National Library of Energy BETA

Sample records for developing silicon-graphene anodes

  1. Silicon-Graphene Anodes | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Silicon-Graphene Anodes Technology available for licensing: Provides low-cost production process. Advanced gas phase deposition process yields anodes with five times the specific...

  2. Argonne and CalBattery strike deal for silicon-graphene anode...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    today that they have signed a licensing agreement for an Argonne-developed, silicon-graphene composite anode material for high-energy lithium batteries. CalBattery plans to...

  3. Developing High Capacity, Long Life Anodes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Life Anodes Developing High Capacity, Long Life Anodes 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon es020_amine_2011_p.pdf More Documents & Publications Developing A New High Capacity Anode With Long Cycle Life Developing High Capacity, Long Life Anodes Development of High Capacity Anode for Li-ion Batteries

  4. Develop Improved Methods for Making Intermetallic Anodes | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy for Making Intermetallic Anodes Develop Improved Methods for Making Intermetallic Anodes 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon es022_jansen_2011_p.pdf More Documents & Publications Improved Methods for Making Intermetallic Anodes Develop Improved Methods of

  5. Develop Improved Methods of Making Intermetallic Anodes | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy of Making Intermetallic Anodes Develop Improved Methods of Making Intermetallic Anodes 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon esp_16_jansen.pdf More Documents & Publications Improved Methods for Making Intermetallic Anodes Develop Improved Methods for

  6. Developing A New High Capacity Anode With Long Cycle Life | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy A New High Capacity Anode With Long Cycle Life Developing A New High Capacity Anode With Long Cycle Life 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon es020_amine_2012_o.pdf More Documents & Publications Developing High Capacity, Long Life Anodes Developing High Capacity, Long Life Anodes FY 2011 Annual Progress Report for Energy Storage R&D

  7. Developing a new high capacity anode with long life | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a new high capacity anode with long life Developing a new high capacity anode with long life 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon esp_11_amine.pdf More Documents & Publications Developing High Capacity, Long Life, and High Power Anodes New High Power Li2MTi6O14Anode Material Cathodes

  8. Development of Si-based High Capacity Anodes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Si-based High Capacity Anodes Development of Si-based High Capacity Anodes 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon es144_zhang_2012_p.pdf More Documents & Publications Synthesis and Characterization of Structured Si-Carbon Nanocomposite Anodes and Functional Polymer Binders Development of Si-based High Capacity Anodes Vehicle Technologies Office Merit Review 2014: Synthesis and Characterization of

  9. Development of High Capacity Anode for Li-ion Batteries | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy High Capacity Anode for Li-ion Batteries Development of High Capacity Anode for Li-ion Batteries 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon es065_zhang_2010_p.pdf More Documents & Publications Novel Lithium Ion Anode Structures: Overview of New DOE BATT Anode Projects Hybrid Nano Carbon Fiber/Graphene Platelet-Based High-Capacity Anodes for Lithium Ion Batteries Hybrid Nano Carbon

  10. Buried Anode Device Development: Cooperative Research and Development Final Report, CRADA Number CRD-11-451

    SciTech Connect (OSTI)

    Tenent, R.

    2015-03-01

    The possibility of a reflecting electrochromic device is very attractive, and the 'Buried Anode' architecture developed at NREL could yield such a device. The subject of this cooperative agreement will be the development and refinement of a Buried Anode device process. This development will require the active involvement of NREL and US e-Chromic personnel, and will require the use of NREL equipment as much as possible. When this effort is concluded, US e-Chromic will have enough information to construct a pilot production line, where further development can continue.

  11. Developing High Capacity, Long Life, and High Power Anodes | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Life, and High Power Anodes Developing High Capacity, Long Life, and High Power Anodes 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon es020_amine_2010_o.pdf More Documents & Publications Developing a new high capacity anode with long life Vehicle Technologies Office: 2010 Energy Storage R&D Annual Progress Report Vehicle Technologies Office: 2009 Energy Storage R&D Annual

  12. Development of metal-coated ceramic anodes for molten carbonate fuel cells. Final report

    SciTech Connect (OSTI)

    Khandkar, A.C.; Elangovan, S.; Marianowski, L.G.

    1990-03-01

    This report documents the developmental efforts on metal coating of various ceramic substrates (LiAlO{sub 2}, SrTiO{sub 3}, and LiFeO{sub 2}) and the critical issues associated with fabricating anodes using metal-coated LiAlO{sub 2} substrates. Electroless Ni and Cu coating technology was developed to achieve complete metal coverage on LiAlO{sub 2} powder substrates. Metal coated SrTiO{sub 3} powders were fabricated into anodes by a process identical to that reported in the GE literature. Microstructural examination revealed that the grains of the ceramic had fused together, with the metal having dewetted from the surface of the ceramic. Alternate substrates that might allow for better wetting of the metal on the ceramic such as LiFeO{sub 2} and Li{sub 2}MnO{sub 3} were identified. Cu/Ni-coated (50:50 mol ratio, 50 w/o metal loading) LiFeO{sub 2} anodes were optimized to meet the MCFC anode specifications. Metal-coated gamma-LiAlO{sub 2} substrates were also developed. By using suitable chemical surface modification methods, the gamma-UAlO{sub 2} substrate surface may be modified to allow a stable metal coated anode to be fabricated. Creep testing of the metal coated ceramic anodes were conducted at IGT. It was determined that the predominant creep mechanism is due to particle rearrangement. The anode porosity, and mean pore size had significant effect on the creep of the anode. Lower porosity and pore size consistent with performance criteria are desired to reduce creep. Lower metal loading with uniformity of coverage will result in lower creep behavior of the anode. Of the two substrates evaluated, LiFeO{sub 2} in general exhibited lower creep which was attributed to superior metal adhesion.

  13. Development of metal-coated ceramic anodes for molten carbonate fuel cells

    SciTech Connect (OSTI)

    Khandkar, A.C.; Elangovan, S.; Marianowski, L.G.

    1990-03-01

    This report documents the developmental efforts on metal coating of various ceramic substrates (LiAlO{sub 2}, SrTiO{sub 3}, and LiFeO{sub 2}) and the critical issues associated with fabricating anodes using metal-coated LiAlO{sub 2} substrates. Electroless Ni and Cu coating technology was developed to achieve complete metal coverage on LiAlO{sub 2} powder substrates. Metal coated SrTiO{sub 3} powders were fabricated into anodes by a process identical to that reported in the GE literature. Microstructural examination revealed that the grains of the ceramic had fused together, with the metal having dewetted from the surface of the ceramic. Alternate substrates that might allow for better wetting of the metal on the ceramic such as LiFeO{sub 2} and Li{sub 2}MnO{sub 3} were identified. Cu/Ni-coated (50:50 mol ratio, 50 w/o metal loading) LiFeO{sub 2} anodes were optimized to meet the MCFC anode specifications. Metal-coated gamma-LiAlO{sub 2} substrates were also developed. By using suitable chemical surface modification methods, the gamma-UAlO{sub 2} substrate surface may be modified to allow a stable metal coated anode to be fabricated. Creep testing of the metal coated ceramic anodes were conducted at IGT. It was determined that the predominant creep mechanism is due to particle rearrangement. The anode porosity, and mean pore size had significant effect on the creep of the anode. Lower porosity and pore size consistent with performance criteria are desired to reduce creep. Lower metal loading with uniformity of coverage will result in lower creep behavior of the anode. Of the two substrates evaluated, LiFeO{sub 2} in general exhibited lower creep which was attributed to superior metal adhesion.

  14. NETL SOFC: Anode-Electrolyte-Cathode (AEC) Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    duplication of R&D activities. R&D projects within the AEC Development area focus on cell materials and reliability, interconnects, seals, modeling and simulation, balance-of-plant...

  15. Vehicle Technologies Office Merit Review 2015: High Energy Anode Material Development for Li-ion Batteries

    Broader source: Energy.gov [DOE]

    Presentation given by Sinode Systems at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy anode material...

  16. ANL Success Stories - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    today that they have signed a licensing agreement for an Argonne-developed, silicon-graphene composite anode material for high-energy lithium batteries. CalBattery plans to...

  17. Intermetallic Anodes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon es_31_thackeray.pdf More Documents & Publications Intermetallic Anodes Develop Improved Methods of Making Intermetallic Anodes Improved Methods for Making Intermetallic

  18. Nanostructured Metal Oxide Anodes (Presentation)

    SciTech Connect (OSTI)

    Dillon, A. C.; Riley, L. A.; Lee, S.-H.; Kim, Y.-H.; Ban, C.; Gillaspie, D. T.; Pesaran, A.

    2009-05-01

    This summarizes NREL's FY09 battery materials research activity in developing metal oxide nanostructured anodes to enable high-energy, durable and affordable li-ion batteries for HEVs and PHEVs.

  19. SiNode Systems

    Broader source: Energy.gov [DOE]

    SiNode Systems is a battery materials venture developing silicon-graphene anodes for the next generation of lithium-ion batteries. SiNode anodes offer higher battery capacity and faster charging rates, all while being produced via a low cost solution chemistry-based manufacturing process.

  20. Improved Methods for Making Intermetallic Anodes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Methods for Making Intermetallic Anodes Improved Methods for Making Intermetallic Anodes 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon es022_jansen_2010_o.pdf More Documents & Publications Develop Improved Methods of Making Intermetallic Anodes Develop Improved Methods for Making Intermetallic Anodes FY 2011 Annual Progress Report for Energy Storage R&D

  1. Search for New Anode Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Anode Materials Search for New Anode Materials 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon es_29_goodenough.pdf More Documents & Publications Solid Electrolyte Batteries Cathodes Developing High Capacity, Long Life Anodes

  2. Atomic Layer Deposition for Stabilization of Amorphous Silicon Anodes |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Atomic Layer Deposition for Stabilization of Amorphous Silicon Anodes Atomic Layer Deposition for Stabilization of Amorphous Silicon Anodes 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon es145_dillon_2012_p.pdf More Documents & Publications Nanostructured Metal Oxide Anodes Atomic Layer Deposition for Stabilization of Silicon Anodes Development of Industrially Viable Battery Electrode

  3. Synthesis and Characterization of Structured Si-Carbon Nanocomposite Anodes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Functional Polymer Binders | Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon es147_wang_2012_p.pdf More Documents & Publications Novel Lithium Ion Anode Structures: Overview of New DOE BATT Anode Projects Synthesis and Characterization of Structured Si-Carbon Nanocomposite Anodes and Functional Polymer Binders Development of High Capacity Anode for Li-ion Batteries

  4. Carbonate fuel cell anodes

    DOE Patents [OSTI]

    Donado, Rafael A. (Chicago, IL); Hrdina, Kenneth E. (Glenview, IL); Remick, Robert J. (Bolingbrook, IL)

    1993-01-01

    A molten alkali metal carbonates fuel cell porous anode of lithium ferrite and a metal or metal alloy of nickel, cobalt, nickel/iron, cobalt/iron, nickel/iron/aluminum, cobalt/iron/aluminum and mixtures thereof wherein the total iron content including ferrite and iron of the composite is about 25 to about 80 percent, based upon the total anode, provided aluminum when present is less than about 5 weight percent of the anode. A process for production of the lithium ferrite containing anode by slipcasting.

  5. Carbonate fuel cell anodes

    DOE Patents [OSTI]

    Donado, R.A.; Hrdina, K.E.; Remick, R.J.

    1993-04-27

    A molten alkali metal carbonates fuel cell porous anode of lithium ferrite and a metal or metal alloy of nickel, cobalt, nickel/iron, cobalt/iron, nickel/iron/aluminum, cobalt/iron/aluminum and mixtures thereof wherein the total iron content including ferrite and iron of the composite is about 25 to about 80 percent, based upon the total anode, provided aluminum when present is less than about 5 weight percent of the anode. A process is described for production of the lithium ferrite containing anode by slipcasting.

  6. Nanostructured Anodes for Lithium-Ion Batteries - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Energy Storage Advanced Materials Advanced Materials Find More Like This Return to Search Nanostructured Anodes for Lithium-Ion Batteries New Anodes for Lithium-ion Batteries Increase Energy Density Four-Fold Savannah River National Laboratory Contact SRNL About This Technology Technology Marketing Summary Savannah River Nuclear Solutions (SRNS), managing contractor of the Savannah River Site (SRS) for the Department of Energy, has developed new anodes for lithium-ion batteries

  7. Anodes for alkaline electrolysis

    DOE Patents [OSTI]

    Soloveichik, Grigorii Lev (Latham, NY)

    2011-02-01

    A method of making an anode for alkaline electrolysis cells includes adsorption of precursor material on a carbonaceous material, conversion of the precursor material to hydroxide form and conversion of precursor material from hydroxide form to oxy-hydroxide form within the alkaline electrolysis cell.

  8. Anode initiated surface flashover switch

    DOE Patents [OSTI]

    Brainard, John P. (Albuquerque, NM); Koss, Robert J. (Albuquerque, NM)

    2003-04-29

    A high voltage surface flashover switch has a pair of electrodes spaced by an insulator. A high voltage is applied to an anode, which is smaller than the opposing, grounded, cathode. When a controllable source of electrons near the cathode is energized, the electrons are attracted to the anode where they reflect to the insulator and initiate anode to cathode breakdown.

  9. Movable anode x-ray source with enhanced anode cooling

    DOE Patents [OSTI]

    Bird, C.R.; Rockett, P.D.

    1987-08-04

    An x-ray source is disclosed having a cathode and a disc-shaped anode with a peripheral surface at constant radius from the anode axis opposed to the cathode. The anode has stub axle sections rotatably carried in heat conducting bearing plates which are mounted by thermoelectric coolers to bellows which normally bias the bearing plates to a retracted position spaced from opposing anode side faces. The bellows cooperate with the x-ray source mounting structure for forming closed passages for heat transport fluid. Flow of such fluid under pressure expands the bellows and brings the bearing plates into heat conducting contact with the anode side faces. A worm gear is mounted on a shaft and engages serrations in the anode periphery for rotating the anode when flow of coolant is terminated between x-ray emission events. 5 figs.

  10. Movable anode x-ray source with enhanced anode cooling

    DOE Patents [OSTI]

    Bird, Charles R. (Ypsilanti, MI); Rockett, Paul D. (Ann Arbor, MI)

    1987-01-01

    An x-ray source having a cathode and a disc-shaped anode with a peripheral surface at constant radius from the anode axis opposed to the cathode. The anode has stub axle sections rotatably carried in heat conducting bearing plates which are mounted by thermoelectric coolers to bellows which normally bias the bearing plates to a retracted position spaced from opposing anode side faces. The bellows cooperate with the x-ray source mounting structure for forming closed passages for heat transport fluid. Flow of such fluid under pressure expands the bellows and brings the bearing plates into heat conducting contact with the anode side faces. A worm gear is mounted on a shaft and engages serrations in the anode periphery for rotating the anode when flow of coolant is terminated between x-ray emission events.

  11. Studies on phase formation, microstructure development and elastic properties of reduced NiO-8YSZ anode supported bi-layer half-cell structures of solid oxide fuel cells

    SciTech Connect (OSTI)

    Nithyanantham, T.; Biswas, S.; Thangavel, S.N.; Bandopadhyay, S.

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Detailed study on the development of microstructure and phase in NiO-8YSZ anodes. Black-Right-Pointing-Pointer Detailed study on elastic properties at high temperatures in air/reducing atmosphere. Black-Right-Pointing-Pointer Effects of initial porosity, composition and other issues are evaluated in detail. -- Abstract: Half-cell structures of solid oxide fuel cells (SOFCs) with a thin and dense electrolyte layer of 8YSZ supported by a thick and porous NiO-8YSZ anode precursor structure were reduced in a gas mixture of 5% H{sub 2}-95% Ar at 800 Degree-Sign C for selected time periods in order to fabricate cermets with desired microstructure and composition, and to study their effects on the elastic properties at ambient and reactive atmospheres. It appears that 2 h of exposure to the reducing conditions is enough to reduce {approx}80% of NiO with an enhanced porosity value of 35%. The Ni-8YSZ cermet phase formation in the anode was analyzed with X-ray diffraction (XRD) in correlation with its microstructure. The elastic properties were determined after the reduction, at room and elevated temperatures using the impulse excitation technique. At room temperature the decrease in the Young's modulus was about 44% (after 8 h of reduction) and can be attributed mainly to the changes in the microstructure, particularly the increase in porosity from {approx}12% to 37%. Young's moduli of the as-received precursor and reduced anodes were evaluated as a function of temperature in air and reducing atmosphere. The results were explained in correlation to the initial porosity, composition and oxidation of Ni at the elevated temperatures.

  12. Nickel anode electrode

    DOE Patents [OSTI]

    Singh, Prabhakar (Bethel, CT); Benedict, Mark (Monroe, CT)

    1987-01-01

    A nickel anode electrode fabricated by oxidizing a nickel alloying material to produce a material whose exterior contains nickel oxide and whose interior contains nickel metal throughout which is dispersed the oxide of the alloying material and by reducing and sintering the oxidized material to form a product having a nickel metal exterior and an interior containing nickel metal throughout which is dispersed the oxide of the alloying material.

  13. Results from a pilot cell test of cermet anodes

    SciTech Connect (OSTI)

    Windisch, Jr, C F; Strachan, D M; Henager, Jr, C H; Greenwell, E N; Alcorn, T R

    1992-08-01

    Goal was to develop long-lasting, energy-efficient anodes for Hall-Heroult cells used to produce Al metal. The anodes were made from a ceramic/metal composite consisting of NiO and NiFe{sub 2}O{sub 4} and a Cu/Ni metal phase. Thirteen cermet anodes were tested at Reynolds Metals Co., Muscle Shoals, AL. All anodes corroded severely during the pilot test. Electrolyte components were found deep within the anodes. However, there were many deficiencies in the pilot cell test, mainly the failure to maintain optimal operating conditions. It is concluded that there is a variety of fabrication and operational considerations that need to be addressed carefully in any future testing. 118 figs, 16 tabs, 17 refs.(DLC)

  14. Thin film buried anode battery

    DOE Patents [OSTI]

    Lee, Se-Hee (Lakewood, CO); Tracy, C. Edwin (Golden, CO); Liu, Ping (Denver, CO)

    2009-12-15

    A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).

  15. Intermetallic Anodes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    10 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon es062_thackeray_2010_p.pdf More Documents & Publications Intermetallic Anodes High Capacity Composite Carbon Anodes Fabricated by Autogenic Reactions High Capacity Composite Carbon

  16. Anode film formation and control

    DOE Patents [OSTI]

    Koski, O.; Marschman, S.C.

    1990-05-01

    A protective film is created about the anode within a cryolite-based electrolyte during electrolytic production of aluminum from alumina. The film functions to minimize corrosion of the anode by the cryolitic electrolyte and thereby extend the life of the anode. Various operating parameters of the electrolytic process are controlled to maintain the protective film about the anode in a protective state throughout the electrolytic reduction of alumina. Such parameters include electrolyte temperature, electrolyte ratio, current density, and Al[sub 2]O[sub 3] concentration. An apparatus is also disclosed to enable identification of the onset of anode corrosion due to disruption of the film to provide real time information regarding the state of the film. 3 figs.

  17. Anode film formation and control

    DOE Patents [OSTI]

    Koski, Oscar (Richland, WA); Marschman, Steven C. (Richland, WA)

    1990-01-01

    A protective film is created about the anode within a cryolite-based electrolyte during electrolytic production of aluminum from alumina. The film function to minimize corrosion of the anode by the cryolitic electrolyte and thereby extend the life of the anode. Various operating parameters of the electrolytic process are controlled to maintain the protective film about the anode in a protective state throughout the electrolytic reduction of alumina. Such parameters include electrolyte temperature, electrolyte ratio, current density, and Al.sub.2 O.sub.3 concentration. An apparatus is also disclosed to enable identification of the onset of anode corrosion due to disruption of the film to provide real time information regarding the state of the film.

  18. Battery Anodes > Batteries & Fuel Cells > Research > The Energy Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center at Cornell Anodes Introduction The anode is the negative electrode of a primary cell and is always associated with the oxidation or the release of electrons into the external circuit. In a rechargeable cell, the anode is the negative pole during discharge and the positive pole during charge. Lithium Anode The anode in the battery deserves an equal say in the overall performance of a battery. For an effective development of a high energy density battery, the use of high capacity

  19. Multi-anode ionization chamber

    DOE Patents [OSTI]

    Bolotnikov, Aleksey E. (South Setauket, NY); Smith, Graham (Port Jefferson, NY); Mahler, George J. (Rocky Point, NY); Vanier, Peter E. (Setauket, NY)

    2010-12-28

    The present invention includes a high-energy detector having a cathode chamber, a support member, and anode segments. The cathode chamber extends along a longitudinal axis. The support member is fixed within the cathode chamber and extends from the first end of the cathode chamber to the second end of the cathode chamber. The anode segments are supported by the support member and are spaced along the longitudinal surface of the support member. The anode segments are configured to generate at least a first electrical signal in response to electrons impinging thereon.

  20. Nanocomposite Carbon/Tin Anodes for Lithium Ion Batteries - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Nanocomposite Carbon/Tin Anodes for Lithium Ion Batteries Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing SummaryAn approach developed by Robert Kostecki and Marek Marcinek of Berkeley Lab has given rise to a new generation of nanostructured carbon-tin films that can be produced quickly, efficiently, and inexpensively. These binderless carbon/tin thin-film anodes provide enhanced charge capacity and excellent cycleability in

  1. Nanostructured Metal Oxide Anodes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    10 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon es064_dillon_2010_p.pdf More Documents & Publications Atomic Layer Deposition for Stabilization of Amorphous Silicon Anodes Nanostructured Metal Oxide Anodes Novel Lithium Ion Anode Structures: Overview of New DOE BATT Anode Projects

  2. Nano structural anodes for radiation detectors

    DOE Patents [OSTI]

    Cordaro, Joseph V.; Serkiz, Steven M.; McWhorter, Christopher S.; Sexton, Lindsay T.; Retterer, Scott T.

    2015-07-07

    Anodes for proportional radiation counters and a process of making the anodes is provided. The nano-sized anodes when present within an anode array provide: significantly higher detection efficiencies due to the inherently higher electric field, are amenable to miniaturization, have low power requirements, and exhibit a small electromagnetic field signal. The nano-sized anodes with the incorporation of neutron absorbing elements (e.g., .sup.10B) allow the use of neutron detectors that do not use .sup.3He.

  3. Method to Reduce Camber in Anode-Supported SOFCs - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicles and Fuels Vehicles and Fuels Energy Storage Energy Storage Advanced Materials Advanced Materials Find More Like This Return to Search Method to Reduce Camber in Anode-Supported SOFCs Pacific Northwest National Laboratory Contact PNNL About This Technology A) Typical camber developed in 7 cm x 7 cm anode-supported SOFC. B) Details on matched TEC backing layer opposite electrolyte surface for camber control (Invention 13536). A) Typical camber developed in 7 cm x 7 cm anode-supported

  4. Durability Prediction of Solid Oxide Fuel Cell Anode Material under Thermo-Mechanical and Fuel Gas Contaminants Effects

    SciTech Connect (OSTI)

    Iqbal, Gulfam; Guo, Hua; Kang , Bruce S.; Marina, Olga A.

    2011-01-10

    Solid Oxide Fuel Cells (SOFCs) operate under harsh environments, which cause deterioration of anode material properties and service life. In addition to electrochemical performance, structural integrity of the SOFC anode is essential for successful long-term operation. The SOFC anode is subjected to stresses at high temperature, thermal/redox cycles, and fuel gas contaminants effects during long-term operation. These mechanisms can alter the anode microstructure and affect its electrochemical and structural properties. In this research, anode material degradation mechanisms are briefly reviewed and an anode material durability model is developed and implemented in finite element analysis. The model takes into account thermo-mechanical and fuel gas contaminants degradation mechanisms for prediction of long-term structural integrity of the SOFC anode. The proposed model is validated experimentally using a NexTech ProbostatTM SOFC button cell test apparatus integrated with a Sagnac optical setup for simultaneously measuring electrochemical performance and in-situ anode surface deformation.

  5. Lithium Metal Anodes for Rechargeable Batteries

    SciTech Connect (OSTI)

    Xu, Wu; Wang, Jiulin; Ding, Fei; Chen, Xilin; Nasybulin, Eduard N.; Zhang, Yaohui; Zhang, Jiguang

    2014-01-01

    Rechargeable lithium metal batteries have much higher energy density than those of lithium ion batteries using graphite anode. Unfortunately, uncontrollable dendritic lithium growth inherent in these batteries (upon repeated charge/discharge cycling) and limited Coulombic efficiency during lithium deposition/striping has prevented their practical application over the past 40 years. With the emerging of post Li-ion batteries, safe and efficient operation of lithium metal anode has become an enabling technology which may determine the fate of several promising candidates for the next generation of energy storage systems, including rechargeable Li-air battery, Li-S battery, and Li metal battery which utilize lithium intercalation compounds as cathode. In this work, various factors which affect the morphology and Coulombic efficiency of lithium anode will be analyzed. Technologies used to characterize the morphology of lithium deposition and the results obtained by modeling of lithium dendrite growth will also be reviewed. At last, recent development in this filed and urgent need in this field will also be discussed.

  6. High performance anode for advanced Li batteries

    SciTech Connect (OSTI)

    Lake, Carla

    2015-11-02

    The overall objective of this Phase I SBIR effort was to advance the manufacturing technology for ASIs Si-CNF high-performance anode by creating a framework for large volume production and utilization of low-cost Si-coated carbon nanofibers (Si-CNF) for the battery industry. This project explores the use of nano-structured silicon which is deposited on a nano-scale carbon filament to achieve the benefits of high cycle life and high charge capacity without the consequent fading of, or failure in the capacity resulting from stress-induced fracturing of the Si particles and de-coupling from the electrode. ASIs patented coating process distinguishes itself from others, in that it is highly reproducible, readily scalable and results in a Si-CNF composite structure containing 25-30% silicon, with a compositionally graded interface at the Si-CNF interface that significantly improve cycling stability and enhances adhesion of silicon to the carbon fiber support. In Phase I, the team demonstrated the production of the Si-CNF anode material can successfully be transitioned from a static bench-scale reactor into a fluidized bed reactor. In addition, ASI made significant progress in the development of low cost, quick testing methods which can be performed on silicon coated CNFs as a means of quality control. To date, weight change, density, and cycling performance were the key metrics used to validate the high performance anode material. Under this effort, ASI made strides to establish a quality control protocol for the large volume production of Si-CNFs and has identified several key technical thrusts for future work. Using the results of this Phase I effort as a foundation, ASI has defined a path forward to commercialize and deliver high volume and low-cost production of SI-CNF material for anodes in Li-ion batteries.

  7. New High Power Li2MTi6O14Anode Material | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Power Li2MTi6O14Anode Material New High Power Li2MTi6O14Anode Material 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon esp_21_amine.pdf More Documents & Publications Developing High Capacity, Long Life, and High Power Anodes Cathodes Engineering of high energy cathode material

  8. In situ characterization of nanoscale catalysts during anodic redox processes

    SciTech Connect (OSTI)

    Sharma, Renu National Institute of Standards and Technology; Crozier, Peter Arizona State University; Adams, James Arizona State University

    2013-09-19

    Controlling the structure and composition of the anode is critical to achieving high efficiency and good long-term performance. In addition to being a mixed electronic and ionic conductor, the ideal anode material should act as an efficient catalyst for oxidizing hydrogen, carbon monoxide and dry hydrocarbons without de-activating through either sintering or coking. It is also important to develop novel anode materials that can operate at lower temperatures to reduce costs and minimized materials failure associated with high temperature cycling. We proposed to synthesize and characterize novel anode cermets materials based on ceria doped with Pr and/or Gd together with either a Ni or Cu metallic components. Ceria is a good oxidation catalyst and is an ionic conductor at room temperature. Doping it with trivalent rare earths such as Pr or Gd retards sintering and makes it a mixed ion conductor (ionic and electronic). We have developed a fundamental scientific understanding of the behavior of the cermet material under reaction conditions by following the catalytic oxidation process at the atomic scale using a powerful Environmental Scanning Transmission Electron Microscope (ESTEM). The ESTEM allowed in situ monitoring of structural, chemical and morphological changes occurring at the cermet under conditions approximating that of typical fuel-cell operation. Density functional calculations were employed to determine the underlying mechanisms and reaction pathways during anode oxidation reactions. The dynamic behavior of nanoscale catalytic oxidation of hydrogen and methane were used to determine: ? Fundamental processes during anodic reactions in hydrogen and carbonaceous atmospheres ? Interfacial effects between metal particles and doped ceria ? Kinetics of redox reaction in the anode material

  9. Novel Lithium Ion Anode Structures: Overview of New DOE BATT...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lithium Ion Anode Structures: Overview of New DOE BATT Anode Projects Novel Lithium Ion Anode Structures: Overview of New DOE BATT Anode Projects 2011 DOE Hydrogen and Fuel Cells...

  10. Patent: Methods for making anodes for lithium ion batteries | DOEpatents

    Office of Scientific and Technical Information (OSTI)

    Methods for making anodes for lithium ion batteries Citation Details Title: Methods for making anodes for lithium ion batteries

  11. Nanotube Composite Anode Materials | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanotube Composite Anode Materials Technology available for licensng: A composite material suitable for use in an anode for a lithium-ion battery Reduces manufacturing costs. Provides increase capacity, safety, long-term stability and reliability. Potential to exceed technical specifications for electric vehicles. PDF icon nanotube-composite_anode_materials

  12. The possibility of forming a sacrificial anode coating for Mg

    SciTech Connect (OSTI)

    Dudney, Nancy J; Li, Juchuan; Sacci, Robert L; Thomson, Jeffery K

    2014-01-01

    Mg is the most active engineering metal, and is often used as a sacrificial anode/coating to protect other engineering metals from corrosion attack. So far no sacrificial anode coating has been developed or considered for Mg. This study explores the possibility of forming a sacrificial coating for Mg. A lithiated carbon coating and a metaphosphated coating are applied on the Mg surface, respectively, and their open-circuit-potentials are measured in saturated Mg(OH)2 solution. They exhibit more negative potentials than bare Mg. SEM reveals that the metaphosphated coating offers more effective and uniform protection for Mg than the lithiated carbon coating. These preliminary results indicate that development of a sacrificial anode coating for Mg is indeed possible.

  13. Microbial fuel cell with improved anode

    DOE Patents [OSTI]

    Borole, Abhijeet P.

    2010-04-13

    The present invention relates to a method for preparing a microbial fuel cell, wherein the method includes: (i) inoculating an anodic liquid medium in contact with an anode of the microbial fuel cell with one or more types of microorganisms capable of functioning by an exoelectrogenic mechanism; (ii) establishing a biofilm of the microorganisms on and/or within the anode along with a substantial absence of planktonic forms of the microorganisms by substantial removal of the planktonic microorganisms during forced flow and recirculation conditions of the anodic liquid medium; and (iii) subjecting the microorganisms of the biofilm to a growth stage by incorporating one or more carbon-containing nutritive compounds in the anodic liquid medium during biofilm formation or after biofilm formation on the anode has been established.

  14. Spherical Carbon Anodes Fabricated by Autogenic Reactions | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Spherical Carbon Anodes Fabricated by Autogenic Reactions Spherical Carbon Anodes Fabricated by Autogenic Reactions 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon es114_thackeray_2011_p.pdf More Documents & Publications High Capacity Composite Carbon Anodes High Capacity Composite Carbon Anodes Fabricated by Autogenic Reactions Intermetallic Anodes

  15. Anode Sheath Switching in a Carbon Nanotube Arc Plasma

    SciTech Connect (OSTI)

    Abe Fetterman, Yevgeny Raitses, and Michael Keidar

    2008-04-08

    The anode ablation rate is investigated as a function of anode diameter for a carbon nanotube arc plasma. It is found that anomalously high ablation occurs for small anode diameters. This result is explained by the formation of a positive anode sheath. The increased ablation rate due to this positive anode sheath could imply greater production rate for carbon nanotubes.

  16. Surface modifications for carbon lithium intercalation anodes

    DOE Patents [OSTI]

    Tran, Tri D. (Livermore, CA); Kinoshita, Kimio (Cupertino, CA)

    2000-01-01

    A prefabricated carbon anode containing predetermined amounts of passivating film components is assembled into a lithium-ion rechargeable battery. The modified carbon anode enhances the reduction of the irreversible capacity loss during the first discharge of a cathode-loaded cell. The passivating film components, such as Li.sub.2 O and Li.sub.2 CO.sub.3, of a predetermined amount effective for optimal passivation of carbon, are incorporated into carbon anode materials to produce dry anodes that are essentially free of battery electrolyte prior to battery assembly.

  17. Optimization and Domestic Sourcing of Lithium Ion Battery Anode Materials

    SciTech Connect (OSTI)

    Wood, III, D. L.; Yoon, S.

    2012-10-25

    The purpose of this Cooperative Research and Development Agreement (CRADA) between ORNL and A123Systems, Inc. was to develop a low-temperature heat treatment process for natural graphite based anode materials for high-capacity and long-cycle-life lithium ion batteries. Three major problems currently plague state-of-the-art lithium ion battery anode materials. The first is the cost of the artificial graphite, which is heat-treated well in excess of 2000C. Because of this high-temperature heat treatment, the anode active material significantly contributes to the cost of a lithium ion battery. The second problem is the limited specific capacity of state-of-the-art anodes based on artificial graphites, which is only about 200-350 mAh/g. This value needs to be increased to achieve high energy density when used with the low cell-voltage nanoparticle LiFePO4 cathode. Thirdly, the rate capability under cycling conditions of natural graphite based materials must be improved to match that of the nanoparticle LiFePO4. Natural graphite materials contain inherent crystallinity and lithium intercalation activity. They hold particular appeal, as they offer huge potential for industrial energy savings with the energy costs essentially subsidized by geological processes. Natural graphites have been heat-treated to a substantially lower temperature (as low as 1000-1500C) and used as anode active materials to address the problems described above. Finally, corresponding graphitization and post-treatment processes were developed that are amenable to scaling to automotive quantities.

  18. Developing High Capacity, Long Life Anodes

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  19. High Rate and Stable Cycling of Lithium Metal Anode

    SciTech Connect (OSTI)

    Qian, Jiangfeng; Henderson, Wesley A.; Xu, Wu; Bhattacharya, Priyanka; Engelhard, Mark H.; Borodin, Oleg; Zhang, Jiguang

    2015-02-20

    Lithium (Li) metal is an ideal anode material for rechargeable batteries. However, dendritic Li growth and limited Coulombic efficiency (CE) during repeated Li deposition/stripping processes have prevented the application of this anode in rechargeable Li metal batteries, especially for use at high current densities. Herein, we report that the use of highly concentrated electrolytes composed of ether solvents and the lithium bis(fluorosulfonyl)imide (LiFSI) salt enables the high rate cycling of a Li metal anode at high CE (up to 99.1 %) without dendrite growth. With 4 M LiFSI in 1,2-dimethoxyethane (DME) as the electrolyte, a Li|Li cell can be cycled at high rates (10 mA cm-2) for more than 6000 cycles with no increase in the cell impedance, and a Cu|Li cell can be cycled at 4 mA cm-2 for more than 1000 cycles with an average CE of 98.4%. These excellent high rate performances can be attributed to the increased solvent coordination and increased availability of Li+ concentration in the electrolyte. Further development of this electrolyte may lead to practical applications for Li metal anode in rechargeable batteries. The fundamental mechanisms behind the high rate ion exchange and stability of the electrolytes also shine light on the stability of other electrochemical systems.

  20. Remote control for anode-cathode adjustment

    DOE Patents [OSTI]

    Roose, Lars D. (Albuquerque, NM)

    1991-01-01

    An apparatus for remotely adjusting the anode-cathode gap in a pulse power machine has an electric motor located within a hollow cathode inside the vacuum chamber of the pulse power machine. Input information for controlling the motor for adjusting the anode-cathode gap is fed into the apparatus using optical waveguides. The motor, controlled by the input information, drives a worm gear that moves a cathode tip. When the motor drives in one rotational direction, the cathode is moved toward the anode and the size of the anode-cathode gap is diminished. When the motor drives in the other direction, the cathode is moved away from the anode and the size of the anode-cathode gap is increased. The motor is powered by batteries housed in the hollow cathode. The batteries may be rechargeable, and they may be recharged by a photovoltaic cell in combination with an optical waveguide that receives recharging energy from outside the hollow cathode. Alternatively, the anode-cathode gap can be remotely adjusted by a manually-turned handle connected to mechanical linkage which is connected to a jack assembly. The jack assembly converts rotational motion of the handle and mechanical linkage to linear motion of the cathode moving toward or away from the anode.

  1. Longer Life Lithium Ion Batteries with Silicon Anodes - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Longer Life Lithium Ion Batteries with Silicon Anodes Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing Summary Researchers have developed a new technology to advance the life of lithium-ion batteries. A catechol-based polymer binder, developed at Berkeley Lab, interacting with the oxide layer on the surface of commercial silicon (Si), generates powerful adhesion strength and maintains electrode integrity during the drastic volume changes

  2. Preparation of lithium-ion battery anodes using lignin (Journal...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Preparation of lithium-ion battery anodes using lignin Citation Details In-Document Search Title: Preparation of lithium-ion battery anodes using lignin Authors:...

  3. Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts Presented at the Department of Energy Fuel Cell...

  4. Low cost fuel cell diffusion layer configured for optimized anode...

    Office of Scientific and Technical Information (OSTI)

    for optimized anode water management Citation Details In-Document Search Title: Low cost fuel cell diffusion layer configured for optimized anode water management A fuel cell ...

  5. Vehicle Technologies Office Merit Review 2014: Novel Anode Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Vehicle Technologies Office Merit Review 2015: First Principles Modeling of SEI Formation on Bare and SurfaceAdditive Modified Silicon Anodes Novel Anode Materials

  6. The Nitrogen-Nitride Anode.

    SciTech Connect (OSTI)

    Delnick, Frank M.

    2014-10-01

    Nitrogen gas N 2 can be reduced to nitride N -3 in molten LiCl-KCl eutectic salt electrolyte. However, the direct oxidation of N -3 back to N 2 is kinetically slow and only occurs at high overvoltage. The overvoltage for N -3 oxidation can be eliminated by coordinating the N -3 with BN to form the dinitridoborate (BN 2 -3 ) anion which forms a 1-D conjugated linear inorganic polymer with -Li-N-B-N- repeating units. This polymer precipitates out of solution as Li 3 BN 2 which becomes a metallic conductor upon delithiation. Li 3 BN 2 is oxidized to Li + + N 2 + BN at about the N 2 /N -3 redox potential with very little overvoltage. In this report we evaluate the N 2 /N -3 redox couple as a battery anode for energy storage.

  7. High Capacity Composite Carbon Anodes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Capacity Composite Carbon Anodes High Capacity Composite Carbon Anodes 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon es114_pol_2012_o.pdf More Documents & Publications High Capacity Composite Carbon Anodes Fabricated by Autogenic Reactions Spherical Carbon Anodes Fabricated by Autogenic Reactions Vehicle Technologies Office Merit Review 2014: Metal-Based High Capacity Li-Ion Anodes

  8. Thermal Neutron Detectors with Discrete Anode Pad Readout

    SciTech Connect (OSTI)

    Yu,B.; Schaknowski, N.A., Smith, G.C., DeGeronimo, G., Vernon, E.O.

    2008-10-19

    A new two-dimensional thermal neutron detector concept that is capable of very high rates is being developed. It is based on neutron conversion in {sup 3}He in an ionization chamber (unity gas gain) that uses only a cathode and anode plane; there is no additional electrode such as a Frisch grid. The cathode is simply the entrance window, and the anode plane is composed of discrete pads, each with their own readout electronics implemented via application specific integrated circuits. The aim is to provide a new generation of detectors with key characteristics that are superior to existing techniques, such as higher count rate capability, better stability, lower sensitivity to background radiation, and more flexible geometries. Such capabilities will improve the performance of neutron scattering instruments at major neutron user facilities. In this paper, we report on progress with the development of a prototype device that has 48 x 48 anode pads and a sensitive area of 24cm x 24cm.

  9. New High-Energy Nanofiber Anode Materials

    SciTech Connect (OSTI)

    Zhang, Xiangwu; Fedkiw, Peter; Khan, Saad; Huang, Alex; Fan, Jiang

    2013-11-15

    The overall goal of the proposed work was to use electrospinning technology to integrate dissimilar materials (lithium alloy and carbon) into novel composite nanofiber anodes, which simultaneously had high energy density, reduced cost, and improved abuse tolerance. The nanofiber structure allowed the anodes to withstand repeated cycles of expansion and contraction. These composite nanofibers were electrospun into nonwoven fabrics with thickness of 50 ?m or more, and then directly used as anodes in a lithium-ion battery. This eliminated the presence of non-active materials (e.g., conducting carbon black and polymer binder) and resulted in high energy and power densities. The nonwoven anode structure also provided a large electrode-electrolyte interface and, hence, high rate capacity and good lowtemperature performance capability. Following are detailed objectives for three proposed project periods. During the first six months: Obtain anodes capable of initial specific capacities of 650 mAh/g and achieve ~50 full charge/discharge cycles in small laboratory scale cells (50 to 100 mAh) at the 1C rate with less than 20 percent capacity fade; In the middle of project period: Assemble, cycle, and evaluate 18650 cells using proposed anode materials, and demonstrate practical and useful cycle life (750 cycles of ~70% state of charge swing with less than 20% capacity fade) in 18650 cells with at least twice improvement in the specific capacity than that of conventional graphite electrodes; At the end of project period: Deliver 18650 cells containing proposed anode materials, and achieve specific capacities greater than 1200 mAh/g and cycle life longer than 5000 cycles of ~70% state of charge swing with less than 20% capacity fade.

  10. Chemical enhancement of metallized zinc anode performance

    SciTech Connect (OSTI)

    Bennett, J.

    1998-12-31

    Galvanic current delivered to reinforced concrete by a metallized zinc anode was studied relative to the humidity of its environment and periodic direct wetting. Current decreased quickly at low humidity to values unlikely to meet accepted cathodic protection criteria, but could be easily restored by direct wetting of the anode. Thirteen chemicals were screened for their ability to enhance galvanic current. Such chemicals, when applied to the exterior surface of the anode, are easily transported by capillary action to the anode-concrete interface where they serve to maintain the interface conductive and the zinc electrochemically active. The most effective chemicals were potassium and lithium bromide, acetate, chloride and nitrate, which increased galvanic current by a factor of 2--15, depending on relative humidity and chloride contamination of the concrete. This new technique is expected to greatly expand the number of concrete structures which can be protected by simple galvanic cathodic protection, The use of lithium-based chemicals together with metallized zinc anode is also proposed for mitigation of existing problems due to ASR. In this case, lithium which prevents or inhibits expansion due to ASR can be readily injected into the concrete. A new process, electrochemical maintenance of concrete (EMC), is also proposed to benefit reinforced concrete structures suffering from chloride-induced corrosion.

  11. Electrolytic Cell For Production Of Aluminum Employing Planar Anodes.

    DOE Patents [OSTI]

    Barnett, Robert J. (Goldendale, WA); Mezner, Michael B. (Sandy, OR); Bradford, Donald R (Underwood, WA)

    2004-10-05

    A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte, the method comprising providing a molten salt electrolyte having alumina dissolved therein in an electrolytic cell. A plurality of anodes and cathodes having planar surfaces are disposed in a generally vertical orientation in the electrolyte, the anodes and cathodes arranged in alternating or interleaving relationship to provide anode planar surfaces disposed opposite cathode planar surfaces, the anode comprised of carbon. Electric current is passed through anodes and through the electrolyte to the cathodes depositing aluminum at the cathodes and forming carbon containing gas at the anodes.

  12. Nanocomposite protective coatings for battery anodes

    DOE Patents [OSTI]

    Lemmon, John P; Xiao, Jie; Liu, Jun

    2014-01-21

    Modified surfaces on metal anodes for batteries can help resist formation of malfunction-inducing surface defects. The modification can include application of a protective nanocomposite coating that can inhibit formation of surface defects. such as dendrites, on the anode during charge/discharge cycles. For example, for anodes having a metal (M'), the protective coating can be characterized by products of chemical or electrochemical dissociation of a nanocomposite containing a polymer and an exfoliated compound (M.sub.a'M.sub.b''X.sub.c). The metal, M', comprises Li, Na, or Zn. The exfoliated compound comprises M' among lamella of M.sub.b''X.sub.c, wherein M'' is Fe, Mo, Ta, W, or V, and X is S, O, or Se.

  13. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Better Anode Design to Improve Lithium-Ion Batteries A Better Anode Design to Improve ... 8.0.1 show a lower "lowest unoccupied molecular orbital" for the new Berkeley Lab ...

  14. Fuel cell system shutdown with anode pressure control

    DOE Patents [OSTI]

    Clingerman, Bruce J. (Palmyra, NY); Doan, Tien M. (Columbia, MD); Keskula, Donald H. (Webster, NY)

    2002-01-01

    A venting methodology and pressure sensing and vent valving arrangement for monitoring anode bypass valve operating during the normal shutdown of a fuel cell apparatus of the type used in vehicle propulsion systems. During a normal shutdown routine, the pressure differential between the anode inlet and anode outlet is monitored in real time in a period corresponding to the normal closing speed of the anode bypass valve and the pressure differential at the end of the closing cycle of the anode bypass valve is compared to the pressure differential at the beginning of the closing cycle. If the difference in pressure differential at the beginning and end of the anode bypass closing cycle indicates that the anode bypass valve has not properly closed, a system controller switches from a normal shutdown mode to a rapid shutdown mode in which the anode inlet is instantaneously vented by rapid vents.

  15. ITP Aluminum: Inert Anodes Roadmap | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inert Anodes Roadmap ITP Aluminum: Inert Anodes Roadmap PDF icon inertroad.pdf More Documents & Publications U.S. Energy Requirements for Aluminum Production Ultrahigh-Efficiency Aluminum Production Cells

  16. High Rate and Stable Cycling of Lithium Metal Anode (Journal...

    Office of Scientific and Technical Information (OSTI)

    High Rate and Stable Cycling of Lithium Metal Anode Citation Details In-Document Search Title: High Rate and Stable Cycling of Lithium Metal Anode Lithium (Li) metal is an ideal ...

  17. Self-cleaning rotating anode X-ray source

    DOE Patents [OSTI]

    Paulikas, Arvydas P.

    1989-01-01

    A self-cleaning rotating anode x-ray source comprising an evacuable housing, a rotatable cylindrical anode within the housing, a source of electrons within the housing which electrons are caused to impinge upon the anode to produce x-rays, and means for ionizing residual particles within the housing and accelerating such ions so as to impinge upon the anode to sputter impurities from the surface thereof.

  18. Self-cleaning rotating anode x-ray source

    DOE Patents [OSTI]

    Paulikas, A.P.

    1987-06-02

    A self-cleaning rotating anode x-ray source comprising and evacuable housing, a rotatable cylindrical anode within the housing, a source of electrons within the housing which electrons are caused to impinge upon the anode to produce x-rays, and means for ionizing residual particles within the housing and accelerating such ions so as to impinge upon the anode to sputter impurities from the surface thereof. 2 figs.

  19. Composite Electrolyte to Stabilize Metallic Lithium Anodes | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Electrolyte to Stabilize Metallic Lithium Anodes Composite Electrolyte to Stabilize Metallic Lithium Anodes 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon es157_dudney_2012_p.pdf More Documents & Publications Composite Electrolytes to Stabilize Metallic Linium Anodes Vehicle Technologies Office Merit Review 2015: Composite Electrolytes to Stabilize Metallic Lithium Anodes Long-Living Polymer

  20. Three Dimensional Anodes and Architectures | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Three Dimensional Anodes and Architectures Three Dimensional Anodes and Architectures 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon es143_vaughey_2012_p.pdf More Documents & Publications Novel Anode Materials Vehicle Technologies Office Merit Review 2014: Novel Anode Materials Vehicle Technologies Office: 2013 Energy Storage R&D Progress Report, Sections 1-3

  1. Composite Electrolytes to Stabilize Metallic Linium Anodes | Department of

    Office of Environmental Management (EM)

    Energy Composite Electrolytes to Stabilize Metallic Linium Anodes Composite Electrolytes to Stabilize Metallic Linium Anodes 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon es182_dudney_2013_o.pdf More Documents & Publications Composite Electrolyte to Stabilize Metallic Lithium Anodes Vehicle Technologies Office Merit Review 2015: Composite Electrolytes to Stabilize Metallic Lithium Anodes Polymers For

  2. Hybrid anode for semiconductor radiation detectors

    DOE Patents [OSTI]

    Yang, Ge; Bolotnikov, Aleksey E; Camarda, Guiseppe; Cui, Yonggang; Hossain, Anwar; Kim, Ki Hyun; James, Ralph B

    2013-11-19

    The present invention relates to a novel hybrid anode configuration for a radiation detector that effectively reduces the edge effect of surface defects on the internal electric field in compound semiconductor detectors by focusing the internal electric field of the detector and redirecting drifting carriers away from the side surfaces of the semiconductor toward the collection electrode(s).

  3. Anode materials for lithium-ion batteries

    DOE Patents [OSTI]

    Sunkara, Mahendra Kumar; Meduri, Praveen; Sumanasekera, Gamini

    2014-12-30

    An anode material for lithium-ion batteries is provided that comprises an elongated core structure capable of forming an alloy with lithium; and a plurality of nanostructures placed on a surface of the core structure, with each nanostructure being capable of forming an alloy with lithium and spaced at a predetermined distance from adjacent nanostructures.

  4. Structural transformation of nickel hydroxide films during anodic oxidation

    SciTech Connect (OSTI)

    Crocker, R.W.; Muller, R.H.

    1992-05-01

    The transformation of anodically formed nickel hydroxide/oxy-hydroxide electrodes has been investigated. A mechanism is proposed for the anodic oxidation reaction, in which the reaction interface between the reduced and oxidized phases of the electrode evolves in a nodular topography that leads to inefficient utilization of the active electrode material. In the proposed nodular transformation model for the anodic oxidation reaction, nickel hydroxide is oxidized to nickel oxy-hydroxide in the region near the metal substrate. Since the nickel oxy-hydroxide is considerably more conductive than the surrounding nickel hydroxide, as further oxidation occurs, nodular features grow rapidly to the film/electrolyte interface. Upon emerging at the electrolyte interface, the reaction boundary between the nickel hydroxide and oxy-hydroxide phases spreads laterally across the film/electrolyte interface, creating an overlayer of nickel oxy-hydroxide and trapping uncharged regions of nickel hydroxide within the film. The nickel oxy-hydroxide overlayer surface facilitates the oxygen evolution side reaction. Scanning tunneling microscopy of the electrode in its charged state revealed evidence of 80 {endash} 100 Angstrom nickel oxy-hydroxide nodules in the nickel hydroxide film. In situ spectroscopic ellipsometer measurements of films held at various constant potentials agree quantitatively with optical models appropriate to the nodular growth and subsequent overgrowth of the nickel oxy-hydroxide phase. A two-dimensional, numerical finite difference model was developed to simulate the current distribution along the phase boundary between the charged and uncharged material. The model was used to explore the effects of the physical parameters that govern the electrode behavior. The ratio of the conductivities of the nickel hydroxide and oxy-hydroxide phases was found to be the dominant parameter in the system.

  5. Phase III Advanced Anodes and Cathodes Utilized in Energy Efficient Aluminum Production Cells

    SciTech Connect (OSTI)

    R.A. Christini; R.K. Dawless; S.P. Ray; D.A. Weirauch, Jr.

    2001-11-05

    During Phase I of the present program, Alcoa developed a commercial cell concept that has been estimated to save 30% of the energy required for aluminum smelting. Phase ii involved the construction of a pilot facility and operation of two pilots. Phase iii of the Advanced Anodes and Cathodes Program was aimed at bench experiments to permit the resolution of certain questions to be followed by three pilot cells. All of the milestones related to materials, in particular metal purity, were attained with distinct improvements over work in previous phases of the program. NiO additions to the ceramic phase and Ag additions to the Cu metal phase of the cermet improved corrosion resistance sufficiently that the bench scale pencil anodes met the purity milestones. Some excellent metal purity results have been obtained with anodes of the following composition: Further improvements in anode material composition appear to be dependent on a better understanding of oxide solubilities in molten cryolite. For that reason, work was commissioned with an outside consultant to model the MeO - cryolite systems. That work has led to a better understanding of which oxides can be used to substitute into the NiO-Fe2O3 ceramic phase to stabilize the ferrites and reduce their solubility in molten cryolite. An extensive number of vertical plate bench electrolysis cells were run to try to find conditions where high current efficiencies could be attained. TiB2-G plates were very inconsistent and led to poor wetting and drainage. Pure TiB2 did produce good current efficiencies at small overlaps (shadowing) between the anodes and cathodes. This bench work with vertical plate anodes and cathodes reinforced the importance of good cathode wetting to attain high current efficiencies. Because of those conclusions, new wetting work was commissioned and became a major component of the research during the third year of Phase III. While significant progress was made in several areas, much work needs to be done. The anode composition needs further improvements to attain commercial purity targets. At the present corrosion rate, the vertical plate anodes will wear too rapidly leading to a rapidly increasing anode-cathode gap and thermal instabilities in the cell. Cathode wetting as a function of both cathode plate composition and bath composition needs to be better understood to ensure that complete drainage of the molten aluminum off the plates occurs. Metal buildup appears to lead to back reaction and low current efficiencies.

  6. Fuel cell anode configuration for CO tolerance

    DOE Patents [OSTI]

    Uribe, Francisco A.; Zawodzinski, Thomas A.

    2004-11-16

    A polymer electrolyte fuel cell (PEFC) is designed to operate on a reformate fuel stream containing oxygen and diluted hydrogen fuel with CO impurities. A polymer electrolyte membrane has an electrocatalytic surface formed from an electrocatalyst mixed with the polymer and bonded on an anode side of the membrane. An anode backing is formed of a porous electrically conductive material and has a first surface abutting the electrocatalytic surface and a second surface facing away from the membrane. The second surface has an oxidation catalyst layer effective to catalyze the oxidation of CO by oxygen present in the fuel stream where at least the layer of oxidation catalyst is formed of a non-precious metal oxidation catalyst selected from the group consisting of Cu, Fe, Co, Tb, W, Mo, Sn, and oxides thereof, and other metals having at least two low oxidation states.

  7. Composit, Nanoparticle-Based Anode material for Li-ion Batteries Applied in Hybrid Electric (HEV's)

    SciTech Connect (OSTI)

    Dr. Malgorzata Gulbinska

    2009-08-24

    Lithium-ion batteries are promising energy storage devices in hybrid and electric vehicles with high specific energy values ({approx}150 Wh/kg), energy density ({approx}400 Wh/L), and long cycle life (>15 years). However, applications in hybrid and electric vehicles require increased energy density and improved low-temperature (<-10 C) performance. Silicon-based anodes are inexpensive, environmentally benign, and offer excellent theoretical capacity values ({approx}4000 mAh/g), leading to significantly less anode material and thus increasing the overall energy density value for the complete battery (>500 Wh/L). However, tremendous volume changes occur during cycling of pure silicon-based anodes. The expansion and contraction of these silicon particles causes them to fracture and lose electrical contact to the current collector ultimately severely limiting their cycle life. In Phase I of this project Yardney Technical Products, Inc. proposed development of a carbon/nano-silicon composite anode material with improved energy density and silicon's cycleability. In the carbon/nano-Si composite, silicon nanoparticles were embedded in a partially-graphitized carbonaceous matrix. The cycle life of anode material would be extended by decreasing the average particle size of active material (silicon) and by encapsulation of silicon nanoparticles in a ductile carbonaceous matrix. Decreasing the average particle size to a nano-region would also shorten Li-ion diffusion path and thus improve rate capability of the silicon-based anodes. Improved chemical inertness towards PC-based, low-temperature electrolytes was expected as an additional benefit of a thin, partially graphitized coating around the active electrode material.

  8. Designing Silicon Nanostructures for High Energy Lithium Ion Battery Anodes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Designing Silicon Nanostructures for High Energy Lithium Ion Battery Anodes Designing Silicon Nanostructures for High Energy Lithium Ion Battery Anodes 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon es148_cui_2012_p.pdf More Documents & Publications Wiring up Silicon Nanoparticles for High Performance Lithium-ion Battery Anodes Vehicle Technologies Office Merit Review 2014: Wiring

  9. Vehicle Technologies Office Merit Review 2014: Novel Anode Materials |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Novel Anode Materials Vehicle Technologies Office Merit Review 2014: Novel Anode Materials Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about novel anode materials. PDF icon es143_vaughey_2014_p.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2014: First Principles Calculations and NMR Spectroscopy of Electrode

  10. Synthesis and Characterization of Silicon Clathrates for Anode Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Lithium-Ion Batteries | Department of Energy Silicon Clathrates for Anode Applications in Lithium-Ion Batteries Synthesis and Characterization of Silicon Clathrates for Anode Applications in Lithium-Ion Batteries 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon es149_chan_2012_p.pdf More Documents & Publications Synthesis and Characterization of Silicon Clathrates for Anode Applications in Lithium-Ion

  11. Vehicle Technologies Office Merit Review 2014: Silicon Nanowire Anodes for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Next Generation Energy Storage | Department of Energy Silicon Nanowire Anodes for Next Generation Energy Storage Vehicle Technologies Office Merit Review 2014: Silicon Nanowire Anodes for Next Generation Energy Storage Presentation given by Amprius, Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about silicon nanowire anodes for next generation energy storage. PDF icon es126_stefan_2014_p.pdf More Documents

  12. Synthesis and Characterization of Silicon Clathrates for Anode...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Batteries Synthesis and Characterization of Silicon Clathrates for Anode Applications in Lithium-Ion Batteries 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies...

  13. Establish and Expand Commercial Production of Graphite Anode...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Expand Commercial Production of Graphite Anode Materials for High Performance Lithium-ion Batteries 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies...

  14. Oxide-based SOFC Anode Materials - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    offered in traditional metal oxides. Technology Marketing SummaryIn a solid-oxide fuel cell (SOFC), the anode facilitates the reaction between hydrogen, carbon monoxide and...

  15. Low cost fuel cell diffusion layer configured for optimized anode...

    Office of Scientific and Technical Information (OSTI)

    Patent: Low cost fuel cell diffusion layer configured for optimized anode water management Citation Details In-Document Search Title: Low cost fuel cell diffusion layer configured...

  16. Cooling for a rotating anode X-ray tube

    DOE Patents [OSTI]

    Smither, Robert K. (Hinsdale, IL)

    1998-01-01

    A method and apparatus for cooling a rotating anode X-ray tube. An electromagnetic motor is provided to rotate an X-ray anode with cooling passages in the anode. These cooling passages are coupled to a cooling structure located adjacent the electromagnetic motor. A liquid metal fills the passages of the cooling structure and electrical power is provided to the motor to rotate the anode and generate a rotating magnetic field which moves the liquid metal through the cooling passages and cooling structure.

  17. Parallel vacuum arc discharge with microhollow array dielectric and anode

    SciTech Connect (OSTI)

    Feng, Jinghua; Zhou, Lin; Fu, Yuecheng; Zhang, Jianhua; Xu, Rongkun; Chen, Faxin; Li, Linbo; Meng, Shijian

    2014-07-15

    An electrode configuration with microhollow array dielectric and anode was developed to obtain parallel vacuum arc discharge. Compared with the conventional electrodes, more than 10 parallel microhollow discharges were ignited for the new configuration, which increased the discharge area significantly and made the cathode eroded more uniformly. The vacuum discharge channel number could be increased effectively by decreasing the distances between holes or increasing the arc current. Experimental results revealed that plasmas ejected from the adjacent hollow and the relatively high arc voltage were two key factors leading to the parallel discharge. The characteristics of plasmas in the microhollow were investigated as well. The spectral line intensity and electron density of plasmas in microhollow increased obviously with the decease of the microhollow diameter.

  18. Electrolytic production of high purity aluminum using inert anodes

    DOE Patents [OSTI]

    Ray, Siba P. (Murrysville, PA); Liu, Xinghua (Monroeville, PA); Weirauch, Jr., Douglas A. (Murrysville, PA)

    2001-01-01

    A method of producing commercial purity aluminum in an electrolytic reduction cell comprising inert anodes is disclosed. The method produces aluminum having acceptable levels of Fe, Cu and Ni impurities. The inert anodes used in the process preferably comprise a cermet material comprising ceramic oxide phase portions and metal phase portions.

  19. Electrolytic production of high purity aluminum using ceramic inert anodes

    DOE Patents [OSTI]

    Ray, Siba P. (Murrysville, PA); Liu, Xinghua (Monroeville, PA); Weirauch, Douglas A. (Murrysville, PA); DiMilia, Robert A. (Baton Rouge, LA); Dynys, Joseph M. (New Kensington, PA); Phelps, Frankie E. (Apollo, PA); LaCamera, Alfred F. (Trafford, PA)

    2002-01-01

    A method of producing commercial purity aluminum in an electrolytic reduction cell comprising ceramic inert anodes is disclosed. The method produces aluminum having acceptable levels of Fe, Cu and Ni impurities. The ceramic inert anodes used in the process may comprise oxides containing Fe and Ni, as well as other oxides, metals and/or dopants.

  20. Carbon paint anode for reinforced concrete bridges in coastal environments

    SciTech Connect (OSTI)

    Cramer, Stephen D.; Bullard, Sophie J.; Covino, Bernard S., Jr.; Holcomb, Gordon R.; Russell, James H.; Cryer, C.B.; Laylor, H.M.

    2002-01-01

    Solvent-based acrylic carbon paint anodes were installed on the north approach spans of the Yaquina Bay Bridge (Newport OR) in 1985. The anodes continue to perform satisfactorily after more than 15 years service. The anodes were inexpensive to apply and field repairs are easily made. Depolarization potentials are consistently above 100 mV with long-term current densities around 2 mA/m 2. Bond strength remains adequate, averaging 0.50 MPa (73 psi). Some deterioration of the anode-concrete interface has occurred in the form of cracks and about 4% of the bond strength measurements indicated low or no bond. Carbon anode consumption appears low. The dominant long-term anode reaction appears to be chlorine evolution, which results in limited further acidification of the anode-concrete interface. Chloride profiles were depressed compared to some other coastal bridges suggesting chloride extraction by the CP system. Further evidence of outward chloride migration was a flat chloride profile between the anode and the outer rebar.

  1. Low cost fuel cell diffusion layer configured for optimized anode water

    Office of Scientific and Technical Information (OSTI)

    management (Patent) | SciTech Connect Patent: Low cost fuel cell diffusion layer configured for optimized anode water management Citation Details In-Document Search Title: Low cost fuel cell diffusion layer configured for optimized anode water management A fuel cell comprises a cathode gas diffusion layer, a cathode catalyst layer, an anode gas diffusion layer, an anode catalyst layer and an electrolyte. The diffusion resistance of the anode gas diffusion layer when operated with anode fuel

  2. Virtual cathode microwave generator having annular anode slit

    DOE Patents [OSTI]

    Kwan, Thomas J. T.; Snell, Charles M.

    1988-01-01

    A microwave generator is provided for generating microwaves substantially from virtual cathode oscillation. Electrons are emitted from a cathode and accelerated to an anode which is spaced apart from the cathode. The anode has an annular slit therethrough effective to form the virtual cathode. The anode is at least one range thickness relative to electrons reflecting from the virtual cathode. A magnet is provided to produce an optimum magnetic field having the field strength effective to form an annular beam from the emitted electrons in substantial alignment with the annular anode slit. The magnetic field, however, does permit the reflected electrons to axially diverge from the annular beam. The reflected electrons are absorbed by the anode in returning to the real cathode, such that substantially no reflexing electrons occur. The resulting microwaves are produced with a single dominant mode and are substantially monochromatic relative to conventional virtual cathode microwave generators.

  3. Focused cathode design to reduce anode heating during vircator operation

    SciTech Connect (OSTI)

    Lynn, Curtis F.; Dickens, James C.; Neuber, Andreas A.

    2013-10-15

    Virtual cathode oscillators, or vircators, are a type of high power microwave device which operates based on the instability of a virtual cathode, or cloud of electrons, which forms when electron current injected into the drift tube exceeds the space charge limited current within the drift tube. Anode heating by the electron beam during vircator operation ultimately limits achievable pulse lengths, repetition rates, and the duration of burst mode operation. This article discusses a novel cathode design that focuses electrons through holes in the anode, thus significantly reducing anode heating by the electrons emitted from the cathode during the first transit through the A-K gap. Reflexing electrons continue to deposit energy on the anode; however, the discussed minimization of anode heating by main beam electrons has the potential to enable higher repetition rates as well as efficiency and longer diode lifetime. A simulation study of this type of cathode design illustrates possible advantages.

  4. Material and Energy Flows in the Production of Cathode and Anode...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Material and Energy Flows in the Production of Cathode and Anode Materials for Lithium Ion Batteries Title Material and Energy Flows in the Production of Cathode and Anode...

  5. Carbonaceous materials as lithium intercalation anodes

    SciTech Connect (OSTI)

    Tran, T.D.; Feikert, J.H.; Mayer, S.T.; Song, X.; Kinoshita, K.

    1994-10-01

    Commercial and polymer-derived carbonaceous materials were examined as lithium intercalation anodes in propylene carbonate (pyrolysis < 1350C, carbons) and ethylene carbonate/dimethyl carbonate (graphites) electrolytes. The reversible capacity (180--355 mAh/g) and the irreversible capacity loss (15--200 % based on reversible capacity) depend on the type of binder, carbon type, morphology, and phosphorus doping concentration. A carbon-based binder was chosen for electrode fabrication, producing mechanically and chemically stable electrodes and reproducible results. Several types of graphites had capacity approaching LiC{sub 6}. Petroleum fuel green cokes doped with phosphorous gave more than a 20 % increase in capacity compared to undoped samples. Electrochemical characteristics are related to SEM, TEM, XRD and BET measurements.

  6. ZIRCONIUM OXIDE NANOSTRUCTURES PREPARED BY ANODIC OXIDATION

    SciTech Connect (OSTI)

    Dang, Y. Y.; Bhuiyan, M.S.; Paranthaman, M. P.

    2008-01-01

    Zirconium oxide is an advanced ceramic material highly useful for structural and electrical applications because of its high strength, fracture toughness, chemical and thermal stability, and biocompatibility. If highly-ordered porous zirconium oxide membranes can be successfully formed, this will expand its real-world applications, such as further enhancing solid-oxide fuel cell technology. Recent studies have achieved various morphologies of porous zirconium oxide via anodization, but they have yet to create a porous layer where nanoholes are formed in a highly ordered array. In this study, electrochemical methods were used for zirconium oxide synthesis due to its advantages over other coating techniques, and because the thickness and morphology of the ceramic fi lms can be easily tuned by the electrochemical parameters, such as electrolyte solutions and processing conditions, such as pH, voltage, and duration. The effects of additional steps such as pre-annealing and post-annealing were also examined. Results demonstrate the formation of anodic porous zirconium oxide with diverse morphologies, such as sponge-like layers, porous arrays with nanoholes ranging from 40 to 75 nm, and nanotube layers. X-ray powder diffraction analysis indicates a cubic crystallographic structure in the zirconium oxide. It was noted that increased voltage improved the ability of the membrane to stay adhered to the zirconium substrate, whereas lower voltages caused a propensity for the oxide fi lm to fl ake off. Further studies are needed to defi ne the parameters windows that create these morphologies and to investigate other important characteristics such as ionic conductivity.

  7. Cu-Ni-Fe anodes having improved microstructure

    DOE Patents [OSTI]

    Bergsma, S. Craig; Brown, Craig W.

    2004-04-20

    A method of producing aluminum in a low temperature electrolytic cell containing alumina dissolved in an electrolyte. The method comprises the steps of providing a molten electrolyte having alumina dissolved therein in an electrolytic cell containing the electrolyte. A non-consumable anode and cathode is disposed in the electrolyte, the anode comprised of Cu--Ni--Fe alloys having single metallurgical phase. Electric current is passed from the anode, through the electrolyte to the cathode thereby depositing aluminum on the cathode, and molten aluminum is collected from the cathode.

  8. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy. A team of Berkeley Lab scientists has designed a new kind of anode that absorbs eight times the lithium of

  9. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy. A team of Berkeley Lab scientists has designed a new kind of anode that absorbs eight times the lithium of

  10. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy. A team of Berkeley Lab scientists has designed a new kind of anode that absorbs eight times the lithium of

  11. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy. A team of Berkeley Lab scientists has designed a new kind of anode that absorbs eight times the lithium of

  12. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy. A team of Berkeley Lab scientists has designed a new kind of anode that absorbs eight times the lithium of

  13. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Better Anode Design to Improve Lithium-Ion Batteries A Better Anode Design to Improve Lithium-Ion Batteries Print Friday, 23 March 2012 13:53 Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy. A team of Berkeley Lab

  14. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy. A team of Berkeley Lab scientists has designed a new kind of anode that absorbs eight times the lithium of

  15. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy. A team of Berkeley Lab scientists has designed a new kind of anode that absorbs eight times the lithium of

  16. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy. A team of Berkeley Lab scientists has designed a new kind of anode that absorbs eight times the lithium of

  17. Using SiO Anodes for High Capacity, High Rate Electrodes for Lithium Ion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Batteries - Energy Innovation Portal Using SiO Anodes for High Capacity, High Rate Electrodes for Lithium Ion Batteries Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing Summary Berkeley Lab developed an elegant and inexpensive fabrication method for high performance electrodes with unmatched specific / areal capacities and good capacity retention for application in lithium ion batteries. Description A team of Berkeley Lab researchers led by Gao Liu

  18. Fuel Cells (Project FC-041): DOE Hydrogen Program 2011 Annual Merit Review and Peer Evaluation Report: Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    422 | FY 2011 Merit Review and Peer Evaluation Report Project # FC-041: Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts Huyen Dinh; National Renewable Energy Laboratory Brief Summary of Project: The overall objective of this project is to develop and demonstrate direct methanol fuel cell (DMFC) anode catalyst systems that meet or exceed the U.S. Department of Energy's (DOE) 2010 targets for consumer electronics applications. The specific goal is to improve the catalytic

  19. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in ... 8.0.1 show a lower "lowest unoccupied molecular orbital" for the new Berkeley Lab ...

  20. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in ... 8.0.1 show a lower "lowest unoccupied molecular orbital" for the new Berkeley Lab ...

  1. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good...

  2. Lithium-Titanium-Oxide Anodes Improve Battery Safety and Performance...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium-Titanium-Oxide Anodes Improve Battery Safety and Performance Technology available for licensing: Li4Ti5O12 spinel is a promising alternative to graphite electrodes with...

  3. Fluoroethylene carbonate and %22silicon oxide%22 on silicon anodes:

    Office of Scientific and Technical Information (OSTI)

    modeling SEI reaction mechanisms. (Conference) | SciTech Connect Fluoroethylene carbonate and %22silicon oxide%22 on silicon anodes: modeling SEI reaction mechanisms. Citation Details In-Document Search Title: Fluoroethylene carbonate and %22silicon oxide%22 on silicon anodes: modeling SEI reaction mechanisms. Abstract not provided. Authors: Leung, Kevin Publication Date: 2013-05-01 OSTI Identifier: 1115631 Report Number(s): SAND2013-3743C 479901 DOE Contract Number: AC04-94AL85000 Resource

  4. Fuel cell having dual electrode anode or cathode

    DOE Patents [OSTI]

    Findl, E.

    1984-04-10

    A fuel cell that is characterized by including a dual electrode anode that is operable to simultaneously electro-oxidize a gaseous fuel and a liquid fuel. In alternative embodiments, a fuel cell having a single electrode anode is provided with a dual electrode cathode that is operable to simultaneously reduce a gaseous oxidant and a liquid oxidant to electro-oxidize a fuel supplied to the cell.

  5. Multilayer Graphene-Silicon Structures for Lithium Ion Battery Anodes -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Multilayer Graphene-Silicon Structures for Lithium Ion Battery Anodes Lawrence Berkeley National Laboratory Contact LBL About This Technology Publications: PDF Document Publication Ji, L., Zheng, H., Ismach, A., Tan, Z., Xun, S., Lin, E., Battaglia, V., Srinivasan, V., Zhang, Y., "Graphene/Si multilayer structure anodes for advanced half and full lithium-ion cells," Nano Energy, August 27, 2011. (1,629 KB) PDF Document Publication Ji, L., Zhang, X.,

  6. Lithium-Titanium-Oxide Anodes Improve Battery Safety and Performance |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory Lithium-Titanium-Oxide Anodes Improve Battery Safety and Performance Technology available for licensing: Li4Ti5O12 spinel is a promising alternative to graphite electrodes with enhanced conductivity, voltage and energy density. Enhanced stability at lower cost Li4Ti5O12 spinel is a promising alternative to graphite electrodes with enhanced conductivity, voltage and energy density PDF icon LTO_anodes

  7. Establish and Expand Commercial Production of Graphite Anode Materials for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Performance Lithium-ion Batteries | Department of Energy Establish and Expand Commercial Production of Graphite Anode Materials for High Performance Lithium-ion Batteries Establish and Expand Commercial Production of Graphite Anode Materials for High Performance Lithium-ion Batteries 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt012_es_mcchesney_2011_p.pdf More Documents & Publications Pyrotek

  8. Fuel cell having dual electrode anode or cathode

    DOE Patents [OSTI]

    Findl, Eugene (Coram, NY)

    1985-01-01

    A fuel cell that is characterized by including a dual electrode anode that is operable to simultaneously electro-oxidize a gaseous fuel and a liquid fuel. In alternative embodiments, a fuel cell having a single electrode anode is provided with a dual electrode cathode that is operable to simultaneously reduce a gaseous oxidant and a liquid oxidant to electro-oxidize a fuel supplied to the cell.

  9. Synthesis and Characterization of Structured Si-Carbon Nanocomposite Anodes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Functional Polymer Binders | Department of Energy 3 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon es147_wang_2013_o.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2014: Synthesis and Characterization of Structured Si-Carbon Nanocomposite Anodes and Functional Polymer Binders Synthesis and Characterization of Structured Si-Carbon Nanocomposite Anodes and Functional Polymer

  10. Hyper-dendritic nanoporous zinc foam anodes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chamoun, Mylad; Hertzberg, Benjamin J.; Gupta, Tanya; Davies, Daniel; Bhadra, Shoham; Van Tassell, Barry.; Erdonmez, Can; Steingart, Daniel A.

    2015-04-24

    The low cost, significant reducing potential, and relative safety of the zinc electrode is a common hope for a reductant in secondary batteries, but it is limited mainly to primary implementation due to shape change. In this work we exploit such shape change for the benefit of static electrodes through the electrodeposition of hyper-dendritic nanoporous zinc foam. Electrodeposition of zinc foam resulted in nanoparticles formed on secondary dendrites in a three-dimensional network with a particle size distribution of 54.1 - 96.0 nm. The nanoporous zinc foam contributed to highly oriented crystals, high surface area and more rapid kinetics in contrastmore » to conventional zinc in alkaline mediums. The anode material presented had a utilization of ~ 88% at full depth-of-discharge at various rates indicating a superb rate-capability. The rechargeability of Zn⁰/Zn²⁺ showed significant capacity retention over 100 cycles at a 40% depth-of-discharge to ensure that the dendritic core structure was imperforated. The dendritic architecture was densified upon charge-discharge cycling and presented superior performance compared to bulk zinc electrodes.« less

  11. Process for anodizing a robotic device

    DOE Patents [OSTI]

    Townsend, William T. (Weston, MA)

    2011-11-08

    A robotic device has a base and at least one finger having at least two links that are connected in series on rotary joints with at least two degrees of freedom. A brushless motor and an associated controller are located at each joint to produce a rotational movement of a link. Wires for electrical power and communication serially connect the controllers in a distributed control network. A network operating controller coordinates the operation of the network, including power distribution. At least one, but more typically two to five, wires interconnect all the controllers through one or more joints. Motor sensors and external world sensors monitor operating parameters of the robotic hand. The electrical signal output of the sensors can be input anywhere on the distributed control network. V-grooves on the robotic hand locate objects precisely and assist in gripping. The hand is sealed, immersible and has electrical connections through the rotary joints for anodizing in a single dunk without masking. In various forms, this intelligent, self-contained, dexterous hand, or combinations of such hands, can perform a wide variety of object gripping and manipulating tasks, as well as locomotion and combinations of locomotion and gripping.

  12. New Layered Nanolaminates for Use in Lithium Battery Anodes | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Layered Nanolaminates for Use in Lithium Battery Anodes New Layered Nanolaminates for Use in Lithium Battery Anodes 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon es146_gogotsi_2012_p.pdf More Documents & Publications New Layered Nanolaminates for Use in Lithium Battery Anodes 2012 Annual Merit Review Results Report - Acronyms Novel Lithium Ion Anode Structures: Overview of New DOE BATT Anode

  13. Stainless steel anodes for alkaline water electrolysis and methods of making

    DOE Patents [OSTI]

    Soloveichik, Grigorii Lev

    2014-01-21

    The corrosion resistance of stainless steel anodes for use in alkaline water electrolysis was increased by immersion of the stainless steel anode into a caustic solution prior to electrolysis. Also disclosed herein are electrolyzers employing the so-treated stainless steel anodes. The pre-treatment process provides a stainless steel anode that has a higher corrosion resistance than an untreated stainless steel anode of the same composition.

  14. Metal-Based, High-Capacity Lithium-Ion Anodes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Based, High-Capacity Lithium-Ion Anodes Metal-Based, High-Capacity Lithium-Ion Anodes 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon es063_whittingham_2012_p.pdf More Documents & Publications Metal-Based, High-Capacity Lithium-Ion Anodes Nanostructured Materials as Anodes Vehicle Technologies Office Merit Review 2014: Metal-Based High Capacity Li-Ion Anodes

  15. Development of Si-based High Capacity Anodes

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  16. Basic properties of a liquidt in anode solid oxide fuel cell

    SciTech Connect (OSTI)

    Harry Abernathy; RandallGemmen; KirkGerdes; Mark Koslowske; ThomasTao

    2010-12-17

    An unconventional high temperature fuel cell system, the liquidt in anode solid oxide fuel cell(LTA-SOFC), is discussed. A thermodynamic analysis of a solid oxide fuel cell with a liquid metal anode is developed. Pertinent thermo chemical and thermo physical properties of liquid tin in particular are detailed. An experimental setup for analysis of LTA-SOFC anode kinetics is described, and data for a planar cell under hydrogen indicated an effective oxygen diffusion coefficient of 5.310?5 cm2 s?1 at 800 ?C and 8.910?5 cm2 s?1 at 900 ?C. This value is similar to previously reported literature values for liquid tin. The oxygen conductivity through the tin, calculated from measured diffusion coefficients and theoretical oxygen solubility limits, is found to be on the same order of thatofyttria-stabilizedzirconia(YSZ), a traditional SOFC electrolyte material. As such,the ohmicloss due to oxygen transport through the tin layer must be considered in practical system cell design since the tin layer will usually be at least as thick as the electrolyte.

  17. Demonstration of a Highly Efficient Solid Oxide Fuel Cell Power System Using Adiabatic Steam Reforming and Anode Gas Recirculation

    SciTech Connect (OSTI)

    Powell, Michael R.; Meinhardt, Kerry D.; Sprenkle, Vincent L.; Chick, Lawrence A.; Mcvay, Gary L.

    2012-05-01

    Solid oxide fuel cells (SOFC) are currently being developed for a wide variety of applications because of their high efficiency at multiple power levels. Applications for SOFCs encompass a large range of power levels including 1-2 kW residential combined heat and power applications, 100-250 kW sized systems for distributed generation and grid extension, and MW-scale power plants utilizing coal. This paper reports on the development of a highly efficient, small-scale SOFC power system operating on methane. The system uses adiabatic steam reforming of methane and anode gas recirculation to achieve high net electrical efficiency. The anode exit gas is recirculated and all of the heat and water required for the endothermic reforming reaction are provided by the anode gas emerging from the SOFC stack. Although the single-pass fuel utilization is only about 55%, because of the anode gas recirculation the overall fuel utilization is up to 93%. The demonstrated system achieved gross power output of 1650 to 2150 watts with a maximum net LHV efficiency of 56.7% at 1720 watts. Overall system efficiency could be further improved to over 60% with use of properly sized blowers.

  18. Low cost fuel cell diffusion layer configured for optimized anode water management

    DOE Patents [OSTI]

    Owejan, Jon P; Nicotera, Paul D; Mench, Matthew M; Evans, Robert E

    2013-08-27

    A fuel cell comprises a cathode gas diffusion layer, a cathode catalyst layer, an anode gas diffusion layer, an anode catalyst layer and an electrolyte. The diffusion resistance of the anode gas diffusion layer when operated with anode fuel is higher than the diffusion resistance of the cathode gas diffusion layer. The anode gas diffusion layer may comprise filler particles having in-plane platelet geometries and be made of lower cost materials and manufacturing processes than currently available commercial carbon fiber substrates. The diffusion resistance difference between the anode gas diffusion layer and the cathode gas diffusion layer may allow for passive water balance control.

  19. Battery with modular air cathode and anode cage

    DOE Patents [OSTI]

    Niksa, Marilyn J. (Painesville, OH); Pohto, Gerald R. (Mentor, OH); Lakatos, Leslie K. (Mentor, OH); Wheeler, Douglas J. (Cleveland Heights, OH); Niksa, Andrew J. (Painesville, OH); Schue, Thomas J. (Huntsburg, OH); Turk, Thomas R. (Mentor, OH)

    1988-01-01

    A battery assembly of the consumable metal anode type has now been constructed for ready assembly as well as disassembly. In a non-conductive and at least substantially inert cell body, space is provided for receiving an open-structured, non-consumable anode cage. The cage has an open top for facilitating insertion of an anode. A modular cathode is used, comprising a peripheral current conductor frame clamped about a grid reinforced air cathode in sheet form. The air cathode may be double gridded. The cathode frame can be sealed, during assembly, with electrolyte-resistant-sealant as well as with adhesive. The resulting cathode module can be assembled outside the cell body and readily inserted therein, or can later be easily removed therefrom.

  20. Battery with modular air cathode and anode cage

    DOE Patents [OSTI]

    Niksa, Marilyn J. (Painesville, OH); Pohto, Gerald R. (Mentor, OH); Lakatos, Leslie K. (Mentor, OH); Wheeler, Douglas J. (Cleveland Heights, OH); Niksa, Andrew J. (Painesville, OH); Schue, Thomas J. (Huntsburg, OH)

    1987-01-01

    A battery assembly of the consumable metal anode type has now been constructed for ready assembly as well as disassembly. In a non-conductive and at least substantially inert cell body, space is provided for receiving an open-structured, non-consumable anode cage. The cage has an open top for facilitating insertion of an anode. A modular cathode is used, comprising a peripheral current conductor frame clamped about a grid reinforced air cathode in sheet form. The air cathode may be double gridded. The cathode frame can be sealed, during assembly, with electrolyte-resistant-sealant as well as with adhesive. The resulting cathode module can be assembled outside the cell body and readily inserted therein, or can later be easily removed therefrom.

  1. Color Anodizing of Titanium Coated Rolled Carbon Steel Plate

    SciTech Connect (OSTI)

    Sarajan, Zohair; Mobarakeh, Hooman Nikbakht; Namiranian, Sohrab

    2011-12-26

    As an important kind of structural materials, the titanium cladded steel plates have the advantages of both metals and have been applied in aviation, spaceflight, chemical and nuclear industries. In this study, the specimens which were prepared under soldering mechanism during rolling were anodized by electrochemical process under a given conditions. The color anodizing takes place by physical phenomenon of color interference. Part of incident light on the titanium oxide is reflected and the other part reflects inside coated titanium layer. Major part of the light which reflects from titanium-oxide interface, reflects again inside of the oxide layer.

  2. Electrolytic production of metals using a resistant anode

    DOE Patents [OSTI]

    Tarcy, G.P.; Gavasto, T.M.; Ray, S.P.

    1986-11-04

    An electrolytic process is described comprising evolving oxygen on an anode in a molten salt, the anode comprising an alloy comprising a first metal and a second metal, both metals forming oxides, the oxide of the first metal being more resistant than the second metal to attack by the molten salt, the oxide of the second metal being more resistant than the first metal to the diffusion of oxygen. The electrode may also be formed of CuAlO[sub 2] and/or Cu[sub 2]O. 2 figs.

  3. Oxygen-producing inert anodes for SOM process

    DOE Patents [OSTI]

    Pal, Uday B

    2014-02-25

    An electrolysis system for generating a metal and molecular oxygen includes a container for receiving a metal oxide containing a metallic species to be extracted, a cathode positioned to contact a metal oxide housed within the container; an oxygen-ion-conducting membrane positioned to contact a metal oxide housed within the container; an anode in contact with the oxygen-ion-conducting membrane and spaced apart from a metal oxide housed within the container, said anode selected from the group consisting of liquid metal silver, oxygen stable electronic oxides, oxygen stable crucible cermets, and stabilized zirconia composites with oxygen stable electronic oxides.

  4. Overview of SOFC Anode Interactions with Coal Gas Impurities

    SciTech Connect (OSTI)

    O. A. Marina; L. R. Pederson; R. Gemmen; K. Gerdes; H. Finklea; I. B. Celik

    2010-03-01

    An overview of the results of SOFC anode interactions with phosphorus, arsenic, selenium, sulfur, antimony, and hydrogen chloride as single contaminants or in combinations is discussed. Tests were performed using both anode- and electrolyte-supported cells in synthetic and actual coal gas for periods greater than 1000 hours. Post-test analyses were performed to identify reaction products formed and their distribution, and compared to phases expected from thermochemical modeling. The ultimate purpose of this work is to establish maximum permissible concentrations for impurities in coal gas, to aid in the selection of appropriate coal gas clean-up technologies.

  5. Overview of SOFC Anode Interactions with Coal Gas Impurities

    SciTech Connect (OSTI)

    Marina, Olga A.; Pederson, Larry R.; Gemmen, Randall; Gerdes, Kirk; Finklea, Harry; Celik, Ismail B.

    2010-05-01

    An overview of the results of SOFC anode interactions with phosphorus, arsenic, selenium, sulfur, antimony, and hydrogen chloride as single contaminants or in combinations is discussed. Tests were performed using both anode- and electrolyte-supported cells in synthetic and actual coal gas for periods greater than 1000 hours. Post-test analyses were performed to identify reaction products formed and their distribution, and compared to phases expected from thermochemical modeling. The ultimate purpose of this work is to establish maximum permissible concentrations for impurities in coal gas, to aid in the selection of appropriate coal gas clean-up technologies.

  6. Protective lithium ion conducting ceramic coating for lithium metal anodes and associate method

    DOE Patents [OSTI]

    Bates, John B. (Oak Ridge, TN)

    1994-01-01

    A battery structure including a cathode, a lithium metal anode and an electrolyte disposed between the lithium anode and the cathode utilizes a thin-film layer of lithium phosphorus oxynitride overlying so as to coat the lithium anode and thereby separate the lithium anode from the electrolyte. If desired, a preliminary layer of lithium nitride may be coated upon the lithium anode before the lithium phosphorous oxynitride is, in turn, coated upon the lithium anode so that the separation of the anode and the electrolyte is further enhanced. By coating the lithium anode with this material lay-up, the life of the battery is lengthened and the performance of the battery is enhanced.

  7. Solid state thin film battery having a high temperature lithium alloy anode

    DOE Patents [OSTI]

    Hobson, David O. (Oak Ridge, TN)

    1998-01-01

    An improved rechargeable thin-film lithium battery involves the provision of a higher melting temperature lithium anode. Lithium is alloyed with a suitable solute element to elevate the melting point of the anode to withstand moderately elevated temperatures.

  8. Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts (Presentation)

    SciTech Connect (OSTI)

    Dinh, H.; Gennett, T.

    2010-06-11

    This presentation is a summary of a Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts.

  9. Pd/Ni-WO3 anodic double layer gasochromic device

    DOE Patents [OSTI]

    Lee, Se-Hee; Tracy, C. Edwin; Pitts, J. Roland; Liu, Ping

    2004-04-20

    An anodic double layer gasochromic sensor structure for optical detection of hydrogen in improved response time and with improved optical absorption real time constants, comprising: a glass substrate; a tungsten-doped nickel oxide layer coated on the glass substrate; and a palladium layer coated on the tungsten-doped nickel oxide layer.

  10. Sulfur tolerant molten carbonate fuel cell anode and process

    DOE Patents [OSTI]

    Remick, Robert J. (Naperville, IL)

    1990-01-01

    Molten carbonate fuel cell anodes incorporating a sulfur tolerant carbon monoxide to hydrogen water-gas-shift catalyst provide in situ conversion of carbon monoxide to hydrogen for improved fuel cell operation using fuel gas mixtures of over about 10 volume percent carbon monoxide and up to about 10 ppm hydrogen sulfide.

  11. New High-Energy Nanofiber Anode Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon es010_zhang_2011_p.pdf More Documents & Publications New High-Energy Nanofiber Anode Materials FY 2011 Annual Progress Report for Energy Storage R&D FY 2012 Annual Progress Report for Energy Storage R&D

  12. Synthesis and characterization of anodized titanium-oxide nanotube arrays

    SciTech Connect (OSTI)

    Hu, Michael Z.; Lai, Peng; Bhuiyan, Md S; Tsouris, Costas; Gu, Baohua; Paranthaman, Mariappan Parans; Gabitto, Jorge; Harrison, L. D.

    2009-01-01

    Anodized titanium-oxide containing highly ordered, vertically oriented TiO2 nanotube arrays is a nanomaterial architecture that shows promise for diverse applications. In this paper, an anodization synthesis using HF-free aqueous solution is described. The anodized TiO2 film samples (amorphous, anatase, and rutile) on titanium foils were characterized with scanning electron microscopy, X-ray diffraction, and Raman spectroscopy. Additional characterization in terms of photocurrent generated by an anode consisting of a titanium foil coated by TiO2 nanotubes was performed using an electrochemical cell. A platinum cathode was used in the electrochemical cell. Results were analyzed in terms of the efficiency of the current generated, defined as the ratio of the difference between the electrical energy output and the electrical energy input divided by the input radiation energy, with the goal of determining which phase of TiO2 nanotubes leads to more efficient hydrogen production. It was determined that the anatase crystalline structure converts light into current more efficiently and is therefore a better photocatalytic material for hydrogen production via photoelectrochemical splitting of water.

  13. Protection of Li Anodes Using Dual Phase Electrolytes | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon es012_mikhaylik_2011_p.pdf More Documents & Publications Protection of Li Anodes Using Dual Phase Electrolytes Progress of DOE Materials, Manufacturing Process R&D, and ARRA Battery Manufacturing Grants FY 2011 Annual Prog

  14. Protection of Li Anodes Using Dual Phase Electrolytes | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon es012_mikhaylik_2010_o.pdf More Documents & Publications Protection of Li Anodes Using Dual Phase Electrolytes Progress of DOE Materials, Manufacturing Process R&D, and ARRA Battery Manufacturing Grant

  15. Anode Materials for Rechargeable Li-Ion Batteries

    SciTech Connect (OSTI)

    Fultz, B.

    2001-01-12

    This research is on materials for anodes and cathodes in electrochemical cells. The work is a mix of electrochemical measurements and analysis of the materials by transmission electron microscopy and x-ray diffractometry. At present, our experimental work involves only materials for Li storage, but we have been writing papers from our previous work on hydrogen-storage materials.

  16. Aerogel and xerogel composites for use as carbon anodes

    DOE Patents [OSTI]

    Cooper, John F. (Oakland, CA); Tillotson, Thomas M. (Tracy, CA); Hrubesh, Lawrence W. (Pleasanton, CA)

    2008-08-12

    Disclosed herein are aerogel and xerogel composite materials suitable for use as anodes in fuel cells and batteries. Precursors to the aerogel and xerogel compounds are infused with inorganic polymeric materials or carbon particles and then gelled. The gels are then pyrolyzed to form composites with internal structural support.

  17. Structural micro-porous carbon anode for rechargeable lithium-ion batteries

    DOE Patents [OSTI]

    Delnick, F.M.; Even, W.R. Jr.; Sylwester, A.P.; Wang, J.C.F.; Zifer, T.

    1995-06-20

    A secondary battery having a rechargeable lithium-containing anode, a cathode and a separator positioned between the cathode and anode with an organic electrolyte solution absorbed therein is provided. The anode comprises three-dimensional microporous carbon structures synthesized from polymeric high internal phase emulsions or materials derived from this emulsion source, i.e., granules, powders, etc. 6 figs.

  18. Structural micro-porous carbon anode for rechargeable lithium-ion batteries

    DOE Patents [OSTI]

    Delnick, Frank M. (Albuquerque, NM); Even, Jr., William R. (Livermore, CA); Sylwester, Alan P. (Washington, DC); Wang, James C. F. (Livermore, CA); Zifer, Thomas (Manteca, CA)

    1995-01-01

    A secondary battery having a rechargeable lithium-containing anode, a cathode and a separator positioned between the cathode and anode with an organic electrolyte solution absorbed therein is provided. The anode comprises three-dimensional microporous carbon structures synthesized from polymeric high internal phase emulsions or materials derived from this emulsion source, i.e., granules, powders, etc.

  19. Reduced temperature aluminum production in an electrolytic cell having an inert anode

    DOE Patents [OSTI]

    Dawless, Robert K. (Monroeville, PA); Ray, Siba P. (Murrysville, PA); Hosler, Robert B. (Sarver, PA); Kozarek, Robert L. (Apollo, PA); LaCamera, Alfred F. (Trafford, PA)

    2000-01-01

    Aluminum is produced by electrolytic reduction of alumina in a cell having a cathode, an inert anode and a molten salt bath containing metal fluorides and alumina. The inert anode preferably contains copper, silver and oxides of iron and nickel. Reducing the molten salt bath temperature to about 900-950.degree. C. lowers corrosion on the inert anode constituents.

  20. Modular anode assemblies and methods of using the same for electrochemical reduction

    DOE Patents [OSTI]

    Wiedmeyer, Stanley G; Barnes, Laurel A; Williamson, Mark A; Willit, James L

    2015-02-17

    Modular anode assemblies are used in electrolytic oxide reduction systems for scalable reduced metal production via electrolysis. Assemblies include a channel frame connected to several anode rods extending into an electrolyte. An electrical system powers the rods while being insulated from the channel frame. A cooling system removes heat from anode rods and the electrical system. An anode guard attaches to the channel frame to prevent accidental electrocution or damage during handling or repositioning. Each anode rod may be divided into upper and lower sections to permit easy repair and swapping out of lower sections. The modular assemblies may have standardized components to permit placement at multiple points within a reducing system. Example methods may operate an electrolytic oxide reduction system by positioning the modular anode assemblies in the reduction system and applying electrical power to the plurality of anode assemblies.

  1. Particle-in-cell modeling for MJ scale dense plasma focus with varied anode shape

    SciTech Connect (OSTI)

    Link, A. Halvorson, C. Schmidt, A.; Hagen, E. C.; Rose, D. V.; Welch, D. R.

    2014-12-15

    Megajoule scale dense plasma focus (DPF) Z-pinches with deuterium gas fill are compact devices capable of producing 10{sup 12} neutrons per shot but past predictive models of large-scale DPF have not included kinetic effects such as ion beam formation or anomalous resistivity. We report on progress of developing a predictive DPF model by extending our 2D axisymmetric collisional kinetic particle-in-cell (PIC) simulations from the 4 kJ, 200 kA LLNL DPF to 1 MJ, 2 MA Gemini DPF using the PIC code LSP. These new simulations incorporate electrodes, an external pulsed-power driver circuit, and model the plasma from insulator lift-off through the pinch phase. To accommodate the vast range of relevant spatial and temporal scales involved in the Gemini DPF within the available computational resources, the simulations were performed using a new hybrid fluid-to-kinetic model. This new approach allows single simulations to begin in an electron/ion fluid mode from insulator lift-off through the 5-6 ?s run-down of the 50+ cm anode, then transition to a fully kinetic PIC description during the run-in phase, when the current sheath is 2-3 mm from the central axis of the anode. Simulations are advanced through the final pinch phase using an adaptive variable time-step to capture the fs and sub-mm scales of the kinetic instabilities involved in the ion beam formation and neutron production. Validation assessments are being performed using a variety of different anode shapes, comparing against experimental measurements of neutron yield, neutron anisotropy and ion beam production.

  2. Electrocatalyst for alcohol oxidation at fuel cell anodes

    DOE Patents [OSTI]

    Adzic, Radoslav (East Setauket, NY); Kowal, Andrzej (Cracow, PL)

    2011-11-02

    In some embodiments a ternary electrocatalyst is provided. The electrocatalyst can be used in an anode for oxidizing alcohol in a fuel cell. In some embodiments, the ternary electrocatalyst may include a noble metal particle having a surface decorated with clusters of SnO.sub.2 and Rh. The noble metal particles may include platinum, palladium, ruthenium, iridium, gold, and combinations thereof. In some embodiments, the ternary electrocatalyst includes SnO.sub.2 particles having a surface decorated with clusters of a noble metal and Rh. Some ternary electrocatalysts include noble metal particles with clusters of SnO.sub.2 and Rh at their surfaces. In some embodiments the electrocatalyst particle cores are nanoparticles. Some embodiments of the invention provide a fuel cell including an anode incorporating the ternary electrocatalyst. In some aspects a method of using ternary electrocatalysts of Pt, Rh, and SnO.sub.2 to oxidize an alcohol in a fuel cell is described.

  3. New High-Energy Nanofiber Anode Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon es010_zhang_2010_o.pdf More Documents & Publications New High-Energy Nanofiber Anode Materials FY 2011 Annual Progress Report for Energy Storage R&D Vehicle Technologies Office: 2010 Energy Storage R&D Annual Progress Report

  4. Electrocatalyst for Alcohol Oxidation at Fuel Cell Anodes - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Alcohol Oxidation at Fuel Cell Anodes Brookhaven National Laboratory Contact BNL About This Technology Publications: PDF Document Publication Ternary Pt/Rh/SnO2 electrocatalysts for oxidizing ethanol to CO2 (2,641 KB) <p> Scanning transmission electron micrograph showing uniform dispersion of the catalyst particles (bright spots) on the carbon support (dark background). The average particle size is about 1.5&nbsp;nm.</p> Scanning transmission electron

  5. Nanotube composite anode materials improve lithium-ion battery performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (ANL-09-034) - Energy Innovation Portal Vehicles and Fuels Vehicles and Fuels Energy Storage Energy Storage Find More Like This Return to Search Nanotube composite anode materials improve lithium-ion battery performance (ANL-09-034) Argonne National Laboratory Contact ANL About This Technology Technology Marketing Summary Rechargeable lithium-ion batteries are a critical technology for many applications, including consumer electronics and electric vehicles. As the demand for hybrid and

  6. Innovative lithium-titanium-oxide anodes improve battery safety and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    performance (IN-98-069) - Energy Innovation Portal Energy Storage Energy Storage Advanced Materials Advanced Materials Find More Like This Return to Search Innovative lithium-titanium-oxide anodes improve battery safety and performance (IN-98-069) Argonne National Laboratory Contact ANL About This Technology Two orders of magnitude conductivity enhancement in Li4Ti5O12 with magnesium doping with no change in capacity or insertion potential.<br /> Two orders of magnitude conductivity

  7. Silicon Nanowire Anodes for Next Generation Energy Storage

    Energy Savers [EERE]

    Silicon Nanowire Anodes for Next Generation Energy Storage Ionel C. Stefan, Principal Investigator Yoni Cohen, Program Manager Amprius, Inc. June 16-20, 2014 ES126 This presentation does not contain any proprietary, confidential, or otherwise restricted information 2 * Start date: October 2011 * End date: September 2014 * Percent complete: 85% * Performance - Energy Density - Specific Energy - Power * Life - Cycle life - Shelf life * Total project funding: $8,215,077 - DOE share: $4,998,336 -

  8. Startup Success: Energy Department Helping Small Businesses Bring Clean

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tech to the Market | Department of Energy Startup Success: Energy Department Helping Small Businesses Bring Clean Tech to the Market Startup Success: Energy Department Helping Small Businesses Bring Clean Tech to the Market October 3, 2014 - 1:08pm Addthis SiNode Systems – Advanced silicon graphene batteries. | Photo courtesy of Sinode Systems. SiNode Systems - Advanced silicon graphene batteries. | Photo courtesy of Sinode Systems. NBD Nano works to develop advanced coatings that will

  9. Inward Lithium-Ion Breathing of Hierarchically Porous Silicon Anodes

    SciTech Connect (OSTI)

    Xiao, Qiangfeng; Gu, Meng; Yang, Hui; Li, Bing; Zhang, Cunman; Liu, Yang; Liu, Fang; Dai, Fang; Yang, Li; Liu, Zhongyi; Xiao, Xingcheng; Liu, Gao; Zhao, Peng; Zhang, Sulin; Wang, Chong M.; Lu, Yunfeng; Cai, Mei

    2015-11-05

    Silicon has been identified as one of the most promising candidates as anode for high performance lithium-ion batteries. The key challenge for Si anodes is the large volume change induced chemomechanical fracture and subsequent rapid capacity fading upon cyclic charge and discharge. Improving capacity retention thus critically relies on smart accommodation of the volume changes through nanoscale structural design. In this work, we report a novel fabrication method for hierarchically porous Si nanospheres (hp-SiNSs), which consist of a porous shell and a hollow core. Upon charge/discharge cycling, the hp-SiNSs accommodate the volume change through reversible inward expansion/contraction with negligible particle-level outward expansion. Our mechanics analysis revealed that such a unique volume-change accommodation mechanism is enabled by the much stiffer modulus of the lithiated layer than the unlithiated porous layer and the low flow stress of the porous structure. Such inward expansion shields the hp-SiNSs from fracture, opposite to the outward expansion in solid Si during lithiation. Lithium ion battery assembled with this new nanoporous material exhibits high capacity, high power, long cycle life and high coulombic efficiency, which is superior to the current commercial Si-based anode materials. The low cost synthesis approach reported here provides a new avenue for the rational design of hierarchically porous structures with unique materials properties.

  10. Characterization and Quantification of Electronic and Ionic Ohmic Overpotential and Heat Generation in a Solid Oxide Fuel Cell Anode

    SciTech Connect (OSTI)

    Grew, Kyle N.; Izzo, John R.; Chiu, Wilson K.S.

    2011-08-16

    The development of a solid oxide fuel cell (SOFC) with a higher efficiency and power density requires an improved understanding and treatment of the irreversibilities. Losses due to the electronic and ionic resistances, which are also known as ohmic losses in the form of Joule heating, can hinder the SOFC's performance. Ohmic losses can result from the bulk material resistivities as well as the complexities introduced by the cell's microstructure. In this work, two-dimensional (2D), electronic and ionic transport models are used to develop a method of quantification of the ohmic losses within the SOFC anode microstructure. This quantification is completed as a function of properties determined from a detailed microstructure characterization, namely, the tortuosity of the electronic and ionic phases, phase volume fraction, contiguity, and mean free path. A direct modeling approach at the level of the pore-scale microstructure is achieved through the use of a representative volume element (RVE) method. The correlation of these ohmic losses with the quantification of the SOFC anode microstructure are examined. It is found with this analysis that the contributions of the SOFC anode microstructure on ohmic losses can be correlated with the volume fraction, contiguity, and mean free path.

  11. Characterization and Quantification of Electronic and Ionic Ohmic Overpotential and Heat Generation in a Solid Oxide Fuel Cell Anode

    SciTech Connect (OSTI)

    Grew, Kyle N.; Izzo, Jr., John R.; Chiu, W. K. S.

    2011-01-01

    The development of a solid oxide fuel cell (SOFC) with a higher efficiency and power density requires an improved understanding and treatment of the irreversibilities. Losses due to the electronic and ionic resistances, which are also known as ohmic losses in the form of Joule heating, can hinder the SOFCs performance. Ohmic losses can result from the bulk material resistivities as well as the complexities introduced by the cells microstructure. In this work, two-dimensional (2D), electronic and ionic transport models are used to develop a method of quantification of the ohmic losses within the SOFC anode microstructure. This quantification is completed as a function of properties determined from a detailed microstructure characterization, namely, the tortuosity of the electronic and ionic phases, phase volume fraction, contiguity, and mean free path. A direct modeling approach at the level of the pore-scale microstructure is achieved through the use of a representative volume element (RVE) method. The correlation of these ohmic losses with the quantification of the SOFC anode microstructure are examined. It is found with this analysis that the contributions of the SOFC anode microstructure on ohmic losses can be correlated with the volume fraction, contiguity, and mean free path.

  12. Position-sensitive proportional counter with low-resistance metal-wire anode

    DOE Patents [OSTI]

    Kopp, Manfred K. (Oak Ridge, TN)

    1980-01-01

    A position-sensitive proportional counter circuit is provided which allows the use of a conventional (low-resistance, metal-wire anode) proportional counter for spatial resolution of an ionizing event along the anode of the counter. A pair of specially designed active-capacitance preamplifiers are used to terminate the anode ends wherein the anode is treated as an RC line. The preamplifiers act as stabilized active capacitance loads and each is composed of a series-feedback, low-noise amplifier, a unity-gain, shunt-feedback amplifier whose output is connected through a feedback capacitor to the series-feedback amplifier input. The stabilized capacitance loading of the anode allows distributed RC-line position encoding and subsequent time difference decoding by sensing the difference in rise times of pulses at the anode ends where the difference is primarily in response to the distributed capacitance along the anode. This allows the use of lower resistance wire anodes for spatial radiation detection which simplifies the counter construction and handling of the anodes, and stabilizes the anode resistivity at high count rates (>10.sup.6 counts/sec).

  13. Experiments in anodic film effects during electrorefining of scrap U-10Mo fuels in support of modeling efforts

    SciTech Connect (OSTI)

    Van Kleeck, M.; Willit, J.; Williamson, M.A.; Fentiman, A.W.

    2013-07-01

    A monolithic uranium molybdenum alloy clad in zirconium has been proposed as a low enriched uranium (LEU) fuel option for research and test reactors, as part of the Reduced Enrichment for Research and Test Reactors program. Scrap from the fuel's manufacture will contain a significant portion of recoverable LEU. Pyroprocessing has been identified as an option to perform this recovery. A model of a pyroprocessing recovery procedure has been developed to assist in refining the LEU recovery process and designing the facility. Corrosion theory and a two mechanism transport model were implemented on a Mat-Lab platform to perform the modeling. In developing this model, improved anodic behavior prediction became necessary since a dense uranium-rich salt film was observed at the anode surface during electrorefining experiments. Experiments were conducted on uranium metal to determine the film's character and the conditions under which it forms. The electro-refiner salt used in all the experiments was eutectic LiCl/KCl containing UCl{sub 3}. The anodic film material was analyzed with ICP-OES to determine its composition. Both cyclic voltammetry and potentiodynamic scans were conducted at operating temperatures between 475 and 575 C. degrees to interrogate the electrochemical behavior of the uranium. The results show that an anodic film was produced on the uranium electrode. The film initially passivated the surface of the uranium on the working electrode. At high over potentials after a trans-passive region, the current observed was nearly equal to the current observed at the initial active level. Analytical results support the presence of K{sub 2}UCl{sub 6} at the uranium surface, within the error of the analytical method.

  14. Cu--Ni--Fe anode for use in aluminum producing electrolytic cell

    DOE Patents [OSTI]

    Bergsma, S. Craig; Brown, Craig W.; Bradford, Donald R; Barnett, Robert J.; Mezner, Michael B.

    2006-07-18

    A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte, the method comprising the steps of providing a molten salt electrolyte at a temperature of less than 900.degree. C. having alumina dissolved therein in an electrolytic cell having a liner for containing the electrolyte, the liner having a bottom and walls extending upwardly from said bottom. A plurality of non-consumable Cu--Ni--Fe anodes and cathodes are disposed in a vertical direction in the electrolyte, the cathodes having a plate configuration and the anodes having a flat configuration to compliment the cathodes. The anodes contain apertures therethrough to permit flow of electrolyte through the apertures to provide alumina-enriched electrolyte between the anodes and the cathodes. Electrical current is passed through the anodes and through the electrolyte to the cathodes, depositing aluminum at the cathodes and producing gas at the anodes.

  15. Electrochemical aging of humectant-treated thermal-sprayed zinc anodes for cathodic protection

    SciTech Connect (OSTI)

    Covino, B.S. Jr.; Holcomb, G.R.; Bullard, S.J.; Russell, J.H.; Cramer, S.D.; Bennett, J.E.; Laylor, H.M.

    1999-07-01

    Humectants, substances that promote the retention of moisture, were studied to determine their effectiveness in improving the performance and extending the service life of both new and previously-aged thermal-sprayed Zn anodes used in impressed current (ICCP) and galvanic cathodic protection (GCP) systems for steel-reinforced concrete structures. Potassium acetate, lithium nitrate, and lithium bromide were applied to a series of thermal-sprayed Zn-coated concrete slabs before starting the ICCP or GCP experiment. All of the humectants altered the behavior of the thermal-sprayed Zn anodes. LiNO{sub 3} was the most beneficial for ICCP anodes and LiBr was the most beneficial for GCP anodes. Circuit resistances for ICCP anodes and galvanic current density for GCP anodes are compared on the basis of electrochemical aging, humidity, and type of humectant.

  16. Exciton quenching at PEDOT:PSS anode in polymer blue-light-emitting diodes

    SciTech Connect (OSTI)

    Abbaszadeh, D.; Wetzelaer, G. A. H.; Nicolai, H. T.

    2014-12-14

    The quenching of excitons at the poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) anode in blue polyalkoxyspirobifluorene-arylamine polymer light-emitting diodes is investigated. Due to the combination of a higher electron mobility and the presence of electron traps, the recombination zone shifts from the cathode to the anode with increasing voltage. The exciton quenching at the anode at higher voltages leads to an efficiency roll-off. The voltage dependence of the luminous efficiency is reproduced by a drift-diffusion model under the condition that quenching of excitons at the PEDOT:PSS anode and metallic cathode is of equal strength. Experimentally, the efficiency roll-off at high voltages due to anode quenching is eliminated by the use of an electron-blocking layer between the anode and the light-emitting polymer.

  17. Analysis of Cadmium in Undissolved Anode Materials of Mark-IV Electrorefiner

    SciTech Connect (OSTI)

    Tae-Sic Yoo; Guy L. Fredrickson; DeeEarl Vaden; Brian R. Westphal

    2013-10-01

    The Mark-IV electrorefiner (Mk-IV ER) contains an electrolyte/molten cadmium system for refining uranium electrochemically. Typically, the anode of the Mk-IV ER consists of the chopped sodium-bonded metallic driver fuels, which have been primarily U-10Zr binary fuels. Chemical analysis of the residual anode materials after electrorefining indicates that a small amount of cadmium is removed from the Mk-IV ER along with the undissolved anode materials. Investigation of chemical analysis data indicates that the amount of cadmium in the undissolved anode materials is strongly correlated with the anode rotation speeds and the residence time of the anode in the Mk-IV ER. Discussions are given to explain the prescribed correlation.

  18. Self-assembled Ni/TiO{sub 2} nanocomposite anodes synthesized via

    Office of Scientific and Technical Information (OSTI)

    electroless plating and atomic layer deposition on biological scaffolds (Journal Article) | SciTech Connect Self-assembled Ni/TiO{sub 2} nanocomposite anodes synthesized via electroless plating and atomic layer deposition on biological scaffolds Citation Details In-Document Search Title: Self-assembled Ni/TiO{sub 2} nanocomposite anodes synthesized via electroless plating and atomic layer deposition on biological scaffolds Ni(core)/TiO{sub 2}(shell) nanocomposite anodes were fabricated on

  19. Cell Analysis … High-Energy Density Cathodes and Anodes | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Cell Analysis … High-Energy Density Cathodes and Anodes Cell Analysis … High-Energy Density Cathodes and Anodes 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon es053_richardson_2010_p.pdf More Documents & Publications First Principles Calculations of Electrode Materials Vehicle Technologies Office Merit Review 2015: A Commercially Scalable Process for Silicon Anode Prelithiation

  20. Process and apparatus for recovery of fissionable materials from spent reactor fuel by anodic dissolution

    DOE Patents [OSTI]

    Tomczuk, Zygmunt (Orland Park, IL); Miller, William E. (Naperville, IL); Wolson, Raymond D. (Lockport, IL); Gay, Eddie C. (Park Forest, IL)

    1991-01-01

    An electrochemical process and apparatus for the recovery of uranium and plutonium from spent metal clad fuel pins is disclosed. The process uses secondary reactions between U.sup.+4 cations and elemental uranium at the anode to increase reaction rates and improve anodic efficiency compared to prior art processes. In another embodiment of the process, secondary reactions between Cd.sup.+2 cations and elemental uranium to form uranium cations and elemental cadmium also assists in oxidizing the uranium at the anode.

  1. Chemical Bonding In Amorphous Si Coated-carbon Nanotube As Anodes...

    Office of Scientific and Technical Information (OSTI)

    Title: Chemical Bonding In Amorphous Si Coated-carbon Nanotube As Anodes For Li ion Batteries: A XANES Study The chemical bonding nature and its evolution upon electrochemical ...

  2. Self-assembled Ni/TiO{sub 2} nanocomposite anodes synthesized...

    Office of Scientific and Technical Information (OSTI)

    Ni(core)TiOsub 2(shell) nanocomposite anodes were fabricated on three-dimensional, self-assembled nanotemplates of Tobacco mosaic virus using atomic layer deposition, exhibiting ...

  3. Anodization control for barrier-oxide thinning and 3D interconnected...

    Office of Scientific and Technical Information (OSTI)

    Anodization control for barrier-oxide thinning and 3D interconnected pores and direct electrodeposition of nanowire networks on native aluminium substrates Citation Details...

  4. Buried anode lithium thin film battery and process for forming the same

    DOE Patents [OSTI]

    Lee, Se-Hee; Tracy, C. Edwin; Liu, Ping

    2004-10-19

    A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).

  5. High capacity anode materials for lithium ion batteries

    DOE Patents [OSTI]

    Lopez, Herman A.; Anguchamy, Yogesh Kumar; Deng, Haixia; Han, Yongbon; Masarapu, Charan; Venkatachalam, Subramanian; Kumar, Suject

    2015-11-19

    High capacity silicon based anode active materials are described for lithium ion batteries. These materials are shown to be effective in combination with high capacity lithium rich cathode active materials. Supplemental lithium is shown to improve the cycling performance and reduce irreversible capacity loss for at least certain silicon based active materials. In particular silicon based active materials can be formed in composites with electrically conductive coatings, such as pyrolytic carbon coatings or metal coatings, and composites can also be formed with other electrically conductive carbon components, such as carbon nanofibers and carbon nanoparticles. Additional alloys with silicon are explored.

  6. Forming gas treatment of lithium ion battery anode graphite powders

    DOE Patents [OSTI]

    Contescu, Cristian Ion; Gallego, Nidia C; Howe, Jane Y; Meyer, III, Harry M; Payzant, Edward Andrew; Wood, III, David L; Yoon, Sang Young

    2014-09-16

    The invention provides a method of making a battery anode in which a quantity of graphite powder is provided. The temperature of the graphite powder is raised from a starting temperature to a first temperature between 1000 and 2000.degree. C. during a first heating period. The graphite powder is then cooled to a final temperature during a cool down period. The graphite powder is contacted with a forming gas during at least one of the first heating period and the cool down period. The forming gas includes H.sub.2 and an inert gas.

  7. Conductive polymeric cable anodes for pipelines with deteriorating coatings

    SciTech Connect (OSTI)

    Gibson, W.F.; Pikas, J.L. )

    1993-03-01

    Deteriorating pipeline coating systems have been a dilemma in the industry for many years. The interaction between coatings and cathodic protection (CP) is based on the type of coating and the amount of deterioration. There are two primary strategies to approach the problem: recoat, which is very expensive and may require taking the line out of service and cause loss of revenue; or install additional conventional CP groundbed systems. This article presents a state-of-the-art groundbed system using close-coupled conductive polymeric cable anodes that eliminate the problems of conventional groundbeds.

  8. Ni/YSZ Anode Interactions with Impurities in Coal Gas

    SciTech Connect (OSTI)

    Marina, Olga A.; Pederson, Larry R.; Coyle, Christopher A.; Thomsen, Edwin C.; Coffey, Greg W.

    2009-10-16

    Performance of solid oxide fuel cell (SOFC) with nickel/zirconia anodes on synthetic coal gas in the presence of low levels of phosphorus, arsenic, selenium, sulfur, hydrogen chloride, and antimony impurities were evaluated. The presence of phosphorus and arsenic led to the slow and irreversible SOFC degradation due to the formation of secondary phases with nickel, particularly close to the gas inlet. Phosphorus and antimony surface adsorption layers were identified as well. Hydrogen chloride and sulfur interactions with the nickel were limited to the surface adsorption only, whereas selenium exposure also led to the formation of nickel selenide for highly polarized cells.

  9. Anodic oxygen-transfer electrocatalysis at iron-doped lead dioxide electrodes

    SciTech Connect (OSTI)

    Feng, Jianren

    1994-10-01

    The research illustrated in this thesis was performed under the guidance of Professor Dennis C. Johnson beginning in March 1987. Chapter 2 concentrates on the development and electrocatalytic properties of iron-doped {beta}-PbO{sub 2} films on noble-metal substrates. Chapter 3 focuses attention on the preparation and characterization of iron-doped {beta}-PbO{sub 2} films on titanium substrates (Fe-PbO{sub 2}/Ti). Chapter 4 discusses anodic evolution of ozone at Fe-PbO{sub 2}/Ti electrodes. Chapter 5 describes electrochemical incineration of p-benzoquinone (BQ) at Fe-PbO{sub 2}/Ti electrodes. In addition, the Appendix includes another published paper which is a detailed study of {alpha}-PbO{sub 2} films deposited on various types of stainless steel substrates.

  10. Optimization design of electrodes for anode-supported solid oxide fuel cells via genetic algorithm

    SciTech Connect (OSTI)

    Shi, J.; Xue, X.

    2011-01-01

    Porous electrode is the critical component of solid-oxide fuel cells (SOFCs) and provides a functional material backbone for multi-physicochemical processes. Model based electrode designs could significantly improve SOFC performance. This task is usually performed via parameter studies for simple case and assumed property distributions for graded electrodes. When nonlinearly coupled multiparameters of electrodes are considered, it could be very difficult for the model based parameter study method to effectively and systematically search the design space. In this research, the optimization approach with a genetic algorithm is demonstrated for this purpose. An anode-supported proton conducting SOFC integrated with a fuel supply system is utilized as a physical base for the model development and the optimization design. The optimization results are presented, which are difficult to obtain for parametric study method.

  11. Aerogel and xerogel composites for use as carbon anodes

    DOE Patents [OSTI]

    Cooper, John F.; Tillotson, Thomas M.; Hrubesh, Lawrence W.

    2010-10-12

    A method for forming a reinforced rigid anode monolith and fuel and product of such method. The method includes providing a solution of organic aerogel or xerogel precursors including at least one of a phenolic resin, phenol (hydroxybenzene), resorcinol(1,3-dihydroxybenzene), or catechol(1,2-dihydroxybenzene); at least one aldehyde compound selected from the group consisting of formaldehyde, acetaldehyde, and furfuraldehyde; and an alkali carbonate or phosphoric acid catalyst; adding internal reinforcement materials comprising carbon to said precursor solution to form a precursor mixture; gelling said precursor mixture to form a composite gel; drying said composite gel; and pyrolyzing said composite gel to form a wettable aerogel/carbon composite or a wettable xerogel/carbon composite, wherein said composites comprise chars and said internal reinforcement materials, and wherein said composite is suitable for use as an anode with the chars being fuel capable of being combusted in a molten salt electrochemical fuel cell in the range from 500 C to 800 C to produce electrical energy. Additional methods and systems/compositions are also provided.

  12. Overview of SOFC Anode Interactions with Coal Gas Impurities

    SciTech Connect (OSTI)

    Marina, Olga A.; Pederson, Larry R.; Gemmen, Randall; Gerdes, Kirk; Finklea, Harry; Celik, Ismail B.

    2009-08-11

    Efficiencies greater than 50 percent (higher heating value) have been projected for solid oxide fuel cell (SOFC) systems fueled with gasified coal, even with carbon sequestration. Multiple minor and trace components are present in coal that could affect fuel cell performance, however, which vary widely depending on coal origin and type. Minor and trace components have been classified into three groups: elements with low volatility that are likely to remain in the ash, elements that will partition between solid and gas phases, and highly volatile elements that are unlikely to condense. Those in the second group are of most concern. In the following, an overview of the results of SOFC anode interactions with phosphorus, arsenic, selenium, sulfur, antimony, and hydrogen chloride as single contaminants or in combinations is discussed. Tests were performed using both anode- and electrolyte-supported cells in synthetic coal gas. The ultimate purpose of this work is to establish maximum permissible concentrations for impurities in coal gas, to aid in the selection of appropriate coal gas clean-up technologies.

  13. Solid state thin film battery having a high temperature lithium alloy anode

    DOE Patents [OSTI]

    Hobson, D.O.

    1998-01-06

    An improved rechargeable thin-film lithium battery involves the provision of a higher melting temperature lithium anode. Lithium is alloyed with a suitable solute element to elevate the melting point of the anode to withstand moderately elevated temperatures. 2 figs.

  14. A Comparative Study of Anodized Titania Nanotube Architectures in Aqueous and Nonaqueous Solutions

    SciTech Connect (OSTI)

    Sturgeon, Matthew R; Lai, Peng; Hu, Michael Z.

    2011-01-01

    The unique and highly utilized properties of TiO2 nanotubes are a direct result of nanotube architecture. In order to create different engineered architectures, the effects of electrolyte solution, time, and temperature on the anodization of titanium foil were studied along with the resultant anodized titanium oxide (ATO) nanotube architectures encompassing nanotube length, pore diameter, wall thickness, smoothness, and ordered array structure. Titanium foil was anodized in three different electrolyte solutions: one aqueous (consisting of NH4F and (NH4)2SO4)) and two nonaqueous (glycerin or ethylene glycol, both containing NH4F) at varying temperatures and anodization times. Variation in anodization applied voltage, initial current, and effect of F- ion concentration on ATO nanotube architecture were also studied. Anodization in the aqueous electrolyte produced short, rough nanotube arrays, whereas anodization in organic electrolytes produced long, smooth nanotube arrays greater than 10 m in length. Anodization in glycerin at elevated temperatures for several hours presents the possibility of producing freely dispersed individual nanotubes.

  15. Solid oxide fuel cell power plant with an anode recycle loop turbocharger

    DOE Patents [OSTI]

    Saito, Kazuo; Skiba, Tommy; Patel, Kirtikumar H.

    2015-07-14

    An anode exhaust recycle turbocharger (100) has a turbocharger turbine (102) secured in fluid communication with a compressed oxidant stream within an oxidant inlet line (218) downstream from a compressed oxidant supply (104), and the anode exhaust recycle turbocharger (100) also includes a turbocharger compressor (106) mechanically linked to the turbocharger turbine (102) and secured in fluid communication with a flow of anode exhaust passing through an anode exhaust recycle loop (238) of the solid oxide fuel cell power plant (200). All or a portion of compressed oxidant within an oxidant inlet line (218) drives the turbocharger turbine (102) to thereby compress the anode exhaust stream in the recycle loop (238). A high-temperature, automotive-type turbocharger (100) replaces a recycle loop blower-compressor (52).

  16. Anode shroud for off-gas capture and removal from electrolytic oxide reduction system

    DOE Patents [OSTI]

    Bailey, James L.; Barnes, Laurel A.; Wiedmeyer, Stanley G.; Williamson, Mark A.; Willit, James L.

    2014-07-08

    An electrolytic oxide reduction system according to a non-limiting embodiment of the present invention may include a plurality of anode assemblies and an anode shroud for each of the anode assemblies. The anode shroud may be used to dilute, cool, and/or remove off-gas from the electrolytic oxide reduction system. The anode shroud may include a body portion having a tapered upper section that includes an apex. The body portion may have an inner wall that defines an off-gas collection cavity. A chimney structure may extend from the apex of the upper section and be connected to the off-gas collection cavity of the body portion. The chimney structure may include an inner tube within an outer tube. Accordingly, a sweep gas/cooling gas may be supplied down the annular space between the inner and outer tubes, while the off-gas may be removed through an exit path defined by the inner tube.

  17. Anode-cathode power distribution systems and methods of using the same for electrochemical reduction

    DOE Patents [OSTI]

    Koehl, Eugene R; Barnes, Laurel A; Wiedmeyer, Stanley G; Williamson, Mark A; Willit, James L

    2014-01-28

    Power distribution systems are useable in electrolytic reduction systems and include several cathode and anode assembly electrical contacts that permit flexible modular assembly numbers and placement in standardized connection configurations. Electrical contacts may be arranged at any position where assembly contact is desired. Electrical power may be provided via power cables attached to seating assemblies of the electrical contacts. Cathode and anode assembly electrical contacts may provide electrical power at any desired levels. Pairs of anode and cathode assembly electrical contacts may provide equal and opposite electrical power; different cathode assembly electrical contacts may provide different levels of electrical power to a same or different modular cathode assembly. Electrical systems may be used with an electrolyte container into which the modular cathode and anode assemblies extend and are supported above, with the modular cathode and anode assemblies mechanically and electrically connecting to the respective contacts in power distribution systems.

  18. Process for mitigating corrosion and increasing the conductivity of steel studs in soderberg anodes of aluminum reduction cells

    DOE Patents [OSTI]

    Oden, Laurance L. (Albany, OR); White, Jack C. (Albany, OR); Ramsey, James A. (The Dalles, OR)

    1994-01-01

    A corrosion resistant electrically conductive coating on steel anode studs used in the production of aluminum by electrolysis.

  19. Lithium ion batteries with titania/graphene anodes

    DOE Patents [OSTI]

    Liu, Jun; Choi, Daiwon; Yang, Zhenguo; Wang, Donghai; Graff, Gordon L; Nie, Zimin; Viswanathan, Vilayanur V; Zhang, Jason; Xu, Wu; Kim, Jin Yong

    2013-05-28

    Lithium ion batteries having an anode comprising at least one graphene layer in electrical communication with titania to form a nanocomposite material, a cathode comprising a lithium olivine structure, and an electrolyte. The graphene layer has a carbon to oxygen ratio of between 15 to 1 and 500 to 1 and a surface area of between 400 and 2630 m.sup.2/g. The nanocomposite material has a specific capacity at least twice that of a titania material without graphene material at a charge/discharge rate greater than about 10 C. The olivine structure of the cathode of the lithium ion battery of the present invention is LiMPO.sub.4 where M is selected from the group consisting of Fe, Mn, Co, Ni and combinations thereof.

  20. Anode reactive bleed and injector shift control strategy

    DOE Patents [OSTI]

    Cai, Jun [Rochester, NY; Chowdhury, Akbar [Pittsford, NY; Lerner, Seth E [Honeoye Falls, NY; Marley, William S [Rush, NY; Savage, David R [Rochester, NY; Leary, James K [Rochester, NY

    2012-01-03

    A system and method for correcting a large fuel cell voltage spread for a split sub-stack fuel cell system. The system includes a hydrogen source that provides hydrogen to each split sub-stack and bleed valves for bleeding the anode side of the sub-stacks. The system also includes a voltage measuring device for measuring the voltage of each cell in the split sub-stacks. The system provides two levels for correcting a large stack voltage spread problem. The first level includes sending fresh hydrogen to the weak sub-stack well before a normal reactive bleed would occur, and the second level includes sending fresh hydrogen to the weak sub-stack and opening the bleed valve of the other sub-stack when the cell voltage spread is close to stack failure.

  1. Electrochemical Aging of Thermal-Sprayed Zinc Anodes on Concrete

    SciTech Connect (OSTI)

    Holcomb, G.R.; Bullard, S.J.; Covino, B.S. Jr.; Cramer, S.D.; Cryer, C.B.; McGill, G.E.

    1996-10-01

    Thermal-sprayed zinc anodes are used in impressed current cathodic protection systems for some of Oregon's coastal reinforced concrete bridges. Electrochemical aging of zinc anodes results in physical and chemical changes at the zinc-concrete interface. Concrete surfaces heated prior to thermal-spraying had initial adhesion strengths 80 pct higher than unheated surfaces. For electrochemical aging greater than 200 kC/m{sup 2} (5.2 A h/ft{sup 2}), there was no difference in adhesion strengths for zinc on preheated and unheated concrete. Adhesion strengths decreased monotonically after about 400 to 600 kC/m{sup 2} (10.4 to 15.6 A-h/ft{sup 2}) as a result of the reaction zones at the zinc-concrete interface. A zone adjacent to the metallic zinc (and originally part of the zinc coating) was primarily zincite (ZnO), with minor constituents of wulfingite (Zn(OH){sub 2}), simonkolleite (Zn{sub 5}(OH) {sub 8}C{sub l2}{sup .}H{sub 2}O), and hydrated zinc hydroxide sulfates (Zn{sub 4}SO{sub 4}(OH){sub 6}{sup .}xH{sub 2}O). This zone is the locus for cohesive fracture when the zinc coating separates from the concrete during adhesion tests. Zinc ions substitute for calcium in the cement paste adjacent to the coating as the result of secondary mineralization. The initial estimate of the coating service life based on adhesion strength measurements in accelerated impressed current cathodic protection tests is about 27 years.

  2. Calculation of contact angles at triple phase boundary in solid oxide fuel cell anode using the level set method

    SciTech Connect (OSTI)

    Sun, Xiaojun; Hasegawa, Yosuke; Kohno, Haruhiko; Jiao, Zhenjun; Hayakawa, Koji; Okita, Kohei; Shikazono, Naoki

    2014-10-15

    A level set method is applied to characterize the three dimensional structures of nickel, yttria stabilized zirconia and pore phases in solid oxide fuel cell anode reconstructed by focused ion beam-scanning electron microscope. A numerical algorithm is developed to evaluate the contact angles at the triple phase boundary based on interfacial normal vectors which can be calculated from the signed distance functions defined for each of the three phases. Furthermore, surface tension force is estimated from the contact angles by assuming the interfacial force balance at the triple phase boundary. The average contact angle values of nickel, yttria stabilized zirconia and pore are found to be 143156, 83138 and 82123, respectively. The mean contact angles remained nearly unchanged after 100 hour operation. However, the contact angles just after reduction are different for the cells with different sintering temperatures. In addition, standard deviations of the contact angles are very large especially for yttria stabilized zirconia and pore phases. The calculated surface tension forces from mean contact angles were close to the experimental values found in the literature. Slight increase of surface tensions of nickel/pore and nickel/yttria stabilized zirconia were observed after operation. Present data are expected to be used not only for the understanding of the degradation mechanism, but also for the quantitative prediction of the microstructural temporal evolution of solid oxide fuel cell anode. - Highlights: A level set method is applied to characterize the 3D structures of SOFC anode. A numerical algorithm is developed to evaluate the contact angles at the TPB. Surface tension force is estimated from the contact angles. The average contact angle values are found to be 143o-156o, 83o-138o and 82o-123o. Present data are expected to understand degradation and predict evolution of SOFC.

  3. Lithium diffusion at Si-C interfaces in silicon-graphene composites

    SciTech Connect (OSTI)

    Odbadrakh, Khorgolkhuu [Joint Institute for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (United States); McNutt, N. W. [Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States); Nicholson, D. M. [Computational Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (United States); Department of Physics, University of North Carolina, Asheville, North Carolina 28804 (United States); Rios, O. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (United States); Keffer, D. J. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States)

    2014-08-04

    Models of intercalated Li and its diffusion in Si-Graphene interfaces are investigated using density functional theory. Results suggest that the presence of interfaces alters the energetics of Li binding and diffusion significantly compared to bare Si or Graphene surfaces. Our results show that cavities along reconstructed Si surface provide diffusion paths for Li. Diffusion barriers calculated along these cavities are significantly lower than penetration barriers to bulk Si. Interaction with Si surface results in graphene defects, creating Li diffusion paths that are confined along the cavities but have still lower barrier than in bulk Si.

  4. Inert anode containing base metal and noble metal useful for the electrolytic production of aluminum

    DOE Patents [OSTI]

    Ray, Siba P. (Murrysville, PA); Liu, Xinghua (Monroeville, PA)

    2000-01-01

    An inert anode for production of metals such as aluminum is disclosed. The inert anode comprises a base metal selected from Cu and Ag, and at least one noble metal selected from Ag, Pd, Pt, Au, Rh, Ru, Ir and Os. The inert anode may optionally be formed of sintered particles having interior portions containing more base metal than noble metal and exterior portions containing more noble metal than base metal. In a preferred embodiment, the base metal comprises Cu, and the noble metal comprises Ag, Pd or a combination thereof.

  5. Chemical Bonding In Amorphous Si Coated-carbon Nanotube As Anodes For Li

    Office of Scientific and Technical Information (OSTI)

    ion Batteries: A XANES Study (Journal Article) | SciTech Connect Chemical Bonding In Amorphous Si Coated-carbon Nanotube As Anodes For Li ion Batteries: A XANES Study Citation Details In-Document Search Title: Chemical Bonding In Amorphous Si Coated-carbon Nanotube As Anodes For Li ion Batteries: A XANES Study The chemical bonding nature and its evolution upon electrochemical cycling in amorphous Si coated-carbon nanotube (Si-CNT) anode has been investigated using comprehensive X-ray

  6. Chemically modified thermal-spray zinc anodes for galvanic cathodic protection

    SciTech Connect (OSTI)

    Covino, B.S. Jr.; Bullard, S.J.; Holcomb, G.R.; Russell, J.H.; Cramer, S.D.; Bennett, J.E.; Laylor, H.M.

    1999-12-01

    Humectants, substances that promote the retention of moisture, were applied to new and previously aged thermal-sprayed Zn anodes to improve the performance of galvanic cathodic protection systems. Anodes on steel-reinforced concrete were treated with aqueous solutions of the humectants lithium nitrate (LiNO{sub 3}) and lithium bromide (LiBr). LiBr was the most beneficial humectant, increasing the average galvanic current density of new thermal-sprayed Zn anodes by as much as a factor of six.

  7. Non-consumable anode and lining for aluminum electrolytic reduction cell

    DOE Patents [OSTI]

    Beck, Theodore R. (Seattle, WA); Brooks, Richard J. (Seattle, WA)

    1994-01-01

    An oxidation resistant, non-consumable anode, for use in the electrolytic reduction of alumina to aluminum, has a composition comprising copper, nickel and iron. The anode is part of an electrolytic reduction cell comprising a vessel having an interior lined with metal which has the same composition as the anode. The electrolyte is preferably composed of a eutectic of AlF.sub.3 and either (a) NaF or (b) primarily NaF with some of the NaF replaced by an equivalent molar amount of KF or KF and LiF.

  8. Inert anode containing oxides of nickel iron and cobalt useful for the electrolytic production of metals

    DOE Patents [OSTI]

    Ray, Siba P. (Murrysville, PA); Liu, Xinghua (Monroeville, PA); Weirauch, Jr., Douglas A. (Murrysville, PA)

    2002-01-01

    An inert anode for the electrolytic production of metals such as aluminum is disclosed. The inert anode includes a ceramic oxide material preferably made from NiO, Fe.sub.2 O.sub.3 and CoO. The inert anode composition may comprise the following mole fractions of NiO, Fe.sub.2 O.sub.3 and CoO: 0.15 to 0.99 NiO; 0.0001 to 0.85 Fe.sub.2 O.sub.3 ; and 0.0001 to 0.45 CoO. The inert anode may optionally include other oxides and/or at least one metal phase, such as Cu, Ag, Pd, Pt, Au, Rh, Ru, Ir and/or Os. The Ni--Fe--Co--O ceramic material exhibits very low solubility in Hall cell baths used to produce aluminum.

  9. Vehicle Technologies Office Merit Review 2015: Si Alloy Anode: Sudden Fade Challenge

    Broader source: Energy.gov [DOE]

    Presentation given by 3M at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Si alloy anode: sudden fade challenge.

  10. Inert anode containing oxides of nickel, iron and zinc useful for the electrolytic production of metals

    DOE Patents [OSTI]

    Ray, Siba P.; Weirauch, Jr., Douglas A.; Liu, Xinghua

    2002-01-01

    An inert anode for the electrolytic production of metals such as aluminum is disclosed. The inert anode includes a ceramic oxide material preferably made from NiO, Fe.sub.2 O.sub.3 and ZnO. The inert anode composition may comprise the following mole fractions of NiO, Fe.sub.2 O.sub.3 and ZnO: 0.2 to 0.99 NiO; 0.0001 to 0.8 Fe.sub.2 O.sub.3 ; and 0.0001 to 0.3 ZnO. The inert anode may optionally include other oxides and/or at least one metal phase, such as Cu, Ag, Pd, Pt, Au, Rh, Ru, Ir and/or Os. The Ni--Fe--Co--O ceramic material exhibits very low solubility in Hall cell baths used to produce aluminum.

  11. For cermet inert anode containing oxide and metal phases useful for the electrolytic production of metals

    DOE Patents [OSTI]

    Ray, Siba P. (Murrysville, PA); Liu, Xinghua (Monroeville, PA); Weirauch, Douglas A. (Murrysville, PA)

    2002-01-01

    A cermet inert anode for the electrolytic production of metals such as aluminum is disclosed. The inert anode comprises a ceramic phase including an oxide of Ni, Fe and M, where M is at least one metal selected from Zn, Co, Al, Li, Cu, Ti, V, Cr, Zr, Nb, Ta, W, Mo, Hf and rare earths, preferably Zn and/or Co. Preferred ceramic compositions comprise Fe.sub.2 O.sub.3, NiO and ZnO or CoO. The cermet inert anode also comprises a metal phase such as Cu, Ag, Pd, Pt, Au, Rh, Ru, Ir and/or Os. A preferred metal phase comprises Cu and Ag. The cermet inert anodes may be used in electrolytic reduction cells for the production of commercial purity aluminum as well as other metals.

  12. Anode protection system for shutdown of solid oxide fuel cell system

    DOE Patents [OSTI]

    Li, Bob X; Grieves, Malcolm J; Kelly, Sean M

    2014-12-30

    An Anode Protection Systems for a SOFC system, having a Reductant Supply and safety subsystem, a SOFC anode protection subsystem, and a Post Combustion and slip stream control subsystem. The Reductant Supply and safety subsystem includes means for generating a reducing gas or vapor to prevent re-oxidation of the Ni in the anode layer during the course of shut down of the SOFC stack. The underlying ammonia or hydrogen based material used to generate a reducing gas or vapor to prevent the re-oxidation of the Ni can be in either a solid or liquid stored inside a portable container. The SOFC anode protection subsystem provides an internal pressure of 0.2 to 10 kPa to prevent air from entering into the SOFC system. The Post Combustion and slip stream control subsystem provides a catalyst converter configured to treat any residual reducing gas in the slip stream gas exiting from SOFC stack.

  13. Material and Energy Flows in the Production of Cathode and Anode...

    Office of Scientific and Technical Information (OSTI)

    Material and Energy Flows in the Production of Cathode and Anode Materials for Lithium Ion Batteries Citation Details In-Document Search Title: Material and Energy Flows in the ...

  14. Chemically Etched Silicon Nanowires as Anodes for Lithium-Ion Batteries

    SciTech Connect (OSTI)

    West, Hannah Elise

    2015-08-01

    This study focused on silicon as a high capacity replacement anode for Lithium-ion batteries. The challenge of silicon is that it expands ~270% upon lithium insertion which causes particles of silicon to fracture, causing the capacity to fade rapidly. To account for this expansion chemically etched silicon nanowires from the University of Maine were studied as anodes. They were built into electrochemical half-cells and cycled continuously to measure the capacity and capacity fade.

  15. Material and Energy Flows in the Production of Cathode and Anode Materials

    Office of Scientific and Technical Information (OSTI)

    for Lithium Ion Batteries (Technical Report) | SciTech Connect SciTech Connect Search Results Technical Report: Material and Energy Flows in the Production of Cathode and Anode Materials for Lithium Ion Batteries Citation Details In-Document Search Title: Material and Energy Flows in the Production of Cathode and Anode Materials for Lithium Ion Batteries Authors: Dunn, Jennifer B. ; James, Christine ; Gaines, L G ; Gallagher, Kevin Publication Date: 2014-09-30 OSTI Identifier: 1172039 Report

  16. Material and Energy Flows in the Production of Cathode and Anode Materials

    Office of Scientific and Technical Information (OSTI)

    for Lithium Ion Batteries (Technical Report) | SciTech Connect Technical Report: Material and Energy Flows in the Production of Cathode and Anode Materials for Lithium Ion Batteries Citation Details In-Document Search Title: Material and Energy Flows in the Production of Cathode and Anode Materials for Lithium Ion Batteries The Greenhouse gases, Regulated Emissions and Energy use in Transportation (GREET) model has been expanded to include four new cathode materials that can be used in the

  17. Material and Energy Flows in the Production of Cathode and Anode Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Lithium Ion Batteries | Argonne National Laboratory Material and Energy Flows in the Production of Cathode and Anode Materials for Lithium Ion Batteries Title Material and Energy Flows in the Production of Cathode and Anode Materials for Lithium Ion Batteries Publication Type Report Year of Publication 2015 Authors Dunn, JB, James, C, Gaines, LL, Gallagher, K, Dai, Q, Kelly, JC Pagination 56 Date Published 09152015 Institution Argonne National Laboratory City Argonne, IL USA Report

  18. Rutherford backscattering analysis of the failure of chlorine anodes

    SciTech Connect (OSTI)

    Vallet, C.E.; Tilak, B.V.

    1996-06-01

    Rutherford Backscattering Spectrometry, carried out at the ORNL Surface Modification And Characterization Collaborative Research Center (SMAC) facility, has been applied to the nondestructive analysis of RuO[sub 2]-TiO[sub 2] electrodes of 5000 Angstroms, which mimic the DSA anodes in composition and the method of preparation. Occidental Chemical Corporation provided electrodes, which had been subjected to life time testing in H[sub 2]S04 solution, for analysis by ORNL. The results were used to test the hypothesis of degradation of theses, and similar electrodes, from a process involving a decrease in the RuO[sub 2]:TiO[sub 2] ratio at and near the electrode surface and the related decrease in the electrode electrical conductivity. The drop in electrode activity is closely linked to a decrease in Ru content, and the measured profiles show that the loss takes place across the thin RuO[sub 2]-TiO[sub 2] coating. No build up of a pure TiO[sub 2] layer is apparent. The data agree quantitatively with the critical concentration previously reported by ORNL for materials produced by ion implantation and characterized by Rutherford Backscattering Spectrometry and Photoacoustic Spectrometry. The study has brought a better understanding of the degradation process in electrodes of great technological importance, and has given a more solid background in designing new fabrication procedures for improved electrodes.

  19. Mitigation of Sulfur Poisoning of Ni/Zirconia SOFC Anodes by Antimony and Tin

    SciTech Connect (OSTI)

    Marina, Olga A.; Coyle, Christopher A.; Engelhard, Mark H.; Pederson, Larry R.

    2011-02-28

    Surface Ni/Sb and Ni/Sb alloys were found to efficiently minimize the negative effects of sulfur on the performance of Ni/zirconia anode-supported solid oxide fuel cells (SOFC). Prior to operating on fuel gas containing low concentrations of H2S, the nickel/zirconia anodes were briefly exposed to antimony or tin vapor, which only slightly affected the SOFC performance. During the subsequent exposures to 1 and 5 ppm H2S, increases in anodic polarization losses were minimal compared to those observed for the standard nickel/zirconia anodes. Post-test XPS analyses showed that Sb and Sn tended to segregate to the surface of Ni particles, and further confirmed a significant reduction of adsorbed sulfur on the Ni surface in Ni/Sn and Ni/Sb samples compared to the Ni. The effect may be the result of weaker sulfur adsorption on bimetallic surfaces, adsorption site competition between sulfur and Sb or Sn on Ni, or other factors. The use of dilute binary alloys of Ni-Sb or Ni-Sn in the place of Ni, or brief exposure to Sb or Sn vapor, may be effective means to counteract the effects of sulfur poisoning in SOFC anodes and Ni catalysts. Other advantages, including suppression of coking or tailoring the anode composition for the internal reforming, are also expected.

  20. Microstructural and chemical evolution near anode triple phase boundary in Ni/YSZ solid oxide fuel cells

    SciTech Connect (OSTI)

    Chen, Yun; Chen, Song; Hackett, Gregory; Finklea, Harry; Song, Xueyan; Gerdes, Kirk

    2011-12-12

    In this study, we report the micro-structural and chemical evolution of anode grain boundaries and triple phase boundary (TPB) junctions of Ni/YSZ anode supported solid oxide fuel cells. A NiO phase was found to develop along the Ni/YSZ interfaces extending to TPBs in the operated cells. The thickness of the NiO ribbon phase remains constant at ~ 5 nm in hydrogen for operating durations up to 540 h. When operating on synthesis gas, an increase in interphase thickness was observed from ~ 11 nm for 24 h of operation to ~ 51 nm for 550 h of operation. YSZ phases are observed to be stable in H{sub 2} over 540 h of operation. However, for the cell operated in syngas for 550 h, a 510 nm tetragonal YSZ (t-YSZ) interfacial layer was identified that originated from the Ni/YSZ interfaces. Yttrium species seem to segregate to the interfaces during operation, leading to the formation of t-YSZ in the Y-depleted regions.

  1. Graphdiyne as a high-capacity lithium ion battery anode material

    SciTech Connect (OSTI)

    Jang, Byungryul; Koo, Jahyun; Park, Minwoo; Kwon, Yongkyung; Lee, Hoonkyung; Lee, Hosik; Nam, Jaewook

    2013-12-23

    Using the first-principles calculations, we explored the feasibility of using graphdiyne, a 2D layer of sp and sp{sup 2} hybrid carbon networks, as lithium ion battery anodes. We found that the composite of the Li-intercalated multilayer ?-graphdiyne was C{sub 6}Li{sub 7.31} and that the calculated voltage was suitable for the anode. The practical specific/volumetric capacities can reach up to 2719?mAh?g{sup ?1}/2032?mAh?cm{sup ?3}, much greater than the values of ?372?mAh?g{sup ?1}/?818?mAh?cm{sup ?3}, ?1117?mAh?g{sup ?1}/?1589?mAh?cm{sup ?3}, and ?744?mAh?g{sup ?1} for graphite, graphynes, and ?-graphdiyne, respectively. Our calculations suggest that multilayer ?-graphdiyne can serve as a promising high-capacity lithium ion battery anode.

  2. Method for providing uranium articles with a corrosion resistant anodized coating

    DOE Patents [OSTI]

    Waldrop, Forrest B. (Powell, TN); Washington, Charles A. (Oak Ridge, TN)

    1982-01-01

    Uranium articles are provided with anodized oxide coatings in an aqueous solution of an electrolyte selected from the group consisting of potassium phosphate, potassium hydroxide, ammonium hydroxide, and a mixture of potassium tetraborate and boric acid. The uranium articles are anodized at a temperature greater than about 75.degree. C. with a current flow of less than about 0.036 A/cm.sup.2 of surface area while the pH of the solution is maintained in a range of about 2 to 11.5. The pH values of the aqueous solution and the low current density utilized during the electrolysis prevent excessive dissolution of the uranium and porosity in the film or watering. The relatively high temperature of the electrolyte bath inhibits hydration and the attendant deleterious pitting so as to enhance corrosion resistance of the anodized coating.

  3. Manipulating surface reactions in lithium-sulphur batteries using hybrid anode structures

    SciTech Connect (OSTI)

    Huang, C; Xiao, J; Shao, YY; Zheng, JM; Bennett, WD; Lu, DP; Saraf, LV; Engelhard, M; Ji, LW; Zhang, J; Li, XL; Graff, GL; Liu, J

    2014-01-09

    Lithium-sulphur batteries have high theoretical energy density and potentially low cost, but significant challenges such as severe capacity degradation prevent its widespread adoption. Here we report a new design of lithium-sulphur battery using electrically connected graphite and lithium metal as a hybrid anode to control undesirable surface reactions on lithium. Lithiated graphite placed in front of the lithium metal functions as an artificial, self-regulated solid electrolyte interface layer to actively control the electrochemical reactions and minimize the deleterious side reactions, leading to significant performance improvements. Lithium-sulphur cells incorporating this hybrid anodes deliver capacities of >800 mAhg(-1) for 400 cycles at a high rate of 1,737mAg(-1), with only 11% capacity fade and a Coulombic efficiency >99%. This simple hybrid concept may also provide scientific strategies for protecting metal anodes in other energy-storage devices.

  4. Method for providing uranium articles with a corrosion-resistant anodized coating

    DOE Patents [OSTI]

    Waldrop, F.B.; Washington, C.A.

    1981-01-07

    Uranium articles are provided with anodized oxide coatings in an aqueous solution of an electrolyte selected from the group consisting of potassium phosphate, potassium hydroxide, ammonium hydroxide, and a mixture of potassium tetraborate and boric acid. The uranium articles are anodized at a temperature greater than about 75/sup 0/C with a current flow of less than about 0.036 A/cm/sup 2/ of surface area while the pH of the solution is maintained in a range of about 2 to 11.5. The pH values of the aqueous solution and the low current density utilized during the electrolysis prevent excessive dissolution of the uranium and porosity in the film or watering. The relatively high temperature of the electrolyte bath inhibits hydration and the attendant deleterious pitting so as to enhance corrosion resistance of the anodized coating.

  5. Hard carbon nanoparticles as high-capacity, high-stability anodic materials

    Office of Scientific and Technical Information (OSTI)

    for Na-ion batteries (Journal Article) | SciTech Connect Hard carbon nanoparticles as high-capacity, high-stability anodic materials for Na-ion batteries Citation Details In-Document Search Title: Hard carbon nanoparticles as high-capacity, high-stability anodic materials for Na-ion batteries Hard carbon nanoparticles (HCNP) were synthesized by the pyrolysis of a polyaniline precursor. The measured Na+ cation diffusion coefficient (10-13-10-15cm2s-1) in the HCNP obtained at 1150 °C is two

  6. In-situ TEM study of sodiation and failure mechanism of Sb anodes.

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect In-situ TEM study of sodiation and failure mechanism of Sb anodes. Citation Details In-Document Search Title: In-situ TEM study of sodiation and failure mechanism of Sb anodes. Abstract not provided. Authors: XueHai Tan ; Jungjohann, Katherine Leigh ; Mook, William ; David Mitlin Publication Date: 2014-09-01 OSTI Identifier: 1241666 Report Number(s): SAND2014-18008D 537710 DOE Contract Number: AC04-94AL85000 Resource Type: Conference

  7. Fabrication of copper-based anodes via atmosphoric plasma spraying techniques

    DOE Patents [OSTI]

    Lu, Chun (Monroeville, PA)

    2012-04-24

    A fuel electrode anode (18) for a solid oxide fuel cell is made by presenting a solid oxide fuel cell having an electrolyte surface (15), mixing copper powder with solid oxide electrolyte in a mixing step (24, 44) to provide a spray feedstock (30,50) which is fed into a plasma jet (32, 52) of a plasma torch to melt the spray feed stock and propel it onto an electrolyte surface (34, 54) where the spray feed stock flattens into lamellae layer upon solidification, where the layer (38, 59) is an anode coating with greater than 35 vol. % based on solids volume.

  8. Transparent TiO2 nanotube array photoelectrodes prepared via two-step anodization

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kim, Jin Young; Zhu, Kai; Neale, Nathan R.; Frank, Arthur J.

    2014-04-04

    Two-step anodization of transparent TiO2 nanotube arrays has been demonstrated with aid of a Nb-doped TiO2 buffer layer deposited between the Ti layer and TCO substrate. Enhanced physical adhesion and electrochemical stability provided by the buffer layer has been found to be important for successful implementation of the two-step anodization process. As a result, with the proposed approach, the morphology and thickness of NT arrays could be controlled very precisely, which in turn, influenced their optical and photoelectrochemical properties.

  9. Anodic activation of niobium and tantalum in phosphate-fluoride solutions

    SciTech Connect (OSTI)

    Bairachnyi, B.I.; Stepanova, I.I.

    1988-01-10

    An analysis of the polarization curves for the anodic dissolution of niobium and tantalum in the coordinates showed they are described by Fafel's equation with a slop of the linear sections of -0.125 for niobium and -0.123 for tantalum. In solutions that contained hydrofluoric acid the anodic-anionic polarization of niobium and tantalum was accompanied by the destruction of the oxide film by the fluoride ions and dissolution of the metal phase. Effects of polishing and glossing of the surface of the investigated metals were observed at certain conditions.

  10. Material and Energy Flows in the Production of Cathode and Anode Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Lithium Ion Batteries (Technical Report) | SciTech Connect Material and Energy Flows in the Production of Cathode and Anode Materials for Lithium Ion Batteries Citation Details In-Document Search Title: Material and Energy Flows in the Production of Cathode and Anode Materials for Lithium Ion Batteries Authors: Dunn, Jennifer B. ; James, Christine ; Gaines, L G ; Gallagher, Kevin Publication Date: 2014-09-30 OSTI Identifier: 1172039 Report Number(s): ANL/ESD-14/10 108520 DOE Contract

  11. Geek-Up[08.20.10] -- Turning Trash Bags into Battery Anodes and Researching

    Office of Environmental Management (EM)

    the Gut Microbiome | Department of Energy 8.20.10] -- Turning Trash Bags into Battery Anodes and Researching the Gut Microbiome Geek-Up[08.20.10] -- Turning Trash Bags into Battery Anodes and Researching the Gut Microbiome August 20, 2010 - 5:18pm Addthis Elizabeth Meckes Elizabeth Meckes Director of User Experience & Digital Technologies, Office of Public Affairs What are the key facts? An Argonne Scholar has figured out a way to convert grocery bags into carbon nanotubes that can be

  12. Energy storage devices having anodes containing Mg and electrolytes utilized therein

    DOE Patents [OSTI]

    Shao, Yuyan; Liu, Jun

    2015-08-18

    For a metal anode in a battery, the capacity fade is a significant consideration. In energy storage devices having an anode that includes Mg, the cycling stability can be improved by an electrolyte having a first salt, a second salt, and an organic solvent. Examples of the organic solvent include diglyme, triglyme, tetraglyme, or a combination thereof. The first salt can have a magnesium cation and be substantially soluble in the organic solvent. The second salt can enhance the solubility of the first salt and can have a magnesium cation or a lithium cation. The first salt, the second salt, or both have a BH.sub.4 anion.

  13. Hard Carbon Materials for High-Capacity Li-ion Battery Anodes | Department

    Office of Environmental Management (EM)

    of Energy Hard Carbon Materials for High-Capacity Li-ion Battery Anodes Hard Carbon Materials for High-Capacity Li-ion Battery Anodes 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon es104_dai_2011_o.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2015: A Combined Experimental and Modeling Approach for the Design of High Coulombic Efficiency Si Electrodes In situ Characterizations of New

  14. p-Type semiconducting nickel oxide as an efficiency-enhancing anodal interfacial layer in bulk heterojunction solar cells

    DOE Patents [OSTI]

    Irwin, Michael D; Buchholz, Donald B; Marks, Tobin J; Chang, Robert P. H.

    2014-11-25

    The present invention, in one aspect, relates to a solar cell. In one embodiment, the solar cell includes an anode, a p-type semiconductor layer formed on the anode, and an active organic layer formed on the p-type semiconductor layer, where the active organic layer has an electron-donating organic material and an electron-accepting organic material.

  15. Parasitic corrosion resistant anode for use in metal/air or metal/O.sub.2 cells

    DOE Patents [OSTI]

    Joy, Richard W.; Smith, David F.

    1983-01-01

    A consumable metal anode which is used in refuelable electrochemical cells and wherein at least a peripheral edge portion of the anode is protected against a corrosive alkaline environment of the cell by the application of a thin metal coating, the coating being formed of metals such as nickel, silver, and gold.

  16. Parasitic corrosion-resistant anode for use in metal/air or metal/O/sub 2/ cells

    DOE Patents [OSTI]

    Joy, R.W.; Smith, D.F.

    1982-09-20

    A consumable metal anode is described which is used in refuelable electrochemical cells and wherein at least a peripheral edge portion of the anode is protected against a corrosive alkaline environment of the cell by the application of a thin metal coating, the coating being formed of metals such as nickel, silver, and gold.

  17. Silicon-tin oxynitride glassy composition and use as anode for lithium-ion battery

    DOE Patents [OSTI]

    Neudecker, Bernd J. (Knoxville, TN); Bates, John B. (Oak Ridge, TN)

    2001-01-01

    Disclosed are silicon-tin oxynitride glassy compositions which are especially useful in the construction of anode material for thin-film electrochemical devices including rechargeable lithium-ion batteries, electrochromic mirrors, electrochromic windows, and actuators. Additional applications of silicon-tin oxynitride glassy compositions include optical fibers and optical waveguides.

  18. Manipulating the Surface Reactions in Lithium Sulfur Batteries Using Hybrid Anode Structures

    SciTech Connect (OSTI)

    Huang, Cheng; Xiao, Jie; Shao, Yuyan; Zheng, Jianming; Bennett, Wendy D.; Lu, Dongping; Saraf, Laxmikant V.; Engelhard, Mark H.; Ji, Liwen; Zhang, Jiguang; Li, Xiaolin; Graff, Gordon L.; Liu, Jun

    2014-01-09

    Lithium-sulfur (Li-S) batteries have recently attracted extensive attention due to the high theoretical energy density and potential low cost. Even so, significant challenges prevent widespread adoption, including continuous dissolution and consumption of active sulfur during cycling. Here we present a fundamentally new design using electrically connected graphite and lithium metal as a hybrid anode to control undesirable surface reactions on the anode. The lithiated graphite placed in front of the lithium metal functions as an artificial self-regulated solid electrolyte interface (SEI) layer to actively control the electrochemical reaction while minimizing the deleterious side reactions on the surface and bulk lithium metal. Continuous corrosion and contamination of lithium anode by dissolved polysulfides is largely mitigated. Excellent electrochemical performance has been observed. Li-S cell incorporating the hybrid design retain a capacity of more than 800 mAh g-1 for 400 cycles, corresponding to only 11% fade and a Coulombic efficiency above 99%. This simple hybrid concept may also provide new lessons for protecting metal anodes in other energy storage devices.

  19. Uncertainty Studies of Real Anode Surface Area in Computational Analysis for Molten Salt Electrorefining

    SciTech Connect (OSTI)

    Sungyeol Choi; Jaeyeong Park; Robert O. Hoover; Supathorn Phongikaroon; Michael F. Simpson; Kwang-Rag Kim; Il Soon Hwang

    2011-09-01

    This study examines how much cell potential changes with five differently assumed real anode surface area cases. Determining real anode surface area is a significant issue to be resolved for precisely modeling molten salt electrorefining. Based on a three-dimensional electrorefining model, calculated cell potentials compare with an experimental cell potential variation over 80 hours of operation of the Mark-IV electrorefiner with driver fuel from the Experimental Breeder Reactor II. We succeeded to achieve a good agreement with an overall trend of the experimental data with appropriate selection of a mode for real anode surface area, but there are still local inconsistencies between theoretical calculation and experimental observation. In addition, the results were validated and compared with two-dimensional results to identify possible uncertainty factors that had to be further considered in a computational electrorefining analysis. These uncertainty factors include material properties, heterogeneous material distribution, surface roughness, and current efficiency. Zirconium's abundance and complex behavior have more impact on uncertainty towards the latter period of electrorefining at given batch of fuel. The benchmark results found that anode materials would be dissolved from both axial and radial directions at least for low burn-up metallic fuels after active liquid sodium bonding was dissolved.

  20. Field performance of sprayed zinc anodes in controlling corrosion of steel reinforced concrete

    SciTech Connect (OSTI)

    Tinnea, J.

    1998-12-31

    The deterioration of concrete structures often results from the corrosion of their steel reinforcement. Cathodic protection (CP) is a proven means to stop rebar corrosion. One anode material gaining acceptance in the infrastructure corrosion fight is zinc thermal spray coating. This paper discusses an investigation of such CP systems.

  1. Novel Electrolyte Enables Stable Graphite Anodes in Lithium Ion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Berkeley Lab researchers led by Gao Liu have developed an improved lithium ion battery electrolyte containing a solvent that remains liquid at typical operating temperatures but, ...

  2. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a rare scientific showcase, combining advanced tools of synthesis, characterization, and simulation in a novel approach to materials development. Gao Liu's original research team,...

  3. Vehicle Technologies Office Merit Review 2014: Development of Silicon-based High Capacity Anodes

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the...

  4. Chemically Bonded Phosphorus/Graphene Hybrid as a High Performance Anode for Sodium-Ion Batteries

    SciTech Connect (OSTI)

    Song, Jiangxuan; Yu, Zhaoxin; Gordin, Mikhail; Hu, Shilin; Yi, Ran; Tang, Duihai; Walter, Timothy; Regula, Michael; Choi, Daiwon; Li, Xiaolin; Manivannan, Ayyakkannu; Wang, Donghai

    2014-11-12

    Room temperature sodium-ion batteries are of great interest for high-energy-density energy storage systems because of low-cost, natural abundance of sodium. Here, we report a novel graphene nanosheets-wrapped phosphorus composite as an anode for high performance sodium-ion batteries though a facile ball-milling of red phosphorus and graphene nanosheets. Not only can the graphene nanosheets significantly improve the electrical conductivity, but they also serve as a buffer layer to accommodate the large volume change of phosphorus in the charge-discharge process. As a result, the graphene wrapped phosphorus composite anode delivers a high reversible capacity of 2077 mAh/g with excellent cycling stability (1700 mAh/g after 60 cycles) and high Coulombic efficiency (>98%). This simple synthesis approach and unique nanostructure can potentially extend to other electrode materials with unstable solid electrolyte interphases in sodium-ion batteries.

  5. NANOSTRUCTURED METAL OXIDES FOR ANODES OF LI-ION RECHARGEABLE BATTERIES

    SciTech Connect (OSTI)

    Au, M.

    2009-12-04

    The aligned nanorods of Co{sub 3}O{sub 4} and nanoporous hollow spheres (NHS) of SnO{sub 2} and Mn{sub 2}O{sub 3} were investigated as the anodes for Li-ion rechargeable batteries. The Co{sub 3}O{sub 4} nanorods demonstrated 1433 mAh/g reversible capacity. The NHS of SnO{sub 2} and Mn{sub 2}O{sub 3} delivered 400 mAh/g and 250 mAh/g capacities respectively in multiple galvonastatic discharge-charge cycles. It was found that high capacity of NHS of metal oxides is sustainable attributed to their unique structure that maintains material integrity during cycling. The nanostructured metal oxides exhibit great potential as the new anode materials for Li-ion rechargeable batteries with high energy density, low cost and inherent safety.

  6. Using Heteropolyacids in the Anode Catalyst Layer of Dimethyl Ether PEM Fuel Cells

    SciTech Connect (OSTI)

    Ferrell III, J. R.; Turner, J. A.; Herring, A. M.

    2008-01-01

    In this study, polarization experiments were performed on a direct dimethyl ether fuel cell (DMEFC). The experimental setup allowed for independent control of water and DME flow rates. Thus the DME flow rate, backpressure, and water flow rate were optimized. Three heteropoly acids, phosphomolybdic acid (PMA), phosphotungstic acid (PTA), and silicotungstic acid (STA) were incorporated into the anode catalyst layer in combination with Pt/C. Both PTA-Pt and STA-Pt showed higher performance than the Pt control at 30 psig of backpressure. Anodic polarizations were also performed, and Tafel slopes were extracted from the data. The trends in the Tafel slope values are in agreement with the polarization data. The addition of phosphotungstic acid more than doubled the power density of the fuel cell, compared to the Pt control.

  7. Effect of entropy of lithium intercalation in cathodes and anodes on Li-ion battery thermal management

    SciTech Connect (OSTI)

    Viswanathan, Vilayanur V; Choi, Daiwon; Wang, Donghai; Xu, Wu; Towne, Silas A; Williford, Ralph E; Zhang, Jiguang; Liu, Jun; Yang, Zhenguo

    2010-06-01

    The entropy changes (ΔS) in various cathode and anode materials, as well as complete Li-ion batteries, were measured using an electrochemical thermodynamic measurement system (ETMS). LiCoO2 has a much larger entropy change than electrodes based on LiNixCoyMnzO2 and LiFePO4, while lithium titanate based anode has lower entropy change compared to graphite anodes. Reversible heat generation rate was found to be a significant portion of the total heat generation rate. The appropriate combinations of cathode and anode were investigated to minimize reversible heat.

  8. Hybrid Nano Carbon Fiber/Graphene Platelet-Based High-Capacity Anodes for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lithium Ion Batteries | Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon es009_jang_2011_o.pdf More Documents & Publications Hybrid Nano Carbon Fiber/Graphene Platelet-Based High-Capacity Anodes for Lithium Ion Batteries Progress of DOE Materials, Manufacturing Process R&D, and ARRA Battery Manufacturing Grants 2010 DOE EERE Vehicle Technologies Program Merit Review - Energy Storage

  9. Chemically Bonded Phosphorus/Graphene Hybrid as a High Performance Anode

    Office of Scientific and Technical Information (OSTI)

    for Sodium-Ion Batteries (Journal Article) | SciTech Connect Room temperature sodium-ion batteries are of great interest for high-energy-density energy storage systems because of low-cost, natural abundance of sodium. Here, we report a novel graphene nanosheets-wrapped phosphorus composite as an anode for high performance sodium-ion batteries though a facile ball-milling of red phosphorus and graphene nanosheets. Not only can the graphene nanosheets significantly improve the electrical

  10. Thermal-sprayed zinc anodes for cathodic protection of steel-reinforced concrete bridges

    SciTech Connect (OSTI)

    Bullard, Sophie J.; Covino, Bernard S., Jr.; Cramer, Stephen D.; McGill, Galen E.

    1996-01-01

    Thermal-sprayed zinc anodes are being used in Oregon in impressed current cathodic protection (ICCP) systems for reinforced concrete bridges. The U.S. Department of Energy, Albany Research Center, is collaborating with the Oregon Department of Transportation (ODOT) to evaluate the long-term performance and service life of these anodes. Laboratory studies were conducted on concrete slabs coated with 0.5 mm (20 mil) thick, thermal-sprayed zinc anodes. The slabs were electrochemically aged at an accelerated rate using an anode current density of 0.032 A/m2 (3mA/ft2). Half the slabs were preheated before thermal-spraying with zinc; the other half were unheated. Electrochemical aging resulted in the formation at the zinc-concrete interface of a thin, low pH zone (relative to cement paste) consisting primarily of ZnO and Zn(OH)2, and in a second zone of calcium and zinc aluminates and silicates formed by secondary mineralization. Both zones contained elevated concentrations of sulfate and chloride ions. The original bond strength of the zinc coating decreased due to the loss of mechanical bond to the concrete with the initial passage of electrical charge (aging). Additional charge led to an increase in bond strength to a maximum as the result of secondary mineralization of zinc dissolution products with the cement paste. Further charge led to a decrease in bond strength and ultimately coating disbondment as the interfacial reaction zones continued to thicken. This occurred at an effective service life of 27 years at the 0.0022 A/m2 (0.2 mA/ft2) current density typically used by ODOT in ICCP systems for coastal bridges. Zinc coating failure under tensile stress was primarily cohesive within the thickening reaction zones at the zinc-concrete interface. There was no difference between the bond strength of zinc coatings on preheated and unheated concrete surfaces after long service times.

  11. Better Ham & Cheese: Enhanced Anodes and Cathodes for Fuel Cells > Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Highlights > Research > The Energy Materials Center at Cornell Research Highlights In This Section The Structural Evolution and Diffusion During the Chemical Transformation from Cobalt to Cobalt Phosphide Nanoparticles Joint Density-Functional Theory of Electrochemistry Double-band Electrode Channel Flow DEMS Cell Sulfur@Carbon Cathodes for Lithium Sulfur Batteries Better Ham & Cheese: Enhanced Anodes and Cathodes for Fuel Cells Epitaxial Single Crystal Nanostructures for Batteries

  12. Final Report: Novel ALD-Coated Nanoparticle Anodes for Enhanced Performance Lithium-Ion Batteries

    SciTech Connect (OSTI)

    Groner, Markus

    2009-04-16

    The Phase I effort is described in detail in the Phase I report given below. The key accomplishments of the Phase I project were (1) the demonstration of high stability LiCoO2 cathodes using ALD-coated LiCoO2 particles, as well as on ALD-coated LiCoO2 electrodes and (2) the demonstration of high stability of graphite anodes using ALD-coated graphite electrodes.

  13. Cerium-modified doped strontium titanate compositions for solid oxide fuel cell anodes and electrodes for other electrochemical devices

    DOE Patents [OSTI]

    Marina, Olga A [Richland, WA; Stevenson, Jeffry W [Richland, WA

    2010-03-02

    The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells and electrochemical devices such as solid oxide fuel cells, electrolyzers, sensors, pumps and the like, the compositions comprising cerium-modified doped strontium titanate. The invention also provides novel methods for making and using anode material compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having anodes comprising the compositions.

  14. Cerium-modified doped strontium titanate compositions for solid oxide fuel cell anodes and electrodes for other electrochemical devices

    DOE Patents [OSTI]

    Marina, Olga A [Richland, WA; Stevenson, Jeffry W [Richland, WA

    2010-11-23

    The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells and electrochemical devices such as solid oxide fuel cells, electrolyzers, sensors, pumps and the like, the compositions comprising cerium-modified doped strontium titanate. The invention also provides novel methods for making and using anode material compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having anodes comprising the compositions.

  15. Composite solid oxide fuel cell anode based on ceria and strontium titanate

    DOE Patents [OSTI]

    Marina, Olga A. (Richland, WA); Pederson, Larry R. (Richland, WA)

    2008-12-23

    An anode and method of making the same wherein the anode consists of two separate phases, one consisting of a doped strontium titanate phase and one consisting of a doped cerium oxide phase. The strontium titanate phase consists of Sr.sub.1-xM.sub.xTiO.sub.3-.delta., where M is either yttrium (Y), scandium (Sc), or lanthanum (La), where "x" may vary typically from about 0.01 to about 0.5, and where .delta. is indicative of some degree of oxygen non-stoichiometry. A small quantity of cerium may also substitute for titanium in the strontium titanate lattice. The cerium oxide consists of N.sub.yCe.sub.1-yO.sub.2-.delta., where N is either niobium (Nb), vanadium (V), antimony (Sb) or tantalum (Ta) and where "y" may vary typically from about 0.001 to about 0.1 and wherein the ratio of Ti in said first phase to the sum of Ce and N in the second phase is between about 0.2 to about 0.75. Small quantities of strontium, yttrium, and/or lanthanum may additionally substitute into the cerium oxide lattice. The combination of these two phases results in better performance than either phase used separately as an anode for solid oxide fuel cell or other electrochemical device.

  16. Porous Si spheres encapsulated in carbon shells with enhanced anodic performance in lithium-ion batteries

    SciTech Connect (OSTI)

    Wang, Hui; Wu, Ping, E-mail: zjuwuping@njnu.edu.cn; Shi, Huimin; Lou, Feijian; Tang, Yawen; Zhou, Tongge; Zhou, Yiming, E-mail: zhouyiming@njnu.edu.cn; Lu, Tianhong

    2014-07-01

    Highlights: In situ magnesiothermic reduction route for the formation of porous Si@C spheres. Unique microstructural characteristics of both porous sphere and carbon matrix. Enhanced anodic performance in term of cycling stability for lithium-ion batteries. - Abstract: A novel type of porous SiC micro/nano-hybrids, i.e., porous Si spheres encapsulated in carbon shells (porous Si@C spheres), has been constructed through the pyrolysis of polyvinylidene fluoride (PVDF) and subsequent magnesiothermic reduction methodology by using SiO{sub 2} spheres as precursors. The as-synthesized porous Si@C spheres have been applied as anode materials for lithium-ion batteries (LIBs), and exhibit enhanced anodic performance in term of cycling stability compared with bare Si spheres. For example, the porous Si@C spheres are able to exhibit a high reversible capacity of 900.0 mA h g{sup ?1} after 20 cycles at a current density of 0.05 C (1 C = 4200 mA g{sup ?1}), which is much higher than that of bare Si spheres (430.7 mA h g{sup ?1})

  17. Generalized Bohms criterion and negative anode voltage fall in electric discharges

    SciTech Connect (OSTI)

    Londer, Ya. I.; Ulyanov, K. N.

    2013-10-15

    The value of the voltage fall across the anode sheath is found as a function of the current density. Analytic solutions are obtained in a wide range of the ratio of the directed velocity of plasma electrons v{sub 0} to their thermal velocity v{sub T}. It is shown that the voltage fall in a one-dimensional collisionless anode sheath is always negative. At the small values of v{sub 0}/v{sub T}, the obtained expression asymptotically transforms into the Langmuir formula. Generalized Bohms criterion for an electric discharge with allowance for the space charge density ?(0), electric field E(0), ion velocity v{sub i}(0), and ratio v{sub 0}/v{sub T} at the plasma-sheath interface is formulated. It is shown that the minimum value of the ion velocity v{sub i}{sup *}(0) corresponds to the vanishing of the electric field at one point inside the sheath. The dependence of v{sub i}{sup *} (0) on ?(0), E(0), and v{sub 0}/v{sub T} determines the boundary of the existence domain of stationary solutions in the sheath. Using this criterion, the maximum possible degree of contraction of the electron current at the anode is determined for a short high-current vacuum arc discharge.

  18. Molecular-Level Insights into the Reactivity of Siloxane-Based Electrolytes at a Lithium-Metal Anode

    SciTech Connect (OSTI)

    Assary, Rajeev S.; Lu, Jun; Luo, Xiangyi; Zhang, Xiaoyi; Ren, Yang; Wu, Huiming; Albishri, Hassan M.; El-Hady, D. A.; Al-Bogami, A. S.; Curtiss, Larry A.; Amine, Khalil

    2014-07-21

    A molecular-level understanding of the reactions that occur at the lithium-metal anode/electrolyte interphase is essential to improve the performance of LiO2 batteries. Experimental and computational techniques are applied to explore the reactivity of tri(ethylene glycol)-substituted trimethylsilane (1NM3), a siloxane-based ether electrolyte, at the lithium-metal anode. In situ/ex situ X-ray diffraction and Fourier-transform infrared spectroscopy studies provide evidence of the formation of lithium hydroxide and lithium carbonates at the anode upon gradual degradation of the metallic lithium anode and the solvent molecules in the presence of oxygen. Density functional calculations performed to obtain a mechanistic understanding of the reductive decomposition of 1NM3 indicate that the decomposition does not require any apparent barrier to produce lithium hydroxide and lithium carbonates when the reduced 1NM3 solvent molecules interact with the oxygen crossing over from the cathode. This study indicates that degradation may be more significant in the case of the 1NM3 solvent, compared to linear ethers such as tetraglyme or dioxalone, because of its relatively high electron affinity. Also, both protection of the lithium metal and prevention of oxygen crossover to the anode are essential for minimizing electrolyte and anode decomposition.

  19. Hybrid CuO/SnO{sub 2} nanocomposites: Towards cost-effective and high performance binder free lithium ion batteries anode materials

    SciTech Connect (OSTI)

    Xing, G. Z.; Wang, Y.; Wong, J. I.; Shi, Y. M.; Huang, Z. X.; Yang, H. Y.; Li, S.

    2014-10-06

    Hybrid CuO/SnO{sub 2} nanocomposites are synthesized by a facile thermal annealing method on Cu foils. Compared to pristine CuO and SnO{sub 2} nanostructures, hybrid CuO/SnO{sub 2} nanocomposites exhibit the enhanced electrochemical performances as the anode material of lithium ion batteries (LIBs) with high specific capacity and excellent rate capability. The binder free CuO/SnO{sub 2} nanocomposites deliver a specific capacity of 718 mA h g{sup ?1} at a current density of 500?mA g{sup ?1} even after 200 cycles. The enhanced electrochemical performances are attributed to the synergistic effect between SnO{sub 2} nanoparticles and CuO nanoarchitectures. Such hybrid CuO/SnO{sub 2} nanocomposites could open up a new route for the development of next-generation high-performance and cost-effective binder free anode material of LIBs for mass production.

  20. Liquid Tin Anode Direct Coal Fuel Cell Final Program Report

    SciTech Connect (OSTI)

    Tao, Thomas

    2012-01-26

    This SBIR program will result in improved LTA cell technology which is the fundamental building block of the Direct Coal ECL concept. As described below, ECL can make enormous efficiency and cost contributions to utility scale coal power. This program will improve LTA cells for small scale power generation. As described in the Commercialization section, there are important intermediate military and commercial markets for LTA generators that will provide an important bridge to the coal power application. The specific technical information from this program relating to YSZ electrolyte durability will be broadly applicable SOFC developers working on coal based SOFC generally. This is an area about which very little is currently known and will be critical for successfully applying fuel cells to coal power generation.

  1. Top-emission Si-based phosphor organic light emitting diode with Au doped ultrathin n-Si film anode and bottom Al mirror

    SciTech Connect (OSTI)

    Li, Y. Z.; Xu, W. J.; Ran, G. Z. [State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871 (China); Qin, G. G. [State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871 (China); Key Lab of Semiconductor Materials, CAS, Beijing 100083 (China)

    2009-07-20

    We report a highly efficient top-emission Si-based phosphor organic light emitting diode (PhOLED) with an ultrathin polycrystalline n-Si:Au film anode and a bottom Al mirror. This anode is formed by magnetron sputtering followed by Ni induced crystallization and then Au diffusion. By optimizing the thickness of the n-Si:Au film anode, the Au diffusion temperature, and the other parameters of the PhOLED, the highest current and power efficiencies of the n-Si:Au film anode PhOLED reached 85{+-}9 cd/A and 80{+-}8 lm/W, respectively, corresponding to an external quantum efficiency of 21{+-}2% and a power conversion efficiency of 15{+-}2%, respectively, which are about 60% and 110% higher than those of the indium tin oxide anode counterpart and 70% and 50% higher than those of the bulk n{sup +}-Si:Au anode counterpart, respectively.

  2. Doped Yttrium Chromite-Ceria Composite as a Redox-Stable and Sulfur-Tolerant Anode for Solid Oxide Fuel Cells

    SciTech Connect (OSTI)

    Yoon, Kyung J.; Coyle, Christopher A.; Marina, Olga A.

    2011-12-11

    A Ca- and Co-doped yttrium chromite (YCCC) - samaria-doped ceria (SDC) composite was studied in relation to a potential use as a solid oxide fuel cell (SOFC) anode material. Tests performed using the yttria-stabilized zirconia (YSZ) electrolyte-supported cells revealed that the electrocatalytic activity of the YCCC-SDC anode towards hydrogen oxidation at 800 C was comparable to that of the Ni-YSZ anode. In addition, the YCCC-SDC anode exhibited superior sulfur tolerant characteristics showing less than 10% increase in a polarization resistance, fully reversible, upon exposure to 20 ppm H2S at 800 C. No performance degradation was observed during multiple reduction-oxidation (redox) cycles when the anode was intentionally exposed to the air environment followed by the reduction in hydrogen. The redox tolerance of the YCCC-SDC anode was attributed to the dimensional and chemical stability of the YCCC exhibiting minimal isothermal chemical expansion upon redox cycling.

  3. Anodes Improve Safety and Performance in Lithium-ion Batteries - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Advanced Materials Advanced Materials Find More Like This Return to Search Anodes Improve Safety and Performance in Lithium-ion Batteries Argonne National Laboratory Contact ANL About This Technology <span style="font-family: &quot;Cambria&quot;,&quot;serif&quot;; font-size: 12pt; mso-fareast-font-family: Calibri; mso-bidi-font-family: &quot;Times New Roman&quot;; mso-ansi-language: EN-US; mso-fareast-language: EN-US; mso-bidi-language:

  4. Hybrid Nano Carbon Fiber/Graphene Platelet-Based High-Capacity Anodes for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lithium Ion Batteries | Department of Energy 0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon es009_jang_2010_o.pdf More Documents & Publications Hybrid Nano Carbon Fiber/Graphene Platelet-Based High-Capacity Anodes for Lithium Ion Batteries 2010 DOE EERE Vehicle Technologies Program Merit Review - Energy Storage Progress of DOE Materials, Manufacturing Process R&D, and ARRA Battery

  5. A high performance hybrid battery based on aluminum anode and LiFePO4 cathode

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sun, Xiao-Guang; Bi, Zhonghe; Liu, Hansan; Bridges, Craig A.; Paranthaman, Mariappan Parans; Dai, Sheng; Brown, Gilbert M.

    2015-10-07

    A unique battery hybrid utilizes an aluminum anode, a LiFePO4 cathode and an acidic ionic liquid electrolyte based on 1-ethyl-3-methylimidazolium chloride (EMImCl) and aluminum trichloride (AlCl 3) (EMImCl-AlCl 3, 1-1.1 in molar ratio) with or without LiAlCl4 is proposed. This hybrid ion battery delivers an initial high capacity of 160 mAh g-1 at a current rate of C/5. It also shows good rate capability and cycling performance.

  6. Lithium/organosulfur redox cell having protective solid electrolyte barrier formed on anode and method of making same

    DOE Patents [OSTI]

    De Jonghe, Lutgard C.; Visco, Steven J.; Liu, Meilin; Mailhe, Catherine C.

    1990-01-01

    A lithium/organosulfur redox cell is disclosed which comprises a solid lium anode, a liquid organosulfur cathode, and a barrier layer formed adjacent a surface of the solid lithium anode facing the liquid organosulfur cathode consisting of a reaction product of the lithium anode with the organosulfur cathode. The organosulfur cathode comprises a material having the formula (R(S).sub.y).sub.N where y=1 to 6, n=2 to 20 and R is one or more different aliphatic or aromatic organic moieties having 1 to 20 carbon atoms, which may include one or more oxygen, sulfur, nitrogen, or fluorine atoms associated with the chain when R comprises an aliphatic chain, wherein the linear chain may be linear or branched, saturated or unsaturated, and wherein either the aliphatic chain or the aromatic ring may have substituted groups thereon.

  7. Mesoporous Silicon Sponge as an Anti-Pulverization Structure for High-Performance Lithium-ion Battery Anodes

    SciTech Connect (OSTI)

    Li, Xiaolin; Gu, Meng; Hu, Shenyang Y.; Kennard, Rhiannon; Yan, Pengfei; Chen, Xilin; Wang, Chong M.; Sailor, Michael J.; Zhang, Jiguang; Liu, Jun

    2014-07-08

    Nanostructured silicon is a promising anode material for high performance lithium-ion batteries, yet scalable synthesis of such materials, and retaining good cycling stability in high loading electrode remain significant challenges. Here, we combine in-situ transmission electron microscopy and continuum media mechanical calculations to demonstrate that large (>20 micron) mesoporous silicon sponge (MSS) prepared by the scalable anodization method can eliminate the pulverization of the conventional bulk silicon and limit particle volume expansion at full lithiation to ~30% instead of ~300% as observed in bulk silicon particles. The MSS can deliver a capacity of ~750 mAh/g based on the total electrode weight with >80% capacity retention over 1000 cycles. The first-cycle irreversible capacity loss of pre-lithiated MSS based anode is only <5%. The insight obtained from MSS also provides guidance for the design of other materials that may experience large volume variation during operations.

  8. A three-dimensional Macroporous Cu/SnO2 composite anode sheet prepared via a novel method

    SciTech Connect (OSTI)

    Xu, Wu; Canfield, Nathan L.; Wang, Deyu; Xiao, Jie; Nie, Zimin; Zhang, Jiguang

    2010-11-01

    Macroporous Cu/SnO2 composite anode sheets were prepared by a novel method which is based on slurry blending, tape casting, sintering, and reducing of metal oxides. Such composite Cu/SnO2 anode sheets have no conducting carbons and binders, and show improved discharge capacity and cycle life than the SnO2 electrode from conventional tape-casting method on Cu foil. This methodology produces limited wastes and is also adaptable to many other materials. It is easy for industrial scale production. With the optimization of particle size of the metal oxide, pore size, pore volume and other factors, this kind of macroporous Cu/SnO2 composite anode sheets could give significantly improved capacity and cycle life.

  9. A High Temperature (400 to 650oC) Secondary Storage Battery Based on Liquid Sodium and Potassium Anodes

    SciTech Connect (OSTI)

    Tao, Greg; Weber, Neill

    2007-06-08

    This STTR Phase I research program was on the development of high temperature (400 to 650 C), secondary batteries with roundtrip efficiency > 90% for integration with a 3 to 10 kW solid oxide fuel cell (SOFC) system. In fulfillment of this objective, advanced planar high temperature rechargeable batteries, comprised of an alkali metal ion conducting, highly refractory, beta'' alumina solid electrolyte (BASE) sandwiched between liquid sodium (or potassium) anode and liquid metal salt cathode, were developed at MSRI. The batteries have been successfully demonstrated at a working temperature as high as 600 C. To our knowledge, so far no work has been reported in the literature on planar rechargeable batteries based on BASE, and results obtained in Phase I for the very first time demonstrated the viability of planar batteries, though relatively low temperature tubular-based sodium-sulfur batteries and ZEBRA batteries have been actively developed by very limited non U.S. companies. The results of this Phase I work have fulfilled all the goals and stated objectives, and the achievements showed much promise for further, substantial improvements in battery design and performance. The important results of Phase I are briefly described in what follows: (1) Both Na-BASE and K-BASE discs and tubes have been successfully fabricated using MSRI's patented vapor phase process. Ionic conductivity measurements showed that Na-BASE had higher ionic conductivity than K-BASE, consistence with the literature. At 500 C, Na-BASE conductivity is 0.36 S/cm, which is more than 20 times higher than 8YSZ electrolyte used for SOFC at 800 C. The activation energy is 22.58 kJ/mol. (2) CuCl{sub 2}, FeCl{sub 2}, ZnCl{sub 2}, and AgCl were identified as suitable salts for Na/metal salt or K/metal salt electrochemical couples based on thermochemical data. Further open circuit voltage measurements matched those deduced from the thermochemical data. (3) Tubular cells with CuCl{sub 2} as the cathode and Na as the anode were constructed. However, it was discovered that CuCl{sub 2} was somewhat corrosive and dissolved iron, an element of the cathode compartment. Since protective coating technology was beyond this Phase I work scope, no further work on the CuCl{sub 2} cathode was pursued in Phase I. Notwithstanding, due to its very high OCV and high specific energy, CuCl{sub 2} cathode is a very attractive possibility for a battery capable of delivering higher specific energy with higher voltage. Further investigation of the Na-CuCl{sub 2} battery can be done by using suitable metal coating technologies developed at MSRI for high temperature applications. (4) In Phase I, FeCl{sub 2} and ZnCl{sub 2} were finalized as the potential cathodes for Na-metal salt batteries for delivering high specific energies. Planar Na-FeCl{sub 2} and Na-ZnCl{sub 2} cells were designed, constructed, and tested between 350 and 600 C. Investigation of charge/discharge characteristics showed they were the most promising batteries. Charge/discharge cycles were performed as many as 27 times, and charge/discharge current was as high as 500 mA. No failure was detected after 50 hours testing. (5) Three-cell planar stacks were designed, constructed, and evaluated. Preliminary tests showed further investigation was needed for optimization. (6) Freeze-thaw survival was remarkably good for planar BASE discs fabricated by MSRI's patented vapor phase process.

  10. Surface Coating Constraint Induced Self-Discharging of Silicon Nanoparticles as Anodes for Lithium Ion Batteries

    SciTech Connect (OSTI)

    Luo, Langli; Zhao, Peng; Yang, Hui; Liu, Borui; Zhang, Jiguang; Cui, Yi; Yu, Guihua; Zhang, Sulin; Wang, Chong M.

    2015-10-01

    One of the key challenges of Si-based anodes for lithium ion batteries is the large volume change upon lithiation and delithiation, which commonly leads to electrochemo-mechanical degradation and subsequent fast capacity fading. Recent studies have shown that applying nanometer-thick coating layers on Si nanoparticle (SiNPs) enhances cyclability and capacity retention. However, it is far from clear how the coating layer function from the point of view of both surface chemistry and electrochemo-mechanical effect. Herein, we use in situ transmission electron microscopy to investigate the lithiation/delithiation kinetics of SiNPs coated with a conductive polymer, polypyrrole (PPy). We discovered that this coating layer can lead to “self-delithiation” or “self-discharging” at different stages of lithiation. We rationalized that the self-discharging is driven by the internal compressive stress generated inside the lithiated SiNPs due to the constraint effect of the coating layer. We also noticed that the critical size of lithiation-induced fracture of SiNPs is increased from ~ 150 nm for bare SiNPs to ~ 380 nm for the PPy-coated SiNPs, showing a mechanically protective role of the coating layer. These observations demonstrate both beneficial and detrimental roles of the surface coatings, shedding light on rational design of surface coatings for silicon to retain high-power and high capacity as anode for lithium ion batteries.

  11. Can CO-tolerant Anodes be Economically Viable for PEMFC Applications with Reformates?

    SciTech Connect (OSTI)

    He, P.; Zhang, Y.; Ye., S.; Wang, J. X.

    2014-10-05

    Several years ago, the answer to this question was negative based on the criteria for an anode with <0.1 mg cm-2 of platinum group metals to perform similarly without and with 50 ppm CO in hydrogen proton exchange membrane fuel cells (PEMFCs). Now, with the amount of CO impurities reduced to 10 ppm in reformates, a <1% performance loss with a 1.5% air-bleed has become a reasonable target. The CO-tolerant catalyst also needs to be dissolution resistant up to 0.93 V, viz., the potential experienced at the anode during startup and shutdown of the fuel cells. We recently demonstrated our ability to simultaneously enhance activity and stability by using single crystalline Ru@Pt core-shell nanocatalysts. Here, we report that the performance target with reformates was met using bilayer-thick Ru@Pt core-shell nanocatalysts with 0.047 mg cm-2 Pt and 0.024 mg cm-2 Ru loading, supporting a positive prognosis for the economically viable use of reformates in PEMFC applications.

  12. Improving microstructure of silicon/carbon nanofiber composites as a Li battery anode

    SciTech Connect (OSTI)

    Howe, Jane Y; Meyer III, Harry M; Burton, David J.; Qi, Dr. Yue; Nazri, Maryam; Nazri, G. Abbas; Palmer, Andrew C.; Lake, Patrick D.

    2013-01-01

    We report the interfacial study of a silicon/carbon nanofiber (Si/CNF) nanocomposite material as a potentially high performance anode for rechargeable lithium ion batteries. The carbon nanofiber is hollow, with a graphitic interior and turbostratic exterior. Amorphous silicon layers were uniformly coated via chemical vapor deposition on both the exterior and interior surfaces of the CNF. The resulting Si/CNF composites were tested as anodes for Li ion batteries and exhibited capacities near 800 mAh g1 for 100 cycles. After cycling, we found that more Si had fallen off from the outer wall than from the innerwall of CNF. Theoretical calculations confirmed that this is due to a higher interfacial strength at the Si/Cedge interface at the inner wall than that of the Si/C-basal interface at the outer wall. Based upon the experimental analysis and theoretical calculation, we have proposed several interfacial engineering approaches to improve the performance of the electrodes by optimizing the microstructure of this nanocomposite.

  13. Advanced Surface and Microstructural Characterization of Natural Graphite Anodes for Lithium Ion Batteries

    SciTech Connect (OSTI)

    Gallego, Nidia C; Contescu, Cristian I; Meyer III, Harry M; Howe, Jane Y; Meisner, Roberta Ann; Payzant, E Andrew; Lance, Michael J; Yoon, Steve; Denlinger, Matthew; Wood III, David L

    2014-01-01

    Natural graphite powders were subjected to a series of thermal treatments in order to improve the anode irreversible capacity loss (ICL) and capacity retention during long-term cycling of lithium ion batteries. A baseline thermal treatment in inert Ar or N2 atmosphere was compared to cases with a proprietary additive to the furnace gas environment. This additive substantially altered the surface chemistry of the natural graphite powders and resulted in significantly improved long-term cycling performance of the lithium ion batteries over the commercial natural graphite baseline. Different heat-treatment temperatures were investigated ranging from 950-2900 C with the intent of achieving the desired long-term cycling performance with as low of a maximum temperature and thermal budget as possible. A detailed summary of the characterization data is also presented, which includes X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and temperature-programed desorption mass spectroscopy (TPD-MS). This characterization data was correlated to the observed capacity fade improvements over the course of long-term cycling at high charge-discharge rates in full lithium-ion coin cells. It is believed that the long-term performance improvements are a result of forming a more stable solid electrolyte interface (SEI) layer on the anode graphite surfaces, which is directly related to the surface chemistry modifications imparted by the proprietary gas environment during thermal treatment.

  14. Can CO-tolerant Anodes be Economically Viable for PEMFC Applications with Reformates?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    He, P.; Zhang, Y.; Ye., S.; Wang, J. X.

    2014-10-05

    Several years ago, the answer to this question was negative based on the criteria for an anode with <0.1 mg cm-2 of platinum group metals to perform similarly without and with 50 ppm CO in hydrogen proton exchange membrane fuel cells (PEMFCs). Now, with the amount of CO impurities reduced to 10 ppm in reformates, a <1% performance loss with a 1.5% air-bleed has become a reasonable target. The CO-tolerant catalyst also needs to be dissolution resistant up to 0.93 V, viz., the potential experienced at the anode during startup and shutdown of the fuel cells. We recently demonstrated ourmore » ability to simultaneously enhance activity and stability by using single crystalline Ru@Pt core-shell nanocatalysts. Here, we report that the performance target with reformates was met using bilayer-thick Ru@Pt core-shell nanocatalysts with 0.047 mg cm-2 Pt and 0.024 mg cm-2 Ru loading, supporting a positive prognosis for the economically viable use of reformates in PEMFC applications.« less

  15. Electrolyte Concentration Effect of a Photoelectrochemical Cell Consisting of TiO 2 Nanotube Anode

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ren, Kai; Gan, Yong X.; Nikolaidis, Efstratios; Sofyani, Sharaf Al; Zhang, Lihua

    2013-01-01

    The photoelectrochemical responses of a TiO 2 nanotube anode in ethylene glycol (EG), glycerol, ammonia, ethanol, urea, and Na 2 S electrolytes with different concentrations were investigated. The TiO 2 nanotube anode was highly efficient in photoelectrocatalysis in these solutions under UV light illumination. The photocurrent density is obviously affected by the concentration change. Na 2 S generated the highest photocurrent density at 0, 1, and 2 V bias voltages, but its concentration does not significantly affect the photocurrent density. Urea shows high open circuit voltage at proper concentration and low photocurrent at different concentrations. Externally applied bias voltage ismore » also an important factor that changes the photoelectrochemical reaction process. In view of the open circuit voltage, EG, ammonia, and ethanol fuel cells show the trend that the open circuit voltage (OCV) increases with the increase of the concentration of the solutions. Glycerol has the highest OCV compared with others, and it deceases with the increase in the concentration because of the high viscosity. The OCV of the urea and Na 2 S solutions did not show obvious concentration effect.« less

  16. Green synthesis of boron doped graphene and its application as high performance anode material in Li ion battery

    SciTech Connect (OSTI)

    Sahoo, Madhumita; Sreena, K.P.; Vinayan, B.P.; Ramaprabhu, S.

    2015-01-15

    Graphical abstract: Boron doped graphene (B-G), synthesized by simple hydrogen induced reduction technique using boric acid as boron precursor, have more uneven surface as a result of smaller bonding distance of boron compared to carbon, showed high capacity and high rate capability compared to pristine graphene as an anode material for Li ion battery application. - Abstract: The present work demonstrates a facile route for the large-scale, catalyst free, and green synthesis approach of boron doped graphene (B-G) and its use as high performance anode material for Li ion battery (LIB) application. Boron atoms were doped into graphene framework with an atomic percentage of 5.93% via hydrogen induced thermal reduction technique using graphite oxide and boric acid as precursors. Various characterization techniques were used to confirm the boron doping in graphene sheets. B-G as anode material shows a discharge capacity of 548 mAh g{sup ?1} at 100 mA g{sup ?1} after 30th cycles. At high current density value of 1 A g{sup ?1}, B-G as anode material enhances the specific capacity by about 1.7 times compared to pristine graphene. The present study shows a simplistic way of boron doping in graphene leading to an enhanced Li ion adsorption due to the change in electronic states.

  17. A new low-voltage plateau of Na₃V₂(PO₄)₃ as an anode for Na-ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jian, Zelang; Sun, Yang; Ji, Xiulei

    2015-04-04

    A low-voltage plateau at ~0.3 V is discovered during the deep sodiation of Na₃V₂(PO₄)₃ by combined computational and experimental studies. This new low-voltage plateau doubles the sodiation capacity of Na₃V₂(PO₄)₃, turning it into a promising anode for Na-ion batteries.

  18. Electrochemical, Structural and Surface Characterization of Nickel/Zirconia Solid Oxide Fuel Cell Anodes in Coal Gas Containing Antimony

    SciTech Connect (OSTI)

    Marina, Olga A.; Pederson, Larry R.; Coyle, Christopher A.; Thomsen, Edwin C.; Nachimuthu, Ponnusamy; Edwards, Danny J.

    2011-02-27

    The interaction of antimony with the nickel-zirconia solid oxide fuel cell (SOFC) anode has been investigated. Tests with both anode-supported and electrolyte-supported button cells were performed at 700 and 800oC in synthetic coal gas containing 10 ppb to 9 ppm antimony. Minor performance loss was observed immediately after Sb introduction to coal gas resulting in ca. 5 % power output drop. While no further degradation was observed during the following several hundred hours of testing, cells abruptly and irreversibly failed after 800-1500 hours depending on Sb concentration and test temperature. Antimony was found to interact strongly with nickel and result in extensive alteration phase formation, consistent with expectations based on thermodynamic properties. Nickel antimonide phases, NiSb and Ni5Sb2, were partially coalesced into large grains and eventually affected electronic percolation through the anode support. Initial degradation was attributed to diffusion of antimony to the active anode/electrolyte interface to form an adsorption layer.

  19. Combined Theoretical and Experimental Investigation and Design of H2S Tolerant Anode for Solid Oxide Fuel Cells

    SciTech Connect (OSTI)

    Gerardine G. Botte; Damilola Daramola; Madhivanan Muthuvel

    2009-01-07

    A solid oxide fuel cell (SOFC) is a high temperature fuel cell and it normally operates in the range of 850 to 1000 C. Coal syngas has been considered for use in SOFC systems to produce electric power, due to its high temperature and high hydrogen and carbon monoxide content. However, coal syngas also has contaminants like carbon dioxide (CO{sub 2}) and hydrogen sulfide (H{sub 2}S). Among these contaminants, H{sub 2}S is detrimental to electrode material in SOFC. Commonly used anode material in SOFC system is nickel-yttria stabilized zirconia (Ni-YSZ). The presence of H{sub 2}S in the hydrogen stream will damage the Ni anode and hinder the performance of SOFC. In the present study, an attempt was made to understand the mechanism of anode (Ni-YSZ) deterioration by H{sub 2}S. The study used computation methods such as quantum chemistry calculations and molecular dynamics to predict the model for anode destruction by H{sub 2}S. This was done using binding energies to predict the thermodynamics and Raman spectroscopy to predict molecular vibrations and surface interactions. On the experimental side, a test stand has been built with the ability to analyze button cells at high temperature under syngas conditions.

  20. Production of energetic neutral particles and low energy electrons from four anode rods ion source

    SciTech Connect (OSTI)

    Mostafa, O. A.; El-Khabeary, H.; Abdel Reheem, A. M.

    2013-11-15

    The factors affecting the energetic neutral current, the low energy electron current, and the positive ion current emerging from a four-anode-rods ion source have been studied using argon gas. The neutral and electron current were measured using a simple, new technique. It was found that the energetic neutral current and the electron current depend on the positive ion current and the gas pressure. The ratio of the neutral and electron current to the positive ion current increases by increasing the gas pressure. Also it was found that at a pressure equal to 9 10{sup ?4} mmHg, the ratio of the neutral to the positive ion current reaches 2.34 while the ratio of the electron current to the positive ion current reaches 1.7.

  1. Oxygen diffusion of anodic surface oxide film on titanium studied by Auger electron spectroscopy. [Oxygen diffusivity

    SciTech Connect (OSTI)

    Wang, P.S.; Wittberg, T.N.; Keil, R.G.

    1982-01-01

    TiO/sub 2/ films of about 1000 A were grown onto titanium foils anodically under galvanostatic conditions at 20 mA/cm/sup 2/ in saturated aqueous solutions of ammonium tetraborate. The samples were then aged at 450, 500, and 550/sup 0/C, and oxygen diffusion was observed by Auger electron spectroscopy (AES) profilings. The oxygen diffusivities were calculated by Fick's Second Law, using the Boltzmann-Matano solution, to be 9.4 x 10/sup -17/, 2.6 x 10/sup -16/, and 1.2 x 10/sup -15/ cm/sup 2//sec at 450, 500, and 550/sup 0/C, respectively. The diffusivities obtained by this method were also compared with those obtained using an exact solution to Fick's Second Law. The activation energy was calculated to be 30 kcal/mole.

  2. Six Thousand Electrochemical Cycles of Double-Walled Silicon Nanotube Anodes for Lithium Ion Batteries

    SciTech Connect (OSTI)

    Wu, H

    2011-08-18

    Despite remarkable progress, lithium ion batteries still need higher energy density and better cycle life for consumer electronics, electric drive vehicles and large-scale renewable energy storage applications. Silicon has recently been explored as a promising anode material for high energy batteries; however, attaining long cycle life remains a significant challenge due to materials pulverization during cycling and an unstable solid-electrolyte interphase. Here, we report double-walled silicon nanotube electrodes that can cycle over 6000 times while retaining more than 85% of the initial capacity. This excellent performance is due to the unique double-walled structure in which the outer silicon oxide wall confines the inner silicon wall to expand only inward during lithiation, resulting in a stable solid-electrolyte interphase. This structural concept is general and could be extended to other battery materials that undergo large volume changes.

  3. Short time proton dynamics in bulk ice and in porous anode solid oxide fuel cell materials

    SciTech Connect (OSTI)

    Basoli, Francesco; Senesi, Roberto; Kolesnikov, Alexander I; Licoccia, Silvia

    2014-01-01

    Oxygen reduction and incorporation into solid electrolytes and the reverse reaction of oxygen evolution play a cru-cial role in Solid Oxide Fuel Cell (SOFC) applications. However a detailed un derstanding of the kinetics of the cor-responding reactions, i.e. on reaction mechanisms, rate limiting steps, reaction paths, electrocatalytic role of materials, is still missing. These include a thorough characterization of the binding potentials experienced by protons in the lattice. We report results of Inelastic Neutron Scattering (INS) measurements of the vibrational state of the protons in Ni- YSZ highly porous composites (75% to 90% ), a ceramic-metal material showing a high electrical conductivity and ther mal stability, which is known to be most effectively used as anodes for solid ox ide fuel cells. The results are compared with INS and Deep Inelastic Neutron Scattering (DINS) experiments on the proton binding states in bulk ice.

  4. Recovery Act: Low Cost Integrated Substrate for OLED Lighting Development

    SciTech Connect (OSTI)

    Scott Benton; Abhinav Bhandari

    2012-09-30

    PPG pursued the development of an integrated substrate, including the anode, external, and internal extraction layers. The objective of PPG??s program was to achieve cost reductions by displacing the existing expensive borosilicate or double-side polished float glass substrates and developing alternative electrodes and scalable light extraction layer technologies through focused and short-term applied research. One of the key highlights of the project was proving the feasibility of using PPG??s high transmission Solarphire® float glass as a substrate to consistently achieve organic lightemitting diode (OLED) devices with good performance and high yields. Under this program, four low-cost alternatives to the Indium Tin Oxide (ITO) anode were investigated using pilot-scale magnetron sputtered vacuum deposition (MSVD) and chemical vapor deposition (CVD) technologies. The anodes were evaluated by fabricating small and large phosphorescent organic lightemitting diode (PHOLED) devices at Universal Display Corporation (UDC). The device performance and life-times comparable to commercially available ITO anodes were demonstrated. A cost-benefit analysis was performed to down-select two anodes for further low-cost process development. Additionally, PPG developed and evaluated a number of scalable and compatible internal and external extraction layer concepts such as scattering layers on the outside of the glass substrate or between the transparent anode and the glass interface. In one external extraction layer (EEL) approach, sol-gel sprayed pyrolytic coatings were deposited using lab scale equipment by hand or automated spraying of sol-gel solutions on hot glass, followed by optimizing of scattering with minimal absorption. In another EEL approach, PPG tested large-area glass texturing by scratching a glass surface with an abrasive roller and acid etching. Efficacy enhancements of 1.27x were demonstrated using white PHOLED devices for 2.0mm substrates which are at par with the standard diffuser sheets used by OLED manufacturers. For an internal extraction layer (IEL), PPG tested two concepts combining nanoparticles either in a solgel coating inserted between the anode and OLED or anode and glass interface, or incorporated into the internal surface of the glass. Efficacy enhancements of 1.31x were demonstrated using white PHOLED devices for the IEL by itself and factors of 1.73x were attained for an IEL in combination of thick acrylic block as an EEL. Recent offline measurements indicate that, with further optimization, factors over 2.0x could be achieved through an IEL alone.

  5. Low-surface-area hard carbon anode for Na-ion batteries via graphene oxide as a dehydration agent

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Luo, Wei; Bommier, Clement; Jian, Zelang; Li, Xin; Carter, Rich; Vail, Sean; Lu, Yuhao; Lee, Jong -Jan; Ji, Xiulei

    2015-02-04

    Na-ion batteries are emerging as one of the most promising energy storage technologies, particularly for grid-level applications. Among anode candidate materials, hard carbon is very attractive due to its high capacity and low cost. However, hard carbon anodes often suffer a low first-cycle Coulombic efficiency and fast capacity fading. In this study, we discover that doping graphene oxide into sucrose, the precursor for hard carbon, can effectively reduce the specific surface area of hard carbon to as low as 5.4 m²/g. We further reveal that such doping can effectively prevent foaming during caramelization of sucrose and extend the pyrolysis burn-offmore » of sucrose caramel over a wider temperature range. Thus, the obtained low-surface-area hard carbon greatly improves the first-cycle Coulombic efficiency from 74% to 83% and delivers a very stable cyclic life with 95% of capacity retention after 200 cycles.« less

  6. Low-surface-area hard carbon anode for Na-ion batteries via graphene oxide as a dehydration agent

    SciTech Connect (OSTI)

    Luo, Wei; Bommier, Clement; Jian, Zelang; Li, Xin; Carter, Rich; Vail, Sean; Lu, Yuhao; Lee, Jong -Jan; Ji, Xiulei

    2015-02-04

    Na-ion batteries are emerging as one of the most promising energy storage technologies, particularly for grid-level applications. Among anode candidate materials, hard carbon is very attractive due to its high capacity and low cost. However, hard carbon anodes often suffer a low first-cycle Coulombic efficiency and fast capacity fading. In this study, we discover that doping graphene oxide into sucrose, the precursor for hard carbon, can effectively reduce the specific surface area of hard carbon to as low as 5.4 m/g. We further reveal that such doping can effectively prevent foaming during caramelization of sucrose and extend the pyrolysis burn-off of sucrose caramel over a wider temperature range. Thus, the obtained low-surface-area hard carbon greatly improves the first-cycle Coulombic efficiency from 74% to 83% and delivers a very stable cyclic life with 95% of capacity retention after 200 cycles.

  7. Reversible Poisoning of the Nickel/Zirconia Solid Oxide Fuel Cell Anodes by Hydrogen Chloride in Coal Gas

    SciTech Connect (OSTI)

    Marina, Olga A.; Pederson, Larry R.; Thomsen, Edwin C.; Coyle, Christopher A.; Yoon, Kyung J.

    2010-10-15

    The performance of anode-supported solid oxide fuel cells (SOFC) was evaluated in synthetic coal gas containing HCl in the temperature range 650 to 850oC. Exposure to up to 800 ppm HCl resulted in reversible poisoning of the Ni/zirconia anode by chlorine species adsorption, the magnitude of which decreased with increased temperature. Performance losses increased with the concentration of HCl to ~100 ppm, above which losses were insensitive to HCl concentration. Cell voltage had no effect on poisoning. No evidence was found for long-term degradation that can be attributed to HCl exposure. Similarly, no evidence of microstructural changes or formation of new solid phases as a result of HCl exposure was found. From thermodynamic calculations, solid nickel chloride phase formation was shown to be highly unlikely in coal gas. Further, the presence of HCl at even the highest anticipated concentrations in coal gas would minimally increase the volatility of nickel.

  8. A Yolk-Shell Design for Stabilized and Scalable Li-Ion Battery Alloy Anodes

    SciTech Connect (OSTI)

    Liu, Nian; Wu, Hui; Mcdowell, Matthew T.; Yao, Yan; Wang, Chong M.; Cui, Yi

    2012-05-02

    Silicon is regarded as one of the most promising anode materials for next generation lithium-ion batteries. For use in practical applications, a Si electrode must have high capacity, long cycle life, high efficiency, and the fabrication must be industrially scalable. Here, we design and fabricate a yolk-shell structure to meet all these needs. The fabrication is carried out without special equipment and mostly at room temperature. Commercially available Si nanoparticles are completely sealed inside conformal, thin, self-supporting carbon shells, with rationally designed void space in between the particles and the shell. The well-defined void space allows the Si particles to expand freely without breaking the outer carbon shell, therefore stabilizing the solid-electrolyte interphase on the shell surface. High capacity (?2800 mAh/g at C/10), long cycle life (1000 cycles with 74% capacity retention), and high Coulombic efficiency (99.84%) have been realized in this yolk-shell structured Si electrode.

  9. Electrodeposited porous metal oxide films with interconnected nanoparticles applied as anode of lithium ion battery

    SciTech Connect (OSTI)

    Xiao, Anguo Zhou, Shibiao; Zuo, Chenggang; Zhuan, Yongbing; Ding, Xiang

    2014-12-15

    Highlights: Highly porous NiO film is prepared by a co-electrodeposition method. Porous NiO film is composed of interconnected nanoparticles. Porous structure is favorable for fast ion/electron transfer. Porous NiO film shows good lithium ion storage properties. - Abstract: Controllable synthesis of porous metal oxide films is highly desirable for high-performance electrochemical devices. In this work, a highly porous NiO film composed of interconnected nanoparticles is prepared by a simple co-electrodeposition method. The nanoparticles in the NiO film have a size ranging from 30 to 100 nm and construct large-quantity pores of 20120 nm. As an anode material for lithium ion batteries, the highly porous NiO film electrode delivers a high discharge capacity of 700 mA h g{sup ?1} at 0.2 C, as well as good high-rate performance. After 100 cycles at 0.2 C, a specific capacitance of 517 mA h g{sup ?1} is attained. The good electrochemical performance is attributed to the interconnected porous structure, which facilitates the diffusion of ion and electron, and provides large reaction surface area leading to improved performance.

  10. Tailored Recovery of Carbons from Waste Tires for Enhanced Performance as Anodes in Lithium-ion Batteries

    SciTech Connect (OSTI)

    Naskar, Amit K; Bi,; Saha, Dipendu; Chi, Miaofang; Bridges, Craig A; Paranthaman, Mariappan Parans

    2014-01-01

    Morphologically tailored pyrolysis-recovered carbon black is utilized in lithium-ion batteries as a potential solution for adding value to waste tire-rubber-derived materials. Micronized tire rubber was digested in a hot oleum bath to yield a sulfonated rubber slurry that was then filtered, washed, and compressed into a solid cake. Carbon was recovered from the modified rubber cake by pyrolysis in a nitrogen atmosphere. The chemical pretreatment of rubber produced a carbon monolith with higher yield than that from the control (a fluffy tire-rubber-derived carbon black). The carbon monolith showed a very small volume fraction of pores of widths 3 4 nm, reduced specific surface area, and an ordered assembly of graphitic domains. Electrochemical studies on the recovered-carbon-based anode revealed an improved Li-ion battery performance with higher reversible capacity than that of commercial carbon materials. Anodes made with a sulfonated tire-rubber-derived carbon and a control tire-rubber-derived carbon, respectively, exhibited an initial coulombic efficiency of 80% and 45%, respectively. The reversible capacity of the cell with the sulfonated carbon as anode was 400 mAh/g after 100 cycles, with nearly 100% coulombic efficiency. Our success in producing higher performance carbon material from waste tire rubber for potential use in energy storage applications adds a new avenue to tire rubber recycling.

  11. Role of quinones in electron transfer of PQQglucose dehydrogenase anodesmediation or orientation effect

    SciTech Connect (OSTI)

    Babanova, Sofia; Matanovic, Ivana; Chavez, Madelaine Seow; Atanassov, Plamen

    2015-06-16

    In this study, the influence of two quinones (1,2- and 1,4-benzoquinone) on the operation and mechanism of electron transfer in PQQ-sGDH anodes has been determined. Benzoquinones were experimentally explored as mediators present in the electrolyte. The electrochemical performance of the PQQsGDH anodes with and without the mediators was examined and for the first time molecular docking simulations were used to gain a fundamental understanding to explain the role of the mediator molecules in the design and operation of the enzymatic electrodes. It was proposed that the higher performance of the PQQsGDH anodes in the presence of 1,2- and 1,4-benzoquinones introduced in the solution is due to the shorter distance between these molecules and PQQ in the enzymatic molecule. It was also hypothesized that when 1,4-benzoquinone is adsorbed on a carbon support, it would play the dual role of a mediator and an orienting agent. At the same time, when 1,2-benzoquinone and ubiquinone are adsorbed on the electrode surface, the enzyme would transfer the electrons directly to the support, and these molecules would primarily play the role of an orienting agent.

  12. Three-dimensional microstructural changes in the NiYSZ solid oxide fuel cell anode during operation

    SciTech Connect (OSTI)

    Nelson G. J.; Chu Y.; Grew, K.N.; Izzo Jr. J.R.; Lombardo, J.J.; Harris, W.M.; Faes, A.; Hessler-Wyser, A.; Van herle, J.; Wang, S.; Virkar, A.V.; Chiu, W.K.S.

    2012-04-07

    Microstructural evolution in solid oxide fuel cell (SOFC) cermet anodes has been investigated using X-ray nanotomography along with differential absorption imaging. SOFC anode supports composed of Ni and yttria-stabilized zirconia (YSZ) were subjected to extended operation and selected regions were imaged using a transmission X-ray microscope. X-ray nanotomography provides unique insight into microstructure changes of all three phases (Ni, YSZ, pore) in three spatial dimensions, and its relation to performance degradation. Statistically significant 3D microstructural changes were observed in the anode Ni phase over a range of operational times, including phase size growth and changes in connectivity, interfacial contact area and contiguous triple-phase boundary length. These observations support microstructural evolution correlated to SOFC performance. We find that Ni coarsening is driven by particle curvature as indicated by the dihedral angles between the Ni, YSZ and pore phases, and hypothesize that growth occurs primarily by means of diffusion and particle agglomeration constrained by a pinning mechanism related to the YSZ phase. The decrease in Ni phase size after extended periods of time may be the result of a second process connected to a mobility-induced decrease in the YSZ phase size or non-uniform curvature resulting in a net decrease in Ni phase size.

  13. Three-dimensional hollow-structured binary oxide particles as an advanced anode material for high-rate and long cycle life lithium-ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Deli; Wang, Jie; He, Huan; Han, Lili; Lin, Ruoqian; Xin, Huolin L.; Wu, Zexing; Liu, Hongfang

    2015-12-30

    Transition metal oxides are among the most promising anode candidates for next-generation lithium-ion batteries for their high theoretical capacity. However, the large volume expansion and low lithium ion diffusivity leading to a poor charging/discharging performance. In this study, we developed a surfactant and template-free strategy for the synthesis of a composite of CoxFe3–xO4 hollow spheres supported by carbon nanotubes via an impregnation–reduction–oxidation process. The synergy of the composite, as well as the hollow structures in the electrode materials, not only facilitate Li ion and electron transport, but also accommodate large volume expansion. Using state-of-the-art electron tomography, we directly visualize themore » particles in 3-D, where the voids in the hollow structures serve to buffer the volume expansion of the material. These improvements result in a high reversible capacity as well as an outstanding rate performance for lithium-ion battery applications. As a result, this study sheds light on large-scale production of hollow structured metal oxides for commercial applications in energy storage and conversion.« less

  14. Three-dimensional hollow-structured binary oxide particles as an advanced anode material for high-rate and long cycle life lithium-ion batteries

    SciTech Connect (OSTI)

    Wang, Deli; Wang, Jie; He, Huan; Han, Lili; Lin, Ruoqian; Xin, Huolin L.; Wu, Zexing; Liu, Hongfang

    2015-12-30

    Transition metal oxides are among the most promising anode candidates for next-generation lithium-ion batteries for their high theoretical capacity. However, the large volume expansion and low lithium ion diffusivity leading to a poor charging/discharging performance. In this study, we developed a surfactant and template-free strategy for the synthesis of a composite of CoxFe3xO4 hollow spheres supported by carbon nanotubes via an impregnationreductionoxidation process. The synergy of the composite, as well as the hollow structures in the electrode materials, not only facilitate Li ion and electron transport, but also accommodate large volume expansion. Using state-of-the-art electron tomography, we directly visualize the particles in 3-D, where the voids in the hollow structures serve to buffer the volume expansion of the material. These improvements result in a high reversible capacity as well as an outstanding rate performance for lithium-ion battery applications. As a result, this study sheds light on large-scale production of hollow structured metal oxides for commercial applications in energy storage and conversion.

  15. Microstructure degradation of YSZ in Ni/YSZ anodes of SOFC operated in phosphine-containing fuels

    SciTech Connect (OSTI)

    Chen, Yun; Chen, Song; Hackett, Gregory; Finklea, Harry; Zondlod, John; Celik, Ismail; Song, Xueyan; Gerdes, Kirk

    2013-03-07

    The interaction of trace (ppm) phosphine with the nickel/yttria stabilized zirconia (YSZ) anode of commercial solid oxide fuel cells has been investigated and evaluated for both synthesis gas and hydrogen fuels in an effort to examine PY reactions. The Ni poisoning effects reported in literature were confirmed and degradation was examined by electrochemical methods and post-test microstructural and chemical analyses. The results indicate that P-induced degradation rates and mechanisms are fuel dependent and that degradation of cells operated in synthesis gas (syngas) with phosphine is more severe than that of cells operated in hydrogen with phosphine. As reported in published literature, a cell operated in syngas containing 10 ppm phosphine demonstrated significant microstructural degradation within the Ni phase, including formation of NiP phases concentrated on the outer layer of the anode and significant pitting corrosion in the Ni grains. In this research, a previously undetected YPO{sub 4} phase is observed at the YSZ/YSZ/Ni triple grain junctions located at the interface with the YSZ electrolyte. Tetragonal YSZ (t-YSZ) and cubic-YSZ (c-YSZ) domains with sizes of several tens of nanometers are also newly observed along the Ni/YSZ interface. These observations contrast with data obtained for a cell operated in dry hydrogen with phosphine, where no YPO{sub 4} phase is observed and the alternating t-YSZ and c-YSZ domains at the Ni/YSZ interface are smaller with typical sizes of 510 nm. The data imply that electrolyte attack by P is a potentially debilitating mode of degradation in SOFC anodes, and that the associated reaction mechanisms and rates are worthy of further examination.

  16. Controlled growth and multi-photon luminescence of hexagonal arrays of Au nanoparticles on anodic aluminum oxide templates

    SciTech Connect (OSTI)

    Li Jianbo; Yu Ying; Peng Xiaoniu; Yang Zhongjian; Zhou Li; Zhou Zhangkai

    2012-06-15

    Au nanoparticles were deposited onto anodic aluminum oxide (AAO) templates by using a rotating sputtering technique. Interestingly, hexagonal arrays of Au nanoparticles were obtained at an appropriate rotating rate and deposition time. Strong three-photon luminescence was observed from the hexagonally arrayed Au nanoparticles, which is attributed to the strong enhancements of local electromagnetic fields at both excitation and emission wavelengths. Our findings provide a new method to prepare Au nanoparticle arrays with large field enhancements and could have prospective applications in plasmonic nanodevices, such as surface-enhanced Raman scattering substrates, and biosensors.

  17. Vehicle Technologies Office Merit Review 2014: Development of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Film Formation Chemistry on Silicon Anodes by Advanced In Situ and Operando Vibrational Spectroscopy Vehicle Technologies Office Merit Review 2014: Novel Anode Materials...

  18. Next Generation Hole Injection/Transport Nano-Composites for High Efficiency OLED Development

    SciTech Connect (OSTI)

    King Wang

    2009-07-31

    The objective of this program is to use a novel nano-composite material system for the OLED anode coating/hole transport layer. The novel anode coating is intended to significantly increase not only hole injection/transport efficiency, but the device energy efficiency as well. Another goal of the Core Technologies Program is the optimization and scale-up of air-stable and cross-linkable novel HTL nano-composite materials synthesis and the development of low-cost, large-scale mist deposition processes for polymer OLED fabrication. This proposed technology holds the promise to substantially improve OLED energy efficiency and lifetime.

  19. Enhancement of hole injection and electroluminescence by ordered Ag nanodot array on indium tin oxide anode in organic light emitting diode

    SciTech Connect (OSTI)

    Jung, Mi E-mail: Dockha@kist.re.kr; Mo Yoon, Dang; Kim, Miyoung; Kim, Chulki; Lee, Taikjin; Hun Kim, Jae; Lee, Seok; Woo, Deokha E-mail: Dockha@kist.re.kr; Lim, Si-Hyung

    2014-07-07

    We report the enhancement of hole injection and electroluminescence (EL) in an organic light emitting diode (OLED) with an ordered Ag nanodot array on indium-tin-oxide (ITO) anode. Until now, most researches have focused on the improved performance of OLEDs by plasmonic effects of metal nanoparticles due to the difficulty in fabricating metal nanodot arrays. A well-ordered Ag nanodot array is fabricated on the ITO anode of OLED using the nanoporous alumina as an evaporation mask. The OLED device with Ag nanodot arrays on the ITO anode shows higher current density and EL enhancement than the one without any nano-structure. These results suggest that the Ag nanodot array with the plasmonic effect has potential as one of attractive approaches to enhance the hole injection and EL in the application of the OLEDs.

  20. Direct Internal Reformation and Mass Transport in the Solid Oxide Fuel Cell Anode: A Pore-Scale Lattice Boltzmann Study with Detailed Reaction Kinetics

    SciTech Connect (OSTI)

    Grew, Kyle N.; Joshi, Abhijit S.; Chiu, W. K. S.

    2010-11-30

    The solid oxide fuel cell (SOFC) allows the conversion of chemical energy that is stored in a given fuel, including light hydrocarbons, to electrical power. Hydrocarbon fuels, such as methane, are logistically favourable and provide high energy densities. However, the use of these fuels often results in a decreased efficiency and life. An improved understanding of the reactive flow in the SOFC anode can help address these issues. In this study, the transport and heterogeneous internal reformation of a methane based fuel is addressed. The effect of the SOFC anode's complex structure on transport and reactions is shown to exhibit a complicated interplay between the local molar concentrations and the anode structure. Strong coupling between the phenomenological microstructures and local reformation reaction rates are recognised in this study, suggesting the extension to actual microstructures may provide new insights into the reformation processes.

  1. The photoluminescence properties of Er{sup 3+}-doped ZrO{sub 2} nanotube arrays prepared by anodization

    SciTech Connect (OSTI)

    Wang, Xixin; Zhao, Jianling; Du, Peng; Guo, Limin; Xu, Xuewen; Tang, Chengchun

    2012-11-15

    Graphical abstract: Display Omitted Highlights: ? Er{sup 3+}-doped ZrO{sub 2} nanotube arrays were prepared by anodization of ZrEr alloy. ? Small tetragonal zirconia crystallites are tended to be formed due to the doping of Er{sup 3+}. ? Under excitation at 317 nm, the ZrO{sub 2} nantube arrays have strongest photoluminescence intensity. -- Abstract: Er{sup 3+}-doped ZrO{sub 2} nanotube arrays were prepared by anodization of ZrEr alloy which was obtained by melting zirconium with 1.0 wt% erbium. The morphology, structure and photoluminescence properties were studied through scanning electron microscope, transmission electron microscope, X-ray diffraction and photoluminescence analyzer. X-ray diffraction results indicate that doping of Er{sup 3+} affects the crystal structure and grain size obviously and the Er{sup 3+}-doped samples tend to form small tetragonal grains. Photoluminescence analyses show that when Er{sup 3+}-doped zirconia nanotube arrays are excited at 317 nm, there are two strong photoluminescence emission peaks at 373 nm and 415 nm. When the excitation wavelength is 257 nm, a photoluminescence emission peak appears at 363 nm. Under same measurement conditions, emission peaks of the undoped ZrO{sub 2} nanotube arrays are very weak.

  2. A new low-voltage plateau of Na3V2(PO4)(3) as an anode for Na-ion batteries

    SciTech Connect (OSTI)

    Jian, ZL; Sun, Y; Ji, XL

    2015-01-01

    A low-voltage plateau at similar to 0.3 V is discovered for the deep sodiation of Na3V2(PO4)(3) by combined computational and experimental studies. This new low-voltage plateau doubles the sodiation capacity of Na3V2(PO4)(3), thus turning it into a promising anode for Na-ion batteries.

  3. Radio frequency emission from high-pressure xenon arcs: A systematic experimental analysis of the underlying near-anode plasma instability

    SciTech Connect (OSTI)

    Hechtfischer, Ulrich

    2011-10-01

    High-pressure Xe discharge lamps at DC operation can show unwanted strong RF (radio-frequency) emission to beyond 1 GHz, correlated to a sharp periodic lamp-voltage instability in the near-anode plasma with a pulse repetition rate {epsilon} of 1-10 MHz. The physical origin of the instability is unclear. Here, its existence and pulse rate have been measured as a function of arc current I = 0.2-1.2 A and anode temperature T{sub a} = 1700-3400 K independently, in experimental lamps with pure-tungsten electrodes and a Xe operating pressure around p = 10 MPa. Surprisingly, the instability is not affected by I or current density j but exists if T{sub a} is lower than a threshold value around 2800-2900 K. The pulse rate {epsilon} is simply a rising linear function of the inverse anode temperature 1/T{sub a}, with only a small I-dependent correction. The average anode heat load is slightly lower in the unstable regime and possibly depends on {epsilon}. The results allow a consistent re-interpretation of earlier and present experimental observations and should be both a valuable help in practical lamp engineering and a tight constraint for future theories of this effect.

  4. High Cyclability of Ionic Liquid-Produced TiO2 Nanotube Arrays As an Anode Material for Lithium-Ion Batteries

    SciTech Connect (OSTI)

    Li, Huaqing; Martha, Surendra K; Unocic, Raymond R; Luo, Huimin; Dai, Sheng; Qu, Jun

    2012-01-01

    TiO{sub 2} nanotubes (NTs) are considered as a potential SEI-free anode material for Li-ion batteries to offer enhanced safety. Organic solutions, dominatingly ethylene glycol (EG)-based, have widely been used for synthesizing TiO{sub 2} NTs via anodization because of their ability to generate long tubes and well-aligned structures. However, it has been revealed that the EG-produced NTs are composited with carbonaceous decomposition products of EG, release of which during the tube crystallization process inevitably causes nano-scale porosity and cracks. These microstructural defects significantly deteriorate the NTs charge transport efficiency and mechanical strength/toughness. Here we report using ionic liquids (ILs) to anodize titanium to grow low-defect TiO{sub 2} NTs by reducing the electrolyte decomposition rate (less IR drop due to higher electrical conductivity) as well as the chance of the decomposition products mixing into the TiO{sub 2} matrix (organic cations repelled away). Promising electrochemical results have been achieved when using the IL-produced TiO{sub 2} NTs as an anode for Li-ion batteries. The ILNTs demonstrated excellent capacity retention without microstructural damage for nearly 1200 cycles of charge-discharge, while the NTs grown in a conventional EG solution totally pulverized in cycling, resulting in significant capacity fade.

  5. Low-cost electrochemical treatment of indium tin oxide anodes for high-efficiency organic light-emitting diodes

    SciTech Connect (OSTI)

    Hui Cheng, Chuan, E-mail: chengchuanhui@dlut.edu.cn; Shan Liang, Ze; Gang Wang, Li; Dong Gao, Guo; Zhou, Ting; Ming Bian, Ji; Min Luo, Ying [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Tong Du, Guo, E-mail: dugt@dlut.edu.cn [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China)

    2014-01-27

    We demonstrate a simple low-cost approach as an alternative to conventional O{sub 2} plasma treatment to modify the surface of indium tin oxide (ITO) anodes for use in organic light-emitting diodes. ITO is functionalized with F{sup ?} ions by electrochemical treatment in dilute hydrofluoric acid. An electrode with a work function of 5.2?eV is achieved following fluorination. Using this electrode, a maximum external quantum efficiency of 26.0% (91?cd/A, 102?lm/W) is obtained, which is 12% higher than that of a device using the O{sub 2} plasma-treated ITO. Fluorination also increases the transparency in the near-infrared region.

  6. Development of molten-carbonate fuel-cell technology. Final report, February-December 1980

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    The objective of the work was to focus on the basic technology for producing molten carbonate fuel cell (MCFC) components. This included the development and fabrication of stable anode structures, preparation of lithiated nickel oxide cathodes, synthesis and characterization of a high surface area (gamma-lithium-aluminate) electrolyte support, pressurized cell testing and modeling of the overall electrolyte distribution within a cell to aid performance optimization of the different cell components. The electrode development program is highlighted by two successful 5000 hour bench-scale tests using stabilized anode structures. One of these provided better performance than in any previous state-of-the-art, bench-scale cell (865 mV at 115 mA/cm/sup 2/ under standard conditions). Pressurized testing at 10 atmosphere of a similar stabilized, high surface area, Ni/Co anode structure in a 300 cm/sup 2/ cell showed that the 160 mA/cm/sup 2/ performance goal of 850 mV on low Btu fuel (80% conversion) can be readily met. A study of the H/sub 2/S-effects on molten carbonate fuel cells showed that ERC's Ni/Co anode provided better tolerance than a Ni/Cr anode. Prelithiated nickel oxide plaques were prepared from materials made by a low temperature and a high temperature powder-production process. The methods for fabricating handleable cathodes of various thicknesses were also investigated. In electrolyte matrix development, accelerated out-of-cell and in-cell tests have confirmed the superior stability of ..gamma..-LiAlO/sub 2/.

  7. Porous Co{sub 3}O{sub 4} nanorods as anode for lithium-ion battery with excellent electrochemical performance

    SciTech Connect (OSTI)

    Guo, Jinxue; Chen, Lei; Zhang, Xiao Chen, Haoxin

    2014-05-01

    In this manuscript, porous Co{sub 3}O{sub 4} nanorods are prepared through a two-step approach which is composed of hydrothermal process and heating treatment as high performance anode for lithium-ion battery. Benefiting from the porous structure and 1-dimensional features, the product becomes robust and exhibits high reversible capability, good cycling performance, and excellent rate performance. - Graphical abstract: 1D porous Co{sub 3}O{sub 4} nanostructure as anode for lithium-ion battery with excellent electrochemical performance. - Highlights: A two-step route has been applied to prepare 1D porous Co{sub 3}O{sub 4} nanostructure. Its porous feature facilitates the fast transport of electron and lithium ion. Its porous structure endows it with capacities higher than its theoretical capacity. 1D nanostructure can tolerate volume changes during lithation/delithiation cycles. It exhibits high capacity, good cyclability and excellent rate performance.

  8. Microwave Plasma Chemical Vapor Deposition of Nano-Structured Sn/C Composite Thin-Film Anodes for Li-ion Batteries

    SciTech Connect (OSTI)

    Stevenson, Cynthia; Marcinek, M.; Hardwick, L.J.; Richardson, T.J.; Song, X.; Kostecki, R.

    2008-02-01

    In this paper we report results of a novel synthesis method of thin-film composite Sn/C anodes for lithium batteries. Thin layers of graphitic carbon decorated with uniformly distributed Sn nanoparticles were synthesized from a solid organic precursor Sn(IV) tert-butoxide by a one step microwave plasma chemical vapor deposition (MPCVD). The thin-film Sn/C electrodes were electrochemically tested in lithium half cells and produced a reversible capacity of 440 and 297 mAhg{sup -1} at C/25 and 5C discharge rates, respectively. A long term cycling of the Sn/C nanocomposite anodes showed 40% capacity loss after 500 cycles at 1C rate.

  9. Hard carbon nanoparticles as high-capacity, high-stability anodic materials for Na-ion batteries

    SciTech Connect (OSTI)

    Xiao, Lifen; Cao, Yuliang; Henderson, Wesley A.; Sushko, Maria L.; Shao, Yuyan; Xiao, Jie; Wang, Wei; Engelhard, Mark H.; Nie, Zimin; Liu, Jun

    2016-01-01

    Hard carbon nanoparticles (HCNP) were synthesized by the pyrolysis of a polyaniline precursor. The measured Na+ cation diffusion coefficient (10-13-10-15cm2s-1) in the HCNP obtained at 1150 C is two orders of magnitude lower than that of Li+ in graphite (10-10-13-15cm2s-1), indicating that reducing the carbon particle size is very important for improving electrochemical performance. These measurements also enable a clear visualization of the stepwise reaction phases and rate changes which occur throughout the insertion/extraction processes in HCNP, The electrochemical measurements also show that the nano-sized HCNP obtained at 1150 C exhibited higher practical capacity at voltages lower than 1.2 V (vs. Na/Na?), as well as a prolonged cycling stability, which is attributed to an optimum spacing of 0.366 nm between the graphitic layers and the nano particular size resulting in a low-barrier Na+ cation insertion. These results suggest that HCNP is a very promising high-capacity/stability anode for low cost sodium-ion batteries (SIBs).

  10. Highly transparent and conductive double-layer oxide thin films as anodes for organic light-emitting diodes

    SciTech Connect (OSTI)

    Yang Yu; Wang Lian; Yan He; Jin Shu; Marks, Tobin J.; Li Shuyou

    2006-07-31

    Double-layer transparent conducting oxide thin film structures containing In-doped CdO (CIO) and Sn-doped In{sub 2}O{sub 3} (ITO) layers were grown on glass by metal-organic chemical vapor deposition and ion-assisted deposition (IAD), respectively, and used as anodes for polymer light-emitting diodes (PLEDs). These films have a very low overall In content of 16 at. %. For 180-nm-thick CIO/ITO films, the sheet resistance is 5.6 {omega}/{open_square}, and the average optical transmittance is 87.1% in the 400-700 nm region. The overall figure of merit ({phi}=T{sup 10}/R{sub sheet}) of the double-layer CIO/ITO films is significantly greater than that of single-layer CIO, IAD-ITO, and commercial ITO films. CIO/ITO-based PLEDs exhibit comparable or superior device performance versus ITO-based control devices. CIO/ITO materials have a much lower sheet resistance than ITO, rendering them promising low In content electrode materials for large-area optoelectronic devices.

  11. Performance of Anode-Supported Solid Oxide Fuel Cell with Thin Bi-Layer Electrolyte by Pulsed Laser Deposition

    SciTech Connect (OSTI)

    Lu, Zigui; Hardy, John S.; Templeton, Jared W.; Stevenson, Jeffry W.; Fisher, Daniel; Wu, Naijuan; Ignatiev, Alex

    2012-07-15

    Anode-supported yttria stabilized zirconia (YSZ)/samaria doped ceria (SDC) bi-layer electrolytes with uniform thickness and high density were fabricated by pulsed laser deposition at 1000 degrees C. Fuel cells with such bi-layer electrolytes were fabricated and tested, yielding open circuit voltages from 0.94 to 1.0 V at 600-700 degrees C. Power densities from 0.4 to 1.0 W cm{sup -2} at 0.7 V were achieved in air at temperatures of 600-700 degrees C. Cell performance was improved in flowing oxygen, with an estimated peak power density of over 2 W cm{sup -2} at 650 degrees C, assuming the same overall resistance over the entire range of current density. The high cell performance was attributed to the very low ohmic resistance of the fuel cell, owing to the small thickness of the electrolyte. Stable performance was also demonstrated in that the voltage of the fuel cell showed very little change at a constant current density of 1 A cm{sup -2} during more than 400 hours of operation at 650 degrees C in flowing oxygen. SEM analysis of the fuel cell after testing showed that the bi-layer electrolyte had retained its chemical and mechanical integrity.

  12. Thermodynamic analysis of interactions between Ni-based solid oxide fuel cells (SOFC) anodes and trace species in a survey of coal syngas

    SciTech Connect (OSTI)

    Andrew Martinez; Kirk Gerdes; Randall Gemmen; James Postona

    2010-03-20

    A thermodynamic analysis was conducted to characterize the effects of trace contaminants in syngas derived from coal gasification on solid oxide fuel cell (SOFC) anode material. The effluents from 15 different gasification facilities were considered to assess the impact of fuel composition on anode susceptibility to contamination. For each syngas case, the study considers the magnitude of contaminant exposure resulting from operation of a warm gas cleanup unit at two different temperatures and operation of a nickel-based SOFC at three different temperatures. Contaminant elements arsenic (As), phosphorous (P), and antimony (Sb) are predicted to be present in warm gas cleanup effluent and will interact with the nickel (Ni) components of a SOFC anode. Phosphorous is the trace element found in the largest concentration of the three contaminants and is potentially the most detrimental. Poisoning was found to depend on the composition of the syngas as well as system operating conditions. Results for all trace elements tended to show invariance with cleanup operating temperature, but results were sensitive to syngas bulk composition. Synthesis gas with high steam content tended to resist poisoning.

  13. A Damage Model for Degradation in the Electrodes of solid oxide fuel cells: Modeling the effects of sulfur and antimony in the anode

    SciTech Connect (OSTI)

    Ryan, Emily M.; Xu, Wei; Sun, Xin; Khaleel, Mohammad A.

    2012-07-15

    Over their designed lifetime, high temperature electrochemical devices, such as solid oxide fuel cells (SOFCs), can experience degradation in their electrochemical performance due to environmental conditions, operating conditions, contaminants, and other factors. Understanding the different degradation mechanisms in SOFCs and other electrochemical devices is essential to reducing performance degradation and increasing the lifetime of these devices. In this paper SOFC degradation mechanisms are discussed and a damage model is presented which describes performance degradation in SOFCs due to damage or degradation in the electrodes of the SOFC. A degradation classification scheme is presented that divides the various SOFC electrode degradation mechanisms into categories based on their physical effects on the SOFC. The application of the damage model and the classification method is applied to sulfur poisoning and antimony poisoning which occur in the anode of SOFCs. For sulfur poisoning the model is able to predict the degradation in SOFC performance based on the operating temperature and voltage of the fuel cell and the concentration of gaseous sulfur species in the anode. For antimony poisoning the effects of nickel removal from the anode matrix is investigated.

  14. Effects of lithium salt concentration on graphited carbon microbead anodes in the piperidinium-based hybrid electrolytes

    SciTech Connect (OSTI)

    Gao, Kun; Li, Shu-Dan

    2015-01-15

    Graphical abstract: Lithium aggregates usually cause a significant decrease in Li{sup +} mobility and transfer efficiency. Therefore, as important as the problem of SEI, the content of lithium salt and the interaction between Li{sup +} and ILs anions should be taken into consideration in the optimization of ILs-based electrolytes for Li-ion batteries. - Highlights: Lithium aggregates in piperidinium-based electrolytes are evidenced by IR and NMR. High LiPF{sub 6} content could decrease Li{sup +} mobility due to ionic aggregates. Lithium salt concentration is an important factor affecting graphite performances. - Abstract: The variations in LiPF{sub 6} concentration lead to the very different electrochemical performances of carbon microbeads anodes in the piperidinium-based hybrid electrolytes. The two peaks behaviors of lithium plating observed in cyclic voltammetry tests, and some detailed changes in infrared spectra and nuclear magnetic resonance indicates that the formation of ionic aggregates related to lithium ions. Therefore, the excessive lithium salts in the piperidinium-based hybrid electrolytes, usually cause a significant decrease in Li{sup +} mobility and transfer efficiency. The main behaviors are that, when LiPF{sub 6} concentrations increased from 0.2 to 1.2 mol kg{sup ?1}, the apparent migration energies (E{sub a}) increase largely from 8.83 to 21.16 kJ mol{sup ?1}, while the lithium transference numbers (t{sub Li{sup +}}) drop markedly from 0.538 to 0.292.

  15. Development of a 5 kW Prototype Coal-Based Fuel Cell

    SciTech Connect (OSTI)

    Chuang, Steven S.C.; Mirzababaei, Jelvehnaz; Rismanchian, Azadeh

    2014-01-20

    The University of Akron Fuel Cell Laboratory pioneered the development of a laboratory scale coal-based fuel cell, which allows the direct use of high sulfur content coal as fuel. The initial research and coal fuel cell technology development (“Coal-based Fuel Cell,” S. S. C. Chuang, PCT Int. Appl. 2006, i.e., European Patent Application, 35 pp. CODEN: PIXXD2 WO 2006028502 A2 20060316) have demonstrated that it is feasible to electrochemically oxidize carbon to CO2, producing electricity. The key innovative concept of this coal-based fuel cell technology is that carbon in coal can be converted through an electrochemical oxidation reaction into manageable carbon dioxide, efficiently generating electricity without involving coal gasification, reforming, and water-gas shift reaction. This study has demonstrated that electrochemical oxidation of carbon can take place on the Ni anode surface and the CO and CO2 product produced can further react with carbon to initiate the secondary reaction. A carbon injection system was developed to inject the solid fuel without bringing air into the anode chamber; a fuel cell stack was developed and tested to demonstrate the feasibility of the fuel cell stack. Further improvement of anode catalyst activity and durability is needed to bring this novel coal fuel cell to a highly efficient, super clean, multi-use electric generation technology, which promises to provide low cost electricity by expanding the utilization of U.S. coal supplies and relieving our dependence on foreign oil.

  16. Direct determination of solid-electrolyte interphase thickness and composition as a function of state of charge on a silicon anode

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Veith, Gabriel M.; Doucet, Mathieu; Baldwin, J. K.; Sacci, Robert L.; Fears, Tyler M.; Wang, Yongqiang; Browning, Jim

    2015-08-17

    Using neutron reflectometry we have determined the thickness and chemistry of the solid-electrolyte interphase (SEI) layer grown on a silicon anode as a function of state of charge and during cycling. We show the chemistry of this SEI layer becomes more LiF like with increasing lithiation and more Li-C-O-F like with delithiation. More importantly the SEI layer thickness appears to increase (about 250 ) as the electrode becomes less lithiated and thins to 180 with increasing Li content (Li3.7Si). We attribute this breathing to the continual consumption of electrolyte with cycling.

  17. Direct determination of solid-electrolyte interphase thickness and composition as a function of state of charge on a silicon anode

    SciTech Connect (OSTI)

    Veith, Gabriel M.; Doucet, Mathieu; Baldwin, J. K.; Sacci, Robert L.; Fears, Tyler M.; Wang, Yongqiang; Browning, Jim

    2015-08-17

    Using neutron reflectometry we have determined the thickness and chemistry of the solid-electrolyte interphase (SEI) layer grown on a silicon anode as a function of state of charge and during cycling. We show the chemistry of this SEI layer becomes more LiF like with increasing lithiation and more Li-C-O-F like with delithiation. More importantly the SEI layer thickness appears to increase (about 250 ) as the electrode becomes less lithiated and thins to 180 with increasing Li content (Li3.7Si). We attribute this breathing to the continual consumption of electrolyte with cycling.

  18. Novel Anode Materials

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  19. Nanostructured Metal Oxide Anodes

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  20. Lithium Metal Anodes

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  1. Lithium Metal Anodes

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  2. Nanostructured Materials as Anodes

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  3. Performance of Ni-Fe/gadolinium-doped CeO{sub2} anode supported tubular solid oxide fuel cells using steam reforming of methane

    SciTech Connect (OSTI)

    Liang, B.; Suzuki, T.; Hamamoto, K.; Yamaguchi, T.; Sumi, H.; Fujishiro, Y.; Ingram, B. J.; Carter, J. D.

    2012-03-15

    Iron nanoparticles (Fe{sub 2}O{sub 3}) were added to NiO/gadolinium-doped CeO{sub 2} (GDC) anode supported solid oxide fuel cell (SOFC) for the direct methane-water fuel operation. The cell was co-sintered at 1400 C, and the anode porosity is 31.8%. The main size corresponding to peak volume is around 1.5 {mu}m. When steam and methane directly fed to the cell, the power density is about 0.57 W cm{sup -2} at 650 C. It is the familiar performance for H{sub 2} operation (4 times of flow rate) with same fuel utilization. Compare with the testing temperature of 600 and 650 C, there is almost no carbon fiber deposition at 700 C with steam/methane (S/C) of 5. At the same time, fuel operation of high value of S/C (=3.3) resulted in fiber-like deposition and degradation of power performance based on loading test results.

  4. First-Principles Study of Novel Conversion Reactions for High-Capacity Li-Ion Battery Anodes in the Li-Mg-B-N-H System

    SciTech Connect (OSTI)

    Mason, T.H.; Graetz, J.; Liu, X.; Hong, J.; Majzoub, E.H.

    2011-07-28

    Anodes for Li-ion batteries are primarily carbon-based due to their low cost and long cycle life. However, improvements to the Li capacity of carbon anodes, LiC{sub 6} in particular, are necessary to obtain a larger energy density. State-of-the-art light-metal hydrides for hydrogen storage applications often contain Li and involve reactions requiring Li transport, and light-metal ionic hydrides are candidates for novel conversion materials. Given a set of known solid-state and gas-phase reactants, we have determined the phase diagram in the Li-Mg-B-N-H system in the grand canonical ensemble, as a function of lithium chemical potential. We present computational results for several new conversion reactions with capacities between 2400 and 4000 mAh g{sup -1} that are thermodynamically favorable and that do not involve gas evolution. We provide experimental evidence for the reaction pathway on delithiation for the compound Li{sub 4}BN{sub 3}H{sub 10}. While the predicted reactions involve multiple steps, the maximum volume increase for these materials on lithium insertion is significantly smaller than that for Si.

  5. Direct comparison between X-ray nanotomography and scanning electron microscopy for the microstructure characterization of a solid oxide fuel cell anode

    SciTech Connect (OSTI)

    Quey, R.; Suhonen, H.; Laurencin, J.; Cloetens, P.; Bleuet, P.

    2013-04-15

    X-ray computed nanotomography (nano-CT) and scanning electron microscopy (SEM) have been applied to characterize the microstructure of a Solid Oxide Fuel Cell (SOFC) anode. A direct comparison between the results of both methods is conducted on the same region of the microstructure to assess the spatial resolution of the nano-CT microstructure, SEM being taken as a reference. A registration procedure is proposed to find out the position of the SEM image within the nano-CT volume. It involves a second SEM observation, which is taken along an orthogonal direction and gives an estimate reference SEM image position, which is then refined by an automated optimization procedure. This enables an unbiased comparison between the cell porosity morphologies provided by both methods. In the present experiment, nano-CT is shown to underestimate the number of pores smaller than 1 ?m and overestimate the size of the pores larger than 1.5 ?m. - Highlights: ? X-ray computed nanotomography (nano-CT) and SEM are used to characterize an SOFC anode. ? A methodology is proposed to compare the nano-CT and SEM data on the same region. ? The spatial resolution of the nano-CT data is assessed from that comparison.

  6. Enhancement in current density and energy conversion efficiency of 3-dimensional MFC anodes using pre-enriched consortium and continuous supply of electron donors

    SciTech Connect (OSTI)

    Borole, Abhijeet P; Hamilton, Choo Yieng; Vishnivetskaya, Tatiana A

    2011-01-01

    Using a pre-enriched microbial consortium as the inoculum and continuous supply of carbon source, improvement in performance of a three-dimensional, flow-through MFC anode utilizing ferricyanide cathode was investigated. The power density increased from 170 W/m3 (1800 mW/m2) to 580 W/m3 (6130 mW/m2), when the carbon loading increased from 2.5 g/l-day to 50 g/l-day. The coulombic efficiency (CE) decreased from 90% to 23% with increasing carbon loading. The CEs are among the highest reported for glucose and lactate as the substrate with the maximum current density reaching 15.1 A/m2. This suggests establishment of a very high performance exoelectrogenic microbial consortium at the anode. A maximum energy conversion efficiency of 54% was observed at a loading of 2.5 g/l-day. Biological characterization of the consortium showed presence of Burkholderiales and Rhodocyclales as the dominant members. Imaging of the biofilms revealed thinner biofilms compared to the inoculum MFC, but a 1.9-fold higher power density.

  7. The fabrication of foam-like 3D mesoporous NiO-Ni as anode for high performance Li-ion batteries

    SciTech Connect (OSTI)

    Huang, Peng; Zhang, Xin; Wei, Jumeng; Pan, Jiaqi; Sheng, Yingzhou; Feng, Boxue

    2015-03-15

    Graphical abstract: Foam-like 3 dimensional (3D) mesoporous NiO on 3D micro-porous Ni was fabricated. - Highlights: We prepare NiO-Ni foam composite via hydrothermal etching and subsequent annealing. The NiO exhibits novel foam-like 3D mesoporous architecture. The NiO-Ni anode shows good cycle stability. - Abstract: Foam-like three dimensional mesoporous NiO on Ni foam was fabricated via facile hydrothermal etching and subsequent annealing treatment. The porous NiO consists of a large number of nanosheets with mean thickness about 50 nm, among which a large number of mesoscopic pores with size ranges from 100 nm to 1 ?m distribute. The electrochemical performance of the as-prepared NiO-Ni as anode for lithium ion battery was studied by conventional charge/discharge test, which shows excellent cycle stability and rate capability. It exhibits initial discharge and charge capacities of 979 and 707 mA h g{sup ?1} at a charge/discharge rate of 0.7 C, which maintain of 747 and 738 mA h g{sup ?1} after 100 cycles. Even after 60 cycles at various rates from 0.06 to 14 C, the 10th discharge and charge capacities of the NiO-Ni electrode can revert to 699 and 683 mA h g{sup ?1} when lowering the charge/discharge rate to 0.06 C.

  8. Noncomposite Counterelectrode Development: Cooperative Research and Development Final Report, CRADA Number CRD-06-203

    SciTech Connect (OSTI)

    Engtrakul, C.

    2014-06-01

    New counter electrode materials under development at NREL have the potential to positively impact electrochromic window technology. The current generation of nanocomposite materials is designed to provide rapid transport of lithium ions to nanoparticles of anodic coloring materials. They may improve the coloration efficiency of the entire films stack while also improving the speed and depth of coloration. We expect an added benefit of greater film durability. To date, encouraging results have been obtained in the laboratory. Performance and durability tests will be carried out to characterize any improvements obtained as a result of the new counter electrode materials. In addition to process improvement, the project also has the secondary goal of improving the basic understanding of the electrochromic process in Sage?s counter electrode.

  9. Reciprocal Lithium-ion Cell with Novel Lithium-Free Cathode and Pre-Lithiated Carbonaceus Anode

    SciTech Connect (OSTI)

    Ravdel, Boris

    2010-05-19

    Phase I of this program was focused mostly on the testing of pre-lithiated carbonaceous negative-electrode material as the source of the active lithium in lithium-ion cells coupled with "lithium-free" positive-electrode material. The secondary objective was na attempt to determine the ways of developing such as inexpense, stable, and environmentally benign "lithium-free" high-energy cathode material.

  10. Development of bulk-type all-solid-state lithium-sulfur battery...

    Office of Scientific and Technical Information (OSTI)

    Subject: 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; ANODES; BORON COMPOUNDS; CARBON; COLD PRESSING; DISPERSIONS; ELECTROCHEMISTRY; ELECTROLYTES; ENERGY...

  11. Economic Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Economic Development Economic Development Los Alamos is committed to investing and partnering in economic development initiatives and programs that have a positive impact to stimulate business growth that creates jobs and strengthens communities in Northern New Mexico. September 20, 2013 LANS Venture Acceleration Fund (VAF) award enabled Ideum to develop motion recognition software for international release. Jim Spadaccini (R) has tapped into the Lab's economic development programs: VAF, NMSBA,

  12. Program Development

    SciTech Connect (OSTI)

    Atencio, Julian J.

    2014-05-01

    This presentation covers how to go about developing a human reliability program. In particular, it touches on conceptual thinking, raising awareness in an organization, the actions that go into developing a plan. It emphasizes evaluating all positions, eliminating positions from the pool due to mitigating factors, and keeping the process transparent. It lists components of the process and objectives in process development. It also touches on the role of leadership and the necessity for audit.

  13. Structural and magnetic characterization of as-prepared and annealed FeCoCu nanowire arrays in ordered anodic aluminum oxide templates

    SciTech Connect (OSTI)

    Rodrguez-Gonzlez, B.; Bran, C.; Warnatz, T.; Vazquez, M.; Rivas, J.

    2014-04-07

    Herein, we report on the preparation, structure, and magnetic characterization of FeCoCu nanowire arrays grown by DC electrodeposition inside self-assembled ordered nanopores of anodic aluminum oxide templates. A systematic study of their structure has been performed both in as-prepared samples and after annealing in the temperature range up to 800?C, although particular attention has been paid to annealing at 700?C after which maximum magnetic hardening is achieved. The obtained nanowires have a diameter of 40?nm and their Fe{sub 0.28}Co{sub 0.67}Cu{sub 0.05} composition was confirmed by energy dispersive X-ray spectroscopy (EDS). Focused ion-beam lamellas of two samples (as-prepared and annealed at 700?C) were prepared for their imaging in the high-resolution transmission electron microscopy (HRTEM) perpendicularly to the electron beam, where the obtained EDS compositional mappings show a homogeneous distribution of the elements. X-ray diffraction analysis, and selected area electron diffraction (SAED) patterns confirm that nanowires exhibit a bcc cubic structure (space group Im-3m). In addition, bright-dark field images show that the nanowires have a polycrystalline structure that remains essentially the same after annealing, but some modifications were observed: (i) an overall increase and sharpening of recrystallized grains, and (ii) an apparent shrinkage of the nanowires diameter. Obtained SAED patterns also show strong textured components with determined <111> and <112> crystalline directions parallel to the wires growth direction. The presence of both directions was also confirmed in the HRTEM images doing Fourier transform analyses. Magnetic measurements show strong magnetic anisotropy with magnetization easy axis parallel to the nanowires in as-prepared and annealed samples. The magnetic properties are tuned by suitable thermal treatments so that, maximum enhanced coercivity (?2.7 kOe) and normalized remanence (?0.91 Ms) values are achieved after annealing at temperature of 700?C. The contribution of the changes in the crystalline structure, induced by the heat treatment, to the magnetic hardening of the FeCoCu nanowires is discussed.

  14. Anode material for lithium batteries

    DOE Patents [OSTI]

    Belharouak, Ilias; Amine, Khalil

    2008-06-24

    Primary and secondary Li-ion and lithium-metal based electrochemical cell system. The suppression of gas generation is achieved through the addition of an additive or additives to the electrolyte system of respective cell, or to the cell itself whether it be a liquid, a solid- or plastized polymer electrolyte system. The gas suppression additives are primarily based on unsaturated hydrocarbons.

  15. Anode material for lithium batteries

    DOE Patents [OSTI]

    Belharouak, Ilias; Amine, Khalil

    2012-01-31

    Primary and secondary Li-ion and lithium-metal based electrochemical cell systems. The suppression of gas generation is achieved through the addition of an additive or additives to the electrolyte system of respective cell, or to the cell itself whether it be a liquid, a solid- or plasticized polymer electrolyte system. The gas suppression additives are primarily based on unsaturated hydrocarbons.

  16. Anode material for lithium batteries

    DOE Patents [OSTI]

    Belharouak, Ilias (Bolingbrook, IL); Amine, Khalil (Oak Brook, IL)

    2011-04-05

    Primary and secondary Li-ion and lithium-metal based electrochemical cell systems. The suppression of gas generation is achieved through the addition of an additive or additives to the electrolyte system of respective cell, or to the cell itself whether it be a liquid, a solid- or plasticized polymer electrolyte system. The gas suppression additives are primarily based on unsaturated hydrocarbons.

  17. Degenerate doping of metallic anodes

    DOE Patents [OSTI]

    Friesen, Cody A; Zeller, Robert A; Johnson, Paul B; Switzer, Elise E

    2015-05-12

    Embodiments of the invention relate to an electrochemical cell comprising: (i) a fuel electrode comprising a metal fuel, (ii) a positive electrode, (iii) an ionically conductive medium, and (iv) a dopant; the electrodes being operable in a discharge mode wherein the metal fuel is oxidized at the fuel electrode and the dopant increases the conductivity of the metal fuel oxidation product. In an embodiment, the oxidation product comprises an oxide of the metal fuel which is doped degenerately. In an embodiment, the positive electrode is an air electrode that absorbs gaseous oxygen, wherein during discharge mode, oxygen is reduced at the air electrode. Embodiments of the invention also relate to methods of producing an electrode comprising a metal and a doped metal oxidation product.

  18. Anodes for rechargeable lithium batteries

    DOE Patents [OSTI]

    Thackeray, Michael M.; Kepler, Keith D.; Vaughey, John T.

    2003-01-01

    A negative electrode (12) for a non-aqueous electrochemical cell (10) with an intermetallic host structure containing two or more elements selected from the metal elements and silicon, capable of accommodating lithium within its crystallographic host structure such that when the host structure is lithiated it transforms to a lithiated zinc-blende-type structure. Both active elements (alloying with lithium) and inactive elements (non-alloying with lithium) are disclosed. Electrochemical cells and batteries as well as methods of making the negative electrode are disclosed.

  19. The reaction mechanism of SnSb and Sb thin film anodes for Na-ion batteries studied by X-ray diffraction, 119Sn and 121Sb M ssbauer spectroscopies

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Baggetto, Loic; Hah, Hien-Yoong; Jumas, Dr. Jean-Claude; Johnson, Prof. Dr. Charles E.; Johnson, Jackie A.; Keum, Jong Kahk; Bridges, Craig A; Veith, Gabriel M

    2014-01-01

    The electrochemical reaction of Sb and SnSb anode materials with Na results in the formation of amorphous materials. To understand the resulting phases and electrochemical capacities we studied the reaction products local order using 119Sn and 121Sb M ssbauer spectroscopies in conjunction with measurements performed on model powder compounds of Na-Sn and Na-Sb to further clarify the reactions steps. For pure Sb the discharge (sodiation) starts with the formation of an amorphous phase composed of atomic environments similar to those found in NaSb, and proceeds further by the formation of environments similar to that present in Na3Sb. The reversible reactionmore » takes place during a large portion of the charge process. At full charge the anode material still contains a substantial fraction of Na, which explains the lack of recrystallization into crystalline Sb. The reaction of SnSb yields Na3Sb crystalline phase at full discharge at higher temperatures (65 and 95 C) while the room temperature reaction yields amorphous compounds. The electrochemically-driven, solid-state amorphization reaction occurring at room temperature is governed by the simultaneous formation of Na-coordinated Sn and Sb environments, as monitored by the decrease (increase) of the 119Sn (121Sb) M ssbauer isomer shifts. Overall, the monitoring of the hyperfine parameters enables to correlate the changes in Na content to the individual Sn and Sb local chemical environments.« less

  20. Software Developers

    Broader source: Energy.gov [DOE]

    Because SEED will provide a common, open-source data framework, software developers will be able to write applications that access the data in a consistent way (with proper permissions), or build functionalities onto the SEED platform in a replicable way.

  1. sustainable development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sustainable development - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  2. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    SciTech Connect (OSTI)

    Elliot B. Kennel; Quentin C. Berg; Stephen P. Carpenter; Dady Dadyburjor; Jason C. Hissam; Manoj Katakdaunde; Liviu Magean; Abha Saddawi; Alfred H. Stiller; John W. Zondlo

    2006-03-07

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. The largest applications are those which support metals smelting, such as anodes for aluminum smelting and electrodes for arc furnaces. Other carbon products include materials used in creating fuels for the Direct Carbon Fuel Cell, metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, efforts have focused on the development of carbon electrodes for Direct Carbon Fuel Cells (DCFC), and on carbon foam composites used in ballistic armor, as well as the hydrotreatment of solvents used in the basic solvent extraction process. A major goal is the production of 1500 pounds of binder pitch, corresponding to about 3000 pounds of hydrotreated solvent.

  3. Nozzle development

    SciTech Connect (OSTI)

    Dodge, F.T.; Dodge, L.G.; Johnson, J.E.

    1989-06-01

    The objective of this program has been the development of experimental techniques and data processing procedures to allow for the characterization of multi-phase fuel nozzles using laboratory tests. Test results were to be used to produce a single value coefficient-of-performance that would predict the performance of the fuel nozzles independent of system application. Several different types of fuel nozzles capable of handling multi-phase fuels have been characterized for: (a) fuel flow rate versus delivery pressure, (b) fuel-air ratio throughout the fuel spray or plume and the effective cone angle of the injector, and (c) fuel drop- or particle-size distribution as a function of fluid properties. Fuel nozzles which have been characterized on both single-phase liquids and multi-phase liquid-solid slurries include a variable-film-thickness nozzle, a commercial coal-water slurry (CWS) nozzle, and four diesel injectors of different geometries (tested on single-phase fluids only). Multi-phase mixtures includes CWS with various coal loadings, surfactant concentrations, and stabilizer concentrations, as well as glass-bead water slurries with stabilizing additives. Single-phase fluids included glycerol-water mixtures to vary the viscosity over a range of 1 to 1500 cP, and alcohol-water mixtures to vary the surface tension from about 22 to 73 dyne/cm. In addition, tests were performed to characterize straight-tube gas-solid nozzles using two differences size distributions of glass beads in air. Standardized procedures have been developed for processing measurements of spray drop-size characteristics and the overall cross-section average drop or particle size. 43 refs., 60 figs., 7 tabs.

  4. Enhanced electron collection in TiO{sub 2} nanoparticle-based dye-sensitized solar cells by an array of metal micropillars on a planar fluorinated tin oxide anode.

    SciTech Connect (OSTI)

    Yang, Z.; Xu, T.; Gao, S.; Welp, U.; Kwok, W.-K.; Materials Science Division; Northern Illinois Univ.

    2010-01-01

    Charge collection efficiency exhibits a strong influence on the overall efficiency of nanocrystalline dye-sensitized solar cells. It highly depends on the quality of the TiO{sub 2} nanoparticulate layer in the photoanode, and hence most efforts have been directed on the improvement and deliberate optimization of the quality the TiO{sub 2} nanocrystalline layer. In this work, we aim to reduce the electron collection distance between the place of origin in the TiO{sub 2} layer to the electron-collecting TCO anode as an alternative way to enhance the charge collection efficiency. We use an array of metal micropillars on fluorine-doped tin oxide (FTO) as the collecting anode. Under the same conditions, the Ni micropillar-on-FTO-based dye-sensitized solar cells (DSSCs) exhibit a remarkably enhanced current density, which is approximately 1.8 times greater compared with the bare FTO-based DSSCs. Electron transport was investigated using the electrochemical impedance spectroscopy technique. Our results reveal that the electron collection time in Ni micropillar-on-FTO-based DSSCs is much shorter than that of bare FTO-based DSSCs, indicating faster electron collection due to the Ni micropillars buried in TiO{sub 2} nanoparticulate layer that serve as electron transport shortcuts. As a result, the charge collection efficiency was enhanced by 15?20% with respect to that of the bare FTO-based DSSCs. Consequently, the overall energy conversion efficiency was found to increase from 2.6% in bare FTO-based DSSCs to 4.8% in Ni micropillar-on-FTO-based DSSCs for a 6 {micro}m-thick TiO{sub 2} NP film.

  5. Development of a Novel Efficient Solid-Oxide Hybrid for Co-generation of Hydrogen and Electricity Using Nearby Resources for Local Application

    SciTech Connect (OSTI)

    Tao, Greg, G.; Virkar, Anil, V.; Bandopadhyay, Sukumar; Thangamani, Nithyanantham; Anderson, Harlan, U.; Brow, Richard, K.

    2009-06-30

    Developing safe, reliable, cost-effective, and efficient hydrogen-electricity co-generation systems is an important step in the quest for national energy security and minimized reliance on foreign oil. This project aimed to, through materials research, develop a cost-effective advanced technology cogenerating hydrogen and electricity directly from distributed natural gas and/or coal-derived fuels. This advanced technology was built upon a novel hybrid module composed of solid-oxide fuel-assisted electrolysis cells (SOFECs) and solid-oxide fuel cells (SOFCs), both of which were in planar, anode-supported designs. A SOFEC is an electrochemical device, in which an oxidizable fuel and steam are fed to the anode and cathode, respectively. Steam on the cathode is split into oxygen ions that are transported through an oxygen ion-conducting electrolyte (i.e. YSZ) to oxidize the anode fuel. The dissociated hydrogen and residual steam are exhausted from the SOFEC cathode and then separated by condensation of the steam to produce pure hydrogen. The rationale was that in such an approach fuel provides a chemical potential replacing the external power conventionally used to drive electrolysis cells (i.e. solid oxide electrolysis cells). A SOFC is similar to the SOFEC by replacing cathode steam with air for power generation. To fulfill the cogeneration objective, a hybrid module comprising reversible SOFEC stacks and SOFC stacks was designed that planar SOFECs and SOFCs were manifolded in such a way that the anodes of both the SOFCs and the SOFECs were fed the same fuel, (i.e. natural gas or coal-derived fuel). Hydrogen was produced by SOFECs and electricity was generated by SOFCs within the same hybrid system. A stand-alone 5 kW system comprising three SOFEC-SOFC hybrid modules and three dedicated SOFC stacks, balance-of-plant components (including a tailgas-fired steam generator and tailgas-fired process heaters), and electronic controls was designed, though an overall integrated system assembly was not completed because of limited resources. An inexpensive metallic interconnects fabrication process was developed in-house. BOP components were fabricated and evaluated under the forecasted operating conditions. Proof-of-concept demonstration of cogenerating hydrogen and electricity was performed, and demonstrated SOFEC operational stability over 360 hours with no significant degradation. Cost analysis was performed for providing an economic assessment of the cost of hydrogen production using the targeted hybrid technology, and for guiding future research and development.

  6. Technical progress in the development of zero emission coal technologies.

    SciTech Connect (OSTI)

    Ziock, H. J.; Anthony, E. J.; Brosha, E. L.; Garzon, F. H.; Guthrie, G. D.; Johnson, A. A.; Kramer, A.; Lackner, K. S.; Lau, Francis,; Mukundan, R.; Robison, Thomas W.; Roop, B. J.; Ruby, J. D.; Smith, B. F.; Wang, J.

    2002-01-01

    We present an update on the development of technologies required for the Zero Emission Carbon (ZEC) concept being pursued by ZECA Corporation. The concept has a highly integrated design involving hydrogasification, a calcium oxide driven reforming step that includes simultaneous C02 separation, coal compatible fuel cells for electricity production and heat recovery, and a closed loop gas system in which coal contaminants are removed either as liquids or solids. The process does not involve any combustion and as such has neither smokestack nor air emissions. An independent assessment of the concept by Nexant, a Bcchtel affiliated company, suggests a net efficiency of approximately 70% for conversion of the higher heat value fuel energy into electrical output. This is even after the penalties of carbon dioxide separation and pressurization to 1000 psi are taken into account. For carbon dioxide sequestration a variety of options are being considered, which include enhanced oil recovery in the near-term and mineral carbonation as a long-term approach. We report on our early results in the development of sulfur tolerant anode materials for solid oxide fuel cells; a critical analysis of the calcium oxide - calcium carbonate cycle; trace element removal; and the recent results of hydrogasification tests.

  7. Trace metal characterization and speciation in geothermal effluent by multiple scanning anodic stripping voltammetry and atomic absorpotion analysis. Annual progress report

    SciTech Connect (OSTI)

    Kowalski, B R

    1980-01-01

    Only the actual application of the ultratrace metal analysis methods to samples taken from geothermal sites in Washington and Oregon is covered. The in-field sampling equipment constructed for the studies, procedures developed or adapted, and the results obtained on representative samples taken from geothermal sites are described. (MHR)

  8. Self-Assembled, Nanostructured Carbon for Energy Storage and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    January 2011 Development of High Capacity Anode for Li-ion Batteries Synthesis and Characterization of Structured Si-Carbon Nanocomposite Anodes and Functional Polymer Binders

  9. Atomic Layer Deposition for Stabilization of Amorphous Silicon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents & Publications Nanostructured Metal Oxide Anodes Atomic Layer Deposition for Stabilization of Silicon Anodes Development of Industrially Viable Battery Electrode Coatings...

  10. GeOx/Reduced Graphene Oxide Composite as an Anode for Li-ion Batteries: Enhanced Capacity via Reversible Utilization of Li2O along with Improved Rate Performance

    SciTech Connect (OSTI)

    Lv, Dongping; Gordin, Mikhail; Yi, Ran; Xu, Terrence (Tianren); Song, Jiangxuan; Jiang, Yingbing; Choi, Daiwon; Wang, Donghai

    2014-09-01

    A self-assembled GeOx/reduced graphene oxide (GeOx/RGO) composite, where GeOx nanoparticles were grown directly on reduced graphene oxide sheets, was synthesized via a facile one-step reduction approach and studied by X-ray diffraction, transmission electron microscopy, energy dispersive X-ray spectroscopy, electron energy loss spectroscopy elemental mapping, and other techniques. Electrochemical evaluation indicates that incorporation of reduced graphene oxide enhances both the rate capability and reversible capacity of GeOx, with the latter being due to the RGO enabling reversible utilization of Li2O. The composite delivers a high reversible capacity of 1600 mAhg-1 at a current density of 100 mAg-1, and still maintains a capacity of 410 mAhg-1 at a high current density of 20 Ag-1. Owing to the flexible reduced graphene oxide sheets enwrapping the GeOx particles, the cycling stability of the composite was also improved significantly. To further demonstrate its feasibility in practical applications, the synthesized GeOx/RGO composite anode was successfully paired with a high voltage LiNi0.5Mn1.5O4 cathode to form a full cell, which showed good cycling and rate performance.

  11. Theoretical Investigation of H? Oxidation on the Sr2Fe1.5Mo0.5O6 (001) Perovskite Surface Under Anodic Solid Oxide Fuel Cell Conditions

    SciTech Connect (OSTI)

    Suthirakun, Suwit; Ammal, Salai Cheettu; Munoz-Garcia, Ana B.; Xiao, Guoliang; Chen, Fanglin; zur Loye, Hans-Conrad; Carter, Emily A.; Heyden, Andreas

    2014-06-11

    Periodic density functional theory (DFT) calculations and microkinetic modeling are used to investigate the electrochemical oxidation of H? fuel on the (001) surface of Sr2Fe1.5Mo0.5O6 (SFMO) perovskite under anodic solid oxide fuel cell conditions. Three surface models with different Fe/Mo ratios in the topmost layer-identified by ab initio thermodynamic analysis-are used to investigate the H? oxidation mechanism. A microkinetic analysis that considers the effects of anode bias potential suggests that a higher Mo concentration in the surface increases the activity of the surface toward H? oxidation. At operating voltage and anodic SOFC conditions, the model predicts that water desorption is rate-controlling and that stabilizing the oxygen vacancy structure increases the overall rate for H? oxidation. Although we find that Mo plays a crucial role in improving catalytic activity of SFMO, under fuel cell operating conditions, the Mo content in the surface layer tends to be very low. On the basis of these results and in agreement with previous experimental observations, a strategy for improving the overall electrochemical performance of SFMO is increasing the Mo content or adding small amounts of an active transition metal, such as Ni, to the surface to lower the oxygen vacancy formation energy of the SFMO surface.

  12. Demonstration of an Electrochemical Liquid Cell for Operando Transmission Electron Microscopy Observation of the Lithiation/Delithiation Behavior of Si Nanowire Battery Anodes

    SciTech Connect (OSTI)

    Gu, Meng; Parent, Lucas R.; Mehdi, Beata L.; Unocic, Raymond R.; Mcdowell, Matthew T.; Sacci, Robert L.; Xu, Wu; Connell, Justin G.; Xu, Pinghong; Abellan Baeza, Patricia; Chen, Xilin; Zhang, Yaohui; Perea, Daniel E.; Evans, James E.; Lauhon, Lincoln; Zhang, Jiguang; Liu, Jun; Browning, Nigel D.; Cui, Yi; Arslan, Ilke; Wang, Chong M.

    2013-12-11

    Over the last few years, in-situ transmission electron microscopy (TEM) studies of lithium ion batteries using an open-cell configuration have helped us to gain fundamental insights into the structural and chemical evolution of the electrode materials in real time. In the standard open-cell configuration, the electrolyte is either solid lithium oxide or an ionic liquid, which is point-contacted with the electrode. This cell design is inherently different from a real battery, where liquid electrolyte forms conformal contact with electrode materials. The knowledge learnt from open cells can deviate significantly from the real battery, calling for operando TEM technique with conformal liquid electrolyte contact. In this paper, we developed an operando TEM electrochemical liquid cell to meet this need, providing the configuration of a real battery and in a relevant liquid electrolyte. To demonstrate this novel technique, we studied the lithiation/delithiation behavior of single Si nanowires. Some of lithiation/delithation behaviors of Si obtained using the liquid-cell are consistent with the results from the open-cell studies. However, we also discovered new insights different from the open cell configuration - the dynamics of the electrolyte and, potentially, a future quantitative characterization of the SEI layer formation and structural and chemical evolution.

  13. Dual Phase Li4 Ti5O12TiO2 Nanowire Arrays As Integrated Anodes For High-rate Lithium-ion Batteries

    SciTech Connect (OSTI)

    Liao, Jin; Chabot, Victor; Gu, Meng; Wang, Chong M.; Xiao, Xingcheng; Chen, Zhongwei

    2014-08-19

    Lithium titanate (Li4Ti5O12) is well known as a zero strain material inherently, which provides excellent long cycle stability as a negative electrode for lithium ion batteries. However, the low specific capacity (175 mA h g?1) limits it to power batteries although the low electrical conductivity is another intrinsic issue need to be solved. In this work, we developed a facile hydrothermal and ion-exchange route to synthesize the self-supported dual-phase Li4Ti5O12TiO2 nanowire arrays to further improve its capacity as well as rate capability. The ratio of Li4Ti5O12 to TiO2 in the dual phase Li4Ti5O12TiO2 nanowire is around 2:1. The introduction of TiO2 into Li4Ti5O12 increases the specific capacity. More importantly, by interface design, it creates a dual-phase nanostructure with high grain boundary density that facilitates both electron and Li ion transport. Compared with phase-pure nanowire Li4Ti5O12 and TiO2 nanaowire arrays, the dual-phase nanowire electrode yielded superior rate capability (135.5 at 5 C, 129.4 at 10 C, 120.2 at 20 C and 115.5 mA h g?1 at 30 C). In-situ transmission electron microscope clearly shows the near zero deformation of the dual phase structure, which explains its excellent cycle stability.

  14. Teacher Development Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Teacher Development Programs LLNL Teacher Development LLNL's Science Education Program provides professional development instruction to in-service and pre-service middle school, high school, and community college science teachers

  15. Clean Energy Development Fund

    Broader source: Energy.gov [DOE]

    Vermont's Clean Energy Development Fund (CEDF) was established in 2005 to promote the development and deployment of cost-effective and environmentally sustainable electric power and thermal...

  16. ORISE: Web Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Web Development As computer-based applications become increasingly popular for the delivery of health care training and information, the need for Web development in support of ...

  17. Options for developing countries in mining development

    SciTech Connect (OSTI)

    Walrond, G.W.; Kumar, R.

    1985-01-01

    This book is a study of the issues that developing countries face in planning and implementing mineral development, taking as case studies Botswana, Sierra Leone, Zambia, Tanzania, Malaysia, Papua New Guinea and the developed states of Quebec and Western Australia. The authors consider the major aspects of the matter including organization and administration; regulation; taxation and surplus distribution; the dynamics of such instruments as royalty, rent resource tax and capital allowances under various cost/price scenarios; and selected mining agreements and their key provisions. They stress throughout the need for foreign investment while maximizing the economic benefits reaped from exhaustible resources.

  18. Geothermal development opportunities in developing countries

    SciTech Connect (OSTI)

    Kenkeremath, D.C.

    1989-11-16

    This report is the proceedings of the Seminar on geothermal development opportunities in developing countries, sponsored by the Geothermal Division of the US Department of Energy and presented by the National Geothermal Association. The overall objectives of the seminar are: (1) Provide sufficient information to the attendees to encourage their interest in undertaking more geothermal projects within selected developing countries, and (2) Demonstrate the technological leadership of US technology and the depth of US industry experience and capabilities to best perform on these projects.

  19. SES CANDIDATE DEVELOPMENT PROGRAM

    Energy Savers [EERE]

    SENIOR EXECUTIVE SERVICE CANDIDATE DEVELOPMENT PROGRAM (SESCDP) DOE F 360.1 (11-03) Executive Development Plan (EDP) Name: Title: Organization: Office: RATIONALE FOR PLAN: APPROVALS: Candidate Signature: Date: Supervisor: Date: Mentor: Date: SES Candidate Development Program Manager: Date: DOE Executive Resources Board: Date: 1 U.S. DEPARTMENT OF ENERGY DOE F 360.1 (11-03) SENIOR EXECUTIVE SERVICE CANDIDATE DEVELOPMENT PROGRAM (SESCDP) Executive Development Plan (EDP) NAME OF SES CANDIDATE:

  20. Titania-graphene anode electrode paper

    DOE Patents [OSTI]

    Liu, Jun; Choi, Daiwon; Bennett, Wendy D; Graff, Gordon L; Shin, Yongsoon

    2013-10-15

    A method for forming a nanocomposite material, the nanocomposite material formed thereby, and a battery made using the nanocomposite material. Metal oxide and graphene are placed in a solvent to form a suspension. The suspension is then applied to a current collector. The solvent is then evaporated to form a nanocomposite material. The nanocomposite material is then electrochemically cycled to form a nanocomposite material of at least one metal oxide in electrical communication with at least one graphene layer.

  1. Hybrid anodes for redox flow batteries

    DOE Patents [OSTI]

    Wang, Wei; Xiao, Jie; Wei, Xiaoliang; Liu, Jun; Sprenkle, Vincent L.

    2015-12-15

    RFBs having solid hybrid electrodes can address at least the problems of active material consumption, electrode passivation, and metal electrode dendrite growth that can be characteristic of traditional batteries, especially those operating at high current densities. The RFBs each have a first half cell containing a first redox couple dissolved in a solution or contained in a suspension. The solution or suspension can flow from a reservoir to the first half cell. A second half cell contains the solid hybrid electrode, which has a first electrode connected to a second electrode, thereby resulting in an equipotential between the first and second electrodes. The first and second half cells are separated by a separator or membrane.

  2. Titania-graphene anode electrode paper

    DOE Patents [OSTI]

    Liu, Jun; Choi, Daiwon; Bennett, Wendy D.; Graff, Gordon L.; Shin, Yongsoon

    2015-05-26

    A method for forming a nanocomposite material, the nanocomposite material formed thereby, and a battery made using the nanocomposite material. Metal oxide and graphene are placed in a solvent to form a suspension. The suspension is then applied to a current collector. The solvent is then evaporated to form a nanocomposite material. The nanocomposite material is then electrochemically cycled to form a nanocomposite material of at least one metal oxide in electrical communication with at least one graphene layer.

  3. "Plasma Thruster with Magnetically Insulated Anode: Inventor...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at least two stages, ionization and acceleration, which are physically separated by the geometry, magnetic field topology and in the case of DC - FR power, by the localized RF...

  4. Solid solution lithium alloy cermet anodes

    DOE Patents [OSTI]

    Richardson, Thomas J.

    2013-07-09

    A metal-ceramic composite ("cermet") has been produced by a chemical reaction between a lithium compound and another metal. The cermet has advantageous physical properties, high surface area relative to lithium metal or its alloys, and is easily formed into a desired shape. An example is the formation of a lithium-magnesium nitride cermet by reaction of lithium nitride with magnesium. The reaction results in magnesium nitride grains coated with a layer of lithium. The nitride is inert when used in a battery. It supports the metal in a high surface area form, while stabilizing the electrode with respect to dendrite formation. By using an excess of magnesium metal in the reaction process, a cermet of magnesium nitride is produced, coated with a lithium-magnesium alloy of any desired composition. This alloy inhibits dendrite formation by causing lithium deposited on its surface to diffuse under a chemical potential into the bulk of the alloy.

  5. Hybrid anodes for redox flow batteries

    DOE Patents [OSTI]

    Wang, Wei; Xiao, Jie; Wei, Xiaoliang; Liu, Jun; Sprenkle, Vincent L.

    2015-12-22

    RFBs having solid hybrid electrodes can address at least the problems of active material consumption, electrode passivation, and metal electrode dendrite growth that can be characteristic of traditional batteries, especially those operating at high current densities. The RFBs each have a first half cell containing a first redox couple dissolved in a solution or contained in a suspension. The solution or suspension can flow from a reservoir to the first half cell. A second half cell contains the solid hybrid electrode, which has a first electrode connected to a second electrode, thereby resulting in an equipotential between the first and second electrodes. The first and second half cells are separated by a separator or membrane.

  6. Nano-structured Materials as Anodes

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  7. Hanford Site Development Plan

    SciTech Connect (OSTI)

    Rinne, C.A.; Curry, R.H.; Hagan, J.W.; Seiler, S.W.; Sommer, D.J. ); Yancey, E.F. )

    1990-01-01

    The Hanford Site Development Plan (Site Development Plan) is intended to guide the short- and long-range development and use of the Hanford Site. All acquisition, development, and permanent facility use at the Hanford Site will conform to the approved plan. The Site Development Plan also serves as the base document for all subsequent studies that involve use of facilities at the Site. This revision is an update of a previous plan. The executive summary presents the highlights of the five major topics covered in the Site Development Plan: general site information, existing conditions, planning analysis, Master Plan, and Five-Year Plan. 56 refs., 67 figs., 31 tabs.

  8. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    SciTech Connect (OSTI)

    Kathryn Baskin

    2004-10-31

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts. In addition to analysis of domestic policies and programs, this project will include the development of a U.S.-Brazil Biodiesel Pilot Project. The purpose of this effort is to promote and facilitate the commercialization of biodiesel and bioenergy production and demand in Brazil.

  9. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    SciTech Connect (OSTI)

    Kathryn Baskin

    2005-04-30

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts. In addition to analysis of domestic policies and programs, this project will include the development of a U.S.-Brazil Biodiesel Pilot Project. The purpose of this effort is to promote and facilitate the commercialization of biodiesel and bioenergy production and demand in Brazil.

  10. Developing Alaskan Sustainable Housing

    Broader source: Energy.gov [DOE]

    The Association of Alaska Housing Authorities is holding a 3-day training event for housing development professionals titled Developing Alaskan Sustainable Housing (DASH). This is a unique...

  11. Recent Development of SOFC Metallic Interconnect

    SciTech Connect (OSTI)

    Wu JW, Liu XB

    2010-04-01

    Interest in solid oxide fuel cells (SOFC) stems from their higher eciencies and lower levels of emitted pollu- tants, compared to traditional power production methods. Interconnects are a critical part in SOFC stacks, which connect cells in series electrically, and also separate air or oxygen at the cathode side from fuel at the anode side. Therefore, the requirements of interconnects are the most demanding, i:e:, to maintain high elec- trical conductivity, good stability in both reducing and oxidizing atmospheres, and close coecient of thermal expansion (CTE) match and good compatibility with other SOFC ceramic components. The paper reviewed the interconnect materials, and coatings for metallic interconnect materials.

  12. Mechanisms in Plant Development

    SciTech Connect (OSTI)

    Hake, Sarah

    2013-08-21

    This meeting has been held every other year for the past twenty-two years and is the only regularly held meeting focused specifically on plant development. Topics covered included: patterning in developing tissues; short and long distance signaling; differentiation of cell types; the role of epigenetics in development; evolution; growth.

  13. RECENT ADVANCES IN THE DEVELOPMENT OF THE HYBRID SULFUR PROCESS FOR HYDROGEN PRODUCTION

    SciTech Connect (OSTI)

    Hobbs, D.

    2010-07-22

    Thermochemical processes are being developed to provide global-scale quantities of hydrogen. A variant on sulfur-based thermochemical cycles is the Hybrid Sulfur (HyS) Process, which uses a sulfur dioxide depolarized electrolyzer (SDE) to produce the hydrogen. In the HyS Process, sulfur dioxide is oxidized in the presence of water at the electrolyzer anode to produce sulfuric acid and protons. The protons are transported through a cation-exchange membrane electrolyte to the cathode and are reduced to form hydrogen. In the second stage of the process, the sulfuric acid by-product from the electrolyzer is thermally decomposed at high temperature to produce sulfur dioxide and oxygen. The two gases are separated and the sulfur dioxide recycled to the electrolyzer for oxidation. The Savannah River National Laboratory (SRNL) has been exploring a fuel-cell design concept for the SDE using an anolyte feed comprised of concentrated sulfuric acid saturated with sulfur dioxide. The advantages of this design concept include high electrochemical efficiency and small footprint compared to a parallel-plate electrolyzer design. This paper will provide a summary of recent advances in the development of the SDE for the HyS process.

  14. Development of a 2 MW CW Waterload for Electron Cyclotron Heating Systems

    SciTech Connect (OSTI)

    R. Lawrence,Ives; Maxwell Mizuhara; George Collins; Jeffrey Neilson; Philipp Borchard

    2012-11-09

    Calabazas Creek Research, Inc. developed a load capable of continuously dissipating 2 MW of RF power from gyrotrons. The input uses HE11 corrugated waveguide and a rotating launcher to uniformly disperse the power over the lossy surfaces in the load. This builds on experience with a previous load designed to dissipate 1 MW of continuous RF power. The 2 MW load uses more advanced RF dispersion to double the capability in the same size device as the 1 MW load. The new load reduces reflected power from the load to significantly less than 1 %. This eliminates requirements for a preload to capture reflected power. The program updated control electronics that provides all required interlocks for operation and measurement of peak and average power. The program developed two version of the load. The initial version used primarily anodized aluminum to reduce weight and cost. The second version used copper and stainless steel to meet specifications for the ITER reactor currently under construction in France. Tests of the new load at the Japanese Atomic Energy Agency confirmed operation of the load to a power level of 1 MW, which is the highest power currently available for testing the load. Additional tests will be performed at General Atomics in spring 2013. The U.S. ITER organization will test the copper/stainless steel version of the load in December 2012 or early in 2013. Both loads are currently being marketed worldwide.

  15. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    SciTech Connect (OSTI)

    Elliot Kennel; Chong Chen; Dady Dadyburjor; Mark Heavner; Manoj Katakdaunde; Liviu Magean; James Mayberry; Alfred Stiller; Joseph Stoffa; Christopher Yurchick; John Zondlo

    2009-12-31

    This NETL sponsored effort seeks to develop continuous technologies for the production of carbon products, which may be thought of as the heavier products currently produced from refining of crude petroleum and coal tars obtained from metallurgical grade coke ovens. This effort took binder grade pitch, produced from liquefaction of West Virginia bituminous grade coal, all the way to commercial demonstration in a state of the art arc furnace. Other products, such as crude oil, anode grade coke and metallurgical grade coke were demonstrated successfully at the bench scale. The technology developed herein diverged from the previous state of the art in direct liquefaction (also referred to as the Bergius process), in two major respects. First, direct liquefaction was accomplished with less than a percent of hydrogen per unit mass of product, or about 3 pound per barrel or less. By contrast, other variants of the Bergius process require the use of 15 pounds or more of hydrogen per barrel, resulting in an inherent materials cost. Second, the conventional Bergius process requires high pressure, in the range of 1500 psig to 3000 psig. The WVU process variant has been carried out at pressures below 400 psig, a significant difference. Thanks mainly to DOE sponsorship, the WVU process has been licensed to a Canadian Company, Quantex Energy Inc, with a commercial demonstration unit plant scheduled to be erected in 2011.

  16. Ultrafast Power Processor for Smart Grid Power Module Development

    SciTech Connect (OSTI)

    MAITRA, ARINDAM; LITWIN, RAY; lai, Jason; Syracuse, David

    2012-12-30

    This project’s goal was to increase the switching speed and decrease the losses of the power semiconductor devices and power switch modules necessary to enable Smart Grid energy flow and control equipment such as the Ultra-Fast Power Processor. The primary focus of this project involves exploiting the new silicon-based Super-GTO (SGTO) technology and build on prototype modules already being developed. The prototype super gate-turn-off thyristor (SGTO) has been tested fully under continuously conducting and double-pulse hard-switching conditions for conduction and switching characteristics evaluation. The conduction voltage drop measurement results indicate that SGTO has excellent conduction characteristics despite inconsistency among some prototype devices. Tests were conducted with two conditions: (1) fixed gate voltage and varying anode current condition, and (2) fixed anode current and varying gate voltage condition. The conduction voltage drop is relatively a constant under different gate voltage condition. In terms of voltage drop as a function of the load current, there is a fixed voltage drop about 0.5V under zero current condition, and then the voltage drop is linearly increased with the current. For a 5-kV voltage blocking device that may operate under 2.5-kV condition, the projected voltage drop is less than 2.5 V under 50-A condition, or 0.1%. If the device is adopted in a converter operating under soft-switching condition, then the converter can achieve an ultrahigh efficiency, typically above 99%. The two-pulse switching test results indicate that SGTO switching speed is very fast. The switching loss is relatively low as compared to that of the insulated-gate-bipolar-transistors (IGBTs). A special phenomenon needs to be noted is such a fast switching speed for the high-voltage switching tends to create an unexpected Cdv/dt current, which reduces the turn-on loss because the dv/dt is negative and increases the turn-off loss because the dv/dt is positive. As a result, the turn-on loss at low current is quite low, and the turn-off loss at low current is relatively high. The phenomenon was verified with junction capacitance measurement along with the dv/dt calculation. Under 2-kV test condition, the turn-on and turn-off losses at 25-A is about 3 and 9 mJ, respectively. As compared to a 4.5-kV, 60-A rated IGBT, which has turn-on and turn-off losses about 25 and 20 mJ under similar test condition, the SGTO shows significant switching loss reduction. The switching loss depends on the switching frequency, but under hard-switching condition, the SGTO is favored to the IGBT device. The only concern is during low current turn-on condition, there is a voltage bump that can translate to significant power loss and associated heat. The reason for such a current bump is not known from this study. It is necessary that the device manufacturer perform though test and provide the answer so the user can properly apply SGTO in pulse-width-modulated (PWM) converter and inverter applications.

  17. SES Executive Development

    Broader source: Energy.gov [DOE]

    Development continues once an individual enters into the SES. Faced with constant challenges, changing technologies and a fluid environment, executives need to pursue ongoing professional executive development. It is crucial that executives continue to strengthen and reinforce their Executive Core Qualifications (ECQs), skills and knowledge. http://www.opm.gov/ses/executive_development/index.asp Federal agencies are required by law (Title 5, U.S. Code, Section 3396) to establish programs for the continuing development of senior executives. DOE’s Office of Learning & Workforce Development is available to assist you in determining a course of action your executive development. They have a guidebook that “contains descriptions of over 350 courses, offered by 56 colleges and universities throughout the continental United States as well as by the Office of Personnel Management.”

  18. TRANSIMS Interface Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transims TRANSIMS Interface Development TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling TRANSIMS Studio (Figure 1) has been developed by TRACC for the TRANSIMS community as part of the TRANSIMS Open Source project. It provides an integrated development environment (IDE) for TRANSIMS by combining a number of components that work seamlessly with each other. The visible part of the IDE is the graphical user interface (GUI) that allows

  19. ORISE: Web Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Web Development As computer-based applications become increasingly popular for the delivery of health care training and information, the need for Web development in support of these tools continues to grow. The Oak Ridge Institute for Science and Education (ORISE) provides Web development capabilities to government agencies and organizations interested in converting training and education programs based on traditional means of communication into a variety of tools that suit the technology skills

  20. WINDExchange: Wind Economic Development

    Wind Powering America (EERE)

    Development WINDExchange provides software applications and publications to help individuals, developers, local governments, and utilities make decisions about wind power. Projecting costs and benefits of new installations, including the economic development impacts created, is a key element in looking at potential wind applications. Communities, states, regions, job markets (i.e., construction, operations and maintenance), the tax base, tax revenues, and others can be positively affected. These

  1. Blind shaft development

    SciTech Connect (OSTI)

    Fiscor, S.

    2009-02-15

    The article discusses how Shaft Drillers International (SDI) is breaking new ground in shaft development and ground stabilization. Techniques of blind shaft drilling and raise bore shaft development developed by SDI are briefly explained. An associated company, Coastal Drilling East, deals with all types of ground improvement such as pre-grouting work for shafts, grouting of poor soil and water leaks into the mine. 3 photos.

  2. Regional Economic Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regional Economic Development Regional Economic Development Supporting companies in every stage of development through access to technology, technical assistance or investment Questions Richard P. Feynman Center for Innovation Regional Programs (505) 665-9090 New Mexico Small Business Assistance Email Venture Acceleration Fund Email DisrupTECH Email SBIR/STTR Email FCI facilitates commercialization in New Mexico to accelerate and enhance our efforts to convert federal and state research

  3. Bioenergy for Sustainable Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gerard J. Ostheimer, Ph.D. Global Lead Sustainable Bioenergy High-Impact Opportunity Sustainable Energy For All BIOENERGY FOR SUSTAINABLE DEVELOPMENT Overview * Energy poverty is widespread and prevents economic development * The international development community is beginning to act * Momentum is building to grow the bioeconomy across the globe Energy Poverty: Statistics * 1.2 Billion people lack access to modern energy services - 0.5 Billion in sub-Saharan Africa * 2.7 Billion people lack

  4. Insights from a Developer

    Office of Environmental Management (EM)

    INSIGHTS FROM A DEVELOPER JENNIFER BREDT DEVELOPMENT MANAGER RES Americas Inc. OCTOBER 26, 2010 AGENDA * INTRODUCTION AND RES OVERVIEW * GROWTH OF THE WIND INDUSTRY IN THE US * CHALLENGES CURRENTLY FACING THE INDUSTRY * WHERE WE ARE HEADED ABOUT - RES Americas Inc. CURRENT CHALLENGES THE FUTURE GROWTH YEARS OVERVIEW * Leader in wind power development and construction  Established in US in 1997 in Tehachapi, CA; UK parent active in wind since 1982  3,946 MW of completed construction

  5. Sandia Energy - Advanced Research & Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Research & Development Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Advanced Research & Development Advanced Research & DevelopmentCoryne...

  6. Wineagle Developers | Open Energy Information

    Open Energy Info (EERE)

    Developers Jump to: navigation, search Name: Wineagle Developers Place: Sacramento, California Zip: 95814 Sector: Geothermal energy Product: Geothermal developer in...

  7. Long Range Development Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scientific missions. Science drives the Lab's development. LRDPs establish a framework of land-use principles and policies to guide future growth and change through 2025. The plan...

  8. Requirements for Wind Development

    Broader source: Energy.gov [DOE]

    In 2015 Oklahoma amended the Oklahoma Wind Energy Development Act. The amendments added new financial security requirements, setback requirements, and notification requirements for wind energy...

  9. New Commercial Program Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Commercial Program Development Commercial Current Promotions Industrial Federal Agriculture Beginning in spring of 2015, the BPA Commercial Team will be working with utilities...

  10. SRNL LDRD - Developed Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Developed Technologies Porous Wall Hollow Glass Microspheres Porous Wall Hollow Glass Microspheres Tiny Glass Spheres for Energy Storage, Medical Applications and Other Uses...

  11. Sustainable Development Conference

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    award at Sustainable Development Conference October 22, 2015 LANL Researchers Yongchao Yang, Alessandro Cattaneo and David Mascareas of the National Security Education...

  12. UNIRIB: Equipment Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    intensities. Development of new beams is also needed to support experiments with proton-rich isotopes that are relevant to radiochemical detectors for stewardship science....

  13. Child Development Centers

    Broader source: Energy.gov [DOE]

    Headquarters operates National Association for the Education of Young Children (NAEYC) accredited child development centers at its Forrestal and Germantown facilities. Each center provides day care...

  14. Technical Assistance to Developers

    SciTech Connect (OSTI)

    Rockward, Tommy; Borup, Rodney L.; Garzon, Fernando H.; Mukundan, Rangachary; Spernjak, Dusan

    2012-07-17

    This task supports the allowance of technical assistance to fuel-cell component and system developers as directed by the DOE. This task includes testing of novel materials and participation in the further development and validation of single cell test protocols. This task also covers technical assistance to DOE Working Groups, the U.S. Council for Automotive Research (USCAR) and the USCAR/DOE Driving Research and Innovation for Vehicle efficiency and Energy sustainability (U.S. Drive) Fuel Cell Technology Team. Assistance includes technical validation of new fuel cell materials and methods, single cell fuel cell testing to support the development of targets and test protocols, and regular advisory participation in other working groups and reviews. This assistance is made available to PEM fuel cell developers by request and DOE Approval. The objectives are to: (1) Support technically, as directed by DOE, fuel cell component and system developers; (2) Assess fuel cell materials and components and give feedback to developers; (3) Assist the DOE Durability Working Group with the development of various new material durability Testing protocols; and (4) Provide support to the U.S. Council for Automotive Research (USCAR) and the USCAR/DOE Fuel Cell Technology Team. FY2012 specific technical objectives are: (1) Evaluate novel MPL materials; (2) Develop of startup/ shutdown protocol; (3) Test the impact of hydrophobic treatment on graphite bi-polar plates; (4) Perform complete diagnostics on metal bi-polar plates for corrosion; and (5) Participate and lead efforts in the DOE Working Groups.

  15. Reference Model Development

    SciTech Connect (OSTI)

    Jepsen, Richard

    2011-11-02

    Presentation from the 2011 Water Peer Review in which principal investigator discusses project progress to develop a representative set of Reference Models (RM) for the MHK industry to develop baseline cost of energy (COE) and evaluate key cost component/system reduction pathways.

  16. Wind Economic Development (Postcard)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01

    The U.S. Department of Energy's Wind Powering America initiative provides information on the economic development benefits of wind energy. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to the economic development benefits section on the Wind Powering America website.

  17. Aggressive development plans

    SciTech Connect (OSTI)

    McCandless, D.H.

    1993-11-01

    Hydropower developments are capital-intensive, are subject to uncertainty in water availability, and have a somewhat higher construction-cost risk than thermal projects. However, a developer who selects an attractive site, arranges a good financial package, and designs and constructs a well-conceived hydropower project can earn an attractive long-term return while providing a dependable, low-cost source of energy to consumers. In the Philippines, many attractive hydropower sites are now available. As demonstrated by the attendance at the US Trade and Development Agency-sponsored Symposium on Power Development and Investment Opportunities in the Philippines, in Washington, D.C., on Sept. 21 and 22, 1993, there is a growing interest in private hydropower. Following its successful record in implementing thermal private power developments, the Philippines now offers many attractive opportunities to exploit its tremendous potential in the hydropower sector.

  18. Liga developer apparatus system

    DOE Patents [OSTI]

    Boehme, Dale R. (Pleasanton, CA); Bankert, Michelle A. (San Francisco, CA); Christenson, Todd R. (Albuquerque, NM)

    2003-01-01

    A system to fabricate precise, high aspect ratio polymeric molds by photolithograpic process is described. The molds for producing micro-scale parts from engineering materials by the LIGA process. The invention is a developer system for developing a PMMA photoresist having exposed patterns comprising features having both very small sizes, and very high aspect ratios. The developer system of the present invention comprises a developer tank, an intermediate rinse tank and a final rinse tank, each tank having a source of high frequency sonic agitation, temperature control, and continuous filtration. It has been found that by moving a patterned wafer, through a specific sequence of developer/rinse solutions, where an intermediate rinse solution completes development of those portions of the exposed resist left undeveloped after the development solution, by agitating the solutions with a source of high frequency sonic vibration, and by adjusting and closely controlling the temperatures and continuously filtering and recirculating these solutions, it is possible to maintain the kinetic dissolution of the exposed PMMA polymer as the rate limiting step.

  19. Jobs and Economic Development Modeling

    Office of Energy Efficiency and Renewable Energy (EERE)

    Project objective: Develop models to estimate jobs and economic impacts from geothermal project development and operation.

  20. Development of position-sensitive time-of-flight spectrometer for fission fragment research

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Arnold, C. W.; Tovesson, F.; Meierbachtol, K.; Bredeweg, T.; Jandel, M.; Jorgenson, H. J.; Laptev, A.; Rusev, G.; Shields, D. W.; White, M.; et al

    2014-07-09

    A position-sensitive, high-resolution time-of-flight detector for fission fragments has been developed. The SPectrometer for Ion DEtermination in fission Research (SPIDER) is a 2E–2v spectrometer designed to measure the mass of light fission fragments to a single mass unit. The time pick-off detector pairs to be used in SPIDER have been tested with α-particles from 229Th and its decay chain and α-particles and spontaneous fission fragments from 252Cf. Each detector module is comprised of thin electron conversion foil, electrostatic mirror, microchannel plates, and delay-line anodes. Particle trajectories on the order of 700 mm are determined accurately to within 0.7 mm. Flightmore » times were measured with 250 ps resolution FWHM. Computed particle velocities are accurate to within 0.06 mm/ns corresponding to a precision of 0.5%. As a result, an ionization chamber capable of 400 keV energy resolution coupled with the velocity measurements described here will pave the way for modestly efficient measurements of light fission fragments with unit mass resolution.« less

  1. Microsystem product development.

    SciTech Connect (OSTI)

    Polosky, Marc A.; Garcia, Ernest J.

    2006-04-01

    Over the last decade the successful design and fabrication of complex MEMS (MicroElectroMechanical Systems), optical circuits and ASICs have been demonstrated. Packaging and integration processes have lagged behind MEMS research but are rapidly maturing. As packaging processes evolve, a new challenge presents itself, microsystem product development. Product development entails the maturation of the design and all the processes needed to successfully produce a product. Elements such as tooling design, fixtures, gages, testers, inspection, work instructions, process planning, etc., are often overlooked as MEMS engineers concentrate on design, fabrication and packaging processes. Thorough, up-front planning of product development efforts is crucial to the success of any project.

  2. Economic Development Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Economic Development Office Is your technology business looking for a door to the Laboratory? The Economic Development Office at PNNL is here to help you start, grow, or relocate your business. We help you tap into technology experts, facilities, and other resources available at the Laboratory...some at no cost to you. We've helped more than 400 companies in our region and 100 more nationwide. Our goals: to expand the economy's technology sector and create high-value jobs. Economic Development

  3. Lithium Ion Cell Development for Photovoltaic Energy Storage Applications

    SciTech Connect (OSTI)

    Susan Babinec

    2012-02-08

    The overall project goal is to reduce the cost of home and neighborhood photovoltaic storage systems by reducing the single largest cost component – the energy storage cells. Solar power is accepted as an environmentally advantaged renewable power source. Its deployment in small communities and integrated into the grid, requires a safe, reliable and low cost energy storage system. The incumbent technology of lead acid cells is large, toxic to produce and dispose of, and offer limited life even with significant maintenance. The ideal PV storage battery would have the safety and low cost of lead acid but the performance of lithium ion chemistry. Present lithium ion batteries have the desired performance but cost and safety remain the two key implementation barriers. The purpose of this project is to develop new lithium ion cells that can meet PVES cost and safety requirements using A123Systems phosphate-based cathode chemistries in commercial PHEV cell formats. The cost target is a cell design for a home or neighborhood scale at <$25/kWh. This DOE program is the continuation and expansion of an initial MPSC (Michigan Public Service Commission) program towards this goal. This program further pushes the initial limits of some aspects of the original program – even lower cost anode and cathode actives implemented at even higher electrode loadings, and as well explores new avenues of cost reduction via new materials – specifically our higher voltage cathode. The challenge in our materials development is to achieve parity in the performance metrics of cycle life and high temperature storage, and to produce quality materials at the production scale. Our new cathode material, M1X, has a higher voltage and so requires electrolyte reformulation to meet the high temperature storage requirements. The challenge of thick electrode systems is to maintain adequate adhesion and cycle life. The composite separator has been proven in systems having standard loading electrodes; the challenge with this material will be to maintain proven performance when this composite is coated onto a thicker electrode; as well the high temperature storage must meet application requirements. One continuing program challenge was the lack of specific performance variables for this PV application and so the low power requirements of PHEV/EV transportation markets were again used.

  4. Create a Consortium and Develop Premium Carbon Products from Coal

    SciTech Connect (OSTI)

    Frank Rusinko; John Andresen; Jennifer E. Hill; Harold H. Schobert; Bruce G. Miller

    2006-01-01

    The objective of these projects was to investigate alternative technologies for non-fuel uses of coal. Special emphasis was placed on developing premium carbon products from coal-derived feedstocks. A total of 14 projects, which are the 2003 Research Projects, are reported herein. These projects were categorized into three overall objectives. They are: (1) To explore new applications for the use of anthracite in order to improve its marketability; (2) To effectively minimize environmental damage caused by mercury emissions, CO{sub 2} emissions, and coal impounds; and (3) To continue to increase our understanding of coal properties and establish coal usage in non-fuel industries. Research was completed in laboratories throughout the United States. Most research was performed on a bench-scale level with the intent of scaling up if preliminary tests proved successful. These projects resulted in many potential applications for coal-derived feedstocks. These include: (1) Use of anthracite as a sorbent to capture CO{sub 2} emissions; (2) Use of anthracite-based carbon as a catalyst; (3) Use of processed anthracite in carbon electrodes and carbon black; (4) Use of raw coal refuse for producing activated carbon; (5) Reusable PACs to recycle captured mercury; (6) Use of combustion and gasification chars to capture mercury from coal-fired power plants; (7) Development of a synthetic coal tar enamel; (8) Use of alternative binder pitches in aluminum anodes; (9) Use of Solvent Extracted Carbon Ore (SECO) to fuel a carbon fuel cell; (10) Production of a low cost coal-derived turbostratic carbon powder for structural applications; (11) Production of high-value carbon fibers and foams via the co-processing of a low-cost coal extract pitch with well-dispersed carbon nanotubes; (12) Use of carbon from fly ash as metallurgical carbon; (13) Production of bulk carbon fiber for concrete reinforcement; and (14) Characterizing coal solvent extraction processes. Although some of the projects funded did not meet their original goals, the overall objectives of the CPCPC were completed as many new applications for coal-derived feedstocks have been researched. Future research in many of these areas is necessary before implementation into industry.

  5. SSL TECHNOLOGY DEVELOPMENT WORKSHOP

    Broader source: Energy.gov [DOE]

    Rapid advances in SSL technology make it easy to forget that this technology is still at a relatively early stage of development, and much of its potential remains untapped. The 10th annual DOE SSL...

  6. Acquisition Career Development Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-04-19

    This Order establishes training and certification requirements and career development programs under the Acquisition Career Development (ACD) Program for DOE and NNSA acquisition workforce. The acquisition workforce includes contracting, purchasing, personal property management, program management, Contracting Officers and Contracting Officer Representatives. The ACD Program implements the Office of Federal Procurement Policy (OFPP) requirements, Federal Acquisition Regulation (FAR) requirements, Federal Acquisition Reform Act (FARA) requirements, and the objectives of Executive Order (E.O.) 129231, Federal Procurement Reform, dated 10-13-1994. This order cancels DOE O 361.1, Acquisition Career Development Program, dated 11-10-99, AND Acquisition Letter 2003-05, Personal Property Management Career Development, Training, and Certification Program, dated 9-10-03. Cancels DOE O 361.1 Chg 2. Canceled by DOE O 361.1B.

  7. Sustainable Development Conference

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    team wins best paper award at Sustainable Development Conference October 22, 2015 LANL Researchers Yongchao Yang, Alessandro Cattaneo and David Mascareñas of the National Security Education Center-Engineering Institute (NSEC-EI) recently received the Best Paper Award at the Third Annual International Conference for Sustainable Development. Their winning paper is "Potential Structural Health Monitoring Tools to Mitigate Corruption in the Construction Industry Associated with Rapid

  8. ORISE: Health Literacy Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Literacy Development While health disparities may be attributed to a number of factors, health literacy development and access to health information can help special populations gain a better understanding of wellness and prevention. The Internet and other means of electronic communication have become popular tools that are allowing people to take control of their health. According to Healthy People 2010, nearly half of American adults (90 million people) are deemed "health

  9. ORISE: Standards development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Standards development For 30 years, health physicists with the Oak Ridge Institute for Science and Education (ORISE) have actively participated in the development of industry standards that provide guidance and support to decontamination and decommissioning projects across the United States. Because of our extensive experience conducting radiological surveys and site characterization, our federal agency customers, such as the U.S. Nuclear Regulatory Commission (NRC) and the U.S. Department of

  10. Acquisition Career Development Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-12-20

    To set forth requirements and responsibilities for the Department of Energy (DOE) Acquisition Career Development (ACD) Program, which implements Office of Federal Procurement Policy (OFPP) requirements, Federal Acquisition Regulation (FAR) requirements, Federal Acquisition Reform Act (FARA) requirements, and the career development objectives of Executive Order (E.O.) 12931. Change 1 approved 12-20-2001. Cancels DOE O 361.1. Canceled by DOE O 361.1 Chg 2.

  11. Acquisition Career Development Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-06-13

    To set forth requirements and responsibilities for the Department of Energy (DOE) Acquisition Career Development (ACD) Program, which implements Office of Federal Procurement Policy (OFPP) requirements, Federal Acquisition Regulation (FAR) requirements, Federal Acquisition Reform Act (FARA) requirements, and the career development objectives of Executive Order (E.O.) 12931. Change 1 approved 12-20-2001. Change 2 approved 06-13-03. Cancels DOE O 361.1 Chg 1. Canceled by DOE O 361.1A.

  12. Economic Development - SRSCRO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Economic Development As the designated Community Reuse Organization (CRO) for the Department of Energy's Savannah River Site, the Savannah River Site Community Reuse Organization (SRSCRO) is charged with the responsibility for developing and implementing a comprehensive plan to diversify the economy of the SRSCRO region. During its 50 year history, the Savannah River Site has supported America's national defense mission, contributing significantly to the successful end of the Cold War at the

  13. ARM - Curriculum Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TeachersCurriculum Development Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Curriculum Development Manus Island welcomes ARM Education. Manus Island welcomes ARM Education. The Atmospheric Radiation Measurement (ARM) Education and Outreach Program helped create a climate change curriculum

  14. Transmission Developers Inc.

    Energy Savers [EERE]

    ' % ~ Transmission Developers Inc. July 7, 2011 Mr. Anthony J. Como Director, Permitting and Siting Office ofElectricity Delivery and Energy Reliability (OE-20) U.S. Department of Energy 1000 Independence A venue SW, Room 8G-024 Washington, D.C. 20585 Subject: Champlain Hudson Power Express Project U.S. Department of Energy Presidential Permit Application PP-362 Dear Mr. Como: On January 25, 2010, Transmission Developers, Inc. ("TDI'' or "Applicants") submitted on behalf of

  15. Novel Lithium Ion Anode Structures: Overview of New DOE BATT Anode Projects

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  16. Guidebook on biogas development

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    This guidebook covers the practical aspects of small-scale biogas development suitable for use in rural areas in developing countries, especially those of the ESCAP region. It is intended that all aspects of biogas are covered so that someone with no knowledge of the subject can, with confidence, design, build, operate and maintain a biogas plant. Information on biogas technology in China is also included. Chapters cover: the biogas process; factors effecting gas-plant design and operation; the classification and design principles of plants; design, size and site selection; the construction of digesters; gas holders and pipes; household gas appliances and their use; starting and operating a biogas digester; servicing and safety; improving gas-plant performance; commercial uses of biogas; the effluent and its uses, biogas-plant development programmes; community plants; and economics. In the annexes, designs for biogas plants of the fixed-dome, bag and floating gas-holder type are presented. 9 references.

  17. Power Systems Development Facility

    SciTech Connect (OSTI)

    Southern Company Services

    2009-01-31

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, has routinely demonstrated gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This final report summarizes the results of the technology development work conducted at the PSDF through January 31, 2009. Twenty-one major gasification test campaigns were completed, for a total of more than 11,000 hours of gasification operation. This operational experience has led to significant advancements in gasification technologies.

  18. Graphite Technology Development Plan

    SciTech Connect (OSTI)

    W. Windes; T. Burchell; M.Carroll

    2010-10-01

    The Next Generation Nuclear Plant (NGNP) will be a helium-cooled High Temperature Gas Reactor (HTGR) with a large graphite core. Graphite physically contains the fuel and comprises the majority of the core volume. Graphite has been used effectively as a structural and moderator material in both research and commercial high-temperature gas-cooled reactors. This development has resulted in graphite being established as a viable structural material for HTGRs. While the general characteristics necessary for producing nuclear grade graphite are understood, historical nuclear grades no longer exist. New grades must be fabricated, characterized, and irradiated to demonstrate that current grades of graphite exhibit acceptable non-irradiated and irradiated properties upon which the thermomechanical design of the structural graphite in NGNP is based. This Technology Development Plan outlines the research and development (R&D) activities and associated rationale necessary to qualify nuclear grade graphite for use within the NGNP reactor.

  19. Developer | OpenEI Community

    Open Energy Info (EERE)

    Developer Home > Developer > Posts by term > Developer Content Group Activity By term Q & A Feeds Term: clean energy Type Term Title Author Replies Last Post sort icon Blog...

  20. Developer | OpenEI Community

    Open Energy Info (EERE)

    Developer Home > Developer > Posts by term > Developer Content Group Activity By term Q & A Feeds Term: citation Type Term Title Author Replies Last Post sort icon Blog entry...

  1. Developer | OpenEI Community

    Open Energy Info (EERE)

    Developer Home > Developer > Posts by term > Developer Content Group Activity By term Q & A Feeds Term: citing Type Term Title Author Replies Last Post sort icon Blog entry...

  2. Developer | OpenEI Community

    Open Energy Info (EERE)

    Developer Home > Developer > Posts by term > Developer Content Group Activity By term Q & A Feeds Term: Energy Visions Prize Type Term Title Author Replies Last Post sort icon...

  3. Developer | OpenEI Community

    Open Energy Info (EERE)

    Developer Home > Developer > Posts by term > Developer Content Group Activity By term Q & A Feeds Term: cleanweb Type Term Title Author Replies Last Post sort icon Blog entry...

  4. Developer | OpenEI Community

    Open Energy Info (EERE)

    Developer Home > Developer > Posts by term > Developer Content Group Activity By term Q & A Feeds Term: Energy data Type Term Title Author Replies Last Post sort icon Blog...

  5. Developer | OpenEI Community

    Open Energy Info (EERE)

    Developer Home > Developer > Posts by term > Developer Content Group Activity By term Q & A Feeds Term: funding Type Term Title Author Replies Last Post sort icon Blog entry...

  6. Hydropower research and development

    SciTech Connect (OSTI)

    1997-03-01

    This report is a compilation of information on hydropower research and development (R and D) activities of the Federal government and hydropower industry. The report includes descriptions of on-going and planned R and D activities, 1996 funding, and anticipated future funding. Summary information on R and D projects and funding is classified into eight categories: fish passage, behavior, and response; turbine-related; monitoring tool development; hydrology; water quality; dam safety; operations and maintenance; and water resources management. Several issues in hydropower R and D are briefly discussed: duplication; priorities; coordination; technical/peer review; and technology transfer/commercialization. Project information sheets from contributors are included as an appendix.

  7. Exciting new PDSF developments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Exciting new PDSF developments Exciting new PDSF developments February 25, 2014 I'm pleased to announce that PDSF successfully deployed new login nodes last week. Some of you may already have noticed that you are now landing on nodes named pdsf[6-8] when you ssh to pdsf.nersc.gov. Our new login nodes use the faster Mendel IB network and more modern hardware. We've gone from four nodes to three but, because each node has a higher core count, the processing power is staying the same. The old

  8. JAGUAR developer's manual.

    SciTech Connect (OSTI)

    Chan, Ethan

    2011-06-01

    JAGUAR (JAva GUi for Applied Research) is a Java software tool providing an advanced text editor and graphical user interface (GUI) to manipulate DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) input specifications. This document focuses on the technical background necessary for a developer to understand JAGUAR.

  9. ECH Technology Development

    SciTech Connect (OSTI)

    Temkin, Richard

    2014-12-24

    Electron Cyclotron Heating (ECH) is needed for plasma heating, current drive, plasma stability control, and other applications in fusion energy sciences research. The program of fusion energy sciences supported by U. S. DOE, Office of Science, Fusion Energy Sciences relies on the development of ECH technology to meet the needs of several plasma devices working at the frontier of fusion energy sciences research. The largest operating ECH system in the world is at DIII-D, consisting of six 1 MW, 110 GHz gyrotrons capable of ten second pulsed operation, plus two newer gyrotrons. The ECH Technology Development research program investigated the options for upgrading the DIII-D 110 GHz ECH system. Options included extending present-day 1 MW technology to 1.3 1.5 MW power levels or developing an entirely new approach to achieve up to 2 MW of power per gyrotron. The research consisted of theoretical research and designs conducted by Communication and Power Industries of Palo Alto, CA working with MIT. Results of the study would be validated in a later phase by research on short pulse length gyrotrons at MIT and long pulse / cw gyrotrons in industry. This research follows a highly successful program of development that has led to the highly reliable, six megawatt ECH system at the DIII-D tokamak. Eventually, gyrotrons at the 1.5 megawatt to multi-megawatt power level will be needed for heating and current drive in large scale plasmas including ITER and DEMO.

  10. About Research & Development

    Office of Energy Efficiency and Renewable Energy (EERE)

    Next-generation manufacturing technologies will transform industry and open new markets in the United States and around the world. The Advanced Manufacturing Office (AMO) supports Research and Development on technology projects that will help manufacturers become more robust, adaptable, profitable, and globally competitive.

  11. Economic Development Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contacts Gary Spanner PNNL Manager, Economic Development 509/372-4296 ROB/1210 Robin Conger Program Manager 509/372-4328 ROB/1216 Bernard Hansen Entrepreneurial Programs Manager 206/842-9485 HOME003/ Pam Dawson Specialist 509/375-2075 ROB/1230

  12. New Program Development & Launch

    U.S. Energy Information Administration (EIA) Indexed Site

    Development & Launch visit: on.sce.comideas Making Energy Simple Again 10 Lessons L earned a nd K ey T ake Aways * Security a nd p rivacy s hould a lways b e a t t he t op o f m ...

  13. SES CANDIDATE DEVELOPMENT PROGRAM

    Energy Savers [EERE]

    4 (11-03) SENIOR EXECUTIVE SERVICE CANDIDATE DEVELOPMENT PROGRAM (SESCDP) Supervisor's Evaluation of Candidate's Performance During Developmental Assignment DATE:________________ NAME OF SES CANDIDATE: TITLE OF POSITION: LOCATION OF ASSIGNMENT: ASSIGNMENT DURATION: PART I: EVALUATION OF ASSIGNMENT OBJECTIVES Please evaluate the candidate's level of performance in meeting the objectives of the assignment as Successful or Unacceptable. Objectives Standards Performance Evaluation PLEASE RATE YOUR

  14. Marine & hydrokinetic technology development.

    SciTech Connect (OSTI)

    LiVecchi, Al; Jepsen, Richard Alan

    2010-06-01

    The Wind and Water Power Program supports the development of marine and hydrokinetic devices, which capture energy from waves, tides, ocean currents, the natural flow of water in rivers, and marine thermal gradients, without building new dams or diversions. The program works closely with industry and the Department of Energy's national laboratories to advance the development and testing of marine and hydrokinetic devices. In 2008, the program funded projects to develop and test point absorber, oscillating wave column, and tidal turbine technologies. The program also funds component design, such as techniques for manufacturing and installing coldwater pipes critical for ocean thermal energy conversion (OTEC) systems. Rigorous device testing is necessary to validate and optimize prototypes before beginning full-scale demonstration and deployment. The program supports device testing by providing technology developers with information on testing facilities. Technology developers require access to facilities capable of simulating open-water conditions in order to refine and validate device operability. The program has identified more than 20 tank testing operators in the United States with capabilities suited to the marine and hydrokinetic technology industry. This information is available to the public in the program's Hydrodynamic Testing Facilities Database. The program also supports the development of open-water, grid-connected testing facilities, as well as resource assessments that will improve simulations done in dry-dock and closed-water testing facilities. The program has established two university-led National Marine Renewable Energy Centers to be used for device testing. These centers are located on coasts and will have open-water testing berths, allowing researchers to investigate marine and estuary conditions. Optimal array design, development, modeling and testing are needed to maximize efficiency and electricity generation at marine and hydrokinetic power plants while mitigating nearby and distant impacts. Activities may include laboratory and computational modeling of mooring design or research on device spacing. The geographies, resources, technologies, and even nomenclature of the U.S. marine and hydrokinetic technology industry have yet to be fully understood or defined. The program characterizes and assesses marine and hydrokinetic devices, and then organizes the collected information into a comprehensive and searchable Web-based database, the Marine and Hydrokinetic Technology Database. The database, which reflects intergovernmental and international collaboration, provides industry with one of the most comprehensive and up-to-date public resources on marine and hydrokinetic devices.

  15. Energy Efficiency Project Development

    SciTech Connect (OSTI)

    IUEP

    2004-03-01

    The International Utility Efficiency Partnerships, Inc. (IUEP) has been a leader among the industry groups that have supported voluntary initiatives to promote international energy efficiency projects and address global climate change. The IUEP maintains its leadership by both supporting international greenhouse gas (GHG) reduction projects under the auspices of the U.S. Department of Energy (DOE) and by partnering with U.S. and international organizations to develop and implement strategies and specific energy efficiency projects. The goals of the IUEP program are to (1) provide a way for U.S. industry to maintain a leadership role in international energy efficiency infrastructure projects; (2) identify international energy project development opportunities to continue its leadership in supporting voluntary market-based mechanisms to reduce GHG emissions; and (3) demonstrate private sector commitment to voluntary approaches to global climate issues. The IUEP is dedicated to identifying, promoting, managing, and assisting in the registration of international energy efficiency projects that result in demonstrated voluntary reductions of GHG emissions. This Final Technical Report summarizes the IUEP's work in identifying, promoting, managing, and assisting in development of these projects and IUEP's effort in creating international cooperative partnerships to support project development activities that develop and deploy technologies that (1) increase efficiency in the production, delivery and use of energy; (2) increase the use of cleaner, low-carbon fuels in processing products; and (3) capture/sequester carbon gases from energy systems. Through international cooperative efforts, the IUEP intends to strengthen partnerships for energy technology innovation and demonstration projects capable of providing cleaner energy in a cost-effective manner. As detailed in this report, the IUEP met program objectives and goals during the reporting period January 1, 2001 through December 31, 2002. At the request of the DOE, we have also included in this report additional activities during the reporting period January, 1999 through January, 2001. This additional information had been reported earlier in the Final Technical Reports that summarized activities undertaken in those earlier periods.

  16. e+ e- Factory Developments

    SciTech Connect (OSTI)

    Sullivan, Michael; /SLAC

    2010-08-26

    The impressive performance of current (KEKB) and recent (PEP-II) B-Factory colliders has increased interest in developing even higher luminosity B-factories. Two new designs are being developed (SuperKEKB and SuperB). Both designs plan to deliver a luminosity in the range of 1 x 10{sup 36} cm{sup -2}s{sup -1}, nearly 100 times the present B-factory level. Achieving this high luminosity requires high-current beams and short bunch lengths and/or a new way of colliding the beams. The SuperB design employs a crabbed magnetic waist with a large crossing angle and the SuperKEKB design is looking at crab cavities with high-current beams and/or a travelling focus. I describe the designs being studied to achieve the high luminosity needed for the next generation of B-Factories.

  17. Accelerating Advanced Material Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Research in the Information Age Accelerating Advanced Material Development NERSC Science Gateway a 'Google of Material Properties' October 31, 2011 Linda Vu, lvu@lbl.gov, +1 510 495 2402 Kristin Persson is one of the founding scientists behind the Materials Project, a computational tool aimed at taking the guesswork out of new materials discoveries, especially those aimed at energy applications like batteries. (Roy Kaltschmidt, LBNL) New materials are crucial to building a clean energy

  18. Issue Development sheet Example

    Broader source: Energy.gov [DOE]

    ISSUE DEVELOPMENT SHEET INFORMATION ONLY The information provided below indicates that a potential concern for finding has been identified. Please provide any objective evidence you may have that could either alleviate the concern or eliminate the finding. If no objective evidence is available/can be provided by the end of this audit (at the scheduled end of field work), this information will be included in the audit report and reported as a concern or an audit finding as appropriate.

  19. HTL Model Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1.3.4.100 HTL Model Development MARCH 24, 2015 ALGAE Sue Jones Yunhua Zhu, Lesley Snowden-Swan, Dan Anderson, Rich Hallen, Karl Albrecht, Doug Elliott, Andy Schmidt Pacific Northwest National Laboratory This presentation does not contain any proprietary, confidential, or otherwise restricted information Goal Statement for HTL Model 2 GOAL: Enable R&D to produce sustainable, economic liquid fuels through targeted research coupled with techno-economic analysis (TEA) leading to optimized algal

  20. Update on INSIGHTS Development

    SciTech Connect (OSTI)

    Not Listed; Eric Burgett

    2011-09-01

    INSIGHTS is a transformational separate effects testing capability to perform in situ irradiation studies and characterization of the microscale behavior of nuclear fuel materials under a wide variety of in-pile conditions. Separate effects testing including growth, irradiation, and monitoring of these materials, and encompasses the full science based approach for fuels development from the nanoscale to the mesoscale behavior of the sample material and other defects driven by the modeling and simulation efforts of INL.

  1. Acquisition Career Development Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-11-10

    The Order implements the Department's Acquisition Career Development program, mandatory for professionals in the GS-1102 and 1105 occupational procurement series, as well as others with significant procurement responsibilities. The Order also ensures that members of the acquisition workforce are aware of and adhere to the mandatory training and certification requirements. Cancels Acquisition Letter 98-06. Canceled by DOE O 361.1 Chg 1.

  2. Heat-Exchanger Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heat-Exchanger Development - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  3. ARM Raman Lidar Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Development - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear

  4. Advanced Bit Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bit Development - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear

  5. WINDExchange: Workforce Development

    Wind Powering America (EERE)

    Workforce Development A large white cylinder, a portion of a turbine tower, lays horizontally on the ground with three men in safety vests and hard hats standing on the right side and a blue crane on the left side. Several technicians prepare to erect a part of the Gamesa tower at the National Wind Technology Center. Photo by Dennis Schroeder, NREL 20853 The United States needs a skilled and qualified wind energy workforce to produce domestic clean power. Vital industry positions include

  6. Lighting Developments to 2030

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lighting Developments to 2030 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  7. New Science Developments | JCESR

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Science Developments Lawrence Berkeley National Laboratory's scientist Anna Javier prepares a sample for transmission electron microscopy imaging using a microtome in a battery lab at Berkeley Lab's Environmental Energy Technologies Division. Berkeley Lab is one of several major U.S. research institutions and industrial firms that form the Joint Center for Energy Storage Research, a public-private partnership that aims to overcome critical scientific and technical barriers and create new

  8. Sustainable Subsurface Energy Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sustainable Subsurface Energy Development - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management

  9. XOP: Recent Developments

    Office of Scientific and Technical Information (OSTI)

    XOP: Recent Developments Manuel SBnchez del Woa and Roger 3. Dejus' "European Synchrotron Radiation Facility BP 220, 38043 Grenoble-Cedex, France 'Advanced Photon Source Argonne National Laboratory, Argonne, IL 60439, USA ABSTRACT XOP (X-ray Optics utilities) is a graphical user interface (GUI) to run computer programs which calculate basic information needed by synchrotron radiation beamline scientists and engineers. It can also be used as a front-end for specific codes or packages for

  10. SES CANDIDATE DEVELOPMENT PROGRAM

    Energy Savers [EERE]

    3 (11-03) SENIOR EXECUTIVE SERVICE CANDIDATE DEVELOPMENT PROGRAM (SESCDP) Developmental Assignment Opportunity DATE: NAME OF SES CANDIDATE: TITLE: ASSIGNMENT NUMBER: ASSIGNMENT BEGINS: ENDS: TELEPHONE NUMBER: FAX NUMBER: EMAIL ADDRESS: ASSIGNMENT LOCATION HOST ORGANIZATION: PURPOSE OF ASSIGNMENT: ASSIGNMENT POSITION: ASSIGNMENT DUTIES: EXECUTIVE COR QUALIFICATIONS TO BE ADDRESSED: OFFICE ADDRESS: TELEPHONE NUMBER: FAX NUMBER: E-MAIL ADDRESS: 1 U.S. DEPARTMENT OF ENERGY SENIOR EXECUTIVE SERVICE

  11. SES CANDIDATE DEVELOPMENT PROGRAM

    Energy Savers [EERE]

    5 (11-03) SENIOR EXECUTIVE SERVICE CANDIDATE DEVELOPMENT PROGRAM (SESCDP) Candidate Developmental Assignment Evaluation DATE:_______________ NAME OF SES CANDIDATE TITLE OF POSITION LOCATION ASSIGNMENT DURATION: Which Executive Core Qualification(s) was this assignment intended to meet? Leading Change Leading People Results Driven Business Acumen Building Coalitions/Communication Please provide a brief description of your assignment. Did the experience meet your expectation? Was this a good

  12. SES CANDIDATE DEVELOPMENT PROGRAM

    Energy Savers [EERE]

    6 (11-03) SENIOR EXECUTIVE SERVICE CANDIDATE DEVELOPMENT PROGRAM (SESCDP) Evaluation of Formal Training DATE:_______________ CANDIDATE NAME: TITLE OF TRAINING PROGRAM: VENDOR/LOCATION: TRAINING DATES: Which Executive Core Qualification(s) was this assignment intended to meet? Leading Change Leading People Results Driven Business Acumen Building Coalitions/Communication Please check one for each of the following: Level of difficulty: Too Advanced ___ Appropriate ___ Too Elementary ___ Length of

  13. Issue Development sheet Blank

    Broader source: Energy.gov [DOE]

    ISSUE DEVELOPMENT SHEET INFORMATION ONLY The information provided below indicates that a potential concern for finding has been identified. Please provide any objective evidence you may have that could either alleviate the concern or eliminate the finding. If no objective evidence is available/can be provided by the end of this audit (at the scheduled end of field work), this information will be included in the audit report and reported as a concern or an audit finding as appropriate.

  14. National Fertilizer Development Center

    Office of Legacy Management (LM)

    h-L National Fertilizer Development Center May 15, 1980 nww Hr. William Et Mott, Director Environmental Control Technology Division Office of Environment Dcpartiaent of Energy Washington, DC 20545 Dear Mr. Mott: This is in response to your letter of May 5 requesting ccmments on a report dated Xarct; 1930 which summarizes a preliminary radiological survey of facilities used in the early 1950's for studies of recovery of uranium from leached zone ore. I have made a few suggested changes to the

  15. Stirling technology development status

    SciTech Connect (OSTI)

    Dochat, G.R. ); Dudenhoefer, J.E. )

    1993-01-15

    Free-piston Stirling power converters have the potential to meet the many future space power requirements for a wide variety of applications with less mass, better efficiency, and less total area (collector and radiator) than other power converter options. These benefits result in significant dollar savings over the projected mission lifetime. The National Aeronautics and Space Administration (NASA)---Lewis Research Center (LeRC), which has the responsibility to evaluate and develop power technologies that can satisfy anticipated future space mission power requirements, has been developing free-piston Stirling power converters and is bringing the Stirling technology to readiness. As the principal contractor to NASA-LeRC, Mechanical Technology Incorporated (MTI) is under contract to develop the necessary space Stirling technology but also demonstrate the readiness of the technology in two generations of full-scale power converters. The first generation Stirling power converter, the component test power converter (CTPC), initiated cold end testing at the end of 1991, with hot testing scheduled during 1992. This paper reviews test progress of the CTPC including the initial hot engine test results. Modifications incorporated into the CTPC from the earlier space power demonstrator engine are reviewed as well.

  16. NOx Sensor Development

    SciTech Connect (OSTI)

    Woo, L Y; Glass, R S

    2010-11-01

    NO{sub x} compounds, specifically NO and NO{sub 2}, are pollutants and potent greenhouse gases. Compact and inexpensive NO{sub x} sensors are necessary in the next generation of diesel (CIDI) automobiles to meet government emission requirements and enable the more rapid introduction of more efficient, higher fuel economy CIDI vehicles. Because the need for a NO{sub x} sensor is recent and the performance requirements are extremely challenging, most are still in the development phase. Currently, there is only one type of NO{sub x} sensor that is sold commercially, and it seems unlikely to meet more stringent future emission requirements. Automotive exhaust sensor development has focused on solid-state electrochemical technology, which has proven to be robust for in-situ operation in harsh, high-temperature environments (e.g., the oxygen stoichiometric sensor). Solid-state sensors typically rely on yttria-stabilized zirconia (YSZ) as the oxygen-ion conducting electrolyte and then target different types of metal or metal-oxide electrodes to optimize the response. Electrochemical sensors can be operated in different modes, including amperometric (a current is measured) and potentiometric (a voltage is measured), both of which employ direct current (dc) measurements. Amperometric operation is costly due to the electronics necessary to measure the small sensor signal (nanoampere current at ppm NO{sub x} levels), and cannot be easily improved to meet the future technical performance requirements. Potentiometric operation has not demonstrated enough promise in meeting long-term stability requirements, where the voltage signal drift is thought to be due to aging effects associated with electrically driven changes, both morphological and compositional, in the sensor. Our approach involves impedancemetric operation, which uses alternating current (ac) measurements at a specified frequency. The approach is described in detail in previous reports and several publications. Briefly, impedancemetric operation has shown the potential to overcome the drawbacks of other approaches, including higher sensitivity towards NO{sub x}, better long-term stability, potential for subtracting out background interferences, total NO{sub x} measurement, and lower cost materials and operation. Past LLNL research and development efforts have focused on characterizing different sensor materials and understanding complex sensing mechanisms. Continued effort has led to improved prototypes with better performance, including increased sensitivity (to less than 5 ppm) and long-term stability, with more appropriate designs for mass fabrication, including incorporation of an alumina substrate with an imbedded heater. Efforts in the last year to further improve sensor robustness have led to successful engine dynamometer testing with prototypes mounted directly in the engine manifold. Previous attempts had required exhaust gases to be routed into a separate furnace for testing due to mechanical failure of the sensor from engine vibrations. A more extensive cross-sensitivity study was also undertaken this last year to examine major noise factors including fluctuations in water, oxygen, and temperature. The quantitative data were then used to develop a strategy using numerical algorithms to improve sensor accuracy. The ultimate goal is the transfer of this technology to a supplier for commercialization. Due to the recent economic downturn, suppliers are demanding more comprehensive data and increased performance analysis before committing their resources to take the technology to market. Therefore, our NO{sub x} sensor work requires a level of technology development more thorough and extensive than ever before. The objectives are: (1) Develop an inexpensive, rapid-response, high-sensitivity and selective electrochemical sensor for oxides of nitrogen (NO{sub x}) for compression-ignition, direct-injection (CIDI) exhaust gas monitoring; (2) Explore and characterize novel, effective sensing methodologies based on impedance measurements and designs and manufacturing metho

  17. developing-compute-efficient

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Developing Compute-efficient, Quality Models with LS-PrePost® 3 on the TRACC Cluster Oct. 21-22, 2010 Argonne TRACC Dr. Cezary Bojanowski Dr. Ronald F. Kulak This email address is being protected from spambots. You need JavaScript enabled to view it. Announcement pdficon small The LS-PrePost Introductory Course was held October 21-22, 2010 at TRACC in West Chicago with interactive participation on-site as well as remotely via the Internet. Intended primarily for finite element analysts with

  18. Photonics Research and Development

    SciTech Connect (OSTI)

    Pookpanratana, Sujitra; Shlayan, Neveen; Venkat, Rama; Das, Bisjwajit; Boehm, Bob; Heske, Clemens; Fraser, Donald; Moustakas, Theodore

    2010-01-15

    During the period August 2005 through October 2009, the UNLV Research Foundation (UNLVRF), a non-profit affiliate of the University of Nevada, Las Vegas (UNLV), in collaboration with UNLV??s Colleges of Science and Engineering; Boston University (BU); Oak Ridge National Laboratory (ORNL); and Sunlight Direct, LLC, has managed and conducted a diverse and comprehensive research and development program focused on light-emitting diode (LED) technologies that provide significantly improved characteristics for lighting and display applications. This final technical report provides detailed information on the nature of the tasks, the results of the research, and the deliverables. It is estimated that about five percent of the energy used in the nation is for lighting homes, buildings and streets, accounting for some 25 percent of the average home??s electric bill. However, the figure is significantly higher for the commercial sector. About 60 percent of the electricity for businesses is for lighting. Thus replacement of current lighting with solid-state lighting technology has the potential to significantly reduce this nation??s energy consumption ?? by some estimates, possibly as high as 20%. The primary objective of this multi-year R&D project has been to develop and advance lighting technologies to improve national energy conversion efficiencies; reduce heat load; and significantly lower the cost of conventional lighting technologies. The UNLVRF and its partners have specifically focused these talents on (1) improving LED technologies; (2) optimizing hybrid solar lighting, a technology which potentially offers the benefits of blending natural with artificial lighting systems, thus improving energy efficiency; and (3) building a comprehensive academic infrastructure within UNLV which concentrates on photonics R&D. Task researchers have reported impressive progress in (1) the development of quantum dot laser emitting diodes (QDLEDs) which will ultimately improve energy efficiency and lower costs for display and lighting applications (UNLV College of Engineering); (2) advancing green LED technology based on the Indium-Gallium-Nitride system (BU), thus improving conversion efficiencies; (3) employing unique state-of-the-art X-ray, electron and optical spectroscopies with microscopic techniques to learn more about the electronic structure of materials and contacts in LED devices (UNLV College of Science); (4) establishing a UNLV Display Lighting Laboratory staffed with a specialized team of academic researchers, students and industrial partners focused on identifying and implementing engineering solutions for lighting display-related problems; and (5) conducting research, development and demonstration for HSL essential to the resolution of technological barriers to commercialization.

  19. Workforce Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Learning and Workforce Development » Workforce Development Workforce Development Assessment and Evaluation A structured Training Program Evaluation process has been developed by the Office of Learning and Workforce Development to evaluate the effectiveness and efficiency of DOE training courses and programs, while also ensuring public accountability and compliance with regulatory requirements. Training Evaluation involves the assessment of the effectiveness of training courses and programs.

  20. Eltron Research & Development

    SciTech Connect (OSTI)

    Evenson, Carl; Mackay, Richard; Faull, John

    2014-03-01

    This topical report covers technical work conducted under contract DE-FC26-05NT42469 between FY06 Q1 through FY14 Q2. The project evolved through several budget periods, budget revisions and continuation applications. This report covers work performed under the “base” program. In 2010 ARRA funding was added to the project. A separate report covering the ARRA portion of the project was submitted to DOE. The original project was focused on research and development for scale-up of hydrogen separation membrane for a FutureGen type power plant. The work included membrane testing and evaluation of metal alloy flat plates vs. tubes and metal membranes vs. cermet membranes. In addition, economic analysis and process modeling was performed. The original project team included CoorsTek, NORAM, and Praxair. In FY10Q2 a continuation application was filed for conducting a scale-up test at Eastman Chemical. In this part of the project a Subscale Engineering Prototype (SEP) membrane skid was designed, fabricated, and operated on a gasified coal slip-stream on Eastman’s site in Kingsport, TN. Following operation, the project was reorganized and a second continuation application with a new statement of work was initiated in FY12Q1. Finally, based on DOE’s decision not to proceed with a Process Development Unit (PDU) field test, a third continuation application and statement of work was initiated in FY13Q1 to close out the project.

  1. Advanced Hydrogen Turbine Development

    SciTech Connect (OSTI)

    Joesph Fadok

    2008-01-01

    Siemens has developed a roadmap to achieve the DOE goals for efficiency, cost reduction, and emissions through innovative approaches and novel technologies which build upon worldwide IGCC operational experience, platform technology, and extensive experience in G-class operating conditions. In Phase 1, the technologies and concepts necessary to achieve the program goals were identified for the gas turbine components and supporting technology areas and testing plans were developed to mitigate identified risks. Multiple studies were conducted to evaluate the impact in plant performance of different gas turbine and plant technologies. 2015 gas turbine technologies showed a significant improvement in IGCC plant efficiency, however, a severe performance penalty was calculated for high carbon capture cases. Thermodynamic calculations showed that the DOE 2010 and 2015 efficiency targets can be met with a two step approach. A risk management process was instituted in Phase 1 to identify risk and develop mitigation plans. For the risks identified, testing and development programs are in place and the risks will be revisited periodically to determine if changes to the plan are necessary. A compressor performance prediction has shown that the design of the compressor for the engine can be achieved with additional stages added to the rear of the compressor. Tip clearance effects were studied as well as a range of flow and pressure ratios to evaluate the impacts to both performance and stability. Considerable data was obtained on the four candidate combustion systems: diffusion, catalytic, premix, and distributed combustion. Based on the results of Phase 1, the premixed combustion system and the distributed combustion system were chosen as having the most potential and will be the focus of Phase 2 of the program. Significant progress was also made in obtaining combustion kinetics data for high hydrogen fuels. The Phase 1 turbine studies indicate initial feasibility of the advanced hydrogen turbine that meets the aggressive targets set forth for the advanced hydrogen turbine, including increased rotor inlet temperature (RIT), lower total cooling and leakage air (TCLA) flow, higher pressure ratio, and higher mass flow through the turbine compared to the baseline. Maintaining efficiency with high mass flow Syngas combustion is achieved using a large high AN2 blade 4, which has been identified as a significant advancement beyond the current state-of-the-art. Preliminary results showed feasibility of a rotor system capable of increased power output and operating conditions above the baseline. In addition, several concepts were developed for casing components to address higher operating conditions. Rare earth modified bond coat for the purpose of reducing oxidation and TBC spallation demonstrated an increase in TBC spallation life of almost 40%. The results from Phase 1 identified two TBC compositions which satisfy the thermal conductivity requirements and have demonstrated phase stability up to temperatures of 1850 C. The potential to join alloys using a bonding process has been demonstrated and initial HVOF spray deposition trials were promising. The qualitative ranking of alloys and coatings in environmental conditions was also performed using isothermal tests where significant variations in alloy degradation were observed as a function of gas composition. Initial basic system configuration schematics and working system descriptions have been produced to define key boundary data and support estimation of costs. Review of existing materials in use for hydrogen transportation show benefits or tradeoffs for materials that could be used in this type of applications. Hydrogen safety will become a larger risk than when using natural gas fuel as the work done to date in other areas has shown direct implications for this type of use. Studies were conducted which showed reduced CO{sub 2} and NOx emissions with increased plant efficiency. An approach to maximize plant output is needed in order to address the DOE turbine goal for 20-30% reduction o

  2. Ripeness sensor development

    SciTech Connect (OSTI)

    Not Available

    1992-11-01

    About 20--25% of the total production of fruits and vegetables in the USA must be discarded after harvest About 25--30% of this loss is the result of over-ripening and this loss represents about 8.39 [times] 10[sup 12] BTU of invested energy every year. This invested energy could be saved by non-destructive ripeness sensing. Sweetness is an important indicator of fruit quality and highly correlated with ripeness in most fruits. Research to develop a non-destructive fruit ripeness sensor has been conducted in the Agricultural Engineering Department at Purdue University. It is based on [sup 1]H-MR (proton Magnetic Resonance). A first generation prototype of the ripeness sensor based on [sup 1]H-MR was built and tested with. Results show that the sensor can discriminate small fruit (0.75 in diameter or smaller) differing in sugar content by 6%. This prototype can separate the fruit into at least two groups: one ripe and the other not ripe. The estimated cost for such a ripeness sensor is around $4,000. The signal sensitivity of the prototype can be improved to enable it to differentiate between fruits varying in sugar content by only 1 or 2% by using water peak suppression techniques to recover relatively weak sugar resonance signals in intact fruits, modifying circuits to eliminate noise, leakage and distortion of input/output signals, improving the magnetic console to get a higher magnetic field and better homogeneity, and designing a probe to achieve a higher signal-to-noise (S/N) ratio. As research continues a second generation ripeness sensor will be developed which will incorporate many of the improvements and which will be suitable for commercial use. Additional research will allow application of the technique to a wider range of fruit sizes (from blueberries to watermelons). This report describes estimated energy savings, feasibility studies, development of the initial prototype, and preliminary evaluation of the first generation prototype.

  3. NOxsensor development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NOxsensor development NOxsensor development PDF icon pm005_woo_2010_o.pdf More Documents & Publications Electrochemical NOx Sensors for Monitoring Diesel Emissions Electrochemical NOxSensor for Monitoring Diesel Emissions NOx Sensor Development

  4. Developer | OpenEI Community

    Open Energy Info (EERE)

    Developer Home > Developer > Posts by term > Developer Content Group Activity By term Q & A Feeds Term: FOA Type Term Title Author Replies Last Post sort icon Blog entry FOA...

  5. Developer | OpenEI Community

    Open Energy Info (EERE)

    Developer Home > Developer > Posts by term > Developer Content Group Activity By term Q & A Feeds Term: EIA Type Term Title Author Replies Last Post sort icon Blog entry EIA...

  6. Developer | OpenEI Community

    Open Energy Info (EERE)

    Developer Home > Developer > Posts by term > Developer Content Group Activity By term Q & A Feeds Term: API Type Term Title Author Replies Last Post sort icon Blog entry API...

  7. Alloys in energy development

    SciTech Connect (OSTI)

    Frost, B.R.T.

    1984-02-01

    The development of new and advanced energy systems often requires the tailoring of new alloys or alloy combinations to meet the novel and often stringent requirements of those systems. Longer life at higher temperatures and stresses in aggressive environments is the most common goal. Alloy theory helps in achieving this goal by suggesting uses of multiphase systems and intermediate phases, where solid solutions were traditionally used. However, the use of materials under non-equilibrium conditions is now quite common - as with rapidly solidified metals - and the application of alloy theory must be modified accordingly. Under certain conditions, as in a reactor core, the rate of approach to equilibrium will be modified; sometimes a quasi-equilibrium is established. Thus an alloy may exhibit enhanced general diffusion at the same time as precipitate particles are being dispersed and solute atoms are being carried to vacancy sinks. We are approaching an understanding of these processes and can begin to model these complex systems.

  8. Advanced servomanipulator development

    SciTech Connect (OSTI)

    Kuban, D.P.

    1985-01-01

    The Advanced Servomanipulator (ASM) System consists of three major components: the ASM slave, the dual arm master controller (DAMC) or master, and the control system. The ASM is remotely maintainable force-reflecting servomanipulator developed at the Oak Ridge National Laboratory (ORNL) as part of the Consolidated Fuel Reprocessing Program. This new manipulator addresses requirements of advanced nuclear fuel reprocessing with emphasis on force reflection, remote maintainability, reliability, radiation tolerance, and corrosion resistance. The advanced servomanipulator is uniquely subdivided into remotely replaceable modules which will permit in situ manipulator repair by spare module replacement. Manipulator modularization and increased reliability are accomplished through a force transmission system that uses gears and torque tubes. Digital control algorithms and mechanical precision are used to offset the increased backlash, friction, and inertia resulting from the gear drives. This results in the first remotely maintainable force-reflecting servomanipulator in the world.

  9. Developer | OpenEI Community

    Open Energy Info (EERE)

    Developer header Developer Home > Groups Content Group Activity By term Q & A Feeds Share your own status updates, and follow the updates & activities of others by creating your...

  10. Nawitas Development | Open Energy Information

    Open Energy Info (EERE)

    Development Jump to: navigation, search Name: Nawitas Development Place: Bratislava, Slovakia Zip: 831 06 Sector: Wind energy Product: Slovak based company active in wind energy...

  11. High-performance batteries for electric-vehicle propulsion and stationary energy storage. Progress report, October 1978-September 1979. [40 kWh, Li-Al and Li-Si anodes

    SciTech Connect (OSTI)

    Barney, D. L.; Steunenberg, R. K.; Chilenskas, A. A.; Gay, E. C.; Battles, J. E.; Hornstra, F.; Miller, W. E.; Vissers, D. R.; Roche, M. F.; Shimotake, H.; Hudson, R.; Askew, B. A.; Sudar, S.

    1980-03-01

    The research, development, and management activities of the programs at Argonne National Laboratory (ANL) and at contractors' laboratories on high-temperature batteries during the period October 1978 to September 1979 are reported. These batteries are being developed for electric-vehicle propulsion and for stationary energy-storage applications. The present cells, which operate at 400 to 500/sup 0/C, are of a vertically oriented, prismatic design with one or more inner positive electrodes of FeS or FeS/sub 2/, facing negative electrodes of lithium-aluminum or lithium-silicon alloy, and molten LiCl-KC1 electrolyte. During this reporting period, cell and battery development work has continued at ANL and contractors' laboratories. A 40 kWh electric-vehicle battery (designated Mark IA) was fabricated and delivered to ANL for testing. During the initial heat-up, one of the two modules failed due to a short circuit. A failure analysis was conducted, and the Mark IA program completed. Development work on the next electric-vehicle battery (Mark II) was initiated at Eagle-Picher Industries, Inc. and Gould, Inc. Work on stationary energy-storage batteries during this period has consisted primarily of conceptual design studies. 107 figures, 67 tables.

  12. Power Systems Development Facility

    SciTech Connect (OSTI)

    None

    2003-07-01

    This report discusses Test Campaign TC12 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (SW) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using a particulate control device (PCD). While operating as a gasifier, either air or oxygen can be used as the oxidant. Test run TC12 began on May 16, 2003, with the startup of the main air compressor and the lighting of the gasifier start-up burner. The Transport Gasifier operated until May 24, 2003, when a scheduled outage occurred to allow maintenance crews to install the fuel cell test unit and modify the gas clean-up system. On June 18, 2003, the test run resumed when operations relit the start-up burner, and testing continued until the scheduled end of the run on July 14, 2003. TC12 had a total of 733 hours using Powder River Basin (PRB) subbituminous coal. Over the course of the entire test run, gasifier temperatures varied between 1,675 and 1,850 F at pressures from 130 to 210 psig.

  13. Process Development for Nanostructured Photovoltaics

    SciTech Connect (OSTI)

    2011-05-31

    Fact sheet describing low-cost nanofabrication method to develop nanostructured, dye-sensitized solar cells

  14. Breakthrough Vehicle Development - Fuel Cells

    Fuel Cell Technologies Publication and Product Library (EERE)

    Document describing research and development program for fuel cell power systems for transportation applications.

  15. 1998 wire development workshop proceedings

    SciTech Connect (OSTI)

    1998-04-01

    This report consists of vugraphs of the presentations at the conference. The conference was divided into the following sessions: (1) First Generation Wire Development: Status and Issues; (2) First Generation Wire in Pre-Commercial Prototypes; (3) Second Generation Wire Development: Private Sector Progress and Issues; (4) Second Generation Wire Development: Federal Laboratories; and (5) Fundamental Research Issues for HTS Wire Development.

  16. FISCAL YEAR 2006 REPORT ON ELECTROLYZER COMPONENT DEVELOPMENT FOR THE HYBRID SULFUR PROJECT

    SciTech Connect (OSTI)

    Colon-Mercado, H; David Hobbs, D; Daryl Coleman, D; Amy Ekechukwu, A

    2006-08-03

    Thermochemical processes are being developed to provide global-scale quantities of hydrogen. A variant on sulfur-based thermochemical cycles is the Hybrid Sulfur (HyS) Process which uses a sulfur dioxide depolarized electrolyzer (SDE) to produce the hydrogen. In FY05, testing at the Savannah River National Laboratory (SRNL) explored a low temperature fuel cell design concept for the SDE. The advantages of this design concept include high electrochemical efficiency and small volumetric footprint that is crucial for successful implementation on a commercial scale. A key component of the SDE is the ion conductive membrane through which protons produced at anode migrate to the cathode and react to produce hydrogen. An ideal membrane for the SDE should have both low ionic resistivity and low sulfur dioxide transport. These features allow the electrolyzer to perform at high currents with low potentials, along with preventing contamination of both the hydrogen output and poisoning of the catalysts involved. Another key component is the electrocatalyst material used for the anode and cathode. Good electrocatalysts should be chemically stable and low overpotential for the desired electrochemical reactions. This report summarizes results from activities to evaluate different membrane and electrocatalyst materials for the SDE. Several different types of commercially-available membranes were analyzed for ionic resistance and sulfur dioxide transport including perfluorinated sulfonic acid, sulfonated poly-etherketone-ketone, and poly-benzimidazole membranes. Of these membrane types, the poly-benzimidazole (PBI) membrane, Celtec-L, exhibited the best combination of characteristics for use in an SDE. Testing examined the activity and stability of platinum and palladium as electrocatalyst for the SDE in sulfuric acid solutions. Cyclic and linear sweep voltammetry revealed that platinum provided better catalytic activity with much lower potentials and higher currents than palladium. Testing also showed that the catalyst activity is strongly influenced by concentration of the sulfuric acid. Various cell configurations were examined with respect to the deposition of electrocatalyst and use of conductive carbon materials such as carbon cloth and carbon paper. Findings from these evaluations and the results of the membrane and electrocatalyst testing, we prepared three different membrane electrode assemblies (MEA) for electrolyzer testing. The first MEA consisted of a Nafion{reg_sign} membrane with platinum electrocatalyst deposited on carbon cloths, which were heat pressed onto the membrane, an assembly identical to those used in proton exchange membrane fuel cells. The second MEA also used a Nafion membrane with the electrocatalysts deposited directly onto the membrane. The third MEA proved similar to the second but utilized a PBI membrane in place of the Nafion{reg_sign} membrane. Tailor of the membrane and catalysts properties for the SDE system was concluded as a required step for the technology to move forward. It was also recommended the evaluation of the tested and new developed materials at conditions closer to the SDE operating conditions and for longer period of time.

  17. Development of Advanced Electrochemical Emission Spectroscopy for Monitoring Corrosion in Simulated DOE Liquid Waste

    SciTech Connect (OSTI)

    Digby Macdonald; Brian Marx; Balaji Soundararajan; Morgan Smith

    2005-07-28

    The different tasks that have been carried out under the current program are as follows: (1) Theoretical and experimental assessment of general corrosion of iron/steel in borate buffer solutions by using electrochemical impedance spectroscopy (EIS), ellipsometry and XPS techniques; (2) Development of a damage function analysis (DFA), which would help in predicting the accumulation of damage due to pitting corrosion in an environment prototypical of DOE liquid waste systems; (3) Experimental measurement of crack growth rate, acoustic emission signals, and coupling currents for fracture in carbon and low alloy steels as functions of mechanical (stress intensity), chemical (conductivity), electrochemical (corrosion potential, ECP), and microstructural (grain size, precipitate size, etc) variables in a systematic manner, with particular attention being focused on the structure of the noise in the current and its correlation with the acoustic emissions; (4) Development of fracture mechanisms for carbon and low alloy steels that are consistent with the crack growth rate, coupling current data and acoustic emissions; (5) Inserting advanced crack growth rate models for SCC into existing deterministic codes for predicting the evolution of corrosion damage in DOE liquid waste storage tanks; (6) Computer simulation of the anodic and cathodic activity on the surface of the steel samples in order to exactly predict the corrosion mechanisms; (7) Wavelet analysis of EC noise data from steel samples undergoing corrosion in an environment similar to that of the high level waste storage containers, to extract data pertaining to general, pitting and stress corrosion processes, from the overall data. The work has yielded a number of important findings, including an unequivocal demonstration of the role of chloride ion in passivity breakdown on nickel in terms of cation vacancy generation within the passive film, the first detection and characterization of individual micro fracture events in stress corrosion cracking, and the determination of kinetic parameters for the generation and annihilation of point defects in the passive film on iron. The existence of coupling between the internal crack environment and the external cathodic environment, as predicted by the coupled environment fracture model (CEFM), has also been indisputably established for the AISI 4340/NaOH system. It is evident from the studies that analysis of coupling current noise is a very sensitive tool for studying the crack tip processes in relation to the chemical, mechanical, electrochemical, and microstructural properties of the system. Experiments are currently being carried out to explore these crack tip processes by simultaneous measurement of the acoustic activity at the crack tip in an effort to validate the coupling current data. These latter data are now being used to deterministically predict the accumulation of general and localized corrosion damage on carbon in prototypical DOE liquid waste storage tanks. Computer simulation of the cathodic and anodic activity on the steel surfaces is also being carried out in an effort to simulate the actual corrosion process. Wavelet analysis of the coupling current data promises to be a useful tool to differentiate between the different corrosion mechanisms. Hence, wavelet analysis of the coupling current data from the DOE waste containers is also being carried out to extract data pertaining to general, pitting and stress corrosion processes, from the overall data which is bound to contain noise fluctuations due to any or all of the above mentioned processes.

  18. WEC Model Development at Sandia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2C Marine and Hydrokinetic Instrumentation, Measurement & Computer Modeling Workshop - Broomfield, CO July 9 th , 2012 Wave Energy Converter Model Development at Sandia Outline  Overview of SNL's WEC Modeling Activities * Wave Energy Development Roadmap * MHK Reference Models - Diana Bull * WEC Model Tool Development - Kelley Ruehl Reference Models and SNL Array Modeling presented in next session Wave Energy Development Roadmap Overall Goal and Motivation  Goal: Develop a suggested

  19. Molten carbonate fuel cell (MCFC) product development test. Annual report, September 1993--September 1994

    SciTech Connect (OSTI)

    1995-02-01

    M-C Power Corporation will design, fabricate, install, test and evaluate a 250 kW Proof-of-Concept Molten Carbonate Fuel Cell (MCFC) Power Plant. The plant is to be located at the Naval Air Station Miramar in San Diego, California. This report summarizes the technical progress that has occurred in conjunction with this project in 1994. M-C Power has completed the tape casting and sintering of cathodes and is proceeding with the tape casting and sintering of anodes for the first 250 cell stack. M-C Power and San Diego Gas and Electric relocated the fuel cell demonstration project to an alternate site at the Naval Air Station Miramar. For the new project location at the Naval Air Station Miramar, an Environmental Assessment has been prepared by the Department of Energy in compliance with the National Environmental Policy Act of 1969. The Environmental Assessment resulted in a categorical exclusion of the proposed action from all environmental permit requirements. Bechtel Corporation has completed the reformer process design coordination, a Process Description, the Pipe and Instrumentation Diagrams, a Design Criteria Document and General Project Requirement Document. Bechtel developed the requirements for soils investigation report and issued the following equipment bid packages to the suppliers for bids: Inverter, Reformer, Desulfurization Vessels, Hot Gas Recycle Blower, Heat Recovery Steam Generator, and Recycle Gas Cooler. SDG and E has secured necessary site permits, conducted soils investigations, and is working on the construction plan. They are in final negotiations with the US Navy on a site agreement. Site drawings are required for finalization of the agreement.

  20. IEED Tribal Energy Development to Build Tribal Energy Development Capacity

    Broader source: Energy.gov [DOE]

    The Assistant Secretary - Indian Affairs for the U.S. Department of the Interior, through the Office of Indian Energy and Economic Development, is soliciting grant proposals from Indian tribes to build tribal capacity for energy resource development or management under the Department of the Interior's (DOl's) Tribal Energy Development Capacity (TEDC) grant program.

  1. Recent Developments in SHERPA

    SciTech Connect (OSTI)

    Archibald, Jennifer; Gleisberg, Tanju; Hoeche, Stefan; Krauss, Frank; Schonherr, Marek; Schumann, Steffen; Siegert, Frank; Winter, Jan; /Fermilab

    2011-11-15

    Some recent QCD-related developments in the SHERPA event generator are presented. In the past decades, event generators such as PYTHIA [1, 2] and HERWIG [3, 4] have been central for nearly all physics analyses at particle physics experiments at the high-energy frontier. This will also hold true at the LHC, where a large number of interesting signals for new particles or new phenomena (the Higgs boson or any other manifestation of the mechanism behind electro-weak symmetry breaking, supersymmetry, extra dimensions etc.) is hampered by a plethora of severe, sometimes overwhelming backgrounds. Nearly all of them are largely influenced by QCD. Therefore it seems fair to say that the success of the LHC in finding new physics may very well depend on a deep and detailed understanding of old physics, like QCD. Examples for this include, among others, the central-jet veto for the vector boson fusion channel for Higgs production or topologies, where gauge bosons emerge in association with many jets, a background for many search channels. In a reflection on increased needs by the experimental community, aiming at higher precision, incorporation of new physics models and so on, the work horses of old have undergone serious renovation efforts, resulting in new, improved versions of the respective codes, namely PYTHIA8 [5] and HERWIG++ [6]. In addition a completely new code, SHERPA [7], has been constructed and is in the process of maturing. The status of this code is the topic of this contribution. SHERPA's hallmark property is the inclusion of higher-order tree-level QCD contributions, leading to an improved modelling of jet production. They are introduced through a full-fledged matrix element generator, AMEGIC++ [8], which is capable of generating matrix elements and corresponding phase space mappings for processes with multi-particle final states in various models, including the Standard Model, anomalous gauge triple and quadruple couplings according to [9, 10], the Minimal Supersymmetric Standard Model with Feynman rules from [11], the ADD-model of extra dimensions [12, 13], and a model with an extra U(1) singlet coupling to the Higgs boson only [14]. The code has been thoroughly tested and validated [15]. This code, however, is limited, especially in the treatment of many ({ge} 6) external QCD particles. Therefore, in the near future, SHERPA will incorporate another, new matrix element generator, COMIX, which is based on Berends-Giele recursion relations [16] and color-dressing [17] rather than color-ordering. In Tabs. 1 and 2 some example cross sections for gg {yields} ng at fixed energies and pp {yields} b{bar b} + n jets obtained with this program are exhibited and compared to those from other programs. In addition, concerning the calculation of higher-order matrix elements and cross sections, there have been first steps towards an automation of such calculations at truly next-to leading order accuracy. They manifest themselves in the implementation of a procedure [19] to fully automatically construct and evaluate Catani-Seymour dipole subtraction terms [20] for the real part of such NLO calculations. The results from the matrix element calculations are merged with the subsequent parton shower through the formalism of [21, 22]. The results of its implementation in SHERPA [23] has recently been compared with other algorithms [24]. Although there remains some dispute about the theoretical equivalence of the different approaches, the overall results show satisfying agreement with each other, such that they can be used with confidence for data analysis.

  2. Developer | OpenEI Community

    Open Energy Info (EERE)

    > Developer > Posts by term > Developer Content Group Activity By term Q & A Feeds Term: Big Data Type Term Title Author Replies Last Post sort icon Blog entry Big Data Visualize...

  3. Developer | OpenEI Community

    Open Energy Info (EERE)

    New Result Formats on OpenEI Jweers 25 Mar 2013 - 12:22 Blog entry developer OpenEI maintenance March 8-9, 2013 Rmckeel 8 Mar 2013 - 14:23 Blog entry developer Semantic Mediawiki...

  4. Development of MP3 Technologies

    Office of Scientific and Technical Information (OSTI)

    Development of MP3 Technologies Impact of Basic Research on Innovation - Edited excerpts from American Competitiveness Initiative, February 2006...

  5. Development of MP3 Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Development of MP3 Technologies Impact of Basic Research on Innovation - Edited excerpts from American Competitiveness Initiative, February 2006

  6. Leadership Development | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply for a Job Connect with Argonne LinkedIn Facebook Twitter YouTube Google+ More Social Media » Leadership Development Argonne's excellence and innovation is driven by exemplary leadership. At Argonne, select scientific and support staff are actively identified for, developed into, and recognized in leadership positions. Leadership Development programs are offered for first-level supervisors through executive leaders and focus on developing proficiency in an array of relevant skill sets and

  7. Seneca Nation - Energy Organization Development

    Energy Savers [EERE]

    NATION SENECA NATION Energy Organizational Development Energy Organizational Development A A " " First Steps First Steps " " Grant Grant November 8, 2007 November 8, 2007 SENECA NATION SENECA NATION In appreciation & Acknowledgment: In appreciation & Acknowledgment: - - Seneca Nation Council Seneca Nation Council Arlene Arlene Bova Bova , Councilor & Energy , Councilor & Energy development advocate development advocate - - Dept. of Energy, Tribal Energy Dept.

  8. Developer Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Developer Resources Developer Resources Apps for Energy Apps for Energy The Energy Department is challenging developers to use the Green Button data access program to bring residential and commercial utility data to life with fun and creative apps. Read more Learn about Green Button Learn about Green Button Apps for Energy submissions must use Green Button data. To learn more, start here. Read more NREL Resources NREL Resources NREL offers a number resources for Green Button app developers. Find

  9. Technology Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development Technology Development OE supports a portfolio of technology development and deployment programs that will modernize our Nation's electric delivery system. To be successful, it is essential that key stakeholders be involved in this enterprise, including federal and state government agencies, electric power companies, equipment manufacturers, systems developers, and consumers, and work together toward a shared vision of the future, with full understanding of each other's respective

  10. GETEM Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development GETEM Development GETEM Development presentation at the April 2013 peer review meeting held in Denver, Colorado. PDF icon mines_getem_peer2013.pdf More Documents & Publications U.S. DOE Geothermal Electricity Technology Evaluation Model (GETEM) Webinar Presentation track 1: systems analysis | geothermal 2015 peer review Economic Impact Analysis for EGS

  11. Community-Driven Development Decision Tools for Rural Development...

    Open Energy Info (EERE)

    (CDD) investment programmes as a way to further enabling rural poor people to overcome poverty in WCA." References "Community-Driven Development Decision Tools" Retrieved from...

  12. Stage 3c: Developing and Assessing Low Emissions Development...

    Open Energy Info (EERE)

    Low Emissions Development Scenarios Jump to: navigation, search Stage 3 LEDS Home Introduction to Framework Assess current country plans, policies, practices, and capacities...

  13. Energy Department Develops Regulatory Roadmap to Spur Geothermal Energy Development

    Broader source: Energy.gov [DOE]

    The Energy Department today issued a Geothermal Regulatory Roadmap that will help developers navigate regulatory requirements at every level of government to deploy geothermal energy projects.

  14. Sustainable Urban Development Priorities - Development of a Rapid...

    Open Energy Info (EERE)

    investments, transport interventions and policies, and will be developed with the involvement of the stakeholders to identify existing mobility patterns and deficiencies....

  15. Assessing Development Impacts Associated with Low Emission Development...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... As opposed to programs strictly focused on GHG emission mitigation, LEDS actions are aligned with the development goals of the country, such as poverty alleviation, economic ...

  16. Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OF IMAGING We require: (1) a high quality ion beam, (2) computer vision and image processing techniques for isolating and re- constructing the beam, and (3) wavelengths suitable...

  17. Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tube PMT detector at the exit slit. One monochromator is an f 8.6 Czerny-Turner design with 500 mm focal length Jarrell-Ash, 1.6 nm mm dispersion with 1180...

  18. NREL: Technology Deployment - Project Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Development By employing our project development models, NREL offers a broad range of advisory services that are based off commercial practices and support the entire project development process to help reduce the risks associated with energy efficiency and renewable energy projects. This includes policy and regulatory analysis, financing alternatives, project management, proposal reviews, and project risk and technology assessments. Policy and Regulatory Analysis NREL analyzes federal

  19. USDA Rural Development Energy Program

    Energy Savers [EERE]

    Development Energy Programs Tedd Buelow Native American Coordinator DOE Tribal Energy Program Review November 16, 2009 USDA Rural Development 4 Types of Program Delivery - Guaranteed Loans - Direct Loans - Grants - Payments 3 Program Areas - Rural Business and Cooperative - Rural Housing and Community Facilities - Rural Utilities DOE Tribal Energy Program Review November 16, 2009 USDA Rural Development Organizational Structure National Office State Directors Area Directors Program Directors

  20. ORISE: Instructional Design and Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Instructional Design and Development The Oak Ridge Institute for Science and Education (ORISE) works with government agencies and organizations to create customized training and instructional design programs, from traditional classroom teaching to online education. ORISE uses a multi-step process to define the instructional design and development needs. Our process includes: Defining the target audience and objectives Designing and developing the program and materials Piloting, delivering and