National Library of Energy BETA

Sample records for development concentrating solar

  1. Solar Junction Develops World Record Setting Concentrated Photovoltaic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Junction Develops World Record Setting Concentrated Photovoltaic Solar Cell Solar Junction Develops World Record Setting Concentrated Photovoltaic Solar Cell April 18, 2013 - ...

  2. Concentrating Solar Power Research and Development

    Broader source: Energy.gov [DOE]

    In 2007, DOE issued the Concentrating Solar Power (CSP) Research and Development Funding Opportunity Announcement (FOA) managed by the SunShot Initiative. The following projects were selected under this competitive solicitation.

  3. National Laboratory Concentrating Solar Power Research and Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Laboratory Concentrating Solar Power Research and Development National Laboratory Concentrating Solar Power Research and Development The SunShot National Laboratory...

  4. National Laboratory Concentrating Solar Power Research and Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Laboratory Concentrating Solar Power Research and Development National Laboratory Concentrating Solar Power Research and Development This fact sheet describes the current...

  5. Solar Junction Develops World Record Setting Concentrated Photovoltaic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Cell | Department of Energy Junction Develops World Record Setting Concentrated Photovoltaic Solar Cell Solar Junction Develops World Record Setting Concentrated Photovoltaic Solar Cell April 18, 2013 - 12:00am Addthis Partnering with Solar Junction of San Jose, EERE supported the development of the company's concentrated photovoltaic technology that also set a world record for conversion efficiency. The company's cell technology relies on inexpensive lenses to magnify the amount of

  6. National Laboratory Concentrating Solar Power Research and Development |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy National Laboratory Concentrating Solar Power Research and Development National Laboratory Concentrating Solar Power Research and Development This fact sheet describes the current concentrating solar power projects working through the National Laboratory R&D program under the SunShot Initiative. PDF icon csp_natl_lab_rd_fact_sheet.pdf More Documents & Publications National Laboratory Concentrating Solar Power Research and Development Particle Receiver Integrated

  7. National Laboratory Concentrating Solar Power Research and Development |

    Office of Environmental Management (EM)

    Department of Energy National Laboratory Concentrating Solar Power Research and Development National Laboratory Concentrating Solar Power Research and Development The SunShot National Laboratory Concentrating Solar Power Research and Development Fact Sheet provides a synopsis of the 12 projects funded to address the technical barriers toward achieving the technoeconomic targets of the SunShot Initiative. Significant cost and performance improvements across all major concentrating CSP

  8. National Laboratory Concentrating Solar Power Research and Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrating Solar Power Research and Development Motivation The U.S. Department of Energy (DOE) launched the SunShot Initiative as a collaborative national endeavor to make...

  9. National Laboratory Concentrating Solar Power Research and Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrating Solar Power Research and Development Motivation The U.S. Department of Energy (DOE) launched the SunShot Initiative as a collaborative national endeavor to make unsubsidized solar energy cost competitive with other forms of energy on the grid by the end of the decade. Significant cost and performance improvements across all major concentrating solar power (CSP) subsystems-solar fields, power plants, receivers, and thermal storage-are necessary to achieve the SunShot cost goal of

  10. Concentrating Solar Power SunShot Research and Development

    Broader source: Energy.gov [DOE]

    In June 2012, DOE announced the awardees of the Concentrating Solar Power (CSP) SunShot Research and Development (Program Fact Sheet) funding opportunity, managed by the SunShot Initiative.

  11. Solar kinetics` photovoltaic concentrator module and tracker development

    SciTech Connect (OSTI)

    White, D.L.; Howell, B. [Solar Kinetics, Inc., Dallas, TX (United States)

    1995-11-01

    Solar Kinetics, Inc., has been developing a point-focus concentrating photovoltaic module and tracker system under contract to Sandia National Laboratories. The primary focus of the contract was to achieve a module design that was manufacturable and passed Sandia`s environmental testing. Nine modules of two variations were assembled, tested, and characterized in Phase 1, and results of these tests were promising, with module efficiency approaching the theoretical limit achievable with the components used. The module efficiency was 11.9% at a solar irradiance of 850 W/m{sup 2} and an extrapolated cell temperature of 25{degrees}C. Improvements in module performance are anticipated as cell efficiencies meet their expectations. A 2-kW tracker and controller accommodating 20 modules was designed, built, installed, and operated at Solar Kinetics` test site. The drive used many commercially available components in an innovative arrangement to reduce cost and increase reliability. Backlash and bearing play were controlled by use of preloaded, low slip-stick, synthetic slide bearings. The controller design used a standard industrial programmable logic controller to perform ephemeris calculations, operate the actuators, and monitor encoders.

  12. NREL: Concentrating Solar Power Research - Concentrating Solar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrating Solar Power Resource Maps These direct-normal solar radiation maps-filtered by solar resource and land availability-identify the most economically suitable lands ...

  13. Concentrating Solar Power

    SciTech Connect (OSTI)

    Not Available

    2008-09-01

    Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  14. Arontis Solar Concentrator AB | Open Energy Information

    Open Energy Info (EERE)

    Arontis Solar Concentrator AB Jump to: navigation, search Name: Arontis Solar Concentrator AB Place: Harnosand, Sweden Zip: SE-871 31 Product: Developer of a medium-concentrating,...

  15. Scattering Solar Thermal Concentrators

    Office of Environmental Management (EM)

    sunshot DOEGO-102012-3669 * September 2012 MOTIVATION All thermal concentrating solar power (CSP) systems use solar tracking, which involves moving large mirror surfaces...

  16. Concentrating Solar Power

    SciTech Connect (OSTI)

    Solar Energy Technologies Program

    2010-09-28

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  17. Solar Junction Develops World Record Setting Concentrated Photovoltaic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the company's concentrated photovoltaic technology that also set a world record for conversion efficiency. The company's cell technology relies on inexpensive lenses to magnify...

  18. NREL: Concentrating Solar Power Projects Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    navigation to main content. NREL - National Renewable Energy Laboratory Concentrating Solar Power Projects: Solar Paces SolarPACES Snapshot SolarPACES, an international program of the International Energy Agency, furthers collaborative development, testing, and marketing of concentrating solar power plants. Activities include testing large-scale systems and developing advanced technologies, components, instrumentation, and analysis techniques. Three ongoing Tasks are Concentrating Solar Electric

  19. NREL: Concentrating Solar Power Research - Laboratory Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    To research, develop, and test a variety of concentrating solar power technologies, NREL features the following laboratory capabilities: Concentrated Solar Radiation Facility Large ...

  20. Research and Development for Novel Thermal Energy Storage Systems (TES) for Concentrating Solar Power (CSP)

    SciTech Connect (OSTI)

    Faghri, Amir; Bergman, Theodore L; Pitchumani, Ranga

    2013-09-26

    The overall objective was to develop innovative heat transfer devices and methodologies for novel thermal energy storage systems for concentrating solar power generation involving phase change materials (PCMs). Specific objectives included embedding thermosyphons and/or heat pipes (TS/HPs) within appropriate phase change materials to significantly reduce thermal resistances within the thermal energy storage system of a large-scale concentrating solar power plant and, in turn, improve performance of the plant. Experimental, system level and detailed comprehensive modeling approaches were taken to investigate the effect of adding TS/HPs on the performance of latent heat thermal energy storage (LHTES) systems.

  1. Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & ... Sandia Pilot Program to Assist Small Clean-Energy Companies Concentrating Solar ...

  2. NREL: Concentrating Solar Power Research - Southwest Concentrating...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Southwest Concentrating Solar Power 1000-MW Initiative Photos of various concentrating solar power systems. NREL, working through SunLab, supports the U.S. Department of Energy's...

  3. Photovoltaic solar concentrator

    DOE Patents [OSTI]

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2016-03-15

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  4. Photovoltaic solar concentrator

    DOE Patents [OSTI]

    Nielson, Gregory N.; Okandan, Murat; Resnick, Paul J.; Cruz-Campa, Jose Luis

    2012-12-11

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  5. Concentrated Solar Thermoelectric Power

    SciTech Connect (OSTI)

    Chen, Gang; Ren, Zhifeng

    2015-07-09

    The goal of this project is to demonstrate in the lab that solar thermoelectric generators (STEGs) can exceed 10% solar-to-electricity efficiency, and STEGs can be integrated with phase-change materials (PCM) for thermal storage, providing operation beyond daylight hours. This project achieved significant progress in many tasks necessary to achieving the overall project goals. An accurate Themoelectric Generator (TEG) model was developed, which included realistic treatment of contact materials, contact resistances and radiative losses. In terms of fabricating physical TEGs, high performance contact materials for skutterudite TE segments were developed, along with brazing and soldering methods to assemble segmented TEGs. Accurate measurement systems for determining device performance (in addition to just TE material performance) were built for this project and used to characterize our TEGs. From the optical components’ side, a spectrally selective cermet surface was developed with high solar absorptance and low thermal emittance, with thermal stability at high temperature. A measurement technique was also developed to determine absorptance and total hemispherical emittance at high temperature, and was used to characterize the fabricated spectrally selective surfaces. In addition, a novel reflective cavity was designed to reduce radiative absorber losses and achieve high receiver efficiency at low concentration ratios. A prototype cavity demonstrated that large reductions in radiative losses were possible through this technique. For the overall concentrating STEG system, a number of devices were fabricated and tested in a custom built test platform to characterize their efficiency performance. Additionally, testing was performed with integration of PCM thermal storage, and the storage time of the lab scale system was evaluated. Our latest testing results showed a STEG efficiency of 9.6%, indicating promising potential for high performance concentrated STEGs.

  6. Luminescent solar concentrator development: Final subcontract report, 1 June 1982-31 December 1984

    SciTech Connect (OSTI)

    Friedman, P.S.; Parent, C.R.

    1987-04-01

    An investigation of luminescent solar concentrators (LSCs) was begun by the US Department of Energy (DOE) at Owens-Illinois, Inc., in 1978. Experimental and theoretical results of that investigation are summarized in this report. An assessment of the LSC technology was compiled to provide a concise description to guide future research in this field. Since 1978, tremendous progress was made in the development of this device as a practical nonimaging concentrator for achieving solar concentration ratios on the order of 10X. The two most important technical achievements appear to be first, the understanding that dye self-absorption of radiated energy is not as serious a problem as originally thought; and second, the demonstration that organic dyes in polymeric hosts are capable of surviving outdoors in bright sunlight for years without serious degradation. System efficiencies approaching 4% have been achieved for photovoltaic conversion and theoretical efficiencies on the order of 9% appear feasible for large-area devices.

  7. Scattering Solar Thermal Concentrators

    SciTech Connect (OSTI)

    Giebink, Noel C.

    2015-01-31

    This program set out to explore a scattering-based approach to concentrate sunlight with the aim of improving collector field reliability and of eliminating wind loading and gross mechanical movement through the use of a stationary collection optic. The approach is based on scattering sunlight from the focal point of a fixed collection optic into the confined modes of a sliding planar waveguide, where it is transported to stationary tubular heat transfer elements located at the edges. Optical design for the first stage of solar concentration, which entails focusing sunlight within a plane over a wide range of incidence angles (>120 degree full field of view) at fixed tilt, led to the development of a new, folded-path collection optic that dramatically out-performs the current state-of-the-art in scattering concentration. Rigorous optical simulation and experimental testing of this collection optic have validated its performance. In the course of this work, we also identified an opportunity for concentrating photovoltaics involving the use of high efficiency microcells made in collaboration with partners at the University of Illinois. This opportunity exploited the same collection optic design as used for the scattering solar thermal concentrator and was therefore pursued in parallel. This system was experimentally demonstrated to achieve >200x optical concentration with >70% optical efficiency over a full day by tracking with <1 cm of lateral movement at fixed latitude tilt. The entire scattering concentrator waveguide optical system has been simulated, tested, and assembled at small scale to verify ray tracing models. These models were subsequently used to predict the full system optical performance at larger, deployment scale ranging up to >1 meter aperture width. Simulations at an aperture widths less than approximately 0.5 m with geometric gains ~100x predict an overall optical efficiency in the range 60-70% for angles up to 50 degrees from normal. However, the concentrator optical efficiency was found to decrease significantly with increasing aperture width beyond 0.5 m due to parasitic waveguide out-coupling loss and low-level absorption that become dominant at larger scale. A heat transfer model was subsequently implemented to predict collector fluid heat gain and outlet temperature as a function of flow rate using the optical model as a flux input. It was found that the aperture width size limitation imposed by the optical efficiency characteristics of the waveguide limits the absolute optical power delivered to the heat transfer element per unit length. As compared to state-of-the-art parabolic trough CPV system aperture widths approaching 5 m, this limitation leads to an approximate factor of order of magnitude increase in heat transfer tube length to achieve the same heat transfer fluid outlet temperature. The conclusion of this work is that scattering solar thermal concentration cannot be implemented at the scale and efficiency required to compete with the performance of current parabolic trough CSP systems. Applied within the alternate context of CPV, however, the results of this work have likely opened up a transformative new path that enables quasi-static, high efficiency CPV to be implemented on rooftops in the form factor of traditional fixed-panel photovoltaics.

  8. concentrating solar power plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    concentrating solar power plant - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  9. Solar Energy Technologies Program: Concentrating Solar Power

    SciTech Connect (OSTI)

    2009-10-26

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  10. NREL: Concentrating Solar Power Research Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrating Solar Power Research A collage of Concentrating Solar Power photographs. The first photo shows a dish-engine solar system. The second is of a SAIC Stirling dish collector. And the third photo shows a SkyTrough solar concentrator located on a mesa top. NREL collaborates with industry to further the research and development (R&D) of concentrating solar power (CSP) plant and solar thermal technologies. NREL's projects in concentrating solar power focus on components R&D and

  11. Concentrating Solar Power | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrating Solar Power Concentrating Solar Power The SunShot Initiative supports research and development of concentrating solar power (CSP) technologies that reduce the cost of solar energy. CSP helps to achieve the SunShot Initiative cost targets with systems that can supply solar power on demand, even when there is no sunlight, through the use of thermal storage. Since SunShot's inception, the levelized cost of electricity for CSP has decreased about 36 percent, from $0.21 cents per

  12. Concentrating photovoltaic solar panel

    DOE Patents [OSTI]

    Cashion, Steven A; Bowser, Michael R; Farrelly, Mark B; Hines, Braden E; Holmes, Howard C; Johnson, Jr., Richard L; Russell, Richard J; Turk, Michael F

    2014-04-15

    The present invention relates to photovoltaic power systems, photovoltaic concentrator modules, and related methods. In particular, the present invention features concentrator modules having interior points of attachment for an articulating mechanism and/or an articulating mechanism that has a unique arrangement of chassis members so as to isolate bending, etc. from being transferred among the chassis members. The present invention also features adjustable solar panel mounting features and/or mounting features with two or more degrees of freedom. The present invention also features a mechanical fastener for secondary optics in a concentrator module.

  13. NREL: Concentrating Solar Power Research - Partnerships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Partnerships NREL maintains partnerships to advance concentrating solar power research, development, and deployment efforts. Currently, NREL works with Sandia National Laboratories in Albuquerque, New Mexico, through SunLab-a partnership developed by the U.S. Department of Energy to administer its concentrating solar power R&D and analysis activities. SolarPACES Solar Power and Chemical Energy Systems (SolarPACES), an international program of the International Energy Agency, furthers

  14. Concentrating Solar Power Facilities | Department of Energy

    Office of Environmental Management (EM)

    Concentrating Solar Power Facilities Concentrating Solar Power Facilities Florida Hawaii Southwest U.S.

  15. Markets for concentrating solar power

    SciTech Connect (OSTI)

    Not Available

    1998-04-01

    The report describes the markets for concentrating solar power. As concentrating solar power technologies advance into the early stages of commercialization, their economic potential becomes more sharply defined and increasingly tangible.

  16. Sandia Energy - Concentrating Solar Power Technical Management...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrating Solar Power Technical Management Position Home Renewable Energy Energy Facilities News Concentrating Solar Power Solar Job Listing National Solar Thermal Test...

  17. Siemens Concentrated Solar Power Ltd previously Solel Solar Systems...

    Open Energy Info (EERE)

    Siemens Concentrated Solar Power Ltd previously Solel Solar Systems Jump to: navigation, search Name: Siemens Concentrated Solar Power Ltd (previously Solel Solar Systems) Place:...

  18. EA-1683: Abengoa Solar's Solana Concentrating Solar Power Facility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    83: Abengoa Solar's Solana Concentrating Solar Power Facility, Gila Bend, AZ EA-1683: Abengoa Solar's Solana Concentrating Solar Power Facility, Gila Bend, AZ May 3, 2010 EA-1683:...

  19. Photovoltaic solar concentrator

    SciTech Connect (OSTI)

    Nielson, Gregory N.; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J.; Sanchez, Carlos Anthony; Clews, Peggy J.; Gupta, Vipin P.

    2015-09-08

    A process including forming a photovoltaic solar cell on a substrate, the photovoltaic solar cell comprising an anchor positioned between the photovoltaic solar cell and the substrate to suspend the photovoltaic solar cell from the substrate. A surface of the photovoltaic solar cell opposite the substrate is attached to a receiving substrate. The receiving substrate may be bonded to the photovoltaic solar cell using an adhesive force or a metal connecting member. The photovoltaic solar cell is then detached from the substrate by lifting the receiving substrate having the photovoltaic solar cell attached thereto and severing the anchor connecting the photovoltaic solar cell to the substrate. Depending upon the type of receiving substrate used, the photovoltaic solar cell may be removed from the receiving substrate or remain on the receiving substrate for use in the final product.

  20. Increasing Solar Efficiency through Luminescent Solar Concentrators -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Solar Photovoltaic Solar Photovoltaic Industrial Technologies Industrial Technologies Energy Storage Energy Storage Electricity Transmission Electricity Transmission Find More Like This Return to Search Increasing Solar Efficiency through Luminescent Solar Concentrators Argonne National Laboratory Contact ANL About This Technology <span class="caption1"><span style="font-family: &quot;Calibri&quot;,&quot;sans-serif&quot;;

  1. Concentrating Solar Power (Fact Sheet)

    SciTech Connect (OSTI)

    DOE Solar Energy Technologies Program

    2011-10-13

    Concentrating Solar Power (CSP) offers a utility-scale, firm, dispatchable renewable energy option that can help meet the nation's goal of making solar energy cost competitive with other energy sources by the end of the decade.

  2. Energy 101: Concentrating Solar Power

    Broader source: Energy.gov [DOE]

    From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity. A single CSP plant can generate enough power...

  3. Funding Opportunity Announcement: Concentrating Solar Power:...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrating Solar Power: Advanced Projects Offering Low LCOE Opportunities Funding Opportunity Announcement: Concentrating Solar Power: Advanced Projects Offering Low LCOE...

  4. NREL: Concentrating Solar Power Research - Advanced Optical Materials for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrating Solar Power Advanced Optical Materials for Concentrating Solar Power Photo of a 1400W solar simulator. NREL researchers use a variety of equipment, including the 1400W solar simulator shown, to test optical materials. NREL works to develop durable, low-cost optical materials for concentrating solar power systems. These optical materials-which reflect, absorb, and transmit solar energy-play a fundamental role in the overall cost and efficiency of all concentrating solar power

  5. Energy 101: Concentrating Solar Power

    ScienceCinema (OSTI)

    None

    2013-05-29

    From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity. A single CSP plant can generate enough power for about 90,000 homes. This video explains what CSP is, how it works, and how systems like parabolic troughs produce renewable power. For more information on the Office of Energy Efficiency and Renewable Energy's CSP research, see the Solar Energy Technology Program's Concentrating Solar Power Web page at http://www1.eere.energy.gov/solar/csp_program.html.

  6. Concentrating Solar Power (CSP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas ...

  7. Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas ...

  8. Planar photovoltaic solar concentrator module

    DOE Patents [OSTI]

    Chiang, Clement J. (New Brunswick, NJ)

    1992-01-01

    A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor.

  9. Planar photovoltaic solar concentrator module

    DOE Patents [OSTI]

    Chiang, C.J.

    1992-12-01

    A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor. 5 figs.

  10. Concentrating Solar Power - Molten Salt Pump Development, Final Technical Report (Phase 1)

    SciTech Connect (OSTI)

    Michael McDowell; Alan Schwartz

    2010-03-31

    The purpose of this project is to develop a long shafted pump to operate at high temperatures for the purpose of producing energy with renewable resources. In Phase I of this three phase project we developed molten salt pump requirements, evaluated existing hardware designs for necessary modifications, developed a preliminary design of the pump concept, and developed refined cost estimates for Phase II and Phase III of the project. The decision has been made not to continue the project into Phases II and III. There is an ever increasing world-wide demand for sources of energy. With only a limited supply of fossil fuels, and with the costs to obtain and produce those fuels increasing, sources of renewable energy must be found. Currently, capturing the sun's energy is expensive compared to heritage fossil fuel energy production. However, there are government requirements on Industry to increase the amount of energy generated from renewable resources. The objective of this project is to design, build and test a long-shafted, molten salt pump. This is the type of pump necessary for a molten salt thermal storage system in a commercial-scale solar trough plant. This project is under the Department of Energy (DOE) Solar Energy Technologies Program, managed by the Office of Energy Efficiency and Renewable Energy. To reduce the levelized cost of energy (LCOE), and to meet the requirements of 'tomorrows' demand, technical innovations are needed. The DOE is committed to reducing the LCOE to 7-10 cents/kWh by 2015, and to 5-7 cents/kWh by 2020. To accomplish these goals, the performance envelope for commercial use of long-shafted molten salt pumps must be expanded. The intent of this project is to verify acceptable operation of pump components in the type of molten salt (thermal storage medium) used in commercial power plants today. Field testing will be necessary to verify the integrity of the pump design, and thus reduce the risk to industry. While the primary goal is to design a pump for a trough solar power plant system, the intent is for the design to be extensible to a solar power tower application. This can be accomplished by adding pumping stages to increase the discharge pressure to the levels necessary for a solar power tower application. This report incorporates all available conceptual design information completed for this project in Phase I.

  11. Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  12. Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  13. Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  14. Concentrating Solar Power (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    Concentrating Solar Power (CSP) offers a utility-scale, firm, dispatchable renewable energy option that can help meet the nation's goal of making solar energy cost competitive with other energy sources by the end of the decade. The DOE SunShot Initiative is a collaborative national initiative to make solar energy technologies cost-competitive with other forms of energy by reducing the cost of solar energy systems by about 75% by the end of the decade. Reducing the total installed cost for utility-scale solar electricity to roughly 6 cents per kilowatt hour without subsidies will result in rapid, large-scale adoption of solar electricity across the United States. Reaching this goal will re-establish American technological leadership, improve the nation's energy security, and strengthen U.S. economic competitiveness in the global clean energy race. SunShot will work to bring down the full cost of solar - including the costs of solar cells and installation by focusing on four main pillars: (1) Technologies for solar cells and arrays that convert sunlight to energy; (2) Electronics that optimize the performance of the installation; (3) Improvements in the efficiency of solar manufacturing processes; and (4) Installation, design, and permitting for solar energy systems.

  15. National Laboratory Concentrating Solar Power Research | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Concentrating Solar Power » National Laboratory Concentrating Solar Power Research National Laboratory Concentrating Solar Power Research National Laboratory Concentrating Solar Power Research DOE supports concentrating solar power (CSP) research and development and core capabilities at its national laboratories (Program Fact Sheet) to accelerate progress toward achieving the SunShot Initiative's technoeconomic targets. These multi-year projects are funded based on a competitive

  16. Concentrating Solar Power Hybrid System Study: Cooperative Research and Development Final Report, CRADA Number CRD-13-506

    SciTech Connect (OSTI)

    Turchi, C.

    2014-09-01

    The purpose of this PTS is to collaboratively leverage the collective resources at General Electric Global Research (GEGRC) and National Renewable Energy Laboratories (NREL) in the areas of concentrating solar power hybrid systems to advance state-of-the-art concentrating solar and conventional power generation system integration.

  17. Project Profile: Concentrated Solar Thermoelectric Power

    Broader source: Energy.gov [DOE]

    The Rohsenow-Kendall Heat Transfer Lab at Massachusetts Institute of Technology(MIT), under the 2012 SunShot Concentrating Solar Power (CSP) R&D FOA, is developing concentrated solar thermoelectric generators (CSTEGs) for CSP systems. This innovative distributed solution contains no moving parts and converts heat directly into electricity. Thermal storage can be integrated into the system, creating a reliable and flexible source of electricity.

  18. A Path to High-Concentration Luminescent Solar Concentrators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Path to High-Concentration Luminescent Solar Concentrators with Nanorod Lumophores and Micro-Silicon Solar Cells Scientific Achievement We fabricated and modeled luminescent solar concentrators (LSCs) incorporating micro-silicon solar cells and tunable CdSe/CdS nanorod lumophores, demonstrating a practical path to operation in the high-concentration regime. Significance and Impact LSCs enable non-tracking concentration of both direct sunlight and diffuse light onto high- efficiency solar cells,

  19. Reflector Technology Development and System Design for Concentrating Solar Power Technologies

    SciTech Connect (OSTI)

    Adam Schaut Philip Smith

    2011-12-30

    Alcoa began this program in March of 2008 with the goal of developing and validating an advanced CSP trough design to lower the levelized cost of energy (LCOE) as compared to existing glass based, space-frame trough technology. In addition to showing a pathway to a significant LCOE reduction, Alcoa also desired to create US jobs to support the emerging CSP industry. Alcoa's objective during Phase I: Concept Feasibility was to provide the DOE with a design approach that demonstrates significant overall system cost savings without sacrificing performance. Phase I consisted of two major tasks; reflector surface development and system concept development. Two specific reflective surface technologies were investigated, silver metallized lamination, and thin film deposition both applied on an aluminum substrate. Alcoa prepared samples; performed test validation internally; and provided samples to the NREL for full-spectrum reflectivity measurements. The final objective was to report reflectivity at t = 0 and the latest durability results as of the completion of Phase 1. The target criteria for reflectance and durability were as follows: (1) initial (t = 0), hemispherical reflectance >93%, (2) initial spectral reflectance >90% for 25-mrad reading and >87% for 7-mrad reading, and (3) predicted 20 year durability of less than 5% optical performance drop. While the results of the reflective development activities were promising, Alcoa was unable to down-select on a reflective technology that met the target criteria. Given the progress and potential of both silver film and thin film technologies, Alcoa continued reflector surface development activities in Phase II. The Phase I concept development activities began with acquiring baseline CSP system information from both CSP Services and the DOE. This information was used as the basis to develop conceptual designs through ideation sessions. The concepts were evaluated based on estimated cost and high-level structural performance. The target criteria for the concept development was to achieve a solar field cost savings of 25%-50% thereby meeting or exceeding the DOE solar field cost savings target of $350/m2. After evaluating various structural design approaches, Alcoa down-selected to a monocoque, dubbed Wing Box, design that utilizes the reflective surface as a structural, load carrying member. The cost and performance potential of the Wing Box concept was developed via initial finite element analysis (FEA) and cost modeling. The structural members were sized through material utilization modeling when subjected to representative loading conditions including wind loading. Cost modeling was utilized to refine potential manufacturing techniques that could be employed to manufacture the structural members. Alcoa concluded that an aluminum intensive collector design can achieve significant cost savings without sacrificing performance. Based on the cost saving potential of this Concept Feasibility study, Alcoa recommended further validation of this CSP approach through the execution of Phase II: Design and Prototype Development. Alcoa Phase II objective was to provide the DOE with a validated CSP trough design that demonstrates significant overall system cost savings without sacrificing performance. Phase II consisted of three major tasks; Detail System Design, Prototype Build, and System Validation. Additionally, the reflector surface development that began in Phase I was continued in Phase II. After further development work, Alcoa was unable to develop a reflective technology that demonstrated significant performance or cost benefits compared to commercially available CSP reflective products. After considering other commercially available reflective surfaces, Alcoa selected Alano's MIRO-SUN product for use on the full scale prototype. Although MIRO-SUN has a lower specular reflectivity compared to other options, its durability in terms of handling, cleaning, and long-term reflectivity was deemed the most important attribute to successfully validate Alcoa's advanced trough architecture. To validate the performance of the Wing Box trough, a 6 meter aperture by 14 meter long prototype trough was built. For ease of shipping to and assembly at NREL's test facility, the prototype was fabricated in two half modules and joined along the centerline to create the Wing Box trough. The trough components were designed to achieve high precision of the reflective surface while leveraging high volume manufacturing and assembly techniques.

  20. EERE Success Story-Solar Junction Develops World Record Setting...

    Energy Savers [EERE]

    Junction Develops World Record Setting Concentrated Photovoltaic Solar Cell EERE Success Story-Solar Junction Develops World Record Setting Concentrated Photovoltaic Solar Cell ...

  1. Concentrating Solar Power Basics | Department of Energy

    Office of Environmental Management (EM)

    Solar » Concentrating Solar Power Basics Concentrating Solar Power Basics August 20, 2013 - 4:38pm Addthis Text Version This solar concentrator has a fixed-focus faceted dish with a concentration of about 250 suns. This system can be used for large fields connected to the utility grid, hydrogen generation, or water pumping. Credit: Science Applications International Corporation / PIX 13464 Concentrating solar power (CSP) technologies use mirrors to reflect and concentrate sunlight onto

  2. SunLab: Concentrating Solar Power Program Overview

    SciTech Connect (OSTI)

    1998-11-24

    DOE's Concentrating Solar Power (CSP) program is collaborating with its partners in the private sector to develop two new solar technologies -- power towers and dish/engines -- to meet the huge commercial potential for solar power. Concentrating solar power plants produce electric power by first converting the sun's energy into heat, and then to electricity in a conventional generator.

  3. Concentrating Solar Power Facilities and Solar Potential | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Concentrating Solar Power Facilities and Solar Potential Concentrating Solar Power Facilities and Solar Potential Concentrating Solar Power Facilities and CSP Energy Potential Gradient Click icons to filter by CSP Plant Type All Plants In Operation New in 2014 In Progress Tower and Heliostat Trough or Fresnel Parabolic Dish Concentrating Solar Energy Potential (watt hours/m²/day) 2500 4000 6000 8000 Data provided by CSP World. Map by Daniel Wood

  4. NREL: Concentrating Solar Power Research - Parabolic Trough Solar Field

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Parabolic Trough Solar Field Technology Photo of a parabolic trough. The sun bursts over a parabolic trough at Kramer Junction in Boron, California. Credit: Sandia National Laboratories Photo Database NREL works to develop less costly and more efficient parabolic trough solar field technology. This involves improving the structure of parabolic trough concentrators, receivers, and mirrors, and increasing the manufacturing of these components. Through NREL's development and testing,

  5. Concentrating Solar Power (Revised) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-11-01

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  6. Concentration Solar la Mancha | Open Energy Information

    Open Energy Info (EERE)

    Solar la Mancha Jump to: navigation, search Name: Concentration Solar la Mancha Place: Manzanares (Cuidad Real), Spain Zip: 13200 Product: Maker of CPV systems and systems...

  7. Concentrated Solar Thermoelectric Power | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrated Solar Thermoelectric Power Concentrated Solar Thermoelectric Power This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23-25, 2013 near Phoenix, Arizona. PDF icon csp_review_meeting_042313_chen.pdf More Documents & Publications High-Temperature Solar Thermoelectric Generators (STEG) Concentrated Thermoelectric Power Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion Center (S3TEC )

  8. Concentrating Solar Power: Solar Energy Technologies Program (SETP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-10-01

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  9. NREL: Concentrating Solar Power Research - Modeling and Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling and Analysis NREL has the following capabilities, which include software development, for modeling and analyzing a variety of concentrating solar power technologies: Solar Resource Maps Optical Analysis and Modeling Advanced Coatings Modeling and Analysis Computational Fluid Dynamics (CFD) Systems Analysis Concentrating Solar Deployment System Job and Economic Development Impact (JEDI) A map providing a concentrating solar power siting analysis of the southwestern United States. This

  10. Scattering Solar Thermal Concentrators | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scattering Solar Thermal Concentrators Scattering Solar Thermal Concentrators "This fact sheet describes a scattering solar thermal concentrators project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by the Pennsylvania State University, is working to demonstrate a new, scattering-based approach to concentrating sunlight that aims to improve the overall performance and reliability of the collector field. The research team aims to show

  11. EA-1683: Abengoa Solar's Solana Concentrating Solar Power Facility, Gila

    Office of Environmental Management (EM)

    Bend, AZ | Department of Energy 83: Abengoa Solar's Solana Concentrating Solar Power Facility, Gila Bend, AZ EA-1683: Abengoa Solar's Solana Concentrating Solar Power Facility, Gila Bend, AZ May 3, 2010 EA-1683: Final Environmental Assessment Loan Guarantee to Abengoa Solar Inc. for the Solana Thermal Electric Power Project near Gila Bend, Arizona May 6, 2010 EA-1683: Finding of No Significant Impact Abengoa Solar Inc., the Solana Thermal Electric Power Project near Gila Bend, Arizona

  12. Low-Cost, Lightweight Solar Concentrator | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrator Low-Cost, Lightweight Solar Concentrator This fact sheet describes a low-cost, lightweight solar conductor project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by NASA's Jet Propulsion Laboratory, is working develop a solar collector structure using lightweight materials that cost less and are easier to install. The ease of manufacturability, installation, and replacement make JPL's proposed technology a compelling one to

  13. Funding Opportunity Announcement: Concentrating Solar Power: Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects Offering Low LCOE Opportunities | Department of Energy Funding Opportunity Announcement: Concentrating Solar Power: Advanced Projects Offering Low LCOE Opportunities Funding Opportunity Announcement: Concentrating Solar Power: Advanced Projects Offering Low LCOE Opportunities Funding Number: DE-FOA-0001186 Funding Amount: $25,000,000 Description The Concentrating Solar Power: Advanced Projects Offering Low LCOE Opportunities (CSP: APOLLO) funding opportunity announcement (FOA) seeks

  14. Concentrating Solar Power: Efficiently Leveraging Equilibrium Mechanisms

    Office of Environmental Management (EM)

    for Engineering New Thermochemical Storage | Department of Energy Power: Efficiently Leveraging Equilibrium Mechanisms for Engineering New Thermochemical Storage Concentrating Solar Power: Efficiently Leveraging Equilibrium Mechanisms for Engineering New Thermochemical Storage Concentrating Solar Power: Efficiently Leveraging Equilibrium Mechanisms for Engineering New Thermochemical Storage The Concentrating Solar Power: Efficiently Leveraging Equilibrium Mechanisms for Engineering New

  15. NREL: Concentrating Solar Power Research - Research Expertise

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Expertise NREL's research expertise in concentrating solar power technologies includes managing and supporting parabolic trough research and development (R&D); using a systems-driven modeling and analysis approach; and developing advanced components and technologies. Managing and Supporting Parabolic Trough R&D NREL has lead responsibility for managing, directing, and supporting parabolic trough R&D activities. In-house and subcontracted research and development supports the

  16. Linear Concentrator System Basics for Concentrating Solar Power |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Linear Concentrator System Basics for Concentrating Solar Power Linear Concentrator System Basics for Concentrating Solar Power August 20, 2013 - 4:45pm Addthis Photo of numerous parallel rows of parabolic trough collectors tracking the sun. Cooling towers and other generator equipment are in the midst of the troughs, and two water tanks are in the background. The Solar Electric Generating Station IV power plant in California consists of many parallel rows of parabolic

  17. Solar Tracing Sensors for Maximum Solar Concentrator Efficiency...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publication Market Sheet (1,222 KB) Technology Marketing SummaryConcentrating Solar Power (CSP) relies on thermodynamic processes to convert concentrated light into useful...

  18. NREL: Learning - Concentrating Solar Power Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrating Solar Power Basics Many power plants today use fossil fuels as a heat source to boil water. The steam from the boiling water spins a large turbine, which drives a generator to produce electricity. However, a new generation of power plants with concentrating solar power systems uses the sun as a heat source. The three main types of concentrating solar power systems are: linear concentrator, dish/engine, and power tower systems. Linear concentrator systems collect the sun's energy

  19. Material and Chemical Processing (Concentrated Solar) (4 Activities) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Material and Chemical Processing (Concentrated Solar) (4 Activities) Material and Chemical Processing (Concentrated Solar) (4 Activities) Below is information about the student activity/lesson plan from your search. Grades 5-8 Subject Solar Summary Concentrated sunlight is a versatile and high-quality form of energy with several potential applications besides producing heat and electricity. Today, scientists are developing systems that use concentrated sunlight to

  20. Concentrating Solar Power Competitive Awards | Department of Energy

    Office of Environmental Management (EM)

    Power » Concentrating Solar Power Competitive Awards Concentrating Solar Power Competitive Awards The SunShot Initiative supports the development of novel concentrating solar power (CSP) research and development projects that will reduce the levelized cost of energy to $0.06 per kilowatt hour or less without subsidies by the end of the decade. These projects aim to engineer new concepts in the collector, receiver, thermal storage, heat transfer fluids and power cycle subsystems, including

  1. NREL: Concentrating Solar Power Research - Systems Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solar financial models developed and integrated into the System Advisor Model (SAM) software Grid penetration and life-cycle analysis studies The Solar-augment study of...

  2. NREL: Concentrating Solar Power Research - SolTrace Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SolTrace Concentrating Solar Power Research SolTrace is a software tool developed at the National Renewable Energy Laboratory (NREL) to model concentrating solar power (CSP) systems and analyze their optical performance. Although ideally suited for solar applications, the code can also be used to model and characterize many general optical systems. The creation of the code evolved out of a need to model more complex solar optical systems than could be modeled with existing tools. The code

  3. Linear Concentrator System Basics for Concentrating Solar Power...

    Office of Environmental Management (EM)

    Linear concentrating solar power (CSP) collectors capture the sun's energy with large mirrors that reflect and ... In the future, troughs may be integrated with existing or new ...

  4. Concentrating Solar Power Forum Concentrating Photovoltaics (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.

    2008-05-06

    This presentation's summaries: a convenient truth, comparison of three concentrator technologies, value of high efficiency, and status of industry.

  5. Low-Cost, Lightweight Solar Concentrators

    Broader source: Energy.gov (indexed) [DOE]

    Cost, Lightweight Solar Concentrators California Institute of Technology/Jet Propulsion Laboratory Award Number:0595-1612 | January 15, 2013 | Ganapathi Thin Film mirror is ~40-50% cheaper and 60% lighter than SOA * Project leverages extensive space experience by JPL and L'Garde to develop a low-cost parabolic dish capable of providing 4 kW thermal. Key features: * Metallized reflective thin film material with high reflectivity (>93%) with polyurethane foam backing * Single mold polyurethane

  6. Concentrating Solar Power - Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CSP systems can store solar energy to be used when the sun is not shining. It will help meet the nation's goal of making solar energy fully cost-competitive with other energy ...

  7. TOPCAT Solar Cell Alignment & Energy Concentration Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Return to Search TOPCAT Solar Cell Alignment & Energy Concentration ... It is a variation of current methods used on ... Applications and Industries Clean energy production ...

  8. NREL: Concentrating Solar Power Research - Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in its CSP deployment efforts in the following areas: Collectors Receivers Power block Thermal energy storage Analysis. NREL received funding from DOE for concentrating solar...

  9. Concentrating solar power | Open Energy Information

    Open Energy Info (EERE)

    Concentrating solar power (CSP) offers a utility-scale, firm, dispatchable renewable energy option that can help meet our nation's demand for electricity. CSP plants produce...

  10. Microtracking and Self-Adaptive Solar Concentration

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  11. OpenEI Community - Concentrated Solar Power

    Open Energy Info (EERE)

    groupbig-clean-data" target"blank">read more

    Big Data Concentrated Solar Power DataAnalysis energy efficiency energy storage expert systems machine learning...

  12. Concentrated Solar Power | OpenEI Community

    Open Energy Info (EERE)

    and Energy Efficiency. Links: Big Clean Data group on linkedin Big Data Concentrated Solar Power DataAnalysis energy efficiency energy storage expert systems machine learning...

  13. NREL: Concentrating Solar Power Research - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Your email address: Your message: Send Message Printable Version Concentrating Solar Power Research Home Projects Research Staff Working with Us Data & Resources Publications...

  14. NREL: Concentrating Solar Power Research - Technology Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Basics Concentrating solar power (CSP) technologies can be a major contributor to our nation's future need for new, clean sources of energy, particularly in the Western...

  15. Concentrating Solar Power Projects | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Nevada Loan Guarantee 737 Million Sep 2011 GENESIS TITLE XVII Concentrating Solar Power NextEra Energy Riverside County, California Partial Loan Guarantee 852 Million Aug 2011 ...

  16. Light shield for solar concentrators

    DOE Patents [OSTI]

    Plesniak, Adam P.; Martins, Guy L.

    2014-08-26

    A solar receiver unit including a housing defining a recess, a cell assembly received in the recess, the cell assembly including a solar cell, and a light shield received in the recess and including a body and at least two tabs, the body defining a window therein, the tabs extending outward from the body and being engaged with the recess, wherein the window is aligned with the solar cell.

  17. Software Tools for Analysis of Concentrated Solar Power Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Codes for Analysis of Concentrating Solar Power Technologies Clifford K. Ho Prepared ... and Codes for Analysis of Concentrating Solar Power Technologies Clifford K. Ho Solar ...

  18. Sandia Energy » Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    feed 0 Sandia's Continuously Recirculating Falling-Particle Receiver Emplaced at Top of Solar Tower http:energy.sandia.govsandias-continuously-recirculating-falling-particle-r...

  19. Solar Energy - It's Growth, Development, and Use

    Office of Scientific and Technical Information (OSTI)

    Solar Energy Resources with Additional Information Solar Energy Courtesy of National Renewable Energy Laboratory Credit-Robb Williamson The Department of Energy has played a major role in solar energy development through previous research and ongoing activities. As a result of research and development, the "cost of solar energy has been reduced 100-fold over the past two decades." 1 Concentrating Solar Power (CSP) systems use reflective materials that concentrate the sun's heat energy

  20. NREL: Concentrating Solar Power Research - Parabolic Trough Thermal Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Technology Parabolic Trough Thermal Energy Storage Technology NREL works to develop efficient and lower cost thermal energy storage technologies for parabolic trough concentrating solar power systems. Improved thermal energy storage is needed to: Increase solar plant capacity factors above 25% Increase dispatchability of solar power Help reduce the cost of solar electricity. Parabolic trough technology currently has one thermal energy storage option-a two-tank, indirect, molten-salt

  1. NREL: Concentrating Solar Power Research - News Release Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 September 16, 2014 NREL Forges Foundation for Advanced Concentrating Solar Power Receivers NREL's Thermal Systems Group is performing research and development on components for high-temperature concentrating solar power (CSP) receivers as part of DOE's SunShot effort. DOE supports R&D of CSP technologies in order to achieve SunShot Initiative cost targets with systems that can supply solar power on demand through the use of thermal energy storage. The thermal energy from the receiver can

  2. SunShot Concentrating Solar Power Research | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research SunShot Concentrating Solar Power Research "This fact sheet summarizes DOE's SunShot Concentrating Solar Power Research and Development program. In 2012, the program's 21 projects were awarded more than $54 million to address the technical barriers for solar fields, receivers, and power plants. By innovating the next generation of CSP technologies, this program will lead to subsequent system integration, engineering scale-up, and eventual commercial production." PDF icon

  3. Concentrating Solar Power (CSP) Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Trough Plants Seville, Spain 50 MW Iberdrola Energia Solar de Puertollano Puertollano (Ciudad Real) Abengoa PS10 and PS 20, Seville, Spain Power Tower Pilot Plants 6 MW thermal ...

  4. Production of fullerenes using concentrated solar flux

    DOE Patents [OSTI]

    Fields, Clark L. (Greeley, CO); Pitts, John Roland (Lakewood, CO); King, David E. (Lakewood, CO); Hale, Mary Jane (Golden, CO); Bingham, Carl E. (Denver, CO); Lewandowski, Allan A. (Evergreen, CO)

    2000-01-01

    A method of producing soot containing high amounts of fullerenes comprising: providing a primary concentrator capable of impingement of a concentrated beam of sunlight onto a carbon source to cause vaporization of carbon and subsequent formation of fullerenes, or providing a solar furnace having a primary concentrator with a focal point that concentrates a solar beam of sunlight; providing a reflective secondary concentrator having an entrance aperture and an exit aperture at the focal point of the solar furnace; providing a carbon source at the exit aperture of the secondary concentrator; supplying an inert gas over the carbon source to keep the secondary concentrator free from vaporized carbon; and impinging a concentrated beam of sunlight from the secondary concentrator on the carbon source to vaporize the carbon source into a soot containing high amounts of fullerenes.

  5. NREL: Concentrating Solar Power Research - Particle Receiver...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Particle Receiver Integrated with a Fluidized Bed-Novel Components to Overcome Existing Barriers Advancing concentrating solar power (CSP) systems to the target cost of 0.06 per...

  6. NREL: Concentrating Solar Power Research - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    including technical reports and papers, about its R&D activities in concentrating solar power, as well as related information. Below you'll find a list of selected NREL...

  7. SunShot Concentrating Solar Power Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (19.8 GW Total) Source: "Concentrating Solar Power 2011: Technology, Costs and Markets," GTM Research * greentech.com SunShot Initiative 8 The DOE SunShot Initiative is a ...

  8. Advancing Concentrating Solar Power Research (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-02-01

    Researchers at the National Renewable Energy Laboratory (NREL) provide scientific, engineering, and analytical expertise to help advance innovation in concentrating solar power (CSP). This fact sheet summarizes how NREL is advancing CSP research.

  9. NREL: Concentrating Solar Power Research - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Below are news stories related to NREL Concentrating Solar Power research. Subscribe to the RSS feed RSS . Learn about RSS. May 4, 2015 Report Targets Data on Avian Issues at...

  10. Concentrating Solar Power Services CSP Services | Open Energy...

    Open Energy Info (EERE)

    providing consulting, due diligence and component testing for Solar Thermal Electricity Generation (STEG). References: Concentrating Solar Power Services (CSP...

  11. Concentrating Solar Power Newsletter | Department of Energy

    Office of Environmental Management (EM)

    Power Newsletter Concentrating Solar Power Newsletter The SunShot concentrating solar power (CSP) newsletter highlights the progress made by the SunShot CSP program and its partners over the past quarter. Update your subscriptions, modify your password or e-mail address, or stop subscriptions at any time on your subscriber preferences page. You will need to use your e-mail address to log in. Stay Updated Sign up for our e-newsletter. Submit your email address below. Subscribe

  12. NREL: Concentrating Solar Power Research - Data and Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data and Resources For concentrating solar power technologies, NREL features the following online solar radiation resource data and solar resource maps, as well as data for...

  13. NREL: Concentrating Solar Power Research - News Release Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 November 13, 2008 NREL and Private Industry Begin Nationwide Solar Measuring Network The U.S. Department of Energy's National Renewable Energy Laboratory and IBERDROLA RENEWABLES have jointly deployed the first of several solar resource measuring stations as part of a planned instrumentation network throughout the United States. September 19, 2008 DOE to Invest $35 Million in Concentrating Solar Power Projects The U.S. Department of Energy selected 15 new projects to facilitate developing

  14. Concentrating Solar Deployment System (CSDS) -- A New Model for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrating Solar Deployment System (CSDS) - A New Model for Estimating U.S. Concentrating Solar Power (CSP) Market Potential Preprint N. Blair, M. Mehos, W. Short, and D....

  15. Category:Concentrating Solar Power | Open Energy Information

    Open Energy Info (EERE)

    Category Edit History Category:Concentrating Solar Power Jump to: navigation, search This is the Concentrating Solar Power category. This category currently contains no pages or...

  16. Concentrating Solar Power: Advanced Projects Offering Low LCOE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrating Solar Power: Advanced Projects Offering Low LCOE Opportunities (CSP: APOLLO) Building upon the successful outcomes of the 2012 SunShot Concentrating Solar Power (CSP) ...

  17. 2014 SunShot Initiative Concentrating Solar Power Subprogram...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrating Solar Power Subprogram Overview 2014 SunShot Initiative Concentrating Solar Power Subprogram Overview These slides correspond to a presentation given by SunShot...

  18. World's Largest Concentrating Solar Power Plant Opens in California...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    World's Largest Concentrating Solar Power Plant Opens in California World's Largest Concentrating Solar Power Plant Opens in California February 19, 2014 - 12:00am Addthis Ivanpah,...

  19. Concentrated Solar Power with Thermal Energy Storage Can Help...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrated Solar Power with Thermal Energy Storage Can Help Utilities' Bottom Line, Study Shows December 20, 2012 The storage capacity of concentrating solar power (CSP) can add ...

  20. 2014 SunShot Initiative Portfolio Book: Concentrating Solar Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrating Solar Power 2014 SunShot Initiative Portfolio Book: Concentrating Solar Power The 2014 SunShot Initiative Portfolio Book outlines the progress towards the goals ...

  1. Concentrating Solar Power: Advanced Projects Offering Low LCOE

    Office of Environmental Management (EM)

    Opportunities (CSP: APOLLO) | Department of Energy Power: Advanced Projects Offering Low LCOE Opportunities (CSP: APOLLO) Concentrating Solar Power: Advanced Projects Offering Low LCOE Opportunities (CSP: APOLLO) Building upon the successful outcomes of the 2012 SunShot Concentrating Solar Power (CSP) Research & Development funding program, the CSP: APOLLO funding program furthers CSP system technologies through transformative projects that target all of the components of a CSP plant.

  2. EERE Success Story-Solar Junction Develops World Record Setting

    Office of Environmental Management (EM)

    Concentrated Photovoltaic Solar Cell | Department of Energy Junction Develops World Record Setting Concentrated Photovoltaic Solar Cell EERE Success Story-Solar Junction Develops World Record Setting Concentrated Photovoltaic Solar Cell April 18, 2013 - 12:00am Addthis Partnering with Solar Junction of San Jose, EERE supported the development of the company's concentrated photovoltaic technology that also set a world record for conversion efficiency. The company's cell technology relies on

  3. Resonance-shifting luminescent solar concentrators

    DOE Patents [OSTI]

    Giebink, Noel Christopher; Wiederrecht, Gary P; Wasielewski, Michael R

    2014-09-23

    An optical system and method to overcome luminescent solar concentrator inefficiencies by resonance-shifting, in which sharply directed emission from a bi-layer cavity into a glass substrate returns to interact with the cavity off-resonance at each subsequent reflection, significantly reducing reabsorption loss en route to the edges. In one embodiment, the system comprises a luminescent solar concentrator comprising a transparent substrate, a luminescent film having a variable thickness; and a low refractive index layer disposed between the transparent substrate and the luminescent film.

  4. MAP: Concentrating Solar Power Across the United States

    Broader source: Energy.gov [DOE]

    Explore our latest map, charting the location of concentrating solar power plants across the country.

  5. Alignment method for parabolic trough solar concentrators

    DOE Patents [OSTI]

    Diver, Richard B. (Albuquerque, NM)

    2010-02-23

    A Theoretical Overlay Photographic (TOP) alignment method uses the overlay of a theoretical projected image of a perfectly aligned concentrator on a photographic image of the concentrator to align the mirror facets of a parabolic trough solar concentrator. The alignment method is practical and straightforward, and inherently aligns the mirror facets to the receiver. When integrated with clinometer measurements for which gravity and mechanical drag effects have been accounted for and which are made in a manner and location consistent with the alignment method, all of the mirrors on a common drive can be aligned and optimized for any concentrator orientation.

  6. Concentrating Solar Power Commercial Application Study

    SciTech Connect (OSTI)

    none,

    2009-10-01

    This report has been prepared in response to section 603(b) of the Energy Independence and Security Act of 2007, (Pub. L. No. 110-140), which states that “…the Secretary of Energy shall transmit to Congress a report on the results of a study on methods to reduce the amount of water consumed by concentrating solar power systems.”

  7. Concentrating Solar Power: Best Practices Handbook for the Collection...

    Open Energy Info (EERE)

    Power: Best Practices Handbook for the Collection and Use of Solar Resource Data Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Concentrating Solar Power: Best...

  8. Fact Sheet: Concentrating Solar Power | Department of Energy

    Office of Environmental Management (EM)

    Concentrating Solar Power Fact Sheet: Concentrating Solar Power Concentrating solar power (CSP) is a dispatchable, renewable energy option that uses mirrors to focus and concentrate sunlight onto a receiver, from which a heat transfer fluid carries the intense thermal energy to a power block to generate electricity. CSP systems can store solar energy to be used when the sun is not shining. It will help meet the nation's goal of making solar energy fully cost-competitive with other energy sources

  9. Energy 101: Concentrating Solar Power | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrating Solar Power Energy 101: Concentrating Solar Power Addthis Description From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity. A single CSP plant can generate enough power for about 90,000 homes. This video explains what CSP is, how it works, and how systems like parabolic troughs produce renewable power. Text Version Below is the text version for the Energy 101: Concentrating Solar

  10. Concentrating Solar Power Commercial Application Study: Reducing Water Consumption of Concentrating Solar Power Electricity Generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrating Solar Power Commercial Application Study: Reducing Water Consumption of Concentrating Solar Power Electricity Generation Report to Congress U.S. Department of Energy This report is being disseminated by the Department of Energy. As such, the document was prepared in compliance with Section 515 of the Treasury and General Government Appropriations Act for Fiscal Year 2001 (Public Law 106-554) and information quality guidelines issued by the Department of Energy. Though this report

  11. Material for a luminescent solar concentrator

    DOE Patents [OSTI]

    Andrews, L.J.

    1984-01-01

    A material for use in a luminescent solar concentrator, formed by ceramitizing the luminescent ion Cr/sup 3 +/ with a transparent ceramic glass containing mullite. The resultant material has tiny Cr/sup 3 +/-bearing crystallites dispersed uniformly through an amorphous glass. The invention combines the high luminescent efficiency of Cr/sup 3 +/ in the crystalline phase with the practical and economical advantages of glass technology.

  12. NREL: Concentrating Solar Power Research - Staff Biographies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Staff Biographies Learn more about the expertise and technical skills of NREL's concentrating solar power research team and staff by reading our short biographies: Victor Castillo Greg Glatzmaier Judith Gomez Matthew Gray Will Huddleston Katelyn Kessinger Zhiwen Ma Janna Martinek Mark Mehos Ty Neises Judy Netter Teri Spinuzzi Robert Tirawat Craig Turchi Michael Wagner Tim Wendelin Guangdong Zhu Photo of Victor Castillo Victor Castillo-Research Technician IV A.S. Electronics Engineering

  13. Secretary Chu Announces up to $62 Million for Concentrating Solar Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research and Development | Department of Energy up to $62 Million for Concentrating Solar Power Research and Development Secretary Chu Announces up to $62 Million for Concentrating Solar Power Research and Development May 7, 2010 - 12:00am Addthis Washington, DC - U.S. Department of Energy Secretary Steven Chu today announced the selections of projects for investment of up to $62 million over five years to research, develop, and demonstrate Concentrating Solar Power (CSP) systems capable of

  14. Concentrating Solar Power Program Review 2013 (Book) (Revised)

    SciTech Connect (OSTI)

    Not Available

    2013-06-01

    This U.S. Department of Energy (DOE) Concentrating Solar Power Program Review Meeting booklet will be provided to attendees at the Concentrating Solar Power Review Meeting in Phoenix, Arizona on April 23-25, 2013.

  15. Advancing State-of-the-Art Concentrating Solar Power Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advancing State-of-the-Art Concentrating Solar Power Systems Advancing State-of-the-Art Concentrating Solar Power Systems April 15, 2013 - 12:00am Addthis Brayton Energy's...

  16. Energy Department Announces New Concentrating Solar Power Technology...

    Office of Environmental Management (EM)

    Concentrating Solar Power Technology Investments to American Industry, Universities Energy Department Announces New ... and commercial production for clean electricity generation. ...

  17. 2014 SunShot Initiative Concentrating Solar Power Subprogram Overview |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Concentrating Solar Power Subprogram Overview 2014 SunShot Initiative Concentrating Solar Power Subprogram Overview These slides correspond to a presentation given by SunShot Initiative Concentrating Solar Power Program Manager Dr. Ranga Pitchumani at the 2014 SunShot Grand Challenge Summit and Peer Review in Anaheim, CA. This presentation is an overview of the SunShot Initiative's concentrating solar power (CSP) research portfolio. PDF icon

  18. Capacity Value of Concentrating Solar Power Plants

    SciTech Connect (OSTI)

    Madaeni, S. H.; Sioshansi, R.; Denholm, P.

    2011-06-01

    This study estimates the capacity value of a concentrating solar power (CSP) plant at a variety of locations within the western United States. This is done by optimizing the operation of the CSP plant and by using the effective load carrying capability (ELCC) metric, which is a standard reliability-based capacity value estimation technique. Although the ELCC metric is the most accurate estimation technique, we show that a simpler capacity-factor-based approximation method can closely estimate the ELCC value. Without storage, the capacity value of CSP plants varies widely depending on the year and solar multiple. The average capacity value of plants evaluated ranged from 45%?90% with a solar multiple range of 1.0-1.5. When introducing thermal energy storage (TES), the capacity value of the CSP plant is more difficult to estimate since one must account for energy in storage. We apply a capacity-factor-based technique under two different market settings: an energy-only market and an energy and capacity market. Our results show that adding TES to a CSP plant can increase its capacity value significantly at all of the locations. Adding a single hour of TES significantly increases the capacity value above the no-TES case, and with four hours of storage or more, the average capacity value at all locations exceeds 90%.

  19. Improved Concentrating Solar Power Systems - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Thermal Solar Thermal Energy Storage Energy Storage Find More Like This Return to Search Improved Concentrating Solar Power Systems National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary Concentrating Solar Power (CSP) systems utilize solar energy to drive a thermal power cycle for the generation of electricity. CSP technologies include parabolic trough, linear Fresnel, central receiver or "power tower", and dish/engine systems.

  20. NREL: Concentrating Solar Power Research - News Release Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 December 6, 2006 CSP's Promise in Colorado Colorado's San Luis Valley picked as potential spot for concentrating solar power project. July 21, 2006 NREL Solar Researcher Honored with ASES Abbot Award The American Solar Energy Society (ASES) honored Dr. Chuck Kutscher with the Charles Greeley Abbot Award during the recent ASES SOLAR 2006 conference. April 1, 2006 Economic, Energy, and Environmental Benefits of Concentrating Solar Power in California April 2006 Black and Veatch, under

  1. Energy Department Announces Projects to Advance Cost-Effective Concentrating Solar Power Systems

    Broader source: Energy.gov [DOE]

    The Energy Department today announced $10 million for six new research and development projects that will advance innovative concentrating solar power (CSP) technologies.

  2. China Solar Tower Development | Open Energy Information

    Open Energy Info (EERE)

    Tower Development Jump to: navigation, search Name: China Solar Tower Development Place: China Sector: Solar Product: Joint venture for development of solar towers in China,...

  3. Project Profile: Scattering Solar Thermal Concentrators | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Scattering Solar Thermal Concentrators Project Profile: Scattering Solar Thermal Concentrators Pennsylvania State University logo Pennsylvania State University, under the 2012 SunShot Concentrating Solar Power (CSP) R&D FOA, is designing and testing a novel solar collector system that relies on stationary optics, avoiding the need for mirror movement. The system is capable of achieving optical performance equal to state-of-the-art parabolic trough systems, but at a lower cost.

  4. Energy Secretary Moniz Dedicates World's Largest Concentrating Solar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Project | Department of Energy Energy Secretary Moniz Dedicates World's Largest Concentrating Solar Power Project Energy Secretary Moniz Dedicates World's Largest Concentrating Solar Power Project February 13, 2014 - 5:00am Addthis NEWS MEDIA CONTACT (202) 586-4940 Energy Secretary Ernest Moniz will participate today in the opening of the Ivanpah Solar Energy Generating System, the world's largest concentrating solar power (CSP) plant. As President Obama highlighted in his State of the

  5. DOE Funds 15 New Projects to Develop Solar Power Storage and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the development of lower-cost energy storage for concentrating solar power (CSP) technology. ... "These projects will not only spur innovation in concentrating solar power ...

  6. Software and codes for analysis of concentrating solar power technologies.

    SciTech Connect (OSTI)

    Ho, Clifford Kuofei

    2008-12-01

    This report presents a review and evaluation of software and codes that have been used to support Sandia National Laboratories concentrating solar power (CSP) program. Additional software packages developed by other institutions and companies that can potentially improve Sandia's analysis capabilities in the CSP program are also evaluated. The software and codes are grouped according to specific CSP technologies: power tower systems, linear concentrator systems, and dish/engine systems. A description of each code is presented with regard to each specific CSP technology, along with details regarding availability, maintenance, and references. A summary of all the codes is then presented with recommendations regarding the use and retention of the codes. A description of probabilistic methods for uncertainty and sensitivity analyses of concentrating solar power technologies is also provided.

  7. Enclosed, off-axis solar concentrator

    DOE Patents [OSTI]

    Benitez, Pablo; Grip, Robert E; Minano, Juan C; Narayanan, Authi A; Plesniak, Adam; Schwartz, Joel A

    2013-11-26

    A solar concentrator including a housing having receiving wall, a reflecting wall and at least two end walls, the receiving, reflecting and end walls defining a three-dimensional volume having an inlet, wherein a vertical axis of the housing is generally perpendicular to the inlet, a receiver mounted on the receiving wall of the housing, the receiver including at least one photovoltaic cell, wherein a vertical axis of the receiver is disposed at a non-zero angle relative to the vertical axis of the housing, at least one clip disposed on the reflecting wall an optical element received within the three-dimensional volume, the optical element including at least one tab, the tab being engaged by the clip to align the optical element with the receiver, and a window received over the inlet to enclose the housing.

  8. Modular off-axis solar concentrator

    DOE Patents [OSTI]

    Plesniak, Adam P; Hall, John C

    2015-01-27

    A solar concentrator including a housing defining a vertical axis and including a receiving wall connected to a reflecting wall to define an internal volume and an opening into the internal volume, wherein the reflecting wall defines at least one primary optical element, and wherein at least a portion of the reflecting wall includes a layer of reflective material, the housing further including a cover connected to the receiving wall and the reflecting wall to seal the opening, and at least one receiver mounted on the receiving wall such that a vertical axis of the receiver is disposed at a non-zero angle relative to the vertical axis of the housing, the receiver including at least one photovoltaic cell.

  9. SunShot Concentrating Solar Power Program Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Update Ranga Pitchumani Program Review Meeting  April 23, 2013 * Phoenix, AZ Concentrating Solar Power Team  Thomas Rueckert  Christine Bing  Jesse Gary  Levi Irwin  Mark Lausten  Joseph Stekli  Andru Prescod  Candace Pfefferkorn  Edward Hoegg  Anna Brockway CSP Director Technology Development Managers Fellows Technical Project Officers Ranga Pitchumani  Jason Plageman  Page Christensen  Allison Pezzullo Finance and Program Support Communications Linh

  10. SunShot Concentrating Solar Power Program Review 2013 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Concentrating Solar Power Program Review 2013 SunShot Concentrating Solar Power Program Review 2013 April 23-25, 2013 The SunShot Concentrating Solar Power (CSP) Program Review 2013 served as a forum for awardees to exchange ideas with others in the CSP research and development portfolio. The event fostered collaborative and synergistic opportunities for awardees while engaging external stakeholders including industry, utilities, regulatory agencies, financiers, and other federal

  11. NREL: Concentrating Solar Power Research - News Release Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    09 October 21, 2009 Solar Technology Acceleration Center is Powering Up Members of the Solar Technology Acceleration Center (SolarTAC) and supporters convened in Aurora, Colo., today, to mark a milestone in "Powering Up" one of the world's largest solar test and demonstration facilities. Since announcing the initial launch of SolarTAC one year ago, the site infrastructure development has progressed to the point where members can now break ground for their planned solar technology

  12. Concentrating Solar Deployment System (CSDS) -- A New Model for Estimating U.S. Concentrating Solar Power (CSP) Market Potential: Preprint

    SciTech Connect (OSTI)

    Blair, N.; Mehos, M.; Short, W.; Heimiller, D.

    2006-04-01

    This paper presents the Concentrating Solar Deployment System Model (CSDS). CSDS is a multiregional, multitime-period, Geographic Information System (GIS), and linear programming model of capacity expansion in the electric sector of the United States. CSDS is designed to address the principal market and policy issues related to the penetration of concentrating solar power (CSP) electric-sector technologies. This paper discusses the current structure, capabilities, and assumptions of the model. Additionally, results are presented for the impact of continued research and development (R&D) spending, an extension to the investment tax credit (ITC), and use of a production tax credit (PTC). CSDS is an extension of the Wind Deployment System (WinDS) model created at the National Renewable Energy Laboratory (NREL). While WinDS examines issues related to wind, CSDS is an extension to analyze similar issues for CSP applications. Specifically, a detailed representation of parabolic trough systems with thermal storage has been developed within the existing structure.

  13. Concentrating On California Solar Power | Department of Energy

    Office of Environmental Management (EM)

    Concentrating On California Solar Power Concentrating On California Solar Power June 14, 2011 - 4:22pm Addthis Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs What will the project do? Combined, the projects are estimated to create nearly 1,800 jobs and enough energy to power more than 100,000 homes. Today, Secretary Chu announced conditional commitments for approximately $2 billion in loan guarantees to two California concentrating solar power plants.

  14. Energy 101: Concentrating Solar Power | Department of Energy

    Office of Environmental Management (EM)

    Concentrating Solar Power Energy 101: Concentrating Solar Power August 6, 2010 - 12:58pm Addthis Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs How does it work? Concentrating solar power technologies use mirrors to reflect sunshine, turning it into an intense beam that's collected as heat. Some of the heat is used to produce electricity immediately. The rest is stored so that the generators can provide power for homes and businesses long after the sun has set Whether

  15. Material and Chemical Processing (Concentrated Solar) (4 Activities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grades 5-8 Subject Solar Summary Concentrated sunlight is a versatile and high-quality form of energy with several potential applications besides producing heat and electricity. ...

  16. Domestic Material Content in Molten-Salt Concentrating Solar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Domestic Material Content in Molten-Salt Concentrating Solar Power Plants Craig Turchi, Parthiv Kurup, Sertac Akar, and Francisco Flores Technical Report NRELTP-5500-64429 August...

  17. $60 Million to Fund Projects Advancing Concentrating Solar Power

    Broader source: Energy.gov [DOE]

    The SunShot initiative announces a $60 million funding opportunity (FOA) to advance concentrating solar power in the United States.

  18. Drivers and Barriers in the Current Concentrated Solar Power...

    Open Energy Info (EERE)

    Drivers and Barriers in the Current Concentrated Solar Power (CSP) Market (Webinar) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Drivers and Barriers in the Current...

  19. NREL: Concentrating Solar Power Research - Working with Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Licensing Our Technology Your company can license any available patented concentrated solar power technology. For more information, see NREL's technologies available for...

  20. Development of a concentrating solar power system using fluidized-bed technology for thermal energy conversion and solid particles for thermal energy storage

    SciTech Connect (OSTI)

    Ma, Z.; Mehos, M.; Glatzmaier, G.; Sakadjian, B. B.

    2015-05-01

    Concentrating solar power (CSP) is an effective way to convert solar energy into electricity with an economic energy-storage capability for grid-scale, dispatchable renewable power generation. However, CSP plants need to reduce costs to be competitive with other power generation methods. Two ways to reduce CSP cost are to increase solar-to-electric efficiency by supporting a high-efficiency power conversion system, and to use low-cost materials in the system. The current nitrate-based molten-salt systems have limited potential for cost reduction and improved power-conversion efficiency with high operating temperatures. Even with significant improvements in operating performance, these systems face challenges in satisfying the cost and performance targets. This paper introduces a novel CSP system with high-temperature capability that can be integrated into a high-efficiency CSP plant and that meets the low-cost, high-performance CSP targets. Unlike a conventional salt-based CSP plant, this design uses gas/solid, two-phase flow as the heat-transfer fluid (HTF); separated solid particles as storage media; and stable, inexpensive materials for the high-temperature receiver and energy storage containment. We highlight the economic and performance benefits of this innovative CSP system design, which has thermal energy storage capability for base-load power generation.

  1. Development of a concentrating solar power system using fluidized-bed technology for thermal energy conversion and solid particles for thermal energy storage

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ma, Z.; Mehos, M.; Glatzmaier, G.; Sakadjian, B. B.

    2015-05-01

    Concentrating solar power (CSP) is an effective way to convert solar energy into electricity with an economic energy-storage capability for grid-scale, dispatchable renewable power generation. However, CSP plants need to reduce costs to be competitive with other power generation methods. Two ways to reduce CSP cost are to increase solar-to-electric efficiency by supporting a high-efficiency power conversion system, and to use low-cost materials in the system. The current nitrate-based molten-salt systems have limited potential for cost reduction and improved power-conversion efficiency with high operating temperatures. Even with significant improvements in operating performance, these systems face challenges in satisfying the costmore » and performance targets. This paper introduces a novel CSP system with high-temperature capability that can be integrated into a high-efficiency CSP plant and that meets the low-cost, high-performance CSP targets. Unlike a conventional salt-based CSP plant, this design uses gas/solid, two-phase flow as the heat-transfer fluid (HTF); separated solid particles as storage media; and stable, inexpensive materials for the high-temperature receiver and energy storage containment. We highlight the economic and performance benefits of this innovative CSP system design, which has thermal energy storage capability for base-load power generation.« less

  2. Efficient Solar Concentrators: Affordable Energy from Water and Sunlight

    SciTech Connect (OSTI)

    2010-01-01

    Broad Funding Opportunity Announcement Project: Teledyne is developing a liquid prism panel that tracks the position of the sun to help efficiently concentrate its light onto a solar cell to produce power. Typically, solar tracking devices have bulky and expensive mechanical moving parts that require a lot of power and are often unreliable. Teledyne’s liquid prism panel has no bulky and heavy supporting parts—instead it relies on electrowetting. Electrowetting is a process where an electric field is applied to the liquid to control the angle at which it meets the sunlight above and to control the angle of the sunlight to the focusing lensthe more direct the angle to the focusing lens, the more efficiently the light can be concentrated to solar panels and converted into electricity. This allows the prism to be tuned like a radio to track the sun across the sky and steer sunlight into the solar cell without any moving mechanical parts. This process uses very little power and requires no expensive supporting hardware or moving parts, enabling efficient and quiet rooftop operation for integration into buildings.

  3. Foaming of aluminium-silicon alloy using concentrated solar energy

    SciTech Connect (OSTI)

    Cambronero, L.E.G.; Ruiz-Roman, J.M.; Canadas, I.; Martinez, D.

    2010-06-15

    Solar energy is used for the work reported here as a nonconventional heating system to produce aluminium foam from Al-Si alloy precursors produced by powder metallurgy. A commercial precursor in cylindrical bars enclosed in a stainless-steel mould was heated under concentrated solar radiation in a solar furnace with varied heating conditions (heating rate, time, and temperature). Concentrated solar energy close to 300 W/cm{sup 2} on the mould is high enough to achieve complete foaming after heating for only 200 s. Under these conditions, the density and pore distribution in the foam change depending on the solar heating parameters and mould design. (author)

  4. Baseload Concentrating Solar Power Generation | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power PPG: Next-Generation Low-Cost Reflector Rocketdyne: Solar Power Tower Improvements with the Potential to Reduce Costs SENER: High-Efficiency Thermal Storage System ...

  5. 2014 Concentrating Solar Power Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2014 Concentrating Solar Power Report 2014 Concentrating Solar Power Report Concentrating solar power (CSP) is a technology that harnesses the sun's energy potential and has the capacity to provide renewable energy to hundreds of thousands of customers in the United States. This report discusses how 2014 marks a significant milestone in the history of American solar energy-with five U.S. Department of Energy-funded CSP plants expected to be fully operational by the end of the year. PDF icon 2014

  6. Energy Department Announces New Concentrating Solar Power Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Investments to American Industry, Universities | Department of Energy Concentrating Solar Power Technology Investments to American Industry, Universities Energy Department Announces New Concentrating Solar Power Technology Investments to American Industry, Universities June 13, 2012 - 2:28pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - Building off investments in innovative solar photovoltaic technologies announced at the SunShot Grand Challenge Summit in Denver, Colorado earlier

  7. World's Largest Concentrating Solar Power Plant Opens in California |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Ivanpah, the world's largest concentrating solar plant, opened in California on February 13.Credit: BrightSource Energy The Ivanpah Solar Electric Generating System, the world's largest concentrating solar power (CSP) plant, officially opened on February 13. As the first commercial deployment of innovative power tower CSP technology in the United States, the Ivanpah project was the recipient of a $1.6 billion loan guarantee from the Energy Department's Loan Programs

  8. DOE Announces up to $52.5 Million for Concentrating Solar Power Research

    Energy Savers [EERE]

    and Development | Department of Energy up to $52.5 Million for Concentrating Solar Power Research and Development DOE Announces up to $52.5 Million for Concentrating Solar Power Research and Development July 15, 2009 - 12:00am Addthis WASHINGTON, D.C. - The U.S. Department of Energy today announced plans to provide up to $52.5 million to research, develop, and demonstrate Concentrating Solar Power systems capable of providing low-cost electrical power both day and night. Today's announcement

  9. THERMOCHEMICAL HEAT STORAGE FOR CONCENTRATED SOLAR POWER

    SciTech Connect (OSTI)

    PROJECT STAFF

    2011-10-31

    Thermal energy storage (TES) is an integral part of a concentrated solar power (CSP) system. It enables plant operators to generate electricity beyond on sun hours and supply power to the grid to meet peak demand. Current CSP sensible heat storage systems employ molten salts as both the heat transfer fluid and the heat storage media. These systems have an upper operating temperature limit of around 400 C. Future TES systems are expected to operate at temperatures between 600 C to 1000 C for higher thermal efficiencies which should result in lower electricity cost. To meet future operating temperature and electricity cost requirements, a TES concept utilizing thermochemical cycles (TCs) based on multivalent solid oxides was proposed. The system employs a pair of reduction and oxidation (REDOX) reactions to store and release heat. In the storage step, hot air from the solar receiver is used to reduce the oxidation state of an oxide cation, e.g. Fe3+ to Fe2+. Heat energy is thus stored as chemical bonds and the oxide is charged. To discharge the stored energy, the reduced oxide is re-oxidized in air and heat is released. Air is used as both the heat transfer fluid and reactant and no storage of fluid is needed. This project investigated the engineering and economic feasibility of this proposed TES concept. The DOE storage cost and LCOE targets are $15/kWh and $0.09/kWh respectively. Sixteen pure oxide cycles were identified through thermodynamic calculations and literature information. Data showed the kinetics of re-oxidation of the various oxides to be a key barrier to implementing the proposed concept. A down selection was carried out based on operating temperature, materials costs and preliminary laboratory measurements. Cobalt oxide, manganese oxide and barium oxide were selected for developmental studies to improve their REDOX reaction kinetics. A novel approach utilizing mixed oxides to improve the REDOX kinetics of the selected oxides was proposed. It partially replaces some of the primary oxide cations with selected secondary cations. This causes a lattice charge imbalance and increases the anion vacancy density. Such vacancies enhance the ionic mass transport and lead to faster re-oxidation. Reoxidation fractions of Mn3O4 to Mn2O3 and CoO to Co3O4 were improved by up to 16 fold through the addition of a secondary oxide. However, no improvement was obtained in barium based mixed oxides. In addition to enhancing the short term re-oxidation kinetics, it was found that the use of mixed oxides also help to stabilize or even improve the TES properties after long term thermal cycling. Part of this improvement could be attributed to a reduced grain size in the mixed oxides. Based on the measurement results, manganese-iron, cobalt-aluminum and cobalt iron mixed oxides have been proposed for future engineering scale demonstration. Using the cobalt and manganese mixed oxides, we were able to demonstrate charge and discharge of the TES media in both a bench top fixed bed and a rotary kiln-moving bed reactor. Operations of the fixed bed configuration are straight forward but require a large mass flow rate and higher fluid temperature for charging. The rotary kiln makes direct solar irradiation possible and provides significantly better heat transfer, but designs to transport the TES oxide in and out of the reactor will need to be defined. The final reactor and system design will have to be based on the economics of the CSP plant. A materials compatibility study was also conducted and it identified Inconel 625 as a suitable high temperature engineering material to construct a reactor holding either cobalt or manganese mixed oxides. To assess the economics of such a CSP plant, a packed bed reactor model was established as a baseline. Measured cobalt-aluminum oxide reaction kinetics were applied to the model and the influences of bed properties and process parameters on the overall system design were investigated. The optimal TES system design was found to be a network of eight fixed bed reactors at 18.75 MWth each with charge and discharge temperatures between 1200 C and 600 C, which provides a constant output temperature of 900 C. The charge and discharge time are 8 hours each respectively. This design was integrated into a process flowsheet of a CSP plant and the system's economics were determined using AspenPlus and NREL's Solar Advisory Model. Storage cost is very sensitive to materials cost and was calculated to be based around $40/kWh for cobalt based mixed oxide. It can potentially decrease to $10/kWh based on reduced materials cost on a bulk scale. The corresponding calculated LCOE was between $0.22 and 0.30/kW-h. The high LCOE is a result of the high charging temperature required in this first design and the cost of cobalt oxide. It is expected that a moving bed reactor using manganese oxide will significantly improve the economics of the proposed concept.

  10. SunShot Concentrating Solar Power Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    fast growing industry." -Energy Secretary Steven Chu 25 20 15 10 5 0 Current Technology Solar Field 21 kWh 6 kWh Power ... and eventual commercial production for this renewable and ...

  11. High-Temperatuer Solar Selective Coating Development for Power Tower

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Receivers | Department of Energy High-Temperatuer Solar Selective Coating Development for Power Tower Receivers High-Temperatuer Solar Selective Coating Development for Power Tower Receivers This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23-25, 2013 near Phoenix, Arizona. PDF icon csp_review_meeting_042413_ambrosini.pdf More Documents & Publications High-Temperature Solar Selective Coating Development for Power Tower

  12. Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis Webinar

    Broader source: Energy.gov [DOE]

    Access the recording and download the presentation slides from the Fuel Cell Technologies Office webinar "Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis" held on January 21, 2016.

  13. Tracking heat flux sensors for concentrating solar applications

    DOE Patents [OSTI]

    Andraka, Charles E; Diver, Jr., Richard B

    2013-06-11

    Innovative tracking heat flux sensors located at or near the solar collector's focus for centering the concentrated image on a receiver assembly. With flux sensors mounted near a receiver's aperture, the flux gradient near the focus of a dish or trough collector can be used to precisely position the focused solar flux on the receiver. The heat flux sensors comprise two closely-coupled thermocouple junctions with opposing electrical polarity that are separated by a thermal resistor. This arrangement creates an electrical signal proportional to heat flux intensity, and largely independent of temperature. The sensors are thermally grounded to allow a temperature difference to develop across the thermal resistor, and are cooled by a heat sink to maintain an acceptable operating temperature.

  14. Concentrating Solar Program; Session: Thermal Storage - Overview (Presentation)

    SciTech Connect (OSTI)

    Glatzmaier, G.; Mehos, M.; Mancini, T.

    2008-04-01

    The project overview of this presentation is: (1) description--(a) laboratory R and D in advanced heat transfer fluids (HTF) and thermal storage systems; (b) FOA activities in solar collector and component development for use of molten salt as a heat transfer and storage fluid; (c) applications for all activities include line focus and point focus solar concentrating technologies; (2) Major FY08 Activities--(a) advanced HTF development with novel molten salt compositions with low freezing temperatures, nanofluids molecular modeling and experimental studies, and use with molten salt HTF in solar collector field; (b) thermal storage systems--cost analysis and updates for 2-tank and thermocline storage and model development and analysis to support near-term trought deployment; (c) thermal storage components--facility upgrade to support molten salt component testing for freeze-thaw receiver testing, long-shafted molten salt pump for parabolic trough and power tower thermal storage systems; (d) CSP FOA support--testing and evaluation support for molten salt component and field testing work, advanced fluids and storage solicitation preparation, and proposal evaluation for new advanced HTF and thermal storage FOA.

  15. High concentration low wattage solar arrays and their applications

    SciTech Connect (OSTI)

    Hoffmann, R.; OGallagher, J.; Winston, R.

    1997-02-01

    Midway Labs currently produces a 335x concentrator module that has reached as high as 19{percent} active area efficiency in production. The current production module uses the single crystal silicon back contact SunPower cell. The National Renewable Energy Lab has developed a multi junction cell using GalnP/GaAs technologies. The high efficiency ({gt}30{percent}) and high cell voltage offer an opportunity for Midway Labs to develop a tracking concentrator module that will provide 24 volts in the 140 to 160 watt range. This voltage and wattage range is applicable to a range of small scale water pumping applications that make up the bulk of water pumping solar panel sales. {copyright} {ital 1997 American Institute of Physics.}

  16. A new trough solar concentrator and its performance analysis

    SciTech Connect (OSTI)

    Tao, Tao; Hongfei, Zheng; Kaiyan, He; Mayere, Abdulkarim

    2011-01-15

    The operation principle and design method of a new trough solar concentrator is presented in this paper. Some important design parameters about the concentrator are analyzed and optimized. Their magnitude ranges are given. Some characteristic parameters about the concentrator are compared with that of the conventional parabolic trough solar concentrator. The factors having influence on the performance of the unit are discussed. It is indicated through the analysis that the new trough solar concentrator can actualize reflection focusing for the sun light using multiple curved surface compound method. It also has the advantages of improving the work performance and environment of high-temperature solar absorber and enhancing the configuration intensity of the reflection surface. (author)

  17. SunShot Concentrating Solar Power Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0.21 0.03 0.05 0.04 0.09 2010 Cost Reductions 0.07 Solar Field 0.02 Power Block 0.02 ReceiverHeat Transfer 0.04 Thermal Storage 0.01 0.02 0.02 6kWh SunShot Target...

  18. Effects of angular confinement and concentration to realistic solar cells

    SciTech Connect (OSTI)

    Höhn, O. Kraus, T.; Bläsi, B.; Schwarz, U. T.

    2015-01-21

    In standard solar cells, light impinges under a very small angular range, whereas the solar cell emits light into the whole half space. Due to this expansion of etendué, entropy is generated, which limits the maximal efficiency of solar cells. This limit can be overcome by either increasing the angle of incidence by concentration or by decreasing the angle of emission by an angularly confining element or by a combination of both. In an ideal solar cell with radiative recombination as the only loss mechanism, angular confinement and concentration are thermodynamically equivalent. It is shown that concentration in a device, where non-radiative losses such as Shockley-Read-Hall and Auger recombination are considered, is not equivalent to angular confinement. As soon as non-radiative losses are considered, the gain in efficiency due to angular confinement drops significantly in contrast to the gain caused by concentration. With the help of detailed balance calculations, it is furthermore shown that angular confinement can help to increase the efficiency of solar cells under concentrated sunlight even if no measurable gain is expected for the solar cell under 1-sun-illumination. Our analysis predicts a relative gain of 3.14% relative in efficiency for a realistic solar cell with a concentration factor of 500.

  19. METHODS AND SYSTEMS FOR CONCENTRATED SOLAR POWER - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7056 Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Find More Like This Return to Search METHODS AND SYSTEMS FOR CONCENTRATED SOLAR

  20. NREL: Concentrating Solar Power Research - News Release Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 December 21, 2010 DOE Finalizes $1.45 Billion Loan Guarantee for One of the World's Largest Solar Generation Plants A $1.45 billion loan guarantee has been finalized for Abengoa Solar Inc.'s Solana project, the world's largest parabolic trough concentrating solar plant. October 26, 2010 NREL Scientists Lauded as Industry Pioneers At the recent World Renewable Energy Congress/Network (WREN) in Abu Dhabi, three researchers from the U.S. Department of Energy's (DOE) National Renewable Energy

  1. NREL: Concentrating Solar Power Research - News Release Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 December 20, 2011 Thermal Energy Storage Included in California Power Purchase Agreements The value of thermal energy storage in concentrating solar power plants has become obvious?so much so that BrightSource Energy, Inc. and Southern California Edison have rewritten some power purchase agreements to include thermal energy storage in plans for three solar power tower plants. December 6, 2011 Thermal Energy Storage in CSP Plants Could Boost Penetration of Solar, Wind Power The ability of

  2. Project Profile: Low-Cost, Lightweight Solar Concentrators

    Broader source: Energy.gov [DOE]

    The Jet Propulsion Laboratory (JPL), with funding from the 2012 SunShot Concentrating Solar Power (CSP) R&D FOA, is designing an optimized solar thermal collector structure using a lightweight collector structure capable of lowering structural costs, simplifying installation, and leading to mass-manufacturability.

  3. Concentrating Solar Power: Best Practices Handbook for the Collection and Use of Solar Resource Data (CSP)

    SciTech Connect (OSTI)

    Stoffel, T.; Renne, D.; Myers, D.; Wilcox, S.; Sengupta, M.; George, R.; Turchi, C.

    2010-09-01

    As the world looks for low-carbon sources of energy, solar power stands out as the most abundant energy resource. Harnessing this energy is the challenge for this century. Photovoltaics and concentrating solar power (CSP) are two primary forms of electricity generation using sunlight. These use different technologies, collect different fractions of the solar resource, and have different siting and production capabilities. Although PV systems are most often deployed as distributed generation sources, CSP systems favor large, centrally located systems. Accordingly, large CSP systems require a substantial investment, sometimes exceeding $1 billion in construction costs. Before such a project is undertaken, the best possible information about the quality and reliability of the fuel source must be made available. That is, project developers need to have reliable data about the solar resource available at specific locations to predict the daily and annual performance of a proposed CSP plant. Without these data, no financial analysis is possible. This handbook presents detailed information about solar resource data and the resulting data products needed for each stage of the project.

  4. Novel Molten Salts Thermal Energy Storage for Concentrating Solar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23-25, 2013 near Phoenix, Arizona. PDF icon cspreviewmeeting042413...

  5. Simulating the Value of Concentrating Solar Power with Thermal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simulating the Value of Concentrating Solar Power with Thermal Energy Storage in a Production Cost Model Paul Denholm and Marissa Hummon Technical Report NRELTP-6A20-56731 ...

  6. Summary of: Simulating the Value of Concentrating Solar Power...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary of: Simulating the Value of Concentrating Solar Power with Thermal Energy Storage in a Production Cost Model Paul Denholm Marissa Hummon November 2012 NRELPR-6A20-57376 2 ...

  7. SunLab: Advancing Concentrating Solar Power Technology

    SciTech Connect (OSTI)

    1998-11-24

    Concentrating solar power (CSP) technologies, including parabolic troughs, power towers, and dish/engines, have the potential to provide the world with tens of thousands of megawatts of clean, renewable, cost-competitive power.

  8. Potential Role of Concentrating Solar Power in Enabling High...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Potential Role of Concentrating Solar Power in Enabling High ... of the U.S. Department of Energy, Office of Energy ... and the potential role of CSP in a future energy mix. ...

  9. SunShot Concentrating Solar Power Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This poster, originally presented at the Concentrating Solar Power program review, summarizes the DOE SunShot Initiative's goals as well as the strategy for CSP funding opportunity announcements.

  10. National solar technology roadmap: Concentrator PV

    SciTech Connect (OSTI)

    Friedman, Dan

    2007-06-01

    This roadmap addresses high-concentration (>10x) photovoltaic (PV) systems, incorporating high-efficiency III-V or silicon cells, trackers, and reflective or refractive optics.

  11. Concentrating Solar Power Program Technology Overview (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2001-04-01

    Concentrating solar power systems use the heat from the sun's rays to generate electricity. Reflective surfaces concentrate the sun's rays up to 10,000 times to heat a receiver filled with a heat-exchange fluid, such as oil. The heated fluid is then used to generate electricity in a steam turbine or heat engine. Mechanical drives slowly turn the reflective surfaces during the day to keep the solar radiation focused on the receiver.

  12. NREL Quantifies Significant Value in Concentrating Solar Power - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL NREL Quantifies Significant Value in Concentrating Solar Power CSP with thermal energy storage boosts California electric grid April 24, 2013 Researchers from the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) have quantified the significant value that concentrating solar power (CSP) plants can add to an electric grid. The NREL researchers evaluated the operational impacts of CSP systems with thermal energy storage within the California electric grid

  13. NREL: Concentrating Solar Power Research - News Release Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 November 30, 2012 NREL Analysis Calculates Value of Thermal Energy Storage for Concentrating Solar Power A new report by the National Renewable Energy Laboratory provides an analysis of concentrating solar power integrated with thermal energy storage, using simulations created by recognized, commercially available software. The analysis quantifies the incremental operational value of CSP with TES in multiple scenarios, and will help utilities, grid operators, and state regulators to verify

  14. Celebrating the Completion of the World's Largest Concentrating Solar Power

    Energy Savers [EERE]

    Plant | Department of Energy the Completion of the World's Largest Concentrating Solar Power Plant Celebrating the Completion of the World's Largest Concentrating Solar Power Plant February 13, 2014 - 9:21am Addthis Aerial view, Ivanpah 1 of 5 Aerial view, Ivanpah An aerial view of the Ivanpah Solar Power Facility at sunrise, with left to right Tower 1, 2 and 3. Image: Gilles Mingasson/Getty Images for Bechtel Harnessing the Power of the Sun 2 of 5 Harnessing the Power of the Sun The top of

  15. Ivanpah: World's Largest Concentrating Solar Power Plant | Department of

    Office of Environmental Management (EM)

    Energy Ivanpah: World's Largest Concentrating Solar Power Plant Ivanpah: World's Largest Concentrating Solar Power Plant Addthis Aerial view, Ivanpah 1 of 5 Aerial view, Ivanpah An aerial view of the Ivanpah Solar Power Facility at sunrise, with left to right Tower 1, 2 and 3. Image: Gilles Mingasson/Getty Images for Bechtel Harnessing the Power of the Sun 2 of 5 Harnessing the Power of the Sun The top of Tower 1's is "lit" and sunlight reflected by mirrors floats in the air as a

  16. Pueblo of Jemez - Concentrating Photovoltaics Solar Project

    Energy Savers [EERE]

    Solar Project November 17, 2008 Greg Kaufman Environmental Scientist Pueblo of Jemez Department of Resource Protection 575-834-3210 gkaufman@jemezpueblo-drp.org The Pueblo of Jemez * Federally-recognized Tribe * 45 Miles NW of Albuquerque, NM * Has occupied the Jemez Valley for over 800 years. * 2,200 Tribal members in village of Walatowa; 3,000 Tribal members total. * Only Towa-speaking Tribe. Population has high Towa fluency rate. * Has a unique K-12 charter school system emphasizing science

  17. High Flux Microchannel Solar Receiver Development with Adaptive Flow

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Control | Department of Energy Flux Microchannel Solar Receiver Development with Adaptive Flow Control High Flux Microchannel Solar Receiver Development with Adaptive Flow Control This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23-25, 2013 near Phoenix, Arizona. PDF icon csp_review_meeting_042313_drost.pdf More Documents & Publications Microchannel Receiver Development - FY12 Q4 Microchannel Receiver Development - FY13 Q2

  18. Solar Power Generation Development

    SciTech Connect (OSTI)

    Robert L. Johnson Jr.; Gary E. Carver

    2011-10-28

    This project centered on creating a solar cell prototype enabling significant reductions in module cost and increases in module efficiency. Low cost was addressed by using plentiful organic materials that only comprise 16% of the total module cost, and by leveraging building integrated PV concepts that reduce the cost of key module components to zero. High efficiency was addressed by implementing multiband organic PV, low cost spectral splitting, and possibly integrating photovoltaic and photothermal mechanisms. This research has contributed to the design of multiband organic PV, and the sealing of organic PV cells. If one assumes that the aggregate multiband efficiency can reach 12%, projected cost would be $0.97/W. If the sealing technology enables 10 to 20 year lifetimes, the LCOE will match that of domestic coal. The final report describes progress towards these goals.

  19. Argonne National Laboratory's Solar Energy Development Programmatic...

    Open Energy Info (EERE)

    Laboratory's Solar Energy Development Programmatic EIS Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Argonne National Laboratory's Solar...

  20. Low-Cost Light Weigh Thin Film Solar Concentrators | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    313_ganapathi.pdf More Documents & Publications Low-Cost, Lightweight Solar Concentrators - FY13 Q1 Low-Cost, Lightweight Solar Concentrators FY13 Q2

  1. NREL: Concentrating Solar Power Research - News Release Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 November 5, 2013 Solar Working Group Releases Standard Contracts A working group representing solar industry stakeholders has developed standard contracts that should help lower transaction costs and make it easier to access low-cost financing for residential and commercial solar power projects. October 24, 2013 NREL Researcher Honored with Hispanic STEM Award A national organization devoted to getting more Hispanics into the fields of science, technology, engineering, and math (STEM), has

  2. Solar concentrator with restricted exit angles

    DOE Patents [OSTI]

    Rabl, Arnulf; Winston, Roland

    1978-12-19

    A device is provided for the collection and concentration of radiant energy and includes at least one reflective side wall. The wall directs incident radiant energy to the exit aperture thereof or onto the surface of energy absorber positioned at the exit aperture so that the angle of incidence of radiant energy at the exit aperture or on the surface of the energy absorber is restricted to desired values.

  3. Optofluidic solar concentrators using electrowetting tracking: Concept, design, and characterization

    SciTech Connect (OSTI)

    Cheng, JT; Park, S; Chen, CL

    2013-03-01

    We introduce a novel optofluidic solar concentration system based on electrowetting tracking. With two immiscible fluids in a transparent cell, we can actively control the orientation of fluid fluid interface via electrowetting. The naturally-formed meniscus between the two liquids can function as a dynamic optical prism for solar tracking and sunlight steering. An integrated optofluidic solar concentrator can be constructed from the liquid prism tracker in combination with a fixed and static optical condenser (Fresnel lens). Therefore, the liquid prisms can adaptively focus sunlight on a concentrating photovoltaic (CPV) cell sitting on the focus of the Fresnel lens as the sun moves. Because of the unique design, electrowetting tracking allows the concentrator to adaptively track both the daily and seasonal changes of the sun's orbit (dual-axis tracking) without bulky, expensive and inefficient mechanical moving parts. This approach can potentially reduce capital costs for CPV and increases operational efficiency by eliminating the power consumption of mechanical tracking. Importantly, the elimination of bulky tracking hardware and quiet operation will allow extensive residential deployment of concentrated solar power. In comparison with traditional silicon-based photovoltaic (PV) solar cells, the electrowetting-based self-tracking technology will generate,similar to 70% more green energy with a 50% cost reduction. (C) 2013 Elsevier Ltd. All rights reserved.

  4. NREL: Concentrating Solar Power Research - News Release Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 December 7, 2007 Southwestern Energy Service Providers Work Together to Get Large-Scale Solar Project Built A multi-state consortium of southwestern energy service providers is issusing a Request for Proposal (RFP) for a utility-scale concentrating solar power plant. The plant would be owned by a third party, with consortium members each signing long-term purchase power agreements. The plant, with size, design, and location to be determined by the RFP submissions, is expected to produce 250

  5. Concentrating Solar Power Tower System Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tower System Basics Concentrating Solar Power Tower System Basics August 20, 2013 - 5:06pm Addthis In power tower concentrating solar power systems, numerous large, flat, sun-tracking mirrors, known as heliostats, focus sunlight onto a receiver at the top of a tall tower. A heat-transfer fluid heated in the receiver is used to generate steam, which, in turn, is used in a conventional turbine generator to produce electricity. Some power towers use water/steam as the heat-transfer fluid. Other

  6. SunShot Concentrating Solar Power Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program SunShot Concentrating Solar Power Program This PowerPoint slide deck, entitled "SunShot Concentrating Solar Power Program," was originally presented by Ranga Pitchumani at the 2013 Thermochemical Energy Storage Workshop on Jan. 8, 2013. The presentation provides and introduction to the current state of CSP systems, an overview of the DOE's SunShot program, and outlines the goals of the workshop. PDF icon tces_workshop_2013_pitchumani.pdf More Documents & Publications 2014

  7. 2014 SunShot Initiative Portfolio Book: Concentrating Solar Power |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Concentrating Solar Power 2014 SunShot Initiative Portfolio Book: Concentrating Solar Power The 2014 SunShot Initiative Portfolio Book outlines the progress towards the goals outlined in the SunShot Vision Study. Contents include overviews of each of SunShot's five subprogram areas, as well as a description of every active project in the SunShot's project portfolio as of May 2014. This section includes a letter from Program Manager Dr. Ranga Pitchumani providing an

  8. Syngas into Fuel: Optofluidic Solar Concentrators

    SciTech Connect (OSTI)

    None

    2010-10-01

    Broad Funding Opportunity Announcement Project: Ohio State has developed an iron-based material and process for converting syngas—a synthetic gas mixture—into electricity, H2, and/or liquid fuel with zero CO2 emissions. Traditional carbon capture methods use chemical solvents or special membranes to separate CO2 from the gas exhaust from coal-fired power plants. Ohio State’s technology uses an iron-based oxygen carrier to generate CO2 and H2 from syngas in separate, pure product streams by means of a circulating bed reactor configuration. The end products of the system are H2, electricity, and/or liquid fuel, all of which are useful sources of power that can come from coal or syngas derived from biomass. Ohio State is developing a high-pressure pilot-scale unit to demonstrate this process at the National Carbon Capture Center.

  9. Secretary Chu Announces up to $62 Million for Concentrating Solar...

    Energy Savers [EERE]

    Solar Power Research and Development May 7, 2010 - 12:00am Addthis Washington, DC - U.S. Department of Energy ... per day, a level of production that would make it ...

  10. Value of Concentrating Solar Power and Thermal Energy Storage

    SciTech Connect (OSTI)

    Sioshansi, R.; Denholm, P.

    2010-02-01

    This paper examines the value of concentrating solar power (CSP) and thermal energy storage (TES) in four regions in the southwestern United States. Our analysis shows that TES can increase the value of CSP by allowing more thermal energy from a CSP plant?s solar field to be used, by allowing a CSP plant to accommodate a larger solar field, and by allowing CSP generation to be shifted to hours with higher energy prices. We analyze the sensitivity of CSP value to a number of factors, including the optimization period, price and solar forecasting, ancillary service sales, capacity value and dry cooling of the CSP plant. We also discuss the value of CSP plants and TES net of capital costs.

  11. Solar-Electric Dish Stirling System Development

    SciTech Connect (OSTI)

    Mancini, T.R.

    1997-12-31

    Electrical power generated with the heat from the sun, called solar thermal power, is produced with three types of concentrating solar systems - trough or line-focus systems; power towers in which a centrally-located thermal receiver is illuminated with a large field of sun-tracking heliostats; and dish/engine systems. A special case of the third type of system, a dish/Stirling system, is the subject of this paper. A dish/Stirling system comprises a parabolic dish concentrator, a thermal receiver, and a Stirling engine/generator located at the focus of the dish. Several different dish/Stirling systems have been built and operated during the past 15 years. One system claims the world record for net conversion of solar energy to electric power of 29.4%; and two different company`s systems have accumulated thousands of hours of on-sun operation. Due to de-regulation and intense competition in global energy markets as well as the immaturity of the technology, dish/Stirling systems have not yet found their way into the marketplace. This situation is changing as solar technologies become more mature and manufacturers identify high-value niche markets for their products. In this paper, I review the history of dish/Stirling system development with an emphasis on technical and other issues that directly impact the Stirling engine. I also try to provide some insight to the opportunities and barriers confronting the application of dish/Stirling in power generation markets.

  12. Long-Term Modeling of Solar Energy: Analysis of Concentrating Solar Power (CSP) and PV Technologies

    SciTech Connect (OSTI)

    Zhang, Yabei; Smith, Steven J.

    2007-08-16

    This report presents an overview of research conducted on solar energy technologies and their implementation in the ObjECTS framework. The topics covered include financing assumptions and selected issues related to the integration of concentrating thermal solar power (CSP) and photovoltaics PV technologies into the electric grid. A review of methodologies for calculating the levelized energy cost of capital-intensive technologies is presented, along with sensitivity tests illustrating how the cost of a solar plant would vary depending on financing assumptions. An analysis of the integration of a hybrid concentrating thermal solar power (CSP) system into the electric system is conducted. Finally a failure statistics analysis for PV plants illustrates the central role of solar irradiance uncertainty in determining PV grid integration characteristics.

  13. Site selection for concentrated solar thermal systems in Hawaii

    SciTech Connect (OSTI)

    Seki, A.

    1987-01-01

    This report identifies ares on the five major islands (Oahu, Maui, Molakai, Hawaii, and Kauai) that have the potential for concentrating solar thermal applications. The locations are based on existing solar insolation (mostly global and some direct normal) data, other meteorological information, land use, potential end-use, and existing facilities. These areas are: - Western coast of Oahu, especially near Kahe Point - Maui plains area - South-Central Molokai - Kona coast of the Big Island, especially Natural Energy Laboratory of Hawaii - Western and southern areas of Kauai. Monitoring stations are recommended at some of these sites to obtain direct normal insolation data for future evaluation.

  14. Energy Secretary Moniz Dedicates World’s Largest Concentrating Solar Power Project

    Broader source: Energy.gov [DOE]

    Energy Secretary Ernest Moniz will participate today in the opening of the Ivanpah Solar Energy Generating System, the world’s largest concentrating solar power (CSP) plant.

  15. Role of Concentrating Solar Power in Integrating Solar and Wind Energy: Preprint

    SciTech Connect (OSTI)

    Denholm, P.; Mehos, M.

    2015-06-03

    As wind and solar photovoltaics (PV) increase in penetration it is increasingly important to examine enabling technologies that can help integrate these resources at large scale. Concentrating solar power (CSP) when deployed with thermal energy storage (TES) can provide multiple services that can help integrate variable generation (VG) resources such as wind and PV. CSP with TES can provide firm, highly flexible capacity, reducing minimum generation constraints which limit penetration and results in curtailment. By acting as an enabling technology, CSP can complement PV and wind, substantially increasing their penetration in locations with adequate solar resource.

  16. Transmission Benefits of Co-Locating Concentrating Solar Power and Wind

    SciTech Connect (OSTI)

    Sioshansi, R.; Denholm, P.

    2012-03-01

    In some areas of the U.S. transmission constraints are a limiting factor in deploying new wind and concentrating solar power (CSP) plants. Texas is an example of one such location, where the best wind and solar resources are in the western part of the state, while major demand centers are in the east. The low capacity factor of wind is a compounding factor, increasing the relative cost of new transmission per unit of energy actually delivered. A possible method of increasing the utilization of new transmission is to co-locate both wind and concentrating solar power with thermal energy storage. In this work we examine the benefits and limits of using the dispatachability of thermal storage to increase the capacity factor of new transmission developed to access high quality solar and wind resources in remote locations.

  17. Assessment of methods for hydrogen production using concentrated solar energy

    SciTech Connect (OSTI)

    Glatzmaier, G.; Blake, D.; Showalter, S.

    1998-01-01

    The purpose of this work was to assess methods for hydrogen production using concentrated solar energy. The results of this work can be used to guide future work in the application of concentrated solar energy to hydrogen production. Specifically, the objectives were to: (1) determine the cost of hydrogen produced from methods that use concentrated solar thermal energy, (2) compare these costs to those of hydrogen produced by electrolysis using photovoltaics and wind energy as the electricity source. This project had the following scope of work: (1) perform cost analysis on ambient temperature electrolysis using the 10 MWe dish-Stirling and 200 MWe power tower technologies; for each technology, sue two cases for projected costs, years 2010 and 2020 the dish-Stirling system, years 2010 and 2020 for the power tower, (2) perform cost analysis on high temperature electrolysis using the 200 MWe power tower technology and projected costs for the year 2020, and (3) identify and describe the key technical issues for high temperature thermal dissociation and the thermochemical cycles.

  18. HTC solar Stirling development Sunset Powerstation

    SciTech Connect (OSTI)

    Mitzel, M.; Leibfried, I.U.

    1995-11-01

    The components of a new dish-Stirling system are presented. Special emphasis on the system design is given to realize a simple and highly reliable system for applications in a low technology context. The development of the new double chamber stretched-membrane dish is described, including the investigation of a secondary concentrator. The data of the TEM SCP-75 Stirling engine is given. A new copper mantled heater head for utilizing solar power is presented. Performance data for the whole system is reported.

  19. Low-Cost, Lightweight Solar Concentrators - FY13 Q1 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrators - FY13 Q1 Low-Cost, Lightweight Solar Concentrators - FY13 Q1 This document summarizes the progress of this JPL project, funded by SunShot, for the first quarter of fiscal year 2013. PDF icon progress_report_sunshot_jpl_fy13_q1.pdf More Documents & Publications Low-Cost, Lightweight Solar Concentrators FY13 Q2 Low-Cost, Lightweight Solar Concentrator Low-Cost Light Weigh Thin Film Solar Concentrators

  20. Final project report - CRADA with United Solar Technologies and Pacific Northwest Laboratory (PNL-021): Thin film materials for low-cost high performance solar concentrators

    SciTech Connect (OSTI)

    Martin, P.M.; Affinito, J.D.; Gross, M.E.; Bennett, W.D.

    1995-03-01

    The objectives of this project were as follows: To develop and evaluate promising low-cost dielectric and polymer-protected thin-film reflective metal coatings to be applied to preformed continuously-curved solar reflector panels to enhance their solar reflectance, and to demonstrate protected solar reflective coatings on preformed solar concentrator panels. The opportunity for this project arose from a search by United Solar Technologies (UST) for organizations and facilities capable of applying reflective coatings to large preformed panels. PNL was identified as being uniquely qualified to participate in this collaborative project.

  1. NREL: Concentrating Solar Power Research - NREL Handbook Helps Industry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Collect and Interpret Solar Resource Data for Solar Energy Applications NREL Handbook Helps Industry Collect and Interpret Solar Resource Data for Solar Energy Applications Comprehensive handbook is a valuable resource for the solar industry on the collection and interpretation of solar resource data for each stage of a solar energy project. February 24, 2015 Reliable information about the solar resource is required for every solar energy application, from small installations on a rooftop to

  2. Genesis Solar | Open Energy Information

    Open Energy Info (EERE)

    Genesis Solar Facility Genesis Solar Sector Solar Facility Type Concentrating solar power Facility Status Under Construction Owner NextEra Developer NextEra Location Blythe,...

  3. Voluntary Solar Resource Development Fund

    Broader source: Energy.gov [DOE]

    The fund will be used to provide loans for residential, commercial, or nonprofit solar energy projects. Qualifying solar energy projects cannot be acquired, installed or operating before July 1, ...

  4. Wind loading on solar concentrators: some general considerations

    SciTech Connect (OSTI)

    Roschke, E. J.

    1984-05-01

    A survey has been completed to examine the problems and complications arising from wind loading on solar concentrators. Wind loading is site specific and has an important bearing on the design, cost, performance, operation and maintenance, safety, survival, and replacement of solar collecting systems. Emphasis herein is on paraboloidal, two-axis tracking systems. Thermal receiver problems also are discussed. Wind characteristics are discussed from a general point of view; current methods for determining design wind speed are reviewed. Aerodynamic coefficients are defined and illustrative examples are presented. Wind tunnel testing is discussed, and environmental wind tunnels are reviewed; recent results on heliostat arrays are reviewed as well. Aeroelasticity in relation to structural design is discussed briefly. Wind loads, i.e., forces and moments, are proportional to the square of the mean wind velocity. Forces are proportional to the square of concentrator diameter, and moments are proportional to the cube of diameter. Thus, wind loads have an important bearing on size selection from both cost and performance standpoints. It is concluded that sufficient information exists so that reasonably accurate predictions of wind loading are possible for a given paraboloidal concentrator configuration, provided that reliable and relevant wind conditions are specified. Such predictions will be useful to the design engineer and to the systems engineer as well. Information is lacking, however, on wind effects in field arrays of paraboloidal concentrators. Wind tunnel tests have been performed on model heliostat arrays, but there are important aerodynamic differences between heliostats and paraboloidal dishes.

  5. Solar energy concentrator design and operation. (Latest citations from the NTIS Bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    The bibliography contains citations concerning the design and operation of solar energy concentrators. Topics include system descriptions, performance evaluations, technology reviews and development studies, cost considerations, and materials aspects. Optical properties of various systems, performance simulations, fabrication techniques, and control systems are discussed. Photovoltaic and thermal systems are also considered. (Contains 250 citations and includes a subject term index and title list.)

  6. Solar energy concentrator design and operation. (Latest citations from the NTIS data base). Published Search

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    The bibliography contains citations concerning the design and operation of solar energy concentrators. Topics include system descriptions, performance evaluations, technology reviews and development studies, cost considerations, and materials aspects. Optical properties of various systems, performance simulations, fabrication techniques, and control systems are discussed. Photovoltaic and thermal systems are also considered. (Contains 250 citations and includes a subject term index and title list.)

  7. EERE Success Story-Advancing State-of-the-Art Concentrating Solar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State-of-the-Art Concentrating Solar Power Systems EERE Success Story-Advancing State-of-the-Art Concentrating Solar Power Systems April 15, 2013 - 12:00am Addthis Brayton Energy's ...

  8. Webinar January 21: Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar titled "Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis" on Thursday, January 21, from 12 to 1 p.m. EST. This webinar will present the results of an analysis conducted by Sandia National Laboratories that explored potential synergies that may be realized by integrating solar hydrogen production and concentrating solar power (CSP) technologies.

  9. Webinar November 19: Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar titled "Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis" on Thursday, November 19, from 1:00 to 2:00 p.m. EST. This webinar will present the results of an analysis conducted by Sandia National Laboratories that explored potential synergies that may be realized by integrating solar hydrogen production and concentrating solar power (CSP) technologies.

  10. Operation of Concentrating Solar Power Plants in the Western Wind and Solar Integration Phase 2 Study

    SciTech Connect (OSTI)

    Denholm, P.; Brinkman, G.; Lew, D.; Hummon, M.

    2014-05-01

    The Western Wind and Solar Integration Study (WWSIS) explores various aspects of the challenges and impacts of integrating large amounts of wind and solar energy into the electric power system of the West. The phase 2 study (WWSIS-2) is one of the first to include dispatchable concentrating solar power (CSP) with thermal energy storage (TES) in multiple scenarios of renewable penetration and mix. As a result, it provides unique insights into CSP plant operation, grid benefits, and how CSP operation and configuration may need to change under scenarios of increased renewable penetration. Examination of the WWSIS-2 results indicates that in all scenarios, CSP plants with TES provides firm system capacity, reducing the net demand and the need for conventional thermal capacity. The plants also reduced demand during periods of short-duration, high ramping requirements that often require use of lower efficiency peaking units. Changes in CSP operation are driven largely by the presence of other solar generation, particularly PV. Use of storage by the CSP plants increases in the higher solar scenarios, with operation of the plant often shifted to later in the day. CSP operation also becomes more variable, including more frequent starts. Finally, CSP output is often very low during the day in scenarios with significant PV, which helps decrease overall renewable curtailment (over-generation). However, the configuration studied is likely not optimal for High Solar Scenario implying further analysis of CSP plant configuration is needed to understand its role in enabling high renewable scenarios in the Western United States.

  11. Improved high temperature solar absorbers for use in Concentrating Solar Power central receiver applications.

    SciTech Connect (OSTI)

    Stechel, Ellen Beth; Ambrosini, Andrea; Hall, Aaron Christopher; Lambert, Timothy L.; Staiger, Chad Lynn; Bencomo, Marlene

    2010-09-01

    Concentrating solar power (CSP) systems use solar absorbers to convert the heat from sunlight to electric power. Increased operating temperatures are necessary to lower the cost of solar-generated electricity by improving efficiencies and reducing thermal energy storage costs. Durable new materials are needed to cope with operating temperatures >600 C. The current coating technology (Pyromark High Temperature paint) has a solar absorptance in excess of 0.95 but a thermal emittance greater than 0.8, which results in large thermal losses at high temperatures. In addition, because solar receivers operate in air, these coatings have long term stability issues that add to the operating costs of CSP facilities. Ideal absorbers must have high solar absorptance (>0.95) and low thermal emittance (<0.05) in the IR region, be stable in air, and be low-cost and readily manufacturable. We propose to utilize solution-based synthesis techniques to prepare intrinsic absorbers for use in central receiver applications.

  12. DOE Funds 15 New Projects to Develop Solar Power Storage and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for up to approximately 67.6 million, will facilitate the development of lower-cost energy storage for concentrating solar power (CSP) technology. These projects support...

  13. Mapping Suitability Areas for Concentrated Solar Power Plants Using Remote Sensing Data

    SciTech Connect (OSTI)

    Omitaomu, Olufemi A; Singh, Nagendra; Bhaduri, Budhendra L

    2015-01-01

    The political push to increase power generation from renewable sources such as solar energy requires knowing the best places to site new solar power plants with respect to the applicable regulatory, operational, engineering, environmental, and socioeconomic criteria. Therefore, in this paper, we present applications of remote sensing data for mapping suitability areas for concentrated solar power plants. Our approach uses digital elevation model derived from NASA s Shuttle Radar Topographic Mission (SRTM) at a resolution of 3 arc second (approx. 90m resolution) for estimating global solar radiation for the study area. Then, we develop a computational model built on a Geographic Information System (GIS) platform that divides the study area into a grid of cells and estimates site suitability value for each cell by computing a list of metrics based on applicable siting requirements using GIS data. The computed metrics include population density, solar energy potential, federal lands, and hazardous facilities. Overall, some 30 GIS data are used to compute eight metrics. The site suitability value for each cell is computed as an algebraic sum of all metrics for the cell with the assumption that all metrics have equal weight. Finally, we color each cell according to its suitability value. We present results for concentrated solar power that drives a stream turbine and parabolic mirror connected to a Stirling Engine.

  14. Concentrating Solar Power (Fact Sheet), SunShot Initiative, U...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SunShot will work to bring down the full cost of solar - including the costs of solar cells and installation by focusing on four main pillars: 1. Technologies for solar cells and ...

  15. Solar Radiation Data Manual for Flat-Plate and Concentrating...

    Office of Scientific and Technical Information (OSTI)

    S. Kabins, and Jon Leedholm Warren Gretz Mary Anne Dunlap For designers and engineers of solar energy-related systems, the Solar Radiation Data Manualfor Flat- Plate and...

  16. Utility-Scale Concentrating Solar Power and Photovoltaic Projects: A Technology and Market Overview

    SciTech Connect (OSTI)

    Mendelsohn, M.; Lowder, T.; Canavan, B.

    2012-04-01

    Over the last several years, solar energy technologies have been, or are in the process of being, deployed at unprecedented levels. A critical recent development, resulting from the massive scale of projects in progress or recently completed, is having the power sold directly to electric utilities. Such 'utility-scale' systems offer the opportunity to deploy solar technologies far faster than the traditional 'behind-the-meter' projects designed to offset retail load. Moreover, these systems have employed significant economies of scale during construction and operation, attracting financial capital, which in turn can reduce the delivered cost of power. This report is a summary of the current U.S. utility-scale solar state-of-the-market and development pipeline. Utility-scale solar energy systems are generally categorized as one of two basic designs: concentrating solar power (CSP) and photovoltaic (PV). CSP systems can be further delineated into four commercially available technologies: parabolic trough, central receiver (CR), parabolic dish, and linear Fresnel reflector. CSP systems can also be categorized as hybrid, which combine a solar-based system (generally parabolic trough, CR, or linear Fresnel) and a fossil fuel energy system to produce electric power or steam.

  17. Low-Cost, Lightweight Solar Concentrators FY13 Q2 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    document summarizes the progress of this Jet Propulsion Laboratory project, funded by SunShot, for the second quarter of fiscal year 2013. PDF icon progress_report_sunshot_jpl_fy13_q2.pdf More Documents & Publications Low-Cost, Lightweight Solar Concentrator Next-Generation Solar Collectors for CSP Low-Cost, Lightweight Solar Concentrators - FY13 Q1

  18. Modeling Photovoltaic and Concentrating Solar Power Trough Performance, Cost, and Financing with the Solar Advisor Model: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling Photovoltaic and Concentrating Solar Power Trough Performance, Cost, and Financing with the Solar Advisor Model Preprint Nathan Blair, Mark Mehos, and Craig Christensen National Renewable Energy Laboratory Craig Cameron Sandia National Laboratories Presented at SOLAR 2008 - American Solar Energy Society (ASES) San Diego, California May 3-8, 2008 Conference Paper NREL/CP-670-42922 May 2008 NREL is operated by Midwest Research Institute â—Ź Battelle Contract No. DE-AC36-99-GO10337 NOTICE

  19. NREL: Concentrating Solar Power Research - Report Targets Data on Avian

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Issues at Solar Energy Facilities Report Targets Data on Avian Issues at Solar Energy Facilities May 4, 2015 Understanding how birds are affected by utility-scale solar facilities is the focus of a new NREL report that was completed in partnership with Argonne National Laboratory. The report, A Review of Avian Monitoring and Mitigation Information at Existing Utility-Scale Solar Facilities, summarizes incidence, monitoring, and mitigation of avian fatality at solar energy facilities.

  20. NREL: Concentrating Solar Power Research - TroughNet Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research TroughNet is a technical resource for evaluation of parabolic trough solar power plant technologies. Parabolic Trough Technology Parabolic trough solar technology offers the lowest cost solar electric option for large power plant applications. To learn more, read our technology overviews: A photo of a solar field featuring rows and rows of parabolic troughs at a power plant. Solar Field A photo of two, gray, thermal energy storage system tanks, which are very large, at a parabolic

  1. Novel Thermal Storage Technologies for Concentrating Solar Power Generation

    SciTech Connect (OSTI)

    Neti, Sudhakar; Oztekin, Alparslan; Chen, John; Tuzla, Kemal; Misiolek, Wojciech

    2013-06-20

    The technologies that are to be developed in this work will enable storage of thermal energy in 100 MWe solar energy plants for 6-24 hours at temperatures around 300oC and 850oC using encapsulated phase change materials (EPCM). Several encapsulated phase change materials have been identified, fabricated and proven with calorimetry. Two of these materials have been tested in an airflow experiment. A cost analysis for these thermal energy storage systems has also been conducted that met the targets established at the initiation of the project.

  2. Concentrating Solar Panels: Bringing the Highest Power and Lowest Cost to the Rooftop

    SciTech Connect (OSTI)

    Michael Deck; Rick Russell

    2010-01-05

    Soliant Energy is a venture-capital-backed startup focused on bringing advanced concentrating solar panels to market. Our fundamental innovation is that we are the first company to develop a racking solar concentrator specifically for commercial rooftop applications, resulting in the lowest LCOE for rooftop electricity generation. Today, the commercial rooftop segment is the largest and fastest-growing market in the solar industry. Our concentrating panels can make a major contribution to the SAI's objectives: reducing the cost of solar electricity and rapidly deploying capacity. Our commercialization focus was re-shaped in 2009, shifting from an emphasis solely on panel efficiency to LCOE. Since the inception of the SAI program, LCOE has become the de facto standard for comparing commercial photovoltaic systems. While estimation and prediction models still differ, the emergence of performance-based incentive (PBI) and feed-in tariff (FIT) systems, as well as power purchase agreement (PPA) financing structures make LCOE the natural metric for photovoltaic systems. Soliant Energy has designed and demonstrated lower-cost, higher-power solar panels that consists of 6 (500X) PV module assemblies utilizing multi-junction cells and an integrated two-axis tracker. In addition, we have designed and demonstrated a prototype 1000X panel assembly with 8. Cost reductions relative to conventional flat panel PV systems were realized by (1) reducing the amount of costly semiconductor material and (2) developing strategies and processes to reduce the manufacturing costs of the entire system. Performance gains against conventional benchmarks were realized with (1) two-axis tracking and (2) higher-efficiency multi-junction PV cells capable of operating at a solar concentration ratio of 1000X (1000 kW/m2). The program objectives are: (1) Develop a tracking/concentrating solar module that has the same geometric form factor as a conventional flat, roof mounted photovoltaic (PV) panel - the Soliant module will produce more power and cost less than conventional panels of the same size; (2) Target LCOE: $0.079/kWh in 2010; (3) Target efficiency - 26% in 2010 (22% for 2008 prototype, 24% for 2009 pilot); and (4) Target performance - equivalent to 650Wp in 2010 (490W for 2008 prototype, 540W for 2009 pilot).

  3. Concentrating Solar Power (Fact Sheet), SunShot Initiative, U.S. Department of Energy (DOE)

    Broader source: Energy.gov [DOE]

    Concentrating Solar Power (CSP) offers a utility-scale, firm, dispatchable renewable energy option that can help meet the nation's goal of making solar energy cost competitive with other energy sources by the end of the decade.

  4. Solar energy concentrator design and operation. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    1996-07-01

    The bibliography contains citations concerning the design and operation of solar energy concentrators. Topics include system descriptions, performance evaluations, technology reviews and development studies, cost considerations, and materials aspects. Optical properties of various systems, performance simulations, fabrication techniques, and control systems are discussed. Photovoltaic and thermal systems are also considered.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  5. Flexible thermal cycle test equipment for concentrator solar cells

    DOE Patents [OSTI]

    Hebert, Peter H.; Brandt, Randolph J.

    2012-06-19

    A system and method for performing thermal stress testing of photovoltaic solar cells is presented. The system and method allows rapid testing of photovoltaic solar cells under controllable thermal conditions. The system and method presents a means of rapidly applying thermal stresses to one or more photovoltaic solar cells in a consistent and repeatable manner.

  6. Shanghai Chaori Solar Energy Science Technology Development Co...

    Open Energy Info (EERE)

    Chaori Solar Energy Science Technology Development Co Ltd Jump to: navigation, search Name: Shanghai Chaori Solar Energy Science & Technology Development Co Ltd Place: Shanghai,...

  7. Energy Department Announces $18 Million to Develop Solar Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    18 Million to Develop Solar Energy Storage Solutions, Boost Grid Resiliency Energy Department Announces 18 Million to Develop Solar Energy Storage Solutions, Boost Grid Resiliency ...

  8. Using Solid Particles as Heat Transfer Fluid for use in Concentrating Solar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power (CSP) Plants | Department of Energy Solid Particles as Heat Transfer Fluid for use in Concentrating Solar Power (CSP) Plants Using Solid Particles as Heat Transfer Fluid for use in Concentrating Solar Power (CSP) Plants This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23-25, 2013 near Phoenix, Arizona. PDF icon csp_review_meeting_042413_ma2.pdf More Documents & Publications CX-009561: Categorical Exclusion Determination

  9. Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Project

    Energy Savers [EERE]

    | Department of Energy Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Project Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Project October 31, 2013 - 11:30am Addthis News Media Contact (202) 586-4940 WASHINGTON -- As part of the Obama Administration's all-of-the-above strategy to deploy every available source of American energy, the Energy Department today announced a new concentrating solar power (CSP) project led by the Sacramento Municipal Utility

  10. Economic, Energy, and Environmental Benefits of Concentrating Solar Power in California

    SciTech Connect (OSTI)

    Stoddard, L.; Abiecunas, J.; O'Connell, R.

    2006-04-01

    This study provides a summary assessment of concentrating solar power and its potential economic return, energy supply impact, and environmental benefits for the State of California.

  11. Low-Cost Light Weigh Thin Film Solar Concentrators | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    513_ganapathi.pdf More Documents & Publications 2014 SunShot Initiative Portfolio Book: Concentrating Solar Power 2014 SunShot Initiative Peer Review Report

  12. Top 10 Things You Didn't Know About Concentrating Solar Power | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Concentrating Solar Power Top 10 Things You Didn't Know About Concentrating Solar Power October 31, 2013 - 12:03pm Addthis Concentrating Solar Power Facilities and CSP Energy Potential Gradient Click icons to filter by CSP Plant Type All Plants In Operation New in 2014 In Progress Tower and Heliostat Trough or Fresnel Parabolic Dish Concentrating Solar Energy Potential (watt hours/m²/day) 2500 4000 6000 8000 Data provided by CSP World. Map by Daniel Wood. Erin R. Pierce Erin R.

  13. Advanced Ceramic Materials and Packaging Technologies for Realizing Sensors for Concentrating Solar Power Systems

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  14. Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  15. Design of the support structure, drive pedestal, and controls for a solar concentrator

    SciTech Connect (OSTI)

    Goldberg, V.R.; Ford, J.L.; Anderson, A.E. )

    1991-08-01

    The glass/metal McDonnell-Douglas dish is the state-of-the-art of parabolic dish concentrators. Because of the perceived high production cost of this concentrator, the Department of Energy's Solar Thermal Program is developing stretch-membrane technology for large (75 kWt) solar concentrators for integration with receivers and engines in 25 kWe dish-Stirling systems. The objective of this development effort is to reduce the cost of the concentrator while maintaining the high levels of performance characteristic of glass-metal dishes. Under contract to Sandia National Laboratories, Science Applications International Corporation, Solar Kinetics Inc. and WG Associates are developing a faceted stretched-membrane heliostat technology. This design will result in a low-risk, near-term concentrator for dish-Stirling systems. WG Associates has designed the support structure, drives and tracking controls for this dish. The structure is configured to support 12 stretched-membrane, 3.5-meter diameter facets in a shaped dish configuration. The dish design is sized to power a dish-Stirling system capable of producing 25 kW (electric). In the design of the structure, trade-off studies were conducted to determine the best'' facet arrangement, dish contour, dish focal length, tracking control and walk-off protection. As part of the design, in-depth analyses were performed to evaluate pointing accuracy, compliance with AISC steel design codes, and the economics of fabrication and installation. Detailed fabrication and installation drawings were produced, and initial production cost estimates for the dish were developed. These issues, and the final dish design, are presented in this report. 7 refs., 33 figs., 18 tabs.

  16. NREL: Concentrating Solar Power Research - Become Part of SOLRMAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Become Part of SOLRMAP The National Renewable Energy Laboratory (NREL) is inviting additional participation in SOLRMAP-the Solar Resource and Meteorological Assessment Project. In...

  17. Methods for Analyzing the Economic Value of Concentrating Solar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (CSP-TES) provides multiple quantifiable benefits compared to CSP without storage or to solar photovoltaic (PV) technology, including higher energy value, ancillary services value,...

  18. Advancing State-of-the-Art Concentrating Solar Power Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    turbines for higher efficiency, and reduced cost compared with baseline receivers and steam Rankine turbines. The Solar Energy Technologies Office (SETO) focuses on achieving...

  19. Amargosa Farm Road Solar Energy Project Solar Power Plant | Open...

    Open Energy Info (EERE)

    Sector Solar Facility Type Concentrating Solar Power Developer Solar Millenium, LLC, MAN Ferrostaal Inc Location Nye County, Nevada Coordinates 38.5807111, -116.0413889...

  20. POSTPONED: Webinar November 19: Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis

    Broader source: Energy.gov [DOE]

    This webinar has been postponed until further notice. The Energy Department will present a live webinar titled "Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis" on Thursday, November 19, from 1:00 to 2:00 p.m. EST.

  1. PROJECT PROFILE: Concentrating Solar Power in a SunShot Future (SuNLaMP)

    Broader source: Energy.gov [DOE]

    This project will investigate concentrating solar power (CSP) and its ability to increase the overall penetration of solar energy while lessening the variability impacts of solar photovoltaics (PV). CSP is unique among solar technologies in that it can provide dispatchable energy through high-efficiency thermal energy storage. Researchers at the National Renewable Energy Laboratory (NREL) will analyze next-generation CSP plants and their ability to provide valuable grid services.

  2. Molten Salt-Carbon Nanotube Thermal Energy Storage for Concentrating Solar Power Systems Final Report

    SciTech Connect (OSTI)

    Michael Schuller; Frank Little; Darren Malik; Matt Betts; Qian Shao; Jun Luo; Wan Zhong; Sandhya Shankar; Ashwin Padmanaban

    2012-03-30

    We demonstrated that adding nanoparticles to a molten salt would increase its utility as a thermal energy storage medium for a concentrating solar power system. Specifically, we demonstrated that we could increase the specific heat of nitrate and carbonate salts containing 1% or less of alumina nanoparticles. We fabricated the composite materials using both evaporative and air drying methods. We tested several thermophysical properties of the composite materials, including the specific heat, thermal conductivity, latent heat, and melting point. We also assessed the stability of the composite material with repeated thermal cycling and the effects of adding the nanoparticles on the corrosion of stainless steel by the composite salt. Our results indicate that stable, repeatable 25-50% improvements in specific heat are possible for these materials. We found that using these composite salts as the thermal energy storage material for a concentrating solar thermal power system can reduce the levelized cost of electricity by 10-20%. We conclude that these materials are worth further development and inclusion in future concentrating solar power systems.

  3. NREL Demonstrates 45.7% Efficiency for Concentrator Solar Cell - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL NREL Demonstrates 45.7% Efficiency for Concentrator Solar Cell New design for ultra-efficient III-V multijunction cell pushes the limits of solar conversion December 16, 2014 The Energy Department's National Renewable Energy Laboratory has announced the demonstration of a 45.7 percent conversion efficiency for a four-junction solar cell at 234 suns concentration. This achievement represents one of the highest photovoltaic research cell efficiencies achieved across all types

  4. Accelerated aging of GaAs concentrator solar cells

    SciTech Connect (OSTI)

    Gregory, P.E.

    1982-04-01

    An accelerated aging study of AlGaAs/GaAs solar cells has been completed. The purpose of the study was to identify the possible degradation mechanisms of AlGaAs/GaAs solar cells in terrestrial applications. Thermal storage tests and accelerated AlGaAs corrosion studies were performed to provide an experimental basis for a statistical analysis of the estimated lifetime. Results of this study suggest that a properly designed and fabricated AlGaAs/GaAs solar cell can be mechanically rugged and environmentally stable with projected lifetimes exceeding 100 years.

  5. Silicon concentrator cell-assembly development

    SciTech Connect (OSTI)

    Not Available

    1982-08-01

    The purpose of this program is to develop an improved cell assembly design for photovoltaic concentrator receivers. Efforts were concentrated on a study of adhesive/separator systems that might be applied between cell and substrate, because this area holds the key to improved heat transfer, electrical isolation and adhesion. It is also the area in which simpler construction methods offer the greatest benefits for economy and reliability in the manufacturing process. Of the ten most promising designs subjected to rigorous environmental testing, eight designs featuring acrylic and silicon adhesives and fiberglass and polyester separators performed very well.

  6. Community Response to Concentrating Solar Power in the San Luis...

    Open Energy Info (EERE)

    Laboratory, University of Colorado Partner B.C. Farhar, L.M. Hunter, T.M. Kirkland, and K.J. Tierney Focus Area Solar Phase Bring the Right People Together, Evaluate Options, Get...

  7. Concentrating Solar Power Dish/Engine System Basics | Department of Energy

    Office of Environmental Management (EM)

    Concentrating Solar Power Dish/Engine System Basics Concentrating Solar Power Dish/Engine System Basics August 20, 2013 - 5:02pm Addthis The dish/engine system is a concentrating solar power (CSP) technology that produces relatively small amounts of electricity compared to other CSP technologies-typically in the range of 3 to 25 kilowatts. Dish/engine systems use a parabolic dish of mirrors to direct and concentrate sunlight onto a central engine that produces electricity. The two major parts of

  8. Multi-facet concentrator of solar setup for irradiating the objects placed in a target plane with solar light

    DOE Patents [OSTI]

    Lewandowski, Allan A. (Evergreen, CO); Yampolskiy, Vladislav (Moscow, RU); Alekseev, Valerie (Moscow, RU); Son, Valentin (Moscow, RU)

    2001-01-01

    According to the proposed invention, this technical result is achieved so that many-facet concentrator of a solar setup for exposure of objects, placed in a target plane, to the action of solar radiation containing a supporting frame and facets differing by that the facets of the concentrator are chosen with spherical focusing reflective surfaces of equal focal lengths and with selective coatings reflecting a desired spectral fraction of solar radiation, and are arranged on the supporting frame symmetrically with respect to the common axis of the concentrator, their optical axes being directed to the single point on the optical axis of the concentrator located before the nominal focus point of the concentrator and determining the position of arranging the target plane.

  9. The Year of Concentrating Solar Power: Five New Plants to Power America

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with Clean Energy | Department of Energy of Concentrating Solar Power: Five New Plants to Power America with Clean Energy The Year of Concentrating Solar Power: Five New Plants to Power America with Clean Energy June 5, 2014 - 11:31am Addthis The <a href="/node/801451">Ivanpah Solar Electric Generating System</a> in Ivanpah Dry Lake, California. | Photo by Gilles Mingasson, Getty Images for Bechtel. The Ivanpah Solar Electric Generating System in Ivanpah Dry Lake,

  10. The Year of Concentrating Solar Power: Five New Plants to Power America

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with Clean Energy | Department of Energy The Year of Concentrating Solar Power: Five New Plants to Power America with Clean Energy The Year of Concentrating Solar Power: Five New Plants to Power America with Clean Energy June 5, 2014 - 11:31am Addthis The <a href="/node/801451">Ivanpah Solar Electric Generating System</a> in Ivanpah Dry Lake, California. | Photo by Gilles Mingasson, Getty Images for Bechtel. The Ivanpah Solar Electric Generating System in Ivanpah Dry

  11. Solar photovoltaics for development applications

    SciTech Connect (OSTI)

    Shepperd, L.W.; Richards, E.H.

    1993-08-01

    This document introduces photovoltaic technology to individuals and groups specializing in development activities. Examples of actual installations illustrate the many services supplied by photovoltaic systems in development applications, including water pumping, lighting, health care, refrigeration, communications, and a variety of productive uses. The various aspects of the technology are explored to help potential users evaluate whether photovoltaics can assist them in achieving their organizational goals. Basic system design, financing techniques, and the importance of infrastructure are included, along with additional sources of information and major US photovoltaic system suppliers.

  12. Methods for Analyzing the Economic Value of Concentrating Solar Power with Thermal Energy Storage

    SciTech Connect (OSTI)

    Denholm, Paul; Jorgenson, Jennie; Miller, Mackay; Zhou, Ella; Wang, Caixia

    2015-07-20

    Concentrating solar power with thermal energy storage (CSP-TES) provides multiple quantifiable benefits compared to CSP without storage or to solar photovoltaic (PV) technology, including higher energy value, ancillary services value, and capacity value. This report describes modeling approaches to quantifying these benefits that have emerged through state-level policymaking in the United States as well as the potential applicability of these methods in China. The technical potential for CSP-TES in China is significant, but deployment has not yet achieved the targets established by the Chinese government. According to the 12th Five Year Plan for Renewable Energy (2011-2015), CSP was expected to reach 1 GW by 2015 and 3 GW by 2020 in China, yet as of December 2014, deployment totaled only 13.8 MW. One barrier to more rapid deployment is the lack of an incentive specific to CSP, such as a feed-in tariff. The 13th Five Year Plan for Solar Generation (2016-2020), which is under development, presents an opportunity to establish a feed-in tariff specific to CSP. This report, produced under the auspices of the U.S.-China Renewable Energy Partnership, aims to support the development of Chinese incentives that advance CSP deployment goals.

  13. Components Makeover Gives Concentrating Solar Power a Boost (Fact Sheet), The Spectrum of Clean Energy Innovation

    SciTech Connect (OSTI)

    Not Available

    2010-12-01

    Parabolic trough technology is the most mature of the various concentrating solar power (CSP) options. But scientists at the National Renewable Energy Laboratory (NREL) continue to make advances on trough systems through innovative research on various components in industrial partnerships with Acciona Solar Power, SkyFuel, Schott Solar, and others. The results are leading to improved system efficiencies and lower costs for CSP plants.

  14. Method and apparatus for uniformly concentrating solar flux for photovoltaic applications

    DOE Patents [OSTI]

    Jorgensen, Gary J. (Pine, CO); Carasso, Meir (Lakewood, CO); Wendelin, Timothy J. (Golden, CO); Lewandowski, Allan A. (Evergreen, CO)

    1992-01-01

    A dish reflector and method for concentrating moderate solar flux uniformly on a target plane on a solar cell array, the dish having a stepped reflective surface that is characterized by a plurality of ring-like segments arranged about a common axis, and each segment having a concave spherical configuration.

  15. Potential Role of Concentrating Solar Power in Enabling High Renewables Scenarios in the United States

    SciTech Connect (OSTI)

    Denholm, P.; Hand, M.; Mai, T.; Margolis, R.; Brinkman, G.; Drury, E.; Mowers, M.; Turchi, C.

    2012-10-01

    This work describes the analysis of concentrating solar power (CSP) in two studies -- The SunShot Vision Study and the Renewable Electricity Futures Study -- and the potential role of CSP in a future energy mix.

  16. Project Profile: Regenerative Carbonate-Based Thermochemical Energy Storage System for Concentrating Solar Power

    Broader source: Energy.gov [DOE]

    The Department of Energy’s SunShot Initiative awarded Southern Research Institute (SRI) through the Concentrating Solar Power: Efficiently Leveraging Equilibrium Mechanisms for Engineering New Thermochemical Storage (CSP: ELEMENTS) funding program.

  17. Project Profile: High-Temperature Thermochemical Storage with Redox-Stable Perovskites for Concentrating Solar Power

    Broader source: Energy.gov [DOE]

    The Department of Energy's SunShot Initiative made an award to Colorado School of Mines (CSM) through the Concentrating Solar Power: Efficiently Leveraging Equilibrium Mechanisms for Engineering New Thermochemical Storage (CSP: ELEMENTS) funding program.

  18. Solar concentrator with integrated tracking and light delivery system with collimation

    DOE Patents [OSTI]

    Maxey, Lonnie Curt

    2015-06-09

    A solar light distribution system includes a solar light concentrator that is affixed externally to a light transfer tube. Solar light waves are processed by the concentrator into a collimated beam of light, which is then transferred through a light receiving port and into the light transfer tube. A reflector directs the collimated beam of light through the tube to a light distribution port. The interior surface of the light transfer tube is highly reflective so that the light transfers through the tube with minimal losses. An interchangeable luminaire is attached to the light distribution port and distributes light inside of a structure. A sun tracking device rotates the concentrator and the light transfer tube to optimize the receiving of solar light by the concentrator throughout the day. The system provides interior lighting, uses only renewable energy sources, and releases no carbon dioxide emissions into the atmosphere.

  19. Solar concentrator with integrated tracking and light delivery system with summation

    DOE Patents [OSTI]

    Maxey, Lonnie Curt

    2015-05-05

    A solar light distribution system includes a solar light concentrator that is affixed externally to a light transfer tube. Solar light waves are processed by the concentrator into a collimated beam of light, which is then transferred through a light receiving port and into the light transfer tube. A reflector redirects the collimated beam of light through the tube to a light distribution port. The interior surface of the light transfer tube is highly reflective so that the light transfers through the tube with minimal losses. An interchangeable luminaire is attached to the light distribution port and provides light inside of a structure. A sun tracking device rotates the concentrator and the light transfer tube to optimize the receiving of solar light by the concentrator throughout the day. The system provides interior lighting that uses only renewable energy sources, and releases no carbon dioxide emissions into the atmosphere.

  20. Tri-Lateral Noor al Salaam High Concentration Solar Central Receiver Program

    SciTech Connect (OSTI)

    Blackmon, James B

    2008-03-31

    This report documents the efforts conducted primarily under the Noor al Salaam (“Light of Peace”) program under DOE GRANT NUMBER DE-FC36-02GO12030, together with relevant technical results from a closely related technology development effort, the U.S./Israel Science and Technology Foundation (USISTF) High Concentration Solar Central Receiver program. These efforts involved preliminary design, development, and test of selected prototype power production subsystems and documentation of an initial version of the system definition for a high concentration solar hybrid/gas electrical power plant to be built in Zaafarana, Egypt as a first step in planned commercialization. A major part of the planned work was halted in 2007 with an amendment in October 2007 requiring that we complete the technical effort by December 31, 2007 and provide a final report to DOE within the following 90 days. This document summarizes the work conducted. The USISTF program was a 50/50 cost-shared program supported by the Department of Commerce through the U.S./Israel Science and Technology Commission (USISTC). The USISTC was cooperatively developed by President Clinton and the late Prime Minister Rabin of Israel "to encourage technological collaboration" and "support peace in the Middle East through economic development". The program was conducted as a follow-on effort to Israel's Magnet/CONSOLAR Program, which was an advanced development effort to design, fabricate, and test a solar central receiver and secondary optics for a "beam down" central receiver concept. The status of these hardware development programs is reviewed, since they form the basis for the Noor al Salaam program. Descriptions are provided of the integrated system and the major subsystems, including the heliostat, the high temperature air receiver, the power conversion unit, tower and tower reflector, compound parabolic concentrator, and the master control system. One objective of the USISTF program was to conduct marketing research, identify opportunities for use of this technology, and to the extent possible, secure an agreement leading to a pre-commercialization demonstration or prototype plant. This was accomplished with the agreement to conduct the Noor al Salaam program as a tri-lateral project between Egypt, Israel, and the U.S. The tri-lateral project was led by the University of Alabama in Huntsville (UAH); this included the Egyptian New and Renewable Energy Authority and the Israeli USISTC participants. This project, known was Noor al Salaam, was funded by the U.S. Agency for International Development (USAID) through the Department of Energy (DOE). The Egyptian activity was under the auspices of the Egyptian Ministry of Energy and Electricity, New and Renewable Energy Authority (NREA) as part of Egypt's plans for renewable energy development. The objective of the Noor al Salaam project was to develop the conditions necessary to obtain funding and construct and operate an approximately 10 to 20 Megawatt hybrid solar/natural gas demonstration power plant in Zaafarana, Egypt that could serve both as a test bed for advanced solar technology evaluations, and as a forerunner to commercial plant designs. This plant, termed Noor Al Salaam, or “Light of Peace”, reached the initial phase of system definition before being curtailed, in part by changes in USAID objectives, coupled with various delays that were beyond the scope of the program to resolve. The background of the USISTF technology development and pre-commercialization effort is provided in this report, together with documentation of the technology developments conducted under the Noor al Salaam program. It should be noted that only a relatively small part of the Noor al Salaam funding was expended over the approximately five years for which UAH was prime contractor before the program was ordered closed (Reference 1) so that the remaining funds could be returned to USAID.

  1. Modelling Concentrating Solar Power with Thermal Energy Storage for Integration Studies (Presentation)

    SciTech Connect (OSTI)

    Hummon, M.; Jorgenson, J.; Denholm, P.; Mehos, M.

    2013-10-01

    Concentrating solar power with thermal energy storage (CSP-TES) can provide multiple benefits to the grid, including low marginal cost energy and the ability to levelize load, provide operating reserves, and provide firm capacity. It is challenging to properly value the integration of CSP because of the complicated nature of this technology. Unlike completely dispatchable fossil sources, CSP is a limited energy resource, depending on the hourly and daily supply of solar energy. To optimize the use of this limited energy, CSP-TES must be implemented in a production cost model with multiple decision variables for the operation of the CSP-TES plant. We develop and implement a CSP-TES plant in a production cost model that accurately characterizes the three main components of the plant: solar field, storage tank, and power block. We show the effect of various modelling simplifications on the value of CSP, including: scheduled versus optimized dispatch from the storage tank and energy-only operation versus co-optimization with ancillary services.

  2. Modelling Concentrating Solar Power with Thermal Energy Storage for Integration Studies: Preprint

    SciTech Connect (OSTI)

    Hummon, M.; Denholm, P.; Jorgenson, J.; Mehos, M.

    2013-10-01

    Concentrating solar power with thermal energy storage (CSP-TES) can provide multiple benefits to the grid, including low marginal cost energy and the ability to levelize load, provide operating reserves, and provide firm capacity. It is challenging to properly value the integration of CSP because of the complicated nature of this technology. Unlike completely dispatchable fossil sources, CSP is a limited energy resource, depending on the hourly and daily supply of solar energy. To optimize the use of this limited energy, CSP-TES must be implemented in a production cost model with multiple decision variables for the operation of the CSP-TES plant. We develop and implement a CSP-TES plant in a production cost model that accurately characterizes the three main components of the plant: solar field, storage tank, and power block. We show the effect of various modelling simplifications on the value of CSP, including: scheduled versus optimized dispatch from the storage tank and energy-only operation versus co-optimization with ancillary services.

  3. Solar powered circulation pump development. Final report

    SciTech Connect (OSTI)

    Johnson, A.L.

    1980-09-01

    An iterative design and evaluation process was undertaken to develop a prototype solar powered liquid circulation pump. The first effort was to review the state-of-the-art of liquid piston heat engines. Next a morphological analysis of the original concept was performed. An analysis of the pump performance from a theoretical basis was performed by deriving and solving the equations governing the cycle. The results are documented. An experimental evaluation of the condensing phenomena was performed. The design of the boiler was then undertaken. This effort showed a fundamental physical limitation imposed by the original geometry and the physics of water boiling. In an effort to resolve this problem, a number of alternate configurations were examined, with the result being that the boiler and heat pipe elements of the design were entirely eliminated. In their stead it was assumed that the boiling could be conducted in the solar panel. A number of solar panel designs were examined, and the most appropriate type of solar panel is described in the appendix. A 1/4th scale unit was fabricated and tested. The overall efficiency was approximately 1% at the design point, compared with a theoretical limit of 1.6% for the given operating conditions. The production costs of the full size pump were examined. Finally systems integration aspects were considered and the results presented.

  4. Single-junction solar cells with the optimum band gap for terrestrial concentrator applications

    DOE Patents [OSTI]

    Wanlass, Mark W. (Golden, CO)

    1994-01-01

    A single-junction solar cell having the ideal band gap for terrestrial concentrator applications. Computer modeling studies of single-junction solar cells have shown that the presence of absorption bands in the direct spectrum has the effect of "pinning" the optimum band gap for a wide range of operating conditions at a value of 1.14.+-.0.02 eV. Efficiencies exceeding 30% may be possible at high concentration ratios for devices with the ideal band gap.

  5. Economic, Energy, and Environmental Benefits of Concentrating Solar Power in California

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Economic, Energy, and Environmental Benefits of Concentrating Solar Power in California L. Stoddard, J. Abiecunas, and R. O'Connell Black & Veatch Overland Park, Kansas In Collaboration with the Interfaith Environmental Council and the Coalition on the Environment and Jewish Life of Southern California Los Angeles, California Subcontract Report NREL/SR-550-39291 April 2006 Economic, Energy, and Environmental Benefits of Concentrating Solar Power in California May 2005 - April 2006 L.

  6. Molten Salt-Carbon Nanotube Thermal Energy Storage for Concentrating Solar Power Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molten Salt-Carbon Nanotube Thermal Energy Storage for Concentrating Solar Power Systems Final Report March 31, 2012 Michael Schuller, Frank Little, Darren Malik, Matt Betts, Qian Shao, Jun Luo, Wan Zhong, Sandhya Shankar, Ashwin Padmanaban The Space Engineering Research Center Texas Engineering Experiment Station Texas A&M University Abstract We demonstrated that adding nanoparticles to a molten salt would increase its utility as a thermal energy storage medium for a concentrating solar

  7. Obama Administration Releases Roadmap for Solar Energy Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Releases Roadmap for Solar Energy Development on Public Lands Obama Administration Releases Roadmap for Solar Energy Development on Public Lands July 24, 2012 - 4:00pm Addthis News ...

  8. SunShot Concentrating Solar Power Program Update | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Update SunShot Concentrating Solar Power Program Update This PowerPoint slide deck, entitled "SunShot Concentrating Solar Power Program Update," was originally presented by Ranga Pitchumani at the Program Review Meeting on April 23, 2013 in Phoenix, AZ. The presentation an overview of the DOE's SunShot initiative, a review of ongoing solar programs, a discussion of FY13 funding opportunities, and an update on CSP deployment. PDF icon csp_review_meeting_042313_pitchumani.pdf

  9. Development of a Low Cost Ultra Specular Advanced Polymer Film Solar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reflector | Department of Energy Low Cost Ultra Specular Advanced Polymer Film Solar Reflector Development of a Low Cost Ultra Specular Advanced Polymer Film Solar Reflector This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23-25, 2013 near Phoenix, Arizona. PDF icon csp_review_meeting_042313_jorgensen.pdf More Documents & Publications POLYMERIC MIRROR FILMS: DURABILITY IMPROVEMENT AND IMPLEMENTATION IN NEW COLLECTOR DESIGNS

  10. Current flow and efficiencies of concentrator InGaP/GaAs/Ge solar cells at temperatures below 300K

    SciTech Connect (OSTI)

    Kalinovsky, Vitaly S. Kontrosh, Evgeny V. Dmitriev, Pavel A. Pokrovsky, Pavel V. Chekalin, Alexander V. Andreev, Viacheslav M.

    2014-09-26

    The forward dark current density – voltage (J-V) characteristic is one of the most important characteristics of multi-junction solar cells. It indicates that the mechanisms of current flow in the space charge region of photoactive p-n junctions. If one is to idealize the optical and electrical (coupling) elements of the solar cells, it is the J-V characteristic that determines the theoretically possible efficiency of the solar cell. In this paper, using the connection between the dark J-V and photovoltaic (?-J{sub g}) efficiency – generated current density characteristics, the effect of current transport mechanisms in the space charge on the efficiency of multi-junction solar cells was investigated in the temperature range of 300 – 80 K. In the experimental J-V and ?-J{sub g} curves of the multi-junction solar cells, segments corresponding to the dominant current transport mechanisms were identified. The developed method, based on the analysis of forward dark J-V characteristics, makes it possible to identify the parameters affecting the efficiency of the multi-junction solar cells in a wide range of temperatures and solar radiation concentration.

  11. Solar Energy - It's Growth, Development, and Use

    Office of Scientific and Technical Information (OSTI)

    Solar Energy Resources with Additional Information Solar Energy Courtesy of National Renewable Energy Laboratory Credit-Robb Williamson The Department of Energy has played a major...

  12. Project Profile: High-Temperature Solar Selective Coating Development for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Tower Receivers | Department of Energy Solar Selective Coating Development for Power Tower Receivers Project Profile: High-Temperature Solar Selective Coating Development for Power Tower Receivers Sandia National Laboratories logo Sandia National Laboratories (SNL), under the National Laboratory R&D competitive funding opportunity, is developing, characterizing, and refining advanced solar-selective coatings with high solar-weighted absorptivity (a > 0.95) and low emittance (e

  13. Advances in Concentrating Solar Power Collectors: Mirrors and Solar Selective Coatings

    SciTech Connect (OSTI)

    Kenendy, C. E.

    2007-10-10

    The intention is to explore the feasibility of depositing the coating by lower-cost methods and to perform a rigorous cost analysis after a viable high-temperature solar-selective coating is demonstrated by e-beam.

  14. Utility Community Solar Handbook- Understanding and Supporting Utility Program Development

    Broader source: Energy.gov [DOE]

    The "Utility Community Solar Handbook: Understanding and Supporting Utility Program Development" provides the utility's perspective on community solar program development and is a resource for government officials, regulators, community organizers, solar energy advocates, non-profits, and interested citizens who want to support their local utilities in implementing projects.

  15. Solar Technology Validation Project - Hualapai Valley Solar (Met Station): Cooperative Research and Development Final Report, CRADA Number CRD-09-367-02

    SciTech Connect (OSTI)

    Wilcox, S.

    2013-07-01

    Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.

  16. Solar Technology Validation Project - Southwest Solar (Met Station): Cooperative Research and Development Final Report, CRADA Number CRD-09-367-08

    SciTech Connect (OSTI)

    Wilcox, S.

    2013-08-01

    Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.

  17. Enabling a Transition to Low Carbon Economies in Developing Countries...

    Open Energy Info (EERE)

    - Waste to Energy, - Anaerobic Digestion, Solar, - Concentrating Solar Power, - Solar PV, Wind Topics: GHG inventory, Low emission development planning, Policiesdeployment...

  18. An Analysis of Concentrating Solar Power with Thermal Energy Storage in a California 33% Renewable Scenario (Report Summary) (Presentation), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Analysis of Concentrating Solar Power with Thermal Energy Storage in a California 33% Renewable Scenario (Report Summary) Paul Denholm, Yih-Huei Wan, Marissa Hummon, Mark Mehos March 2013 NREL/PR-6A20-58470 2 Motivation * Implement concentrating solar power (CSP) with thermal energy storage (TES) in a commercial production cost model o Develop approaches that can be used by utilities and system planners to incorporate CSP in standard planning tools * Evaluate the optimal dispatch of CSP with

  19. NREL Supports Development of World's Largest Solar Electric Power Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project in 14 Years - News Releases | NREL NREL Supports Development of World's Largest Solar Electric Power Plant Project in 14 Years October 19, 2005 Golden, Colo. - Researchers with the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) have collaborated with Solargenix Energy on the solar collector technology to be used in the development of Nevada Solar One, a 64-megawatt (MW) Solar Thermal Electric Generating Plant in Boulder City, Nev. "We are excited

  20. NREL: Concentrating Solar Power Research - Receiver R&D

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    power conversion systems must operate at high temperatures without depending on water and fluids. And advanced receivers will need to be developed to integrate with these...

  1. IEA-Technology Roadmap: Concentrating Solar Power | Open Energy...

    Open Energy Info (EERE)

    Power Screenshot References: IEA-CSP Roadmap1 "This roadmap identifies technology, economy and policy goals and milestones needed to support the development and deployment of...

  2. Development of Commercial Technology for Thin Film Silicon Solar Cells on Glass: Cooperative Research and Development Final Report, CRADA Number CRD-07-209

    SciTech Connect (OSTI)

    Sopori, B.

    2013-03-01

    NREL has conducted basic research relating to high efficiency, low cost, thin film silicon solar cell design and the method of making solar cells. Two patents have been issued to NREL in the above field. In addition, specific process and metrology tools have been developed by NREL. Applied Optical Sciences Corp. (AOS) has expertise in the manufacture of solar cells and has developed its own unique concentrator technology. AOS wants to complement its solar cell expertise and its concentrator technology by manufacturing flat panel thin film silicon solar cell panels. AOS wants to take NREL's research to the next level, using it to develop commercially viable flat pane, thin film silicon solar cell panels. Such a development in equipment, process, and metrology will likely produce the lowest cost solar cell technology for both commercial and residential use. NREL's fundamental research capability and AOS's technology and industrial background are complementary to achieve this product development.

  3. Concentrating Solar Resource of the Southwest United States

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by NREL. *Source: POWERmap, powermap.platts.com 2007 Platts, A Division of The McGraw-Hill Companies This map was developed by the National Renewable Energy Laboratory...

  4. Solar Energy Option Requirement for Residential Developments

    Broader source: Energy.gov [DOE]

     Solar energy systems are defined to include systems that use solar energy to provide "all or a portion of the heating, cooling, or general energy needs of a dwelling unit, including, but not lim...

  5. Single-junction solar cells with the optimum band gap for terrestrial concentrator applications

    DOE Patents [OSTI]

    Wanlass, M.W.

    1994-12-27

    A single-junction solar cell is described having the ideal band gap for terrestrial concentrator applications. Computer modeling studies of single-junction solar cells have shown that the presence of absorption bands in the direct spectrum has the effect of ''pinning'' the optimum band gap for a wide range of operating conditions at a value of 1.14[+-]0.02 eV. Efficiencies exceeding 30% may be possible at high concentration ratios for devices with the ideal band gap. 7 figures.

  6. Advancing State-of-the-Art Concentrating Solar Power Systems | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy State-of-the-Art Concentrating Solar Power Systems Advancing State-of-the-Art Concentrating Solar Power Systems April 15, 2013 - 12:00am Addthis Brayton Energy's conceptual design for a large scale high temperature direct sCO2 receiver includes a novel use of quartz tubes to reduce radiant and convective losses and is projected to achieve greater than 90% efficiency. Brayton Energy's conceptual design for a large scale high temperature direct sCO2 receiver includes a novel use of

  7. EERE Success Story-Advancing State-of-the-Art Concentrating Solar Power

    Office of Environmental Management (EM)

    Systems | Department of Energy State-of-the-Art Concentrating Solar Power Systems EERE Success Story-Advancing State-of-the-Art Concentrating Solar Power Systems April 15, 2013 - 12:00am Addthis Brayton Energy's conceptual design for a large scale high temperature direct sCO2 receiver includes a novel use of quartz tubes to reduce radiant and convective losses and is projected to achieve greater than 90% efficiency. Brayton Energy's conceptual design for a large scale high temperature direct

  8. Cycle Evaluations of Reversible Chemical Reactions for Solar Thermochemical Energy Storage in Support of Concentrating Solar Power Generation Systems

    SciTech Connect (OSTI)

    Krishnan, Shankar; Palo, Daniel R.; Wegeng, Robert S.

    2010-07-25

    The production and storage of thermochemical energy is a possible route to increase capacity factors and reduce the Levelized Cost of Electricity from concentrated solar power generation systems. In this paper, we present the results of cycle evaluations for various thermochemical cycles, including a well-documented ammonia closed-cycle along with open- and closed-cycle versions of hydrocarbon chemical reactions. Among the available reversible hydrocarbon chemical reactions, catalytic reforming-methanation cycles are considered; specifically, various methane-steam reforming cycles are compared to the ammonia cycle. In some cases, the production of an intermediate chemical, methanol, is also included with some benefit being realized. The best case, based on overall power generation efficiency and overall plant capacity factor, was found to be an open cycle including methane-steam reforming, using concentrated solar energy to increase the chemical energy content of the reacting stream, followed by combustion to generate heat for the heat engine.

  9. Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation

    SciTech Connect (OSTI)

    Reddy, Ramana G.

    2013-10-23

    The explicit UA program objective is to develop low melting point (LMP) molten salt thermal energy storage media with high thermal energy storage density for sensible heat storage systems. The novel Low Melting Point (LMP) molten salts are targeted to have the following characteristics: 1. Lower melting point (MP) compared to current salts (<222şC) 2. Higher energy density compared to current salts (>300 MJ/m3) 3. Lower power generation cost compared to current salt In terms of lower power costs, the program target the DOE's Solar Energy Technologies Program year 2020 goal to create systems that have the potential to reduce the cost of Thermal Energy Storage (TES) to less than $15/kWh-th and achieve round trip efficiencies greater than 93%. The project has completed the experimental investigations to determine the thermo-physical, long term thermal stability properties of the LMP molten salts and also corrosion studies of stainless steel in the candidate LMP molten salts. Heat transfer and fluid dynamics modeling have been conducted to identify heat transfer geometry and relative costs for TES systems that would utilize the primary LMP molten salt candidates. The project also proposes heat transfer geometry with relevant modifications to suit the usage of our molten salts as thermal energy storage and heat transfer fluids. The essential properties of the down-selected novel LMP molten salts to be considered for thermal storage in solar energy applications were experimentally determined, including melting point, heat capacity, thermal stability, density, viscosity, thermal conductivity, vapor pressure, and corrosion resistance of SS 316. The thermodynamic modeling was conducted to determine potential high temperature stable molten salt mixtures that have thermal stability up to 1000 °C. The thermo-physical properties of select potential high temperature stable (HMP) molten salt mixtures were also experimentally determined. All the salt mixtures align with the go/no-go goals stipulated by the DOE for this project. Energy densities of all salt mixtures were higher than that of the current solar salt. The salt mixtures costs have been estimated and TES system costs for a 2 tank, direct approach have been estimated for each of these materials. All estimated costs are significantly below the baseline system that used solar salt. These lower melt point salts offer significantly higher energy density per volume than solar salt – and therefore attractively smaller inventory and equipment costs. Moreover, a new TES system geometry has been recommended A variety of approaches were evaluated to use the low melting point molten salt. Two novel changes are recommended that 1) use the salt as a HTF through the solar trough field, and 2) use the salt to not only create steam but also to preheat the condensed feedwater for Rankine cycle. The two changes enable the powerblock to operate at 500°C, rather than the current 400°C obtainable using oil as the HTF. Secondly, the use of salt to preheat the feedwater eliminates the need to extract steam from the low pressure turbine for that purpose. Together, these changes result in a dramatic 63% reduction required for 6 hour salt inventory, a 72% reduction in storage volume, and a 24% reduction in steam flow rate in the power block. Round trip efficiency for the Case 5 - 2 tank “direct” system is estimated at >97%, with only small losses from time under storage and heat exchange, and meeting RFP goals. This attractive efficiency is available because the major heat loss experienced in a 2 tank “indirect” system - losses by transferring the thermal energy from oil HTF to the salt storage material and back to oil to run the steam generator at night - is not present for the 2 tank direct system. The higher heat capacity values for both LMP and HMP systems enable larger storage capacities for concentrating solar power.

  10. Boosting Accuracy of Testing Multijunction Solar Cells (Fact Sheet), NREL Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    has developed a more precise technology for measuring efficiency of concentrating solar cells, enabling the industry to advance. Solar researchers have long been unable to reduce an error that occurs during efficiency measurements of triple-absorber, concentrating photovoltaic (CPV) cells- one that is caused by too much spectral irradiance from unfiltered, pulsed xenon solar simulators entering into the bottom subcell during testing. This condition causes an artificial increase in the measured

  11. Audit Report - Implementation of the Department of Energy's Concentrating Solar Power Program, OAS-RA-L-13-01

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Implementation of the Department of Energy's Concentrating Solar Power Program OAS-RA-L-13-01 November 2012 Department of Energy Washington, DC 20585 November 1, 2012 MEMORANDUM FOR THE PROGRAM DIRECTOR, CONCENTRATING SOLAR POWER PROGRAM FROM: Daniel M. Weeber Assistant Inspector General for Audits and Administration Office of Inspector General SUBJECT: INFORMATION: Audit Report on "Implementation of the Department of Energy's Concentrating Solar Power Program" BACKGROUND The

  12. The integrated compound parabolic concentrator: From development to demonstration

    SciTech Connect (OSTI)

    Winston, R.; O`Gallagher, J.J.; Duff, W.S.; Cavallaro, A.

    1997-12-31

    The authors describe the fabrication, testing and application of the Integrated Compound Parabolic Concentrator (ICPC) to solar cooling. The cooling technology is a double effect absorption cycle chiller operating at 165 C. The design parameters are optimized for this temperature range. The optical and mechanical design of the solar collector is chosen for compatibility with mass production. A project to employ approximately 350 of these collector tubes to drive a 20 ton commercial double effect chiller on an office building in Sacramento, CA has started. The authors expect the system to be operational this year.

  13. High-Temperatuer Solar Selective Coating Development for Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23-25, 2013 near Phoenix, Arizona. PDF icon cspreviewmeeting042413...

  14. High Flux Microchannel Solar Receiver Development with Adaptive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23-25, 2013 near Phoenix, Arizona. PDF icon cspreviewmeeting042313...

  15. Increasing Community Access to Solar: Designing and Developing a Shared Solar Photovoltaic System (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-06-01

    This document introduces the Energy Department's new Guide to Community Shared Solar: Utility, Private, and Nonprofit Project Development. The guide is designed to help those who want to develop community shared solar projects - from community organizers and advocates to utility managers and government officials - navigate the process of developing shared systems, from early planning to implementation.

  16. Department of Energy Finalizes Partial Guarantee for $852 Million Loan to Support California Concentrating Solar Power Plant

    Broader source: Energy.gov [DOE]

    Project Will Fund Over 800 Jobs and Increase Nation’s Currently Installed Concentrating Solar Power Capacity by an Estimated 50 Percent

  17. US solar energy policy for less developed countries

    SciTech Connect (OSTI)

    Russett, B.

    1980-10-01

    By many different standards, solar energy is considered to be, at least potentially, a good thing. The assessment of its utility, however, typically is made on technical engineering grounds, or on economic standards of cost-effectiveness, without close attention to political and sociological implications of its use. While remaining sensitive to engineering and economic considerations, this report will concentrate on some political and sociological issues which will have great affect on decisions whether and how to make use of solar energy technology in less developed countries (LDCs). Only with an understanding of these issues - and with answers to some of the questions raised - can there be any serious effort to devise a satisfactory United States government policy for the promotion of solar energy applications abroad. This report, in the form of tentative propositions outlining issues about which further information is required, is based on the results of interviews in the United States, India and the Middle East, and an analysis of various reports by private individuals, national and transnational organizations, and government agencies.

  18. Energy Yield Determination of Concentrator Solar Cells using Laboratory Measurements: Preprint

    SciTech Connect (OSTI)

    Geisz, John F.; Garcia, Ivan; McMahon, William E.; Steiner, Myles A.; Ochoa, Mario; France, Ryan M.; Habte, Aron; Friedman, Daniel J.

    2015-09-14

    The annual energy conversion efficiency is calculated for a four junction inverted metamorphic solar cell that has been completely characterized in the laboratory at room temperature using measurements fit to a comprehensive optoelectronic model of the multijunction solar cells. A simple model of the temperature dependence is used to predict the performance of the solar cell under varying temperature and spectra characteristic of Golden, CO for an entire year. The annual energy conversion efficiency is calculated by integrating the predicted cell performance over the entire year. The effects of geometric concentration, CPV system thermal characteristics, and luminescent coupling are highlighted. temperature and spectra characteristic of Golden, CO for an entire year. The annual energy conversion efficiency is calculated by integrating the predicted cell performance over the entire year. The effects of geometric concentration, CPV system thermal characteristics, and luminescent coupling are highlighted.

  19. Solar Permitting Roadmap Development | OpenEI Community

    Open Energy Info (EERE)

    Solar Permitting Roadmap Development Home > Features > Groups Content Group Activity By term Q & A Feeds Content type Blog entry Discussion Document Event Poll Question...

  20. Project Profile: High-Temperature Solar Selective Coating Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tower Receivers Project Profile: High-Temperature Solar Selective Coating Development for ... Characterize the optical performance, material properties, and temperature stability. ...

  1. Low-Cost Solar Water Heating Research and Development Roadmap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Low-Cost Solar Water Heating Research and Development Roadmap K. Hudon, T. Merrigan, J. Burch and J. Maguire National Renewable Energy Laboratory Technical Report NREL...

  2. Assessing the health risk of solar development on contaminated...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    published report from Argonne's Environmental Science (EVS) division presents a methodology for assessing potential human health risks of developing utility-scale solar...

  3. Advances on multijunction solar cell characterization aimed at the optimization of real concentrator performance

    SciTech Connect (OSTI)

    Garcia-Linares, Pablo Dominguez, César Voarino, Philippe Besson, Pierre Baudrit, Mathieu

    2014-09-26

    Multijunction solar cells (MJSC) are usually developed to maximize efficiency under test conditions and not under real operation. This is the case of anti-reflective coatings (ARC), which are meant to minimize Fresnel reflection losses for a family of incident rays at room temperature. In order to understand and quantify the discrepancies between test and operation conditions, we have experimentally analyzed the spectral response of MJSC for a variety of incidence angles that are in practice received by a concentrator cell in high-concentration photovoltaic (HCPV) receiver designs. Moreover, we characterize this angular dependence as a function of temperature in order to reproduce real operation conditions. As the refractive index of the silicone is dependent on temperature, an optical mismatch is expected. Regarding other characterization techniques, a method called Relative EL Homogeneity Analysis (RELHA) is applied to processed wafers prior to dicing, allowing to diagnose the wafer crystalline homogeneity for each junction. Finally, current (I)-voltage (V) characterization under strongly unbalanced light spectra has also been carried out for a number of low-level irradiances, providing insight on each junction shunt resistance and corresponding radiative coupling.

  4. Research and Development of a Low Cost Solar Collector

    SciTech Connect (OSTI)

    Ansari, Asif; Philip, Lee; Thouppuarachchi, Chirath

    2012-08-01

    This is a Final Technical Report on the Research and Development completed towards the development of a Low Cost Solar Collector conducted under the DOE cost-sharing award EE-0003591. The objective of this project was to develop a new class of solar concentrators with geometries and manufacturability that could significantly reduce the fully installed cost of the solar collector field for concentrated solar thermal power plants. The goal of the project was to achieve an aggressive cost target of $170/m2, a reduction of up to 50% in the total installed cost of a solar collector field as measured against the current industry benchmark of a conventional parabolic trough. The project plan, and the detailed activities conducted under the scope of the DOE Award project addressed all major drivers that affect solar collector costs. In addition to costs, the study also focused on evaluating technical performance of new collector architectures and compared them to the performance of the industry benchmark parabolic trough. The most notable accomplishment of this DOE award was the delivery of a full-scale integrated design, manufacturing and field installation solution for a new class of solar collector architecture which has been classified as the Bi-Planar Fresnel Collector (BPFC) and may be considered as a viable alternative to the conventional parabolic trough, as well as the conventional Fresnel collectors. This was in part accomplished through the design and development, all the way through fabrication and test validation of a new class of Linear Planar Fresnel Collector architecture. This architecture offers a number of key differentiating features which include a planar light-weight frame geometry with small mass-manufacturable elements utilizing flat mirror sections. The designs shows significant promise in reducing the material costs, fabrication costs, shipping costs, and on-site field installation costs compared to the benchmark parabolic trough, as well as the conventional Fresnel collector. The noteworthy design features of the BPFC architecture include the use of relatively cheaper flat mirrors and a design which allows the mirror support beam sections to act as load-bearing structural elements resulting in more than a 36% reduction in the overall structural weight compared to an optimized parabolic trough. Also, it was shown that the utilization of small mass-produced elements significantly lowers mass-production and logistics costs that can more quickly deliver economies of scale, even for smaller installations while also reducing shipping and installation costs. Moreover, unlike the traditional Fresnel trough the BPFC architecture does not require complex articulating drive mechanisms but instead utilizes a standard parabolic trough hydraulic drive mechanism. In addition to the development of the Bi-Planar Fresnel Collector, an optimized conventional space-frame type parabolic trough was also designed, built, analyzed and field-tested during the first phase of this award. The design of the conventional space-frame parabolic collector was refined with extensive FEA and CFD analysis to reduce material costs and re-designed for simpler fabrication and more accurate lower-cost field assembly. This optimized parabolic trough represented an improvement over the state-of-the art of the traditional parabolic trough architecture and also served as a more rigorous and less subjective benchmark that was used for comparison of new candidate design architectures. The results of the expanded 1st phase of the DOE award project showed that both the Optimized Parabolic Trough and the new Bi-Planar Fresnel Collector design concepts failed to meet the primary objectives for the project of achieving a 50% cost reduction from the industry reference total installed cost of $350/m2. Results showed that the BPFC came in at projected total installed cost of $237/m2 representing a 32% savings compared to the industry benchmark conventional parabolic trough. And the cost reduction obtained by the Optimized Parabolic Trough compared to the

  5. High Efficiency Nanostructured III-V Photovoltaics for Solar Concentrator Application

    SciTech Connect (OSTI)

    Hubbard, Seth

    2012-09-12

    The High Efficiency Nanostructured III-V Photovoltaics for Solar Concentrators project seeks to provide new photovoltaic cells for Concentrator Photovoltaics (CPV) Systems with higher cell efficiency, more favorable temperature coefficients and less sensitivity to changes in spectral distribution. The main objective of this project is to provide high efficiency III-V solar cells that will reduce the overall cost per Watt for power generation using CPV systems.This work is focused both on a potential near term application, namely the use of indium arsenide (InAs) QDs to spectrally "tune" the middle (GaAs) cell of a SOA triple junction device to a more favorable effective bandgap, as well as the long term goal of demonstrating intermediate band solar cell effects. The QDs are confined within a high electric field i-region of a standard GaAs solar cell. The extended absorption spectrum (and thus enhanced short circuit current) of the QD solar cell results from the increase in the sub GaAs bandgap spectral response that is achievable as quantum dot layers are introduced into the i-region. We have grown InAs quantum dots by OMVPE technique and optimized the QD growth conditions. Arrays of up to 40 layers of strain balanced quantum dots have been experimentally demonstrated with good material quality, low residual stain and high PL intensity. Quantum dot enhanced solar cells were grown and tested under simulated one sun AM1.5 conditions. Concentrator solar cells have been grown and fabricated with 5-40 layers of QDs. Testing of these devices show the QD cells have improved efficiency compared to baseline devices without QDs. Device modeling and measurement of thermal properties were performed using Crosslight APSYS. Improvements in a triple junction solar cell with the insertion of QDs into the middle current limiting junction was shown to be as high as 29% under one sun illumination for a 10 layer stack QD enhanced triple junction solar cell. QD devices have strong potential for net gains in efficiency at high concentration.

  6. Development of a 75-kW heat-pipe receiver for solar heat-engines

    SciTech Connect (OSTI)

    Adkins, D.R.; Andraka, C.E.; Moss, T.A.

    1995-05-01

    A program is now underway to develop commercial power conversion systems that use parabolic dish mirrors in conjunction with Stirling engines to convert solar energy to electric power. In early prototypes, the solar concentrator focused light directly on the heater tubes of the Stirling engine. Liquid-metal heat-pipes are now being developed to transfer energy from the focus of the solar concentrator to the heater tubes of the engine. The dome-shaped heat-pipe receivers are approximately one-half meters in diameter and up to 77-kW of concentrated solar energy is delivered to the absorber surface. Over the past several years, Sandia National Laboratories, through the sponsorship of the Department of Energy, has conducted a major program to explore receiver designs and identify suitable wick materials. A high-flux bench-scale system has been developed to test candidate wick designs, and full-scale systems have been tested on an 11-meter test-bed solar concentrator. Procedures have also been developed in this program to measure the properties of wick materials, and an extensive data-base on wick materials for high temperature heat pipes has been developed. This paper provides an overview of the receiver development program and results from some of the many heat-pipe tests.

  7. Pennsylvania Company Develops Solar Cell Printing Technology

    Broader source: Energy.gov [DOE]

    The technology uses Plextronics’ conductive inks that can be printed by manufacturers worldwide to make solar cells, potentially as easily as they might print a newspaper.

  8. EIS-0403: Solar Energy Development in Six Southwestern States

    Broader source: Energy.gov [DOE]

    The BLM and DOE have jointly prepared this PEIS to evaluate actions that the agencies are considering taking to further facilitate utility-scale solar energy development in six southwestern states. For the BLM, this includes the evaluation of a new Solar Energy Program applicable to solar development on BLM-administered lands. For DOE, it includes the evaluation of developing new guidance to further facilitate utility-scale solar energy development and maximize the mitigation of associated potential environmental impacts. This Solar PEIS evaluates the potential environmental, social, and economic effects of the agencies’ proposed actions and alternatives. For additional information, please visit the Solar PEIS website at http://solareis.anl.gov.

  9. Obama Administration Releases Roadmap for Solar Energy Development on

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Public Lands | Department of Energy Releases Roadmap for Solar Energy Development on Public Lands Obama Administration Releases Roadmap for Solar Energy Development on Public Lands July 24, 2012 - 4:00pm Addthis News Media Contact (202) 586-4940 WASHINGTON - As part of President Obama's all-of-the-above energy strategy, the Department of the Interior, in partnership with the Department of Energy, will publish the Final Programmatic Environmental Impact Statement (PEIS) for solar energy

  10. Research & Development Needs for Building-Integrated Solar Technologies |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Needs for Building-Integrated Solar Technologies Research & Development Needs for Building-Integrated Solar Technologies The Building Technologies Office (BTO) has identified Building Integrated Solar Technologies (BIST) as a potentially valuable piece of the comprehensive pathway to help achieve its goal of reducing energy consumption in residential and commercial buildings by 50% by the year 2030. This report helps to identify the key research and development

  11. Emcore/SunPeak Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Solar Power Plant Facility EmcoreSunPeak Sector Solar Facility Type Concentrating Photovoltaic Developer SunPeak Solar Location Albuquerque, New Mexico Coordinates 35.0844909,...

  12. Don Ana Sun Tower Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Don Ana Sun Tower Sector Solar Facility Type Concentrating Solar Power Developer NRG EnergyeSolar Location Dona Ana County, New Mexico Coordinates 32.485767,...

  13. THE GENESIS SOLAR WIND CONCENTRATOR TARGET: MASS FRACTIONATION CHARACTERISED BY NE ISOTOPES

    SciTech Connect (OSTI)

    WIENS, ROGER C.; OLINGER, C.; HEBER, V.S.; REISENFELD, D.B.; BURNETT, D.S.; ALLTON, J.H.; BAUR, H.; WIECHERT, U.; WIELER, R.

    2007-01-02

    The concentrator on Genesis provides samples of increased fluences of solar wind ions for precise determination of the oxygen isotopic composition of the solar wind. The concentration process caused mass fractionation as function of the radial target position. They measured the fractionation using Ne released by UV laser ablation along two arms of the gold cross from the concentrator target to compare measured Ne with modeled Ne. The latter is based on simulations using actual conditions of the solar wind during Genesis operation. Measured Ne abundances and isotopic composition of both arms agree within uncertainties indicating a radial symmetric concentration process. Ne data reveal a maximum concentration factor of {approx} 30% at the target center and a target-wide fractionation of Ne isotopes of 3.8%/amu with monotonously decreasing {sup 20}Ne/{sup 22}Ne ratios towards the center. The experimentally determined data, in particular the isotopic fractionation, differ from the modeled data. They discuss potential reasons and propose future attempts to overcome these disagreements.

  14. Heat Pipe Solar Receiver Development Activities at Sandia National Laboratories

    SciTech Connect (OSTI)

    Adkins, D.R.; Andraka, C.E.; Moreno, J.B.; Moss, T.A.; Rawlinson, K.S.; Showalter, S.K.

    1999-01-08

    Over the past decade, Sandia National Laboratories has been involved in the development of receivers to transfer energy from the focus of a parabolic dish concentrator to the heater tubes of a Stirling engine. Through the isothermal evaporation and condensation of sodium. a heat-pipe receiver can efficiently transfer energy to an engine's working fluid and compensate for irregularities in the flux distribution that is delivered by the concentrator. The operation of the heat pipe is completely passive because the liquid sodium is distributed over the solar-heated surface by capillary pumping provided by a wick structure. Tests have shown that using a heat pipe can boost the system performance by twenty percent when compared to directly illuminating the engine heater tubes. Designing heat pipe solar receivers has presented several challenges. The relatively large area ({approximately}0.2 m{sup 2}) of the receiver surface makes it difficult to design a wick that can continuously provide liquid sodium to all regions of the heated surface. Selecting a wick structure with smaller pores will improve capillary pumping capabilities of the wick, but the small pores will restrict the flow of liquid and generate high pressure drops. Selecting a wick that is comprised of very tine filaments can increase the permeability of the wick and thereby reduce flow losses, however, the fine wick structure is more susceptible to corrosion and mechanical damage. This paper provides a comprehensive review of the issues encountered in the design of heat pipe solar receivers and solutions to problems that have arisen. Topics include: flow characterization in the receiver, the design of wick systems. the minimization of corrosion and dissolution of metals in sodium systems. and the prevention of mechanical failure in high porosity wick structures.

  15. Sulfur Based Thermochemical Heat Storage for Baseload Concentrated Solar Power Generation

    SciTech Connect (OSTI)

    wong, bunsen

    2014-11-20

    This project investigates the engineering and economic feasibility of supplying baseload power using a concentrating solar power (CSP) plant integrated with sulfur based thermochemical heat storage. The technology stores high temperature solar heat in the chemical bonds of elemental sulfur. Energy is recovered as high temperature heat upon sulfur combustion. Extensive developmental and design work associated with sulfur dioxide (SO2) disproportionation and sulfuric acid (H2SO4) decomposition chemical reactions used in this technology had been carried out in the two completed phases of this project. The feasibility and economics of the proposed concept was demonstrated and determined.

  16. Method and apparatus for aligning a solar concentrator using two lasers

    DOE Patents [OSTI]

    Diver Jr., Richard Boyer

    2003-07-22

    A method and apparatus are provided for aligning the facets of a solar concentrator. A first laser directs a first laser beam onto a selected facet of the concentrator such that a target board positioned adjacent to the first laser at approximately one focal length behind the focal point of the concentrator is illuminated by the beam after reflection thereof off of the selected facet. A second laser, located adjacent to the vertex of the optical axis of the concentrator, is used to direct a second laser beam onto the target board at a target point thereon. By adjusting the selected facet to cause the first beam to illuminate the target point on the target board produced by the second beam, the selected facet can be brought into alignment with the target point. These steps are repeated for other selected facets of the concentrator, as necessary, to provide overall alignment of the concentrator.

  17. Solar Technology Validation Project - Loyola Marymount University: Cooperative Research and Development Final Report, CRADA Number CRD-09-367-03

    SciTech Connect (OSTI)

    Wilcox, S.

    2013-08-01

    Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.

  18. Solar Technology Validation Project - USS Data, LLC: Cooperative Research and Development Final Report, CRADA Number CRD-09-367-04

    SciTech Connect (OSTI)

    Wilcox, S.

    2013-08-01

    Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.

  19. Solar Technology Validation Project - Solargen (Met Station): Cooperative Research and Development Final Report, CRADA Number CRD-09-367-06

    SciTech Connect (OSTI)

    Wilcox, S.

    2013-08-01

    Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.

  20. Solar Technology Validation Project - Iberdrola Renewables, Inc.: Cooperative Research and Development Final Report, CRADA Number CRD-08-298-3

    SciTech Connect (OSTI)

    Wilcox, S.

    2013-08-01

    Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.

  1. Solar Technology Validation Project - Amonix, Inc.: Cooperative Research and Development Final Report, CRADA Number CRD-09-367-13

    SciTech Connect (OSTI)

    Wilcox, S.

    2013-08-01

    Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.

  2. Solar Technology Validation Project - RES Americas: Cooperative Research and Development Final Report, CRADA Number CRD-09-367-11

    SciTech Connect (OSTI)

    Wilcox, S.

    2013-08-01

    Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.

  3. Concentrating Solar Power and Water Issues in the U.S. Southwest

    SciTech Connect (OSTI)

    Bracken, N.; Macknick, J.; Tovar-Hastings, A.; Komor, P.; Gerritsen, M.; Mehta, S.

    2015-03-01

    Concentrating solar power (CSP) systems utilize the sun's energy to create heat that is used to generate electrical power. CSP systems in the United States are installed primarily in the Southwest, with 92% of plants that are operational, under construction, or under development located in three western states--Arizona, California, and Nevada. This report provides an overview of CSP development in these states, or the 'Southwest' for the purposes of this discussion, with a particular focus on the water supply issues associated with CSP. The Western Governors' Association (WGA) commissioned staff from the Western States Water Council (WSWC) to collaborate with staff from the National Renewable Energy Laboratory (NREL) to prepare this report. The WGA has long supported the effective management of the West's water resources, as well as the development of a clean, diverse, reliable, and affordable energy supply consisting of traditional and renewable energy resources. This report is specifically intended to help inform these goals, especially as WGA continues to underwrite a Regional Transmission Expansion Planning project, undertaken by the WSWC and the Western Electricity Coordinating Council (WECC), to better understand energy development within the existing and future water resource constraints of the West. This report builds upon earlier research conducted by NREL, the University of Colorado-Boulder, and Stanford University that was supported through the Joint Institute for Strategic Energy Analysis (JISEA) and presents information gathered through extensive research and literature reviews, as well as interviews and outreach with state water administrators and energy regulators, WECC and other experts familiar with CSP development in the Southwest.

  4. Effects of Spectral Error in Efficiency Measurements of GaInAs-Based Concentrator Solar Cells

    SciTech Connect (OSTI)

    Osterwald, C. R.; Wanlass, M. W.; Moriarty, T.; Steiner, M. A.; Emery, K. A.

    2014-03-01

    This technical report documents a particular error in efficiency measurements of triple-absorber concentrator solar cells caused by incorrect spectral irradiance -- specifically, one that occurs when the irradiance from unfiltered, pulsed xenon solar simulators into the GaInAs bottom subcell is too high. For cells designed so that the light-generated photocurrents in the three subcells are nearly equal, this condition can cause a large increase in the measured fill factor, which, in turn, causes a significant artificial increase in the efficiency. The error is readily apparent when the data under concentration are compared to measurements with correctly balanced photocurrents, and manifests itself as discontinuities in plots of fill factor and efficiency versus concentration ratio. In this work, we simulate the magnitudes and effects of this error with a device-level model of two concentrator cell designs, and demonstrate how a new Spectrolab, Inc., Model 460 Tunable-High Intensity Pulsed Solar Simulator (T-HIPSS) can mitigate the error.

  5. Opportunities and Challenges for Solar Minigrid Development in Rural India

    SciTech Connect (OSTI)

    Thirumurthy, N.; Harrington, L.; Martin, D.; Thomas, L.; Takpa, J.; Gergan, R.

    2012-09-01

    The goal of this report is to inform investors about the potential of solar minigrid technologies to serve India's rural market. Under the US-India Energy Dialogue, the US Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) is supporting the Indian Ministry of New and Renewable Energy (MNRE)'s Jawaharlal Nehru National Solar Mission (JNNSM) in performing a business-case and policy-oriented analysis on the deployment of solar minigrids in India. The JNNSM scheme targets the development of 2GW of off-grid solar power by 2022 and provides large subsidies to meet this target. NREL worked with electricity capacity and demand data supplied by the Ladakh Renewable Energy Development Agency (LREDA) from Leh District, to develop a technical approach for solar minigrid development. Based on the NREL-developed, simulated solar insolation data for the city of Leh, a 250-kW solar photovoltaic (PV) system can produce 427,737 kWh over a 12-month period. The business case analysis, based on several different scenarios and JNNSM incentives shows the cost of power ranges from Rs. 6.3/kWh (US$0.126) to Rs. 9/kWh (US$0.18). At these rates, solar power is a cheaper alternative to diesel. An assessment of the macro-environment elements--including political, economic, environmental, social, and technological--was also performed to identify factors that may impact India?s energy development initiatives.

  6. Performance and cost benefits associated with nonimaging secondary concentrators used in point-focus dish solar thermal applications

    SciTech Connect (OSTI)

    O'Gallagher, J.; Winston, R.

    1987-09-01

    Using nonimaging secondary concentrators in point-focus applications may permit the development of more cost-effective concentrator systems by either improving performance or reducing costs. Secondaries may also increase design flexibility. The major objective of this study was to develop as complete an understanding as possible of the quantitative performance and cost effects associated with deploying nonimaging secondary concentrators at the focal zone of point-focus solar thermal concentrators. A performance model was developed that uses a Monte Carlo ray-trace procedure to determine the focal plane distribution of a paraboloidal primary as a function of optical parameters. It then calculates the corresponding optimized concentration and thermal efficiency as a function of temperature with and without the secondary. To examine the potential cost benefits associated with secondaries, a preliminary model for the rational optimization of performance versus cost trade-offs was developed. This model suggests a possible 10% to 20% reduction in the cost of delivered energy when secondaries are used. This is a lower limit, and the benefits may even be greater if using a secondary permits the development of inexpensive primary technologies for which the performance would not otherwise be viable. 20 refs., 15 figs., 3 tabs.

  7. Performance of a Thermally Stable Polyaromatic Hydrocarbon in a Simulated Concentrating Solar Power Loop

    SciTech Connect (OSTI)

    McFarlane, Joanna; Bell, Jason R; Felde, David K; Joseph III, Robert Anthony; Qualls, A L; Weaver, Samuel P

    2014-01-01

    Polyaromatic hydrocarbon thermal fluids showing thermally stability to 600 C have been tested for solar thermal-power applications. Although static thermal tests showed promising results for 1-phenylnaphthalene, loop testing at temperatures to 450 C indicated that the fluid isomerized and degraded at a slow rate. In a loop with a temperature high enough to drive the isomerization, the higher melting point byproducts tended to condense onto cooler surfaces. So, as experienced in loop operation, eventually the internal channels of cooler components in trough solar electric generating systems, such as the waste heat rejection exchanger, may become coated or clogged affecting loop performance. Thus, pure 1-phenylnaphthalene, without addition of stabilizers, does not appear to be a fluid that would have a sufficiently long lifetime (years to decades) to be used in a loop at the temperatures greater than 500 C. The performance of a concentrating solar loop using high temperature fluids was modeled based on the National Renewable Laboratory Solar Advisory Model. It was determined that a solar-to-electricity efficiency of up to 30% and a capacity factor of near 60% could be achieved using a high efficiency collector and 12 h thermal energy storage.

  8. Finite element modeling of concentrating solar collectors for evauation of gravity loads, bending, and optical characterization.

    SciTech Connect (OSTI)

    Christian, Joshua M.; Ho, Clifford Kuofei

    2010-04-01

    Understanding the effects of gravity and wind loads on concentrating solar power (CSP) collectors is critical for performance calculations and developing more accurate alignment procedures and techniques. This paper presents a rigorous finite-element model of a parabolic trough collector that is used to determine the impact of gravity loads on bending and displacements of the mirror facets and support structure. The geometry of the LUZ LS-2 parabolic trough collector was modeled using SolidWorks, and gravity-induced loading and displacements were simulated in SolidWorks Simulation. The model of the trough collector was evaluated in two positions: the 90{sup o} position (mirrors facing upward) and the 0{sup o} position (mirrors facing horizontally). The slope errors of the mirror facet reflective surfaces were found by evaluating simulated angular displacements of node-connected segments along the mirror surface. The ideal (undeformed) shape of the mirror was compared to the shape of the deformed mirror after gravity loading. Also, slope errors were obtained by comparing the deformed shapes between the 90{sup o} and 0{sup o} positions. The slope errors resulting from comparison between the deformed vs. undeformed shape were as high as {approx}2 mrad, depending on the location of the mirror facet on the collector. The slope errors resulting from a change in orientation of the trough from the 90{sup o} position to the 0{sup o} position with gravity loading were as high as {approx}3 mrad, depending on the location of the facet.

  9. CRADA Final Report: Process development for hybrid solar cells

    SciTech Connect (OSTI)

    Ager, Joel W

    2011-02-14

    TCF funding of a CRADA between LBNL and RSLE leveraged RSLE's original $1M investment in LBNL research and led to development of a solar cell fabrication process that will bring the high efficiency, high voltage hybrid tandem solar cell closer to commercialization. RSLE has already built a pilot line at its Phoenix, Arizona site.

  10. 2009 Technical Risk and Uncertainty Analysis of the U.S. Department of Energy's Solar Energy Technologies Program Concentrating Solar Power and Photovoltaics R&D

    SciTech Connect (OSTI)

    McVeigh, J.; Lausten, M.; Eugeni, E.; Soni, A.

    2010-11-01

    The U.S. Department of Energy (DOE) Solar Energy Technologies Program (SETP) conducted a 2009 Technical Risk and Uncertainty Analysis to better assess its cost goals for concentrating solar power (CSP) and photovoltaic (PV) systems, and to potentially rebalance its R&D portfolio. This report details the methodology, schedule, and results of this technical risk and uncertainty analysis.

  11. Developing new high energy gradient concentration cathode material |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy new high energy gradient concentration cathode material Developing new high energy gradient concentration cathode material 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon esp_10_amine.pdf More Documents & Publications New High Energy Gradient Concentration Cathode Material New High Energy Gradient Concentration Cathode Material New High Energy Gradient

  12. Potential for Development of Solar and Wind Resource in Bhutan

    SciTech Connect (OSTI)

    Gilman, P.; Cowlin, S.; Heimiller, D.

    2009-09-01

    With support from the U.S. Agency for International Development (USAID), the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) produced maps and data of the wind and solar resources in Bhutan. The solar resource data show that Bhutan has an adequate resource for flat-plate collectors, with annual average values of global horizontal solar radiation ranging from 4.0 to 5.5 kWh/m2-day (4.0 to 5.5 peak sun hours per day). The information provided in this report may be of use to energy planners in Bhutan involved in developing energy policy or planning wind and solar projects, and to energy analysts around the world interested in gaining an understanding of Bhutan's wind and solar energy potential.

  13. Development of thermal performance criteria for residential passive solar buildings

    SciTech Connect (OSTI)

    Sabatiuk, P.A.; Cassel, D.E.; McCabe, M.; Scarbrough, C.

    1980-01-01

    In support of the development of thermal performance criteria for residential passive solar buildings, thermal design characteristics and anticipated performance for 266 projects in the HUD Passive Residential Design Competition and the HUD Cycle 5 Demonstration Program were analyzed. These passive residences are located in all regions of the United States requiring space heating, and they represent a variety of passive solar system types including direct gain, indirect gain, and solarium (isolated gain) systems. The results of this statistical analysis are being used to develop proposed minimum acceptable levels of thermal performance for passive solar buildings for the residential performance criteria. A number of performance measures were examined, including net solar contribution, solar fraction, and auxiliary energy use. These and other design and climate-related parameters were statistically correlated using the DATAPLOT computer program and standard statistical analysis techniques.

  14. Starwood Solar I Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Starwood Solar I Solar Power Plant Jump to: navigation, search Name Starwood Solar I Solar Power Plant Facility Starwood Solar I Sector Solar Facility Type Concentrating Solar...

  15. Nevada Solar One Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Solar One Solar Power Plant Jump to: navigation, search Name Nevada Solar One Solar Power Plant Facility Nevada Solar One Sector Solar Facility Type Concentrating Solar Power...

  16. Mojave Solar Park Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Solar Park Solar Power Plant Jump to: navigation, search Name Mojave Solar Park Solar Power Plant Facility Mojave Solar Park Sector Solar Facility Type Concentrating Solar Power...

  17. Tucson's Solar Experience: Developing PV with RFPs and PPAs

    Broader source: Energy.gov [DOE]

    This presentation was given January 15, 2013, by Bruce Plenk, Solar Coordinator for the City of Tucson, Arizona, as part of the CommRE Developing PV Projects With RFPs and PPAs webinar.

  18. Solar Energy Plan of Development Outline | Open Energy Information

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: Solar Energy Plan of Development OutlineLegal Published NA Year Signed or Took Effect 2012...

  19. Tribal Leader Forum: Solar Energy Development in the Southwest

    Energy Savers [EERE]

    TRIBAL LEADER FORUM: SOLAR ENERGY DEVELOPMENT IN THE SOUTHWEST December 19-20, 2011 SPA RESORT CASINO HOTEL IN PALM SPRINGS, CA 100 North Indian Canyon Drive Palm Springs, CA 92262 (888) 999-1995 The first of a series of planned DOE Office of Indian Energy-sponsored strategic energy development & investment forums, this Forum will provide an opportunity for Tribal leaders and executives to get real-time, regional market snapshots of: solar power purchasing, project financing options and

  20. The Effectiveness of State-Level Policies on Solar Market Development...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Effectiveness of State-Level Policies on Solar Market Development in Different State ... Effectiveness of State- Level Policies on Solar Market Development in Different State ...

  1. Final Report-- A Novel Storage Method for Concentrating Solar Power Plants Allowing Storage at High Temperature

    SciTech Connect (OSTI)

    Morris, Jeffrey F.

    2014-09-29

    The main objective of the proposed work was the development and testing of a storage method that has the potential to fundamentally change the solar thermal industry. The development of a mathematical model that describes the phenomena involved in the heat storage and recovery was also a main objective of this work. Therefore, the goal was to prepare a design package allowing reliable scale-up and optimization of design.

  2. ImagineSolar | Open Energy Information

    Open Energy Info (EERE)

    Workforce training, Corporate consulting - Solar projects, Solar sales, Solar marketing, Solar business development, Solar policy, Solar advocacy, Solar government...

  3. Report to Congress on Assessment of Potential Impact of Concentrating Solar Power for Electriicty Generation (EPACT 2005--Section 934(c))

    SciTech Connect (OSTI)

    Wilkins, F.

    2007-02-01

    Summary of DOE's assessment of issues regarding EPAct 2005, which requires the Secretary of Energy to assess conflicting guidance on the economic potential of concentrating solar power for electricity production.

  4. Domestic Material Content in Molten-Salt Concentrating Solar Power Plants

    SciTech Connect (OSTI)

    Turchi, Craig; Kurup, Parthiv; Akar, Sertac; Flores, Francisco

    2015-08-26

    This study lists material composition data for two concentrating solar power (CSP) plant designs: a molten-salt power tower and a hypothetical parabolic trough plant, both of which employ a molten salt for the heat transfer fluid (HTF) and thermal storage media. The two designs have equivalent generating and thermal energy storage capacities. The material content of the saltHTF trough plant was approximately 25% lower than a comparably sized conventional oil-HTF parabolic trough plant. The significant reduction in oil, salt, metal, and insulation mass by switching to a salt-HTF design is expected to reduce the capital cost and LCOE for the parabolic trough system.

  5. Analysis of Concentrating Solar Power with Thermal Energy Storage in a California 33% Renewable Scenario

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis of Concentrating Solar Power with Thermal Energy Storage in a California 33% Renewable Scenario Paul Denholm, Yih-Huei Wan, Marissa Hummon, and Mark Mehos Technical Report NREL/TP-6A20-58186 March 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov

  6. Simulating the Value of Concentrating Solar Power with Thermal Energy Storage in a Production Cost Model

    SciTech Connect (OSTI)

    Denholm, P.; Hummon, M.

    2012-11-01

    Concentrating solar power (CSP) deployed with thermal energy storage (TES) provides a dispatchable source of renewable energy. The value of CSP with TES, as with other potential generation resources, needs to be established using traditional utility planning tools. Production cost models, which simulate the operation of grid, are often used to estimate the operational value of different generation mixes. CSP with TES has historically had limited analysis in commercial production simulations. This document describes the implementation of CSP with TES in a commercial production cost model. It also describes the simulation of grid operations with CSP in a test system consisting of two balancing areas located primarily in Colorado.

  7. Effects of Spectral Error in Efficiency Measurements of GaInAs-Based Concentrator Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Effects of Spectral Error in Efficiency Measurements of GaInAs-Based Concentrator Solar Cells C.R. Osterwald, M.W. Wanlass, T. Moriarty, M.A. Steiner, and K.A. Emery Technical Report NREL/TP-5200-60748 March 2014 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

  8. Gaskell Sun Tower and 2 others Solar Power Plant | Open Energy...

    Open Energy Info (EERE)

    Sector Solar Facility Type Concentrating Solar Power Facility Status Proposed Developer NRG EnergyeSolar Location Kern County, California Coordinates 35.4937274, -118.8596804...

  9. Whitfield Solar Ltd | Open Energy Information

    Open Energy Info (EERE)

    Kingdom Zip: RG6 6AU Sector: Renewable Energy, Solar Product: Developing solar photovoltaic concentrators aimed at generating clean renewable energy for the world market....

  10. Method of manufacturing large dish reflectors for a solar concentrator apparatus

    DOE Patents [OSTI]

    Angel, Roger P (Tucson, AZ); Olbert, Blain H (Tucson, AZ)

    2011-12-27

    A method of manufacturing monolithic glass reflectors for concentrating sunlight in a solar energy system is disclosed. The method of manufacturing allows large monolithic glass reflectors to be made from float glass in order to realize significant cost savings on the total system cost for a solar energy system. The method of manufacture includes steps of heating a sheet of float glass positioned over a concave mold until the sheet of glass sags and stretches to conform to the shape of the mold. The edges of the dish-shaped glass are rolled for structural stiffening around the periphery. The dish-shaped glass is then silvered to create a dish-shaped mirror that reflects solar radiation to a focus. The surface of the mold that contacts the float glass preferably has a grooved surface profile comprising a plurality of cusps and concave valleys. This grooved profile minimizes the contact area and marring of the specular glass surface, reduces parasitic heat transfer into the mold and increases mold lifetime. The disclosed method of manufacture is capable of high production rates sufficiently fast to accommodate the output of a conventional float glass production line so that monolithic glass reflectors can be produced as quickly as a float glass production can make sheets of float glass to be used in the process.

  11. Progress to Develop an Advanced Solar-Selective Coating

    SciTech Connect (OSTI)

    Kennedy, C. E.

    2008-03-01

    The progress to develop a durable advanced solar-selective coating will be described. Experimental work has focused on modeling high-temperature, solar-selective coatings; depositing the individual layers and modeled coatings; measuring the optical, thermal, morphology, and compositional properties and using the data to validate the modeled and deposited properties; re-optimizing the coating; and testing the coating performance and durability.

  12. Status report on a solar photovoltaic concentrating energy system for a hospital in Hawaii

    SciTech Connect (OSTI)

    Seki, A.; Curtis, G.; Yuen, P.

    1983-06-01

    The largest parabolic concentrating photovoltaic/solar thermal system in the U.S. began producing electricity and hot water for a hospital on the island of Kauai, Hawaii in November 1981. Each of the 80 parabolic collectors is 6 feet by 10 feet and concentrates incident sunlight on photovoltaic cells mounted on two faces of the receiver at the focus. Although the 35 kilowatt system has been designed to produce 22,000 net kilowatt-hours per year of electricity and 620,000 gallons of 180 F water, electrical output (12 to 15 kilowatt-hours per day) is only 20 percent of that expected, primarily because insolation at the site has been only 40 percent of predicted values. A second problem with fungal attack on the receivers has been solved by better sealing. The system has also withstood a hurricane with negligible damage.

  13. Comparison of Theoretical Efficiencies of Multi-junction Concentrator Solar Cells

    SciTech Connect (OSTI)

    Kurtz, S.; Myers, D.; McMahon, W. E.; Geisz, J.; Steiner, M.

    2008-01-01

    Champion concentrator cell efficiencies have surpassed 40% and now many are asking whether the efficiencies will surpass 50%. Theoretical efficiencies of >60% are described for many approaches, but there is often confusion about the theoretical efficiency for a specific structure. The detailed balance approach to calculating theoretical efficiency gives an upper bound that can be independent of material parameters and device design. Other models predict efficiencies that are closer to those that have been achieved. Changing reference spectra and the choice of concentration further complicate comparison of theoretical efficiencies. This paper provides a side-by-side comparison of theoretical efficiencies of multi-junction solar cells calculated with the detailed balance approach and a common one-dimensional-transport model for different spectral and irradiance conditions. Also, historical experimental champion efficiencies are compared with the theoretical efficiencies.

  14. Market development directory for solar industrial process heat systems

    SciTech Connect (OSTI)

    1980-02-01

    The purpose of this directory is to provide a basis for market development activities through a location listing of key trade associations, trade periodicals, and key firms for three target groups. Potential industrial users and potential IPH system designers were identified as the prime targets for market development activities. The bulk of the directory is a listing of these two groups. The third group, solar IPH equipment manufacturers, was included to provide an information source for potential industrial users and potential IPH system designers. Trade associates and their publications are listed for selected four-digit Standard Industrial Code (SIC) industries. Since industries requiring relatively lower temperature process heat probably will comprise most of the near-term market for solar IPH systems, the 80 SIC's included in this chapter have process temperature requirements less than 350/sup 0/F. Some key statistics and a location list of the largest plants (according to number of employees) in each state are included for 15 of the 80 SIC's. Architectural/engineering and consulting firms are listed which are known to have solar experience. Professional associated and periodicals to which information on solar IPH sytstems may be directed also are included. Solar equipment manufacturers and their associations are listed. The listing is based on the SERI Solar Energy Information Data Base (SEIDB).

  15. Solar energy research and development: federal and private sector roles

    SciTech Connect (OSTI)

    Not Available

    1982-09-01

    The Energy Research Advisory Board convened a Solar R and D Panel to determine the status of the solar industry and solar R and D in the United States and to recommend to DOE appropriate roles for the Federal and private sectors. The Panel's report acknowledges the new Administration policy reorienting the Federal role in energy development to long-term, high-risk, high-payoff R and D, and leaving commercialization to the private sector. The Panel's recommendations are further predicated on an assumption of continued, substantially reduced funding in the near-term. The Panel found that solar energy technologies have progressed significantly in the past 10 years and represent a group of highly promising energy options for the United States. However, it also found the solar industry to be in a precarious condition, fluctuating energy demand and prices, and uncertain Federal tax and regulatory policies. The Business Energy and Residential Tax Credits are essential to the near-term health of the solar industry. Commercialization has already begun for some solar technologies; for others, decreases in Federal funding will result in a slowdown or termination. The primary Federal roles in solar R and D should be in support of basic and applied research, high-risk, high-payoff technology development and other necessary research for which there are insufficient market incentives. The Federal Government should also move strongly to transfer technology to the private sector for near-commerical technologies. Large demonstration and commercialization projects cannot be justified for Federal funding under current economic conditions. These should be pursued by the private sector. The Panel examined seven technology areas and made specific findings and recommendations for each.

  16. Mountain Association for Community Economic Development- Solar Water Heater Loan Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Kentucky Solar Partnership (KSP) and the Mountain Association for Community Economic Development (MACED) partner to offer low interest loans for the installation of solar water heaters. Loans...

  17. Guide to Community Solar: Utility, Private, and Non-Profit Project Development (Fact Sheet)

    SciTech Connect (OSTI)

    Ruckman, K.

    2011-03-01

    This fact sheet provides an overview of the DOE Solar America Communities report Guide to Community Solar: Utility, Private, and Non-profit Project Development.

  18. A Guide to Community Solar: Utility, Private and Non-Profit Project Development

    Broader source: Energy.gov [DOE]

    A Guide to Community Solar: Utility, Private and Non-Profit Project Development provides information on various community solar project models, state policies that support community solar projects, and tax policies and incentives.

  19. Community Response to Concentrating Solar Power in the San Luis Valley: October 9, 2008 - March 31, 2010

    SciTech Connect (OSTI)

    Farhar, B. C.; Hunter, L. M.; Kirkland, T. M.; Tierney, K. J.

    2010-06-01

    This report is about the social acceptance of utility-scale concentrating solar power (CSP) plants in the San Luis Valley, approximately 200 miles southwest of Denver, Colorado. The research focused on social factors that may facilitate and impede the adoption and implementation of CSP. During the winter of 2008-2009, interviews were conducted with a purposive sample of 25 CSP-related stakeholders inside and outside the Valley. Interviews focused on the perceived advantages and disadvantages of siting a hypothetical 100-MW CSP facility in the Valley, the level of community support and opposition to CSP development, and related issues, such as transmission. State policy recommendations based on the findings include developing education programs for Valley residents, integrating Valley decision makers into an energy-water-land group, providing training for Valley decision makers, offering workforce training, evaluating models of taxation, and forming landholder energy associations. In addition, the SLV could become a laboratory for new approaches to CSP facility and transmission siting decision-making. The author recommends that outside stakeholders address community concerns and engage Valley residents in CSP decisions. Engaging the residents in CSP and transmission decisions, the author says, should take parallel significance with the investment in solar technology.

  20. Concentrating Solar Power �¢���� Central Receiver Panel Component Fabrication and Testing FINAL REPORT

    SciTech Connect (OSTI)

    McDowell, Michael W; Miner, Kris

    2013-03-30

    The objective of this project is to complete a design of an advanced concentrated solar panel and demonstrate the manufacturability of key components. Then confirm the operation of the key components under prototypic solar flux conditions. This work is an important step in reducing the levelized cost of energy (LCOE) from a central receiver solar power plant. The key technical risk to building larger power towers is building the larger receiver systems. Therefore, this proposed technology project includes the design of an advanced molten salt prototypic sub-scale receiver panel that can be utilized into a large receiver system. Then complete the fabrication and testing of key components of the receive design that will be used to validate the design. This project shall have a significant impact on solar thermal power plant design. Receiver panels of suitable size for utility scale plants are a key element to a solar power tower plant. Many subtle and complex manufacturing processes are involved in producing a reliable, robust receiver panel. Given the substantial size difference between receiver panels manufactured in the past and those needed for large plant designs, the manufacture and demonstration on prototype receiver panel components with representative features of a full-sized panel will be important to improving the build process for commercial success. Given the thermal flux limitations of the test facility, the panel components cannot be rendered full size. Significance changes occurred in the projects technical strategies from project initiation to the accomplishments described herein. The initial strategy was to define cost improvements for the receiver, design and build a scale prototype receiver and test, on sun, with a molten salt heat transport system. DOE had committed to constructing a molten salt heat transport loop to support receiver testing at the top of the NSTTF tower. Because of funding constraints this did not happen. A subsequent plan to test scale prototype receiver, off sun but at temperature, at a molten salt loop at ground level adjacent to the tower also had to be abandoned. Thus, no test facility existed for a molten salt receiver test. As a result, PWR completed the prototype receiver design and then fabricated key components for testing instead of fabricating the complete prototype receiver. A number of innovative design ideas have been developed. Key features of the receiver panel have been identified. This evaluation includes input from Solar 2, personal experience of people working on these programs and meetings with Sandia. Key components of the receiver design and key processes used to fabricate a receiver have been selected for further evaluation. The Test Plan, Concentrated Solar Power Receiver In Cooperation with the Department of Energy and Sandia National Laboratory was written to define the scope of the testing to be completed as well as to provide details related to the hardware, instrumentation, and data acquisition. The document contains a list of test objectives, a test matrix, and an associated test box showing the operating points to be tested. Test Objectives: 1. Demonstrate low-cost manufacturability 2. Demonstrate robustness of two different tube base materials 3. Collect temperature data during on sun operation 4. Demonstrate long term repeated daily operation of heat shields 5. Complete pinhole tube weld repairs 6. Anchor thermal models This report discusses the tests performed, the results, and implications for design improvements and LCOE reduction.

  1. Synthesis and characterization of ferrite materials for thermochemical CO2 splitting using concentrated solar energy.

    SciTech Connect (OSTI)

    Stechel, Ellen Beth; Ambrosini, Andrea; Coker, Eric Nicholas; Rodriguez, Mark Andrew; Miller, James Edward; Evans, Lindsey R.; Livers, Stephanie

    2010-07-01

    The Sunshine to Petrol effort at Sandia aims to convert carbon dioxide and water to precursors for liquid hydrocarbon fuels using concentrated solar power. Significant advances have been made in the field of solar thermochemical CO{sub 2}-splitting technologies utilizing yttria-stabilized zirconia (YSZ)-supported ferrite composites. Conceptually, such materials work via the basic redox reactions: Fe{sub 3}O{sub 4} {yields} 3FeO + 0.5O{sub 2} (Thermal reduction, >1350 C) and 3FeO + CO{sub 2} {yields} Fe{sub 3}O{sub 4} + CO (CO{sub 2}-splitting oxidation, <1200 C). There has been limited fundamental characterization of the ferrite-based materials at the high temperatures and conditions present in these cycles. A systematic study of these composites is underway in an effort to begin to elucidate microstructure, structure-property relationships, and the role of the support on redox behavior under high-temperature reducing and oxidizing environments. In this paper the synthesis, structural characterization (including scanning electron microscopy and room temperature and in-situ x-ray diffraction), and thermogravimetric analysis of YSZ-supported ferrites will be reported.

  2. Synthesis and characterization of metal oxide materials for thermochemical CO2 splitting using concentrated solar energy.

    SciTech Connect (OSTI)

    Stechel, Ellen Beth; Ambrosini, Andrea; Coker, Eric Nicholas; Rodriguez, Mark Andrew; Miller, James Edward; Evans, Lindsey R.; Livers, Stephanie

    2010-07-01

    The Sunshine to Petrol effort at Sandia aims to convert carbon dioxide and water to precursors for liquid hydrocarbon fuels using concentrated solar power. Significant advances have been made in the field of solar thermochemical CO{sub 2}-splitting technologies utilizing yttria-stabilized zirconia (YSZ)-supported ferrite composites. Conceptually, such materials work via the basic redox reactions: Fe{sub 3}O{sub 4} {yields} 3FeO + 0.5O{sub 2} (Thermal reduction, >1350 C) and 3FeO + CO{sub 2} {yields} Fe{sub 3}O{sub 4} + CO (CO{sub 2}-splitting oxidation, <1200 C). There has been limited fundamental characterization of the ferrite-based materials at the high temperatures and conditions present in these cycles. A systematic study of these composites is underway in an effort to begin to elucidate microstructure, structure-property relationships, and the role of the support on redox behavior under high-temperature reducing and oxidizing environments. In this paper the synthesis, structural characterization (including scanning electron microscopy and room temperature and in-situ x-ray diffraction), and thermogravimetric analysis of YSZ-supported ferrites will be reported.

  3. Solar Millenium Palen Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Palen Solar Power Plant Jump to: navigation, search Name Solar Millenium Palen Solar Power Plant Facility Solar Millenium Palen Sector Solar Facility Type Concentrating Solar Power...

  4. SES Solar Two Project Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Two Project Solar Power Plant Jump to: navigation, search Name SES Solar Two Project Solar Power Plant Facility SES Solar Two Project Sector Solar Facility Type Concentrating Solar...

  5. Improved Modeling Tools Development for High Penetration Solar

    SciTech Connect (OSTI)

    Washom, Byron

    2014-12-11

    One of the significant objectives of the High Penetration solar research is to help the DOE understand, anticipate, and minimize grid operation impacts as more solar resources are added to the electric power system. For Task 2.2, an effective, reliable approach to predicting solar energy availability for energy generation forecasts using the University of California, San Diego (UCSD) Sky Imager technology has been demonstrated. Granular cloud and ramp forecasts for the next 5 to 20 minutes over an area of 10 square miles were developed. Sky images taken every 30 seconds are processed to determine cloud locations and cloud motion vectors yielding future cloud shadow locations respective to distributed generation or utility solar power plants in the area. The performance of the method depends on cloud characteristics. On days with more advective cloud conditions, the developed method outperforms persistence forecasts by up to 30% (based on mean absolute error). On days with dynamic conditions, the method performs worse than persistence. Sky Imagers hold promise for ramp forecasting and ramp mitigation in conjunction with inverter controls and energy storage. The pre-commercial Sky Imager solar forecasting algorithm was documented with licensing information and was a Sunshot website highlight

  6. An update on the development of heat-pipe solar receivers for Stirling/dish-electric systems

    SciTech Connect (OSTI)

    Adkins, D.R. ); Godett, T.M. )

    1991-01-01

    The Department of Energy is sponsoring the development of a 75-kW (thermal) heat-pipe solar receiver to drive a 25-kW (electric) Stirling engine/generator system. A heat pipe solar receiver transfers energy from the focus of a parabolic-dish solar concentrator to the heater tubes of a Stirling engine through the evaporation and condensation of a liquid metal. With a heat pipe receiver, it is possible to transform irregular flux profiles from solar concentrators into a more uniform thermal input at the engine's heater tubes. Recent work in the heat-pipe receiver development program is reviewed in this paper. Techniques for constructing the heat-pipe receiver's wick structure are discussed and findings from recent bench-scale tests are presented. This paper also addresses several problem areas that have been discovered in the course of this program. 9 refs., 10 figs., 1 tab.

  7. Research and Development Needs for Building-Integrated Solar Technologies

    SciTech Connect (OSTI)

    none,

    2014-01-01

    The Building Technologies Office (BTO) has identified Building Integrated Solar Technologies (BIST) as a potentially valuable piece of the comprehensive pathway to help achieve its goal of reducing energy consumption in residential and commercial buildings by 50% by the year 2030. This report helps to identify the key research and development (R&D) needs that will be required for BIST to make a substantial contribution toward that goal. BIST include technologies for space heating and cooling, water heating, hybrid photovoltaic-thermal systems (PV/T), active solar lighting, and building-integrated photovoltaics (BIPV).

  8. Solar Technology Validation Project - Utah State Energy Program (Met Station): Cooperative Research and Development Final Report, CRADA Number CRD-09-367-09

    SciTech Connect (OSTI)

    Wilcox, S.

    2013-08-01

    Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.

  9. Solar Technology Validation Project - Tri-State G&T: Cooperative Research and Development Final Report, CRADA Number CRD-09-367-12

    SciTech Connect (OSTI)

    Wilcox, S.

    2013-08-01

    Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.

  10. Energy Department Announces $1.2 Billion Loan Guarantee to Support California Concentrating Solar Power Plant

    Broader source: Energy.gov [DOE]

    Project Will Fund More Than 900 Jobs and Deploy Innovative Technologies Expected to Drive Down Cost of Solar

  11. Ute Mountain Ute Tribe - Local Scale Solar Energy Development

    Energy Savers [EERE]

    Ute Mountain Ute Tribe Renewable Energy Committee Agenda * Introduction to the Tribe and Tribal Natural Resources * Looking to the Future, Expanding the Portfolio of Natural Resource Development * Focus on solar energy development * The DOE-funded feasibility study * Reservation of approximately 600,000 acres, with lands located in Colorado, Utah, and New Mexico * Tribal communities in Towaoc (southwestern Colorado) and White Mesa (Southeastern Utah) * Approximately 2,300 enrolled Tribal members

  12. NREL and Solarex Partner to Expand Development of Solar Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solarex Partner to Expand Development of Solar Technology For more information contact: e:mail: Public Affairs Golden, Colo., August 12, 1997 -- The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) recently signed a cooperative research and development agreement with Solarex of Frederick, Md. to conduct further research on thin film photovoltaic modules. The agreement is designed to combine the expertise and capabilities of the laboratory and the company. It will focus on

  13. Commercialization of High-Temperature Solar Selective Coating: Cooperative Research and Development Final Report, CRADA Number CRD-08-300

    SciTech Connect (OSTI)

    Gray, M. H.

    2014-01-01

    The goal for Concentrating Solar Power (CSP) technologies is to produce electricity at 15 cents/kilowatt-hour (kWh) with six hours of thermal storage in 2015 (intermediate power) and close to 10 cents/kWh with 12-17 hours of thermal storage in 2020 (baseload power). Cost reductions of up to 50% to the solar concentrator are targeted through technology advances. The overall solar-to-electric efficiency of parabolic-trough solar power plants can be improved and the cost of solar electricity can be reduced by improving the properties of the selective coating on the receiver and increasing the solar-field operating temperature to >450 degrees C. New, more-efficient selective coatings will be needed that have both high solar absorptance and low thermal emittance at elevated temperatures. Conduction and convection losses from the hot absorber surface are usually negligible for parabolic trough receivers. The objective is to develop new, more-efficient selective coatings with both high solar absorptance (..alpha.. > 0.95) and low thermal emittance (..epsilon.. < 0.08 @ 450 degrees C) that are thermally stable above 450 degrees C, ideally in air, with improved durability and manufacturability, and reduced cost.

  14. High 400?°C operation temperature blue spectrum concentration solar junction in GaInN/GaN

    SciTech Connect (OSTI)

    Zhao, Liang; Detchprohm, Theeradetch; Wetzel, Christian

    2014-12-15

    Transparent wide gap junctions suitable as high temperature, high flux topping cells have been achieved in GaInN/GaN by metal-organic vapor phase epitaxy. In structures of 25 quantum wells (QWs) under AM1.5G illumination, an open circuit voltage of 2.1?V is achieved. Of the photons absorbed in the limited spectral range of <450?nm, 64.2% are converted to electrons collected at the contacts under zero bias. At a fill factor of 45%, they account for a power conversion efficiency of38.6%. Under concentration, the maximum output power density per sun increases from 0.49?mW/cm{sup 2} to 0.51?mW/cm{sup 2} at 40?suns and then falls 0.42?mW/cm{sup 2} at 150?suns. Under external heating, a maximum of 0.59?mW/cm{sup 2} is reached at 250?°C. Even at 400?°C, the device is fully operational and exceeds room temperature performance. A defect analysis suggests that significantly higher fill factors and extension into longer wavelength ranges are possible with further development. The results prove GaInN/GaN QW solar junctions a viable and rugged topping cell for concentrator photovoltaics with minimal cooling requirements. By capturing the short range spectrum, they reduce the thermal load to any conventional cells stacked behind.

  15. NREL Solar Researcher Honored with ASES Abbot Award - News Releases...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cooling test laboratory, producing NREL's solar industrial process heat design handbook, developing stretched-membrane parabolic dish solar concentrators, inventing a...

  16. Alpha Solarco`s Photovoltaic Concentrator Development program

    SciTech Connect (OSTI)

    Anderson, A.; Bailor, B.; Carroll, D.

    1995-10-01

    This report details the work done under Sandia`s Photovoltaic Concentrator Development contract, funded jointly by Alpha Solarco and the US Department of Energy. It discusses improvements made to the cell assembly and module design of Alpha Solarco`s point-focus, high-concentration photovoltaic module. The goals of this effort were to increase the module efficiency, reduce the manufacturing cost of the cell assembly, and increase product reliability. Redesign of the secondary optical element achieved a 4 percent increase in efficiency due to better cell fill factors and offtrack performance. New, lower cost materials were identified for the secondary optical element, the optical couple between the secondary optical element and the cell, and the cell assembly electrical insulator. Manufacturing process improvements and test equipment are also discussed.

  17. Phenylnaphthalene as a Heat Transfer Fluid for Concentrating Solar Power: High-Temperature Static Experiments

    SciTech Connect (OSTI)

    Bell, Jason R; Joseph III, Robert Anthony; McFarlane, Joanna; Qualls, A L

    2012-05-01

    Concentrating solar power (CSP) may be an alternative to generating electricity from fossil fuels; however, greater thermodynamic efficiency is needed to improve the economics of CSP operation. One way of achieving improved efficiency is to operate the CSP loop at higher temperatures than the current maximum of about 400 C. ORNL has been investigating a synthetic polyaromatic oil for use in a trough type CSP collector, to temperatures up to 500 C. The oil was chosen because of its thermal stability and calculated low vapor and critical pressures. The oil has been synthesized using a Suzuki coupling mechanism and has been tested in static heating experiments. Analysis has been conducted on the oil after heating and suggests that there may be some isomerization taking place at 450 C, but the fluid appears to remain stable above that temperature. Tests were conducted over one week and further tests are planned to investigate stabilities after heating for months and in flow configurations. Thermochemical data and thermophysical predictions indicate that substituted polyaromatic hydrocarbons may be useful for applications that run at higher temperatures than possible with commercial fluids such as Therminol-VP1.

  18. Research and Development Needs for Building-Integrated Solar Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Development Needs for Building-Integrated Solar Technologies January 2014 NOTICE This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information,

  19. DOE Announces up to $52.5 Million for Concentrating Solar Power...

    Broader source: Energy.gov (indexed) [DOE]

    making electricity generated from solar energy competitive with conventional grid ... of about 18 hours per day, a level of production that would make it possible for a CSP ...

  20. Design, construction, and startup of a concentrating photovoltaic solar energy system in Hawaii: Phase II. Final report

    SciTech Connect (OSTI)

    Spencer, R.; Harper, R.; Maberry, G.; Bedard, R.; Rafinejad, D.

    1982-10-01

    Acurex Corporation has designed, constructed, and is now operating a 35-kWp concentrating photovoltaic solar system located at the G.N. Wilcox Memorial Hospital in Lihue, Kauai, Hawaii. The facility consists of 446 m/sup 2/ (4800 ft/sup 2/) of parabolic trough photovoltaic collectors, an electrical power generation system which converts the direct current field output into grid-compatible alternating current power, and a thermal power subsystem for heating the hospital potable water. This report summarizes the design, construction, startup, and performance of this solar facility.

  1. Variation of carrier concentration and interface trap density in 8MeV electron irradiated c-Si solar cells

    SciTech Connect (OSTI)

    Bhat, Sathyanarayana Rao, Asha; Krishnan, Sheeja; Sanjeev, Ganesh; Suresh, E. P.

    2014-04-24

    The capacitance and conductance measurements were carried out for c-Si solar cells, irradiated with 8 MeV electrons with doses ranging from 5kGy – 100kGy in order to investigate the anomalous degradation of the cells in the radiation harsh environments. Capacitance – Voltage measurements indicate that there is a slight reduction in the carrier concentration upon electron irradiation due to the creation of radiation induced defects. The conductance measurement results reveal that the interface state densities and the trap time constant increases with electron dose due to displacement damages in c-Si solar cells.

  2. Solar Energy Development Assistance for Fort Hunter Liggett

    SciTech Connect (OSTI)

    Russo, Bryan J.; Hoffman, Michael G.; Chvala, William D.

    2011-03-30

    Pacific Northwest National Laboratory provided assistance to Fort Hunter Liggett to determine the opportunities for solar energy development on the site. Increasing use of renewable energy is mandated by several executive orders and legislation. Fort Hunter Liggett has many attributes that enhance its suitability for renewable energy development. First, the site is located south of San Francisco in a remote portion of the costal foothills. Brush and forest fires are frequent and often result in power outages, which subsequently impacts the site’s training mission. In addition, the site’s blended electric rate during fiscal year (FY) 2010 was high at 12 ˘/kWh. Lastly, the solar resource is moderately high; the site receives nearly 5.7 kWh/m2/day on a south facing, latitude-tilted surface. In light of these factors, the site is a clear candidate for a solar photovoltaic array. Prior to Pacific Northwest National Laboratory’s (PNNL) involvement, the site secured funding for a 1 megawatt (MW) photovoltaic (PV) array that will also provide shading for site vehicles. To best implement this project, PNNL conducted a site visit and was tasked with providing the site technical guidance and support regarding module selection, array siting, and other ancillary issues.

  3. Research & Development Needs for Building-Integrated Solar Technologie...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    systems (PVT), active solar lighting, and building-integrated photovoltaics (BIPV). ... More Documents & Publications Impact of Solar PV Laminate Membrane Systems on Roofs Energy ...

  4. Solar Energy Development in the Southwest | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tribal Solar Energy Partnerships: Chairman Timothy Williams, Fort Mojave Indian Tribe; Perry Fontana, First Solar PDF icon Arizona Public Service Renewable Energy Overall ...

  5. Low-Cost Solar Water Heating Research and Development Roadmap

    SciTech Connect (OSTI)

    Hudon, K.; Merrigan, T.; Burch, J.; Maguire, J.

    2012-08-01

    The market environment for solar water heating technology has changed substantially with the successful introduction of heat pump water heaters (HPWHs). The addition of this energy-efficient technology to the market increases direct competition with solar water heaters (SWHs) for available energy savings. It is therefore essential to understand which segment of the market is best suited for HPWHs and focus the development of innovative, low-cost SWHs in the market segment where the largest opportunities exist. To evaluate cost and performance tradeoffs between high performance hot water heating systems, annual energy simulations were run using the program, TRNSYS, and analysis was performed to compare the energy savings associated with HPWH and SWH technologies to conventional methods of water heating.

  6. Design considerations for concentrating solar power tower systems employing molten salt.

    SciTech Connect (OSTI)

    Moore, Robert Charles; Siegel, Nathan Phillip; Kolb, Gregory J.; Vernon, Milton E.; Ho, Clifford Kuofei

    2010-09-01

    The Solar Two Project was a United States Department of Energy sponsored project operated from 1996 to 1999 to demonstrate the coupling of a solar power tower with a molten nitrate salt as a heat transfer media and for thermal storage. Over all, the Solar Two Project was very successful; however many operational challenges were encountered. In this work, the major problems encountered in operation of the Solar Two facility were evaluated and alternative technologies identified for use in a future solar power tower operating with a steam Rankine power cycle. Many of the major problems encountered can be addressed with new technologies that were not available a decade ago. These new technologies include better thermal insulation, analytical equipment, pumps and values specifically designed for molten nitrate salts, and gaskets resistant to thermal cycling and advanced equipment designs.

  7. DOE/EA-1683: Finding of No Significant Impact Department of Energy Loan Guarantee to Abengoa Solar Inc. for the Solana Concentrating Solar Power Facility Near Gila Bend, Arizona (05/06/10)

    Office of Environmental Management (EM)

    FINDING OF NO SIGNIFICANT IMPACT DEPARTMENT OF ENERGY LOAN GUARANTEE TO ABENGOA SOLAR INC. FOR THE SOLANA CONCENTRATING SOLAR POWER FACILITY NEAR GILA BEND, ARIZONA AGENCY: U.S. Department of Energy, Loan Guarantee Program Office ACTION: Finding of No Significant Impact SUMMARY: The U.S. Department of Energy (DOE) has conducted an environmental assessment (EA) that analyzed the potential environmental impacts associated with a 280 Megawatt (MW) concentrating solar power (CSP) plant (Solana

  8. A Guide to Community Solar: Utility, Private, and Non-profit Project Development

    SciTech Connect (OSTI)

    2011-01-25

    This guide is designed as a resource for those who want to develop community solar projects, from community organizers or solar energy advocates to government officials or utility managers.

  9. Guide to Community Solar: Utility, Private, and Non-profit Project Development

    SciTech Connect (OSTI)

    Not Available

    2011-01-01

    This guide is designed as a resource for those who want to develop community solar projects, from community organizers or solar energy advocates to government officials or utility managers.

  10. DOE Seeks to Invest up to $60 Million for Advanced Concentrating Solar Power Technologies

    Broader source: Energy.gov [DOE]

    WASHINGTON - U.S. Under Secretary of Energy Clarence "Bud" Albright today announced the issuance of the Solar Funding Opportunity Announcement (FOA) for up to $60 million in funding over five years...

  11. DOE to Invest More than $5 Million for Concentrating Solar Power...

    Broader source: Energy.gov (indexed) [DOE]

    seeks to make solar energy cost competitive with conventional forms of electricity by 2015. With cost-sharing, the total public-private investment will total nearly 6.6 million. ...

  12. Solar Hot Water Market Development in Knoxville, TN | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources » Solar Hot Water Market Development in Knoxville, TN Solar Hot Water Market Development in Knoxville, TN Assessment of local solar hot water markets, market variables, market barriers, and suggested strategies to increase solar hot water deployment in the city and county. Location Knoxville, Tennessee United States See map: Google Maps Date October 2010 Topic Financing, incentives & Market Analysis Subprogram Soft Cost Author CH2M Hill PDF icon

  13. Saguargo Solar Power Plant Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Type Concentrating Solar Power Facility Status In Service Developer Solargenix Location Red Rock, Arizona Coordinates 32.54795, -111.292887 Show Map Loading map......

  14. Heat Transfer and Latent Heat Storage in Inorganic Molten Salts for Concentrating Solar Power Plants

    SciTech Connect (OSTI)

    Mathur, Anoop

    2013-08-14

    A key technological issue facing the success of future Concentrating Solar Thermal Power (CSP) plants is creating an economical Thermal Energy Storage (TES) system. Current TES systems use either sensible heat in fluids such as oil, or molten salts, or use thermal stratification in a dual-media consisting of a solid and a heat-transfer fluid. However, utilizing the heat of fusion in inorganic molten salt mixtures in addition to sensible heat , as in a Phase change material (PCM)-based TES, can significantly increase the energy density of storage requiring less salt and smaller containers. A major issue that is preventing the commercial use of PCM-based TES is that it is difficult to discharge the latent heat stored in the PCM melt. This is because when heat is extracted, the melt solidifies onto the heat exchanger surface decreasing the heat transfer. Even a few millimeters of thickness of solid material on heat transfer surface results in a large drop in heat transfer due to the low thermal conductivity of solid PCM. Thus, to maintain the desired heat rate, the heat exchange area must be large which increases cost. This project demonstrated that the heat transfer coefficient can be increase ten-fold by using forced convection by pumping a hyper-eutectic salt mixture over specially coated heat exchanger tubes. However,only 15% of the latent heat is used against a goal of 40% resulting in a projected cost savings of only 17% against a goal of 30%. Based on the failure mode effect analysis and experience with pumping salt at near freezing point significant care must be used during operation which can increase the operating costs. Therefore, we conclude the savings are marginal to justify using this concept for PCM-TES over a two-tank TES. The report documents the specialty coatings, the composition and morphology of hypereutectic salt mixtures and the results from the experiment conducted with the active heat exchanger along with the lessons learnt during experimentation.

  15. Development of polymer film solar collectors: a status report

    SciTech Connect (OSTI)

    Wilhelm, W.G.; Andrews, J.W.

    1982-08-01

    Solar energy collector panels using polymer film and laminate technology have been developed which demonstrate low cost and high thermal performance for residential and commercial applications. This device uses common water in the absorber/heat exchanger which is constructed with polymer film adhesively laminated to aluminum foil as the outer surfaces. Stressed polymer films are also used for the outer window and back surface of the panel forming a high strength structural composite. Rigid polymer foam complements the design by contributing insulation and structural definition. This design has resulted in very low weight (3.5 kg/m/sup 2/), potentially very low manufacturing cost (approx. $11/m/sup 2/), and high thermal performance. The development of polymer materials for this technology will be a key to early commercial success. This report summarizes the current status of development and discusses the information gained from system tests are summarized.

  16. Covalent Solar | Open Energy Information

    Open Energy Info (EERE)

    Massachusetts Product: Massachusetts-based developer of luminescent concentrator PV cells. References: Covalent Solar1 This article is a stub. You can help OpenEI by...

  17. Phenylnaphthalene Derivatives as Heat Transfer Fluids for Concentrating Solar Power: Loop Experiments and Final Report

    SciTech Connect (OSTI)

    McFarlane, Joanna; Bell, Jason R; Felde, David K; Joseph III, Robert Anthony; Qualls, A L; Weaver, Samuel P

    2013-02-01

    ORNL and subcontractor Cool Energy completed an investigation of higher-temperature, organic thermal fluids for solar thermal applications. Although static thermal tests showed promising results for 1-phenylnaphthalene, loop testing at temperatures to 450 C showed that the material isomerized at a slow rate. In a loop with a temperature high enough to drive the isomerization, the higher melting point byproducts tended to condense onto cooler surfaces. So, as experienced in loop operation, eventually the internal channels of cooler components such as the waste heat rejection exchanger may become coated or clogged and loop performance will decrease. Thus, pure 1-phenylnaphthalene does not appear to be a fluid that would have a sufficiently long lifetime (years to decades) to be used in a loop at the increased temperatures of interest. Hence a decision was made not to test the ORNL fluid in the loop at Cool Energy Inc. Instead, Cool Energy tested and modeled power conversion from a moderate-temperature solar loop using coupled Stirling engines. Cool Energy analyzed data collected on third and fourth generation SolarHeart Stirling engines operating on a rooftop solar field with a lower temperature (Marlotherm) heat transfer fluid. The operating efficiencies of the Stirling engines were determined at multiple, typical solar conditions, based on data from actual cycle operation. Results highlighted the advantages of inherent thermal energy storage in the power conversion system.

  18. Energy Department Announces $32 Million to Boost Solar Workforce...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Drive Solar Energy Innovation May 26, 2015 - 1:08pm ... to further drive down the cost of solar by developing ... Announces 25 Million to Lower Cost of Concentrating Solar ...

  19. Device characterization for design optimization of 4 junction inverted metamorphic concentrator solar cells

    SciTech Connect (OSTI)

    Geisz, John F.; France, Ryan M.; Steiner, Myles A.; Friedman, Daniel J.; García, Iván

    2014-09-26

    Quantitative electroluminescence (EL) and luminescent coupling (LC) analysis, along with more conventional characterization techniques, are combined to completely characterize the subcell JV curves within a fourjunction (4J) inverted metamorphic solar cell (IMM). The 4J performance under arbitrary spectral conditions can be predicted from these subcell JV curves. The internal radiative efficiency (IRE) of each junction has been determined as a function of current density from the external radiative efficiency using optical modeling, but this required the accurate determination of the individual junction current densities during the EL measurement as affected by LC. These measurement and analysis techniques can be applied to any multijunction solar cell. The 4J IMM solar cell used to illustrate these techniques showed excellent junction quality as exhibited by high IRE and a one-sun AM1.5D efficiency of 36.3%. This device operates up to 1000 suns without limitations due to any of the three tunnel junctions.

  20. Concentration solar power optimization system and method of using the same

    DOE Patents [OSTI]

    Andraka, Charles E

    2014-03-18

    A system and method for optimizing at least one mirror of at least one CSP system is provided. The system has a screen for displaying light patterns for reflection by the mirror, a camera for receiving a reflection of the light patterns from the mirror, and a solar characterization tool. The solar characterization tool has a characterizing unit for determining at least one mirror parameter of the mirror based on an initial position of the camera and the screen, and a refinement unit for refining the determined parameter(s) based on an adjusted position of the camera and screen whereby the mirror is characterized. The system may also be provided with a solar alignment tool for comparing at least one mirror parameter of the mirror to a design geometry whereby an alignment error is defined, and at least one alignment unit for adjusting the mirror to reduce the alignment error.

  1. Recent content in Solar Permitting Roadmap Development | OpenEI...

    Open Energy Info (EERE)

    Solar PV Market In Asia To Grow At A CAGR Of 23.7 % To 2019: Radiant Insights, Inc Global Solar Charger Industry Research Report To 2015: Radiant Insights, Inc Glass-ionomer Cement...

  2. Evaluation of annual efficiencies of high temperature central receiver concentrated solar power plants with thermal energy storage.

    SciTech Connect (OSTI)

    Ehrhart, Brian David; Gill, David Dennis

    2013-07-01

    The current study has examined four cases of a central receiver concentrated solar power plant with thermal energy storage using the DELSOL and SOLERGY computer codes. The current state-of-the-art base case was compared with a theoretical high temperature case which was based on the scaling of some input parameters and the estimation of other parameters based on performance targets from the Department of Energy SunShot Initiative. This comparison was done for both current and high temperature cases in two configurations: a surround field with an external cylindrical receiver and a north field with a single cavity receiver. There is a fairly dramatic difference between the design point and annual average performance, especially in the solar field and receiver subsystems, and also in energy losses due to the thermal energy storage being full to capacity. Additionally, there are relatively small differences (<2%) in annual average efficiencies between the Base and High Temperature cases, despite an increase in thermal to electric conversion efficiency of over 8%. This is due the increased thermal losses at higher temperature and operational losses due to subsystem start-up and shut-down. Thermal energy storage can mitigate some of these losses by utilizing larger thermal energy storage to ensure that the electric power production system does not need to stop and re-start as often, but solar energy is inherently transient. Economic and cost considerations were not considered here, but will have a significant impact on solar thermal electric power production strategy and sizing.

  3. Solar electric thermal hydronic (SETH) product development project

    SciTech Connect (OSTI)

    Stickney, B.L.; Sindelar, A.

    2000-10-01

    Positive Energy, Inc. received a second Technology Maturation and Commercialization Project Subcontract during the 1999 round of awards. This Subcontract is for the purpose of further aiding Positive Energy, Inc. in preparing its Solar Electric Thermal Hydronic (SETH) control and distribution package for market introduction. All items of this subcontracted project have been successfully completed. This Project Report contains a summary of the progress made during the SETH Development Project (the Project) over the duration of the 1999 Subcontract. It includes a description of the effort performed and the results obtained in the pursuit of intellectual property protection and development of product documentation for the end users. This report also summarizes additional efforts taken by and for the SETH project outside of the Subcontract. It presents a chronology of activities over the duration of the Subcontract, and includes a few selected sample copies of documents offered as evidence of their success.

  4. Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... Hydrogen Infrastructure Hydrogen Production Market Transformation Fuel Cells ...

  5. Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water ... Infrastructure Hydrogen Production Market Transformation ... Tribal Energy Program Intellectual Property Current EC ...

  6. CIBS Solar Cell Development Final Scientific/Technical Report

    SciTech Connect (OSTI)

    Exstrom, Christopher L.; Soukup, Rodney J.; Ianno, Natale J.

    2011-09-28

    Efforts to fabricate and study a new photovoltaic material, copper indium boron diselenide (CuInxB1-xSe2 or CIBS), were undertaken. Attempts to prepare CIBS using sputtering deposition techniques resulted in segregation of boron from the rest of elements in the material. CIBS nanocrystals were prepared from the reaction of elemental Se with CuCl, InCl3, and boric acid in solution, but the product material quickly decomposed upon heating that was required in attempts to convert the nanocrystals into a thin film. The investigation of the reasons for the lack of CIBS material stability led to new structure-property studies of closely-related photovoltaic systems as well as studies of new solar cell materials and processing methods that could enhance the development of next-generation solar technologies. A detailed compositional study of CuIn1-xAlxSe2 (CIAS, a system closely related to CIBS) revealed a non-linear correlation between crystal lattice size and the Al/(In+Al) ratios with dual-phase formation being observed. A new nanocrystal-to-thin-film processing method was developed for the preparation of CuIn1-xGaxSe2 (CIGS) thin films in which colloidal Se particles are sprayed in contact with CuIn1-xGaxS2 nanoparticles and heated in an argon atmosphere with no other Se source in the system. The process is non-vacuum and does not require toxic gases such as Se vapor or H2Se. Expertise gained from these studies was applied to new research in the preparation of thin-film pyrite FeS2, an attractive earth-abundant candidate material for next-generation photovoltaics. Three methods successfully produced pure pyrite FeS2 films: sulfurization of sputtered Fe films, chemical bath deposition, and sulfurization of Fe2O3 sol-gel precursors. The last method produced pinhole-free films that may be viable for device development. Nickel, platinum, and possibly carbon would appear to serve as good ohmic contact materials. While CdS has a reasonable conduction band energy match to serve as an n-type buffer material in a pyrite FeS2-based solar cell, the less toxic SnS2 is being explored for this purpose.

  7. Developing new high energy gradient concentration cathode material...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon esp10amine.pdf More Documents & Publications New High Energy Gradient Concentration ...

  8. Cooperative Research between NREL and Solar Junction Corp: Cooperative Research and Development Final Report, CRADA Number CRD-08-306

    SciTech Connect (OSTI)

    Friedman, D.

    2015-03-01

    NREL and Solar Junction Corp. will perform cooperative research on materials and devices that are alternatives to standard approaches with the goal of improving solar cell efficiency while lowering cost. The general purpose of this work is to model the performance of a multi-junction concentrator cell of Solar Junction, Inc. design under normal concentrator operating conditions.

  9. Summary of: Simulating the Value of Concentrating Solar Power with Thermal Energy Storage in a Production Cost Model (Presentation)

    SciTech Connect (OSTI)

    Denholm, P.; Hummon, M.

    2013-02-01

    Concentrating solar power (CSP) deployed with thermal energy storage (TES) provides a dispatchable source of renewable energy. The value of CSP with TES, as with other potential generation resources, needs to be established using traditional utility planning tools. Production cost models, which simulate the operation of grid, are often used to estimate the operational value of different generation mixes. CSP with TES has historically had limited analysis in commercial production simulations. This document describes the implementation of CSP with TES in a commercial production cost model. It also describes the simulation of grid operations with CSP in a test system consisting of two balancing areas located primarily in Colorado.

  10. Community Response to Concentrating Solar Power in the San Luis Valley: October 9, 2008 - March 31, 2010

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    50-48041 June 2010 Community Response to Concentrating Solar Power in the San Luis Valley October 9, 2008 - March 31, 2010 B.C. Farhar, L.M. Hunter, T.M. Kirkland, and K.J. Tierney University of Colorado at Boulder National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC

  11. NREL: Workforce Development and Education Programs - Junior Solar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    contains teacher background on photovoltaics, classroom activities for measuring solar cell output and understanding transmission components, tips on the vehicle construction...

  12. Solar Manufacturing Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology to Market » Solar Manufacturing Technology Solar Manufacturing Technology The SunShot Solar Manufacturing Technology (SolarMat) program funds the development of innovative manufacturing technologies that can achieve a significant market impact in one to four years. Launched in September 2013, the SolarMat program is supporting five projects working in two topic areas: photovoltaics (PV) and concentrating solar power (CSP). Both topics focus on driving down the cost of manufacturing

  13. General volume sizing strategy for thermal storage system using phase change material for concentrated solar thermal power plant

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xu, Ben; Li, Peiwen; Chan, Cholik; Tumilowicz, Eric

    2014-12-18

    With an auxiliary large capacity thermal storage using phase change material (PCM), Concentrated Solar Power (CSP) is a promising technology for high efficiency solar energy utilization. In a thermal storage system, a dual-media thermal storage tank is typically adopted in industry for the purpose of reducing the use of the heat transfer fluid (HTF) which is usually expensive. While the sensible heat storage system (SHSS) has been well studied, a dual-media latent heat storage system (LHSS) still needs more attention and study. The volume sizing of the thermal storage tank, considering daily cyclic operations, is of particular significance. In thismore » paper, a general volume sizing strategy for LHSS is proposed, based on an enthalpy-based 1D transient model. One example was presented to demonstrate how to apply this strategy to obtain an actual storage tank volume. With this volume, a LHSS can supply heat to a thermal power plant with the HTF at temperatures above a cutoff point during a desired 6 hours of operation. This general volume sizing strategy is believed to be of particular interest for the solar thermal power industry.« less

  14. General volume sizing strategy for thermal storage system using phase change material for concentrated solar thermal power plant

    SciTech Connect (OSTI)

    Xu, Ben; Li, Peiwen; Chan, Cholik; Tumilowicz, Eric

    2014-12-18

    With an auxiliary large capacity thermal storage using phase change material (PCM), Concentrated Solar Power (CSP) is a promising technology for high efficiency solar energy utilization. In a thermal storage system, a dual-media thermal storage tank is typically adopted in industry for the purpose of reducing the use of the heat transfer fluid (HTF) which is usually expensive. While the sensible heat storage system (SHSS) has been well studied, a dual-media latent heat storage system (LHSS) still needs more attention and study. The volume sizing of the thermal storage tank, considering daily cyclic operations, is of particular significance. In this paper, a general volume sizing strategy for LHSS is proposed, based on an enthalpy-based 1D transient model. One example was presented to demonstrate how to apply this strategy to obtain an actual storage tank volume. With this volume, a LHSS can supply heat to a thermal power plant with the HTF at temperatures above a cutoff point during a desired 6 hours of operation. This general volume sizing strategy is believed to be of particular interest for the solar thermal power industry.

  15. Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas ...

  16. Using Encapsulated Phase Change Material in Thermal Energy Storage for Baseload Concentrating Solar Power (EPCM-TES)

    SciTech Connect (OSTI)

    Mathur, Anoop

    2013-12-15

    Terrafore successfully demonstrated and optimized the manufacturing of capsules containing phase-changing inorganic salts. The phase change was used to store thermal energy collected from a concentrating solar-power plant as latent heat. This latent heat, in addition to sensible heat increased the energy density (energy stored per unit weight of salt) by over 50%, thus requiring 40% less salt and over 60% less capsule container. Therefore, the cost to store high-temperature thermal energy collected in a concentrating solar power plant will be reduced by almost 40% or more, as compared to conventional two-tank, sensible-only storage systems. The cost for thermal energy storage (TES) system is expected to achieve the Sun Shot goal of $15 per kWh(t). Costs associated with poor heat-transfer in phase change materials (PCM) were also eliminated. Although thermal energy storage that relies on the latent heat of fusion of PCM improves energy density by as much as 50%, upon energy discharge the salt freezes and builds on the heat transfer surfaces. Since these salts have low thermal conductivity, large heat-transfer areas, or larger conventional heat-exchangers are needed, which increases costs. By encapsulating PCM in small capsules we have increased the heat transfer area per unit volume of salt and brought the heat transfer fluid in direct contact with the capsules. These two improvements have increased the heat transfer coefficient and boosted heat transfer. The program was successful in overcoming the phenomenon of melt expansion in the capsules, which requires the creation of open volume in the capsules or shell to allow for expansion of the molten salt on melting and is heated above its melting point to 550°C. Under contract with the Department of Energy, Terrafore Inc. and Southwest Research Institute, developed innovative method(s) to economically create the open volume or void in the capsule. One method consists of using a sacrificial polymer coating as the middle layer between the salt prill and the shell material. The selected polymer decomposes at temperatures below the melting point of the salt and forms gases which escape through the pores in the capsule shell thus leaving a void in the capsule. We have demonstrated the process with a commonly used inorganic nitrate salt in a low-cost shell material that can withstand over 10,000 high-temperature thermal cycles, or a thirty-year or greater life in a solar plant. The shell used to encapsulate the salt was demonstrated to be compatible with molten salt heat transfer fluid typically used in CSP plants to temperatures up to 600 °C. The above findings have led to the concept of a cascaded arrangement. Salts with different melting points can be encapsulated using the same recipe and contained in a packed bed by cascading the salt melting at higher melting point at the top over the salt melting at lower melting point towards the bottom of the tank. This cascaded energy storage is required to effectively transfer the sensible heat collected in heat transfer fluids between the operating temperatures and utilize the latent heat of fusion in the salts inside the capsule. Mathematical models indicate that over 90% of the salts will undergo phase change by using three salts in equal proportion. The salts are selected such that the salt at the top of the tank melts at about 15°C below the high operating-temperature, and the salt at the bottom of the tank melts 15°C above the low operating-temperature. The salt in the middle of tank melts in-between the operating temperature of the heat transfer fluid. A cascaded arrangement leads to the capture of 90% of the latent-heat of fusion of salts and their sensible heats. Thus the energy density is increased by over 50% from a sensible-only, two-tank thermal energy storage. Furthermore, the Terrafore cascaded storage method requires only one tank as opposed to the two-tanks used in sensible heat storage. Since heat is transferred from the heat transfer fluid by direct contact with capsules, external heat-exchangers are not required for charging storage. Thus, the cost of the thermal storage system is reduced due to smaller containers and less salt. The optimum salt proportions, their melting temperature and the number of salts in the cascade are determined by raw materials costs and the mathematical model. We estimate the processing cost of the encapsulation to be low, where the major cost of the capsule will be the cost of the phase-change salt(s). Our economic analyses show that the cost of EPCM-TES is about $17.98 per kWh(t), which is about 40% lower than the $28.36 per kWh(t) for a two-tank sensible heat TES for a large scale CSP-TES design. Finally, additional improvements in the heat-transfer fluids, currently in development elsewhere will further improve the energy density to achieve the SunShot goal of $15 per kWh(t).

  17. Development of a prototype lignin concentration sensor. Final report. Draft

    SciTech Connect (OSTI)

    Jeffers, L.A.

    1994-11-01

    The ultimate objective of the DOE-sponsored program discussed in this report is to commercialize an instrument for real-time, in-situ measurement of lignin in wood pulp at a variety of locations in the pulp process stream. The instrument will be used as a primary sensor for process control in the pulp and paper industry. Work done by B&W prior to the initiation of this program had shown: there is a functional relationship between the fluorescence intensity and the Kappa number as measured at the pulp mill laboratory. Kappa number is a standard wet chemical method for determination of the lignin concentration; the relationship is one of decreasing intensity with Kappa number, indicating operation in the quenched fluorescence regime; a great deal of scatter in the data. Because of the preliminary nature of the study, the origin of the scatter was not identified. This report documents the results of laboratory measurements made on a variety of well defined pulp samples to generate the data necessary to: determine the feasibility of an instrument for on-line lignin concentration measurement using laser fluorescence; identify the preferred measurement strategy; define the range of applicability of the instrument; and to provide background information to guide the design of a field-worthy prototype.

  18. Pythagoras Solar Ltd | Open Energy Information

    Open Energy Info (EERE)

    Pythagoras Solar Ltd Place: Ramat HaSharon, Israel Zip: 47800 Product: Early-stage company developing a stationary low-concentration PV system. References: Pythagoras Solar Ltd1...

  19. Smart Solar Inc | Open Energy Information

    Open Energy Info (EERE)

    Was developing concentrator PV modules and a system for monitoring solar panels for maintenance. References: Smart Solar Inc1 This article is a stub. You can help OpenEI by...

  20. Hawaii Solar Integration Study: Solar Modeling Developments and Study Results; Preprint

    SciTech Connect (OSTI)

    Orwig, K.; Corbus, D.; Piwko, R.; Schuerger, M.; Matsuura, M.; Roose, L.

    2012-12-01

    The Hawaii Solar Integration Study (HSIS) is a follow-up to the Oahu Wind Integration and Transmission Study completed in 2010. HSIS focuses on the impacts of higher penetrations of solar energy on the electrical grid and on other generation. HSIS goes beyond the island of Oahu and investigates Maui as well. The study examines reserve strategies, impacts on thermal unit commitment and dispatch, utilization of energy storage, renewable energy curtailment, and other aspects of grid reliability and operation. For the study, high-frequency (2-second) solar power profiles were generated using a new combined Numerical Weather Prediction model/ stochastic-kinematic cloud model approach, which represents the 'sharp-edge' effects of clouds passing over solar facilities. As part of the validation process, the solar data was evaluated using a variety of analysis techniques including wavelets, power spectral densities, ramp distributions, extreme values, and cross correlations. This paper provides an overview of the study objectives, results of the solar profile validation, and study results.

  1. Solar Systems | Open Energy Information

    Open Energy Info (EERE)

    Logo: Solar Systems Name: Solar Systems Address: 45 Grosvenor Street Place: Abbotsford, Australia Sector: Solar Product: Solar concentrators Phone Number: +61 3 9413 8000 Website:...

  2. Scaled Solar | Open Energy Information

    Open Energy Info (EERE)

    Solar Product: Scaled Solar manufacturers and markets utility-grade, concentrated photovoltaic solar energy systems to commercial customers References: Scaled Solar1 This...

  3. Mohave Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Solar Power Plant Jump to: navigation, search Name Mohave Solar Power Plant Facility Mojave Solar Sector Solar Facility Type Concentrating Solar Power Facility Status Under...

  4. solar

    National Nuclear Security Administration (NNSA)

    2%2A en Solar power purchase for DOE laboratories http:nnsa.energy.govmediaroompressreleasessolarpower

  5. GaInP/GaAs/GaInAs Monolithic Tandem Cells for High-Performance Solar Concentrators

    SciTech Connect (OSTI)

    Wanlass, M. W.; Ahrenkiel, S. P.; Albin, D. S.; Carapella, J. J.; Duda, A.; Emery, K.; Geisz, J. F.; Jones, K.; Kurtz, S.; Moriarty, T.; Romero, M. J.

    2005-08-01

    We present a new approach for ultra-high-performance tandem solar cells that involves inverted epitaxial growth and ultra-thin device processing. The additional degree of freedom afforded by the inverted design allows the monolithic integration of high-, and medium-bandgap, lattice-matched (LM) subcell materials with lower-bandgap, lattice-mismatched (LMM) materials in a tandem structure through the use of transparent compositionally graded layers. The current work concerns an inverted, series-connected, triple-bandgap, GaInP (LM, 1.87 eV)/GaAs (LM, 1.42 eV)/GaInAs (LMM, {approx}1 eV) device structure grown on a GaAs substrate. Ultra-thin tandem devices are fabricated by mounting the epiwafers to pre-metallized Si wafer handles and selectively removing the parent GaAs substrate. The resulting handle-mounted, ultra-thin tandem cells have a number of important advantages, including improved performance and potential reclamation/reuse of the parent substrate for epitaxial growth. Additionally, realistic performance modeling calculations suggest that terrestrial concentrator efficiencies in the range of 40-45% are possible with this new tandem cell approach. A laboratory-scale (0.24 cm2), prototype GaInP/GaAs/GaInAs tandem cell with a terrestrial concentrator efficiency of 37.9% at a low concentration ratio (10.1 suns) is described, which surpasses the previous world efficiency record of 37.3%.

  6. The Solar Energy Consortium of New York Photovoltaic Research and Development Center

    SciTech Connect (OSTI)

    Klein, Petra M.

    2012-10-15

    Project Objective: To lead New York State to increase its usage of solar electric systems. The expected outcome is that appropriate technologies will be made available which in turn will help to eliminate barriers to solar energy usage in New York State. Background: The Solar Energy Consortium has been created to lead New York State research on solar systems specifically directed at doubling the efficiency, halving the cost and reducing the cost of installation as well as developing unique form factors for the New York City urban environment.

  7. Maintenance of solar systems--Housing and urban development demonstration program

    SciTech Connect (OSTI)

    Freeborne, W.E.

    1983-06-01

    The Department of Housing and Urban Development (HUD) residential solar heating and cooling demonstration program provided funding support for over 600 solar projects. These projects provide the largest single data base of solar heating and cooling experience now available. These data suggest that maintenance and system operation have been mixed even though system configurations are similar throughout the program. HUD has been involved in the upgrading of one-third of the 600 solar projects and now can report that projects can be maintained with a more uniform level of effort.

  8. Energy Department Announces $25 Million to Lower Cost of Concentrating

    Office of Environmental Management (EM)

    Solar Power | Department of Energy 5 Million to Lower Cost of Concentrating Solar Power Energy Department Announces $25 Million to Lower Cost of Concentrating Solar Power October 1, 2014 - 2:26pm Addthis Building on the Obama Administration's Climate Action Plan, the Energy Department today announced $25 million in funding to advance concentrating solar power (CSP) system technologies. This investment will fund research and development (R&D) projects to improve the performance and

  9. Zenith Solar Ltd | Open Energy Information

    Open Energy Info (EERE)

    Zenith Solar Ltd Place: Qiryat Gat, Israel Zip: 82000 Product: Israel-based developers of a HCPV - highly concentrator PV system for residential and industrial use. References:...

  10. Summary Report for Concentrating Solar Power Thermal Storage Workshop: New Concepts and Materials for Thermal Energy Storage and Heat-Transfer Fluids, May 20, 2011

    SciTech Connect (OSTI)

    Glatzmaier, G.

    2011-08-01

    This document summarizes a workshop on thermal energy storage for concentrating solar power (CSP) that was held in Golden, Colorado, on May 20, 2011. The event was hosted by the U.S. Department of Energy (DOE), the National Renewable Energy Laboratory, and Sandia National Laboratories. The objective was to engage the university and laboratory research communities to identify and define research directions for developing new high-temperature materials and systems that advance thermal energy storage for CSP technologies. This workshop was motivated, in part, by the DOE SunShot Initiative, which sets a very aggressive cost goal for CSP technologies -- a levelized cost of energy of 6 cents per kilowatt-hour by 2020 with no incentives or credits.

  11. Project Profile: Novel Thermal Energy Storage Systems for Concentrating Solar Power

    Broader source: Energy.gov [DOE]

    The University of Connecticut, under the Thermal Storage FOA, is developing innovative heat transfer devices and methodologies for novel thermal energy storage (TES) systems for CSP involving phase change materials (PCMs).

  12. Process Development for High Voc CdTe Solar Cells

    SciTech Connect (OSTI)

    Ferekides, C. S.; Morel, D. L.

    2011-05-01

    This is a cumulative and final report for Phases I, II and III of this NREL funded project (subcontract # XXL-5-44205-10). The main research activities of this project focused on the open-circuit voltage of the CdTe thin film solar cells. Although, thin film CdTe continues to be one of the leading materials for large-scale cost-effective production of photovoltaics, the efficiency of the CdTe solar cells have been stagnant for the last few years. This report describes and summarizes the results for this 3-year research project.

  13. An overview of water disinfection in developing countries and the potential for solar thermal water pasteurization

    SciTech Connect (OSTI)

    Burch, J.; Thomas, K.E.

    1998-01-01

    This study originated within the Solar Buildings Program at the U.S. Department of Energy. Its goal is to assess the potential for solar thermal water disinfection in developing countries. In order to assess solar thermal potential, the alternatives must be clearly understood and compared. The objectives of the study are to: (a) characterize the developing world disinfection needs and market; (b) identify competing technologies, both traditional and emerging; (c) analyze and characterize solar thermal pasteurization; (d) compare technologies on cost-effectiveness and appropriateness; and (e) identify research opportunities. Natural consequences of the study beyond these objectives include a broad knowledge of water disinfection problems and technologies, introduction of solar thermal pasteurization technologies to a broad audience, and general identification of disinfection opportunities for renewable technologies.

  14. Increasing Community Access to Solar: Designing and Developing a Shared Solar Photovoltaic System (Fact Sheet), U.S. Department of Energy (DOE)

    Broader source: Energy.gov [DOE]

    This document introduces the Energy Department’s new Guide to Community Shared Solar: Utility, Private, and Nonprofit Project Development. The guide is designed to help those who want to develop community shared solar projects—from community organizers and advocates to utility managers and government officials—navigate the process of developing shared systems, from early planning to implementation.

  15. Department of Energy Offers $2 Billion in Conditional Loan Guarantee Commitments for Two California Concentrating Solar Power Plants

    Broader source: Energy.gov [DOE]

    Projects Will Create Nearly 1,800 Jobs, Expand CSP Deployment, and Drive Down Cost of Solar Installations

  16. NREL: Energy Analysis - Solar Technology Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Technology Analysis NREL conducts analysis to support research and development done by the Solar Energy Technologies Program in three major technology areas: concentrating solar power; solar electricity, also known as photovoltaics or PV; and solar heating and lighting. For example, in the area of photovoltaics, EERE's systems modeling and analysis activity rigorously assesses the performance, reliability, installed costs, and levelized energy costs (LECs) of a wide variety of flat-plate

  17. NREL and PrimeStar Solar Sign $870,000 Cooperative Research and Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Agreement - News Releases | NREL and PrimeStar Solar Sign $870,000 Cooperative Research and Development Agreement February 28, 2007 The National Renewable Energy Laboratory (NREL) and PrimeStar Solar, Inc. announced today that they have signed an $870,000 Cooperative Research and Development Agreement to transition NREL's leading cadmium telluride (CdTe) photovoltaic (PV) technology to commercial module production. This technology has been used to produce the world record cadmium telluride

  18. Critical issues in the development of hybrid solar/gas receivers for dish/Stirling systems

    SciTech Connect (OSTI)

    Adkins, D.R.; Rawlinson, K.S.

    1991-12-31

    A hybrid solar/gas receiver system will allow Stirling engines to operate with combined solar and gas power sources. One of the most attractive options for building a hybrid system is to integrate a gas-fired heat pipe directly into a heat-pipe solar receiver. Before this union can take place, however, a number of technical issues must be resolved. A design must be found that properly distributes the heat-pipe`s working fluid over the heated surfaces and prevents fluid from accumulating at undesirable locations in the heat pipe. Experience that has been gained in developing solar receivers and gas-fired heat pipes under recent Department of Energy solar-thermal dish-electric programs is used in this paper to address many of the technical obstacles to building receiver systems. 16 refs.

  19. Critical issues in the development of hybrid solar/gas receivers for dish/Stirling systems

    SciTech Connect (OSTI)

    Adkins, D.R.; Rawlinson, K.S.

    1991-01-01

    A hybrid solar/gas receiver system will allow Stirling engines to operate with combined solar and gas power sources. One of the most attractive options for building a hybrid system is to integrate a gas-fired heat pipe directly into a heat-pipe solar receiver. Before this union can take place, however, a number of technical issues must be resolved. A design must be found that properly distributes the heat-pipe's working fluid over the heated surfaces and prevents fluid from accumulating at undesirable locations in the heat pipe. Experience that has been gained in developing solar receivers and gas-fired heat pipes under recent Department of Energy solar-thermal dish-electric programs is used in this paper to address many of the technical obstacles to building receiver systems. 16 refs.

  20. Solar Irradiances Measured using SPN1 Radiometers: Uncertainties and Clues for Development

    SciTech Connect (OSTI)

    Badosa, Jordi; Wood, John; Blanc, Philippe; Long, Charles N.; Vuilleumier, Laurent; Demengel, Dominique; Haeffelin, Martial

    2014-12-08

    The fast development of solar radiation and energy applications, such as photovoltaic and solar thermodynamic systems, has increased the need for solar radiation measurement and monitoring, not only for the global component but also the diffuse and direct. End users look for the best compromise between getting close to state-of-the-art measurements and keeping capital, maintenance and operating costs to a minimum. Among the existing commercial options, SPN1 is a relatively low cost solar radiometer that estimates global and diffuse solar irradiances from seven thermopile sensors under a shading mask and without moving parts. This work presents a comprehensive study of SPN1 accuracy and sources of uncertainty, which results from laboratory experiments, numerical modeling and comparison studies between measurements from this sensor and state-of-the art instruments for six diverse sites. Several clues are provided for improving the SPN1 accuracy and agreement with state-of-the-art measurements.

  1. Support for solar energy: Examining sense of place and utility-scale development in California

    SciTech Connect (OSTI)

    Carlisle, Juliet E.; Kane, Stephanie L.; Solan, David; Joe, Jeffrey C.

    2014-08-20

    As solar costs have declined PV systems have experienced considerable growth since 2003, especially in China, Japan, Germany, and the U.S. Thus, a more nuanced understanding of a particular public's attitudes toward utility-scale solar development, as it arrives in a market and region, is warranted and will likely be instructive for other areas in the world where this type of development will occur in the near future. Using data collected from a 2013 telephone survey (N=594) from the six Southern Californian counties selected based on existing and proposed solar developments and available suitable land, we examine public attitudes toward solar energy and construction of large-scale solar facilities, testing whether attitudes toward such developments are the result of sense of place and attachment to place. Overall, we have mixed results. Place attachment and sense of place fail to produce significant effects except in terms of perceived positive benefits. That is, respondents interpret the change resulting from large-scale solar development in a positive way insofar as perceived positive economic impacts are positively related to support for nearby large-scale construction.

  2. Support for solar energy: Examining sense of place and utility-scale development in California

    SciTech Connect (OSTI)

    Juliet E. Carlisle; Stephanie L. Kane; David Solan; Jeffrey C. Joe

    2015-07-01

    As solar costs have declined PV systems have experienced considerable growth since 2003, especially in China, Japan, Germany, and the U.S. Thus, a more nuanced understanding of a particular public's attitudes toward utility-scale solar development, as it arrives in a market and region, is warranted and will likely be instructive for other areas in the world where this type of development will occur in the near future. Using data collected from a 2013 telephone survey (N = 594) from the six Southern Californian counties selected based on existing and proposed solar developments and available suitable land, we examine public attitudes toward solar energy and construction of large-scale solar facilities, testing whether attitudes toward such developments are the result of sense of place and attachment to place. Overall, we have mixed results. Place attachment and sense of place fail to produce significant effects except in terms of perceived positive benefits. That is, respondents interpret the change resulting from large-scale solar development in a positive way insofar as perceived positive economic impacts are positively related to support for nearby large-scale construction.

  3. Equipment Loan for Concentrated PV Cavity Converter (PVCC) Research: Cooperative Research and Development Final Report, CRADA Number CRD-08-285

    SciTech Connect (OSTI)

    Netter, Judy

    2015-07-28

    Interest in High Concentration Photovoltaics (HCPV) for terrestrial applications has significantly grown in recent years. A major driver behind this growth trend is the availability of high efficiency multi-junction (MJ) cells that promise reliable operation under high concentrations (500 to 1000 suns). The primary impact of HCPV on the solar electricity cost is the dramatic reduction in cell cost. For terrestrial HCPV systems, operating at concentrations ? 500 suns, the expensive MJ cells are marginally affordable. Most recently, triple-junction test cells have achieved a conversion efficiency of over 40% under concentrated sunlight. Photovoltaic Cavity Converter (PVCC) is a multi-bandgap, high concentration PV device developed by United Innovations, Inc., under subcontract to NREL. The lateral- (2- dimensional) structure of PVCC, as opposed to vertical multi-junction (MJ) structure, helps to circumvent most of the developmental challenges MJ technology has yet to overcome. This CRADA will allow the continued development of this technology by United Innovations. This project was funded by the California Energy Commission and is the second phase of a twopart demonstration program. The key advantage of the design was the use of a PVCC as the receiver. PVCCs efficiently process highly concentrated solar radiation into electricity by recycling photons that are reflected from the surface of the cells. Conventional flat, twodimensional receivers cannot recycle photons and the reflected photons are lost to the conversion process.

  4. Life Cycle Assessment of a Parabolic Trough Concentrating Solar Power Plant and Impacts of Key Design Alternatives: Preprint

    SciTech Connect (OSTI)

    Heath, G. A.; Burkhardt, J. J.; Turchi, C. S.

    2011-09-01

    Climate change and water scarcity are important issues for today's power sector. To inform capacity expansion decisions, hybrid life cycle assessment is used to evaluate a reference design of a parabolic trough concentrating solar power (CSP) facility located in Daggett, California, along four sustainability metrics: life cycle greenhouse gas (GHG) emissions, water consumption, cumulative energy demand (CED), and energy payback time (EPBT). This wet-cooled, 103 MW plant utilizes mined nitrate salts in its two-tank, thermal energy storage (TES) system. Design alternatives of dry-cooling, a thermocline TES, and synthetically-derived nitrate salt are evaluated. During its life cycle, the reference CSP plant is estimated to emit 26 g CO2eq per kWh, consume 4.7 L/kWh of water, and demand 0.40 MJeq/kWh of energy, resulting in an EPBT of approximately 1 year. The dry-cooled alternative is estimated to reduce life cycle water consumption by 77% but increase life cycle GHG emissions and CED by 8%. Synthetic nitrate salts may increase life cycle GHG emissions by 52% compared to mined. Switching from two-tank to thermocline TES configuration reduces life cycle GHG emissions, most significantly for plants using synthetically-derived nitrate salts. CSP can significantly reduce GHG emissions compared to fossil-fueled generation; however, dry-cooling may be required in many locations to minimize water consumption.

  5. Thermal-mechanical stability of single crystal oxide refractive concentrators for high-temperature solar thermal propulsion

    SciTech Connect (OSTI)

    Zhu, D.; Jacobson, S.; Miller, R.A.

    1999-07-01

    Single crystal oxides such as yttria-stabilized zirconia (Y{sub 2}O{sub 3}-ZrO{sub 2}), yttrium aluminum garnet (Y{sub 3}Al{sub 5}O{sub 12}, or YAG), magnesium oxide (MgO) and sapphire (Al{sub 2}O{sub 3}) are candidate refractive secondary concentrator materials for high temperature solar propulsion applications. However, thermo-mechanical reliability of these components in severe thermal environments during the space mission sun/shade transition is of great concern. Simulated mission tests are important for evaluating these candidate oxide materials under a variety of transient and steady-state heat flux conditions, and thus provide vital information for the component design. In this paper, a controlled heat flux thermal shock test approach is established for the single crystal oxide materials using a 3.0 kW continuous wave CO{sub 2} laser, with a wavelength 10.6 micron. Thermal fracture behavior and failure mechanisms of these oxide materials are investigated and critical temperature gradients are determined under various temperature and heating conditions. The test results show that single crystal sapphire is able to sustain the highest temperature gradient and heating-cooling rate, and thus exhibit the best thermal shock resistance, as compared to the yttria-stabilized zirconia, yttrium aluminum garnet and magnesium oxide.

  6. New Whole-House Solutions Case Study: Rural Development Inc., Wisdom Way Solar Village, Greenfield, MA

    Energy Savers [EERE]

    design assistance and energy analysis from the U.S. Department of Energy's CARB Building America research team, led by Steven Winter Associates, the nonprofit builder Rural Development, Inc., built Wisdom Way Solar Village, a community of 20 energy-efficient solar duplexes in western Massachusetts in 2010. The homes achieve HERS scores of 8 to 18 with a highly insulated enclosure, energy-saving equipment, and solar water heating to give home owners heating savings of nearly $2,200 per year. The

  7. Agua Caliente Solar Feasibility and Pre-Development Study Final Report

    SciTech Connect (OSTI)

    Carolyn T. Stewart, Managing Partner; Red Mountain Energy Partners

    2011-04-26

    Evaluation of facility- and commercial-scale solar energy projects on the Agua Caliente Band of Cahuilla Indians Reservation in Palm Springs, CA. The Agua Caliente Band of Cahuilla Indians (ACBCI) conducted a feasibility and pre-development study of potential solar projects on its lands in southern California. As described below, this study as a logical and necessary next step for ACBCI. Support for solar project development in California, provided through the statewide California Solar Initiative (CSI), its Renewable Portfolio Standard and Feed-in Tariff Program, and recently announced Reverse Auction Mechanism, provide unprecedented support and incentives that can be utilized by customers of California's investor-owned utilities. Department of Energy (DOE) Tribal Energy Program funding allowed ACBCI to complete its next logical step to implement its Strategic Energy Plan, consistent with its energy and sustainability goals.

  8. Scattering Solar Thermal Concentrators

    Broader source: Energy.gov [DOE]

    This document summarizes the progress of this Penn State project, funded by SunShot, for the second quarter of fiscal year 2013.

  9. Concentrated Solar Thermoelectric Power

    Broader source: Energy.gov [DOE]

    This document summarizes the progress of this MIT project, funded by SunShot, for the fourth quarter of fiscal year 2012.

  10. Concentrating solar heat collector

    SciTech Connect (OSTI)

    Fattor, A.P.

    1980-09-23

    A heat storage unit is integrated with a collection unit providing a heat supply in off-sun times, and includes movable insulation means arranged to provide insulation during off-sun times for the heat storage unit.

  11. Concentrating Solar Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    require higher temperature operation at higher efficiency, longer lifetime, and lower cost. ... Much emphasis is placed on understanding the fundamentals to drive innovation and ...

  12. Solar Photovoltaic Economic Development: Building and Growing a Local PV Industry, August 2011 (Book)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01

    The U.S. photovoltaic (PV) industry is forecast to grow, and it represents an opportunity for economic development and job creation in communities throughout the United States. This report helps U.S. cities evaluate economic opportunities in the PV industry. It serves as a guide for local economic development offices in evaluating their community?s competitiveness in the solar PV industry, assessing the viability of solar PV development goals, and developing strategies for recruiting and retaining PV companies to their areas.

  13. Properties of a solar alumina-borosilicate sheet glass

    SciTech Connect (OSTI)

    Coyle, R.T.; Lind, M.A.; Shelby, J.E.; Vitko, J.; Shoemaker, A.F.

    1980-01-01

    Solar energy applications place unique requirements on sheet glass including very low solar absorption, outstanding stability of absorption in the outdoor environment, low cost, and elastic formability for making concentrating mirrors. The Solar Energy Research Institute and Corning Glass Works have developed a new solar sheet glass. In evaluations reported the new glass has shown outstanding chemical durability and optical and mechanical properties.

  14. Solar Energy Technologies Program FY08 Annual Report

    SciTech Connect (OSTI)

    none,

    2009-05-01

    These reports chronicle the research and development (R&D) results of the Solar Program for the fiscal year. In particular, the report describes R&D performed by the Program's national laboratories and its university and industry partners within PV R&D, Solar Thermal R&D, which encompasses solar water heating and concentrating solar power (CSP), and other subprograms.

  15. Public attitudes regarding large-scale solar energy development in the U.S.

    SciTech Connect (OSTI)

    Carlisle, Juliet E.; Kane, Stephanie L.; Solan, David; Bowman, Madelaine; Joe, Jeffrey C.

    2015-08-01

    Using data collected from both a National sample as well as an oversample in U.S. Southwest, we examine public attitudes toward the construction of utility-scale solar facilities in the U.S. as well as development in one’s own county. Our multivariate analyses assess demographic and sociopsychological factors as well as context in terms of proximity of proposed project by considering the effect of predictors for respondents living in the Southwest versus those from a National sample.We find that the predictors, and impact of the predictors, related to support and opposition to solar development vary in terms of psychological and physical distance. Overall, for respondents living in the U.S. Southwest we find that environmentalism, belief that developers receive too many incentives, and trust in project developers to be significantly related to support and opposition to solar development, in general. When Southwest respondents consider large-scale solar development in their county, the influence of these variables changes so that property value, race, and age only yield influence. Differential effects occur for respondents of our National sample.We believe our findings to be relevant for those outside the U.S. due to the considerable growth PV solar has experienced in the last decade, especially in China, Japan, Germany, and the U.S.

  16. Public attitudes regarding large-scale solar energy development in the U.S.

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Carlisle, Juliet E.; Kane, Stephanie L.; Solan, David; Bowman, Madelaine; Joe, Jeffrey C.

    2015-08-01

    Using data collected from both a National sample as well as an oversample in U.S. Southwest, we examine public attitudes toward the construction of utility-scale solar facilities in the U.S. as well as development in one’s own county. Our multivariate analyses assess demographic and sociopsychological factors as well as context in terms of proximity of proposed project by considering the effect of predictors for respondents living in the Southwest versus those from a National sample.We find that the predictors, and impact of the predictors, related to support and opposition to solar development vary in terms of psychological and physical distance.more » Overall, for respondents living in the U.S. Southwest we find that environmentalism, belief that developers receive too many incentives, and trust in project developers to be significantly related to support and opposition to solar development, in general. When Southwest respondents consider large-scale solar development in their county, the influence of these variables changes so that property value, race, and age only yield influence. Differential effects occur for respondents of our National sample.We believe our findings to be relevant for those outside the U.S. due to the considerable growth PV solar has experienced in the last decade, especially in China, Japan, Germany, and the U.S.« less

  17. New Multijunction Design Leads to Ultra-Efficient Solar Cell; Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-09-01

    NREL has demonstrated a 45.7% conversion efficiency for a four-junction solar cell at 234 suns concentration. This achievement represents one of the highest photovoltaic research cell efficiencies ever achieved across all types of solar cells. NREL's new solar cell, which is designed for operation in a concentrator photovoltaic (CPV) system where it can receive more than 1,000 suns of concentrated sunlight, greatly improves earlier designs by adding an additional high quality absorber layer to achieve an ultra-high efficiency.

  18. Support for solar energy: Examining sense of place and utility-scale development in California

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Carlisle, Juliet E.; Kane, Stephanie L.; Solan, David; Joe, Jeffrey C.

    2014-08-20

    As solar costs have declined PV systems have experienced considerable growth since 2003, especially in China, Japan, Germany, and the U.S. Thus, a more nuanced understanding of a particular public's attitudes toward utility-scale solar development, as it arrives in a market and region, is warranted and will likely be instructive for other areas in the world where this type of development will occur in the near future. Using data collected from a 2013 telephone survey (N=594) from the six Southern Californian counties selected based on existing and proposed solar developments and available suitable land, we examine public attitudes toward solarmore » energy and construction of large-scale solar facilities, testing whether attitudes toward such developments are the result of sense of place and attachment to place. Overall, we have mixed results. Place attachment and sense of place fail to produce significant effects except in terms of perceived positive benefits. That is, respondents interpret the change resulting from large-scale solar development in a positive way insofar as perceived positive economic impacts are positively related to support for nearby large-scale construction.« less

  19. Energy Department Announces Funding to Develop "Plug-and-Play" Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Systems for Homeowners | Department of Energy Develop "Plug-and-Play" Solar Energy Systems for Homeowners Energy Department Announces Funding to Develop "Plug-and-Play" Solar Energy Systems for Homeowners April 24, 2012 - 10:15am Addthis Washington, D.C. - As part of the Energy Department's SunShot Initiative, U.S. Energy Secretary Steven Chu today announced up to $5 million available this year to develop "plug-and-play" photovoltaic (PV) systems that can

  20. Solar collectors

    SciTech Connect (OSTI)

    Cassidy, V.M.

    1981-11-01

    Practical applications of solar energy in commercial, industrial and institutional buildings are considered. Two main types of solar collectors are described: flat plate collectors and concentrating collectors. Efficiency of air and hydronic collectors among the flat plate types are compared. Also several concentrators are described, including their sun tracking mechanisms. Descriptions of some recent solar installations are presented and a list representing the cross section of solar collector manufacturers is furnished.

  1. Life Cycle Greenhouse Gas Emissions of Trough and Tower Concentrating Solar Power Electricity Generation: Systematic Review and Harmonization

    SciTech Connect (OSTI)

    Burkhardt, J. J.; Heath, G.; Cohen, E.

    2012-04-01

    In reviewing life cycle assessment (LCA) literature of utility-scale concentrating solar power (CSP) systems, this analysis focuses on reducing variability and clarifying the central tendency of published estimates of life cycle greenhouse gas (GHG) emissions through a meta-analytical process called harmonization. From 125 references reviewed, 10 produced 36 independent GHG emissions estimates passing screens for quality and relevance: 19 for parabolic trough (trough) technology and 17 for power tower (tower) technology. The interquartile range (IQR) of published estimates for troughs and towers were 83 and 20 grams of carbon dioxide equivalent per kilowatt-hour (g CO2-eq/kWh),1 respectively; median estimates were 26 and 38 g CO2-eq/kWh for trough and tower, respectively. Two levels of harmonization were applied. Light harmonization reduced variability in published estimates by using consistent values for key parameters pertaining to plant design and performance. The IQR and median were reduced by 87% and 17%, respectively, for troughs. For towers, the IQR and median decreased by 33% and 38%, respectively. Next, five trough LCAs reporting detailed life cycle inventories were identified. The variability and central tendency of their estimates are reduced by 91% and 81%, respectively, after light harmonization. By harmonizing these five estimates to consistent values for global warming intensities of materials and expanding system boundaries to consistently include electricity and auxiliary natural gas combustion, variability is reduced by an additional 32% while central tendency increases by 8%. These harmonized values provide useful starting points for policy makers in evaluating life cycle GHG emissions from CSP projects without the requirement to conduct a full LCA for each new project.

  2. Electricity production using solar energy

    SciTech Connect (OSTI)

    Demirbas, M.F.

    2007-07-01

    In this study, a solar-powered development project is used to identify whether it is possible to utilize solar technologies in the electricity production sector. Electricity production from solar energy has been found to be a promising method in the future. Concentrated solar energy can be converted to chemical energy via high-temperature endothermic reactions. Coal and biomass can be pyrolyzed or gasified by using concentrated solar radiation for generating power. Conventional energy will not be enough to meet the continuously increasing need for energy in the future. In this case, renewable energy sources will become important. Solar energy is an increasing need for energy in the future. Solar energy is a very important energy source because of its advantages. Instead of a compressor system, which uses electricity, an absorption cooling system, using renewable energy and kinds of waste heat energy, may be used for cooling.

  3. RawSolar | Open Energy Information

    Open Energy Info (EERE)

    RawSolar Jump to: navigation, search Name: RawSolar Place: Berkeley, California Sector: Solar Product: California-based startup aiming to commercialise concentrating solar thermal...

  4. Acro Solar Lasers | Open Energy Information

    Open Energy Info (EERE)

    Acro Solar Lasers Place: El Paso, Texas Zip: 79936 Sector: Solar Product: Makes solar water heating devices based on parabolic dish concentrators. References: Acro Solar...

  5. Tonopah Airport Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Tonopah Airport Solar Power Plant Jump to: navigation, search Name Tonopah Airport Solar Power Plant Facility Tonopah Airport Solar Sector Solar Facility Type Concentrating Solar...

  6. AV Solar Ranch I Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AV Solar Ranch I Solar Power Plant Jump to: navigation, search Name AV Solar Ranch I Solar Power Plant Facility AV Solar Ranch I Sector Solar Facility Type Photovoltaic Developer...

  7. Fundamental understanding and development of low-cost, high-efficiency silicon solar cells

    SciTech Connect (OSTI)

    ROHATGI,A.; NARASIMHA,S.; MOSCHER,J.; EBONG,A.; KAMRA,S.; KRYGOWSKI,T.; DOSHI,P.; RISTOW,A.; YELUNDUR,V.; RUBY,DOUGLAS S.

    2000-05-01

    The overall objectives of this program are (1) to develop rapid and low-cost processes for manufacturing that can improve yield, throughput, and performance of silicon photovoltaic devices, (2) to design and fabricate high-efficiency solar cells on promising low-cost materials, and (3) to improve the fundamental understanding of advanced photovoltaic devices. Several rapid and potentially low-cost technologies are described in this report that were developed and applied toward the fabrication of high-efficiency silicon solar cells.

  8. DOE Funds 15 New Projects to Develop Solar Power Storage and Heat Transfer

    Energy Savers [EERE]

    Projects For Up to $67.6 Million | Department of Energy 15 New Projects to Develop Solar Power Storage and Heat Transfer Projects For Up to $67.6 Million DOE Funds 15 New Projects to Develop Solar Power Storage and Heat Transfer Projects For Up to $67.6 Million September 19, 2008 - 3:43pm Addthis WASHINGTON - U.S. Department of Energy (DOE) today announced selections for negotiations of award under the Funding Opportunity Announcement (FOA), Advanced Heat Transfer Fluids and Novel Thermal

  9. Title Nevada Solar Enterprise Zone Development Study (with Project Plan attached)

    National Nuclear Security Administration (NNSA)

    tot1Tj-0.15v thoh co-2loowin techn1.81 tho e7 anc( 1is) Tj0.09j0.876 e0 Tf0 Ts-0.205 Tc(TTc( tTj-0.086 Tw103.343 Tz-0.290 reatine In southern Nevada these two unrelated developments coincide with some of the best solar resources in the world and political leadership that has a vision of Nevada as a leader in solar energy development. From that vision came the concept of reemploying the resources at the Nevada Test Site and redeploying resources dedicated to testing nuclear weapons to

  10. Apex Solar | Open Energy Information

    Open Energy Info (EERE)

    Name: Apex Solar Place: Sofia, Bulgaria Zip: 1616 Sector: Solar Product: Bulgarian PV and solar thermal project developer and installer. References: Apex Solar1 This article is a...

  11. Shell Solar | Open Energy Information

    Open Energy Info (EERE)

    Solar Jump to: navigation, search Name: Shell Solar Place: The Hague, Netherlands Zip: 2501 AN Sector: Solar Product: Shell Solar is developing non-crystalline PV technology,...

  12. Ener Solar Technology srl | Open Energy Information

    Open Energy Info (EERE)

    Ener Solar Technology srl Jump to: navigation, search Name: Ener Solar Technology srl Place: Italy Sector: Solar Product: Solar project developer. References: Ener Solar Technology...

  13. MSM Solar India | Open Energy Information

    Open Energy Info (EERE)

    Solar India Jump to: navigation, search Name: MSM Solar India Place: India Sector: Solar Product: JV company to develop solar projects. References: MSM Solar India1 This article...

  14. Concentrating Photovoltaics (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.

    2009-01-20

    Solar is growing rapidly, and the concentrating photovoltaics industry-both high- and low-concentration cell approaches-may be ready to ramp production in 2009.

  15. NREL: Solar STAT Blog -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Outreach Policy Basics Publications Request Assistance Technical Assistance Project Map Solar STAT Blog The Solar STAT blog discusses state and local efforts to develop solar...

  16. GaAs, AlGaAs and InGaP Tunnel Junctions for Multi-Junction Solar Cells Under Concentration: Resistance Study

    SciTech Connect (OSTI)

    Wheeldon, Jeffrey F.; Valdivia, Christopher E.; Walker, Alex; Kolhatkar, Gitanja; Hall, Trevor J.; Hinzer, Karin; Masson, Denis; Riel, Bruno; Fafard, Simon; Jaouad, Abdelatif; Turala, Artur; Ares, Richard; Aimez, Vincent

    2010-10-14

    The following four TJ designs, AlGaAs/AlGaAs, GaAs/GaAs, AlGaAs/InGaP and AlGaAs/GaAs are studied to determine minimum doping concentration to achieve a resistance of <10{sup -4} {omega}{center_dot}cm{sup 2} and a peak tunneling current suitable for MJ solar cells up to 1500-suns concentration (operating current of 21 A/cm{sup 2}). Experimentally calibrated numerical models are used to determine how the resistance changes as a function of doping concentration. The AlGaAs/GaAs TJ design is determined to require the least doping concentration to achieve the specified resistance and peak tunneling current, followed by the GaAs/GaAs, and AlGaAs/AlGaAs TJ designs. The AlGaAs/InGaP TJ design can only achieve resistances >5x10{sup -4} {omega}cm{sup 2}.

  17. World's Most Efficient Solar Cell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    World's Most Efficient Solar Cell National Renewable Energy Laboratory, Spectrolab Set Record For more information contact: George Douglas, 303-275-4096 e:mail: George Douglas Golden, Colo., Nov. 1, 1999 - A solar cell that can convert sunlight to electricity at a record-setting 32 percent efficiency has been developed by the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) and Spectrolab. The high efficiency makes the cells attractive for use in solar concentrator

  18. Solar Resource Measurements at FPL Energy - Equipment Only. Cooperative Research and Development Final Report, CRADA Number CRD-08-283

    SciTech Connect (OSTI)

    Dooraghi, Mike

    2015-05-07

    Site-specific, long-term, continuous, and high-resolution measurements of solar irradiance are important for developing renewable resource data. These data are used for several research and development activities consistent with the NREL mission: Establish a national 30-year climatological database of measured solar irradiances; Provide high quality ground-truth data for satellite remote sensing validation; Support development of radiative transfer models for estimating solar irradiance from available meteorological observations; Provide solar resource information needed for technology deployment and operations.

  19. Rolling Thunder -- Integration of the Solo 161 Stirling engine with the CPG-460 solar concentrator at Ft. Huachuca

    SciTech Connect (OSTI)

    Diver, R.B.; Moss, T.A.; Goldberg, V.; Thomas, G.; Beaudet, A.

    1998-09-01

    Project Rolling Thunder is a dish/Stirling demonstration project at Ft. Huachuca, a US Army fort in southeastern Arizona (Huachuca means rolling thunder in Apache). It has been supported by the Strategic Environmental Research and Development Program (SERDP), a cooperative program between the Department of Defense (DoD) and the Department of Energy (DOE). As part of a 1992 SERDP project, Cummins Power Generation, Inc. (CPG) installed a CPG 7 kW(c) dish/Stirling system at the Joint Interoperability Test Command (JITC) in Ft. Huachuca, Arizona. The primary objective of the SERDP Dish/Stirling for DoD Applications project was to demonstrate a CPG 7-kW(c) dish/Stirling system at a military facility. Unfortunately, Cummins Engine Company decided to divest its solar operations. As a direct result of Ft. Huachuca`s interest in the Cummins dish/Stirling technology, Sandia explored the possibility of installing a SOLO 161 Stirling power conversion unit (PCU) on the Ft. Huachuca CPG-460. In January 1997, a decision was made to retrofit a SOLO 161 Stirling engine on the CPG-460 at Ft. Huachuca. Project Rolling Thunder. The SOLO 161 Demonstration at Ft. Huachuca has been a challenge. Although, the SOLO 161 PCU has operated nearly flawlessly and the CPG-460 has been, for the most part, a solid and reliable component, integration of the SOLO PCU with the CPG-460 has required significant attention. In this paper, the integration issues and technical approaches of project Rolling Thunder are presented. Lessons of the project are also discussed.

  20. Next-Generation Solar Collectors for CSP

    Office of Energy Efficiency and Renewable Energy (EERE)

    This fact sheet on Next-Generation Collectors for CSP highlights a solar energy program awarded through the 2012 SunShot Concentrating Solar Power R&D awards. The team is developing new solar collector base technologies for next-generation heliostats used in power tower systems. If successful, this project will result in a 50% reduction in solar field equipment cost and a 30% reduction in field installation cost compared to existing heliostat designs.