National Library of Energy BETA

Sample records for development phases techniques

  1. Development of neutron tomography and phase contrast imaging technique

    SciTech Connect (OSTI)

    Kashyap, Y. S.; Agrawal, Ashish; Sarkar, P. S.; Shukla, Mayank; Sinha, Amar

    2013-02-05

    This paper presents design and development of a state of art neutron imaging technique at CIRUS reactor with special reference for techniques adopted for tomography and phase contrast imaging applications. Different components of the beamline such as collimator, shielding, sample manipulator, digital imaging system were designed keeping in mind the requirements of data acquisition time and resolution. The collimator was designed in such a way that conventional and phase contrast imaging can be done using same collimator housing. We have done characterization of fuel pins, study of hydride blisters in pressure tubes hydrogen based cells, two phase flow visualization, and online study of locomotive parts etc. using neutron tomography and radiography technique. We have also done some studies using neutron phase contrast imaging technique on this beamline.

  2. Development of a pseudo phased array technique using EMATs for DM weld testing

    SciTech Connect (OSTI)

    Cobb, Adam C. Fisher, Jay L.; Shiokawa, Nobuyuki; Hamano, Toshiaki; Horikoshi, Ryoichi; Ido, Nobukazu

    2015-03-31

    Ultrasonic inspection of dissimilar metal (DM) welds in piping with cast austenitic stainless steel (CASS) has been an area ongoing research for many years given its prevalence in the petrochemical and nuclear industries. A typical inspection strategy for pipe welds is to use an ultrasonic phased array system to scan the weld from a sensor located on the outer surface of the pipe. These inspection systems generally refract either longitudinal or shear vertical (SV) waves at varying angles to inspect the weld radially. In DM welds, however, the welding process can produce a columnar grain structure in the CASS material in a specific orientation. This columnar grain structure can skew ultrasonic waves away from their intended path, especially for SV and longitudinal wave modes. Studies have shown that inspection using the shear horizontal (SH) wave mode significantly reduces the effect of skewing. Electromagnetic acoustic transducers (EMATs) are known to be effective for producing SH waves in field settings. This paper presents an inspection strategy that seeks to reproduce the scanning and imaging capabilities of a commercial phase array system using EMATs. A custom-built EMAT was used to collect data at multiple propagation angles, and a processing strategy known as the synthetic aperture focusing technique (SAFT) was used to combine the data to produce an image. Results are shown using this pseudo phased array technique to inspect samples with a DM weld and artificial defects, demonstrating the potential of this approach in a laboratory setting. Recommendations for future work to transition the technique to the field are also provided.

  3. Picosecond dynamics of reactions in the liquid phase: studies of iodine photodissociation and development of new laser techniques

    SciTech Connect (OSTI)

    Berg, M.A.

    1985-09-01

    Iodine photodissociation and recombination was studied as a model for processes common to chemical reaction in the liquid phase. Picosecond transient absorption measurements from 1000 to 295 nm were used to monitor the dynamics in a variety of solvents. Most of the atoms which undergo geminate recombination were found to do so in less than or equal to 15 ps, in agreement with the results of existing molecular dynamics simulations. Vibrational relaxation times vary from approx.15 ps near the middle of the ground state well to approx.150 ps for complete relaxation to v = 0. The prediction of strong resonant vibrational energy transfer to chlorinated methane solvents was not supported, but some evidence for this mechanism was found for alkane solvents. Current theory is unable to explain the large variation (65 to 2700 ps) of the excited A'-state lifetime in various solvents. The 10-Hz amplified, synchronously-pumped dye laser which was used in these studies is described and characterized. SERS (Stimulated Electronic Raman Scattering) and difference frequency mixing were used in the generation of the infrared and far-infrared, respectively. 54 refs., 38 figs., 3 tabs. (WRF)

  4. The Development and Optimization of Techniques for Monitoring Water Quality on-Board Spacecraft Using Colorimetric Solid-Phase Extraction (C-SPE)

    SciTech Connect (OSTI)

    April Hill

    2007-12-01

    The main focus of this dissertation is the design, development, and ground and microgravity validation of methods for monitoring drinking water quality on-board NASA spacecraft using clorimetric-solid phase extraction (C-SPE). The Introduction will overview the need for in-flight water quality analysis and will detail some of the challenges associated with operations in the absence of gravity. The ability of C-SPE methods to meet these challenges will then be discussed, followed by a literature review on existing applications of C-SPE and similar techniques. Finally, a brief discussion of diffuse reflectance spectroscopy theory, which provides a means for analyte identification and quantification in C-SPE analyses, is presented. Following the Introduction, four research chapters are presented as separate manuscripts. Chapter 1 reports the results from microgravity testing of existing C-SPE methods and procedures aboard NASA's C-9 microgravity simulator. Chapter 2 discusses the development of a C-SPE method for determining the total concentration of biocidal silver (i.e., in both dissolved and colloidal forms) in water samples. Chapter 3 presents the first application of the C-SPE technique to the determination of an organic analyte (i.e., formaldehyde). Chapter 4, which is a departure from the main focus of the thesis, details the results of an investigation into the effect of substrate rotation on the kinetics involved in the antigen and labeling steps in sandwich immunoassays. These research chapters are followed by general conclusions and a prospectus section.

  5. Hydrocarbon radical thermochemistry: Gas-phase ion chemistry techniques

    SciTech Connect (OSTI)

    Ervin, Kent M.

    2014-03-21

    Final Scientific/Technical Report for the project "Hydrocarbon Radical Thermochemistry: Gas-Phase Ion Chemistry Techniques." The objective of this project is to exploit gas-phase ion chemistry techniques for determination of thermochemical values for neutral hydrocarbon radicals of importance in combustion kinetics.

  6. Adaptive array technique for differential-phase reflectometry in QUEST

    SciTech Connect (OSTI)

    Idei, H. Hanada, K.; Zushi, H.; Nagata, K.; Mishra, K.; Itado, T.; Akimoto, R.; Yamamoto, M. K.

    2014-11-15

    A Phased Array Antenna (PAA) was considered as launching and receiving antennae in reflectometry to attain good directivity in its applied microwave range. A well-focused beam was obtained in a launching antenna application, and differential-phase evolution was properly measured by using a metal reflector plate in the proof-of-principle experiment at low power test facilities. Differential-phase evolution was also evaluated by using the PAA in the Q-shu University Experiment with Steady State Spherical Tokamak (QUEST). A beam-forming technique was applied in receiving phased-array antenna measurements. In the QUEST device that should be considered as a large oversized cavity, standing wave effect was significantly observed with perturbed phase evolution. A new approach using derivative of measured field on propagating wavenumber was proposed to eliminate the standing wave effect.

  7. Property:GeothermalDevelopmentPhases | Open Energy Information

    Open Energy Info (EERE)

    GeothermalDevelopmentPhases Jump to: navigation, search Property Name GeothermalDevelopmentPhases Property Type Page Pages using the property "GeothermalDevelopmentPhases" Showing...

  8. Nuclear Concrete Materials Database Phase I Development

    SciTech Connect (OSTI)

    Ren, Weiju; Naus, Dan J

    2012-05-01

    The FY 2011 accomplishments in Phase I development of the Nuclear Concrete Materials Database to support the Light Water Reactor Sustainability Program are summarized. The database has been developed using the ORNL materials database infrastructure established for the Gen IV Materials Handbook to achieve cost reduction and development efficiency. In this Phase I development, the database has been successfully designed and constructed to manage documents in the Portable Document Format generated from the Structural Materials Handbook that contains nuclear concrete materials data and related information. The completion of the Phase I database has established a solid foundation for Phase II development, in which a digital database will be designed and constructed to manage nuclear concrete materials data in various digitized formats to facilitate electronic and mathematical processing for analysis, modeling, and design applications.

  9. Comparison of soft computing techniques for a three-phase oil field centrifuge.

    SciTech Connect (OSTI)

    Smith, R. E.; Parkinson, w; Miller, N.

    2002-01-01

    In this work we compare fuzzy techniques to neural network techniques for building a soft sensor for a three-phase oil field centrifuge. The soft sensor is used in a feed-forward control system that augments a feedback control system. Two approaches were used to develop the soft sensor. The first approach was to use a fuzzy rule based system based upon the experience of an expert operator. The expert operator's experience was supplemented using a computer model of the system. The second approach was to use a neural network to build the inverse of the computer model. The pros and cons of both techniques are discussed. KEYWORDS: fuzzy logic, neural networks, soft sensor, soft computing

  10. Preliminary Phase Field Computational Model Development

    SciTech Connect (OSTI)

    Li, Yulan; Hu, Shenyang Y.; Xu, Ke; Suter, Jonathan D.; McCloy, John S.; Johnson, Bradley R.; Ramuhalli, Pradeep

    2014-12-15

    This interim report presents progress towards the development of meso-scale models of magnetic behavior that incorporate microstructural information. Modeling magnetic signatures in irradiated materials with complex microstructures (such as structural steels) is a significant challenge. The complexity is addressed incrementally, using the monocrystalline Fe (i.e., ferrite) film as model systems to develop and validate initial models, followed by polycrystalline Fe films, and by more complicated and representative alloys. In addition, the modeling incrementally addresses inclusion of other major phases (e.g., martensite, austenite), minor magnetic phases (e.g., carbides, FeCr precipitates), and minor nonmagnetic phases (e.g., Cu precipitates, voids). The focus of the magnetic modeling is on phase-field models. The models are based on the numerical solution to the Landau-Lifshitz-Gilbert equation. From the computational standpoint, phase-field modeling allows the simulation of large enough systems that relevant defect structures and their effects on functional properties like magnetism can be simulated. To date, two phase-field models have been generated in support of this work. First, a bulk iron model with periodic boundary conditions was generated as a proof-of-concept to investigate major loop effects of single versus polycrystalline bulk iron and effects of single non-magnetic defects. More recently, to support the experimental program herein using iron thin films, a new model was generated that uses finite boundary conditions representing surfaces and edges. This model has provided key insights into the domain structures observed in magnetic force microscopy (MFM) measurements. Simulation results for single crystal thin-film iron indicate the feasibility of the model for determining magnetic domain wall thickness and mobility in an externally applied field. Because the phase-field model dimensions are limited relative to the size of most specimens used in experiments, special experimental methods were devised to create similar boundary conditions in the iron films. Preliminary MFM studies conducted on single and polycrystalline iron films with small sub-areas created with focused ion beam have correlated quite well qualitatively with phase-field simulations. However, phase-field model dimensions are still small relative to experiments thus far. We are in the process of increasing the size of the models and decreasing specimen size so both have identical dimensions. Ongoing research is focused on validation of the phase-field model. Validation is being accomplished through comparison with experimentally obtained MFM images (in progress), and planned measurements of major hysteresis loops and first order reversal curves. Extrapolation of simulation sizes to represent a more stochastic bulk-like system will require sampling of various simulations (i.e., with single non-magnetic defect, single magnetic defect, single grain boundary, single dislocation, etc.) with distributions of input parameters. These outputs can then be compared to laboratory magnetic measurements and ultimately to simulate magnetic Barkhausen noise signals.

  11. A farewell to arms? Scientists developing a novel technique that...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A farewell to arms? Scientists developing a novel technique that could facilitate nuclear disarmament By John Greenwald June 25, 2014 Tweet Widget Google Plus One Share on Facebook...

  12. A farewell to arms? Scientists developing a novel technique that...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A farewell to arms? Scientists developing a novel technique that could facilitate nuclear disarmament By John Greenwald July 1, 2014 Tweet Widget Google Plus One Share on Facebook...

  13. Development of a Test Technique to Determine the Thermal Conductivity...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Development of a Test Technique to Determine the Thermal Conductivity of Large Refractory Ceramic Test Specimens Citation Details In-Document Search Title: ...

  14. Los Alamos develops new technique for growing high-efficiency...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos develops new technique for growing high-efficiency perovskite solar cells Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 ...

  15. Ripeness sensor development. Final report of a Phase 2 study

    SciTech Connect (OSTI)

    Stroshine, R.

    1995-08-01

    This is a final report for the Phase II study entitled ``Ripeness Sensor Development.`` The overall objective of the study was the development of a prototype device capable of testing whole fruits for sugar content. Although ripeness and sugar content are not synonymous, they are closely related. Furthermore, the consumer`s acceptance of or preference for fruits is strongly influenced by sugar content. Therefore, the device was called a ripeness sensor. The principle behind the measurement is proton magnetic resonance ({sup 1}H-MR). For several decades, chemists, pharmacists and other scientists have been using {sup 1}H-MR to investigate chemical structure and composition. More recently, the technique has been used in laboratories of the food industry for quality control. This effort represents one of the first attempts to adapt {sup 1}H-MR to use in a commercial facility. 28 refs., 36 figs., 7 tabs.

  16. DOE Commercial Building Energy Asset Score: Software Development for Phase

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    II Building Types | Department of Energy Score: Software Development for Phase II Building Types DOE Commercial Building Energy Asset Score: Software Development for Phase II Building Types DOE Commercial Building Energy Asset Score: Software Development for Phase II Building Types PDF icon asset_score_assumptions_july_2013.pdf More Documents & Publications Weekend/Weekday Ozone Study in the South Coast Air Basin Users Perspective on Advanced Fuel Cell Bus Technology In Plane

  17. Phase development in conventional and active belite cement pastes...

    Office of Scientific and Technical Information (OSTI)

    and chemical constraints Citation Details In-Document Search Title: Phase development in conventional and active belite cement pastes by Rietveld analysis and chemical ...

  18. Phase 3 Developments Investments LLC | Open Energy Information

    Open Energy Info (EERE)

    Product: provides services to agricultural customers related to renewable energy and bio-based products. References: Phase 3 Developments & Investments LLC1 This article is a...

  19. Phase III - Permitting and Initial Development | Open Energy...

    Open Energy Info (EERE)

    Reporting Terms and Definitions serve to increase the consistency, accuracy, and reliability of industry information presented in the development updates. Phase I - Resource...

  20. Development of Improved Oil Field Waste Injection Disposal Techniques

    SciTech Connect (OSTI)

    Terralog Technologies

    2002-11-25

    The goals of this project have was to: (1) assemble and analyze a comprehensive database of past waste injection operations; (2) develop improved diagnostic techniques for monitoring fracture growth and formation changes; (3) develop operating guidelines to optimize daily operations and ultimate storage capacity of the target formation; and (4) to apply these improved models and guidelines in the field.

  1. Development of Improved Oil Field Waste Injection Disposal Techniques

    SciTech Connect (OSTI)

    Terralog Technologies USA Inc.

    2001-12-17

    The goals of this DOE sponsored project are to: (1) assemble and analyze a comprehensive database of past waste injection operations; (2) develop improved diagnostic techniques for monitoring fracture growth and formation changes; (3) develop operating guidelines to optimize daily operations and ultimate storage capacity of the target formation; and (4) to test these improved models and guidelines in the field.

  2. A Lapping Technique for Metallic, Alpha-Phase, Plutonium: Achieving and

    Office of Scientific and Technical Information (OSTI)

    Measuring Nano-Meter Roughness and Sub-Micron Flatness (Technical Report) | SciTech Connect Technical Report: A Lapping Technique for Metallic, Alpha-Phase, Plutonium: Achieving and Measuring Nano-Meter Roughness and Sub-Micron Flatness Citation Details In-Document Search Title: A Lapping Technique for Metallic, Alpha-Phase, Plutonium: Achieving and Measuring Nano-Meter Roughness and Sub-Micron Flatness Authors: Wall, M A ; Blobaum, K J Publication Date: 2014-03-31 OSTI Identifier: 1136178

  3. GEA Development Phases | Open Energy Information

    Open Energy Info (EERE)

    Reporting Terms and Definitions serve to increase the consistency, accuracy, and reliability of industry information presented in the development updates. These updates are a...

  4. Federal ESPC Process Phase 3: Project Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3: Project Development Federal ESPC Process Phase 3: Project Development During phase 3 of the energy savings performance contract (ESPC) process, the agency and energy service company work to develop and award a task order. The task order includes descriptions of the energy conservation measures (ECMs); baselines; and financial schedules that show estimated savings, guaranteed savings, itemized prices, and agency payments. The U.S. Department of Energy's (DOE) indefinite-delivery,

  5. Multiparticle imaging technique for two-phase fluid flows using pulsed laser speckle velocimetry

    SciTech Connect (OSTI)

    Hassan, T.A.

    1992-12-01

    The practical use of Pulsed Laser Velocimetry (PLV) requires the use of fast, reliable computer-based methods for tracking numerous particles suspended in a fluid flow. Two methods for performing tracking are presented. One method tracks a particle through multiple sequential images (minimum of four required) by prediction and verification of particle displacement and direction. The other method, requiring only two sequential images uses a dynamic, binary, spatial, cross-correlation technique. The algorithms are tested on computer-generated synthetic data and experimental data which was obtained with traditional PLV methods. This allowed error analysis and testing of the algorithms on real engineering flows. A novel method is proposed which eliminates tedious, undersirable, manual, operator assistance in removing erroneous vectors. This method uses an iterative process involving an interpolated field produced from the most reliable vectors. Methods are developed to allow fast analysis and presentation of sets of PLV image data. Experimental investigation of a two-phase, horizontal, stratified, flow regime was performed to determine the interface drag force, and correspondingly, the drag coefficient. A horizontal, stratified flow test facility using water and air was constructed to allow interface shear measurements with PLV techniques. The experimentally obtained local drag measurements were compared with theoretical results given by conventional interfacial drag theory. Close agreement was shown when local conditions near the interface were similar to space-averaged conditions. However, theory based on macroscopic, space-averaged flow behavior was shown to give incorrect results if the local gas velocity near the interface as unstable, transient, and dissimilar from the average gas velocity through the test facility.

  6. Development of dense-phase pneumatic transport of coal

    SciTech Connect (OSTI)

    Horisaka, S.; Ikemiya, H.; Kajiwara, T.

    1996-12-31

    Dense phase pneumatic transport system has been developed to reduce entrained particles as is seen in the belt conveyor system. High mass flow rate and dense phase (Loading ratio = 50--100kg-coal/kg-N{sub 2}) transport has been achieved by applying this plug flow system to pneumatic conveying of coal (Average particle diameter = 2.5 mm).

  7. Phase development in conventional and active belite cement pastes by

    Office of Scientific and Technical Information (OSTI)

    Rietveld analysis and chemical constraints (Journal Article) | SciTech Connect Phase development in conventional and active belite cement pastes by Rietveld analysis and chemical constraints Citation Details In-Document Search Title: Phase development in conventional and active belite cement pastes by Rietveld analysis and chemical constraints High belite cements may be an alternative to reduce CO{sub 2} emissions. Although CO{sub 2} emissions may be depleted up to 10%, unfortunately, the

  8. Development of Zinc/Bromine Batteries for Load-Leveling Applications: Phase 2 Final Report

    SciTech Connect (OSTI)

    CLARK,NANCY H.; EIDLER,PHILLIP

    1999-10-01

    This report documents Phase 2 of a project to design, develop, and test a zinc/bromine battery technology for use in utility energy storage applications. The project was co-funded by the U.S. Department of Energy Office of Power Technologies through Sandia National Laboratories. The viability of the zinc/bromine technology was demonstrated in Phase 1. In Phase 2, the technology developed during Phase 1 was scaled up to a size appropriate for the application. Batteries were increased in size from 8-cell, 1170-cm{sup 2} cell stacks (Phase 1) to 8- and then 60-cell, 2500-cm{sup 2} cell stacks in this phase. The 2500-cm{sup 2} series battery stacks were developed as the building block for large utility battery systems. Core technology research on electrolyte and separator materials and on manufacturing techniques, which began in Phase 1, continued to be investigated during Phase 2. Finally, the end product of this project was a 100-kWh prototype battery system to be installed and tested at an electric utility.

  9. Technique development for polarized pipe-to-soil potential measurements

    SciTech Connect (OSTI)

    Dabkowski, J.

    1989-12-01

    Research project PR-200-513 was undertaken with the overall objective to develop practical techniques for determining the polarized pipe-to-soil potential of a buried pipeline. The importance of this project rests with the fact that pipe-to-soil potential measurements are the most commonly used means of assessing the level of cathodic protection on buried gas transmission pipelines. In the recent past years there has been a considerable amount of effort devoted to developing methods and instruments to correct measured pipe-to-soil potentials for IR drops that may occur from currents (from the cathodic protection system or stray sources) in the soil to obtain the polarized potential. However, many of the methods or instruments available are either time-consuming, cumbersome to use in the field, applicable to only certain types of cathodic protection systems and under particular circumstances, subject to influences from stray current sources or not fully developed as of yet. Thus, there is a need to develop a practical method of determining the polarized pipe potential free of IR drop errors. Hence, the objectives of the research program conducted were: (1) to test and evaluate comparatively existing polarized potential measurement approaches, and (2) to develop new approaches to determining the polarized potential.

  10. Vadose Zone Characterization Techniques Developed by EMSP Research

    SciTech Connect (OSTI)

    Guillen, Donna P.

    2003-02-24

    This paper discusses research contributions made by Environmental Management Science Program (EMSP) research in the area of geophysical characterization of the subsurface. The goal of these EMSP research projects is to develop combined high-resolution measurement and interpretation packages that provide accurate, timely information needed to characterize the vadose zone. Various types of geophysical imaging techniques can be used to characterize the shallow subsurface. Since individual geophysical characterization tools all have specific limitations, many different techniques are being explored to provide more widespread applicability over a range of hydrogeologic settings. A combination of laboratory, field, theoretical, and computational studies are necessary to develop our understanding of how contaminants move through the vadose zone. This entails field tests with field-hardened systems, packaging and calibration of instrumentation, data processing and analysis algorithms, forward and inverse modeling, and so forth. DOE sites are seeking to team with EMSP researchers to leverage the basic science research investment and apply these advances to address subsurface contamination issues that plague many U.S. Department of Energy (DOE) sites.

  11. Null test fourier domain alignment technique for phase-shifting point diffraction interferometer

    DOE Patents [OSTI]

    Naulleau, Patrick; Goldberg, Kenneth Alan

    2000-01-01

    Alignment technique for calibrating a phase-shifting point diffraction interferometer involves three independent steps where the first two steps independently align the image points and pinholes in rotation and separation to a fixed reference coordinate system, e.g, CCD. Once the two sub-elements have been properly aligned to the reference in two parameters (separation and orientation), the third step is to align the two sub-element coordinate systems to each other in the two remaining parameters (x,y) using standard methods of locating the pinholes relative to some easy to find reference point.

  12. Category:GEA Development Phases | Open Energy Information

    Open Energy Info (EERE)

    this category, out of 5 total. G Property:GEADevelopmentPhase P Phase I - Resource Procurement and Identification Phase II - Resource Exploration and Confirmation Phase III -...

  13. Investigation of Thermal Interface Materials Using Phase-Sensitive Transient Thermoreflectance Technique: Preprint

    SciTech Connect (OSTI)

    Feng, X.; King, C.; DeVoto, D.; Mihalic, M.; Narumanchi, S.

    2014-08-01

    With increasing power density in electronics packages/modules, thermal resistances at multiple interfaces are a bottleneck to efficient heat removal from the package. In this work, the performance of thermal interface materials such as grease, thermoplastic adhesives and diffusion-bonded interfaces are characterized using the phase-sensitive transient thermoreflectance technique. A multi-layer heat conduction model was constructed and theoretical solutions were derived to obtain the relation between phase lag and the thermal/physical properties. This technique enables simultaneous extraction of the contact resistance and bulk thermal conductivity of the TIMs. With the measurements, the bulk thermal conductivity of Dow TC-5022 thermal grease (70 to 75 um bondline thickness) was 3 to 5 W/(m-K) and the contact resistance was 5 to 10 mm2-K/W. For the Btech thermoplastic material (45 to 80 μm bondline thickness), the bulk thermal conductivity was 20 to 50 W/(m-K) and the contact resistance was 2 to 5 mm2-K/W. Measurements were also conducted to quantify the thermal performance of diffusion-bonded interface for power electronics applications. Results with the diffusion-bonded sample showed that the interfacial thermal resistance is more than one order of magnitude lower than those of traditional TIMs, suggesting potential pathways to efficient thermal management.

  14. Application of a transverse phase-space measurement technique for high-brightness, H{sup {minus}} beams to the GTA H{sup {minus}} beam

    SciTech Connect (OSTI)

    Johnson, K.F.; Garcia, R.C.; Rusthoi, D.P.; Sander, O.R.; Sandoval, D.P.; Shinas, M.A.; Smith, M.; Yuan, V.W.; Connolly, R.C.

    1995-05-01

    The Ground Test Accelerator (GTA) had the objective Of Producing a high-brightness, high-current H-beam. The major components were a 35 keV injector, a Radio Frequency Quadrupole (RFQ), an intertank matching section (IMS), and a drift tube linac (DTL), consisting of 10 modules. A technique for measuring the transverse phase-space of high-power density beams has been developed and tested. This diagnostic has been applied to the GTA H-beam. Experimental results are compared to the slit and collector technique for transverse phase-space measurements and to simulations.

  15. Development of advanced strain diagnostic techniques for reactor environments.

    SciTech Connect (OSTI)

    Fleming, Darryn D.; Holschuh, Thomas Vernon,; Miller, Timothy J.; Hall, Aaron Christopher; Urrea, David Anthony,; Parma, Edward J.,

    2013-02-01

    The following research is operated as a Laboratory Directed Research and Development (LDRD) initiative at Sandia National Laboratories. The long-term goals of the program include sophisticated diagnostics of advanced fuels testing for nuclear reactors for the Department of Energy (DOE) Gen IV program, with the future capability to provide real-time measurement of strain in fuel rod cladding during operation in situ at any research or power reactor in the United States. By quantifying the stress and strain in fuel rods, it is possible to significantly improve fuel rod design, and consequently, to improve the performance and lifetime of the cladding. During the past year of this program, two sets of experiments were performed: small-scale tests to ensure reliability of the gages, and reactor pulse experiments involving the most viable samples in the Annulated Core Research Reactor (ACRR), located onsite at Sandia. Strain measurement techniques that can provide useful data in the extreme environment of a nuclear reactor core are needed to characterize nuclear fuel rods. This report documents the progression of solutions to this issue that were explored for feasibility in FY12 at Sandia National Laboratories, Albuquerque, NM.

  16. Los Alamos develops new technique for growing high-efficiency...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technique for growing high-efficiency perovskite ... growth of highly efficient and reproducible solar cells from large-area ... clean global energy solutions for the ...

  17. Development and Standardization of Techniques for Bio-oil Characteriza...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Standardization of Techniques for Bio-oil Characterization Jack Ferrell, NREL; ... quantitative analytical methods for bio-oil characterization - Standard methods do not ...

  18. Slurry phase Fischer-Tropsch synthesis process development

    SciTech Connect (OSTI)

    Bhatt, B.L.; Tijm, P.J.A.

    1998-12-31

    Fischer-Tropsch synthesis can convert a variety of synthesis gas mixtures produced from both coal and natural gas to obtain hydrocarbons, which can be further processed to manufacture automotive fuels. As the Fischer-Tropsch reaction is highly exothermic, a slurry phase reactor offers a significant advantage over the traditional fixed bed reactor for heat management. Since 1992, Air Products and DOE have been developing the slurry phase Fischer-Tropsch synthesis process with help of a number of industrial partners. This paper discusses the evolution of the technology through four pilot plant campaigns conducted at DOE`s Alternative Fuels Development Unit in LaPorte, Texas. Key issues such as catalyst-wax separation, reactor productivity improvements, reactor temperature control, and in-situ activation are addressed.

  19. Developing 226Ra and 227Ac age-dating techniques for nuclear...

    Office of Scientific and Technical Information (OSTI)

    Accepted Manuscript: Developing 226Ra and 227Ac age-dating techniques for nuclear ... Title: Developing 226Ra and 227Ac age-dating techniques for nuclear forensics to gain ...

  20. Process for preparing superconducting film having substantially uniform phase development

    DOE Patents [OSTI]

    Bharacharya, R.; Parilla, P.A.; Blaugher, R.D.

    1995-12-19

    A process is disclosed for preparing a superconducting film, such as a thallium-barium-calcium-copper oxide superconducting film, having substantially uniform phase development. The process comprises providing an electrodeposition bath having one or more soluble salts of one or more respective potentially superconducting metals in respective amounts adequate to yield a superconducting film upon subsequent appropriate treatment. Should all of the metals required for producing a superconducting film not be made available in the bath, such metals can be a part of the ambient during a subsequent annealing process. A soluble silver salt in an amount between about 0.1% and about 4.0% by weight of the provided other salts is also provided to the bath, and the bath is electrically energized to thereby form a plated film. The film is annealed in ambient conditions suitable to cause formation of a superconductor film. Doping with silver reduces the temperature at which the liquid phase appears during the annealing step, initiates a liquid phase throughout the entire volume of deposited material, and influences the nucleation and growth of the deposited material. 3 figs.

  1. Process for preparing superconducting film having substantially uniform phase development

    DOE Patents [OSTI]

    Bharacharya, Raghuthan; Parilla, Philip A.; Blaugher, Richard D.

    1995-01-01

    A process for preparing a superconducting film, such as a thallium-barium-calcium-copper oxide superconducting film, having substantially uniform phase development. The process comprises providing an electrodeposition bath having one or more soluble salts of one or more respective potentially superconducting metals in respective amounts adequate to yield a superconducting film upon subsequent appropriate treatment. Should all of the metals required for producing a superconducting film not be made available in the bath, such metals can be a part of the ambient during a subsequent annealing process. A soluble silver salt in an amount between about 0.1% and about 4.0% by weight of the provided other salts is also provided to the bath, and the bath is electrically energized to thereby form a plated film. The film is annealed in ambient conditions suitable to cause formation of a superconductor film. Doping with silver reduces the temperature at which the liquid phase appears during the annealing step, initiates a liquid phase throughout the entire volume of deposited material, and influences the nucleation and growth of the deposited material.

  2. PROGRESS ON GENERIC PHASE-FIELD METHOD DEVELOPMENT

    SciTech Connect (OSTI)

    Biner, Bullent; Tonks, Michael; Millett, Paul C.; Li, Yulan; Hu, Shenyang Y.; Gao, Fei; Sun, Xin; Martinez, E.; Anderson, D.

    2012-09-26

    In this report, we summarize our current collobarative efforts, involving three national laboratories: Idaho National Laboratory (INL), Pacific Northwest National Laboratory (PNNL) and Los Alamos National Laboatory (LANL), to develop a computational framework for homogenous and heterogenous nucleation mechanisms into the generic phase-field model. During the studies, the Fe-Cr system was chosen as a model system due to its simplicity and availability of reliable thermodynamic and kinetic data, as well as the range of applications of low-chromium ferritic steels in nuclear reactors. For homogenous nucleation, the relavant parameters determined from atomistic studies were used directly to determine the energy functional and parameters in the phase-field model. Interfacial energy, critical nucleus size, nucleation rate, and coarsening kinetics were systematically examined in two- and three- dimensional models. For the heteregoneous nucleation mechanism, we studied the nucleation and growth behavior of chromium precipitates due to the presence of dislocations. The results demonstrate that both nucleation schemes can be introduced to a phase-field modeling algorithm with the desired accuracy and computational efficiency.

  3. Microgrid Design, Development and Demonstration - Final Report for Phase I and Phase II

    SciTech Connect (OSTI)

    Bose, Sumit; Krok, Michael

    2011-02-08

    This document constitutes GE’s final report for the Microgrid Design, Development and Demonstration program for DOE’s Office of Electricity Delivery and Energy Reliability, Award DE-FC02-05CH11349. It contains the final report for Phase I in Appendix I, and the results the work performed in Phase II. The program goal was to develop and demonstrate a Microgrid Energy Management (MEM) framework for a broad set of Microgrid applications that provides unified controls, protection, and energy management. This project contributed to the achievement of the U.S. Department of Energy’s Renewable and Distributed Systems Integration Program goals by developing a fully automated power delivery microgrid network that: - Reduces carbon emissions and emissions of other air pollutants through increased use of optimally dispatched renewable energy, - Increases asset use through integration of distributed systems, - Enhances reliability, security, and resiliency from microgrid applications in critical infrastructure protection, constrained areas of the electric grid, etc. - Improves system efficiency with on-site, distributed generation and improved economic efficiency through demand-side management.

  4. New ALS Technique Guides IBM in Next-Generation Semiconductor Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New ALS Technique Guides IBM in Next-Generation Semiconductor Development New ALS Technique Guides IBM in Next-Generation Semiconductor Development Print Wednesday, 21 January 2015 09:37 A new measurement technique developed at the ALS is helping guide the semiconductor industry in next-generation nanopatterning techniques. Directed self assembly (DSA) of block copolymers is an extremely promising strategy for high-volume, cost-effective semiconductor manufacturing at the nanoscale. Materials

  5. Neutron capture strategy and technique developments for GNEP

    SciTech Connect (OSTI)

    Couture, Aaron Joseph

    2008-01-01

    The initial three years of neutron capture measurements have been very successful in providing data for the Advanced Fuel Cycle Initiative/Global Nuclear Energy Partnership (AFCI/GNEP) program. Now that the most straightforward measurements have been completed, additional technical challenges face future measurements. In particular, techniques are needed to perform measurements that exhibit at least one of three major problems -- large fission:capture ratios, large capture:capture ratios, and high intrinsic activity samples. This paper will set forward a plan for attacking these technical challenges and moving forward with future measurements.

  6. Microsoft Word - HAB - AdviceDevelopmentTechniques-draft-3.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Final Draft Advice Development and Issue Manager Roles and Responsibilities This process is provided as general guidelines for Issue Managers to consider during the Hanford Advisory Board (HAB) Issue and Advice development process. Identification of Potential Issue * The issue is either identified by a Tri-Party Agreement Agency (Agency) as needing HAB input, or identified by a HAB member and brought to the attention of the appropriate HAB Committee. * Additional information may be required from

  7. Development of long life three phase uninterruptible power supply using flywheel energy storage unit

    SciTech Connect (OSTI)

    Takahashi, Isao; Okita, Yoshihisa; Andoh, Itaru

    1995-12-31

    According to development of computer applications, uninterruptible power supplies (UPS) are indispensable to the industrial field. But the cost for maintaining the conventional UPS is very high, because frequent replacement of parts which have short life time is necessary. This paper describes the research and development of a new UPS which has long life parts for maintenance free. To lengthen the life time, the following techniques are introduced: (1) a flywheel energy storage unit having more than 20 years life time; (2) electrolytic capacitor less inverter and converter. By using these techniques, a three phase UPS rating 5kVA, 200V is developed, and excellent performance is obtained: input power factor is over 99.7%; output voltage distortion is under 1.5%; transformer less UPS achieves light weight system; the UPS have function of automatic output voltage balance using auxiliary diode rectifier; input current harmonic distortion is less than 1.2%, even if the single phase load is connected.

  8. Development of Improved Caprock Integrity and Risk Assessment Techniques

    SciTech Connect (OSTI)

    Bruno, Michael

    2014-09-30

    GeoMechanics Technologies has completed a geomechanical caprock integrity analysis and risk assessment study funded through the US Department of Energy. The project included: a detailed review of historical caprock integrity problems experienced in the natural gas storage industry; a theoretical description and documentation of caprock integrity issues; advanced coupled transport flow modelling and geomechanical simulation of three large-scale potential geologic sequestration sites to estimate geomechanical effects from CO₂ injection; development of a quantitative risk and decision analysis tool to assess caprock integrity risks; and, ultimately the development of recommendations and guidelines for caprock characterization and CO₂ injection operating practices. Historical data from gas storage operations and CO₂ sequestration projects suggest that leakage and containment incident risks are on the order of 10-1 to 10-2, which is higher risk than some previous studies have suggested for CO₂. Geomechanical analysis, as described herein, can be applied to quantify risks and to provide operating guidelines to reduce risks. The risk assessment tool developed for this project has been applied to five areas: The Wilmington Graben offshore Southern California, Kevin Dome in Montana, the Louden Field in Illinois, the Sleipner CO₂ sequestration operation in the North Sea, and the In Salah CO₂ sequestration operation in North Africa. Of these five, the Wilmington Graben area represents the highest relative risk while the Kevin Dome area represents the lowest relative risk.

  9. Multiparticle imaging technique for two-phase fluid flows using pulsed laser speckle velocimetry. Final report, September 1988--November 1992

    SciTech Connect (OSTI)

    Hassan, T.A.

    1992-12-01

    The practical use of Pulsed Laser Velocimetry (PLV) requires the use of fast, reliable computer-based methods for tracking numerous particles suspended in a fluid flow. Two methods for performing tracking are presented. One method tracks a particle through multiple sequential images (minimum of four required) by prediction and verification of particle displacement and direction. The other method, requiring only two sequential images uses a dynamic, binary, spatial, cross-correlation technique. The algorithms are tested on computer-generated synthetic data and experimental data which was obtained with traditional PLV methods. This allowed error analysis and testing of the algorithms on real engineering flows. A novel method is proposed which eliminates tedious, undersirable, manual, operator assistance in removing erroneous vectors. This method uses an iterative process involving an interpolated field produced from the most reliable vectors. Methods are developed to allow fast analysis and presentation of sets of PLV image data. Experimental investigation of a two-phase, horizontal, stratified, flow regime was performed to determine the interface drag force, and correspondingly, the drag coefficient. A horizontal, stratified flow test facility using water and air was constructed to allow interface shear measurements with PLV techniques. The experimentally obtained local drag measurements were compared with theoretical results given by conventional interfacial drag theory. Close agreement was shown when local conditions near the interface were similar to space-averaged conditions. However, theory based on macroscopic, space-averaged flow behavior was shown to give incorrect results if the local gas velocity near the interface as unstable, transient, and dissimilar from the average gas velocity through the test facility.

  10. New ALS Technique Guides IBM in Next-Generation Semiconductor Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New ALS Technique Guides IBM in Next-Generation Semiconductor Development Print A new measurement technique developed at the ALS is helping guide the semiconductor industry in next-generation nanopatterning techniques. Directed self assembly (DSA) of block copolymers is an extremely promising strategy for high-volume, cost-effective semiconductor manufacturing at the nanoscale. Materials that self-assemble spontaneously form nanostructures down to the molecular scale, which would revolutionize

  11. Ultrasonic Phased Array Technique for Accurate Flaw Sizing in Dissimilar Metal Welds

    SciTech Connect (OSTI)

    Jonathan D Buttram

    2005-03-11

    Described is a manual,portable non-destructive technique to determine the through wall height of cracks present in dissimilar metal welds used in the primary coolling systems of pressure water and boiler light water reactors. Current manual methods found in industry have proven not to exhibit the sizing accuracy required by ASME inspection requirement. The technique described demonstrated an accuracy approximately three times that required to ASME Section XI, Appendix 8 qualification.

  12. FreedomCAR Advanced Traction Drive Motor Development Phase I

    SciTech Connect (OSTI)

    Ley, Josh; Lutz, Jon

    2006-09-01

    The overall objective of this program is to design and develop an advanced traction motor that will meet the FreedomCAR and Vehicle Technologies (FCVT) 2010 goals and the traction motor technical targets. The motor specifications are given in Section 1.3. Other goals of the program include providing a cost study to ensure the motor can be developed within the cost targets needed for the automotive industry. The program has focused on using materials that are both high performance and low costs such that the performance can be met and cost targets are achieved. In addition, the motor technologies and machine design features must be compatible with high volume manufacturing and able to provide high reliability, efficiency, and ruggedness while simultaneously reducing weight and volume. Weight and volume reduction will become a major factor in reducing cost, material cost being the most significant part of manufacturing cost at high volume. Many motor technology categories have been considered in the past and present for traction drive applications, including: brushed direct current (DC), PM (PM) brushless dc (BLDC), alternating current (AC) induction, switched reluctance and synchronous reluctance machines. Of these machine technologies, PM BLDC has consistently demonstrated an advantage in terms of power density and efficiency. As rare earth magnet cost has declined, total cost may also be reduced over the other technologies. Of the many different configurations of PM BLDC machines, those which incorporate power production utilizing both magnetic torque as well as reluctance torque appear to have the most promise for traction applications. There are many different PM BLDC machine configurations which employ both of these torque producing mechanisms; however, most would fall into one of two categories--some use weaker magnets and rely more heavily on reluctance torque (reluctance-dominant PM machines), others use strong PMs and supplement with reluctance torque (magnet-dominant PM machines). This report covers a trade study that was conducted in this phase I program to explore which type of machine best suits the FCVT requirements.

  13. Development of a Test Technique to Determine the Thermal Conductivity of

    Office of Scientific and Technical Information (OSTI)

    Large Refractory Ceramic Test Specimens (Journal Article) | SciTech Connect Journal Article: Development of a Test Technique to Determine the Thermal Conductivity of Large Refractory Ceramic Test Specimens Citation Details In-Document Search Title: Development of a Test Technique to Determine the Thermal Conductivity of Large Refractory Ceramic Test Specimens A method has been developed to utilize the High Intensity Infrared lamp located at Oak Ridge National Laboratory for the measurement

  14. Los Alamos develops new technique for growing high-efficiency perovskite

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solar cells Growing high-efficiency perovskite solar cells Los Alamos develops new technique for growing high-efficiency perovskite solar cells Researchers reveal a new solution-based hot-casting technique that allows growth of highly efficient and reproducible solar cells from large-area perovskite crystals. January 29, 2015 Scientists Aditya Mohite, left, and Wanyi Nie are perfecting a crystal production technique to improve perovskite crystal production for solar cells at Los Alamos

  15. Development of Zinc/Bromine Batteries for Load-Leveling Applications: Phase 1 Final Report

    SciTech Connect (OSTI)

    Eidler, Phillip

    1999-07-01

    The Zinc/Bromine Load-Leveling Battery Development contract (No. 40-8965) was partitioned at the outset into two phases of equal length. Phase 1 started in September 1990 and continued through December 1991. In Phase 1, zinc/bromine battery technology was to be advanced to the point that it would be clear that the technology was viable and would be an appropriate choice for electric utilities wishing to establish stationary energy-storage facilities. Criteria were established that addressed most of the concerns that had been observed in the previous development efforts. The performances of 8-cell and 100-cell laboratory batteries demonstrated that the criteria were met or exceeded. In Phase 2, 100-kWh batteries will be built and demonstrated, and a conceptual design for a load-leveling plant will be presented. At the same time, work will continue to identify improved assembly techniques and operating conditions. This report details the results of the efforts carried out in Phase 1. The highlights are: (1) Four 1-kWh stacks achieved over 100 cycles, One l-kWh stack achieved over 200 cycles, One 1-kWh stack achieved over 300 cycles; (2) Less than 10% degradation in performance occurred in the four stacks that achieved over 100 cycles; (3) The battery used for the zinc loading investigation exhibited virtually no loss in performance for loadings up to 130 mAh/cm{sup 2}; (4) Charge-current densities of 50 ma/cm{sup 2} have been achieved in minicells; (5) Fourteen consecutive no-strip cycles have been conducted on the stack with 300+ cycles; (6) A mass and energy balance spreadsheet that describes battery operation was completed; (7) Materials research has continued to provide improvements in the electrode, activation layer, and separator; and (8) A battery made of two 50-cell stacks (15 kWh) was produced and delivered to Sandia National Laboratories (SNL) for testing. The most critical development was the ability to assemble a battery stack that remained leak free. The task of sealing the battery stack using vibration welding has undergone significant improvement resulting in a viable production process. Through several design iterations, a solid technology base for larger battery stack designs was established. Internal stack stresses can now be modeled, in addition to fluid velocity and fluid pressure distribution, through the use of a finite element analysis computer program. Additionally, the Johnson Controls Battery Group, Inc. (JCBGI) proprietary FORTRAN model has been improved significantly, enabling accurate performance predictions. This modeling was used to improve the integrity and performance of the battery stacks, and should be instrumental in reducing the turnaround time from concept to assembly.

  16. Development of a Front Tracking Method for Two-Phase Micromixing...

    Office of Scientific and Technical Information (OSTI)

    Development of a Front Tracking Method for Two-Phase Micromixing of Incompressible Viscous Fluids with Interfacial Tension in Solvent Extraction Citation Details In-Document Search...

  17. Development of coherent Raman measurements of temperature in condensed phases

    SciTech Connect (OSTI)

    Mcgrane, Shawn D; Dang, Nhan C; Bolme, Cindy A; Moore, David S

    2010-12-08

    We report theoretical considerations and preliminary data on various forms of coherent Raman spectroscopy that have been considered as candidates for measurement of temperature in condensed phase experiments with picosecond time resolution. Due to the inherent broadness and congestion of vibrational features in condensed phase solids, particularly at high temperatures and pressures, only approaches that rely on the ratio of anti-Stokes to Stokes spectral features are considered. Methods that rely on resolution of vibrational progressions, calibration of frequency shifts with temperature and pressure in reference experiments, or detailed comparison to calculation are inappropriate or impossible for our applications. In particular, we consider femtosecond stimulated Raman spectroscopy (FSRS), femtosecond/picosecond hybrid coherent Raman spectroscopy (multiplex CARS), and optical heterodyne detected femtosecond Raman induced Kerr Effect spectroscopy (OHD-FRIKES). We show that only FSRS has the ability to measure temperature via an anti-Stokes to Stokes ratio of peaks.

  18. Sandia Develops Phased-Array Sources Based on Nonlinear Metamaterial

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanocavities Phased-Array Sources Based on Nonlinear Metamaterial Nanocavities - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing

  19. STTR Phase 1 Final Technical Report for Project Entitled "Developing...

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: USDOE; USDOE EE Office of Technology Development (EE-20) Contributing ... Subject: 09 BIOMASS FUELS Torrefaction, clean coal, renewable energy, biomass Word Cloud ...

  20. Innovative Coal Solids-Flow Monitoring and Measurement Using Phase-Doppler and Mie Scattering Techniques

    SciTech Connect (OSTI)

    Stephen Seong Lee

    2010-01-19

    Fuel flow to individual burners is complicated and difficult to determine on coal fired boilers, since coal solids were transported in a gas suspension that is governed by the complex physics of two-phase flow. The objectives of the project were the measurements of suspended coal solids-flows in the simulated test conditions. Various extractive methods were performed manually and can give only a snapshot result of fuel distribution. In order to measure particle diameter & velocity, laser based phase-Doppler particle analyzer (PDPA) and particle image velocimetry (PIV) were carefully applied. Statistical methods were used to analyze particle characteristics to see which factors have significant effect. The transparent duct model was carefully designed and fabricated for the laser-based-instrumentation of solids-flow monitoring (LISM). The experiments were conducted with two different kinds of particles with four different particle diameters. The particle types were organic particles and saw dust particles with the diameter range of 75-150 micron, 150-250 micron, 250-355 micron and 355-425 micron. The densities of the particles were measured to see how the densities affected the test results. Also the experiment was conducted with humid particles and fog particles. To generate humid particles, the humidifier was used. A pipe was connected to the humidifier to lead the particle flow to the intersection of the laser beam. The test results of the particle diameter indicated that, the mean diameter of humid particles was between 6.1703 microns and 6.6947 microns when the humid particle flow was low. When the humid particle flow was high, the mean diameter was between 6.6728 microns and 7.1872 microns. The test results of the particle mean velocity indicated that the mean velocity was between 1.3394 m/sec and 1.4556 m/sec at low humid particle flow. When the humid particle flow was high, the mean velocity was between 1.5694 m/sec and 1.7856 m/sec. The Air Flow Module, TQ AF 17 and shell ondina oil were used to generate fog particles. After the oil was heated inside the fog generator, the blower was used to generate the fog. The fog flew along the pipe to the intersection of the laser beam. The mean diameter of the fog particles was 5.765 microns. Compared with the humid particle diameter, we observed that the mean diameter of the fog particles was smaller than the humid particles. The test results of particle mean velocity was about 3.76 m/sec. Compared with the mean velocity of the humid particles, we can observed the mean velocity of fog particles were greater than humid particles. The experiments were conducted with four different kinds of particles with five different particle diameters. The particle types were organic particles, coal particles, potato particles and wheat particles with the diameter range of 63-75 micron, less than 150 micron, 150-250 micron, 250-355 micron and 355-425 micron. To control the flow rate, the control gate of the particle dispensing hopper was adjusted to 1/16 open rate, 1/8 open rate and 1/4 open rate. The captured image range was 0 cm to 5 cm from the control gate, 5 cm to 10 cm from the control gate and 10 cm to 15 cm from the control gate. Some of these experiments were conducted under both open environment conditions and closed environment conditions. Thus these experiments had a total of five parameters which were type of particles, diameter of particles, flow rate, observation range, and environment conditions. The coal particles (diameter between 63 and 75 microns) tested under the closed environment condition had three factors that were considered as the affecting factors. They were open rate, observation range, and environment conditions. In this experiment, the interaction of open rate and observation range had a significant effect on the lower limit. On the upper limit, the open rate and environment conditions had a significant effect. In addition, the interaction of open rate and environment conditions had a significant effect. The coal particles tested (diameter between 63 and 75

  1. Developing new optical imaging techniques for single particle and molecule tracking in live cells

    SciTech Connect (OSTI)

    Sun, Wei

    2010-12-15

    Differential interference contrast (DIC) microscopy is a far-field as well as wide-field optical imaging technique. Since it is non-invasive and requires no sample staining, DIC microscopy is suitable for tracking the motion of target molecules in live cells without interfering their functions. In addition, high numerical aperture objectives and condensers can be used in DIC microscopy. The depth of focus of DIC is shallow, which gives DIC much better optical sectioning ability than those of phase contrast and dark field microscopies. In this work, DIC was utilized to study dynamic biological processes including endocytosis and intracellular transport in live cells. The suitability of DIC microscopy for single particle tracking in live cells was first demonstrated by using DIC to monitor the entire endocytosis process of one mesoporous silica nanoparticle (MSN) into a live mammalian cell. By taking advantage of the optical sectioning ability of DIC, we recorded the depth profile of the MSN during the endocytosis process. The shape change around the nanoparticle due to the formation of a vesicle was also captured. DIC microscopy was further modified that the sample can be illuminated and imaged at two wavelengths simultaneously. By using the new technique, noble metal nanoparticles with different shapes and sizes were selectively imaged. Among all the examined metal nanoparticles, gold nanoparticles in rod shapes were found to be especially useful. Due to their anisotropic optical properties, gold nanorods showed as diffraction-limited spots with disproportionate bright and dark parts that are strongly dependent on their orientation in the 3D space. Gold nanorods were developed as orientation nanoprobes and were successfully used to report the self-rotation of gliding microtubules on kinesin coated substrates. Gold nanorods were further used to study the rotational motions of cargoes during the endocytosis and intracellular transport processes in live mammalian cells. New rotational information was obtained: (1) during endocytosis, cargoes lost their rotation freedom at the late stage of internalization; (2) cargoes performed train-like motion when they were transported along the microtubule network by motor proteins inside live cells; (3) During the pause stage of fast axonal transport, cargoes were still bound to the microtubule tracks by motor proteins. Total internal reflection fluorescence microscopy (TIRFM) is another non-invasive and far-field optical imaging technique. Because of its near-field illumination mechanism, TIRFM has better axial resolution than epi-fluorescence microscopy and confocal microscopy. In this work, an auto-calibrated, prism type, angle-scanning TIRFM instrument was built. The incident angle can range from subcritical angles to nearly 90{sup o}, with an angle interval less than 0.2{sup o}. The angle precision of the new instrument was demonstrated through the finding of the surface plasmon resonance (SPR) angle of metal film coated glass slide. The new instrument improved significantly the precision in determining the axial position. As a result, the best obtained axial resolution was {approx} 8 nm, which is better than current existing instruments similar in function. The instrument was further modified to function as a pseudo TIRF microscope. The illumination depth can be controlled by changing the incident angle of the excitation laser beam or adjusting the horizontal position of the illumination laser spot on the prism top surface. With the new technique, i.e., variable-illumination-depth pseudo TIRF microscopy, the whole cell body from bottom to top was scanned.

  2. Aircraft wire system laboratory development : phase I progress report.

    SciTech Connect (OSTI)

    Dinallo, Michael Anthony; Lopez, Christopher D.

    2003-08-01

    An aircraft wire systems laboratory has been developed to support technical maturation of diagnostic technologies being used in the aviation community for detection of faulty attributes of wiring systems. The design and development rationale of the laboratory is based in part on documented findings published by the aviation community. The main resource at the laboratory is a test bed enclosure that is populated with aged and newly assembled wire harnesses that have known defects. This report provides the test bed design and harness selection rationale, harness assembly and defect fabrication procedures, and descriptions of the laboratory for usage by the aviation community.

  3. ADVANCED DIAGNOSTIC TECHNIQUES FOR THREE-PHASE SLURRY BUBBLE COLUMN REACTORS (SBCR)

    SciTech Connect (OSTI)

    M.H. Al-Dahhan; M.P. Dudukovic; L.S. Fan

    2001-07-25

    This report summarizes the accomplishment made during the second year of this cooperative research effort between Washington University, Ohio State University and Air Products and Chemicals. The technical difficulties that were encountered in implementing Computer Automated Radioactive Particle Tracking (CARPT) in high pressure SBCR have been successfully resolved. New strategies for data acquisition and calibration procedure have been implemented. These have been performed as a part of other projects supported by Industrial Consortium and DOE via contract DE-2295PC95051 which are executed in parallel with this grant. CARPT and Computed Tomography (CT) experiments have been performed using air-water-glass beads in 6 inch high pressure stainless steel slurry bubble column reactor at selected conditions. Data processing of this work is in progress. The overall gas holdup and the hydrodynamic parameters are measured by Laser Doppler Anemometry (LDA) in 2 inch slurry bubble column using Norpar 15 that mimic at room temperature the Fischer Tropsch wax at FT reaction conditions of high pressure and temperature. To improve the design and scale-up of bubble column, new correlations have been developed to predict the radial gas holdup and the time averaged axial liquid recirculation velocity profiles in bubble columns.

  4. Biomass power for rural development: Phase 2. Technical progress report, April 1--June 30, 1998

    SciTech Connect (OSTI)

    Neuhauser, E.

    1998-11-01

    The project undertaken by the Salix Consortium is a multi-phased, multi-partner endeavor. Phase-1 focused on initial development and testing of the technology and agreements necessary to demonstrate commercial willow production in Phase-2. The Phase-1 objectives have been successfully completed: preparing final design plans for two utility pulverized coal boilers, developing fuel supply plans for the project, obtaining power production commitments from the power companies for Phase-2, obtaining construction and environmental permits, and developing an experimental strategy for crop production and power generation improvements needed to assure commercial success. The R and D effort also addresses environmental issues pertaining to introduction of the willow energy system. Beyond those Phase-1 requirements the Consortium has already successfully demonstrated cofiring at Greenidge Station and developed the required nursery capacity for acreage scale-up. This past summer 105 acres were prepared in advance for the spring planting in 1998. Having completed the above tasks, the Consortium is well positioned to begin Phase-2. In phase-2 every aspect of willow production and power generation from willow will be demonstrated. The ultimate objective of Phase-2 is to transition the work performed under the Rural Energy for the Future project into a thriving, self-supported energy crop enterprise.

  5. Rapid and noncontact photoacoustic tomography imaging system using an interferometer with high-speed phase modulation technique

    SciTech Connect (OSTI)

    Liu, Jun; Tang, Zhilie; Wu, Yongbo; Wang, Yi

    2015-04-15

    We designed, fabricated, and tested a rapid and noncontact photoacoustic tomography (PAT) imaging system using a low-coherence interferometer with high-speed phase modulation technique. Such a rapid and noncontact probing system can greatly decrease the time of imaging. The proposed PAT imaging system is experimentally verified by capturing images of a simulated tissue sample and the blood vessels within the ear flap of a mouse (pinna) in vivo. The axial and lateral resolutions of the system are evaluated at 45 and ∼15 μm, respectively. The imaging depth of the system is 1 mm in a special phantom. Our results show that the proposed system opens a promising way to realize noncontact, real-time PAT.

  6. Computerized Operator Support System – Phase II Development

    SciTech Connect (OSTI)

    Ulrich, Thomas A.; Boring, Ronald L.; Lew, Roger T.; Thomas, Kenneth D.

    2015-02-01

    A computerized operator support system (COSS) prototype for nuclear control room process control is proposed and discussed. The COSS aids operators in addressing rapid plant upsets that would otherwise result in the shutdown of the power plant and interrupt electrical power generation, representing significant costs to the owning utility. In its current stage of development the prototype demonstrates four advanced functions operators can use to more efficiently monitor and control the plant. These advanced functions consist of: (1) a synthesized and intuitive high level overview display of system components and interrelations, (2) an enthalpy-based mathematical chemical and volume control system (CVCS) model to detect and diagnose component failures, (3) recommended strategies to mitigate component failure effects and return the plant back to pre-fault status, and (4) computer-based procedures to walk the operator through the recommended mitigation actions. The COSS was demonstrated to a group of operators and their feedback was collected. The operators responded positively to the COSS capabilities and features and indicated the system would be an effective operator aid. The operators also suggested several additional features and capabilities for the next iteration of development. Future versions of the COSS prototype will include additional plant systems, flexible computer-based procedure presentation formats, and support for simultaneous component fault diagnosis and dual fault synergistic mitigation action strategies to more efficiently arrest any plant upsets.

  7. Phase 1 Development Report for the SESSA Toolkit.

    SciTech Connect (OSTI)

    Knowlton, Robert G.; Melton, Brad J; Anderson, Robert J.

    2014-09-01

    The Site Exploitation System for Situational Awareness ( SESSA ) tool kit , developed by Sandia National Laboratories (SNL) , is a comprehensive de cision support system for crime scene data acquisition and Sensitive Site Exploitation (SSE). SESSA is an outgrowth of another SNL developed decision support system , the Building R estoration Operations Optimization Model (BROOM), a hardware/software solution for data acquisition, data management, and data analysis. SESSA was designed to meet forensic crime scene needs as defined by the DoD's Military Criminal Investigation Organiza tion (MCIO) . SESSA is a very comprehensive toolki t with a considerable amount of database information managed through a Microsoft SQL (Structured Query Language) database engine, a Geographical Information System (GIS) engine that provides comprehensive m apping capabilities, as well as a an intuitive Graphical User Interface (GUI) . An electronic sketch pad module is included. The system also has the ability to efficiently generate necessary forms for forensic crime scene investigations (e.g., evidence submittal, laboratory requests, and scene notes). SESSA allows the user to capture photos on site, and can read and generate ba rcode labels that limit transcription errors. SESSA runs on PC computers running Windows 7, but is optimized for touch - screen tablet computers running Windows for ease of use at crime scenes and on SSE deployments. A prototype system for 3 - dimensional (3 D) mapping and measur e ments was also developed to complement the SESSA software. The mapping system employs a visual/ depth sensor that captures data to create 3D visualizations of an interior space and to make distance measurements with centimeter - level a ccuracy. Output of this 3D Model Builder module provides a virtual 3D %22walk - through%22 of a crime scene. The 3D mapping system is much less expensive and easier to use than competitive systems. This document covers the basic installation and operation of th e SESSA tool kit in order to give the user enough information to start using the tool kit . SESSA is currently a prototype system and this documentation covers the initial release of the tool kit . Funding for SESSA was provided by the Department of Defense (D oD), Assistant Secretary of Defense for Research and Engineering (ASD(R&E)) Rapid Fielding (RF) organization. The project was managed by the Defense Forensic Science Center (DFSC) , formerly known as the U.S. Army Criminal Investigation Laboratory (USACIL) . ACKNOWLEDGEMENTS The authors wish to acknowledge the funding support for the development of the Site Exploitation System for Situational Awareness (SESSA) toolkit from the Department of Defense (DoD), Assistant Secretary of Defense for Research and Engineering (ASD(R&E)) Rapid Fielding (RF) organization. The project was managed by the Defense Forensic Science Center (DFSC) , formerly known as the U.S. Army Criminal Investigation Laboratory (USACIL). Special thanks to Mr. Garold Warner, of DFSC, who served as the Project Manager. Individuals that worked on the design, functional attributes, algorithm development, system arc hitecture, and software programming include: Robert Knowlton, Brad Melton, Robert Anderson, and Wendy Amai.

  8. The development of in situ fracture toughness evaluation techniques in hydrogen environment

    SciTech Connect (OSTI)

    Wang, Jy-An John; Ren, Fei; Tan, Ting; Liu, Ken C

    2014-01-01

    Fracture behavior and fracture toughness are of great interest regarding reliability of hydrogen pipelines and storage tanks, however, many conventional fracture testing techniques are difficult to be realized under the presence of hydrogen, in addition to the inherited specimen size effect. Thus it is desired to develop novel in situ fracture toughness evaluation techniques to study the fracture behavior of structural materials in hydrogen environments. In this study, a torsional fixture was developed to utilize an emerging fracture testing technique, Spiral Notch Torsion Test (SNTT). The in situ testing results indicated that the exposure to H2 significantly reduces the fracture toughness of 4340 high strength steels by up to 50 percent. Furthermore, SNTT tests conducted in air demonstrated a significant fracture toughness reduction in samples subject to simulated welding heat treatment using Gleeble, which illustrated the effect of welding on the fracture toughness of this material.

  9. Particle Imaging Velocimetry Technique Development for Laboratory Measurement of Fracture Flow Inside a Pressure Vessel Using Neutron Imaging

    SciTech Connect (OSTI)

    Polsky, Yarom; Bingham, Philip R; Bilheux, Hassina Z; Carmichael, Justin R

    2015-01-01

    This paper will describe recent progress made in developing neutron imaging based particle imaging velocimetry techniques for visualizing and quantifying flow structure through a high pressure flow cell with high temperature capability (up to 350 degrees C). This experimental capability has great potential for improving the understanding of flow through fractured systems in applications such as enhanced geothermal systems (EGS). For example, flow structure measurement can be used to develop and validate single phase flow models used for simulation, experimentally identify critical transition regions and their dependence on fracture features such as surface roughness, and study multiphase fluid behavior within fractured systems. The developed method involves the controlled injection of a high contrast fluid into a water flow stream to produce droplets that can be tracked using neutron radiography. A description of the experimental setup will be provided along with an overview of the algorithms used to automatically track droplets and relate them to the velocity gradient in the flow stream. Experimental results will be reported along with volume of fluids based simulation techniques used to model observed flow.

  10. Development of quick repairing technique for ceramic burner in hot stove of blast furnace

    SciTech Connect (OSTI)

    Kondo, Atsushi; Doura, Kouji; Nakamura, Hirofumi

    1997-12-31

    Refractories of ceramic burner in hot stoves at Wakayama No. 4 blast furnace were damaged. There are only three hot stoves, so repairing must be done in a short. Therefore, a quick repairing technique for ceramic burners has been developed, and two ceramic burners were repaired in just 48 hours.

  11. Biomass power for rural development. Technical progress report, Phase 2, July 1--September 30, 1998

    SciTech Connect (OSTI)

    Neuhauser, E.

    1999-01-01

    The project undertaken by the Salix Consortium is a multi-phased, multi-partner endeavor. Phase 1 focused on initial development and testing of the technology and forging the necessary agreements to demonstrate commercial willow production. The Phase 1 objectives have been successfully completed: preparing final design plans for two utility pulverized coal boiler for 20 MW of biopower capacity; developing fuel supply plans for the project with a goal of establishing 365 ha (900 ac) of willow; obtaining power production commitments from the power companies for Phase 2; obtaining construction and environmental permits; and developing an experimental strategy for crop production and power generation improvements needed to assure commercial success. The R and D effort also addresses environmental issues pertaining to introduction of the willow energy system. Beyond those Phase 1 requirements, the Consortium has already successfully demonstrated cofiring at Greenidge Station and has initiated development of the required nursery capacity for acreage scale-up. In Phase 2 every aspect of willow production and power generation from willow biomass will be demonstrated. The ultimate objective of Phase 2 is to transition the work performed under the Biomass Power for Rural Development project into a thriving, self-supported energy crop enterprise.

  12. Technique development for field inspection of cracking in seam welded ducts

    SciTech Connect (OSTI)

    Shell, Eric B.; Benson, Craig; Liljestrom, Greg C.; Shanahan, Stephen

    2014-02-18

    The resistance seam weld interfaces between alloyed and pure titanium are an in service concern due to precipitation of titanium hydride and resulting embrittlement and cracking. Several inspection techniques were developed and evaluated for field use to characterize the damage in the fleet. Electromagnetic, ultrasonic, florescent penetrant, thermographic, and radiographic techniques were considered. The ultrasonic and electromagnetic approaches were both found suitable. However, the electromagnetic approach is more desirable for field inspections, due to consistency and ease of use. The electromagnetic inspection procedure is able to discriminate between precursor damage and through cracking with sufficient sensitivity to small cracks.

  13. Development of ion beam techniques for the study of special nuclear materials related problems

    SciTech Connect (OSTI)

    Maggiore, C.J.; Tesmer, J.R.; Martz, J.C.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The scientific objective of this project was to develop the ion beam techniques for the characterization of actinides and their effects on other materials. It was designed to enhance their ability to quantitatively understand the oxidation, corrosion, diffusion, stability, and radiation damage of actinides and the materials with which they are in contact. The authors developed and applied several low-energy nuclear techniques (resonant and nonresonant backscattering, nuclear reaction analysis, and particle-induced x-ray emission) to the quantitative study of the near surfaces of actinide and tritide materials, and determined the absolute accuracy and precision of ion beam measurements on these materials. They also demonstrated the use of variable-energy alpha beams for the study of accelerated aging of polymeric materials in contact with actinide materials.

  14. The second-phase development of the China JinPing underground laboratory

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Journal Article: The second-phase development of the China JinPing underground laboratory Citation Details In-Document Search Title: The second-phase development of the China JinPing underground laboratory During 2013-2015 an expansion of the China JinPing underground Laboratory (CJPL) will be undertaken along a main branch of a bypass tunnel in the JinPing tunnel complex. This second phase of CJPL will increase laboratory space to approximately 96,000

  15. Development of a Dispatchable PV Peak Shainv System. PV: Bonus Program - Phase 1 Report. Volume 1

    SciTech Connect (OSTI)

    1995-10-01

    This report summarizes the work performed by Delmarva Power and Light and its subcontractors in Phase 1 of the US Department of Energy's PV:BONUS Program. The purpose of the program is to develop products and systems for buildings which utilize photovoltaic (N) technology. Beginning with a cooperative research effort with the University of Delaware's Center for Energy and Environmental Policy Research Delmarva Power developed and demonstrated the concept of Dispatchable PV Peak Shaving. This concept and the system which resulted horn the development work are unique from other grid-connected PV systems because it combines a PV, battery energy storage, power conversion and control technologies into an integrated package. Phase 1 began in July 1993 with the installation of a test and demonstration system at Delmarva's Northern Division General Office building near Newark, Delaware. Following initial testing throughout the summer and fall of 1993, significant modifications were made under an amendment to the DOE contract. Work on Phase 1 concluded in the early spring of 1995. Significant progress towards the goal of commercializing the system was made during Phase 1, and is summarized. Based on progress in Phase 1, a proposal to continue the work in Phase 2 was submitted to the US DOE in May 1995. A contract amendment and providing funds for the Phase 2 work is expected in July 1995.

  16. Development of an Efficient Meso- scale Multi-phase Flow Solver in Nuclear Applications

    SciTech Connect (OSTI)

    Lee, Taehun

    2015-10-20

    The proposed research aims at formulating a predictive high-order Lattice Boltzmann Equation for multi-phase flows relevant to nuclear energy related application - namely, saturated and sub-cooled boiling in reactors, and liquid- liquid mixing and extraction for fuel cycle separation. An efficient flow solver will be developed based on the Finite Element based Lattice Boltzmann Method (FE- LBM), accounting for phase-change heat transfer and capable of treating multiple phases over length scales from the submicron to the meter. A thermal LBM will be developed in order to handle adjustable Prandtl number, arbitrary specific heat ratio, a wide range of temperature variations, better numerical stability during liquid-vapor phase change, and full thermo-hydrodynamic consistency. Two-phase FE-LBM will be extended to liquid–liquid–gas multi-phase flows for application to high-fidelity simulations building up from the meso-scale up to the equipment sub-component scale. While several relevant applications exist, the initial applications for demonstration of the efficient methods to be developed as part of this project include numerical investigations of Critical Heat Flux (CHF) phenomena in nuclear reactor fuel bundles, and liquid-liquid mixing and interfacial area generation for liquid-liquid separations. In addition, targeted experiments will be conducted for validation of this advanced multi-phase model.

  17. A farewell to arms? Scientists developing a novel technique that could

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    facilitate nuclear disarmament | Princeton Plasma Physics Lab A farewell to arms? Scientists developing a novel technique that could facilitate nuclear disarmament By John Greenwald June 25, 2014 Tweet Widget Google Plus One Share on Facebook The British Test Object for the project at PPPL (Photo by Elle Starkman/Princeton Office of Communications ) The British Test Object for the project at PPPL Gallery: Alexander Glaser and Robert Goldston with the British Test Object (Photo by Elle

  18. A farewell to arms? Scientists developing a novel technique that could

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    facilitate nuclear disarmament | Princeton Plasma Physics Lab A farewell to arms? Scientists developing a novel technique that could facilitate nuclear disarmament By John Greenwald July 1, 2014 Tweet Widget Google Plus One Share on Facebook The British Test Object for the project at PPPL (Photo by Elle Starkman/Princeton Office of Communications ) The British Test Object for the project at PPPL Gallery: Alexander Glaser and Robert Goldston with the British Test Object (Photo by Elle

  19. Development and application of new techniques for blast furnace process control at SSAB Tunnplaat, Luleaa Works

    SciTech Connect (OSTI)

    Braemming, M.; Hallin, M.; Zuo, G.

    1995-12-01

    SSAB Tunnplaat AB operates two blast furnaces (M1 and M2) in Luleaa. In recent years research efforts have to a great extent been aimed at the development of new techniques for blast furnace process control. An example is the installation of a burden profile measurement system, which was useful in the development of a new burden distribution praxis on the big furnace (M2), equipped with a bell-less-top. Hearth level detection and continuous measurement of the hot metal temperature in the runner are under evaluation. The purpose of these techniques is to give earlier information concerning the state of the blast furnace process. Parallel to this work, models for prediction of silicon in hot metal, the position and shape of the cohesive zone and slip-warning are being developed and tested off-line. These new models and information from new measuring techniques will be integrated into a new Operating Guidance System, hopefully resulting in a powerful tool in the efforts to stabilize blast furnace operations.

  20. Development of all-ceramic glow plugs for heavy-duty engines: Phase 2

    SciTech Connect (OSTI)

    Johar, S.; Das Gupta, S.

    1997-12-31

    Details the development work performed in phase 2 of a project to develop all-ceramic glow plugs for heavy-duty diesel engines. All-ceramic glow plugs, compared to traditional metallic plugs, offer a number of advantages including high corrosion resistance, operation at higher temperatures allowing for quicker start and improved engine performance, low power use, high dimensional stability, and longer service life. Work in phase 2 focused on increasing the operational voltage ratings of the proof-of-concept plugs developed in phase 1 in order to meet all commercial expectations in terms of performance, reliability, durability, and economic manufacture. The work involved optimization of the material composition to meet design specifications, development of a manufacturing process, fabrication of plugs, and bench and engine tests. Results compare the all-ceramic plugs to conventional plugs.

  1. Non-Linear Seismic Soil Structure Interaction (SSI) Method for Developing Non-Linear Seismic SSI Analysis Techniques

    Broader source: Energy.gov [DOE]

    Non-Linear Seismic Soil Structure Interaction (SSI) Method for Developing Non-Linear Seismic SSI Analysis Techniques Justin Coleman, P.E. October 25th, 2011

  2. Development and validation of nondestructive inspection techniques for composite doubler repairs on commercial aircraft

    SciTech Connect (OSTI)

    Roach, D.; Walkington, P.

    1998-05-01

    Composite doublers, or repair patches, provide an innovative repair technique which can enhance the way aircraft are maintained. Instead of riveting multiple steel or aluminum plates to facilitate an aircraft repair, it is possible to bond a single boron-epoxy composite doubler to the damaged structure. In order for the use of composite doublers to achieve widespread use in the civil aviation industry, it is imperative that methods be developed which can quickly and reliably assess the integrity of the doubler. In this study, a specific composite application was chosen on an L-1011 aircraft in order to focus the tasks on application and operation issues. Primary among inspection requirements for these doublers is the identification of disbonds, between the composite laminate and aluminum parent material, and delaminations in the composite laminate. Surveillance of cracks or corrosion in the parent aluminum material beneath the doubler is also a concern. No single nondestructive inspection (NDI) method can inspect for every flaw type, therefore it is important to be aware of available NDI techniques and to properly address their capabilities and limitations. A series of NDI tests were conducted on laboratory test structures and on full-scale aircraft fuselage sections. Specific challenges, unique to bonded composite doubler applications, were highlighted. An array of conventional and advanced NDI techniques were evaluated. Flaw detection sensitivity studies were conducted on applicable eddy current, ultrasonic, X-ray and thermography based devices. The application of these NDI techniques to composite doublers and the results from test specimens, which were loaded to provide a changing flaw profile, are presented in this report. It was found that a team of these techniques can identify flaws in composite doubler installations well before they reach critical size.

  3. NON-INVASIVE DETERMINATION OF THE LOCATION AND DISTRBUTION OF FREE-PHASE DENSE NONAQUEOUS PHASE LIQUIDS (DNAPL) BY SEISMIC REFLECTION TECHNIQUES

    SciTech Connect (OSTI)

    Michael G. Waddell; William J. Domoracki; Jerome Eyer

    2003-01-01

    The Earth Sciences and Resources Institute, University of South Carolina is conducting a proof of concept study to determine the location and distribution of subsurface DNAPL carbon tetrachloride (CCl{sub 4}) contamination at the 216-Z-9 crib, 200 West area, DOE Hanford Site, Washington by use of two-dimensional high-resolution seismic reflection surveys and borehole geophysical data. The study makes use of recent advances in seismic reflection amplitude versus offset (AVO) technology to directly detect the presence of subsurface DNAPL. The techniques proposed are noninvasive means of site characterization and direct free-phase DNAPL detection. This final report covers the results of Tasks 1, 2, and 3. Task (1) contains site evaluation and seismic modeling studies. The site evaluation consists of identifying and collecting preexisting geological and geophysical information regarding subsurface structure and the presence and quantity of DNAPL. The seismic modeling studies were undertaken to determine the likelihood that an AVO response exists and its probable manifestation. Task (2) is the design and acquisition of 2-D seismic reflection data to image areas of probable high concentration of DNAPL. Task (3) is the processing and interpretation of the 2-D data. During the commission of these tasks four seismic reflection profiles were collected. Subsurface velocity information was obtained by vertical seismic profile surveys in three wells. The interpretation of these data is in two parts. Part one is the construction and interpretation of structural contour maps of the contact between the Hanford Fine unit and the underlying Plio/Pleistocene unit and of the contact between the Plio/Pleistocene unit and the underlying caliche layer. These two contacts were determined to be the most likely surfaces to contain the highest concentration CCl{sub 4}. Part two of the interpretation uses the results of the AVO modeling to locate any seismic amplitude anomalies that might be associated with the presence of high concentrations of CCl{sub 4}. Based on the modeling results three different methods of AVO analysis were preformed on the seismic data: enhanced amplitude stacks, offset range limited stacks, and gradient stacks. Seismic models indicate that the reflection from the contact between the Hanford Fine and the Plio/Pleistocene should exhibit amplitude variations where there are high concentrations of CCl{sub 4}. A series of different scenarios were modeled. The first scenario is the Hanford Fine pores are 100% saturated with CCl{sub 4} and the underlying Plio/Pleistocene pores are saturated with air. In this scenario the reflection coefficients are slightly negative at the small angles of incidence and become increasing more negative at the larger angles of incidence (dim-out). The second scenario is the Hanford Fine pores are saturated with air and Plio/Pleistocene pores are saturated with CCl{sub 4}. In this scenario the reflection coefficients are slightly positive at the small angles of incidence and become negative at the large angles of incidence (polarity reversal). Finally the third scenario is both the Hanford Fine and the Plio/Pleistocene pores are saturated CCl{sub 4}. In this scenario the reflection coefficients at the small angles of incidence are slightly positive, but much less than background response, and with increasing angle of incidence the reflection coefficients become slightly more positive. On the field data areas where extraction wells have high concentrations of CCl{sub 4} a corresponding dim-out and/or a polarity reversal is noted.

  4. The second-phase development of the China JinPing underground laboratory

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Journal Article: The second-phase development of the China JinPing underground laboratory Citation Details In-Document Search Title: The second-phase development of the China JinPing underground laboratory × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information

  5. DEVELOPMENT OF RESERVOIR CHARACTERIZATION TECHNIQUES AND PRODUCTION MODELS FOR EXPLOITING NATURALLY FRACTURED RESERVOIRS

    SciTech Connect (OSTI)

    Michael L. Wiggins; Raymon L. Brown; Faruk Civan; Richard G. Hughes

    2002-12-31

    For many years, geoscientists and engineers have undertaken research to characterize naturally fractured reservoirs. Geoscientists have focused on understanding the process of fracturing and the subsequent measurement and description of fracture characteristics. Engineers have concentrated on the fluid flow behavior in the fracture-porous media system and the development of models to predict the hydrocarbon production from these complex systems. This research attempts to integrate these two complementary views to develop a quantitative reservoir characterization methodology and flow performance model for naturally fractured reservoirs. The research has focused on estimating naturally fractured reservoir properties from seismic data, predicting fracture characteristics from well logs, and developing a naturally fractured reservoir simulator. It is important to develop techniques that can be applied to estimate the important parameters in predicting the performance of naturally fractured reservoirs. This project proposes a method to relate seismic properties to the elastic compliance and permeability of the reservoir based upon a sugar cube model. In addition, methods are presented to use conventional well logs to estimate localized fracture information for reservoir characterization purposes. The ability to estimate fracture information from conventional well logs is very important in older wells where data are often limited. Finally, a desktop naturally fractured reservoir simulator has been developed for the purpose of predicting the performance of these complex reservoirs. The simulator incorporates vertical and horizontal wellbore models, methods to handle matrix to fracture fluid transfer, and fracture permeability tensors. This research project has developed methods to characterize and study the performance of naturally fractured reservoirs that integrate geoscience and engineering data. This is an important step in developing exploitation strategies for optimizing the recovery from naturally fractured reservoir systems. The next logical extension of this work is to apply the proposed methods to an actual field case study to provide information for verification and modification of the techniques and simulator. This report provides the details of the proposed techniques and summarizes the activities undertaken during the course of this project. Technology transfer activities were highlighted by a two-day technical conference held in Oklahoma City in June 2002. This conference attracted over 90 participants and included the presentation of seventeen technical papers from researchers throughout the United States.

  6. DEVELOPMENT OF ELECTROMAGNETIC TECHNIQUES FOR HYDROGEN CONTENT ASSESSMENT IN COATED LINEPIPE STEEL

    SciTech Connect (OSTI)

    Lasseigne-Jackson, A. N.; Anton, J.; Jackson, J. E.; Olson, D. L.; Mishra, B.

    2008-02-28

    With the introduction of new higher strength steels operating at higher pressure, the need for characterization of hydrogen content in high strength steel pipelines is timely for the pipeline industry. The higher-strength steel pipelines have higher susceptibility to hydrogen damage. Through the use of low-frequency induced current impedance measurements, a new non-contact sensor has been developed for real-time determination of diffusible hydrogen content in coated pipeline steel. A measurement scheme to separate variables associated with pipelines is discussed. This electromagnetic technique allows for a rapid, non-destructive assessment of hydrogen accumulation in coated steel line pipe and thus an evaluation of the pipeline integrity.

  7. ENGINEERING DEVELOPMENT OF COAL-FIRED HIGH PERFORMANCE POWER SYSTEMS PHASE II AND III

    SciTech Connect (OSTI)

    1998-09-30

    This report presents work carried out under contract DE-AC22-95PC95144 "Engineering Development of Coal-Fired High Performance Systems Phase II and III." The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: à thermal efficiency (HHV) >47%; à NOx, SOx, and particulates <10% NSPS (New Source Performance Standard); à coal providing >65% of heat input; à all solid wastes benign; à cost of electricity <90% of present plants. Phase I, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase I also included preliminary R&D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. This phase, Phase II, involves the development and testing of plant subsystems, refinement and updating of the HIPPS commercial plant design, and the site selection and engineering design of a HIPPS prototype plant. Work reported herein is from: à Task 2.2 HITAF Air Heaters; à Task 6 HIPPS Commercial Plant Design Update.

  8. Critical point of gas-liquid type phase transition and phase equilibrium functions in developed two-component plasma model

    SciTech Connect (OSTI)

    Butlitsky, M. A.; Zelener, B. V.

    2014-07-14

    A two-component plasma model, which we called a shelf Coulomb model has been developed in this work. A Monte Carlo study has been undertaken to calculate equations of state, pair distribution functions, internal energies, and other thermodynamics properties. A canonical NVT ensemble with periodic boundary conditions was used. The motivation behind the model is also discussed in this work. The shelf Coulomb model can be compared to classical two-component (electron-proton) model where charges with zero size interact via a classical Coulomb law. With important difference for interaction of opposite charges: electrons and protons interact via the Coulomb law for large distances between particles, while interaction potential is cut off on small distances. The cut off distance is defined by an arbitrary ? parameter, which depends on system temperature. All the thermodynamics properties of the model depend on dimensionless parameters ? and ? = ?e{sup 2}n{sup 1/3} (where ? = 1/k{sub B}T, n is the particle's density, k{sub B} is the Boltzmann constant, and T is the temperature) only. In addition, it has been shown that the virial theorem works in this model. All the calculations were carried over a wide range of dimensionless ? and ? parameters in order to find the phase transition region, critical point, spinodal, and binodal lines of a model system. The system is observed to undergo a first order gas-liquid type phase transition with the critical point being in the vicinity of ?{sub crit}?13(T{sub crit}{sup *}?0.076),?{sub crit}?1.8(v{sub crit}{sup *}?0.17),P{sub crit}{sup *}?0.39, where specific volume v* = 1/?{sup 3} and reduced temperature T{sup *} = ?{sup ?1}.

  9. Advanced Envelope Research for Factory Built Housing, Phase 3Design Development and Prototyping

    SciTech Connect (OSTI)

    Levy, E.; Kessler, B.; Mullens, M.; Rath, P.

    2014-01-01

    The Advanced Envelope Research effort will provide factory homebuilders with high performance, cost-effective alternative envelope designs. In the near term, these technologies will play a central role in meeting stringent energy code requirements. For manufactured homes, the thermal requirements, last updated by statute in 1994, will move up to the more rigorous IECC 2012 levels in 2013, the requirements of which are consistent with site built and modular housing. This places added urgency on identifying envelope technologies that the industry can implement in the short timeframe. The primary goal of this research is to develop wall designs that meet the thermal requirements based on 2012 IECC standards. Given the affordable nature of manufactured homes, impact on first cost is a major consideration in developing the new envelope technologies. This work is part of a four-phase, multi-year effort. Phase 1 identified seven envelope technologies and provided a preliminary assessment of three selected methods for building high performance wall systems. Phase 2 focused on the development of viable product designs, manufacturing strategies, addressing code and structural issues, and cost analysis of the three selected options. An industry advisory committee helped critique and select the most viable solution to move further in the research stud walls with continuous exterior insulation. Phase 3, the subject of the current report, focused on the design development of the selected wall concept and explored variations on the use of exterior foam insulation. The scope also included material selection, manufacturing and cost analysis, and prototyping and testing.

  10. Advanced Envelope Research for Factory Built Housing, Phase 3 -- Design Development and Prototyping

    SciTech Connect (OSTI)

    Levy, E.; Kessler, B.; Mullens, M.; Rath, P.

    2014-01-01

    The Advanced Envelope Research effort will provide factory homebuilders with high performance, cost-effective alternative envelope designs. In the near term, these technologies will play a central role in meeting stringent energy code requirements. For manufactured homes, the thermal requirements, last updated by statute in 1994, will move up to the more rigorous IECC 2012 levels in 2013, the requirements of which are consistent with site built and modular housing. This places added urgency on identifying envelope technologies that the industry can implement in the short timeframe. The primary goal of this research is to develop wall designs that meet the thermal requirements based on 2012 IECC standards. Given the affordable nature of manufactured homes, impact on first cost is a major consideration in developing the new envelope technologies. This work is part of a four-phase, multi-year effort. Phase 1 identified seven envelope technologies and provided a preliminary assessment of three selected methods for building high performance wall systems. Phase 2 focused on the development of viable product designs, manufacturing strategies, addressing code and structural issues, and cost analysis of the three selected options. An industry advisory committee helped critique and select the most viable solution to move further in the research -- stud walls with continuous exterior insulation. Phase 3, the subject of the current report, focused on the design development of the selected wall concept and explored variations on the use of exterior foam insulation. The scope also included material selection, manufacturing and cost analysis, and prototyping and testing.

  11. Development of improved ATF engineering alloy - Mechanical testing of Phase 2 alloy

    SciTech Connect (OSTI)

    Anderoglu, Osman; Lovato, Manuel L.; Maloy, Stuart Andrew

    2015-06-15

    In this report we present the results on the tensile testing of phase 2 FeCrAl alloys (Mo and Nb added for high temperature strength) developed at Oak Ridge National Laboratory. We also compare FeCrAl with MA956 which is an ODS FeCrAl.

  12. SPSP Phase III Recruiting, Selecting, and Developing Secure Power Systems Professionals. Individual and Team Performance Guidelines

    SciTech Connect (OSTI)

    O'Neil, Lori Ross; Conway, T. J.; Tobey, D. H.; Greitzer, Frank L.; Dalton, Angela C.; Pusey, Portia K.

    2015-03-01

    The Secure Power Systems Professional Phase III final report was released last year which an appendix of Individual and Team Performance Guidelines. This new report is that appendix broken out as a standalone document to assist utilities in recruiting and developing Secure Power Systems Professionals at their site.

  13. SPSP Phase III Recruiting, Selecting, and Developing Secure Power Systems Professionals. Job Profiles

    SciTech Connect (OSTI)

    O'Neil, Lori Ross; Conway, T. J.; Tobey, D. H.; Greitzer, Frank L.; Dalton, Angela C.; Pusey, Portia K.

    2015-03-01

    The Secure Power Systems Professional Phase III final report was released last year which an appendix of Job Profiles. This new report is that appendix broken out as a standalone document to assist utilities in recruiting and developing Secure Power Systems Professionals at their site.

  14. Liquid phase methanol LaPorte process development unit: Modification, operation, and support studies

    SciTech Connect (OSTI)

    Not Available

    1991-02-02

    This report consists of Detailed Data Acquisition Sheets for Runs E-6 and E-7 for Task 2.2 of the Modification, Operation, and Support Studies of the Liquid Phase Methanol Laporte Process Development Unit. (Task 2.2: Alternate Catalyst Run E-6 and Catalyst Activity Maintenance Run E-7).

  15. Development of an ultrasonic pulse-echo (UPE) technique for aircraft icing studies

    SciTech Connect (OSTI)

    Liu, Yang; Hu, Hui; Chen, Wen-Li; Bond, Leonard J.

    2014-02-18

    Aircraft operating in some cold weather conditions face the risk of icing. Icing poses a threat to flight safety and its management is expensive. Removing light frost on a clear day from a medium-size business jet can cost $300, heavy wet snow removal can cost $3,000 and removal of accumulated frozen/freezing rain can cost close to $10,000. Understanding conditions that lead to severe icing events is important and challenging. When an aircraft or rotorcraft flies in a cold climate, some of the super cooled droplets impinging on exposed aircraft surfaces may flow along the surface prior to freezing and give various forms and shapes of ice. The runback behavior of a water film on an aircraft affects the morphology of ice accretion and the rate of formation. In this study, we report the recent progress to develop an Ultrasonic Pulse-Echo (UPE) technique to provide real-time thickness distribution measurements of surface water flows driven by boundary layer airflows for aircraft icing studies. A series of initial experimental investigations are conducted in an ice wind tunnel employing an array of ultrasonic transducers placed underneath the surface of a flat plate. The water runback behavior on the plate is evaluated by measuring the thickness profile variation of the water film along the surface by using the UPE technique under various wind speed and flow rate conditions.

  16. Development of experimental verification techniques for non-linear deformation and fracture on the nanometer scale.

    SciTech Connect (OSTI)

    Moody, Neville Reid; Bahr, David F.

    2005-11-01

    This work covers three distinct aspects of deformation and fracture during indentations. In particular, we develop an approach to verification of nanoindentation induced film fracture in hard film/soft substrate systems; we examine the ability to perform these experiments in harsh environments; we investigate the methods by which the resulting deformation from indentation can be quantified and correlated to computational simulations, and we examine the onset of plasticity during indentation testing. First, nanoindentation was utilized to induce fracture of brittle thin oxide films on compliant substrates. During the indentation, a load is applied and the penetration depth is continuously measured. A sudden discontinuity, indicative of film fracture, was observed upon the loading portion of the load-depth curve. The mechanical properties of thermally grown oxide films on various substrates were calculated using two different numerical methods. The first method utilized a plate bending approach by modeling the thin film as an axisymmetric circular plate on a compliant foundation. The second method measured the applied energy for fracture. The crack extension force and applied stress intensity at fracture was then determined from the energy measurements. Secondly, slip steps form on the free surface around indentations in most crystalline materials when dislocations reach the free surface. Analysis of these slip steps provides information about the deformation taking place in the material. Techniques have now been developed to allow for accurate and consistent measurement of slip steps and the effects of crystal orientation and tip geometry are characterized. These techniques will be described and compared to results from dislocation dynamics simulations.

  17. The development of optical microscopy techniques for the advancement of single-particle studies

    SciTech Connect (OSTI)

    Marchuk, Kyle

    2013-05-15

    Single particle orientation and rotational tracking (SPORT) has recently become a powerful optical microscopy tool that can expose many molecular motions. Unfortunately, there is not yet a single microscopy technique that can decipher all particle motions in all environmental conditions, thus there are limitations to current technologies. Within, the two powerful microscopy tools of total internal reflection and interferometry are advanced to determine the position, orientation, and optical properties of metallic nanoparticles in a variety of environments. Total internal reflection is an optical phenomenon that has been applied to microscopy to produce either fluorescent or scattered light. The non-invasive far-field imaging technique is coupled with a near-field illumination scheme that allows for better axial resolution than confocal microscopy and epi-fluorescence microscopy. By controlling the incident illumination angle using total internal reflection fluorescence (TIRF) microscopy, a new type of imaging probe called non-blinking quantum dots (NBQDs) were super-localized in the axial direction to sub-10-nm precision. These particles were also used to study the rotational motion of microtubules being propelled by the motor protein kinesin across the substrate surface. The same instrument was modified to function under total internal reflection scattering (TIRS) microscopy to study metallic anisotropic nanoparticles and their dynamic interactions with synthetic lipid bilayers. Utilizing two illumination lasers with opposite polarization directions at wavelengths corresponding to the short and long axis surface plasmon resonance (SPR) of the nanoparticles, both the in-plane and out-of-plane movements of many particles could be tracked simultaneously. When combined with Gaussian point spread function (PSF) fitting for particle super-localization, the binding status and rotational movement could be resolved without degeneracy. TIRS microscopy was also used to find the 3D orientation of stationary metallic anisotropic nanoparticles utilizing only long-axis SPR enhancement. The polarization direction of the illuminating light was rotated causing the relative intensity of p-polarized and s-polarized light within the evanescent field to change. The interaction of the evanescent field with the particles is dependent on the orientation of the particle producing an intensity curve. This curve and the in-plane angle can be compared with simulations to accurately determine the 3D orientation. Differential interference contrast (DIC) microscopy is another non-invasive far-field technique based upon interferometry that does not rely on staining or other contrast enhancing techniques. In addition, high numerical aperture condensers and objectives can be used to give a very narrow depth of field allowing for the optical tomography of samples, which makes it an ideal candidate to study biological systems. DIC microscopy has also proven itself in determining the orientation of gold nanorods in both engineered environments and within cells. Many types of nanoparticles and nanostructures have been synthesized using lithographic techniques on silicon wafer substrates. Traditionally, reflective mode DIC microscopes have been developed and applied to the topographical study of reflective substrates and the imaging of chips on silicon wafers. Herein, a laser-illuminated reflected-mode DIC was developed for studying nanoparticles on reflective surfaces.

  18. Efficient Phase-Change Materials: Development of a Low-Cost Thermal Energy Storage System Using Phase-Change Materials with Enhanced Radiation Heat Transfer

    SciTech Connect (OSTI)

    2011-12-05

    HEATS Project: USF is developing low-cost, high-temperature phase-change materials (PCMs) for use in thermal energy storage systems. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at nightwhen the sun is not outto drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. Most PCMs do not conduct heat very well. Using an innovative, electroless encapsulation technique, USF is enhancing the heat transfer capability of its PCMs. The inner walls of the capsules will be lined with a corrosion-resistant, high-infrared emissivity coating, and the absorptivity of the PCM will be controlled with the addition of nano-sized particles. USFs PCMs remain stable at temperatures from 600 to 1,000C and can be used for solar thermal power storage, nuclear thermal power storage, and other applications.

  19. Engineering development of coal-fired high performance power systems, Phase II and III

    SciTech Connect (OSTI)

    1998-07-01

    The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: thermal efficiency (HHV) {ge} 47%, NOx, SOx, and particulates {le} 10% NSPS (New Source Performance Standard), coal providing {ge} 65% of heat input, all solid wastes benign cost of electricity {le} 90% of present plants. Phase 1, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase 1 also included preliminary R and D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. This phase, Phase 2, involves the development and testing of plant subsystems, refinement and updating of the HIPPS commercial plant design, and the site selection and engineering design of a HIPPS prototype plant. Work reported herein is from: Task 2.1 HITAF Combustor; Task 2.2 HITAF Air Heaters; Task 6 HIPPS Commercial Plant Design Update.

  20. Engineering development of coal-fired high performance power systems, Phase II and III

    SciTech Connect (OSTI)

    1999-01-01

    The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: thermal efficiency (HHV) {ge} 47%; NOx, SOx, and particulates {le} 10% NSPS (New Source Performance Standard) coal providing {ge} 65% of heat input; all solid wastes benign; cost of electricity {le} 90% of present plants. Phase 1, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase 1 also included preliminary R and D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. This phase, Phase 2, involves the development and testing of plant subsystems, refinement and updating of the HIPPS commercial plant design, and the site selection and engineering design of a HIPPS prototype plant. Work reported herein is from: Task 2.1 HITAC Combustors; Task 2.2 HITAF Air Heaters; Task 6 HIPPS Commercial Plant Design Update.

  1. PHASE I MATERIALS PROPERTY DATABASE DEVELOPMENT FOR ASME CODES AND STANDARDS

    SciTech Connect (OSTI)

    Ren, Weiju; Lin, Lianshan

    2013-01-01

    To support the ASME Boiler and Pressure Vessel Codes and Standard (BPVC) in modern information era, development of a web-based materials property database is initiated under the supervision of ASME Committee on Materials. To achieve efficiency, the project heavily draws upon experience from development of the Gen IV Materials Handbook and the Nuclear System Materials Handbook. The effort is divided into two phases. Phase I is planned to deliver a materials data file warehouse that offers a depository for various files containing raw data and background information, and Phase II will provide a relational digital database that provides advanced features facilitating digital data processing and management. Population of the database will start with materials property data for nuclear applications and expand to data covering the entire ASME Code and Standards including the piping codes as the database structure is continuously optimized. The ultimate goal of the effort is to establish a sound cyber infrastructure that support ASME Codes and Standards development and maintenance.

  2. Concentrating Solar Power - Molten Salt Pump Development, Final Technical Report (Phase 1)

    SciTech Connect (OSTI)

    Michael McDowell; Alan Schwartz

    2010-03-31

    The purpose of this project is to develop a long shafted pump to operate at high temperatures for the purpose of producing energy with renewable resources. In Phase I of this three phase project we developed molten salt pump requirements, evaluated existing hardware designs for necessary modifications, developed a preliminary design of the pump concept, and developed refined cost estimates for Phase II and Phase III of the project. The decision has been made not to continue the project into Phases II and III. There is an ever increasing world-wide demand for sources of energy. With only a limited supply of fossil fuels, and with the costs to obtain and produce those fuels increasing, sources of renewable energy must be found. Currently, capturing the sun's energy is expensive compared to heritage fossil fuel energy production. However, there are government requirements on Industry to increase the amount of energy generated from renewable resources. The objective of this project is to design, build and test a long-shafted, molten salt pump. This is the type of pump necessary for a molten salt thermal storage system in a commercial-scale solar trough plant. This project is under the Department of Energy (DOE) Solar Energy Technologies Program, managed by the Office of Energy Efficiency and Renewable Energy. To reduce the levelized cost of energy (LCOE), and to meet the requirements of 'tomorrows' demand, technical innovations are needed. The DOE is committed to reducing the LCOE to 7-10 cents/kWh by 2015, and to 5-7 cents/kWh by 2020. To accomplish these goals, the performance envelope for commercial use of long-shafted molten salt pumps must be expanded. The intent of this project is to verify acceptable operation of pump components in the type of molten salt (thermal storage medium) used in commercial power plants today. Field testing will be necessary to verify the integrity of the pump design, and thus reduce the risk to industry. While the primary goal is to design a pump for a trough solar power plant system, the intent is for the design to be extensible to a solar power tower application. This can be accomplished by adding pumping stages to increase the discharge pressure to the levels necessary for a solar power tower application. This report incorporates all available conceptual design information completed for this project in Phase I.

  3. Development of a new technique to assess susceptibility to predation resulting from sublethal stresses (indirect mortality)

    SciTech Connect (OSTI)

    ?ada, Glenn F.; Ryon, Michael G.; Wolf, Dennis A.; Smith, Brennan T.

    2003-08-01

    Fish that pass through a hydroelectric turbine may not be killed directly, but may nonetheless experience sublethal stresses that will increase their susceptibility to predators (indirect mortality). There is a need to develop reliable tests for indirect mortality so that the full consequences of passage through turbines (and other routes around a hydroelectric dam) can be assessed. This study evaluated a new technique for assessing indirect mortality, based on a behavioral response to a startling stimulus (akin to perceiving an approaching predator). The study compared this technique to the standard predator preference test. To do this, the study first subjected striped shiners and fathead minnows to varying intensities of either turbulence (10-, 20- or 30-min) or 2-min exposures to a fish anesthetic (100 or 200 mg/L of tricaine methanesulfonate), and evaluated their subsequent behavior. Individual fish were given a startle stimulus and filmed with a high-speed video camera. Second, a standard predator preference test was conducted with largemouth bass as the predators and fathead minnows as prey. In this test design, groups of 10 unstressed fish (controls) and 10 stressed fish were put in a tank with a predator. The stressed fathead minnows were exposed to turbulence or fish anesthetic. This pattern was the same as seen in fathead minnows using the startle response (escape behavior) test. The resulting image files were analyzed for a variety of behavioral measures including: presence of a response, time to first reaction, duration of reaction, time to formation of maximum C-shape, time to completion of C-shape, and completeness of C-shape.

  4. Development of Versatile Compressor Modeling using Approximation Techniques for Alternative Refrigerants Evaluation

    SciTech Connect (OSTI)

    Abdelaziz, Omar; Shrestha, Som S

    2014-01-01

    Refrigerants are the life-blood of vapor compression systems that are widely used in Heating, Ventilation, Air-Conditioning, and Refrigeration (HVAC&R) applications. The HVAC&R community is currently transitioning from main-stream refrigerants that have high Global Warming Potential (GWP) to alternative lower-GWP refrigerants. During this transition, it is important to account for the life cycle climate performance of alternative refrigerants since their performance will be different than that of higher-GWP refrigerants. This requires the evaluation of the system performance with the new refrigerants. Unfortunately, it is extremely difficult to predict the realistic performance of new alternative refrigerants without experimental validation. One of the main challenges in this regard is modeling the compressor performance with high fidelity due to the complex interaction of operating parameters, geometry, boundary conditions, and fluid properties. High fidelity compressor models are computationally expensive and require significant pre-processing to evaluate the performance of alternative refrigerants. This paper presents a new approach to modeling compressor performance when alternative refrigerants are used. The new modeling concept relies on using existing compressor performance to create an approximate model that captures the dependence of compressor performance on key operating parameters and fluid properties. The model can be built using a myriad of approximation techniques. This paper focuses on Kriging-based techniques to develop higher fidelity approximate compressor models. Baseline and at least one alternative refrigerant performance data are used to build the model. The model accuracy was evaluated by comparing the model results with compressor performance data using other refrigerants. Preliminary results show that the approximate model can predict the compressor mass flow rate and power consumption within 5%.

  5. Development of analytical techniques to study H2s poisoning of PEMFCs and components

    SciTech Connect (OSTI)

    Brosha, Eric L; Rockward, Tommy; Uribe, Francisco A; Garzon, Fernando H

    2008-01-01

    Polymer electrolyte membrane fuel cells are sensitive to impurities that may be present in either the oxidizer or fuel. H{sub 2}S, even at the ppb level, will have a dramatic and adverse affect on fuel cell performance. Not only is it important to know a particular material's affinity to adsorb H{sub 2}S, when considering materials for PEMFC applications, issues such as permeation and crossover rates also become extremely important Several experimental methods have been developed to quantify H{sub 2}S adsorption onto surfaces and to quantify H{sub 2}S permeation through Nafion(reg.) membranes using readily available and inexpensive Ag/AgS ion probes. In addition to calculating the H{sub 2}S uptake on commonly used XC-72 carbon supports and PtlXC-72 catalysts, the H{sub 2}S permeability through dry and humidified Nafion(reg.) PEMFC membranes was also studied using these specialized techniques. In each ion probe experiment performed, a sulfide anti-oxidant buffer solution was used to trap and concentrate trace quantities of H{sub 2}S during the course of the measurement. Crossover experiments were conducted for up to 24 hours in order to achieve sulfide ion concentrations high enough to be precisely determined by subsequent titration with Pb(NO{sub 3}){sub 2}. By using these techniques, we have confirmed H{sub 2}S crossover in Nafion(reg.) membranes and have calculated preliminary rates of H{sub 2}S crossover.

  6. Sodium-sulfur battery development. Phase VB final report, October 1, 1981--February 28, 1985

    SciTech Connect (OSTI)

    1985-04-01

    This report describes the technical progress made under Contract No. DE-AM04-79CH10012 between the U.S. Department of Energy, Ford Aerospace & Communications Corporations and Ford Motor Company, for the period 1 October 1981 through 28 February 1985, which is designated as Phase VB of the Sodium-Sulfur Battery Development Program. During this period, Ford Aerospace held prime technical responsibility and Ford Motor Company carried out supporting research. Ceramatec, Inc., was a major subcontractor to Ford Aerospace for electrolyte development and production.

  7. Developing Secure Power Systems Professional Competence: Alignment and Gaps in Workforce Development Programs- Phase 2 (July/August 2013)

    Broader source: Energy.gov [DOE]

    DOE has recognized that the electricity industry needs workforce development resources that can aid in the accelerating need for Secure Power Systems Professionals, while at the same time identifying capabilities and competencies to protect and enable the modernized grid currently being built. In the spring of 2011 a project was initiated to identify those capabilities and competencies along with assessing the need and qualifications for a certification program for Secure Power Systems Professionals. The summary and final report for phase two of the project are now available.

  8. Development and evaluation of a workpiece temperature analyzer (WPTA) for industrial furances (Phase 1)

    SciTech Connect (OSTI)

    Not Available

    1991-10-01

    This project is directed toward the research, development, and evaluation of a viable commercial product-a workpiece temperature measurement analyzer (WPTA) for fired furnaces based on unique radiation properties of surfaces. This WPTA will provide for more uniform, higher quality products and reduce product rejects as well as permit the optimum use of energy. The WPTA may also be utilized in control system applications including metal heat treating, forging furnaces, and ceramic firing furnaces. A large market also exists in the chemical process and refining industry. WPTA applications include the verification of product temperature/time cycles, and use as a front-end sensor for automatic feedback control systems. This report summarizes the work performed in Phase 1 of this three-phase project. The work Phase 1 included the application evaluation; the evaluation of present technologies and limitations; and the development of a preliminary conceptual WPTA design, including identification of technical and economic benefits. Recommendations based on the findings of this report include near-term enhancement of the capabilities of the Pyrolaser, and long-term development of an instrument based on Raman Spectroscopy. Development of the Pyrofiber, fiberoptics version of the Pyrolaser, will be a key to solving present problems involving specularity, measurement angle, and costs of multipoint measurement. Extending the instrument's measurement range to include temperatures below 600{degrees}C will make the product useful for a wider range of applications. The development of Raman Spectroscopy would result in an instrument that could easily be adapted to incorporate a wealth of additional nondestructive analytical capabilities, including stress/stain indication, crystallography, species concentrations, corrosion studies, and catalysis studies, in addition to temperature measurement. 9 refs., 20 figs., 16 tabs.

  9. RECENT PROGRESS IN THE DEVELOPMENT OF DUCTILE-PHASE TOUGHENED TUNGSTEN FOR PLASMA-FACING MATERIALS

    SciTech Connect (OSTI)

    Henager, Charles H.; Kurtz, Richard J.; Roosendaal, Timothy J.; Borlaug, Brennan A.; Setyawan, Wahyu; Wagner, Karla B.; Odette, G Robert; Cunningham, Kevin; Fields, Kirk A.; Gragg, David; Zok, Frank W.

    2014-09-30

    A promising approach to increasing fracture toughness and decreasing the DBTT of a W-alloy is by ductile-phase toughening (DPT) [1-3]. In this method, a ductile phase is included in a brittle matrix to prevent fracture propagation by crack bridging. To examine the prospect of DPT, W-Cu three-point bend samples were deformed at several strain rates and temperatures. Data from these tests is used for the calibration of a dynamic crack-bridging model that can effectively predict elevated temperature crack growth in W-composites. The development and initial testing of a Cu-ligament bridging model based on a micromechanical flow stress model of Cu is discussed. Good agreement with the 3-point bend testing data is demonstrated along with future plans to improve the model.

  10. Advanced emissions control development project. Phase I, Final report, November 1, 1993--February 19, 1996

    SciTech Connect (OSTI)

    1996-02-29

    The primary objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of air toxics from coal-fired boilers. Ideally, the project aim is to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESP`s), fabric filters (baghouse), and wet flue gas desulfurization. B&W`s Clean Environment Development Facility (CEDF) and the AECDP equipment combined to form a state-of-the-art facility for integrated evaluation of combustion and post-combustion emissions control options. Phase 1 activities were primarily aimed at providing a reliable, representative test facility for conducting air toxic emissions control development work later in the project. This report summarizes the AECDP Phase I activities which consisted of the design, installation, shakedown, verification, and air toxics benchmarking of the AECDP facility. All verification and air toxic tests were conducted with a high sulfur, bituminous Ohio coal.

  11. DESIGN AND DEVELOPMENT OF GAS-LIQUID CYLINDRICAL CYCLONE COMPACT SEPARATORS FOR THREE-PHASE FLOW

    SciTech Connect (OSTI)

    Dr. Ram S. Mohan; Dr. Ovadia Shoham

    2001-10-30

    This report presents a brief overview of the activities and tasks accomplished during the second half year (April 1, 2001-September 30, 2001) of the fourth project year budget period (October 1, 2000-September 30, 2001). An executive summary is presented initially followed by the tasks of the current budget period. Then, detailed description of the experimental and modeling investigations are presented. Subsequently, the technical and scientific results of the activities of this project period are presented with some discussions. The findings of this investigation are summarized in the ''Conclusions'' section followed by relevant references. The fourth project year activities are divided into three main parts, which are carried out in parallel. The first part is continuation of the experimental program that includes a study of the oil/water two-phase behavior at high pressures and control system development for the three-phase GLCC{copyright}. This investigation will be eventually extended for three-phase flow. The second part consists of the development of a simplified mechanistic model incorporating the experimental results and behavior of dispersion of oil in water and water in oil. This will provide an insight into the hydrodynamic flow behavior and serve as the design tool for the industry. Although useful for sizing GLCC{copyright} for proven applications, the mechanistic model will not provide detailed hydrodynamic flow behavior information needed to screen new geometric variations or to study the effect of fluid property variations. Therefore, in the third part, the more rigorous approach of computational fluid dynamics (CFD) will be utilized. Multidimensional multiphase flow simulation at high pressures and for real crude conditions will provide much greater depth into the understanding of the physical phenomena and the mathematical analysis of three-phase GLCC{copyright} design and performance.

  12. DESIGN AND DEVELOPMENT OF GAS-LIQUID CYLINDRICAL CYCLONE COMPACT SEPARATORS FOR THREE-PHASE FLOW

    SciTech Connect (OSTI)

    Dr. Ram S. Mohan; Dr. Ovadia Shoham

    2001-04-30

    This report presents a brief overview of the activities and tasks accomplished during the first half year (October 1, 2000-March 31, 2001) of the fourth project year budget period (October 1, 2000-September 30, 2001). An executive summary is presented initially followed by the tasks of the current budget period. Then, detailed description of the experimental and modeling investigations are presented. Subsequently, the technical and scientific results of the activities of this project period are presented with some discussions. The findings of this investigation are summarized in the ''Conclusions'' section followed by relevant references. The fourth project year activities are divided into three main parts, which are carried out in parallel. The first part is continuation of the experimental program that includes a study of the oil/water two-phase behavior at high pressures and control system development for the three-phase GLCC{copyright}. This investigation will be eventually extended for three-phase flow. The second part consists of the development of a simplified mechanistic model incorporating the experimental results and behavior of dispersion of oil in water and water in oil. This will provide an insight into the hydrodynamic flow behavior and serve as the design tool for the industry. Although useful for sizing GLCC{copyright} for proven applications, the mechanistic model will not provide detailed hydrodynamic flow behavior information needed to screen new geometric variations or to study the effect of fluid property variations. Therefore, in the third part, the more rigorous approach of computational fluid dynamics (CFD) will be utilized. Multidimensional multiphase flow simulation at high pressures and for real crude conditions will provide much greater depth into the understanding of the physical phenomena and the mathematical analysis of three-phase GLCC{copyright} design and performance.

  13. CARB/SQAQMD cooperative methanol vehicle development program: Phase 1. Final report

    SciTech Connect (OSTI)

    1996-04-01

    This project was structured as a jointly-funded effort by the California Air Resources Board and the South Coast Air Quality Management District. The purpose of the Phase I work effort was to develop and evaluate an electronic alcohol injection system for DI passenger car engines. The deliverable was the evaluation, design and fabrication of a methanol compatible, electronically controlled fuel injection system, including modification/ adaptation of the engine control unit, and the ensuing functional engine testing. The technology that has been developed under this contract represents a near-production level injection system featuring electronic control of both the injection timing and quantity, closed loop EGR, and glow plug power. This development represents a significant technical progression in terms of the potential for passenger car vehicles to meet future emissions standards with methanol fueled DI engines.

  14. An experimental study of the (Ti-6Al-4V)-xH phase diagram using in situ synchrotron XRD and TGA/DSC techniques.

    SciTech Connect (OSTI)

    Sun, Pei; Fang, Z. Zak; Koopman, Mark; Paramore, James D.; Chandran, K. S. Ravi; Ren, Yang; Lu, Jun

    2015-02-01

    Hydrogen has been investigated for decades as a temporary alloying element to refine the microstructure of Ti-6Al-4V, and is now being used in a novel powder metallurgy method known as "hydrogen sintering and phase transformation". Pseudo-binary phase diagrams of (Ti-6Al-4V)-xH have been studied and developed, but are not well established due to methodological limitations. In this paper, in situ studies of phase transformations during hydrogenation and dehydrogenation of (Ti-6Al-4V)-xH alloys were conducted using high-energy synchrotron X-ray diffraction (XRD), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The eutectoid phase transformation of ? ? ? + ? was observed in the (Ti-6Al-4V)-xH alloy via in situ synchrotron XRD at 211 C with a hydrogen concentration of 37.5 at.% (measured using TGA-DSC). The relationships of hydrogen composition to partial pressure and temperature were investigated in the temperature range 450-900C. Based on these results, a partial pseudo-binary phase diagram of (Ti-6Al-4V)-xH is proposed for hydrogen compositions up to 60 at.% in the temperature range 100-900C. Using the data collected in real time under controlled parameters of temperature, composition and hydrogen partial pressure, this work characterizes relevant phase transformations and microstructural evolution for practical titanium-hydrogen technologies of Ti-6Al-4V.

  15. Phase II: Field Detector Development For Undeclared/Declared Nuclear Testing For Treaty Verfiation Monitoring

    SciTech Connect (OSTI)

    Kriz, M.; Hunter, D.; Riley, T.

    2015-10-02

    Radioactive xenon isotopes are a critical part of the Comprehensive Nuclear Test Ban Treaty (CTBT) for the detection or confirmation of nuclear weapons tests as well as on-site treaty verification monitoring. On-site monitoring is not currently conducted because there are no commercially available small/robust field detector devices to measure the radioactive xenon isotopes. Xenon is an ideal signature to detect clandestine nuclear events since they are difficult to contain and can diffuse and migrate through soils due to their inert nature. There are four key radioxenon isotopes used in monitoring: 135Xe (9 hour half-life), 133mXe (2 day half-life), 133Xe (5 day half-life) and 131mXe (12 day half-life) that decay through beta emission and gamma emission. Savannah River National Laboratory (SRNL) is a leader in the field of gas collections and has developed highly selective molecular sieves that allow for the collection of xenon gas directly from air. Phase I assessed the development of a small, robust beta-gamma coincidence counting system, that combines collection and in situ detection methodologies. Phase II of the project began development of the custom electronics enabling 2D beta-gamma coincidence analysis in a field portable system. This will be a significant advancement for field detection/quantification of short-lived xenon isotopes that would not survive transport time for laboratory analysis.

  16. Phase I of the Near-Term Hybrid Passenger-Vehicle Development Program. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-10-01

    Under contract to the Jet Propulsion Laboratory of the California Institute of Technology, Minicars conducted Phase I of the Near-Term Hybrid Passenger Vehicle (NTHV) Development Program. This program led to the preliminary design of a hybrid (electric and internal combustion engine powered) vehicle and fulfilled the objectives set by JPL. JPL requested that the report address certain specific topics. A brief summary of all Phase I activities is given initially; the hybrid vehicle preliminary design is described in Sections 4, 5, and 6. Table 2 of the Summary lists performance projections for the overall vehicle and some of its subsystems. Section 4.5 gives references to the more-detailed design information found in the Preliminary Design Data Package (Appendix C). Alternative hybrid-vehicle design options are discussed in Sections 3 through 6. A listing of the tradeoff study alternatives is included in Section 3. Computer simulations are discussed in Section 9. Section 8 describes the supporting economic analyses. Reliability and safety considerations are discussed specifically in Section 7 and are mentioned in Sections 4, 5, and 6. Section 10 lists conclusions and recommendations arrived at during the performance of Phase I. A complete bibliography follows the list of references.

  17. Development of Extraction Techniques for the Detection of Signature Lipids from Oil

    SciTech Connect (OSTI)

    Borglin, Sharon; Geller, Jil; Chakraborty, Romy; Hazen, Terry; Mason, Olivia

    2010-05-17

    Pure cultures, including Desulfovibrio vulgaris and Methanococcus maripaludus, were combined with model oil samples and oil/diesel mixtures to optimize extraction techniques of signature lipids from oil in support of investigation of microbial communities in oil deposit samples targets for microbial enhanced hydrocarbon recovery. Several techniques were evaluated, including standard phospholipid extraction, ether linked lipid for Archaeal bacterial detection, and high pressure extractiontechniques. Recovery of lipids ranged from 50-80percent as compared to extraction of the pure culture. Extraction efficiency was evaluated by the use of internal standards. Field samples will also be tested for recovery of signature lipids with optimized extraction techniques.

  18. Development of tools and techniques for momentum compression of fast rare isotopes

    SciTech Connect (OSTI)

    David J. Morrissey; Bradley M. Sherrill; Oleg Tarasov

    2010-11-21

    As part of our past research and development work, we have created and developed the LISE++ simulation code [Tar04, Tar08]. The LISE++ package was significantly extended with the addition of a Monte Carlo option that includes an option for calculating ion trajectories using a Taylor-series expansion up to fifth order, and implementation of the MOTER Monte Carlo code [Kow87] for ray tracing of the ions into the suite of LISE++ codes. The MOTER code was rewritten from FORTRAN into C++ and transported to the MS-Windows operating system. Extensive work went into the creation of a user-friendly interface for the code. An example of the graphical user interface created for the MOTER code is shown in the left panel of Figure 1 and the results of a typical calculation for the trajectories of particles that pass through the A1900 fragment separator are shown in the right panel. The MOTER code is presently included as part of the LISE++ package for downloading without restriction by the worldwide community. The LISE++ was extensively developed and generalized to apply to any projectile fragment separator during the early phase of this grant. In addition to the inclusion of the MOTER code, other important additions to the LISE++ code made during FY08/FY09 are listed. The LISE++ is distributed over the web (http://groups.nscl.msu.edu/lise ) and is available without charge to anyone by anonymous download, thus, the number of individual users is not recorded. The number of 'hits' on the servers that provide the LISE++ code is shown in Figure 3 for the last eight calendar years (left panel) along with the country from the IP address (right panel). The data show an increase in web-activity with the release of the new version of the program during the grant period and a worldwide impact. An important part of the proposed work carried out during FY07, FY08 and FY09 by a graduate student in the MSU Physics program was to benchmark the codes by comparison of detailed measurements to the LISE++ predictions. A large data set was obtained for fission fragments from the reaction of 238U ions at 81 MeV/u in a 92 mg/cm2 beryllium target with the A1900 projectile fragment separator. The data were analyzed and form the bulk of a Ph.D. dissertation that is nearing completion. The rich data set provides a number of benchmarks for the improved LISE++ code and only a few examples can be shown here. The primary information obtained from the measurements is the yield of the products as a function of mass, charge and momentum. Examples of the momentum distributions of individually identified fragments can be seen in Figures 2 and 4 along with comparisons to the predicted distributions. The agreement is remarkably good and indicates the general validity of the model of the nuclear reactions producing these fragments and of the higher order transmission calculations in the LISE++ code. The momentum distributions were integrated to provide the cross sections for the individual isotopes. As shown in Figure 5, there is good agreement with the model predictions although the observed cross sections are a factor of five or so higher in this case. Other comparisons of measured production cross sections from abrasion-fission reactions have been published by our group working at the NSCL during this period [Fol09] and through our collaboration with Japanese researchers working at RIKEN with the BigRIPS separator [Ohn08, Ohn10]. The agreement of the model predictions with the data obtained with two different fragment separators is very good and indicates the usefulness of the new LISE++ code.

  19. Collaborative development of the EPICS Qt framework Phase I Final Report

    SciTech Connect (OSTI)

    Mayssat, Robert E.

    2015-01-15

    At Lyncean, a private company spun-off from technology developed at the SLAC National Lab, we have been using EPICS for over a decade. EPICS is ubiquitous on our flagship product – the Compact Light Source. EPICS is not only used to control our laser and accelerator systems, but also to control our x-ray beamlines. The goal of this SBIR is for Lyncean Technologies to spearhead a worldwide collaborative effort for the development of control system tools for EPICS using the Qt framework, a C++-based coding environment that could serve as a competitive alternative to the Java-based Control System Studio (CSS). This grant's Phase I, not unlike a feasibility study, is designed for planning and scoping the preparatory work needed for Phase II or other funding opportunities. The three main objectives of this Phase I are (1) to become better acquainted with the existing EPICS Qt software and Qt framework in order to evaluate the best options for ongoing development, (2) to demonstrate that our engineers can lead the EPICS community and jump-start the Qt collaboration, and (3) to identify a scope for our future work with solicited feedback from the EPICS community. This Phase I report includes key technical findings. It clarifies the differences between the two apparently-competing EPICS Qt implementations, caQtDM and the QE Framework; it explains how to create python-bindings, and compares Qt graphical libraries. But this report is also a personal story that narrates the birth of a collaboration. Starting a collaboration is not the work of a single individual, but the work of many. Therefore this report is also an attempt to publicly give credit to many who supported the effort. The main take-away from this grant is the successful birth of an EPICS Qt collaboration, seeded with existing software from the PSI and the Australian Synchrotron. But a lot more needs to be done for the collaboration founders' vision to be realized, and for the collaboration to reach its full potential. To help define the scope of future work, a useful approach we have identified is user experience design (UXD) and is discussed herein.

  20. Development of the Radiation Stabilized Distributed Flux Burner, Phase II Final Report

    SciTech Connect (OSTI)

    Webb, A.; Sullivan, J.D.

    1997-06-01

    This report covers progress made during Phase 2 of a three-phase DOE-sponsored project to develop and demonstrate the Radiation Stabilized Distributed Flux burner (also referred to as the Radiation Stabilized Burner, or RSB) for use in industrial watertube boilers and process heaters. The goal of the DOE-sponsored work is to demonstrate an industrial boiler burner with NOx emissions below 9 ppm and CO emissions below 50 ppm (corrected to 3% stack oxygen). To be commercially successful, these very low levels of NOx and CO must be achievable without significantly affecting other measures of burner performance such as reliability, turndown, and thermal efficiency. Phase 1 of the project demonstrated that sub-9 ppm NOx emissions and sub-50 ppm CO emissions (corrected to 3% oxygen) could be achieved with the RSB in a 3 million Btu/Hr laboratory boiler using several methods of NOx reduction. The RSB was also tested in a 60 million Btu/hr steam generator used by Chevron for Thermally Enhanced Oil Recovery (TEOR). In the larger scale tests, fuel staging was demonstrated, with the RSB consistently achieving sub-20 ppm NOx and as low as 10 ppm NOx. Large-scale steam generator tests also demonstrated that flue gas recirculation (FGR) provided a more predictable and reliable method of achieving sub-9 ppm NOx levels. Based on the results of tests at San Francisco Thermal and Chevron, the near-term approach selected by Alzeta for achieving low NOx is to use FGR. This decision was based on a number of factors, with the most important being that FGR has proved to be an easier approach to transfer to different facilities and boiler designs. In addition, staging has proved difficult to implement in a way that allows good combustion and emissions performance in a fully modulating system. In Phase 3 of the project, the RSB will be demonstrated as a very low emissions burner product suitable for continuous operation in a commercial installation. As such, the Phase 3 field demonstration will represent the first installation in which the RSB will be operated continuously with a sub-9 ppm guarantee.

  1. Development of a New Technique to Assess Susceptibility to Predation Resulting from Sublethal Stresses (Indirect Mortality)

    SciTech Connect (OSTI)

    Cada, G.F.

    2003-08-25

    Fish that pass through a hydroelectric turbine may not be killed directly, but may nonetheless experience sublethal stresses that will increase their susceptibility to predators (indirect mortality). There is a need to develop reliable tests for indirect mortality so that the full consequences of passage through turbines (and other routes around a hydroelectric dam) can be assessed. We evaluated a new technique for assessing indirect mortality, based on a behavioral response to a startling stimulus (akin to perceiving an approaching predator). We compare this technique to the standard predator preference test. The behavioral response is a rapid movement commonly referred to as a startle response, escape response, or C-shape, based on the characteristic body position assumed by the fish. When viewed from above, a startled fish bends into a C-shape, then springs back and swims away in a direction different from its original orientation. This predator avoidance (escape) behavior can be compromised by sublethal stresses that temporarily stun or disorient the fish. We subjected striped shiners and fathead minnows to varying intensities of either turbulence (10-, 20- or 30-min) or 2-min exposures to a fish anesthetic (100 or 200 mg/L of tricaine methanesulfonate), and evaluated their subsequent behavior. Individual fish were given a startle stimulus and filmed with a high-speed video camera. Each fish was startled and filmed twice before being stressed, and then at 1-, 5-, 15-, and 30-min post-exposure. The resulting image files were analyzed for a variety of behavioral measures including: presence of a response, time to first reaction, duration of reaction, time to formation of maximum C-shape, time to completion of C-shape, and completeness of C-shape. The most immediate measure of potential changes in fish behavior was whether stressed fish exhibited a startle response. For striped shiners, the number of fish not responding to the stimulus was significantly different from controls at 1-min post-exposure and for fathead minnows at 1- and 5-min post-exposure. The greatest effects occurred with exposure to the fish anesthetic; in fathead minnows all of the recorded measures were significantly different from controls at 1-min and 5-min post-exposure at the 100 mg/L dose. For striped shiners all recorded behavioral measures were significantly different from controls at 1-min at the 200 and 100 mg/L doses and for selected behavioral measures at 5-min. Turbulence also had significant effects on striped shiner startle responses following 20- and 30-min exposures for all behavioral measures at 1-min. The patterns suggest that any effects on startle response due to turbulence or low doses of anesthetic are short-lived, but can be evaluated using the escape behavior technique. The most useful indication of changes in escape behavior in these tests was the simple reaction/no reaction to the startle stimulus. The startle response occurred reliably among unstressed fish, and was frequently reduced or eliminated in fish exposed to turbulence or anesthesia. The other behavioral parameters observed were often altered by the sublethal stresses as well. A standard predator preference test was also conducted with largemouth bass as the predators and fathead minnows as prey. In this test design, groups of 10 unstressed fish (controls) and 10 stressed fish were put in a tank with a predator. The stressed fathead minnows were exposed to turbulence or fish anesthetic. The predator was allowed to eat half of the prey, and the data were evaluated to determine whether predators consumed greater proportions of stressed minnows than control minnows. The predation test indicated that exposure to MS-222 resulted in significant predation in fathead minnows, but exposure to turbulence did not. This pattern was the same as seen in fathead minnows using the startle response (escape behavior) test. For the sublethal stresses we applied, evaluation of changes in fish escape behavior yielded results comparable to traditional predator preference tests. Because t

  2. Development of a dedicated ethanol ultra-low-emissions vehicle (ULEV): Phase 3 report

    SciTech Connect (OSTI)

    Dodge, L.; Callahan, T.; Leone, D.; Naegeli, D.; Shouse, K.; Smith, L.; Whitney, K.

    1998-04-01

    The objective of the 3.5 year project discussed in this report was to develop a commercially competitive vehicle powered by ethanol (or an ethanol blend) that can meet California`s Ultra Low Emissions Vehicle (ULEV) standards and equivalent Corporate Average Fuel Economy (CAFE) energy efficiency for a light duty passenger car application. This particular report summarizes the third phase of the project, which lasted 12 months. Emissions tests were conducted with advanced after-treatment devices on one of the two, almost identical, test vehicles, a 1993 Ford Taurus flexible fuel vehicle. The report also covers tests on the engine removed from the second Taurus vehicle. This engine was modified for an increased compression ratio, fitted with air assist injectors, and included an advanced engine control system with model-based control.

  3. Water Use Optimization Toolset Project: Development and Demonstration Phase Draft Report

    SciTech Connect (OSTI)

    Gasper, John R.; Veselka, Thomas D.; Mahalik, Matthew R.; Hayse, John W.; Saha, Samrat; Wigmosta, Mark S.; Voisin, Nathalie; Rakowski, Cynthia; Coleman, Andre; Lowry, Thomas S.

    2014-05-19

    This report summarizes the results of the development and demonstration phase of the Water Use Optimization Toolset (WUOT) project. It identifies the objective and goals that guided the project, as well as demonstrating potential benefits that could be obtained by applying the WUOT in different geo-hydrologic systems across the United States. A major challenge facing conventional hydropower plants is to operate more efficiently while dealing with an increasingly uncertain water-constrained environment and complex electricity markets. The goal of this 3-year WUOT project, which is funded by the U.S. Department of Energy (DOE), is to improve water management, resulting in more energy, revenues, and grid services from available water, and to enhance environmental benefits from improved hydropower operations and planning while maintaining institutional water delivery requirements. The long-term goal is for the WUOT to be used by environmental analysts and deployed by hydropower schedulers and operators to assist in market, dispatch, and operational decisions.

  4. Liquid phase methanol LaPorte process development unit: Modification, operation, and support studies

    SciTech Connect (OSTI)

    Not Available

    1990-10-23

    The objectives of this program are to implement and test the process improvements identified through the engineering studies of the current program to demonstrate the capability of long-term catalyst activity maintenance, and to perform process and design engineering work that can be applied to a scaled-up Liquid Phase Methanol (LPMEOH) facility. An optional series of PDU runs is offered to extend the testing of the process improvements. A parallel research program will be performed to enhance the LPMEOH technical data base to improve the likelihood of commercialization of the LPMEOH process. Activities this quarter include: Flow sheet development for La Porte PDU modifications continues. A preliminary P ID review was completed and flow sheet modifications were identified and are being incorporated. A preliminary hazards review was completed on 22 May. Some minor flow sheet modifications resulted and a number of action items were identified. The most significant action item is to develop a materials reactivity and compatibility grid for the different alcohols, ethers, and esters which will be produced at the PDU. Heat and material balances were completed for the maximum production case of the mixed DME/MEOH synthesis campaign. An improved rate expression was developed. 1 fig.

  5. New and improved dispersion and recovery techniques for slurry phase catalysis. Quarterly report, January-March, 1984

    SciTech Connect (OSTI)

    Tarrer, A.R.; Guin, J.A.; Curtis, C.W.; Tatarchuk, B.J.

    1984-01-01

    A mathematical model has been developed for predicting the effects of various parameters such as recycle rate, permanent and temporary deactivation rate constants on catalyst activity. The intent of this analysis is to evaluate the importance of the ease with which a catalyst can be regenerated and to identify important catalyst properties associated with regeneration. A reactor (hydrotreater)-regenerator system having equal catalyst inventory in each unit is used as a basis for modeling. A fixed amount of fresh catalyst supply and spent catalyst withdrawal are assumed to be applicable to the reactor. The analysis shows that a small percent increase in the permanent deactivation rate constant relative to total deactivation rate constant decreases the mean activity of the catalyst in the reactor significantly. In most cases, the mean activity of the catalyst increased with increasing recycle rate. The effect of regeneration rate constant on the catalyst activity was not significant compared to that of permanent deactivation rate constant. 13 references, 3 figures.

  6. Biomass power for rural development. Technical progress report Phase-II. Contractual reporting period October-December 1999

    SciTech Connect (OSTI)

    Neuhauser, Edward; The Salix Consortium

    2000-03-23

    The project undertaken by the Salix Consortium is a multi-phased, multi-partner endeavor. Phase 1 focused on initial development and testing of the technology and forging the necessary agreements to demonstrate commercial willow production. The Phase 1 objectives have been successfully completed: preparing design plans for 2 utility pulverized coal boilers for 20 MW of biopower capacity; developing fuel supply plans for the project with a goal of establishing 365 ha (900 ac) of willow; obtaining power production commitments from the power companies for Phase 2; obtaining construction and environmental permits; and developing an experimental strategy for crop production and power generation improvements needed to assure commercial success. The R and D effort also addresses environmental issues pertaining to introduction of the willow energy system.

  7. Development of Innovative Radioactive Isotope Production Techniques at the Pennsylvania State University Radiation Science and Engineering Center

    SciTech Connect (OSTI)

    Johnsen, Amanda M.; Heidrich, Brenden; Durrant, Chad; Bascom, Andrew; Unlu, Kenan

    2013-08-15

    The Penn State Breazeale Nuclear Reactor (PSBR) at the Radiation Science and Engineering Center (RSEC) has produced radioisotopes for research and commercial purposes since 1956. With the rebirth of the radiochemistry education and research program at the RSEC, the Center stands poised to produce a variety of radioisotopes for research and industrial work that is in line with the mission of the DOE Office of Science, Office of Nuclear Physics, Isotope Development and Production Research and Application Program. The RSEC received funding from the Office of Science in 2010 to improve production techniques and develop new capabilities. Under this program, we improved our existing techniques to provide four radioisotopes (Mn-56, Br-82, Na-24, and Ar-41) to researchers and industry in a safe and efficient manner. The RSEC is also working to develop new innovative techniques to provide isotopes in short supply to researchers and others in the scientific community, specifically Cu-64 and Cu-67. Improving our existing radioisotopes production techniques and investigating new and innovative methods are two of the main initiatives of the radiochemistry research program at the RSEC.

  8. Research, Development and Demonstration of Micro-CHP Systems for Residential Applications - Phase I

    SciTech Connect (OSTI)

    Robert A. Zogg

    2011-03-14

    The objective of the Micro-CHP Phase I effort was to develop a conceptual design for a Micro-CHP system including: Defining market potential; Assessing proposed technology; Developing a proof-of-principle design; and Developing a commercialization strategy. TIAX LLC assembled a team to develop a Micro-CHP system that will provide electricity and heating. TIAX, the contractor and major cost-share provider, provided proven expertise in project management, prime-mover design and development, appliance development and commercialization, analysis of residential energy loads, technology assessment, and market analysis. Kohler Company, the manufacturing partner, is a highly regarded manufacturer of standby power systems and other residential products. Kohler provides a compellingly strong brand, along with the capabilities in product development, design, manufacture, distribution, sales, support, service, and marketing that only a manufacturer of Kohler's status can provide. GAMA, an association of appliance and equipment manufacturers, provided a critical understanding of appliance commercialization issues, including regulatory requirements, large-scale market acceptance issues, and commercialization strategies. The Propane Education & Research Council, a cost-share partner, provided cost share and aided in ensuring the fuel flexibility of the conceptual design. Micro-CHP systems being commercialized in Europe and Japan are generally designed to follow the household thermal load, and generate electricity opportunistically. In many cases, any excess electricity can be sold back to the grid (net metering). These products, however, are unlikely to meet the demands of the U.S. market. First, these products generally cannot provide emergency power when grid power is lost--a critical feature to market success in the U.S. Even those that can may have insufficient electric generation capacities to meet emergency needs for many U.S. homes. Second, the extent to which net metering will be available in the U.S. is unclear. Third, these products are typically not designed for use in households having forced hot-air heating, which is the dominant heating system in the U.S. The U.S. market will also require a major manufacturer that has the reputation and brand recognition, low-cost manufacturing capability, distribution, sales, and service infrastructure, and marketing power to achieve significant market size with a previously unknown and unproven product. History has proven time and time again that small-to-medium-size manufacturers do not have the resources and capabilities to achieve significant markets with such products. During the Phase I effort, the Team developed a conceptual design for a Micro-CHP system that addresses key DOE and U.S. market needs: (1) Provides emergency power adequate for critical household loads, with none of the key drawbacks associated with typical, low-cost emergency generators, such as liquid fuel storage, inability to power ''hard-wired'' loads, need to run temporary extension cords for plug loads, manual set up required, susceptibility to overload, and risk of failure due to lack of maintenance and infrequent operation; (2) Requires no special skills to install--plumbers, electricians and HVAC technicians will typically have all necessary skills; (3) Can be used with the major residential fuels in the U.S., including natural gas and propane, and can be easily adapted to fuel oil as well as emerging fuels as they become available; and (4) Significantly reduces household energy consumption and energy costs.

  9. Metal hydride/chemical heat-pump development project. Phase I. Final report

    SciTech Connect (OSTI)

    Argabright, T.A.

    1982-02-01

    The metal hydride/chemical heat pump (MHHP) is a chemical heat pump containing two hydrides for the storage and/or recovery of thermal energy. It utilizes the heat of reaction of hydrogen with specific metal alloys. The MHHP design can be tailored to provide heating and/or cooling or temperature upgrading over a wide range of input and ambient temperatures. The system can thus be used with a variety of heat sources including waste heat, solar energy or a fossil fuel. The conceptual design of the MHHP was developed. A national market survey including a study of applications and market sectors was conducted. The technical tasks including conceptual development, thermal and mechanical design, laboratory verification of design and material performance, cost analysis and the detailed design of the Engineering Development Test Unit (EDTU) were performed. As a result of the market study, the temperature upgrade cycle of the MHHP was chosen for development. Operating temperature ranges for the upgrader were selected to be from 70 to 110/sup 0/C (160 to 230/sup 0/F) for the source heat and 140 to 190/sup 0/C (280 to 375/sup 0/F) for the product heat. These ranges are applicable to many processes in industries such as food, textile, paper and pulp, and chemical. The hydride pair well suited for these temperatures is LaNi/sub 5//LaNi/sub 4/ /sub 5/Al/sub 0/ /sub 5/. The EDTU was designed for the upgrade cycle. It is a compact finned tube arrangement enclosed in a pressure vessel. This design incorporates high heat transfer and low thermal mass in a system which maximizes the coefficient of performance (COP). It will be constructed in Phase II. Continuation of this effort is recommended.

  10. Development and Testing of Industrial Scale Coal Fired Combustion System, Phase 3

    SciTech Connect (OSTI)

    Bert Zauderer

    1998-09-30

    Coal Tech Corp's mission is to develop, license & sell innovative, lowest cost, solid fuel fired power systems & total emission control processes using proprietary and patented technology for domestic and international markets. The present project 'DEVELOPMENT & TESTING OF INDUSTRIAL SCALE, COAL FIRED COMBUSTION SYSTEM, PHASE 3' on DOE Contract DE-AC22-91PC91162 was a key element in achieving this objective. The project consisted of five tasks that were divided into three phases. The first phase, 'Optimization of First Generation 20 MMBtu/hr Air-Cooled Slagging Coal Tech Combustor', consisted of three tasks, which are detailed in Appendix 'A' of this report. They were implemented in 1992 and 1993 at the first generation, 20 MMBtu/hour, combustor-boiler test site in Williamsport, PA. It consisted of substantial combustor modifications and coal-fired tests designed to improve the combustor's wall cooling, slag and ash management, automating of its operation, and correcting severe deficiencies in the coal feeding to the combustor. The need for these changes was indicated during the prior 900-hour test effort on this combustor that was conducted as part of the DOE Clean Coal Program. A combination of combustor changes, auxiliary equipment changes, sophisticated multi-dimensional combustion analysis, computer controlled automation, and series of single and double day shift tests totaling about 300 hours, either resolved these operational issues or indicated that further corrective changes were needed in the combustor design. The key result from both analyses and tests was that the combustor must be substantially lengthened to maximize combustion efficiency and sharply increase slag retention in the combustor. A measure of the success of these modifications was realized in the third phase of this project, consisting of task 5 entitled: 'Site Demonstration with the Second Generation 20 MMBtu/hr Air-Cooled Slagging Coal Tech Combustor'. The details of the task 5 effort are contained in Appendix 'C'. It was implemented between 1994 and 1998 after the entire 20 MMBtu/hr combustor-boiler facility was relocated to Philadelphia, PA in 1994. A new test facility was designed and installed. A substantially longer combustor was fabricated. Although not in the project plan or cost plan, an entire steam turbine-electric power generating plant was designed and the appropriate new and used equipment for continuous operation was specified. Insufficient funds and the lack of a customer for any electric power that the test facility could have generated prevented the installation of the power generating equipment needed for continuous operation. All other task 5 project measures were met and exceeded. 107 days of testing in task 5, which exceeded the 63 days (about 500 hours) in the test plan, were implemented. Compared to the first generation 20 MMBtu/hr combustor in Williamsport, the 2nd generation combustor has a much higher combustion efficiency, the retention of slag inside the combustor doubled to about 75% of the coal ash, and the ash carryover into the boiler, a major problem in the Williamsport combustor was essentially eliminated. In addition, the project goals for coal-fired emissions were exceeded in task 5. SO{sub 2} was reduced by 80% to 0.2 lb/MMBtu in a combination of reagent injection in the combustion and post-combustion zones. NO{sub x} was reduced by 93% to 0.07 lb/MMBtu in a combination of staged combustion in the combustor and post-combustion reagent injection. A baghouse was installed that was rated to 0.03 lb/MMBtu stack particle emissions. The initial particle emission test by EPA Method 5 indicated substantially higher emissions far beyond that indicated by the clear emission plume. These emissions were attributed to steel particles released by wall corrosion in the baghouse, correction of which had no effect of emissions.

  11. Liquid phase methanol LaPorte process development unit: Modification operation, and support studies

    SciTech Connect (OSTI)

    Not Available

    1991-01-28

    In April 1987, Air Products started the third and final contract with the US Department of Energy to develop the Liquid Phase Methanol (LPMEOH) process. One of the objectives was to identify alternative commercial catalyst(s) for the process. This objective was strategically important as we want to demonstrate that the LPMEOH process is flexible and not catalyst selection limited. Among three commercially available catalysts evaluated in the lab, the catalyst with a designation of F21/0E75-43 was the most promising candidate. The initial judging criteria included not only the intrinsic catalyst activity but also the ability to be used effectively in a slurry reactor. The catalyst was then advanced for a 40-day life test in a laboratory 300 cc autoclave. The life test result also revealed superior stability when compared with that of a standard catalyst. Consequently, the new catalyst was recommended for demonstration in the Process Development Unit (PDU) at LaPorte, Texas. This report details the methodology of testing and selecting the catalyst.

  12. Liquid phase methanol LaPorte process development unit: Modification, operation, and support studies

    SciTech Connect (OSTI)

    Not Available

    1991-01-02

    Liquid-entrained operations at the LaPorte Liquid Phase Methanol (LPMEOH) Process Development Unit (PDU) continued during June and July 1988 under Tasks 2.1 and 2.2 of Contract No. DE-AC22-87PC90005 for the US Department of Energy. The primary focus of this PDU operating program was to prepare for a confident move to the next scale of operation with an optimized and simplified process. Several new design options had been identified and thoroughly evaluated in a detailed process engineering study completed under the LPMEOH Part-2 contract (DE-AC22-85PC80007), which then became the basis for the current PDU modification/operating program. The focus of the Process Engineering Design was to optimize and simplifications focused on the slurry loop, which consists of the reactor, vapor/liquid separator, slurry heat exchanger, and slurry circulation pump. Two-Phase Gas Holdup tests began at LaPorte in June 1988 with nitrogen/oil and CO- rich gas/oil systems. The purpose of these tests was to study the hydrodynamics of the reactor, detect metal carbonyl catalyst poisons, and train operating personnel. Any effect of the new gas sparger and the internal heat exchanger would be revealed by comparing the hydrodynamic data with previous PDU hydrodynamic data. The Equipment Evaluation'' Run E-5 was conducted at the LaPorte LPMEOH PDU in July 1988. The objective of Run E-5 was to systematically evaluate each new piece of equipment (sparger, internal heat exchanger, V/L disengagement zone, demister, and cyclone) which had been added to the system, and attempt to run the reactor in an internal-only mode. In addition, a successful catalyst activation with a concentrated (45 wt % oxide) slurry was sought. 9 refs., 26 figs., 15 tabs.

  13. The development of mathematical model for cool down technique in the LNG pipe-line system

    SciTech Connect (OSTI)

    Hamaogi, Kenji; Takatani, Kouji; Kosugi, Sanai; Fukunaga, Takeshi

    1999-07-01

    An increase in demand for LNG as energy source can be expected since LNG is clean, in stable supply and produces low levels of carbon dioxide. Expansion of various LNG plants is planned. However, the optimal design of the LNG pipe-line systems has not yet been determined since the LNG transport phenomenon is not yet fully understood clearly. For example, in the LNG pipe-line system, large temperature gradients occur when the LNG transport starts. Therefore, although the necessity to cool down the pipe in order to minimize serious deformation is clear, the studies to understand it quantitatively have not been carried out. In this study, experiments on a commercial plant scale and a computer simulation, made up of structural analysis and two phase flow simulation were carried out to establish a prediction model of pipe deformation and to understand the phenomenon in the pipe.

  14. Rotation-Enabled 7-Degree of Freedom Seismometer for Geothermal Resource Development. Phase 1 Final Report

    SciTech Connect (OSTI)

    Pierson, Bob; Laughlin, Darren

    2013-10-29

    Under this Department of Energy (DOE) grant, A-Tech Corporation d.b.a. Applied Technology Associates (ATA), seeks to develop a seven-degree-of-freedom (7-DOF) seismic measurement tool for high-temperature geothermal applications. The Rotational-Enabled 7-DOF Seismometer includes a conventional tri-axial accelerometer, a conventional pressure sensor or hydrophone, and a tri-axial rotational sensor. The rotational sensing capability is novel, based upon ATA's innovative research in rotational sensing technologies. The geothermal industry requires tools for high-precision seismic monitoring of crack formation associated with Enhanced Geothermal System (EGS) stimulation activity. Currently, microseismic monitoring is conducted by deploying many seismic tools at different depth levels along a 'string' within drilled observation wells. Costs per string can be hundreds of thousands of dollars. Processing data from the spatial arrays of linear seismometers allows back-projection of seismic wave states. In contrast, a Rotational-Enabled 7-DOF Seismometer would simultaneously measure p-wave velocity, s-wave velocity, and incident seismic wave direction all from a single point measurement. In addition, the Rotational-Enabled 7-DOF Seismometer will, by its nature, separate p- and s-waves into different data streams, simplifying signal processing and facilitating analysis of seismic source signatures and geological characterization. By adding measurements of three additional degrees-of-freedom at each level and leveraging the information from this new seismic observable, it is likely that an equally accurate picture of subsurface seismic activity could be garnered with fewer levels per hole. The key cost savings would come from better siting of the well due to increased information content and a decrease in the number of confirmation wells drilled, also due to the increase in information per well. Improved seismic tools may also increase knowledge, understanding, and confidence, thus removing some current blocks to feasibility and significantly increasing access to potential geothermal sites. During the Phase 1 effort summarized in this final report, the ATA Team modeled and built two TRL 3 proof-of-concept test units for two competing rotational sensor technologies. The two competing technologies were based on ATA's angular rate and angular displacement measurement technologies; Angular rate: ATA's Magnetohydrodynamic Angular Rate Sensor (Seismic MHD); and Angular displacement: ATA's Low Frequency Improved Torsional Seismometer (LFITS). In order to down-select between these two technologies and formulate a go / no go decision, the ATA Team analyzed and traded scientific performance requirements and market constraints against sensor characteristics and components, acquiring field data where possible to validate the approach and publishing results from these studies of rotational technology capability. Based on the results of Phase 1, the ATA Team finds that the Seismic MHD (SMHD) technology is the best choice for enabling rotational seismometry and significant technical potential exists for micro-seismic monitoring using a downhole 7-DOF device based on the SMHD. Recent technical papers and field data confirm the potential of rotational sensing for seismic mapping, increasing confidence that cost-reduction benefits are achievable for EGS. However, the market for geothermal rotational sensing is small and undeveloped. As a result, this report recommends modifying the Phase 2 plan to focus on prototype development aimed at partnering with early adopters within the geothermal industry and the scientific research community. The highest public benefit will come from development and deployment of a science-grade SMHD rotational seismometer engineered for geothermal downhole conditions and an integrated test tool for downhole measurements at active geothermal test sites.

  15. Research & Development of Materials/Processing Methods for Continuous Fiber Ceramic Composites (CFCC) Phase 2 Final Report.

    SciTech Connect (OSTI)

    Szweda, A.

    2001-01-01

    The Department of Energy's Continuous Fiber Ceramic Composites (CFCC) Initiative that begun in 1992 has led the way for Industry, Academia, and Government to carry out a 10 year R&D plan to develop CFCCs for these industrial applications. In Phase II of this program, Dow Corning has led a team of OEM's, composite fabricators, and Government Laboratories to develop polymer derived CFCC materials and processes for selected industrial applications. During this phase, Dow Corning carried extensive process development and representative component demonstration activities on gas turbine components, chemical pump components and heat treatment furnace components.

  16. Research Techniques

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Techniques Research Techniques Print Coming Soon

  17. Development of Reservoir Characterization Techniques and Production Models for Exploiting Naturally Fractured Reservoirs

    SciTech Connect (OSTI)

    Wiggins, M.L.; Evans, R.D.; Brown, R.L.; Gupta, A.

    2001-03-28

    This report focuses on integrating geoscience and engineering data to develop a consistent characterization of the naturally fractured reservoirs. During this reporting period, effort was focused on relating seismic data to reservoir properties of naturally fractured reservoirs, scaling well log data to generate interwell descriptors of these reservoirs, enhancing and debugging a naturally fractured reservoir simulator, and developing a horizontal wellbore model for use in the simulator.

  18. National forecast for geothermal resource exploration and development with techniques for policy analysis and resource assessment

    SciTech Connect (OSTI)

    Cassel, T.A.V.; Shimamoto, G.T.; Amundsen, C.B.; Blair, P.D.; Finan, W.F.; Smith, M.R.; Edeistein, R.H.

    1982-03-31

    The backgrund, structure and use of modern forecasting methods for estimating the future development of geothermal energy in the United States are documented. The forecasting instrument may be divided into two sequential submodels. The first predicts the timing and quality of future geothermal resource discoveries from an underlying resource base. This resource base represents an expansion of the widely-publicized USGS Circular 790. The second submodel forecasts the rate and extent of utilization of geothermal resource discoveries. It is based on the joint investment behavior of resource developers and potential users as statistically determined from extensive industry interviews. It is concluded that geothermal resource development, especially for electric power development, will play an increasingly significant role in meeting US energy demands over the next 2 decades. Depending on the extent of R and D achievements in related areas of geosciences and technology, expected geothermal power development will reach between 7700 and 17300 Mwe by the year 2000. This represents between 8 and 18% of the expected electric energy demand (GWh) in western and northwestern states.

  19. Multilayer co-extrusion technique for developing high energy density organic devices.

    SciTech Connect (OSTI)

    Spangler, Scott W.; Schroeder, John Lee; Mrozek, Randy; Bieg, Lothar Franz; Rao, Rekha Ranjana; Lenhart, Joseph Ludlow; Stavig, Mark Edwin; Cole, Phillip James; Mondy, Lisa Ann; Winter, Michael R.; Schneider, Duane Allen

    2009-11-01

    The purpose of this project is to develop multi-layered co-extrusion (MLCE) capabilities at Sandia National Laboratories to produce multifunctional polymeric structures. Multi-layered structures containing layers of alternating electrical, mechanical, optical, or structural properties can be applied to a variety of potential applications including energy storage, optics, sensors, mechanical, and barrier applications relevant to the internal and external community. To obtain the desired properties, fillers must be added to the polymer materials that are much smaller than the end layer thickness. We developed two filled polymer systems, one for conductive layers and one for dielectric layers and demonstrated the potential for using MLCE to manufacture capacitors. We also developed numerical models to help determine the material and processing parameters that impact processing and layer stability.

  20. Liquid phase fluid dynamic (methanol) run in the LaPorte alternative fuels development unit

    SciTech Connect (OSTI)

    Bharat L. Bhatt

    1997-05-01

    A fluid dynamic study was successfully completed in a bubble column at DOE's Alternative Fuels Development Unit (AFDU) in LaPorte, Texas. Significant fluid dynamic information was gathered at pilot scale during three weeks of Liquid Phase Methanol (LPMEOJP) operations in June 1995. In addition to the usual nuclear density and temperature measurements, unique differential pressure data were collected using Sandia's high-speed data acquisition system to gain insight on flow regime characteristics and bubble size distribution. Statistical analysis of the fluctuations in the pressure data suggests that the column was being operated in the churn turbulent regime at most of the velocities considered. Dynamic gas disengagement experiments showed a different behavior than seen in low-pressure, cold-flow work. Operation with a superficial gas velocity of 1.2 ft/sec was achieved during this run, with stable fluid dynamics and catalyst performance. Improvements included for catalyst activation in the design of the Clean Coal III LPMEOH{trademark} plant at Kingsport, Tennessee, were also confirmed. In addition, an alternate catalyst was demonstrated for LPMEOH{trademark}.

  1. Development of novel separation techniques for biological samples in capillary electrophoresis

    SciTech Connect (OSTI)

    Chang, H.T.

    1994-07-27

    This dissertation includes three different topics: general introduction of capillary electrophoresis (CE); gradient in CE and CE in biological separations; and capillary gel electrophoresis (CGE) for DNA separation. Factors such as temperature, viscosity, pH, and the surface of capillary walls affecting the separation performance are demonstrated. A pH gradient between 3.0 and 5.2 is useful to improve the resolution among eight different organic acids. A flow gradient due to the change in the concentration of surfactant, which is able to coat to the capillary wall to change the flow rate and its direction, is also shown as a good way to improve the resolution for organic compounds. A temperature gradient caused by joule heat is shown by voltage programming to enhance the resolution and shorten the separation time for several phenolic compounds. The author also shows that self-regulating dynamic control of electroosmotic flow in CE by simply running separation in different concentrations of surfactant has less matrix effect on the separation performance. One of the most important demonstrations in this dissertation is that the author proposes on-column reaction which gives several advantages including the use of a small amount of sample, low risk of contamination, and time saving and kinetic features. The author uses this idea with laser induced fluorescence (LIF) as a detection mode to detect an on-column digestion of sub-ng of protein. This technique also is applied to single cell analysis in the group.

  2. New coiled-tubing cementing techniques at Prudhoe developed to withstand higher differential pressure

    SciTech Connect (OSTI)

    Krause, R.E.; Reem, D.C. )

    1993-11-01

    The successful hydraulic fracturing program at Prudhoe Bay would not have been possible without an effective coiled-tubing-unit (CTU) cement-squeeze program. Many fracture stimulation candidates were wells that have been squeezed previously. Therefore, squeezed perforations were exposed to higher differential pressures during fracturing operations than normally were seen at Prudhoe. At the outset of the fracture stimulation program in 1990, squeeze perforations failed when subjected to fracture job pressures. It quickly became clear that more aggressive CTU squeeze techniques resulting in stronger squeezed perforations would be necessary if the Prudhoe fracture program were to achieve its goals. Arco Alaska Inc. implemented a more aggressive CTU squeeze program in the Eastern Operating Area (EOA) in mid-1990. This paper documents the results of the new squeeze program, in which increased surface coiled-tubing squeeze pressures from 1,500 to 3,500 psi for 1 hour were used. More resilient, acid-resistant latex cement also became the standard in late 1990 for squeeze cementing. Implementation of this program has resulted in a squeeze success rate approaching 90%.

  3. The second-phase development of the China JinPing underground laboratory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Jianmin; Ji, Xiangdong; Haxton, Wick; Wang, Joseph S.Y.

    2015-03-24

    During 2013-2015 an expansion of the China JinPing underground Laboratory (CJPL) will be undertaken along a main branch of a bypass tunnel in the JinPing tunnel complex. This second phase of CJPL will increase laboratory space to approximately 96,000 m³, which can be compared to the existing CJPL-I volume of ~ 4,000 m³. One design configuration has eight additional hall spaces, each over 60 m long and approximately 12 m in width, with overburdens of about 2.4 km of rock, oriented parallel to and away from the main water transport and auto traffic tunnels. There are additional possibilities for furthermore » expansions at a nearby second bypass tunnel and along the entrance and exit branches of both bypass tunnels, potentially leading to an expanded CJPL comparable in size to Gran Sasso. Concurrent with the excavation activities, planning is underway for dark matter and other rare-event detectors, as well as for geophysics/engineering and other coupled multi-disciplinary sensors. In the town meeting on 8 September, 2013 at Asilomar, CA, associated with the 13th International Conference on Topics in Astroparticle and Underground Physics (TAUP), presentations and panel discussions addressed plans for one-ton expansions of the current CJPL germanium detector array of the China Darkmatter EXperiment (CDEX) collaboration and of the duel-phase xenon detector of the Panda-X collaboration, as well as possible new detector initiatives for dark matter studies, low-energy solar neutrino detection, neutrinoless double beta searches, and geoneutrinos. JinPing was also discussed as a site for a low-energy nuclear astrophysics accelerator. Geophysics/engineering opportunities include acoustic and micro-seismic monitoring of rock bursts during and after excavation, coupled-process in situ measurements, local, regional, and global monitoring of seismically induced radon emission, and electromagnetic signals. Additional ideas and projects will likely be developed in the next few years, driven by China’s domestic needs and by international experiments requiring access to very great depths.« less

  4. Application of powder metallurgy techniques for the development of non-toxic ammunition. Final CRADA report

    SciTech Connect (OSTI)

    Lowden, R.; Kelly, R.

    1997-05-30

    The purpose of the Cooperative Research and Development Agreement (CRADA) between Martin Marietta Energy Systems, Inc., and Delta Frangible Ammunition (DFA), was to identify and evaluate composite materials for the development of small arms ammunition. Currently available small arms ammunition utilizes lead as the major component of the projectile. The introduction of lead into the environment by these projectiles when they are expended is a rapidly increasing environmental problem. At certain levels, lead is a toxic metal to the environment and a continual health and safety concern for firearm users as well as those who must conduct lead recovery operations from the environment. DFA is a leading supplier of high-density mixtures, which will be used to replace lead-based ammunition in specific applications. Current non-lead ammunition has several limitations that prevent it from replacing lead-based ammunition in many applications (such as applications that require ballistics, weapon recoil, and weapon function identical to that of lead-based ammunition). The purpose of the CRADA was to perform the research and development to identify cost-effective materials to be used in small arms ammunition that eventually will be used in commercially viable, environmentally conscious, non-lead, frangible and/or non-frangible, ammunition.

  5. Development of whole-building energy design targets for commercial buildings: Phase 1, Planning: Volume 2, Technical report

    SciTech Connect (OSTI)

    Crawley, D.B.; Briggs, R.S.; Jones, J.W.; Seaton, W.W.; Kaufman, J.E.; Deringer, J.J.; Kennett, E.W.

    1987-08-01

    This is the second volume of the Phase 1 report and discusses the 10 tasks performed in Phase 1. The objective of this research is to develop a methodology for setting energy design targets to provide voluntary guidelines for the buildings industry. The whole-building energy targets project is being conducted at the Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE) to encourage the construction of energy-efficient buildings by informing designers and owners about cost-effective goals for energy use in new commercial buildings. The outcome of this research will be a flexible methodology for setting such targets. The tasks are listed and discussed in this report as follows: Task 1 - Develop Detailed Project Goals and Objectives; Task 2 - Establish Buildings-Industry Liaison; Task 3 - Develop Approaches to the Energy Targets Model, Building Operations, and Climate; Task 4 - Develop an Approach for Treating Economic Considerations; Task 5 - Develop an Approach for Treating Energy Sources; Task 6 - Collect Energy-Use Data; Task 7 - Survey Energy Expert Opinion; Task 8 - Evaluation Procedure Specification and Integration; Task 9 - Phase 1 Report Development; and Task 10 - Phase 1 Review Planning.

  6. Development of Reservoir Characterization Techniques and Production Models for Exploiting Naturally Fractured Reservoirs

    SciTech Connect (OSTI)

    Wiggins, Michael L.; Brown, Raymon L.; Civan, Faruk; Hughes, Richard G.

    2003-02-11

    This research was directed toward developing a systematic reservoir characterization methodology which can be used by the petroleum industry to implement infill drilling programs and/or enhanced oil recovery projects in naturally fractured reservoir systems in an environmentally safe and cost effective manner. It was anticipated that the results of this research program will provide geoscientists and engineers with a systematic procedure for properly characterizing a fractured reservoir system and a reservoir/horizontal wellbore simulator model which can be used to select well locations and an effective EOR process to optimize the recovery of the oil and gas reserves from such complex reservoir systems.

  7. Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Phase 3B LNB AOFA tests

    SciTech Connect (OSTI)

    Smith, L.L.; Larsen, L.L.

    1993-12-13

    This Innovative Clean Coal Technology II project seeks to evaluate NO{sub x} control techniques on a 500 MW(e) utility boiler. This report is provided to document the testing performed and results achieved during Phase 3B--Low NO{sub x} Burner Retrofit with Advanced Overfire Air (AOFA). This effort began in May 1993 following completion of Phase 3A--Low-NO{sub x} Burner Testing. The primary objective of the Phase 3B test effort was to establish LNB plus AOFA retrofit NO{sub x} emission characteristics under short-term well controlled conditions and under long-term normal system load dispatch conditions. In addition, other important performance data related to the operation of the boiler in this retrofit configuration were documented for comparison to those measured during the Phase 1 baseline test effort. Protocols for data collection and instrumentation operation were established during Phase 1 (see Phase 1 Baseline Tests Report).

  8. Liquid phase methanol LaPorte process development unit: Modification, operation, and support studies

    SciTech Connect (OSTI)

    Not Available

    1990-11-09

    As part of the liquid phase methanol process development program the present study evaluated adsorptive schemes to remove catalyst poisons from coal gas at pilot scale. In addition to a lab test with coal gas from Coolwater, two field tests were performed at Great Plains with live coal gas. In the lab with Coolwater, gas iron carbonyl, carbonyl sulfide,and hydrogen sulfide were effectively removed from the coal gas. The capacities of H-Y zeolite and BPL carbon for Fe(CO){sub 5} agreed well with the previous bench scale results at similar CO{sub 2} partial pressure. COS appeared to be chemisorbed on FCA carbon; its capacity was non-regenerable by hot nitrogen purge. A Cu/Zn catalyst, used to remove H{sub 2}S adsorptively, worked adequately. With the adsorption system on-line, a downstream methanol catalyst showed stable activity for 120 hours of operation. In the two field tests, it was demonstrated that the Great Plains (GP) syngas could be treated by adsorption for LPMEOH process. The catalyst deactivation observed in the first field test was much improved in the second field test after regular (every three days) regeneration of the adsorbents was practiced. The absorption system, which was designed for the removal of iron/nickel carbonyls, hydrogen/carbonyl sulfide and hydrochloric acid, needed to be modified to accommodate other unexpected impurities, such as acetonitrile and ethylene which were observed during both field tests. A lab test with a simulated GP gas indicated that low CO{sub 2} content (0.5%) in the GP gas does not cause catalyst deactivation. Adjusting the CO{sub 2} content of the feed to 5% by CO{sub 2} addition, increased methanol productivity by 40% in both the lab and the second field test. 6 refs., 25 figs., 14 tabs.

  9. Cloud and aerosol characterization for the ARM central facility: Multiple remote sensor techniques development

    SciTech Connect (OSTI)

    Sassen, K.

    1992-04-30

    This research project designed to investigate how atmospheric remote sensing technology can best be applied to the characterization of the cloudy atmosphere. Our research program addresses basic atmospheric remote sensing questions, but at the same time is clearly directed toward providing information crucial to the ARM (Atmospheric Remote Sensing) program and for application to the Clouds and Radiation Testbed (CART). The instrumentation that is being brought into play includes a variety of art-of-the-art sensors. Available at NOAA WPL are polarization Doppler K{sub a}-band (0.86 mm) and X-band (3.2 cm) radars, a C0{sub 2}(10.6 {mu}m) Doppler lidar with sequential ' polarization measurement capabilities, a three-channel (20.6, 31.65 and 90 GHz) microwave radiometer, and variety of visible and infrared radiometers. Instrumentation at the University of Utah Facility for Atmospheric Remote Sensing (FARS) includes a polarization ruby (0.643 {mu}m) lidar, a narrow-beam (0.14{degree}) mid-infrared (9.5--11.5 {mu}m) radiometer coaligned with the lidar, several other radiometers in the visible and infrared spectral regions, and an advanced two-color (1.06 and 0.532 {mu}m), four-channel Polarization Diversity Lidar (PDL) and all-sky video imaging system that have only recently been developed under the ARM IDP.

  10. A Component Approach to Collaborative Scientific Software Development: Tools and Techniques Utilized by the Quantum Chemistry Science Application Partnership

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kenny, Joseph P.; Janssen, Curtis L.; Gordon, Mark S.; Sosonkina, Masha; Windus, Theresa L.

    2008-01-01

    Cutting-edge scientific computing software is complex, increasingly involving the coupling of multiple packages to combine advanced algorithms or simulations at multiple physical scales. Component-based software engineering (CBSE) has been advanced as a technique for managing this complexity, and complex component applications have been created in the quantum chemistry domain, as well as several other simulation areas, using the component model advocated by the Common Component Architecture (CCA) Forum. While programming models do indeed enable sound software engineering practices, the selection of programming model is just one building block in a comprehensive approach to large-scale collaborative development which must also addressmore » interface and data standardization, and language and package interoperability. We provide an overview of the development approach utilized within the Quantum Chemistry Science Application Partnership, identifying design challenges, describing the techniques which we have adopted to address these challenges and highlighting the advantages which the CCA approach offers for collaborative development.« less

  11. The Development and Application of Reactive Transport Modeling Techniques to Study Radionuclide Migration at Yucca Mountain, NV

    SciTech Connect (OSTI)

    Viswanathan, Hari Selvi

    1999-09-01

    Yucca Mountain, Nevada has been chosen as a possible site for the first high level radioactive waste repository in the United States. As part of the site investigation studies, we need to make scientifically rigorous estimations of radionuclide migration in the event of a repository breach. Performance assessment models used to make these estimations are computationally intensive. We have developed two reactive transport modeling techniques to simulate radionuclide transport at Yucca Mountain: (1) the selective coupling approach applied to the convection-dispersion-reaction (CDR) model and (2) a reactive stream tube approach (RST). These models were designed to capture the important processes that influence radionuclide migration while being computationally efficient. The conventional method of modeling reactive transport models is to solve a coupled set of multi-dimensional partial differential equations for the relevant chemical components in the system. We have developed an iterative solution technique, denoted the selective coupling method, that represents a versatile alternative to traditional uncoupled iterative techniques and the filly coupled global implicit method. We show that selective coupling results in computational and memory savings relative to these approaches. We develop RST as an alternative to the CDR method for solving large two- or three-dimensional reactive transport simulations for cases in which one is interested in predicting the flux across a specific control plane. In the RST method, the multidimensional problem is reduced to a series of one-dimensional transport simulations along streamlines. The key assumption with RST is that mixing at the control plane approximates the transverse dispersion between streamlines. We compare the CDR and RST approaches for several scenarios that are relevant to the Yucca Mountain Project. For example, we apply the CDR and RST approaches to model an ongoing field experiment called the Unsaturated Zone Transport Test.

  12. SPSP Phase III Recruiting, Selecting, and Developing Secure Power Systems Professionals: Behavioral Interview Guidelines by Job Roles

    SciTech Connect (OSTI)

    O'Neil, Lori Ross; Conway, T. J.; Tobey, D. H.; Greitzer, Frank L.; Dalton, Angela C.; Pusey, Portia K.

    2015-03-01

    The Secure Power Systems Professional Phase III final report was released last year which an appendix of Behavioral Interview Guidelines by Job Roles. This new report is that appendix broken out as a standalone document to assist utilities in recruiting and developing Secure Power Systems Professionals at their site.

  13. Development of a novel technique to assess the vulnerability of micro-mechanical system components to environmentally assisted cracking.

    SciTech Connect (OSTI)

    Enos, David George; Goods, Steven Howard

    2006-11-01

    Microelectromechanical systems (MEMS) will play an important functional role in future DOE weapon and Homeland Security applications. If these emerging technologies are to be applied successfully, it is imperative that the long-term degradation of the materials of construction be understood. Unlike electrical devices, MEMS devices have a mechanical aspect to their function. Some components (e.g., springs) will be subjected to stresses beyond whatever residual stresses exist from fabrication. These stresses, combined with possible abnormal exposure environments (e.g., humidity, contamination), introduce a vulnerability to environmentally assisted cracking (EAC). EAC is manifested as the nucleation and propagation of a stable crack at mechanical loads/stresses far below what would be expected based solely upon the materials mechanical properties. If not addressed, EAC can lead to sudden, catastrophic failure. Considering the materials of construction and the very small feature size, EAC represents a high-risk environmentally induced degradation mode for MEMS devices. Currently, the lack of applicable characterization techniques is preventing the needed vulnerability assessment. The objective of this work is to address this deficiency by developing techniques to detect and quantify EAC in MEMS materials and structures. Such techniques will allow real-time detection of crack initiation and propagation. The information gained will establish the appropriate combinations of environment (defining packaging requirements), local stress levels, and metallurgical factors (composition, grain size and orientation) that must be achieved to prevent EAC.

  14. Phase II Calderon Process to Produce Direct Reduced Iron Research and Development Project

    SciTech Connect (OSTI)

    Albert Calderon

    2003-06-30

    This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase I was successfully completed. The project was then re-directed to the making of iron units. U.S. Steel teamed up with Calderon for a joint effort which will last 42 months to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy.

  15. PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT

    SciTech Connect (OSTI)

    Albert Calderon

    2003-01-28

    This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase I was successfully completed. The project was then re-directed to the making of iron units. U.S. Steel teamed up with Calderon for a joint effort which will last 30 months to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy.

  16. PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT

    SciTech Connect (OSTI)

    Albert Calderon

    2003-04-28

    This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase I was successfully completed. The project was then re-directed to the making of iron units. U.S. Steel teamed up with Calderon for a joint effort which will last 30 months to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy.

  17. Electrical Techniques | Open Energy Information

    Open Energy Info (EERE)

    fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Dictionary.png Electrical Techniques: Electrical techniques aim to image the...

  18. The development of coal-based technologies for Department of Defense facilities: Phase 1 final report. Volume 1: Technical report

    SciTech Connect (OSTI)

    Miller, B.G.; Morrison, J.L.; Pisupati, S.V.

    1997-01-31

    The first phase of a three-phase project investigating the development of coal-based technologies for Department of Defense facilities has been completed. The objectives of the project are to: decrease DOD`s dependence on foreign oil and increase its use of coal; promote public and private sector deployment of technologies for utilizing coal-based fuels in oil-designed combustion equipment; and provide a continuing environment for research and development of coal-based fuel technologies for small-scale applications at a time when market conditions in the US are not favorable for the introduction of coal-fired equipment in the commercial and industrial capacity ranges. The Phase 1 activities were focused on developing clean, coal-based combustion technologies for the utilization of both micronized coal-water mixtures (MCWMs) and dry, micronized coal (DMC) in fuel oil-designed industrial boilers. The specific objective in Phase 1 was to deliver fully engineered retrofit options for a fuel oil-designed watertube boiler located on a DOD installation to fire either MCWM or DMC. This was achieved through a project consisting of fundamental, pilot-sale, and demonstration-scale activities investigating coal beneficiation and preparation, and MCWM and DMC combustion performance. In addition, detailed engineering designs and an economic analysis were conducted for a boiler located at the Naval Surface Warfare Center, near Crane, Indiana. Results are reported on MCWM and DMC combustion performance evaluation; engineering design; and cost/economic analysis.

  19. Development of a direct-injected natural gas engine system for heavy-duty vehicles: Final report phase 2

    SciTech Connect (OSTI)

    Cox, G.B.; DelVecchio, K.A.; Hays, W.J.; Hiltner, J.D.; Nagaraj, R.; Emmer, C.

    2000-03-02

    This report summarizes the results of Phase 2 of this contract. The authors completed four tasks under this phase of the subcontract. (1) They developed a computational fluid dynamics (CFD) model of a 3500 direct injected natural gas (DING) engine gas injection/combustion system and used it to identify DING ignition/combustion system improvements. The results were a 20% improvement in efficiency compared to Phase 1 testing. (2) The authors designed and procured the components for a 3126 DING engine (300 hp) and finished assembling it. During preliminary testing, the engine ran successfully at low loads for approximately 2 hours before injector tip and check failures terminated the test. The problems are solvable; however, this phase of the program was terminated. (3) They developed a Decision & Risk Analysis model to compare DING engine technology with various other engine technologies in a number of commercial applications. The model shows the most likely commercial applications for DING technology and can also be used to identify the sensitivity of variables that impact commercial viability. (4) MVE, Inc., completed a preliminary design concept study that examines the major design issues involved in making a reliable and durable 3,000 psi LNG pump. A primary concern is the life of pump seals and piston rings. Plans for the next phase of this program (Phase 3) have been put on indefinite hold. Caterpillar has decided not to fund further DING work at this time due to limited current market potential for the DING engine. However, based on results from this program, the authors believe that DI natural gas technology is viable for allowing a natural gas-fueled engine to achieve diesel power density and thermal efficiency for both the near and long terms.

  20. Summary of the Advanced Reactor Design Criteria (ARDC) Phase 1 Activities, including the development of the Final Report and the Advanced Reactor Technology Training

    SciTech Connect (OSTI)

    Holbrook, Mark R.

    2015-04-01

    Provide summary of the Phase 1 activities (Develop Final Report and Conduct Advanced Reactor Technology Training) that were completed in Fiscal Year 2015.

  1. PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT

    SciTech Connect (OSTI)

    Albert Calderon

    2004-04-27

    This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase I was successfully completed. The project was then re-directed to the making of iron units. In 2000, U.S. Steel teamed up with Calderon for a joint effort which will last 42 months to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy by using iron ore concentrate and coal as raw materials, both materials being appreciably lower in cost than using iron pellets and coke.

  2. PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT

    SciTech Connect (OSTI)

    Albert Calderon

    2004-07-28

    This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase I was successfully completed. The project was then re-directed to the making of iron units. In 2000, U.S. Steel teamed up with Calderon for a joint effort which will last 42 months to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy by using iron ore concentrate and coal as raw materials, both materials being appreciably lower in cost than using iron pellets and coke.

  3. PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT

    SciTech Connect (OSTI)

    Albert Calderon; Reina Calderon

    2004-01-27

    This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase I was successfully completed. The project was then re-directed to the making of iron units. In 2000, U.S. Steel teamed up with Calderon for a joint effort which will last 42 months to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy by using iron ore concentrate and coal as raw materials, both materials being appreciably lower in cost than using iron pellets and coke.

  4. PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT

    SciTech Connect (OSTI)

    Albert Calderon

    2005-01-25

    This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase I was successfully completed. The project was then re-directed to the making of iron units. In 2000, U.S. Steel teamed up with Calderon for a joint effort which will last 42 months to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy by using iron ore concentrate and coal as raw materials, both materials being appreciably lower in cost than using iron pellets and coke.

  5. PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT

    SciTech Connect (OSTI)

    Albert Calderon

    2005-01-26

    This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase I was successfully completed. The project was then re-directed to the making of iron units. In 2000, U.S. Steel teamed up with Calderon for a joint effort which will last 42 months to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy by using iron ore concentrate and coal as raw materials, both materials being appreciably lower in cost than using iron pellets and coke.

  6. PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT

    SciTech Connect (OSTI)

    Albert Calderon

    2006-01-30

    This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase I was successfully completed. The project was then re-directed to the making of iron units. In 2000, U.S. Steel teamed up with Calderon for a joint effort to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy by using iron ore concentrate and coal as raw materials, both materials being appreciably lower in cost than using iron pellets, briquettes, sinter and coke.

  7. Phase II Calderon Process to Produce Direct Reduced Iron Research and Development Project

    SciTech Connect (OSTI)

    Albert Calderon

    2007-03-31

    This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase 1 was successfully completed. The project was then re-directed to the making of iron units. In 2000, U.S. Steel teamed up with Calderon for a joint effort to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy by using iron ore concentrate and coal as raw materials, both materials being appreciably lower in cost than using iron pellets, briquettes, sinter and coke.

  8. PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT

    SciTech Connect (OSTI)

    Albert Calderon

    2005-07-29

    This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase I was successfully completed. The project was then re-directed to the making of iron units. In 2000, U.S. Steel teamed up with Calderon for a joint effort which will last 42 months to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy by using iron ore concentrate and coal as raw materials, both materials being appreciably lower in cost than using iron pellets and coke.

  9. PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT

    SciTech Connect (OSTI)

    Albert Calderon

    2006-04-19

    This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase I was successfully completed. The project was then re-directed to the making of iron units. In 2000, U.S. Steel teamed up with Calderon for a joint effort to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy by using iron ore concentrate and coal as raw materials, both materials being appreciably lower in cost than using iron pellets, briquettes, sinter and coke.

  10. PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT

    SciTech Connect (OSTI)

    Albert Calderon

    2004-10-28

    This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase I was successfully completed. The project was then re-directed to the making of iron units. In 2000, U.S. Steel teamed up with Calderon for a joint effort which will last 42 months to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy by using iron ore concentrate and coal as raw materials, both materials being appreciably lower in cost than using iron pellets and coke.

  11. Development of a cell culture surface conversion technique using alginate thin film for evaluating effect upon cellular differentiation

    SciTech Connect (OSTI)

    Nakashima, Y.; Tsusu, K.; Minami, K.; Nakanishi, Y.

    2014-06-15

    Here, we sought to develop a cell culture surface conversion technique that would not damage living cells. An alginate thin film, formed on a glass plate by spin coating of sodium alginate solution and dipping into calcium chloride solution, was used to inhibit adhesion of cells. The film could be removed by ethylenediaminetetraacetate (EDTA) at any time during cell culture, permitting observation of cellular responses to conversion of the culture surface in real time. Additionally, we demonstrated the validity of the alginate thin film coating method and the performance of the film. The thickness of the alginate thin film was controlled by varying the rotation speed during spin coating. Moreover, the alginate thin film completely inhibited the adhesion of cultured cells to the culture surface, irrespective of the thickness of the film. When the alginate thin film was removed from the culture surface by EDTA, the cultured cells adhered to the culture surface, and their morphology changed. Finally, we achieved effective differentiation of C2C12 myoblasts into myotube cells by cell culture on the convertible culture surface, demonstrating the utility of our novel technique.

  12. Microstructure and Phase Development of Buried Resistors in Low Temperature Co-Fired Ceramic

    SciTech Connect (OSTI)

    DIMOS,DUANE B.; KOTULA,PAUL G.; RODRIGUEZ,MARK A.; YANG,PIN

    1999-11-30

    Embedded resistor circuits have been generated with the use of a Micropen system Ag conductor paste (DuPont 6142D), a new experimental resistor ink from DuPont (E84005-140), and Low Temperature Co-fired Ceramic (LTCC) green tape (DuPont A951). Sample circuits were processed under varying peak temperature ranges (835 C-875 C) and peak soak times (10 min-720 min). Resistors were characterized by SEM, TEM, EDS, and high-temperature XRD. Results indicate that devitrification of resistor glass phase to Celcian, Hexacelcian, and a Zinc-silicate phase occurred in the firing ranges used (835-875 C) but kinetics of divitrification vary substantially over this temperature range. The resistor material appears structurally and chemically compatible with the LTCC. RuO{sub 2} grains do not significantly react with the devitrifying matrix material during processing. RuO{sub 2} grains coarsen significantly with extended time and temperature and the electrical properties appear to be strongly affected by the change in RuO{sub 2} grain size.

  13. Phase Development of NaOH Activated Blast Furnace Slag Geopolymers Cured at 90 deg. C

    SciTech Connect (OSTI)

    Zhang Bo; Bigley, C.; Ryan, M. J.; MacKenzie, K. J. D.; Brown, I. W. M.

    2009-07-23

    Geopolymers were synthesized from blast furnace slag activated with different levels of NaOH and cured at 90 deg. C. The crystalline and amorphous phases of the resulting geopolymers were characterized by XRD quantitative analysis, and {sup 29}Si and {sup 27}Al MAS NMR. Amorphous species are predominant in materials at all NaOH levels. In the amorphous phase, aluminium substituted silicate species (Q{sup 2}(1Al)) dominated among the species of Q{sup 0}, Q{sup 1}, Q{sup 2}(1Al) and Q{sup 2}(where Q{sup n}(mAl) denotes a silicate tetrahedron [SiO{sub 4}] with n bridging oxygen atoms and m adjacent tetrahedra substituted with an aluminate tetrahedron [AlO{sub 4}]). In addition, it was also found that 4-fold coordination aluminium [AlO{sub 4}] species ({sup 27}Al chemical shift 66.1 ppm) in low NaOH containing materials differs from the species ({sup 27}Al chemical shift 74.3 ppm) in high NaOH containing materials.

  14. RECENT PROGRESS IN THE DEVELOPMENT OF DUCTILE-PHASE TOUGHENED TUNGSTEN FOR PLASMA-FACING MATERIALS

    SciTech Connect (OSTI)

    Henager, Charles H.; Kurtz, Richard J.; Roosendaal, Timothy J.; Borlaug, Brennan A.; Odette, George R.; Cunningham, Kevin; Fields, Kirk A.; Gragg, David; Zok, Frank W.

    2014-03-03

    The objective of this study is to develop the materials science of fiber-reinforced tungsten composites as candidates for plasma-facing components in future fusion reactors.

  15. Development of quality control procedures for mass produced and released Bactrocera Philippinensis (Diptera: Tephritidae) for sterile insect technique programs

    SciTech Connect (OSTI)

    Resilva, S.; Obra, G.; Zamora, N.; Gaitan, E.

    2007-03-15

    Quality control procedures for Bactrocera philippinensis Drew and Hancock 1994 (Diptera: Tephritidae) used in sterile insect technique (SIT) programs were established in the mass rearing facility at the Philippine Nuclear Research Institute. Basic studies on pupal irradiation, holding/packaging systems, shipping procedures, longevity, sterility studies, and pupal eye color determination in relation to physiological development at different temperature regimes were investigated. These studies will provide baseline data for the development of quality control protocols for an expansion of B. philippinensis field programs with an SIT component in the future. (author) [Spanish] Los procedimientos de control de calidad para Bactrocera philippinensis Drew y Hancock 1994 (Diptera: Tephritidae) usados en programas de la tecnica de insecto esteril (TIE) fueron establecidos en la facilidad de cria en masa del Instituto Filipino de Investigacion Nuclear. Estudios basicos sobre la irradiacion de las pupas, sistemas de almacenaje/empaque, procedimientos del envio, longevidad, estudios de esterilidad y la determinacion del color de ojo de la pupa en relacion con el desarrollo fisiologico en regimenes diferentes de temperatura fueron investigados. Estos estudios proveeran una linea de informacion basica para el desarrollo de protocolos de control de calidad para una expansion de los programas de campo para B. philippinensis con un componente de TIS en el futuro. (author)

  16. Development of superior asphalt recycling agency: Phase 1, Technical feasibility. Technical progress report

    SciTech Connect (OSTI)

    Bullin, J.A.; Glover, C.J.; Davison, R.R.; Lin, Moon-Sun; Chaffin, J.; Liu, Meng; Eckhardt, C.

    1996-04-01

    About every 12 years, asphalt roads must be reworked, and this is usually done by placing thick layers (hot-mix overlays) of new material on top of failed material, resulting in considerable waste of material and use of new asphalt binder. A good recycling agent is needed, not only to reduce the viscosity of the aged material but also to restore compatibility. Objective is to establish the technical feasibility (Phase I) of determining the specifications and operating parameters for producing high quality recycling agents which will allow most/all the old asphalt-based road material to be recycled. It is expected that supercritical fractionation can be used. The advanced road aging simulation procedure will be used to study aging of blends of old asphalt and recycling agents.

  17. Phase Field Fracture Mechanics.

    SciTech Connect (OSTI)

    Robertson, Brett Anthony

    2015-11-01

    For this assignment, a newer technique of fracture mechanics using a phase field approach, will be examined and compared with experimental data for a bend test and a tension test. The software being used is Sierra Solid Mechanics, an implicit/explicit finite element code developed at Sandia National Labs in Albuquerque, New Mexico. The bend test experimental data was also obtained at Sandia Labs while the tension test data was found in a report online from Purdue University.

  18. Continued development of a semianalytical solution for two-phase fluid and heat flow in a porous medium

    SciTech Connect (OSTI)

    Doughty, C.; Pruess, K.

    1991-06-01

    Over the past few years the authors have developed a semianalytical solution for transient two-phase water, air, and heat flow in a porous medium surrounding a constant-strength linear heat source, using a similarity variable {eta} = r/{radical}t. Although the similarity transformation approach requires a simplified geometry, all the complex physical mechanisms involved in coupled two-phase fluid and heat flow can be taken into account in a rigorous way, so that the solution may be applied to a variety of problems of current interest. The work was motivated by adverse to predict the thermohydrological response to the proposed geologic repository for heat-generating high-level nuclear wastes at Yucca Mountain, Nevada, in a partially saturated, highly fractured volcanic formation. The paper describes thermal and hydrologic conditions near the heat source; new features of the model; vapor pressure lowering; and the effective-continuum representation of a fractured/porous medium.

  19. Development and Integration of Genome-Enabled Techniques to Track and Predict the Cycling of Carbon in Model Microbial Communities

    SciTech Connect (OSTI)

    Banfield, Jillian

    2014-11-26

    The primary objective of this project was to establish widely applicable, high-throughput omics methods for tracking carbon flow in microbial communities at a strain-resolved molecular level. We developed and applied these methods to study a well-established microbial community model system with a long history of omics innovation: chemoautotrophic biofilms grown in an acid mine drainage (AMD) environment. The methods are now being transitioned (in a new project) to study soil. Using metagenomics, stable-isotope proteomics, stable-isotope metabolomics, transcriptomics, and microscopy, we tracked carbon flow during initial biofilm growth involving CO2 fixation, through the maturing biofilm community consisting of multiple trophic levels, and during an anaerobic degradative phase after biofilms sink. This work included explicit consideration of the often overlooked roles of archaea and microbial eukaryotes (fungi) in carbon turnover. We also analyzed where the eosystem begins to fail in response to thermal perturbation, and how perturbation propagates through a carbon cycle. We investigated the form of strain variation in microbial communities, the importance of strain variants, and the rate and form of strain evolution. Overall, the project generated an array of new, integrated omics approaches and provided unprecedented insight into the functioning of a natural ecosystem. This project supported graduate training for five Ph.D. students and three post doctoral fellows and contributed directly to at least 26 publications (two in Science).

  20. Advanced turbine systems phase II - conceptual design and product development. Final report, August 1993--July 1996

    SciTech Connect (OSTI)

    1996-10-01

    The National Energy Strategy (NES) calls for a balanced program of greater energy efficiency, use of alternative fuels, and the environmentally responsible development of all U.S. energy resources. Consistent with the NES, a Department of Energy (DOE) program has been created to develop Advanced Turbine Systems (ATS). The technical ATS requirements are based upon two workshops held in Greenville, SC that were sponsored by DOE and hosted by Clemson University. The objective of this 8-year program, managed jointly by DOE`s Office of Fossil Energy, and, Office of Conservation and Renewable Energy, is to develop natural-gas-fired base load power plants that will have cycle efficiencies greater than 60%, lower heating value (LHV), be environmentally superior to current technology, and also be cost competitive. The program will include work to transfer advanced technology to the coal- and biomass-fueled systems being developed in other DOE programs.

  1. Expanded High-Level Waste Glass Property Data Development: Phase I

    SciTech Connect (OSTI)

    Schweiger, Michael J.; Riley, Brian J.; Crum, Jarrod V.; Hrma, Pavel R.; Rodriguez, Carmen P.; Arrigoni, Benjamin M.; Lang, Jesse B.; Kim, Dong-Sang; Vienna, John D.; Raszewski, F. C.; Peeler, David K.; Edwards, Tommy B.; Best, D. R.; Reamer, Irene A.; Riley, W. T.; Simmons, P. T.; Workman, R. J.

    2011-01-21

    Two separate test matrices were developed as part if the EM-21 Glass Matrix Crucible Testing. The first matrix, developed using a single component-at-a-time design method and covering glasses of interest primarily to Hanford, is addressed in this data package. This data package includes methods and results from glass fabrication, chemical analysis of glass compositions, viscosity, electrical conductivity, liquidus temperature, canister centerline cooling, product consistency testing, and the toxicity characteristic leach procedure.

  2. Development of radiohalogenated muscarinic ligands for the in vivo imaging of m-AChR by nuclear medicine techniques

    SciTech Connect (OSTI)

    McPherson, D.W.; Luo, H.; Knapp, F.F. Jr.

    1994-06-01

    Alterations in the density of acetylcholinergic muscarinic receptors (m-AChR) have been observed in various dementias. This has spurred interest in the development of radiohalogenated ligands which can be used for the non-invasive in vivo detection of m-AChR by nuclear medicine techniques. We have developed a new ligand 1-azabicyclo[2.2.2]oct-3-yl ({alpha}-hydroxy-{alpha}-(1-iodo-1-propen-3-yl)-{alpha}-phenylacetate (IQNP,12) which demonstrates high affinity for the muscarinic receptor. When labeled with radioiodine it has been shown to be selective and specific for m-ACHR. Initial studies on the separation and in vivo evaluation of the various isomers of IQNP have shown that the stereochemistry of the chiral centers and the configuration around the double bond play an important role in m-AChR subtype specificity. In vivo evaluation of these stereoisomers demonstrate that E-(R,R)-IQNP has a high affinity for the M{sub 1} muscarinic subtype while Z-(R,R)-IQNP demonstrate a high affinity for M{sub 1} and M{sub 2} receptor subtypes. These data demonstrate IQNP (12) has potential for use in the non-evasive in vivo detection of m-AChR by single photon emission computed tomography (SPECT). A brominated analogue, ``BrQNP,`` in which the iodine has been replaced by a bromine atom, has also been prepared and was shown to block the in vivo uptake of IQNP in the brain and heart and therefore has potential for positron emission tomographic (PET) studies of m-AChR.

  3. Development of Quality Assessment Techniques for Large Eddy Simulation of Propulsion and Power Systems in Complex Geometries

    SciTech Connect (OSTI)

    Lacaze, Guilhem; Oefelein, Joseph

    2015-03-01

    Large-eddy-simulation (LES) is quickly becoming a method of choice for studying complex thermo-physics in a wide range of propulsion and power systems. It provides a means to study coupled turbulent combustion and flow processes in parameter spaces that are unattainable using direct-numerical-simulation (DNS), with a degree of fidelity that can be far more accurate than conventional engineering methods such as the Reynolds-averaged Navier-Stokes (RANS) approx- imation. However, development of predictive LES is complicated by the complex interdependence of different type of errors coming from numerical methods, algorithms, models and boundary con- ditions. On the other hand, control of accuracy has become a critical aspect in the development of predictive LES for design. The objective of this project is to create a framework of metrics aimed at quantifying the quality and accuracy of state-of-the-art LES in a manner that addresses the myriad of competing interdependencies. In a typical simulation cycle, only 20% of the computational time is actually usable. The rest is spent in case preparation, assessment, and validation, because of the lack of guidelines. This work increases confidence in the accuracy of a given solution while min- imizing the time obtaining the solution. The approach facilitates control of the tradeoffs between cost, accuracy, and uncertainties as a function of fidelity and methods employed. The analysis is coupled with advanced Uncertainty Quantification techniques employed to estimate confidence in model predictions and calibrate model's parameters. This work has provided positive conse- quences on the accuracy of the results delivered by LES and will soon have a broad impact on research supported both by the DOE and elsewhere.

  4. Engineering development of advanced coal-fired low-emissions boiler system. Phase II subsystem test design and plan - an addendum to the Phase II RD & T Plan

    SciTech Connect (OSTI)

    1995-05-01

    Shortly after the year 2000 it is expected that new generating plants will be needed to meet the growing demand for electricity and to replace the aging plants that are nearing the end of their useful service life. The plants of the future will need to be extremely clean, highly efficient and economical. Continuing concerns over acid rain, air toxics, global climate changes, ozone depletion and solid waste disposal are expected to further then regulations. In the late 1980`s it was commonly believed that coal-fired power plants of the future would incorporate either some form of Integrated Gasification Combined Cycle (IGCC) or first generation Pressurized Fluidized Bed Combustion (PFBS) technologies. However, recent advances In emission control techniques at reduced costs and auxiliary power requirements coupled with significant improvements In steam turbine and cycle design have clearly indicated that pulverized coal technology can continue to be competitive In both cost and performance. In recognition of the competitive potential for advanced pulverized coal-fired systems with other emerging advanced coal-fired technologies, DOE`s Pittsburgh Energy Technology Center (PETC) began a research and development initiative In late 1990 named, Combustion 2000, with the intention of preserving and expanding coal as a principal fuel In the Generation of electrical power. The project was designed for two stages of commercialization, the nearer-term Low Emission Boiler System (LEBS) program, and for the future, the High Performance Power System (HIPPS) program. B&W is participating In the LEBS program.

  5. Integrated Tool Development for Used Fuel Disposition Natural System Evaluation Phase I Report

    Broader source: Energy.gov [DOE]

    The natural barrier system (NBS) is an integral part of a geologic nuclear waste repository. The report describes progress in development of an integrated modeling framework that can be used for systematically analyzing the performance of a natural barrier system and identifying key factors that control the performance. This framework is designed as an integrated tool for prioritization and programmatic decisions.

  6. Development of Kinetic Models for the Liquid Phase Methanol (LPMEOH tm) Process

    SciTech Connect (OSTI)

    Xiang-Dong Peng

    2002-06-01

    This report covers our recent work on the kinetics of the LPMEOH{trademark} process. The major part of the report concerns the development of more robust kinetic models for the LPMEOH{trademark} reaction system. The development was needed to meet the requirements for more accurate process simulations over a wide range of conditions. To this end, kinetic experiments were designed based on commercial needs and a D-Optimal design package. A database covering 53 different conditions was built. Two new reactions were identified and added to the LPMEOH{trademark} reaction network. New rate models were developed for all 15 reactions in the system. The new rate models are more robust than the original ones, showing better fit to the experimental results over a wide range of conditions. Related to this model development are some new understandings about the sensitivity of rate models and their effects on catalyst life study. The last section of this report covers a separate topic: water injection to the LPMEOH{trademark} reactor and its effects on the LPMEOH{trademark} process. An investigation was made of whether water injection can enhance the reactor productivity and how this enhancement depends on the composition of the major syngas feed. A water injection condition that resulted in 32% enhancement in productivity was observed. A catalyst life test under this water injection condition was conducted and showed no negative effects of water injection on catalyst stability.

  7. Hardware Development of a Laboratory-Scale Microgrid Phase 2: Operation and Control of a Two-Inverter Microgrid

    SciTech Connect (OSTI)

    Illindala, M. S.; Piagi, P.; Zhang, H.; Venkataramanan, G.; Lasseter, R. H.

    2004-03-01

    This report summarizes the activities of the second year of a three-year project to develop control software for microsource distributed generation systems. In this phase, a laboratory-scale microgrid was expanded to include: (1) Two emulated distributed resources; (2) Static switchgear to allow rapid disconnection and reconnection; (3) Electronic synchronizing circuitry to enable transient-free grid interconnection; (4) Control software for dynamically varying the frequency and voltage controller structures; and (5) Power measurement instrumentation for capturing transient waveforms at the interconnect during switching events.

  8. Development of electromagnetic acoustic transducer (EMAT) phased arrays for SFR inspection

    SciTech Connect (OSTI)

    Le Bourdais, Florian; Marchand, Benoît

    2014-02-18

    A long-standing problem for Sodium cooled Fast Reactor (SFR) instrumentation is the development of efficient under-sodium visualization systems adapted to the hot and opaque sodium environment. Electromagnetic Acoustic Transducers (EMAT) are potential candidates for a new generation of Ultrasonic Testing (UT) probes well-suited for SFR inspection that can overcome drawbacks of classical piezoelectric probes in sodium environment. Based on the use of new CIVA simulation tools, we have designed and optimized an advanced EMAT probe for under-sodium visualization. This has led to the development of a fully functional L-wave EMAT sensing system composed of 8 elements and a casing withstanding 200° C sodium inspection. Laboratory experiments demonstrated the probe's ability to sweep an ultrasonic beam to an angle of 15 degrees. Testing in a specialized sodium facility has shown that it was possible to obtain pulse-echo signals from a target under several different angles from a fixed position.

  9. Ocean thermal energy conversion power system development. Final design report: PSD-I, Phase II

    SciTech Connect (OSTI)

    1980-06-30

    The PSD-I program provides a heat exchanger sytem consisting of an evaporator, condenser and various ancillaries with ammonia used as a working fluid in a closed simulated Rankine cycle. It is to be installed on the Chepachet Research Vessel for test and evaluation of a number of OTEC concepts in a true ocean environment. It is one of several test articles to be tested. Primary design concerns include control of biofouling, corrosion and erosion of aluminum tubes, selection of materials, and the development of a basis for scale-up to large heat exchangers so as to ultimately demonstrate economic feasibility on a commercial scale. The PSD-I test article is devised to verify thermodynamic, environmental, and mechanical performance of basic design concepts. The detailed design, development, fabrication, checklist, delivery, installation support, and operation support for the Test Article Heat Exchangers are described. (WHK)

  10. Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Phase 2, Overfire air tests

    SciTech Connect (OSTI)

    Smith, L.L.; Hooper, M.P.

    1992-07-13

    This Phase 2 Test Report summarizes the testing activities and results for the second testing phase of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. The second phase demonstrates the Advanced Overfire Air (AOFA) retrofit with existing Foster Wheeler (FWEC) burners. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data supported by short-term characterization data. Ultimately a fifty percent NO{sub x} reduction target using combinations of combustion modifications has been established for this project.

  11. Developing Secure Power Systems Professional Competence: Alignment and Gaps in Workforce Development Programs for Phase 2 of the Secure Power Systems Professional project

    SciTech Connect (OSTI)

    O'Neil, Lori Ross; Assante, Michael; Tobey, D. H.; Conway, T. J.; Vanderhorst, Jr, T. J.; Januszewski, III, J.; leo, R.; Perman, K.

    2013-08-26

    This is the final report of Phase 2 of the Secure Power Systems Professional project, a 3 phase project. DOE will post to their website upon release.

  12. Development of a direct-injected natural gas engine system for heavy-duty vehicles: Final report phase 1

    SciTech Connect (OSTI)

    2000-03-02

    The transportation sector accounts for approximately 65% of US petroleum consumption. Consumption for light-duty vehicles has stabilized in the last 10--15 years; however, consumption in the heavy-duty sector has continued to increase. For various reasons, the US must reduce its dependence on petroleum. One significant way is to substitute alternative fuels (natural gas, propane, alcohols, and others) in place of petroleum fuels in heavy-duty applications. Most alternative fuels have the additional benefit of reduced exhaust emissions relative to petroleum fuels, thus providing a cleaner environment. The best long-term technology for heavy-duty alternative fuel engines is the 4-stroke cycle, direct injected (DI) engine using a single fuel. This DI, single fuel approach maximizes the substitution of alternative fuel for diesel and retains the thermal efficiency and power density of the diesel engine. This report summarizes the results of the first year (Phase 1) of this contract. Phase 1 focused on developing a 4-stroke cycle, DI single fuel, alternative fuel technology that will duplicate or exceed diesel power density and thermal efficiency, while having exhaust emissions equal to or less than the diesel. Although the work is currently on a 3500 Series DING engine, the work is viewed as a basic technology development that can be applied to any engine. Phase 1 concentrated on DING engine component durability, exhaust emissions, and fuel handling system durability. Task 1 focused on identifying primary areas (e.g., ignition assist and gas injector systems) for future durability testing. In Task 2, eight mode-cycle-averaged NO{sub x} emissions were reduced from 11.8 gm/hp-hr (baseline conditions) to 2.5 gm/hp-hr (modified conditions) on a 3501 DING engine. In Task 3, a state-of-the-art fuel handling system was identified.

  13. Design and development of Stirling engines for stationary-power-generation applications in the 500- to 3000-horsepower range. Phase I final report

    SciTech Connect (OSTI)

    1980-10-01

    A program plan and schedule for the implementation of the proposed conceptual designs through the remaining four phases of the overall large Stirling engine development program was prepared. The objective of Phase II is to prepare more detailed designs of the conceptual designs prepared in Phase I. At the conclusion of Phase II, a state-of-the-art design will be selected from the candidate designs developed in Phase I for development. The objective of Phase III is to prepare manufacturing drawings of the candidate engine design. Also, detailed manufacturing drawings of both 373 kW (500 hp) and 746 kW (1000 hp) power pack skid systems will be completed. The power pack skid systems will include the generator, supporting skid, controls, and other supporting auxiliary subsystems. The Stirling cycle engine system (combustion system, Stirling engine, and heat transport system) will be mounted in the power pack skid system. The objective of Phase IV is to procure parts for prototype engines and two power pack skid systems and to assemble Engines No. 1 and 2. The objective of Phase V is to perform extensive laboratory and demonstration testing of the Stirling engines and power pack skid systems, to determine the system performance and cost and commercialization strategy. Scheduled over a 6 yr period the cost of phases II through V is estimated at $22,063,000. (LCL)

  14. Report on Performance of Prototype Dynatronix Power Supplies Developed Under a Phase I DOE SBIR

    SciTech Connect (OSTI)

    Hoppe, Eric W.; Merriman, Jason H.

    2011-03-01

    The purpose of this study is to evaluate the prototype power supplies fabricated by Dynatronix, Inc. This project supports the advancement of electroforming capabilities to produce ultra-high purity copper. Ultra-high purity copper is an essential material used for a range of current and future fundamental nuclear physics programs such as the MAJORANA DEMONSTRATOR. The Mach 30 power supplies are a new design built to the specifications from the requirements of Pacific Northwest National Laboratory (PNNL) with regard to timing, voltage, current output, and the required tolerances. The parameters used in these tests were developed empirically over a number of years based on a combination of thermodynamic and kinetics of the electroplating process. The power supplies were operated in a typical cleanroom environment for the production electroforming at PNNL. The units that were received by PNNL in July, 2010 have performed satisfactorily and have demonstrated short term durability.

  15. Development of the Radiation Stabilized Distributed Flux Burner - Phase III Final Report

    SciTech Connect (OSTI)

    J. D. Sullivan; A. Webb

    1999-12-01

    The development and demonstration of the Radiation Stabilized Burner (RSB) was completed as a project funded by the US Department of Energy Office of Industrial Technologies. The technical goals of the project were to demonstrate burner performance that would meet or exceed emissions targets of 9 ppm NOx, 50 ppm CO, and 9 ppm unburned hydrocarbons (UHC), with all values being corrected to 3 percent stack oxygen, and incorporate the burner design into a new industrial boiler configuration that would achieve ultra-low emissions while maintaining or improving thermal efficiency, operating costs, and maintenance costs relative to current generation 30 ppm low NOx burner installations. Both the ultra-low NOx RSB and the RSB boiler-burner package are now commercially available.

  16. PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT

    SciTech Connect (OSTI)

    Albert Calderon

    2005-10-14

    The commercialization path of the Calderon technology for making a feedstock for steelmaking with assistance from DOE initially focused on making coke and work was done which proved that the Calderon technology is capable of making good coke for hard driving blast furnaces. U.S. Steel which participated in such demonstration felt that the Calderon technology would be more meaningful in lowering the costs of making steel by adapting it to the making of iron--thus obviating the need for coke. U.S. Steel and Calderon teamed up to jointly work together to demonstrate that the Calderon technology will produce in a closed system iron units from iron concentrate (ore) and coal competitively by eliminating pelletizing, sintering, coking and blast furnace operation. If such process steps could be eliminated, a huge reduction in polluting emissions and greenhouse gases (including CO{sub 2}) relating to steelmaking would ensue. Such reduction will restructure the steel industry away from the very energy-intensive steelmaking steps currently practiced and drastically reduce costs of making steel. The development of a technology to lower U.S. steelmaking costs and become globally competitive is a priority of major importance. Therefore, the development work which Calderon is conducting presently under this Agreement with the U.S. Department of Energy becomes more crucial than ever. During the 3rd quarter of 2005 which the present report covers, virtually all the effort to advance the Calderon technology to make iron units was concentrated towards forming a team with a steelmaker who needs both iron units in the form of hot metal and a substitute for natural gas (SNG), both being major contributors to higher costs in steelmaking. Calderon felt that a very good candidate would be Steel Dynamics (SDI) by virtue that it operates a rotary hearth facility in Butler, Indiana that uses large amounts of natural gas to reduce briquettes made from ore and coal that they subsequently melt in a submerged arc furnace that is a large consumer of electric power. This facility is operated as a division of SDI under the name of Iron Dynamics (IDI). It is no secret that IDI has had and still has a great number of operational problems, including high cost for natural gas.

  17. Center for Fuel Cell Research and Applications development phase. Final report

    SciTech Connect (OSTI)

    1998-12-01

    The deployment and operation of clean power generation is becoming critical as the energy and transportation sectors seek ways to comply with clean air standards and the national deregulation of the utility industry. However, for strategic business decisions, considerable analysis is required over the next few years to evaluate the appropriate application and value added from this emerging technology. To this end the Houston Advanced Research Center (HARC) is proposing a three-year industry-driven project that centers on the creation of ``The Center for Fuel Cell Research and Applications.`` A collaborative laboratory housed at and managed by HARC, the Center will enable a core group of six diverse participating companies--industry participants--to investigate the economic and operational feasibility of proton-exchange-membrane (PEM) fuel cells in a variety of applications (the core project). This document describes the unique benefits of a collaborative approach to PEM applied research, among them a shared laboratory concept leading to cost savings and shared risks as well as access to outstanding research talent and lab facilities. It also describes the benefits provided by implementing the project at HARC, with particular emphasis on HARC`s history of managing successful long-term research projects as well as its experience in dealing with industry consortia projects. The Center is also unique in that it will not duplicate the traditional university role of basic research or that of the fuel cell industry in developing commercial products. Instead, the Center will focus on applications, testing, and demonstration of fuel cell technology.

  18. Development of Hydrologic Characterization Technology of Fault Zones -- Phase I, 2nd Report

    SciTech Connect (OSTI)

    Karasaki, Kenzi; Onishi, Tiemi; Black, Bill; Biraud, Sebastien

    2009-03-31

    This is the year-end report of the 2nd year of the NUMO-LBNL collaborative project: Development of Hydrologic Characterization Technology of Fault Zones under NUMO-DOE/LBNL collaboration agreement, the task description of which can be found in the Appendix 3. Literature survey of published information on the relationship between geologic and hydrologic characteristics of faults was conducted. The survey concluded that it may be possible to classify faults by indicators based on various geometric and geologic attributes that may indirectly relate to the hydrologic property of faults. Analysis of existing information on the Wildcat Fault and its surrounding geology was performed. The Wildcat Fault is thought to be a strike-slip fault with a thrust component that runs along the eastern boundary of the Lawrence Berkeley National Laboratory. It is believed to be part of the Hayward Fault system but is considered inactive. Three trenches were excavated at carefully selected locations mainly based on the information from the past investigative work inside the LBNL property. At least one fault was encountered in all three trenches. Detailed trench mapping was conducted by CRIEPI (Central Research Institute for Electric Power Industries) and LBNL scientists. Some intriguing and puzzling discoveries were made that may contradict with the published work in the past. Predictions are made regarding the hydrologic property of the Wildcat Fault based on the analysis of fault structure. Preliminary conceptual models of the Wildcat Fault were proposed. The Wildcat Fault appears to have multiple splays and some low angled faults may be part of the flower structure. In parallel, surface geophysical investigations were conducted using electrical resistivity survey and seismic reflection profiling along three lines on the north and south of the LBNL site. Because of the steep terrain, it was difficult to find optimum locations for survey lines as it is desirable for them to be as straight as possible. One interpretation suggests that the Wildcat Fault is westerly dipping. This could imply that the Wildcat Fault may merge with the Hayward Fault at depth. However, due to the complex geology of the Berkeley Hills, multiple interpretations of the geophysical surveys are possible. iv An effort to construct a 3D GIS model is under way. The model will be used not so much for visualization of the existing data because only surface data are available thus far, but to conduct investigation of possible abutment relations of the buried formations offset by the fault. A 3D model would be useful to conduct 'what if' scenario testing to aid the selection of borehole drilling locations and configurations. Based on the information available thus far, a preliminary plan for borehole drilling is outlined. The basic strategy is to first drill boreholes on both sides of the fault without penetrating it. Borehole tests will be conducted in these boreholes to estimate the property of the fault. Possibly a slanted borehole will be drilled later to intersect the fault to confirm the findings from the boreholes that do not intersect the fault. Finally, the lessons learned from conducting the trenching and geophysical surveys are listed. It is believed that these lessons will be invaluable information for NUMO when it conducts preliminary investigations at yet-to-be selected candidate sites in Japan.

  19. Fabrication development for high-level nuclear waste containers for the tuff repository; Phase 1 final report

    SciTech Connect (OSTI)

    Domian, H.A.; Holbrook, R.L.; LaCount, D.F. |

    1990-09-01

    This final report completes Phase 1 of an engineering study of potential manufacturing processes for the fabrication of containers for the long-term storage of nuclear waste. An extensive literature and industry review was conducted to identify and characterize various processes. A technical specification was prepared using the American Society of Mechanical Engineers Boiler & Pressure Vessel Code (ASME BPVC) to develop the requirements. A complex weighting and evaluation system was devised as a preliminary method to assess the processes. The system takes into account the likelihood and severity of each possible failure mechanism in service and the effects of various processes on the microstructural features. It is concluded that an integral, seamless lower unit of the container made by back extrusion has potential performance advantages but is also very high in cost. A welded construction offers lower cost and may be adequate for the application. Recommendations are made for the processes to be further evaluated in the next phase when mock-up trials will be conducted to address key concerns with various processes and materials before selecting a primary manufacturing process. 43 refs., 26 figs., 34 tabs.

  20. Final Report on Development of Optimized Field-Reversed Configuration Plasma Formation Techniques for Magnetized Target Fusion

    SciTech Connect (OSTI)

    Lynn, Alan

    2013-11-01

    The University of New Mexico (UNM) proposed a collaboration with Los Alamos National Laboratory (LANL) to develop and test methods for improved formation of field-reversed configuration (FRC) plasmas relevant to magnetized target fusion (MTF) energy research. MTF is an innovative approach for a relatively fast and cheap path to the production of fusion energy that utilizes magnetic confinement to assist in the compression of a hot plasma to thermonuclear conditions by an external driver. LANL is currently pursing demonstration of the MTF concept via compression of an FRC plasma by a metal liner z-pinch in conjunction with the Air Force Research Laboratory in Albuquerque, NM. A key physics issue for the FRC's ultimate success as an MTF target lies in the initial pre-ionization (PI) stage. The PI plasma sets the initial conditions from which the FRC is created. In particular, the PI formation process determines the amount of magnetic flux that can be trapped to form the FRC. A ringing theta pinch ionization (RTPI) technique, such as currently used by the FRX-L device at LANL, has the advantages of high ionization fraction, simplicity (since no additional coils are required), and does not require internal electrodes which can introduce impurities into the plasma. However RTPI has been shown to only trap #24;50% of the initial bias flux at best and imposes additional engineering constraints on the capacitor banks. The amount of trapped flux plays an important role in the FRC's final equilibrium, transport, and stability properties, and provides increased ohmic heating of the FRC through induced currents as the magnetic field decays. Increasing the trapped flux also provides the route to greatest potential gains in FRC lifetime, which is essential to provide enough time to translate and compress the FRC effectively. In conjunction with LANL we initially planned to develop and test a microwave break- down system to improve the initial PI plasma formation. The UNM team would design the microwave optics and oversee the fabrication and assembly of all components and assist with integration into the FRX-L machine control system. LANL would provide a preexisting 65 kW X-band microwave source and some associated waveguide hardware. Once constructed and installed, UNM would take the lead in operating the microwave breakdown system and conducting studies to optimize its use in FRC PI formation in close cooperation with the needs of the LANL MTF team. In conjunction with our LANL collaborators, we decided after starting the project to switch from a microwave plasma breakdown approach to a plasma gun technology to use for enhanced plasma formation in the FRX-L field-reversed configuration experiment at LANL. Plasma guns would be able to provide significantly higher density plasma with greater control over its distribution in time and space within the experiment. This would allow greater control and #12;ne-tuning of the PI plasma formed in the experiment. Multiple plasma guns would be employed to fill a Pyrex glass test chamber (built at UNM) with plasma which would then be characterized and optimized for the MTF effort.

  1. Development of a Laser-Produced Plasma X-ray source for Phase-Contrast Radiography of DT Ice layers

    SciTech Connect (OSTI)

    Izumi, N; Dewald, E; Kozioziemski, B; Landen, O L; Koch, J A

    2008-07-21

    Refraction enhanced x-ray phase contrast imaging is crucial for characterization of deuterium-tritium (DT) ice layer roughness in optically opaque inertial confinement fusion capsules. To observe the time development of DT ice roughness over {approx} second timescales, we need a bright x-ray source that can produce an image faster than the evolution of the ice surface roughness. A laser produced plasma x-ray source is one of the candidates that can meet this requirement. We performed experiments at the Janus laser facility at Lawrence Livermore National Laboratory and assessed the characteristics of the laser produced plasma x-ray source as a potential backlight for in situ target characterization.

  2. Research and development of proton-exchange membrane (PEM) fuel cell system for transportation applications. Phase I final report

    SciTech Connect (OSTI)

    1996-01-01

    Objective during Phase I was to develop a methanol-fueled 10-kW fuel cell power source and evaluate its feasibility for transportation applications. This report documents research on component (fuel cell stack, fuel processor, power source ancillaries and system sensors) development and the 10-kW power source system integration and test. The conceptual design study for a PEM fuel cell powered vehicle was documented in an earlier report (DOE/CH/10435-01) and is summarized herein. Major achievements in the program include development of advanced membrane and thin-film low Pt-loaded electrode assemblies that in reference cell testing with reformate-air reactants yielded performance exceeding the program target (0.7 V at 1000 amps/ft{sup 2}); identification of oxidation catalysts and operating conditions that routinely result in very low CO levels ({le} 10 ppm) in the fuel processor reformate, thus avoiding degradation of the fuel cell stack performance; and successful integrated operation of a 10-kW fuel cell stack on reformate from the fuel processor.

  3. Additional development of remote sensing techniques for observing morphology, microphysics, and radiative properties of clouds and tests using a new, robust CO{sub 2} lidar. Final report

    SciTech Connect (OSTI)

    Eberhard, W.L.; Brewer, W.A.; Intrieri, J.M.

    1998-09-28

    A three-year project with a goal of advancing CO{sub 2} lidar technology and measurement techniques for cloud studies was successfully completed. An eyesafe, infrared lidar with good sensitivity and improved Doppler accuracy was designed, constructed, and demonstrated. Dual-wavelength operation was achieved. A major leap forward in robustness was demonstrated. CO{sub 2} lidars were operated as part of two Intensive Operations Periods at the Southern Great Plains CART site. The first used an older lidar and was intended primarily for measurement technique development. The second used the new lidar and was primarily a demonstration and evaluation of its performance. Progress was demonstrated in the development, evaluation, and application of measurement techniques using CO{sub 2} lidar.

  4. Advanced wall-fired boiler combustion techniques for the reduction of nitrogen oxides (NO[sub x]): Low NO[sub x] burner test phase results

    SciTech Connect (OSTI)

    Sorge, J.N. ); Baldwin, A.L. ); Smith, L.L. )

    1992-06-02

    This paper discusses the technical progress of a US Department of Energy Innovative Clean Coal Technology project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide(NO[sub x]) emissions from coal-fired boilers. The primary objective of the demonstration is to determine the performance of two low NO[sub x] combustion technologies applied in a stepwise fashion to a 500 MW boiler. A target of achieving 50 percent NO[sub x] reductions has been established for the project. The main focus of this paper is the presentation of the low NO[sub x] burner (LNB) short and long-term tests results.

  5. Advanced wall-fired boiler combustion techniques for the reduction of nitrogen oxides (NO{sub x}): Low NO{sub x} burner test phase results

    SciTech Connect (OSTI)

    Sorge, J.N.; Baldwin, A.L.; Smith, L.L.

    1992-06-02

    This paper discusses the technical progress of a US Department of Energy Innovative Clean Coal Technology project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide(NO{sub x}) emissions from coal-fired boilers. The primary objective of the demonstration is to determine the performance of two low NO{sub x} combustion technologies applied in a stepwise fashion to a 500 MW boiler. A target of achieving 50 percent NO{sub x} reductions has been established for the project. The main focus of this paper is the presentation of the low NO{sub x} burner (LNB) short and long-term tests results.

  6. High performance steam development. Final report, Phase No. 3: 1500{degree}F steam plant for industrial cogeneration prototype development tests

    SciTech Connect (OSTI)

    Duffy, T.; Schneider, P.

    1996-01-01

    As a key part of DOE`s and industry`s R&D efforts to improve the efficiency, cost, and emissions of power generation, a prototype High Performance Steam System (HPSS) has been designed, built, and demonstrated. The world`s highest temperature ASME Section I coded power plant successfully completed over 100 hours of development tests at 1500{degrees}F and 1500 psig on a 56,000 pound per hour steam generator, control valve and topping turbine at an output power of 5500 hp. This development advances the HPSS to 400{degrees}F higher steam temperature than the current best technology being installed around the world. Higher cycle temperatures produce higher conversion efficiencies and since steam is used to produce the large majority of the world`s power, the authors expect HPSS developments will have a major impact on electric power production and cogeneration in the twenty-first century. Coal fueled steam plants now produce the majority of the United States electric power. Cogeneration and reduced costs and availability of natural gas have now made gas turbines using Heat Recovery Steam Generators (HRSG`s) and combined cycles for cogeneration and power generation the lowest cost producer of electric power in the United States. These gas fueled combined cycles also have major benefits in reducing emissions while reducing the cost of electricity. Development of HPSS technology can significantly improve the efficiency of cogeneration, steam plants, and combined cycles. Figure 2 is a TS diagram that shows the HPSS has twice the energy available from each pound of steam when expanding from 1500{degrees}F and 1500 psia to 165 psia (150 psig, a common cogeneration process steam pressure). This report describes the prototype component and system design, and results of the 100-hour laboratory tests. The next phase of the program consists of building up the steam turbine into a generator set, and installing the power plant at an industrial site for extended operation.

  7. Assessing the nonlinear response of fine particles to precursor emissions: Development and application of an extended response surface modeling technique v1.0

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhao, B.; Wang, S. X.; Xing, J.; Fu, K.; Fu, J. S.; Jang, C.; Zhu, Y.; Dong, X. Y.; Gao, Y.; Wu, W. J.; et al

    2015-01-30

    An innovative extended response surface modeling technique (ERSM v1.0) is developed to characterize the nonlinear response of fine particles (PM₂̣₅) to large and simultaneous changes of multiple precursor emissions from multiple regions and sectors. The ERSM technique is developed based on the conventional response surface modeling (RSM) technique; it first quantifies the relationship between PM₂̣₅ concentrations and the emissions of gaseous precursors from each single region using the conventional RSM technique, and then assesses the effects of inter-regional transport of PM₂̣₅ and its gaseous precursors on PM₂̣₅ concentrations in the target region. We apply this novel technique with a widelymore » used regional chemical transport model (CTM) over the Yangtze River delta (YRD) region of China, and evaluate the response of PM₂̣₅ and its inorganic components to the emissions of 36 pollutant–region–sector combinations. The predicted PM₂̣₅ concentrations agree well with independent CTM simulations; the correlation coefficients are larger than 0.98 and 0.99, and the mean normalized errors (MNEs) are less than 1 and 2% for January and August, respectively. It is also demonstrated that the ERSM technique could reproduce fairly well the response of PM₂̣₅ to continuous changes of precursor emission levels between zero and 150%. Employing this new technique, we identify the major sources contributing to PM₂̣₅ and its inorganic components in the YRD region. The nonlinearity in the response of PM₂̣₅ to emission changes is characterized and the underlying chemical processes are illustrated.« less

  8. Assessing the nonlinear response of fine particles to precursor emissions: Development and application of an extended response surface modeling technique v1.0

    SciTech Connect (OSTI)

    Zhao, B.; Wang, S. X.; Xing, J.; Fu, K.; Fu, J. S.; Jang, C.; Zhu, Y.; Dong, X. Y.; Gao, Y.; Wu, W. J.; Wang, J. D.; Hao, J. M.

    2015-01-30

    An innovative extended response surface modeling technique (ERSM v1.0) is developed to characterize the nonlinear response of fine particles (PM₂̣₅) to large and simultaneous changes of multiple precursor emissions from multiple regions and sectors. The ERSM technique is developed based on the conventional response surface modeling (RSM) technique; it first quantifies the relationship between PM₂̣₅ concentrations and the emissions of gaseous precursors from each single region using the conventional RSM technique, and then assesses the effects of inter-regional transport of PM₂̣₅ and its gaseous precursors on PM₂̣₅ concentrations in the target region. We apply this novel technique with a widely used regional chemical transport model (CTM) over the Yangtze River delta (YRD) region of China, and evaluate the response of PM₂̣₅ and its inorganic components to the emissions of 36 pollutant–region–sector combinations. The predicted PM₂̣₅ concentrations agree well with independent CTM simulations; the correlation coefficients are larger than 0.98 and 0.99, and the mean normalized errors (MNEs) are less than 1 and 2% for January and August, respectively. It is also demonstrated that the ERSM technique could reproduce fairly well the response of PM₂̣₅ to continuous changes of precursor emission levels between zero and 150%. Employing this new technique, we identify the major sources contributing to PM₂̣₅ and its inorganic components in the YRD region. The nonlinearity in the response of PM₂̣₅ to emission changes is characterized and the underlying chemical processes are illustrated.

  9. Long Term Field Development of a Surfactant Modified Zeolite/Vapor Phase Bioreactor System for Treatment of Produced Waters for Power Generation

    SciTech Connect (OSTI)

    Lynn Katz; Kerry Kinney; Robert Bowman; Enid Sullivan; Soondong Kwon; Elaine Darby; Li-Jung Chen; Craig Altare

    2007-12-31

    The main goal of this research was to investigate the feasibility of using a combined physicochemical/biological treatment system to remove the organic constituents present in saline produced water. In order to meet this objective, a physical/chemical adsorption process was developed and two separate biological treatment techniques were investigated. Two previous research projects focused on the development of the surfactant modified zeolite adsorption process (DE-AC26-99BC15221) and development of a vapor phase biofilter (VPB) to treat the regeneration off-gas from the surfactant modified zeolite (SMZ) adsorption system (DE-FC26-02NT15461). In this research, the SMZ/VPB was modified to more effectively attenuate peak loads and to maintain stable biodegradation of the BTEX constituents from the produced water. Specifically, a load equalization system was incorporated into the regeneration flow stream. In addition, a membrane bioreactor (MBR) system was tested for its ability to simultaneously remove the aromatic hydrocarbon and carboxylate components from produced water. The specific objectives related to these efforts included the following: (1) Optimize the performance VPBs treating the transient loading expected during SMZ regeneration: (a) Evaluate the impact of biofilter operating parameters on process performance under stable operating conditions. (b) Investigate how transient loads affect biofilter performance, and identify an appropriate technology to improve biological treatment performance during the transient regeneration period of an SMZ adsorption system. (c) Examine the merits of a load equalization technology to attenuate peak VOC loads prior to a VPB system. (d) Evaluate the capability of an SMZ/VPB to remove BTEX from produced water in a field trial. (2) Investigate the feasibility of MBR treatment of produced water: (a) Evaluate the biodegradation of carboxylates and BTEX constituents from synthetic produced water in a laboratory-scale MBR. (b) Evaluate the capability of an SMZ/MBR system to remove carboxylates and BTEX from produced water in a field trial. Laboratory experiments were conducted to provide a better understanding of each component of the SMZ/VPB and SMZ/MBR process. Laboratory VPB studies were designed to address the issue of influent variability and periodic operation (see DE-FC26-02NT15461). These experiments examined multiple influent loading cycles and variable concentration loadings that simulate air sparging as the regeneration option for the SMZ system. Two pilot studies were conducted at a produced water processing facility near Farmington, New Mexico. The first field test evaluated SMZ adsorption, SMZ regeneration, VPB buffering, and VPB performance, and the second test focused on MBR and SMZ/MBR operation. The design of the field studies were based on the results from the previous field tests and laboratory studies. Both of the biological treatment systems were capable of removing the BTEX constituents in the laboratory and in the field over a range of operating conditions. For the VPB, separation of the BTEX constituents from the saline aqueous phase yielded high removal efficiencies. However, carboxylates remained in the aqueous phase and were not removed in the combined VPB/SMZ system. In contrast, the MBR was capable of directly treating the saline produced water and simultaneously removing the BTEX and carboxylate constituents. The major limitation of the MBR system is the potential for membrane fouling, particularly when the system is treating produced water under field conditions. The combined process was able to effectively pretreat water for reverse osmosis treatment and subsequent downstream reuse options including utilization in power generation facilities. The specific conclusions that can be drawn from this study are summarized.

  10. Development of high-bandgap AlGaInP solar cells grown by organometallic vapor-phase epitaxy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Perl, Emmett E.; Simon, John; Geisz, John F.; Olavarria, Waldo; Young, Michelle; Duda, Anna; Friedman, Daniel J.; Steiner, Myles A.

    2016-03-29

    AlGaInP solar cells with bandgaps between 1.9 and 2.2 eV are investigated for use in next-generation multijunction photovoltaic devices. This quaternary alloy is of great importance to the development of III-V solar cells with five or more junctions and for cells optimized for operation at elevated temperatures because of the high bandgaps required in these designs. In this work, we explore the conditions for the organometallic vapor-phase epitaxy growth of AlGaInP and study their effects on cell performance. Initial efforts focused on developing ~2.0-eV AlGaInP solar cells with a nominal aluminum composition of 12%. Under the direct spectrum at 1000more » W/m2 (AM1.5D), the best of these samples had an open-circuit voltage of 1.59 V, a bandgap-voltage offset of 440 mV, a fill factor of 88.0%, and an efficiency of 14.8%. We then varied the aluminum composition of the alloy from 0% to 24% and were able to tune the bandgap of the AlGaInP layers from ~1.9 to ~2.2 eV. Furthermore, while the samples with a higher aluminum composition exhibited a reduced quantum efficiency and increased bandgap-voltage offset, the bandgap-voltage offset remained at 500 mV or less, up to a bandgap of ~2.1 eV.« less

  11. Information basis for developing comprehensive waste management system-US-Japan joint nuclear energy action plan waste management working group phase I report.

    SciTech Connect (OSTI)

    Nutt, M.; Nuclear Engineering Division

    2010-05-25

    The activity of Phase I of the Waste Management Working Group under the United States - Japan Joint Nuclear Energy Action Plan started in 2007. The US-Japan JNEAP is a bilateral collaborative framework to support the global implementation of safe, secure, and sustainable, nuclear fuel cycles (referred to in this document as fuel cycles). The Waste Management Working Group was established by strong interest of both parties, which arise from the recognition that development and optimization of waste management and disposal system(s) are central issues of the present and future nuclear fuel cycles. This report summarizes the activity of the Waste Management Working Group that focused on consolidation of the existing technical basis between the U.S. and Japan and the joint development of a plan for future collaborative activities. Firstly, the political/regulatory frameworks related to nuclear fuel cycles in both countries were reviewed. The various advanced fuel cycle scenarios that have been considered in both countries were then surveyed and summarized. The working group established the working reference scenario for the future cooperative activity that corresponds to a fuel cycle scenario being considered both in Japan and the U.S. This working scenario involves transitioning from a once-through fuel cycle utilizing light water reactors to a one-pass uranium-plutonium fuel recycle in light water reactors to a combination of light water reactors and fast reactors with plutonium, uranium, and minor actinide recycle, ultimately concluding with multiple recycle passes primarily using fast reactors. Considering the scenario, current and future expected waste streams, treatment and inventory were discussed, and the relevant information was summarized. Second, the waste management/disposal system optimization was discussed. Repository system concepts were reviewed, repository design concepts for the various classifications of nuclear waste were summarized, and the factors to consider in repository design and optimization were then discussed. Japan is considering various alternatives and options for the geologic disposal facility and the framework for future analysis of repository concepts was discussed. Regarding the advanced waste and storage form development, waste form technologies developed in both countries were surveyed and compared. Potential collaboration areas and activities were next identified. Disposal system optimization processes and techniques were reviewed, and factors to consider in future repository design optimization activities were also discussed. Then the potential collaboration areas and activities related to the optimization problem were extracted.

  12. Development of a Raman spectroscopy technique to detect alternate transportation fuel hydrocarbon intermediates in complex combustion environments.

    SciTech Connect (OSTI)

    Ekoto, Isaac W.; Barlow, Robert S.

    2012-12-01

    Spontaneous Raman spectra for important hydrocarbon fuels and combustion intermediates were recorded over a range of low-to-moderate flame temperatures using the multiscalar measurement facility located at Sandia/CA. Recorded spectra were extrapolated to higher flame temperatures and then converted into empirical spectral libraries that can readily be incorporated into existing post-processing analysis models that account for crosstalk from overlapping hydrocarbon channel signal. Performance testing of the developed libraries and reduction methods was conducted through an examination of results from well-characterized laminar reference flames, and was found to provide good agreement. The diagnostic development allows for temporally and spatially resolved flame measurements of speciated hydrocarbon concentrations whose parent is more chemically complex than methane. Such data are needed to validate increasingly complex flame simulations.

  13. SU-C-17A-07: The Development of An MR Accelerator-Enabled Planning-To-Delivery Technique for Stereotactic Palliative Radiotherapy Treatment of Spinal Metastases

    SciTech Connect (OSTI)

    Hoogcarspel, S J; Kontaxis, C; Velden, J M van der; Bol, G H; Vulpen, M van; Lagendijk, J J W; Raaymakers, B W

    2014-06-01

    Purpose: To develop an MR accelerator-enabled online planning-todelivery technique for stereotactic palliative radiotherapy treatment of spinal metastases. The technical challenges include; automated stereotactic treatment planning, online MR-based dose calculation and MR guidance during treatment. Methods: Using the CT data of 20 patients previously treated at our institution, a class solution for automated treatment planning for spinal bone metastases was created. For accurate dose simulation right before treatment, we fused geometrically correct online MR data with pretreatment CT data of the target volume (TV). For target tracking during treatment, a dynamic T2-weighted TSE MR sequence was developed. An in house developed GPU based IMRT optimization and dose calculation algorithm was used for fast treatment planning and simulation. An automatically generated treatment plan developed with this treatment planning system was irradiated on a clinical 6 MV linear accelerator and evaluated using a Delta4 dosimeter. Results: The automated treatment planning method yielded clinically viable plans for all patients. The MR-CT fusion based dose calculation accuracy was within 2% as compared to calculations performed with original CT data. The dynamic T2-weighted TSE MR Sequence was able to provide an update of the anatomical location of the TV every 10 seconds. Dose calculation and optimization of the automatically generated treatment plans using only one GPU took on average 8 minutes. The Delta4 measurement of the irradiated plan agreed with the dose calculation with a 3%/3mm gamma pass rate of 86.4%. Conclusions: The development of an MR accelerator-enabled planning-todelivery technique for stereotactic palliative radiotherapy treatment of spinal metastases was presented. Future work will involve developing an intrafraction motion adaptation strategy, MR-only dose calculation, radiotherapy quality-assurance in a magnetic field, and streamlining the entire treatment process on an MR accelerator.

  14. Cloud and aerosol characterization for the ARM central facility: Multiple remote sensor techniques development. Technical progress report

    SciTech Connect (OSTI)

    Sassen, K.

    1992-04-30

    This research project designed to investigate how atmospheric remote sensing technology can best be applied to the characterization of the cloudy atmosphere. Our research program addresses basic atmospheric remote sensing questions, but at the same time is clearly directed toward providing information crucial to the ARM (Atmospheric Remote Sensing) program and for application to the Clouds and Radiation Testbed (CART). The instrumentation that is being brought into play includes a variety of art-of-the-art sensors. Available at NOAA WPL are polarization Doppler K{sub a}-band (0.86 mm) and X-band (3.2 cm) radars, a C0{sub 2}(10.6 {mu}m) Doppler lidar with sequential ` polarization measurement capabilities, a three-channel (20.6, 31.65 and 90 GHz) microwave radiometer, and variety of visible and infrared radiometers. Instrumentation at the University of Utah Facility for Atmospheric Remote Sensing (FARS) includes a polarization ruby (0.643 {mu}m) lidar, a narrow-beam (0.14{degree}) mid-infrared (9.5--11.5 {mu}m) radiometer coaligned with the lidar, several other radiometers in the visible and infrared spectral regions, and an advanced two-color (1.06 and 0.532 {mu}m), four-channel Polarization Diversity Lidar (PDL) and all-sky video imaging system that have only recently been developed under the ARM IDP.

  15. DEVELOPMENT OF IMPROVED TECHNIQUES FOR SATELLITE REMOTE SENSING OF CLOUDS AND RADIATION USING ARM DATA, FINAL REPORT

    SciTech Connect (OSTI)

    Minnis, Patrick

    2013-06-28

    During the period, March 1997 – February 2006, the Principal Investigator and his research team co-authored 47 peer-reviewed papers and presented, at least, 138 papers at conferences, meetings, and workshops that were supported either in whole or in part by this agreement. We developed a state-of-the-art satellite cloud processing system that generates cloud properties over the Atmospheric Radiation (ARM) surface sites and surrounding domains in near-real time and outputs the results on the world wide web in image and digital formats. When the products are quality controlled, they are sent to the ARM archive for further dissemination. These products and raw satellite images can be accessed at http://cloudsgate2.larc.nasa.gov/cgi-bin/site/showdoc?docid=4&cmd=field-experiment-homepage&exp=ARM and are used by many in the ARM science community. The algorithms used in this system to generate cloud properties were validated and improved by the research conducted under this agreement. The team supported, at least, 11 ARM-related or supported field experiments by providing near-real time satellite imagery, cloud products, model results, and interactive analyses for mission planning, execution, and post-experiment scientific analyses. Comparisons of cloud properties derived from satellite, aircraft, and surface measurements were used to evaluate uncertainties in the cloud properties. Multiple-angle satellite retrievals were used to determine the influence of cloud structural and microphysical properties on the exiting radiation field.

  16. COLLABORATIVE RESEARCH:USING ARM OBSERVATIONS & ADVANCED STATISTICAL TECHNIQUES TO EVALUATE CAM3 CLOUDS FOR DEVELOPMENT OF STOCHASTIC CLOUD-RADIATION

    SciTech Connect (OSTI)

    Somerville, Richard

    2013-08-22

    The long-range goal of several past and current projects in our DOE-supported research has been the development of new and improved parameterizations of cloud-radiation effects and related processes, using ARM data, and the implementation and testing of these parameterizations in global models. The main objective of the present project being reported on here has been to develop and apply advanced statistical techniques, including Bayesian posterior estimates, to diagnose and evaluate features of both observed and simulated clouds. The research carried out under this project has been novel in two important ways. The first is that it is a key step in the development of practical stochastic cloud-radiation parameterizations, a new category of parameterizations that offers great promise for overcoming many shortcomings of conventional schemes. The second is that this work has brought powerful new tools to bear on the problem, because it has been a collaboration between a meteorologist with long experience in ARM research (Somerville) and a mathematician who is an expert on a class of advanced statistical techniques that are well-suited for diagnosing model cloud simulations using ARM observations (Shen).

  17. Additional development of remote sensing techniques for observing morphology, microphysics, and radiative properties of clouds and tests using a new, robust CO{sub 2} lidar. Annual progress report, August 15, 1994--August 30, 1995

    SciTech Connect (OSTI)

    Eberhard, W.L.; Intrieri, J.M.; Brewer, W.A.

    1996-04-01

    The bulk morphology and microphysical characteristics of a cloud are both important in determining the cloud`s effect on radiative transfer. A better understanding of all these properties, and the links among them, are needed for developing adequate parameterizations of these components in climate models. The objective of this project is to develop remote sensing techniques for observing key cloud properties, including the linkages. The research has technique development and instrument development prongs.

  18. Development of a coal-fired combustion system for industrial process heating applications. Phase 3 final report, November 1992--December 1994

    SciTech Connect (OSTI)

    1995-09-26

    A three phase research and development program has resulted in the development and commercialization of a Cyclone Melting System (CMS{trademark}), capable of being fueled by pulverized coal, natural gas, and other solid, gaseous, or liquid fuels, for the vitrification of industrial wastes. The Phase 3 research effort focused on the development of a process heater system to be used for producing value added glass products from the vitrification of boiler/incinerator ashes and industrial wastes. The primary objective of the Phase 3 project was to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential for successful commercialization. The demonstration test consisted of one test run with a duration of 105 hours, approximately one-half (46 hours) performed with coal as the primary fuel source (70% to 100%), the other half with natural gas. Approximately 50 hours of melting operation were performed vitrifying approximately 50,000 lbs of coal-fired utility boiler flyash/dolomite mixture, producing a fully-reacted vitrified product.

  19. Development of a pilot-scale kinetic extruder feeder system and test program. Phase II. Verification testing. Final report

    SciTech Connect (OSTI)

    Not Available

    1984-01-12

    This report describes the work done under Phase II, the verification testing of the Kinetic Extruder. The main objective of the test program was to determine failure modes and wear rates. Only minor auxiliary equipment malfunctions were encountered. Wear rates indicate useful life expectancy of from 1 to 5 years for wear-exposed components. Recommendations are made for adapting the equipment for pilot plant and commercial applications. 3 references, 20 figures, 12 tables.

  20. Development of ceramic matrix composites for application in the ceramic technology for advanced heat engines project. Final report, Phase 2

    SciTech Connect (OSTI)

    Yeh, H.; Solidum, E.; Karasek, K.; Stranford, G.; Yuhas, D.; Schienle, J.; Bradley, S.

    1992-04-01

    The objective of this effort (Phase II of a multi-phase program) was to maximize the toughness of a high-temperature Si{sub 3}N{sub 4} (GN-10) by the near-net-shape fabrication technology established previously (Phase I). Acid-etched American Matrix SiC whiskers were selected as the reinforcement. Extensive green forming and densification process optimizations were conducted. The results showed that whisker addition increased the toughness slightly, but decreased the strength of the material. It has been recommended to discontinue the whisker reinforcement approach, and to instead pursue the in-situ grown-whisker reinforcement approach. To address future needs for the composite technology, two supplemental efforts were conducted using monolithic GN-10 Si{sub 3}N{sub 4}. These were nanometer deposition of sintering aids and ultrasonic characterization of drying. Spray drying, polymerization, basic precipitation, and evaporation yielded more uniform sintering aid distributions than conventional ball milling. Spray drying was selected for scale-up study. Improved mechanical properties were demonstrated. The results of the ultrasonic study showed that variations in ultrasonic compressional velocity in slip-cast components are more complex than anticipated. Specifically, it was found that the sonic velocity, as a function of moisture content, was double-valued. This behavior, together with the problems associated with maintaining uniform couplant, precludes the use of ultrasonics as a routine means of monitoring moisture content.

  1. SU-E-T-317: The Development of a DIBH Technique for Left Sided Breast Patients Undergoing Radiation Therapy Utilizing Varians RPM System in a Community Hospital

    SciTech Connect (OSTI)

    Hasson, B; Young, M; Workie, D; Geraghty, C

    2014-06-01

    Purpose: To develop and implement a Deep Inhalation Breath Hold program (DIBH) for treatment of patients with Left-sided breast cancer in a community hospital. Methods: All patients with left sided breast cancer underwent a screening free breathing CT. Evaluation of the conventional tangent treatment fields and the heart was conducted. If the heart would not be excluded using tangents, the patient then received DIBH breathe coaching. The patients returned for a 4D CT simulation. The patients breathing cycle was monitored using the Varian Real-Time position ManagementTM (RPM) system to assess duration of DIBH, amplitude, phase and recovery time to normal breathing. Then a DIBH CT was obtained at the desired amplitude. Duplicate plans were developed for both free breathing and DIBH on the Eclipse planning system and comparison DVH's were created. The plan that provided the prescribed treatment coverage and the least doses to the OAR (heart, Lt. Lung) was determined. Those patients selected to receive treatment with DIBH were set up for treatment, and breathing was monitored using the RPM system. Practice trials were used to confirm that the amplitude, phase and recovery were consistent with findings from simulation. Results: 10 patients have been treated using the DIBH procedure in our clinic. The DIBH patients had an average increase of 80% lung volume on DIBH, decreased lung volume receiving 50% of the dose, and decreases in the V20 dose. Significant reduction in the maximum and mean dose to the heart, as well as the dose to 1CC of the volume for the DIBH plans. Conclusion: Using the RPM system already available in the clinic, staff training, and patient coaching a simple DIBH program was setup. The use of DIBH has shown promise in reducing doses to the critical organs while maintaining PTV coverage for left sided breast treatments.

  2. Site Development, Operations, and Closure Plan Topical Report 5 An Assessment of Geologic Carbon Sequestration Options in the Illinois Basin. Phase III

    SciTech Connect (OSTI)

    Finley, Robert; Payne, William; Kirksey, Jim

    2015-06-01

    The Midwest Geological Sequestration Consortium (MGSC) has partnered with Archer Daniels Midland Company (ADM) and Schlumberger Carbon Services to conduct a large-volume, saline reservoir storage project at ADM’s agricultural products processing complex in Decatur, Illinois. The Development Phase project, named the Illinois Basin Decatur Project (IBDP) involves the injection of 1 million tonnes of carbon dioxide (CO2) into a deep saline formation of the Illinois Basin over a three-year period. This report focuses on objectives, execution, and lessons learned/unanticipated results from the site development (relating specifically to surface equipment), operations, and the site closure plan.

  3. Developing 226Ra and 227Ac age-dating techniques for nuclear forensics to gain insight from concordant and non-concordant radiochronometers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kayzar, Theresa M.; Williams, Ross W.

    2015-09-26

    The model age or ‘date of purification’ of a nuclear material is an important nuclear forensic signature. In this study, chemical separation and MC-ICP-MS measurement techniques were developed for 226 Ra and 227Ac: grand-daughter nuclides in the 238U and 235U decay chains respectively. The 230Th-234U, 226Ra-238U, 231Pa-235U, and 227Ac-235U radiochronometers were used to calculate model ages for CRM-U100 standard reference material and two highly-enriched pieces of uranium metal from the International Technical Working Group Round Robin 3 Exercise. In conclusion, the results demonstrate the accuracy of the 226Ra-238U and 227Ac-235U chronometers and provide information about nuclide migration during uranium processing.

  4. Development of whole-building energy design targets for commercial buildings: Phase 1, Planning: Volume 1, Final report

    SciTech Connect (OSTI)

    Crawley, D.B.; Briggs, R.S.; Jones, J.W.; Seaton, W.W.; Kaufman, J.E.; Deringer, J.J.; Kennett, E.W.

    1987-04-01

    This report describes background research for preparation of a plan for development of whole-building energy targets for new commercial buildings. The lead laboratory for this program is the Pacific Northwest Laboratory. A wide variety of expertise and resources from industry, academia, other government entities, and other DOE laboratories are used in planning, reviewing and conducting research activities. Cooperative and complementary research development, and technology transfer activities with other interested organizations are actively pursued.

  5. Development of improved processing and evaluation methods for high reliability structural ceramics for advanced heat engine applications Phase II. Final report

    SciTech Connect (OSTI)

    Pujari, V.J.; Tracey, D.M.; Foley, M.R.

    1996-02-01

    The research program had as goals the development and demonstration of significant improvements in processing methods, process controls, and nondestructive evaluation (NDE) which can be commercially implemented to produce high reliability silicon nitride components for advanced heat engine applications at temperatures to 1370{degrees}C. In Phase I of the program a process was developed that resulted in a silicon nitride - 4 w% yttria HIP`ed material (NCX 5102) that displayed unprecedented strength and reliability. An average tensile strength of 1 GPa and a strength distribution following a 3-parameter Weibull distribution were demonstrated by testing several hundred buttonhead tensile specimens. The Phase II program focused on the development of methodology for colloidal consolidation producing green microstructure which minimizes downstream process problems such as drying, shrinkage, cracking, and part distortion during densification. Furthermore, the program focused on the extension of the process to gas pressure sinterable (GPS) compositions. Excellent results were obtained for the HIP composition processed for minimal density gradients, both with respect to room-temperature strength and high-temperature creep resistance. Complex component fabricability of this material was demonstrated by producing engine-vane prototypes. Strength data for the GPS material (NCX-5400) suggest that it ranks very high relative to other silicon nitride materials in terms of tensile/flexure strength ratio, a measure of volume quality. This high quality was derived from the closed-loop colloidal process employed in the program.

  6. Development of a rotary-engine-driven heat pump. Phase 1. Final report, November 1984-September 1989

    SciTech Connect (OSTI)

    Hardee, T.L.

    1989-10-01

    The purpose of the project was to develop a commercially viable rotary engine driven natural gas 10 ton heat pump. A Norton charge cooled rotary engine was selected for development. Improvements were incorporated into the Norton rotary engine to improve the efficiency and life. The engine thermal efficiency goal of 27% was demonstrated. High internal operating temperatures and lubrication deficiencies limited the life of the engine. Extensive design modifications and development testing were performed to reduce the operating temperatures and improve lubrication. Substantial reductions in operating temperatures and improvements in lubrication were achieved, but the engine was not capable of obtaining the 40,000 hour life goal. A design study was performed to evaluate the potential of an oil cooled rotary with respect to performance, life, and cost. The oil cooled rotary engine has the potential to meet the requirements for an engine driven heat pump. An integral engine and HVAC control system was also developed and three heat pump systems were built and tested during the project. The first was a breadboard system for demonstrating proof-of-concept. The second and third units were 7.5 ton heat pump prototypes.

  7. Development of a methodology for defining whole-building energy design targets for commercial buildings: Phase 2, Development Concept Stage Report

    SciTech Connect (OSTI)

    McKay, H.N. ); Deringer, J.J. ); Jones, J.W. ); Hall, J.D. )

    1990-09-01

    This report documents eight tasks performed as part of the Whole-Building Energy Design Targets project, in which detailed conceptual approaches were produced for each element of the proposed Targets model. The eight task reports together describe the important modules proposed for inclusion in the Targets model: input module, energy module, characteristic development moduel, building cost module, analysis control module, energy cost module, search routines module, and economic analysis module. 16 refs., 16 figs., 5 tabs.

  8. LUNASKA experiments using the Australia Telescope Compact Array to search for ultrahigh energy neutrinos and develop technology for the lunar Cherenkov technique

    SciTech Connect (OSTI)

    James, C. W.; Protheroe, R. J.; Ekers, R. D.; Phillips, C. J.; Roberts, P.; Alvarez-Muniz, J.; Bray, J. D.; McFadden, R. A.

    2010-02-15

    We describe the design, performance, sensitivity and results of our recent experiments using the Australia Telescope Compact Array (ATCA) for lunar Cherenkov observations with a very wide (600 MHz) bandwidth and nanosecond timing, including a limit on an isotropic neutrino flux. We also make a first estimate of the effects of small-scale surface roughness on the effective experimental aperture, finding that contrary to expectations, such roughness will act to increase the detectability of near-surface events over the neutrino energy-range at which our experiment is most sensitive (though distortions to the time-domain pulse profile may make identification more difficult). The aim of our 'Lunar UHE Neutrino Astrophysics using the Square Kilometre Array' (LUNASKA) project is to develop the lunar Cherenkov technique of using terrestrial radio telescope arrays for ultrahigh energy (UHE) cosmic ray (CR) and neutrino detection, and, in particular, to prepare for using the Square Kilometre Array (SKA) and its path-finders such as the Australian SKA Pathfinder (ASKAP) and the Low Frequency Array (LOFAR) for lunar Cherenkov experiments.

  9. CrowdPhase: crowdsourcing the phase problem

    SciTech Connect (OSTI)

    Jorda, Julien; Sawaya, Michael R. [Institute for Genomics and Proteomics, 611 Charles Young Drive East, Los Angeles, CA 90095 (United States); Yeates, Todd O., E-mail: yeates@mbi.ucla.edu [Institute for Genomics and Proteomics, 611 Charles Young Drive East, Los Angeles, CA 90095 (United States); Molecular Biology Institute, 611 Charles Young Drive East, Los Angeles, CA 90095 (United States); University of California, 611 Charles Young Drive East, Los Angeles, CA 90095 (United States)

    2014-06-01

    The idea of attacking the phase problem by crowdsourcing is introduced. Using an interactive, multi-player, web-based system, participants work simultaneously to select phase sets that correspond to better electron-density maps in order to solve low-resolution phasing problems. The human mind innately excels at some complex tasks that are difficult to solve using computers alone. For complex problems amenable to parallelization, strategies can be developed to exploit human intelligence in a collective form: such approaches are sometimes referred to as crowdsourcing. Here, a first attempt at a crowdsourced approach for low-resolution ab initio phasing in macromolecular crystallography is proposed. A collaborative online game named CrowdPhase was designed, which relies on a human-powered genetic algorithm, where players control the selection mechanism during the evolutionary process. The algorithm starts from a population of individuals, each with a random genetic makeup, in this case a map prepared from a random set of phases, and tries to cause the population to evolve towards individuals with better phases based on Darwinian survival of the fittest. Players apply their pattern-recognition capabilities to evaluate the electron-density maps generated from these sets of phases and to select the fittest individuals. A user-friendly interface, a training stage and a competitive scoring system foster a network of well trained players who can guide the genetic algorithm towards better solutions from generation to generation via gameplay. CrowdPhase was applied to two synthetic low-resolution phasing puzzles and it was shown that players could successfully obtain phase sets in the 30 phase error range and corresponding molecular envelopes showing agreement with the low-resolution models. The successful preliminary studies suggest that with further development the crowdsourcing approach could fill a gap in current crystallographic methods by making it possible to extract meaningful information in cases where limited resolution might otherwise prevent initial phasing.

  10. Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OF IMAGING We require: (1) a high quality ion beam, (2) computer vision and image processing techniques for isolating and re- constructing the beam, and (3) wavelengths suitable...

  11. Stored CO2 and Methane Leakage Risk Assessment and Monitoring Tool Development: CO2 Capture Project Phase 2 (CCP2)

    SciTech Connect (OSTI)

    Dan Kieki

    2008-09-30

    The primary project goal is to develop and test tools for optimization of ECBM recovery and geologic storage of CO{sub 2} in coalbeds, in addition to tools for monitoring CO{sub 2} sequestration in coalbeds to support risk assessment. Three critical topics identified are (1) the integrity of coal bed methane geologic and engineered systems, (2) the optimization of the coal bed storage process, and (3) reliable monitoring and verification systems appropriate to the special conditions of CO{sub 2} storage and flow in coals.

  12. Dynamic density functional theory with hydrodynamic interactions: Theoretical development and application in the study of phase separation in gas-liquid systems

    SciTech Connect (OSTI)

    Kikkinides, E. S.; Monson, P. A.

    2015-03-07

    Building on recent developments in dynamic density functional theory, we have developed a version of the theory that includes hydrodynamic interactions. This is achieved by combining the continuity and momentum equations eliminating velocity fields, so the resulting model equation contains only terms related to the fluid density and its time and spatial derivatives. The new model satisfies simultaneously continuity and momentum equations under the assumptions of constant dynamic or kinematic viscosity and small velocities and/or density gradients. We present applications of the theory to spinodal decomposition of subcritical temperatures for one-dimensional and three-dimensional density perturbations for both a van der Waals fluid and for a lattice gas model in mean field theory. In the latter case, the theory provides a hydrodynamic extension to the recently studied dynamic mean field theory. We find that the theory correctly describes the transition from diffusive phase separation at short times to hydrodynamic behaviour at long times.

  13. Nozzle development

    SciTech Connect (OSTI)

    Dodge, F.T.; Dodge, L.G.; Johnson, J.E.

    1989-06-01

    The objective of this program has been the development of experimental techniques and data processing procedures to allow for the characterization of multi-phase fuel nozzles using laboratory tests. Test results were to be used to produce a single value coefficient-of-performance that would predict the performance of the fuel nozzles independent of system application. Several different types of fuel nozzles capable of handling multi-phase fuels have been characterized for: (a) fuel flow rate versus delivery pressure, (b) fuel-air ratio throughout the fuel spray or plume and the effective cone angle of the injector, and (c) fuel drop- or particle-size distribution as a function of fluid properties. Fuel nozzles which have been characterized on both single-phase liquids and multi-phase liquid-solid slurries include a variable-film-thickness nozzle, a commercial coal-water slurry (CWS) nozzle, and four diesel injectors of different geometries (tested on single-phase fluids only). Multi-phase mixtures includes CWS with various coal loadings, surfactant concentrations, and stabilizer concentrations, as well as glass-bead water slurries with stabilizing additives. Single-phase fluids included glycerol-water mixtures to vary the viscosity over a range of 1 to 1500 cP, and alcohol-water mixtures to vary the surface tension from about 22 to 73 dyne/cm. In addition, tests were performed to characterize straight-tube gas-solid nozzles using two differences size distributions of glass beads in air. Standardized procedures have been developed for processing measurements of spray drop-size characteristics and the overall cross-section average drop or particle size. 43 refs., 60 figs., 7 tabs.

  14. Development of remedial process options: Phase II, Feasibility study: Installation Restoration Program, Naval Air Station Fallon, Fallon, Nevada

    SciTech Connect (OSTI)

    Cronk, T.A.; Smuin, D.R.; Schlosser, R.M.

    1991-11-01

    This technical memorandum develops process options which are appropriate for environmental restoration activities at Naval Air Station Fallon (NAS Fallon), Nevada. Introduction of contaminants to the environment has resulted from deliberate disposal activities (both through dumping and landfilling) and accidental spills and leaks associated with normal activities at NAS Fallon over its lifetime of operation. Environmental sampling results indicate that the vast majority of contaminants of concern are petroleum hydrocarbon related. These contaminants include JP-4, JP-5, leaded and unleaded gasoline, waste oils and lubricants, hydraulic fluids, and numerous solvents and cleaners. The principal exposure pathways of concern associated with NAS Fallon contaminants appear to be the surface flows and shallow drainage systems to which the base contributes. Available data indicate NAS Fallon IR Program sites are not contributing excessive contamination to surface flows emanating from the base. Contaminants appear to be contained in a relatively immobile state in the shallow subsurface with little or no contaminant migration off site.

  15. Modeling of fluidized-bed combustion of coal: Phase II, final reports. Volume 1. Model evolution and development

    SciTech Connect (OSTI)

    Louis, J.F.; Tung, S.E.

    1980-10-01

    The Energy Laboratory of the Massachusetts Institute of Technology (M.I.T.), under Department of Energy (DOE) sponsorship, has been engaged in the development of a comprehensive mechanistic model of Fluidized Bed Combustors (FBC). The primary aims of this modeling effort are the generation and to the extent possible, validation of an analytical framework for the design and scale-up of fluidized bed combustors. In parallel with this modeling effort, M.I.T. also embarked upon the development of an FBC-Data Base Management System (FBC-DBMS) aimed at facilitating the coordination, interpretation and utilization of the experimental data that are or will become available from diverse sources, as well as in the identification of areas of large uncertainty or having a paucity of experimental results. The synergistic operation of the FBC-Model and FBC-Data Base promises to offer a powerful tool for the design and optimization of FBC's and represents the ultimate goal of the M.I.T. effort. The modeling effort was initially focused upon evaluation and application of state-of-the-art models. The initial system model was divided into five basic components: fluid dynamics, combustion, sulfur capture, heat transfer and emissions. Due to the technical complexity of modeling FBC operation and the initial primitive nature of models for these components, it was deemed necessary to be able to incorporate evolutionary improvements in understanding and correlating FBC phenomena: the M.I.T. system model is, therefore, modular in nature, i.e., each sub-model can be replaced by an updated or equivalent sub-model without necessitating reprogramming of the entire system model.

  16. Electrochemical Techniques

    SciTech Connect (OSTI)

    Chen, Gang; Lin, Yuehe

    2008-07-20

    Sensitive and selective detection techniques are of crucial importance for capillary electrophoresis (CE), microfluidic chips, and other microfluidic systems. Electrochemical detectors have attracted considerable interest for microfluidic systems with features that include high sensitivity, inherent miniaturization of both the detection and control instrumentation, low cost and power demands, and high compatibility with microfabrication technology. The commonly used electrochemical detectors can be classified into three general modes: conductimetry, potentiometry, and amperometry.

  17. Engineering scale development of the vapor-liquid-solid (VLS) process for the production of silicon carbide fibrils. Phase 2

    SciTech Connect (OSTI)

    Ohnsorg, R.W.; Hollar, W.E. Jr.; Lau, S.K.; Ko, F.K.; Schatz, K.

    1995-04-01

    As reinforcements for composites, VLS SiC fibrils have attractive mechanical properties including high-strength, high modulus, and excellent creep resistance. To make use of their excellent mechanical properties in a composite, a significant volume fraction (>10%) of aligned, long fibrils (>2 mm) needs to be consolidated in the ceramic matrix. The fibrils must be processed into an assembly that will allow for composite fabrication while maintaining fibril alignment and length. With Advanced Product Development (APD) as the yam fabrication subcontractor, Carborundum investigated several approaches to achieve this goaL including traditional yam-forming processes such as carding and air-vortex spinning and nontraditional processes such as tape forming and wet casting. Carborundum additionally performed an economic analysis for producing 500 and 10,000 pounds of SiC fibrils annually using both conservative and more aggressive processing parameters. With the aggressive approach, the projected costs for SiC fibril production for 500 and 10,000 pounds per year are $1,340/pound and $340/pound, respectively.

  18. EDS coal liquefaction process development. Phase V. EDS commercial plant study design update. Illinois coal. Volume 1. Main report

    SciTech Connect (OSTI)

    Epperly, W. R.

    1981-03-01

    The objectives of the Study Design Update (SDU) were to identify the technical issues facing a potential commercial-size EDS plant design; to provide a reliable basis for estimating the cost of EDS products; and to furnish research guidance to the EDS Project. The SDU consists of two distinct studies in which different processing schemes are used to produce the hydrogen and fuel gas required by the plant. These studies are referred to as the Base Case and the Market Flexibility Sensitivity Case. In the Base Case, hydrogen is generated by steam reforming of the light hydrocarbon gases produced in the plant. Fuel gas is generated by feeding the bottoms stream from the liquefaction section vacuum pipestill to a FLEXICOKING unit. In the FLEXICOKING unit reactor, the bottoms stream is converted to coke; additional liquid product is also recovered. The coke is converted to low-Btu fuel gas in the FLEXICOKING unit gasifier. In the Market Flexibility Sensitivity (MFS) Case, the bottoms stream from the vacuum pipestill is split, and about half is sent to the FLEXICOKING unit for recovery of additional liquid product and production of fuel gas. The remainder of the bottoms stream is converted to hydrogen in a Partial Oxidation Unit. Hence the MFS Case does not consume light hydrocarbon gases produced and they are available for sale. The study of these two cases has demonstrated the importance of bottoms process selection to the economics and thermal efficiency of an EDS plant. Volume 1 - Main Report has been developed to be a stand-alone document. Both the Base Case and Market Flexibility Sensitivity (MFS) Case are covered. This volume includes an overview and detailed case summaries. It also covers economics, product recovery factors, material and energy balances, cost estimates and enviromental considerations.

  19. Studies on phase formation, microstructure development and elastic properties of reduced NiO-8YSZ anode supported bi-layer half-cell structures of solid oxide fuel cells

    SciTech Connect (OSTI)

    Nithyanantham, T.; Biswas, S.; Thangavel, S.N.; Bandopadhyay, S.

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Detailed study on the development of microstructure and phase in NiO-8YSZ anodes. Black-Right-Pointing-Pointer Detailed study on elastic properties at high temperatures in air/reducing atmosphere. Black-Right-Pointing-Pointer Effects of initial porosity, composition and other issues are evaluated in detail. -- Abstract: Half-cell structures of solid oxide fuel cells (SOFCs) with a thin and dense electrolyte layer of 8YSZ supported by a thick and porous NiO-8YSZ anode precursor structure were reduced in a gas mixture of 5% H{sub 2}-95% Ar at 800 Degree-Sign C for selected time periods in order to fabricate cermets with desired microstructure and composition, and to study their effects on the elastic properties at ambient and reactive atmospheres. It appears that 2 h of exposure to the reducing conditions is enough to reduce {approx}80% of NiO with an enhanced porosity value of 35%. The Ni-8YSZ cermet phase formation in the anode was analyzed with X-ray diffraction (XRD) in correlation with its microstructure. The elastic properties were determined after the reduction, at room and elevated temperatures using the impulse excitation technique. At room temperature the decrease in the Young's modulus was about 44% (after 8 h of reduction) and can be attributed mainly to the changes in the microstructure, particularly the increase in porosity from {approx}12% to 37%. Young's moduli of the as-received precursor and reduced anodes were evaluated as a function of temperature in air and reducing atmosphere. The results were explained in correlation to the initial porosity, composition and oxidation of Ni at the elevated temperatures.

  20. CATALYST ACTIVITY MAINTENANCE FOR THE LIQUID PHASE SYNTHESIS GAS-TO-DIMETHYL ETHER PROCESS PART II: DEVELOPMENT OF ALUMINUM PHOSPHATE AS THE DEHYDRATION CATALYST FOR THE SINGLE-STEP LIQUID PHASE SYNGAS-TO-DME PROCESS

    SciTech Connect (OSTI)

    Xiang-Dong Peng

    2002-05-01

    At the heart of the single-step liquid phase syngas-to-DME process (LPDME{trademark}) is a catalyst system that can be active as well as stable. In the Alternative Fuels I program, a dual-catalyst system containing a Cu-based commercial methanol synthesis catalyst (BASF S3-86) and a commercial dehydration material ({gamma}-alumina) was demonstrated. It provided the productivity and selectivity expected from the LPDME process. However, the catalyst system deactivated too rapidly to warrant a viable commercial process [1]. The mechanistic investigation in the early part of the DOE's Alternative Fuels II program revealed that the accelerated catalyst deactivation under LPDME conditions is due to detrimental interaction between the methanol synthesis catalyst and methanol dehydration catalyst [2,3]. The interaction was attributed to migration of Cu- and/or Zn-containing species from the synthesis catalyst to the dehydration catalyst. Identification of a dehydration catalyst that did not lead to this detrimental interaction while retaining adequate dehydration activity was elusive. Twenty-nine different dehydration materials were tested, but none showed the desired performance [2]. The search came to a turning point when aluminum phosphate was tested. This amorphous material is prepared by precipitating a solution containing Al(NO{sub 3}){sub 3} and H{sub 3}PO{sub 4} with NH{sub 4}OH, followed by washing, drying and calcination. The aluminum phosphate catalyst has adequate dehydration activity and good stability. It can co-exist with the Cu-based methanol synthesis catalyst without negatively affecting the latter catalyst's stability. This report documents the details of the development of this catalyst. These include initial leads, efforts in improving activity and stability, investigation and development of the best preparation parameters and procedures, mechanistic understanding and resulting preparation guidelines, and the accomplishments of this work.

  1. Development of a self-consistent thermodynamic- and transport-property correlation framework for the coal conversion industry. Phase I. Semiannual report, September 1, 1980-February 28, 1981

    SciTech Connect (OSTI)

    Starling, K.E.; Lee, L.L.; Kumar, K.H.

    1981-01-01

    During the first half year of this research program the following elements of research have been performed: (1) the development of an improved pure component data bank, including collection and processing of data which is 70% complete as to substance, (2) calculation of distillable coal fluid thermodynamic properties using a multiparameter corresponding states correlation, (3) application of the most general density-cubic equation of pure fluids and (4) initiation of research to extend the corresponding states correlation framework to polar fluids. Primary conclusions of the first phase of this research program are that the three parameter corresponding states correlation predicts lighter coal fluid properties to a reasonable level of accuracy, and that a cubic equation can predict pure fluid thermodynamic properties on par with non-cubic equations of state.

  2. Phase 3 of a Brushless Doubly-Fed Machine System Development Program : Final Technical Report for Period January 1, 1992-June 30, 1993.

    SciTech Connect (OSTI)

    Alexander, Gerald C.; Spee, Rene; Wallace, Alan K.

    1993-12-31

    Since the inception of the BDFM development program in 1989, the value of BDFM technology has become apparent. The BDFM provides for adjustable speed, synchronous operation while keeping costs associated with the required power conversion equipment lower than in competing technologies. This provides for an advantage in initial as well as maintenance expenses over conventional drive system. Thus, the BDFM enables energy efficient, adjustable speed process control for applications where established drive technology has not been able to deliver satisfactory returns on investment. At the same time, the BDFM challenges conventional drive technologies in established markets by providing for improved performance at lower cost. BDFM converter rating is kept at a minimum, which significantly improves power quality at the utility interface over competing power conversion equipment. In summary, BDFM technology can be expected to provide significant benefits to utilities as well as their customers. This report discusses technical research and development activities related to Phase 3 of the Brushless Doubly-Fed Machine System Development Program, including work made possible by supplemental funds for laboratory improvement and prototype construction. Market research for the BDFM was provided by the College of Business at Oregon State University; market study results will be discussed in a separate report.

  3. Liquid phase methanol LaPorte process development unit: Modification operation, and support studies. Task 3.6/3.7: Alternative catalyst/life run

    SciTech Connect (OSTI)

    Not Available

    1991-01-28

    In April 1987, Air Products started the third and final contract with the US Department of Energy to develop the Liquid Phase Methanol (LPMEOH) process. One of the objectives was to identify alternative commercial catalyst(s) for the process. This objective was strategically important as we want to demonstrate that the LPMEOH process is flexible and not catalyst selection limited. Among three commercially available catalysts evaluated in the lab, the catalyst with a designation of F21/0E75-43 was the most promising candidate. The initial judging criteria included not only the intrinsic catalyst activity but also the ability to be used effectively in a slurry reactor. The catalyst was then advanced for a 40-day life test in a laboratory 300 cc autoclave. The life test result also revealed superior stability when compared with that of a standard catalyst. Consequently, the new catalyst was recommended for demonstration in the Process Development Unit (PDU) at LaPorte, Texas. This report details the methodology of testing and selecting the catalyst.

  4. Development of asphalts and pavements using recycled tire rubber. Phase 1, Technical feasibility. Technical progress report, September 1, 1994--August 31, 1995

    SciTech Connect (OSTI)

    Bullin, J.A.; Davison, R.R.; Glover, C.J.

    1996-06-01

    About 285 million tires are discarded every year; less than 100 million are currently being recycled, with the rest being placed in landfills and other waste sites. A solution to reduce the littering of the environment is to use ground tire rubber in road construction. Currently, about 27 million tons of asphalt are used each year in road construction and maintenance of the country`s 2 million miles of roads. If all of the waste tire rubber could be combined with asphalt in road construction, it would displace less than 6% of the total asphalt used each year, yet could save about 60 trillion Btus annually. Purpose of this project is to provide data needed to optimize the performance of rubber-asphalt concretes. The first phase is to develop asphalts and recycling agents tailored for compatibility with ground tire rubber. Chapter 2 presents results on Laboratory Testing and Evaluation: fractionate asphalt material, reblending for aromatic asphalts, verifying optimal curing parameters, aging of blends, and measuring ductilities of asphalt-rubber binders. Chapter 3 focuses on Evaluating Mixture Characteristics (modified binders). Chapter 4 covers Adhesion Test Development (water susceptibility is also covered). The final chapter focuses on the Performance/Economic Update and Commercialization Plan.

  5. Robust Technique for Measuring and Simulating Silicon Wafer Quality Characteristics that Enable the Prediction of Solar Cell Electrical Performance of MEMC Silicon Wafer. Cooperative Research and Development Final Report, CRADA Number CRD-11-438

    SciTech Connect (OSTI)

    Sopori, Bhushan

    2015-12-01

    NREL and MEMC Electronic Materials are interested in developing a robust technique for monitoring material quality of mc-Si and mono-Si wafers -- a technique that can provide relevant data to accurately predict the performance of solar cells fabricated on them. Previous work, performed under two TSAs between NREL and MEMC, has established that dislocation clusters are the dominant performance-limiting factor in MEMC mc-Si solar cells. The work under this CRADA will go further in verifying these results on a larger data set, evaluate possibilities of faster method(s) for mapping dislocations in wafers/ingots, understanding dislocation generation during ingot casting, and helping MEMC to have an internal capability for basic characterization that will provide feedback needed for more accurate crystallization simulations. NREL has already developed dislocation mapping technique and developed a basic electronic model (called Network Model) that uses spatial distribution of dislocations to predict the cell performance. In this CRADA work, we will use these techniques to: (i) establish dislocation, grain size, and grain orientation distributions of the entire ingots (through appropriate DOE) and compare these with theoretical models developed by MEMC, (ii) determine concentrations of some relevant impurities in selected wafers, (iii) evaluate potential of using photoluminescence for dislocation mapping and identification of recombination centers, (iv) evaluate use of diode array analysis as a detailed characterization tool, and (v) establish dislocation mapping as a wafer-quality monitoring tool for commercial mc-Si production.

  6. Microseismic techniques for avoiding induced seismicity during fluid injection

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Matzel, Eric; White, Joshua; Templeton, Dennise; Pyle, Moira; Morency, Christina; Trainor-Guitton, Whitney

    2014-01-01

    The goal of this research is to develop a fundamentally better approach to geological site characterization and early hazard detection. We combine innovative techniques for analyzing microseismic data with a physics-based inversion model to forecast microseismic cloud evolution. The key challenge is that faults at risk of slipping are often too small to detect during the site characterization phase. Our objective is to devise fast-running methodologies that will allow field operators to respond quickly to changing subsurface conditions.

  7. Development of a Hydrogasification Process for Co-Production of Substitute Natural Gas (SNG) and Electric Power from Western Coals-Phase I

    SciTech Connect (OSTI)

    Raymond Hobbs

    2007-05-31

    The Advanced Hydrogasification Process (AHP)--conversion of coal to methane--is being developed through NETL with a DOE Grant and has successfully completed its first phase of development. The results so far are encouraging and have led to commitment by DOE/NETL to begin a second phase--bench scale reactor vessel testing, expanded engineering analysis and economic perspective review. During the next decade new means of generating electricity, and other forms of energy, will be introduced. The members of the AHP Team envision a need for expanded sources of natural gas or substitutes for natural gas, to fuel power generating plants. The initial work the team has completed on a process to use hydrogen to convert coal to methane (pipeline ready gas) shows promising potential. The Team has intentionally slanted its efforts toward the needs of US electric utilities, particularly on fuels that can be used near urban centers where the greatest need for new electric generation is found. The process, as it has evolved, would produce methane from coal by adding hydrogen. The process appears to be efficient using western coals for conversion to a highly sought after fuel with significantly reduced CO{sub 2} emissions. Utilities have a natural interest in the preservation of their industry, which will require a dramatic reduction in stack emissions and an increase in sustainable technologies. Utilities tend to rank long-term stable supplies of fuel higher than most industries and are willing to trade some ratio of cost for stability. The need for sustainability, stability and environmentally compatible production are key drivers in the formation and progression of the AHP development. In Phase II, the team will add a focus on water conservation to determine how the basic gasification process can be best integrated with all the plant components to minimize water consumption during SNG production. The process allows for several CO{sub 2} reduction options including consumption of the CO{sub 2} in the original process as converted to methane. The process could under another option avoid emissions following the conversion to SNG through an adjunct algae conversion process. The algae would then be converted to fuels or other products. An additional application of the algae process at the end use natural gas fired plant could further reduce emissions. The APS team fully recognizes the competition facing the process from natural gas and imported liquid natural gas. While we expect those resources to set the price for methane in the near-term, the team's work to date indicates that the AHP process can be commercially competitive, with the added benefit of assuring long-term energy supplies from North American resources. Conversion of coal to a more readily transportable fuel that can be employed near load centers with an overall reduction of greenhouses gases is edging closer to reality.

  8. Feasibility study: Application of RCM techniques for substation maintenance at the Bonneville Power Administration

    SciTech Connect (OSTI)

    Purucker, S.L.; Tonn, B.E.; Goeltz, R.T.; James, R.D.; Kercel, S.; Rizy, D.T.; Simpson, M.L.; Van Dyke, J.W.

    1992-05-28

    This feasibility study examines reliability centered maintenance (RCM) as it applies to Bonneville Power Administrations (BPA) substation maintenance program. Reliability techniques are examined in evaluated. Existing BPA equipment maintenance procedures are documented. Equipment failure history is considered. Economic impacts are estimated. Various equipment instrumentation methods are reviewed. Based on this analysis a prototype system is proposed. The prototype will be implemented in two phases. Phase 1 is to be completed in 1992, it includes instrumenting one power transformer and one oil circuit breaker. Software development will focus on displaying data. Phase 2 is to be completed the following year. The remaining transformers and breakers will be instrumented during the second phase. Software development will focus on predictive maintenance techniques and maintenance decision support.

  9. Thin Film Materials and Processing Techniques for a Next Generation Photovoltaic Device: Cooperative Research and Development Final Report, CRADA Number CRD-12-470

    SciTech Connect (OSTI)

    van Hest, M.

    2013-08-01

    This research extends thin film materials and processes relevant to the development and production of a next generation photovoltaic device.

  10. UPVG phase 2 report

    SciTech Connect (OSTI)

    1995-08-01

    The Utility PhotoVoltaic Group (UPVG), supported by member dues and a grant from the US Department of Energy, has as its mission the acceleration of the use of cost-effective small-scale and emerging large-scale applications of photovoltaics for the benefit of electric utilities and their customers. Formed in October, 1992, with the support of the American Public Power Association, Edison Electric Institute, and the National Rural Electric Cooperative Association, the UPVG currently has 90 members from all sectors of the electric utility industry. The UPVG`s efforts as conceived were divided into four phases: Phase 0--program plan; Phase 1--organization and strategy development; Phase 2--creating market assurance; and Phase 3--higher volume purchases. The Phase 0 effort developed the program plan and was completed early in 1993. The Phase 1 goal was to develop the necessary background information and analysis to lead to a decision as to which strategies could be undertaken by utilities to promote greater understanding of PV markets and achieve increased volumes of PV purchases. This report provides the details of the UPVG`s Phase 2 efforts to initiate TEAM-UP, its multiyear, 50-MW hardware initiative.

  11. PHASE DETECTOR

    DOE Patents [OSTI]

    Kippenhan, D.O.

    1959-09-01

    A phase detector circuit is described for use at very high frequencies of the order of 50 megacycles. The detector circuit includes a pair of rectifiers inverted relative to each other. One voltage to be compared is applied to the two rectifiers in phase opposition and the other voltage to be compared is commonly applied to the two rectifiers. The two result:ng d-c voltages derived from the rectifiers are combined in phase opposition to produce a single d-c voltage having amplitude and polarity characteristics dependent upon the phase relation between the signals to be compared. Principal novelty resides in the employment of a half-wave transmission line to derive the phase opposing signals from the first voltage to be compared for application to the two rectifiers in place of the transformer commonly utilized for such purpose in phase detector circuits for operation at lower frequency.

  12. PFT Air Infiltration Measurement Technique | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infiltration Measurement Technique PFT Air Infiltration Measurement Technique The Brookhaven National Laboratory developed the PFT (PerFluorocarbon tracer gas) technique to...

  13. InterPhases Research | Open Energy Information

    Open Energy Info (EERE)

    InterPhases Research Jump to: navigation, search Name: InterPhases Research Place: Westlake Village, California Zip: 91361 Sector: Solar Product: US-based developer of copper...

  14. Survey of data compression techniques

    SciTech Connect (OSTI)

    Gryder, R.; Hake, K.

    1991-09-01

    PM-AIM must provide to customers in a timely fashion information about Army acquisitions. This paper discusses ways that PM-AIM can reduce the volume of data that must be transmitted between sites. Although this paper primarily discusses techniques of data compression, it also briefly discusses other options for meeting the PM-AIM requirements. The options available to PM-AIM, in addition to hardware and software data compression, include less-frequent updates, distribution of partial updates, distributed data base design, and intelligent network design. Any option that enhances the performance of the PM-AIM network is worthy of consideration. The recommendations of this paper apply to the PM-AIM project in three phases: the current phase, the target phase, and the objective phase. Each recommendation will be identified as (1) appropriate for the current phase, (2) considered for implementation during the target phase, or (3) a feature that should be part of the objective phase of PM-AIM's design. The current phase includes only those measures that can be taken with the installed leased lines. The target phase includes those measures that can be taken in transferring the traffic from the leased lines to the DSNET environment with minimal changes in the current design. The objective phase includes all the things that should be done as a matter of course. The objective phase for PM-AIM appears to be a distributed data base with data for each site stored locally and all sites having access to all data.

  15. Survey of data compression techniques

    SciTech Connect (OSTI)

    Gryder, R.; Hake, K.

    1991-09-01

    PM-AIM must provide to customers in a timely fashion information about Army acquisitions. This paper discusses ways that PM-AIM can reduce the volume of data that must be transmitted between sites. Although this paper primarily discusses techniques of data compression, it also briefly discusses other options for meeting the PM-AIM requirements. The options available to PM-AIM, in addition to hardware and software data compression, include less-frequent updates, distribution of partial updates, distributed data base design, and intelligent network design. Any option that enhances the performance of the PM-AIM network is worthy of consideration. The recommendations of this paper apply to the PM-AIM project in three phases: the current phase, the target phase, and the objective phase. Each recommendation will be identified as (1) appropriate for the current phase, (2) considered for implementation during the target phase, or (3) a feature that should be part of the objective phase of PM-AIM`s design. The current phase includes only those measures that can be taken with the installed leased lines. The target phase includes those measures that can be taken in transferring the traffic from the leased lines to the DSNET environment with minimal changes in the current design. The objective phase includes all the things that should be done as a matter of course. The objective phase for PM-AIM appears to be a distributed data base with data for each site stored locally and all sites having access to all data.

  16. Resin infiltration transfer technique

    DOE Patents [OSTI]

    Miller, David V.; Baranwal, Rita

    2009-12-08

    A process has been developed for fabricating composite structures using either reaction forming or polymer infiltration and pyrolysis techniques to densify the composite matrix. The matrix and reinforcement materials of choice can include, but are not limited to, silicon carbide (SiC) and zirconium carbide (ZrC). The novel process can be used to fabricate complex, net-shape or near-net shape, high-quality ceramic composites with a crack-free matrix.

  17. Development of improved processing and evaluation methods for high reliability structural ceramics for advanced heat engine applications, Phase 1. Final report

    SciTech Connect (OSTI)

    Pujari, V.K.; Tracey, D.M.; Foley, M.R.; Paille, N.I.; Pelletier, P.J.; Sales, L.C.; Wilkens, C.A.; Yeckley, R.L.

    1993-08-01

    The program goals were to develop and demonstrate significant improvements in processing methods, process controls and non-destructive evaluation (NDE) which can be commercially implemented to produce high reliability silicon nitride components for advanced heat engine applications at temperatures to 1,370{degrees}C. The program focused on a Si{sub 3}N{sub 4}-4% Y{sub 2}O{sub 3} high temperature ceramic composition and hot-isostatic-pressing as the method of densification. Stage I had as major objectives: (1) comparing injection molding and colloidal consolidation process routes, and selecting one route for subsequent optimization, (2) comparing the performance of water milled and alcohol milled powder and selecting one on the basis of performance data, and (3) adapting several NDE methods to the needs of ceramic processing. The NDE methods considered were microfocus X-ray radiography, computed tomography, ultrasonics, NMR imaging, NMR spectroscopy, fluorescent liquid dye penetrant and X-ray diffraction residual stress analysis. The colloidal consolidation process route was selected and approved as the forming technique for the remainder of the program. The material produced by the final Stage II optimized process has been given the designation NCX 5102 silicon nitride. According to plan, a large number of specimens were produced and tested during Stage III to establish a statistically robust room temperature tensile strength database for this material. Highlights of the Stage III process demonstration and resultant database are included in the main text of the report, along with a synopsis of the NCX-5102 aqueous based colloidal process. The R and D accomplishments for Stage I are discussed in Appendices 1--4, while the tensile strength-fractography database for the Stage III NCX-5102 process demonstration is provided in Appendix 5. 4 refs., 108 figs., 23 tabs.

  18. Combustion 2000: Phase II

    SciTech Connect (OSTI)

    Unknown

    1999-11-01

    The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: thermal efficiency (HHV) {ge} 47%; NOx, SOx, and particulates {le} 10% NSPS (New Source Performance Standard); coal providing {ge} 65% of heat input; all solid wastes benign; and cost of electricity {le} 90% of present plants. Phase 1, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase 1 also included preliminary R and D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. This Phase, Phase 2, had as its initial objective the development of a complete design base for the construction and operation of a HIPPS prototype plant to be constructed in Phase 3. As part of a descoping initiative, the Phase 3 program has been eliminated and work related to the commercial plant design has been ended. The rescoped program retained a program of engineering research and development focusing on high temperature heat exchangers, e.g. HITAF development (Task 2); a rescoped Task 6 that is pertinent to Vision 21 objectives and focuses on advanced cycle analysis and optimization, integration of gas turbines into complex cycles, and repowering designs; and preparation of the Phase 2 Technical Report (Task 8). This rescoped program deleted all subsystem testing (Tasks 3, 4,and 5) and the development of a site-specific engineering design and test plan for the HIPPS prototype plant (Task 7). Work reported herein is from: Task 2.1 HITAF Combustors; Task 2.2 HITAF Air Heaters; and Task 6 HIPPS Commercial Plant Design Update.

  19. Liquid phase Fischer-Tropsch (II) demonstration in the LaPorte Alternative Fuels Development Unit. Volume 1/2, Main Report. Final report

    SciTech Connect (OSTI)

    Bhatt, B.L.

    1995-09-01

    This report presents results from a demonstration of Liquid Phase Fischer-Tropsch (LPFT) technology in DOE`s Alternative Fuels Development Unit (AFDU) at LaPorte, Texas. The run was conducted in a bubble column at the AFDU in May--June 1994. The 10-day run demonstrated a very high level of reactor productivity for LPFT, more than five times the previously demonstrated productivity. The productivity was constrained by mass transfer limitations, perhaps due to slurry thickening as a result of carbon formation on the catalyst. With a cobalt catalyst or an improved iron catalyst, if the carbon formation can be avoided, there is significant room for further improvements. The reactor was operated with 0.7 H{sub 2}/CO synthesis gas in the range of 2400--11700 sl/hr-kg Fe, 175--750 psig and 270--300C. The inlet gas velocity ranged from 0.19 to 0.36 ft/sec. The demonstration was conducted at a pilot scale of 5 T/D. Catalyst activation with CO/N{sub 2} proceeded well. Initial catalyst activity was close to the expectations from the CAER autoclave runs. CO conversion of about 85% was obtained at the baseline condition. The catalyst also showed good water-gas shift activity and a low {alpha}. At high productivity conditions, reactor productivity of 136 grams of HC/hr -- liter of slurry volume was demonstrated, which was within the target of 120--150. However, mass transfer limitations were observed at these conditions. To alleviate these limitations and prevent excessive thickening, the slurry was diluted during the run. This enabled operations under kinetic control later in the run. But, the dilution resulted in lower conversion and reactor productivity. A new reactor internal heat exchanger, installed for high productivity conditions, performed well above design,and the system never limited the performance. The control can expected, the reactor temperature control needed manual intervention. The control can be improved by realigning the utility oil system.

  20. Technique development for uiper critical field studies of SmFeAs(O,F) in the 300T single turn system

    SciTech Connect (OSTI)

    Mcdonald, Ross D [Los Alamos National Laboratory; Balakirev, F. F. [Los Alamos National Laboratory; Altarawneh, M. M. [Los Alamos National Laboratory; Betts, J [Los Alamos National Laboratory; Mielke, C. H. [Los Alamos National Laboratory; Moll, Philip Jw [ETH ZURICH; Zhigadlo, N D [ETH ZURICH; Karpinski, J [ETH ZURICH; Batlogg, B. [ETH ZURICH

    2011-01-14

    In high temperature superconductors, such as the most recent class of iron pnictides, extremely high upper critical fields H{sub c2} are common. The determination of H{sub c2}(T) is crucial to understand the detailed nature of the superconductor, in particular H{sub c2}(T = 0K) is of great interest. It is not only related to fundamental properties of the system, it is furthermore of great importance for materials science, as it is the ultimate limit of applicability of this superconductor in high field applications. However, this important quantity can only be estimated by extrapolation, as H{sub c2}(T = 0K) well exceeds hundreds of Tesla in optimally doped SillFeAs(O,F). We are developing methods to measure Ha(T) in direct transport in the extreme magnetic fields generated by the LANL single turn magnet.

  1. Using adversary text to detect adversary phase changes.

    SciTech Connect (OSTI)

    Speed, Ann Elizabeth; Doser, Adele Beatrice; Warrender, Christina E.

    2009-05-01

    The purpose of this work was to help develop a research roadmap and small proof ofconcept for addressing key problems and gaps from the perspective of using text analysis methods as a primary tool for detecting when a group is undergoing a phase change. Self- rganizing map (SOM) techniques were used to analyze text data obtained from the tworld-wide web. Statistical studies indicate that it may be possible to predict phase changes, as well as detect whether or not an example of writing can be attributed to a group of interest.

  2. Phase transformations in steels: Processing, microstructure, and performance

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gibbs, Paul J.

    2014-04-03

    In this study, contemporary steel research is revealing new processing avenues to tailor microstructure and properties that, until recently, were only imaginable. Much of the technological versatility facilitating this development is provided by the understanding and utilization of the complex phase transformation sequences available in ferrous alloys. Today we have the opportunity to explore the diverse phenomena displayed by steels with specialized analytical and experimental tools. Advances in multi-scale characterization techniques provide a fresh perspective into microstructural relationships at the macro- and micro-scale, enabling a fundamental understanding of the role of phase transformations during processing and subsequent deformation.

  3. Feasibility study: Application of RCM techniques for substation maintenance at the Bonneville Power Administration. [Reliability Centered Maintenance (RCM)

    SciTech Connect (OSTI)

    Purucker, S.L.; Tonn, B.E.; Goeltz, R.T.; James, R.D.; Kercel, S.; Rizy, D.T.; Simpson, M.L.; Van Dyke, J.W.

    1992-05-28

    This feasibility study examines reliability centered maintenance (RCM) as it applies to Bonneville Power Administrations (BPA) substation maintenance program. Reliability techniques are examined in evaluated. Existing BPA equipment maintenance procedures are documented. Equipment failure history is considered. Economic impacts are estimated. Various equipment instrumentation methods are reviewed. Based on this analysis a prototype system is proposed. The prototype will be implemented in two phases. Phase 1 is to be completed in 1992, it includes instrumenting one power transformer and one oil circuit breaker. Software development will focus on displaying data. Phase 2 is to be completed the following year. The remaining transformers and breakers will be instrumented during the second phase. Software development will focus on predictive maintenance techniques and maintenance decision support.

  4. Comment on "Tunable generation and adsorption of energetic compounds in the vapor phase at trace levels: A tool for testing and developing sensitive and selective substrates for explosive detection"

    SciTech Connect (OSTI)

    Grate, Jay W.; Ewing, Robert G.; Atkinson, David A.

    2013-02-13

    The evaluation of developed technologies and research on new detection approaches require the ability to generate explosive vapors in the gas phase. In this correspondence, the authors comment on a technical note describing a vaopr generator, discuss safety issues associated with explosives for vapor generators, and provide a concise review of vapor generators for explosive compounds. Approaches to measuring or monitoring the output of a vapor generators are also discussed.

  5. DELTA PHASE PLUTONIUM ALLOYS

    DOE Patents [OSTI]

    Cramer, E.M.; Ellinger, F.H.; Land. C.C.

    1960-03-22

    Delta-phase plutonium alloys were developed suitable for use as reactor fuels. The alloys consist of from 1 to 4 at.% zinc and the balance plutonium. The alloys have good neutronic, corrosion, and fabrication characteristics snd possess good dimensional characteristics throughout an operating temperature range from 300 to 490 deg C.

  6. Newberry Volcano EGS Demonstration - Phase I Results

    SciTech Connect (OSTI)

    William L. Osborn, Susan Petty, Trenton T. Cladouhos, Joe Iovenitti, Laura Nofziger, Owen Callahan, Douglas S. Perry and Paul L. Stern

    2011-10-23

    Phase I of the Newberry Volcano Enhanced Geothermal System (EGS) Demonstration included permitting, community outreach, seismic hazards analysis, initial microseismic array deployment and calibration, final MSA design, site characterization, and stimulation planning. The multi-disciplinary Phase I site characterization supports stimulation planning and regulatory permitting, as well as addressing public concerns including water usage and induced seismicity. A review of the project'™s water usage plan by an independent hydrology consultant found no expected impacts to local stakeholders, and recommended additional monitoring procedures. The IEA Protocol for Induced Seismicity Associated with Enhanced Geothermal Systems was applied to assess site conditions, properly inform stakeholders, and develop a comprehensive mitigation plan. Analysis of precision LiDAR elevation maps has concluded that there is no evidence of recent faulting near the target well. A borehole televiewer image log of the well bore revealed over three hundred fractures and predicted stress orientations. No natural, background seismicity has been identified in a review of historic data, or in more than seven months of seismic data recorded on an array of seven seismometers operating around the target well. A seismic hazards and induced seismicity risk assessment by an independent consultant concluded that the Demonstration would contribute no additional risk to residents of the nearest town of La Pine, Oregon. In Phase II of the demonstration, an existing deep hot well, NWG 55-29, will be stimulated using hydroshearing techniques to create an EGS reservoir. The Newberry Volcano EGS Demonstration is allowing geothermal industry and academic experts to develop, validate and enhance geoscience and engineering techniques, and other procedures essential to the expansion of EGS throughout the country. Successful development will demonstrate to the American public that EGS can play a significant role in reducing foreign energy dependence, and provide clean, renewable, baseload geothermal power generation in the State of Oregon.

  7. SNMR pulse sequence phase cycling

    DOE Patents [OSTI]

    Walsh, David O; Grunewald, Elliot D

    2013-11-12

    Technologies applicable to SNMR pulse sequence phase cycling are disclosed, including SNMR acquisition apparatus and methods, SNMR processing apparatus and methods, and combinations thereof. SNMR acquisition may include transmitting two or more SNMR pulse sequences and applying a phase shift to a pulse in at least one of the pulse sequences, according to any of a variety cycling techniques. SNMR processing may include combining SNMR from a plurality of pulse sequences comprising pulses of different phases, so that desired signals are preserved and indesired signals are canceled.

  8. Live pathogens: rapid detection technique developed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the key nutrient iron. January 24, 2013 Colorized scanning electron micrograph of E. coli. Colorized scanning electron micrograph of E. coli. Photo credit: US Centers for...

  9. Transportation Techniques LLC | Open Energy Information

    Open Energy Info (EERE)

    Techniques LLC Place: Denver, CO, Colorado Zip: 80205 Sector: Vehicles Product: Colorado-USA-based company that uses patented series hybrid technology to design and develop hybrid...

  10. Determining plutonium mass in spent fuel with non-destructive assay techniques - NGSU research overview and update on 6 NDA techniques

    SciTech Connect (OSTI)

    Tobin, Stephen J; Conlin, Jeremy L; Evans, Louise G; Hu, Jianwei; Blanc, Pauline C; Lafleur, Adrienne M; Menlove, Howard O; Schear, Melissa A; Swinhoe, Martyn T; Croft, Stephen; Fensin, Michael L; Freeman, Corey R; Koehler, William E; Mozin, V; Sandoval, N P; Lee, T H; Cambell, L W; Cheatham, J R; Gesh, C J; Hunt, A; Ludewigt, B A; Smith, L E; Sterbentz, J

    2010-09-15

    This poster is one of two complementary posters. The Next Generation Safeguards Initiative (NGSI) of the U.S. DOE has initiated a multi-lab/university collaboration to quantify the plutonium (Pu) mass in, and detect the diversion of pins from, spent nuclear fuel assemblies with non-destructive assay (NDA). This research effort has the goal of quantifying the capability of 14 NDA techniques as well as training a future generation of safeguards practitioners. By November of 2010, we will be 1.5 years into the first phase (2.5 years) of work. This first phase involves primarily Monte Carlo modelling while the second phase (also 2.5 years) will focus on experimental work. The goal of phase one is to quantify the detection capability of the various techniques for the benefit of safeguard technology developers, regulators, and policy makers as well as to determine what integrated techniques merit experimental work, We are considering a wide range of possible technologies since our research horizon is longer term than the focus of most regulator bodies. The capability of all of the NDA techniques will be determined for a library of 64 17 x 17 PWR assemblies [burnups (15, 30, 45, 60 GWd/tU), initial enrichments (2, 3, 4, 5%) and cooling times (1, 5, 20, 80 years)]. The burnup and cooling time were simulated with each fuel pin being comprised of four radial regions. In this paper an overview of the purpose will be given as well as a technical update on the following 6 neutron techniques: {sup 252}Cf Interrogation with Prompt Neutron Detection, Delayed Neutrons, Differential Die-Away, Differential Die-Away Self-Interrogation, Passive Neutron Albedo Reactivity, Self-Integration Neutron Resonance Densitometry. The technical update will quantify the anticipated performance of each technique for the 64 assemblies of the spent fuel library.

  11. Multi-scale Shock Technique

    Energy Science and Technology Software Center (OSTI)

    2009-08-01

    The code to be released is a new addition to the LAMMPS molecular dynamics code. LAMMPS is developed and maintained by Sandia, is publicly available, and is used widely by both natioanl laboratories and academics. The new addition to be released enables LAMMPS to perform molecular dynamics simulations of shock waves using the Multi-scale Shock Simulation Technique (MSST) which we have developed and has been previously published. This technique enables molecular dynamics simulations of shockmore » waves in materials for orders of magnitude longer timescales than the direct, commonly employed approach.« less

  12. A Lapping Technique for Metallic, Alpha-Phase, Plutonium: Achieving...

    Office of Scientific and Technical Information (OSTI)

    OSTI Identifier: 1136178 Report Number(s): LLNL-TR-655576 DOE Contract Number: ... Full Text preview image File size NAView Full Text View Full Text DOI: 10.21721136178 ...

  13. Applied Science/Techniques

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applied ScienceTechniques Print The ALS is an excellent incubator of new scientific techniques and instrumentation. Many of the technical advances that make the ALS a world-class...

  14. ARM - Measurement - Hydrometeor phase

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    : Hydrometeor phase Hydrometeor phase such as liquid ice or mixed phase Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  15. Opto-electrokinetic manipulation technique for highperformance

    SciTech Connect (OSTI)

    Kwon, Jae-Sung [Purdue University; Ravindranath, Sandeep [Purdue University; Kumar, Aloke [ORNL; Irudayaraj, Joseph [Purdue University; Wereley, Steven T. [Purdue University

    2012-01-01

    This communication first demonstrates bio-compatibility of a recently developed opto-electrokinetic manipulation technique, using microorganisms. Aggregation, patterning, translation, trapping and size-based separation of microorganisms performed with the technique firmly establishes its usefulness for development of a high-performance on-chip bioassay system.

  16. 3 Phases Energy Services LLC | Open Energy Information

    Open Energy Info (EERE)

    Phases Energy Services LLC Jump to: navigation, search Name: 3 Phases Energy Services LLC Place: San Francisco, California Zip: CA 94129 Product: San Francisco-based developer &...

  17. Multiyear Program Plan Template - Phase II Guidance | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multiyear Program Plan Template - Phase II Guidance Multiyear Program Plan Template - Phase II Guidance EERE template and guidance for program managers to develop multiyear plans, ...

  18. Modeling of fluidized-bed combustion of coal: Phase II, final reports. Volume VI. FBC-Data Base-Management-System (FBC-DBMS) development

    SciTech Connect (OSTI)

    Louis, J.F.; Tung, S.E.

    1980-10-01

    The primary goal of the Fluidized Bed Combustor Data Base, (FBCDB), situated in MIT's Energy laboratory, is to establish a data repository for the express use of designers and research personnel involved in FBC development. DBMS is a software that provides an efficient way of storing, retrieving, updating and manipulating data using an English-like query language. It is anticipated that the FBCDB would play an active and a direct role in the development of FBC technology as well as in the FBC commercial application. After some in-house experience and after a careful and extensive review of commercially available database systems, it was determined that the Model 204 DBMS by Computer Corporation of America was the most suitable to our needs. The setup of a prototype in-house database also allowed us to investigate and understand fully the particular problems involved in coordinating FBC development with a DBMS. Various difficult aspects were encountered and solutions had been sought. For instance, we found that it was necessary to rename the variables to avoid repetition as well as to increase usefulness of our database and, hence, we had designed a classification system for which variables were classified under category to achieve standardization of variable names. The primary content of FBCDB is a collection of data points defined by the value of a number of specific FBC variables. A user may interactively access the database from a computer terminal at any location, retrieve, examine, and manipulate the data as well as produce tables or graphs of the results.

  19. Application of 'Six Sigma{sup TM}' and 'Design of Experiment' for Cementation - Recipe Development for Evaporator Concentrate for NPP Ling AO, Phase II (China) - 12555

    SciTech Connect (OSTI)

    Fehrmann, Henning [Westinghouse Electric Germany GmbH (Germany); Perdue, Robert [Westinghouse Electric Company (United States)

    2012-07-01

    Cementation of radioactive waste is a common technology. The waste is mixed with cement and water and forms a stable, solid block. The physical properties like compression strength or low leach ability depends strongly on the cement recipe. Due to the fact that this waste cement mixture has to fulfill special requirements, a recipe development is necessary. The Six Sigma{sup TM}' DMAIC methodology, together with the Design of experiment (DoE) approach, was employed to optimize the process of a recipe development for cementation at the Ling Ao nuclear power plant (NPP) in China. The DMAIC offers a structured, systematical and traceable process to derive test parameters. The DoE test plans and statistical analysis is efficient regarding the amount of test runs and the benefit gain by getting a transfer function. A transfer function enables simulation which is useful to optimize the later process and being responsive to changes. The DoE method was successfully applied for developing a cementation recipe for both evaporator concentrate and resin waste in the plant. The key input parameters were determined, evaluated and the control of these parameters were included into the design. The applied Six Sigma{sup TM} tools can help to organize the thinking during the engineering process. Data are organized and clearly presented. Various variables can be limited to the most important ones. The Six Sigma{sup TM} tools help to make the thinking and decision process trace able. The tools can help to make data driven decisions (e.g. C and E Matrix). But the tools are not the only golden way. Results from scoring tools like the C and E Matrix need close review before using them. The DoE is an effective tool for generating test plans. DoE can be used with a small number of tests runs, but gives a valuable result from an engineering perspective in terms of a transfer function. The DoE prediction results, however, are only valid in the tested area. So a careful selection of input parameter and their limits for setting up a DoE is very important. An extrapolation of results is not recommended because the results are not reliable out of the tested area. (authors)

  20. Developing 226Ra and 227Ac age-dating techniques for nuclear forensics to gain insight from concordant and non-concordant radiochronometers

    SciTech Connect (OSTI)

    Kayzar, Theresa M.; Williams, Ross W.

    2015-09-26

    The model age or ‘date of purification’ of a nuclear material is an important nuclear forensic signature. In this study, chemical separation and MC-ICP-MS measurement techniques were developed for 226 Ra and 227Ac: grand-daughter nuclides in the 238U and 235U decay chains respectively. The 230Th-234U, 226Ra-238U, 231Pa-235U, and 227Ac-235U radiochronometers were used to calculate model ages for CRM-U100 standard reference material and two highly-enriched pieces of uranium metal from the International Technical Working Group Round Robin 3 Exercise. In conclusion, the results demonstrate the accuracy of the 226Ra-238U and 227Ac-235U chronometers and provide information about nuclide migration during uranium processing.

  1. Phase II Final Report

    SciTech Connect (OSTI)

    Schuknecht, Nate; White, David; Hoste, Graeme

    2014-09-11

    The SkyTrough DSP will advance the state-of-the-art in parabolic troughs for utility applications, with a larger aperture, higher operating temperature, and lower cost. The goal of this project was to develop a parabolic trough collector that enables solar electricity generation in the 2020 marketplace for a 216MWe nameplate baseload power plant. This plant requires an LCOE of 9¢/kWhe, given a capacity factor of 75%, a fossil fuel limit of 15%, a fossil fuel cost of $6.75/MMBtu, $25.00/kWht thermal storage cost, and a domestic installation corresponding to Daggett, CA. The result of our optimization was a trough design of larger aperture and operating temperature than has been fielded in large, utility scale parabolic trough applications: 7.6m width x 150m SCA length (1,118m2 aperture), with four 90mm diameter × 4.7m receivers per mirror module and an operating temperature of 500°C. The results from physical modeling in the System Advisory Model indicate that, for a capacity factor of 75%: The LCOE will be 8.87¢/kWhe. SkyFuel examined the design of almost every parabolic trough component from a perspective of load and performance at aperture areas from 500 to 2,900m2. Aperture-dependent design was combined with fixed quotations for similar parts from the commercialized SkyTrough product, and established an installed cost of $130/m2 in 2020. This project was conducted in two phases. Phase I was a preliminary design, culminating in an optimum trough size and further improvement of an advanced polymeric reflective material. This phase was completed in October of 2011. Phase II has been the detailed engineering design and component testing, which culminated in the fabrication and testing of a single mirror module. Phase II is complete, and this document presents a summary of the comprehensive work.

  2. Applied Science/Techniques

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Spectroscopic Technique Reveals the Dynamics of Operating Battery Electrodes ... The ALS X-Ray Streak Camera: Bringing the Ultrafast and Ultrasmall into Focus Laser ...

  3. PHASE DAMPING IN THE SNS LINAC (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    PHASE DAMPING IN THE SNS LINAC Citation Details In-Document Search Title: PHASE DAMPING IN THE SNS LINAC Synchronous phase oscillations and the beam phase adiabatic damping curves in the SNS linac are studied with linac models and measured with all the linac beam phase monitors. This study provides a new beam diagnostic technique for detecting RF cavity phase and/or field amplitude errors in a linac with many independently phased cavities. The phase damping curves predicted in the linac

  4. Ground Electromagnetic Techniques | Open Energy Information

    Open Energy Info (EERE)

    Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electromagnetic Techniques Information...

  5. Contamination Control Techniques

    SciTech Connect (OSTI)

    EBY, J.L.

    2000-05-16

    Welcome to a workshop on contamination Control techniques. This work shop is designed for about two hours. Attendee participation is encouraged during the workshop. We will address different topics within contamination control techniques; present processes, products and equipment used here at Hanford and then open the floor to you, the attendees for your input on the topics.

  6. Reinforced ceramics employing discontinuous phases

    SciTech Connect (OSTI)

    Becher, P.F.

    1990-01-01

    The fracture toughness of ceramics can be improved by the incorporation of a variety of discontinuous reinforcing phases and microstructures. Observations of crack paths in these systems indicate that these reinforcing phases bridge the crack tip wake region. Recent developments in micromechanics toughening models applicable to such systems are discussed and compared with experimental observations. Because material parameters and microstructural characteristics are considered, the crack bridging models provide a means to optimize the toughening effects. 18 refs., 2 figs.

  7. EIS-0075: Strategic Petroleum Reserve Phase III Development, Texoma and Seaway Group Salt Domes (West Hackberry and Bryan Mound Expansion, Big Hill Development) Cameron Parish, Louisiana, and Brazoria and Jefferson Counties, Texas

    Broader source: Energy.gov [DOE]

    Also see EIS-0021 and EIS-0029. The Strategic Petroleum Reserve (SPR) Office developed this EIS to assess the environmental impacts of expanding the existing SPR storage capacity from 538 million to 750 million barrels of storage and increasing the drawdown capability from 3.5 million to 4.5 million barrels per day. This EIS incorperates two previously issued EISs: DOE/EIS-0021, Seaway Group of Salt Domes, and DOE/EIS-0029, Texoma Group of Salt Domes.

  8. Electromagnetic Sounding Techniques | Open Energy Information

    Open Energy Info (EERE)

    Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Ground Electromagnetic Techniques Information Provided by Technique Lithology: Rock...

  9. Electromagnetic Profiling Techniques | Open Energy Information

    Open Energy Info (EERE)

    Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Ground Electromagnetic Techniques Information Provided by Technique Lithology: Rock...

  10. Dose Reduction Techniques

    SciTech Connect (OSTI)

    WAGGONER, L.O.

    2000-05-16

    As radiation safety specialists, one of the things we are required to do is evaluate tools, equipment, materials and work practices and decide whether the use of these products or work practices will reduce radiation dose or risk to the environment. There is a tendency for many workers that work with radioactive material to accomplish radiological work the same way they have always done it rather than look for new technology or change their work practices. New technology is being developed all the time that can make radiological work easier and result in less radiation dose to the worker or reduce the possibility that contamination will be spread to the environment. As we discuss the various tools and techniques that reduce radiation dose, keep in mind that the radiological controls should be reasonable. We can not always get the dose to zero, so we must try to accomplish the work efficiently and cost-effectively. There are times we may have to accept there is only so much you can do. The goal is to do the smart things that protect the worker but do not hinder him while the task is being accomplished. In addition, we should not demand that large amounts of money be spent for equipment that has marginal value in order to save a few millirem. We have broken the handout into sections that should simplify the presentation. Time, distance, shielding, and source reduction are methods used to reduce dose and are covered in Part I on work execution. We then look at operational considerations, radiological design parameters, and discuss the characteristics of personnel who deal with ALARA. This handout should give you an overview of what it takes to have an effective dose reduction program.

  11. NGNP PHASE I REVIEW

    Broader source: Energy.gov (indexed) [DOE]

    NGNP PHASE I REVIEW NEAC REACTOR TECHNOLOGY SUBCOMMITTEE CURRENT STATUS DECEMBER 9, 2010 EPACT 2005 REQUIREMENTS * FIRST PROJECT PHASE REVIEW-On a determination by the Secretary...

  12. Microstructure, Phase Formation, and Stress of Reactively-Deposited...

    Office of Scientific and Technical Information (OSTI)

    ... The in-situ stress measurement technique is further developed to make it suitable for manufacturing systems. New features added to this technique include the ability to monitor ...

  13. Single beam Fourier transform digital holographic quantitative phase microscopy

    SciTech Connect (OSTI)

    Anand, A. Chhaniwal, V. K.; Mahajan, S.; Trivedi, V.; Faridian, A.; Pedrini, G.; Osten, W.; Dubey, S. K.; Javidi, B.

    2014-03-10

    Quantitative phase contrast microscopy reveals thickness or height information of a biological or technical micro-object under investigation. The information obtained from this process provides a means to study their dynamics. Digital holographic (DH) microscopy is one of the most used, state of the art single-shot quantitative techniques for three dimensional imaging of living cells. Conventional off axis DH microscopy directly provides phase contrast images of the objects. However, this process requires two separate beams and their ratio adjustment for high contrast interference fringes. Also the use of two separate beams may make the system more vulnerable to vibrations. Single beam techniques can overcome these hurdles while remaining compact as well. Here, we describe the development of a single beam DH microscope providing whole field imaging of micro-objects. A hologram of the magnified object projected on to a diffuser co-located with a pinhole is recorded with the use of a commercially available diode laser and an arrayed sensor. A Fourier transform of the recorded hologram directly yields the complex amplitude at the image plane. The method proposed was investigated using various phase objects. It was also used to image the dynamics of human red blood cells in which sub-micrometer level thickness variation were measurable.

  14. Centrifuge workers study. Phase II, completion report

    SciTech Connect (OSTI)

    Wooten, H.D.

    1994-09-01

    Phase II of the Centrifuge Workers Study was a follow-up to the Phase I efforts. The Phase I results had indicated a higher risk than expected among centrifuge workers for developing bladder cancer when compared with the risk in the general population for developing this same type of cancer. However, no specific agent could be identified as the causative agent for these bladder cancers. As the Phase II Report states, Phase I had been limited to workers who had the greatest potential for exposure to substances used in the centrifuge process. Phase II was designed to expand the survey to evaluate the health of all employees who had ever worked in Centrifuge Program Departments 1330-1339 but who had not been interviewed in Phase I. Employees in analytical laboratories and maintenance departments who provided support services for the Centrifuge Program were also included in Phase II. In December 1989, the Oak Ridge Associated Universities (ORAU), now known as Oak Ridge Institute for Science and Education (ORISE), was contracted to conduct a follow-up study (Phase II). Phase H of the Centrifuge Workers Study expanded the survey to include all former centrifuge workers who were not included in Phase I. ORISE was chosen because they had performed the Phase I tasks and summarized the corresponding survey data therefrom.

  15. Superhydrophobic Materials Technology-PVC Bonding Techniques

    SciTech Connect (OSTI)

    Hunter, Scott R.; Efird, Marty

    2013-05-03

    The purpose of the technology maturation project was to develop an enhanced application technique for applying diatomaceous earth with pinned polysiloxane oil to PVC pipes and materials. The oil infiltration technique is applied as a spray of diluted oil in a solvent onto the superhydrophobic diatomaceous earth substrate. This makes the surface take on the following characteristics: wet-cleanable; anti-biofouling; waterproof; and anti-corrosion. The project involved obtaining input and supplies from VeloxFlow and the development of successful techniques that would quickly result in a commercial license agreement with VeloxFlow and other companies that use PVC materials in a variety of other fields of use.

  16. Phase-sensitive X-ray imager

    DOE Patents [OSTI]

    Baker, Kevin Louis

    2013-01-08

    X-ray phase sensitive wave-front sensor techniques are detailed that are capable of measuring the entire two-dimensional x-ray electric field, both the amplitude and phase, with a single measurement. These Hartmann sensing and 2-D Shear interferometry wave-front sensors do not require a temporally coherent source and are therefore compatible with x-ray tubes and also with laser-produced or x-pinch x-ray sources.

  17. Innovative Phase Change Thermal Energy Storage Solution for Baseload Power

    Office of Scientific and Technical Information (OSTI)

    Phase 1 Final Report (Technical Report) | SciTech Connect SciTech Connect Search Results Technical Report: Innovative Phase Change Thermal Energy Storage Solution for Baseload Power Phase 1 Final Report Citation Details In-Document Search Title: Innovative Phase Change Thermal Energy Storage Solution for Baseload Power Phase 1 Final Report The primary purpose of this project is to develop and validate an innovative, scalable phase change salt thermal energy storage (TES) system that can

  18. Developing regionalized models of lithospheric thickness and velocity structure across Eurasia and the Middle East from jointly inverting P-wave and S-wave receiver functions with Rayleigh wave group and phase velocities

    SciTech Connect (OSTI)

    Julia, J; Nyblade, A; Hansen, S; Rodgers, A; Matzel, E

    2009-07-06

    In this project, we are developing models of lithospheric structure for a wide variety of tectonic regions throughout Eurasia and the Middle East by regionalizing 1D velocity models obtained by jointly inverting P-wave and S-wave receiver functions with Rayleigh wave group and phase velocities. We expect the regionalized velocity models will improve our ability to predict travel-times for local and regional phases, such as Pg, Pn, Sn and Lg, as well as travel-times for body-waves at upper mantle triplication distances in both seismic and aseismic regions of Eurasia and the Middle East. We anticipate the models will help inform and strengthen ongoing and future efforts within the NNSA labs to develop 3D velocity models for Eurasia and the Middle East, and will assist in obtaining model-based predictions where no empirical data are available and for improving locations from sparse networks using kriging. The codes needed to conduct the joint inversion of P-wave receiver functions (PRFs), S-wave receiver functions (SRFs), and dispersion velocities have already been assembled as part of ongoing research on lithospheric structure in Africa. The methodology has been tested with synthetic 'data' and case studies have been investigated with data collected at an open broadband stations in South Africa. PRFs constrain the size and S-P travel-time of seismic discontinuities in the crust and uppermost mantle, SRFs constrain the size and P-S travel-time of the lithosphere-asthenosphere boundary, and dispersion velocities constrain average S-wave velocity within frequency-dependent depth-ranges. Preliminary results show that the combination yields integrated 1D velocity models local to the recording station, where the discontinuities constrained by the receiver functions are superimposed to a background velocity model constrained by the dispersion velocities. In our first year of this project we will (i) generate 1D velocity models for open broadband seismic stations in the western half of the study area (Eurasia and the Middle East) and (ii) identify well located seismic events with event-station paths isolated to individual tectonic provinces within the study area and collect broadband waveforms and source parameters for the selected events. The 1D models obtained from the joint inversion will then be combined with published geologic terrain maps to produce regionalized models for distinctive tectonic areas within the study area, and the models will be validated through full waveform modeling of well-located seismic events recorded at local and regional distances.

  19. Phase-field modeling of the beta to omega phase transformation in Zr-Nb

    Office of Scientific and Technical Information (OSTI)

    alloys (Journal Article) | SciTech Connect Phase-field modeling of the beta to omega phase transformation in Zr-Nb alloys Citation Details In-Document Search Title: Phase-field modeling of the beta to omega phase transformation in Zr-Nb alloys A three-dimensional elastoplastic phase-field model is developed, using the finite element method (FEM), for modeling the athermal beta to omega phase transformation in Zr-Nb alloys by including plastic deformation and strain hardening of the material.

  20. Phase-field modeling of the beta to omega phase transformation in Zr-Nb

    Office of Scientific and Technical Information (OSTI)

    alloys (Journal Article) | SciTech Connect Phase-field modeling of the beta to omega phase transformation in Zr-Nb alloys Citation Details In-Document Search Title: Phase-field modeling of the beta to omega phase transformation in Zr-Nb alloys A three-dimensional elastoplastic phase-field model is developed, using the Finite Element Method (FEM), for modeling the athermal beta to omega phase transformation in Zr-Nb alloys by including plastic deformation and strain hardening of the material.

  1. Phase and birefringence aberration correction

    DOE Patents [OSTI]

    Bowers, M.; Hankla, A.

    1996-07-09

    A Brillouin enhanced four wave mixing phase conjugate mirror corrects phase aberrations of a coherent electromagnetic beam and birefringence induced upon that beam. The stimulated Brillouin scattering (SBS) phase conjugation technique is augmented to include Brillouin enhanced four wave mixing (BEFWM). A seed beam is generated by a main oscillator which arrives at the phase conjugate cell before the signal beams in order to initiate the Brillouin effect. The signal beam which is being amplified through the amplifier chain is split into two perpendicularly polarized beams. One of the two beams is chosen to be the same polarization as some component of the seed beam, the other orthogonal to the first. The polarization of the orthogonal beam is then rotated 90{degree} such that it is parallel to the other signal beam. The three beams are then focused into cell containing a medium capable of Brillouin excitation. The two signal beams are focused such that they cross the seed beam path before their respective beam waists in order to achieve BEFWM or the two signal beams are focused to a point or points contained within the focused cone angle of the seed beam to achieve seeded SBS, and thus negate the effects of all birefringent and material aberrations in the system. 5 figs.

  2. Phase and birefringence aberration correction

    DOE Patents [OSTI]

    Bowers, Mark; Hankla, Allen

    1996-01-01

    A Brillouin enhanced four wave mixing phase conjugate mirror corrects phase aberrations of a coherent electromagnetic beam and birefringence induced upon that beam. The stimulated Brillouin scattering (SBS) phase conjugation technique is augmented to include Brillouin enhanced four wave mixing (BEFWM). A seed beam is generated by a main oscillator which arrives at the phase conjugate cell before the signal beams in order to initiate the Brillouin effect. The signal beam which is being amplified through the amplifier chain is split into two perpendicularly polarized beams. One of the two beams is chosen to be the same polarization as some component of the seed beam, the other orthogonal to the first. The polarization of the orthogonal beam is then rotated 90.degree. such that it is parallel to the other signal beam. The three beams are then focused into cell containing a medium capable of Brillouin excitation. The two signal beams are focused such that they cross the seed beam path before their respective beam waists in order to achieve BEFWM or the two signal beams are focused to a point or points contained within the focused cone angle of the seed beam to achieve seeded SBS, and thus negate the effects of all birefringent and material aberrations in the system.

  3. DENSE PHASE REBURN COMBUSTION SYSTEM (DPRCS) DEMONSTRATION ON A 154 MWE TANGENTIAL FURNACE: ADDITIONAL AREA OF INTEREST-TO DEVELOP AND DEMONSTRATE AN IN-FURNACE MULTI-POLLUTANT REDUCTION TECHNOLOGY TO REDUCE NOx, SO2 & Hg

    SciTech Connect (OSTI)

    Allen C. Wiley; Steven Castagnero; Geoff Green; Kevin Davis; David White

    2004-03-01

    Semi-dense phase pneumatic delivery and injection of calcium and sodium sorbents, and microfine powdered coal, at various sidewall elevations of an online operating coal-fired power plant, was investigated for the express purpose of developing an in-furnace, economic multi-pollutant reduction methodology for NO{sub x}, SO{sub 2} & Hg. The 154 MWe tangentially-fired furnace that was selected for a full-scale demonstration, was recently retrofitted for NO{sub x} reduction with a high velocity rotating-opposed over-fire air system. The ROFA system, a Mobotec USA technology, has a proven track record of breaking up laminar flow along furnace walls, thereby enhancing the mix of all constituents of combustion. The knowledge gained from injecting sorbents and micronized coal into well mixed combustion gases with significant improvement in particulate retention time, should serve well the goals of an in-furnace multi-pollutant reduction technology; that of reducing back-end cleanup costs on a wide variety of pollutants, on a cost per ton basis, by first accomplishing significant in-furnace reductions of all pollutants.

  4. PFT Air Infiltration Measurement Technique | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PFT Air Infiltration Measurement Technique PFT Air Infiltration Measurement Technique The Brookhaven National Laboratory developed the PFT (PerFluorocarbon tracer gas) technique to measure changes over time when determining a building's air-infiltration rate. The Brookhaven National Laboratory developed the PFT (PerFluorocarbon tracer gas) technique to measure changes over time when determining a building's air-infiltration rate. The airtightness of a building can be determined by using several

  5. Weld braze technique

    DOE Patents [OSTI]

    Kanne, Jr., William R. (Aiken, SC); Kelker, Jr., John W. (North Augusta, SC); Alexander, Robert J. (Aiken, SC)

    1982-01-01

    High-strength metal joints are formed by a combined weld-braze technique. A hollow cylindrical metal member is forced into an undersized counterbore in another metal member with a suitable braze metal disposed along the bottom of the counterbore. Force and current applied to the members in an evacuated chamber results in the concurrent formation of the weld along the sides of the counterbore and a braze along the bottom of the counterbore in one continuous operation.

  6. Image compression technique

    DOE Patents [OSTI]

    Fu, C.Y.; Petrich, L.I.

    1997-03-25

    An image is compressed by identifying edge pixels of the image; creating a filled edge array of pixels each of the pixels in the filled edge array which corresponds to an edge pixel having a value equal to the value of a pixel of the image array selected in response to the edge pixel, and each of the pixels in the filled edge array which does not correspond to an edge pixel having a value which is a weighted average of the values of surrounding pixels in the filled edge array which do correspond to edge pixels; and subtracting the filled edge array from the image array to create a difference array. The edge file and the difference array are then separately compressed and transmitted or stored. The original image is later reconstructed by creating a preliminary array in response to the received edge file, and adding the preliminary array to the received difference array. Filling is accomplished by solving Laplace`s equation using a multi-grid technique. Contour and difference file coding techniques also are described. The techniques can be used in a method for processing a plurality of images by selecting a respective compression approach for each image, compressing each of the images according to the compression approach selected, and transmitting each of the images as compressed, in correspondence with an indication of the approach selected for the image. 16 figs.

  7. Image compression technique

    DOE Patents [OSTI]

    Fu, Chi-Yung; Petrich, Loren I.

    1997-01-01

    An image is compressed by identifying edge pixels of the image; creating a filled edge array of pixels each of the pixels in the filled edge array which corresponds to an edge pixel having a value equal to the value of a pixel of the image array selected in response to the edge pixel, and each of the pixels in the filled edge array which does not correspond to an edge pixel having a value which is a weighted average of the values of surrounding pixels in the filled edge array which do correspond to edge pixels; and subtracting the filled edge array from the image array to create a difference array. The edge file and the difference array are then separately compressed and transmitted or stored. The original image is later reconstructed by creating a preliminary array in response to the received edge file, and adding the preliminary array to the received difference array. Filling is accomplished by solving Laplace's equation using a multi-grid technique. Contour and difference file coding techniques also are described. The techniques can be used in a method for processing a plurality of images by selecting a respective compression approach for each image, compressing each of the images according to the compression approach selected, and transmitting each of the images as compressed, in correspondence with an indication of the approach selected for the image.

  8. Digital quadrature phase detection

    DOE Patents [OSTI]

    Smith, J.A.; Johnson, J.A.

    1992-05-26

    A system for detecting the phase of a frequency or phase modulated signal that includes digital quadrature sampling of the frequency or phase modulated signal at two times that are one quarter of a cycle of a reference signal apart, determination of the arctangent of the ratio of a first sampling of the frequency or phase modulated signal to the second sampling of the frequency or phase modulated signal, and a determination of quadrant in which the phase determination is increased by 2[pi] when the quadrant changes from the first quadrant to the fourth quadrant and decreased by 2[pi] when the quadrant changes from the fourth quadrant to the first quadrant whereby the absolute phase of the frequency or phase modulated signal can be determined using an arbitrary reference convention. 6 figs.

  9. Digital quadrature phase detection

    DOE Patents [OSTI]

    Smith, James A.; Johnson, John A.

    1992-01-01

    A system for detecting the phase of a frequency of phase modulated signal that includes digital quadrature sampling of the frequency or phase modulated signal at two times that are one quarter of a cycle of a reference signal apart, determination of the arctangent of the ratio of a first sampling of the frequency or phase modulated signal to the second sampling of the frequency or phase modulated signal, and a determination of quadrant in which the phase determination is increased by 2.pi. when the quadrant changes from the first quadrant to the fourth quadrant and decreased by 2.pi. when the quadrant changes from the fourth quadrant to the first quadrant whereby the absolute phase of the frequency or phase modulated signal can be determined using an arbitrary reference convention.

  10. Compensation Techniques in Accelerator Physics

    SciTech Connect (OSTI)

    Hisham Kamal Sayed

    2011-05-31

    Accelerator physics is one of the most diverse multidisciplinary fields of physics, wherein the dynamics of particle beams is studied. It takes more than the understanding of basic electromagnetic interactions to be able to predict the beam dynamics, and to be able to develop new techniques to produce, maintain, and deliver high quality beams for different applications. In this work, some basic theory regarding particle beam dynamics in accelerators will be presented. This basic theory, along with applying state of the art techniques in beam dynamics will be used in this dissertation to study and solve accelerator physics problems. Two problems involving compensation are studied in the context of the MEIC (Medium Energy Electron Ion Collider) project at Jefferson Laboratory. Several chromaticity (the energy dependence of the particle tune) compensation methods are evaluated numerically and deployed in a figure eight ring designed for the electrons in the collider. Furthermore, transverse coupling optics have been developed to compensate the coupling introduced by the spin rotators in the MEIC electron ring design.

  11. Electromagnetic Techniques | Open Energy Information

    Open Energy Info (EERE)

    Physical Properties See Electrical Techniques Electromagnetic techniques utilize EM induction processes to measure one or more electric or magnetic field components resulting...

  12. Cori Phase I

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    I Cori Phase I The Cori Phase 1 (also known as the "Cori Data Partition") system is based on Intel Haswell processors and provides approximately the same sustained application performance as Hopper (which was retired in Dec 2015). Cori Phase 1 has an almost identical programming environment to Edison with support for the Intel, Cray and GNU programming environments with the same Cray and Intel high performance math and scientific libraries. The Cori Phase 1 interconnect has the same

  13. Advanced thermal barrier coating system development. Technical progress report

    SciTech Connect (OSTI)

    1996-06-10

    The objectives of the program are to provide an improved TBC system with increased temperature capability and improved reliability relative to current state of the art TBC systems. The development of such a coating system is essential to the ATS engine meeting its objectives. The base program consists of three phases: Phase 1: Program Planning--Complete; Phase 2: Development; Phase 3: Selected Specimen--Bench Test. Work is currently being performed in Phase 2 of the program. In Phase 2, process improvements will be married with new bond coat and ceramic materials systems to provide improvements over currently available TBC systems. Coating reliability will be further improved with the development of an improved lifing model and NDE techniques. This will be accomplished by conducting the following program tasks: II.1 Process Modeling; II.2 Bond Coat Development; II.3 Analytical Lifing Model; II.4 Process Development; II.5 NDE, Maintenance and Repair; II.6 New TBC Concepts. A brief summary is given of progress made in each of these 6 areas.

  14. DEVELOPMENT OF NEW DRILLING FLUIDS

    SciTech Connect (OSTI)

    David B. Burnett

    2003-08-01

    The goal of the project has been to develop new types of drill-in fluids (DIFs) and completion fluids (CFs) for use in natural gas reservoirs. Phase 1 of the project was a 24-month study to develop the concept of advanced type of fluids usable in well completions. Phase 1 tested this concept and created a kinetic mathematical model to accurately track the fluid's behavior under downhole conditions. Phase 2 includes tests of the new materials and practices. Work includes the preparation of new materials and the deployment of the new fluids and new practices to the field. The project addresses the special problem of formation damage issues related to the use of CFs and DIFs in open hole horizontal well completions. The concept of a ''removable filtercake'' has, as its basis, a mechanism to initiate or trigger the removal process. Our approach to developing such a mechanism is to identify the components of the filtercake and measure the change in the characteristics of these components when certain cleanup (filtercake removal) techniques are employed.

  15. Phase Transformations in Confined Nanosystems

    SciTech Connect (OSTI)

    Shield, Jeffrey E.; Belashchenko, Kirill

    2014-04-29

    This project discovered that non-equilibrium structures, including chemically ordered structures not observed in bulk systems, form in isolated nanoscale systems. Further, a generalized model was developed that effectively explained the suppression of equilibrium phase transformations. This thermodynamic model considered the free energy decrease associated with the phase transformation was less than the increase in energy associated with the formation of an interphase interface, therefore inhibiting the phase transformation. A critical diameter exists where the system transitions to bulk behavior, and a generalized equation was formulated that successfully predicted this transition in the Fe-Au system. This provided and explains a new route to novel structures not possible in bulk systems. The structural characterization was accomplished using transmission electron microscopy in collaboration with Matthew Kramer of Ames Laboratory. The PI and graduate student visited Ames Laboratory several times a year to conduct the experiments.

  16. Applied ALARA techniques

    SciTech Connect (OSTI)

    Waggoner, L.O.

    1998-02-05

    The presentation focuses on some of the time-proven and new technologies being used to accomplish radiological work. These techniques can be applied at nuclear facilities to reduce radiation doses and protect the environment. The last reactor plants and processing facilities were shutdown and Hanford was given a new mission to put the facilities in a safe condition, decontaminate, and prepare them for decommissioning. The skills that were necessary to operate these facilities were different than the skills needed today to clean up Hanford. Workers were not familiar with many of the tools, equipment, and materials needed to accomplish:the new mission, which includes clean up of contaminated areas in and around all the facilities, recovery of reactor fuel from spent fuel pools, and the removal of millions of gallons of highly radioactive waste from 177 underground tanks. In addition, this work has to be done with a reduced number of workers and a smaller budget. At Hanford, facilities contain a myriad of radioactive isotopes that are 2048 located inside plant systems, underground tanks, and the soil. As cleanup work at Hanford began, it became obvious early that in order to get workers to apply ALARA and use hew tools and equipment to accomplish the radiological work it was necessary to plan the work in advance and get radiological control and/or ALARA committee personnel involved early in the planning process. Emphasis was placed on applying,ALARA techniques to reduce dose, limit contamination spread and minimize the amount of radioactive waste generated. Progress on the cleanup has,b6en steady and Hanford workers have learned to use different types of engineered controls and ALARA techniques to perform radiological work. The purpose of this presentation is to share the lessons learned on how Hanford is accomplishing radiological work.

  17. Characterization of Phase and Emulsion Behavior, Surfactant Retention, and Oil Recovery for Novel Alcohol Ethoxycarboxylate Surfactant

    SciTech Connect (OSTI)

    Moeti, Lebone T.; Sampath, Ramanathan

    2002-03-13

    Electrical conductivity measurements for middle, bottom, and top phases, as well as bottom/middle, and middle/bottom conjugate pair phases of the NEODOX 23-4/dodecane/10mM water system were continued from the previous reporting period. Electrical conductivity of the mixture decreased as the fraction of volume of the middle phase was increased and vice versa. Also inversion phenomena was observed. Following this, more emulsion studies at various temperatures were progresses. A theoretical model to predict the conductivity measurements using Maxwell equations was developed and sensitivity analyses to test the performance of the model was completed. Surtek, Golden, CO, our industrial partner in this project, investigated the suitability of the surfactant for enhanced oil recovery employing coreflooding techniques and observed lower surfactant and hydrocarbon recovery for NEODOX 23-4.

  18. Phase-field Modeling of Displacive Phase Transformations in Elasticall...

    Office of Scientific and Technical Information (OSTI)

    Phase-field Modeling of Displacive Phase Transformations in Elastically Anisotropic and Inhomogeneous Polycrystals Citation Details In-Document Search Title: Phase-field Modeling...

  19. Chemical logging- a geothermal technique | Open Energy Information

    Open Energy Info (EERE)

    technique Abstract Chemical logging studies conducted at the Department of Energy's Raft River Geothermal Test Site in south central Idaho resulted in the development of a...

  20. Phase Field model elucidates competing thermodynamic effects on

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Weapons Life Cycle Phase 6.X Process The Phase 6.x Process is based on the original Joint Nuclear Weapons Life Cycle Process, which includes Phases 1 through 7 and covers all phases of a weapon's life from initial feasibility studies and design through development, production, maintenance, deployment, retirement, and dismantlement. These traditional phases were established by the Department of Defense and the Department of Energy who share responsibility for all U.S nuclear weapons.

  1. Phase 6.X Process | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Nuclear Weapons Life Cycle Phase 6.X Process The Phase 6.x Process is based on the original Joint Nuclear Weapons Life Cycle Process, which includes Phases 1 through 7 and covers all phases of a weapon's life from initial feasibility studies and design through development, production, maintenance, deployment, retirement, and dismantlement. These traditional phases were established by the Department of Defense and the Department of Energy who share responsibility for all U.S nuclear weapons.

  2. Fundamental Mechanisms Driving the Amorphous to Crystalline Phase Transformation

    SciTech Connect (OSTI)

    Reed, B W; Browning, N D; Santala, M K; LaGrange, T; Gilmer, G H; Masiel, D J; Campbell, G H; Raoux, S; Topuria, T; Meister, S; Cui, Y

    2011-01-04

    Phase transformations are ubiquitous, fundamental phenomena that lie at the heart of many structural, optical and electronic properties in condensed matter physics and materials science. Many transformations, especially those occurring under extreme conditions such as rapid changes in the thermodynamic state, are controlled by poorly understood processes involving the nucleation and quenching of metastable phases. Typically these processes occur on time and length scales invisible to most experimental techniques ({micro}s and faster, nm and smaller), so our understanding of the dynamics tends to be very limited and indirect, often relying on simulations combined with experimental study of the ''time infinity'' end state. Experimental techniques that can directly probe phase transformations on their proper time and length scales are therefore key to providing fundamental insights into the whole area of transformation physics and materials science. LLNL possesses a unique dynamic transmission electron microscope (DTEM) capable of taking images and diffraction patterns of laser-driven material processes with resolution measured in nanometers and nanoseconds. The DTEM has previously used time-resolved diffraction patterns to quantitatively study phase transformations that are orders of magnitude too fast for conventional in situ TEM. More recently the microscope has demonstrated the ability to directly image a reaction front moving at {approx}13 nm/ns and the nucleation of a new phase behind that front. Certain compound semiconductor phase change materials, such as Ge{sub 2}Sb{sub 2}Te{sub 5} (GST), Sb{sub 2}Te and GeSb, exhibit a technologically important series of transformations on scales that fall neatly into the performance specifications of the DTEM. If a small portion of such material is heated above its melting point and then rapidly cooled, it quenches into an amorphous state. Heating again with a less intense pulse leads to recrystallization into a vacancy-stabilized metastable rock salt structure. Each transformation takes {approx}10-100 ns, and the cycle can be driven repeatedly a very large number of times with a nanosecond laser such as the DTEM's sample drive laser. These materials are widely used in optical storage devices such as rewritable CDs and DVDs, and they are also applied in a novel solid state memory technology - phase change memory (PCM). PCM has the potential to produce nonvolatile memory systems with high speed, extreme density, and very low power requirements. For PCM applications several materials properties are of great importance: the resistivities of both phases, the crystallization temperature, the melting point, the crystallization speed, reversibility (number of phase-transformation cycles without degradation) and stability against crystallization at elevated temperature. For a viable technology, all these properties need to have good scaling behavior, as dimensions of the memory cells will shrink with every generation. In this LDRD project, we used the unique single-shot nanosecond in situ experimentation capabilities of the DTEM to watch these transformations in GST on the time and length scales most relevant for device applications. Interpretation of the results was performed in conjunction with atomistic and finite-element computations. Samples were provided by collaborators at IBM and Stanford University. We observed, and measured the kinetics of, the amorphous-crystalline and melting-solidification transitions in uniform thin-film samples. Above a certain threshold, the crystal nucleation rate was found to be enormously high (with many nuclei appearing per cubic {micro}m even after nanosecond-scale incubation times), in agreement with atomistic simulation and consistent with an extremely low nucleation barrier. We developed data reduction techniques based on principal component analysis (PCA), revealing the complex, multi-dimensional evolution of the material while suppressing noise and irrelevant information. Using a novel specimen geometry, we also achieved repeated switching betw

  3. SISGR -- Domain Microstructures and Mechanisms for Large, Reversible and Anhysteretic Strain Behaviors in Phase Transforming Ferroelectric Materials

    SciTech Connect (OSTI)

    Wang, Yu U.

    2013-12-06

    This four-year project (including one-year no-cost extension) aimed to advance fundamental understanding of field-induced strain behaviors of phase transforming ferroelectrics. We performed meso-scale phase field modeling and computer simulation to study domain evolutions, mechanisms and engineering techniques, and developed computational techniques for nanodomain diffraction analysis; to further support above originally planned tasks, we also carried out preliminary first-principles density functional theory calculations of point defects and domain walls to complement meso-scale computations as well as performed in-situ high-energy synchrotron X-ray single crystal diffraction experiments to guide theoretical development (both without extra cost to the project thanks to XSEDE supercomputers and DOE user facility Advanced Photon Source).

  4. Advanced Envelope Research for Factory Built Housing, Phase 3...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This work is part of a four-phase, multi-year ... methods for building high performance wall systems. Phase 2 focused on the development ... further in the research - stud walls with ...

  5. dual-phase-ceramic-asu | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pre-Combustion Carbon Dioxide Capture by a New Dual-Phase Ceramic Carbonate Membrane Reactor Project No.: DE-FE0000470 Arizona State University is developing a dual-phase,...

  6. LIQUID PHASE FISCHER-TROPSCH (III & IV) DEMONSTRATION IN THE LAPORTE ALTERNATIVE FUELS DEVELOPMENT UNIT. Final Topical Report. Volume I/II: Main Report. Task 1: Engineering Modifications (Fischer-Tropsch III & IV Demonstration) and Task 2: AFDU Shakedown, Operations, Deactivation (Shut-Down) and Disposal (Fischer-Tropsch III & IV Demonstration).

    SciTech Connect (OSTI)

    Bharat L. Bhatt

    1999-06-01

    Slurry phase Fischer-Tropsch technology was successfully demonstrated in DOE's Alternative Fuels Development Unit (AFDU) at LaPorte, Texas. Earlier work at LaPorte, with iron catalysts in 1992 and 1994, had established proof-of-concept status for the slurry phase process. The third campaign (Fischer-Tropsch III), in 1996, aimed at aggressively extending the operability of the slurry reactor using a proprietary cobalt catalyst. Due to an irreversible plugging of catalyst-wax separation filters as a result of unexpected catalyst fines generation, the operations had to be terminated after seven days on-stream. Following an extensive post-run investigation by the participants, the campaign was successfully completed in March-April 1998, with an improved proprietary cobalt catalyst. These runs were sponsored by the U. S. Department of Energy (DOE), Air Products & Chemicals, Inc., and Shell Synthetic Fuels, Inc. (SSFI). A productivity of approximately 140 grams (gm) of hydrocarbons (HC)/ hour (hr)-liter (lit) of expanded slurry volume was achieved at reasonable system stability during the second trial (Fischer-Tropsch IV). The productivity ranged from 110-140 at various conditions during the 18 days of operations. The catalyst/wax filters performed well throughout the demonstration, producing a clean wax product. For the most part, only one of the four filter housings was needed for catalyst/wax filtration. The filter flux appeared to exceed the design flux. A combination of use of a stronger catalyst and some innovative filtration techniques were responsible for this success. There was no sign of catalyst particle attrition and very little erosion of the slurry pump was observed, in contrast to the Fischer-Tropsch III operations. The reactor operated hydrodynamically stable with uniform temperature profile and gas hold-ups. Nuclear density and differential pressure measurements indicated somewhat higher than expected gas hold-up (45 - 50 vol%) during Fischer-Tropsch IV operations. The high gas hold-up was confirmed by a dynamic gas disengagement test conducted at the end of the run. Heat transfer in the reactor was better than expected. Heat, mass and elemental balance calculations indicated excellent closure. After the initial learning curve with system dynamics, the plant was restarted very quickly (24 hours and 17 hours) following two plant trips. This demonstrates the ease and flexibility of the slurry technology. In-situ reduction of catalyst pre-cursor was completed successfully during F-T IV operations. Water measurements proved to be inaccurate due to wax/oil contamination of the analytical system. However, the reduction appeared to proceed well as close to expected syngas conversion was obtained at the beginning of the run. The selectivity to wax was lower than expected, with higher methane selectivity. Returning to the baseline condition indicated a productivity decline from 135-140 to 125-130 gm HC/hr-lit. of reactor volume in two weeks of operation. This may be a result of some catalyst loss from the reactor as well as initial catalyst deactivation. Significant quantities of product and samples were collected for further processing and analysis by the participants. Gas, liquid and solid phase mixing were studied as planned at two operating conditions using radioactive materials. A large amount of data were collected by ICI Tracerco using 43 detectors around the reactor. The data are being analyzed by Washington University as part of the Hydrodynamic Program with DOE.

  7. Crystal phase identification

    DOE Patents [OSTI]

    Michael, Joseph R.; Goehner, Raymond P.; Schlienger, Max E.

    2001-01-01

    A method and apparatus for determining the crystalline phase and crystalline characteristics of a sample. This invention provides a method and apparatus for unambiguously identifying and determining the crystalline phase and crystalline characteristics of a sample by using an electron beam generator, such as a scanning electron microscope, to obtain a backscattered electron Kikuchi pattern of a sample, and extracting crystallographic and composition data that is matched to database information to provide a quick and automatic method to identify crystalline phases.

  8. VLBI FOR GRAVITY PROBE B. IV. A NEW ASTROMETRIC ANALYSIS TECHNIQUE AND A COMPARISON WITH RESULTS FROM OTHER TECHNIQUES

    SciTech Connect (OSTI)

    Lebach, D. E.; Ratner, M. I.; Shapiro, I. I.; Bartel, N.; Bietenholz, M. F.; Lederman, J. I.; Ransom, R. R.; Campbell, R. M.; Gordon, D.

    2012-07-01

    When very long baseline interferometry (VLBI) observations are used to determine the position or motion of a radio source relative to reference sources nearby on the sky, the astrometric information is usually obtained via (1) phase-referenced maps or (2) parametric model fits to measured fringe phases or multiband delays. In this paper, we describe a 'merged' analysis technique which combines some of the most important advantages of these other two approaches. In particular, our merged technique combines the superior model-correction capabilities of parametric model fits with the ability of phase-referenced maps to yield astrometric measurements of sources that are too weak to be used in parametric model fits. We compare the results from this merged technique with the results from phase-referenced maps and from parametric model fits in the analysis of astrometric VLBI observations of the radio-bright star IM Pegasi (HR 8703) and the radio source B2252+172 nearby on the sky. In these studies we use central-core components of radio sources 3C 454.3 and B2250+194 as our positional references. We obtain astrometric results for IM Peg with our merged technique even when the source is too weak to be used in parametric model fits, and we find that our merged technique yields astrometric results superior to the phase-referenced mapping technique. We used our merged technique to estimate the proper motion and other astrometric parameters of IM Peg in support of the NASA/Stanford Gravity Probe B mission.

  9. Characterization of fluid distributions in porous media by NMR techniques

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Characterization of fluid distributions in porous media by NMR techniques Citation Details In-Document Search Title: Characterization of fluid distributions in porous media by NMR techniques The characterization of pore structures and fluid phase distributions in porous media is of fundamental importance for accurate evaluation of reservoir resources and petroleum recovery as well as for environmental remediation and many chemical engineering processes.

  10. Soft X-ray techniques to study mesoscale magnetism

    SciTech Connect (OSTI)

    Kortright, Jeffrey B.

    2003-06-26

    Heterogeneity in magnetization (M) is ubiquitous in modern systems. Even in nominally homogeneous materials, domains or pinning centers typically mediate magnetization reversal. Fundamental lengths determining M structure include the domain wall width and the exchange stiffness length, typically in the 4-400 nm range. Chemical heterogeneity (phase separation, polycrystalline microstructure, lithographic or other patterning, etc.) with length scales from nanometers to microns is often introduced to influence magnetic properties. With 1-2 nm wavelengths {lambda}, soft x-rays in principle can resolve structure down to {lambda}/2, and are well suited to study these mesoscopic length scales [1, 2]. This article highlights recent advances in resonant soft x-ray methods to resolve lateral magnetic structure [3], and discusses some of their relative merits and limitations. Only techniques detecting x-ray photons (rather than photo-electrons) are considered [4], since they are compatible with strong applied fields to probe relatively deeply into samples. The magneto-optical (MO) effects discovered by Faraday and Kerr were observed in the x-ray range over a century later, first at ''hard'' wavelengths in diffraction experiments probing interatomic magnetic structure [5]. In the soft x-ray range, magnetic linear [6] and circular [7] dichroism spectroscopies first developed that average over lateral magnetic structure. These large resonant MO effects enable different approaches to study magnetic structure or heterogeneity that can be categorized as microscopy or scattering [1]. Direct images of magnetic structure result from photo-emission electron microscopes [4, 8] and zone-plate microscopes [9, 10]. Scattering techniques extended into the soft x-ray include familiar specular reflection that laterally averages over structure but can provide depth-resolved information, and diffuse scattering and diffraction that provide direct information about lateral magnetic structure. Scattering techniques are further classified as partially for fully coherent according to the extent of transverse coherence of the incident beam.

  11. Nano powders, components and coatings by plasma technique

    DOE Patents [OSTI]

    McKechnie, Timothy N.; Antony, Leo V. M.; O'Dell, Scott; Power, Chris; Tabor, Terry

    2009-11-10

    Ultra fine and nanometer powders and a method of producing same are provided, preferably refractory metal and ceramic nanopowders. When certain precursors are injected into the plasma flame in a reactor chamber, the materials are heated, melted and vaporized and the chemical reaction is induced in the vapor phase. The vapor phase is quenched rapidly to solid phase to yield the ultra pure, ultra fine and nano product. With this technique, powders have been made 20 nanometers in size in a system capable of a bulk production rate of more than 10 lbs/hr. The process is particularly applicable to tungsten, molybdenum, rhenium, tungsten carbide, molybdenum carbide and other related materials.

  12. Comprehensive phase characterization of crystalline and amorphous phases of a Class F fly ash

    SciTech Connect (OSTI)

    Chancey, Ryan T.; Stutzman, Paul; Juenger, Maria C.G.; Fowler, David W.

    2010-01-15

    A comprehensive approach to qualitative and quantitative characterization of crystalline and amorphous constituent phases of a largely heterogeneous Class F fly ash is presented. Traditionally, fly ash composition is expressed as bulk elemental oxide content, generally determined by X-ray fluorescence spectroscopy. However, such analysis does not discern between relatively inert crystalline phases and highly reactive amorphous phases of similar elemental composition. X-ray diffraction was used to identify the crystalline phases present in the fly ash, and the Rietveld quantitative phase analysis method was applied to determine the relative proportion of each of these phases. A synergistic method of X-ray powder diffraction, scanning electron microscopy, energy dispersive spectroscopy, and multispectral image analysis was developed to identify and quantify the amorphous phases present in the fly ash.

  13. Shock dynamics of phase diagrams

    SciTech Connect (OSTI)

    Moro, Antonio

    2014-04-15

    A thermodynamic phase transition denotes a drastic change of state of a physical system due to a continuous change of thermodynamic variables, as for instance pressure and temperature. The classical van der Waals equation of state is the simplest model that predicts the occurrence of a critical point associated with the gasliquid phase transition. Nevertheless, below the critical temperature theoretical predictions of the van der Waals theory significantly depart from the observed physical behaviour. We develop a novel approach to classical thermodynamics based on the solution of Maxwell relations for a generalised family of nonlocal entropy functions. This theory provides an exact mathematical description of discontinuities of the order parameter within the phase transition region, it explains the universal form of the equations of state and the occurrence of triple points in terms of the dynamics of nonlinear shock wave fronts. -- Highlights: A new generalisation of van der Waals equation of state. Description of phase transitions in terms of shock dynamics of state curves. Proof of the universality of equations of state for a general class of models. Interpretation of triple points as confluence of classical shock waves. Correspondence table between thermodynamics and nonlinear conservation laws.

  14. Active Seismic Techniques | Open Energy Information

    Open Energy Info (EERE)

    Technique: Seismic Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. StratigraphicStructural: Structural geology-...

  15. Borehole Seismic Techniques | Open Energy Information

    Open Energy Info (EERE)

    Technique: Downhole Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities StratigraphicStructural: Structural geology-...

  16. Radiochemical technique for intensification of underexposed autoradiographs

    SciTech Connect (OSTI)

    Owunwanne, A.

    1984-04-01

    A radiochemical technique has been used to recover images of underexposed and developed autoradiographs. The underexposed image was radioactivated in a solution of (/sup 35/S)thiourea, air-dried, and reexposed to Kodak NMC film which was developed and processed in a Kodak X-Omat processor. Features which were not discernible in the underexposed autoradiographs were well distinguished in the intensified autoradiograph.

  17. Evolution of titanium arc weldment macro and microstructures -- Modeling and real time mapping of phases

    SciTech Connect (OSTI)

    Yang, Z.; Elmer, J.W.; Wong, J.; Debroy, T.

    2000-04-01

    Macro and microstructural features in gas tungsten arc (GTA) welded titanium were modeled for the first time based on a combination of transport phenomena and phase transformation theory. A transient, three-dimensional, turbulent heat transfer and fluid flow model was developed to calculate the temperature and velocity fields, thermal cycles, and the shape and size of the fusion zone. The kinetics of the {alpha}{r_arrow}{beta} allotropic transformation during continuous heating and the corresponding ({alpha}+{beta})/{beta} phase boundary were calculated using a modified Johnson-Mehl-Avrami (JMA) equation and the calculated thermal cycles. The modeling results were compared with the real-time phase mapping data obtained using a unique spatially resolved X-ray diffraction technique with synchrotron radiation. The real-time evolution of grain structure within the entire weld heat-affected zone (HAZ) was modeled in three dimensions using a Monte Carlo technique. The following are the major findings. First, the rates of heat transfer and fluid flow in the titanium weld pool during gas tungsten arc welding (GTAW) are significantly enhanced by turbulence, and previous calculations of laminar fluid flow and heat transfer in arc-melted pools need to be re-examined. The fusion zone geometry, and the {alpha}/({alpha}+{beta})/{beta} phase boundaries in the HAZ could be satisfactorily predicted. Second, comparison of real-time {alpha}{r_arrow}{beta} transformation kinetics with the rates computed assuming various alternative reaction mechanisms indicates the transition was most likely controlled by the transport of Ti atoms across the {alpha}/{beta} interface. Third, comparison of the experimental data with the simulated results indicates the real-time evolution of the grain structure around the weld pool could be simulated by the Monte Carlo technique. Finally, the insight developed in this research could not have been achieved without concomitant modeling and experiments.

  18. ALSO: Smart Technologies Revolutionize Drilling Techniques Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 ALSO: Smart Technologies Revolutionize Drilling Techniques Renewable Energy Technologies In Mexico DEVELOPING THE ENERGY RESOURCES FOR A NEW ERA A QUARTERLY RESEARCH & DEVELOPMENT JOURNAL VOLUME 3, NO. 1 ALSO: Smart Technologies Revolutionize Drilling Techniques Renewable Energy Technologies In Mexico A QUARTERLY RESEARCH & DEVELOPMENT JOURNAL VOLUME 3, NO. 1 DEVELOPING THE ENERGY RESOURCES FOR A NEW ERA S A N D I A T E C H N O L O G Y ON THE COVER: Sandia National Laboratories program

  19. A comparison of observables for solid-solid phase transitions

    SciTech Connect (OSTI)

    Smilowitz, Laura B [Los Alamos National Laboratory; Henson, Bryan F [Los Alamos National Laboratory; Romero, Jerry J [Los Alamos National Laboratory

    2009-01-01

    The study of solid-solid phase transformations is hindered by the difficulty of finding a volumetric probe to use as a progress variable. Solids are typically optically opaque and heterogeneous. Over the past several years, second harmonic generation (SHG) has been used as a kinetic probe for a solid-solid phase transition in which the initial and final phases have different symmetries. Bulk generation of SHG is allowed by symmetry only in noncentrosymmetric crystallographic space groups. For the organic energetic nitramine octahydro-1,3 ,5,7 -tetranitro-1,3 ,5,7 -tatrazocine (HMX), the beta phase is centro symmetric (space group P2{sub 1}/c) and the delta phase iS noncentrosymmetric (space group P6{sub 1}22) making SHG an extremely sensitive, essentially zero background probe of the phase change progress. We have used SHG as a tool to follow the progress of the transformation from beta to delta phase during the solid-solid transformation. However, kinetic models of the transformation derived using different observables from several other groups have differed, showing later onset for the phase change and faster progression to completion. In this work, we have intercompared several techniques to understand these differences. The three techniques discussed are second harmonic generation, Raman spectroscopy, and differential scanning calorimetry (DSC). The progress of the beta to delta phase transition in HMX observed with each of these different probes will be discussed and advantages and disadvantages of each technique described. This paper compares several different observables for use in measuring the kinetics of solid-solid phase transitions. Relative advantages and disadvantages for each technique are described and a direct comparison of results is made for the beta to delta polymorphic phase transition of the energetic nitramine, octahydro-1,3,5,7-tetranitro-1,3,5,7-tatrazocine.

  20. DOE Commercial Building Energy Asset Score: Software Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Score: Software Development for Phase II Building Types DOE Commercial Building Energy Asset Score: Software Development for Phase II Building Types DOE Commercial Building Energy ...

  1. Integrated Tool Development for Used Fuel Disposition Natural...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Tool Development for Used Fuel Disposition Natural System Evaluation Phase I Report Integrated Tool Development for Used Fuel Disposition Natural System Evaluation Phase...

  2. Wind Turbine Drivetrain Condition Monitoring During GRC Phase 1 and Phase 2 Testing

    SciTech Connect (OSTI)

    Sheng, S.; Link, H.; LaCava, W.; van Dam, J.; McNiff, B.; Veers, P.; Keller, J.; Butterfield, S.; Oyague, F.

    2011-10-01

    This report will present the wind turbine drivetrain condition monitoring (CM) research conducted under the phase 1 and phase 2 Gearbox Reliability Collaborative (GRC) tests. The rationale and approach for this drivetrain CM research, investigated CM systems, test configuration and results, and a discussion on challenges in wind turbine drivetrain CM and future research and development areas, will be presented.

  3. Agent review phase one report.

    SciTech Connect (OSTI)

    Zubelewicz, Alex Tadeusz; Davis, Christopher Edward; Bauer, Travis LaDell

    2009-12-01

    This report summarizes the findings for phase one of the agent review and discusses the review methods and results. The phase one review identified a short list of agent systems that would prove most useful in the service architecture of an information management, analysis, and retrieval system. Reviewers evaluated open-source and commercial multi-agent systems and scored them based upon viability, uniqueness, ease of development, ease of deployment, and ease of integration with other products. Based on these criteria, reviewers identified the ten most appropriate systems. The report also mentions several systems that reviewers deemed noteworthy for the ideas they implement, even if those systems are not the best choices for information management purposes.

  4. Two Phase Flow Measurements by Nuclear Magnetic Resonance (NMR)

    SciTech Connect (OSTI)

    Altobelli, Stephen A; Fukushima, Eiichi

    2006-08-14

    In concentrated suspensions, there is a tendency for the solid phase to migrate from regions of high shear rate to regions of low shear (Leighton & Acrivos, 1987). In the early years that our effort was funded by the DOE Division of Basic Energy Science, quantitative measurement of this process in neutrally buoyant suspensions was a major focus (Abbott, et al., 1991; Altobelli, et al., 1991). Much of this work was used to improve multi-phase numerical models at Sandia National Laboratories. Later, our collaborators at Sandia and the University of New Mexico incorporated body forces into their numerical models of suspension flow (Rao, Mondy, Sun, et al., 2002). We developed experiments that allow us to study flows driven by buoyancy, to characterize these flows in well-known and useful engineering terms (Altobelli and Mondy, 2002) and to begin to explore the less well-understood area of flows with multiple solid phases (Beyea, Altobelli, et al., 2003). We also studied flows that combine the effects of shear and buoyancy, and flows of suspensions made from non-Newtonian liquids (Rao, Mondy, Baer, et al, 2002). We were able to demonstrate the usefulness of proton NMR imaging of liquid phase concentration and velocity and produced quantitative data not obtainable by other methods. Fluids flowing through porous solids are important in geophysics and in chemical processing. NMR techniques have been widely used to study liquid flow in porous media. We pioneered the extension of these studies to gas flows (Koptyug, et al, 2000, 2000, 2001, 2002). This extension allows us to investigate a wider range of Peclet numbers, and to gather data on problems of interest in catalysis. We devised two kinds of NMR experiments for three-phase systems. Both experiments employ two NMR visible phases and one phase that gives no NMR signal. The earlier method depends on the two visible phases differing in a NMR relaxation property. The second method (Beyea, Altobelli, et al., 2003) uses two different nuclei, protons and 19F. It also uses two different types of NMR image formation, a conventional spin-echo and a single-point method. The single-point method is notable for being useful for imaging materials which are much more rigid than can usually be studied by NMR imaging. We use it to image low density polyethylene (LDPE) plastic in this application. We have reduced the imaging time for this three-phase imaging method to less than 10 s per pair of profiles by using new hardware. Directly measuring the solid LDPE signal was a novel feature for multi-phase flow studies. We also used thermally polarized gas NMR (as opposed to hyper-polarized gas) which produces low signal to noise ratios because gas densities are on the order of 1000 times smaller than liquid densities. However since we used multi-atom molecules that have short T1's and operated at elevated pressures we could overcome some of the losses. Thermally polarized gases have advantages over hyperpolarized gases in the ease of preparation, and in maintaining a well-defined polarization. In these studies (Codd and Altobelli, 2003), we used stimulated echo sequences to successfully obtain propagators of gas in bead packs out to observation times of 300 ms. Zarraga, et al. (2000) used laser-sheet profilometry to investigate normal stress differences in concentrated suspensions. Recently we developed an NMR imaging analog for comparison with numerical work that is being performed by Rekha Rao at Sandia National Laboratories (Rao, Mondy, Sun, et al, 2002). A neutrally buoyant suspension of 100 mm PMMA spheres in a Newtonian liquid was sheared in a vertical Couette apparatus inside the magnet. The outer cylinder rotates and the inner cylinder is fixed. At these low rotation rates, the free-surface of the Newtonian liquid shows no measurable deformation, but the suspension clearly shows its non-Newtonian character.

  5. Technique for Measuring Hybrid Electronic Component Reliability

    SciTech Connect (OSTI)

    Green, C.C.; Hernandez, C.L.; Hosking, F.M.; Robinson, D.; Rutherford, B.; Uribe, F.

    1999-01-01

    Materials compatibility studies of aged, engineered materials and hardware are critical to understanding and predicting component reliability, particularly for systems with extended stockpile life requirements. Nondestructive testing capabilities for component reliability would significantly enhance lifetime predictions. For example, if the detection of crack propagation through a solder joint can be demonstrated, this technique could be used to develop baseline information to statistically determine solder joint lifelengths. This report will investigate high frequency signal response techniques for nondestructively evaluating the electrical behavior of thick film hybrid transmission lines.

  6. Phase I - Resource Procurement and Identification | Open Energy...

    Open Energy Info (EERE)

    time of reporting and further indicate the presence of a commercially viable geothermal reservoir. 2. Transmission Development Criteria For a project to be considered a Phase I...

  7. Non-equilibrium chemical partitioning calculation for phase transforma...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and time dependent phase selection. The calculation programs were developed in C++ and fortran. In this program, we will integrate the existing calculation programs. Research area:...

  8. Phase II - Resource Exploration and Confirmation | Open Energy...

    Open Energy Info (EERE)

    Reporting Terms and Definitions serve to increase the consistency, accuracy, and reliability of industry information presented in the development updates. Phase I - Resource...

  9. ELECTRONIC PHASE CONTROL CIRCUIT

    DOE Patents [OSTI]

    Salisbury, J.D.; Klein, W.W.; Hansen, C.F.

    1959-04-21

    An electronic circuit is described for controlling the phase of radio frequency energy applied to a multicavity linear accelerator. In one application of the circuit two cavities are excited from a single radio frequency source, with one cavity directly coupled to the source and the other cavity coupled through a delay line of special construction. A phase detector provides a bipolar d-c output signal proportional to the difference in phase between the voltage in the two cavities. This d-c signal controls a bias supply which provides a d-c output for varying the capacitnce of voltage sensitive capacitors in the delay line. The over-all operation of the circuit is completely electronic, overcoming the time response limitations of the electromechanical control systems, and the relative phase relationship of the radio frequency voltages in the two caviiies is continuously controlled to effect particle acceleration.

  10. PHYSICAL SCIENCES, Physics Phase

    Office of Scientific and Technical Information (OSTI)

    SCIENCES, Physics Phase competition in trisected superconducting dome I. M. Vishik, 1, 2 M Hashimoto, 3 R.-H. He, 4 W. S. Lee, 1, 2 F. Schmitt, 1, 2 D. H. Lu, 3 R. G. Moore, 1...

  11. Phase transitions and elementary-particle physics

    SciTech Connect (OSTI)

    Creutz, M.

    1981-01-01

    The reason physicists have recently taken an intense interest in the statistical mechanics of certain lattice models is reviewed. Phase transitions in these systems are of direct relevance to whether the gauge theory of interacting quarks and gluons can prevent the quark as appearing as a free isolated object. Monte Carlo simulation techniques have given the strongest evidence for the confinement phenomenon and are beginning to make numerical predictions in strong interaction physics.

  12. Electron microscope phase enhancement

    DOE Patents [OSTI]

    Jin, Jian; Glaeser, Robert M.

    2010-06-15

    A microfabricated electron phase shift element is used for modifying the phase characteristics of an electron beam passing though its center aperture, while not affecting the more divergent portion of an incident beam to selectively provide a ninety-degree phase shift to the unscattered beam in the back focal plan of the objective lens, in order to realize Zernike-type, in-focus phase contrast in an electron microscope. One application of the element is to increase the contrast of an electron microscope for viewing weakly scattering samples while in focus. Typical weakly scattering samples include biological samples such as macromolecules, or perhaps cells. Preliminary experimental images demonstrate that these devices do apply a ninety degree phase shift as expected. Electrostatic calculations have been used to determine that fringing fields in the region of the scattered electron beams will cause a negligible phase shift as long as the ratio of electrode length to the transverse feature-size aperture is about 5:1. Calculations are underway to determine the feasibility of aspect smaller aspect ratios of about 3:1 and about 2:1.

  13. Diagnostic techniques used in AVLIS

    SciTech Connect (OSTI)

    Heestand, G.M.; Beeler, R.G.

    1992-12-01

    This is the second part of a general overview talk on the atomic vapor laser isotope separation (AVLIS) process. In this presentation the authors will discuss the diagnostic techniques used to measure key parameters in their atomic vapor including densities, temperature, velocities charge exchange rates and background ionization levels. Although these techniques have been extensively applied to their uranium program they do have applicability to other systems. Relevant data demonstrating these techniques will be shown.

  14. The three dimensional X-ray diffraction technique

    SciTech Connect (OSTI)

    Jensen, D. Juul; Poulsen, H.F.

    2012-10-15

    This introductory tutorial describes the so called 3 dimensional X-ray diffraction (3DXRD) technique, which allows bulk non-destructive structural characterizations of crystalline materials. The motivations and history behind the development of this technique are described and its potentials are sketched. Examples of the use of the technique are given and future trends and developments are suggested. The primary aim of the paper is to give 3DXRD novices an easy introduction to the technique and to describe a way from a dream to reality and new results.

  15. Advanced Millimeter-Wave Security Portal Imaging Techniques

    SciTech Connect (OSTI)

    Sheen, David M.; Bernacki, Bruce E.; McMakin, Douglas L.

    2012-04-01

    Millimeter-wave imaging is rapidly gaining acceptance for passenger screening at airports and other secured facilities. This paper details a number of techniques developed over the last several years including novel image reconstruction and display techniques, polarimetric imaging techniques, array switching schemes, as well as high frequency high bandwidth techniques. Implementation of some of these methods will increase the cost and complexity of the mm-wave security portal imaging systems. RF photonic methods may provide new solutions to the design and development of the sequentially switched linear mm-wave arrays that are the key element in the mm-wave portal imaging systems.

  16. Gravity Techniques | Open Energy Information

    Open Energy Info (EERE)

    in density, such as at fault contacts. 2 Gravity techniques are also applied towards reservoir monitoring for subsidence and mass gain or loss within a geothermal reservoir...

  17. Downhole Techniques | Open Energy Information

    Open Energy Info (EERE)

    in-situ within the well, downhole techniques are capable of accurately constraining these reservoir parameters relative to depth.2 Gaining an understanding of these reservoir...

  18. techniques | OpenEI Community

    Open Energy Info (EERE)

    and discussion of smart grid technologies, tools, and techniques. The Smart Grid Investment Grant (SGIG) program is authorized by the Energy Independence and Security Act of...

  19. Low temperature material bonding technique

    DOE Patents [OSTI]

    Ramsey, J. Michael (Knoxville, TN); Foote, Robert S. (Oak Ridge, TN)

    2002-02-12

    A method of performing a lower temperature bonding technique to bond together two mating pieces of glass includes applying a sodium silicate aqueous solution between the two pieces.

  20. Low Temperature Material Bonding Technique

    DOE Patents [OSTI]

    Ramsey, J. Michael (Knoxville, TN); Foote, Robert S. (Oak Ridge, TN)

    2000-10-10

    A method of performing a lower temperature bonding technique to bond together two mating pieces of glass includes applying a sodium silicate aqueous solution between the two pieces.

  1. Improved energy recovery from municipal solid wastes in sanitary landfills by two-phase digestion of biomass

    SciTech Connect (OSTI)

    Onu, Chukwu.

    1990-01-01

    The concept under investigaton was the separation of the acidogenic and the methanogenic phases of anaerobic fermentation, converting the sanitary landfill into an acid reactor and using a separate upflow fixed-film anaerobic reactor for methanogenesis. Acidic leachate from the landfill simulator was used as the influent substrate to the anaerobic reactor. The goal of the study was to improve both methane yield and concentration through nutrient addition and two-phase digestion of MSW. Sewage sludge was utilized to provide moisture, buffering capacity, nutrients, and an adequate microbial population. Single-phase systems with other enhancement techniques were also compared to the two-phase with sludge addition. Data from this study indicated that gas produced in the anaerobic reactor had methane concentration as high as 80 Mole % at the fixed-bed reactor (FBR) hydraulic retention time (HRT) of 7 days. The system reached a cumulative methane production rate of 78.6 {ell}/kg dry waste at an estimated cumulative production rate of approximately 270 {ell}/kg/yr. This performance was better than that reported in the literature for a similar type of feed. This study has also indicated that sewage sludge addition appears to be a successful enhancement technique for methane gas production from municipal solid waste. The addition of mineral nutrients and buffer solutions appears to have influenced the development of a dominant population of methanogenic bacteria in the FBR as indicated by the COD removal efficiency of 90% and 100% conversion of all influent organic acids. In terms of the overall system performance, the two-phase system was superior to the one-phase technique currently in use for methane generation.

  2. Considerations for developing models of multiphase flow in deformable porous media.

    SciTech Connect (OSTI)

    Martinez, Mario J.; Stone, Charles Michael

    2008-09-01

    This document summarizes research and planning for the development of a numerical simulation capability for nonisothermal multiphase, multicomponent transport in heterogeneous deformable porous materials. Particular attention is given to describing a mathematical formulation for flow in deformable media and for numerical techniques for dealing with phase transitions. A development plan is formulated to provide a computational capability motivated by current and future needs in geosystems management for energy security.

  3. Phased-array ultrasonic surface contour mapping system. Technical note

    SciTech Connect (OSTI)

    Fasching, G.E.; Loudin, W.J.; Paton, D.E.; Smith, N.S. Jr.

    1992-11-01

    The development of reliable mechanistic models for prediction of conventional and fluidized-bed combustor and gasifier operation and solids flow behavior in silos or other solids handling and storage components requires knowledge of the contained solids flow characteristics. This knowledge is gained from dynamic experimental measurements of bed top surface contours in addition to measurements of bulk bed properties. The surface contour mapping system (SCMS) provides a means of generating surface contour maps in real time with a unique, automatically focused, density-compensated, digital phased-array scanning, ultrasonic-range measurement system. The system is designed to operate in environments having gas temperatures up to 1,600 {degree}F and pressures to 1,000 psig. Computer simulation of several SCMS candidates and acoustic carrier modulation techniques indicates that a surface measurement resolution of {plus_minus}2 inches over a range of 5 to 20 feet distance between the transmit/receive (T/R) transducers and the bed surface can be expected. The simulation of a particular design, a 9-T/R, 25-pixel bed surface, in which the level of each pixel was randomly set between 5 and 7 feet below the plane of the T/R transducers, then measured using two different modulation techniques, produced excellent results. The simulation of this surface contour mapping system determined the value of the level of each of the 25 pixels to within {plus_minus}1 inch for over 95 percent of more than 100 test cases for one of the modulation techniques, and for over 99 percent of about 100 test cases for a second modulation technique. A hardware implementation of the design simulated but using only a two-T/R, three-pixel SCMS produced results very closely approximating those obtained during the simulation.

  4. QCD Phase Transitions, Volume 15

    SciTech Connect (OSTI)

    Schaefer, T.; Shuryak, E.

    1999-03-20

    The title of the workshop, ''The QCD Phase Transitions'', in fact happened to be too narrow for its real contents. It would be more accurate to say that it was devoted to different phases of QCD and QCD-related gauge theories, with strong emphasis on discussion of the underlying non-perturbative mechanisms which manifest themselves as all those phases. Before we go to specifics, let us emphasize one important aspect of the present status of non-perturbative Quantum Field Theory in general. It remains true that its studies do not get attention proportional to the intellectual challenge they deserve, and that the theorists working on it remain very fragmented. The efforts to create Theory of Everything including Quantum Gravity have attracted the lion share of attention and young talent. Nevertheless, in the last few years there was also a tremendous progress and even some shift of attention toward emphasis on the unity of non-perturbative phenomena. For example, we have seen some efforts to connect the lessons from recent progress in Supersymmetric theories with that in QCD, as derived from phenomenology and lattice. Another example is Maldacena conjecture and related development, which connect three things together, string theory, super-gravity and the (N=4) supersymmetric gauge theory. Although the progress mentioned is remarkable by itself, if we would listen to each other more we may have chance to strengthen the field and reach better understanding of the spectacular non-perturbative physics.

  5. Competing Phases and Basic Mechanisms in Strongly-interacting Electron Systems

    SciTech Connect (OSTI)

    Douglas J. Scalapino; Robert L. Sugar

    2006-01-17

    The goal of this work was to continue the effort to develop numerical tools in order to understand the properties of strongly-correlated electron materials. Towards this goal, they developed new stochastic series Monte Carlo techniques to study the phases of a two-dimensional quantum XY model with ring exchange in an external magnetic field. They determined the zero-temperature phase diagram of this model and found two quantum phase transitions. The first was between an XY-ordered phase and a striped valence-bond phase. The second was between the valence-bond phase and a staggered Neel antiferromagnetic phase. With the external field as an additional control parameter they were able to conclude that this system did not show a quantum spin liquid phase. They extended the study of the Xy model with ring exchange to study its behavior in the 3 dimensions. They find that in three dimensions, the superfluid phase persists to asymptotically large values of the ring exchange K. they do find exotic fractionalized phases in three dimensions. The role of the electron-phonon coupling in the cuprates remains open. They have studied the effect of an onsite Hubbard U Coulomb interaction on the electron-phonon vertex. They found that at strong coupling, Coulomb interaction caused the electron-phonon interaction to be suppressed at large momentum transfers leading to an effective peaking of the interaction in the forward direction while for weaker values of U, the electron-phonon interaction was simply suppressed at all q values. This behavior could favor d-wave pairing, although the effective pairing strength of the phonons remains weak in this model. The dynamics of the pairing interaction is reflected in the frequency dependence of the gap. They have used exact diagonalization to study the frequency dependence of the gap for a two-leg t-J ladder. They were able to determine both the real and imaginary parts of the gap. The key observation was that the weight of the imaginary part was sufficient to account for most all of Re{Delta} (k,{omega} = 0), implying that the dynamics of the interaction is not set by the Mott-Hubbard gap (which is infinite for the t-J model).

  6. Simultaneous assessment of phase chemistry, phase abundance and bulk chemistry with statistical electron probe micro-analyses: Application to cement clinkers

    SciTech Connect (OSTI)

    Wilson, William; Krakowiak, Konrad J.; Ulm, Franz-Josef

    2014-01-15

    According to recent developments in cement clinker engineering, the optimization of chemical substitutions in the main clinker phases offers a promising approach to improve both reactivity and grindability of clinkers. Thus, monitoring the chemistry of the phases may become part of the quality control at the cement plants, along with the usual measurements of the abundance of the mineralogical phases (quantitative X-ray diffraction) and the bulk chemistry (X-ray fluorescence). This paper presents a new method to assess these three complementary quantities with a single experiment. The method is based on electron microprobe spot analyses, performed over a grid located on a representative surface of the sample and interpreted with advanced statistical tools. This paper describes the method and the experimental program performed on industrial clinkers to establish the accuracy in comparison to conventional methods. -- Highlights: A new method of clinker characterization Combination of electron probe technique with cluster analysis Simultaneous assessment of phase abundance, composition and bulk chemistry Experimental validation performed on industrial clinkers.

  7. Disposal phase experimental program plan

    SciTech Connect (OSTI)

    1997-01-31

    The Waste Isolation Pilot Plant (WIPP) facility comprises surface and subsurface facilities, including a repository mined in a bedded salt formation at a depth of 2,150 feet. It has been developed to safely and permanently isolate transuranic (TRU) radioactive wastes in a deep geological disposal site. On April 12, 1996, the DOE submitted a revised Resource Conservation and Recovery Act (RCRA) Part B permit application to the New Mexico Environment Department (NMED). The DOE anticipates receiving an operating permit from the NMED; this permit is required prior to the start of disposal operations. On October 29, 1996, the DOE submitted a Compliance Certification Application (CCA) to the US Environmental Protection Agency (EPA) in accordance with the WIPP land Withdrawal Act (LWA) of 1992 (Public Law 102-579) as amended, and the requirements of Title 40 of the Code of Federal Regulations (40 CFR) Parts 191 and 194. The DOE plans to begin disposal operations at the WIPP in November 1997 following receipt of certification by the EPA. The disposal phase is expected to last for 35 years, and will include recertification activities no less than once every five years. This Disposal Phase Experimental Program (DPEP) Plan outlines the experimental program to be conducted during the first 5-year recertification period. It also forms the basis for longer-term activities to be carried out throughout the 35-year disposal phase. Once the WIPP has been shown to be in compliance with regulatory requirements, the disposal phase gives an opportunity to affirm the compliance status of the WIPP, enhance the operations of the WIPP and the national TRU system, and contribute to the resolution of national and international nuclear waste management technical needs. The WIPP is the first facility of its kind in the world. As such, it provides a unique opportunity to advance the technical state of the art for permanent disposal of long-lived radioactive wastes.

  8. Nanoscopic Dynamics of Phospholipid in Unilamellar Vesicles: Effect of Gel to Fluid Phase Transition

    SciTech Connect (OSTI)

    Sharma, Veerendra K [ORNL; Mamontov, Eugene [ORNL; Anunciado, Divina B [ORNL; O'Neill, Hugh Michael [ORNL; Urban, Volker S [ORNL

    2015-01-01

    Dynamics of phospholipids in unilamellar vesicles (ULV) is of interest in biology, medical, and food sciences since these molecules are widely used as biocompatible agents and a mimic of cell membrane systems. We have investigated the nanoscopic dynamics of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) phospholipid in ULV as a function of temperature using elastic and quasielastic neutron scattering (QENS). The dependence of the signal on the scattering momentum transfer, which is a critical advantage of neutron scattering techniques, allows the detailed analysis of the lipid motions that cannot be carried out by other means. In agreement with a differential scanning calorimetry measurement, a sharp rise in the elastic scattering intensity below ca. 296 K indicates a phase transition from the high-temperature fluid phase to the low-temperature solid gel phase. The microscopic lipid dynamics exhibits qualitative differences between the solid gel phase (in a measurement at 280 K) and the fluid phase (in a measurement at a physiological temperature of 310 K). The data analysis invariably shows the presence of two distinct motions: the whole lipid molecule motion within a monolayer, or lateral diffusion, and the relatively faster internal motion of the DMPC molecule. The lateral diffusion of the whole lipid molecule is found to be Fickian in character, whereas the internal lipid motions are of localized character, consistent with the structure of the vesicles. The lateral motion slows down by an order of magnitude in the solid gel phase, whereas for the internal motion not only the time scale, but also the character of the motion changes upon the phase transition. In the solid gel phase, the lipids are more ordered and undergo uniaxial rotational motion. However, in the fluid phase, the hydrogen atoms of the lipid tails undergo confined translation diffusion rather than uniaxial rotational diffusion. The localized translational diffusion of the hydrogen atoms of the lipid tails is a manifestation of the flexibility of the chains acquired in the fluid phase. Because of this flexibility, both the local diffusivity and the confinement volume for the hydrogen atoms increase linearly from near the lipid s polar head group to the end of its hydrophobic tail. Our results present a quantitative and detailed picture of the effect of the gel-fluid phase transition on the nanoscopic lipid dynamics in ULV. The data analysis approach developed here has a potential for probing the dynamic response of lipids to the presence of additional cell membrane components.

  9. Nanoscopic dynamics of phospholipid in unilamellar vesicles: Effect of gel to fluid phase transition

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sharma, V. K.; Mamontov, E.; Anunciado, D. B.; O’Neill, H.; Urban, V.

    2015-03-04

    Dynamics of phospholipids in unilamellar vesicles (ULV) is of interest in biology, medical, and food sciences since these molecules are widely used as biocompatible agents and a mimic of cell membrane systems. We have investigated the nanoscopic dynamics of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) phospholipid in ULV as a function of temperature using elastic and quasielastic neutron scattering (QENS). The dependence of the signal on the scattering momentum transfer, which is a critical advantage of neutron scattering techniques, allows the detailed analysis of the lipid motions that cannot be carried out by other means. In agreement with a differential scanning calorimetry measurement, amore » sharp rise in the elastic scattering intensity below ca. 296 K indicates a phase transition from the high-temperature fluid phase to the low-temperature solid gel phase. The microscopic lipid dynamics exhibits qualitative differences between the solid gel phase (in a measurement at 280 K) and the fluid phase (in a measurement at a physiological temperature of 310 K). The data analysis invariably shows the presence of two distinct motions: the whole lipid molecule motion within a monolayer, or lateral diffusion, and the relatively faster internal motion of the DMPC molecule. The lateral diffusion of the whole lipid molecule is found to be Fickian in character, whereas the internal lipid motions are of localized character, consistent with the structure of the vesicles. The lateral motion slows down by an order of magnitude in the solid gel phase, whereas for the internal motion not only the time scale, but also the character of the motion changes upon the phase transition. In the solid gel phase, the lipids are more ordered and undergo uniaxial rotational motion. However, in the fluid phase, the hydrogen atoms of the lipid tails undergo confined translation diffusion rather than uniaxial rotational diffusion. The localized translational diffusion of the hydrogen atoms of the lipid tails is a manifestation of the flexibility of the chains acquired in the fluid phase. Because of this flexibility, both the local diffusivity and the confinement volume for the hydrogen atoms increase linearly from near the lipid s polar head group to the end of its hydrophobic tail. Our results present a quantitative and detailed picture of the effect of the gel-fluid phase transition on the nanoscopic lipid dynamics in ULV. Lastly, the data analysis approach developed here has a potential for probing the dynamic response of lipids to the presence of additional cell membrane components.« less

  10. Phase contrast in high resolution electron microscopy

    DOE Patents [OSTI]

    Rose, H.H.

    1975-09-23

    This patent relates to a device for developing a phase contrast signal for a scanning transmission electron microscope. The lens system of the microscope is operated in a condition of defocus so that predictable alternate concentric regions of high and low electron density exist in the cone of illumination. Two phase detectors are placed beneath the object inside the cone of illumination, with the first detector having the form of a zone plate, each of its rings covering alternate regions of either higher or lower electron density. The second detector is so configured that it covers the regions of electron density not covered by the first detector. Each detector measures the number of electrons incident thereon and the signal developed by the first detector is subtracted from the signal developed by the record detector to provide a phase contrast signal. (auth)

  11. Cummins Power Generation SECA Phase 1

    SciTech Connect (OSTI)

    Charles Vesely

    2007-08-17

    The following report documents the progress of the Cummins Power Generation (CPG) SECA Phase 1 SOFC development and final testing under the U.S. Department of Energy Solid State Energy Conversion Alliance (SECA) contract DE-FC26-01NT41244. This report overviews and summarizes CPG and partner research development leading to successful demonstration of the SECA Phase 1 objectives and significant progress towards SOFC commercialization. Significant Phase 1 Milestones: (1) Demonstrated: (a) Operation meeting Phase 1 requirements on commercial natural gas. (b) LPG and Natural Gas CPOX fuel reformers. (c) SOFC systems on dry CPOX reformate. (c) Steam reformed Natural Gas operation. (d) Successful start-up and shut-down of SOFC system without inert gas purge. (e) Utility of stack simulators as a tool for developing balance of plant systems. (2) Developed: (a) Low cost balance of plant concepts and compatible systems designs. (b) Identified low cost, high volume components for balance of plant systems. (c) Demonstrated high efficiency SOFC output power conditioning. (d) Demonstrated SOFC control strategies and tuning methods. The Phase 1 performance test was carried out at the Cummins Power Generation facility in Minneapolis, Minnesota starting on October 2, 2006. Performance testing was successfully completed on January 4, 2007 including the necessary steady-state, transient, efficiency, and peak power operation tests.

  12. Linear phase compressive filter

    DOE Patents [OSTI]

    McEwan, Thomas E.

    1995-01-01

    A phase linear filter for soliton suppression is in the form of a laddered series of stages of non-commensurate low pass filters with each low pass filter having a series coupled inductance (L) and a reverse biased, voltage dependent varactor diode, to ground which acts as a variable capacitance (C). L and C values are set to levels which correspond to a linear or conventional phase linear filter. Inductance is mapped directly from that of an equivalent nonlinear transmission line and capacitance is mapped from the linear case using a large signal equivalent of a nonlinear transmission line.

  13. Linear phase compressive filter

    DOE Patents [OSTI]

    McEwan, T.E.

    1995-06-06

    A phase linear filter for soliton suppression is in the form of a laddered series of stages of non-commensurate low pass filters with each low pass filter having a series coupled inductance (L) and a reverse biased, voltage dependent varactor diode, to ground which acts as a variable capacitance (C). L and C values are set to levels which correspond to a linear or conventional phase linear filter. Inductance is mapped directly from that of an equivalent nonlinear transmission line and capacitance is mapped from the linear case using a large signal equivalent of a nonlinear transmission line. 2 figs.

  14. Cori Phase II

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    II Cori Phase II Cori Phase-2 system will be a Cray XC system based on the second generation of Intel® Xeon Phi(tm) Product Family, called Knights Landing (KNL) Many Integrated Core (MIC) Architecture. The system will have a sustained performance that is at least ten times that of the NERSC-6 "Hopper" system, based on a set of characteristic benchmarks. Some important characteristics of the system include: Knights Landing is a self-hosted architecture, not a co-processor, not an

  15. Phase relationship in coal ash corrosion products

    SciTech Connect (OSTI)

    Kalmanovitch, D.

    1996-12-31

    The corrosion of heat transfer surfaces in coal-fired utility boilers is a major concern to the efficient operation of these units. Despite the importance of the corrosion there has been limited research on the relationship between the ash components on the tube surface and the interactions and reactions between the various components and the steel surface. Mechanisms such as molten phase corrosion, sulfidation, and high temperature oxidation have been identified as leading to extensive wastage oftube metal. However, while the corrosion process can be identified using techniques such as metallography and x-ray diffraction there is limited insight into the role ofthe coal mineralogy and ash deposits on the surface in the corrosion process. This paper describes research into the formation of molten or sernimolten phases within ash deposits which are associated with corrosion of superheater and reheater fireside surfaces. For example, the phases potassium pyrosulfate (K{sub 2}S{sub 2}O{sub 7}) and potassium aluminum sulfate (K{sub 2}Al{sub 2}SO{sub 7}) have been determined by x-ray diffraction to be present in deposits where fireside corrosion has occurred. However, both these phases are not directly derived from coal minerals or the common matrix observed in ash deposits. The examination of the reactions and interactions within deposits which result in the formation of these and other phases associated with corrosion will be discussed in the paper.

  16. New ALS Technique Gives Nanoscale Views of Complex Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New ALS Technique Gives Nanoscale Views of Complex Systems Print Studying and identifying molecules at the mesoscale has always been challenging-even the best microscopes and spectrometers have difficulty simultaneously identifying and spatially resolving this realm of matter, which ranges from about 10 to 1000 nanometers in size. But ALS researchers recently developed a broadband imaging technique that looks inside the mesoscale realm with unprecedented sensitivity and range. The new technique,

  17. New ALS Technique Gives Nanoscale Views of Complex Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New ALS Technique Gives Nanoscale Views of Complex Systems Print Studying and identifying molecules at the mesoscale has always been challenging-even the best microscopes and spectrometers have difficulty simultaneously identifying and spatially resolving this realm of matter, which ranges from about 10 to 1000 nanometers in size. But ALS researchers recently developed a broadband imaging technique that looks inside the mesoscale realm with unprecedented sensitivity and range. The new technique,

  18. New ALS Technique Gives Nanoscale Views of Complex Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New ALS Technique Gives Nanoscale Views of Complex Systems Print Studying and identifying molecules at the mesoscale has always been challenging-even the best microscopes and spectrometers have difficulty simultaneously identifying and spatially resolving this realm of matter, which ranges from about 10 to 1000 nanometers in size. But ALS researchers recently developed a broadband imaging technique that looks inside the mesoscale realm with unprecedented sensitivity and range. The new technique,

  19. New ALS Technique Gives Nanoscale Views of Complex Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New ALS Technique Gives Nanoscale Views of Complex Systems Print Studying and identifying molecules at the mesoscale has always been challenging-even the best microscopes and spectrometers have difficulty simultaneously identifying and spatially resolving this realm of matter, which ranges from about 10 to 1000 nanometers in size. But ALS researchers recently developed a broadband imaging technique that looks inside the mesoscale realm with unprecedented sensitivity and range. The new technique,

  20. New ALS Technique Gives Nanoscale Views of Complex Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New ALS Technique Gives Nanoscale Views of Complex Systems New ALS Technique Gives Nanoscale Views of Complex Systems Print Wednesday, 28 May 2014 00:00 Studying and identifying molecules at the mesoscale has always been challenging-even the best microscopes and spectrometers have difficulty simultaneously identifying and spatially resolving this realm of matter, which ranges from about 10 to 1000 nanometers in size. But ALS researchers recently developed a broadband imaging technique that looks

  1. New ALS Technique Gives Nanoscale Views of Complex Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Technique Gives Nanoscale Views of Complex Systems Print Studying and identifying molecules at the mesoscale has always been challenging-even the best microscopes and spectrometers have difficulty simultaneously identifying and spatially resolving this realm of matter, which ranges from about 10 to 1000 nanometers in size. But ALS researchers recently developed a broadband imaging technique that looks inside the mesoscale realm with unprecedented sensitivity and range. The new technique,

  2. New ALS Technique Gives Nanoscale Views of Complex Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New ALS Technique Gives Nanoscale Views of Complex Systems Print Studying and identifying molecules at the mesoscale has always been challenging-even the best microscopes and spectrometers have difficulty simultaneously identifying and spatially resolving this realm of matter, which ranges from about 10 to 1000 nanometers in size. But ALS researchers recently developed a broadband imaging technique that looks inside the mesoscale realm with unprecedented sensitivity and range. The new technique,

  3. A technique for measuring compressive properties of single microballoons :

    Office of Scientific and Technical Information (OSTI)

    comparison of carbon microballoons of varying tap densities (Conference) | SciTech Connect SciTech Connect Search Results Conference: A technique for measuring compressive properties of single microballoons : comparison of carbon microballoons of varying tap densities Citation Details In-Document Search Title: A technique for measuring compressive properties of single microballoons : comparison of carbon microballoons of varying tap densities A technique has been developed to obtain

  4. Methods, techniques, and tools for analyzing cumulative effects

    SciTech Connect (OSTI)

    Southerland, M.T.

    1995-12-01

    One of the perceived impediments to successful cumulative effects analysis is the lack of readily available methods for addressing the wider boundaries, extended time frames, and more complex interactions involved. Many of the methods commonly used in environmental impact assessment can adequately address cumulative effects if used in combination. Other methods, specifically adapted to analyzing cumulative effects have also been developed. Performing cumulative effects analysis requires (1) an appropriate conceptual framework be developed and (2) the full range of impacts be determined and evaluated. Methods for both phases of cumulative effects analysis are needed, or special purpose methods that incorporate several methods and directly address cumulative effects can be used. The primary methods for developing a cumulative effects conceptual model are often those used in scoping, and are generally qualitative. Foremost among these methods are information gathering techniques. More specific methods are often needed for identifying resources (e.g., checklist), setting boundaries (e.g., mapping), identifying past, present, and future actions (e.g., checklists and trends analysis), and identifying cause and effect pathways (e.g., networks). The primary methods for evaluating impacts include modeling resource response and interactions, determining resource-specific impacts, determining cumulative impacts, determining significance of impacts, and, if appropriate, determining overall cumulative impact. Special purpose methods for performing cumulative effects analysis can be used when conditions warrant and information is available. Such methods include carrying capacity analysis, ecosystem analysis, the synoptic landscape approach, economic impact assessment, and social impact assessment. Two important tools with applications to the analysis of cumulative effects are geographic information systems and remote sensing.

  5. Formation Testing Techniques | Open Energy Information

    Open Energy Info (EERE)

    Testing Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Formation Testing Techniques Details Activities (0) Areas (0) Regions (0)...

  6. Form:ExplorationTechnique | Open Energy Information

    Open Energy Info (EERE)

    Exploration Technique below. If the technique already exists, you will be able to edit its information. AddEdit Technique Retrieved from "http:en.openei.orgw...

  7. Phase change compositions

    DOE Patents [OSTI]

    Salyer, Ival O.; Griffen, Charles W.

    1986-01-01

    Compositions containing crystalline, long chain, alkyl hydrocarbons as phase change materials including cementitious compositions containing the alkyl hydrocarbons neat or in pellets or granules formed by incorporating the alkyl hydrocarbons in polymers or rubbers; and polymeric or elastomeric compositions containing alkyl hydrocarbons.

  8. Phase change compositions

    DOE Patents [OSTI]

    Salyer, Ival O.

    1989-01-01

    Compositions containing crystalline, straight chain, alkyl hydrocarbons as phase change materials including cementitious compositions containing the alkyl hydrocarbons neat or in pellets or granules formed by incorporating the alkyl hydrocarbons in polymers or rubbers; and polymeric or elastomeric compositions containing alkyl hydrocarbons.

  9. DEVELOPMENT OF IMPROVED TECHNIQUES FOR SATELLITE REMOTE SENSING...

    Office of Scientific and Technical Information (OSTI)

    These products and raw satellite images can be accessed at http:cloudsgate2.larc.nasa.gov... Authors: Minnis, Patrick 1 + Show Author Affiliations NASA Langley Research ...

  10. Exploration and Development Techniques for Basin and Range Geothermal...

    Open Energy Info (EERE)

    Abstract Abstract unavailable. Authors David D. Blackwell, Mark Leidig, Richard P. Smith, Stuart D. Johnson and Kenneth W. Wisian Conference GRC Annual Meeting; Reno, NV;...

  11. X-ray divergent-beam (Kossel) technique: A review

    SciTech Connect (OSTI)

    Lider, V. V.

    2011-03-15

    The development of the X-ray divergent-beam (Kossel) technique over the last 50 years is traced. The fundamentals of this technique and ways to implement it experimentally are considered, and its potential for studying the real structure of crystals is analyzed in detail.

  12. Radar transponder apparatus and signal processing technique

    DOE Patents [OSTI]

    Axline, R.M. Jr.; Sloan, G.R.; Spalding, R.E.

    1996-01-23

    An active, phase-coded, time-grating transponder and a synthetic-aperture radar (SAR) and signal processor means, in combination, allow the recognition and location of the transponder (tag) in the SAR image and allow communication of information messages from the transponder to the SAR. The SAR is an illuminating radar having special processing modifications in an image-formation processor to receive an echo from a remote transponder, after the transponder receives and retransmits the SAR illuminations, and to enhance the transponder`s echo relative to surrounding ground clutter by recognizing special transponder modulations from phase-shifted from the transponder retransmissions. The remote radio-frequency tag also transmits information to the SAR through a single antenna that also serves to receive the SAR illuminations. Unique tag-modulation and SAR signal processing techniques, in combination, allow the detection and precise geographical location of the tag through the reduction of interfering signals from ground clutter, and allow communication of environmental and status information from said tag to be communicated to said SAR. 4 figs.

  13. Radar transponder apparatus and signal processing technique

    DOE Patents [OSTI]

    Axline, Jr., Robert M. (Albuquerque, NM); Sloan, George R. (Albuquerque, NM); Spalding, Richard E. (Albuquerque, NM)

    1996-01-01

    An active, phase-coded, time-grating transponder and a synthetic-aperture radar (SAR) and signal processor means, in combination, allow the recognition and location of the transponder (tag) in the SAR image and allow communication of information messages from the transponder to the SAR. The SAR is an illuminating radar having special processing modifications in an image-formation processor to receive an echo from a remote transponder, after the transponder receives and retransmits the SAR illuminations, and to enhance the transponder's echo relative to surrounding ground clutter by recognizing special transponder modulations from phase-shifted from the transponder retransmissions. The remote radio-frequency tag also transmits information to the SAR through a single antenna that also serves to receive the SAR illuminations. Unique tag-modulation and SAR signal processing techniques, in combination, allow the detection and precise geographical location of the tag through the reduction of interfering signals from ground clutter, and allow communication of environmental and status information from said tag to be communicated to said SAR.

  14. Accelerator-mode-based technique for studying quantum chaos

    SciTech Connect (OSTI)

    D'Arcy, M.B.; Godun, R.M.; Cassettari, D. [Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Summy, G.S. [Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078-3072 (United States)

    2003-02-01

    We experimentally demonstrate a method for selecting small regions of phase space for kicked rotor quantum chaos experiments with cold atoms. Our technique uses quantum accelerator modes to selectively accelerate atomic wave packets with localized spatial and momentum distributions. The potential used to create the accelerator mode and subsequently realize the kicked rotor system is formed by a set of off-resonant standing-wave light pulses. We also propose a method for testing whether a selected region of phase space exhibits chaotic or regular behavior using a Ramsey type separated field experiment.

  15. Visualizing and improving the robustness of phase retrieval algorithms

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tripathi, Ashish; Leyffer, Sven; Munson, Todd; Wild, Stefan M.

    2015-06-01

    Coherent x-ray diffractive imaging is a novel imaging technique that utilizes phase retrieval and nonlinear optimization methods to image matter at nanometer scales. We explore how the convergence properties of a popular phase retrieval algorithm, Fienup's HIO, behave by introducing a reduced dimensionality problem allowing us to visualize and quantify convergence to local minima and the globally optimal solution. We then introduce generalizations of HIO that improve upon the original algorithm's ability to converge to the globally optimal solution.

  16. Category:Magnetotelluric Techniques | Open Energy Information

    Open Energy Info (EERE)

    Magnetotelluric Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Magnetotelluric Techniques page? For detailed...

  17. Phase shifting interferometer

    DOE Patents [OSTI]

    Sommargren, Gary E.

    1999-01-01

    An interferometer which has the capability of measuring optical elements and systems with an accuracy of .lambda./1000 where .lambda. is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about .lambda./50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. Whereas current interferometers illuminate the optic to be tested with an aberrated wavefront which also limits the accuracy of the measurement, this interferometer uses an essentially perfect spherical measurement wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms.

  18. Phase shifting interferometer

    DOE Patents [OSTI]

    Sommargren, G.E.

    1999-08-03

    An interferometer is disclosed which has the capability of measuring optical elements and systems with an accuracy of {lambda}/1000 where {lambda} is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about {lambda}/50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. Whereas current interferometers illuminate the optic to be tested with an aberrated wavefront which also limits the accuracy of the measurement, this interferometer uses an essentially perfect spherical measurement wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms. 11 figs.

  19. Phase shifting diffraction interferometer

    DOE Patents [OSTI]

    Sommargren, Gary E.

    1996-01-01

    An interferometer which has the capability of measuring optical elements and systems with an accuracy of .lambda./1000 where .lambda. is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about .lambda./50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms.

  20. Phase shifting diffraction interferometer

    DOE Patents [OSTI]

    Sommargren, G.E.

    1996-08-29

    An interferometer which has the capability of measuring optical elements and systems with an accuracy of {lambda}/1000 where {lambda} is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about {lambda}/50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms. 8 figs.

  1. A technique for synthesizing metal tritide standards

    SciTech Connect (OSTI)

    Bach, H. T.; Allen, T. H.; Hill, D. D.; Martinez, P. T.; Schwarz, R. B.; Paglieri, S. N.; Wermer, J. R.

    2008-07-15

    Before surplus plutonium pits can be decommissioned and converted into metal oxides to be used as reactor fuels, residual tritium must be reduced to an acceptable level. We have developed two analytical methods involving melting and acid dissolution, combined with liquid scintillation counting as a quantitative and sensitive technique for measuring residual tritium in Pu metal. The detection limit, linearity, and reproducibility of these analytical methods must be validated with a series of metal tritide standards. Since there are no commercially available metal tritide standards, we have developed a technique for their synthesis. The synthesis of these low-level metal tritide standards is accomplished by charging cerium powder with a known amount of tritium to form a master cerium tritide alloy and then by aliquoting from this master alloy and diluting with pure cerium powder to form a series of standards with different tritium concentrations. The major difficulty in synthesizing these standards is that the samples contain extremely low levels of tritium, which span over three decades of concentrations. The synthesis technique and initial data obtained for cerium hydride samples will be presented. (authors)

  2. New Spectroscopic Technique Reveals the Dynamics of Operating Battery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrodes New Spectroscopic Technique Reveals the Dynamics of Operating Battery Electrodes New Spectroscopic Technique Reveals the Dynamics of Operating Battery Electrodes Print Wednesday, 29 January 2014 00:00 Developing high-performance batteries relies on material breakthroughs. During the past few years, various in situ characterization tools have been developed and have become indispensable in studying and the eventual optimization of battery materials. However, soft x-ray

  3. Computational and experimental techniques for coupled acoustic/structure

    Office of Scientific and Technical Information (OSTI)

    interactions. (Technical Report) | SciTech Connect Computational and experimental techniques for coupled acoustic/structure interactions. Citation Details In-Document Search Title: Computational and experimental techniques for coupled acoustic/structure interactions. This report documents the results obtained during a one-year Laboratory Directed Research and Development (LDRD) initiative aimed at investigating coupled structural acoustic interactions by means of algorithm development and

  4. Technical Support to SBIR Phase II Project: Improved Conversion of Cellulose Waste to Ethanol Using a Dual Bioreactor System: Cooperative Research and Development Final Report, CRADA Number CRD-08-310

    SciTech Connect (OSTI)

    Zhang, M.

    2013-04-01

    Over-dependence on fossil fuel has spurred research on alternative energy. Inedible plant materials such as grass and corn stover represent abundant renewable natural resources that can be transformed into biofuel. Problems in enzymatic conversion of biomass to sugars include the use of incomplete synergistic enzymes, end-product inhibition, and adsorption and loss of enzymes necessitating their use in large quantities. Technova Corporation will develop a defined consortium of natural microorganisms that will efficiently break down biomass to energy-rich soluble sugars, and convert them to cleaner-burning ethanol fuel. The project will also develop a novel biocatalytic hybrid reactor system dedicated to this bioprocess, which embodies recent advances in nanotechnology. NREL will participate to develop a continuous fermentation process.

  5. Solid phase extraction membrane

    DOE Patents [OSTI]

    Carlson, Kurt C [Nashville, TN; Langer, Roger L [Hudson, WI

    2002-11-05

    A wet-laid, porous solid phase extraction sheet material that contains both active particles and binder and that possesses excellent wet strength is described. The binder is present in a relatively small amount while the particles are present in a relatively large amount. The sheet material is sufficiently strong and flexible so as to be pleatable so that, for example, it can be used in a cartridge device.

  6. Gas-Phase Diagnostics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Phase Diagnostics - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  7. Authentication techniques for smart cards

    SciTech Connect (OSTI)

    Nelson, R.A.

    1994-02-01

    Smart card systems are most cost efficient when implemented as a distributed system, which is a system without central host interaction or a local database of card numbers for verifying transaction approval. A distributed system, as such, presents special card and user authentication problems. Fortunately, smart cards offer processing capabilities that provide solutions to authentication problems, provided the system is designed with proper data integrity measures. Smart card systems maintain data integrity through a security design that controls data sources and limits data changes. A good security design is usually a result of a system analysis that provides a thorough understanding of the application needs. Once designers understand the application, they may specify authentication techniques that mitigate the risk of system compromise or failure. Current authentication techniques include cryptography, passwords, challenge/response protocols, and biometrics. The security design includes these techniques to help prevent counterfeit cards, unauthorized use, or information compromise. This paper discusses card authentication and user identity techniques that enhance security for microprocessor card systems. It also describes the analysis process used for determining proper authentication techniques for a system.

  8. Techniques and guidelines for streamlining NEPA

    SciTech Connect (OSTI)

    Dickerman, J.A.; Tolbert, V.R.; Richmond, A.A.; Salk, M.S. )

    1993-01-01

    Five ideas for streamlining both the NEPA process and documents are explored for preparers of NEPA documents. Techniques and guidelines that implement these ideas will be provided as effective worksheets, pithy guidelines, flowcharts, and examples. The five streamlining ideas and the techniques or guidelines to achieve them are: (1) emphasize early planning through concise definition of project scope, purpose, need, and proposed action; determine need for compliance with applicable environmental requirements. (2) develop effective worksheets that include purpose, need, and proposed action; issue analysis; alternatives; environmental consequences; and NEPA checklist. (3) use information services/databases to integrate information services and identify existing databases. (4) maximize use of tables and graphs for analysis of alternatives; assumptions used (bounding analyses); environmental consequences. (5) create inviting documents with clear, concise writing; summarize in text; supporting data in appendices; and inviting visual layouts.

  9. Phased Contrast X-Ray Imaging

    ScienceCinema (OSTI)

    Erin Miller

    2012-12-31

    The Pacific Northwest National Laboratory is developing a range of technologies to broaden the field of explosives detection. Phased contrast X-ray imaging, which uses silicon gratings to detect distortions in the X-ray wave front, may be applicable to mail or luggage scanning for explosives; it can also be used in detecting other contraband, small-parts inspection, or materials characterization.

  10. TWRS Privatization Phase 1 Master Site Plan

    SciTech Connect (OSTI)

    PARAZIN, R.J.

    1999-08-16

    This document provides a reference for the development of the Tank Waste Remediation System (TWRS) Privatization Phase I site (former Grout Disposal Compound) and the upgrades and extension to the site of the 200 East Area inter- and intra-area roads and various utilities.

  11. Phase contrast portal imaging using synchrotron radiation

    SciTech Connect (OSTI)

    Umetani, K.; Kondoh, T.

    2014-07-15

    Microbeam radiation therapy is an experimental form of radiation treatment with great potential to improve the treatment of many types of cancer. We applied a synchrotron radiation phase contrast technique to portal imaging to improve targeting accuracy for microbeam radiation therapy in experiments using small animals. An X-ray imaging detector was installed 6.0 m downstream from an object to produce a high-contrast edge enhancement effect in propagation-based phase contrast imaging. Images of a mouse head sample were obtained using therapeutic white synchrotron radiation with a mean beam energy of 130 keV. Compared to conventional portal images, remarkably clear images of bones surrounding the cerebrum were acquired in an air environment for positioning brain lesions with respect to the skull structure without confusion with overlapping surface structures.

  12. Phase-field modeling of diffusional phase behaviors of solid...

    Office of Scientific and Technical Information (OSTI)

    case study of phase-separating LiXFePO4 electrode particles Citation Details In-Document ... case study of phase-separating LiXFePO4 electrode particles You are accessing a ...

  13. Pressure induced phase transitions in ceramic compounds containing tetragonal zirconia

    SciTech Connect (OSTI)

    Sparks, R.G.; Pfeiffer, G.; Paesler, M.A.

    1988-12-01

    Stabilized tetragonal zirconia compounds exhibit a transformation toughening process in which stress applied to the material induces a crystallographic phase transition. The phase transition is accompanied by a volume expansion in the stressed region thereby dissipating stress and increasing the fracture strength of the material. The hydrostatic component of the stress required to induce the phase transition can be investigated by the use of a high pressure technique in combination with Micro-Raman spectroscopy. The intensity of Raman lines characteristic for the crystallographic phases can be used to calculate the amount of material that has undergone the transition as a function of pressure. It was found that pressures on the order of 2-5 kBar were sufficient to produce an almost complete transition from the original tetragonal to the less dense monoclinic phase; while a further increase in pressure caused a gradual reversal of the transition back to the original tetragonal structure.

  14. Interferometric encoder techniques: Final report, September 29, 1986-January 15, 1988

    SciTech Connect (OSTI)

    Tansey, R.J.; Hirs, J.; Widen, K.; Needham, G.; Muenter, S.; Holly, S.; Hindy, R.N.

    1988-01-08

    Photon and particle beam pointing systems depend for accuracy on the integrity of a mechanical structure that supports its key components. Minute bending and deformations of mechanical structures introduce angular errors into the pointing process that cannot easily be removed. To maintain pointing accuracies of a system in the tens of nanoradians, bending and deformation of a mechanical structure must be kept under control. There is no current technology that can perform these angular measurements that satisfy the envisioned requirements on angular resolution, total angular dynamic range and angular velocity. The present contract was used to develop the required technology in response to the envisioned requirements in this area of the Strategic Defense Initiative. As will be shown in this report, the measurement techniques that are developed may equally be applied to measure either linear or angular translations. The most frequently adopted approach in non-contact distance measurement (either linear or rotary) utilizes 2 readout stations (gates) that are positioned along a periodic structure (optical, magnetic, etc.) so that they are in phase quadrature with respect to one another. Either the periodic structure or the dual gate assembly moves with respect to the other. During translation the 2 gates produce 2 periodic signals, which are 90/sup 0/ out of phase, and allow determination of travel direction in addition to measurement (in terms of number of periods of the periodic structure) of the distance traveled.

  15. Phase-field Modeling of Displacive Phase Transformations in Elastically

    Office of Scientific and Technical Information (OSTI)

    Anisotropic and Inhomogeneous Polycrystals (Journal Article) | SciTech Connect Phase-field Modeling of Displacive Phase Transformations in Elastically Anisotropic and Inhomogeneous Polycrystals Citation Details In-Document Search Title: Phase-field Modeling of Displacive Phase Transformations in Elastically Anisotropic and Inhomogeneous Polycrystals Authors: Heo, T W ; Chen, L Q Publication Date: 2014-03-06 OSTI Identifier: 1169262 Report Number(s): LLNL-JRNL-651372 DOE Contract Number:

  16. Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOH(TM)) Process

    SciTech Connect (OSTI)

    1997-09-30

    The Liquid Phase Methanol (LPMEOH) Demonstration Project at Kingsport, Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership). Ak Products and Chemicals, Inc. (Air Products) and Eastman Chemical Company (Eastman) formed the Partnership to execute the Demonstration Project. The LPMEOITM Process Demonstration Unit was built at a site located at the Eastman complex in Kingsport. During this reporting period, DOE accepted the recommendation to continue with dimethyl ether (DME) design verification testing (DVT). DME design verification testing studies show the liquid phase DME (LPDME) process will have a significant economic advantage for the coproduction of DME for local markets. An LPDME catalyst system with reasonable long-term activity and stzibility is being developed. Planning for a proof-of-concept test run at the LaPorte Alternative Fuels Development Unit (AFDU) was recommended. DOE issued a letter dated 31 July 1997 accepting the recommendation to continue design verification testing. In order to allow for scale-up of the manufacturing technique for the dehydration catalyst from the pilot plant to the commercial scale, the time required to produce the catalyst to the AFDU has slipped. The new estimated delivery date is 01 June 1998.

  17. Advanced Envelope Research for Factory Built Housing, Phase 3-Design

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development and Prototyping | Department of Energy Factory Built Housing, Phase 3-Design Development and Prototyping Advanced Envelope Research for Factory Built Housing, Phase 3-Design Development and Prototyping The Advanced Envelope Research project, managed by Building America team ARIES Collaborative, will provide factory homebuilders with high performance, cost-effective alternative envelope designs. In the near term, these technologies will play a central role in meeting stringent

  18. Process for phase separation

    DOE Patents [OSTI]

    Comolli, Alfred G.

    1979-01-01

    This invention provides a continuous process for separating a gaseous phase from a hydrocarbon liquid containing carbonaceous particulates and gases. The liquid is fed to a cylindrical separator, with the gaseous phase being removed therefrom as an overhead product, whereas the hydrocarbon liquid and the particulates are withdrawn as a bottoms product. By feeding the liquid tangentially to the separator and maintaining a particulate-liquid slurry downward velocity of from about 0.01 to about 0.25 fps in the separator, a total solids weight percent in the slurry of from about 0.1 to about 30%, a slurry temperature of from about 550.degree. to about 900.degree. F., a slurry residence time in the separator of from about 30 to about 360 seconds, and a length/diameter ratio for the separator of from about 20/1 to about 50/1, so that the characterization factor, .alpha., defined as ##STR1## DOES NOT EXCEED ABOUT 48 (.degree.R sec.sup.2)/ft, the deposit of carbonaceous materials on the interior surface of the separator may be substantially eliminated.

  19. Federal ESPC Process Phase 1: Acquisition Planning | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1: Acquisition Planning Federal ESPC Process Phase 1: Acquisition Planning During phase 1 of the energy savings performance contract (ESPC) process, the agency contacts a Federal Energy Management Program (FEMP) federal project executive who helps educate the agency about procurement steps that are unique to ESPCs. Phase 1 at a Glance Step 1: Agency Contacts a Federal Project Executive Step 2: Agency Considers Procurement Requirements Step 3: Agency Develops a Plan of Action for the Project

  20. FORGE Phase Infographic | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FORGE Phase Infographic FORGE Phase Infographic FORGE Phase Infographic More Documents & Publications FORGE Infographic FORGE Phase Infographic EERE Strategic Plan Infographic FORGE Phase Infographic Milford, Utah FORGE Map

  1. Lightweight and Statistical Techniques for Petascale PetaScale Debugging

    SciTech Connect (OSTI)

    Miller, Barton

    2014-06-30

    This project investigated novel techniques for debugging scientific applications on petascale architectures. In particular, we developed lightweight tools that narrow the problem space when bugs are encountered. We also developed techniques that either limit the number of tasks and the code regions to which a developer must apply a traditional debugger or that apply statistical techniques to provide direct suggestions of the location and type of error. We extend previous work on the Stack Trace Analysis Tool (STAT), that has already demonstrated scalability to over one hundred thousand MPI tasks. We also extended statistical techniques developed to isolate programming errors in widely used sequential or threaded applications in the Cooperative Bug Isolation (CBI) project to large scale parallel applications. Overall, our research substantially improved productivity on petascale platforms through a tool set for debugging that complements existing commercial tools. Previously, Office Of Science application developers relied either on primitive manual debugging techniques based on printf or they use tools, such as TotalView, that do not scale beyond a few thousand processors. However, bugs often arise at scale and substantial effort and computation cycles are wasted in either reproducing the problem in a smaller run that can be analyzed with the traditional tools or in repeated runs at scale that use the primitive techniques. New techniques that work at scale and automate the process of identifying the root cause of errors were needed. These techniques significantly reduced the time spent debugging petascale applications, thus leading to a greater overall amount of time for application scientists to pursue the scientific objectives for which the systems are purchased. We developed a new paradigm for debugging at scale: techniques that reduced the debugging scenario to a scale suitable for traditional debuggers, e.g., by narrowing the search for the root-cause analysis to a small set of nodes or by identifying equivalence classes of nodes and sampling our debug targets from them. We implemented these techniques as lightweight tools that efficiently work on the full scale of the target machine. We explored four lightweight debugging refinements: generic classification parameters, such as stack traces, application-specific classification parameters, such as global variables, statistical data acquisition techniques and machine learning based approaches to perform root cause analysis. Work done under this project can be divided into two categories, new algorithms and techniques for scalable debugging, and foundation infrastructure work on our MRNet multicast-reduction framework for scalability, and Dyninst binary analysis and instrumentation toolkits.

  2. Surface characterization based on optical phase shifting interferometry

    DOE Patents [OSTI]

    Mello, Michael , Rosakis; Ares J.

    2011-08-02

    Apparatus, techniques and systems for implementing an optical interferometer to measure surfaces, including mapping of instantaneous curvature or in-plane and out-of-plane displacement field gradients of a sample surface based on obtaining and processing four optical interferograms from a common optical reflected beam from the sample surface that are relatively separated in phase by .pi./2.

  3. Acoustic Detection of Phase Transitions at the Nanoscale

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vasudevan, Rama K.; Khassaf, Hamidreza; Cao, Ye; Zhang, Shujun; Tselev, Alexander; Carmichael, Ben D.; Okatan, Mahmut Baris; Jesse, Stephen; Chen, Long-Qing; Alpay, S. Pamir; et al

    2016-01-25

    On page 478, N. Bassiri-Gharb and co-workers demonstrate acoustic detection in nanoscale volumes by use of an atomic force microscope tip technique. Elastic changes in volume are measured by detecting changes in resonance of the cantilever. Also, the electric field in this case causes a phase transition, which is modeled by Landau theory.

  4. Development, calibration, and predictive results of a simulator for subsurface pathway fate and transport of aqueous- and gaseous-phase contaminants in the Subsurface Disposal Area at the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    Magnuson, S.O.; Sondrup, A.J.

    1998-07-01

    This document presents the development, calibration, and predictive results of a simulation study of fate and transport of waste buried in the Subsurface Disposal Area (SDA) (which is hereafter referred to as the SDA simulation study). This report builds on incorporates a previous report that dealt only with the calibration of a flow model for simulation of water movement beneath the SDA (Magnuson and Sondrup 1996). The primary purpose of the SDA simulation study was to perform fate and transport calculations to support the IRA. A secondary purpose of the SDA simulation study was to be able to use the model to evaluate possible remediation strategies and their effects on flow and transport in the OU 7-13/14 feasibility study.

  5. TWRS phase I privatization site environmental baseline and characterization plan

    SciTech Connect (OSTI)

    Shade, J.W.

    1997-09-01

    This document provides a plan to characterize and develop an environmental baseline for the TWRS Phase I Privatization Site before construction begins. A site evaluation study selected the former Grout Disposal Area of the Grout Treatment Facility in the 200 East Area as the TWRS Phase I Demonstration Site. The site is generally clean and has not been used for previous activities other than the GTF. A DQO process was used to develop a Sampling and Analysis Plan that would allow comparison of site conditions during operations and after Phase I ends to the presently existing conditions and provide data for the development of a preoperational monitoring plan.

  6. Helical Nanofilament Phases

    SciTech Connect (OSTI)

    L Hough; H Jung; D Kruerke; M Heberling; M Nakata; C Jones; D Chen; D Link; N Clark; et al.

    2011-12-31

    In the formation of chiral crystals, the tendency for twist in the orientation of neighboring molecules is incompatible with ordering into a lattice: Twist is expelled from planar layers at the expense of local strain. We report the ordered state of a neat material in which a local chiral structure is expressed as twisted layers, a state made possible by spatial limitation of layering to a periodic array of nanoscale filaments. Although made of achiral molecules, the layers in these filaments are twisted and rigorously homochiral - a broken symmetry. The precise structural definition achieved in filament self-assembly enables collective organization into arrays in which an additional broken symmetry - the appearance of macroscopic coherence of the filament twist-produces a liquid crystal phase of helically precessing layers.

  7. Experimental validation of an 8 element EMAT phased array probe for longitudinal wave generation

    SciTech Connect (OSTI)

    Le Bourdais, Florian Marchand, Benoit

    2015-03-31

    Sodium cooled Fast Reactors (SFR) use liquid sodium as a coolant. Liquid sodium being opaque, optical techniques cannot be applied to reactor vessel inspection. This makes it necessary to develop alternative ways of assessing the state of the structures immersed in the medium. Ultrasonic pressure waves are well suited for inspection tasks in this environment, especially using pulsed electromagnetic acoustic transducers (EMAT) that generate the ultrasound directly in the liquid sodium. The work carried out at CEA LIST is aimed at developing phased array EMAT probes conditioned for reactor use. The present work focuses on the experimental validation of a newly manufactured 8 element probe which was designed for beam forming imaging in a liquid sodium environment. A parametric study is carried out to determine the optimal setup of the magnetic assembly used in this probe. First laboratory tests on an aluminium block show that the probe has the required beam steering capabilities.

  8. Data mining and visualization techniques

    DOE Patents [OSTI]

    Wong, Pak Chung; Whitney, Paul; Thomas, Jim

    2004-03-23

    Disclosed are association rule identification and visualization methods, systems, and apparatus. An association rule in data mining is an implication of the form X.fwdarw.Y where X is a set of antecedent items and Y is the consequent item. A unique visualization technique that provides multiple antecedent, consequent, confidence, and support information is disclosed to facilitate better presentation of large quantities of complex association rules.

  9. Photovoltaic manufacturing technology, Phase 1

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    This report describes subcontracted research by the Chronar Corporation, prepared by Advanced Photovoltaic Systems, Inc. (APS) for Phase 1 of the Photovoltaic Manufacturing Technology Development project. Amorphous silicon is chosen as the PV technology that Chronar Corporation and APS believe offers the greatest potential for manufacturing improvements, which, in turn, will result in significant cost reductions and performance improvements in photovoltaic products. The APS Eureka'' facility was chosen as the manufacturing system that can offer the possibility of achieving these production enhancements. The relationship of the Eureka'' facility to Chronar's batch'' plants is discussed. Five key areas are also identified that could meet the objectives of manufacturing potential that could lead to improved performance, reduced manufacturing costs, and significantly increased production. The projected long-term potential benefits of these areas are discussed, as well as problems that may impede the achievement of the hoped-for developments. A significant number of the problems discussed are of a generic nature and could be of general interest to the industry. The final section of this document addresses the cost and time estimates for achieving the solutions to the problems discussed earlier. Emphasis is placed on the number, type, and cost of the human resources required for the project.

  10. Energy Reductions Using Next-Generation Remanufacturing Techniques

    SciTech Connect (OSTI)

    Sordelet, Daniel; Racek, Ondrej

    2012-02-24

    The goal of this project was to develop a radically new surface coating approach that greatly enhances the performance of thermal spray coatings. Rather than relying on a roughened grit blasted substrate surface for developing a mechanical bond between the coating and substrate, which is the normal practice with conventional thermal spraying, a hybrid approach of combining a focused laser beam to thermally treat the substrate surface in the vicinity of the rapidly approaching thermally-sprayed powder particles was developed. This new surface coating process is targeted primarily at enabling remanufacturing of components used in engines, drive trains and undercarriage systems; thereby providing a substantial global opportunity for increasing the magnitude and breadth of parts that are remanufactured through their life cycle, as opposed to simply being replaced by new components. The projected benefits of a new remanufacturing process that increases the quantity of components that are salvaged and reused compared to being fabricated from raw materials will clearly vary based on the specific industry and range of candidate components that are considered. At the outset of this project two different metal processing routes were considered, castings and forgings, and the prototypical components for each process were liners and crankshafts, respectively. The quantities of parts used in the analysis are based on our internal production of approximately 158,000 diesel engines in 2007. This leads to roughly 1,000,000 liners (assuming a mixture of 6- and 8-cylinder engines) and 158,000 crankshafts. Using energy intensity factors for casting and forgings, respectively, of 4450 and 5970 Btu-hr/lb along with the energy-induced CO2 generation factor of 0.00038 lbs CO2/Btu, energy savings of over 17 trillion BTUs and CO2 reductions of over 6.5 million lbs could potentially be realized by remanufacturing the above mentioned quantities of crankshafts and liners. This project supported the Industrial Technologies Program's initiative titled 'Industrial Energy Efficiency Grand Challenge.' To contribute to this Grand Challenge, we. pursued an innovative processing approach for the next generation of thermal spray coatings to capture substantial energy savings and green house gas emission reductions through the remanufacturing of steel and aluminum-based components. The primary goal was to develop a new thermal spray coating process that yields significantly enhanced bond strength. To reach the goal of higher coating bond strength, a laser was coupled with a traditional twin-wire arc (TWA) spray gun to treat the component surface (i.e., heat or partially melt) during deposition. Both ferrous and aluminum-based substrates and coating alloys were examined to determine what materials are more suitable for the laser-assisted twin-wire arc coating technique. Coating adhesion was measured by static tensile and dynamic fatigue techniques, and the results helped to guide the identification of appropriate remanufacturing opportunities that will now be viable due to the increased bond strength of the laser-assisted twin-wire arc coatings. The feasibility of the laser-assisted TWA (LATWA) process was successfully demonstrated in this current effort. Critical processing parameters were identified, and when these were properly controlled, a strong, diffusion bond was developed between the substrate and the deposited coating. Consequently, bond strengths were nearly doubled over those typically obtained using conventional grit-blast TWA coatings. Note, however, that successful LATWA processing was limited to ferrous substrates coated with steel coatings (e.g., 1020 and 1080 steel). With Al-based substrates, it was not possible to avoid melting a thin layer of the substrate during spraying, and this layer re-solidified to form a band of intermetallic phases at the substrate/coating interface, which significantly diminished the coating adhesion. The capability to significantly increase the bond strength with ferrous substrates and coatings may open new reman

  11. Transient data acquisition techniques under EDS

    SciTech Connect (OSTI)

    Telford, S.

    1985-06-01

    This paper is the first of a series which describes the Enrichment Diagnostic System (EDS) developed for the MARS project at Lawrence Livermore National Laboratory. Although EDS was developed for use on AVLIS, the functional requirements, overall design, and specific techniques are applicable to any experimental data acquisition system involving large quantities of transient data. In particular this paper will discuss the techniques and equipment used to do the data acquisition. Included are what types of hardware are used and how that hardware (CAMAC, digital oscilloscopes) is interfaced to the HP computers. In this discussion the author will address the problems encountered and the solutions used, as well as the performance of the instrument/computer interfaces. The second topic the author will discuss is how the acquired data is associated to graphics and analysis portions of EDS through efficient real time data bases. This discussion will include how the acquired data is folded into the overall structure of EDS providing the user immediate access to raw and analyzed data. By example you will see how easily a new diagnostic can be added to the EDS structure without modifying the other parts of the system. 8 figs.

  12. Viscosity Meaurement Technique for Metal Fuels

    SciTech Connect (OSTI)

    Ban, Heng; Kennedy, Rory

    2015-02-09

    Metallic fuels have exceptional transient behavior, excellent thermal conductivity, and a more straightforward reprocessing path, which does not separate out pure plutonium from the process stream. Fabrication of fuel containing minor actinides and rare earth (RE) elements for irradiation tests, for instance, U-20Pu-3Am-2Np-1.0RE-15Zr samples at the Idaho National Laboratory, is generally done by melt casting in an inert atmosphere. For the design of a casting system and further scale up development, computational modeling of the casting process is needed to provide information on melt flow and solidification for process optimization. Therefore, there is a need for melt viscosity data, the most important melt property that controls the melt flow. The goal of the project was to develop a measurement technique that uses fully sealed melt sample with no Americium vapor loss to determine the viscosity of metallic melts and at temperatures relevant to the casting process. The specific objectives of the project were to: develop mathematical models to establish the principle of the measurement method, design and build a viscosity measurement prototype system based on the established principle, and calibrate the system and quantify the uncertainty range. The result of the project indicates that the oscillation cup technique is applicable for melt viscosity measurement. Detailed mathematical models of innovative sample ampoule designs were developed to not only determine melt viscosity, but also melt density under certain designs. Measurement uncertainties were analyzed and quantified. The result of this project can be used as the initial step toward the eventual goal of establishing a viscosity measurement system for radioactive melts.

  13. An experimental study of the (Ti-6Al-4V)-xH phase diagram using...

    Office of Scientific and Technical Information (OSTI)

    An experimental study of the (Ti-6Al-4V)-xH phase diagram using in situ synchrotron XRD and TGADSC techniques This content will become publicly available on February 10, 2017 ...

  14. Category:Geochemical Techniques | Open Energy Information

    Open Energy Info (EERE)

    Techniques Technique Subcategories This category has only the following subcategory. G + Geochemical Data Analysis (2 categories) 4 pages Pages in category "Geochemical...

  15. Category:Downhole Techniques | Open Energy Information

    Open Energy Info (EERE)

    Downhole Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Downhole Techniques page? For detailed information on Downhole...

  16. Category:Seismic Techniques | Open Energy Information

    Open Energy Info (EERE)

    Seismic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Seismic Techniques page? For detailed information on Seismic...

  17. Category:Geophysical Techniques | Open Energy Information

    Open Energy Info (EERE)

    Geophysical Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Geophysical Techniques page? For detailed information on...

  18. Category:Drilling Techniques | Open Energy Information

    Open Energy Info (EERE)

    Drilling Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Drilling Techniques page? For detailed information on Drilling...

  19. Category:Magnetic Techniques | Open Energy Information

    Open Energy Info (EERE)

    Magnetic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Magnetic Techniques page? For detailed information on Magnetic...

  20. Hyperspectral Remote Sensing Techniques For Locating Geothermal...

    Open Energy Info (EERE)

    Remote Sensing Techniques For Locating Geothermal Resources Jump to: navigation, search OpenEI Reference LibraryAdd to library Poster: Hyperspectral Remote Sensing Techniques For...

  1. Category:Electrical Techniques | Open Energy Information

    Open Energy Info (EERE)

    Resistivity Survey E Electrical Techniques Electromagnetic Techniques R Radiometrics S Self Potential T Telluric Survey Retrieved from "http:en.openei.orgw...

  2. Innovative Exploration Techniques for Geothermal Assessment at...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico Innovative Exploration Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico Innovative Exploration ...

  3. Uncertainty Analysis Technique for OMEGA Dante Measurements ...

    Office of Scientific and Technical Information (OSTI)

    Uncertainty Analysis Technique for OMEGA Dante Measurements Citation Details In-Document Search Title: Uncertainty Analysis Technique for OMEGA Dante Measurements You are...

  4. Second order phase transition temperature of single crystals of Gd5Si1.3Ge2.7 and Gd5Si1.4Ge2.6

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hadimani, R. L.; Melikhov, Y.; Schlagel, D. L.; Lograsso, T. A.; Dennis, K. W.; McCallum, R. W.; Jiles, D. C.

    2015-01-30

    Gd5(SixGe1–x)4 has mixed phases in the composition range 0.32 < x < 0.41, which have not been widely studied. In this paper, we have synthesized and indexed single crystal samples of Gd5Si1.3Ge2.7 and Gd5Si1.4Ge2.6. In this study, we have investigated the first order and second order phase transition temperatures of these samples using magnetic moment vs. temperature and magnetic moment vs. magnetic field at different temperatures. We have used a modified Arrott plot technique that was developed and reported by us previously to determine the “hidden” second order phase transition temperature of the orthorhombic II phase.

  5. ALS Scientists Patent Technique To Dramatically Advance Grating-Based

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spectroscopy ALS Scientists Patent Technique To Dramatically Advance Grating-Based Spectroscopy ALS Scientists Patent Technique To Dramatically Advance Grating-Based Spectroscopy Print Tuesday, 29 January 2013 16:28 Gratings - optical elements used to separate light in spectroscopy applications - have been in use since the early 19th century. Developments in the late 19th century led to the manufacture of gratings by highly precise ruling with a diamond onto a metallic surface. Many gratings

  6. ALS Scientists Patent Technique To Dramatically Advance Grating-Based

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spectroscopy ALS Scientists Patent Technique To Dramatically Advance Grating-Based Spectroscopy ALS Scientists Patent Technique To Dramatically Advance Grating-Based Spectroscopy Print Gratings - optical elements used to separate light in spectroscopy applications - have been in use since the early 19th century. Developments in the late 19th century led to the manufacture of gratings by highly precise ruling with a diamond onto a metallic surface. Many gratings are still produced today using

  7. Advanced thermal barrier coating system development: Technical progress report

    SciTech Connect (OSTI)

    1996-08-07

    Objectives are to provide an improved TBC system with increased temperature capability and improved reliability, for the Advanced Turbine Systems program (gas turbine). The base program consists of three phases: Phase I, program planning (complete); Phase II, development; and Phase III (selected specimen-bench test). Work is currently being performed in Phase II.

  8. Phase-shifting point diffraction interferometer phase grating designs

    DOE Patents [OSTI]

    Naulleau, Patrick (Oakland, CA)

    2001-01-01

    Diffraction phase gratings are employed in phase-shifting point diffraction interferometers to improve the interferometric fringe contrast. The diffraction phase grating diffracts a zeroth-order diffraction of light at a first power level to the test-beam window of a mask that is positioned at the image plane and a first-order diffraction at a second power to the reference-beam pinhole. The diffraction phase grating is preferably selected to yield a desired ratio of the first power level to second power level.

  9. First-order electroweak phase transition in the standard model...

    Office of Scientific and Technical Information (OSTI)

    This addition enables a strong first-order phase transition to develop even with a Higgs boson mass well above the current direct limit of 114 GeV. The phisup 6 term can be ...

  10. Drilling Techniques | Open Energy Information

    Open Energy Info (EERE)

    be made and then locations for further drilling can be narrowed down. Once a confident reservoir model is made Development Drilling methods can be employed. A geothermal well...

  11. JCCRER Project 2.3 -- Deterministic effects of occupational exposure to radiation. Phase 1: Feasibility study; Final report

    SciTech Connect (OSTI)

    Okladnikova, N.; Pesternikova, V.; Sumina, M.

    1998-12-01

    Phase 1 of Project 2.3, a short-term collaborative Feasibility Study, was funded for 12 months starting on 1 February 1996. The overall aim of the study was to determine the practical feasibility of using the dosimetric and clinical data on the MAYAK worker population to study the deterministic effects of exposure to external gamma radiation and to internal alpha radiation from inhaled plutonium. Phase 1 efforts were limited to the period of greatest worker exposure (1948--1954) and focused on collaboratively: assessing the comprehensiveness, availability, quality, and suitability of the Russian clinical and dosimetric data for the study of deterministic effects; creating an electronic data base containing complete clinical and dosimetric data on a small, representative sample of MAYAK workers; developing computer software for the testing of a currently used health risk model of hematopoietic effects; and familiarizing the US team with the Russian diagnostic criteria and techniques used in the identification of Chronic Radiation Sickness.

  12. Phased-Resolved Strain Measuremetns in Hydrated Ordinary Portland Cement Using Synchrotron x-Rays (Prop. 2003-033)

    SciTech Connect (OSTI)

    BIernacki, Joseph J.; Watkins, Thomas R; Parnham, C. J.; Hubbard, Camden R; Bai, J.

    2006-01-01

    X-ray diffraction methods developed for the determination of residual stress states in crystalline materials have been applied to study residual strains and strains because of mechanical loading of ordinary portland cement paste. Synchrotron X-rays were used to make in situ measurements of interplanar spacings in the calcium hydroxide (CH) phase of hydrated neat portland cement under uniaxial compression. The results indicate that strains on the order of 1/100 000 can be resolved providing an essentially new technique by which to measure the phase-resolved meso-scale mechanical behavior of cement under different loading conditions. Evaluation of these strain data in view of published elastic parameters for CH suggests that the CH carries a large fraction of the applied stress and that plastic interactions with the matrix are notable.

  13. A sol-powder coating technique for fabrication of yttria stabilised zirconia

    SciTech Connect (OSTI)

    Wattanasiriwech, Darunee . E-mail: darunee@mfu.ac.th; Wattanasiriwech, Suthee; Stevens, Ron

    2006-08-10

    Yttria stabilised zirconia has been prepared using a simple sol-powder coating technique. The polymeric yttria sol, which was prepared using 1,3 propanediol as a network modifier, was homogeneously mixed with nanocrystalline zirconia powder and it showed a dual function: as a binder which promoted densification and a phase modifier which stabilised zirconia in the tetragonal and cubic phases. Thermal analysis and X-ray diffraction revealed that the polymeric yttria sol which decomposed at low temperature into yttrium oxide could change the m {sup {yields}} t phase transformation behaviour of the zirconia, possibly due to the small particle size and very high surface area of both yttria and zirconia particles allowing rapid alloying. The sintered samples exhibited three crystalline phases: monoclinic, tetragonal and cubic, in which cubic and tetragonal are the major phases. The weight fractions of the individual phases present in the selected specimens were determined using quantitative Rietveld analysis.

  14. Techniques for Automated Performance Analysis

    SciTech Connect (OSTI)

    Marcus, Ryan C.

    2014-09-02

    The performance of a particular HPC code depends on a multitude of variables, including compiler selection, optimization flags, OpenMP pool size, file system load, memory usage, MPI configuration, etc. As a result of this complexity, current predictive models have limited applicability, especially at scale. We present a formulation of scientific codes, nodes, and clusters that reduces complex performance analysis to well-known mathematical techniques. Building accurate predictive models and enhancing our understanding of scientific codes at scale is an important step towards exascale computing.

  15. Solano Phase 3 | Open Energy Information

    Open Energy Info (EERE)

    Phase 3 Jump to: navigation, search Name Solano Phase 3 Facility Solano Phase 3 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Sacramento...

  16. Tillamook Windfloat Phase 1 | Open Energy Information

    Open Energy Info (EERE)

    Windfloat Phase 1 Jump to: navigation, search Name Tillamook Windfloat Phase 1 Facility Tillamook Windfloat Phase 1 Sector Wind energy Facility Type Offshore Wind Facility Status...

  17. Cleveland Project Phase 2 | Open Energy Information

    Open Energy Info (EERE)

    Project Phase 2 Jump to: navigation, search Name Cleveland Project Phase 2 Facility Cleveland Project Phase 2 Sector Wind energy Facility Type Offshore Wind Facility Status...

  18. Windy Flats Phase III | Open Energy Information

    Open Energy Info (EERE)

    Phase III Jump to: navigation, search Name Windy Flats Phase III Facility Windy Flats Phase III Sector Wind energy Facility Type Commercial Scale Wind Facility Status Proposed...

  19. SolarTile: A rooftop integrated photovoltaic system. Phase 1, final report

    SciTech Connect (OSTI)

    1998-03-26

    AstroPower, Royal Group Technologies, and Solar Design Associates are jointly developing an integrated photovoltaic roofing system for residential and light commercial building applications. This family of products will rely heavily on the technological development of a roofing tile made from recycled plastic and innovative module fabrication and encapsulation processes in conjunction with an advanced Silicon-Film{trademark} solar cell product. This solar power generating roofing product is presently being referred to as the SolarTile. A conceptual drawing of the solar roofing tile is shown. The SolarTile will be integrated with non-solar tiles in a single roof installation permitting ease of assembly and the ability to use conventional roofing techniques at ridges, valleys, and eaves. The Phase 1 effort included tasks aimed at the development of the proposed product concept; product manufacturing or fabrication, and installation cost estimates; business planning; and a market assessment of the proposed product, including target selling prices, target market sectors, size estimates for each market sector, and planned distribution mechanisms for market penetration. Technical goals as stated in the Phase 1 proposal and relevant progress are reported.

  20. Safety Analysis Report Update Program: Overview and Phase 1 implementation

    SciTech Connect (OSTI)

    Not Available

    1991-08-01

    During FY 1989, the DOE-Oak Ridge Operations (ORO) office formed joint Operating Contractor/DOE-ORO organizations to address safety analysis related issues. The Safety Analysis Report Working Group (SARWG) took on the task of developing a strategy to address the issue of updating SARs to today's standards. The resulting SAR Update Program was approved by the Safety Analysis Report Management Group (SARMG) and on November 6, 1989, was accepted by the senior management of DOE-ORO, and its operating contractors, including Martin Marietta Energy Systems, Inc. This SAR Update Program consists of five phases: Phase 0 -- continued operation evaluations; Phase 1 -- hazard classification and qualitative analysis; Phase 1A -- updated operational safety requirements; Phase 2 -- quantitative accident analysis; and, Phase 3 -- complete DOE-approved SARs. 8 refs., 17 figs., 6 tabs.

  1. Digitally controlled distributed phase shifter

    DOE Patents [OSTI]

    Hietala, Vincent M. (Placitas, NM); Kravitz, Stanley H. (Placitas, NM); Vawter, Gregory A. (Albuquerque, NM)

    1993-01-01

    A digitally controlled distributed phase shifter is comprised of N phase shifters. Digital control is achieved by using N binary length-weighted electrodes located on the top surface of a waveguide. A control terminal is attached to each electrode thereby allowing the application of a control signal. The control signal is either one or two discrete bias voltages. The application of the discrete bias voltages changes the modal index of a portion of the waveguide that corresponds to a length of the electrode to which the bias voltage is applied, thereby causing the phase to change through the underlying portion of the waveguide. The digitally controlled distributed phase shift network has a total phase shift comprised of the sum of the individual phase shifters.

  2. Digitally controlled distributed phase shifter

    DOE Patents [OSTI]

    Hietala, V.M.; Kravitz, S.H.; Vawter, G.A.

    1993-08-17

    A digitally controlled distributed phase shifter is comprised of N phase shifters. Digital control is achieved by using N binary length-weighted electrodes located on the top surface of a waveguide. A control terminal is attached to each electrode thereby allowing the application of a control signal. The control signal is either one or two discrete bias voltages. The application of the discrete bias voltages changes the modal index of a portion of the waveguide that corresponds to a length of the electrode to which the bias voltage is applied, thereby causing the phase to change through the underlying portion of the waveguide. The digitally controlled distributed phase shift network has a total phase shift comprised of the sum of the individual phase shifters.

  3. Technical report on LWR design decision methodology. Phase I

    SciTech Connect (OSTI)

    None

    1980-03-01

    Energy Incorporated (EI) was selected by Sandia Laboratories to develop and test on LWR design decision methodology. Contract Number 42-4229 provided funding for Phase I of this work. This technical report on LWR design decision methodology documents the activities performed under that contract. Phase I was a short-term effort to thoroughly review the curret LWR design decision process to assure complete understanding of current practices and to establish a well defined interface for development of initial quantitative design guidelines.

  4. Centrifuge Techniques and Apparatus for Transport Experiments in Porous Media

    SciTech Connect (OSTI)

    Earl D. Mattson; Carl D. Paler; Robert W. Smith; Markus Flury

    2010-06-01

    This paper describes experimental approaches and apparatus that we have developed to study solute and colloid transport in porous media using Idaho National Laboratory's 2-m radius centrifuge. The ex-perimental techniques include water flux scaling with applied acceleration at the top of the column and sub-atmospheric pressure control at the column base, automation of data collection, and remote experimental con-trol over the internet. These apparatus include a constant displacement piston pump, a custom designed liquid fraction collector based on switching valve technology, and modified moisture monitoring equipment. Suc-cessful development of these experimental techniques and equipment is illustrated through application to transport of a conservative tracer through unsaturated sand column, with centrifugal acceleration up to 40 gs. Development of such experimental equipment that can withstand high accelerations enhances the centrifuge technique to conduct highly controlled unsaturated solute/colloid transport experiments and allows in-flight liquid sample collection of the effluent.

  5. Project Home Again Phase II

    SciTech Connect (OSTI)

    2010-01-30

    Phase II is a continuation of a charitable residential community project in New Orleans that builds affordable and energy efficient single detached residences that are storm resistant.

  6. Method for aqueous phase reactions

    DOE Patents [OSTI]

    Elliott, Douglas C.; Hart, Todd R.

    2000-01-01

    A method for converting liquid organic material in a mixture into a product utilizing a catalyst in the form of a plurality of porous particles wherein each particle is a support having nickel metal catalytic phase or reduced nickel deposited thereon in a first dispersed phase and an additional metal deposited onto the support in a second dispersed phase. The additional metal is effective in retarding or reducing agglomeration or sintering of the nickel metal catalytic phase without substantially affecting the catalytic activity, thereby increasing the life time of the catalyst.

  7. Two-beam ultrabroadband coherent anti-Stokes Raman spectroscopy for high resolution gas-phase multiplex imaging

    SciTech Connect (OSTI)

    Bohlin, Alexis; Kliewer, Christopher J.

    2014-01-20

    We propose and develop a method for wideband coherent anti-Stokes Raman spectroscopy (CARS) in the gas phase and demonstrate the single-shot measurement of N{sub 2}, H{sub 2}, CO{sub 2}, O{sub 2}, and CH{sub 4}. Pure-rotational and vibrational O-, Q-, and S- branch spectra are collected simultaneously, with high spectral and spatial resolution, and within a single-laser-shot. The relative intensity of the rotational and vibrational signals can be tuned arbitrarily using polarization techniques. The ultrashort 7 fs pump and Stokes pulses are automatically overlapped temporally and spatially using a two-beam CARS technique, and the crossed probe beam allows for excellent spatial sectioning of the probed location.

  8. Phase field study of interfacial diffusion-driven spheroidization in a composite comprized of two mutually insoluble phases

    SciTech Connect (OSTI)

    Tian, Liang [Ames Laboratory; Russell, Alan [Ames Laboratory

    2014-03-27

    The phase field approach is a powerful computational technique to simulate morphological and microstructural evolution at the mesoscale. Spheroidization is a frequently observed morphological change of mesoscale heterogeneous structures during annealing. In this study, we used the diffuse interface phase field method to investigate the interfacial diffusion-driven spheroidization of cylindrical rod structures in a composite comprised of two mutually insoluble phases in a two-dimensional case. Perturbation of rod radius along a cylinder's axis has long been known to cause the necessary chemical potential gradient that drives spheroidization of the rod by Lord Rayleigh's instability theory. This theory indicates that a radius perturbation wavelength larger than the initial rod circumference would lead to cylindrical spheroidization. We investigated the effect of perturbation wavelength, interfacial energy, volume diffusion, phase composition, and interfacial percentage on the kinetics of spheroidization. The results match well with both the Rayleigh's instability criterion and experimental observations.

  9. Dilute Oxygen Combustion - Phase 3 Report

    SciTech Connect (OSTI)

    Riley, Michael F.

    2000-05-31

    Dilute Oxygen Combustion (DOC) burners have been successfully installed and operated in the reheat furnace at Auburn Steel Co., Inc., Auburn, NY, under Phase 3 of the Dilute Oxygen Combustion project. Two new preheat zones were created employing a total of eight 6.5 MMBtu/hr capacity burners. The preheat zones provide a 30 percent increase in maximum furnace production rate, from 75 tph to 100 tph. The fuel rate is essentially unchanged, with the fuel savings expected from oxy-fuel combustion being offset by higher flue gas temperatures. When allowance is made for the high nitrogen level and high gas phase temperature in the furnace, measured NOx emissions are in line with laboratory data on DOC burners developed in Phase 1 of the project. Burner performance has been good, and there have been no operating or maintenance problems. The DOC system continues to be used as part of Auburn Steel's standard reheat furnace practice. High gas phase temperature is a result of the high firing density needed to achieve high production rates, and little opportunity exists for improvement in that area. However, fuel and NOx performance can be improved by further conversion on furnace zones to DOC burners, which will lower furnace nitrogen levels. Major obstacles are cost and concern about increased formation of oxide scale on the steel. Oxide scale formation may be enhanced by exposure of the steel to higher concentrations of oxidizing gas components (primarily products of combustion) in the higher temperature zones of the furnace. Phase 4 of the DOC project will examine the rate of oxide scale formation in these higher temperature zones and develop countermeasures that will allow DOC burners to be used successfully in these furnace zones.

  10. Dilute Oxygen Combustion Phase 3 Final Report

    SciTech Connect (OSTI)

    Riley, M.F.; Ryan, H.M.

    2000-05-31

    Dilute Oxygen Combustion (DOC) burners have been successfully installed and operated in the reheat furnace at Auburn Steel Co., Inc., Auburn, NY, under Phase 3 of the Dilute Oxygen Combustion project. Two new preheat zones were created employing a total of eight 6.5 MMBtu/hr capacity burners. The preheat zones provide a 30 percent increase in maximum furnace production rate, from 75 tph to 100 tph. The fuel rate is essentially unchanged, with the fuel savings expected from oxy-fuel combustion being offset by higher flue gas temperatures. When allowance is made for the high nitrogen level and high gas phase temperature in the furnace, measured NOx emissions are in line with laboratory data on DOC burners developed in Phase 1 of the project. Burner performance has been good and there have been no operating or maintenance problems. The DOC system continues to be used as part of Auburn Steel?s standard reheat furnace practice. High gas phase temperature is a result of the high firing density needed to achieve high production rates, and little opportunity exists for improvement in that area. However, fuel and NOx performance can be improved by further conversion of furnace zones to DOC burners, which will lower furnace nitrogen levels. Major obstacles are cost and concern about increased formation of oxide scale on the steel. Oxide scale formation may be enhanced by exposure of the steel to higher concentrations of oxidizing gas components (primarily products of combustion) in the higher temperature zones of the furnace. Phase 4 of the DOC project will examine the rate of oxide scale formation in these higher temperature zones and develop countermeasures that will allow DOC burners to be used successfully in these furnace zones.

  11. Phase-sensitive two-dimensional neutron shearing interferometer and Hartmann sensor

    DOE Patents [OSTI]

    Baker, Kevin L.

    2015-12-08

    A neutron imaging system detects both the phase shift and absorption of neutrons passing through an object. The neutron imaging system is based on either of two different neutron wavefront sensor techniques: 2-D shearing interferometry and Hartmann wavefront sensing. Both approaches measure an entire two-dimensional neutron complex field, including its amplitude and phase. Each measures the full-field, two-dimensional phase gradients and, concomitantly, the two-dimensional amplitude mapping, requiring only a single measurement.

  12. Repositioning of Covered Stents: The Grip Technique

    SciTech Connect (OSTI)

    Kirby, John Martin; Guo Xiaofeng; Midia, Mehran

    2011-06-15

    Introduction: Retrieval and repositioning of a stent deployed beyond its intended target region may be a difficult technical challenge. Materials and Methods: A balloon-mounted snare technique, a variant of the coaxial loop snare technique, is described. Results: The technique is described for the repositioning of a covered transjugular intrahepatic portosystemic shunt stent and a covered biliary stent. Conclusion: The balloon-mounted snare technique is a useful technique for retrieval of migrated stents.

  13. Phase-locked loop with controlled phase slippage

    DOE Patents [OSTI]

    Mestha, L.K.

    1994-03-29

    A system for synchronizing a first subsystem controlled by a changing frequency sweeping from a first frequency to a second frequency, with a second subsystem operating at a steady state second frequency is described. Trip plan parameters are calculated in advance to determine the phase relationship between the frequencies of the first subsystem and second subsystem in order to obtain synchronism at the end of the frequency sweep of the first subsystem. During the time in which the frequency of the first subsystem is sweeping from the first frequency to the second frequency, the phase locked system compares the actual phase difference with the trip plan phase difference and incrementally changes the sweep frequency in a manner so that phase lock is achieved when the first subsystem reaches a frequency substantially identical to that of the second subsystem. 10 figures.

  14. Phase-locked loop with controlled phase slippage

    DOE Patents [OSTI]

    Mestha, Lingappa K. (Cedar Hill, TX)

    1994-01-01

    A system for synchronizing a first subsystem controlled by a changing frequency sweeping from a first frequency to a second frequency, with a second subsystem operating at a steady state second frequency. Trip plan parameters are calculated in advance to determine the phase relationship between the frequencies of the first subsystem and second subsystem in order to obtain synchronism at the end of the frequency sweep of the first subsystem. During the time in which the frequency of the first subsystem is sweeping from the first frequency to the second frequency, the phase locked system compares the actual phase difference with the trip plan phase difference and incrementally changes the sweep frequency in a manner so that phase lock is achieved when the first subsystem reaches a frequency substantially identical to that of the second subsystem.

  15. University of South Florida- Phase Change Materials (PCM)

    SciTech Connect (OSTI)

    Goswami, Yogi; Stefanakos, Lee

    2014-03-07

    USF is developing low-cost, high-temperature phase-change materials (PCMs) for use in thermal energy storage systems. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night--when the sun is not out--to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. Most PCMs do not conduct heat very well. Using an innovative, electroless encapsulation technique, USF is enhancing the heat transfer capability of its PCMs. The inner walls of the capsules will be lined with a corrosion-resistant, high-infrared emissivity coating, and the absorptivity of the PCM will be controlled with the addition of nano-sized particles. USF's PCMs remain stable at temperatures from 600 to 1,000°C and can be used for solar thermal power storage, nuclear thermal power storage, and other applications.

  16. SYNCHEM feasibility report: Phase 1

    SciTech Connect (OSTI)

    Not Available

    1995-01-01

    Several Czech and US companies have entered into a development agreement for the purposes of determining the technical and economic feasibility and overall financeability of an integrated gasification combined cycle (IGCC) regional energy facility to be located adjacent to the Chemopetrol refinery in Litvinov, Czech Republic. The Project would use a feedstock comprised of coal supplied by Doly a upravny Komorany s.p. (DUK) coal mining company and mined from the Most/Litvinov area together with high sulfur residual oils from the Chemopetrol refinery. When gasified together with oxygen from an Air Products air separation plant, and based on an average yearly consumption of 2,100K metric tons per year of coal (as delivered) and 630K tonnes per year of oil, approximately 11 million normal cubic meters per day of syngas will be produced. At its current projected design capacity, when combusted in two General Electric advanced technology Frame 9FA gas turbines, the Project will produce approximately 690MW of electric power; 250 metric tons/hour of steam for process; and 135 thermal equivalent MW of district heat. The Feasibility Phase efforts described in this report indicate the real possibility for a successful and profitable IGCC Project for the Czech Republic. It is therefore incumbent upon all the Project Participants to review and evaluate the information contained herein such that a go/no-go decision can be reached by early next year.

  17. Subranging technique using superconducting technology

    DOE Patents [OSTI]

    Gupta, Deepnarayan

    2003-01-01

    Subranging techniques using "digital SQUIDs" are used to design systems with large dynamic range, high resolution and large bandwidth. Analog-to-digital converters (ADCs) embodying the invention include a first SQUID based "coarse" resolution circuit and a second SQUID based "fine" resolution circuit to convert an analog input signal into "coarse" and "fine" digital signals for subsequent processing. In one embodiment, an ADC includes circuitry for supplying an analog input signal to an input coil having at least a first inductive section and a second inductive section. A first superconducting quantum interference device (SQUID) is coupled to the first inductive section and a second SQUID is coupled to the second inductive section. The first SQUID is designed to produce "coarse" (large amplitude, low resolution) output signals and the second SQUID is designed to produce "fine" (low amplitude, high resolution) output signals in response to the analog input signals.

  18. Two-phase uninterruptible power supply

    SciTech Connect (OSTI)

    Severinsky, A.J.; Rajagopalan, S.

    1991-12-24

    This patent describes a two-phase AC power supply. It comprises AC systems; connectors; electric currents; and phase shift.

  19. Measurement of the temperature dependence of Young's modulus of cartilage by phase-sensitive optical coherence elastography

    SciTech Connect (OSTI)

    Liu, C H; Li, J; Singh, M; Larin, K V; Skryabina, M N; Sobol, E N

    2014-08-31

    The development of an effective system to monitor the changes in the elastic properties of cartilage tissue with increasing temperature in laser reconstruction is an urgent practical task. In this paper, the use of phase-sensitive optical coherence elastography for detection of elastic waves in the sample has allowed Young's modulus of cartilage tissue to be measured directly during heating. Young's modulus was calculated from the group velocity of propagation of elastic waves excited by means of a system supplying focused air pulses. The measurement results are in agreement with the results of measurements of the modulus of elasticity under mechanical compression. The technique developed allows for noninvasive measurements; its development is promising for the use in vivo. (laser biophotonics)

  20. Low Cost Heliostat Development Phase II Final Report

    SciTech Connect (OSTI)

    Kusek, Stephen M.

    2014-04-21

    The heliostat field in a central receiver plant makes up roughly one half of the total plant cost. As such, cost reductions for the installed heliostat price greatly impact the overall plant cost and hence the plant’s Levelized Cost of Energy. The general trend in heliostat size over the past decades has been to make them larger. One part of our thesis has been that larger and larger heliostats may drive the LCOE up instead of down due to the very nature of the precise aiming and wind-load requirements for typical heliostats. In other words, it requires more and more structure to precisely aim the sunlight at the receiver as one increases heliostat mirror area and that it becomes counter-productive, cost-wise, at some point.

  1. Sandia Develops Phased-Array Sources Based on Nonlinear Metamaterial...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... then acts as a source that "feeds" the resonators at the second harmonic (SH) frequency. ... This technology delivers second harmonic generation in a device that is extremely thin, ...

  2. X-ray Phase Contrast Imaging of Calcified Tissue and Biomaterial Structure in Bioreactor Engineered Tissues

    SciTech Connect (OSTI)

    Appel, Alyssa A.; Larson, Jeffery C.; Garson, III, Alfred B.; Guan, Huifeng; Zhong, Zhong; Nguyen, Bao-Ngoc; Fisher, John P.; Anastasio, Mark A.; Brey, Eric M.

    2014-11-04

    Tissues engineered in bioreactor systems have been used clinically to replace damaged tissues and organs. In addition, these systems are under continued development for many tissue engineering applications. The ability to quantitatively assess material structure and tissue formation is critical for evaluating bioreactor efficacy and for preimplantation assessment of tissue quality. These techniques allow for the nondestructive and longitudinal monitoring of large engineered tissues within the bioreactor systems and will be essential for the translation of these strategies to viable clinical therapies. X-ray Phase Contrast (XPC) imaging techniques have shown tremendous promise for a number of biomedical applications owing to their ability to provide image contrast based on multiple X-ray properties, including absorption, refraction, and scatter. In this research, mesenchymal stem cell-seeded alginate hydrogels were prepared and cultured under osteogenic conditions in a perfusion bioreactor. The constructs were imaged at various time points using XPC microcomputed tomography (µCT). Imaging was performed with systems using both synchrotron- and tube-based X-ray sources. XPC µCT allowed for simultaneous three-dimensional (3D) quantification of hydrogel size and mineralization, as well as spatial information on hydrogel structure and mineralization. Samples were processed for histological evaluation and XPC showed similar features to histology and quantitative analysis consistent with the histomorphometry. Furthermore, these results provide evidence of the significant potential of techniques based on XPC for noninvasive 3D imaging engineered tissues grown in bioreactors.

  3. Delayed gamma technique for fissile material assay

    SciTech Connect (OSTI)

    Mozin, Vladimir; Tobin, Stephen; Vujie, Jasmina; Hunt, Alan

    2010-01-01

    Research sponsored by the Next Generation Safeguards Initiative are investigating several non-destructive assay techniques for the quantification of fissile plutonium mass in spent nuclear fuel assemblies. AppHcation of the delayed gamma signatures is investigated in this context. The objective of the research is to assess whether the delayed gamma assay instrument can provide sufficient sensitivity, isotope specificity and accuracy as required in nuclear material safeguards. This effort includes theoretical and experimental components for the optimal combination of interrogation parameters. A new modeling algorithm offering a high level of detail was developed specifically for this purpose and was validated in series of benchmark experiments. Preliminary modeling of the delayed gamma response from spent fuel assemblies was accomplished offering a future direction for the design process.

  4. Three phase downhole separator process

    DOE Patents [OSTI]

    Cognata, Louis John (Baytown, TX)

    2008-06-24

    Three Phase Downhole Separator Process (TPDSP) is a process which results in the separation of all three phases, (1) oil, (2) gas, and (3) water, at the downhole location in the well bore, water disposal injection downhole, and oil and gas production uphole.

  5. Literature survey of heat transfer enhancement techniques in refrigeration applications

    SciTech Connect (OSTI)

    Jensen, M.K.; Shome, B.

    1994-05-01

    A survey has been performed of the technical and patent literature on enhanced heat transfer of refrigerants in pool boiling, forced convection evaporation, and condensation. Extensive bibliographies of the technical literature and patents are given. Many passive and active techniques were examined for pure refrigerants, refrigerant-oil mixtures, and refrigerant mixtures. The citations were categorized according to enhancement technique, heat transfer mode, and tube or shell side focus. The effects of the enhancement techniques relative to smooth and/or pure refrigerants were illustrated through the discussion of selected papers. Patented enhancement techniques also are discussed. Enhanced heat transfer has demonstrated significant improvements in performance in many refrigerant applications. However, refrigerant mixtures and refrigerant-oil mixtures have not been studied extensively; no research has been performed with enhanced refrigerant mixtures with oil. Most studies have been of the parametric type; there has been inadequate examination of the fundamental processes governing enhanced refrigerant heat transfer, but some modeling is being done and correlations developed. It is clear that an enhancement technique must be optimized for the refrigerant and operating condition. Fundamental processes governing the heat transfer must be examined if models for enhancement techniques are to be developed; these models could provide the method to optimize a surface. Refrigerant mixtures, with and without oil present, must be studied with enhancement devices; there is too little known to be able to estimate the effects of mixtures (particularly NARMs) with enhanced heat transfer. Other conclusions and recommendations are offered.

  6. MULTI-PHASE FRACTURE-MATRIX INTERACTIONS UNDER STRESS CHANGES

    SciTech Connect (OSTI)

    A.S. Grader; D. Elsworth; P.M. Halleck; F. Alvarado; A. Alajmi; Z. Karpyn; N. Mohammed; S. Al-Enezi

    2005-06-15

    The main objectives of this project are to quantify the changes in fracture porosity and multiphase transport properties as a function of confining stress. These changes will be integrated into conceptual and numerical models that will improve our ability to predict and optimize fluid transport in fractured system. This report details our progress on: (a) developing the direct experimental measurements of fracture aperture and topology and fluid occupancy using high-resolution x-ray micro-tomography, (b) quantifying the effect of confining stress on the distribution of fracture aperture, and (c) characterization of shear fractures and their impact on multi-phase flow. The three-dimensional surface that describes the large-scale structure of the fracture in the porous medium can be determined using x-ray micro-tomography with significant accuracy. Several fractures have been scanned and the fracture aperture maps have been extracted. The success of the mapping of fracture aperture was followed by measuring the occupancy of the fracture by two immiscible phases, water and decane, and water and kerosene. The distribution of fracture aperture depends on the effective confining stress on the nature of the rock and the type and distribution of the asperities that keep the fracture open. Fracture apertures at different confining stresses were obtained by micro-tomography covering a range of about two thousand psig. Initial analysis of the data shows a significant aperture closure with increase in effective confining stress. Visual descriptions of the process are shown in the report while detailed analysis of the behavior of the distribution of fracture aperture is in progress. Both extensional and shear fractures are being considered. The initial multi-phase flow tests were done in extensional fractures. Several rock samples with induced shear fracture are being studied, and some of the new results are presented in this report. These samples are being scanned in order to quantify the distribution of apertures and the nature of the asperities. Low resolution images of fluids in a sample with a shear fracture were performed and they provide the confidence that flow patterns and saturations could be determined in the future. A series of water imbibition tests were conducted in which water was injected into a fracture and its migration into the matrix was monitored with CT and DR x-ray techniques. The objective is to understand the impact of the fracture, its topology and occupancy on the nature of mass transfer between the matrix and the fracture. Counter-current imbibition next to the fracture was observed and quantified, including the influence of formation layering.

  7. KINETICS OF SLURRY PHASE FISCHER-TROPSCH SYSTHESIS

    SciTech Connect (OSTI)

    Dragomir B. Bukur; Gilbert F. Froment; Tomasz Olewski

    2005-09-29

    This report covers the third year of this research grant under the University Coal Research program. The overall objective of this project is to develop a comprehensive kinetic model for slurry phase Fischer-Tropsch synthesis (FTS) on iron catalysts. This model will be validated with experimental data obtained in a stirred tank slurry reactor (STSR) over a wide range of process conditions. The model will be able to predict molar flow rates and concentrations of all reactants and major product species (H{sub 2}O, CO{sub 2}, linear 1- and 2-olefins, and linear paraffins) as a function of reaction conditions in the STSR. During the reporting period we utilized experimental data from the STSR, that were obtained during the first two years of the project, to perform vapor-liquid equilibrium (VLE) calculations and estimate kinetic parameters. We used a modified Peng-Robinson (PR) equation of state (EOS) with estimated values of binary interaction coefficients for the VLE calculations. Calculated vapor phase compositions were in excellent agreement with experimental values from the STSR under reaction conditions. Occasional discrepancies (for some of the experimental data) between calculated and experimental values of the liquid phase composition were ascribed to experimental errors. The VLE calculations show that the vapor and the liquid are in thermodynamic equilibrium under reaction conditions. Also, we have successfully applied the Levenberg-Marquardt method (Marquardt, 1963) to estimate parameters of a kinetic model proposed earlier by Lox and Froment (1993b) for FTS on an iron catalyst. This kinetic model is well suited for initial studies where the main goal is to learn techniques for parameter estimation and statistical analysis of estimated values of model parameters. It predicts that the chain growth parameter ({alpha}) and olefin to paraffin ratio are independent of carbon number, whereas our experimental data show that they vary with the carbon number. Predicted molar flow rates of inorganic species, n-paraffins and total olefins were generally not in good agreement with the corresponding experimental values. In the future we'll use kinetic models based on non-constant value of {alpha}.

  8. Phase-sensitive flow cytometer

    DOE Patents [OSTI]

    Steinkamp, John A.

    1993-01-01

    A phase-sensitive flow cytometer (FCM) provides additional FCM capability to use the fluorescence lifetime of one or more fluorochromes bound to single cells to provide additional information regarding the cells. The resulting fluorescence emission can be resolved into individual fluorescence signals if two fluorochromes are present or can be converted directly to a decay lifetime from a single fluorochrome. The excitation light for the fluorochromes is modulated to produce an amplitude modulated fluorescence pulse as the fluorochrome is excited in the FCM. The modulation signal also forms a reference signal that is phase-shifted a selected amount for subsequent mixing with the output modulated fluorescence intensity signal in phase-sensitive detection circuitry. The output from the phase-sensitive circuitry is then an individual resolved fluorochrome signal or a single fluorochrome decay lifetime, depending on the applied phase shifts.

  9. Phase-sensitive flow cytometer

    DOE Patents [OSTI]

    Steinkamp, J.A.

    1993-12-14

    A phase-sensitive flow cytometer (FCM) provides additional FCM capability to use the fluorescence lifetime of one or more fluorochromes bound to single cells to provide additional information regarding the cells. The resulting fluorescence emission can be resolved into individual fluorescence signals if two fluorochromes are present or can be converted directly to a decay lifetime from a single fluorochrome. The excitation light for the fluorochromes is modulated to produce an amplitude modulated fluorescence pulse as the fluorochrome is excited in the FCM. The modulation signal also forms a reference signal that is phase-shifted a selected amount for subsequent mixing with the output modulated fluorescence intensity signal in phase-sensitive detection circuitry. The output from the phase-sensitive circuitry is then an individual resolved fluorochrome signal or a single fluorochrome decay lifetime, depending on the applied phase shifts. 15 figures.

  10. Phase stable RF transport system

    DOE Patents [OSTI]

    Curtin, Michael T.; Natter, Eckard F.; Denney, Peter M.

    1992-01-01

    An RF transport system delivers a phase-stable RF signal to a load, such as an RF cavity of a charged particle accelerator. A circuit generates a calibration signal at an odd multiple frequency of the RF signal where the calibration signal is superimposed with the RF signal on a common cable that connects the RF signal with the load. Signal isolating diplexers are located at both the RF signal source end and load end of the common cable to enable the calibration to be inserted and extracted from the cable signals without any affect on the RF signal. Any phase shift in the calibration signal during traverse of the common cable is then functionally related to the phase shift in the RF signal. The calibration phase shift is used to control a phase shifter for the RF signal to maintain a stable RF signal at the load.

  11. Phase coexistence in the Fe-Nd system

    SciTech Connect (OSTI)

    Cabral, F.A.O.; Gama, S. , Caixa Postal 6165, 13081 Campinas, Sao Paulo )

    1989-01-01

    The authors discuss phase coexistence in the Fe-Nd binary system investigated by metallography, x-ray diffractometry, electron microprobe analysis, and differential thermal analysis. The technique of diffusion couples also has been used. The Fe/sub 17/Nd/sub 2/ compound is peritectically formed at 1185{sup 0}C and the eutectic reaction is L {yields} Fe/sub 17/Nd/sub 2/ + Nd/sup */, occurring at 670{sup 0}C; the Fe/sub 2/Nd phase was not found. A double thermal arrest is observed at the eutectic temperature and its origin is not well understood yet.

  12. Laser sources and techniques for spectroscopy and dynamics

    SciTech Connect (OSTI)

    Kung, A.H.

    1993-12-01

    This program focuses on the development of novel laser and spectroscopic techniques in the IR, UV, and VUV regions for studying combustion related molecular dynamics at the microscopic level. Laser spectroscopic techniques have proven to be extremely powerful in the investigation of molecular processes which require very high sensitivity and selectivity. The authors approach is to use quantum electronic and non-linear optical techniques to extend the spectral coverage and to enhance the optical power of ultrahigh resolution laser sources so as to obtain and analyze photoionization, fluorescence, and photoelectron spectra of jet-cooled free radicals and of reaction products resulting from unimolecular and bimolecular dissociations. New spectroscopic techniques are developed with these sources for the detection of optically thin and often short-lived species. Recent activities center on regenerative amplification of high resolution solid-state lasers, development of tunable high power mid-IR lasers and short-pulse UV/VUV tunable lasers, and development of a multipurpose high-order suppressor crossed molecular beam apparatus for use with synchrotron radiation sources. This program also provides scientific and technical support within the Chemical Sciences Division to the development of LBL`s Combustion Dynamics Initiative.

  13. Integrated thermal treatment system sudy: Phase 2, Results

    SciTech Connect (OSTI)

    Feizollahi, F.; Quapp, W.J.

    1995-08-01

    This report presents the second phase of a study on thermal treatment technologies. The study consists of a systematic assessment of nineteen thermal treatment alternatives for the contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. The treatment alternatives consist of widely varying technologies for safely destroying the hazardous organic components, reducing the volume, and preparing for final disposal of the MLLW. The alternatives considered in Phase 2 were innovative thermal treatments with nine types of primary processing units. Other variations in the study examined the effect of combustion gas, air pollution control system design, and stabilization technology for the treatment residues. The Phase 1 study, the results of which have been published as an interim report, examined ten initial thermal treatment alternatives. The Phase 2 systems were evaluated in essentially the same manner as the Phase 2 systems. The assumptions and methods were the same as for the Phase 1 study. The quantities, and physical and chemical compositions, of the input waste used in he Phase 2 systems differ from those in the Phase 1 systems, which were based on a preliminary waste input database developed at the onset of the Integrated Thermal Treatment System study. The inventory database used in the Phase 2 study incorporates the latest US Department of Energy information. All systems, both primary treatment systems and subsystem inputs, have now been evaluated using the same waste input (2,927 lb/hr).

  14. Photonic Doppler Velocimetry Multiplexing Techniques: Evaluation of Photonic Techniques

    SciTech Connect (OSTI)

    Edward Daykin

    2012-05-24

    This poster reports progress related to photonic technologies. Specifically, the authors developed diagnostic system architecture for a Multiplexed Photonic Doppler Velocimetry (MPDV) that incorporates frequency and time-division multiplexing into existing PDV methodology to provide increased channel count. Current MPDV design increases number of data records per digitizer channel 8x, and also operates as a laser-safe (Class 3a) system. Further, they applied heterodyne interferometry to allow for direction-of-travel determination and enable high-velocity measurements (>10 km/s) via optical downshifting. They also leveraged commercially available, inexpensive and robust components originally developed for telecom applications. Proposed MPDV architectures employ only commercially available, fiber-coupled hardware.

  15. New Technique Gives a Deeper Look into the Chemistry of Interfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Technique Gives a Deeper Look into the Chemistry of Interfaces Print A new technique developed at the ALS offers sub-nanometer depth resolution of every chemical element to be found at heterogeneous interfaces, such as those in batteries and fuel cells. The technique, Standing-Wave Ambient-Pressure Photoelectron Spectroscopy (SWAPPS), combines standing-wave photoelectron spectroscopy (SWPS) with high-ambient-pressure photoelectron spectroscopy (APPS). The result is a technique that enables

  16. New Technique Gives a Deeper Look into the Chemistry of Interfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Technique Gives a Deeper Look into the Chemistry of Interfaces Print A new technique developed at the ALS offers sub-nanometer depth resolution of every chemical element to be found at heterogeneous interfaces, such as those in batteries and fuel cells. The technique, Standing-Wave Ambient-Pressure Photoelectron Spectroscopy (SWAPPS), combines standing-wave photoelectron spectroscopy (SWPS) with high-ambient-pressure photoelectron spectroscopy (APPS). The result is a technique that enables

  17. New Technique Gives a Deeper Look into the Chemistry of Interfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Technique Gives a Deeper Look into the Chemistry of Interfaces Print A new technique developed at the ALS offers sub-nanometer depth resolution of every chemical element to be found at heterogeneous interfaces, such as those in batteries and fuel cells. The technique, Standing-Wave Ambient-Pressure Photoelectron Spectroscopy (SWAPPS), combines standing-wave photoelectron spectroscopy (SWPS) with high-ambient-pressure photoelectron spectroscopy (APPS). The result is a technique that enables

  18. New Technique Gives a Deeper Look into the Chemistry of Interfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Technique Gives a Deeper Look into the Chemistry of Interfaces Print A new technique developed at the ALS offers sub-nanometer depth resolution of every chemical element to be found at heterogeneous interfaces, such as those in batteries and fuel cells. The technique, Standing-Wave Ambient-Pressure Photoelectron Spectroscopy (SWAPPS), combines standing-wave photoelectron spectroscopy (SWPS) with high-ambient-pressure photoelectron spectroscopy (APPS). The result is a technique that enables

  19. New Technique Gives a Deeper Look into the Chemistry of Interfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Technique Gives a Deeper Look into the Chemistry of Interfaces New Technique Gives a Deeper Look into the Chemistry of Interfaces Print Monday, 23 February 2015 10:48 A new technique developed at the ALS offers sub-nanometer depth resolution of every chemical element to be found at heterogeneous interfaces, such as those in batteries and fuel cells. The technique, Standing-Wave Ambient-Pressure Photoelectron Spectroscopy (SWAPPS), combines standing-wave photoelectron spectroscopy (SWPS) with

  20. New Technique Gives a Deeper Look into the Chemistry of Interfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Technique Gives a Deeper Look into the Chemistry of Interfaces Print A new technique developed at the ALS offers sub-nanometer depth resolution of every chemical element to be found at heterogeneous interfaces, such as those in batteries and fuel cells. The technique, Standing-Wave Ambient-Pressure Photoelectron Spectroscopy (SWAPPS), combines standing-wave photoelectron spectroscopy (SWPS) with high-ambient-pressure photoelectron spectroscopy (APPS). The result is a technique that enables