known source of radiation, such as electromagnetic or acoustical radiation. It is an object of this invention to provide an apparatus and method for synthetic aperture expansion in holographic imaging applications to construct fringe patterns capable of holographic reproduction where aperture restrictions in nondestructive testing applications would conventionally make such imaging techniques impossible. The apparatus and method result in the production of a sharply defined frontal image of structural characteristics which could not otherwise be imaged because they occur either near the surface of the object or are confined by geometry restricting aperture dimensions available for scanning purposes. The depth of the structural characteristic below the surface of the object can also be determined by the reconstruction parameters which produce the sharpest focus. Lateral resolution is established by simulated reduction in the radiation wavelength and may easily be an order of magnitude less than the electromagnetic wavelength in the material or 2 times the standard depth of penetration. Since the phase multiplication technique is performed on the detected data, the penetration depth available due to the longer wavelength signals applied to the test object remains unchanged. The phase multiplication technique can also be applied to low frequency acoustic holography, resulting in a test which combines excellent penetration of difficult materials with high resolution images.

Collins, H.D.; Prince, J.M.; Davis, T.J.

1982-01-25T23:59:59.000Z

360

Techniques and methods in nuclear materials traceability  

SciTech Connect

The nonproliferation community is currently addressing concerns that the access to special nuclear materials may increase the illicit trafficking in weapons-usable materials from civil and/or weapons material stores and/or fuel cycles systems. Illicit nuclear traffic usually involves reduced quantities of nuclear materials perhaps as samplings of a potential protracted diversionary flow from sources to users. To counter illicit nuclear transactions requires the development of techniques and methods in nuclear material traceability as an important phase of a broad forensic analysis capability. This report discusses how isotopic signatures and correlation methods were applied to determine the origins of Highly Enriched Uranium (HEU) and Plutonium samples reported as illicit trafficking in nuclear materials.

Persiani, P.J.

1996-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "development phases techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

NETL: Carbon Storage - Regional Partnership Validation Phase (Phase II)  

NLE Websites -- All DOE Office Websites (Extended Search)

Validation Phase (Phase II) Projects Validation Phase (Phase II) Projects The Regional Carbon Sequestration Partnerships' (RCSP) Validation Phase focuses on validating the most promising regional opportunities to deploy CCS technologies by building upon the accomplishments of the Characterization Phase. Two different CO2 storage approaches are being pursued in this phase: geologic and terrestrial carbon storage. The Validation Phase includes 20 geologic and 11 terrestrial CO2 storage projects. Efforts are being conducted to: Validate and refine current reservoir simulations for CO2 storage projects. Collect physical data to confirm CO2 storage potential and injectivity estimates. Demonstrate the effectiveness of monitoring, verification, and accounting (MVA) technologies. Develop guidelines for well completion, operations, and abandonment.

362

Effects of in-phase and out-of-phase sediment supply responses to tectonic movement on the sequence development in the late Tertiary Southern Ulleung Basin, East (Japan) Sea  

Science Conference Proceedings (OSTI)

Stratigraphic inverse modeling using the SEDPAK stratigraphic simulator established the size of the physical parameters that together controlled the development of the stratal patterns in the late Tertiary Ulleung Basin, East (Japan) Sea. The modeling ... Keywords: Back-arc, Eustatic sea level, Stratigraphic modeling, Tectonic subsidence, Ulleung Basin

Wonsuck Kim; Daekyo Cheong; Christopher G. St. C. Kendall

2007-03-01T23:59:59.000Z

363

Technical education and brainstorming technique  

Science Conference Proceedings (OSTI)

The brainstorming technique used for software projects development is presented as a powerful solution for teaching and research activity in the technical domain. Brainstorming was introduced in the technical domain as an efficient method that was developed ... Keywords: alternative education, brainstorming, design patterns, enneagram, resonance, software engineering

Mircea-Florin Vaida

2007-03-01T23:59:59.000Z

364

Innovative clean coal technology: 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. Final report, Phases 1 - 3B  

SciTech Connect

This report presents the results of a U.S. Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. The project was conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The technologies demonstrated at this site include Foster Wheeler Energy Corporation`s advanced overfire air system and Controlled Flow/Split Flame low NOx burner. The primary objective of the demonstration at Hammond Unit 4 was to determine the long-term effects of commercially available wall-fired low NOx combustion technologies on NOx emissions and boiler performance. Short-term tests of each technology were also performed to provide engineering information about emissions and performance trends. A target of achieving fifty percent NOx reduction using combustion modifications was established for the project. Short-term and long-term baseline testing was conducted in an {open_quotes}as-found{close_quotes} condition from November 1989 through March 1990. Following retrofit of the AOFA system during a four-week outage in spring 1990, the AOFA configuration was tested from August 1990 through March 1991. The FWEC CF/SF low NOx burners were then installed during a seven-week outage starting on March 8, 1991 and continuing to May 5, 1991. Following optimization of the LNBs and ancillary combustion equipment by FWEC personnel, LNB testing commenced during July 1991 and continued until January 1992. Testing in the LNB+AOFA configuration was completed during August 1993. This report provides documentation on the design criteria used in the performance of this project as it pertains to the scope involved with the low NOx burners and advanced overfire systems.

NONE

1998-01-01T23:59:59.000Z

365

Supporting technology for enhanced recovery, Annex V: evaluate application of recently developed techniques in the areas of drilling, coring, and telemetry. Venezuela-MEM/USA-DOE fossil-energy report V-1  

Science Conference Proceedings (OSTI)

The Agreement between the United States and Venezuela was designed to further energy research and development in six areas. This report focuses on Annex V - Drilling, Coring, and Telemetry as supporting technology for enhanced oil recovery projects in the United States and Venezuela. Annex V consists of 18 tasks to perform these three projects. This report completes the work for Annex V. Energy research and development in the area of Enhanced Oil Recovery has as its goal the more efficient and complete production of the third crop of oil. Methods and techniques must be developed to assist in the implementation of EOR projects. Technology development that reduces costs and provides better reservoir information often has a direct impact on the economic viability of EOR projects and Annex V addresses these areas. Each of the three areas covered by Annex V are separate entities and are presented in this report as different sections. Each has its own Abstract. The drilling and coring tests were highly successful but only a limited amount of work was necessary in the Telemetry area because a field test was not feasible.

Williams, C.R.; Lichaa, P.; Van Domselaar, H.

1983-04-01T23:59:59.000Z

366

Other Techniques: Developments and Applications II  

Science Conference Proceedings (OSTI)

Oct 29, 2009 ... A High-Sensitivity Fiber-Optic Sensor for Fatigue Testing: Nguyen Nguyen1; Nikhil Gupta1; 1Polytechnic Institute of NYU Cyclic loading of...

367

Argonne TDC: Phase Metrics - Argonne National Laboratory  

A magneto-optical imaging capability developed by Argonne, Phase Metrics, and the Institute of Solid State Physics (Moscow, Russia) could be the key to developing ...

368

Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Phase 3A, Low NO{sub x} burner tests  

SciTech Connect

This Phase 3A test report summarizes the testing activities and results for the third testing phase of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. Described in this report are the test plans, data measurements, and data analyses performed during the Phase 3A effort. The present report also contains sufficient background material to provide an understanding of the overall program scope, the relationship of Phase 3A to the overall program, the testing methodologies, testing procedures, and unit configuration. Results from 66 short-term tests indicate increasing NO{sub x} emissions over the load range ranging from 0.5 lb/MBtu at 300 NM to around 0.65 lb/MBtu at 480 MW. Fly ash loss-on-ignition (LOI) for these loads ranged from 5.4 to 8.6 percent. Long-term test results indicated high load (480 MW) NO{sub x} emissions of approximately 0.65 lb/MBtu. At the 300 MW mid load point, the emissions dropped to 0.47 lb/MBtu which is slightly lower than the 0.50 lb/MBtu shown for the short-term data. The annual and 30-day average achievable NO{sub x} emissions were determined to be 0.55 and 0.64 lb/MBtu, respectively, for the load scenario experienced during the Phase 3A, long-term test period. Based on the long-term test results for Phase 3A, at full-load the low NO{sub x} burners (LNB) retrofit resulted in a NO{sub x} reduction of 48 percent from baseline, while at 300 MW the reduction was approximately 50 percent. A series of tests was also conducted to evaluate the effects of various burner equipment settings and mill coal flow biasing on both NO{sub x} and LOI emissions.

Not Available

1993-03-15T23:59:59.000Z

369

DELTA PHASE PLUTONIUM ALLOYS  

DOE Patents (OSTI)

Delta-phase plutonium alloys were developed suitable for use as reactor fuels. The alloys consist of from 1 to 4 at.% zinc and the balance plutonium. The alloys have good neutronic, corrosion, and fabrication characteristics snd possess good dimensional characteristics throughout an operating temperature range from 300 to 490 deg C.

Cramer, E.M.; Ellinger, F.H.; Land. C.C.

1960-03-22T23:59:59.000Z

370

Suspect Counterfeit Items Criteria Review and Approach Document , Phase 1 - Management - Developed By NNSA/Nevada Site Office Facility Representative Division  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Suspect/Counterfeit Items Suspect/Counterfeit Items Criteria Review and Approach Document (CRAD) NNSA/Nevada Site Office Facility Representative Division Phase 1 - Management Performance Objective: Management should have a formal system under Quality Assurance with adequate controls defined and implemented to identify and preclude Suspect/Counterfeit Items (S/CI) from being introduced into safety systems and applications that create potential hazards. CRITERIA: Management should have a formal system of controls in place for assurance that all items procured meet the requirements for their intended use. Management should have a system of mechanisms to continuously maintain current, accurate, updated information on SC/Is and associated suppliers using all available sources. Management should have a training program with detailed records that

371

Development of high-temperature turbine subsystem technology to a technology readiness status Phase II. Quarterly report, January-March 1982  

SciTech Connect

The objective of the DOE-HTTT (High-Temperature Turbine Technology) Program is to bring to Technology Readiness, over a six- to ten-year duration, a high-temperature gas turbine for use in a combined-cycle power plant, with coal-derived fuel at a firing temperature of 2600/sup 0/F and with growth capability to 3000/sup 0/F. Phase II, Technology Testing and Test Support Studies, commenced on August 1, 1977, with its objectives to: perform component design and technology testing in critical areas; perform system design and trade-off analyses in sufficient depth to support the component design and test tasks; and update the Phase I combined-cycle plant studies to evaluate the commercial validity of a GE-TRV gas turbine system. During this reporting period the major effort was on motorized rig tests to acquire the heat transfer data needed to design the cooling passages within the rotating components of the TRV gas turbine. A single specimen was tested extensively during the reporting period. The tested specimen, with a 0.083-inch-diameter passage STEM-drilled in an IN718 tube, is prototypical of eight cooling passages in the Stage 1 bucket and all cooling passages in Stages 2 and 3. The performance of this specimen was better than the performances of all smooth specimens tested previously, both in terms of power at boiling transition and in terms of wetted area. These favorable results hve been used to review the cooling flows and the need for turbulence promoters in TRV buckets.

Horner, M. W.

1982-04-01T23:59:59.000Z

372

Development of a fully-integrated PV system for residential applications: Phase I annual technical report: February 27, 1998 -- August 31, 1999  

SciTech Connect

This report describes Utility Power Group's (UPG's) technical progress for Phase 1 of a two-phase effort to focus on the design, assembly, and testing of a fully-integrated residential PV power system, including storage. In the PV Array Task, UPG significantly improved the conventional means and methods required to structurally interface PV modules to the roofs of single-family residential houses and to electrically interconnect these PV modules to a power conversion unit. UPG focused on the design and test of a PV array based on the highly efficient use of materials and labor. Design criteria included cost, structural integrity, electrical safety, reliability, conformance with applicable standards and building and seismic codes, and adaptability to a wide range of roof materials for both existing and retrofit roof applications. In the Power Unit Task, UPG designed and tested a high-efficiency, low-cost, high-reliability prototype power conversion unit that included all materials, components, equipment, and software required to perform all DC-AC/AC-DC power collection, conversion, and control functions between the output of the PV array and the interconnection to the electrical grid service of single-family residences. In the Energy Storage Unit Task, UPG designed and tested a low-cost, modular, self-contained, low-maintenance, all-weather, battery-based Energy Storage Unit designed to interface with the Power Unit to provide back-up electricity to supply critical household loads in the event of utility-grid failure. The Energy Storage Unit includes batteries and all structural, mechanical, and electrical equipment required to provide a source of stored DC energy for input of the Power Unit. UPG designed the storage unit as a ''plug and play'' option, where multiple units can be easily paralleled for additional energy storage capacity.

West, R.; Mackamul, K.; Duran, G.

2000-03-06T23:59:59.000Z

373

Development of a fully-integrated PV system for residential applications: Phase I annual technical report: February 27, 1998 -- August 31, 1999  

DOE Green Energy (OSTI)

This report describes Utility Power Group's (UPG's) technical progress for Phase 1 of a two-phase effort to focus on the design, assembly, and testing of a fully-integrated residential PV power system, including storage. In the PV Array Task, UPG significantly improved the conventional means and methods required to structurally interface PV modules to the roofs of single-family residential houses and to electrically interconnect these PV modules to a power conversion unit. UPG focused on the design and test of a PV array based on the highly efficient use of materials and labor. Design criteria included cost, structural integrity, electrical safety, reliability, conformance with applicable standards and building and seismic codes, and adaptability to a wide range of roof materials for both existing and retrofit roof applications. In the Power Unit Task, UPG designed and tested a high-efficiency, low-cost, high-reliability prototype power conversion unit that included all materials, components, equipment, and software required to perform all DC-AC/AC-DC power collection, conversion, and control functions between the output of the PV array and the interconnection to the electrical grid service of single-family residences. In the Energy Storage Unit Task, UPG designed and tested a low-cost, modular, self-contained, low-maintenance, all-weather, battery-based Energy Storage Unit designed to interface with the Power Unit to provide back-up electricity to supply critical household loads in the event of utility-grid failure. The Energy Storage Unit includes batteries and all structural, mechanical, and electrical equipment required to provide a source of stored DC energy for input of the Power Unit. UPG designed the storage unit as a ''plug and play'' option, where multiple units can be easily paralleled for additional energy storage capacity.

West, R.; Mackamul, K.; Duran, G.

2000-03-06T23:59:59.000Z

374

Low Wind Speed Technology Phase II: Development of a 2-MW Direct-Drive Wind Turbine for Low Wind Speed Sites; Northern Power Systems  

SciTech Connect

This fact sheet describes a subcontract with Northern Power Systems (NPS) to develop and evaluate a 2-MW wind turbine that could offer significant opportunities for reducing the cost of energy (COE).

2006-03-01T23:59:59.000Z

375

Phase II - Resource Exploration and Confirmation | Open Energy Information  

Open Energy Info (EERE)

Phase II - Resource Exploration and Confirmation Phase II - Resource Exploration and Confirmation Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home GEA Development Phase II: Resource Exploration and Confirmation GEA Development Phases The Geothermal Energy Association's (GEA) Geothermal Reporting Terms and Definitions are a guideline for geothermal developers to use when submitting geothermal resource development information to GEA for public dissemination in its annual US Geothermal Power Production and Development Update. GEA's Geothermal Reporting Terms and Definitions serve to increase the consistency, accuracy, and reliability of industry information presented in the development updates. Phase I - Resource Procurement and Identification Phase II - Resource Exploration and Confirmation Phase III - Permitting and Initial Development

376

Ocean thermal energy conversion power system development-I. Preliminary design report. Volume 3. Appendixes D, E, and F. Phase I. Final report  

DOE Green Energy (OSTI)

The conceptual design of a 40 to 50 MW closed cycle ammonia OTEC commercial plant, the preliminary design of a 10 MW OTEC module analogous to the 50 MW module, and the preliminary design of heat exchanger test articles (evaporator and condenser) representative of the 50 MW heat exchangers for testing in OTEC-1 are presented. This volume includes the appendices: D) system equipment (hardware breakdown structure; 10-MW hardware listing; list of support and maintenance equipment, tools and spare parts; sacrificial anodes; M.A.N. brush; and Alclad 3004 data); E) heat exchanger supporting data (analyses/configuration, contract tooling, manufacturing plan, specification, and evaporator ammonia liquid distribution system); and F) rotating machinery (performance characteristics, radial inflow turbine; item descriptions; weight calculation-rotor; producibility analysis; long lead-time items; spares; support equipment; non recurring costs; performance characteristics-axial flow turbine; Worthington pump data; and American M.A.N. Corporation data). Also included is attachment 1 to the phase I final report which presents details of the system modeling; design, materials considerations, and systems analysis of the baseline module; system cost analysis; and supporting data. (WHK)

Not Available

1978-12-18T23:59:59.000Z

377

Gallium-Nitride Transistors for High-Efficiency Industrial Power Supplies, Phase 1: State of Semiconductor Development and Industrial Power Supply Market  

Science Conference Proceedings (OSTI)

This white paper describes recent advancements in the development of Gallium-Nitride (GaN) transistors for power conversion applications. This wide bandgap semiconductor has the potential to reduce losses and improve performance of power converters. The industrial power supply market is described and the application of GaN to power conversion in this segment is introduced for future work.

2013-12-23T23:59:59.000Z

378

Fourteenth Annual National Survey of Compensation Paid to Scientists and Engineers Engaged in Research and Development Activities in the United States. Phase XV. Final report  

Science Conference Proceedings (OSTI)

This report summarizes the conduct of the Fourteenth Annual National Survey of Compensation Paid to Scientists and Engineers Engaged in Research and Development Activities. This survey utilizes the survey design developed for the first annual survey, taking into account the DOE acceptances and modification of the recommendations contained in Battelle's Columbus Laboratories final report of the previous surveys. The contract scope of work specified that the survey should obtain information concerning compensation and compensation-related characteristics of both nondegreed and degreed scientists and engineers engaged in research and development. Information was to be obtained concerning both the employees and employers. The survey variables for which information was to be obtained were specified. As before, the universe specifications were to encompass industrial establishments, educational institutions, nonprofit research institutes, federal laboratories and federally funded research and development centers. The sampling plan was to be the same as for the previous surveys. The sample size was to be maintained at approximately 300 to 325 establishments. The sampling plan incorporated stratification and clustering based upon: (1) establishment size in terms of numbers of scientists and engineers employed; and (2) size of the Standard Metropolitan Statistical Area (SMSA) in terms of scientists and engineers in the area. Trend analyses, showing changes in salary levels over a five-year period, were to be prepared. Tabulated results of the survey are presented.

Spurgeon, M.; Evans, P.; Beatty, G.H.; Arnold, L.

1981-12-31T23:59:59.000Z

379

Ocean Thermal Energy Conversion power system development. Phase I: preliminary design. Final report. [ODSP-3 code; OTEC Steady-State Analysis Program  

DOE Green Energy (OSTI)

The following appendices are included; Dynamic Simulation Program (ODSP-3); sample results of dynamic simulation; trip report - NH/sub 3/ safety precautions/accident records; trip report - US Coast Guard Headquarters; OTEC power system development, preliminary design test program report; medium turbine generator inspection point program; net energy analysis; bus bar cost of electricity; OTEC technical specifications; and engineer drawings. (WHK)

Not Available

1978-12-04T23:59:59.000Z

380

Quality through Managed Improvement and Measurement (QMIM): Towards a Phased Development and Implementation of a Quality Management System for a Software Company  

Science Conference Proceedings (OSTI)

The paper describes results of a longitudinal study of developments in the area of software product and process quality improvement within a Hungarian software company, IQSOFT Ltd. This company has been active in this area since 1993, trying to build, ... Keywords: improvement, longitudinal case study, measurement, product and process quality, quality management system

Katalin Balla; Theo Bemelmans; Rob Kusters; Jos Trienekens

2001-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "development phases techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

The Development of a Coordinated Database for Water Resources and Flow Model in the Paso Del Norte Watershed (Phase III) Part III GIS Coverage for the Valle de Jurez Irrigation District 009 (ID-009) (Distrito de Riego 009) Chihuahua, Mxico  

E-Print Network (OSTI)

This report fulfills the deliverables required by the cooperative agreement between the U.S. Army Corps of Engineers and Texas Agricultural Experiment Station (TAES/03-PL- 02: Modification No. 3) on behalf of the Paso del Norte Watershed Council. Tasks accomplished in this phase include (a) assessment of data availability for expansion of the URGWOM model, identification of data gaps, generation of data needed from historic data using empirical methods, compilation and verification of the water quality data for reaches between the Elephant Butte Reservoir, New Mexico and Fort Quitman, Texas; (b) development of the RiverWare physical model for the Rio Grande flow for the selected reaches between Elephant Butte Reservoir and El Paso, beginning with a conceptual model for interaction of surface water and groundwater in the Rincon and Mesilla valleys, and within the limits of available data; and (c) implementation of data transfer interface between the coordinated database and hydrologic models. This Project was conducted by researchers at Texas A&M University (TAMU) and New Mexico State University (NMSU) under the direction of Zhuping Sheng of TAMU and J. Phillip King of New Mexico State University. It was developed to enhance the coordinated database, which was originally developed by the Paso del Norte Watershed Council with support of El Paso Water Utilities to fulfill needs for better management of regional water resources and to expand the Upper Rio Grande Water Operations Model (URGWOM) to cover the river reaches between Elephant Butte Dam, New Mexico and Fort Quitman, Texas. In Phases I and II of this Project (TAES/03-PL-02), hydrological data needed for flow model development were compiled and data gaps were identified and a conceptual model developed. The objectives of this phase were to develop a physical model of the Rio Grande flow between Elephant Butte Dam and American Dam by using data collected in the first development phase of the PdNWC/Corps Coordinated Water Resources Database and to enhance the data portal capabilities of the PdNWC Coordinated Database Project. This report is Part III of a three part completion report for Phase III and provides information on water sources, uses, and GIS of the canals and ditches of the Valle de Jurez Irrigation District 009 (ID 009) in the Jurez Lower Valley, Chihuahua, Mxico. The author explains that the water needs of this region have changed in recent years from being primarily for agricultural purposes to domestic and industrial uses currently. Also, the United States wanted to assess and identify new data sources on a GIS format for the Mexican side. Therefore, this project produced several maps with the location of channels and ditches along the Valle de Jurez Irrigation District. This information also will support water planning of the Valle de Jurez Irrigation District 009. The maps were produced from existing digital data regarding water resources and by adding thematic layers such as soil salinity and soil texture from analog maps. ASTER satellite imagery and official panchromatic aerial photography were used to produce the maps.

Granados, Alfredo; Srinivasan, Raghavan; Sheng, Zhuping; King, J. Phillip; Creel, Bobby; Brown, Christopher; Michelsen, Ari

2009-01-01T23:59:59.000Z

382

Robust Estimation of Optical Phase Varying as a Continuous Resonant Process  

E-Print Network (OSTI)

It is well-known that adaptive homodyne estimation of continuously varying optical phase provides superior accuracy in the phase estimate as compared to adaptive or non-adaptive static estimation. However, most phase estimation schemes rely on precise knowledge of the underlying parameters of the system under measurement, and performance deteriorates significantly with changes in these parameters; hence it is desired to develop robust estimation techniques immune to such uncertainties. In related works, we have already shown how adaptive homodyne estimation can be made robust to uncertainty in an underlying parameter of the phase varying as a simplistic Ornstein-Uhlenbeck stochastic noise process. Here, we demonstrate robust phase estimation for a more complicated resonant noise process using a guaranteed cost robust filter.

Shibdas Roy; Ian R. Petersen; Elanor H. Huntington

2013-03-01T23:59:59.000Z

383

Materials Reliability Program: Phase II Work Plan for Developing a Risk-Informed Approach for Calculating Reactor Pressure Vessel He atup and Cooldown Operating Curves (MRP-195)  

Science Conference Proceedings (OSTI)

The current procedures for calculating pressure-temperature (P/T) limits for normal reactor heatup and cooldown are defined by the deterministic fracture mechanics methodology in Appendix G (in both Section XI and Section III) of the ASME Code. The recent pressurized thermal shock (PTS) reevaluation effort used a very thorough probabilistic fracture mechanics (PFM) evaluation to develop a technical basis to increase the PTS screening criteria. This same PFM methodology can be applied for evaluating norma...

2006-05-31T23:59:59.000Z

384

Second generation pressurized fluidized-bed combustion (PFBC) research and development, Phase 2 -- Task 4, carbonizer testing. Volume 1, Test results  

SciTech Connect

During the period beginning November 1991 and ending September 1992, a series of tests were conducted at Foster Wheeler Development Corporation in a fluidized-bed coal carbonizer to determine its performance characteristics. The carbonizer was operated for 533 hours in a jetting fluidized-bed configuration during which 36 set points (steady-state periods) were achieved. Extensive data were collected on the feed and product stream compositions, heating values, temperatures, and flow rates. With these data, elemental and energy balances were computed to evaluate and confirm accuracy of the data. The carbonizer data were not as self-consistent as could be desired (balance closure imperfection). A software package developed by Science Ventures, Inc., of California, called BALAID, was used to reconcile the carbonizer data; the details of the reconciliation have been given in Volume 1 of this report. The reconciled data for the carbonizer were rigorously analyzed, correlations were developed, and the model was updated accordingly. The model was then used in simulating each of the 36 steady-state periods achieved in the pilot plant. The details are given in this Volume of the report.

Froehlich, R.; Robertson, A.; Vanhook, J.; Goyal, A.; Rehmat, A.; Newby, R.

1994-11-01T23:59:59.000Z

385

Second generation pressurized fluidized-bed combustion (PFBC) research and development, Phase 2 --- Task 4, carbonizer testing. Volume 2, Data reconciliation  

SciTech Connect

During the period beginning November 1991 and ending September 1992, a series of tests were conducted at Foster Wheeler Development Corporation in a fluidized-bed coal carbonizer to determine its performance characteristics. The carbonizer was operated for 533 hours in a jetting fluidized-bed configuration during which 36 set points (steady-state periods) were achieved. Extensive data were collected on the feed and product stream compositions, heating values, temperatures, and flow rates. With these data, elemental and energy balances were computed to evaluate and confirm accuracy of the data. The carbonizer data were not as self-consistent as could be desired (balance closure imperfection). A software package developed by Science Ventures, Inc., of California, called BALAID, was used to reconcile the carbonizer data; the details of the reconciliation have been given in Volume 1 of this report. The reconciled data for the carbonizer were rigorously analyzed, correlations were developed, and the model was updated accordingly. The model was then used in simulating each of the 36 steady-state periods achieved in the pilot plant. The details are given in this Volume one. This Volume 2 provides details of the carbonizer data reconciliation.

Froehlich, R.; Robertson, A.; Vanhook, J.; Goyal, A.; Rehmat, A.; Newby, R.

1994-11-01T23:59:59.000Z

386

Phase XIV: the thirteenth annual national survey of compensation paid to scientists and engineers engaged in research and development activities in the United States  

Science Conference Proceedings (OSTI)

The Thirteenth Annual National Survey of Compensation Paid to Scientists and Engineers Engaged in Research and Development in 1980 is summarized. The contract scope of work specified that the survey should obtain information concerning compensation and compensation-related characteristics of both nondegreed and degreed scientists and engineers engaged in research and development. Information was to be obtained concerning both the employees and employers. The survey variables for which information was to be obtained were specified. As before, the universe specifications were to encompass industrial establishments, educational institutions, nonprofit research institutes, federal laboratories, and federally funded research and development centers. The sampling plan was to be the same as for the previous surveys. The sample size was to be maintained at approximately 300 to 325 establishments. The sampling plan incorporated stratification and clustering based upon (a) establishment size in terms of numbers of scientists and engineers employed and (b) size of the Standard Metropolitan Statistical Area (SMSA) in terms of scientists and engineers in the area. Trend analyses, showing changes in salary levels over a five-year period, were to be prepared.

Newborg, J.; Gabel, J.; Beatty, G.H.; Spurgeon, M.; Newman, S.

1980-12-24T23:59:59.000Z

387

Enthalpy and mass flowrate measurements for two-phase geothermal...  

Open Energy Info (EERE)

Conference Proceedings: Enthalpy and mass flowrate measurements for two-phase geothermal production by Tracer dilution techniques edit Details Activities (1) Areas (1) Regions...

388

Low Wind Speed Technology Phase II: Developing Techniques to Evaluate the Designs and Operating Environments of Offshore Wind Turbines in the Mid-Atlantic and Lower Great Lakes Region; AWS Truewind, LLC  

DOE Green Energy (OSTI)

This fact sheet describes a subcontract with AWS Truewind, LLC to study offshore wind and wave environments of the Atlantic and lower Great Lakes regions by estimating available wind power resource.

Not Available

2006-03-01T23:59:59.000Z

389

Suppression of magnetism and development of superconductivity within the collapsed tetragonal phase of Ca[subscript 0.67]Sr[subscript 0.33]Fe[subscript 2]As[subscript 2] under pressure  

Science Conference Proceedings (OSTI)

Structural and electronic characterizations of (Ca{sub 0.67}Sr{sub 0.33})Fe{sub 2}As{sub 2} have been performed as a function of pressure up to 12 GPa using conventional and designer diamond anvil cells. The compound (Ca{sub 0.67}Sr{sub 0.33})Fe{sub 2}As{sub 2} behaves intermediately between its end members, displaying a suppression of magnetism and the onset of superconductivity. Like other members of the AFe{sub 2}As{sub 2} family, (Ca{sub 0.67}Sr{sub 0.33})Fe{sub 2}As{sub 2} undergoes a pressure-induced isostructural volume collapse, which we associate with the development of As-As bonding across the mirror plane of the structure. This collapsed tetragonal phase abruptly cuts off the magnetic state and supports superconductivity with a maximum T{sub c} = 22.2 K. The maximum T{sub c} of the superconducting phase is not strongly correlated with any structural parameter, but its proximity to the abrupt suppression of magnetism as well as the volume-collapse transition suggests that magnetic interactions and structural inhomogeneity may play a role in its development.

Jeffries, J.R.; Butch, N.P.; Kirshenbaum, K.; Saha, S.R.; Samudrala, G.; Weir, S.T.; Vohra, Y.K.; Paglione, J. (LLNL); (UAB); (Maryland)

2012-10-24T23:59:59.000Z

390

Development and testing of a commercial scale coal-fired combustion system, Phase 3. Quarterly technical progress report No. 8, July 1, 1992--September 30, 1992  

SciTech Connect

This report summarizes the results of work performed in the development and proof-of-concept (POC) testing of a coal-fired space heating system for the commercial market sector. The objective of this program is to design, build and test a coal based heating system for this sector and determine the economic viability and market potential for the system. Coal water slurry (CWS) fuel has been chosen as the fuel form for this development effort. CWS eliminates the need to use dry pulverized coal with its attendant handling, metering and dusting problems as well as its explosive potential. Equally important in selecting a fuel form is the impact on emission levels and pollution control equipment requirements. CWS is amenable to coal washing since coal cleaning technologies are generally water-based processes requiring the fine grinding of the coal. In the first stage. an overall system heat balance was prepared, system components were designed and manufactured or purchased, the system was fully assembled and preliminary testing performed to validate component performance and identify key operating variables. In the second stage the system was operated for prolonged periods to simulate a commercial application, and combustion and thermal efficiencies; tendencies to slag, foul, erode and corrode; and gaseous and particulate emissions were evaluated. Also during the second stage, an assessment of the commercial viability of the system was made. This assessment included an evaluation of the economics and market potential, including the sensitivity to fluctuations in fuel prices.

Litka, A.; Breault, R.

1992-10-23T23:59:59.000Z

391

A wavelet phase filter for emission tomography  

Science Conference Proceedings (OSTI)

The presence of a high level of noise is a characteristic in some tomographic imaging techniques such as positron emission tomography (PET). Wavelet methods can smooth out noise while preserving significant features of images. Mallat et al. proposed a wavelet based denoising scheme exploiting wavelet modulus maxima, but the scheme is sensitive to noise. In this study, the authors explore the properties of wavelet phase, with a focus on reconstruction of emission tomography images. Specifically, they show that the wavelet phase of regular Poisson noise under a Haar-type wavelet transform converges in distribution to a random variable uniformly distributed on [0, 2{pi}). They then propose three wavelet-phase-based denoising schemes which exploit this property: edge tracking, local phase variance thresholding, and scale phase variation thresholding. Some numerical results are also presented. The numerical experiments indicate that wavelet phase techniques show promise for wavelet based denoising methods.

Olsen, E.T.; Lin, B. [Illinois Inst. of Tech., Chicago, IL (United States). Dept. of Mathematics

1995-07-01T23:59:59.000Z

392

Development of a Safeguards Verification Method and Instrument to Detect Pin Diversion from Pressurized Water Reactor (PWR) Spent Fuel Assemblies Phase I Study  

SciTech Connect

A novel methodology to detect diversion of spent fuel from Pressurized Water Reactors (PWR) has been developed in order to address a long unsolved safeguards verification problem for international safeguards community such as International Atomic Energy Agency (IAEA) or European Atomic Energy Community (EURATOM). The concept involves inserting tiny neutron and gamma detectors into the guide tubes of a spent fuel assembly and measuring the signals. The guide tubes form a quadrant symmetric pattern in the various PWR fuel product lines and the neutron and gamma signals from these various locations are processed to obtain a unique signature for an undisturbed fuel assembly. Signatures based on the neutron and gamma signals individually or in a combination can be developed. Removal of fuel pins from the assembly will cause the signatures to be visibly perturbed thus enabling the detection of diversion. All of the required signal processing to obtain signatures can be performed on standard laptop computers. Monte Carlo simulation studies and a set of controlled experiments with actual commercial PWR spent fuel assemblies were performed and validated this novel methodology. Based on the simulation studies and benchmarking measurements, the methodology developed promises to be a powerful and practical way to detect partial defects that constitute 10% or more of the total active fuel pins. This far exceeds the detection threshold of 50% missing pins from a spent fuel assembly, a threshold defined by the IAEA Safeguards Criteria. The methodology does not rely on any operator provided data like burnup or cooling time and does not require movement of the fuel assembly from the storage rack in the spent fuel pool. A concept was developed to build a practical field device, Partial Defect Detector (PDET), which will be completely portable and will use standard radiation measuring devices already in use at the IAEA. The use of the device will not require any information provided by the operator or any prior knowledge of the spent fuel assembly. The device can also be operated without any movement of the spent fuel from its storage position. Based on parametric studies conducted via computer simulation, the device should be able to detect diversion of as low as ten percent of the missing or replaced fuel from an assembly regardless of the location of the missing fuel within the assembly, of the cooling time, initial fuel enrichment or burnup levels. Conditions in the spent fuel pool such as clarity of the water or boron content are also not issues for this device. The shape of the base signature is principally dependent on the layout of the guide tubes in the various types of PWR fuel assemblies and perturbations in the form of replaced fuel pins will distort this signature. These features of PDET are all unique and overcome limitation and disadvantages presented by currently used devices such as the Fork detector or the Cerenkov Viewing Device. Thus, this device when developed and tested could fill an important need in the safeguards area for partial defect detection, a technology that the IAEA has been seeking for the past few decades.

Ham, Y S; Sitaraman, S

2008-12-24T23:59:59.000Z

393

Electron Based Techniques  

Science Conference Proceedings (OSTI)

Mar 5, 2013 ... Characterization of Materials through High Resolution Coherent Imaging: Electron Based Techniques Sponsored by: TMS Structural Materials...

394

Milling Techniques - TMS  

Science Conference Proceedings (OSTI)

February 4-8 1996 TMS ANNUAL MEETING Anaheim, California. SYNTHESIS AND PROCESSING OF NANOCRYSTALLINE POWDER III: Milling Techniques...

395

Phase-space representation of digital holographic and light field imaging with application to two-phase flows  

E-Print Network (OSTI)

In this thesis, two computational imaging techniques used for underwater research, in particular, two-phase flows measurements, are presented. The techniques under study, digital holographic imaging and light field imaging, ...

Tian, Lei, Ph. D. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

396

Development of a high temperature solar powered water chiller, Volume 4. Phase 1 technical progress report, September 26, 1977--June 1, 1978  

DOE Green Energy (OSTI)

The performance of the high temperature solar powered water chiller was evaluated in a solar system. Three climatic regions were selected for the evaluation which represent significant variations in heating to cooling ratio. Typical multi-family and commercial building constructions were selected for each location, and building load files created using the TRNSYS program. Solar system components were selected on a preliminary basis and simulation models were prepared for each, including the chiller. Component cost and total system cost data were developed for economic trade-off studies. It is intended, under this contract, to evaluate various system configurations to determine which best interfaces with the solar driven Rankine unit, both from a performance and economic standpoint. Preliminary parametric studies were begun to identify the best type of system and best component sizing for a commercial building in two cities. Some prelimanry annual performance data have been obtained and related to conventional equipment performance.

English, R. A.

1978-06-01T23:59:59.000Z

397

Phase II CRADA ORNL99-0568 Report : Developing Transmission-Less Inverter Drive Systems for Axial-Gap Permanent magnet Accessory and Traction Motors and Generators  

DOE Green Energy (OSTI)

Researchers of the Oak Ridge National Laboratory's (ORNLs) Power Electronics and Electric Machine Research Center (PEEMRC) collaborated with Visual Computing Systems (VCS) to develop an electric axial-gap permanent magnet (PM) motor controlled by a self-sensing inverter for driving vehicle accessories such as power steering, air conditioning, and brakes. VCS designed an 8 kW motor based on their Segmented Electromagnetic Array (SEMA) technology. ORNL designed a 10 kW inverter to fit within the volume of a housing, which had been integrated with the motor. This modular design was pursued so that multiple modules could be used for higher power applications. ORNL built the first inverter under the cooperative research and development agreement (CRADA) ORNL 98-0514 and drove a refurbished Delta motor with no load during the Merit Review at ORNL on Monday, May 17, 1999. Inverter circuitry and instructions for assembling the inverters were sent to VCS. A report was prepared and delivered during the Future Car Congress in April 2000, at Arlington, Virginia. Collaboration continued under CRADA ORNL 99-0568 as VCS designed and built a SEMA motor with a dual coil platter to be the traction motor for an electric truck. VCS and ORNL assembled two 45 kW inverters. Each inverter drove one coil, which was designed to deliver 15 kW continuous power and 45 kW peak power for 90 s. The vehicle was road tested as part of the Future Truck Competition. A report was prepared and delivered during the PCIM in October 2000, at Boston, Massachusetts.

McKeever, J.W.

2001-08-06T23:59:59.000Z

398

Phase II CRADA ORNL99-0568 Report : Developing Transmission-Less Inverter Drive Systems for Axial-Gap Permanent magnet Accessory and Traction Motors and Generators  

SciTech Connect

Researchers of the Oak Ridge National Laboratory's (ORNLs) Power Electronics and Electric Machine Research Center (PEEMRC) collaborated with Visual Computing Systems (VCS) to develop an electric axial-gap permanent magnet (PM) motor controlled by a self-sensing inverter for driving vehicle accessories such as power steering, air conditioning, and brakes. VCS designed an 8 kW motor based on their Segmented Electromagnetic Array (SEMA) technology. ORNL designed a 10 kW inverter to fit within the volume of a housing, which had been integrated with the motor. This modular design was pursued so that multiple modules could be used for higher power applications. ORNL built the first inverter under the cooperative research and development agreement (CRADA) ORNL 98-0514 and drove a refurbished Delta motor with no load during the Merit Review at ORNL on Monday, May 17, 1999. Inverter circuitry and instructions for assembling the inverters were sent to VCS. A report was prepared and delivered during the Future Car Congress in April 2000, at Arlington, Virginia. Collaboration continued under CRADA ORNL 99-0568 as VCS designed and built a SEMA motor with a dual coil platter to be the traction motor for an electric truck. VCS and ORNL assembled two 45 kW inverters. Each inverter drove one coil, which was designed to deliver 15 kW continuous power and 45 kW peak power for 90 s. The vehicle was road tested as part of the Future Truck Competition. A report was prepared and delivered during the PCIM in October 2000, at Boston, Massachusetts.

McKeever, J.W.

2001-08-06T23:59:59.000Z

399

A casting and imaging technique for determining void geometry and relative permeability behavior of a single fracture specimen  

DOE Green Energy (OSTI)

A casting technique has been developed for making translucent replicas of the void space of natural rock fractures. Attenuation of light shined through the cast combined with digital image analysis provides a pointwise definition of fracture apertures. The technique has been applied to a fracture specimen from Dixie Valley, Nevada, and the measured void space geometry has been used to develop theoretical predictions of two-phase relative permeability. A strong anisotropy in relative permeabilities has been found, which is caused by highly anisotropic spatial correlations among fracture apertures. 16 refs., 6 figs.

Cox, B.L.; Pruess, K.; Persoff, P.

1990-01-01T23:59:59.000Z

400

Phase 1 -- 2  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 Revised 8/7/02 " "Sample Statement of Work - Standard Service Offerings for Contractor-Identified Project" "Task #","Task Title","Work Scope","Deliverable","Agency Requirements" " " "Phase Two - Initial Project Development" "2-1","DO RFP Development - Direct Support","Based upon interviews Agency/site staff and consultation support, FEMP Services will prepare DO RFP for Agency/site. FEMP Services will provide onsite or telecon review of draft DO RFP with agency staff. FEMP Services will prepare 2nd draft DO RFP based on telecon and written agency review comments and recommendations. ","Draft DO RFP Document. On-site review of draft DO RFP.

Note: This page contains sample records for the topic "development phases techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Phase 1 --2  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 Rev 4-01-05 " "Statement of Work - Standard Service Offerings for Contractor-Identified Project at (insert project site)" "Task #","Task Title","Work Scope","Deliverable","Agency Requirements" " " "Phase Two - Initial Project Development" "2-1","DO RFP Development - Direct Support","Based upon interviews Agency/site staff and consultation support, FEMP Services will prepare DO RFP for Agency/site. FEMP Services will provide onsite or telecon review of draft DO RFP with agency staff. FEMP Services will prepare 2nd draft DO RFP based on telecon and written agency review comments and recommendations. ","Draft DO RFP Document. On-site review of draft DO RFP.

402

ANALYSIS OF EMERGING NDE TECHNIQUES: METHODS FOR EVALUATING AND IMPLEMENTING CONTINUOUS ONLINE MONITORING  

SciTech Connect

One of the goals of the program for the proactive management of materials degradation (PMMD) is to manage proactively the in-service degradation of metallic components in aging NPPs. As some forms of degradation, such as stress corrosion cracking, are characterized by a long initiation time followed by a rapid growth phase, new inspection or monitoring technologies may be required. New nondestructive evaluation (NDE) techniques that may be needed include techniques to find stress corrosion cracking (SCC) precursors, on-line monitoring techniques to detect cracks as they initiate and grow, as well as advances in NDE technologies. This paper reports on the first part of the development of a methodology to determine the effectiveness of these emerging NDE techniques for managing metallic degradation. This methodology will draw from experience derived from evaluating techniques that have "emerged" in the past. The methodology will follow five stages: a definition of inspection parameters, a technical evaluation, laboratory testing, round robin testing, and the design of a performance demonstration program. This methodology will formalize the path taken for previous techniques and set a predictable course for future NDE techniques. This paper then applies the expert review section of the methodology to the acoustic emission technique to evaluate the use of acoustic emission in performing continuous online monitoring of reactor components.

Cumblidge, Stephen E.; Doctor, Steven R.; Bond, Leonard J.; Taylor, Theodore T.; Lupold, Timothy R.; Hull, Amy; Malik, Shah

2009-08-05T23:59:59.000Z

403

Engineering development of coal-fired high performance power systems, Phase 2 and 3. Quarterly progress report, October 1--December 31, 1995  

SciTech Connect

The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) by the year 2000 that is capable of: >47% thermal efficiency (HHV); NO{sub x}, SO{sub x} and particulates {ge} 10% NSPS; coal {ge} 65% of heat input; all solid wastes benign; and cost of electricity 90% of present plant. The HIPPS generating plant integrates a combustion gas turbine/HRSG combined cycle arrangement with an advanced coal-fired boiler. The unique feature of the HIPPS plant is the partial heating of gas turbine (GT) compressor outlet air using energy released by firing coal in the high temperature advanced furnace (HITAF). The compressed air is additionally heated prior to entering the GT expander section by burning natural gas. Energy available, in the gas turbine exhaust and in the HITAF flue gas are used in a steam cycle to maximize energy production. The HIPPS plant arrangement is thus a combination of existing technologies (gas turbine, heat recovery boilers, conventional steam cycle) and new technologies (the HITAF design especially the heater located in the radiant section). Work reported herein is from Task 1.3, HIPPS Commercial Design and Task 2.2, HITAF Air Heaters.

1995-12-31T23:59:59.000Z

404

Development of a polysilicon process based on chemical vapor deposition. Phase 1. Fourth quarterly progress report, 1 July-30 September 1980  

DOE Green Energy (OSTI)

The goal of this program is to demonstrate that a dichlorosilane-based reductive chemical vapor deposition (CVD) process is capable of producing, at low cost, high quality polycrystalline silicon for use in the manufacture of high efficiency solar cells. The feasibility of silicon generation from dichlorosilane (DCS) has been well established. The feasibility and optimization portions of the experimental reactor program have been completed, with a number of runs having been conducted over a broad range of conditions in an experimental CVD reactor. Activities relating to feed of commercially purchased DCS to an intermediate sized reactor and to construction of a Process Development Unit (PDU) to generate and feed DCS to one or more production scale reactors were suspended during the previous quarter because of the receipt of new safety-related information about DCS from Hazards Research Corp. Experimental data generated by Hazards Research Corp. indicate that DCS/air mixtures possess about four times the explosive severity potential as hydrogen/air mixtures, and that DCS/air mixtures are very readily ignited. As a consequence of this new information, designs and procedures for the intermediate reactor feed and PDU tasks were deemed inadequate and new designs incorporating new safety-related elements are being formulated. A preliminary economic evaluation of the Hemlock Semiconductor process has been completed. The analysis for a plant to generate 1000 metric tonne of silicon indicates a plant investment of $21.9 M, and a product selling price of $19.85/kg.

Sharp, K.; Arvidson, A.; Sawyer, D.

1980-12-01T23:59:59.000Z

405

Research and development of a proton-exchange-membrane (PEM) fuel cell system for transportation applications. Progress report for Quarter 4 of the Phase II report  

DOE Green Energy (OSTI)

This 4th quarter report summarizes activity from July 1, 1995 through October 1, 1995; the report is organized as usual into sections describing background information and work performed under the main WBS categories: The Fuel Processor (WBS 1.0) team activity during this quarter focused on the continued design/development of the full scale fuel processing hardware. The combustor test stand has been completed allowing more detailed testing of the various parts of the combustor subsystem; this subsystem is currently being evaluated using the dual fuel (methanol/hydrogen) option to gain a better understanding of the control issues. The Fuel Cell Stack (WBS 2.0) team activity focused on material analysis and testing to determine the appropriate approach for the first GM stack. Five hundred hours of durability was achieved on a single cell fixture using coated titanium plates (anode and cathode) with no appreciable voltage degradation of the SEL (Stack Engineering Lab) produced MEA. Additionally, the voltage level drop across each of the plates remained low (<5mv) over the full test period; The system integration and control team focused on the initial layout and configuration of the system; and the Reference powertrain and commercialization studies are currently under review.

NONE

1995-10-20T23:59:59.000Z

406

Development of a polysilicon process based on chemical vapor deposition (Phase 1). First quarterly progress report, 6 October-31 December 1979  

DOE Green Energy (OSTI)

The goal of this program is to demonstrate that a dichlorosilane based reductive chemical vapor deposition (CVD) process is capable of producing, at low cost, high quality polycrystalline silicon. Physical form and purity of this material will be consistent with LSA material requirements for use in the manufacture of high efficiency solar cells. Chemical processes involved in achieving the objective are reviewed with emphasis placed on advantages of this process when compared with existing polycrystalline silicon production technology. Installation of a CVD reactor with associated analytical instrumentation is described. Preliminary reactor data has been favorable demonstrating the anticipated increased deposition rate and conversion efficiency when dichlorosilane decomposition is compared with trichlorosilane decomposition. No serious problems have been encountered which might limit dichlorosilane use as a reactor feed material. Design considerations for a process development unit (PDU) for dichlorosilane synthesis are reviewed. A design which effectively suppresses monochlorosilane during the redistribution of trichlorosilane was decided upon and its implementation is described. The PDU will be used to collect data on optimization of the redistribution process as well as to determine product quality. Based on experimental data collected during the first quarter along with already available data on the redistribution and hydrogenation processes, a preliminary mass balance is established.

McCormick, J. R.; Arvidson, A.; Plahutnik, F.; Sawyer, D.; Sharp, K.

1980-01-01T23:59:59.000Z

407

Calculation of two-phase dispersed droplet-in-vapor flows including normal shock waves  

DOE Green Energy (OSTI)

A method for calculating quasi-one-dimensional, steady-state, two-phase dispersed droplet-in-vapor flow has been developed. The technique is applicable to both subsonic and supersonic single component flow in which normal shock waves may occur, and is the basis for a two-dimensional model. The flow is assumed to be inviscid except for droplet drag. Temperature and pressure equilibrium between phases is assumed, although this is not a requirement of the technique. Example calculations of flow in one-dimensional nozzles with and without normal shocks are given and compared with experimentally measured pressure profiles for both low quality and high quality two-phase steam/water flow.

Comfort, W.J.; Alger, T.W.; Giedt, W.H.; Crowe, C.T.

1976-07-28T23:59:59.000Z

408

Adversary phase change detection using S.O.M. and text data.  

SciTech Connect

In this work, we developed a self-organizing map (SOM) technique for using web-based text analysis to forecast when a group is undergoing a phase change. By 'phase change', we mean that an organization has fundamentally shifted attitudes or behaviors. For instance, when ice melts into water, the characteristics of the substance change. A formerly peaceful group may suddenly adopt violence, or a violent organization may unexpectedly agree to a ceasefire. SOM techniques were used to analyze text obtained from organization postings on the world-wide web. Results suggest it may be possible to forecast phase changes, and determine if an example of writing can be attributed to a group of interest.

Speed, Ann Elizabeth; Doser, Adele Beatrice; Warrender, Christina E.

2011-01-01T23:59:59.000Z

409

Adversary phase change detection using S.O.M. and text data.  

SciTech Connect

In this work, we developed a self-organizing map (SOM) technique for using web-based text analysis to forecast when a group is undergoing a phase change. By 'phase change', we mean that an organization has fundamentally shifted attitudes or behaviors. For instance, when ice melts into water, the characteristics of the substance change. A formerly peaceful group may suddenly adopt violence, or a violent organization may unexpectedly agree to a ceasefire. SOM techniques were used to analyze text obtained from organization postings on the world-wide web. Results suggest it may be possible to forecast phase changes, and determine if an example of writing can be attributed to a group of interest.

Speed, Ann Elizabeth; Doser, Adele Beatrice; Warrender, Christina E.

2010-09-01T23:59:59.000Z

410

Two-phase jet loads. [PWR  

Science Conference Proceedings (OSTI)

Two-phase jets are currently being studied to improve engineering models for the prediction of loads on pipes and structures during LOCAs. Multi-dimensional computer codes such as BEACON/MOD2, CSQ, and TRAC-P1A are being employed to predict flow characteristics and flow-structure loading. Our ultimate goal is to develop a new approximate engineering model which is superior to the F.J. Moody design model. Computer results are compared with data obtained from foreign sources, and a technique for using the TRAC-P1A vessel component as a containment model is presented. In general, good agreement with the data is obtained for saturated stagnation conditions; however, difficulties are encountered for subcooled stagnation conditions, possibly due to nucleation delay and non-equilibrium effects.

Tomasko, D.

1980-01-01T23:59:59.000Z

411

Application of Phase Diagram Calculation to Accelerated ...  

Science Conference Proceedings (OSTI)

Presentation Title, Application of Phase Diagram Calculation to Accelerated Development of Mo-Si-B Based Alloys. Author(s), Ying Yang, H Bei, Shuanglin...

412

InterPhases Research | Open Energy Information  

Open Energy Info (EERE)

Research Jump to: navigation, search Name InterPhases Research Place Westlake Village, California Zip 91361 Sector Solar Product US-based developer of copper indium selenide...

413

Materials Modeling Fundamentals and Applications to Phase ...  

Science Conference Proceedings (OSTI)

Oct 18, 2011 ... Diffusivity and Mobility Data: Building Blocks for ICME: Carelyn ... scales is proposed to develop a new generation of process models for phase...

414

Phase IV - Resource Production and Power Plant Construction | Open Energy  

Open Energy Info (EERE)

Phase IV - Resource Production and Power Plant Construction Phase IV - Resource Production and Power Plant Construction Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home GEA Development Phase IV: Resource Production and Power Plant Construction GEA Development Phases The Geothermal Energy Association's (GEA) Geothermal Reporting Terms and Definitions are a guideline for geothermal developers to use when submitting geothermal resource development information to GEA for public dissemination in its annual US Geothermal Power Production and Development Update. GEA's Geothermal Reporting Terms and Definitions serve to increase the consistency, accuracy, and reliability of industry information presented in the development updates. Phase I - Resource Procurement and Identification Phase II - Resource Exploration and Confirmation

415

Multicolor Underwater Imaging Techniques.  

E-Print Network (OSTI)

??Studies were conducted on multispectral polarimetric subtraction imaging techniques for underwater imaging that use a broadband light source. The main objective of this study was (more)

Waggoner, Douglas Scott

2007-01-01T23:59:59.000Z

416

Techniques of Linear Prediction for Systems with Periodic Statistics  

Science Conference Proceedings (OSTI)

Many parameters that measure climatic variability have nonstationary statistics, that is, they depend strongly on the phase of the annual cycle. In this case normal statistical analysis techniques based on time-invariant models are inappropriate. ...

K. Hasselmann; T. P. Barnett

1981-10-01T23:59:59.000Z

417

Data Techniques | Open Energy Information  

Open Energy Info (EERE)

Techniques Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique