National Library of Energy BETA

Sample records for development phase geothermal

  1. Property:GeothermalDevelopmentPhases | Open Energy Information

    Open Energy Info (EERE)

    GeothermalDevelopmentPhases Jump to: navigation, search Property Name GeothermalDevelopmentPhases Property Type Page Pages using the property "GeothermalDevelopmentPhases" Showing...

  2. Canby Cascaded Geothermal Project Phase 1 Feasibility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Peer Review Canby Cascaded Geothermal Project Phase 1 Feasibility Principal Investigator , Dale Merrick Presenter Name: Dale Merrick Organization: Modoc Contracting Track Name: Low Temperature Geothermal April, 2013 This presentation does not contain any proprietary confidential, or otherwise restricted information. 2 | US DOE Geothermal Program eere.energy.gov Overview - The Canby Project, a community-based cascaded geothermal development project, intends to generate geothermal power in

  3. development Not Available 15 GEOTHERMAL ENERGY; TONGONAN GEOTHERMAL...

    Office of Scientific and Technical Information (OSTI)

    field Leyte, Philippines. Report on exploration and development Not Available 15 GEOTHERMAL ENERGY; TONGONAN GEOTHERMAL FIELD; GEOTHERMAL EXPLORATION; GEOTHERMAL POWER...

  4. Rotation-Enabled 7-Degree of Freedom Seismometer for Geothermal Resource Development. Phase 1 Final Report

    SciTech Connect (OSTI)

    Pierson, Bob; Laughlin, Darren

    2013-10-29

    , thus removing some current blocks to feasibility and significantly increasing access to potential geothermal sites. During the Phase 1 effort summarized in this final report, the ATA Team modeled and built two TRL 3 proof-of-concept test units for two competing rotational sensor technologies. The two competing technologies were based on ATA's angular rate and angular displacement measurement technologies; Angular rate: ATA's Magnetohydrodynamic Angular Rate Sensor (Seismic MHD); and Angular displacement: ATA's Low Frequency Improved Torsional Seismometer (LFITS). In order to down-select between these two technologies and formulate a go / no go decision, the ATA Team analyzed and traded scientific performance requirements and market constraints against sensor characteristics and components, acquiring field data where possible to validate the approach and publishing results from these studies of rotational technology capability. Based on the results of Phase 1, the ATA Team finds that the Seismic MHD (SMHD) technology is the best choice for enabling rotational seismometry and significant technical potential exists for micro-seismic monitoring using a downhole 7-DOF device based on the SMHD. Recent technical papers and field data confirm the potential of rotational sensing for seismic mapping, increasing confidence that cost-reduction benefits are achievable for EGS. However, the market for geothermal rotational sensing is small and undeveloped. As a result, this report recommends modifying the Phase 2 plan to focus on prototype development aimed at partnering with early adopters within the geothermal industry and the scientific research community. The highest public benefit will come from development and deployment of a science-grade SMHD rotational seismometer engineered for geothermal downhole conditions and an integrated test tool for downhole measurements at active geothermal test sites.

  5. Canby Cascaded Geothermal Project Phase 1 Feasibility | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Canby Cascaded Geothermal Project Phase 1 Feasibility Canby Cascaded Geothermal Project Phase 1 Feasibility Canby Cascaded Geothermal Project Phase 1 Feasibility presentation at the April 2013 peer review meeting held in Denver, Colorado. canby_cascaded_peer2013.pdf (561.96 KB) More Documents & Publications Rural Cooperative Geothermal Development Electric & Agriculture Silver Peak Innovative Exploration Project Advanced 3D Geophysical Imaging Technologies for Geothermal

  6. Imperial County geothermal development annual meeting: summary

    SciTech Connect (OSTI)

    Not Available

    1983-01-01

    All phases of current geothermal development in Imperial County are discussed and future plans for development are reviewed. Topics covered include: Heber status update, Heber binary project, direct geothermal use for high-fructose corn sweetener production, update on county planning activities, Brawley and Salton Sea facility status, status of Imperial County projects, status of South Brawley Prospect 1983, Niland geothermal energy program, recent and pending changes in federal procedures/organizations, plant indicators of geothermal fluid on East Mesa, state lands activities in Imperial County, environmental interests in Imperial County, offshore exploration, strategic metals in geothermal fluids rebuilding of East Mesa Power Plant, direct use geothermal potential for Calipatria industrial Park, the Audubon Society case, status report of the Cerro Prieto geothermal field, East Brawley Prospect, and precision gravity survey at Heber and Cerro Prieto geothermal fields. (MHR)

  7. Human Resources in Geothermal Development

    SciTech Connect (OSTI)

    Fridleifsson, I.B.

    1995-01-01

    Some 80 countries are potentially interested in geothermal energy development, and about 50 have quantifiable geothermal utilization at present. Electricity is produced from geothermal in 21 countries (total 38 TWh/a) and direct application is recorded in 35 countries (34 TWh/a). Geothermal electricity production is equally common in industrialized and developing countries, but plays a more important role in the developing countries. Apart from China, direct use is mainly in the industrialized countries and Central and East Europe. There is a surplus of trained geothermal manpower in many industrialized countries. Most of the developing countries as well as Central and East Europe countries still lack trained manpower. The Philippines (PNOC) have demonstrated how a nation can build up a strong geothermal workforce in an exemplary way. Data from Iceland shows how the geothermal manpower needs of a country gradually change from the exploration and field development to monitoring and operations.

  8. Geothermal Research and Development Programs

    Broader source: Energy.gov [DOE]

    Here you'll find links to laboratories, universities, and colleges conducting research and development (R&D) in geothermal energy technologies.

  9. El Centro/Superstition Hills Geothermal Project (2) | Open Energy...

    Open Energy Info (EERE)

    County, NV Geothermal Area Geothermal Region Geothermal Project Profile Developer Navy Geothermal Program Project Type Hydrothermal Systems GEA Development Phase Phase II -...

  10. Geothermal Electricity Technology Evaluation Model (GETEM) Development;

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2010 Geothermal Technology Program Peer Review Report | Department of Energy Development; 2010 Geothermal Technology Program Peer Review Report Geothermal Electricity Technology Evaluation Model (GETEM) Development; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review adse_001_mines.pdf (193.89 KB) More Documents & Publications Systems Engineering; 2010 Geothermal Technology Program Peer Review Report National Geothermal Student

  11. Sino Icelandic Green Energy Geothermal Development Corporation...

    Open Energy Info (EERE)

    Icelandic Green Energy Geothermal Development Corporation Jump to: navigation, search Name: Sino-Icelandic Green Energy Geothermal Development Corporation Place: China Sector:...

  12. Geothermal Data Development, Collection, and Maintenance | Open...

    Open Energy Info (EERE)

    Data Development, Collection, and Maintenance Jump to: navigation, search Geothermal ARRA Funded Projects for Geothermal Data Development, Collection, and Maintenance Loading...

  13. Australia's Geothermal Developments | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Australia's Geothermal Developments Australia's Geothermal Developments Australia presentation at the 2012 Annual Peer Review Meeting. PDF icon gtp2012peerreviewaustralia.pdf More ...

  14. Energy Department Develops Roadmap to Help Spur Geothermal Energy Development

    Broader source: Energy.gov [DOE]

    Geothermal Regulatory Roadmap will help developers navigate regulatory requirements at every level of government to deploy geothermal energy projects.

  15. Geothermal Development Associates | Open Energy Information

    Open Energy Info (EERE)

    Zip: 89502 Sector: Geothermal energy, Services Product: Geothermal power and direct use project development and consulting services Coordinates: 32.944065, -97.578279 Show...

  16. Geothermal development opportunities in developing countries

    SciTech Connect (OSTI)

    Kenkeremath, D.C.

    1989-11-16

    This report is the proceedings of the Seminar on geothermal development opportunities in developing countries, sponsored by the Geothermal Division of the US Department of Energy and presented by the National Geothermal Association. The overall objectives of the seminar are: (1) Provide sufficient information to the attendees to encourage their interest in undertaking more geothermal projects within selected developing countries, and (2) Demonstrate the technological leadership of US technology and the depth of US industry experience and capabilities to best perform on these projects.

  17. Coyote Canyon Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Resource Area Geothermal Region Geothermal Project Profile Developer Terra-Gen Project Type Hydrothermal GEA Development Phase Phase IV - Resource Production and...

  18. Newdale Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Area Geothermal Region Geothermal Project Profile Developer Standard Steam Trust Project Type Hydrothermal GEA Development Phase Phase I - Resource Procurement and...

  19. Mary's River Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Area Geothermal Region Geothermal Project Profile Developer Standard Steam Trust Project Type Hydrothermal GEA Development Phase Phase I - Resource Procurement and...

  20. White Mountain Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Location County Geothermal Area Geothermal Region Geothermal Project Profile Developer Eureka Green Systems Project Type Hydrothermal GEA Development Phase Phase II - Resource...

  1. Geothermal development plan: Pima County

    SciTech Connect (OSTI)

    White, D.H.; Goldstone, L.A.

    1982-08-01

    The Pima County Area Development evaluated the county-wide market potential for utilizing geothermal energy. The study identified four potential geothermal resource areas with temperatures less than 100{sup 0}C (212{sup 0}F), and in addition, one area is identified as having a temperature of 147{sup 0}F (297{sup 0}F). Geothermal resources are found to occur in Tucson where average population growth rates of two to three percent per year are expected over the next 40 years. Rapid growth in the manufacturing sector and the existence of major copper mines provide opportunities for the direct utilization of geothermal energy. However, available water supplies are identified as a major constraint to projected growth. The study also includes a regional energy analysis, future predictions for energy consumption and energy prices. A major section of the report is aimed at identifying potential geothermal users in Pima County and providing projections of maximum economic geothermal utilization. The study identifies 115 firms in 32 industrial classes that have some potential for geothermal use. In addition, 26 agribusiness firms were found in the county.

  2. Rural Cooperative Geothermal Development Electric & Agriculture |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Rural Cooperative Geothermal Development Electric & Agriculture Rural Cooperative Geothermal Development Electric & Agriculture DOE 2010 Geothermal Program Peer Review; Low Temperature Demonstration Projects low_silveria_rural_electric_coop.pdf (557.69 KB) More Documents & Publications Southwest Alaska Regional Geothermal Energy Project District Wide Geothermal Heating Conversion Blaine County School District Novel Energy Conversion Equipment for Low

  3. Utility Geothermal Development Strategies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utility Geothermal Development Strategies Utility Geothermal Development Strategies The following presentations are from a Webinar conducted on December 9, 2009, that was hosted by the Geothermal Resources Council (GRC) and sponsored by the U.S. Department of Energy Geothermal Technologies Office. The Webinar focused on ways utilities can include or expand cost-effective applications of geothermal technologies in their renewable energy and energy efficiency portfolios, including financing

  4. Geothermal Electricity Technology Evaluation Model (GETEM) Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity Technology Evaluation Model (GETEM) Development Geothermal Electricity Technology Evaluation Model (GETEM) Development Project objective: Provide a tool for estimating...

  5. Oregon/Geothermal | Open Energy Information

    Open Energy Info (EERE)

    Phase III - Permitting and Initial Development Neal Hot Springs Geothermal Area Snake River Plain Neal Hot Springs II Geothermal Project U.S. Geothermal Vale, Oregon Phase I -...

  6. Hawaii's Geothermal Development

    SciTech Connect (OSTI)

    Uemura, Roy T.

    1980-12-01

    On July 2, 1976, an event took place in the desolate area of Puna, on the island of Hawaii, which showed great promise of reducing Hawaii's dependence on fuel oil. This great event was the flashing of Hawaii's first geothermal well which was named HGP-A. The discovery of geothermal energy was a blessing to Hawaii since the electric utilities are dependent upon fuel oil for its own electric generating units. Over 50% of their revenues pay for imported fuel oil. Last year (1979) about $167.1 million left the state to pay for this precious oil. The HGP-A well was drilled to a depth of 6450 feet and the temperature at the bottom of the hole was measured at 676 F, making it one of the hottest wells in the world.

  7. Development Wells At Raft River Geothermal Area (2004) | Open...

    Open Energy Info (EERE)

    Development Wells At Raft River Geothermal Area (2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At Raft River Geothermal...

  8. A Roadmap for Strategic Development of Geothermal Exploration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Roadmap for Strategic Development of Geothermal Exploration Technologies A Roadmap for Strategic Development of Geothermal Exploration Technologies The Dixie Valley Geothermal ...

  9. Geothermal Technologies Program Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    Research, Development and Demonstration Plan: Appendices Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan Geothermal Technologies ...

  10. Monitoring and Modeling Fluid Flow in a Developing Enhanced Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enhanced Geothermal System (EGS) Reservoir; 2010 Geothermal Technology Program Peer Review Report Monitoring and Modeling Fluid Flow in a Developing Enhanced Geothermal System ...

  11. Development Wells At Coso Geothermal Area (1985) | Open Energy...

    Open Energy Info (EERE)

    Coso Geothermal Area (1985) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At Coso Geothermal Area (1985) Exploration Activity...

  12. Geothermal Electricity Technology Evaluation Model (GETEM) Development

    Office of Energy Efficiency and Renewable Energy (EERE)

    Project objective: Provide a tool for estimating the performance and contributions of all phases of a geothermal project to power generation costs.

  13. Geothermal Development Job Types and Impacts

    Broader source: Energy.gov [DOE]

    Development of geothermal power plants and direct-use applications creates a variety of jobs. And the resulting job creation and economic activity within the geothermal industry positively impacts...

  14. Geothermal Workforce Education Development and Retention

    Broader source: Energy.gov [DOE]

    Formation of a National Geothermal Institute to develop the human resources that will be needed to transform and grow the U.S. energy infrastructure to achieve the utilization of Americas vast geothermal resource base.

  15. Mary's River SW Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Area Geothermal Region Geothermal Project Profile Developer Standard Steam Trust Project Type Hydrothermal GEA Development Phase Phase I - Resource Procurement and...

  16. Snake River Plain Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Area Geothermal Region Geothermal Project Profile Developer Standard Steam Trust Project Type Hydrothermal GEA Development Phase Phase I - Resource Procurement and...

  17. Sperry Low Temperature Geothermal Conversion System, Phase I and Phase II. Volume V. Component development. Final report

    SciTech Connect (OSTI)

    Harvey, C.; McBee, W.; Matthews, H.B.

    1984-01-01

    The fundamental inventions which motivate this program are system concepts centered on a novel heat engine cycle and the use of downwell heat exchange. Here, the primary emphasis is on downwell hardware. The only surface equipment included is the surface portion of the instrumentation and control systems. Downwell instrumentation is reported. Downwell conduits and techniques for installing, connecting and sealing them are covered. The downwell turbine-pump unit (TPU) is a critical component since it is relatively inaccessible and operates in a hostile environment. Its development is reported. The TPU for the gravity-head system requires a different type of turbine because of the large flow-rate through it and the small pressure difference across it. The design study for a Francis turbine to meet these requirements is reported. A feature of these systems is use of a downwell heat exchanger. There were extensive studies of tube-bundle configuration, tube-sheet seals, structural integrity, and flow and heat transfer, as well as the research on welded connections and sliding elastomeric seals. Another innovative component in these systems is the enthalpy recovery unit (ERU). This direct-contact heat exchanger compensates for under-cooling in the condenser and superheat in the main turbine exhaust.

  18. Geothermal Developers' Checklist | Open Energy Information

    Open Energy Info (EERE)

    Developers' Checklist Jump to: navigation, search Tool Summary Name: Geothermal Developers' Checklist AgencyCompany Organization: National Renewable Energy Laboratory Partner:...

  19. Energy Department Develops Roadmap to Help Spur Geothermal Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Develops Roadmap to Help Spur Geothermal Energy Development Energy Department Develops Roadmap to Help Spur Geothermal Energy Development August 22, 2013 - 12:00am Addthis The ...

  20. Energy Department Develops Regulatory Roadmap to Spur Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Develops Regulatory Roadmap to Spur Geothermal Energy Development Energy Department Develops Regulatory Roadmap to Spur Geothermal Energy Development June 5, 2013 - 1:19pm Addthis ...

  1. Final Report: Enhanced Geothermal Systems Technology Phase II...

    Open Energy Info (EERE)

    Systems Technology Phase II: Animas Valley, New Mexico Authors R.A. Cunniff and R.L. Bowers Published Lightning Dock Geothermal, Inc. Technical Report, 2003 DOI Not...

  2. Geothermal greenhouse development | Open Energy Information

    Open Energy Info (EERE)

    LibraryAdd to library Journal Article: Geothermal greenhouse development Author P. J. Lienau Published Journal Geo-Heat Center, 1990 DOI Not Provided Check for DOI...

  3. Conductive, Intracratonic Play Geothermal Development in the...

    Open Energy Info (EERE)

    in the Paris Basin Author Miklos Antics Conference IGA Workshop on Developing Best Practice for Geothermal Exploration and ResourceReserve Classification; Essen,...

  4. Geothermal materials development at Brookhaven National Laboratory

    SciTech Connect (OSTI)

    Kukacka, L.E.

    1997-06-01

    As part of the DOE/OGT response to recommendations and priorities established by industrial review of their overall R and D program, the Geothermal Materials Program at Brookhaven National Laboratory (BNL) is focusing on topics that can reduce O and M costs and increase competitiveness in foreign and domestic markets. Corrosion and scale control, well completion materials, and lost circulation control have high priorities. The first two topics are included in FY 1997 BNL activities, but work on lost circulation materials is constrained by budgetary limitations. The R and D, most of which is performed as cost-shared efforts with US geothermal firms, is rapidly moving into field testing phases. FY 1996 and 1997 accomplishments in the development of lightweight CO{sub 2}-resistant cements for well completions; corrosion resistant, thermally conductive polymer matrix composites for heat exchange applications; and metallic, polymer and ceramic-based corrosion protective coatings are given in this paper. In addition, plans for work that commenced in March 1997 on thermally conductive cementitious grouting materials for use with geothermal heat pumps (GHP), are discussed.

  5. Geothermal energy: opportunities for California commerce. Phase I report

    SciTech Connect (OSTI)

    Longyear, A.B.

    1981-12-01

    The potential geothermal direct-use energy market and its application to projects in California are assessed. Project identification effort is to be focused on those that have the highest probability for near-term successful commercial operations. Near-term herein means 2 to 5 years for project implementation. Phase I has been focused on defining and assessing: (1) the geothermal direct-use resources that are suitable for near-term utilization; and (2) the generic applications (municipal heating districts, horticultural greenhouse firms, laundries, etc.) that are suitable for near-term projects. Five economic development regions in the state, containing recognized geothermal direct-use resources, have been defined. Thirty-eight direct use resources have been evaluated in these regions. After assessment against pre-selected criteria, twenty-seven have been rated with a priority of I, II or III, thereby qualifying them for further marketing effort. The five areas with a priority of I are summarized. These areas have no perceived impediments to near-term development. Twenty-nine generic categories of applications were assessed against previously selected criteria to determine their near term potential for direct use of geothermal fluids. Some twenty industry, commercial and institutional application categories were rated with a priority of I, II or III and warrant further marketing efforts. The seven categories with a priority of I are listed. These categories were found to have the least impediments to near-term application projects.

  6. EIS-0298: Telephone Flat Geothermal Development Project

    Broader source: Energy.gov [DOE]

    This EIS is for a Plan of Operation (POO) for Development and Production; and for a POO for Utilization and Disposal for a proposed geothermal development project, including: a power plant, geothermal production and injection wellfield, ancillary facilities, and transmission line on the Modoc National Forest in Siskiyou and Modoc Counties, California.

  7. Monitoring and Modeling Fluid Flow in a Developing Enhanced Geothermal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System (EGS) Reservoir; 2010 Geothermal Technology Program Peer Review Report | Department of Energy Enhanced Geothermal System (EGS) Reservoir; 2010 Geothermal Technology Program Peer Review Report Monitoring and Modeling Fluid Flow in a Developing Enhanced Geothermal System (EGS) Reservoir; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review seismic_025_fehler.pdf (195.11 KB) More Documents & Publications Analysis of Geothermal

  8. GRED Drilling Award … GRED III Phase II; 2010 Geothermal Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Drilling Award GRED III Phase II; 2010 Geothermal Technology Program Peer Review Report GRED Drilling Award GRED III Phase II; 2010 Geothermal Technology Program Peer Review ...

  9. EA-1746: Blue Mountain Geothermal Development Project, Humboldt...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    46: Blue Mountain Geothermal Development Project, Humboldt & Pershing County, NV EA-1746: Blue Mountain Geothermal Development Project, Humboldt & Pershing County, NV December 3,...

  10. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cover Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Cover The Geothermal Technologies Program Multi-Year Research, Development and ...

  11. A History or Geothermal Energy Research and Development in the...

    Office of Environmental Management (EM)

    Water Use in the Development and Operations of Geothermal Power Plants Water Use in the Development and Operations of Geothermal Power Plants Air-Cooled Condensers for Next ...

  12. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Management The Geothermal Technologies Program Multi-Year Research, Development and ...

  13. Geothermal Policymakers Guidebook, State-by-state Developers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Geothermal Developers' Financing Handbook Project objectives: Assist policymakers in identifying the niche they can fill to reduce barriers to geothermal energy development. ...

  14. Water Use in the Development and Operations of Geothermal Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Use in the Development and Operations of Geothermal Power Plants Water Use in the Development and Operations of Geothermal Power Plants This report summarizes what is...

  15. Water Use in the Development and Operations of Geothermal Power...

    Energy Savers [EERE]

    Water Use in the Development and Operations of Geothermal Power Plants Water Use in the Development and Operations of Geothermal Power Plants This report summarizes what is ...

  16. Shaanxi Geothermal Energy Development Co Ltd CGCO | Open Energy...

    Open Energy Info (EERE)

    Geothermal Energy Development Co Ltd CGCO Jump to: navigation, search Name: Shaanxi Geothermal Energy Development Co Ltd (CGCO) Place: Xianyang, Shaanxi Province, China Zip: 712000...

  17. Shaanxi Green Energy Geothermal Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Energy Geothermal Development Co Ltd Jump to: navigation, search Name: Shaanxi Green Energy Geothermal Development Co Ltd Place: Xianyang, Shaanxi Province, China Sector:...

  18. A Technology Roadmap for Strategic Development of Enhanced Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Technology Roadmap for Strategic Development of Enhanced Geothermal Systems A Technology Roadmap for Strategic Development of Enhanced Geothermal Systems DOE Project Partner ...

  19. Geothermal Energy Development (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Geothermal Energy Development Citation Details In-Document Search Title: Geothermal Energy Development You are accessing a document from the Department of Energy's (DOE) SciTech ...

  20. Geothermal Technologies Program Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: ...

  1. Geothermal Technologies Program Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Cover Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: ...

  2. Geothermal Technologies Program Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    The Geothermal Technologies Program Multi-Year Research, Development and Demonstration ... Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: ...

  3. Water Use in the Development and Operations of Geothermal Power...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Water Use in the Development and Operations of Geothermal Power Plants Water Use in the Development and Operation of Geothermal Power Plants GETEM ...

  4. Regulatory Impacts to Geothermal Development

    Broader source: Energy.gov [DOE]

    Presented at the Technology Planning Workshop for Low-Temperature, Coproduced, and Geopressured Geothermal Energy, July 13-14, 2010, Golden, Colorado

  5. Geothermal pipeline: Progress and development update, geothermal program monitor

    SciTech Connect (OSTI)

    1995-02-01

    This paper is a progress and development update describing three projects in the U.S. which involve the use of geothermal energy and ground-source heat pumps. The first project is located at Fort Polk Army Base in Louisiana. Four thousand government housing units are being retrofitted with efficient ground-soured near Bend, Oregon.

  6. DOE Awards $20 Million to Develop Geothermal Power Technologies |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Awards $20 Million to Develop Geothermal Power Technologies DOE Awards $20 Million to Develop Geothermal Power Technologies September 22, 2010 - 10:48am Addthis Power of geothermal power units. DOE announced on September 15 its selection of seven projects to research, develop, and demonstrate cutting-edge geothermal energy technologies involving low-temperature fluids, geothermal fluids recovered from oil and gas wells, and highly pressurized geothermal fluids. Today's

  7. ALASKA ENERGY AUTHORITY Alaska Geothermal Development: A Plan...

    Open Energy Info (EERE)

    ALASKA ENERGY AUTHORITY Alaska Geothermal Development: A Plan Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: ALASKA ENERGY AUTHORITY Alaska Geothermal...

  8. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Introduction Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Introduction The Geothermal Technologies Program Multi-Year Research, ...

  9. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Plan Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Technical Plan The Geothermal Technologies Program Multi-Year Research, ...

  10. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Analysis Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Analysis The Geothermal Technologies Program Multi-Year Research, ...

  11. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Benefits Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Benefits The Geothermal Technologies Program Multi-Year Research, ...

  12. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Integration Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Systems Integration The Geothermal Technologies Program Multi-Year ...

  13. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coordination Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Coordination The Geothermal Technologies Program Multi-Year Research, ...

  14. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenges Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Challenges The Geothermal Technologies Program Multi-Year Research, ...

  15. Seismic Technology Adapted to Analyzing and Developing Geothermal...

    Open Energy Info (EERE)

    Technology Adapted to Analyzing and Developing Geothermal Systems Below Surface-Exposed High-Velocity Rocks Geothermal Project Jump to: navigation, search Last modified on July 22,...

  16. Development Wells At Long Valley Caldera Geothermal Area (Associates...

    Open Energy Info (EERE)

    Associates, 1987) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At Long Valley Caldera Geothermal Area (Associates, 1987)...

  17. Development Wells At Fenton Hill HDR Geothermal Area (Dreesen...

    Open Energy Info (EERE)

    Dreesen, Et Al., 1987) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At Fenton Hill HDR Geothermal Area (Dreesen, Et Al.,...

  18. New developments in Colorado geothermal energy projects | Open...

    Open Energy Info (EERE)

    library Journal Article: New developments in Colorado geothermal energy projects Authors J. Held and F. Henderson Published Journal Geothermal Resources Council- Transactions,...

  19. Geothermal Resource Development Needs in New Mexico | Open Energy...

    Open Energy Info (EERE)

    to library Report: Geothermal Resource Development Needs in New Mexico Author D.J. Fleischman Published Geothermal Energy Association, 2006 DOI Not Provided Check for DOI...

  20. A History or Geothermal Energy Research and Development in the...

    Broader source: Energy.gov (indexed) [DOE]

    Energy Conversion 1976 - 2006 A History of Geothermal Energy Research and Development in the United States Cover Photo Credits The Geysers Geothermal Power Plant, Sonoma County, ...

  1. Water Use in the Development and Operation of Geothermal Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Operation of Geothermal Power Plants Water Use in the Development and Operation of Geothermal Power Plants This report summarizes what is currently known about the life cycle water ...

  2. EA-1746: Blue Mountain Geothermal Development Project, Humboldt & Pershing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    County, NV | Department of Energy 46: Blue Mountain Geothermal Development Project, Humboldt & Pershing County, NV EA-1746: Blue Mountain Geothermal Development Project, Humboldt & Pershing County, NV December 3, 2007 EA-1746: Final Environmental Assessment Blue Mountain Geothermal Development Project April 26, 2010 EA-1746: Finding of No Significant Impact Blue Mountain Geothermal Development Project, Humboldt and Pershing Counties, Nevada

  3. EERE Success Story—Energy Department Develops Roadmap to Help Spur Geothermal Energy Development

    Broader source: Energy.gov [DOE]

    Geothermal Regulatory Roadmap will help developers navigate regulatory requirements at every level of government to deploy geothermal energy projects.

  4. Geothermal policy development program: expediting the local geothermal permitting process

    SciTech Connect (OSTI)

    Not Available

    1981-07-01

    For a number of years, concerns have been raised about the length of time and the complexity involved in obtaining required permits in order to develop the geothermal resource at the Geysers. Perhaps the most important factor is jurisdiction. At the Geysers, all three levels of government - local, state, and federal - exercise significant authority over various aspects of geothermal development. In addition, several agencies within each governmental level play an active role in the permitting process. The present study is concerned primarily with the local permitting process, and the ways in which this process could be expedited. This report begins by looking at the local role in the overall permitting process, and then reviews the findings and conclusions that have been reached in other studies of the problem. This is followed by a case study evaluation of recent permitting experience in the four Geysers-Calistoga KGRA counties, and the report concludes by outlining several approaches to expediting the local permitting process.

  5. Regulation of geothermal energy development in Colorado

    SciTech Connect (OSTI)

    Coe, B.A.; Forman, N.A.

    1980-01-01

    The regulatory system is presented in a format to help guide geothermal energy development. State, local, and federal agencies, legislation, and regulations are presented. Information sources are listed. (MHR)

  6. Geothermal Energy Research Development and Demonstration Program

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    The Federal program's goal, strategy, plans, and achievements are summarized. In addition, geothermal development by state and local governments and, where available, by the private sector is described. (MHR)

  7. Development of Enhanced Geothermal Systems Technologies Workshops |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Development of Enhanced Geothermal Systems Technologies Workshops Development of Enhanced Geothermal Systems Technologies Workshops The following documents are from a series of four workshops held in 2007 that were intended to motivate facilitated discussion on technology gaps related to reservoir management and operations. The first presentation evaluated the assumptions set forth in the report by the Massachusetts Institute of Technology (MIT) titled The Future of

  8. Newberry Geothermal | Open Energy Information

    Open Energy Info (EERE)

    named Northwest Geothermal Company) started to develop a 120MW geothermal project on its leases in 2006. As of 62012, Davenport Newberry is still in the exploration phase...

  9. Integrated Enhanced Geothermal Systems (EGS) research and development |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Integrated Enhanced Geothermal Systems (EGS) research and development Integrated Enhanced Geothermal Systems (EGS) research and development February 21, 2014 - 2:59pm Addthis Open Date: 02/21/2014 Close Date: 04/30/2014 Funding Organization: Department of Energy Geothermal Technologies Office Funding Number: DE-FOA-0000842 Summary: Through this Funding Opportunity Announcement (FOA), the Geothermal Technologies Office's (GTO) Enhanced Geothermal Systems (EGS) Subprogram

  10. A Roadmap for Strategic Development of Geothermal Exploration Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy A Roadmap for Strategic Development of Geothermal Exploration Technologies A Roadmap for Strategic Development of Geothermal Exploration Technologies The Dixie Valley Geothermal Plant in Nevada produces 60 MW of electricity. The Dixie Valley Geothermal Plant in Nevada produces 60 MW of electricity. A technology roadmap paper on geothermal exploration technologies. exploration_technical_roadmap2013.pdf (345.07 KB) More Documents & Publications A Roadmap for

  11. Energy Department Announces National Geothermal Data System to Accelerate Geothermal Energy Development

    Broader source: Energy.gov [DOE]

    The National Geothermal Data System is online open-source platform that facilitates the discovery and use of geothermal data. It will help address one of the greatest barriers to development and deployment of this promising clean energy source.

  12. Honduras geothermal development: Regulations and opportunities

    SciTech Connect (OSTI)

    Goff, S.J.; Winchester, W.W.

    1994-09-01

    The US Department of Energy (DOE) through the Assistant Secretary for Policy, Planning, and Evaluation funded a project to review and evaluate existing power sector laws and regulations in Honduras. Also included in the scope of the project was a review of regulations pertaining to the privatization of state-run companies. We paid particular attention to regulations which might influence opportunities to develop and commercialize Honduras` geothermal resources. We believe that Honduras is well on the road to attracting foreign investment and has planned or has already in place much of the infrastructure and legal guarantees which encourage the influx of private funds from abroad. In addition, in light of current power rationing and Honduras` new and increasing awareness of the negative effects of power sector development on the environment, geothermal energy development is even more attractive. Combined, these factors create a variety of opportunities. The potential for private sector development of geothermal positive.

  13. Basic research needed for the development of geothermal energy

    SciTech Connect (OSTI)

    Aamodt, R.L.; Riecker, R.E.

    1980-10-01

    Basic research needed to facilitate development of geothermal energy is identified. An attempt has been made to make the report representative of the ideas of productive workers in the field. The present state of knowledge of geothermal energy is presented and then specific recommendations for further research, with status and priorities, are listed. Discussion is limited to a small number of applicable concepts, namely: origin of geothermal flux; transport of geothermal energy; geothermal reservoirs; rock-water interactions, and geophysical and geochemical exploration.

  14. Energy Department Develops Regulatory Roadmap to Spur Geothermal Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development | Department of Energy Develops Regulatory Roadmap to Spur Geothermal Energy Development Energy Department Develops Regulatory Roadmap to Spur Geothermal Energy Development June 5, 2013 - 1:19pm Addthis The Energy Department today issued a Geothermal Regulatory Roadmap that will help developers navigate regulatory requirements at every level of government to deploy geothermal energy projects. In partnership with the Bureau of Land Management, U.S. Fish and Wildlife Service, and

  15. New York Canyon Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Central Nevada Seismic Zone Geothermal Region Geothermal Project Profile Developer Terra-Gen Project Type Hydrothermal GEA Development Phase Phase III - Permitting and Initial...

  16. Geothermal development plan: Graham/Greenlee Counties

    SciTech Connect (OSTI)

    White, D.H.; Goldstone, L.A.

    1982-08-01

    The Graham/Greenlee County Area Development Plan evaluated the region-wide market potential for utilizing geothermal energy. The study identified five potential geothermal resource areas with temperatures less than 100{sup 0}C (212{sup 0}F). In addition, seven areas are inferred to contain higher temperature resources with the Clifton Hot Springs area having electrical potential. Geothermal resources are found to occur near Safford and Clifton, the two major population centers. Future population growth in the two counties is expected to average less than two percent per year over the next 40 years. Growth in the mining, trade and services economic sectors provide opportunities for the direct utilization of geothermal energy. A regional energy use analysis is included containing energy use and price projections. Water supplies are found to be adequate for urban needs, though agricultural and mineral water use may be limited in the future. The study also contains a preliminary economic analysis for two district heating systems as well as a section matching geothermal resources to potential users.

  17. Development of an Improved Cement for Geothermal Wells

    Broader source: Energy.gov [DOE]

    Development of an Improved Cement for Geothermal Wells presentation at the April 2013 peer review meeting held in Denver, Colorado.

  18. Geothermal Development and the Use of Categorical Exclusions (Poster)

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Conference: Geothermal Development and the Use of Categorical Exclusions (Poster) Citation Details In-Document Search Title: Geothermal Development and the Use of Categorical Exclusions (Poster) The federal environmental review process under the National Environmental Policy Act of 1969 (NEPA) can be complex and time consuming. Currently, a geothermal developer may have to complete the NEPA process multiple times during the development of a geothermal project.

  19. Geothermal energy: opportunities for California commerce. Phase I report

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    California's geographic and end-use markets which could directly use low and moderate temperature geothermal resources are ranked and described, as well as those which have the highest potential for near-term commercial development of these resources. Building on previous market surveys, the assessment determined that out of 38 geothermal resource areas with characteristics for direct use development, five areas have no perceived impediments to near-term development: Susanville, Litchfield, Ontario Hot Springs, Lake Elsinore, and the Salton Sea Geothermal Field. Twenty-nine applications were compared with previously selected criteria to determine their near-term potential for direct use of geothermal fluids. Seven categories were found to have the least impediments to development; agriculture and district heating applications are considered the highest. Ten-year projections were conducted for fossil fuel displacement from the higher rated applications. It is concluded that greenhouses have the greatest displacement of 18 x 10/sup 6/ therms per year.

  20. Geothermal power development in Hawaii. Volume I. Review and analysis

    SciTech Connect (OSTI)

    Not Available

    1982-06-01

    The history of geothermal exploration in Hawaii is reviewed briefly. The nature and occurrences of geothermal resources are presented island by island. An overview of geothermal markets is presented. Other topies covered are: potential markets of the identified geothermal areas, well drilling technology, hydrothermal fluid transport, overland and submarine electrical transmission, community aspects of geothermal development, legal and policy issues associated with mineral and land ownership, logistics and infrastructure, legislation and permitting, land use controls, Regulation 8, Public Utilities Commission, political climate and environment, state plans, county plans, geothermal development risks, and business planning guidelines.

  1. Geothermal

    Office of Scientific and Technical Information (OSTI)

    Geothermal Geothermal Legacy Collection Search the Geothermal Legacy Collection Search For Terms: Find + Advanced Search Advanced Search All Fields: Title: Full Text: ...

  2. GRED Drilling Award … GRED III Phase II; 2010 Geothermal Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Peer Review Report | Department of Energy Drilling Award … GRED III Phase II; 2010 Geothermal Technology Program Peer Review Report GRED Drilling Award … GRED III Phase II; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review lowtemp_011_karl.pdf (222.5 KB) More Documents & Publications 2010 Geothermal Technology Program Peer Review Report Well Monitoring Systems for EGS; 2010 Geothermal Technology Program Peer Review Report

  3. BLM Increases Acreage for Geothermal Development

    Broader source: Energy.gov [DOE]

    The U.S. Bureau of Land Management (BLM) earlier this month leased another 146,339 acres of land for geothermal power development, adding to 244,000 acres already leased for this purpose in the past 18 months. The most recent tracts are in Utah, Oregon and Idaho.

  4. BLM Approves California Geothermal Development Project | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy BLM Approves California Geothermal Development Project BLM Approves California Geothermal Development Project August 21, 2013 - 2:41pm Addthis The Bureau of Land Management (BLM) and the U.S. Forest Service Inyo National Forest on August 13 signed the Record of Decision approving a new 40-megawatt geothermal project near Mammoth Lakes, California. The Casa Diablo IV Geothermal Development Project will be built on lands administered by the Inyo National Forest and on private lands

  5. Recovery Act:Rural Cooperative Geothermal development Electric &

    Office of Scientific and Technical Information (OSTI)

    Agriculture (Technical Report) | SciTech Connect Technical Report: Recovery Act:Rural Cooperative Geothermal development Electric & Agriculture Citation Details In-Document Search Title: Recovery Act:Rural Cooperative Geothermal development Electric & Agriculture Surprise Valley Electric, a small rural electric cooperative serving northeast California and southern Oregon, developed a 3mw binary geothermal electric generating plant on a cooperative member's ranch. The geothermal

  6. DOE Leverages Fossil Energy Expertise to Develop And Explore Geothermal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Resources | Department of Energy Leverages Fossil Energy Expertise to Develop And Explore Geothermal Energy Resources DOE Leverages Fossil Energy Expertise to Develop And Explore Geothermal Energy Resources February 7, 2011 - 4:36pm Addthis Focusing on reducing the upfront costs of geothermal development as well as improve its effectiveness, the U.S. Department of Energy (DOE) today announced plans to leverage oil and gas expertise to test the reliability and efficiency of geothermal

  7. Overview of Geothermal Energy Development Webcast | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview of Geothermal Energy Development Webcast Overview of Geothermal Energy Development Webcast GeothermalEnergyDevelopmentOverview_Presentation.pdf (3.79 MB) GeothermalWebinar_Transcript.pdf (270.98 KB) More Documents & Publications Home Performance with ENERGY STAR Webinar (text version) February 13, 2013 Webinar: Preliminary Process and Market Evaluation - Better Buildings Neighborhood Program Webcast Financing Residential Energy Efficiency with Carbon Offsets Transcript

  8. EA-1849-S1: Phase II Facility - Ormat Tuscarora Geothermal Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    849-S1: Phase II Facility - Ormat Tuscarora Geothermal Power Plant in Tuscarora, NV EA-1849-S1: Phase II Facility - Ormat Tuscarora Geothermal Power Plant in Tuscarora, NV Summary ...

  9. Phase 2 Reese River Geothermal Project Slim Well 56-4 Drilling...

    Open Energy Info (EERE)

    Phase 2 Reese River Geothermal Project Slim Well 56-4 Drilling And Testing Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Phase 2 Reese River Geothermal...

  10. Development of an Improved Cement for Geothermal Wells

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project objectives: Develop a novel, zeolite-containing lightweight, high temperature, high pressure geothermal cement, which will provide operators with an easy to use, flexible cementing system that saves time and simplifies logistics.

  11. Geothermal Technologies Program Multi-Year Research, Development and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration Plan | Department of Energy Plan Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025. gtp_myrdd_2009-complete.pdf (7.48 MB) More Documents & Publications Geothermal Technologies Program Multi-Year Research,

  12. Geothermal Technologies Program Multi-Year Research, Development and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration Plan: Cover | Department of Energy Cover Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Cover The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025. gtp_myrdd_2009-cover.pdf (965.32 KB) More Documents & Publications Geothermal Technologies Program

  13. Geothermal Technologies Program Multi-Year Research, Development and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration Plan: Foreword | Department of Energy Foreword Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Foreword The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025. gtp_myrdd_2009-forward.pdf (81.95 KB) More Documents & Publications Geothermal Technologies Program

  14. Geothermal Technologies Program Multi-Year Research, Development and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration Plan: Introduction | Department of Energy Introduction Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Introduction The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025. gtp_myrdd_2009-introduction.pdf (3.84 MB) More Documents & Publications Geothermal

  15. A Technology Roadmap for Strategic Development of Enhanced Geothermal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems | Department of Energy A Technology Roadmap for Strategic Development of Enhanced Geothermal Systems A Technology Roadmap for Strategic Development of Enhanced Geothermal Systems DOE Project Partner AltaRock Energy drills for geothermal energy at the Newberry Volcano EGS Demonstration site, near Bend, Oregon. DOE Project Partner AltaRock Energy drills for geothermal energy at the Newberry Volcano EGS Demonstration site, near Bend, Oregon. This technical paper outlines opportunities

  16. United Nations geothermal activities in developing countries

    SciTech Connect (OSTI)

    Beredjick, N.

    1987-07-01

    The United Nations implements technical cooperation projects in developing countries through its Department of Technical Cooperation for Development (DTCD). The DTCD is mandated to explore for and develop natural resources (water, minerals, and relevant infrastructure) and energy - both conventional and new and renewable energy sources. To date, the United Nations has been involved in over 30 geothermal exploration projects (completed or underway) in 20 developing countries: 8 in Africa (Djibouti, Ethiopia, Kenya, Madagascar); 8 in Asia (China, India, Jordan, Philippines, Thailand); 9 in Latin America (Bolivia, Chile, El Salvador, Honduras, Mexico, Nicaragua, Panama) and 6 in Europe (Greece, Romania, Turkey, Yugoslavia). Today, the DTCD has seven UNDP geothermal projects in 6 developing countries. Four of these (Bolivia, China, Honduras, and Kenya) are major exploration projects whose formulation and execution has been possible thanks to the generous contributions under cost-sharing arrangements from the government of Italy. These four projects are summarized.

  17. Redfield Campus Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: Resource Estimate Mean Reservoir Temp:...

  18. Hawthorne Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: Coordinates: 38.53, -118.65...

  19. Wendel Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Area Profile Location: California Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: Operational"Operational" is not in the...

  20. Rhodes Marsh Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: Resource Estimate Mean Reservoir Temp:...

  1. Geothermal development plan: northern Arizona counties

    SciTech Connect (OSTI)

    White, D.H.; Goldstone, L.A.

    1982-08-01

    The Northern Counties Area Development Plan evaluated the regional market potential for utilizing geothermal energy. This study identified five potential geothermal resource areas, four of which have low temperature (<90{sup 0}C, 194{sup 0}F) potential and one possible igneous system. The average population growth rate in the Northern Counties is expected to be five percent per year over the next 40 years, with Mohave and Yavapai Counties growing the fastest. Rapid growth is anticipated in all major employment sectors, including trade, service, manufacturing, mining and utilities. A regional energy use analysis is included, containing information on current energy use patterns for all user classes. Water supplies are expected to be adequate for expected growth generally, though Yavapai and Gila Counties will experience water deficiencies. A preliminary district heating analysis is included for the towns of Alpine and Springerville. Both communities are believed located on geothermal resource sites. The study also contains a section identifying potential geothermal resource users in northern Arizona.

  2. Rural Cooperative Geothermal Development Electric & Agriculture...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Southwest Alaska Regional Geothermal Energy Project District Wide Geothermal Heating Conversion Blaine County School District Novel Energy Conversion ...

  3. Annual US Geothermal Power Production and Development Report...

    Open Energy Info (EERE)

    and Development Report Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Annual US Geothermal Power Production and Development Report Abstract To increase...

  4. Geothermal Technologies Program Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    Research, Development and Demonstration Plan: Table of Contents Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Technical Plan ...

  5. Recovery Act:Rural Cooperative Geothermal development Electric...

    Office of Scientific and Technical Information (OSTI)

    The geothermal resource had been discovered in 1980 when the ranch was developing supplemental irrigation water wells. The 240F resource was used for irrigation until developed ...

  6. Transient well testing in two-phase geothermal reservoirs

    SciTech Connect (OSTI)

    Aydelotte, S.R.

    1980-03-01

    A study of well test analysis techniques in two-phase geothermal reservoirs has been conducted using a three-dimensional, two-phase, wellbore and reservoir simulation model. Well tests from Cerro Prieto and the Hawaiian Geothermal project have been history matched. Using these well tests as a base, the influence of reservoir permeability, porosity, thickness, and heat capacity, along with flow rate and fracturing were studied. Single and two-phase transient well test equations were used to analyze these tests with poor results due to rapidly changing fluid properties and inability to calculate the flowing steam saturation in the reservoir. The injection of cold water into the reservoir does give good data from which formation properties can be calculated.

  7. Geothermal Development and the Use of Categorical Exclusions (Poster)

    SciTech Connect (OSTI)

    Levine, A.; Young, K. R.

    2014-09-01

    The federal environmental review process under the National Environmental Policy Act of 1969 (NEPA) can be complex and time consuming. Currently, a geothermal developer may have to complete the NEPA process multiple times during the development of a geothermal project. One mechanism to reduce the timeframe of the federal environmental review process for activities that do not have a significant environmental impact is the use of Categorical Exclusions (CXs), which can exempt projects from having to complete an Environmental Assessment or Environmental Impact Statement. This study focuses primarily on the CX process and its applicability to geothermal exploration. In this paper, we Provide generalized background information on CXs, including previous NEPA reports addressing CXs, the process for developing CXs, and the role of extraordinary circumstances; Examine the history of the Bureau of Land Management's (BLM) geothermal CXs;Compare current CXs for oil, gas, and geothermal energy; Describe bills proposing new statutory CXs; Examine the possibility of standardizing geothermal CXs across federal agencies; and Present analysis from the Geothermal NEPA Database and other sources on the potential for new geothermal exploration CXs. As part of this study, we reviewed Environmental Assessments (EAs) conducted in response to 20 geothermal exploration drilling permit applications (Geothermal Drilling Permits or Notices of Intents) since the year 2001, the majority of which are from the last 5 years. All 20 EAs reviewed for this study resulted in a Finding of No Significant Impact (FONSI). While many of these FONSI's involved proponent proposed or federal agency required mitigation, this still suggests it may be appropriate to create or expand an exploration drilling CX for geothermal, which would have a significant impact on reducing geothermal exploration timelines and up-front costs. Ultimately, federal agencies tasked with permitting and completing environmental

  8. Program planner's guide to geothermal development in California

    SciTech Connect (OSTI)

    Yen, W.W.S.; Chambers, D.M.; Elliott, J.F.; Whittier, J.P.; Schnoor, J.J.; Blachman, S.

    1980-09-30

    The resource base, status of geothermal development activities, and the state's energy flow are summarized. The present and projected geothermal share of the energy market is discussed. The public and private sector initiatives supporting geothermal development in California are described. These include legislation to provide economic incentives, streamline regulation, and provide planning assistance to local communities. Private sector investment, research, and development activities are also described. The appendices provide a ready reference of financial incentives. (MHR)

  9. A Roadmap for Strategic Development of Geothermal Exploration Technologies

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Technical Report: A Roadmap for Strategic Development of Geothermal Exploration Technologies Citation Details In-Document Search Title: A Roadmap for Strategic Development of Geothermal Exploration Technologies Characterizing productive geothermal systems is challenging yet critical to identify and develop an estimated 30 gigawatts electric (GWe) of undiscovered hydrothermal resources in the western U.S. This paper, undertaken by the U.S. Department of

  10. DOE Leverages Fossil Energy Expertise to Develop and Explore Geothermal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Resources | Department of Energy Leverages Fossil Energy Expertise to Develop and Explore Geothermal Energy Resources DOE Leverages Fossil Energy Expertise to Develop and Explore Geothermal Energy Resources February 7, 2011 - 12:00pm Addthis Washington, D.C. - Focusing on reducing the upfront costs of geothermal development as well as improve its effectiveness, the U.S. Department of Energy today announced plans to leverage oil and gas expertise to test the reliability and efficiency

  11. Geothermal Technologies Program Multi-Year Research, Development and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration Plan: Appendices | Department of Energy Multi-Year Research, Development and Demonstration Plan: Appendices Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Appendices The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025. gtp_myrdd_2009-appendices.pdf (59.4 KB)

  12. Geothermal Resources Development in Tibet, China | Open Energy...

    Open Energy Info (EERE)

    navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: Geothermal Resources Development in Tibet, China Abstract Tibet is located in the eastern...

  13. Geothermal Development in Imperial County | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Geothermal Development in Imperial County Abstract Imperial County is estimated to have a...

  14. A History or Geothermal Energy Research and Development in the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Drilling 1976-2006 A History or Geothermal Energy Research and Development in the United States: Drilling 1976-2006 This report summarizes significant research projects performed ...

  15. A History of Geothermal Energy Research and Development in the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exploration 1976-2006 A History of Geothermal Energy Research and Development in the United States: Exploration 1976-2006 This report summarizes significant research projects ...

  16. Concept Testing and Development at the Raft River Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concept Testing and Development at the Raft River Geothermal Field, Idaho presentation at the April 2013 peer review meeting held in Denver, Colorado. PDF icon ...

  17. Low Cost Exploration, Testing, And Development Of The Chena Geothermal...

    Open Energy Info (EERE)

    to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Low Cost Exploration, Testing, And Development Of The Chena Geothermal Resource Abstract The...

  18. Low Cost Exploration, Testing, and Development of the Chena Geothermal...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Low Cost Exploration, Testing, and Development of the Chena Geothermal Resource Abstract The...

  19. Dominica Grants Geothermal Exploration and Development License to Caribbean Company

    Broader source: Energy.gov [DOE]

    The geothermal resources of Dominica will now be developed by a Caribbean company as a long-term response to the high cost of electricity in the country.

  20. Changes in Surficial Features Associated with Geothermal Development...

    Open Energy Info (EERE)

    Changes in Surficial Features Associated with Geothermal Development in Long Valley Caldera, California, 1985-1997 Jump to: navigation, search OpenEI Reference LibraryAdd to...

  1. Development of Design and Simulation Tool for Hybrid Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System Development of Design and Simulation Tool for Hybrid Geothermal Heat Pump System This project will expand Expand eQUEST, a building energy analysis software with latest ...

  2. Colorado Firm Develops Innovative Materials for Geothermal Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The company developed materials designed to create and conserve geothermal reservoirs in harsh down-hole environments to produce energy. Composite used an innovative polymer ...

  3. A History of Geothermal Energy Research and Development in the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reservoir Engineering 1976-2006 A History of Geothermal Energy Research and Development in the United States: Reservoir Engineering 1976-2006 This report summarizes significant ...

  4. Concept Testing and Development at the Raft River Geothermal...

    Broader source: Energy.gov (indexed) [DOE]

    Development at the Raft River Geothermal Field, Idaho presentation at the April 2013 peer review meeting held in Denver, Colorado. raftriverpeer2013.pdf More Documents &...

  5. Hawaii's Rainforest Crunch: Land, People, and Geothermal Development...

    Open Energy Info (EERE)

    Rainforest Crunch: Land, People, and Geothermal Development Jump to: navigation, search OpenEI Reference LibraryAdd to library Periodical: Hawaii's Rainforest Crunch: Land, People,...

  6. Concept Testing and Development at the Raft River Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    output of the Raft River geothermal field by increasing production or injectivity. egsmooreraftriver.pdf (2.18 MB) More Documents & Publications Concept Testing and Development ...

  7. A History of Geothermal Energy Research and Development in the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A History of Geothermal Energy Research and Development in the United States: Exploration 1976-2006 This report summarizes significant research projects performed by the ...

  8. Experience with the Development of Advanced Materials for Geothermal Systems

    SciTech Connect (OSTI)

    Sugama, T.; Butcher, T.; Ecker, L.

    2011-01-01

    This chapter contains the following sections: Introduction, Advanced Cements, Materials Research and Development in Enhanced Geothermal Systems (EGS), Advanced Coatings, and Conclusions.

  9. Dixie Valley - Geothermal Development in the Basin and Range...

    Open Energy Info (EERE)

    Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Dixie Valley - Geothermal Development in the Basin and Range Citation Dixie...

  10. A Roadmap for Strategic Development of Geothermal Exploration Technologies

    SciTech Connect (OSTI)

    Phillips, Benjamin R.; Ziagos, John; Thorsteinsson, Hildigunnur; Hass, Eric

    2013-02-13

    Characterizing productive geothermal systems is challenging yet critical to identify and develop an estimated 30 gigawatts electric (GWe) of undiscovered hydrothermal resources in the western U.S. This paper, undertaken by the U.S. Department of Energy’s Geothermal Technologies Office (GTO), summarizes needs and technical pathways that target the key geothermal signatures of temperature, permeability, and fluid content, and develops the time evolution of these pathways, tying in past and current GTO exploration Research and Development (R&D) projects. Beginning on a five-year timescale and projecting out to 2030, the paper assesses technologies that could accelerate the confirmation of 30 GWe. The resulting structure forms the basis for a Geothermal Exploration Technologies Roadmap, a strategic development plan to help guide GTO R&D investments that will lower the risk and cost of geothermal prospect identification. This roadmap is currently open for public comment. Send your comments to geothermal@ee.doe.gov.

  11. Colorado Takes Steps to Expand Geothermal Development

    Broader source: Energy.gov [DOE]

    Colorado Governor John Hickenlooper signed a geothermal bond bill May 30, providing $1.98 million in state funding and matching the Energy Department’s investment in geothermal energy exploration at Pagosa Springs.

  12. Geothermal Technologies Program Multi-Year Research, Development and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration Plan: Program Analysis | Department of Energy Analysis Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Analysis The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025. gtp_myrdd_2009-program_analysis.pdf (464.77 KB) More Documents & Publications

  13. Guidelines for Provision and Interchange of Geothermal Data Assets

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Guidelines for Provision and Interchange of Geothermal Data Assets Supporting Advancement of Geothermal by Populating the DOE Geothermal Data Repository, a Node on the National Geothermal Data System US Department of Energy Geothermal Technologies Office January 27, 2016 Version 3.4 The National Geothermal Data System (NGDS) is a distributed information system providing access to integrated data in support of, and generated in, all phases of geothermal development. DOE's Geothermal Data

  14. Geothermal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power/Energy Conversion Efficiency/Geothermal Geothermal Tara Camacho-Lopez 2016-03-16T19:31:15+00:00 geothermal_leamstest Sandia's work in drilling technology is aimed at reducing the cost and risk associated with drilling in harsh, subterranean environments. The historical focus of the drilling research has been directed at significantly expanding the nation's utilization of geothermal energy. This focus in geothermal related drilling research is the search for practical solutions

  15. Enthalpy and mass flowrate measurements for two-phase geothermal...

    Open Energy Info (EERE)

    distribution which exists in most geothermal areas. Authors Hirtz, P.; Lovekin, J.; Copp, J.; Buck, C.; Adams and M. Published Eighteenth workshop on geothermal reservoir...

  16. Overview of Proposed Geothermal Development in Hawaii

    SciTech Connect (OSTI)

    1990-02-15

    During the four hours of the public meeting held by the State Department of Business and Economic Development (DBED) in Maui in November 1989, not one of the 200 persons present spoke in favor of geothermal development on the Big Island to supply power to Oahu. However, we were all sure after the meeting that the State would proceed on its course to develop the project in spite of any public concerns. This situation we find incredible considering there are many unanswered questions on a subject of paramount importance to the economic and environmental well being of all of us. Our concerns are well expressed in the editorial of The Maui News, December 10, 1989 . We wish to set the record straight with some facts from an economic, financial and utility planning viewpoint, recognizing also the potentially serious social, health and other environmental impacts.

  17. EA-1849-S1: Phase II Facility- Ormat Tuscarora Geothermal Power Plant in Tuscarora, NV

    Broader source: Energy.gov [DOE]

    This Supplemental Environmental Assessment (SEA) will evaluate the potential impacts of the Phase II Facility of the Ormat Tuscarora Geothermal Power Plant.

  18. Wabuska Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: Operational"Operational" is not in the...

  19. Wilson Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: Coordinates: 38.7672, -119.1732...

  20. Development of Exploration Methods for Engineered Geothermal...

    Open Energy Info (EERE)

    M. Tibuleac, Joe Iovenitti, David von Seggern, Jon Sainsbury, Glenn Biasi and John G. Anderson Conference Stanford Geothermal Conference; Stanford, California; 20130101 Published...

  1. Rural Cooperative Geothermal Development Electric & Agriculture

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Project ManagementCoordination * Surprise Valley Electric management and staff is ... Project Coordinator anytime significant event occurs 10 | US DOE Geothermal Program ...

  2. Dominica Grants Geothermal Exploration and Development License...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal energy is generated by heat stored beneath the earth's surface and therefore requires no purchase of fuel. Efforts have been ongoing throughout the Caribbean to harness ...

  3. Building geothermal research and development partnerships: The California Energy Commission`s geothermal program

    SciTech Connect (OSTI)

    Hare, R.; Tiangco, V.; Birkinshaw, K.; Johannis, M.

    1995-12-31

    The California Energy Commission`s Geothermal Program (Assembly Bill 1905, Bosco) has built cost-shared Research, Development and Demonstration (RD&D) partnerships with over 150 public and private entities. The Geothermal Program promotes the development of new geothermal resources and technologies for both direct-use and electricity generation while protecting the environment and promoting energy independence. This is accomplished by providing financial and technical assistance in the form of contingent awards which, depending on project success, can become either a loan or a grant. Some of the cost-shared RD&D accomplishments are presented. The process and requirements to obtain financial assistance through the Geothermal Program are summarized.

  4. Field testing advanced geothermal turbodrill (AGT). Phase 1 final report

    SciTech Connect (OSTI)

    Maurer, W.C.; Cohen, J.H.

    1999-06-01

    Maurer Engineering developed special high-temperature geothermal turbodrills for LANL in the 1970s to overcome motor temperature limitations. These turbodrills were used to drill the directional portions of LANL`s Hot Dry Rock Geothermal Wells at Fenton Hill, New Mexico. The Hot Dry Rock concept is to drill parallel inclined wells (35-degree inclination), hydraulically fracture between these wells, and then circulate cold water down one well and through the fractures and produce hot water out of the second well. At the time LANL drilled the Fenton Hill wells, the LANL turbodrill was the only motor in the world that would drill at the high temperatures encountered in these wells. It was difficult to operate the turbodrills continuously at low speed due to the low torque output of the LANL turbodrills. The turbodrills would stall frequently and could only be restarted by lifting the bit off bottom. This allowed the bit to rotate at very high speeds, and as a result, there was excessive wear in the bearings and on the gauge of insert roller bits due to these high rotary speeds. In 1998, Maurer Engineering developed an Advanced Geothermal Turbodrill (AGT) for the National Advanced Drilling and Excavation Technology (NADET) at MIT by adding a planetary speed reducer to the LANL turbodrill to increase its torque and reduce its rotary speed. Drilling tests were conducted with the AGT using 12 1/2-inch insert roller bits in Texas Pink Granite. The drilling tests were very successful, with the AGT drilling 94 ft/hr in Texas Pink Granite compared to 45 ft/hr with the LANL turbodrill and 42 ft/hr with a rotary drill. Field tests are currently being planned in Mexico and in geothermal wells in California to demonstrate the ability of the AGT to increase drilling rates and reduce drilling costs.

  5. Los Humeros Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    (0) 10 References Area Overview Geothermal Area Profile Location: Chignautla, Puebla, Mexico Exploration Region: Transmexican Volcanic Belt GEA Development Phase:...

  6. A Technology Roadmap for Strategic Development of Enhanced Geothermal Systems

    SciTech Connect (OSTI)

    Ziagos, John; Phillips, Benjamin R.; Boyd, Lauren; Jelacic, Allan; Stillman, Greg; Hass, Eric

    2013-02-13

    Realization of EGS development would make geothermal a significant contender in the renewable energy portfolio, on the order of 100+ GWe in the United States alone. While up to 90% of the geothermal power resource in the United States is thought to reside in Enhanced Geothermal Systems (EGS), hurdles to commercial development still remain. The Geothermal Technologies Office, U.S. Department of Energy (DOE), began in 2011 to outline opportunities for advancing EGS technologies on five- to 20-year timescales, with community input on the underlying technology needs that will guide research and ultimately determine commercial success for EGS. This report traces DOE's research investments, past and present, and ties them to these technology needs, forming the basis for an EGS Technology Roadmap to help guide future DOE research. This roadmap is currently open for public comment. Send your comments to geothermal@ee.doe.gov.

  7. Environmental impacts during geothermal development: Some examples from Central America

    SciTech Connect (OSTI)

    Goff, S.; Goff, F.

    1997-04-01

    The impacts of geothermal development projects are usually positive. However, without appropriate monitoring plans and mitigation actions firmly incorporated into the project planning process, there exists the potential for significant negative environmental impacts. The authors present five examples from Central America of environmental impacts associated with geothermal development activities. These brief case studies describe landslide hazards, waste brine disposal, hydrothermal explosions, and air quality issues. Improved Environmental Impact Assessments are needed to assist the developing nations of the region to judiciously address the environmental consequences associated with geothermal development.

  8. Development history of the Tiwi geothermal field, Philippines

    SciTech Connect (OSTI)

    Gambill, D.T.; Beraquit, D.B.

    1993-10-01

    Commercial production of electricity from the Tiwi geothermal system began in 1979. In 1982, Tiwi became the world`s first water-dominated system to produce more than 160 MWe. Today the field supplies about 11% of Luzon`s electricity. Initially, the reservoir was single-phase liquid with a small, shallow steam zone on the east side. Temperature reversals in the first wells showed the east to be an outflow zone. As production began, reservoir pressure declined, two-phase conditions developed, and groundwater entered the reservoir from the east. As many productions wells cooled, brine production increased and generation decreased from about 280 MWe in 1983 to about 190 MWe in 1986. Improvements to surface facilities and new wells drilled farther west raised generation to about 280 MWe by mid-1993. Separated brine was first injected into the reservoir, but this lowered steam production; injection is now outside the field.

  9. Geothermal pipeline: Progress and development update geothermal progress monitor

    SciTech Connect (OSTI)

    1994-03-01

    This two-hour conference will provide information for audiences of school officials, designers, utility personnel, and others interested in economical, energy-efficient, and environmentally beneficial heating and cooling for schools. The April 28, 1994 teleconference will focus on applications of GHPs in school buildings, including elementary, secondary, and post-secondary schools. Program content will include case studies of successful GHP installations in a number of different building types and climates as well as interviews with designers, school administrators, and technical experts. Emphasis will be on the comfort, flexibility, economy, ease of maintenance, and other benefits of GHPs in schools. There will be opportunity for downsite participants to telephone questions to GHP authorities, experienced school administrators, designers, and installers who will be in the teleconference studio. This document also discusses a new funding cycle of the Geothermal Energy Program by the California Energy Commission and a shared energy savings project which recently received funding from the Corps of Engineers in Fort Polk, Louisiana.

  10. Geothermal Program Review VII: proceedings. DOE Research and Development for the Geothermal Marketplace

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    Each year the Geothermal Technology Division of the US Department of Energy conducts an indepth review of its entire geothermal R and D program. The 2--3 day conference serves several purposes: a status report on current R and D activities, an assessment of progress and problems, a review of management issues, and a technology transfer opportunity between DOE and the US geothermal industry. This year's conference, Program Review 7, was held in San Francisco on March 21--23, 1989. As indicated by its title, ''DOE Research and Development for the Geothermal Marketplace'', Program Review 7 emphasized developing technologies, concepts, and innovations having potential for commercial application in the foreseeable future. Program Review 7 was comprised of eight sessions including an opening session and a special presentation on the ''Role of Geothermal Energy in Minimizing Global Environmental Problems.'' The five technical sessions covered GTD-sponsored R and D in the areas of hydrothermal (two sessions), hot dry rock, geopressured, and magma. Presentations were made by the relevant field researchers, and sessions were chaired by the appropriate DOE Operations Office Geothermal Program Manager. The technical papers and commentary of invited speakers contained in these Proceedings have been compiled in the order in which they were presented at Program Review 7.

  11. Geothermal Policymakers Guidebook, State-by-state Developers' Checklist,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Geothermal Developers' Financing Handbook | Department of Energy Policymakers Guidebook, State-by-state Developers' Checklist, & Geothermal Developers' Financing Handbook Geothermal Policymakers Guidebook, State-by-state Developers' Checklist, & Geothermal Developers' Financing Handbook Project objectives: Assist policymakers in identifying the niche they can fill to reduce barriers to geothermal energy development. Empower local leaders to develop policies that facilitate

  12. Concept Testing and Development at the Raft River Geothermal Field, Idaho |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy DOE 2010 Geothermal Technologies Program Peer Review egs_007_moore.pdf (181.39 KB) More Documents & Publications Demonstration of an Enhanced Geothermal System at the Northwest Geysers Geothermal Field, California; 2010 Geothermal Technology Program Peer Review Report Feasibility of EGS Development at Bradys Hot Springs, Nevada Creation of an Enhanced Geothermal System through Hydraulic and Thermal Stimulation; 2010 Geothermal Technology Program Peer Review Repo

  13. Water Use in the Development and Operations of Geothermal Power Plants |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Operations of Geothermal Power Plants Water Use in the Development and Operations of Geothermal Power Plants This report summarizes what is currently known about the life cycle water requirements of geothermal electric power-generating systems and the water quality of geothermal waters. It is part of a larger effort to compare the life cycle impacts of large-scale geothermal electricity generation with other power generation technologies. geothermal_water_use_draft.pdf

  14. Rye Patch geothermal development, hydro-chemistry of thermal...

    Open Energy Info (EERE)

    Patch geothermal development, hydro-chemistry of thermal water applied to resource definition Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Rye Patch...

  15. US Geothermal Updates Status of Development Projects New Wells...

    Open Energy Info (EERE)

    Hot Springs Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: US Geothermal Updates Status of Development Projects New Wells Drilled at Neal Hot Springs...

  16. Geothermal power development in Hawaii. Volume II. Infrastructure and community-services requirements, Island of Hawaii

    SciTech Connect (OSTI)

    Chapman, G.A.; Buevens, W.R.

    1982-06-01

    The requirements of infrastructure and community services necessary to accommodate the development of geothermal energy on the Island of Hawaii for electricity production are identified. The following aspects are covered: Puna District-1981, labor resources, geothermal development scenarios, geothermal land use, the impact of geothermal development on Puna, labor resource requirments, and the requirements for government activity.

  17. Geothermal Development and the Use of Categorical Exclusions Under the

    Office of Scientific and Technical Information (OSTI)

    National Environmental Policy Act of 1969 (Presentation) (Conference) | SciTech Connect Geothermal Development and the Use of Categorical Exclusions Under the National Environmental Policy Act of 1969 (Presentation) Citation Details In-Document Search Title: Geothermal Development and the Use of Categorical Exclusions Under the National Environmental Policy Act of 1969 (Presentation) The federal environmental review process under the National Environmental Policy Act of 1969 (NEPA) can be

  18. Investigations into early rift development and geothermal resources in the

    Office of Scientific and Technical Information (OSTI)

    Pyramid Lake fault zone, Western Nevada (Conference) | SciTech Connect Conference: Investigations into early rift development and geothermal resources in the Pyramid Lake fault zone, Western Nevada Citation Details In-Document Search Title: Investigations into early rift development and geothermal resources in the Pyramid Lake fault zone, Western Nevada A. K. Eisses, A. M. Kell, G. Kent, N. W. Driscoll, R. E. Karlin, R. L. Baskin, J. N. Louie, S. Pullammanappallil, 2010, Investigations into

  19. Further Developments on the Geothermal System Scoping Model: Preprint

    SciTech Connect (OSTI)

    Antkowiak, M.; Sargent, R.; Geiger, J. W.

    2010-07-01

    This paper discusses further developments and refinements for the uses of the Geothermal System Scoping Model in an effort to provide a means for performing a variety of trade-off analyses of surface and subsurface parameters, sensitivity analyses, and other systems engineering studies in order to better inform R&D direction and investment for the development of geothermal power into a major contributor to the U.S. energy supply.

  20. Community Geothermal Technology Program: Bottom heating system using geothermal power for propagation. Final report, Phases 1 and 2

    SciTech Connect (OSTI)

    Downing, J.C.

    1990-01-01

    The objective is to develop and study a bottom-heating system in a greenhouse utilizing geothermal energy to aid germination and speed growth of palms. Source of heat was geothermal brine from HGP-A well. The project was successful; the heat made a dramatic difference with certain varieties, such as Areca catechu (betelnut) with 82% germination with heat, zero without. For other varieties, germination rates were much closer. Quality of seed is important. Tabs, figs.

  1. Concept Testing and Development at the Raft River Geothermal Field, Idaho |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Concept Testing and Development at the Raft River Geothermal Field, Idaho Concept Testing and Development at the Raft River Geothermal Field, Idaho Concept Testing and Development at the Raft River Geothermal Field, Idaho presentation at the April 2013 peer review meeting held in Denver, Colorado. raft_river_peer2013.pdf (3.68 MB) More Documents & Publications Concept Testing and Development at the Raft River Geothermal Field, Idaho track 4: enhanced geothermal

  2. Solicitation - Geothermal Drilling Development and Well Maintenance Projects

    SciTech Connect (OSTI)

    Sattler, A.R.

    1999-07-07

    Energy (DOE)-industry research and development (R and D) organization, sponsors near-term technology development projects for reducing geothermal drilling and well maintenance costs. Sandia National Laboratories (Albuquerque, NM) administers DOE funds for GDO cost-shared projects and provides technical support. The GDO serves a very important function in fostering geothermal development. It encourages commercialization of emerging, cost-reducing drilling technologies, while fostering a spirit of cooperation among various segments of the geothermal industry. For Sandia, the GDO also serves as a means of identifying the geothermal industry's drilling fuel/or well maintenance problems, and provides an important forum for technology transfer. Successfully completed GDO projects include: the development of a high-temperature borehole televiewer, high-temperature rotating head rubbers, a retrievable whipstock, and a high-temperature/high-pressure valve-changing tool. Ongoing GDO projects include technology for stemming lost circulation; foam cement integrity log interpretation, insulated drill pipe, percussive mud hammers for geothermal drilling, a high-temperature/ high-pressure valve changing tool assembly (adding a milling capability), deformed casing remediation, high- temperature steering tools, diagnostic instrumentation for casing in geothermal wells, and elastomeric casing protectors.

  3. Vegetation component of geothermal EIS studies: Introduced plants, ecosystem stability, and geothermal development

    SciTech Connect (OSTI)

    1994-10-01

    This paper contributes new information about the impacts from introduced plant invasions on the native Hawaiian vegetation as consequences of land disturbance and geothermal development activities. In this regard, most geothermal development is expected to act as another recurring source of physical disturbance which favors the spread and maintenance of introduced organisms throughout the region. Where geothermal exploration and development activities extend beyond existing agricultural and residential development, they will become the initial or sole source of disturbance to the naturalized vegetation of the area. Kilauea has a unique ecosystem adapted to the dynamics of a volcanically active landscape. The characteristics of this ecosystem need to be realized in order to understand the major threats to the ecosystem and to evaluate the effects of and mitigation for geothermal development in Puna. The native Puna vegetation is well adapted to disturbances associated with volcanic eruption, but it is ill-adapted to compete with alien plant species in secondary disturbances produced by human activities. Introduced plant and animal species have become a major threat to the continued presence of the native biota in the Puna region of reference.

  4. Funding Opportunity: Technology Advancement for Rapid Development of Geothermal Resources in the U.S.

    Broader source: Energy.gov [DOE]

    In early June 2011, the U.S. Department of Energy's Geothermal Technologies Program (GTP) intends to issue a Funding Opportunity Announcement to expand its partnership with the geothermal community on geothermal systems research and development throughout the United States in order to support GTP's goal of lowering the cost of geothermal energy to 6 ¢/kWh.

  5. National Geothermal Data System: A Geothermal Data System for Exploration and Development

    SciTech Connect (OSTI)

    Allison, Lee; Richard, Stephen; Patten, Kim; Love, Diane; Coleman, Celia; Chen, Genhan

    2012-09-30

    Geothermal-relevant geosciences data from all 50 states (www.stategeothermaldata.org), federal agencies, national labs, and academic centers are being digitized and linked in a distributed online network funded by the U.S. Department of Energy Geothermal Data System (GDS) to foster geothermal energy exploration and development through use of interactive online ‘mashups,’data integration, and applications. Emphasis is first to make as much information as possible accessible online, with a long range goal to make data interoperable through standardized services and interchange formats. A growing set of more than thirty geoscience data content models is in use or under development to define standardized interchange formats for: aqueous chemistry, borehole temperature data, direct use feature, drill stem test, seismic event hypocenter, fault feature, geologic contact feature, geologic unit feature, thermal/hot spring description, metadata, quaternary fault, volcanic vent description, well header feature, borehole lithology log, crustal stress, gravity, heat flow/temperature gradient, permeability, and feature description data like developed geothermal systems, geologic unit geothermal characterization, permeability, production data, rock alteration description, rock chemistry, and thermal conductivity. Map services are also being developed for isopach maps, aquifer temperature maps, and several states are working on geothermal resource overview maps. Content models are developed based on existing community datasets to encourage widespread adoption and promulgate content quality standards. Geoscience data and maps from other GDS participating institutions, or “nodes” (e.g., U.S. Geological Survey, Southern Methodist University, Oregon Institute of Technology, Stanford University, the University of Utah) are being supplemented with extensive land management and land use resources from the Western Regional Partnership (15 federal agencies and 5 Western states) to

  6. Water Use in the Development and Operations of Geothermal Power Plants |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Water Use in the Development and Operations of Geothermal Power Plants Water Use in the Development and Operations of Geothermal Power Plants This report summarizes what is currently known about the life cycle water requirements of geothermal electric power-generating systems and the water quality of geothermal waters. It is part of a larger effort to compare the life cycle impacts of large-scale geothermal electricity generation with other power generation technologies.

  7. Geothermal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal Louise Vickery, General Manager, Renewable Futures at the Australian Renewable Energy Agency (ARENA). Permalink Gallery Australian Renewable-Energy Official Visits Sandia Concentrating Solar Power, EC, Energy, Geothermal, News, News & Events, Photovoltaic, Renewable Energy, Solar, Water Power, Wind Energy Australian Renewable-Energy Official Visits Sandia Louise Vickery, General Manager, Renewable Futures at the Australian Renewable Energy Agency (ARENA). At the end of June,

  8. Two-phase flow in geothermal energy sources. Final technical report

    SciTech Connect (OSTI)

    Not Available

    1981-07-01

    A geothermal well consisting of single and two-phase flow sections was modeled in order to explore the variables important to the process. For this purpose a computer program was developed in a versatile form in order to be able to incorporate a variety of two phase flow void fraction and friction correlations. A parametric study indicated that the most significant variables controlling the production rate are: hydrostatic pressure drop or void fraction in the two-phase mixture; and, heat transfer from the wellbore to the surrounding earth. Downhole instrumentation was developed and applied in two flowing wells to provide experimental data for the computer program. The wells (East Mesa 8-1, and a private well) behaved differently. Well 8-1 did not flash and numerous shakedown problems in the probe were encountered. The private well did flash and the instrumentation detected the onset of flashing. A Users Manual was developed and presented in a workshop held in conjunction with the Geothermal Resources Council.

  9. Geothermal energy development in the Philippines: An overview

    SciTech Connect (OSTI)

    Sussman, D.; Javellana, S.P.; Benavidez, P.J.

    1993-10-01

    The Philippines is the third largest producer of geothermal electricity after the US and Mexico. Geothermal exploration was started in 1962, and the first large commercial power plants came on-line in 1979 in two fields. By 1984, four geothermal fields had a combined installed capacity of 890 MWe and in 1992 these plants supplied about 20% of the country`s electric needs. Geothermal energy development was stimulated in the mid-1970s by the oil crisis and rapidly growing power demand, government support, available foreign funding, and a combination of private and government investment and technical expertise. However, no new geothermal capacity has been added since 1984, despite the growing demand for energy and the continuing uncertainty in the supply of crude oil. The Philippines` geothermal capacity is expected to expand by 270--1,100 MWe by the end of 1999. Factors that will affect the rate growth in this decade include suitable legislation, environmental requirements, financing, degree of private involvement, politics, inter-island electric grid connections, and viability of the remaining prospects.

  10. Solubility and Reaction Rates of Aluminum Solid Phases Under Geothermal Conditions

    SciTech Connect (OSTI)

    Benezeth, P.; Palmer, D.A.; Wesolowski, D.J.; Anovitz, L.M.

    2000-05-28

    Experimental studies involving equilibrium solubility and dissolution/precipitation rates were initiated on aluminum hydroxide phases prevalent under geothermal reservoir conditions. A large capacity, hydrogen-electrode concentration cell (HECC) was constructed specifically for this purpose.

  11. DE-FOA-0001376: Mineral Recovery Phase II: Geothermal Concepts and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Approaches to Validate Extraction Technologies | Department of Energy DE-FOA-0001376: Mineral Recovery Phase II: Geothermal Concepts and Approaches to Validate Extraction Technologies DE-FOA-0001376: Mineral Recovery Phase II: Geothermal Concepts and Approaches to Validate Extraction Technologies December 1, 2015 - 2:58pm Addthis Open Date: 12/01/2015 Close Date: 02/29/2016 Funding Organization: Office of Energy Efficiency and Renewable Energy Funding Number: DE-FOA-0001376 Summary: The

  12. Water Use in the Development and Operation of Geothermal Power Plants |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Operation of Geothermal Power Plants Water Use in the Development and Operation of Geothermal Power Plants This report summarizes what is currently known about the life cycle water requirements of geothermal electric power-generating systems and the water quality of geothermal waters. It is part of a larger effort to compare the life cycle impacts of large-scale geothermal electricity generation with other power generation technologies.

  13. Impact of geothermal development on stockraising homestead landowners

    SciTech Connect (OSTI)

    Not Available

    1981-04-16

    Surface use and compensation conflicts have developed at the Geysers in California between owners of surface lands acquired under the Stockraising Homestead Act of 1916 and geothermal lessees with the right to develop the mineral interests reserved to the Federal Government. Several recommendations are made to the Secretary of the Interior concerning the problems identified. The following are discussed: conditions at the Geysers concerning geothermal development on stockraising lands that could be considered in regard to compensation, existence or potential for similar conflicts on this land outside the Geysers, protection and compensation provided surface owners in existence of legislation and the need for amendments, and alternative methods for paying compensation.

  14. Geothermal resource area 9: Nye County. Area development plan

    SciTech Connect (OSTI)

    Pugsley, M.

    1981-01-01

    Geothermal Resource area 9 encompasses all of Nye County, Nevada. Within this area there are many different known geothermal sites ranging in temperature from 70/sup 0/ to over 265/sup 0/ F. Fifteen of the more major sites have been selected for evaluation in this Area Development Plan. Various potential uses of the energy found at each of the resource sites discussed in this Area Development Plan were determined after evaluating the area's physical characteristics, land ownership and land use patterns, existing population and projected growth rates, and transportation facilities, and comparing those with the site specific resource characteristics. The uses considered were divided into five main categories: electrical generation, space heating, recreation, industrial process heat, and agriculture. Within two of these categories certain subdivisions were considered separately. The findings about each of the 15 geothermal sites considered in this Area Development Plan are summarized.

  15. Comprehensive Evaluation of the Geothermal Resource Potential within the Pyramid Lake Paiute Reservation Phase III Report

    SciTech Connect (OSTI)

    Noel, Donna

    2013-12-01

    This project integrated state-of-the-art exploration technologies with a geologic framework and reservoir modeling to ultimately determine the efficacy of future geothermal production within the PLPT reservation. The information gained during this study should help the PLPT to make informed decisions regarding construction of a geothermal power plant. Additional benefits included the transfer of new technologies and geothermal data to the geothermal industry and it created and/or preserved nearly three dozen jobs accordance with the American Recovery and Reinvestment Act of 2009. A variety of tasks were conducted to achieve the above stated objectives. The following are the tasks completed within the project: 1. Permitting 2. Shallow temperature survey 3. Seismic data collection and analysis 4. Fracture stress analysis 5. Phase I reporting Permitting 7. Shallow temperature survey 8. Seismic data collection and analysis 9. Fracture stress analysis 10. Phase I reporting 11. Drilling two new wells 12. Borehole geophysics 13. Phase II reporting 14. Well testing and geochemical analysis 15. Three-dimensional geologic model 16. Three-dimensional reservoir analysis 17. Reservation wide geothermal potential analysis 18. Phase III reporting Phase I consisted of tasks 1 – 5, Phase II tasks 6 – 8, and Phase III tasks 9 – 13. This report details the results of Phase III tasks. Reports are available for Phase I, and II as separate documents.

  16. Gunun-Salak Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Activities (0) 10 References Area Overview Geothermal Area Profile Location: Java, Indonesia Exploration Region: Sunda Volcanic Arc GEA Development Phase:...

  17. Policy Overview and Options for Maximizing the Role of Policy in Geothermal Electricity Development

    Broader source: Energy.gov [DOE]

    This report explores the effectiveness of the historical and current body of policies in terms of increased geothermal electricity development. Insights are provided into future policies that may drive the market to optimize development of available geothermal electricity resources.

  18. Imperial County geothermal development. Quarterly report, April 1, 1980-June 30, 1981

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    Three areas are reported: Geothermal Administration, Geothermal Planning; and other Geothermal Activities. Geothermal Administration addresses the status of the Imperial Valley Environmental Project (IVEP) transfer, update of the Geothermal Resource Center, and findings of Geothermal field inspections. Field inspections will cover the four new wells drilled by Magma at the Salton Sea in preparation for 28 MW power plant, the progress at Sperry at East Mesa, and the two on-line power plants in East Mesa and North Brawley. Evaluation of cooperative efforts will cover the Geothermal Subsidence Detection Network Resurvey, Master EIR for the Salton Sea and the Annual Imperial County Geothermal meeting. The status of Geothermal development throughout the County will cover existing proposed facilities. The summary of the Geothermal meeting (Appendix A) will also provide the status of several projects. Geothermal Planning addresses the EIR Notice of Exemption from CEQA, progress on the Master EIR for the Salton Sea, and the EIR for Phillips Petroleum for 6 exploratory wells in the Truckhaven area. Other Geothermal Activity addresses the Department of Energy Region IX meeting hosted by Imperial County, the Annual Imperial County Geothermal meeting, Class II-1 geothermal hazardous waste disposal siting study, and Imperial County Geothermal Direct Heat Study.

  19. Geothermal resource area 11, Clark County area development plan

    SciTech Connect (OSTI)

    Pugsley, M.

    1981-01-01

    Geothermal Resource Area 11 includes all of the land in Clark County, Nevada. Within this area are nine geothermal anomalies: Moapa Area, Las Vegas Valley, Black Canyon, Virgin River Narrows, Roger's Springs, Indian Springs, White Rock Springs, Brown's Spring, and Ash Creek Spring. All of the geothermal resources in Clark County have relatively low temperatures. The highest recorded temperature is 145{sup 0}F at Black Canyon. The temperatures of the other resources range from 70 to 90{sup 0}F. Because of the low temperature of the resources and, for the most part, the distance of the resources from any population base, the potential for the development of the resources are considered to be somewhat limited.

  20. Pressure Profiles in Two-Phase Geothermal Wells: Comparison of Field Data and Model Calculations

    SciTech Connect (OSTI)

    Ambastha, A.K.; Gudmundsson, J.S.

    1986-01-21

    Increased confidence in the predictive power of two-phase correlations is a vital part of wellbore deliverability and deposition studies for geothermal wells. Previously, the Orkiszewski (1967) set of correlations has been recommended by many investigators to analyze geothermal wellbore performance. In this study, we use measured flowing pressure profile data from ten geothermal wells around the world, covering a wide range of flowrate, fluid enthalpy, wellhead pressure and well depth. We compare measured and calculated pressure profiles using the Orkiszewski (1967) correlations.

  1. The Momotombo Geothermal Field, Nicaragua: Exploration and development case history study

    SciTech Connect (OSTI)

    1982-07-01

    This case history discusses the exploration methods used at the Momotombo Geothermal Field in western Nicaragua, and evaluates their contributions to the development of the geothermal field models. Subsequent reservoir engineering has not been synthesized or evaluated. A geothermal exploration program was started in Nicaragua in 1966 to discover and delineate potential geothermal reservoirs in western Nicaragua. Exploration began at the Momotombo field in 1970 using geological, geochemical, and geophysical methods. A regional study of thermal manifestations was undertaken and the area on the southern flank of Volcan Momotombo was chosen for more detailed investigation. Subsequent exploration by various consultants produced a number of geotechnical reports on the geology, geophysics, and geochemistry of the field as well as describing production well drilling. Geological investigations at Momotombo included photogeology, field mapping, binocular microscope examination of cuttings, and drillhole correlations. Among the geophysical techniques used to investigate the field sub-structure were: Schlumberger and electromagnetic soundings, dipole mapping and audio-magnetotelluric surveys, gravity and magnetic measurements, frequency domain soundings, self-potential surveys, and subsurface temperature determinations. The geochemical program analyzed the thermal fluids of the surface and in the wells. This report presents the description and results of exploration methods used during the investigative stages of the Momotombo Geothermal Field. A conceptual model of the geothermal field was drawn from the information available at each exploration phase. The exploration methods have been evaluated with respect to their contributions to the understanding of the field and their utilization in planning further development. Our principal finding is that data developed at each stage were not sufficiently integrated to guide further work at the field, causing inefficient use of

  2. Sandia and Atlas-Copco Secoroc Advance to Phase 2 in Their Geothermal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Project and Atlas-Copco Secoroc Advance to Phase 2 in Their Geothermal Energy Project - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization

  3. Thermoelectric Materials Development for Low Temperature Geothermal Power Generation

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Tim Hansen

    2016-01-29

    Data includes characterization results for novel thermoelectric materials developed specifically for power generation from low temperature geothermal brines. Materials characterization data includes material density, thickness, resistance, Seebeck coefficient. This research was carried out by Novus Energy Partners in Cooperation with Southern Research Institute for a Department of Energy Sponsored Project.

  4. Funding Opportunity Announcement Webinar: Technology Advancement for Rapid Development of Geothermal Resources (DE-FOA-0000522)

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's (DOE) Geothermal Technologies Program (the Program) presented a webinar on Thursday, June 23, about its newly released funding opportunity announcement (FOA), Geothermal Technology Advancement for Rapid Development of Resources in the United States.

  5. Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Coordination

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025.

  6. Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Table of Contents

    Broader source: Energy.gov [DOE]

    The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025.

  7. Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Systems Integration

    Broader source: Energy.gov [DOE]

    The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025.

  8. Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Technical Plan

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025.

  9. Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Benefits

    Broader source: Energy.gov [DOE]

    The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025.

  10. Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Challenges

    Broader source: Energy.gov [DOE]

    The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025.

  11. Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Management

    Broader source: Energy.gov [DOE]

    The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025.

  12. Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Executive Summary

    Broader source: Energy.gov [DOE]

    The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025.

  13. Evaluation of noise associated with geothermal development activities. Draft report, 31 July 1979-30 April 1982

    SciTech Connect (OSTI)

    Long, M.; Stern, R.

    1982-01-01

    This volume contains 93 data sheets for noise associated with geothermal development activities and geothermal well drilling noise levels from the long term noise monitoring program.

  14. Development of an Improved Cement for Geothermal Wells

    SciTech Connect (OSTI)

    Trabits, George

    2015-04-20

    After an oil, gas, or geothermal production well has been drilled, the well must be stabilized with a casing (sections of steel pipe that are joined together) in order to prevent the walls of the well from collapsing. The gap between the casing and the walls of the well is filled with cement, which locks the casing into place. The casing and cementing of geothermal wells is complicated by the harsh conditions of high temperature, high pressure, and a chemical environment (brines with high concentrations of carbon dioxide and sulfuric acid) that degrades conventional Portland cement. During the 1990s and early 2000s, the U.S. Department of Energy’s Geothermal Technologies Office (GTO) provided support for the development of fly-ash-modified calcium aluminate phosphate (CaP) cement, which offers improved resistance to degradation compared with conventional cement. However, the use of CaP cements involves some operational constraints that can increase the cost and complexity of well cementing. In some cases, CaP cements are incompatible with chemical additives that are commonly used to adjust cement setting time. Care must also be taken to ensure that CaP cements do not become contaminated with leftover conventional cement in pumping equipment used in conventional well cementing. With assistance from GTO, Trabits Group, LLC has developed a zeolite-containing cement that performs well in harsh geothermal conditions (thermal stability at temperatures of up to 300°C and resistance to carbonation) and is easy to use (can be easily adjusted with additives and eliminates the need to “sterilize” pumping equipment as with CaP cements). This combination of properties reduces the complexity/cost of well cementing, which will help enable the widespread development of geothermal energy in the United States.

  15. "How Legacy and New Research Data Can Advance Geothermal Development"

    Broader source: Energy.gov [DOE]

    The National Geothermal Data System (NGDS) is a free online digital data network that will help propel geothermal projects and RD&D forward by providing new ways to discover, access, map, and analyze geothermal data.

  16. Niland development project geothermal loan guaranty: 49-MW (net) power plant and geothermal well field development, Imperial County, California: Environmental assessment

    SciTech Connect (OSTI)

    Not Available

    1984-10-01

    The proposed federal action addressed by this environmental assessment is the authorization of disbursements under a loan guaranteed by the US Department of Energy for the Niland Geothermal Energy Program. The disbursements will partially finance the development of a geothermal well field in the Imperial Valley of California to supply a 25-MW(e) (net) power plant. Phase I of the project is the production of 25 MW(e) (net) of power; the full rate of 49 MW (net) would be achieved during Phase II. The project is located on approximately 1600 acres (648 ha) near the city of Niland in Imperial County, California. Well field development includes the initial drilling of 8 production wells for Phase I, 8 production wells for Phase II, and the possible need for as many as 16 replacement wells over the anticipated 30-year life of the facility. Activities associated with the power plant in addition to operation are excavation and construction of the facility and associated systems (such as cooling towers). Significant environmental impacts, as defined in Council on Environmental Quality regulation 40 CFR Part 1508.27, are not expected to occur as a result of this project. Minor impacts could include the following: local degradation of ambient air quality due to particulate and/or hydrogen sulfide emissions, temporarily increased ambient noise levels due to drilling and construction activities, and increased traffic. Impacts could be significant in the event of a major spill of geothermal fluid, which could contaminate groundwater and surface waters and alter or eliminate nearby habitat. Careful land use planning and engineering design, implementation of mitigation measures for pollution control, and design and implementation of an environmental monitoring program that can provide an early indication of potential problems should ensure that impacts, except for certain accidents, will be minimized.

  17. Development Wells At Long Valley Caldera Geothermal Area (Holt...

    Open Energy Info (EERE)

    the world's first air-cooled binary cycle geothermal power plant.4 References Ben Holt, Richard G. Campbell (1984) Mammoth Geothermal Project Environmental Science Associates...

  18. Development of a plan to implement enhanced geothermal system...

    Open Energy Info (EERE)

    Enhanced Geothermal Systems was proposed. This embraces the idea that the amount of permeability and fluid in geothermal resources varies across a spectrum, with HDR at one end,...

  19. A Roadmap for Strategic Development of Geothermal Exploration...

    Broader source: Energy.gov (indexed) [DOE]

    an EGS demonstration project. 2013 Annual Report -- Geothermal Technologies Office Geothermal Technologies Office Annual Report 2012 2013 Peer Review Opening Plenary Presentation...

  20. Concept Testing and Development at the Raft River Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE 2010 Geothermal Technologies Program Peer Review egs007moore.pdf (181.39 KB) More Documents & Publications Demonstration of an Enhanced Geothermal System at the Northwest ...

  1. DOE Awards $20 Million to Develop Geothermal Power Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Today's geothermal power plants draw on underground reservoirs of water or steam that are ... This "cascading" use of the geothermal resource is meant to improve the economics of ...

  2. A Thermoelastic Hydraulic Fracture Design Tool for Geothermal Reservoir Development

    SciTech Connect (OSTI)

    Ahmad Ghassemi

    2003-06-30

    Geothermal energy is recovered by circulating water through heat exchange areas within a hot rock mass. Geothermal reservoir rock masses generally consist of igneous and metamorphic rocks that have low matrix permeability. Therefore, cracks and fractures play a significant role in extraction of geothermal energy by providing the major pathways for fluid flow and heat exchange. Thus, knowledge of conditions leading to formation of fractures and fracture networks is of paramount importance. Furthermore, in the absence of natural fractures or adequate connectivity, artificial fracture are created in the reservoir using hydraulic fracturing. At times, the practice aims to create a number of parallel fractures connecting a pair of wells. Multiple fractures are preferred because of the large size necessary when using only a single fracture. Although the basic idea is rather simple, hydraulic fracturing is a complex process involving interactions of high pressure fluid injections with a stressed hot rock mass, mechanical interaction of induced fractures with existing natural fractures, and the spatial and temporal variations of in-situ stress. As a result it is necessary to develop tools that can be used to study these interactions as an integral part of a comprehensive approach to geothermal reservoir development, particularly enhanced geothermal systems. In response to this need we have set out to develop advanced thermo-mechanical models for design of artificial fractures and rock fracture research in geothermal reservoirs. These models consider the significant hydraulic and thermo-mechanical processes and their interaction with the in-situ stress state. Wellbore failure and fracture initiation is studied using a model that fully couples poro-mechanical and thermo-mechanical effects. The fracture propagation model is based on a complex variable and regular displacement discontinuity formulations. In the complex variable approach the displacement discontinuities are

  3. A History or Geothermal Energy Research and Development in the United

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    States: Energy Conversion 1976-2006 | Department of Energy Energy Conversion 1976-2006 A History or Geothermal Energy Research and Development in the United States: Energy Conversion 1976-2006 A history of geothermal energy R&D in the U.S., 1976-2006 geothermal_history_4_conversion.pdf (3.87 MB) More Documents & Publications Water Use in the Development and Operations of Geothermal Power Plants Water Use in the Development and Operations of Geothermal Power Plants Air-Cooled

  4. East Brawley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: Coordinates: 32.99, -115.35 Resource...

  5. New River Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: Resource Estimate Mean Reservoir Temp:...

  6. Canby Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Area Overview Geothermal Area Profile Location: California Exploration Region: Transition Zone GEA Development Phase: Coordinates: 41.438, -120.8676 Resource Estimate...

  7. Pengalengan Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Area Profile Location: Bandung Regency, Indonesia Exploration Region: West Java GEA Development Phase: Operational"Operational" is not in the list of possible values...

  8. Shakes Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Region: Alaska Geothermal Region GEA Development Phase: Coordinates: 56.71765648, -132.0025034 Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean...

  9. Ahuachapan Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Activities (0) 10 References Area Overview Geothermal Area Profile Location: El Salvador Exploration Region: Central American Volcanic Arc Chain GEA Development Phase:...

  10. Soda Lake Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Facility Add a new Operating Power Plant Developing Power Projects: 1 East Soda Lake Geothermal Project ( MW, Phase I - Resource Procurement and Identification) Add a new...

  11. Ecology problems associated with geothermal development in California

    SciTech Connect (OSTI)

    Shinn, J.H.; Ireland, R.R.

    1980-08-04

    Geothermal power plants have the potential for supplying about 5% of the US electrical generating needs by 1985, and are even now supplying about one third of San Francisco's electricity. Investigations have shown that the typical geothermal field, such as the hot water resource of Imperial Valley, can be developed in an environmentally sound manner when proper considerations are made for ecosystem problems. Experimental evidence is presented pro and con for potential impacts due to habitat disturbance, powerline corridors, noise effects, trace element emissions from cooling towers, accidental brine discharges into aquatic or soil systems, competition for water and H/sub 2/S effects on vegetation. A mitigation and control strategy is recommended for each ecological issue and it is shown where effects are likely to be irreversible.

  12. Geothermal direct use developments in the United States

    SciTech Connect (OSTI)

    Lienau, P.J.; Culver, G.; Lund, J.W.

    1988-08-01

    Direct heat use of geothermal energy in the United States is recognized as one of the alternative energy resources that has proven itself technically and economically, and is commercially available. Developments include space conditioning of buildings, district heating, groundwater heat pumps, greenhouse heating, industrial processing, aquaculture, and swimming pool heating. Forty-four states have experienced significant geothermal direct use development in the last ten years. The total installed capacity is 5.7 billion Btu/hr (1700 MW/sub t/), with an annual energy use of nearly 17,000 billion Btu/yr (4.5 million barrels of oil energy equivalent). In this report we provide an overview of how and where geothermal energy is used, the extent of that use, the economics and growth trends. The data is based on an extensive site data gathering effort by the Geo-Heat Center in the spring of 1988, under contract to the US Department of Energy. 100 refs., 4 figs., 4 tabs.

  13. Development of an Advanced Stimulation / Production Predictive Simulator for Enhanced Geothermal Systems

    SciTech Connect (OSTI)

    Pritchett, John W.

    2015-04-15

    There are several well-known obstacles to the successful deployment of EGS projects on a commercial scale, of course. EGS projects are expected to be deeper, on the average, than conventional “natural” geothermal reservoirs, and drilling costs are already a formidable barrier to conventional geothermal projects. Unlike conventional resources (which frequently announce their presence with natural manifestations such as geysers, hot springs and fumaroles), EGS prospects are likely to appear fairly undistinguished from the earth surface. And, of course, the probable necessity of fabricating a subterranean fluid circulation network to mine the heat from the rock (instead of simply relying on natural, pre-existing permeable fractures) adds a significant degree of uncertainty to the prospects for success. Accordingly, the basic motivation for the work presented herein was to try to develop a new set of tools that would be more suitable for this purpose. Several years ago, the Department of Energy’s Geothermal Technologies Office recognized this need and funded a cost-shared grant to our company (then SAIC, now Leidos) to partner with Geowatt AG of Zurich, Switzerland and undertake the development of a new reservoir simulator that would be more suitable for EGS forecasting than the existing tools. That project has now been completed and a new numerical geothermal reservoir simulator has been developed. It is named “HeatEx” (for “Heat Extraction”) and is almost completely new, although its methodology owes a great deal to other previous geothermal software development efforts, including Geowatt’s “HEX-S” code, the STAR and SPFRAC simulators developed here at SAIC/Leidos, the MINC approach originally developed at LBNL, and tracer analysis software originally formulated at INEL. Furthermore, the development effort was led by engineers with many years of experience in using reservoir simulation software to make meaningful forecasts for real geothermal

  14. Orita 3 Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    3 Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Orita 3 Geothermal Project Project Location Information Coordinates...

  15. Baltazor Springs Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Baltazor Springs Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Baltazor Springs Geothermal Project Project Location...

  16. Silver State Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    State Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Silver State Geothermal Project Project Location Information Coordinates...

  17. Panther Canyon Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Canyon Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Panther Canyon Geothermal Project Project Location Information...

  18. Kelsey North Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    North Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Kelsey North Geothermal Project Project Location Information...

  19. Devil's Canyon Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Canyon Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Devil's Canyon Geothermal Project Project Location Information...

  20. Dead Horse Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Horse Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Dead Horse Geothermal Project Project Location Information...

  1. Delcer Butte Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Butte Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Delcer Butte Geothermal Project Project Location Information...

  2. Drum Mountain Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Mountain Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Drum Mountain Geothermal Project Project Location Information...

  3. Puna Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Puna Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Puna Geothermal Project Project Location Information Coordinates...

  4. Puna Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Puna Geothermal Venture) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Puna Geothermal Project Project Location Information Coordinates...

  5. Reese River Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    River Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Reese River Geothermal Project Project Location Information...

  6. Demonstration of a Variable Phase Turbine Power System for Low Temperature Geothermal Resources

    SciTech Connect (OSTI)

    Hays, Lance G

    2014-07-07

    A variable phase turbine assembly will be designed and manufactured having a turbine, operable with transcritical, two-phase or vapor flow, and a generator – on the same shaft supported by process lubricated bearings. The assembly will be hermetically sealed and the generator cooled by the refrigerant. A compact plate-fin heat exchanger or tube and shell heat exchanger will be used to transfer heat from the geothermal fluid to the refrigerant. The demonstration turbine will be operated separately with two-phase flow and with vapor flow to demonstrate performance and applicability to the entire range of low temperature geothermal resources. The vapor leaving the turbine is condensed in a plate-fin refrigerant condenser. The heat exchanger, variable phase turbine assembly and condenser are all mounted on single skids to enable factory assembly and checkout and minimize installation costs. The system will be demonstrated using low temperature (237F) well flow from an existing large geothermal field. The net power generated, 1 megawatt, will be fed into the existing power system at the demonstration site. The system will demonstrate reliable generation of inexpensive power from low temperature resources. The system will be designed for mass manufacturing and factory assembly and should cost less than $1,200/kWe installed, when manufactured in large quantities. The estimated cost of power for 300F resources is predicted to be less than 5 cents/kWh. This should enable a substantial increase in power generated from low temperature geothermal resources.

  7. Regional Systems Development for Geothermal Energy Resources...

    Open Energy Info (EERE)

    for representative types of energy conversion processes were developed using a case study approach. Cooling water requirements for each type of energy conversion process...

  8. Imperial County geothermal development semi-annual report, October 1, 1980-March 31, 1981

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    The current geothermal progress in Imperial County is reported. Three areas are reported: Geothermal Administration, Geothermal Planning, and other Geothermal Activities. Geothermal Administration addresses the status of the Imperial Valley Environmental Project (IVEP) transfer, update of the Geothermal Resource Center, and findings of Geothermal field inspections. In addition, the cooperative efforts between industry and the County; Master EIR for the Salton Sea KGRA and the resurveying of the subsidence detection network are covered. Geothermal Planning addresses a Board of Supervisor action on the Union Oil Geothermal Production Permit for 16 wells in the Salton Sea KGRA and a permit for Southern California Edison 10 megawatts power plant in the Salton Sea KGRA. Planning Commission action covers: Amendment of Magma Power's 49 megawatts Geothermal Production Permit to 28 megawatt power plant and relocation of the plant and wells within the Salton Sea KGRA; Exploration permit to Occidental Geothermal for four exploratory wells in East Brawley; Geothermal Production Permit to Southern California Edison to operate a 10 megawatt power plant in the Salton Sea KGRA; and Geothermal production permit to Union Oil for 16 production-injection wells in the Salton Sea KGRA. Lastly, EIR exemptions to CEQA were granted to Chevron for 70 shallow temperature observation holes and Union for fifteen. Other Geothermal Activity addresses the County Direct Heat Development study; the solicitation for district heating and cooling proposals; the new Geothermal Class II-1 disposal site; the DOE Region IX meeting in Tucson; and USGA designating a new KGRA, the East Brawley KGRA, the Westmorland KGRA, and revising the southern border of the Salton Sea KGRA.

  9. Development of Advanced Thermal-Hydrological-Mechanical-Chemical (THMC) Modeling Capabilities for Enhanced Geothermal Systems

    Broader source: Energy.gov [DOE]

    Development of Advanced Thermal-Hydrological-Mechanical-Chemical (THMC) Modeling Capabilities for Enhanced Geothermal Systems presentation at the April 2013 peer review meeting held in Denver, Colorado.

  10. Geothermal Drilling and Completion Technology Development Program. Quarterly progress report, October 1980-December 1980

    SciTech Connect (OSTI)

    Kelsey, J.R.

    1981-03-01

    The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development.