Powered by Deep Web Technologies
Note: This page contains sample records for the topic "development agreement crada" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Page 1 of 2 CRADA Clearance Document NIH-OTT CRADA Reference #_____________ After the provisions of a Cooperative Research And Development Agreement  

E-Print Network [OSTI]

Page 1 of 2 CRADA Clearance Document NIH-OTT CRADA Reference #_____________ After the provisions of a Cooperative Research And Development Agreement have been negotiated, the CRADA must go through clearance procedures. This form helps gather required data and it documents the approval process. NIH CRADA Clearance

Baker, Chris I.

2

Cooperative Research and Development Agreements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cooperative Research and Development Agreements (CRADAs) Cooperative Research and Development Agreement (CRADA) is a written agreement between a non-federal partner and Battelle...

3

Cooperative Research & Development Agreements | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CRADA SHARE Cooperative Research and Development Agreement A Cooperative Research and Development Agreement (CRADA) allows non-federal entities (industry, universities,...

4

Microsoft Word - CRADA Agreement Boilerplate Approved 6-2014...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(15 U.S.C. 3710a) COOPERATIVE RESEARCH AND DEVELOPMENT AGREEMENT (hereinafter "CRADA") No. AL-C- - BETWEEN Ames Laboratory, Iowa State University under its U.S. Department...

5

Microsoft Word - Short Form CRADA Agreement Boilerplate Approved...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DELAY THE START DATE OF THE PROJECT. If substantive changes are required, the DOE Model CRADA may be more appropriate due to the increased flexibility such agreements afford....

6

Agreement Execution Process Study: CRADAs and NF-WFO Agreements and the Speed of Business  

SciTech Connect (OSTI)

This report summarizes the findings of a study on the execution of Cooperative Research and Development Agreements (CRADAs) and Non-Federal Work for Others (NF-WFO) agreements across the U.S. Department of Energy (DOE) laboratory complex. The study provides quantitiative estimates of times required to negotiate and execute these agreements across the DOE complex. It identifies factors impacting on cycle times and describes best practicies used at various laboratories and site offices that reduce cycle times.

Harrer, Bruce J.; Cejka, Cheryl L.; Macklin, Richard; Miksovic, Ann

2011-02-01T23:59:59.000Z

7

NOx Abatement Research and Development CRADA with Navistar Incorporate...  

Broader source: Energy.gov (indexed) [DOE]

NOx Abatement Research and Development CRADA with Navistar Incorporated NOx Abatement Research and Development CRADA with Navistar Incorporated 2009 DOE Hydrogen Program and...

8

DOE-APPROVED COOPERATIVE RESEARCH AND DEVELOPMENT AGREEMENT LANGUAGE...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LANGUAGE AND GUIDANCE The Modular Cooperative Research and Development Agreement (CRADA) was developed to promote consistency throughout the Department of Energy (DOE). The...

9

NIH CRADA FACT SHEET NIH scientists should be aware of the following FACTS when contemplating entering into any Cooperative Research  

E-Print Network [OSTI]

NIH CRADA FACT SHEET NIH scientists should be aware of the following FACTS when contemplating entering into any Cooperative Research and Development Agreement (CRADA), specifically a standard CRADA, Clinical Trial CRADA, or Materials CRADA. The word "CRADA" is generic and includes all three types

Baker, Chris I.

10

ORNL signs agreement with Whirlpool Corp. to develop new energy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with current models. The goal of the cooperative research and development agreement, or CRADA, is to make a next-generation household refrigerator more energy efficient by using...

11

DOE Cooperative Research and Development Agreements  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The order establishes policy, requirements, and responsibilities for the oversight, management, and administration of Cooperative Research and Development Agreement (CRADA) activities at DOE facilities. Cancels DOE O 483.1 Admin Chg 1 and DOE M 483.1-1.

2013-11-06T23:59:59.000Z

12

DOE Cooperative Research and Development Agreements  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish Department of Energy (DOE) policy, requirements, and responsibilities for the oversight, management, and administration of Cooperative Research and Development Agreement (CRADA) activities at DOE facilities. No cancellation.

2001-01-12T23:59:59.000Z

13

NOx Abatement Research and Development CRADA with Navistar Incorporate...  

Broader source: Energy.gov (indexed) [DOE]

Abatement Research and Development CRADA with Navistar Incorporated (successor to International Truck and Engine Corporation) Josh A. Pihl and Todd J. Toops Oak Ridge National...

14

NETL Partnership and Licensing Agreements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Partnerships and Licensing Options Available Technologies Partnerships and Licensing Success Stories Contact Us Cooperative Research and Development Agreement (CRADA) A CRADA...

15

Subcontractor Rights Under CRADAs and WFO Agreements | Department...  

Broader source: Energy.gov (indexed) [DOE]

Documents & Publications ClassWaiverWC-2000-002.pdf Materials-Enabled High-Efficiency Diesel Engines EXHIBIT A: CRADA, WFO, PUA and NPUA Comparison Table, with suggested changes...

16

DOE Cooperative Research and Development Agreements Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Manual provides detailed requirements to supplement DOE O 483.1, DOE Cooperative Research and Development Agreements, dated 1-12-01, which establishes requirements for the performance of technology transfer through the use of Cooperative Research and Development Agreements (CRADAs). Canceled by DOE O 483.1A.

2001-01-12T23:59:59.000Z

17

CRADA Identification Number: CN-FY-XXXX Collaborator: [Insert Company Name  

E-Print Network [OSTI]

CRADA Identification Number: CN-FY-XXXX Collaborator: [Insert Company Name] CRADA Template 10.21.13 Article 1. INTRODUCTION This Cooperative Research and Development Agreement (CRADA) between the National of the Parties in the course of this CRADA is detailed in the Technical Statement of Work (SoW) which is attached

18

DEVELOPMENT OF LOW COST SENSORS FOR HYDROGEN SAFETY APPLICATIONS  

E-Print Network [OSTI]

Under a Cooperative Research and Development Agreement (CRADA) and license agreement, Oak Ridge National

19

DOE Cooperative Research and Development Agreements  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish Department of Energy (DOE) policy, requirements, and responsibilities for the oversight, management, and administration of Cooperative Research and Development Agreement (CRADA) activities at DOE facilities. Admin Chg, dated 9-18-2013. Canceled by DOE O 483.1A.

2011-01-12T23:59:59.000Z

20

CRADA Final Report: Process development for hybrid solar cells  

SciTech Connect (OSTI)

TCF funding of a CRADA between LBNL and RSLE leveraged RSLE's original $1M investment in LBNL research and led to development of a solar cell fabrication process that will bring the high efficiency, high voltage hybrid tandem solar cell closer to commercialization. RSLE has already built a pilot line at its Phoenix, Arizona site.

Ager, Joel W

2011-02-14T23:59:59.000Z

Note: This page contains sample records for the topic "development agreement crada" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

CRADA Final Report: Process development for hybrid solar cells  

E-Print Network [OSTI]

Contributions to the CRADA: DOE Funding to LBNL ParticipantCRADA Final Report v2010 Aug 24 Date ____February 14, 2011completing this form. CRADA No. __UFCRA006216____ LBNL

Ager, Joel W

2011-01-01T23:59:59.000Z

22

CRADA Final Report for CRADA Number NFE-10-02991 "Development and Commercialization of Alternative Carbon Precursors and Conversion Technologies"  

SciTech Connect (OSTI)

The overall objective of the collaborative research performed by the Oak Ridge National Laboratory (ORNL) and the Dow Chemical Company under this Cooperative Research And Development Agreement (CRADA NFE-10-02991) was to develop and establish pathways to commercialize new carbon fiber precursor and conversion technology. This technology is to produce alternative polymer fiber precursor formulations as well as scaled energy-efficient advanced conversion technology to enable continuous mode conversion to obtain carbonized fibers that are technically and economically viable in industrial markets such as transportation, wind energy, infrastructure and oil drilling applications. There have been efforts in the past to produce a low cost carbon fiber. These attempts have to be interpreted against the backdrop of the market needs at the time, which were strictly military aircraft and high-end aerospace components. In fact, manufacturing costs have been reduced from those days to current practice, where both process optimization and volume production have enabled carbon fiber to become available at prices below $20/lb. However, the requirements of the lucrative aerospace market limits further price reductions from current practice. This approach is different because specific industrial applications are targeted, most specifically wind turbine blade and light vehicle transportation, where aircraft grade carbon fiber is not required. As a result, researchers are free to adjust both manufacturing process and precursor chemistry to meet the relaxed physical specifications at a lower cost. This report documents the approach and findings of this cooperative research in alternative precursors and advanced conversion for production of cost-effective carbon fiber for energy missions. Due to export control, proprietary restrictions, and CRADA protected data considerations, specific design details and processing parameters are not included in this report.

Norris, Rober [ORNL] [ORNL; Paulauskas, Felix [ORNL] [ORNL; Naskar, Amit [ORNL] [ORNL; Kaufman, Michael [ORNL] [ORNL; Yarborough, Ken [ORNL] [ORNL; Derstine, Chris [The Dow Chemical Company] [The Dow Chemical Company

2013-10-01T23:59:59.000Z

23

Development of a cooled microwave window. CRADA final report for CRADA Number Y-1293-0200  

SciTech Connect (OSTI)

The objective of this Cooperative Research and Development project (CRADA) was to generate a new design for a microwave vacuum window to be used with ASTeX Corporation plasma processing equipment. This vacuum window allows transmission of microwave power from an input waveguide into a vacuum chamber for creation of plasma using the electron cyclotron resonance process. Requirements for the window design are: higher power capability, improved resistance to chemical attack, and physical compatibility with previous window models. In these applications, a significant portion of the input power is deposited in the window by plasma bombardment so the window must remove a great deal of heat to remain at a reliable operating temperature. A power level increase from 1.5 kW to 5 kW is desired by ASTeX for the new window which must have {approximately} 120 mm diameter and be compatible with existing hardware. New applications for these processing systems are being developed by ASTeX; these require the use of highly reactive fluorine plasmas which can rapidly etch some window materials. Therefore, the use of a fluorine compatible window ceramic is required. Two new window designs were investigated using advanced window-modeling techniques and low-power laboratory testing. It was determined that both concepts were capable of operating at significantly higher power levels than present commercial windows and would meet the CRADA design objectives. The compatibility of the window materials considered with fluorine plasmas are believed to be acceptable. ASTeX has a continuing interest in pursuing these window designs and will likely begin manufacturing design work of the improved design in the near future. There will also be a continuing effort to keep AlN ceramic manufacturers interested in improving the quality of large AlN disks. Additional window tests and development work could be performed by ORNL/MMES if a suitable funding source is available.

Bell, G.L.; Bigelow, T.S.; Leitch, R.M.; Berry, L.A. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); Holber, W.M. [Applied Science and Technology, Inc., Woburn, MA (United States)

1995-04-06T23:59:59.000Z

24

Frito-Lay North America/NREL CRADA: Cooperative Research and Development Final Report, CRADA Number CRD-06-176  

SciTech Connect (OSTI)

Frito Lay North America (FLNA) requires technical assistance for the evaluation and implementation of renewable energy and energy efficiency projects in production facilities and distribution centers across North America. Services provided by NREL do not compete with those available in the private sector, but rather provide FLNA with expertise to create opportunities for the private sector renewable/efficiency industries and to inform FLNA decision making regarding cost-effective projects. Services include: identifying the most cost-effective project locations based on renewable energy resource data, utility data, incentives and other parameters affecting projects; assistance with feasibility studies; procurement specifications; design reviews; and other services to support FNLA in improving resource efficiency at facilities. This Cooperative Research and Development Agreement (CRADA) establishes the terms and conditions under which FLNA may access capabilities unique to the laboratory and required by FLNA. Each subsequent task issued under this umbrella agreement would include a scope-of-work, budget, schedule, and provisions for intellectual property specific to that task.

Walker, A.

2013-06-01T23:59:59.000Z

25

Proprietary Master User Agreement  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Officer approval for substantive changes cannot be obtained, Work for Others (WFOs) and Cooperative Research and Development Agreements (CRADAs) may be more appropriate due to...

26

E-Print Network 3.0 - agreement crada final Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

INFORMATION Source: Lawrence Berkeley National Laboratory, High Redshift Supernova Search Collection: Physics 7 Revised NIH Model M-CRADA Monday, October 22, 2007 Summary:...

27

PHS ECT-CRADA Case Ref. No. _______ MODEL ADOPTED 2005 Page 1 of 28  

E-Print Network [OSTI]

PHS ECT-CRADA Case Ref. No. _______ MODEL ADOPTED 2005 Page 1 of 28 PUBLIC HEALTH SERVICE on the model Cooperative Research and Development Agreement ("CRADA") adopted by the U.S. Public Health Service"). This Cover Page identifies the Parties to this CRADA: The U.S. Department of Health and Human Services

Baker, Chris I.

28

METC/3M Cooperative Agreement CRADA 94-024 high temperature high pressure filter materials exposure test program. Volume 1, Final report  

SciTech Connect (OSTI)

In conjunction with shakedown, operation, and desulfurization testing at the Morgantown Energy Technology Center (METC) 10 in. Fluid Bed Gasification and Cleanup facility, a series of tests was completed in cooperation with the Minnesota Mining and Manufacturing Company (3M). This cooperative research and development agreement (CRADA) between METC and 3M was to evaluate exposure of 3M SICONEX{trademark} fiber-reinforced ceramic and NEXTEL{trademark} 312 and 550 ceramic fabric materials to a gasifying environment at high temperatures (1000--1100{degree}F) and high pressure (300 psia). Minnesota Mining and Manufacturing Company (3M) provided two 60 mm I.D. {times} 0.5 m SICONEX{trademark} spools and one each of the NEXTEL{trademark} 312 and 550 ceramic fabrics for exposure to coal gas from the METC gasifier. METC installed the materials in a vessel existing in the METC Cleanup Facility and provided process data in exchange for ceramic filter and ash/char characterization. Details of the CRADA are found in CRADA 94-024. This report contains METC`s contribution to CRADA 94-024. Four gasifier runs were conducted over a five month period to accumulate 483 hours of operation. During this time, 2 LayCer{trademark} 70/3 filters were used for filtering the coal gas while the SICONEX{trademark} and NEXTEL{trademark} were exposed along side of the filters. During one 89 hour test, one Laycer{trademark} 70/3 candle was installed with a 3M ceramic composite filter. The face velocity through the candles was maintained nominally at 2.5 ft/min throughout the testing.

NONE

1995-06-01T23:59:59.000Z

29

Optical Probe for Semiconductor: Cooperative Research and Development Final Report, CRADA Number CRD-06-206  

SciTech Connect (OSTI)

This CRADA involves development of a new semiconductor characterization tool, Optical Probe, which can be commercialized by GT Solar. GT Solar will participate in the design and testing of this instrument that will be developed under an IPP project.

Sopori, B.

2011-02-01T23:59:59.000Z

30

BNL Model CRADA Patents Only 100% Funds In (5/1/06) STEVENSON-WYDLER (15 USC 3710)  

E-Print Network [OSTI]

BNL Model CRADA ­ Patents Only ­ 100% Funds In (5/1/06) STEVENSON-WYDLER (15 USC 3710) COOPERATIVE RESEARCH AND DEVELOPMENT AGREEMENT (hereinafter "CRADA") No. __________ BETWEEN BROOKHAVEN SCIENCE in the performance of this CRADA. E. "Proprietary Information" means information which embodies (i) trade secrets

Ohta, Shigemi

31

Federal Agency Master User Agreement  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Officer approval for substantive changes cannot be obtained, Work for Others (WFOs) and Cooperative Research and Development Agreements (CRADAs) may be more appropriate due to...

32

Tire Development for Effective Transportation and Utilization of Used Tires, CRADA 01-N044, Final Report  

SciTech Connect (OSTI)

Scrap tires represent a significant disposal and recycling challenge for the United States. Over 280 million tires are generated on an annual basis, and several states have large stockpiles or abandoned tire piles that are slated for remediation. While most states have programs to address the accumulation and generation of scrap tires, most of these states struggle with creating and sustaining recycling or beneficial end use markets. One of the major issues with market development has been the costs associated with transporting and processing the tires into material for recycling or disposal. According to a report by the Rubber Manufactures Association tire-derived fuel (TDF) represents the largest market for scrap tires, and approximately 115 million tires were consumed in 2001 as TDF (U.S. Scrap Tire Markets, 2001, December 2002, www.rma.org/scraptires). This market is supported primarily by cement kilns, followed by various industries including companies that operate utility and industrial boilers. However the use of TDF has not increased and the amount of TDF used by boiler operators has declined. The work completed through this cooperative research and development agreement (CRADA) has shown the potential of a mobile tire shredding unit to economically produce TDF and to provide an alterative low cost fuel to suitable coal-fired power systems. This novel system addresses the economic barriers by processing the tires at the retailer, thereby eliminating the costs associated with hauling whole tires. The equipment incorporated into the design allow for small 1-inch chunks of TDF to be produced in a timely fashion. The TDF can then be co-fired with coal in suitable combustion systems, such as a fluidized bed. Proper use of TDF has been shown to boost efficiency and reduce emissions from power generation systems, which is beneficial to coal utilization in existing power plants. Since the original scope of work outlined in the CRADA could not be completed because of lack of progress by the CRADA members, the agreement was not extended beyond February 2004. The work completed included the detailed design of the mobile unit, a general economic analysis of the operating the system, and outreach activities.

Susan M. Maley

2004-03-31T23:59:59.000Z

33

Office of Sponsored Projects & Industry Partnerships AGREEMENT TYPES FOR USE OF THE MOLECULAR FOUNDRY  

E-Print Network [OSTI]

AGREEMENT (CRADA) - STANDARD · Incoming User data may be proprietary · User may keep their generated research results private (no expectation to publish) · For a standard CRADA, LBNL data generated is non Research and Development Agreement (CRADA) ­ NON-STANDARD Note: For Use in exceptional circumstances only

Lee, Jason R.

34

Integrated Biorefinery Project: Cooperative Research and Development Final Report, CRADA Number CRD-10-390  

SciTech Connect (OSTI)

The Amyris-NREL CRADA is a sub-project of Amyris?s DOE-funded pilot-scale Integrated Biorefinery (IBR). The primary product of the Amyris IBR is Amyris Renewable Diesel. Secondary products will include lubricants, polymers and other petro-chemical substitutes. Amyris and its project partners will execute on a rapid project to integrate and leverage their collective expertise to enable the conversion of high-impact biomass feedstocks to these advanced, infrastructure-compatible products. The scope of the Amyris-NREL CRADA includes the laboratory development and pilot scale-up of bagasse pretreatment and enzymatic saccharification conditions by NREL for subsequent conversion of lignocellulosic sugar streams to Amyris Diesel and chemical products by Amyris. The CRADA scope also includes a techno-economic analysis of the overall production process of Amyris products from high-impact biomass feedstocks.

Chapeaux, A.; Schell, D.

2013-06-01T23:59:59.000Z

35

CENER/NREL Collaboration in Testing Facility and Code Development: Cooperative Research and Development Final Report, CRADA Number CRD-06-207  

SciTech Connect (OSTI)

Under the funds-in CRADA agreement, NREL and CENER will collaborate in the areas of blade and drivetrain testing facility development and code development. The project shall include NREL assisting in the review and instruction necessary to assist in commissioning the new CENER blade test and drivetrain test facilities. In addition, training will be provided by allowing CENER testing staff to observe testing and operating procedures at the NREL blade test and drivetrain test facilities. CENER and NREL will exchange blade and drivetrain facility and equipment design and performance information. The project shall also include exchanging expertise in code development and data to validate numerous computational codes.

Moriarty, P.

2014-11-01T23:59:59.000Z

36

Action Steps for a Cooperative Research and Development Agreement (CRADA)  

Broader source: Energy.gov [DOE]

An outline of the steps that DOE laboratories and industry partners fulfill when undertaking projects together.

37

Cooperative Research & Development Agreements (CRADA) | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User GroupInformationE-Gov ContactsContractOfficeCoolWhy Do FansCooling

38

Acciona Solar Technology Performance Evaluation: Cooperative Research and Development Final Report, CRADA Number CRD-10-384  

SciTech Connect (OSTI)

Under this agreement, NREL will work with Acciona to conduct joint testing, evaluation, and data collection related to Acciona's solar technologies and systems. This work includes, but is not limited to, testing and evaluation of solar component and system technologies, data collection and monitoring, performance evaluation, reliability testing, and analysis. This work will be conducted at Acciona's Nevada Solar One (NSO) power plant and NREL test facilities. Specific projects will be developed on a task order basis. Each task order will identify the name of the project and deliverables to be produced under the task order. Each task order will delineate an estimated completion date based on a project's schedule. Any reports developed under this CRADA must be reviewed by both NREL and Acciona and approved by each organization prior to publication of results or documents.

Mehos, M. S.

2014-01-01T23:59:59.000Z

39

NaREC Offshore and Drivetrain Test Facility Collaboration: Cooperative Research and Development Final Report, CRADA Number CRD-04-140  

SciTech Connect (OSTI)

The National Renewable Energy Laboratory (NREL) and the National Renewable Energy Centre (NaREC) in the United Kingdom (UK) have a mutual interest in collaborating in the development of full-scale offshore wind energy and drivetrain testing facilities. NREL and NaREC will work together to share resources and experiences in the development of future wind energy test facilities. This Cooperative Research and Development Agreement (CRADA) includes sharing of test protocols, infrastructure cost data, test plans, pro forma contracting instruments, and safe operating strategies. Furthermore, NREL and NaREC will exchange staff for training and development purposes.

Musial, W.

2014-08-01T23:59:59.000Z

40

EXHIBIT A: CRADA, WFO, PUA and NPUA Comparison Table, with suggested...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EXHIBIT A: CRADA, WFO, PUA and NPUA Comparison Table, with suggested changes On cost recovery basis, the CRADA, WFO, PUA and NPUA agreements can be distinguished as follows:...

Note: This page contains sample records for the topic "development agreement crada" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

E-Print Network 3.0 - assembly final crada Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Agreements (CRADA) of BNL with BNL... Technology Transfer CRADA - Advanced thermoelectric Materials for Vehicles Waste Heat Recovery (DOE-EERE) BNL TEP Source: Brookhaven...

42

Sample Sponsored Research Agreements | Partnerships | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the Sponsored Research Group and the Partner prior to final execution. Work for Others MSOF CRADA Short-Form CRADA User Agreement - Nonproprietary User Agreement - Proprietary...

43

Equipment Only - Solar Resources Measurements at the University of Texas at Austin, TX: Cooperative Research and Development Final Report, CRADA Number CRD-07-222  

SciTech Connect (OSTI)

Faculty and staff at the University of Texas at Austin collected solar resource measurements at their campus using equipment on loan from the National Renewable Energy Laboratory. The equipment was used to train students on the operation and maintenance of solar radiometers and was returned to NREL's Solar Radiation Research Laboratory upon completion of the CRADA. The resulting data augment the solar resource climatology information required for solar resource characterizations in the U.S. The cooperative agreement was also consistent with NREL's goal of developing an educated workforce to advance renewable energy technologies.

Stoffel, T.

2013-01-01T23:59:59.000Z

44

Inverted Metamorphic Cell Development: Cooperative Research and Development Final Report, CRADA Number CRD-05-156  

SciTech Connect (OSTI)

This CRADA targeted technology transfer of the inverted metamorphic multi-junction (IMM) solar cell innovation from NREL to Emcore Photovoltaics. The technology transfer was successfully completed. Additionally, NREL provided materials characterization of solar cell structures produced at Emcore.

Wanlass, M.

2012-05-01T23:59:59.000Z

45

DEDALOS NREL: Cooperative Research and Development Final Report, CRADA Number CRD-07-237  

SciTech Connect (OSTI)

Currently High Concentration Photovoltaic (HCPV) terrestrial modules are based on the combination of optic elements that concentrate the sunlight into much smaller GaAs space cells to produce electricity. GaAs cell technology has been well developed for space applications during the last two decades, but the use of GaAs cells under concentrated sunlight in terrestrial applications leaves unanswered questions about performance, durability and reliability. The work to be performed under this CRADA will set the basis for the design of high-performance, durable and reliable HCPV terrestrial modules that will bring down electricity production costs in the next five years.

Friedman, D.

2013-06-01T23:59:59.000Z

46

NIMH CRADAs Review and Approval Process  

E-Print Network [OSTI]

NIMH CRADAs Review and Approval Process Initiation · Principle Investigators (PIs) from both parties jointly develop a Research Plan (using NIH CRADA Subcommittee guidelines) and determine). · Collaborating party concurrently reviews CRADA boilerplate and contacts TDC with any questions or areas

Baker, Chris I.

47

Jupiter Oxygen Corporation/Albany Research Center Crada Progress Report, September  

SciTech Connect (OSTI)

The Albany Research Center (ARC) has developed a new Integrated Pollutant Removal (IPR) process for fossil-fueled boilers. Pursuant to a cooperative research and development agreement (CRADA) with Jupiter Oxygen Corporation, ARC currently is studying the IPR process as applied to the oxygen fuel technology developed by Jupiter. As discussed further below, these two new technologies are complementary. This interim report summarizes the study results to date and outlines the potential activities under the next phase of the CRADA with Jupiter.

Turner, Paul C.; Schoenfield, Mark (Jupiter Oxygen Corp.)

2004-09-13T23:59:59.000Z

48

Solar Technology Acceleration Center (SolarTAC): Cooperative Research and Development Final Report, CRADA Number CRD-07-259  

SciTech Connect (OSTI)

This agreement allowed NREL to serve as an advisor on SolarTAC - a collaborative effort between Xcel Energy, NREL, and the University of Colorado at Boulder. The collaboration was formed to accelerate pre-commercial and early commercial solar energy technologies to the marketplace. Through this CRADA, NREL participated in the deployment of solar energy generation technologies and related solar equipment for research, testing, validation, and demonstration purposes.

Kramer, W.

2011-10-01T23:59:59.000Z

49

Metallization for Self Aligned Technology: Cooperative Research and Development Final Report, CRADA Number CRD-08-295  

SciTech Connect (OSTI)

In this CRADA NREL will modify/develop metallization inks that are compatible with 1366 Technologies technology. Various methods of deposition will be used to apply the inks to the textured silicon substrates. The goal of the project is to minimize the contact resistance while maximizing the cell efficiency.

Ginley, D.

2012-04-01T23:59:59.000Z

50

CRADA Final Report: Process development for hybrid solar cells  

E-Print Network [OSTI]

development for hybrid solar cells Summary of the specific20 wafers with full tandem solar cell test structure perNitride/Silicon Tandem Solar Cell, Appl. Phys. Express 2

Ager, Joel W

2011-01-01T23:59:59.000Z

51

Development of a High Volume Capable Process to Manufacture High Performance Photovoltaic Cells: Cooperative Research and Development Final Report, CRADA Number CRD-08-322  

SciTech Connect (OSTI)

The intent of the work is for RFMD and NREL to cooperate in the development of a commercially viable and high volume capable process to manufacture high performance photovoltaic cells, based on inverted metamorphic (IMM) GaAs technology. The successful execution of the agreement will result in the production of a PV cell using technology that is capable of conversion efficiency at par with the market at the time of release (reference 2009: 37-38%), using RFMD's production facilities. The CRADA work has been divided into three phases: (1) a foundation phase where the teams will demonstrate the manufacturing of a basic PV cell at RFMD's production facilities; (2) a technology demonstration phase where the teams will demonstrate the manufacturing of prototype PV cells using IMM technology at RFMD's production facilities, and; (3) a production readiness phase where the teams will demonstrate the capability to manufacture PV cells using IMM technology with high yields, high reliability, high reproducibility and low cost.

Geisz, J. F.

2012-11-01T23:59:59.000Z

52

Revised NIH Model M-CRADA Monday, October 22, 2007  

E-Print Network [OSTI]

Revised NIH Model M-CRADA Monday, October 22, 2007 Page 1 of 10 NATIONAL INSTITUTES OF HEALTH Agreement ("M-CRADA") has been adopted for use by the Institutes and Centers of the National Institutes are collected in Appendix B. Appendices A and B are incorporated herein by reference. This M-CRADA involves

Baker, Chris I.

53

Solar Thermal Conversion of Biomass to Synthesis Gas: Cooperative Research and Development Final Report, CRADA Number CRD-09-00335  

SciTech Connect (OSTI)

The CRADA is established to facilitate the development of solar thermal technology to efficiently and economically convert biomass into useful products (synthesis gas and derivatives) that can replace fossil fuels. NREL's High Flux Solar Furnace will be utilized to validate system modeling, evaluate candidate reactor materials, conduct on-sun testing of the process, and assist in the development of solar process control system. This work is part of a DOE-USDA 3-year, $1M grant.

Netter, J.

2013-08-01T23:59:59.000Z

54

Development of Advanced CdTe Solar Cells Based on High Temperature Corning Glass Substrates: Cooperative Research and Development Final Report, CRADA Number CRD-10-373  

SciTech Connect (OSTI)

NREL has developed advanced processes for CdTe solar cells, but because of the temperature limitations of conventional soda lime glass, many of these processes have not been transferred to manufacturing. Corning is developing high temperature substrate glasses that are believed to be manufacturable and will lead to lower $/watt modules costs. The purpose of this CRADA is to evaluate these glasses in the advanced NREL processes. In addition, the CRADA seeks to develop manufacturable processes for transparent conductive oxide layers based on cadmium stannate.

Barnes, T.

2013-08-01T23:59:59.000Z

55

FFP/NREL Collaboration on Hydrokinetic River Turbine Testing: Cooperative Research and Development Final Report, CRADA Number CRD-12-00473  

SciTech Connect (OSTI)

This shared resources CRADA defines collaborations between the National Renewable Energy Laboratory (NREL) and Free Flow Power (FFP) set forth in the following Joint Work Statement. Under the terms and conditions described in this CRADA, NREL and FFP will collaborate on the testing of FFP's hydrokinetic river turbine project on the Mississippi River (baseline location near Baton Rouge, LA; alternate location near Greenville, MS). NREL and FFP will work together to develop testing plans, instrumentation, and data acquisition systems; and perform field measurements.

Driscoll, F.

2013-04-01T23:59:59.000Z

56

Partnership Agreement Options | Partnerships | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Agreement For Commercializing Technology (ACT) CRADA Work For Others Agreement User Agreement Sample Sponsored Research Agreement SBIR-STTR Support Partnerships Home | Connect...

57

Quantification Testing SPI Simulator 5600SLP: Cooperative Research and Development Final Report, CRADA Number CRD-12-482  

SciTech Connect (OSTI)

Under this CRADA NREL will assess the Spire equipment's fitness for use for calibration and certification laboratories.

Emery, K.

2014-09-01T23:59:59.000Z

58

Blade Testing Equipment Development and Commercialization: Cooperative Research and Development Final Report, CRADA Number CRD-09-346  

SciTech Connect (OSTI)

Blade testing is required to meet wind turbine design standards, reduce machine cost, and reduce the technical and financial risk of deploying mass-produced wind turbine models. NREL?s National Wind Technology Center (NWTC) in Colorado is the only blade test facility in the U.S. capable of performing full-scale static and fatigue testing of multi-megawatt-scale wind turbine blades. Rapid growth in wind turbine size over the past two decades has outstripped the size capacity of the NWTC blade test facility leaving the U.S. wind industry without a suitable means of testing blades for large land-based and offshore turbines. This CRADA will develop and commercialize testing technologies and test equipment, including scaling up, value engineering, and testing of equipment to be used at blade testing facilities in the U.S. and around the world.

Snowberg, D.; Hughes, S.

2013-04-01T23:59:59.000Z

59

Development of lifetime test procedure for powder evacuated panel insulation. CRADA final report  

SciTech Connect (OSTI)

This CRADA is between Appliance Research Consortium (ARC) of the Association of Home Appliance Manufacturers (AHAM) and the Lockheed Martin Energy Research Corp. A Powder Evacuated Panel (PEP) is a "super" thermal insulation, having a thermal resistivity (R) substantially above that of existing insulation without the environmental problems of some insulations such as Chlorofluorocarbon (CFC) blown foam.

Wilkes, K E; Graves, R S; Childs, K W

1996-03-01T23:59:59.000Z

60

Wind Turbine Blade Test Definition of the DeWind DW90 Rotor Blade: Cooperative Research and Development Final Report, CRADA Number CRD-09-326  

SciTech Connect (OSTI)

This CRADA was developed as a funds-in CRADA with DeWind to assess the suitability of facilities and equipment at the NWTC for performing certification blade testing on wind turbine blades made from advanced materials. DeWind produces a wind turbine blade which includes the use of high-strength and stiffness materials. NREL and DeWind had a mutual interest in defining the necessary facilities, equipment, and test methods for testing large wind turbine blades which incorporate advanced materials and adaptive structures, as the demands on test equipment and infrastructure are greater than current capabilities. Work under this CRADA would enable DeWind to verify domestic capability for certification-class static and fatigue testing, while NREL would be able to identify and develop specialized test capabilities based on the test requirements.

Hughes, S.

2012-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "development agreement crada" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Development of New Absorber Materials to Achieve Organic Photovoltaic Commercial Modules with 15% Efficiency and 20 Years Lifetime: Cooperative Research and Development Final Report, CRADA Number CRD-12-498  

SciTech Connect (OSTI)

Under this CRADA the parties will develop intermediates or materials that can be employed as the active layer in dye sensitized solar cells printed polymer systems, or small molecule organic photovoltaics.

Olson, D.

2014-08-01T23:59:59.000Z

62

NREL Wind Turbine Blade Structural Testing of the Modular Wind Energy MW45 Blade: Cooperative Research and Development Final Report, CRADA Number CRD-09-354  

SciTech Connect (OSTI)

This CRADA was a purely funds-in CRADA with Modular Wind Energy (MWE). MWE had a need to perform full-scale testing of a 45-m wind turbine blade. NREL/NWTC provided the capabilities, facilities, and equipment to test this large-scale MWE wind turbine blade. Full-scale testing is required to demonstrate the ability of the wind turbine blade to withstand static design load cases and demonstrate the fatigue durability. Structural testing is also necessary to meet international blade testing certification requirements. Through this CRADA, MWE would obtain test results necessary for product development and certification, and NREL would benefit by working with an industrial partner to better understand the unique test requirements for wind turbine blades with advanced structural designs.

Hughes, S.

2012-05-01T23:59:59.000Z

63

Science and Technology Development for Renewable Energy Applications: Cooperative Research and Development Final Report, CRADA Number CRD-03-00122  

SciTech Connect (OSTI)

This CRADA PTS is a vital element of a larger GE effort to design and build higher-power next-generation wind turbine generators with a cost of energy production competitive or less than conventional fuel-based generation.

Musial, W.

2010-07-01T23:59:59.000Z

64

Advanced Load Identification and Management for Buildings: Cooperative Research and Development Final Report, CRADA Number: CRD-11-422  

SciTech Connect (OSTI)

The goal of this CRADA work is to support Eaton Innovation Center (Eaton) efforts to develop advanced load identification, management technologies, and solutions to reduce building energy consumption by providing fine granular visibility of energy usage information and safety protection of miscellaneous electric loads (MELs) in commercial and residential buildings. MELs load identification and prediction technology will be employed in a novel 'Smart eOutlet*' to provide critical intelligence and information to improve the capability and functionality of building load analysis and design tools and building power management systems. The work scoped in this CRADA involves the following activities: development and validation of business value proposition for the proposed technologies through voice of customer investigation, market analysis, and third-party objective assessment; development and validation of energy saving impact as well as assessment of environmental and economic benefits; 'smart eOutlet' concept design, prototyping, and validation; field validation of the developed technologies in real building environments. (*Another name denoted as 'Smart Power Strip (SPS)' will be used as an alternative of the name 'Smart eOutlet' for a clearer definition of the product market position in future work.)

Gentile-Polese, L.

2014-05-01T23:59:59.000Z

65

Conflict of Interest Review CRADA Principal Investigator's Certification  

E-Print Network [OSTI]

Conflict of Interest Review CRADA Principal Investigator's Certification CRADA Principal Investigator: ______________________________ IC: ___________________________ CRADA ID Number: _________________ Collaborating Organization: ________________________________________________ CRADA Title

Baker, Chris I.

66

Nanomaterial Composites for Next Generation Water Filters: Cooperative Research and Development Final Report, CRADA Number CRD-06-197  

SciTech Connect (OSTI)

Under this CRADA, the Parties will produce and test a composite filter element that will remove particles, bacteria and viruses to produce safe drinking water.

Ginley, D.

2013-04-01T23:59:59.000Z

67

Improved Battery Pack Thermal Management to Reduce Cost and Increase Energy Density: Cooperative Research and Development Final Report, CRADA Number CRD-12-499  

SciTech Connect (OSTI)

Under this CRADA NREL will support Creare's project for the Department of Energy entitled 'Improved Battery Pack Thermal Management to Reduce Cost and Increase Energy Density' which involves the development of an air-flow based cooling product that increases energy density, safety, and reliability of hybrid electric vehicle battery packs.

Smith, K.

2013-10-01T23:59:59.000Z

68

Preliminary Structural Design Conceptualization for Composite Rotor for Verdant Power Water Current: Cooperative Research and Development Final Report, CRADA Number CRD-08-296  

SciTech Connect (OSTI)

The primary thrust of the CRADA will be to develop a new rotor design that will allow higher current flows (>4m/s), greater swept area (6-11m), and in the process, will maximize performance and energy capture.

Hughes, S.

2011-02-01T23:59:59.000Z

69

Organic Based Nanocomposite Solar Cells: Cooperative Research and Development Final Report, CRADA Number CRD-04-145  

SciTech Connect (OSTI)

This CRADA will focus on the development of organic-based solar cells. Key interfacial issues in these cells will be investigated. In this rapidly emerging technology, it is increasingly clear that cell architecture will need to be at the nanoscale and the interfacial issues between organic elements (small molecule and polymer), transparent conducting oxides, and contact metallizations are critical. Thus this work will focus on the development of high surface area and nanostructured nanocarpets of inorganic oxides, the development of appropriate surface binding/acceptor molecules for the inorganic/organic interface, and the development of next-generation organic materials. Work will be performed in all three areas jointly at NREL and Konarka (with their partner in the third area of the University of Delaware). Results should be more rapid progress toward cheap large-area photovoltaic cells.

Olson, D.

2013-01-01T23:59:59.000Z

70

Cooperative Research and Development Agreement between the California Air Resources Board and Lockheed Martin Idaho Technologies Company. Final report  

SciTech Connect (OSTI)

This report summarizes the activities under a Cooperative Research and Development Agreement (CRADA) between Lockheed-Martin Idaho Technologies Company (LMITCO) and the California Air Resources Board (CARB). The activities were performed at the Idaho National Engineering and Environmental Laboratory (INEEL) between June 1995 and December 1997. Work under this agreement was concentrated in two task areas as defined in the California Air Resources Board`s contract number 94-908 having an approval date of June 9, 1995: Task 1--EV and HEV Vehicle Testing and Assessment and Task 4--Advanced Battery Testing.

Cole, G.H.

1998-04-01T23:59:59.000Z

71

Inks for Ink Jet Printed Contacts for High Performance Silicon Solar Cells: Cooperative Research and Development Final Report, CRADA No. CRD-06-199  

SciTech Connect (OSTI)

The work under the proposed CRADA will be a joint effort by BP Solar and NREL to develop new types of high performance inks for high quality contacts to silicon solar cells. NREL will develop inks that have electronic properties that will allow the formation of high quality ohmic contacts to n- and p-type crystalline silicon, and BP Solar will evaluate these contacts in test contact structures.

Ginley, D.

2013-01-01T23:59:59.000Z

72

Sandia National Laboratories: CRADA  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CRADA ECIS and UOP (a Honewell Company): CSTs Clean Radioactive Waste in Fukushima and Worldwide On February 14, 2013, in Energy, Materials Science, Nuclear Energy, Partnership,...

73

Final Report for CRADA No. 97-F001  

SciTech Connect (OSTI)

This report documents the results of work conducted under the Cooperative Research And Development (CRADA) No. 97-F001 between the Foster Wheeler Development Corporation, FWDC, and the National Energy Technology Laboratory, NETL. Under this agreement, FWDC and NETL worked together to further investigate the applicability of the MFIX computer code to FWDC engineering problems. MFIX is a transient, finite difference, FORTRAN code that solves the equations of transport for interacting fluid and granular solid phases. It is designed to model fluidized bed reactors. Under the CRADA, work was divided into three tasks. The first task involved the continued validation of the hydrodynamic and chemistry capabilities of the MFIX code. The second task involved a parametric evaluation of the MFIX code's ability to predict bubble shape. Task 3 was to modify MFIX to make it execute faster and more easily on personal computers. Task 1 was accomplished by both FWDC and NETL while Tasks 2 and 3 were completed primarily by NETL. Non technical details of the CRADA can be found in Appendix A.

National Energy Technology Laboratory; The Foster Wheeler Development Corporation

2000-10-31T23:59:59.000Z

74

Application of a Barrier Filter at a High Purity Synthetic Graphite Plant, CRADA 99-F035, Final Report  

SciTech Connect (OSTI)

Superior Graphite Company and the US Department of Energy have entered into a Cooperative Research and Development Agreement (CRADA) to study the application of ceramic barrier filters at its Hopkinsville, Kentucky graphite plant. Superior Graphite Company is a worldwide leader in the application of advanced thermal processing technology to produce high purity graphite and carbons. The objective of the CRADA is to determine the technical and economic feasibility of incorporating the use of high-temperature filters to improve the performance of the offgas treatment system. A conceptual design was developed incorporating the ceramic filters into the offgas treatment system to be used for the development of a capital cost estimate and economic feasibility assessment of this technology for improving particulate removal. This CRADA is a joint effort of Superior Graphite Company, Parsons Infrastructure and Technology Group, and the National Energy Technology Laboratory (NETL) of the US Department of Energy (DOE).

National Energy Technology Laboratory

2000-08-31T23:59:59.000Z

75

New N-Type Polymers for Organic Photovoltaics: Cooperative Research and Development Final Report, CRADA Number CRD-06-177  

SciTech Connect (OSTI)

This CRADA will develop improved thin film organic solar cells using a new n-type semiconducting polymer. High efficiency photovoltaics (PVs) based on inorganic semiconductors have good efficiencies (up to 30%) but are extremely expensive to manufacture. Organic PV technology has the potential to overcome this problem through the use of high-throughput production methods like reel-to-reel printing on flexible substrates. Unfortunately, today's best organic PVs have only a few percent efficiency, a number that is insufficient for virtually all commercial applications. The limited choice of stable n-type (acceptor) organic semiconductor materials is one of the key factors that prevent the further improvement of organic PVs. TDA Research, Inc. (TDA) previously developed a new class of electron-deficient (n-type) conjugated polymers for use in organic light emitting diodes (OLEDs). During this project TDA in collaboration with the National Renewable Energy Laboratory (NREL) will incorporate these electron-deficient polymers into organic photovoltaics and investigate their performance. TDA Research, Inc. (TDA) is developing new materials and polymers to improve the performance of organic solar cells. Materials being developed at TDA include spin coated transparent conductors, charge injection layers, fullerene derivatives, electron-deficient polymers, and three-phase (fullerene/polythiophene/dye) active layer inks.

Olson, D.

2014-08-01T23:59:59.000Z

76

Noncomposite Counterelectrode Development: Cooperative Research and Development Final Report, CRADA Number CRD-06-203  

SciTech Connect (OSTI)

New counter electrode materials under development at NREL have the potential to positively impact electrochromic window technology. The current generation of nanocomposite materials is designed to provide rapid transport of lithium ions to nanoparticles of anodic coloring materials. They may improve the coloration efficiency of the entire films stack while also improving the speed and depth of coloration. We expect an added benefit of greater film durability. To date, encouraging results have been obtained in the laboratory. Performance and durability tests will be carried out to characterize any improvements obtained as a result of the new counter electrode materials. In addition to process improvement, the project also has the secondary goal of improving the basic understanding of the electrochromic process in Sage?s counter electrode.

Engtrakul, C.

2014-06-01T23:59:59.000Z

77

Cooperative Research & Development Agreements | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops01ControllingControlsCoolSpace HeatingCRADA

78

CRADA Final Report for CRADA Number ORNL98-0521 : Development of an Electric Bus Inverter Based on ORNL Auxiliary Resonant Tank (ART) Soft-Switching Technology  

SciTech Connect (OSTI)

The Power Electronics and Electric Machinery Research Center (PEEMRC) of Oak Ridge National Laboratory (ORNL) has for many years been developing technologies for power converters for motor drives and many other applications. Some of the research goals are to improve efficiency and reduce audible and electromagnetic interference noise generation for inverters and the driven loads. The converters are being required to produce more power with reduced weight and volume, which requires improvements in heat removal from the electronics, as well as improved circuit designs that have fewer electrical losses. PEEMRC has recently developed and patented a soft-switching inverter topology called an Auxiliary Resonant Tank (ART), and this design has been tested and proven at ORNL using a 10-kW laboratory prototype. The objective of this project was to develop, test, and install the ART inverter technology in an electric transit bus with the final goal of evaluating performance of the ORNL inverter under field conditions in a vehicle. A scaled-up inverter with the capacity to drive a 22-e bus was built based on the 10-kW ORNL laboratory prototype ART soft-switching inverter. Most (if not all) commercially available inverters for traction drive and other applications use hard-switching inverters. A Cooperative Research and Development Agreement was established with the Chattanooga Area Regional Transit Authority (CARTA), the Electric Transit Vehicle Institute (ETVI), and Advanced Vehicle Systems (AVS), all of Chattanooga, along with ORNL. CARTA, which maintains and operates the public transit system in Chattanooga, provided an area for testing the vehicle alongside other similar vehicles in the normal operating environment. ETVI offers capabilities in standardized testing and reporting and also provides exposure in the electric transit vehicle arena for ORNL's technologies. The third Chattanooga partner, (AVS) manufactures all-electric and hybrid electric transit buses using inverter drive systems from several manufacturers. AVS provided help in field installation, and parts for laboratory testing. A 100-kW field-ready unit was developed, tested in an ORNL laboratory, and installed and successfully operated in a CARTA bus in Chattanooga. The tests on the vehicle were performed at a CARTA maintenance facility and at a l-mile test track in Chattanooga managed by CARTA.

Ayers, C.W.

2001-05-08T23:59:59.000Z

79

Development of Thin Film Silicon Solar Cell Using Inkjet Printed Silicon and Other Inkjet Processes: Cooperative Research and Development Final Report, CRADA Number CRD-07-260  

SciTech Connect (OSTI)

The cost of silicon photovoltaics (Si-PV) can be greatly lowered by developing thin-film crystalline Si solar cells on glass or an equally lower cost substrate. Typically, Si film is deposited by thermal evaporation, plasma enhanced chemical vapor deposition, and sputtering. NREL and Silexos have worked under a CRADA to develop technology to make very low cost solar cells using liquid organic precursors. Typically, cyclopentasilane (CPS) is deposited on a glass substrate and then converted into an a-Si film by UV polymerization followed by low-temperature optical process that crystallizes the amorphous layer. This technique promises to be a very low cost approach for making a Si film.

Sopori, B.

2012-04-01T23:59:59.000Z

80

Development of ZnTe:Cu Contacts for CdTe Solar Cells: Cooperative Research and Development Final Report, CRADA Number CRD-08-320  

SciTech Connect (OSTI)

The main focus of the work at NREL was on the development of Cu-doped ZnTe contacts to CdTe solar cells in the substrate configuration. The work performed under the CRADA utilized the substrate device structure used at NREL previously. All fabrication was performed at NREL. We worked on the development of Cu-doped ZnTe as well as variety of other contacts such as Sb-doped ZnTe, CuxTe, and MoSe2. We were able to optimize the contacts to improve device parameters. The improvement was obtained primarily through increasing the open-circuit voltage, to values as high as 760 mV, leading to device efficiencies of 7%.

Dhere, R.

2012-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "development agreement crada" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Electrical Characterization of Printed Nanocrystalline Silicon Films, Cooperative Research and Development Final Report, CRADA Number CRD-07-00241  

SciTech Connect (OSTI)

This CRADA helped Innovalight characterize and quantify their ink-based selective emitter technology. Controlled localized doping of selective emitter structures via Innovalight Silicon Ink technology was demonstrated. Both secondary ion mass spectrometry and scanning capacitance microscopy revealed; abrupt lateral dopant profiles at ink-printed boundaries. Uniform doping of iso- and pyramidal surfaces was also verified using scanning electron microscopy dopant contrast imaging.

Young, D.

2011-05-01T23:59:59.000Z

82

High Performance Photovoltaic Solar Cells: Cooperative Research and Development Final Report, CRADA Number CRD-05-169  

SciTech Connect (OSTI)

NREL will provide certified measurements of the conversion efficiency at high concentration for several multijunction solar cells that were fabricated by Cyrium Technologies. In an earlier phase of the CRADA, Cyrium provided epitaxially-grown material and NREL processed the samples into devices and measured the performance.

Steiner, M.

2012-07-01T23:59:59.000Z

83

FY2011 Progress Report: Agreement 8697 - NOx Sensor Development  

SciTech Connect (OSTI)

Objectives are: (1) Develop an inexpensive, rapid-response, high-sensitivity and selective electrochemical sensor for oxides of nitrogen (NO{sub x}) for compression-ignition, direct-injection (CIDI) OBD II systems; (2) Explore and characterize novel, effective sensing methodologies based on impedance measurements and designs and manufacturing methods that are compatible with mass fabrication; and (3) Collaborate with industry in order to (ultimately) transfer the technology to a supplier for commercialization. Approach used is: (1) Use an ionic (O{sup 2-}) conducting ceramic as a solid electrolyte and metal or metal-oxide electrodes; (2) Correlate NO{sub x} concentration with changes in cell impedance; (3) Evaluate sensing mechanisms and aging effects on long-term performance using electrochemical techniques; and (4) Collaborate with Ford Research Center to optimize sensor performance and perform dynamometer and on-vehicle testing. Work in FY2011 focused on using an algorithm developed in FY2010 in a simplified strategy to demonstrate how data from controlled laboratory evaluation could be applied to data from real-world engine testing. The performance of a Au wire prototype sensor was evaluated in the laboratory with controlled gas compositions and in dynamometer testing with diesel exhaust. The laboratory evaluation indicated a nonlinear dependence of the NO{sub x} and O{sub 2} sensitivity with concentration. For both NO{sub x} and O{sub 2}, the prototype sensor had higher sensitivity at concentrations less than {approx}20 ppm and {approx}7%, respectively, compared to lower NO{sub x} and O{sub 2} sensitivity at concentrations greater than {approx}50 ppm and {approx}10.5%, respectively. Results in dynamometer diesel exhaust generally agreed with the laboratory results. Diesel exhaust after-treatment systems will likely require detection levels less than {approx}20 ppm in order to meet emission regulations. The relevant mathematical expressions for sensitivity in different concentration regimes obtained from bench-level laboratory evaluation were used to adjust the sensor signal in dynamometer testing. Both NO{sub x} and O{sub 2} exhibited non-linear responses over the concentration regimes examined (0-100 ppm for NO{sub x} and 4-7% for O{sub 2}). Adjusted sensor signals had better agreement with both a commercial NO{sub x} sensor and FTIR measurements. However, the lack of complete agreement indicated that it was not possible to completely account for the nonlinear sensor behavior in certain concentration regimes. The agreement at lower NO{sub x} levels (less than 20 ppm) was better than at higher levels (50-100 ppm). Other progress in FY2011 included dynamometer testing of sensors with imbedded heaters and protective housings that were mounted directly into the exhaust manifold. Advanced testing protocols were used to evaluate the sensors. These experiments confirmed the potential for sensor robustness and durability. Advanced material processing methods appropriate for mass manufacturing, such as sputtering, are also being evaluated. A major milestone for this past year was the licensing of the LLNL NO{sub x} sensor technology to EmiSense Technologies, LLC. EmiSense has extensive experience and resources for the development of emission control sensors. A CRADA is in development that will allow LLNL to work in partnership with EmiSense to bring the LLNL NO{sub x} sensor technology to commercialization. Ford Motor Company is also a partner in this effort.

Woo, L Y; Glass, R S

2011-11-01T23:59:59.000Z

84

METC/3M Cooperative Agreement CRADA 94-024 high temperature high pressure filter materials exposure test program. Volume 2, Final report  

SciTech Connect (OSTI)

This report is a summary of the results of activities of the particulate monitoring group in support of the METC/3M CRADA 94024. Online particulate monitoring began in June 1994 and ended in October, 1994. The particulate monitoring group participated in four MGCR runs (No. 7 through No. 10). The instrument used in measuring the particle loadings (particle counts and size distribution) is the Particle Measuring Systems Classical Scattering Aerosol Spectrometer Probe High Temperature and High Pressure (PMS Model CSASP-100-HTHP). This PMS unit is rated to operate at temperatures up to 540{degree}C and gage pressures up to 2.0 MPa. Gas stream conditions, temperature at 540{degree}C, gage pressure at 2.93 MPa, and gas flowrate at 0.0157 SCM per second, precluded the direct measurement of particulate loadings in the gas stream with the PMS unit. A side stream was extracted from the gas stream after it came over to the MGCR, Modular Gas Cleanup Rig, from the FBG, pressurized Fluidized-Bed Gasifier, but before it entered the filter testing vessel. A sampling probe of 0.635 cm O.D. thin wall stainless steel tubing was used for extracting the sample gas isokinetically based on the expected flowrate. The sample gas stream was further split into two streams; one was directed to the PMS unit and the other to the alkali monitor unit. The alkali monitor unit was not used during runs No. 7 through No. 10.

NONE

1995-06-01T23:59:59.000Z

85

METC/Shell Cooperative Agreement CRADA 93-011 high temperature high pressure filtration and sorbent test program. Volume 2, Final report  

SciTech Connect (OSTI)

This report is a summary of the results of activities of the particulate monitoring group in support of the METC/Shell CRADA 93-011. Online particulate monitoring began in August 1993 and ended in October 1994. The particulate monitoring group participated in six MGCR runs (No. 5 through No. 10). The instrument used in measuring the particle loadings (particle counts and size distribution) is the Particle Measuring Systems Classical Scattering Aerosol Spectrometer Probe High Temperature and High Pressure (PMS Model CSASP-100-HTHP). This PMS unit is rated to operate at temperatures up to 540{degree}C and gage pressures up to 2.07 MPa. Gas stream conditions, temperature at 540{degree}C, gage pressure at 2.93 MPa, and gas flowrate at 0.0157 SCM per second, precluded the direct measurement of particulate loadings in the gas stream with the PMS unit. A side stream was extracted from the gas stream after it came over to the MGCR, (Modular Gas Cleanup Rig), from the FBG, pressurized fluidized-bed gasifier, but before it entered the filter testing vessel. A sampling probe of 0.635 cm O.D. thin wall stainless steel tubing was used for extracting the sample gas isokinetically based on the expected flowrate. The sample gas stream was further split into two streams; one was directed to the PMS unit and the other to the alkali monitor unit.

NONE

1995-06-01T23:59:59.000Z

86

Embedded Sensor Array Development for Composite Structure Integrity Monitoring  

SciTech Connect (OSTI)

The purpose of this Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC (the "Contractor") and Accellent Technologies, Inc. (the "Participant") was for the development of an embedded ultrasonic sensor system for composite structure integrity monitoring.

Kumar, A.; Bryan, W. L.; Clonts, L. G.; Franks, S.

2007-06-26T23:59:59.000Z

87

Low Cost Thin Film Building-Integrated PV Systems: Cooperative Research and Development Final Report, CRADA Number CRD-07-239  

SciTech Connect (OSTI)

In this CRADA, NREL's Silicon group members performed the following research activities: (1) investigation of the role of hydrogen in growth of a mixed-phase nc-Si:H/a-Si:H material; (2) role of hydrogen in light-induced degradation of a-Si:H and development of Staebler-Wronski effect resistive a-Si:H; and (3) performing characterizations of UniSolar's a-Si:H and nc-Si materials, with goal to help optimizing large-area uniformity and quality of the UniSolar's nanocrystalline Si:H.

Stradins, P.

2011-10-01T23:59:59.000Z

88

United States and Italy Sign Agreements to Advance Developments...  

Broader source: Energy.gov (indexed) [DOE]

Italy Sign Agreements to Advance Developments in Nuclear Energy United States and Italy Sign Agreements to Advance Developments in Nuclear Energy September 30, 2009 - 12:00am...

89

Leakage and Sepage of CO2 from Geologic Carbon Sequestration Sites: CO2 Migration into Surface Water  

E-Print Network [OSTI]

and Development Agreement (CRADA) between BP Corporationand Development Agreement (CRADA) between BP Corporation

Oldenburg, Curt M.; Lewicki, Jennifer L.

2005-01-01T23:59:59.000Z

90

Distributed Energy Resource Optimization Using a Software as Service (SaaS) Approach at the University of California, Davis Campus  

E-Print Network [OSTI]

Development Agreement (CRADA) with OSIsoft LLC. The Berkeleyand Development Agreement (CRADA) with OSIsoft LLC. We are

Michael, Stadler

2011-01-01T23:59:59.000Z

91

Wire Development Group (WDG) Understanding and Engineering  

E-Print Network [OSTI]

Amount LANL CRADA DOE $ 600 K ORNL CRADA DOE $ 300 K UW DOE $ 250 K ($65K allocated) AFOSR-MURI $ 250K ANL CRADA DOE $ 250 K AMSC AMSC $ 1200 K · Proprietary Information Agreement protects confidential

92

10MW Class Direct Drive HTS Wind Turbine: Cooperative Research and Development Final Report, CRADA Number CRD-08-00312  

SciTech Connect (OSTI)

This paper summarizes the work completed under the CRADA between NREL and American Superconductor (AMSC). The CRADA combined NREL and AMSC resources to benchmark high temperature superconducting direct drive (HTSDD) generator technology by integrating the technologies into a conceptual wind turbine design, and comparing the design to geared drive and permanent magnet direct drive (PMDD) wind turbine configurations. Analysis was accomplished by upgrading the NREL Wind Turbine Design Cost and Scaling Model to represent geared and PMDD turbines at machine ratings up to 10 MW and then comparing cost and mass figures of AMSC's HTSDD wind turbine designs to theoretical geared and PMDD turbine designs at 3.1, 6, and 10 MW sizes.

Musial, W.

2011-05-01T23:59:59.000Z

93

Boulder Wind Power Advanced Gearless Drivetrain: Cooperative Research and Development Final Report, CRADA Number CRD-12-00463  

SciTech Connect (OSTI)

The Boulder Wind Power (BWP) Advanced Gearless Drivetrain Project explored the application of BWP's innovative, axial-gap, air-core, permanent-magnet direct-drive generator in offshore wind turbines. The objective of this CRADA is to assess the benefits that result from reduced towerhead mass of BWP's technology when used in 6 MW offshore turbines installed on a monopile or a floating spar foundation.

Cotrell, J.

2013-04-01T23:59:59.000Z

94

Solar Resource Measurements in El Paso, Texas (Equipment CRADA Only): Cooperative Research and Development Final Report, CRADA Number CRD-08-273  

SciTech Connect (OSTI)

Site-specific, long-term, continuous, and high-resolution measurements of solar irradiance are important for developing renewable resource data. These data are used for several research and development activities consistent with the NREL mission: establish a national 30-year climatological database of measured solar irradiances; provide high quality ground-truth data for satellite remote sensing validation; support development of radiative transfer models for estimating solar irradiance from available meteorological observations; provide solar resource information needed for technology deployment and operations.

Andreas, A.

2013-11-01T23:59:59.000Z

95

Cooperation Reliability Testing of the Clipper Windpower Liberty 2.5 MW Turbine: Cooperative Research and Development Final Report, CRADA Number CRD-07-210  

SciTech Connect (OSTI)

Clipper Windpower (CWP) has developed the Liberty 2.5 MW wind turbine. The development, manufacturing, and certification process depends heavily on being able to validate the full-scale system design and performance under load in both an accredited structural test facility and through accredited field testing. CWP requested that DOE/ NREL upgrade blade test capabilities to perform a scope of work including structural testing of the C-96 blade used on the CWP Liberty turbine. This funds-in CRADA was developed to upgrade NREL blade test capability, while enabling certification testing of the C-96 blade through the facility and equipment upgrades. NREL shared resource funds were used to develop hardware necessary to structurally attach a large wind turbine to the test stand at the NWTC. Participant funds-in monies were used for developing the test program.

Hughes, S.

2012-05-01T23:59:59.000Z

96

Equipment Loan: Cooperative Research and Development Final Report, CRADA Number CRD-07-250  

SciTech Connect (OSTI)

Site-specific, long-term, continuous, and high-resolution measurements of solar irradiance are important for developing renewable resource data. These data are used for several research and development activities consistent with the NREL mission: establish a national 30-year climatological database of measured solar irradiances; provide high quality ground-truth data for satellite remote sensing validation; support development of radiative transfer models for estimating solar irradiance from available meteorological observations; provide solar resource information needed for technology deployment and operations.

Stoffel, T.

2013-08-01T23:59:59.000Z

97

Final Report of a CRADA Between Pacific Northwest National Laboratory and the Ford Motor Company (CRADA No. PNNL/265): Deactivation Mechanisms of Base Metal/Zeolite Urea Selective Catalytic Reduction Materials, and Development of Zeolite-Based Hydrocarbon Adsorber Materials  

SciTech Connect (OSTI)

Reducing NOx emissions and particulate matter (PM) are primary concerns for diesel vehicles required to meet current LEV II and future LEV III emission standards which require 90+% NOx conversion. Currently, urea SCR as the NOx reductant and a Catalyzed Diesel Particulate Filter (CDPF) are being used for emission control system components by Ford Motor Company for 2010 and beyond diesel vehicles. Because the use of this technology for vehicle applications is new, the relative lack of experience makes it especially challenging to satisfy durability requirements. Of particular concern is being able to realistically simulate actual field aging of the catalyst systems under laboratory conditions. This is necessary both as a rapid assessment tool for verifying improved performance and certifiability of new catalyst formulations, and to develop a good understanding of deactivation mechanisms that can be used to develop improved catalyst materials. In addition to NOx and PM, the hydrocarbon (HC) emission standards are expected to become much more stringent during the next few years. Meanwhile, the engine-out HC emissions are expected to increase and/or be more difficult to remove. Since HC can be removed only when the catalyst becomes warm enough for its oxidation, three-way catalyst (TWC) and diesel oxidation catalyst (DOC) formulations often contain proprietary zeolite materials to hold the HC produced during the cold start period until the catalyst reaches its operating temperature (e.g., >200C). Unfortunately, much of trapped HC tends to be released before the catalyst reaches the operating temperature. Among materials effective for trapping HC during the catalyst warm-up period, siliceous zeolites are commonly used because of their high surface area and high stability under typical operating conditions. However, there has been little research on the physical properties of these materials related to the adsorption and release of various hydrocarbon species found in the engine exhaust. For these reasons, automakers and engine manufacturers have difficulty improving their catalytic converters for meeting the stringent HC emission standards. In this collaborative program, scientists and engineers in the Institute for Integrated Catalysis at Pacific Northwest National Laboratory and at Ford Motor Company have investigated laboratory- and engine-aged SCR catalysts, containing mainly base metal zeolites. These studies are leading to a better understanding of various aging factors that impact the long-term performance of SCR catalysts and improve the correlation between laboratory and engine aging, saving experimental time and cost. We have also studied materials effective for the temporary storage of HC species during the cold-start period. In particular, we have examined the adsorption and desorption of various HC species produced during the combustion with different fuels (e.g., gasoline, E85, diesel) over potential HC adsorber materials, and measured the kinetic parameters to update Fords HC adsorption model. Since this CRADA has now been completed, in this final report we will provide brief summaries of most of the work carried out on this CRADA over the last several years.

Gao, Feng; Kwak, Ja Hun; Lee, Jong H.; Tran, Diana N.; Peden, Charles HF; Howden, Ken; Cheng, Yisun; Lupescu, Jason; Cavattaio, Giovanni; Lambert, Christine; McCabe, Robert W.

2013-02-14T23:59:59.000Z

98

Dynamometer Testing of a NW2200 Drivetrain: Cooperative Research and Development Final Report, CRADA Number CRD-10-394  

SciTech Connect (OSTI)

Northern Power Systems specializes in direct drive wind turbine designs. CRADA CRD-10-394 involved testing the NW2200 wind turbine power train. Power train testing is important because it allows validation of the generator design and some control algorithms prior to installation on a tower, where this data would be more difficult and time consuming to collect. In an effort to keep the commercial product schedule on time, Northern Power requested testing support from the National Renewable Energy Laboratory for this testing. The test program was performed using NREL's 2.5 MW dynamometer test bed at the National Wind Technology Center near Boulder, CO.

Wallen, R.

2012-04-01T23:59:59.000Z

99

E-Print Network 3.0 - application final crada Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Investigators (PIs) from both... parties jointly develop a Research Plan (using NIH CRADA ... Source: Ungerleider, Leslie G. - Laboratory of Brain and Cognition, National...

100

Solar Trough Performance Evaluation: Cooperative Research and Development Final Report, CRADA Number CRD-08-00289  

SciTech Connect (OSTI)

New HCEs were installed on the hot sides of the thermal loops at SEGS VIII and IX from mid-2007 to mid-2008. Due to significant increases in plant performance, an interest in a further increase performance by installing new HCEs on the cold portions of the loop developed. Although it was assumed that the plant performance would increase, the exact amount was unknown. The objective of this project was to estimate the performance improvements with new HCEs installed on the cold sides of the loop, with performance being evaluated as potential increases in electrical power production (megawatt-hours). A comparison of performance prior to and post installation of new HCEs on the hot sides of the loops was done. For completeness, an estimate of performance losses - such as the optical efficiency, mirror reflectivity, and optical accuracy - was also included in this analysis. National Renewable Energy Laboratory's (NREL's) HCE Survey System was used to determine if the HCEs were hot or cold.

Gray, A.

2011-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "development agreement crada" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Solar Technology Validation Project - Loyola Marymount University: Cooperative Research and Development Final Report, CRADA Number CRD-09-367-03  

SciTech Connect (OSTI)

Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.

Wilcox, S.

2013-08-01T23:59:59.000Z

102

Solar Technology Validation Project - RES Americas: Cooperative Research and Development Final Report, CRADA Number CRD-09-367-11  

SciTech Connect (OSTI)

Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.

Wilcox, S.

2013-08-01T23:59:59.000Z

103

Solar Technology Validation Project - USS Data, LLC: Cooperative Research and Development Final Report, CRADA Number CRD-09-367-04  

SciTech Connect (OSTI)

Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.

Wilcox, S.

2013-08-01T23:59:59.000Z

104

Solar Technology Validation Project - Solargen (Met Station): Cooperative Research and Development Final Report, CRADA Number CRD-09-367-06  

SciTech Connect (OSTI)

Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.

Wilcox, S.

2013-08-01T23:59:59.000Z

105

Solar Technology Validation Project - Iberdrola Renewables, Inc.: Cooperative Research and Development Final Report, CRADA Number CRD-08-298-3  

SciTech Connect (OSTI)

Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.

Wilcox, S.

2013-08-01T23:59:59.000Z

106

Solar Technology Validation Project - Amonix, Inc.: Cooperative Research and Development Final Report, CRADA Number CRD-09-367-13  

SciTech Connect (OSTI)

Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.

Wilcox, S.

2013-08-01T23:59:59.000Z

107

CRADA CHECKLIST For Your Convenience, check off  

E-Print Network [OSTI]

CRADA CHECKLIST For Your Convenience, check off: CRADA Clearance form fill in everything (except CRADA #); put "N/A" or "0" when box is not applicable make sure that the person-year box totals match, disease states, etc. must be listed if they are to be considered part of the CRADA research (you cannot

Baker, Chris I.

108

Development and Demonstration of Energy Savings Perform Contracting Methodologies for Hydroelectric Facilities: Cooperative Research and Development Final Report, CRADA Number CRD-08-309  

SciTech Connect (OSTI)

This CRADA explores the opportunities and challenges of funding federal hydro dam refurbishment projects through ESPCs. It assesses legal authorities for rehabilitating dams through ESPCs; roles and responsibilities of each party including the dam owner, Power Marketing Administration (PMA), ESCO, and preference customers; potential contract structure and flow of money; measurement and verification processes; risk and responsibility allocation; and financial viability of projects.

Anderson, K.

2012-04-01T23:59:59.000Z

109

Intermediate Temperature Carbon - Carbon Composite Structures. CRADA Final Report  

SciTech Connect (OSTI)

The objective of this Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC (the "Contractor") and Synterials, Inc. (the "Participant") was to demonstrate promising processing methods, which can lead to producing Carbon-Carbon Composites (CCC), with tensile and interlaminar properties comparable to those of organic matrix composites and environmental stability at 1200 F for long periods of time. The participant synthesized carbon-carbon composites with two different fiber coatings and three different matrices. Both parties evaluated the tensile and interlaminar properties of these materials and characterized the microstructure of the matrices and interfaces. It was found that fiber coatings of carbon and boron carbide provided the best environmental protection and resulted in composites with high tensile strength.

Lara-Curzio, Edgar [ORNL

2007-06-01T23:59:59.000Z

110

Sandia National Laboratories: CRADA  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0Energy Advanced NuclearBASFBoeing PatentCECCESCO SandiaCRADA

111

Office of the Chief Financial Officer Annual Report 2013  

E-Print Network [OSTI]

including the first Master CRADA (Cooperative Research andand Fellowships. (b) WFO includes CRADA. (c) Service CentersDevelopment Agreements CRADA - Other CRADA - Small Business

Williams, Kim

2014-01-01T23:59:59.000Z

112

Roadway and Work Crew Conspicuity  

E-Print Network [OSTI]

and Development Agreement (CRADA) between PATH and TARDEC,deliberations, TARDEC CRADA administrators determined not to

Barton, Joseph E.; Misener, James A.

2000-01-01T23:59:59.000Z

113

Evaluation Of Work Crew And Highway Hazard Conspicuity  

E-Print Network [OSTI]

and Development Agreement (CRADA) between PATH and TARDEC,deliberations, TARDEC CRADA administrators determined not to

Misener, Jim

1998-01-01T23:59:59.000Z

114

Regulations and Procedures Manual  

E-Print Network [OSTI]

Development Agreement (CRADA) Integrity Manager MontgomeryDevelopment Agreement (CRADA) COI Human Subjects Conflict ofDevelopment Agreement (CRADA) C. Related Forms A. GENERAL

Young, Lydia

2014-01-01T23:59:59.000Z

115

Regulations and Procedures Manual  

E-Print Network [OSTI]

Development Agreement (CRADA) Institutional MontgomeryDevelopment Agreement (CRADA) COI Human Subjects Conflict ofDevelopment Agreement (CRADA) C. Related Forms A. GENERAL

Young, Lydia J.

2014-01-01T23:59:59.000Z

116

Fiber Optic Hydrogen Sensor Development: Cooperative Research and Development Final Report, CRADA number CRD-05-00158  

SciTech Connect (OSTI)

NREL and Nuclear Filter Technology collaborated to develop a prototype product for a hydrogen threshold sensor that was used to monitor hydrogen production in the transport of nuclear waste transport containers.

Ringer, M.

2010-07-01T23:59:59.000Z

117

CRADA Benefits PNNL's CRADA partners can access the Laboratory's capabilities and are given  

E-Print Network [OSTI]

CRADA Benefits ­ PNNL's CRADA partners can access the Laboratory's capabilities and are given the opportunity to obtain rights to commercialize the results of government R&D. How do I get a CRADA started? DOE to respond to the needs of the participant. All CRADAs are subject to DOE approval. Start by contacting PNNL

118

Isothermal Battery Calorimeter Technology Transfer and Development: Cooperative Research and Development Final Report, CRADA Number CRD-12-461  

SciTech Connect (OSTI)

During the last 15 years, NREL has been utilizing its unique expertise and capabilities to work with industry partners on battery thermal testing and electric and hybrid vehicle simulation and testing. Further information and publications about NREL's work and unique capabilities in battery testing and modeling can be found at NREL's Energy Storage website: http://www.nrel.gov/vehiclesandfuels/energystorage/. Particularly, NREL has developed and fabricated a large volume isothermal battery calorimeter that has been made available for licensing and potential commercialization (http://techportal.eere.energy.gov/technology.do/techID=394). In summer of 2011, NREL developed and fabricated a smaller version of the large volume isothermal battery calorimeter, called hereafter 'cell-scale LVBC.' NETZSCH Instruments North America, LLC is a leading company in thermal analysis, calorimetry, and determination of thermo-physical properties of materials (www.netzsch-thermal-analysis.com). NETZSCH is interested in evaluation and eventual commercialization of the NREL large volume isothermal battery calorimeter.

Pesaran, A.; Keyser, M.

2014-12-01T23:59:59.000Z

119

Development of YBCO Superconductor for Electric Systems: Cooperative Research and Development Final Report, CRADA Number CRD-04-150  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: Crystal structureComposite--FOR IMMEDIATE RELEASE April 13, 2000Development

120

Solar Resources Measurements in Houston, TX -- Equipment Only: Cooperative Research and Development Final Report, CRADA Number CRD-06-204  

SciTech Connect (OSTI)

Loaning Texas Southern University equipment in order to perform site-specific, long-term, continuous, and high-resolution measurements of solar irradiance is important for developing renewable resource data. These data are used for several research and development activities consistent with the NREL mission: (1) establish a national 30-year climatological database of measured solar irradiances; (2) provide high quality ground-truth data for satellite remote sensing validation; (3) support development of radiative transfer models for estimating solar irradiance from available meteorological observations; (4) provide solar resource information needed for technology deployment and operations. Data acquired under this agreement will be available to the public through NREL's Measurement & Instrumentation Data Center - MIDC (http://www.nrel.gov/midc) Or the Renewable Resource Data Center - RReDC (http://rredc.nrel.gov). The MIDC offers a variety of standard data display, access, and analysis tools designed to address the needs of a wide user audience (e.g., industry, academia, and government interests).

Stoffel, T.

2012-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "development agreement crada" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Understanding developing countries' capacities to negotiate effective trade agreements : Colombia  

E-Print Network [OSTI]

This thesis explores the obstacles (the negotiation machinery, the asymmetric context of power and the international and domestic context) for developing countries in negotiating international trade agreements with the US. ...

Bonilla, Martha Isabel, 1965-

2004-01-01T23:59:59.000Z

122

Development of Advanced Diesel Particulate Filtration (DPF) Systems...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

(ANLCorningCaterpillar CRADA) Development of Advanced Diesel Particulate Filtration (DPF) Systems (ANLCorningCaterpillar CRADA) ace22lee.pdf More Documents & Publications...

123

Development of Novel RTP-like Processing for Solar Cell Fabrication using UV-Rich Light Sources: Cooperative Research and Development Final Report, CRADA No. CRD-11-442  

SciTech Connect (OSTI)

NREL and Mattson Technology are interested in developing new processing techniques for fabrication of solar cells using UV-rich optical processing. UV light has a very high absorption coefficient in most semiconductors, allowing the semiconductor surface to be heated locally and, in some cases, without a significant increase in the substrate temperature. NREL has several projects related to cell processing that currently use an optical furnace (having a spectrum rich in visible and infrared light). Mattson Technology has developed a UV rich light source that can be used in either pulse or continuous modes. The objective of this CRADA is to explore applications in solar cell processing where absorption characteristics of UV light can lead to lower cell cost and/or higher efficiencies.

Sopori, B.

2013-01-01T23:59:59.000Z

124

Economic impact  

E-Print Network [OSTI]

and Development Agreement (CRADA) to develop new potentialAND GO! Operating under a CRADA between Berkeley Lab andand Development Agreement (CRADA). When a company wants a

Technology Transfer Department

2001-01-01T23:59:59.000Z

125

SunEdison Photovoltaic Grid Integration Evaluation: Cooperative Research and Development Final Report, CRADA Number CRD-08-302  

SciTech Connect (OSTI)

Under this Agreement, NREL will work with SunEdison to monitor and analyze the performance of photovoltaic (PV) systems as they relate to grid integration. Initially this project will examine the performance of PV systems with respect to evaluating the benefits and impacts on the electric power grid.

Kroposki, B.

2012-09-01T23:59:59.000Z

126

Advanced Vehicles and Fuels Systems: Cooperative Research and Development Final Report, CRADA number CRD-03-00129  

SciTech Connect (OSTI)

Midwest Research Institute (MRI) and AVL Powertrain Engineering, Inc. (AVL) have executed a Software and Trademark License Agreement (Software License) by which AVL is granted the exclusive right to use, modify and improve and to commercialize by reproducing, distributing and granting sublicenses in, certain computer software known as ADVISOR 2003.

Farrington, R. B.

2010-07-01T23:59:59.000Z

127

MODULAR8 01/09 MODULAR8 CRADA  

E-Print Network [OSTI]

MODULAR8 01/09 MODULAR8 CRADA TABLE OF CONTENTS ARTICLE I. DEFINITIONS. OBLIGATIONS AS TO PROTECTED CRADA INFORMATION ................ 6 ARTICLE IX. RIGHTS IN GENERATED INFORMATION XXV. ADMINISTRATION OF THE CRADA........................................................ 13 ARTICLE

Eisen, Michael

128

The final technical report of the CRADA, Medical Accelerator Technology  

E-Print Network [OSTI]

related to the CRADA: W. T. Chu, Instrumentation forBG94-094) LBNL-46639 SC LTR CRADA The Final Technical Reportlike this in the future. CRADA Benefits to the Public: The

Chu, William T.; Rawls, John M.

2000-01-01T23:59:59.000Z

129

On leakage and seepage from geological carbon sequestration sites  

E-Print Network [OSTI]

Berkeley, CA 94720 BPDOE CRADA Health, Safety, andand Development Agreement (CRADA) between BP Corporationand Development Agreement (CRADA) between BP Corporation

Oldenburg, C.M.; Unger, A.J.A.; Hepple, R.P.; Jordan, P.D.

2002-01-01T23:59:59.000Z

130

Office of the Chief Financial Officer 2012 Annual Report  

E-Print Network [OSTI]

Development Agreement (CRADA). (c) Service Centers includesand Development Agreements: CRADA - Other Total CooperativeInformation ($K) DOE M&O CRADA WFO Program (WN) Universities

Williams, Kim

2014-01-01T23:59:59.000Z

131

Application of the Software as a Service Model to the Control of Complex Building Systems  

E-Print Network [OSTI]

Development Agreement (CRADA) with OSIsoft LLC. The BerkeleyDevelopment Agreement (CRADA) with OSIsoft LLC. The Berkeley

Stadler, Michael

2012-01-01T23:59:59.000Z

132

Materials-Enabled High-Efficiency Diesel Engines (CRADA with...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Engines (CRADA with Caterpillar) Materials-Enabled High-Efficiency Diesel Engines (CRADA with Caterpillar) 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit...

133

PACCAR CRADA: Experimental Investigation in Coolant Boiling in...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

PACCAR CRADA: Experimental Investigation in Coolant Boiling in a Half-Heated Circular Tube PACCAR CRADA: Experimental Investigation in Coolant Boiling in a Half-Heated Circular...

134

Wind Turbine R&D and Certification Services: Cooperative Research and Development Final Report, CRADA Number CRD-04-00147  

SciTech Connect (OSTI)

NREL and Underwriters Laboratories Inc. are developing a domestic certification program for the US wind and photovoltaic (PV) industry.

Link, H.

2011-02-01T23:59:59.000Z

135

Engineering for the Global Poor: The Role of Intellectual Property  

E-Print Network [OSTI]

and development agreement (CRADA), a boilerplate contractas liability. One piece of the CRADA between LBL and Worldof the Berkeley-Darfur Stove. The CRADA licensing agreement

Booker, Kayje M.

2014-01-01T23:59:59.000Z

136

Mobile Building Energy Audit and Modeling Tools: Cooperative Research and Development Final Report, CRADA Number CRD-11-00441  

SciTech Connect (OSTI)

Broadly accessible, low cost, accurate, and easy-to-use energy auditing tools remain out of reach for managers of the aging U.S. building population (over 80% of U.S. commercial buildings are more than 10 years old*). concept3D and NREL's commercial buildings group will work to translate and extend NREL's existing spreadsheet-based energy auditing tool for a browser-friendly and mobile-computing platform. NREL will also work with concept3D to further develop a prototype geometry capture and materials inference tool operable on a smart phone/pad platform. These tools will be developed to interoperate with NREL's Building Component Library and OpenStudio energy modeling platforms, and will be marketed by concept3D to commercial developers, academic institutions and governmental agencies. concept3D is NREL's lead developer and subcontractor of the Building Component Library.

Brackney, L.

2013-04-01T23:59:59.000Z

137

GridAgents DER Testing: Cooperative Research and Development Final Report, CRADA Number CRD-08-265  

SciTech Connect (OSTI)

The project objectives are to perform research, development, and pilot-scale testing of advanced, next-generation distribution operational strategies using ConEdison's 3G: Distribution System of the Future and associated infrastructure for the real-world Test Bed (demonstration network) combined with the Infotility GridAgents: Secure Agent Framework for Energy as the software platform for advanced operational strategies development. The objective is to accelerate high-payoff technologies that, because of their risk, are unlikely to be developed in a timely manner without a partnership between industry and the Federal government. NREL will be responsible for the evaluation of equipment design and control methods for DER integration and testing of prototype DER technologies and control equipment at the NREL test facility.

Harrison, K.

2012-04-01T23:59:59.000Z

138

Efficiency Improvement of Nitride-Based Solid State Light Emitting Materials -- CRADA Final Report  

E-Print Network [OSTI]

directly related to the CRADA? [1] Luminescence energy andcountries (Korea, Japan). This CRADA aimed at strengtheningContributions to the CRADA: DOE Funding to LBNL Participant

Kisielowski, Christian

2010-01-01T23:59:59.000Z

139

Platform Li-Ion Battery Risk Assessment Tool: Cooperative Research and Development Final Report, CRADA Number CRD-10-407  

SciTech Connect (OSTI)

Creare was awarded a Phase 1 STTR contract from the US Office of Naval Research, with a seven month period of performance from 6/28/2010 to 1/28/2011. The objectives of the STTR were to determine the feasibility of developing a software package for estimating reliability of battery packs, and develop a user interface to allow the designer to assess the overall impact on battery packs and host platforms for cell-level faults. NREL served as sub-tier partner to Creare, providing battery modeling and battery thermal safety expertise.

Smith, K.

2012-01-01T23:59:59.000Z

140

Liquid-Liquid Separation Process: Cooperative Research and Development Final Report, CRADA Number CRD-09-362  

SciTech Connect (OSTI)

The 3M Company, in collaboration with the National Renewable Energy Laboratory (NREL) and others, will develop the concept of the membrane solvent-extraction (MSE) technology for water removal and verify the technology at a pilot scale for bio-ethanol production to increase energy and water savings.

Schell, D.

2014-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "development agreement crada" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Technical Support for China's Village Electrification Program: Cooperative Research and Development Final Report, CRADA number CRD-07-00235  

SciTech Connect (OSTI)

This work has two main goals: First, it provides for the analysis of data collected from systems developed in the previous phase of China's rural power program, the Township Electrification Program Second, it will comprise joint IEE-NREL work in support of the upcoming phase, 'Electrification of Unelectrified Areas'.

Kline, D.

2010-07-01T23:59:59.000Z

142

Gelcasting of CRYSTAR{reg_sign} silicon carbide ceramics. CRADA final report  

SciTech Connect (OSTI)

This Cooperative Research and Development Agreement (CRADA) was undertaken to assess the applicability the gelcasting process for forming ceramic green bodies using Saint-Gobain/Norton Industrial Ceramics Corporation`s proprietary CRYSTAR{reg_sign} silicon carbide powder. A gelcasting process, specifically tailored to Saint-Gobain/Norton`s powder composition, was developed and used successfully to form green bodies for property evaluation. This preliminary evaluation showed that the gelcast material had characteristics and properties comparable to Norton`s baseline material. Wafer carrier molds were received from Norton for gelcasting a complex-shaped configuration with CRYSTAR{reg_sign} silicon carbide. Gelcasting experiments showed that Norton`s standard plaster of paris molds were incompatible with the gelcasting process. Mold surface treatments and the use of alternative castable mold materials were investigated, however, a successful process was not identified. The highest quality parts were cast in either glass or aluminum molds.

Nunn, S.D.; Willkens, C.A.

1998-12-31T23:59:59.000Z

143

Film Si Solar Cells with Nano Si: Cooperative Research and Development Final Report, CRADA Number CRD-09-00356  

SciTech Connect (OSTI)

Nevada Nanotechnology Center and Si group at NREL will work together to develop a-Si based solar cells with nano-Si technique. We will explore the existing a-Si based film solar cell technology at NREL and nano scale Si technology at Nevada Nanotechnology Center. By exchanging information, we will come; up with some new cell structures using nano-Si. We expect the new a-Si based cells will have optical enhancement or better electronic or optical properties of absorber layer to improve solar cell performance.

Wang, Q.

2011-05-01T23:59:59.000Z

144

Microalgal Production of Jet Fuel: Cooperative Research and Development Final Report, CRADA Number CRD-07-208  

SciTech Connect (OSTI)

Microalgae are photosynthetic microorganisms that can use CO2 and sunlight to generate the complex biomolecules necessary for their survival. These biomolecules include energy-rich lipid compounds that can be converted using existing refinery equipment into valuable bio-derived fuels, including jet fuel for military and commercial use. Through a dedicated and thorough collaborative research, development and deployment program, the team of the National Renewable Energy Laboratory (NREL) and Chevron will identify a suitable algae strain that will surpass the per-acre biomass productivity of terrestrial plant crops.

Jarvis, E. E.; Pienkos, P. T.

2012-06-01T23:59:59.000Z

145

Metallic Inks for Solar Cells: Cooperative Research and Development Final Report, CRADA Number CRD-10-370  

SciTech Connect (OSTI)

This document describes the statement of work for National Renewable Energy Laboratory (NREL) as a subcontractor for Applied Nanotech, Inc. (ANI) for the Phase II SBIR contract with the Department of Energy to build silicon solar cells using non-contact printed, nanoparticle-based metallic inks. The conductive inks are based upon ANI's proprietary method for nanoparticle dispersion. The primary inks under development are aluminum for silicon solar cell back plane contacts and copper for top interdigitated contacts. The current direction of silicon solar cell technology is to use thinner silicon wafers. The reduction in wafer thickness reduces overall material usage and can increase efficiency. These thin silicon wafers are often very brittle and normal methods used for conductive feed line application, such as screen-printing, are detrimental. The Phase II program will be focused on materials development for metallic inks that can be applied to a silicon solar cell using non-contact methods. Uniform BSF (Back Surface Field) formation will be obtained by optimizing ink formulation and curing conditions to improve cell efficiency.

van Hest, M.

2013-04-01T23:59:59.000Z

146

C/ORNL94-321 CRADA Final Report  

E-Print Network [OSTI]

C/ORNL94-321 CRADA Final Report for CRADA Number ORNL94-321 Moving Advanced Desiccant Materials RELEASE; DISTRIBUTION IS UNLIMITED This work was supported through a CRADA with Fresh Air Solutions-321 Energy Division MOVING ADVANCED DESICCANT MATERIALS INTO MAINSTREAM NON-CFC COOLING PRODUCTS CRADA FINAL

Oak Ridge National Laboratory

147

Commercialization of High-Temperature Solar Selective Coating: Cooperative Research and Development Final Report, CRADA Number CRD-08-300  

SciTech Connect (OSTI)

The goal for Concentrating Solar Power (CSP) technologies is to produce electricity at 15 cents/kilowatt-hour (kWh) with six hours of thermal storage in 2015 (intermediate power) and close to 10 cents/kWh with 12-17 hours of thermal storage in 2020 (baseload power). Cost reductions of up to 50% to the solar concentrator are targeted through technology advances. The overall solar-to-electric efficiency of parabolic-trough solar power plants can be improved and the cost of solar electricity can be reduced by improving the properties of the selective coating on the receiver and increasing the solar-field operating temperature to >450 degrees C. New, more-efficient selective coatings will be needed that have both high solar absorptance and low thermal emittance at elevated temperatures. Conduction and convection losses from the hot absorber surface are usually negligible for parabolic trough receivers. The objective is to develop new, more-efficient selective coatings with both high solar absorptance (..alpha.. > 0.95) and low thermal emittance (..epsilon.. < 0.08 @ 450 degrees C) that are thermally stable above 450 degrees C, ideally in air, with improved durability and manufacturability, and reduced cost.

Gray, M. H.

2014-01-01T23:59:59.000Z

148

Pyrolysis Oil Stabilization: Hot-Gas Filtration; Cooperative Research and Development Final Report, CRADA Number CRD-09-333  

SciTech Connect (OSTI)

The hypothesis that was tested in this task was that separation of char, with its associated mineral matter from pyrolysis vapors before condensation, will lead to improved oil quality and stability with respect to storage and transportation. The metric used to evaluate stability in this case was a 10-fold reduction in the rate of increase of viscosity as determined by ASTM D445 (the accelerated aging test). The primary unit operation that was investigated for this purpose was hot-gas filtration. A custom-built heated candle filter system was fabricated by the Pall Corporation and furnished to NREL for this test campaign. This system consisted of a candle filter element in a containment vessel surrounded by heating elements on the external surface of the vessel. The filter element and housing were interfaced to NREL?s existing 0.5 MTD pyrolysis Process Development Unit (PDU). For these tests the pyrolysis reactor of the PDU was operated in the entrained-flow mode. The HGF test stand was installed on a slipstream from the PDU so that both hot-gas filtered oil and bio-oil that was not hot-gas filtered could be collected for purposes of comparison. Two filter elements from Pall were tested: (1) porous stainless steel (PSS) sintered metal powder; (2) sintered ceramic powder. An extremely sophisticated bio-oil condensation and collection system was designed and fabricated at NREL and interfaced to the filter unit.

Baldwin, R.

2012-07-01T23:59:59.000Z

149

Solar Technology Validation Project - Hualapai Valley Solar (Met Station): Cooperative Research and Development Final Report, CRADA Number CRD-09-367-02  

SciTech Connect (OSTI)

Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.

Wilcox, S.

2013-07-01T23:59:59.000Z

150

Solar Technology Validation Project - Tri-State G&T: Cooperative Research and Development Final Report, CRADA Number CRD-09-367-12  

SciTech Connect (OSTI)

Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.

Wilcox, S.

2013-08-01T23:59:59.000Z

151

Solar Technology Validation Project - Utah State Energy Program (Met Station): Cooperative Research and Development Final Report, CRADA Number CRD-09-367-09  

SciTech Connect (OSTI)

Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.

Wilcox, S.

2013-08-01T23:59:59.000Z

152

Solar Technology Validation Project - Southwest Solar (Met Station): Cooperative Research and Development Final Report, CRADA Number CRD-09-367-08  

SciTech Connect (OSTI)

Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.

Wilcox, S.

2013-08-01T23:59:59.000Z

153

Effects of Market Approaches to Green Technologies for the Poor: The Case of Improved Cookstoves  

E-Print Network [OSTI]

and development agreement (CRADA), a boilerplate contractliability. One piece ofthe CRADA between LBL and WVA, as iswas eventually removed from the CRADA. In August 2009, five

Booker, Kayje Merrea

2011-01-01T23:59:59.000Z

154

Office of the Chief Financial Officer Annual Report 2010  

E-Print Network [OSTI]

and Fellowships. (b) WFO includes CRADA. (c) Service CentersResearch and Development Agreements CRADA - SmallBusiness CRADA - Other Total Cooperative Research and

Fernandez, Jeffrey

2011-01-01T23:59:59.000Z

155

Office of the Chief Financial Officer Annual Report 2007  

E-Print Network [OSTI]

and Fellowships. (b) WFO includes CRADA. (c) Service CentersResearch and Development Agreements CRADA - SmallBusiness CRADA - Other Total Cooperative Research and

Fernandez, Jeffrey

2008-01-01T23:59:59.000Z

156

Office of the Chief Financial Officer Annual Report 2009  

E-Print Network [OSTI]

and Fellowships. (b) WFO includes CRADA. (c) Service CentersResearch and Development Agreements CRADA - SmallBusiness CRADA - Other Total Cooperative Research and

Fernandez, Jeffrey

2010-01-01T23:59:59.000Z

157

Recycling end-of-life vehicles of the future. Final CRADA report.  

SciTech Connect (OSTI)

Argonne National Laboratory (the Contractor) entered into a Cooperative Research and Development Agreement (CRADA) with the following Participants: Vehicle Recycling Partnership, LLC (VRP, which consists of General Motors [GM], Ford, and Chrysler), and the American Chemistry Council - Plastics Division (ACC-PD). The purpose of this CRADA is to provide for the effective recycling of automotive materials. The long-term goals are to (1) enable the optimum recycling of automotive materials, thereby obviating the need for legislative mandates or directives; (2) enable the recovery of automotive materials in a cost-competitive manner while meeting the performance requirements of the applications and markets for the materials; and (3) remove recycling barriers/reasons, real or perceived, to the use of advanced lightweighting materials or systems in future vehicles. The issues, technical requirements, and cost and institutional considerations in achieving that goal are complex and will require a concerted, focused, and systematic analysis, together with a technology development program. The scope and tasks of this program are derived from 'A Roadmap for Recycling End-of-Life Vehicles of the Future,' prepared in May 2001 for the DOE Office of Energy, Efficiency, and Renewable Energy (EERE)-Vehicle Technologies Program. The objective of this research program is to enable the maximum recycling of automotive materials and obsolete vehicles through the development and commercialization of technologies for the separation and recovery of materials from end-of-life vehicles (ELVs). The long-term goals are to (1) enable the optimum recycling of automotive materials, thereby obviating the need for legislative mandates or directives; (2) enable the recovery of automotive materials in a cost-competitive manner while meeting the performance requirements of the applications and markets for the materials; and (3) remove recycling barriers/reasons, real or perceived, to the use of advanced lightweighting materials or systems in future vehicles.

Jody, B. J.; Pomykala, J. A.; Spangenberger, J. S.; Daniels, E.; Energy Systems

2010-01-14T23:59:59.000Z

158

Expanding Robust HCCI Operation (Delphi CRADA)  

Broader source: Energy.gov (indexed) [DOE]

Expanding Robust HCCI Operation A CRADA project with Delphi Automotive Systems Project ID: ACE053 2011 U.S. DOE Hydrogen and Vehicle Technologies Program Annual Merit Review and...

159

Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology...  

Broader source: Energy.gov (indexed) [DOE]

CumminsORNL-FEERC CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines CumminsORNL-FEERC CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel...

160

Durability of Diesel Engine Particulate Filters CRADA No. ORNL...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Durability of Diesel Engine Particulate Filters CRADA No. ORNL-04-0692 with Cummins Inc. Durability of Diesel Engine Particulate Filters CRADA No. ORNL-04-0692 with Cummins Inc....

Note: This page contains sample records for the topic "development agreement crada" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Solar Resources Measurements in Elizabeth City, North Carolina - Equipment Only: Cooperative Research and Development Final Report, CRADA Number CRD-07-217  

SciTech Connect (OSTI)

Site-specific, long-term, continuous, and high-resolution measurements of solar irradiance are important for developing renewable resource data. These data are used for several research and development activities consistent with the NREL mission: establish a national 30-year climatological database of measured solar irradiances; provide high quality ground-truth data for satellite remote sensing validation; support development of radiative transfer models for estimating solar irradiance from available meteorological observations; provide solar resource information needed for technology deployment and operations. Data acquired under this agreement will be available to the public through NREL's Measurement & Instrumentation Data Center - MIDC (www.nrel.gov/midc). The MIDC offers a variety of standard data display, access, and analysis tools designed to address the needs of a wide user audience (e.g., industry, academia, and government interests).

Stoffel, T.; Andreas, A.

2014-01-01T23:59:59.000Z

162

Solar Resource Measurements in Canyon, Texas - Equipment Only Loan: Cooperative Research and Development Final Report, CRADA Number CRD-07-233  

SciTech Connect (OSTI)

Site-specific, long-term, continuous, and high-resolution measurements of solar irradiance are important for developing renewable resource data. These data are used for several research and development activities consistent with the NREL mission: establish a national 30-year climatological database of measured solar irradiances; provide high-quality ground-truth data for satellite remote sensing validation; support development of radiative transfer models for estimating solar irradiance from available meteorological observations; and provide solar resource information needed for technology deployment and operations. Data acquired under this agreement will be available to the public through NREL's Measurement & Instrumentation Data Center (MIDC) or the Renewable Resource Data Center (RReDC). The MIDC offers a variety of standard data display, access, and analysis tools designed to address the needs of a wide user audience (e.g., industry, academia, and government interests).

Andreas, A.

2014-07-01T23:59:59.000Z

163

Solar Resource Measurements in Humboldt State University, Arcata, California: Cooperative Research and Development Final Report, CRADA Number CRD-08-262  

SciTech Connect (OSTI)

Site-specific, long-term, continuous, and high-resolution measurements of solar irradiance are important for developing renewable resource data. These data are used for several research and development activities consistent with the NREL mission: establish a national 30-year climatological database of measured solar irradiances; provide high quality ground-truth data for satellite remote sensing validation; support development of radiative transfer models for estimating solar irradiance from available meteorological observations; provide solar resource information needed for technology deployment and operations. Data acquired under this agreement will be available to the public through NREL's Measurement & Instrumentation Data Center - MIDC (www.nrel.gov/midc) or the Renewable Resource Data Center - RReDC (http://rredc.nrel.gov). The MIDC offers a variety of standard data display, access, and analysis tools designed to address the needs of a wide user audience (e.g., industry, academia, and government interests).

Stoffel, T.; Andreas, A.

2014-01-01T23:59:59.000Z

164

Final Report on CRADA ORNL05-0703  

SciTech Connect (OSTI)

The work of this CRADA has been focused on the development of Rolling-Assisted Biaxially Textured Substrate (RABiTS)-based high-temperature superconducting (HTS) coated conductor technology that is in the pre-commercial development stage. Metal-Oxide Technologies, Inc. (MetOx) is a Houston-based small business that is developing and manufacturing second-generation (2G) HTS wire using an all-Metallo-Organic Chemical Vapor Deposition (MOCVD) process, including the buffer layers and HTS coating. Advances toward commercialization were enabled by coordinated interactions that facilitated the synthesis, characterization, and iterative optimization of prototype 2G wire segments.

Christen, D.K.

2010-04-27T23:59:59.000Z

165

Development of Black Silicon Antireflection Control and Passivation Technology for Commercial Application: Cooperative Research and Development Final Report, CRADA Number CRD-12-475  

SciTech Connect (OSTI)

The work involves the development of a commercial manufacturing process for both multicrystalline and monocrystalline solar cells that combines Natcore's patent pending passivation technology.

Yuan, H. C.

2014-06-01T23:59:59.000Z

166

Development of Inorganic Precursors for Manufacturing of Photovoltaic Devices: Cooperative Research and Development Final Report, CRADA Number CRD-08-308  

SciTech Connect (OSTI)

Both NREL and Rohm and Haas Electronic Materials are interested in the development of solution phase metal and semiconductive precursors for the manufacturing of photovoltaic devices. In particular, we intend to develop material sets for atmospheric deposition processes. The cooperation between these two parties will enable high value materials and processing solutions for the manufacturing of low cost, roll-to-roll photovoltaics.

van Hest, M.; Ginley, D.

2013-06-01T23:59:59.000Z

167

Development of Commercial Technology for Thin Film Silicon Solar Cells on Glass: Cooperative Research and Development Final Report, CRADA Number CRD-07-209  

SciTech Connect (OSTI)

NREL has conducted basic research relating to high efficiency, low cost, thin film silicon solar cell design and the method of making solar cells. Two patents have been issued to NREL in the above field. In addition, specific process and metrology tools have been developed by NREL. Applied Optical Sciences Corp. (AOS) has expertise in the manufacture of solar cells and has developed its own unique concentrator technology. AOS wants to complement its solar cell expertise and its concentrator technology by manufacturing flat panel thin film silicon solar cell panels. AOS wants to take NREL's research to the next level, using it to develop commercially viable flat pane, thin film silicon solar cell panels. Such a development in equipment, process, and metrology will likely produce the lowest cost solar cell technology for both commercial and residential use. NREL's fundamental research capability and AOS's technology and industrial background are complementary to achieve this product development.

Sopori, B.

2013-03-01T23:59:59.000Z

168

Solar Resource Measurements in 1400 JR Lynch Street, Jackson, Mississippi: Cooperative Research and Development Final Report, CRADA Number CRD-07-254  

SciTech Connect (OSTI)

Site-specific, long-term, continuous, and high-resolution measurements of solar irradiance are important for developing renewable resource data. These data are used for several research and development activities consistent with the NREL mission: Equipment will be used by Jackson State University for solar radiation data monitoring. This is a continuing effort of the Historically Black Colleges and Universities Solar Measurement Network; Provide high quality ground-truth data for satellite remote sensing validation; Support development of radiative transfer models for estimating solar irradiance from available meteorological observations; Provide solar resource information needed for technology deployment and operations. Data acquired under this agreement will be available to the public through NREL's Measurement & Instrumentation Data Center (MIDC) (www.nrel.gov/midc) or the Renewable Resource Data Center (RReDC ) (http://rredc.nrel.gov). The MIDC offers a variety of standard data display, access, and analysis tools designed to address the needs of a wide user audience (e.g., industry, academia, and government interests.

Stoffel, T.

2014-01-01T23:59:59.000Z

169

Solar Resource Measurements in Cocoa, Florida (FSEC) - Equipment Loaned to NREL: Cooperative Research and Development Final Report, CRADA Number CRD-08-318  

SciTech Connect (OSTI)

Site-specific measurements of global and diffuse solar irradiance components, passively separated by alternate shading and unshading of a pyranometer mounted under a shading band with alternating opaque and open panels (for a site other than NREL) are needed to verify the underlying theory and mathematical techniques for developing direct, global and diffuse renewable resource data from such a system. These data are used for several research and development activities consistent with the NREL mission: Establish a national 30-year climatological database of measured solar irradiances; Support development of radiative transfer models for estimating solar irradiance from available meteorological observations; Provide solar resource information needed for technology deployment and operations. NREL will provide the supporting equipment (Shadow Bank Stand) for the specially designed shading band. FSEC will provide the calibrated pyranometer and perform data acquisition of the radiometer signal. Data acquired under this agreement will be shared with the NREL Principle Investigator for the purposes of validating techniques for estimating direct radiation from global and diffuse components measured with the ZEBRA system.

Stoffel, T.; Afshin, A.

2014-01-01T23:59:59.000Z

170

Development of a Prototype Reflectrometer for PDIL, of a System for Commercial Sale: Cooperative Research and Development Final Report, CRADA Number CRD-08-272  

SciTech Connect (OSTI)

The first commercial unit of GT-FabScan was fabricated by GT Solar and delivered to NREL. The system is located in the Process Development and Integration Laboratory (PDIL) and is fully functional.

Sopori, B.

2011-02-01T23:59:59.000Z

171

Joint Development of Coated Conductor and Low Cost Thin Film Solar Cells: Cooperative Research and Development Final Report, CRADA Number CRD-007-213  

SciTech Connect (OSTI)

UES plans on developing CIGS thin films by using Metal Organic Deposition (MOD) technique as it is a low-cost, non-vacuum method for scale-up to large area PV modules. NREL will support UES, Inc. through expert processing, characterization and device fabrication. NREL scientists will also help develop a processing phase diagram which includes composition, film thickness, annealing temperature and ambient conditions. Routine measurements of devices and materials will be done under NREL's core support project.

Bhattacharya, R.

2011-02-01T23:59:59.000Z

172

Scale-Up of CdTe Photovoltaic Device Processes for Commercial Application: Cooperative Research and Development Final Report, CRADA Number CRD-06-196  

SciTech Connect (OSTI)

Through this Cooperative Research and Development Agreement, NREL and PrimeStar Solar will work together to scale up the NREL CdTe photovoltaic process from the laboratory to produce photovoltaic devices in a size that is commercially viable. The work in this phase will focus on the transference of NREL CdTe device fabrication techniques to PrimeStar Solar. NREL and PrimeStar Solar will engage in a series of technical exchange meetings and laboratory training sessions to transfer the knowledge of CdTe PV film growth from NREL to PrimeStar Solar. PrimeStar Solar will grow thin films on PrimeStar Solar equipment and interleave them with NREL-grown films in an effort to develop a commercial scale process on PrimeStar Solar equipment. Select NREL film growth equipment will be upgraded either by PrimeStar Solar or at PrimeStar Solar's expense to increase equipment reliability and throughput.

Albin, D.

2013-02-01T23:59:59.000Z

173

Microsoft Word - Short Form CRADA Agreement Boilerplate Approved June 2014  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource Program Preliminary Needs Assessment March

174

Accelerated deployment of nanostructured hydrotreating catalysts. Final CRADA Report.  

SciTech Connect (OSTI)

Nanomanufacturing offers an opportunity to create domestic jobs and facilitate economic growth. In response to this need, U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy issued a Research Call to develop nanomanufacturing capabilities at the National Laboratories. High performance catalysts represent a unique opportunity to deploy nanomanufacturing technologies. Re-refining of used lube oil offers an opportunity to create manufacturing jobs and decrease dependence on imported petroleum. Improved catalysts are required to produce a better quality product, decrease environmental impact, extend catalyst life, and improve overall economics of lube oil re-refining. Argonne National Laboratory (Argonne) in cooperation with Universal Lubricants, Inc. (ULI) and Chemical Engineering Partners (CEP) have carried out a Cooperative Research and Development Agreement (CRADA) to prepare nanostructured hydrotreating catalysts using atomic layer deposition (ALD) to exhibit superior performance for the re-refining of used lube oil. We investigated the upgrading of recycled lube oil by hydrogenation using commercial, synthetically-modified commercial catalysts, and synthesized catalysts. A down-flow (trickle bed) catalytic unit was used for the hydrogenation experiments. In addition to carrying out elemental analyses of the various feed and product fractions, characterization was undertaken using H{sup 1} and C{sup 13} NMR. Initially commercial were evaluated. Second these commercial catalysts were promoted with precious metals using atomic layer deposition (ALD). Performance improvements were observed that declined with catalyst aging. An alternate approach was undertaken to deeply upgrade ULI product oils. Using a synthesized catalyst, much lower hydrogenation temperatures were required than commercial catalysts. Other performance improvements were also observed. The resulting lube oil fractions were of high purity even at low reaction severity. The products recovered from both the ALD and other processes were water-white (even those from the low temperature, low residence time (high space velocity), low conversion runs). These results indicate that highly upgraded recycle lube oils can be produced using ALD-deposited active metal catalysts. The use of H{sup 1} and C{sup 13} NMR for the characterization of the treated lube oils has been shown to be effective.

Libera, J.A.; Snyder, S.W.; Mane, A.; Elam, J.W.; Cronauer, D.C.; Muntean, J.A.; Wu, T.; Miller, J.T. (Chemical Sciences and Engineering Division); ( ES)

2012-08-27T23:59:59.000Z

175

Application of the Granuflow Process to Pipeline-Transported Coal Slurry CRADA PC96-010, Final Report  

SciTech Connect (OSTI)

In light of the current difficulties in processing fine coal and the potential for a significant increase in fines due to more demanding quality specifications, the U.S. Department of Energy's Federal Energy Technology Center (FETC) has been involved in the reconstitution of the fine clean coal resulting from advanced fine coal cleaning technologies. FETC has invented and developed a new strategy that combines fine-coal dewatering and reconstitution into one step. The process reduces the moisture content of the clean coal, and alleviates handling problems related to dustiness, stickiness, flowability, and freezing. This process has been named the GranuFlow Process. Early work successfully demonstrated the feasibility of the process for laboratory-scale vacuum filtration dewatering using asphalt emulsion. Further tests focused on the application of the process to a screen-bowl centrifuge via batch mode tests at 300 lb/hr. These tests produced roughly the same results as the laboratory filtration tests did, and they included some testing using Orimulsion, a bitumen emulsion. The Orimulsion seemed to offer greater potential for moisture reduction and was less affected by colder slurry temperatures. Most recently, FETC has conducted several series of tests in its Coal Preparation Process Research Facility. These tests dramatically showed the visible difference in the dewatered product by applying the GranuFlow Process, turning it from a clumpy, wet, sticky material into a granular, dry free-flowing product. In addition, it verified previous results with improvements in moisture content, dustiness, stickiness, and freezing. Orimulsion showed a significant benefit over asphalt emulsion in moisture reduction at additions more than 5%. The overall goal of this project was to successfully apply FETC'S GranuFlow Process to improve coal slurry pipeline operations. Williams Technologies, Inc. (WTI), a leader in pipeline technology, has an interest in reducing the moisture content of the coal at the end of a coal slurry pipeline beyond what is being achieved with conventional mechanical dewatering technology. In addition, they would like to improve the handling characteristics of the dewatered coal. The GranuFlow Process has the potential of assisting in both of these areas, and its degree of applicability needed to be explored. A formal Cooperative Research and Development Agreement (CRADA) between FETC and WTI was signed in November 1996. This CRADA consisted of 6 tasks progressing from preliminary scoping tests to a commercial field test. Task 1 was completed in February 1997, and it provided sufficient information about the applicability of the GranuFlow Process to coal slurry pipelines that further testing was not needed at the present time. Thus the CRADA was terminated.

Richard P. Killmeyer; Wu-Wey Wen

1997-09-24T23:59:59.000Z

176

Working with NIST Terry Lynch  

E-Print Network [OSTI]

Agreements (CRADACooperative Research and Development Agreements (CRADA)) ConsortiaConsortia Patent and DevelopmentCooperative Research and Development Agreement (CRADA)Agreement (CRADA) CRADAS provide partners with rights not available under anyCRADAS provide partners with rights not available under any other form

177

Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Evaluation ace032partridge2011o.pdf More Documents & Publications CumminsORNL-FEERC CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines Vehicle...

178

Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology...  

Broader source: Energy.gov (indexed) [DOE]

Management Team: Ken Howden, Gurpreet Singh, Steve Goguen Cummins-ORNLFEERC Emissions CRADA: NO x Control & Measurement Technology for Heavy-Duty Diesel Engines 2012 DOE Vehicle...

179

CRADA with Cummins on Characterization and Reduction of Combustion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cummins on Characterization and Reduction of Combustion Variations CRADA with Cummins on Characterization and Reduction of Combustion Variations 2012 DOE Hydrogen and Fuel Cells...

180

CRADA with PACCAR Experimental Investigation in Coolant Boiling...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

PACCAR Experimental Investigation in Coolant Boiling in a Half-Heated Circular Tube CRADA with PACCAR Experimental Investigation in Coolant Boiling in a Half-Heated Circular Tube...

Note: This page contains sample records for the topic "development agreement crada" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology...  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Technologies Office Merit Review 2014: Cummins-ORNLFEERC Emissions CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines CumminsORNL-FEERC...

182

Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology...  

Broader source: Energy.gov (indexed) [DOE]

Management Team: Gurpreet Singh, Ken Howden, Leo Breton Cummins-ORNLFEERC Emissions CRADA: NO x Control & Measurement Technology for Heavy-Duty Diesel Engines, Self-Diagnosing...

183

Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology...  

Broader source: Energy.gov (indexed) [DOE]

Management Team: Ken Howden, Gurpreet Singh, Steve Goguen Cummins-ORNLFEERC Emissions CRADA: NO x Control & Measurement Technology for Heavy-Duty Diesel Engines 2013 DOE Vehicle...

184

Sandia National Laboratories: cooperative research & development agreement  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia, NREL Releasehy-drogenmaterial elementswave power into&

185

CRADA Final Report: Ionically Conductive Membranes Oxygen Separation  

SciTech Connect (OSTI)

Scientists at the Lawrence Berkeley National Laboratory (LBNL) in a collaborative effort with Praxair Corporation developed a bench-top oxygen separation unit capable of producing ultra-high purity oxygen from air. The device is based on thin-film electrolyte technology developed at LBNL as part of a solid oxide fuel cell program. The two teams first demonstrated the concept using planar ceramic disks followed by the development of tubular ceramic structures for the bench-top unit. The highly successful CRADA met all technical milestones on time and on budget. Due to the success of this program the industrial partner and the team at LBNL submitted a grant proposal for further development of the unit to the Advanced Technology Program administered by the National Institute of Standar~s. This proposal was selected for funding, and now the two teams are developing a precommercial oxygen separation unit under a 3-year, $6 million dollar program.

Visco, Steven J.

2001-10-29T23:59:59.000Z

186

Laboratory Testing of the Boundary Layer Momentum Transfer Rotational Filter Systems, NETL-Innovatech, Inc., CRADA 98-F026, Final Report  

SciTech Connect (OSTI)

A patented dynamic mechanical filter developed by InnovaTech was previously shown to remove fine particulate matter from industrial process gas streams at ambient temperatures and pressures. An all-metal, high-temperature version of this novel media-less filter was fabricated under this Cooperative Research and Development Agreement (CRADA) with DOE/NETL-Morgantown for hot gas testing of the device. The technology is entirely different in both concept and design from conventional vortex separators, cyclones, or porous media filters. This new filtration concept is capable of separating heavy loading of fine particles without blinding, fouling or bridging, and would require minimal operational costs over its anticipated multi-year service life. The all-metal filter design eliminates thermal stress cracking and premature failure prevalent in conventional porous ceramic filters. In contrast, conventional porous media filters (i.e., ceramic cross-flow or candles) easily foul, require periodic cleaning (typically backpulsing), frequent replacement and subsequent disposal.

National Energy Technology Laboratory

2000-08-22T23:59:59.000Z

187

additive contents crada: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

additive contents crada First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 NIMH CRADAs Review and Approval...

188

Thin Film Materials and Processing Techniques for a Next Generation Photovoltaic Device: Cooperative Research and Development Final Report, CRADA Number CRD-12-470  

SciTech Connect (OSTI)

This research extends thin film materials and processes relevant to the development and production of a next generation photovoltaic device.

van Hest, M.

2013-08-01T23:59:59.000Z

189

Cooperative Research Between NREL and Ampulse on III-V PV: Cooperative Research and Development Final Report, CRADA Number CRD-12-464  

SciTech Connect (OSTI)

NREL and Ampulse will engage in cooperative research to develop III-V photovoltaics on alternative substrates.

Ptak, A.

2013-04-01T23:59:59.000Z

190

Vindicator Lidar Assessment for Wind Turbine Feed-Forward Control Applications: Cooperative Research and Development Final Report, CRADA Number CRD-09-352  

SciTech Connect (OSTI)

Collaborative development and testing of feed-forward and other advanced wind turbine controls using a laser wind sensor.

Wright, A.

2014-01-01T23:59:59.000Z

191

Wind Energy R&D Collaboration between NIRE and NREL: Cooperative Research and Development Final Report, CRADA Number CRD-11-437  

SciTech Connect (OSTI)

This work includes, but is not limited to, research and development of joint technology development and certification efforts in the wind power sector; providing access to commercial wind farm and federal facilities to enhance R&D; identification of workforce development best practices. This work will be done at Contractor and Participant facilities.

Moriarty, P.

2015-01-01T23:59:59.000Z

192

Optical Materials, Adhesive and Encapsulant, III-V, and Optical Characterization Evaluation: Cooperative Research and Development Final Report, CRADA Number CRD-07-216  

SciTech Connect (OSTI)

SolFocus is currently developing solar technology for utility scale application using Winston collector based concentrating photovoltaics (CPV). Part of that technology development includes small mirror dishes and front surface reflectors, and bonding the separate parts to the assembly. Mirror panels must meet rigid optical specifications in terms of radius of curvature, slope errors and specularity. The reflective surfaces must demonstrate long term durability and maintain high reflectivity. Some bonded surfaces must maintain adhesion and transparency under high concentrations and high temperatures. Others will experience moderate temperatures and do not require transparency. NREL researchers have developed methods and tools that address these related areas.

Kempe, M.

2012-11-01T23:59:59.000Z

193

Defining the Interactions of Cellobiohydrolase with Substrate through Structure Function Studies: Cooperative Research and Development Final Report, CRADA Number CRD-10-409  

SciTech Connect (OSTI)

NREL researchers will use their expertise and skilled resources in numerical computational modeling to generate structure-function relationships for improved cellulase variant enzymes to support the development of cellulases with improved performance in biomass conversion.

Beckham, G. T.; Himmel, M. E.

2013-07-01T23:59:59.000Z

194

Super-Resolution Optical Imaging of Biomass Chemical-Spatial Structure: Cooperative Research and Development Final Report, CRADA Number CRD-10-410  

SciTech Connect (OSTI)

The overall objective for this project is to characterize and develop new methods to visualize the chemical spatial structure of biomass at varying stages of the biomass degradation processes in situ during the process.

Ding, S. Y.

2013-06-01T23:59:59.000Z

195

Thin Film Solar Cells Derived from Sintered Semiconductor Quantum Dots: Cooperative Research and Development Final Report, CRADA number CRD-07-00226  

SciTech Connect (OSTI)

The NREL/Evident team will develop techniques to fabricate thin film solar cells where the absorption layers comprising the solar cells are derived from sintered semiconductor quantum dots.

Ginley, D. S.

2010-07-01T23:59:59.000Z

196

Optical and Durability Evaluation for Silvered Polymeric Mirrors and Reflectors: Cooperative Research and Development Final Report, CRADA Number, CRD-08-316  

SciTech Connect (OSTI)

3M is currently developing silvered polymeric mirror reflectors as low-cost replacements for glass mirrors in concentrating solar power (CSP) systems. This effort is focused on development of reflectors comprising both metallized polymeric mirror films based on improved versions of ECP-305+ or other durable mirror film concepts and appropriate mechanically robust substrates. The objectives for this project are to reduce the system capital and operating costs and to lower the levelized cost of energy for CSP installations. The development of mirror reflectors involves work on both full reflectors and mirror films with and without coatings. Mirror reflectors must meet rigid optical specifications in terms of radius of curvature, slope errors and specularity. Mirror films must demonstrate long-term durability and maintain high reflectivity. 3M would like to augment internal capabilities to validate product performance with methods and tools developed at NREL to address these areas.

Gray, M.

2014-08-01T23:59:59.000Z

197

Catalysis for Mixed Alcohol Synthesis from Biomass Derived Syngas: Cooperative Research and Development Final Report, CRADA Number CRD-08-292  

SciTech Connect (OSTI)

The Dow Chemical Company (Dow) developed and tested catalysts for production of mixed alcohols from synthesis gas (syngas), under research and development (R&D) projects that were discontinued a number of years ago. Dow possesses detailed laboratory notebooks, catalyst samples, and technical expertise related to this past work. The National Renewable Energy Laboratory (NREL) is conducting R&D in support of the United States Department of Energy (DOE) to develop methods for economically producing ethanol from gasified biomass. NREL is currently conducting biomass gasification research at an existing 1/2 ton/day thermochemical test platform. Both Dow and NREL believe that the ability to economically produce ethanol from biomass-derived syngas can be enhanced through collaborative testing, refinement, and development of Dow's mixed-alcohol catalysts at NREL's and/or Dow's bench- and pilot-scale facilities. Dow and NREL further agree that collaboration on improvements in catalysts as well as gasifier operating conditions (e.g., time, temperature, upstream gas treatment) will be necessary to achieve technical and economic goals for production of ethanol and other alcohols.

Hensley, J.

2013-04-01T23:59:59.000Z

198

Infrastructure, Components and System Level Testing and Analysis of Electric Vehicles: Cooperative Research and Development Final Report, CRADA Number CRD-09-353  

SciTech Connect (OSTI)

Battery technology is critical for the development of innovative electric vehicle networks, which can enhance transportation sustainability and reduce dependence on petroleum. This cooperative research proposed by Better Place and NREL will focus on predicting the life-cycle economics of batteries, characterizing battery technologies under various operating and usage conditions, and designing optimal usage profiles for battery recharging and use.

Neubauer, J.

2013-05-01T23:59:59.000Z

199

Thermal Analysis and Test Program to Evaluate Passenger Compartment Thermal Load Reduction and Improve: Cooperative Research and Development Final Report, CRADA number CRD-07-00231  

SciTech Connect (OSTI)

This activity supported a GM and NREL collaborative exploration of strategies to minimize and alleviate the temperature rise in the passenger compartment of an automobile during prolonged exposure to solar radiation in hot climates. It developed and exercised math-based models to simulate the air flow and thermal environment in the passenger compartment in order to compare the effectiveness of the strategies. This activity also assessed the strategies using vehicle tests.

Rugh, J.

2011-05-01T23:59:59.000Z

200

Optimization of Solar Cell Design for Use with GreenVolts CPV System: Cooperative Research and Development Final Report, CRADA Number CRD-08-00281  

SciTech Connect (OSTI)

GreenVolts, a Bay area start-up, was developing a CPV system that was based on a unique reflective optical design. They were interested in adapting the inverted GaInP/GaAs/GaInAs cell structure designed at NREL for use in their system. The purpose of this project was to optimize the inverted GaInP/GaAs/GaInAs cell for operation in the GreenVolts optical system.

Ward, S.

2011-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "development agreement crada" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Thermal Characterization and Analysis of A123 Systems Battery Cells, Modules and Packs: Cooperative Research and Development Final Report, CRADA Number CRD-07-243  

SciTech Connect (OSTI)

In support of the A123 Systems battery development program with USABC/DOE, NREL provided technical support in thermal characterization, analysis and management of batteries. NREL's effort was part of Energy Storage Project funded by DOE Vehicle Technologies Program. The purpose of this work was for NREL to perform thermal characterization and analysis of A123 Systems cells and modules with the aim for Al23 Systems to improve the thermal performance of their battery cells, modules and packs.

Pesaran, A.

2012-03-01T23:59:59.000Z

202

Evaluation of Novel Semiconductor Materials Potentially Useful in Solar Cells: Cooperative Research and Development Final Report, CRADA number CRD-06-00172  

SciTech Connect (OSTI)

Evaluation of novel semiconductor materials potentially useful in solar cells. NREL will fabricate, test and analyze solar cells from EpiWorks' wafers produced in 2-3 separate growth campaigns. NREL will also characterize material from 2-3 separate EpiWorks material development campaigns. Finally, NREL will visit EpiWorks and help establish any necessary process, such as spectral CV measurements and III-V on Si metalization processes and help validate solar cell designs and performance.

Geisz, J.

2010-07-01T23:59:59.000Z

203

CRADA Final Report: Materials Development For Pulp and Paper Mills, Task 9 Proof of Commercial Concept: Commodity Carbon Fibers From Weyerhaeuser Lignin Based Fibers  

SciTech Connect (OSTI)

Tasks were assigned to Oak Ridge National Laboratory (ORNL) researchers for the development of lignin-based carbon fiber from a specific precursor that was produced by the Participant (Weyerhaeuser Corporation). These tasks included characterization of precursor polymers and fibers; and the development of conversion parameters for the fibers. ORNL researchers provided recommendations for in-house characterization of the precursor at the participant's laboratory. During the early stage of the precursor fiber production trials of various spools of fibers with varied compositions were produced. Some of those samples were sent to ORNL (by the Participant) for the development of conversion protocol. The trial tow samples were oxidized at ORNL's precursor evaluation system (PES), a bench-scale facility consisting of an oven, filament winder, tension controller, and a let off creel. The PES is a modular tool useful for the development of precursor conversion protocol. It can handle a single filament to a large single tow (50k filaments). It can also offer precise tensioning for few-filament tows. In the PES, after oxidation, fibers are typically carbonized first at low temperature, {le} 600 C, and subsequently at a higher temperature, {le} 1200 C with controlled residence time. ORNL has recently installed a new carbonization furnace with 1700 C limit and a furnace with 2500 C capacity is under installation. A protocol for the oxidation and carbonization of the trial precursor fibers was developed. Oxidized fiber with a density of 1.46 g/cc (oxidation time: 90 min) shows qualitative flame retardancy via simple flame test (fibers do not catch fire or shrink when exposed to flame). Oxidized and carbonized filaments of the Weyerhaeuser precursor fibers show moderate mechanical properties and 47-51 % carbon yield (based on oxidized fiber mass) after carbonization between 1000-1400 C. The properties of fibers from nonoptimized composition and processing parameters indicate the potential of low-cost, low-end carbon fibers based on renewable resource materials. Further work is necessary to produce high quality precursor and the corresponding carbonized filaments of superior properties.

Paulauskas, Felix L [ORNL; Naskar, Amit K [ORNL; Ozcan, Soydan [ORNL; Keiser, James R [ORNL; Gorog, John Peter [Weyerhaeuser Company

2010-09-01T23:59:59.000Z

204

Evaluation of Solar Grade Silicon Produced by the Institute of Physics and Technology: Cooperative Research and Development Final Report, CRADA Number CRD-07-211  

SciTech Connect (OSTI)

NREL and Solar Power Industries will cooperate to evaluate technology for producing solar grade silicon from industrial waste of the phosphorus industry, as developed by the Institute of Physics and Technology (IPT), Kazakhstan. Evaluation will have a technical component to assess the material quality and a business component to assess the economics of the IPT process. The total amount of silicon produced by IPT is expected to be quite limited (50 kg), so evaluations will need to be done on relatively small quantities (? 5 kg/sample).

Page, M.

2013-02-01T23:59:59.000Z

205

Low Cost High Efficiency InP-Based Solar Cells: Cooperative Research and Development Final Report, CRADA Number CRD-09-344  

SciTech Connect (OSTI)

NREL will develop a method of growing and fabricating single junction InP solar cells on 2-inch InP substrates on which a release layer has been deposited by MicroLink Devices. NREL will transfer to MicroLink the details of the InP solar cell layer structure and test results in order that the 2-inch results can be replicated on 4-inch InP substrates. NREL will develop a method of growing and fabricating single junction InP solar cells, including a metamorphic layer, on 2-inch GaAs substrates on which a release layer has been deposited by MicroLink Devices. NREL will transfer to MicroLink the details of the InP solar cell layer structure and test results in order that the 2-inch results can be replicated on 6-inch GaAs substrates. NREL will perform characterization measurements of the solar cells, including I-V and quantum efficiency measurements at AM1.5 1-sun.

Wanlass, M.

2012-07-01T23:59:59.000Z

206

CRADA Final Report for NFE-08-01826: Development and application of processing and processcontrol for nano-composite materials for lithium ion batteries  

SciTech Connect (OSTI)

Oak Ridge National Laboratory and A123 Systems, Inc. collaborated on this project to develop a better understanding, quality control procedures, and safety testing for A123 Systems nanocomposite separator (NCS) technology which is a cell based patented technology and separator. NCS demonstrated excellent performance. x3450 prismatic cells were shown to survive >8000 cycles (1C/2C rate) at room temperature with greater than 80% capacity retention with only NCS present as an alternative to conventional polyolefin. However, for a successful commercialization, the coating conditions required to provide consistent and reliable product had not been optimized and QC techniques for being able to remove defective material before incorporation into a cell had not been developed. The work outlined in this report addresses these latter two points. First, experiments were conducted to understand temperature profiles during the different drying stages of the NCS coating when applied to both anode and cathode. One of the more interesting discoveries of this study was the observation of the large temperature decrease experienced by the wet coating between the end of the infrared (IR) drying stage and the beginning of the exposure to the convection drying oven. This is not a desirable situation as the temperature gradient could have a deleterious effect on coating quality. Based on this and other experimental data a radiative transfer model was developed for IR heating that also included a mass transfer module for drying. This will prove invaluable for battery coating optimization especially where IR drying is being employed. A stress model was also developed that predicts that under certain drying conditions tensile stresses are formed in the coating which could lead to cracking that is sometimes observed after drying is complete. Prediction of under what conditions these stresses form is vital to improving coating quality. In addition to understanding the drying process other parameters such as slurry quality and equipment optimization were examined. Removal of particles and gels by filtering, control of viscosity by %solids and mixing adjustments, removal of trapped gas in the slurry and modification of coater speed and slot die gap were all found to be important for producing uniform and flaw-free coatings. Second, an in-line Hi-Pot testing method has been developed specifically for NCS that will enable detection of coating flaws that could lead to soft or hard electrical shorts within the cell. In this way flawed material can be rejected before incorporation into the cell thus greatly reducing the amount of scrap that is generated. Improved battery safety is an extremely important benefit of NCS. Evaluation of battery safety is usually accomplished by conducting a variety of tests including nail penetration, hot box, over charge, etc. For these tests entire batteries must be built but the resultant temperature and voltage responses reveal little about the breakdown mechanism. In this report is described a pinch test which is used to evaluate NCS quality at various stages including coated anode and cathode as well as assembled cell. Coupled with post-microscopic examination of the damaged pinch point test data can assist in the coating optimization from an improved end-use standpoint. As a result of this work two invention disclosures, one for optimizing drying methodology and the other for an in-line system for flaw detection, have been filed. In addition, 2 papers are being written for submission to peer-reviewed journals.

Daniel, C.; Armstrong, B.; Maxey, C.; Sabau, A.; Wang, H.; Hagans, P. (A123 Systems, Inc.); and Babinec, S. (A123 Systems, Inc.)

2012-12-15T23:59:59.000Z

207

Defense Industry Conversion, Base Closure, and the California Economy: The Role of Technology Transfer and Emerging Technologies  

E-Print Network [OSTI]

as of July 1993. 500 450 CRADA (cumulative) 250 AEr Jul OctDevelopment Agreement (CRADA). Other forms include licensingDevelopment Agreements. A CRADA is a contractual arrangement

Al-Ayat, Rokaya; Moody, Jason

1994-01-01T23:59:59.000Z

208

Amorphous Diamond Flat Panel Displays - Final Report of ER-LTR CRADA project with SI Diamond Technology  

E-Print Network [OSTI]

Department of Energy under a CRADA (Cooperative Research andnm in size. Page 4 of 7 SIDT CRADA Final Report In order toFinal report of ER-LTR CRADA Project Lawrence Berkeley

Ager III, Joel W.

1998-01-01T23:59:59.000Z

209

Application of Robust Design and Advanced Computer Aided Engineering Technologies: Cooperative Research and Development Final Report, CRADA Number CRD-04-143  

SciTech Connect (OSTI)

Oshkosh Corporation (OSK) is taking an aggressive approach to implementing advanced technologies, including hybrid electric vehicle (HEV) technology, throughout their commercial and military product lines. These technologies have important implications for OSK's commercial and military customers, including fleet fuel efficiency, quiet operational modes, additional on-board electric capabilities, and lower thermal signature operation. However, technical challenges exist with selecting the optimal HEV components and design to work within the performance and packaging constraints of specific vehicle applications. SK desires to use unique expertise developed at the Department of Energy?s (DOE) National Renewable Energy Laboratory (NREL), including HEV modeling and simulation. These tools will be used to overcome technical hurdles to implementing advanced heavy vehicle technology that meet performance requirements while improving fuel efficiency.

Thornton, M.

2013-06-01T23:59:59.000Z

210

Novel Biological Conversion of Hydrogen and Carbon Dioxide Directly into Biodiesel: Cooperative Research and Development Final Report, CRADA Number: CRD-10-408  

SciTech Connect (OSTI)

OPX Biotechnologies, Inc. (OPX), the National Renewable Energy Laboratory (NREL), and Johnson Matthey will develop and optimize a novel, engineered microorganism that directly produces biodiesel from renewable hydrogen (H2) and carbon dioxide (CO2). The proposed process will fix CO2 utilizing H2 to generate an infrastructure-compatible, energy-dense fuel at costs of less than $2.50 per gallon, with water being produced as the primary byproduct. NREL will perform metabolic engineering on the bacterium Cupriavidus necator (formerly Ralstonia eutropha) and a techno-economic analysis to guide future scale-up work. H2 and CO2 uptakes rates will be genetically increased, production of free fatty acids will be enhanced and their degradation pathway blocked in order to meet the ultimate program goals.

Maness, P. C.

2014-06-01T23:59:59.000Z

211

Pilot Scale Integrated Biorefinery for Producing Ethanol from Hybrid Algae: Cooperative Research and Development Final Report, CRADA Number CRD-10-389  

SciTech Connect (OSTI)

This collaboration between Algenol Biofuels Inc. and NREL will provide valuable information regarding Direct to Ethanol technology. Specifically, the cooperative R&D will analyze the use of flue gas from industrial sources in the Direct to Ethanol process, which may demonstrate the potential to significantly reduce greenhouse gas emissions while simultaneously producing a valuable product, i.e., ethanol. Additionally, Algenol Biofuels Inc. and NREL will develop both a techno-economic model with full material and energy balances and an updated life-cycle analysis to identify greenhouse gas emissions relative to gasoline, each of which will provide a better understanding of the Direct to Ethanol process and further demonstrate that it is a breakthrough technology with varied and significant benefits.

Pienkos, P. T.

2013-11-01T23:59:59.000Z

212

LANL completes CRADA with Biomagnetics, Inc.  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs & GraduatesReducing SelectLANLwork underCRADA

213

United States, Russia Sign Agreement to Further Research and Development Collaboration in Nuclear Energy and Security  

Broader source: Energy.gov [DOE]

U.S. Secretary of Energy Ernest Moniz and Director General of the Russian Federation State Corporation Rosatom Sergey Kirienko today signed the Agreement between the Government of the United States of America and the Government of the Russian Federation on Cooperation in Nuclear- and Energy-Related Scientific Research and Development

214

Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

D.C. ace032partridge2010o.pdf More Documents & Publications CumminsORNL-FEERC CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines CumminsORNL-FEERC...

215

Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology...  

Broader source: Energy.gov (indexed) [DOE]

Washington D.C. ace32partridge.pdf More Documents & Publications CumminsORNL-FEERC CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines CumminsORNL-FEERC...

216

Detecting a Biological Attack The attack will not be obvious; it  

E-Print Network [OSTI]

and Development Agreement (CRADA) between Oak Ridge National Laboratory and several companies. The Microelektronik

Gilfoyle, Jerry

217

Acronyms Common to ARS, USDA, and REE | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |  

E-Print Network [OSTI]

Science and Technology CR Civil Rights CRADA Cooperative Research and Development Agreement CRAS CRIS

Farritor, Shane

218

PROCURING KNOWLEDGE Stephen M. Maurer and Suzanne Scotchmer  

E-Print Network [OSTI]

authorized the formation of Cooperative Research and Development Agreements (CRADA's) between national

Sadoulet, Elisabeth

219

Epileptic Event Forewarning From Scalp EEG *Vladimir A. Protopopescu, *Lee M. Hively, and  

E-Print Network [OSTI]

Biomedical Inc. (Madison, WI, USA) under a cooperative research and development agreement (CRADA no. 99- 0559

Hively, Lee M.

220

Research Administration Index of Commonly Used Acronyms  

E-Print Network [OSTI]

/Property System Review CRADA Cooperative Research and Development Agreement CRS Congressional Research Service CSR

Salama, Khaled

Note: This page contains sample records for the topic "development agreement crada" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Technical Highlights for July 2012 New Collaboration Underway to Investigate Ionic Liquids for Enhancing Engine Efficiency  

E-Print Network [OSTI]

for Enhancing Engine Efficiency A new Cooperative Research and Development Agreement (CRADA), No. NFE-12

222

CRADA Final Report for CRADA Number ORNL00-0605: Advanced Engine/Aftertreatment System R&D  

SciTech Connect (OSTI)

Navistar and ORNL established this CRADA to develop diesel engine aftertreatment configurations and control strategies that could meet emissions regulations while maintaining or improving vehicle efficiency. The early years of the project focused on reducing the fuel penalty associated with lean NOx trap (LNT), also known as NOx adsorber catalyst regeneration and desulfation. While Navistar pursued engine-based (in-cylinder) approaches to LNT regeneration, complementary experiments at ORNL focused on in-exhaust fuel injection. ORNL developed a PC-based controller for transient electronic control of EGR valve position, intake throttle position, and actuation of fuel injectors in the exhaust system of a Navistar engine installed at Oak Ridge. Aftertreatment systems consisting of different diesel oxidation catalysts (DOCs) in conjunction with a diesel particle filter and LNT were evaluated under quasi-steady-state conditions. Hydrocarbon (HC) species were measured at multiple locations in the exhaust system with Gas chromatograph mass spectrometry (GC-MS) and Fourier transform infrared (FTIR) spectroscopy. Under full-load, rated speed conditions, injection of fuel upstream of the DOC reduced the fuel penalty for a given level of NOx reduction by 10-20%. GC-MS showed that fuel compounds were 'cracked' into smaller hydrocarbon species over the DOC, particularly light alkenes. GC-MS analysis of HC species entering and exiting the LNT showed high utilization of light alkenes, followed by mono-aromatics; branched alkanes passed through the LNT largely unreacted. Follow-on experiments at a 'road load' condition were conducted, revealing that the NOx reduction was better without the DOC at lower temperatures. The improved performance was attributed to the large swings in the NOx adsorber core temperature. Split-injection experiments were conducted with ultra-low sulfur diesel fuel and three pure HC compounds: 1-pentene, toluene, and iso-octane. The pure compound experiments confirmed the previous results regarding hydrocarbon reactivity: 1-pentene was the most efficient LNT reductant, followed by toluene. Injection location had minimal impact on the reactivity of these two compounds. Iso-octane was an ineffective LNT reductant, requiring high doses (resulting in high HC emissions) to achieve reasonable NOx conversions. Diesel fuel reactivity was sensitive to injection location, with the best performance achieved through fuel injection downstream of the DOC. This configuration generated large LNT temperature excursions, which probably improved the efficiency of the NOx storage/reduction process, but also resulted in very high HC emissions. The ORNL team demonstrated an LNT desulfation under 'road load' conditions using throttling, EGR, and in-pipe injection of diesel fuel. Flow reactor characterization of core samples cut from the front and rear of the engine-aged LNT revealed complex spatially dependent degradation mechanisms. The front of the catalyst contained residual sulfates, which impacted NOx storage and conversion efficiencies at high temperatures. The rear of the catalyst showed significant sintering of the washcoat and precious metal particles, resulting in lower NOx conversion efficiencies at low temperatures. Further flow reactor characterization of engine-aged LNT core samples established that low temperature performance was limited by slow release and reduction of stored NOx during regeneration. Carbon monoxide was only effective at regenerating the LNT at temperatures above 200 C; propene was unreactive even at 250 C. Low temperature operation also resulted in unselective NOx reduction, resulting in high emissions of both N{sub 2}O and NH{sub 3}. During the latter years of the CRADA, the focus was shifted from LNTs to other aftertreatment devices. Two years of the CRADA were spent developing detailed ammonia SCR device models with sufficient accuracy and computational efficiency to be used in development of model-based ammonia injection control algorithms.ORNL, working closely with partners at Navistar and Mi

Pihl, Josh A [ORNL; West, Brian H [ORNL; Toops, Todd J [ORNL; Adelman, Brad [Navistar; Derybowski, Edward [Navistar

2011-10-01T23:59:59.000Z

223

Development of Advanced Diesel Particulate Filtration (DPF) Systems...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Filters Development of Advanced Diesel Particulate Filtration (DPF) Systems Development of Advanced Diesel Particulate Filtration (DPF) Systems (ANLCorningCaterpillar CRADA)...

224

Development of Advanced Diesel Particulate Filtration (DPF) Systems...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Advanced Diesel Particulate Filtration (DPF) Systems (ANLCorningCaterpillar CRADA) Development of Advanced Diesel Particulate Filtration (DPF) Systems Development of...

225

Development of Advanced Diesel Particulate Filtration (DPF) Systems...  

Broader source: Energy.gov (indexed) [DOE]

Particulate Filtration (DPF) Systems Development of Advanced Diesel Particulate Filtration (DPF) Systems (ANLCorningCaterpillar CRADA) Development of Advanced Particulate Filters...

226

Federal Register / Vol. 59, No. 2 / Tuesday, January 4, 1994 / Notices and operated federal laboratories,  

E-Print Network [OSTI]

laboratories, including NIST, to enter into cooperative research and development, agreements (CRADAs) with qualified parties. Under the law, a CRADA may provide for contributions from the federal laboratory

227

Development of an energy conservation voluntary agreement pilot project in the steel sector in Shandong  

SciTech Connect (OSTI)

China faces a significant challenge in the years ahead to continue to provide essential materials and products for a rapidly-growing economy while addressing pressing environmental concerns. Energy is a fundamental element of the national economy and the conditions of its use have a direct impact on China's ability to reach its sustainable development goals. China's industrial sector, which accounts for over 70 percent of the nation's total energy consumption each year, provides materials such as steel and cement that build the nation's roads, bridges, homes, offices and other buildings. Industrial products include bicycles, cars, buses, trains, ships, office equipment, appliances, furniture, packaging, pharmaceuticals, and many other components of everyday life in an increasingly modern society. This vital production of materials and products, however, comes with considerable problems. China's industrial sector is heavily dependent on the country's abundant, yet polluting, coal resources. Industrial production locally pollutes the air with emissions of particulates, carbon monoxide, sulfur dioxide, and nitrogen oxides, uses scarce water and oil resources, emits greenhouse gases contributing to the warming global atmosphere, and often produces hazardous and polluting wastes. Fostering innovative approaches to reduce the use of polluting energy resources and to diminish pollution from industrial production that are tailored to China's emerging market-based economy is one of the most important challenges facing the nation today. The pressures of rapid industrial production growth, continued environmental degradation, and increased competition create a situation that calls for a strategically-planned evolution of China's industries into world-class production facilities that are competitive, energy-efficient and less polluting. Such a transition requires the complete commitment of industrial enterprises and the government to work together to transform the industrial facilities of China. Internationally, such a transformation of the industrial sector has been realized in a number of countries using an innovative policy mechanism called Voluntary Agreements. Voluntary Agreements are essentially a contract between the government and industry, or negotiated targets with commitments and time schedules on the part of all participating parties. These agreements typically have a long-term outlook, covering a period of five to ten years, so that strategic energy-efficiency investments can be planned and implemented. A key element of Voluntary Agreements is that they focus the attention of all actors on energy efficiency or emission reduction goals. Internationally, Voluntary Agreements have been shown to result in increased energy efficiency, with the more successful programs even doubling autonomous energy efficiency improvement rates. In addition, Voluntary Agreements have important longer-term impacts including changes of attitudes and awareness of manage rial and technical staff regarding energy efficiency, addressing barriers to technology adoption and innovation, creating market transformation to establish greater potential for sustainable energy-efficiency investments, promoting positive dynamic interactions between different actors involved in technology research and development, deployment, and market development, and facilitating cooperative arrangements that provide learning mechanisms within an industry. The essential steps for reaching a Voluntary Agreement are the assessment of the energy-efficiency potential of the participants as well as target-setting through a negotiated process. Participation by industries is motivated through the use of carrots and sticks, which refers to incentives and disincentives. Supporting programs and policies (the carrots), such as enterprise audits, assessments, benchmarking, monitoring, information dissemination, and financial incentives all play an important role in assisting the participants in meeting the target goals. Some of the more successful Voluntary Agreement programs are base

Price, Lynn; Yun, Jiang; Worrell, Ernst; Wenwei, Du; Sinton, Jonathan E.

2004-02-05T23:59:59.000Z

228

AWARD TYPES DEFINED 1-26-12 TYPES OF EXTRAMURAL AWARDS DEFINED  

E-Print Network [OSTI]

AND DEVELOPMENT AGREEMENT (CRADA): A vehicle to transfer technology between the government and the university. CRADA's can also be used to transfer equipment or supplies. CRADA's do not transfer funds ($$). #12;

Maryland, Baltimore County, University of

229

Development of an Improved Permeability Modification Simulator  

SciTech Connect (OSTI)

This report describes the development of an improved permeability modification simulator performed jointly by BDM Petroleum Technologies and Schlumberger Dowell under a cooperative research and development agreement (CRADA) with the US Department of Energy. The improved simulator was developed by modifying NIPER's PC-GEL permeability modification simulator to include a radial model, a thermal energy equation, a wellbore simulator, and a fully implicit time-stepping option. The temperature-dependent gelation kinetics of a delayed gel system (DGS) is also included in the simulator.

Gao, H.W.; Elphnick, J.

1999-03-09T23:59:59.000Z

230

Bioremediation of PCBs. CRADA final report  

SciTech Connect (OSTI)

The Cooperative Research and Development Agreement was signed between Oak Ridge National Laboratory (ORNL) and General Electric Company (GE) on August 12, 1991. The objective was a collaborative venture between researchers at GE and ORNL to develop bioremediation of polychlorinated biphenyls (PCBs). The work was conducted over three years, and this report summarizes ORNL`s effort. It was found that the total concentration of PCBs decreased by 70% for sequential anaerobic-aerobic treatment compared with a 67% decrease for aerobic treatment alone. The sequential treatment resulted in PCB products with fewer chlorines and shorter halflives in humans compared with either anaerobic or aerobic treatment alone. The study was expected to lead to a technology applicable to a field experiment that would be performed on a DOE contaminated site.

Klasson, K.T. [Oak Ridge National Lab., TN (United States). Chemical Technology Div., TN (United States)] [Oak Ridge National Lab., TN (United States). Chemical Technology Div., TN (United States); Abramowicz, D.A. [General Electric Co. Corporate Research and Development, Niskayuna, NY (United States)] [General Electric Co. Corporate Research and Development, Niskayuna, NY (United States)

1996-06-01T23:59:59.000Z

231

SUPPORT FOR THE COMPLETION OF THE ARM PROJECT AND DEVELOPMENT OF A FIELD DEMONSTRATION OF THE GWIS MODEL FOR A VIRTUAL ENTERPRISE  

SciTech Connect (OSTI)

Strategic Technology Resources, L.L.C. (STR) provided work for Los Alamos National Laboratory (LANL) in response to Request for Proposal 005BZ0019-35. The objectives of the work in this project were to: (1) support the completion of the Advanced Reservoir Management (ARM) cooperative research and development agreement (CRADA) LA9502037, and (2) support the development of a field demonstration of the LANL-developed Global Weapons Information System (GWIS) model for virtual enterprises. The second objective was contingent upon DOE approval of the Advanced Information Management (AIM) CRADA. At the request of the LANL Technical Representative, the project was granted a no-cost extension to November 30, 1999. As part of the project, STR provided managerial support for the ARM CRADA by: (1) assessing the data resources of the participating companies, (2) facilitating the transfer of technical data to LANL, (3) preparing reports, (4) managing communications between the parties to the ARM CRADA, and (5) assisting with the dissemination of information between the parties to technical professional societies and trade associations. The first phase of the current project was to continue to engage subcontractors to perform tasks in the ARM CRADA for which LANL expertise was lacking. All of the ARM field studies required of the project were completed, and final reports for all of the project studies are appended to this final report. The second phase of the current project was to support the field demonstration of the GWIS model for virtual enterprises in an oilfield setting. STR developed a hypertext Webpage that describes the concept and implementation of a virtual enterprise for reservoir management in the petroleum industry. Contents of the hypertext document are included in this report on the project.

F. DAVID MARTIN; MARK B. MURPHY - STRATEGIC TECHNOLOGY RESOURCES, LLC

1999-12-31T23:59:59.000Z

232

ThisguidetopartneringwithDOE'sNationalLaboratorieswaspreparedbyacommittee oftheTechnologyTransferWorkingGroupconsistingofMikeFurey,committeechair,  

E-Print Network [OSTI]

to access their unique capabilities including: · Cooperative Research and Development Agreement (CRADA RESEARCH AND DEVELOPMENT AGREEMENTS (CRADA) A CRADA is a collaborative agreement that allows the Federal at PNNL, INL, LLNL, BNL, NREL, and ORNL #12;2 funds to support the CRADA activities, the Laboratory does

Ohta, Shigemi

233

assist system crada: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

assist system crada First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Assistant Professor Cropping...

234

Evolution of the Governing Law for Loan Agreements of the World Bank and Other Multilateral Development Banks  

E-Print Network [OSTI]

What is the governing law for loan agreements entered into by the World Bank and other multilateral development banks (MDBs) in carrying out their public sector lending? That question was first definitively addressed about ...

Head, John W.

1996-01-01T23:59:59.000Z

235

CRADA Final Report for CRADA No. ORNL99-0544, Interfacial Properties of Electron Beam Cured Composites  

SciTech Connect (OSTI)

Electron beam (EB) curing is a technology that promises, in certain applications, to deliver lower cost and higher performance polymer matrix composite (PMC) structures compared to conventional thermal curing processes. PMCs enhance performance by making products lighter, stronger, more durable, and less energy demanding. They are essential in weight- and performance-dominated applications. Affordable PMCs can enhance US economic prosperity and national security. US industry expects rapid implementation of electron beam cured composites in aircraft and aerospace applications as satisfactory properties are demonstrated, and implementation in lower performance applications will likely follow thereafter. In fact, at this time and partly because of discoveries made in this project, field demonstrations are underway that may result in the first fielded applications of electron beam cured composites. Serious obstacles preventing the widespread use of electron beam cured PMCs in many applications are their relatively poor interfacial properties and resin toughness. The composite shear strength and resin toughness of electron beam cured carbon fiber reinforced epoxy composites were about 25% and 50% lower, respectively, than those of thermally cured composites of similar formulations. The essential purpose of this project was to improve the mechanical properties of electron beam cured, carbon fiber reinforced epoxy composites, with a specific focus on composite shear properties for high performance aerospace applications. Many partners, sponsors, and subcontractors participated in this project. There were four government sponsors from three federal agencies, with the US Department of Energy (DOE) being the principal sponsor. The project was executed by Oak Ridge National Laboratory (ORNL), NASA and Department of Defense (DOD) participants, eleven private CRADA partners, and two subcontractors. A list of key project contacts is provided in Appendix A. In order to properly manage the large project team and properly address the various technical tasks, the CRADA team was organized into integrated project teams (IPT's) with each team focused on specific research areas. Early in the project, the end user partners developed ''exit criteria'', recorded in Appendix B, against which the project's success was to be judged. The project team made several important discoveries. A number of fiber coatings or treatments were developed that improved fiber-matrix adhesion by 40% or more, according to microdebond testing. The effects of dose-time and temperature-time profiles during the cure were investigated, and it was determined that fiber-matrix adhesion is relatively insensitive to the irradiation procedure, but can be elevated appreciably by thermal postcuring. Electron beam curable resin properties were improved substantially, with 80% increase in electron beam 798 resin toughness, and {approx}25% and 50% improvement, respectively, in ultimate tensile strength and ultimate tensile strain vs. earlier generation electron beam curable resins. Additionally, a new resin electron beam 800E was developed with generally good properties, and a very notable 120% improvement in transverse composite tensile strength vs. earlier generation electron beam cured carbon fiber reinforced epoxies. Chemical kinetics studies showed that reaction pathways can be affected by the irradiation parameters, although no consequential effects on material properties have been noted to date. Preliminary thermal kinetics models were developed to predict degree of cure vs. irradiation and thermal parameters. These models are continually being refined and validated. Despite the aforementioned impressive accomplishments, the project team did not fully realize the project objectives. The best methods for improving adhesion were combined with the improved electron beam 3K resin to make prepreg and uni-directional test laminates from which composite properties could be determined. Nevertheless, only minor improvements in the composite shear strength, and moderate improvements i

Janke, C.J.

2005-10-17T23:59:59.000Z

236

CRADA Final Report: Application of Dual-Mode Invertor Control to Commercially Available Radial-Gap Permanent Magnet Motors - Vol. 1  

SciTech Connect (OSTI)

John Deere and Company (Deere), their partner, UQM Technologies, Inc. (UQM), and the Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center (PEEMRC) recently completed work on the cooperative research and development agreement (CRADA) Number ORNL 04-0691 outlined in this report. CRADA 04-0691 addresses two topical issues of interest to Deere: (1) Improved characterization of hydrogen storage and heat-transfer management; and (2) Potential benefits from advanced electric motor traction-drive technologies. This report presents the findings of the collaborative examination of potential operational and cost benefits from using ORNL/PEEMRC dual-mode inverter control (DMIC) to drive permanent magnet (PM) motors in applications of interest to Deere. DMIC was initially developed and patented by ORNL to enable PM motors to be driven to speeds far above base speed where the back-electromotive force (emf) equals the source voltage where it is increasingly difficult to inject current into the motor. DMIC is a modification of conventional phase advance (CPA). DMIC's dual-speed modes are below base speed, where traditional pulse-width modulation (PWM) achieves maximum torque per ampere (amp), and above base speed, where six-step operation achieves maximum power per amp. The modification that enables DMIC adds two anti-parallel thyristors in each of the three motor phases, which consequently adds the cost of six thyristors. Two features evaluated in this collaboration with potential to justify the additional thyristor cost were a possible reduction in motor cost and savings during operation because of higher efficiency, both permitted because of lower current. The collaborative analysis showed that the reduction of motor cost and base cost of the inverter was small, while the cost of adding six thyristors was greater than anticipated. Modeling the DMIC control displayed inverter efficiency gains due to reduced current, especially under light load and higher speed. This current reduction, which is the salient feature of DMIC, may be significant when operating duty cycles have low loads at high frequencies. Reduced copper losses make operation more efficient thereby reducing operating costs. In the Deere applications selected for this study, the operating benefit was overshadowed by the motor's rotational losses. Rotational losses of Deere 1 and Deere 2 dominate the overall drive efficiency so that their reduction has the greatest potential to improve performance. A good follow-up project would be to explore cost erective ways to reduce the rotational losses buy 66%.

Lawler, J.S. (U. Tennessee-Knoxville); McKeever, J.W.; Downing, M.E.; Stahlhut, R.D (John Deere); Bremmer, R. (John Deere); Shoemaker, J.M. (John Deere); Seksarian, A.K. (john Deere); Poore, B. (John Deere); Lutz, J. (UQM)

2006-05-01T23:59:59.000Z

237

CRADA No. NFE-10-02715 Assessment of AFA Stainless Steels for Tube Products in Chemical Processing and Energy Production Applications  

SciTech Connect (OSTI)

Oak Ridge National Laboratory (ORNL) and Carpenter Technology Corporation (Carpenter) participated in an in-kind cost share cooperative research and development agreement (CRADA) effort under the auspices of the Energy Efficiency and Renewable Energy (EERE) Technology Maturation Program to assess material properties of several potential AFA family grades and explore the feasibility of producing alumina-forming austenitic (AFA) stainless steels in tubular form needed for many power generation and chemical process applications. Carpenter's Research Laboratory successfully vacuum melted 30 lb heats of seven candidate AFA alloy compositions representing a wide range of alloy content and intended application temperatures. These compositions were evaluated by ORNL and Carpenter R&D for microstructure, tensile properties, creep properties, and oxidation resistance. In parallel, additional work was directed toward an initial tube manufacture demonstration of a baseline AFA alloy. Carpenter successfully manufactured a 10,000 lb production heat and delivered appropriate billets to a partner for extrusion evaluation. Tube product was successfully manufactured from the baseline AFA alloy, indicating good potential for commercially produced AFA tubular form material.

Brady, Michael P [ORNL; Yamamoto, Yukinori [ORNL; Epler, Mario [Carpenter Technology Corporation; Magee, John H [Carpenter Technology Corporation

2011-09-01T23:59:59.000Z

238

Centralized Cryptographic Key Management and Critical Risk Assessment - CRADA Final Report For CRADA Number NFE-11-03562  

SciTech Connect (OSTI)

The Department of Energy Office of Electricity Delivery and Energy Reliability (DOE-OE) Cyber Security for Energy Delivery Systems (CSEDS) industry led program (DE-FOA-0000359) entitled "Innovation for Increasing Cyber Security for Energy Delivery Systems (12CSEDS)," awarded a contract to Sypris Electronics LLC to develop a Cryptographic Key Management System for the smart grid (Scalable Key Management Solutions for Critical Infrastructure Protection). Oak Ridge National Laboratory (ORNL) and Sypris Electronics, LLC as a result of that award entered into a CRADA (NFE-11-03562) between ORNL and Sypris Electronics, LLC. ORNL provided its Cyber Security Econometrics System (CSES) as a tool to be modified and used as a metric to address risks and vulnerabilities in the management of cryptographic keys within the Advanced Metering Infrastructure (AMI) domain of the electric sector. ORNL concentrated our analysis on the AMI domain of which the National Electric Sector Cyber security Organization Resource (NESCOR) Working Group 1 (WG1) has documented 29 failure scenarios. The computational infrastructure of this metric involves system stakeholders, security requirements, system components and security threats. To compute this metric, we estimated the stakes that each stakeholder associates with each security requirement, as well as stochastic matrices that represent the probability of a threat to cause a component failure and the probability of a component failure to cause a security requirement violation. We applied this model to estimate the security of the AMI, by leveraging the recently established National Institute of Standards and Technology Interagency Report (NISTIR) 7628 guidelines for smart grid security and the International Electrotechnical Commission (IEC) 63351, Part 9 to identify the life cycle for cryptographic key management, resulting in a vector that assigned to each stakeholder an estimate of their average loss in terms of dollars per day of system operation. To further address probabilities of threats, information security analysis can be performed using game theory implemented in dynamic Agent Based Game Theoretic (ABGT) simulations. Such simulations can be verified with the results from game theory analysis and further used to explore larger scale, real world scenarios involving multiple attackers, defenders, and information assets. The strategy for the game was developed by analyzing five electric sector representative failure scenarios contained in the AMI functional domain from NESCOR WG1. From these five selected scenarios, we characterized them into three specific threat categories affecting confidentiality, integrity and availability (CIA). The analysis using our ABGT simulation demonstrated how to model the AMI functional domain using a set of rationalized game theoretic rules decomposed from the failure scenarios in terms of how those scenarios might impact the AMI network with respect to CIA.

Abercrombie, R. K. [ORNL] [ORNL; Peters, Scott [Sypris Electronics, LLC] [Sypris Electronics, LLC

2014-05-28T23:59:59.000Z

239

How to do Business with Sandia  

E-Print Network [OSTI]

How to do Business with Sandia Deborah Payne Manager, WFO/CRADA Agreements dnpayne@sandia.gov (505 and Development Agreement (CRADA) · Commercial License · WFO Non Federal Entity (NFE) Funds-in Agreement (FIA) · User Facility (UF) Agreement #12;Cooperative Research and Development Agreement (CRADA) · Governs

Fuerschbach, Phillip

240

Technical Report NREL/TP-7A1-46860  

E-Print Network [OSTI]

of Acronyms CRADA cooperative research and development agreement DOE U.S. Department of Energy EERE Office

Note: This page contains sample records for the topic "development agreement crada" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Date [Rev 10/99] Name [MODEL LETTER OF INTENT  

E-Print Network [OSTI]

Date [Rev 10/99] Name [MODEL LETTER OF INTENT] Title Company Name Address Reference: Proposed CRADA CRADA Dear _____________________: Per our discussions, this Letter of Intent confirms our understanding and Development Agreement (CRADA) by the CRADA Subcommittee and approval by the Director, National Institute

Baker, Chris I.

242

Inverter Load Rejection Over-Voltage Testing: SolarCity CRADA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Inverter Load Rejection Over-Voltage Testing SolarCity CRADA Task 1a Final Report A. Nelson, A. Hoke, and S. Chakraborty National Renewable Energy Laboratory J. Chebahtah, T. Wang,...

243

Technical Support to SBIR Phase II Project: Improved Conversion of Cellulose Waste to Ethanol Using a Dual Bioreactor System: Cooperative Research and Development Final Report, CRADA Number CRD-08-310  

SciTech Connect (OSTI)

Over-dependence on fossil fuel has spurred research on alternative energy. Inedible plant materials such as grass and corn stover represent abundant renewable natural resources that can be transformed into biofuel. Problems in enzymatic conversion of biomass to sugars include the use of incomplete synergistic enzymes, end-product inhibition, and adsorption and loss of enzymes necessitating their use in large quantities. Technova Corporation will develop a defined consortium of natural microorganisms that will efficiently break down biomass to energy-rich soluble sugars, and convert them to cleaner-burning ethanol fuel. The project will also develop a novel biocatalytic hybrid reactor system dedicated to this bioprocess, which embodies recent advances in nanotechnology. NREL will participate to develop a continuous fermentation process.

Zhang, M.

2013-04-01T23:59:59.000Z

244

WC_1997_002_CLASS_WAIVER_FOR_CRADA_Agreements_BECHTEL_NEVADA...  

Broader source: Energy.gov (indexed) [DOE]

7002CLASSWAIVERFORCRADAAgreementsBECHTELNEVADA.pdf WC1997002CLASSWAIVERFORCRADAAgreementsBECHTELNEVADA.pdf WC1997002CLASSWAIVERFORCRADAAgreementsBECHTELNE...

245

Microsoft Word - CRADA Agreement Boilerplate Approved 6-2014 (DOE O 483.1A)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMappingENVIRONMENTAL IMPACTApproved: 5-16-14FigureHCPVAfter-Hours4

246

Understanding Community Benefits Agreements: Equitable Development, Social Justice and Other Considerations for Developers, Municipalities and Community Organizations  

E-Print Network [OSTI]

opment-cba.html. 123. See Lennar Construction Workshopsfirst CBA with developer JMI/Lennar in relation to Ballpark

Salkin, Patricia E.; Lavine, Amy

2008-01-01T23:59:59.000Z

247

Electrochemical oxygen pumps. Final CRADA report.  

SciTech Connect (OSTI)

All tasks of the Work Plan of ISTC Project 2277p have been completed, thus: (1) techniques of chemical synthesis were developed for more than ten recipes of electrolyte based on cerium oxide doped with 20 mole% of gadolinium (CeGd)O{sub 2}, doped by more than 10 oxide systems including 6 recipes in addition to the Work Plan; (2) electric conductivity and mechanical strength of CeGd specimens with additions of oxide systems were performed, two candidate materials for the electrolyte of electrochemical oxygen pump (pure CeGd and CeGd doped by 0.2 wt% of a transition metal) were chosen; (3) extended studies of mechanical strength of candidate material specimens were performed at room temperature and at 400, 600, 800 C; (4) fixtures for determination of mechanical strength of tubes by external pressure above 40 atmospheres at temperature up to 700 C were developed and fabricated; and (5) technology of slip casting of tubes from pure (Ce,Gd)O{sub 2} and of (Ce,Gd)O{sub 2} doped by 0.2 wt% of a transition metal, withstanding external pressure of minimum 40 atmospheres at temperature up to 700 C was developed, a batch of tubes was sent for testing to Argonne National Laboratory; (6) technology of making nanopowder from pure (Ce,Gd)O{sub 2} was developed based on chemical synthesis and laser ablation techniques, a batch of nanopowder with the weight 1 kg was sent for testing to Argonne National Laboratory; (7) a business plan for establishing a company for making powders of materials for electrochemical oxygen pump was developed; and (8) major results obtained within the Project were reported at international conferences and published in the Russian journal Electrochemistry. In accordance with the Work Plan a business trip of the following project participants was scheduled for April 22-29, 2006, to Tonawanda, NY, USA: Manager Victor Borisov; Leader of technology development Gennady Studenikin; Leader of business planning Elena Zadorozhnaya; Leader of production Vasily Lepalovsky; and Translator Vladimir Litvinov. During this trip project participants were to discuss with the project Technical Monitor J.D. Carter and representative of Praxair Inc. J. Chen the results of project activities (prospects of transition metal-doped material application in oxygen pumps), as well as the prospects of cooperation with Praxair at the meeting with the company management in the following fields: (1) Deposition of thin films of oxide materials of complex composition on support by magnetron and ion sputtering, research of coatings properties; (2) Development of block-type structure technology (made of porous and dense ceramics) for oxygen pump. The block-type structure is promising because when the size of electrolyte block is 2 x 2 inches and assembly height is 10 inches (5 blocks connected together) the area of active surface is ca. 290 square inches (in case of 8 slots), that roughly corresponds to one tube with diameter 1 inch and height 100 inches. So performance of the system made of such blocks may be by a factor of two or three higher than that of tube-based system. However one month before the visit, J. Chen notified us of internal changes at Praxair and the cancellation of the visit to Tonawanda, NY. During consultations with the project Technical Monitor J.D. Carter and Senior Project Manager A. Taylor a decision was made to extend the project term by 2 quarters to prepare proposals for follow-on activities during this extension (development of block-type structures made of dense and porous oxide ceramics for electrochemical oxygen pumps) using the funds that were not used for the trip to the US.

Carter, J. D.

2009-10-01T23:59:59.000Z

248

Membranes for corrosive oxidations. Final CRADA report.  

SciTech Connect (OSTI)

The objective of this project is to develop porous hydrophilic membranes that are highly resistant to oxidative and corrosive conditions and to deploy them for recovery and purification of high tonnage chemicals such as hydrogen peroxide and other oxychemicals. The research team patented a process for membrane-based separation of hydrogen peroxide (US Patent No. 5,662,878). The process is based on using a hydrophilic membrane to separate hydrogen peroxide from the organic working solution. To enable this process, a new method for producing hydrophilic membrane materials (Patent No.6,464,880) was reported. We investigated methods of producing these hydrophilic materials and evaluated separations performance in comparison to membrane stability. It was determined that at the required membrane flux, membrane stability was not sufficient to design a commercial process. This work was published (Hestekin et al., J. Membrane Science 2006). To meet the performance needs of the process, we developed a membrane contactor method to extract the hydrogen peroxide, then we surveyed several commercial and pre-commercial membrane materials. We identified pre-commercial hydrophilic membranes with the required selectivity, flux, and stability to meet the needs of the process. In addition, we invented a novel reaction/separations format that greatly increases the performance of the process. To test the performance of the membranes and the new formats we procured and integrated reactor/membrane separations unit that enables controlled mixing, flow, temperature control, pressure control, and sampling. The results were used to file a US non-provisional patent application (ANL-INV 03-12). Hydrogen peroxide is widely used in pulp and paper applications, environmental treatment, and other industries. Virtually all hydrogen peroxide production is now based on a process featuring catalytic hydrogenation followed by auto-oxidation of suitable organic carrier molecules. This process has several drawbacks, particularly in the extraction phase. One general disadvantage of this technology is that hydrogen peroxide must be produced at large centralized plants where it is concentrated to 70% by distillation and transported to the users plant sites where it is diluted before use. Advanced membranes have the potential to enable more efficient, economic, and safe manufacture of hydrogen peroxide. Advanced membrane technology would allow filtration-based separation to replace the difficult liquid-liquid extraction based separation step of the hydrogen peroxide process. This would make it possible for hydrogen peroxide to be produced on-site in mini-plants at 30% concentration and used at the same plant location without distillation and transportation. As a result, production could become more cost-effective, safe and energy efficient.

Snyder, S. W.; Energy Systems

2010-02-01T23:59:59.000Z

249

Industrialization under the WTO : the impact of asymmetric free trade agreements on middle-technology developing countries  

E-Print Network [OSTI]

This dissertation addresses the issue of industrialization in the WTO regime, focusing on the role of asymmetric free trade agreements. It proposes a framework where free trade agreements offer payoffs that countries have ...

DiCaprio, Alisa

2007-01-01T23:59:59.000Z

250

NOx Abatement Research and Development CRADA with Navistar Incorporated |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOEToward aInnovation |NEXT

251

Final Report of a CRADA Between Pacific Northwest National Laboratory and the General Motors Company (CRADA No. PNNL/271): Degradation Mechanisms of Urea Selective Catalytic Reduction Technology  

SciTech Connect (OSTI)

Diesel engines can offer substantially higher fuel efficiency, good driving performance characteristics, and reduced carbon dioxide (CO2) emission compared to stoichiometric gasoline engines. Despite the increasing public demand for higher fuel economy and reduced dependency on imported oil, however, meeting the stringent emission standards with affordable methods has been a major challenge for the wide application of these fuel-efficient engines in the US market. The selective catalytic reduction of NOx by urea (urea-SCR) is one of the most promising technologies for NOx emission control for diesel engine exhausts. To ensure successful NOx emission control in the urea-SCR technology, both a diesel oxidation catalyst (DOC) and a urea-SCR catalyst with high activity and durability are critical for the emission control system. Because the use of this technology for light-duty diesel vehicle applications is new, the relative lack of experience makes it especially challenging to satisfy the durability requirements. Of particular concern is being able to realistically simulate actual field aging of the catalyst systems under laboratory conditions, which is necessary both as a rapid assessment tool for verifying improved performance and certifiability of new catalyst formulations. In addition, it is imperative to develop a good understanding of deactivation mechanisms to help develop improved catalyst materials. In this CRADA program, General Motors Company and PNNL have investigated fresh, laboratory- and vehicle-aged DOC and SCR catalysts. The studies have led to a better understanding of various aging factors that impact the long-term performance of catalysts used in the urea-SCR technology, and have improved the correlation between laboratory and vehicle aging for reduced development time and cost. This Final Report briefly highlights many of the technical accomplishments and documents the productivity of the program in terms of peer-reviewed scientific publications (2 total), reports (3 total including this Final Report), and presentations (5 total).

Kim, Do Heui; Lee, Jong H.; Peden, Charles HF; Howden, Ken; Kim, Chang H.; Oh, Se H.; Schmieg, Steven J.; Wiebenga, Michelle H.

2011-12-13T23:59:59.000Z

252

Ignition Control for HCCI - Agreement 9285  

Broader source: Energy.gov (indexed) [DOE]

of Energy Approach GOAL: Demonstrate practical application of HCCI in a production-level engine platform for improved fuel efficiency and reduced emissions. * CRADA...

253

CRADA with International Polyol Chemicals, Inc. (IPCI) and Pacific Northwest National Laboratory (PNL-053): Process Optimization for Polyols Production from Glucose  

SciTech Connect (OSTI)

The objective of this CRADA is to provide sufficient process development to allow a decision for commercialization of the International Polyol Chemicals, Inc. (IPCI) process for production of polyols from glucose. This cooperative research allowed Pacific Northwest National Laboratory (PNNL) to focus its aqueous processing systems expertise on the IPCI process to facilitate process optimization. The project was part of the Department of Energy's (DOE/EE-OIT) Alternative Feedstocks Program (AFP). The project was a demonstration of the cooperative effort between the AFP and the Department of Agriculture's Alternative Agriculture Research Center, which was also funding IPCI research.

Elliott, D.C.

1997-01-01T23:59:59.000Z

254

Agreement Mechanisms  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAre theAdministratorCFM LEAPAgenda AgendaAgreement Mechanisms

255

STANDARD MODEL (>150K )  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CRADA: AGMT-XXXX Public Law 99-502, the Federal Technology Transfer Act of 1986, as amended. COOPERATIVE RESEARCH AND DEVELOPMENT AGREEMENT (hereinafter "CRADA") No. AGMT-XXXX...

256

Technical Highlights for May 2012 Fuels, Engines, and Emissions Research Center (FEERC) Organizes 15th Department of Energy  

E-Print Network [OSTI]

in Madison, Wisconsin. Dr. Connatser gave a Cooperative Research and Development Agreement (CRADA) update associated with the CRADA Combustion and SuperTruck projects; these campaigns will involve joint Cummins

257

Los Alamos National Laboratory Associate Directorate for Theory, Simulation, and Computation (ADTSC) LA-UR 13-2083982 Parallel Log Structured File System (PLFS)  

E-Print Network [OSTI]

Cooperative Research and Development Agreement (CRADA) to further enhance, design, build, test, and deploy, and metadata performance of our I/O workloads. As part of the LANL umbrella CRADA with EMC Corporation, LANL

258

E  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

e r s h i p A g r e e m e n t T y p e s Cooperative Research and Development Agreement (CRADA) Through a CRADA, Sandia and one or more partners from outside the federal government...

259

DOE M 483  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SRMATY 1 TITLE OF CRADA STEVENSON-WYDLER (15 U.S.C. 3710) SHORT FORM MODEL COOPERATIVE RESEARCH AND DEVELOPMENT AGREEMENT (hereinafter "CRADA") No. NFE-1X-0XXXX between...

260

Advanced Energy MaterialsAdvanced Energy Materials Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory  

E-Print Network [OSTI]

of BES, EE, EERE, BNL/GM CRADA, and BNL-Tech Maturation Fund. MRIMRI LIPA commissioned the 1st high of electric power without losses Cooperative Research and Development Agreements (CRADA) of BNL with BNL

Ohta, Shigemi

Note: This page contains sample records for the topic "development agreement crada" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Policy #1500 Delegation of Authority for Contract Approval 1 OLD DOMINION UNIVERSITY  

E-Print Network [OSTI]

to protect the subject's identity. Cooperative Research and Development Agreement (CRADA) is an agreement between one or more Federal agencies and/or technical activities and the University. Under a CRADA reimbursement (but not funds to the University). CRADAs are instruments that may be used in all aspects

262

Supply of purified Th228 for Ra224 generators. Final CRADA Report .  

SciTech Connect (OSTI)

CRADA was terminated when it was determined that the Russians could not perform the terms of the subcontract. It became apparent that the Russians would not be a reliable source of Th228, as a precursor in the decay chain which leads to Ra224. Their government policies will prohibit the export of Th228 in quantities needed for commercial cancer therapy.

Ehst, D. A.; Nuclear Engineering Division

2009-10-02T23:59:59.000Z

263

Canadian Seismic Agreement  

SciTech Connect (OSTI)

This is a progress report of work carried out under the terms of a research agreement entitled the Canadian Seismic Agreement'' between the US Nuclear Regulatory Commission (USNRC), the Canadian Commercial Corporation and the Geophysics Division of the Geological Survey of Canada (GD/GSC) during the period from July 01, 1989 to June 30, 1990. The Canadian Seismic Agreement'' supports generally the operation of various seismograph stations in eastern Canada and the collection and analysis of earthquake data for the purpose of mitigating seismic hazards in eastern Canada and the northeastern US. The specific activities carried out in this one-year period are summarized below under four headings; Eastern Canada Telemetred Network and local network developments, Datalab developments, strong-motion network developments and earthquake activity. During this period the first surface fault unequivocably determined to have accompanied a historic earthquake in eastern North America, occurred in northern Quebec.

Wetmiller, R.J.; Lyons, J.A.; Shannon, W.E.; Munro, P.S.; Thomas, J.T.; Andrew, M.D.; Lapointe, S.P.; Lamontagne, M.; Wong, C.; Anglin, F.M.; Adams, J.; Cajka, M.G.; McNeil, W.; Drysdale, J.A. (Geological Survey of Canada, Ottawa, ON (Canada))

1992-05-01T23:59:59.000Z

264

Canadian seismic agreement  

SciTech Connect (OSTI)

This is the twenty-first progress report under the agreement entitled Canadian Seismic Agreement between the US Nuclear Regulatory Commission (NRC) and the Canadian Commercial Corporation. Activities undertaken by the Geophysics Division of the Geological Survey of Canada (GD/GSC) during the period from July 01, 1988 to June 30, 1989 and supported in part by the NRC agreement are described below under four headings; Eastern Canada Telemetred Network and local network developments, Datalab developments, strong motion network developments and earthquake activity. In this time period eastern Canada experienced its largest earthquake in over 50 years. This earthquake, which has been christened the Saguenay earthquake, has provided a wealth of new data pertinent to earthquake engineering studies in eastern North America and is the subject of many continuing studies, which are presently being carried out at GD and elsewhere. 41 refs., 21 figs., 7 tabs.

Wetmiller, R.J.; Lyons, J.A.; Shannon, W.E.; Munro, P.S.; Thomas, J.T.; Andrew, M.D.; Lamontagne, M.; Wong, C., Anglin, F.M.; Plouffe, M.; Lapointe, S.P.; Adams, J.; Drysdale, J.A. (Geological Survey of Canada, Ottawa, ON (Canada). Geophysics Div.)

1990-04-01T23:59:59.000Z

265

Award Recipient U.S. Army Armament Research,  

E-Print Network [OSTI]

Cooperative Research and Development Agreements (CRADAs) with ARDEC as a partner grew from 99 to more than140--representing79percentofthecash-invaluefor CRADAs signed by the Army's Research, Development and Engineering Command (RDECOM) laboratories. The increase in CRADA money that ARDEC could leverage during the three

Magee, Joseph W.

266

CRADA 2009S001: Investigation of the Supercondcuting RF Properties of Large Grain Ingot Niobium  

SciTech Connect (OSTI)

This CRADA intended to explore the properties of large grain ingot niobium by fabricating four single cell TESLA shaped accelerating cavities. Once the cavities were fabricated, SRF performance would be measured. Niowave received four discs of large grain ingot niobium from JLAB in February 2009. Niowave cut samples from each disc and tested the RRR. After the RRR was measured with disappointing results, the project lost interest. A no cost extension was signed in July 2009 to allow progress until June 2010, but ultimately no further work was accomplished by either party. No firm conclusions were drawn, as further investigations were not made. Large grain ingot niobium has shown real potential for high accelerating gradient superconducting cavities. However, this particular CRADA did not gather enough data to reach any conclusions in this regard.

Terry Grimm, Jerry L. Hollister, Ahren Kolka, Ganapati Rao Myneni

2012-12-18T23:59:59.000Z

267

Technical Highlights for January 2013  

E-Print Network [OSTI]

) Cooperative Research and Development Agreement (CRADA) Team Works to Validate Design Models and Improve was performed under the Combustion section of the Cummins-ORNL\\FEERC CRADA. The Cummins team members were led extensive system mapping. This was the third joint CRADA campaign at the CTC in the last 18 months focused

Pennycook, Steve

268

Development of New Generation of Thermally-Enhanced Fiber Glass Insulation  

SciTech Connect (OSTI)

This report presents experimental and numerical results from thermal performance studies. The purpose of this Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC and John s Manville was to design a basic concept of a new generation of thermally-enhanced fiber glass insulation. Different types of Phase Change Materials (PCMs) have been tested as dynamic components in buildings during the last 4 decades. Most historical studies have found that PCMs enhance building energy performance. Some PCM-enhanced building materials, like PCM-gypsum boards or PCM-impregnated concretes have already found their limited applications in different countries. Today, continued improvements in building envelope technologies suggest that throughout Southern and Central U.S. climates, residences may soon be routinely constructed with PCM in order to maximize insulation effectiveness and maintain low heating and cooling loads. The proposed thermally-enhanced fiber glass insulation will maximize this integration by utilizing a highly-efficient building envelope with high-R thermal insulation, active thermal mass and superior air-tightness. Improved thermal resistance will come from modifications in infrared internal characteristics of the fiber glass insulation. Thermal mass effect can be provided by proprietary thermally-active microencapsulated phase change material (PCM). Work carried out at the Oak Ridge National Laboratory (ORNL) on the CRADA is described in this report.

Kosny, Jan [ORNL; Yarbrough, David W [ORNL; Childs, Phillip W [ORNL; Miller, William A [ORNL; Atchley, Jerald Allen [ORNL; Shrestha, Som S [ORNL

2010-03-01T23:59:59.000Z

269

Sandia National Laboratories: ECIS and UOP (a Honewell Company...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

from radioactive waste solutions. A cooperative research and development agreement (CRADA) with Sandia allowed for commercial development of the CST technology by UOP. In 1996,...

270

Intellectual Property Provisions (CDSB-115) Cooperative Agreement...  

Office of Environmental Management (EM)

CDSB-115) Cooperative Agreement - Special Data Statute Research, Development, or Demonstration Domestic Small Business Intellectual Property Provisions (CDSB-115) Cooperative...

271

C O O P E R A T I V E R E S E A R C H A N D D E V E L O P M  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AN OVERVIEW FOR INDUSTRY PARTNERS A Cooperative Research and Development Agreement (CRADA) is a legal document that permits the transfer of Sandia National Laboratories'...

272

Sandia National Laboratories: Sandia and General Motors: Advancing...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a strategic alliance, which includes a cooperative research and development agreement (CRADA), making it easier for the partners to work together. Our parthership's research focus...

273

Elizabeth Brewer-Jordan | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

She also supports business development with partners to establish Work For Others and CRADA agreements. Before joining Argonne, Brewer-Jordan worked at Argonne's Advanced Photon...

274

Caterpillar, Argonne undertake cooperative virtual engine design...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cat and Argonne have entered into a Cooperative Research and Development Agreement (CRADA) along with Convergent Science, Inc., Madison, Wis., to further explore ways to...

275

Prevention of iron-sulfide deposition in petroleum processing. Final CRADA report.  

SciTech Connect (OSTI)

The purpose of this CRADA extension which effectively ended in 2003 was to quantify the effect of iron-sulfide formation on the fouling propensity of crude oil. The specific objectives are focused on fouling of the Crude Distillation Unit (CDU-1) at the Shell Refinery in Mobile, Alabama. The technical approach consists of analyzing the plant data, chemical analysis of crude oil to detect key precursors, performing refinery tests using the Argonne Field Fouling Unit, and verifying the effectiveness of a physical device of tube insert and enhanced tubes to change threshold conditions and thereby reducing fouling.

Doctor, R. D.; Panchal, C. B.; Energy Systems

2010-03-25T23:59:59.000Z

276

Contract and Agreement Templates  

Broader source: Energy.gov [DOE]

Templates for a request for proposals (RFP), loan loss reserve(LLR) fund agreement, and energy efficiency loan program agreements to design a residential financing program.

277

Platte River Cooperative Agreement  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Platte River Cooperative Agreement Skip Navigation Links Transmission Functions Infrastructure projects Interconnection OASIS OATT Platte River Cooperative Agreement PEIS, NE, WY,...

278

Master Safeguards and Security Agreements  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish the Department of Energy policy, requirements, responsibilities, and authorities for the development and implementation of Master Safeguards and Security Agreements (MSSA's). Does not cancel another directive. Canceled by DOE O 5630.13A

1988-02-03T23:59:59.000Z

279

Efficiency Improvement of Nitride-Based Solid State Light Emitting Materials -- CRADA Final Report  

SciTech Connect (OSTI)

The development of In{sub x}Ga{sub 1-x} N/GaN thin film growth by Molecular Beam Epitaxy has opened a new route towards energy efficient solid-state lighting. Blue and green LED's became available that can be used to match the whole color spectrum of visible light with the potential to match the eye response curve. Moreover, the efficiency of such devices largely exceeds that of incandescent light sources (tungsten filaments) and even competes favorably with lighting by fluorescent lamps. It is, however, also seen in Figure 1 that it is essential to improve on the luminous performance of green LED's in order to mimic the eye response curve. This lack of sufficiently efficient green LED's relates to particularities of the In{sub x}Ga{sub 1-x}N materials system. This ternary alloy system is polar and large strain is generated during a lattice mismatched thin film growth because of the significantly different lattice parameters between GaN and InN and common substrates such as sapphire. Moreover, it is challenging to incorporate indium into GaN at typical growth temperatures because a miscibility gap exists that can be modified by strain effects. As a result a large parameter space needs exploration to optimize the growth of In{sub x}Ga{sub 1-x}N and to date it is unclear what the detailed physical processes are that affect device efficiencies. In particular, an inhomogeneous distribution indium in GaN modifies the device performance in an unpredictable manner. As a result technology is pushed forward on a trial and error basis in particular in Asian countries such as Japan and Korea, which dominate the market and it is desirable to strengthen the competitiveness of the US industry. This CRADA was initiated to help Lumileds Lighting/USA boosting the performance of their green LED's. The tasks address the distribution of the indium atoms in the active area of their blue and green LED's and its relation to internal and external quantum efficiencies. Procedures to measure the indium distribution with near atomic resolution were developed and applied to test samples and devices that were provided by Lumilids. Further, the optical performance of the device materials was probed by photoluminescence, electroluminescence and time resolved optical measurements. Overall, the programs objective is to provide a physical basis for the development of a simulation program that helps making predictions to improve the growth processes such that the device efficiency can be increased to about 20%. Our study addresses all proposed aspects successfully. Carrier localization, lifetime and recombination as well as the strain-induced generation of electric fields were characterized and modeled. Band gap parameters and their relation to the indium distribution were characterized and modeled. Electron microscopy was developed as a unique tool to measure the formation of indium clusters on a nanometer length scale and it was demonstrated that strain induced atom column displacements can reliably be determined in any materials system with a precision that approaches 2 pm. The relation between the local indium composition x and the strain induced lattice constant c(x) in fully strained In{sub x}Ga{sub 1-x}N quantum wells was found to be: c(x) = 0.5185 + {alpha}x with {alpha} = 0.111 nm. It was concluded that the local indium concentration in the final product can be modulated by growth procedures in a predictable manner to favorably affect external quantum efficiencies that approached target values and that internal quantum efficiencies exceeded them.

Kisielowski, Christian; Weber, Eicke

2010-05-13T23:59:59.000Z

280

newsletternewsletter EUROPEAN FUSION DEVELOPEMENT AGREEMENT  

E-Print Network [OSTI]

. Bulgaria and Romania hope to do so in 2007. After earlier expansions from 6 to 15 members, we are now Republic, Hungary, Latvia and Romania. All of the Associations in the new MS and candidate countries

Note: This page contains sample records for the topic "development agreement crada" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

External Research Funding Agreements  

E-Print Network [OSTI]

1 External Research Funding Agreements University Policy No: RH8200 Classification: Research and university employees under Research Funding Agreements. DEFINITIONS 2.00 Research Funding Agreement means funding provided through an agreement with the university to be used for research purposes, whether

Victoria, University of

282

STEP Participation Agreement  

Broader source: Energy.gov [DOE]

STEP Participation Agreement, from the Tool Kit Framework: Small Town University Energy Program (STEP).

283

Proposal for a Co-operation Agreement between CERN and The Government of the United Arab Emirates concerning the Further Development of Scientific and Technical Co-operation in High Energy Physics  

E-Print Network [OSTI]

Proposal for a Co-operation Agreement between CERN and The Government of the United Arab Emirates concerning the Further Development of Scientific and Technical Co-operation in High Energy Physics

2005-01-01T23:59:59.000Z

284

Canadian Seismic Agreement: Annual report  

SciTech Connect (OSTI)

This report describes activities undertaken by the Geophysics Division (GD) of the Geological Survey of Canada (GSC) during the period June 1986 to June 1987 and supported in part by the NRC agreement. The activities include ECTN and portable network developments, datalab developments, strong motion network developments and earthquake activity.

Wetmiller, R.J.; Lyons, J.A.; Shannon, W.E.; Munro, P.S.; Thomas, J.T.; Andrew, M.D.; Lamontagne, M.; Wong, C.; Drysdale, J.A.

1987-10-01T23:59:59.000Z

285

Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology...  

Broader source: Energy.gov (indexed) [DOE]

to multiplex for multiple point measurements - Simple and easy to implement In comparison to other techniques* * Purpose - rapid feedback to guide development *...

286

Federal Facility Agreement progress report  

SciTech Connect (OSTI)

The (SRS) Federal Facility Agreement (FFA) was made effective by the US. Environmental Protection Agency Region IV (EPA) on August 16, 1993. To meet the reporting requirements in Section XXV of the Agreement, the FFA Progress Report was developed. The FFA Progress Report is the first of a series of quarterly progress reports to be prepared by the SRS. As such this report describes the information and action taken to September 30, 1993 on the SRS units identified for investigation and remediation in the Agreement. This includes; rubble pits, runoff basins, retention basin, seepage basin, burning pits, H-Area Tank 16, and spill areas.

Not Available

1993-10-01T23:59:59.000Z

287

DEVELOPMENT OF HTS CONDUCTORS FOR ELECTRIC POWER APPLICATIONS  

SciTech Connect (OSTI)

Second generation (2G) technologies to fabricate high-performance superconducting wires developed at the Oak Ridge National Laboratory (ORNL) were transferred to American Superconductor via this CRADA. In addition, co-development of technologies for over a decade was done to enable fabrication of commercial high-temperature superconducting (HTS) wires with high performance. The massive success of this CRADA has allowed American Superconductor Corporation (AMSC) to become a global leader in the fabrication of HTS wire and the technology is fully based on the Rolling Assisted Biaxially Textured Substrates (RABiTS) technology invented and developed at ORNL.

Goyal, A.; Rupich, M. (American Superconductor Corp.)

2012-10-23T23:59:59.000Z

288

Materials-Enabled High-Efficiency Diesel Engines (CRADA with...  

Broader source: Energy.gov (indexed) [DOE]

UT-Battelle for the U.S. Department of Energy Overview Timeline * Develop supporting materials technology to enable Heavy-Duty diesel efficiency of 55%, while meeting prevailing...

289

Development of a Stochastic Inversion Tool To Optimize Agreement Between The Observed And Predicted Seismic Response To CO2 Injection/Migration in the Weyburn-Midale Project  

SciTech Connect (OSTI)

During Phase 1 of the Weyburn Project (2000-2004), 4D reflection seismic data were used to map CO{sub 2} migration within the Midale reservoir, while an extensive fluid sampling program documented the geochemical evolution triggered by CO{sub 2}-brine-oil-mineral interactions. The aim of this task (3b.11) is to exploit these existing seismic and geochemical data sets, augmented by CO{sub 2}/H{sub 2}O injection and HC/H{sub 2}O production data toward optimizing the reservoir model and thereby improving site characterization and dependent predictions of long-term CO{sub 2} storage in the Weyburn-Midale reservoir. Our initial project activities have concentrated on developing a stochastic inversion method that will identify reservoir models that optimize agreement between the observed and predicted seismic response. This report describes the technical approach we have followed, the data that supports it, and associated implementation activities. The report fulfills deliverable D1 in the project's statement of work. Future deliverables will describe the development of the stochastic inversion tool that uses geochemical data to optimize the reservoir model.

Ramirez, A L; Hao, Y; White, D; Carle, S; Dyer, K; Yang, X; Mcnab, W; Foxall, W; Johnson, J

2009-12-02T23:59:59.000Z

290

Development of Low-Cost Austenitic Stainless Gas-Turbine and Diesel Engine Components with Enhanced High-Temperature Reliability  

SciTech Connect (OSTI)

In July of 1999, a Cooperative Research and Development Agreement (CRADA) was undertaken between Oak Ridge National Laboratory (ORNL) and Solar Turbines, Inc. and Caterpillar, Inc. (Caterpillar Technical Center) to evaluate commercial cast stainless steels for gas turbine engine and diesel engine exhaust component applications relative to the materials currently being used. If appropriate, the goal was to develop cast stainless steels with improved performance and reliability rather than switch to more costly cast Ni-based superalloys for upgraded performance. The gas-turbine components considered for the Mercury-50 engine were the combustor housing and end-cover, and the center-frame hot-plate, both made from commercial CF8C cast austenitic stainless steel (Fe-l9Cr-12Ni-Nb,C), which is generally limited to use at below 650 C. The advanced diesel engine components considered for truck applications (C10, C12, 3300 and 3400) were the exhaust manifold and turbocharger housing made from commercial high SiMo ductile cast iron with uses limited to 700-750 C or below. Shortly after the start of the CRADA, the turbine materials emphasis changed to wrought 347H stainless steel (hot-plate) and after some initial baseline tensile and creep testing, it was confirmed that this material was typical of those comprising the abundant database; and by 2000, the emphasis of the CRADA was primarily on diesel engine materials. For the diesel applications, commercial SiMo cast iron and standard cast CN12 austenitic stainless steel (Fe-25Cr-13Ni-Nb,C,N,S) baseline materials were obtained commercially. Tensile and creep testing from room temperature to 900 C showed the CN12 austenitic stainless steel to have far superior strength compared to SiMo cast iron above 550 C, together with outstanding oxidation resistance. However, aging at 850 C reduced room-temperature ductility of the standard CN12, and creep-rupture resistance at 850 C was less than expected, which triggered a focused laboratory-scale alloy development effort on modified cast austenitic stainless steels at ORNL. Isothermal fatigue testing at 700 C also showed that standard CN12 was far superior to SiMo cast iron, but somewhat less than the desired behavior. During the first year, 3 new modified CF8C heats and 8 new modified CN12 heats were made, based on compositional changes specifically designed to change the nature, dispersion and stability of the as-cast and high-temperature aging-induced microstructures that consisted of carbides and other precipitate phases. Screening of the alloys at room-temperature and at 850 C (tensile and creep-rupture) showed -a ten-fold increase in rupture life of the best modified CN12 relative to the baseline material, better room-temperature ductility after aging, caused by less precipitation in the as-cast material and much less aging-induced precipitation. The best new modified CF8C steel showed strength at tensile and creep-rupture strength comparable to standard CN12 steel at 850 C, due to a unique and very stable microstructure. The CRADA was scheduled to end in July 2001, but was extended twice until July 2002. Based on the very positive results on the newly developed modified CF8C and CN12 cast austenitic stainless steels, a new CRADA with Caterpillar has been set up to commercially scale-up, test and evaluate, and make trial components from the new steels.

Maziasz, P.J.; Swindeman, R.W.; Browning, P.F. (Solar Turbines, Inc.); Frary, M.E. (Caterpillar, Inc.); Pollard, M.J.; Siebenaler, C.W.; McGreevy, T.E.

2004-06-01T23:59:59.000Z

291

Hybrid Band effects program (Lockheed Martin shared vision CRADA)  

SciTech Connect (OSTI)

Hybrid Band{trademark} (H-band) is a Lockheed Martin Missiles and Fire Control (LMMFC) designation for a specific RF modulation that causes disruption of select electronic components and circuits. H-Band enables conventional high-power microwave (HPM) effects (with a center frequency of 1 to 2 GHz, for example) using a higher frequency carrier signal. The primary technical objective of this project was to understand the fundamental physics of Hybrid Band{trademark} Radio Frequency effects on electronic systems. The follow-on objective was to develop and validate a Hybrid Band{trademark} effects analysis process.

Bacon, L. D.

2012-03-01T23:59:59.000Z

292

United States, Russia Sign Agreement to Further Research and...  

Broader source: Energy.gov (indexed) [DOE]

United States, Russia Sign Agreement to Further Research and Development Collaboration in Nuclear Energy and Security United States, Russia Sign Agreement to Further Research and...

293

DOE and NRCan Agreement to Enhance Collaboration in Civilian...  

Energy Savers [EERE]

DOE and NRCan Agreement to Enhance Collaboration in Civilian Nuclear Energy Research and Development DOE and NRCan Agreement to Enhance Collaboration in Civilian Nuclear Energy...

294

Eight National Labs Offer Streamlined Partnership Agreements...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

advantages in innovation to create jobs and accelerate the development of new clean energy technologies. "The Agreements for Commercializing Technology will cut red tape for...

295

Solar Power Purchase Agreements  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar Power Purchase Agreements Brian Millberg | Energy Manager, City of Minneapolis Direct Ownership * Financial: Even at 3kW installed cost, simple payback is 18 years (initial...

296

MATERIALS TRANSFER AGREEMENT  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MTAXX-XXX 1 MATERIAL TRANSFER AGREEMENT for Manufacturing Demonstration Facility and Carbon Fiber Technology Facility In order for the RECIPIENT to obtain materials, the RECIPIENT...

297

PartnershipAgreementsTraining  

Energy Savers [EERE]

small business community is afforded every opportunity to participate in government contracting. n The executed Partnership Agreement permits procurement activities to engage in...

298

Binding Facility Agreement  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

at the Portsmouth Gaseous Diffusion Plant (PORTS) under the Gaseous Diffusion Plant (GDP) Lease Pursuant to the Lease Agreement Between the United States Department of Energy...

299

Binding Facility Agreement  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

at the Portsmouth Gaseous Diffusion Plant (PORTS) under the Gaseous Diffusion Plant (GDP) Lease Pursuant to the Lease Agreement Between the United States Department oEnergy...

300

Personal Services Agreements Waivers  

E-Print Network [OSTI]

Personal Services Agreements Waivers: Appendix A2 Responsible Administrative Units: Human Resources be performed by CSM staff. 4. Student Recruit Data Collection Services: Services include collecting a nation the adequate staff to perform these services. #12;Personal Services Agreements Waivers: Appendix A2 Responsible

Note: This page contains sample records for the topic "development agreement crada" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Personal Services Agreements Waivers  

E-Print Network [OSTI]

Personal Services Agreements Waivers: Appendix A1 Responsible Administrative Units: Human Resources mapping, reviewing, surveying, and data collection for which CSM does not have staff qualified to perform these specialized services. #12;Personal Services Agreements Waivers: Appendix A1 Responsible Administrative Units

302

Development and Testing of a High Capacity Plasma Chemical Reactor in the Ukraine  

SciTech Connect (OSTI)

This project, Development and Testing of a High Capacity Plasma Chemical Reactor in the Ukraine was established at the Kharkiv Institute of Physics and Technology (KIPT). The associated CRADA was established with Campbell Applied Physics (CAP) located in El Dorado Hills, California. This project extends an earlier project involving both CAP and KIPT conducted under a separate CRADA. The initial project developed the basic Plasma Chemical Reactor (PCR) for generation of ozone gas. This project built upon the technology developed in the first project, greatly enhancing the output of the PCR while also improving reliability and system control.

Reilly, Raymond W.

2012-07-30T23:59:59.000Z

303

The Guaranteed Maximum Price proposal is developed at the phase specified in the Agreement Between Owner and Construction Manager, usually at 50% Construction Documents.  

E-Print Network [OSTI]

Owner and Construction Manager, usually at 50% Construction Documents. The GMP proposal should be bound general summary of scope of work, alternates, etc.) Tab 2 List of documents (project manual(s), drawings summary of the work, the construction manager's fee (as identified in Paragraph 7.2 of the Agreement) must

Sura, Philip

304

CRADA Final Report: Properties of Vacuum Deposited Thin Films of Lithium Phosphorous Oxynitride (Lipon) with an Expanded Composition Range  

SciTech Connect (OSTI)

Thin films of an amorphous, solid-state, lithium electrolyte, referred to as ''Lipon'', were first synthesized and characterized at ORNL in 1991. This material is typically prepared by magnetron sputtering in a nitrogen plasma, which allows nitrogen atoms to substitute for part of the oxygen ions of Li{sub 3}PO{sub 4}. Lipon is the key component in the successful fabrication of ORNL's rechargeable thin film microbatteries. Cymbet and several other US Companies have licensed this technology for commercialization. Optimizing the properties of the Lipon material, particularly the lithium ion conductivity, is extremely important, yet only a limited range of compositions had been explored prior to this program. The goal of this CRADA was to develop new methods to prepare Lipon over an extended composition range and to determine if the film properties might be significantly improved beyond those previously reported by incorporating a larger N component into the film. Cymbet and ORNL investigated different deposition processes for the Lipon thin films. Cymbet's advanced deposition process not only achieved a higher deposition rate, but also permitted independent control the O and N flux to the surface of the growing film. ORNL experimented with several modified sputtering techniques and found that by using sectored sputter targets, composed of Li{sub 3}PO{sub 4} and Li{sub 3}N ceramic disks, thin Lipon films could be produced over an expanded composition range. The resulting Lipon films were characterized by electrical impedance, infrared spectroscopy, and several complementary analytical techniques to determine the composition. When additional N plus Li are incorporated into the Lipon film, the lithium conductivity was generally degraded. However, the addition of N accompanied by a slight loss of Li gave an increase in the conductivity. Although the improvement in the conductivity was only very modest and was a disappointing conclusion of this study, forcing a higher N content in the Lipon may alleviate some of the run-to-run variations in the Lipon quality that have been problematical for years.

Dudney, N.J.

2003-12-29T23:59:59.000Z

305

Wind Agreements (Nebraska)  

Broader source: Energy.gov [DOE]

These regulations address leases or lease options securing land for the study or production of wind-generated energy. The regulations describe agreement terms, compliance, and a prohibition on land...

306

The commercial development of water repellent coatings for high voltage transmission lines  

SciTech Connect (OSTI)

The purpose of the Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC and Southwire Company was to jointly develop a low cost, commercially viable, water-repellant anti-icing coating system for high voltage transmission lines. Icing of power lines and other structures caused by freezing rain events occurs annually in the United States, and leads to severe and prolonged power outages. These outages cause untold economic and personal distress for many American families and businesses. Researchers at the Department of Energy s Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee have previously developed a set of superhydrophobic coatings with remarkable anti-icing properties that could potentially be sprayed or painted onto high-tension power lines and pylons. These coatings drastically reduce ice accumulation on these structures during freezing rain events. The project involved obtaining technical input, supplies and test high voltage cables from Southwire, along with the joint development of anti-icing coating techniques, which would result in a commercial license agreement between Southwire and ORNL, and potentially other companies requiring water repellent anti-icing coatings.

Hunter, Scott Robert [ORNL

2013-10-01T23:59:59.000Z

307

The commercial development of water repellent coatings for high voltage transmission lines  

SciTech Connect (OSTI)

The purpose of the Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC and Southwire Company was to jointly develop a low cost, commercially viable, water-repellant anti-icing coating system for high voltage transmission lines. Icing of power lines and other structures caused by freezing rain events occurs annually in the United States, and leads to severe and prolonged power outages. These outages cause untold economic and personal distress for many American families and businesses. Researchers at the Department of Energy?s Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee have previously developed a set of superhydrophobic coatings with remarkable anti-icing properties that could potentially be sprayed or painted onto high-tension power lines and pylons. These coatings drastically reduce ice accumulation on these structures during freezing rain events. The project involved obtaining technical input, supplies and test high voltage cables from Southwire, along with the joint development of anti-icing coating techniques, which would result in a commercial license agreement between Southwire and ORNL, and potentially other companies requiring water repellent anti-icing coatings.

Hunter, S. R. [ORNL] [ORNL; Daniel, A. [Southwire Company] [Southwire Company

2013-10-31T23:59:59.000Z

308

Evaluate Si Layers: Cooperative Research and Development Final Report, CRADA Number CRD-07-255  

SciTech Connect (OSTI)

Evaluate Si layers based on heteroepitaxial Si growth on RABITS textured metal substrates coated with textured buffer layers.

Teplin, C.

2013-04-01T23:59:59.000Z

309

Algae Biofuels Collaborative Project: Cooperative Research and Development Final Report, CRADA Number CRD-10-371  

SciTech Connect (OSTI)

The goal of this project is to advance biofuels research on algal feedstocks and NREL's role in the project is to explore novel liquid extraction methods, gasification and pyrolysis as means to produce fuels from algae. To that end several different extraction methods were evaluated and numerous gasification and pyrolysis conditions were explored. It was found that mild hydrothermal treatment is a promising means to improve the extraction and conversion of lipids from algae over those produced by standard extraction methods. The algae were essentially found to gasify completely at a fairly low temperature of 750 degrees C in the presence of oxygen. Pyrolysis from 300-550 degrees C showed sequential release of phytene hydrocarbons, glycerides, and aromatics as temperature was increased. It appears that this has potential to release the glycerides from the non-fatty acid groups present in the polar lipids to produce a cleaner lipid. Further research is needed to quantify the pyrolysis and gasification yields, analyze the liquids produced and to test strategies for removing organic-nitrogen byproducts produced because of the high protein content of the feed. Possible strategies include use of high-lipid/low-protein algae or the use of catalytic pyrolysis.

French, R. J.

2012-04-01T23:59:59.000Z

310

Development and demonstration of biosorbents for clean-up of uranium in water. CRADA final report  

SciTech Connect (OSTI)

Pseudomonas aeruginosa strain CSU, a nongenetically engineered bacterial strain known to bind dissolved hexavalent uranium, shows particular promise as the basis of an immobilized-cell process for removal of dissolved uranium from contaminated wastewaters. It was characterized with respect to its sorptive active. Living, heat-killed, permeabilized, and unreconstituted lyophilized cells were all capable of binding uranium. The uranium biosorption equilibrium could be described by the Langmuir isotherm. The rate of uranium adsorption increased following permeabilization of the outer and/or cytoplasmic membrane by organic solvents such as acetone. P. aeruginosa CSU biomass was significantly more sorptive toward uranium than certain novel, patented biosorbents derived from algal or fungal biomass sources. P. aeruginosa CSU biomass was also competitive with commercial cation-exchange resins, particularly in the presence of dissolved transition metals. Uranium binding by P. aeruginosa was clearly pH dependent. Uranium loading capacity increased with increasing pH under acidic conditions, presumably as a function of uranium speciation and due to the H{sup +} competition at some binding sites. Nevertheless, preliminary evidence suggests that this microorganism is also capable of binding anionic hexavalent uranium complexes. Ferric iron was a strong inhibitor of uranium binding to P. aeruginosa CSU biomass, and the presence of uranium also decreased the Fe{sup 3+} loading when the biomass was not saturated with Fe{sup 3+}, suggesting that Fe{sup 3+} and uranium may share the same binding sites on biomass.

Faison, B.D.; Hu, M.Z.C.; Norman, J.M.; Reeves, M.E.; Williams, L.; Schmidt-Kuster, W.; Darnell, K. [Oak Ridge National Lab., TN (United States)]|[Ogden Environmental Service, Oak Ridge, TN (United States)

1997-08-01T23:59:59.000Z

311

Personal Services Agreements Waivers  

E-Print Network [OSTI]

these services. 4. Support and Maintenance Agreements: Services include preventive maintenance as well - Equipment Maintenance/Repair Services in this category are used for all types of equipment maintenance the equipment necessary to perform certain services. 2. Equipment Maintenance and Repair: Services include

312

INTERNSHIP AGREEMENT (Please Print)  

E-Print Network [OSTI]

Rev. 5/12 INTERNSHIP AGREEMENT (Please Print) STUDENT MUST HAVE A GPA OF 2.0+ AND A MINIMUM OF 64 COMPLETED CREDIT HOURS TO REGISTER FOR AN INTERNSHIP. ALL INTERNSHIPS DONE FOR CREDIT ARE PASS/FAIL. A MAXIMUM OF 10 SEMESTER HOURS OF INTERNSHIP CREDIT IS POSSIBLE. THROUGH A COMBINATION OF INTERNSHIPS

Bogaerts, Steven

313

Feasability Study and Protocol Development for Manufacturing of a Veterinarian Drug Using Local Plant Sources as Raw Materials  

SciTech Connect (OSTI)

This CRADA was a collaborative effort between the Oak Ridge National Laboratory (ORNL) and Sass & Sass, Inc. It also had involvement with the University of Tennessee Knoxville (UTK) The CRADA focused on the development and commercialization in the U.S. of the substance developed in Russia with potential veterinary applications. The project addressed validation and further characterization of the lead substance necessary for its commercialization in the U.S. market as a veterinarian biologic and at the commercialization of the product for the Russian market, by the Russian group establishing of sustainability of the Russian research groups.

Davison, B. H.; Kuritz, T.

2006-08-28T23:59:59.000Z

314

Compliance Agreements | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Agreements Compliance Agreements This photo shows the Savannah River Sites Heavy Water Components Test Reactor during decommissioning. This photo shows the Savannah...

315

Performance improvement of silicon nitride ball bearings by ion implantation. CRADA final report  

SciTech Connect (OSTI)

The present report summarizes technical results of CRADA No. ORNL 92-128 with the Pratt and Whitney Division of United Technologies Corporation. The stated purpose of the program was to assess the 3effect of ion implantation on the rolling contact performance of engineering silicon nitride bearings, to determine by post-test analyses of the bearings the reasons for improved or reduced performance and the mechanisms of failure, if applicable, and to relate the overall results to basic property changes including but not limited to swelling, hardness, modulus, micromechanical properties, and surface morphology. Forty-two control samples were tested to an intended runout period of 60 h. It was possible to supply only six balls for ion implantation, but an extended test period goal of 150 h was used. The balls were implanted with C-ions at 150 keV to a fluence of 1.1 {times} 10{sup 17}/cm{sup 2}. The collection of samples had pre-existing defects called C-cracks in the surfaces. As a result, seven of the control samples had severe spalls before reaching the goal of 60 h for an unacceptable failure rate of 0.003/sample-h. None of the ion-implanted samples experienced engineering failure in 150 h of testing. Analytical techniques have been used to characterize ion implantation results, to characterize wear tracks, and to characterize microstructure and impurity content. In possible relation to C-cracks. It is encouraging that ion implantation can mitigate the C-crack failure mode. However, the practical implications are compromised by the fact that bearings with C-cracks would, in no case, be acceptable in engineering practice, as this type of defect was not anticipated when the program was designed. The most important reason for the use of ceramic bearings is energy efficiency.

Williams, J.M. [Oak Ridge National Lab., TN (United States); Miner, J. [United Technologies Corp., West Palm Beach, FL (United States). Pratt and Whitney Div.

1998-03-01T23:59:59.000Z

316

Final Report to Jupiter Oxygen Corporation on CRADA Phase 1 Activities, January 1, 2004, through June 30, 2005  

SciTech Connect (OSTI)

In January of 2004, a Cooperative Research and Development Agreement was signed with the Jupiter Oxygen Corporation; its term extends from January 2004 to January 1, 2009. The statement of work is attached as Appendix A. Under Phase I of this agreement, ARC was to provide technical expertise to develop computer models of existing power plants relative to retrofitting with oxy-fuel combustion; help design experiments to verify models and analyze data from experiments; help produce designs at larger scales; help design a new technology oxy-fuel power plant; and co-author technical papers on this work for presentation at appropriate conferences.

Summers, Cathy A.; Oryshchyn, Danylo B.; Ochs, Thomas L.; Turner, Paul C.

2005-06-30T23:59:59.000Z

317

Commitments/Agreements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group and UserofProtein structureAnalysisDOE-ID Agreements &

318

User Agreements | Partnerships | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500II Field Emission SEMUsed Fuel DispositionUserAgreementsUser

319

Pinellas Remediation Agreement Summary  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15, 2010Energy6 Frontera STAT.PaulThe 2014Pinellas Agreement Name

320

The Agreement - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Burst BufferFluoriteSediments andThe Agreement

Note: This page contains sample records for the topic "development agreement crada" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

EMSL User Agreements | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct:DirectivesSAND2015-21271 7AnUser Agreements EMSL User

322

EXHIBIT A: CRADA, WFO, PUA and NPUA Comparison Table, with suggested...  

Broader source: Energy.gov (indexed) [DOE]

information and shall be publicly releasable. The Parties agree that an initiual abstract of the work to be performed the TSOW shall be a deliverable under this Agreement....

323

Predictive Engineering Tools for Injection-Molded Long-Carbon-Fiber Thermoplastic Composites - FY13 Fourth Quarterly Report  

SciTech Connect (OSTI)

This quarterly report summarizes the status of the project planning to obtain all the approvals required for a Cooperative Research and Development Agreement (CRADA) with Autodesk, Inc., Toyota Motor Engineering and Manufacturing North America (Toyota), and Magna Exterior and Interiors Corporation (Magna). The final CRADA documents processed by PNNLs Legal Services were submitted to all the parties for signatures.

Nguyen, Ba Nghiep; Simmons, Kevin L.

2013-12-02T23:59:59.000Z

324

Sample Licensing Agreements | Partnerships | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

be modified to meet individual circumstances. Licensing Agreements Nonexclusive Patent License Exclusive Patent License Nonexclusive Copyright License Nondisclosure (NDA)...

325

Energy and Technology Review, August--September  

SciTech Connect (OSTI)

This issue of Energy and Technology Review focuses on cooperative research and development agreements (CRADAs)-one of the Laboratory's most effective means of technology transfer. The first article chronicles the legislative evolution of these agreements. The second article examines the potential beneficial effects of CRADAs on the national economy and discusses their role in the development and marketing of Laboratory technologies. The third article provides information on how to initiate and develop CRADAs at LLNL, and the fourth and fifth articles describe the Laboratory's two most prominent technology transfer projects. One is a 30-month CRADA with General Motors to develop advanced lasers for cutting, welding, and heat-treating operations. The cover photograph shows this laser cutting through a piece of steel 1/16 of an inch thick. The other project is a three-year CRADA with Amoco, Chevron-Conoco, and Unocal to refine our oil shale retorting process.

Sefcik, J A [ed.

1992-01-01T23:59:59.000Z

326

INTERNATIONAL INTERNSHIP AGREEMENT This International Internship Agreement (the "Agreement") is entered into as of this day  

E-Print Network [OSTI]

11/12/2012 INTERNATIONAL INTERNSHIP AGREEMENT This International Internship Agreement (the") located at . International Internships are established based upon a cooperative three-party relationship between the Internship placement (work experience company), the student, and the University, all working

Napier, Terrence

327

Solar Power Purchase Agreements  

Office of Energy Efficiency and Renewable Energy (EERE)

This presentation was given January 15, 2013, by Brian Millberg, Energy Manager for the City of Minneapolis, Minnesota, as part of the CommRE Developing PV Projects With RFPs and PPAs webinar.

328

Canadian Seismic Agreement  

SciTech Connect (OSTI)

The ECTN network has remained stable over the past year; progress on the new concentrator software has been slow. Major developments have taken place in the Ottawa Data Laboratory including the installation of a new VAX system and further development of the Seismic Analysis Monitor software. A new initiative has been the development of hardware and software for the Sudbury Local Telemetered Network, which can be considered a prototype for a smart outstation. The performance of the ECTN over the past year is described along with a summary of eastern Canadian seismicity during the reporting period and a list of EPB research publications on eastern Canadian seismicity during the past year. 4 figures, 3 tables.

Basham, P.W.; Lyons, J.A.; Drysdale, J.A.; Shannon, W.E.; Andersen, F.; Hayman, R.B.; Wetmiller, R.J.

1983-11-01T23:59:59.000Z

329

NETL Cooperative Research and Development Agreements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Opticalhttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifA Comparison NERSC: RunningNERSC---8JHydrates

330

Microsoft Word - Licensing_Agreements_Website_2014.docx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Licensing Process Licensing Agreements Licensing INL technologies allows a business to reproduce, manufacture, sell, or use INL-developed or owned intellectual property. INL...

331

CdTe Feedstock Development and Validation: Cooperative Research and Development Final Report, CRADA Number CRD-08-00280  

SciTech Connect (OSTI)

The goal of this work was to evaluate different CdTe feedstock formulations (feedstock provided by Redlen) to determine if they would significantly improve CdTe performance with ancillary benefits associated with whether changes in feedstock would affect CdTe cell processing and possibly reliability of cells. Feedstock also included attempts to intentionally dope the CdTe with pre-selected elements.

Albin, D.

2011-05-01T23:59:59.000Z

332

GSA-Utility Interconnection Agreements  

Broader source: Energy.gov [DOE]

Presentationgiven at at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meetingcovers the General Service Administration's (GSA's) utility interconnection agreements.

333

Interconnection Agreements for Onsite Generation  

Broader source: Energy.gov [DOE]

Presentation covers Interconnection Agreements for Onsite Generation and is given at the Spring 2011 Federal Utility Partnership Working Group (FUPWG) meeting.

334

Development and Testing of Abrasion Resistant Hard Coats For Polymer Film Reflectors: Preprint  

SciTech Connect (OSTI)

Reflective polymer film technology can significantly reduce the cost of solar reflectors and installed Concentrated Solar Power (CSP) plants by both reduced material cost and lower weight. One challenge of polymer reflectors in the CSP environment pertains to contact cleaning methods typically used with glass mirrors. Such contact cleaning methods can scratch the surface of polymer reflectors and thereby reduce specular reflectance. ReflecTech, Inc. (a subsidiary of SkyFuel, Inc.) and the National Renewable Energy Laboratory (NREL) initiated a cooperative research and development agreement (CRADA) to devise and develop an abrasion resistant coating (ARC) suitable for deposition onto polymer based mirror film. A number of candidate ARC products were identified as candidate formulations. Industrial collaborators prepared samples having their ARCs deposited onto ReflecTech Mirror Film pre-laminated to aluminum sheet substrates. Samples were provided for evaluation and subjected to baseline (unweathered) and accelerated exposure conditions and subsequently characterized for abrasion resistance and adhesion. An advanced ARC product has been identified that exhibits outstanding initial abrasion resistance and adhesion to ReflecTech Mirror Film. These properties were also retained after exposure to the various accelerated stress conditions. This material has been successfully manufactured as a 1.5 m wide roll-to-roll construction in a production environment.

Jorgensen, G.; Gee, R.; DiGrazia, M.

2010-10-01T23:59:59.000Z

335

Canadian seismic agreement  

SciTech Connect (OSTI)

During the period of this report, the contract resources were spent on operation and maintenance of the Eastern Canada Telemetred Network (ECTN), development of special purpose local network systems, servicing and maintenance of the strong-motion seismograph network in eastern Canada, operation of the Ottawa data lab and earthquake monitoring and reporting. Of special note in this period was the final completion of the Sudbury (SLTN) and Charlevoix (CLTN) local networks and the integration of their data processing and analysis requirements in the regular analysis stream for ECTN data. These networks now acquire high quality digital data for detailed analysis of seismic activity and source properties from these two areas, thus effectively doubling the amount of seismic data being received by the Ottawa data lab. 37 refs., 17 figs., 2 tabs.

Wetmiller, R.J.; Lyons, J.A.; Shannon, W.E.; Munro, P.S.; Thomas, J.T.; Andrew, M.D.; Lamontagne, M.; Wong, C.; Anglin, F.M.; Plouffe, M.; Adams, J.; Drysdale, J.A. (Geological Survey of Canada, Ottawa, ON (Canada). Geophysics Div.)

1990-04-01T23:59:59.000Z

336

CX-010364: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Cooperative Research and Development Agreement CRADA Activities CX(s) Applied: B3.6; B3.10; B3.11 Date: 11192012 Location(s): Tennessee,...

337

DOE M 483  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3710) SHORT FORM MODEL COOPERATIVE RESEARCH AND DEVELOPMENT AGREEMENT (hereinafter "CRADA") No. NFE-1X-0XXXX BETWEEN UT-Battelle, LLC under its U.S. Department of Energy...

338

Sandia National Laboratories: Center for Infrastructure Research...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and industrial gas giant Linde LLC have signed an umbrella cooperative R&D agreement (CRADA) that is expected to accelerate the development of low-carbon energy and industrial...

339

NREL: Biomass Research - Yat-Chen Chou  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

I was one of the key researchers in the cooperative research and development agreement (CRADA) project with DuPont, working on the construction and improvement of a robust...

340

Sandia National Laboratories: California Alternative and Renewable...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and industrial gas giant Linde LLC have signed an umbrella cooperative R&D agreement (CRADA) that is expected to accelerate the development of low-carbon energy and industrial...

Note: This page contains sample records for the topic "development agreement crada" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Published by Oak Ridge National Laboratory No. 1 2010 The industrial sector accounts for nearly one-third of the  

E-Print Network [OSTI]

Published by Oak Ridge National Laboratory No. 1 2010 The industrial sector accounts for nearly one research and development agreements (CRADAs) and two large work-for-others projects. Ev- ery single one

Pennycook, Steve

342

Technology Investment Agreements | Department of Energy  

Office of Environmental Management (EM)

Technology Investment Agreements Technology Investment Agreements Guidance Policy Flash 2006-31 - Technology Investment Agreements Financial Assistance Letter 2006-03 - Guidance...

343

Energy Efficiency Loan Program Agreement Template | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Agreement Template Energy Efficiency Loan Program Agreement Template A template agreement demonstrating how to address the deposit and use of the loan loss reserve monies. Energy...

344

Solar Power Purchase Agreements | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar Power Purchase Agreements Solar Power Purchase Agreements Provides an overview of solar power purchase agreements including how they work, benefits and challenges and...

345

Development of an Energy Conservation Voluntary Agreement, Pilot Project in the Steel Sector in Shandong Province. Project Report to the State Economic and Trade Commission, People's Republic of China  

E-Print Network [OSTI]

company and the Danish Energy Agency. The agreements, whichagreements with the Danish Energy Agency, representing 45%Danish CO 2 -Tax Scheme, in International Energy Agency,

Price, Lynn; Yun, Jiang; Worrell, Ernst; Wenwei, Du; Sinton, Jonathan E.

2003-01-01T23:59:59.000Z

346

EARLY-AGE CRACKING REVIEW: MECHANISMS, MATERIAL PROPERTIES,  

E-Print Network [OSTI]

Nuclear Solutions Cooperative Research Agreement (CRADA) CR-08-001. Reference herein to any specific

Bentz, Dale P.

347

PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009  

E-Print Network [OSTI]

Agreement (CRADA) to demonstrate small scale power generation from an oil field waste stream. The project

Stanford University

348

SRNSSTI200900446 Evaluation of Range Estimates for Toyota FCHVadv  

E-Print Network [OSTI]

1 , Donald Anton2 , Sam Sprik1 August 10, 2009 PTS05 of SRNS CRADA No. CR04003 1 National negotiations, a CRADA agreement, SRNS CRADA No. CR04003, was signed on May 6, 2009. Subsequently, on June 30

349

Development of Advanced Corrosion-Resistant Fe-Cr-Ni Austenitic Stainless Steel Alloy with Improved High Temperature Strenth and Creep-Resistance  

SciTech Connect (OSTI)

In February of 1999, a Cooperative Research and Development Agreement (CRADA) was undertaken between Oak Ridge National Laboratory (ORNL) and Special Metals Corporation-Huntington Alloys (formerly INCO Alloys International, Inc.) to develop a modified wrought austenitic stainless alloy with considerably more strength and corrosion resistance than alloy 800H or 800HT, but with otherwise similar engineering and application characteristics. Alloy 800H and related alloys have extensive use in coal flue gas environments, as well as for tubing or structural components in chemical and petrochemical applications. The main concept of the project was make small, deliberate elemental microalloying additions to this Fe-based alloy to produce, with proper processing, fine stable carbide dispersions for enhanced high temperature creep-strength and rupture resistance, with similar or better oxidation/corrosion resistance. The project began with alloy 803, a Fe-25Cr-35NiTi,Nb alloy recently developed by INCO, as the base alloy for modification. Smaller commercial developmental alloy heats were produced by Special Metals. At the end of the project, three rounds of alloy development had produced a modified 803 alloy with significantly better creep resistance above 815EC (1500EC) than standard alloy 803 in the solution-annealed (SA) condition. The new upgraded 803 alloy also had the potential for a processing boost in that creep resistance for certain kinds of manufactured components that was not found in the standard alloy. The upgraded 803 alloy showed similar or slightly better oxidation and corrosion resistance relative to standard 803. Creep strength and oxidation/corrosion resistance of the upgraded 803 alloy were significantly better than found in alloy 800H, as originally intended. The CRADA was terminated in February 2003. A contributing factor was Special Metals Corporation being in Chapter 11 Bankruptcy. Additional testing, further commercial scale-up, and any potential invention disclosures were not pursued. One objective of this project was to improve the high temperature creep resistance of the recently developed 803 alloy, while another was to have a wrought modified 803 alloy with significantly better creep resistance and corrosion resistance than the commonly used alloy 800H. The project was intended to use the established expertise at ORNL to design specific microalloying element additions to appropriately tailor the microstructure during aging or creep so that fine, stable carbides develop for strength. If possible, oxidation/corrosion resistance at high temperatures would also be enhanced. Optimum processing was to be developed for plate and tube products.

Maziasz, PJ

2004-09-30T23:59:59.000Z

350

STATE OF CALIFORNIA STANDARD AGREEMENT  

E-Print Network [OSTI]

SIGNING Exempt per: Rachel L. Grant Kiley, Contracts Grants and Loans Office Manager ADDRESS 1516 Ninth contained in this Agreement shall preclude advance payment to the Government pursuant to Title 2, Government

351

Business Agreements Printing & Mail Services  

E-Print Network [OSTI]

Business Agreements Storehouse Printing & Mail Services Receiving Equipment Management Director Planning/ Resource Planning Space ManagementAccounting Services Student Business Services Education Administration Finance and Business Operations Organization Risk Management Finance & Business Operations

352

AGREEMENT  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofofOxford SiteToledo SiteTonawanda North Site Unit3.1 03/13[NJ.07 -34

353

AGREEMENT  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Review of theOFFICEACME | National Nuclear SecurityOAGREEMENT

354

VPP Interagency Agreement Between DOE and DOL  

Broader source: Energy.gov [DOE]

The purpose of thia agreement ie for the U. S. Department Of Labor's (DOL) Occupational Safety and Health Administration (OSHA) Directorate of Federal-State Operation8 (FSO) to provide aeeistance to the U. S. Department of Energys (DOE) Office of Occupational safety (EH-31) in the development bf the DOE Voluntary Protection Program (DOE-WP) at Government-~ned-or-LeaBed Contractor-Operated (GOCO) facilities.

355

Agreements --Europe 77 78 Atlas of International Freshwater Agreements  

E-Print Network [OSTI]

Countries km2 % Romania 228,500 28.93 Hungary 92,800 11.74 Austria 81,600 10.32 Yugoslavia (Serbia on transboundary waters between Hungary and Ukraine September 30, 1997 Danube, Prut, Siret, Tisza Romania; Ukraine Agreement between the government of Romania and the government of Ukraine on cooperation in the field

Wolf, Aaron

356

Agreements --Asia 51 52 Atlas of International Freshwater Agreements  

E-Print Network [OSTI]

in Country Countries km2 % Kazakhstan 424,400 34.46 Uzbekistan 382,600 31.07 Tajikistan 135,700 11.01 Date TreatyBasin Signatories Treaty Name May 7, 1999 Syr Darya Kazakhstan, Republic of; Kyrgz Republic in the agreement between the governments of the Republic of Kazakhstan, the Kyrgyz Republic, and the Republic

Wolf, Aaron

357

Draft Michigan Saves Loan Loss Reserve Fund Agreement | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent(CRADA and DOWDepartment of

358

USOSP Agreement MEMORANDUM OF UNDERSTANDING  

E-Print Network [OSTI]

USO­SP Agreement USO ­ SP MEMORANDUM OF UNDERSTANDING on UTRECHT ­ STOCKHOLM ­ OSLO COLLABORATION IN SOLAR PHYSICS CONSIDERING that ­ the Solar Physics group of the Sterrekundig Instituut Utrecht, Faculteit Natuur- en Ster- renkunde, Utrecht University, Utrecht, The Netherlands (henceforth abbreviated

Rutten, Rob

359

Letter to Eduard Smetanin, dated March 2, 2007: Final CRADA report.  

SciTech Connect (OSTI)

The IPP/DOE program office has finished its evaluation of the alpha-emitting isotope work with Kurchatov Institute and IPPE, and they have made an important decision about the future of this work. IPP/DOE has directed us to re-program the work and add more funds, so the emphasis will be on production of Th228. By making this re-direction of the isotope work, IPPE will see several important benefits: (a) the payments will be made faster to IPPE by using the ISTC Agreement; (b) a larger amount of money will be paid to IPPE; and (c) a profitable future business opportunity for IPPE is more probable.

Ehst, D. A.; Nuclear Engineering Division

2007-03-02T23:59:59.000Z

360

The Cooperative Research and Development Agreement A Cooperative Research and Development Agreement  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 and NbSe2 .2004Theapproaches and

Note: This page contains sample records for the topic "development agreement crada" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

FETC/EPRI BIOMASS COFIRING COOPERATIVE AGREEMENT  

SciTech Connect (OSTI)

This quarter much progress was made in promoting cofiring through the many FETC/EPRI backed projects. During January 1, 1998 to March 31st, 1998 significant contractual agreements were arranged for future testing and analyses of previous testing were conducted. Most notable was the analysis done on the testing run at the Tennessee Valley Authority?s Colbert Fossil Plant that showed no significant impacts to the plant boiler due to cofiring. Northern Indiana Public Service Company also identified Bailly #7 as the site of the next series of tests using their plants. Other work done on these projects primarily focused on continued cofiring development. This report summarizes the activities during the first quarter in 1998 of the FETC/EPRI Biomass Cofiring Cooperative Agreement. It focuses upon reporting the results of testing in order to highlight the progress at utilities.

D. TILLMAN; E. HUGHES

1998-08-01T23:59:59.000Z

362

MASTER CLINICAL RESEARCH STUDY SITE AGREEMENT THIS MASTER CUNICAL RESEARCH STUDY SITE AGREEMENT ("Master Agreement")  

E-Print Network [OSTI]

("Master Agreement") is entered into as of the 14th day of May, 2009 ("Effective Date"), by and between UT "clinies in the Memphis,Shelby County, Tennessee area that serve as study sites for r~search studies by The University, pursuant to the terms and conditions of this Master ~~~~. . ..- T~RMS AND CONDITIONS 1. REQUEST

Cui, Yan

363

Advanced Collaborative Emissions Study (ACES) NETL Agreement...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

NETL Agreement 13919 Advanced Collaborative Emissions Study (ACES) NETL Agreement 13919 Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on...

364

Work For Others Agreements | Partnerships | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Agreement science Work For Others (WFO) agreements provide an excellent way for companies, universities, and other entities to access the unique facilities, technologies, and...

365

Thermoelectric Materials By Design: Mechanical Reliability (Agreement...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

By Design: Mechanical Reliability (Agreement 14957) Thermoelectric Materials By Design: Mechanical Reliability (Agreement 14957) Presentation from the U.S. DOE Office of Vehicle...

366

Confidentiality Agreement between the Nuclear Decommissioning...  

Broader source: Energy.gov (indexed) [DOE]

Confidentiality Agreement between the Nuclear Decommissioning Authority in UK and US Department of Energy Confidentiality Agreement between the Nuclear Decommissioning Authority...

367

Power Purchase Agreement Webinars | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Webinars Power Purchase Agreement Webinars Provides a listing of past power purchase agreement webinars and associated files. Author: U. S. Department of Energy, Energy Efficiency...

368

On-Site Renewable Power Purchase Agreements | Department of Energy  

Office of Environmental Management (EM)

On-site renewable power purchase agreements (PPAs) allow Federal agencies to fund on-site renewable energy projects with no up-front capital costs incurred. With a PPA, a developer...

369

EPRI PEAC Corp.: Certification Model Program and Interconnection Agreement Tools  

SciTech Connect (OSTI)

Summarizes the work of EPRI PEAC Corp., under contract to DOE's Distribution and Interconnection R&D, to develop a certification model program and interconnection agreement tools to support the interconnection of distributed energy resources.

Not Available

2003-10-01T23:59:59.000Z

370

Advanced Engine/Aftertreatment System R&D CRADA with Navistar...  

Broader source: Energy.gov (indexed) [DOE]

composition, and surface area and their effect on oxidation kinetics 6. MTU utilizes data for DPF model development & calibration 7. Team evaluates fuel optimal regeneration...

371

Low-Defect Heteroepitaxy on Porous Si Substrates: Cooperative Research and Development Final Report, CRADA Number CRD-13-534  

SciTech Connect (OSTI)

In this collaboration, NREL will grow Ge, SiGe, and III-V layers on porous Si (pSi) substrates prepared either by Crystal Solar or at NREL. The intent is to grow low-defect epitaxial III-V alloys using the porous Si layer to prevent defect formation. Finally, we aim to fabricate solar cells from the III-V layers to prove the electronic quality.

Lee, B.

2014-12-01T23:59:59.000Z

372

MBMS Monitoring of ClearFuels/Rentech PDU: Cooperative Research and Development Final Report, CRADA Number CRD-10-386  

SciTech Connect (OSTI)

NREL will provide detailed on-site biomass gasifier syngas monitoring, using the NREL transportable Molecular Beam Mass Spectrometer. This information will be used to optimize the parameters of the gasifier operation, insuring the quality of the syngas made in the Rentech gasifier and its compatibility with catalytic conversion to fuels.

Carpenter, D.

2014-06-01T23:59:59.000Z

373

Renewable Energy Institute International (REII): Cooperative Research and Development Final Report, CRADA Number CRD-10-387  

SciTech Connect (OSTI)

NREL will provide the Renewable Energy Institute with detailed on-site biomass gasifier syngas monitoring, using the NREL transportable Molecular Beam Mass Spectrometer. This information will be used to optimize the parameters of the gasifier operation, insuring the quality of the syngas made in the Red Lion Bioenergy gasifier and its compatibility with catalytic conversion to fuels.

Carpenter, D.

2014-11-01T23:59:59.000Z

374

Concentrating Solar Power Hybrid System Study: Cooperative Research and Development Final Report, CRADA Number CRD-13-506  

SciTech Connect (OSTI)

The purpose of this PTS is to collaboratively leverage the collective resources at General Electric Global Research (GEGRC) and National Renewable Energy Laboratories (NREL) in the areas of concentrating solar power hybrid systems to advance state-of-the-art concentrating solar and conventional power generation system integration.

Turchi, C.

2014-09-01T23:59:59.000Z

375

Sorghum to Ethanol Research Initiative: Cooperative Research and Development Final Report, CRADA Number CRD-08-291  

SciTech Connect (OSTI)

The goal of this project was to investigate the feasibility of using sorghum to produce ethanol. The work performed included a detailed examination of the agronomics and composition of a large number of sorghum varieties, laboratory experiments to convert sorghum to ethanol, and economic and life-cycle analyses of the sorghum-to-ethanol process. This work showed that sorghum has a very wide range of composition, which depended on the specific sorghum cultivar as well as the growing conditions. The results of laboratory- and pilot-scale experiments indicated that a typical high-biomass sorghum variety performed very similarly to corn stover during the multi-step process required to convert biomass feedstocks to ethanol; yields of ethanol for sorghum were very similar to the corn stover used as a control in these experiments. Based on multi-year agronomic data and theoretical ethanol production, sorghum can achieve more than 1,300 gallons of ethanol per acre given the correct genetics and environment. In summary, sorghum may be a compelling dedicated bioenergy crop that could help provide a portion of the feedstocks required to produce renewable domestic transportation fuels.

Wolfrum, E.

2011-10-01T23:59:59.000Z

376

Stability and Quench Protection for HTS Superconducting Magnets: Cooperative Research and Development Final Report, CRADA number CRD-05-00160  

SciTech Connect (OSTI)

NREL will perform deposition and testing of various dielectrics on high-temperature superconductors.

Ginley, D. S.

2010-07-01T23:59:59.000Z

377

Second Wind Sonic Wind Profiler: Cooperative Research and Development Final Report, CRADA number CRD-08-00297  

SciTech Connect (OSTI)

Second Wind will deploy their Triton Sonic Wind Profiler at the National Wind Technology Center for the purposes of verification with measurements made by the NWTC 80 meter Meteorological tower.

Johnson, J. A.

2010-07-01T23:59:59.000Z

378

Distributed Reforming of Biomass Pyrolysis Oils: Cooperative Research and Development Final Report, CRADA number CRD-06-00192  

SciTech Connect (OSTI)

The objective of this project is for Chevron and NREL to collaborate in determining the effect of bio-oil composition variability on autothermal reforming performance including bio-oil volatilization, homogeneous oxidative cracking, and catalytic reforming.

Czernik, S.

2010-07-01T23:59:59.000Z

379

Testing and Evaluation of Photoelectrochemical Membranes: Cooperative Research and Development Final Report, CRADA Number CRD-08-313  

SciTech Connect (OSTI)

This research work will be undertaken in close coordination with Synkera Technologies and in concurrence with the overall objectives of the Synkera DOE SBIR Phase II project. The subcontract is conditional on Synkera receiving the DOE Phase II SBIR award.

Deutsch, T.

2012-09-01T23:59:59.000Z

380

Biomass in Multifunction Crop Plants: Cooperative Research and Development Final Report, CRADA Number CRD-05-163  

SciTech Connect (OSTI)

An array of cellulase, hemicellulase, and accessory enzymes were tested for their ability to increase the conversion levels and rates of biomass to sugar after being subjected to thermochemical pretreatment. The genes were cloned by Oklahoma State University and expressed, purified, and tested at NREL. Several enzymes were noted to be effective in increasing conversion levels, however expression levels were typically very low. The overall plan was to express these enzymes in corn as a possible mechanism towards decreased recalcitrance. One enzyme, cel5A endoglucanase from Acidothermus cellulolyticus, was transformed into both tobacco and corn. The transgenic corn stover and tobacco were examined for their susceptibility to thermochemical pretreatment followed by enzymatic digestion.

Decker, S. R.

2011-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "development agreement crada" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Feasibility of Ceramic Membranes in Lignocellulosic Processing: Cooperative Research and Development Final Report, CRADA number CRD-06-00198  

SciTech Connect (OSTI)

NREL will conduct field trials in their biomass process pilot plant using CeraMem developmental membranes and system supplied by CeraMem.

Schell, D. J.

2010-07-01T23:59:59.000Z

382

Assessment of U.S. Energy Wave Resources: Cooperative Research and Development Final Report, CRADA Number CRD-09-328  

SciTech Connect (OSTI)

In terms of extractable wave energy resource for our preliminary assessment, the EPRI/National Renewable Energy Laboratory (NREL) assumed that 15% of the available resource could be extracted based on societal constraints of a 30% coverage of the coastline with a 50% efficient wave energy absorbing device. EPRI recognizes that much work needs to be done to better define the extractable resource and we have outlined a comprehensive approach to doing this in our proposed scope of work, along with specific steps for refining our estimate of the available wave energy resources.

Scott, G.

2012-06-01T23:59:59.000Z

383

Evaluation of Ion Damage in Solar Cells: Cooperative Research and Development Final Report, CRADA Number CRD-07-00234  

SciTech Connect (OSTI)

Equipment will be used by Greenville College to enhance a previously established collaboration in the area of radiation hardness of solar cells, using Greenville's unique Ion Accelerator. Equipment will be located at the E. College Avenue site.

Young, D.

2013-01-01T23:59:59.000Z

384

Platform Li-Ion Battery Risk Assessment Tool: Cooperative Research and Development Final Report, CRADA Number CRD-01-406  

SciTech Connect (OSTI)

The pressure within a lithium-ion cell changes due to various chemical reactions. When a battery undergoes an unintended short circuit, the pressure changes are drastic - and often lead to uncontrolled failure of the cells. As part of work for others with Oceanit Laboratories Inc. for the NAVY STTR, NREL built Computational Fluid Dynamic (CFD) simulations that can identify potential weak spots in the battery during such events, as well as propose designs to control violent failure of batteries.

Santhanagopalan, S.

2012-07-01T23:59:59.000Z

385

Connectivity Enhanced Energy Management and Control for EREVs: Cooperative Research and Development Final Report, CRADA Number CRD-11-457  

SciTech Connect (OSTI)

The projected trend in personal mobility is the use of range extended electric vehicles (EREVs) and plug in hybrids (PHEVs). Although batteries with high power density and compact high power electric machines provide appreciable 'all electric' range, there still exists the need for an onboard range extender. The use of connectivity information such as route, elevation/curvature, traffic etc. enables substantial real world improvement in system efficiency and fuel economy of EREVs and plug-in hybrids through efficient use of stored electrical energy.

Gonder, J.

2014-08-01T23:59:59.000Z

386

New N-Type Polymers for Organic Photovoltaics: Cooperative Research and Development Final Report, CRADA Number CRD-06-177  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: CrystalFG36-08GO18149 Revision: - Date: 06/15/10 ABENGOANRELu547 NewNevadaNew

387

Used Computer Equipment Sales Agreement By acknowledgement of this Sale Agreement, _____________________________________ (Purchaser) agrees to  

E-Print Network [OSTI]

Used Computer Equipment Sales Agreement By acknowledgement of this Sale Agreement be in the State of Wisconsin. _________________________________________ _________________ Acknowledged

Sheridan, Jennifer

388

Energy Efficiency Financing Program Agreement Template  

Broader source: Energy.gov [DOE]

A template agreement that addresses the full energy efficiency or renewable energy loan origination cycle.

389

Fuel Efficient Diesel Particulate Filter (DPF) Modeling and Development  

SciTech Connect (OSTI)

The project described in this report seeks to promote effective diesel particulate filter technology with minimum fuel penalty by enhancing fundamental understanding of filtration mechanisms through targeted experiments and computer simulations. The overall backpressure of a filtration system depends upon complex interactions of particulate matter and ash with the microscopic pores in filter media. Better characterization of these phenomena is essential for exhaust system optimization. The acicular mullite (ACM) diesel particulate filter substrate is under continuing development by Dow Automotive. ACM is made up of long mullite crystals which intersect to form filter wall framework and protrude from the wall surface into the DPF channels. ACM filters have been demonstrated to effectively remove diesel exhaust particles while maintaining relatively low backpressure. Modeling approaches developed for more conventional ceramic filter materials, such as silicon carbide and cordierite, have been difficult to apply to ACM because of properties arising from its unique microstructure. Penetration of soot into the high-porosity region of projecting crystal structures leads to a somewhat extended depth filtration mode, but with less dramatic increases in pressure drop than are normally observed during depth filtration in cordierite or silicon carbide filters. Another consequence is greater contact between the soot and solid surfaces, which may enhance the action of some catalyst coatings in filter regeneration. The projecting crystals appear to provide a two-fold benefit for maintaining low backpressures during filter loading: they help prevent soot from being forced into the throats of pores in the lower porosity region of the filter wall, and they also tend to support the forming filter cake, resulting in lower average cake density and higher permeability. Other simulations suggest that soot deposits may also tend to form at the tips of projecting crystals due to the axial velocity component of exhaust moving down the filter inlet channel. Soot mass collected in this way would have a smaller impact on backpressure than soot forced into the flow restrictions deeper in the porous wall structure. This project has focused on the development of computational, analytical, and experimental techniques that are generally applicable to a wide variety of exhaust aftertreatment technologies. By helping to develop improved fundamental understanding pore-scale phenomena affecting filtration, soot oxidation, and NOX abatement, this cooperative research and development agreement (CRADA) has also assisted Dow Automotive in continuing development and commercialization of the ACM filter substrate. Over the course of this research project, ACM filters were successfully deployed on the Audi R10 TDI racecar which won the 24 Hours of LeMans endurance race in 2006, 2007, and 2008; and the 12 Hours of Sebring endurance race in 2006 and 2007. It would not have been possible for the R10 to compete in these traditionally gasoline-dominated events without reliable and effective exhaust particulate filtration. These successes demonstrated not only the performance of automotive diesel engines, but the efficacy of DPF technology as it was being deployed around the world to meet new emissions standards on consumer vehicles. During the course of this CRADA project, Dow Automotive commercialized their ACM DPF technology under the AERIFYTM DPF brand.

Stewart, Mark L.; Gallant, Thomas R.; Kim, Do Heui; Maupin, Gary D.; Zelenyuk, Alla

2010-08-01T23:59:59.000Z

390

U.S. and Canada Sign Agreement to Enhance Collaboration in Civilian...  

Office of Environmental Management (EM)

U.S. and Canada Sign Agreement to Enhance Collaboration in Civilian Nuclear Energy Research and Development U.S. and Canada Sign Agreement to Enhance Collaboration in Civilian...

391

Development and properties of crystalline silicotitanate (CST) ion exchangers for radioactive waste applications  

SciTech Connect (OSTI)

Crystalline silicotitanates (CSTs) are a new class of ion exchangers that were jointly invented by researchers at Sandia National Laboratories and Texas A&M University. One particular CST, known as TAM-5, is remarkable for its ability to separate parts-per-million concentrations of cesium from highly alkaline solutions (pH> 14) containing high sodium concentrations (>5M). It is also highly effective for removing cesium from neutral and acidic solutions, and for removing strontium from basic and neutral solutions. Cesium isotopes are fission products that account for a large portion of the radioactivity in waste streams generated during weapons material production. Tests performed at numerous locations with early lab-scale TAM-5 samples established the material as a leading candidate for treating radioactive waste volumes such as those found at the Hanford site in Washington. Thus Sandia developed a Cooperative Research and Development Agreement (CRADA) partnership with UOP, a world leader in developing, commercializing, and supplying adsorbents and associated process technology to commercialize and further develop the material. CSTs are now commercially available from UOP in a powder (UOP IONSIV{reg_sign} IE-910 ion exchanger) and granular form suitable for column ion exchange operations (UOP IONSIV{reg_sign} IE-911 ion exchanger). These materials exhibit a high capacity for cesium in a wide variety of solutions of interest to the Department of Energy, and they are chemically, thermally, and radiation stable. They have performed well in tests at numerous sites with actual radioactive waste solutions, and are being demonstrated in the 100,000 liter Cesium Removal Demonstration taking place at Oak Ridge National Laboratory with Melton Valley Storage Tank waste. It has been estimated that applying CSTs to the Hanford cleanup alone will result in a savings of more than $300 million over baseline technologies.

Miller, J.E.; Brown, N.E.

1997-04-01T23:59:59.000Z

392

Materials-Enabled High-Efficiency Diesel Engines (CRADA with Caterpillar) |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of EnergyDevelopment AccidentEnergy Objective:11Department of Energy

393

Enhancing regional security agreements through cooperative monitoring  

SciTech Connect (OSTI)

This paper proposes that strengthening regional capabilities for formulating and implementing arms control and confidence-building measures is a tangible method of enhancing regional security. It discusses the importance of developing a regional infrastructure for arms control and confidence building and elucidates the role of technology in facilitating regional arms control and confidence-building agreements. In addition, it identifies numerous applications for regional cooperative monitoring in the areas of arms control, resource management, international commerce and disaster response. The Cooperative Monitoring Center at Sandia National Laboratories, whose aim is to help individual countries and regions acquire the tools they need to develop their own solutions to regional problems, is discussed briefly. The paper ends with recommendations for establishing regional cooperative monitoring centers.

Pregenzer, A.L.

1995-05-01T23:59:59.000Z

394

Bipolar plate materials in molten carbonate fuel cells. Final CRADA report.  

SciTech Connect (OSTI)

Advantages of implementation of power plants based on electrochemical reactions are successfully demonstrated in the USA and Japan. One of the msot promising types of fuel cells (FC) is a type of high temperature fuel cells. At present, thanks to the efforts of the leading countries that develop fuel cell technologies power plants on the basis of molten carbonate fuel cells (MCFC) and solid oxide fuel cells (SOFC) are really close to commercialization. One of the problems that are to be solved for practical implementation of MCFC and SOFC is a problem of corrosion of metal components of stacks that are assembled of a number of fuel cells. One of the major components of MCFC and SOFC stacks is a bipolar separator plate (BSP) that performs several functions - it is separation of reactant gas flows sealing of the joints between fuel cells, and current collection from the surface of electrodes. The goal of Task 1 of the project is to develop new cost-effective nickel coatings for the Russian 20X23H18 steel for an MCFC bipolar separator plate using technological processes usually implemented to apply corrosion stable coatings onto the metal parts for products in the defense. There was planned the research on production of nickel coatings using different methods, first of all the galvanic one and the explosion cladding one. As a result of the works, 0.4 x 712 x 1296 mm plates coated with nickel on one side were to be made and passed to ANL. A line of 4 galvanic baths 600 liters was to be built for the galvanic coating applications. The goal of Task 2 of the project is the development of a new material of an MCFC bipolar separator plate with an upgraded corrosion stability, and development of a technology to produce cold roll sheets of this material the sizes of which will be 0.8 x 712x 1296 mm. As a result of these works, a pilot batch of the rolled material in sheets 0.8 x 712 x 1296 mm in size is to be made (in accordance with the norms and standards of the Russian metallurgical industry) and supplied to the partner for tests in a stack of fuel cells. A feasibility study on the cost of the Russian material for a BSP is to be done on Tasks 1, 2 in case the annual order makes up 400,000 sheets. The goal of Task 3 of the project is to research on possible implementation of cermet compositions on the basis of LiAlO{sub 2}, TiN, B{sub 4}C, ceramics with Ni and Ni-Mo binders. BaCeO{sub 3} conductive ceramics with metal binders of Ni, Ni-Cr etc. were also planned to be studied. As a result of these works, a pilot batch of samples is to be made and passed to FCE for tests. The goal of Task 4 of the Project is development of a new alloy or alloys with a ceramic coating that will have upgraded corrosion stability in operation within a SOFC. A new alloy was to be worked out by the way of modification of compositions of industrial alloys. Ceramic coatings are to be applied onto ferrite steel produced serially by iron and steel industry of Russia as sheet iron.

Krumpelt, M.

2004-06-01T23:59:59.000Z

395

PATENT AND TECHNOLOGY EXCLUSIVE LICENSE AGREEMENT SHORT FORM This AGREEMENT ("AGREEMENT") is made on this _______ day of _______________, 20____, (the  

E-Print Network [OSTI]

PATENT AND TECHNOLOGY EXCLUSIVE LICENSE AGREEMENT SHORT FORM This AGREEMENT ("AGREEMENT") is made, and __________ a _____ corporation having a principal place of business located at ___________ ("LICENSEE"). BSU owns certain PATENT inventions and discoveries listed on Exhibit I and covered by PATENT RIGHTS and/or TECHNOLOGY RIGHTS within

Barrash, Warren

396

Scaleable production and separation of fermentation-derived acetic acid. Final CRADA report.  

SciTech Connect (OSTI)

Half of U.S. acetic acid production is used in manufacturing vinyl acetate monomer (VAM) and is economical only in very large production plants. Nearly 80% of the VAM is produced by methanol carbonylation, which requires high temperatures and exotic construction materials and is energy intensive. Fermentation-derived acetic acid production allows for small-scale production at low temperatures, significantly reducing the energy requirement of the process. The goal of the project is to develop a scaleable production and separation process for fermentation-derived acetic acid. Synthesis gas (syngas) will be fermented to acetic acid, and the fermentation broth will be continuously neutralized with ammonia. The acetic acid product will be recovered from the ammonium acid broth using vapor-based membrane separation technology. The process is summarized in Figure 1. The two technical challenges to success are selecting and developing (1) microbial strains that efficiently ferment syngas to acetic acid in high salt environments and (2) membranes that efficiently separate ammonia from the acetic acid/water mixture and are stable at high enough temperature to facilitate high thermal cracking of the ammonium acetate salt. Fermentation - Microbial strains were procured from a variety of public culture collections (Table 1). Strains were incubated and grown in the presence of the ammonium acetate product and the fastest growing cultures were selected and incubated at higher product concentrations. An example of the performance of a selected culture is shown in Figure 2. Separations - Several membranes were considered. Testing was performed on a new product line produced by Sulzer Chemtech (Germany). These are tubular ceramic membranes with weak acid functionality (see Figure 3). The following results were observed: (1) The membranes were relatively fragile in a laboratory setting; (2) Thermally stable {at} 130 C in hot organic acids; (3) Acetic acid rejection > 99%; and (4) Moderate ammonia flux. The advantages of producing acetic acid by fermentation include its appropriateness for small-scale production, lower cost feedstocks, low energy membrane-based purification, and lower temperature and pressure requirements. Potential energy savings of using fermentation are estimated to be approximately 14 trillion Btu by 2020 from a reduction in natural gas use. Decreased transportation needs with regional plants will eliminate approximately 200 million gallons of diesel consumption, for combined savings of 45 trillion Btu. If the fermentation process captures new acetic acid production, savings could include an additional 5 trillion Btu from production and 7 trillion Btu from transportation energy.

Snyder, S. W.; Energy Systems

2010-02-08T23:59:59.000Z

397

Predictive Engineering Tools for Injection-Molded Long-Carbon-Fiber Thermoplastic Composites - FY13 Third Quarterly Report  

SciTech Connect (OSTI)

This quarterly report summarizes the status for the project planning to obtain all the approvals required for a Cooperative Research and Development Agreement (CRADA) with Autodesk, Inc., Toyota Motor Engineering and Manufacturing North America (Toyota), and Magna Exterior and Interiors Corporation (Magna). The CRADA documents have been processed by PNNL Legal Services that is also coordinating the revision effort with the industrial parties to address DOEs comments.

Nguyen, Ba Nghiep; Simmons, Kevin L.

2013-08-06T23:59:59.000Z

398

Heart pathology determination from electrocardiogram signals by application of deterministic chaos mathematics. CRADA final report  

SciTech Connect (OSTI)

It is well known that the electrical signals generated by the heart exhibit nonlinear, chaotic dynamics. A number of heart pathologies alter heartbeat dynamics and/or the electrical properties of the heart, which, in turn, alter electrocardiogram signals. Electrocardiogram techniques in common use for diagnosing pathologies have limited sensitivity and specificity. This leads to a relatively high misdiagnosis rate for ventricular fibrillation. It is also known that the linear analysis tools utilized (such as fast Fourier transforms and linear statistics) are limited in their ability to find subtle changes or characteristic signatures in nonlinear chaotic electrocardiogram signals. In contrast, the authors` research indicates that chaotic time-series analysis tools that they have developed allow quantification of the nonlinear nature of dynamic systems in the form of nonlinear statistics, and also enable characteristic signatures to be identified. The goal of this project is to modify these tools to increase and enhance the medically useful information obtained from electrocardiogram signals through the application of chaotic time series analysis tools. In the one year of the project, the tools have been extended to enhance the capabilities for detecting ventricular fibrillation. Chaotic time-series analysis provides a means to increase sensitivity in detecting general heart dynamics. Oak Ridge National Laboratory specialists have worked with Physio-Control and their medical collaborators to extend the capabilities of state-of-the-art electrocardiogram systems and interpretation of results.

Clapp, N.E.; Hively, L.M. [Oak Ridge National Lab., TN (United States); Stickney, R.E. [Physio-Control Corp., Redmond, WA (United States)

1999-03-01T23:59:59.000Z

399

NERSC Signs Supercomputing Agreement with Cray  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Signs Supercomputing Agreement with Cray NERSC Signs Supercomputing Agreement with Cray June 27, 2012 NERSC Contact: Linda Vu, lvu@lbl.gov, +1 510 495 2402 Cray Media: Nick Davis...

400

COLUMBIA RIVER TREATY ENTITY AGREEMENT ON THE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AGREEMENT (10NTSSA) The Bonneville Power Administration (BPA) and the British Columbia Hydro and Power Authority (B.C. Hydro) have signed an agreement relating to the use of...

Note: This page contains sample records for the topic "development agreement crada" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

COLUMBIA RIVER TREATY ENTITY AGREEMENT ON THE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AGREEMENT (09NTSSA) The Bonneville Power Administration @PA) and the British Columbia Hydro and Power Authority (B.C. Hydro) have signed an agreement relating to the use of...

402

COLUMBIA RIVER TREATY ENTITY AGREEMENT ON THE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AGREEMENT (1 1NTSSA) The Bonneville Power Administration (BPA) and the British Columbia Hydro and Power Authority (B.C. Hydro) have signed an agreement relating to the use of...

403

COLUMBIA RIVER TREATY ENTITY AGREEMENT ON THE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AGREEMENT (12NTSSA) The Bonneville Power Administration (BP A) and the British Columbia Hydro and Power Authority (B.C. Hydro) have signed an agreement relating to the use of...

404

Directory of International Agreements and Programs  

E-Print Network [OSTI]

Directory of International Agreements and Programs September 2013 The University of Kansas ................................................................................................................................. V Directory of International Agreement ...................................................................... 45 Appendix E Directory of Semester and Academic Year Study Abroad Sites

405

Search Tool for Leveraged Procurement Agreements  

E-Print Network [OSTI]

Search Tool for Leveraged Procurement Agreements (LPA) Illustrated User Manual #12;2 Search Tool://www.bidsync.com #12;3 Search Tool for Leveraged Procurement Agreements (LPA) Rev. 5/5/09 Introduction Bid: Select Search Contracts/Leveraged Procurement Agreements (LPA's). #12;4 Search Tool for Leveraged

406

NIH POLICY MANUAL 1165 Agency Agreements  

E-Print Network [OSTI]

NIH POLICY MANUAL 1165 Agency Agreements Issuing Office: OFM 496-8934 Release Date: 4/3/01 1 responsibilities in Section F2. 2. Filing Instructions: Remove: NIH Manual Chapter 1165, Agency Agreements, dated 3/19/00. Insert: NIH Manual Chapter 1165, Agency Agreements, dated 4/3/01 PLEASE NOTE: For information on: o

Bandettini, Peter A.

407

COLLECTIVE AGREEMENT THE UNIVERSITY OF BRITISH COLUMBIA  

E-Print Network [OSTI]

COLLECTIVE AGREEMENT Between THE UNIVERSITY OF BRITISH COLUMBIA and CANADIAN UNION OF PUBLIC OF BRITISH COLUMBIA #12;COLLECTIVE AGREEMENT Between THE UNIVERSITY OF BRITISH COLUMBIA and CANADIAN UNION) THE UNIVERSITY OF BRITISH COLUMBIA #12;COLLECTIVE AGREEMENT Between THE UNIVERSITY OF BRITISH COLUMBIA

Michelson, David G.

408

TELEWORK RENEWAL AGREEMENT The telework agreement between ______ (hereinafter referred to as "Employee"),  

E-Print Network [OSTI]

TELEWORK RENEWAL AGREEMENT The telework agreement between and conditions originally agreed upon shall remain in effect for the renewal period. The responsibilities

Adali, Tulay

409

FETC/EPRI BIOMASS COFIRING COOPERATIVE AGREEMENT  

SciTech Connect (OSTI)

During April 1 st , 1998 to June 31 st , 1998, significant work was done in preparation for a series of test involving cofiring at power plants. A biomass material handling system was designed for the Seward testing, a gasification system was designed for the Allen Fossil Plant, and a test program plan was developed for testing at NIPSCO?s Bailly Station. Also completed this quarter was a cyclone combustion model that provides a color visual representation of estimated temperatures within a plant. This report summarizes the activities during the second quarter in 1998 of the FETC/EPRI Biomass Cofiring Cooperative Agreement. It focuses upon reporting the results of testing in order to highlight the progress at utilities.

D. TILLMAN; E. HUGHES

1998-08-01T23:59:59.000Z

410

Novel enabling technologies of gene isolation and plant transformation for improved crop protection  

E-Print Network [OSTI]

CRADA Final Report v2010 Aug 24 Date: February Tamas Torok, Ph.D. CRADA No. UFCRA006535 LBNL software developed under the CRADA: N/A A final abstract

Torok, Tamas

2014-01-01T23:59:59.000Z

411

CRADA Final Report For CRADA NO. CR-12-006 [Operation and Testing of an SO{sub 2}-depolarized Electrolyzer (SDE) for the Purpose of Hydrogen and Sulfuric Acid Production  

SciTech Connect (OSTI)

Over the past several years, Savannah River National Laboratory (SRNL) has led a team of collaborators under the Department of Energys (DOE) nuclear hydrogen production program to develop the Hybrid Sulfur (HyS) Process. HyS is a 2-step water-splitting process consisting of high temperature decomposition of sulfuric acid to generate SO{sub 2}, followed by the electrolysis of aqueous SO{sub 2} to generate hydrogen and sulfuric acid. The latter is fed back into the high temperature reactor. SRNL designed and built an SO{sub 2}-depolarized electrolyzer (SDE) and a test facility. Over 40 SDEs were tested using different catalysts, membranes and other components. SRNL demonstrated that an SDE could be operated continuously for approximately 200 hours under certain conditions without buildup of sulfur at the SDEs cathode, thus solving a key technical problem with SDE technology. Air Products and Chemicals, Inc. (APCI) is a major supplier of hydrogen production systems, and they have proprietary technology that could benefit from the SDE developed by SRNS, or some improved version thereof. However, to demonstrate that SRNLs SDE is a truly viable approach to the electrolyzer design, continuous operation for far greater periods of time than 200 hours must be demonstrated, and the electrolyzer must be scaled up to greater hydrogen production capacities. SRNL and Air Products entered into a Cooperative Research and Development Agreement with the objective of demonstrating the effectiveness of the SDE for hydrogen and sulfuric acid production and to demonstrate long-term continuous operation so as to dramatically increase the confidence in the SDE design for commercial operation. SRNL prepared a detailed technical report documenting previous SDE development, including the current SDE design and operating conditions that led to the 200-hour sulfurfree testing. SRNL refurbished its single cell SDE test facility and qualified the equipment for continuous operation. A new membrane electrode assembly (MEA) was fabricated and installed in the single cell electrolyzer (60 cm{sup 2} active cell area). Shakedown testing was conducted, and several modifications were made to the test facility equipment. Seven different MEAs were used during testing. Beginning on May 20, 2013, SRNL was able to test the SDE continuously for 1200 hours, including 1000 hours under power to generate hydrogen at an average rate of 10.8 liters per hour. The SDE was not removed or repaired during the 50-day test and was successfully restarted after each shutdown. The test was intentionally stopped after 1200 hours (1000 hours of hydrogen production) due to funding constraints. Post-test examination of the MEA using Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Microanalysis (EDAX) showed no elemental sulfur deposits or sulfur layer inside the cell, thus successfully achieving the test goals. The results demonstrated that the SDE could be operated for extended periods without major performance degradation or the buildup of sulfur inside the MEA. Air Products conducted an assessment of the economic viability of the SDE based on the as tested design. The results indicated that the SDE faces significant economic obstacles in its current state. Further development and scale-up are necessary before the SDE is ready for commercialization.

Summers, W. A.; Colon-Mercado, H. R.; Steimke, J. L.; Zahn, Steffen

2014-02-24T23:59:59.000Z

412

REVIEW OF THE NEGOTIATION OF THE MODEL PROTOCOL ADDITIONAL TO THE AGREEMENT(S) BETWEEN STATE(S) AND THE INTERNATIONAL ATOMIC ENERGY AGENCY FOR THE APPLICATION OF SAFEGUARDS, INFCIRC/540 (Corrected) VOLUME III/III, IAEA COMMITTEE 24, DEVELOPMENT OF INFCIRC/540, ARTICLE-BY-ARTICLE REVIEW (1996-1997).  

SciTech Connect (OSTI)

In this section of the report, the development of INFCIRC/540 is traced by a compilation of citations from the IAEA documents presented to the Board of Governors and the records of discussions in the Board that took place prior to the establishment of Committee 24 as well as the documents and discussions of that committee. The evolution of the text is presented separately for each article or, for the more complex articles, for each paragraph or group of paragraphs of the article. This section covers all articles, including those involving no issues. Background, issues, interpretations and conclusions, which were addressed in Volumes I, II, and III are not repeated here. The comments by states that are included are generally limited to objections and suggested changes. Requests for clarification or elaboration have been omitted, although it is recognized that such comments were sometimes veiled objections.

Rosenthal, M.D.; Houck, F.

2010-01-01T23:59:59.000Z

413

HTS Solutions for a New Dimension in Power Superconductivity for Electric Systems 2004 Annual DOE Peer Review  

E-Print Network [OSTI]

­ CRADA with ORNL on High Voltage Development, CRADAs with LANL and ANL dependent on funding $12.2M total

414

Title 25 USC 3504 Leases, business agreements, and rights-of...  

Open Energy Info (EERE)

Leases, business agreements, and rights-of-way involving energy development or transmission Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document-...

415

agreements: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Storage, Conversion and Utilization Websites Summary: 1 External Research Funding Agreements University Policy No: RH8200 Classification: Research Change: Mandated...

416

Cooperative Agreement Awarded to Energy Communities Alliance...  

Energy Savers [EERE]

Energy Communities Alliance to Assist DOE Interface with Local Governments on Cleanup Missions Cooperative Agreement Awarded to Energy Communities Alliance to Assist DOE Interface...

417

Golden Opportunity: Compromise Agreement (2013-SE-1418)  

Broader source: Energy.gov [DOE]

DOE and Golden Opportunity, Inc. entered into a Compromise Agreement to resolve a case involving the distribution in commerce of noncompliant freezers.

418

Haier: Compromise Agreement (2011-SE-1408)  

Broader source: Energy.gov [DOE]

DOE and Haier America Trading, L.L.C., entered into a Compromise Agreement to resolve a case involving the distribution in commerce of noncompliant freezers.

419

Pax Global: Compromise Agreement (2013-SE-1413)  

Broader source: Energy.gov [DOE]

DOE and Pax Global, Inc., entered into a Compromise Agreement to resolve a case involving the distribution in commerce of noncompliant freezers.

420

International reservoir operations agreement helps NW fish &...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

or 503-230-5131 International reservoir operations agreement helps Northwest fish and power Portland, Ore. - The Bonneville Power Administration and the British Columbia...

Note: This page contains sample records for the topic "development agreement crada" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Energy Department Awards Cooperative Agreement to Mississippi...  

Office of Environmental Management (EM)

today awarded a cooperative agreement to Mississippi State University, Institute for Clean Energy Technology (MSU-ICET), to continue research efforts in the evaluation of...

422

CRAFTER LICENSE AGREEMENT This Agreement shall serve as a legal and binding Agreement by and between Texas  

E-Print Network [OSTI]

in the form prescribed by University ("Official Label") label to each Licensed Article. 6. ROYALTY PAYMENTS/REPORTS. (a) Royalty Payments. Upon execution of this Agreement, and upon renewal of this Agreement as set forth in Paragraph 3 above, Licensee shall pay to University a royalty fee in the amount of two hundred

423

g:\\fpdc\\contracts unit\\consultant selection and agreement forms\\consultant agreements\\owner consultant agreement final pdc.doc Page 1 of 24  

E-Print Network [OSTI]

\\owner consultant agreement final pdc.doc Page 1 of 24 MONTANA STATE UNIVERSITY PLANNING, DESIGN & CONSTRUCTION 6TH forms\\consultant agreements\\owner consultant agreement final pdc.doc Page 2 of 24 TABLE OF CONTENTS PART\\consultant selection and agreement forms\\consultant agreements\\owner consultant agreement final pdc.doc Page 3 of 24 1

Dyer, Bill

424

Federal Facility Agreement Annual Progress Report for FY 1998  

SciTech Connect (OSTI)

This FFA Annual Progress Report has been developed to summarize the information for activities performed during the Fiscal Year 1998 (October 1, 1997, to September 30, 1998) and activities planned for Fiscal Year 1999 by U.S. EPA, SCDHEC, and SRS at those units and areas identified for remediation in the Agreement.

Palmer, E.

1999-08-04T23:59:59.000Z

425

Engagement with Australia Active Partnership Agreements  

E-Print Network [OSTI]

Engagement with Australia Active Partnership Agreements: Expired Partnership Agreements: University of Southern Queensland University of Queensland University of Western Australia University of Western Sydney&M University 58 Texas A&M University students studying in Australia Internship ­ 1 Research ­ 1 Short Term

Behmer, Spencer T.

426

Voluntary agreements in the industrial sector in China  

SciTech Connect (OSTI)

China faces a significant challenge in the years ahead to continue to provide essential materials and products for a rapidly-growing economy while addressing pressing environmental concerns. China's industrial sector is heavily dependent on the country's abundant, yet polluting, coal resources. While tremendous energy conservation and environmental protection achievements were realized in the industrial sector in the past, there remains a great gulf between the China's level of energy efficiency and that of the advanced countries of the world. Internationally, significant energy efficiency improvement in the industrial sector has been realized in a number of countries using an innovative policy mechanism called Voluntary Agreements. This paper describes international experience with Voluntary Agreements in the industrial sector as well as the development of a pilot program to test the use of such agreements with two steel mills in Shandong Province, China.

Price, Lynn; Worrell, Ernst; Sinton, Jonathan

2003-03-31T23:59:59.000Z

427

Performance of MicroLink Cells Developed Under Navy STTR: Cooperative Research and Development Final Report, CRADA Number CRD-11-426  

SciTech Connect (OSTI)

Evaluate MicroLink cells as a function of temperature and spectral irradiance following the teams' standard procedures. These measurements will include the standard procedures for evaluating multijunction cells including quantum efficiency measurements and current versus voltage measurements.

Emery, K.

2013-06-01T23:59:59.000Z

428

Exploration of Novel Materials for Development of Next Generation OPV Devices: Cooperative Research and Development Final Report, CRADA Number CRD-10-398  

SciTech Connect (OSTI)

Organic-based solar cells offer the potential for low cost, scalable conversion of solar energy. This project will try to utilize the extensive organic synthetic capabilities of ConocoPhillips to produce novel acceptor and donor materials as well potentially as interface modifiers to produce improved OPV devices with greater efficiency and stability. The synthetic effort will be based on the knowledge base and modeling being done at NREL to identify new candidate materials.

Olson, D.

2012-09-01T23:59:59.000Z

429

Development of CdS/CdTe Tin Film Devices for St. Gobain Coated Glass: Cooperative Research and Development Final Report, CRADA Number CRD-08-317  

SciTech Connect (OSTI)

Research performed at NREL to produce CdS/CdTe devices on St. Gobain coated-glass material to establish a baseline CdS/CdTe device process and determine baseline device performance parameters on St. Gobain material. Performance of these baseline devices compared to similar devices produced by applying the established baseline CdS/CdTe process on alternative St. Gobain coated-glass materials.

Gessert, T.

2012-04-01T23:59:59.000Z

430

EPRI-USDOE COOPERATIVE AGREEMENT: COFIRING BIOMASS WITH COAL  

SciTech Connect (OSTI)

The entire Electric Power Research Institute (EPRI) cofiring program has been in existence of some 9 years. This report presents a summary of the major elements of that program, focusing upon the following questions: (1) In pursuit of increased use of renewable energy in the US economy, why was electricity generation considered the most promising target, and why was cofiring pursued as the most effective near-term technology to use in broadening the use of biomass within the electricity generating arena? (2) What were the unique accomplishments of EPRI before the development of the Cooperative Agreement, which made developing the partnership with EPRI a highly cost-effective approach for USDOE? (3) What were the key accomplishments of the Cooperative Agreement in the development and execution of test and demonstration programs-accomplishments which significantly furthered the process of commercializing cofiring?

David A. Tillman

2001-09-01T23:59:59.000Z

431

CNA: Compromise Agreement (2013-SE-1430)  

Broader source: Energy.gov [DOE]

DOE and CNA International, Inc., d/b/a MC Appliance Corp. entered into a Compromise Agreement to resolve a case involving the distribution in commerce of noncompliant freezers.

432

Expectations for a New Climate Agreement  

E-Print Network [OSTI]

With the objective of stimulating timely and open discussion of the current attempt to formulate a new climate agreementto be reached at the 21st meeting of the Conference of Parties (COP-21) in Paris during November of ...

Jacoby, H.D.

433

The Complexity of Agreement Scott Aaronson #  

E-Print Network [OSTI]

The Complexity of Agreement Scott Aaronson # Abstract A celebrated 1976 theorem of Aumann asserts the computations needed for that conversation be performed e#ciently? This paper answers both questions in the a

Aaronson, Scott

434

The Complexity of Agreement # Scott Aaronson +  

E-Print Network [OSTI]

The Complexity of Agreement # Scott Aaronson + ABSTRACT A celebrated 1976 theorem of Aumann asserts his information and e#ort. Yet according to well­ known theory, such honest disagreement is im

Aaronson, Scott

435

Michigan Technological University Non-Disclosure Agreement  

E-Print Network [OSTI]

Michigan Technological University Non-Disclosure Agreement PARTIES: Michigan Technological mutually agree as follows: 1. Michigan Technological University shall be: Disclosing Party Receiving Party University 1400 Townsend Drive Houghton, MI 49931 Company Name and address In consideration of the mutual

436

Argument licensing and agreement in Zulu  

E-Print Network [OSTI]

In this thesis, I examine some core grammatical phenomena - case licensing, agreement, the EPP - through the lens of the Bantu language Zulu. Zulu has a number of remarkable and puzzling properties whose analysis affords ...

Halpert, Claire

2012-01-01T23:59:59.000Z

437

Quick Guide: Power Purchase Agreements (Fact Sheet)  

SciTech Connect (OSTI)

Introduction to Federal power purchase agreements (PPAs), including available FEMP services and technical assistance as well as questions to ask when evaluating PPAs for a Federal renewable energy project.

Not Available

2011-07-01T23:59:59.000Z

438

Quick Guide: Power Purchase Agreements (Fact Sheet)  

SciTech Connect (OSTI)

Introduction to Federal power purchase agreements (PPAs), including available FEMP services and technical assistance as well as questions to ask when evaluating PPAs for a Federal renewable energy project.

Not Available

2010-06-01T23:59:59.000Z

439

COLLECTIVE AGREEMENT THE UNIVERSITY OF BRITISH COLUMBIA  

E-Print Network [OSTI]

Between THE UNIVERSITY OF BRITISH COLUMBIA and CANADIAN UNION OF PUBLIC EMPLOYEES Local 2278 September 1 __________________________________________________________________ THE UNIVERSITY OF BRITISH COLUMBIA #12;COLLECTIVE AGREEMENT Between THE UNIVERSITY OF BRITISH COLUMBIA

Michelson, David G.

440

ADULT AGREEMENT OF CONDUCT University of Florida -Youth Development Programs  

E-Print Network [OSTI]

abuse, actions or inappropriate language. 4. Represent the educational mission of the University. Not threaten or abuse any participant by verbal, physical, sexual or emotional means. And, if I observe abuse to provide appropriate animal care. 12. Operate machinery and equipment in a safe and responsible manner. 13

Jawitz, James W.

Note: This page contains sample records for the topic "development agreement crada" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

NREL: Technology Transfer - Cooperative Research and Development Agreements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F. Geisz,Aerial photo of the U.S.Cooperative

442

Advance Funding and Development Agreement: Plains & Eastern Clean Line  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South ValleyASGovLtr.pdfAboutSheet, April 2014 |EnergyTransmission Project

443

DOE Cooperative Research and Development Agreements | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSof Energy DOE Challenge HomeEnergy The U.S.DepartmentTo

444

Air Force Generic Development Agreement | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasil JumpAerowatt EnergiesFacility |InformationEnhanced

445

Clock Agreement Among Parallel Supercomputer Nodes  

SciTech Connect (OSTI)

This dataset presents measurements that quantify the clock synchronization time-agreement characteristics among several high performance computers including the current world's most powerful machine for open science, the U.S. Department of Energy's Titan machine sited at Oak Ridge National Laboratory. These ultra-fast machines derive much of their computational capability from extreme node counts (over 18000 nodes in the case of the Titan machine). Time-agreement is commonly utilized by parallel programming applications and tools, distributed programming application and tools, and system software. Our time-agreement measurements detail the degree of time variance between nodes and how that variance changes over time. The dataset includes empirical measurements and the accompanying spreadsheets.

Jones, Terry R.; Koenig, Gregory A.

2014-04-30T23:59:59.000Z

446

Clock Agreement Among Parallel Supercomputer Nodes  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

This dataset presents measurements that quantify the clock synchronization time-agreement characteristics among several high performance computers including the current world's most powerful machine for open science, the U.S. Department of Energy's Titan machine sited at Oak Ridge National Laboratory. These ultra-fast machines derive much of their computational capability from extreme node counts (over 18000 nodes in the case of the Titan machine). Time-agreement is commonly utilized by parallel programming applications and tools, distributed programming application and tools, and system software. Our time-agreement measurements detail the degree of time variance between nodes and how that variance changes over time. The dataset includes empirical measurements and the accompanying spreadsheets.

Jones, Terry R.; Koenig, Gregory A.

447

Engineering Service Products: The Case of Mass-Customizing Service Agreements for Heavy Equipment  

E-Print Network [OSTI]

Engineering Service Products: The Case of Mass- Customizing Service Agreements for Heavy Equipment develop a reference model of service agreement engineering to help mass-customize and evaluate service. The Problem of Engineering Service Products for Manufacturers Manufacturers of heavy industry are increasingly

Hsu, Cheng

448

TO: Persons Joining the Fermilab (FRA) Staff SUBJECT: Inventions and Employee Patent Agreement  

E-Print Network [OSTI]

TO: Persons Joining the Fermilab (FRA) Staff SUBJECT: Inventions and Employee Patent Agreement in royalties received from patentable inventions to which FRA, LLC has taken title. As provided in FRA, LLC to sign a patent agreement. The attached form has been developed to comply with this requirement

Quigg, Chris

449

AGREEMENT FOR MOBILE TECHNOLOGY ACCESS AND ALLOWANCE  

E-Print Network [OSTI]

AGREEMENT FOR MOBILE TECHNOLOGY ACCESS AND ALLOWANCE My signature on the "Mobile Technology Access and conditions identified in the Access to Mobile Technology and the Payment Options for Mobile Technology policies [http://hr.uoregon.edu/policy/MobileTechnologyDevice.html]. 2. I understand that that I must

Oregon, University of

450

COLLECTIVE AGREEMENT THE UNIVERSITY OF WINNIPEG  

E-Print Network [OSTI]

-New Year's Break 85 Proper Care of Research/Teaching Animals During a Strike or Lockout 87 Employment, lockouts, waste, avoidable expenses, and unnecessary delays. 1.2 While this Collective Agreement) The Employer shall not declare or cause a lockout of the Employees. ARTICLE 2 DEFINITION AND SCOPE 2.1 The term

Martin, Jeff

451

Scalable Byzantine Agreement Clifford Scott Lewis  

E-Print Network [OSTI]

.g. I3 [23]) and distributed storage (e.g. FARSITE [1]). Distributed computation is an integral partScalable Byzantine Agreement Clifford Scott Lewis Jared Saia Abstract This paper gives a scalable) networks have emerged for a wide range of applications including data-sharing (e.g. Napster [32], Gnutella

Saia, Jared

452

COLLECTIVE AGREEMENT MEMORIAL UNIVERSITY OF NEWFOUNDLAND  

E-Print Network [OSTI]

OF PUBLIC AND PRIVATE EMPLOYEES (LOCAL 7803 and 1804) On Behalf of Campus Enforcement and Patrol Personnel Action 10 18. Personal Files 11 19. Seniority 11 20. Sick Leave 13 21. Other Leaves 15 22. Resignations Evaluation 37 45. Duration of Agreement 39 46. Criminal or Legal Liability 39 Schedule A - Rates of Pay 41

Warkentin, Ian G.

453

Access Agreement Principal Contact for Enquiries  

E-Print Network [OSTI]

Access Agreement 2014/15 Contents 1) Introduction 3 2) Fees, Student Numbers and Fee Income 4 3, strong community spirit and excellent student life. Observing Keele's founding ethos of 'the pursuit of education for individuals, communities and society and equality of opportunity. 1.2 Our University Mission

Stell, John

454

VEHICLE USAGE AGREEMENT DEPARTMENT OF BIOLOGICAL SCIENCE  

E-Print Network [OSTI]

VEHICLE USAGE AGREEMENT DEPARTMENT OF BIOLOGICAL SCIENCE All drivers of vehicles must certify to the following: 1. I certify that I have a valid driver's license appropriate for the vehicle type and will abide belts. 2. I have read and understand the vehicle operating policies and procedures as defined

Ronquist, Fredrik

455

Internship Student Learning Agreement Educational Psychology 3861  

E-Print Network [OSTI]

Internship Student Learning Agreement Educational Psychology 3861 A. I understand my receipt of academic credit for the Career Services Internship Program is based on my ability to document university the internship within 60 days of my final paper due date. G. I will not register for or receive concurrent credit

Simons, Jack

456

Internship Student Learning Agreement Educational Psychology 3861  

E-Print Network [OSTI]

Internship Student Learning Agreement Educational Psychology 3861 A. I understand my receipt of academic credit for the Career Services Internship Program is based on my ability to document university complete the internship within 60 days of my final paper due date. G. I will not register for or receive

Tipple, Brett

457

Interim Process Agreement Proposal June 3, 2003  

E-Print Network [OSTI]

Interim Process Agreement Proposal June 3, 2003 Overview For the near term, the Columbia Basin Fish) return to the planning and budget management process patterned after the 1996-2001 Bonneville Power implementation of the Fish and Wildlife Program (Program) through a quarterly review process, 3) establishing

458

Durability of Diesel Engine Particulate Filters (Agreement ID...  

Broader source: Energy.gov (indexed) [DOE]

Durability of Diesel Engine Particulate Filters (Agreement ID:10461) Durability of Diesel Engine Particulate Filters (Agreement ID:10461) 2013 DOE Hydrogen and Fuel Cells Program...

459

Enhanced Ethanol Engine And Vehicle Efficiency (Agreement 13425...  

Broader source: Energy.gov (indexed) [DOE]

Enhanced Ethanol Engine And Vehicle Efficiency (Agreement 13425) Enhanced Ethanol Engine And Vehicle Efficiency (Agreement 13425) Presentation from the U.S. DOE Office of Vehicle...

460

United States and Ukraine Sign Agreement to Improve Security...  

Office of Environmental Management (EM)

Ukraine Sign Agreement to Improve Security of Ukraine's Radioactive Materials United States and Ukraine Sign Agreement to Improve Security of Ukraine's Radioactive Materials May...

Note: This page contains sample records for the topic "development agreement crada" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Near quantitative agreement of model free DFT- MD predictions...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Near quantitative agreement of model free DFT- MD predictions with XAFS observations of the hydration structure of highly Near quantitative agreement of model free DFT- MD...

462

Model Agreement Between Governmental Entity [State or Local Government...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

to Establish a Financing Program Template for loan loss reserve fund agreement. Author: Energy Efficiency and Conservation Block Grant Model Agreement Between Governmental Entity...

463

Energy and Defense Departments Announce Agreement to Enhance...  

Office of Environmental Management (EM)

Agreement to Enhance Cooperation on Clean Energy and Strengthen Energy Security Energy and Defense Departments Announce Agreement to Enhance Cooperation on Clean Energy and...

464

Municipal Bond - Power Purchase Agreement Model Continues to...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Municipal Bond - Power Purchase Agreement Model Continues to Provide Low-Cost Solar Energy Municipal Bond - Power Purchase Agreement Model Continues to Provide Low-Cost Solar...

465

Power Purchase Agreement Checklist for State and Local Governments...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Checklist for State and Local Governments Power Purchase Agreement Checklist for State and Local Governments Provides a detailed guide to power purchase agreements for state and...

466

Enterprise-Wide Agreements | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles » AlternativeUpDrain-WaterDepartmentEnterprise-Wide Agreements

467

Boilerplate Settlement Agreement | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruary 4, 2014BiogasBoilerplate Settlement Agreement

468

Agreement to Mediate | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3-- ------------------------------ChapterJulyDepartment of EnergyAgreement to

469

CRADA (AL-C-2009-02) Final Report: Phase I. Lanthanum-based Start Materials for Hydride Batteries  

SciTech Connect (OSTI)

The purpose of Phase I of this work is to focus on developing a La-based start material for making nickel-metal (lanthanum)-hydride batteries based on our carbothermic-silicon process. The goal is to develop a protocol for the manufacture of (La{sub 1-x}R{sub x})(Ni{sub 1-y}M{sub y})(Si{sub z}), where R is a rare earth metal and M is a non-rare earth metal, to be utilized as the negative electrode in nickel-metal hydride (NiMH) rechargeable batteries.

Gschneidner, Jr., Karl [Ames Laboratory; Schmidt, Frederick [Ames Laboratory] [Ames Laboratory; Frerichs, A.E. [Ames Laboratory] [Ames Laboratory; Ament, Katherine A. [Ames Laboratory] [Ames Laboratory

2013-05-01T23:59:59.000Z

470

Power Purchase Agreement Checklist for State and Local Governments  

SciTech Connect (OSTI)

This fact sheet provides information and guidance on the solar photovoltaic (PV) power purchase agreement (PPA), which is a financing mechanism that state and local government entities can use to acquire clean, renewable energy. It addressed the financial, logistical, and legal questions relevant to implementing a PPA, but we do not examine the technical details?those can be discussed later with the developer/contractor. This fact sheet is written to support decision makers in U.S. state and local governments who are aware of solar PPAs and may have a cursory knowledge of their structure but they still require further information before committing to a particular project.

Cory, K.; Canavan, B.; Koenig, R.

2009-10-01T23:59:59.000Z

471

Transuranic Waste Program Framework Agreement - December Deliverable July 2012  

SciTech Connect (OSTI)

Framework agreement deliverables are: (1) 'DOE/NNSA commits to complete removal of all non-cemented above-ground EM Legacy TRU and newly generated TRU currently-stored at Area G as of October 1, 2011, by no later than June 30, 2014. This inventory of above-ground TRU is defined as 3706 cubic meters of material.' (2) 'DOE commits to the complete removal of all newly generated TRU received in Area G during FY 2012 and 2013 by no later than December 31, 2014.' (3) 'Based on projected funding profiles, DOE/NNSA will develop by December 31, 2012, a schedule, including pacing milestones, for disposition of the below-ground TRU requiring retrieval at Area G.' Objectives are to: (1) restore the 'Core Team' to develop the December, 2012 deliverable; (2) obtain agreement on the strategy for below ground water disposition; and (3) establish timeline for completion of the deliverable. Below Grade Waste Strategy is to: (1) Perform an evaluation on below grade waste currently considered retrievable TRU; (2) Only commit to retrieve waste that must be retrieved; (3) Develop the Deliverable including Pacing Milestones based on planned commitments; (4) Align all Regulatory Documents for Consistency; and (5) answer these 3 primary questions, is the waste TRU; is the waste retrievable, can retrieval cause more harm than benefit?

Jones, Patricia [Los Alamos National Laboratory

2012-07-19T23:59:59.000Z

472

Imperium/Lanzatech Syngas Fermentation Project - Biomass Gasification and Syngas Conditioning for Fermentation Evaluation: Cooperative Research and Development Final Report, CRADA Number CRD-12-474  

SciTech Connect (OSTI)

LanzaTech and NREL will investigate the integration between biomass gasification and LanzaTech's proprietary gas fermentation process to produce ethanol and 2,3-butanediol. Using three feed materials (woody biomass, agricultural residue and herbaceous grass) NREL will produce syngas via steam indirect gasification and syngas conditioning over a range of process relevant operating conditions. The gasification temperature, steam-to-biomass ratio of the biomass feed into the gasifier, and several levels of syngas conditioning (based on temperature) will be varied to produce multiple syngas streams that will be fed directly to 10 liter seed fermenters operating with the Lanzatech organism. The NREL gasification system will then be integrated with LanzaTech's laboratory pilot unit to produce large-scale samples of ethanol and 2,3-butanediol for conversion to fuels and chemicals.

Wilcox, E.

2014-09-01T23:59:59.000Z

473

NREL Support for a Functional Genomics Approach to Investigate Regulation of Phenolic Glycoside: Cooperative Research and Development Final Report, CRADA number CRD-07-00218  

SciTech Connect (OSTI)

NREL and MTU collaborated on a proposal 'A Functional Genomics Approach to Investigate Regulation of Phenolic Glycoside Metabolism in Populus' funded by the National Science Foundation.

Davis, M.

2010-07-01T23:59:59.000Z

474

Spectroscopic Studies of Photosynthetic Systems and Their Application in Photovoltaic Devices - Equipment Only: Cooperative Research and Development Final Report, CRADA Number CRD-06-175  

SciTech Connect (OSTI)

Spectral hole-burning (SHB) and single photosynthetic complex spectroscopy (SPCS) will be used to study the excitonic structure and excitation energy transfer (EET) processes of several photosynthetic protein complexes at low temperatures. The combination of SHB on bulk samples and SPCS is a powerful frequency domain approach for obtaining data that will address a number of issues that are key to understanding excitonic structure and energy transfer dynamics. The long-term goal is to reach a better understanding of the ultrafast solar energy driven primary events of photosynthesis as they occur in higher plants, cyanobacteria, purple bacteria, and green algae. A better understanding of the EET and charge separation (CS) processes taking place in photosynthetic complexes is of great interest, since photosynthetic complexes might offer attractive architectures for a future generation of circuitry in which proteins are crystallized.

Seibert, M.

2014-09-01T23:59:59.000Z

475

Application of Vacancy Injection Gettering to Improve Efficiency of Solar Cells Produced by Millinet Solar: Cooperative Research and Development Final Report, CRADA Number CRD-10-417  

SciTech Connect (OSTI)

NREL will apply vacancy injection gettering (VIG) to Millinet solar cells and evaluate the performance improvement produced by this process step. The VIG will be done in conjunction with the formation of a back, Al-alloyed, contact. Millinet Solar will provide NREL with cells having AR coating on the front side and screen-printed Al on the backside, which will be processed in the NREL's optical furnace to perform simultaneous VIG and back contact alloying with deep BSF. These cells will be sent back to Millinet solar for a screen-printed front/side contact mask, followed by a second firing at NREL. Detailed analyses will be performed to determine improvements due to BSF and VIG.

Sopori, B.

2012-07-01T23:59:59.000Z

476

Wind Farm Monitoring at Lake Benton II Wind Power Project - Equipment Only: Cooperative Research and Development Final Report, CRADA Number CRD-08-275  

SciTech Connect (OSTI)

Long-term, high-resolution wind turbine and wind power plant output data are important to assess the impact of wind power on grid operations and to derive meaningful statistics for better understanding of the variability nature of wind power. These data are used for many research and analyses activities consistent with the Wind Program mission: Establish a database of long-term wind power similar to other long-term renewable energy resource databases (e.g. solar irradiance and hydrology); produce meaningful statistics about long-term variation of wind power, spatial and temporal diversity of wind power, and the correlation of wind power, other renewable energy resources, and utility load; provide high quality, realistic wind power output data for system operations impact studies and wind plant and forecasting model validation.

Gevorgian, V.

2014-06-01T23:59:59.000Z

477

Dynamometer Testing of Samsung 2.5MW Drivetrain: Cooperative Research and Development Final Report, CRADA Number CRD-08-311  

SciTech Connect (OSTI)

SHI's prototype 2.5 MW wind turbine drivetrain was tested at the NWTC 2.5 MW dynamometer test facility over the course of 4 months between December 2009 and March 2010. This successful testing campaign allowed SHI to validate performance, safety, control tuning, and reliability in a controlled environment before moving to full-scale testing and subsequent introduction of a commercial product into the American market.

Wallen, R.

2011-02-01T23:59:59.000Z

478

Incorporation of Renewable Energy Technologies at Anheuser-Busch: Cooperative Research and Development Final Report, CRADA number CRD-07-00225  

SciTech Connect (OSTI)

NREL will investigate technologies that will improve fuel economy while maintaining or improving emissions in comparison to those associated with currently implemented vehicle technology.

Walkowicz, K.

2010-07-01T23:59:59.000Z

479

Evaluation of Lifetime of High Efficiency Organic Photovoltaic Devices: Cooperative Research and Development Final Report, CRADA Number CRD-10-379  

SciTech Connect (OSTI)

As a part of this joint work, Solarmer and NREL will investigate the lifetime and stability of Organic Photovoltaic Devices based on Solarmer high efficiency active layer materials.

Olson, D.

2013-04-01T23:59:59.000Z

480

Optimization of Sodar Wind Profile Measurements in Low-Humidity Climates at High Altitudes: Cooperative Research and Development Final Report, CRADA number CRD-07-00246  

SciTech Connect (OSTI)

The assessment of potential wind energy sites in the region of the U.S. from the Rocky Mountains westward.

Kelley, N.

2010-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "development agreement crada" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Investigations of the in Planta Expression of Active Cellobiohydrolase I: Cooperative Research and Development Final Report, CRADA Number CRD-07-219  

SciTech Connect (OSTI)

It was the purpose of this project to determine if cellulases produced in transgenic plants could effectively be utilized in the production of ethanol and other feedstock chemicals from lignocellulosic substrates.

Himmel, M.

2011-02-01T23:59:59.000Z

482

Identification of Catalysts and Materials for a High-Energy Density Biochemical Fuel Cell: Cooperative Research and Development Final Report, CRADA Number CRD-09-345  

SciTech Connect (OSTI)

The proposed research attempted to identify novel biochemical catalysts, catalyst support materials, high-efficiency electron transfer agents between catalyst active sites and electrodes, and solid-phase electrolytes in order to maximize the current density of biochemical fuel cells that utilize various alcohols as substrates.

Ghirardi, M.; Svedruzic, D.

2013-07-01T23:59:59.000Z

483

New Approaches for Passivation of Crystalline and Amorphous Silicon: Cooperative Research and Development Final Report, CRADA Number CRD-09-351  

SciTech Connect (OSTI)

New approaches of passivating crystalline, multicrystalline, and amorphous silicon will be explored. These will include the use of aqueous solution of KCN and a proprietary composition formulated by Mallinckrodt Baker, Inc. The surface passivation will be compared with that provided by an iodine-ethanol solution, and bulk passivation will be compared with that of H-passivation obtained by silicon nitride, in a fire-through process.

Sopori, B.

2012-09-01T23:59:59.000Z

484

Carbon Nanosheets and Nanostructured Electrodes in Organic Photovoltaic Devices: Cooperative Research and Development Final Report, CRADA Number CRD-08-321  

SciTech Connect (OSTI)

Carbon nanosheet thin films were employed as nanostructured electrodes in organic solar cells. Due to the nanostructured texture of the carbon nanosheet electrodes, there was an increase in performance over standard ITO electrodes with very thick active layers. ZnO deposited via atomic layer deposition (ALD) was used as a hole blocking layer to provide for carrier selectivity of the carbon nanosheets.

Olson, D.

2012-04-01T23:59:59.000Z

485

Investigations into Performance and Lifetime Enhancements of OPV Devices: Cooperative Research and Development Final Report, CRADA Number CRD-08-263  

SciTech Connect (OSTI)

To evaluate Plextronics new additives and derivatives in lithium-ion Battery Applications, Plextronics will provide to NREL, a starting point, including materials and initial data for proof of concept. The central focus of this project is to acertain the nature of the efficacy of the Plextronics additives through physical and electrical characterization, including evaluations of new derivatives, system evaluations on batteries made with Plexcore and to study long term cycling performance differences. The initial focus is to establish Plexcore mode of action to support the commercialization of the first commercial evaluations of Plexcore in Sept. 2013.

Ginley, D.

2014-06-01T23:59:59.000Z

486

Examination of Na-Doped Mo Sputtering for CIGS Devices: Cooperative Research and Development Final Report, CRADA Number CRD-10-375  

SciTech Connect (OSTI)

This work has investigated the use of Na doped Mo (MONA) sputtering targets for use in preparing CIGS devices. The Mo:Na material is doped to about 3% Na by weight, implying that a 40 nm layer on top of the standard Mo contact contains sufficient Na to dope a 2.5 ..mu..m CIGS film. The ability to control Na doping independent of both CIGS processing conditions and adhesion is an important gain for industry and research. Manufacturers gain a route to increased manufacturability and performance, while NREL researchers gain a tightened performance distribution of devices and increased process flexibility. Our immediate partner in this work, the Climax Molybdenum Technology Center, gains validation of their product.

Repins, I.

2012-01-01T23:59:59.000Z

487

Overcoming the Recalcitrance of Cellulosic Biomass by Value Prior to Pulping: Cooperative Research and Development Final Report, CRADA Number CRD-07-221  

SciTech Connect (OSTI)

The Value Prior to Pulping (VPP) project goal was to demonstrate the technical and commercial feasibility of introducing a new value stream into existing pulp and paper mills. Essentially the intent was to transfer the energy content of extracted hemicellulose from electricity and steam generated in the recovery boiler to a liquid transportation fuel. The hemicellulose fraction was extracted prior to pulping, fractionated, or conditioned if necessary, and fermented to ethanol. Commercial adaptation of the process to wood hemicelluloses was a prerequisite for using this less currently valued component available from biomass and wood. These hemicelluloses are predominately glucurono-xylan in hardwoods and galactoglucomannan in softwoods (with a significant softwood component of an arabino-xylan) and will yield fermentation substrates different from cellulose. NREL provided its expertise in the area of fermentation host evaluation using its Zymomonas strains on the CleanTech Partner's (CTP) VPP project. The project was focused on the production of fuel ethanol and acetic acid from hemicellulose streams generated from wood chips of industrially important hardwood and softwood species. NREL was one of four partners whose ethanologen was tested on the hydrolyzed extracts. The use of commercially available enzymes to treat oligomeric sugar extracts was also investigated and coupled with fermentation. Fermentations by NREL were conducted with the Zymomonas mobilis organism with most of the work being performed with the 8b strain. The wood extracts hydrolyzed and/or fermented by NREL were those derived from maple, mixed southern hardwoods, and loblolly pine. An unhydrolyzed variant of the mixed southern hardwood extract possessed a large concentration of oligomeric sugars and enzymatic hydrolysis was performed with a number of enzymes, followed by fermentation. The fermentation of the wood extracts was carried out at bench scale in flasks or small bioreactors, with a maximum volume of 500 mL.

Lowell, A.

2012-04-01T23:59:59.000Z

488

Exploration of Novel Reaction Pathway for Formation of Copper Indium Gallium Diselenide: Cooperative Research and Development Final Report, CRADA Number CRD-03-121  

SciTech Connect (OSTI)

The investigation will explore a potentially low-cost method of forming CIGS for use in solar cells. Investigators from HelioVolt will work in NREL laboratories to modify and apply our tools in fabrication of the CIGS layer. Investigators from NREL will assist in preparing substrates and in compleing solar cells composed of these CIGS layers to evaluate the effectiveness of the HelioVolt processes.

van Hest, M.

2014-11-01T23:59:59.000Z

489

Material and Device Analysis for Efficiency Improvement in Epitaxial Crystalline Solar Cells: Cooperative Research and Development Final Report, CRADA Number CRD-11-433  

SciTech Connect (OSTI)

Crystal Solar has a novel approach for producing low-cost, monocrystalline silicon wafers that are capable of yielding high-efficiency solar cells. The approach involves epitaxial growth of the substrate and a proprietary lift-off technology. Crystal Solar will send selected wafers and cells to NREL for characterization and analyses. NREL will apply a variety of techniques to help identify mechanism(s) that limit the cell efficiency and suggest suitable approaches for mitigation.

Sopori, B.

2014-01-01T23:59:59.000Z

490

Biodiesel Emissions Testing with a Modern Diesel Engine - Equipment Only: Cooperative Research and Development Final Report, CRADA Number CRD-10-399  

SciTech Connect (OSTI)

To evaluate the emissions and performance impact of biodiesel in a modern diesel engine equipped with a diesel particulate filter. This testing is in support of the Non-Petroleum Based Fuels (NPBF) 2010 Annual Operating Plan (AOP).

Williams, A.

2013-06-01T23:59:59.000Z

491

Solar Resource Measurements in 1400 JR Lynch Street, Jackson, Mississippi: Cooperative Research and Development Final Report, CRADA Number CRD-07-254  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSite CulturalDepartment ofatRenewable EnergySolar Thermal Solar

492

USDOE/EPRI BIOMASS COFIRING COOPERATIVE AGREEMENT  

SciTech Connect (OSTI)

During the period of April 1, 2000 through June 30, 2000, alternatives for relocating the Seward Generating Station cofiring project were investigated. A test was conducted at Bailly Generating Station of Northern Indiana Public Service Co., firing a blend of Black Thunder (Powder River Basin) coal and Illinois basin coal, in cyclone boiler designed for Illinois basin coal. This test at Bailly was designed to determine the technical feasibility of cofiring at that station using PRB coals. This report summarizes the activities during the second calendar quarter in 2000 of the USDOE/EPRI Biomass Cofiring Cooperative Agreement. It focuses upon reporting the results of construction and testing activities at these generating stations.

E. Hughes; D. Tillman

2000-07-01T23:59:59.000Z

493

International Agreements Comments | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecemberInitiatives Initiatives Through a varietyInternational Agreements Comments

494

User Agreements | Linac Coherent Light Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500II Field Emission SEMUsed Fuel DispositionUserAgreements

495

NREL: Technology Transfer - Agreements for Commercializing Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F. Geisz,Aerial photo of the U.S. VirginAgreements

496

ZERH Lender Partnership Agreement | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf TheViolations |Join theZ:\ENROLL\H1.ENRLender Partnership Agreement

497

User Agreements | Stanford Synchrotron Radiation Lightsource  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption by sectorlongUpdates by DianeDemographics UsageUsage byAgreements

498

Tribal Energy Resource Agreements | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,LtdInformation DixieTraverse ElectricAgreements Jump to:

499

Computational fluid dynamics modeling of two-phase flow in a BWR fuel assembly. Final CRADA Report.  

SciTech Connect (OSTI)

A direct numerical simulation capability for two-phase flows with heat transfer in complex geometries can considerably reduce the hardware development cycle, facilitate the optimization and reduce the costs of testing of various industrial facilities, such as nuclear power plants, steam generators, steam condensers, liquid cooling systems, heat exchangers, distillers, and boilers. Specifically, the phenomena occurring in a two-phase coolant flow in a BWR (Boiling Water Reactor) fuel assembly include coolant phase changes and multiple flow regimes which directly influence the coolant interaction with fuel assembly and, ultimately, the reactor performance. Traditionally, the best analysis tools for this purpose of two-phase flow phenomena inside the BWR fuel assembly have been the sub-channel codes. However, the resolution of these codes is too coarse for analyzing the detailed intra-assembly flow patterns, such as flow around a spacer element. Advanced CFD (Computational Fluid Dynamics) codes provide a potential for detailed 3D simulations of coolant flow inside a fuel assembly, including flow around a spacer element using more fundamental physical models of flow regimes and phase interactions than sub-channel codes. Such models can extend the code applicability to a wider range of situations, which is highly important for increasing the efficiency and to prevent accidents.

Tentner, A.; Nuclear Engineering Division

2009-10-13T23:59:59.000Z

500

WVU cooperative agreement, decontamination systems information and research program, deployment support leading to implementation  

SciTech Connect (OSTI)

This program at West Virginia University is a Cooperative Agreement that focuses on R&D associated with hazardous waste remediation problems existing at DOE, Corps of Engineers, and private sector sites. The Agreement builds on a unique combination of resources coupling university researchers with DOE sponsored small businesses, leading toward field tests and large scale technology demonstrations of environmental technologies. Most of the Agreement`s projects are categorized in the Technology Maturity Levels under Gates 3-Advanced Development, Gate 4-Engineering Development, and Gate 5-Demonstration. The program includes a diversity of projects: subsurface contaminants; mixed wastes; mixed wastes/efficient separations; mixed wastes/characterization, monitoring, and sensor technologies; and decontamination and decommissioning/efficient separations.

Cook, E.E.

1996-12-31T23:59:59.000Z