National Library of Energy BETA

Sample records for developing li-ion cells

  1. Development of Cell/Pack Level Models for Automotive Li-Ion Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with Experimental Validation Development of CellPack Level Models for Automotive Li-Ion Batteries with Experimental Validation 2012 DOE Hydrogen and Fuel Cells Program and...

  2. Analysis of Heat Dissipation in Li-Ion Cells & Modules for Modeling of Thermal Runaway (Presentation)

    SciTech Connect (OSTI)

    Kim, G.-H.; Pesaran, A.

    2007-05-15

    The objectives of this study are: (1) To develop 3D Li-Ion battery thermal abuse ''reaction'' models for cell and module analysis; (2) To understand the mechanisms and interactions between heat transfer and chemical reactions during thermal runaway for Li-Ion cells and modules; (3) To develop a tool and methodology to support the design of abuse-tolerant Li-Ion battery systems for PHEVs/HEVs; and (4) To help battery developers accelerate delivery of abuse-tolerant Li-Ion battery systems in support of the FreedomCAR's Energy Storage Program.

  3. Significant Cost Improvement of Li-Ion Cells Through Non-NMP...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Significant Cost Improvement of Li-Ion Cells Through Non-NMP Electrode Coating, Direct Separator Coating, and Fast Formation Technologies Significant Cost Improvement of Li-Ion...

  4. Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Li-Ion Polymer Battery Cell Manufacturing Plant in USA Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  5. Development of a Novel Test Method for On-Demand Internal Short Circuit in a Li-Ion Cell (Presentation)

    SciTech Connect (OSTI)

    Keyser, M.; Long, D.; Jung, Y. S.; Pesaran, A.; Darcy, E.; McCarthy, B.; Patrick, L.; Kruger, C.

    2011-01-01

    This presentation describes a cell-level test method that simulates an emergent internal short circuit, produces consistent and reproducible test results, can establish the locations and temperatures/power/SOC conditions where an internal short circuit will result in thermal runaway, and provides relevant data to validate internal short circuit models.

  6. Mesoscale Modeling of a Li-Ion Polymer Cell Chia-Wei Wanga,

    E-Print Network [OSTI]

    Sastry, Ann Marie

    Mesoscale Modeling of a Li-Ion Polymer Cell Chia-Wei Wanga, * and Ann Marie Sastrya,b,c, *,z, the study reported critical data required for mesoscale numerical simulation, including ionic con- ductivity

  7. Vehicle Technologies Office Merit Review 2014: Advanced High Energy Li-Ion Cell for PHEV and EV Applications

    Broader source: Energy.gov [DOE]

    Presentation given by 3M at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced high energy Li-ion cell for PHEV...

  8. Vehicle Technologies Office Merit Review 2014: Development of Cell/Pack Level Models for Automotive Li-Ion Batteries with Experimental Validation

    Broader source: Energy.gov [DOE]

    Presentation given by EC Power at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about evelopment of cell/pack level models...

  9. Electrolytes and Separators for High Voltage Li Ion Cells

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  10. Lithium Source For High Performance Li-ion Cells

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  11. Heat generation rate measurement in a Li-ion cell at large C-rates through temperature and heat flux measurements

    E-Print Network [OSTI]

    Texas at Arlington, University of

    Heat generation rate measurement in a Li-ion cell at large C-rates through temperature and heat Keywords: Lithium-ion batteries Heat generation rate measurement Heat flux sensor Thermal conduction Battery safety a b s t r a c t Understanding the rate of heat generation in a Li-ion cell is critical

  12. Figure 1. Schematic drawing showing the components of a Li-ion battery cell and the information that can be

    E-Print Network [OSTI]

    showing the concept of the smallest working battery based on a single nanowire (left). TEM image of the Sn transmission electron microscopy (TEM) imaging of the electrode during the battery's operation. EssentiallyFigure 1. Schematic drawing showing the components of a Li-ion battery cell and the information

  13. Vehicle Technologies Office Merit Review 2015: High Energy Density Li-ion Cells for EV’s Based on Novel, High Voltage Cathode Material Systems

    Broader source: Energy.gov [DOE]

    Presentation given by Farasis at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy density Li-ion cells for...

  14. Development of High Energy Cathode for Li-ion Batteries | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8,Department of Energy 1 DOEEnergyEnergy for Li-ion

  15. 26.2 Single-Inductor Dual-Input Dual-Output Buck-Boost Fuel Cell-Li Ion Charging DC-DC Converter Supply

    E-Print Network [OSTI]

    Rincon-Mora, Gabriel A.

    1 26.2 Single-Inductor Dual-Input Dual-Output Buck-Boost Fuel Cell-Li Ion Charging DC-DC Converter battery with its energy-dense counterpart like the fuel cell (FC) improves micro-scale integration [2]. As a result, buck or boost single-inductor, dual-input, dual-output (SIDIDO) converters enjoy

  16. Title: Single-Inductor Fuel CellLi Ion ChargerSupply IC with Nested Hysteretic Control Suhwan Kim, Student Member, IEEE, and Gabriel A. Rincn-Mora, Fellow, IEEE

    E-Print Network [OSTI]

    Rincon-Mora, Gabriel A.

    1 Title: Single-Inductor Fuel Cell­Li Ion Charger­Supply IC with Nested Hysteretic Control Authors, miniaturized devices benefit from deriving energy from fuel cells (FCs) and power from Li Ions, rather than-inductor, dual-input, dual-output (SIDIDO) charger-supply 0.5-µm CMOS IC with a nested hysteretic-control scheme

  17. Investigation of Path Dependence in Commercial Li-ion Cells Chosen for PHEV Duty Cycle Protocols (paper)

    SciTech Connect (OSTI)

    Kevin L. Gering

    2011-04-01

    Path dependence is emerging as a premier issue of how electrochemical cells age in conditions that are diverse and variable in the time domain. For example, lithium-ion cells in a vehicle configuration will experience a variable combination of usage and rest periods over a range of temperature and state of charge (SOC). This is complicated by the fact that some aging can actually become worse (or better) when a lithium-ion cell is idle for extended periods under calendar-life (calL) aging, as opposed to cycle-life (cycL) conditions where the cell is used within a predictable schedule. The purpose of this study is to bridge the gap between highly idealized and controlled laboratory test conditions and actual field conditions regarding PHEV applications, so that field-type aging mechanisms can be mimicked and quantified in a repeatable laboratory setting. The main parameters are the magnitude and frequency of the thermal cycling, looking at isothermal, mild, and severe scenarios. To date, little is known about Li-ion aging effects caused by thermal cycling superimposed onto electrochemical cycling, and related path dependence. This scenario is representative of what Li-ion batteries will experience in vehicle service, where upon the typical start of a HEV/PHEV, the batteries will be cool or cold, will gradually warm up to normal temperature and operate there for a time, then will cool down after the vehicle is turned off. Such thermal cycling will occur thousands of times during the projected life of a HEV/PHEV battery pack. We propose to quantify the effects of thermal cycling on Li-ion batteries using a representative chemistry that is commercially available. The secondary Li-ion cells used in this study are of the 18650 configuration, have a nominal capacity rating of 1.9 Ah, and consist of a {LiMn2O4 + LiMn(1/3)Ni(1/3)Co(1/3)O2} cathode and a graphite anode. Electrochemical cycling is based on PHEV-relevant cycle-life protocols that are a combination of charge depleting (CD) and charge sustaining (CS) modes discussed in the Battery Test Manual for Plug-in Hybrid Electric Vehicles (INL, March 2008, rev0). A realistic duty cycle will involve both CD and CS modes, the proportion of each defined by the severity of the power demands. We assume that the cells will start each cycling day at 90% SOC, and that they will not be allowed to go below 35% SOC, with operation around 70% SOC being a nominal condition. The 35, 70, and 90% SOC conditions are also being used to define critical aspects of the related reference performance test (RPT) for this investigation. There are three primary components to the RPT, all assessed at room temperature: (A) static and residual capacity (SRC) over a matrix of current, (B) kinetics and pulse performance testing (PPT) over current for SOCs of interest, and (C) EIS for SOCs of interest. The RPT is performed on all cells every 30 day test interval, as well as a pulse-per-day to provide a quick diagnostic snapshot. Where feasible, we utilize various elements of Diagnostic Testing (DT) to characterize performance of the cells and to gain mechanistic-level knowledge regarding both performance features and limitations. We will present the rationale behind the experimental design, early data, and discuss the fundamental tools used to elucidate performance degradation mechanisms.

  18. Air stable Al2O3-coated Li2NiO2 cathode additive as a surplus current consumer in a Li-ion cell

    E-Print Network [OSTI]

    Cho, Jaephil

    increases to 2.75V (2.85V vs. graphite), its discharge capacity decreases to 120 mAh/g, which corresponds for the irreversible capacity of the Li-ion cell using LiCoO2 and natural graphite as cathode and anode materials the complete decomposition of the Li2NiO2. 1. Introduction Most Li secondary batteries use LiCoO2 as a cathode

  19. Material review of Li ion battery separators

    SciTech Connect (OSTI)

    Weber, Christoph J., E-mail: Christoph.Weber@freudenberg-nw.com; Geiger, Sigrid, E-mail: Christoph.Weber@freudenberg-nw.com [Freudenberg Vliesstoffe SE and Co KG, 69465 Weinheim (Germany); Falusi, Sandra; Roth, Michael [Freudenberg Forschungsdienste SE and Co KG, 69465 Weinheim (Germany)

    2014-06-16

    Separators for Li Ion batteries have a strong impact on cell production, cell performance, life, as well as reliability and safety. The separator market volume is about 500 million m{sup 2} mainly based on consumer applications. It is expected to grow strongly over the next decade for mobile and stationary applications using large cells. At present, the market is essentially served by polyolefine membranes. Such membranes have some technological limitations, such as wettability, porosity, penetration resistance, shrinkage and meltdown. The development of a cell failure due to internal short circuit is potentially closely related to separator material properties. Consequently, advanced separators became an intense area of worldwide research and development activity in academia and industry. New separator technologies are being developed especially to address safety and reliability related property improvements.

  20. The Relationship of the Nail Penetration Test to Safety of Li-Ion Cells

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  1. Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  2. Aalborg Universitet Datasheet-based modeling of Li-Ion batteries

    E-Print Network [OSTI]

    Andreasen, Søren Juhl

    SLPB 120216216 53Ah Li-Ion cell. Keywords: battery model, Lithium Ion battery, equivalent circuit model

  3. Li-Ion polymer cells thermal property changes as a function of cycle-life

    SciTech Connect (OSTI)

    Maleki, Hossein; Wang, Hsin; Porter, Wallace D; Hallmark, Jerry

    2014-01-01

    The impact of elevated temperature chargeedischarge cycling on thermal conductivity (K-value) of Lithium Ion Polymer (LIP) cells of various chemistries from three different manufacturers was investigated. These included high voltage (Graphite/LiCoO2:3.0e4.35 V), wide voltage (Si:C/LiCoO2:2.7e4.35 V) and conventional (Graphite/LiCoO2:3.0e4.2 V) chemistries. Investigation results show limited variability within the in-plane and through-plane K-values for the fresh cells with graphite-based anodes from all three suppliers. After 500 cycles at 45 C, in-plane and through-plane K-values of the high voltage cells reduced less vs. those for the wide voltage cells. Such results suggest that high temperature cycling could have a greater impact on thermal properties of Si:C cells than on the LIP cells with graphite (Gr) anode cells we tested. This difference is due to the excess swelling of Si:C-anode based cells vs. Gr-anode cells during cycling, especially at elevated temperatures. Thermal modeling is used to evaluate the impact of K-value changes, due to cycles at 45 C, on the cells internal heat propagation under internal short circuit condition that leads to localized meltdown of the separator.

  4. Electrochemical and physical analysis of a Li-ion cell cycled at elevated temperature

    SciTech Connect (OSTI)

    Shim, Joongpyo; Kostecki, Robert; Richardson, Thomas; Song, Xiangyun; Striebel, Kathryn A.

    2002-06-21

    Laboratory-size LiNi0.8Co0.15Al0.05O2/graphite lithium-ion pouch cells were cycled over 100 percent DOD at room temperature and 60 degrees C in order to investigate high-temperature degradation mechanisms of this important technology. Capacity fade for the cell was correlated with that for the individual components, using electrochemical analysis of the electrodes and other diagnostic techniques. The high-temperature cell lost 65 percent of its initial capacity after 140 cycles at 60 degrees C compared to only 4 percent loss for the cell cycled at room temperature. Cell ohmic impedance increased significantly with the elevated temperature cycling, resulting in some of loss of capacity at the C/2 rate. However, as determined with slow rate testing of the individual electrodes, the anode retained most of its original capacity, while the cathode lost 65 percent, even when cycled with a fresh source of lithium. Diagnostic evaluation of cell components including XRD, Raman, CSAFM and suggest capacity loss occurs primarily due to a rise in the impedance of the cathode, especially at the end-of-charge. The impedance rise may be caused in part by a loss of the conductive carbon at the surface of the cathode and/or by an organic film on the surface of the cathode that becomes non-ionically conductive at low lithium content.

  5. Vehicle Technologies Office Merit Review 2015: High Energy Anode Material Development for Li-ion Batteries

    Broader source: Energy.gov [DOE]

    Presentation given by Sinode Systems at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy anode material...

  6. Electrolytes and Separators for High Voltage Li Ion Cells | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofAprilofEnergy 1 DOE Hydrogen and Fuel Cells

  7. Biphasic Electrode Suspensions for Li-Ion Semi-solid Flow Cells with High

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing Bacteria (Technical Report) | SciTechReport)(Technical Report)cellsEnergy Density, Fast

  8. Develop high energy high power Li-ion battery cathode materials : a first principles computational study

    E-Print Network [OSTI]

    Xu, Bo; Xu, Bo

    2012-01-01

    years. During the materials optimization and development,of this material also needs optimization[30-32]. The mostrole in material designing and optimization. As the problems

  9. A Novel In-situ Electrochemical Cell for Neutron Diffraction Studies of Phase Transitions in Small Volume Electrodes of Li-ion Batteries

    SciTech Connect (OSTI)

    Vadlamani, Bhaskar S; An, Ke; Jagannathan, M.; Ravi Chandran, K.

    2014-01-01

    The design and performance of a novel in-situ electrochemical cell that greatly facilitates the neutron diffraction study of complex phase transitions in small volume electrodes of Li-ion cells, is presented in this work. Diffraction patterns that are Rietveld-refinable could be obtained simultaneously for all the electrodes, which demonstrates that the cell is best suited to explore electrode phase transitions driven by the lithiation and delithiation processes. This has been facilitated by the use of single crystal (100) Si sheets as casing material and the planar cell configuration, giving improved signal-to-noise ratio relative to other casing materials. The in-situ cell has also been designed for easy assembly and to facilitate rapid experiments. The effectiveness of cell is demonstrated by tracking the neutron diffraction patterns during the charging of graphite/LiCoO2 and graphite/LiMn2O4 cells. It is shown that good quality neutron diffraction data can be obtained and that most of the finer details of the phase transitions, and the associated changes in crystallographic parameters in these electrodes, can be captured.

  10. Adaptation of an Electrochemistry-based Li-Ion Battery Model to Account for Deterioration Observed Under Randomized Use

    E-Print Network [OSTI]

    Daigle, Matthew

    Adaptation of an Electrochemistry-based Li-Ion Battery Model to Account for Deterioration Observed). In this paper, we use an electrochemistry-based lithium ion (Li-ion) battery model developed in (Daigle

  11. Platform Li-Ion Battery Risk Assessment Tool: Cooperative Research and Development Final Report, CRADA Number CRD-10-407

    SciTech Connect (OSTI)

    Smith, K.

    2012-01-01

    Creare was awarded a Phase 1 STTR contract from the US Office of Naval Research, with a seven month period of performance from 6/28/2010 to 1/28/2011. The objectives of the STTR were to determine the feasibility of developing a software package for estimating reliability of battery packs, and develop a user interface to allow the designer to assess the overall impact on battery packs and host platforms for cell-level faults. NREL served as sub-tier partner to Creare, providing battery modeling and battery thermal safety expertise.

  12. Modular Process Equipment for Low Cost Manufacturing of High Capacity Prismatic Li-Ion Cell Alloy Anodes

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  13. Vehicle Technologies Office Merit Review 2015: Giga Life Cycle: Manufacture of Cells from Recycled EV Li-ion Batteries

    Broader source: Energy.gov [DOE]

    Presentation given by OnTo Technology at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Giga Life Cycle: manufacture...

  14. Vehicle Technologies Office Merit Review 2015: Efficient Safety and Degradation Modeling of Automotive Li-ion Cells and Pack

    Broader source: Energy.gov [DOE]

    Presentation given by EC-Power at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about efficient safety and degradation...

  15. Vehicle Technologies Office Merit Review 2014: Efficient Safety and Degradation Modeling of Automotive Li-ion Cells and Pack

    Broader source: Energy.gov [DOE]

    Presentation given by EC Power at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about efficient safety and degradation...

  16. Platform Li-Ion Battery Risk Assessment Tool: Cooperative Research and Development Final Report, CRADA Number CRD-01-406

    SciTech Connect (OSTI)

    Santhanagopalan, S.

    2012-07-01

    The pressure within a lithium-ion cell changes due to various chemical reactions. When a battery undergoes an unintended short circuit, the pressure changes are drastic - and often lead to uncontrolled failure of the cells. As part of work for others with Oceanit Laboratories Inc. for the NAVY STTR, NREL built Computational Fluid Dynamic (CFD) simulations that can identify potential weak spots in the battery during such events, as well as propose designs to control violent failure of batteries.

  17. Enabling Future Li-Ion Battery Recycling | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Future Li-Ion Battery Recycling Title Enabling Future Li-Ion Battery Recycling Publication Type Presentation Year of Publication 2014 Authors Gaines, LL Abstract Presentation made...

  18. Characterization of Li-ion Batteries using Neutron Diffraction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Li-ion Batteries using Neutron Diffraction and Infrared Imaging Techniques Characterization of Li-ion Batteries using Neutron Diffraction and Infrared Imaging Techniques 2011 DOE...

  19. Development of Cell/Pack Level Models for Automotive Li-Ion Batteries with

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8,Department of Energy 1 DOE Hydrogen andExperimental

  20. Simplified Electrochemical and Thermal Model of LiFePO4-Graphite Li-Ion Batteries for Fast Charge Applications

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Simplified Electrochemical and Thermal Model of LiFePO4- Graphite Li-Ion Batteries for Fast Charge, a simplified electrochemical and thermal model of LiFePO4-graphite based Li-ion batteries is developed for battery management system (BMS) applications and comprehensive aging investigations. Based on a modified

  1. NREL's PHEV/EV Li-Ion Battery Secondary-Use Project

    SciTech Connect (OSTI)

    Newbauer, J.; Pesaran, A.

    2010-06-01

    Accelerated development and market penetration of plug-in hybrid electric vehicles (PHEVs) and electric vehicles (EVs) is restricted at present by the high cost of lithium-ion (Li-ion) batteries. One way to address this problem is to recover a fraction of the Li-ion battery's cost via reuse in other applications after it is retired from service in the vehicle, when the battery may still have sufficient performance to meet the requirements of other energy storage applications.

  2. Improved Positive Electrode Materials for Li-ion Batteries

    E-Print Network [OSTI]

    Conry, Thomas Edward

    2012-01-01

    commercial Li-ion batteries today use graphite or a mixturein certain primary batteries). Graphite has a potential of

  3. Significant Cost Improvement of Li-Ion Cells Through Non-NMP Electrode Coating, Direct Separator Coating, and Fast Formation Technologies

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  4. A Model Reduction Framework for Efficient Simulation of Li-Ion Batteries

    E-Print Network [OSTI]

    A Model Reduction Framework for Efficient Simulation of Li-Ion Batteries Mario Ohlberger Stephan of degradation processes in lithium-ion batteries, the modelling of cell dynamics at the mircometer scale algorithms. In this contribution we discuss the reduction of microscale battery models with the reduced basis

  5. Predictive Models of Li-ion Battery Lifetime (Presentation) Smith...

    Office of Scientific and Technical Information (OSTI)

    Predictive Models of Li-ion Battery Lifetime (Presentation) Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G.; Shi, Y.; Pesaran, A. 25 ENERGY STORAGE; 33 ADVANCED PROPULSION...

  6. Construction of a Li Ion Battery (LIB) Cathode Production Plant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of LIB Cathode Materials Process for Low Cost Domestic Production of LIB Cathode Materials Construction of a Li Ion Battery (LIB) Cathode Production Plant in Elyria, Ohio...

  7. Nanoscale In Situ Characterization of Li-ion Battery Electrochemistry...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hersam, Northwestern University and CEES EFRC To enhance the performance and lifetime of lithium-ion (Li-ion) batteries, researchers require an improved understanding of the...

  8. Characterization of Materials for Li-ion Batteries: Success Stories...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Laboratory (HTML) User Program Characterization of Materials for Li-ion Batteries: Success Stories from the High Temperature Materials Laboratory (HTML) User...

  9. Vehicle Technologies Office Merit Review 2014: Modular Process Equipment for Low Cost Manufacturing of High Capacity Prismatic Li-Ion Cell Alloy Anodes

    Broader source: Energy.gov [DOE]

    Presentation given by Applied Materials at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about modular process equipment...

  10. Vehicle Technologies Office Merit Review 2014: Significant Cost Improvement of Li-ion Cells Through Non-NMP Electrode Coating, Direct Separator Coating, and Fast Formation Technologies

    Broader source: Energy.gov [DOE]

    Presentation given by Johnson Controls at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about significant cost improvement...

  11. Vehicle Technologies Office Merit Review 2015: Significant Cost Improvement of Li-Ion Cells Through Non-NMP Electrode Coating, Direct Separator Coating, and Fast Formation Technologies

    Broader source: Energy.gov [DOE]

    Presentation given by Johnson Controls at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about significant cost improvement...

  12. Vehicle Technologies Office Merit Review 2014: High Energy Density Li-ion Cells for EV’s Based on Novel, High Voltage Cathode Material Systems

    Broader source: Energy.gov [DOE]

    Presentation given by Farasis Energy, Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy density Li...

  13. Stochastic reconstruction and electrical transport studies of porous cathode of Li-ion batteries

    E-Print Network [OSTI]

    Liu, Fuqiang

    are among the most viable candidates for next generation, clean, and potentially fossil fuels independent. Siddique, Amir Salehi, Fuqiang Liu* Electrochemical Energy Laboratory, Department of Materials Science of detailed understanding has stagnated the development of the next generation Li-ion batteries. The state

  14. Maximum Li storage in Si nanowires for the high capacity three-dimensional Li-ion battery

    E-Print Network [OSTI]

    Jo, Moon-Ho

    , such as fuel cells and secondary batteries. Here we report a coin-type Si nanowire NW half-cell Li-ion battery is the central research subject in various energy conversion systems, such as solar cells, fuel cells must be optimally coordinated.7 In this respect, Si nanowire NW arrays can serve as the high capacity

  15. Micro Fuel Cells Direct Methanol Fuel Cells

    E-Print Network [OSTI]

    Micro Fuel Cells TM Direct Methanol Fuel Cells for Portable Power A Fuel Cell System Developer-17, 2002 Phoenix, Arizona #12;Micro Fuel Cells Direct Methanol Fuel Cells for Portable Power Outline (1 Energy Content (Wh) Volume(cm^3) Li-Ion Battery DMFC #12;Direct Methanol Fuel Cell Technology

  16. Transport and Failure in Li-ion Batteries | Stanford Synchrotron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transport and Failure in Li-ion Batteries Monday, February 13, 2012 - 1:30pm SSRL Conference Room 137-322 Stephen J. Harris, General Motors R&D While battery performance is well...

  17. Selected test results from the neosonic polymer Li-ion battery.

    SciTech Connect (OSTI)

    Ingersoll, David T.; Hund, Thomas D.

    2010-07-01

    The performance of the Neosonic polymer Li-ion battery was measured using a number of tests including capacity, capacity as a function of temperature, ohmic resistance, spectral impedance, hybrid pulsed power test, utility partial state of charge (PSOC) pulsed cycle test, and an over-charge/voltage abuse test. The goal of this work was to evaluate the performance of the polymer Li-ion battery technology for utility applications requiring frequent charges and discharges, such as voltage support, frequency regulation, wind farm energy smoothing, and solar photovoltaic energy smoothing. Test results have indicated that the Neosonic polymer Li-ion battery technology can provide power levels up to the 10C{sub 1} discharge rate with minimal energy loss compared to the 1 h (1C) discharge rate. Two of the three cells used in the utility PSOC pulsed cycle test completed about 12,000 cycles with only a gradual loss in capacity of 10 and 13%. The third cell experienced a 40% loss in capacity at about 11,000 cycles. The DC ohmic resistance and AC spectral impedance measurements also indicate that there were increases in impedance after cycling, especially for the third cell. Cell No.3 impedance Rs increased significantly along with extensive ballooning of the foil pouch. Finally, at a 1C (10 A) charge rate, the over charge/voltage abuse test with cell confinement similar to a multi cell string resulted in the cell venting hot gases at about 45 C 45 minutes into the test. At 104 minutes into the test the cell voltage spiked to the 12 volt limit and continued out to the end of the test at 151 minutes. In summary, the Neosonic cells performed as expected with good cycle-life and safety.

  18. Low-Cost Graphite and Olivine-Based Materials for Li-Ion Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Graphite and Olivine-Based Materials for Li-Ion Batteries Low-Cost Graphite and Olivine-Based Materials for Li-Ion Batteries Presentation from the U.S. DOE Office of Vehicle...

  19. Influence of Li ions on the oxygen reduction reaction of platinum electrocatalyst

    SciTech Connect (OSTI)

    Liu, H; Xing, YC

    2011-06-01

    A Li-air battery can provide a much higher theoretical energy density than a Li-ion battery. The use of aqueous acidic electrolytes may prevent lithium oxide deposition from aprotic electrolytes and lithium carbonate precipitation from alkaline electrolytes. The present communication reports a study on the effect of Li ions on the oxygen reduction reaction (ORR) in sulfuric acid electrolytes. It was found that the Li ions have negligible interactions with the active surface of Pt catalysts. However, significantly lower ORR activities were found when Li ions are present in the sulfuric acid. The intrinsic kinetic activities were found to decrease with the increase of Li ion concentrations, but level off when the Li ion concentrations are larger than 1.0 M. The low activities of Pt catalysts in Li ion containing electrolytes were attributed to a constraining effect of Li ions on the diffusion of oxygen in the electrolyte solution. (C) 2011 Elsevier B.V. All rights reserved.

  20. The significance of Li-ion batteries in electric vehicle life...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The significance of Li-ion batteries in electric vehicle life-cycle energy and emissions and recycling's role in its reduction Title The significance of Li-ion batteries in...

  1. Nanoscale LiFePO4 and Li4Ti5O12 for High Rate Li-ion Batteries

    E-Print Network [OSTI]

    Jaiswal, A.

    2010-01-01

    12 for High Rate Li-ion Batteries A. Jaiswal 1 , C. R. Hornenext generation of Li-ion batteries for consumer electronics

  2. ESTABLISHING SUSTAINABLE US HEV/PHEV MANUFACTURING BASE: STABILIZED LITHIUM METAL POWDER, ENABLING MATERIAL AND REVOLUTIONARY TECHNOLOGY FOR HIGH ENERGY LI-ION BATTERIES

    SciTech Connect (OSTI)

    Yakovleva, Marina

    2012-12-31

    FMC Lithium Division has successfully completed the project “Establishing Sustainable US PHEV/EV Manufacturing Base: Stabilized Lithium Metal Powder, Enabling Material and Revolutionary Technology for High Energy Li-ion Batteries”. The project included design, acquisition and process development for the production scale units to 1) produce stabilized lithium dispersions in oil medium, 2) to produce dry stabilized lithium metal powders, 3) to evaluate, design and acquire pilot-scale unit for alternative production technology to further decrease the cost, and 4) to demonstrate concepts for integrating SLMP technology into the Li- ion batteries to increase energy density. It is very difficult to satisfy safety, cost and performance requirements for the PHEV and EV applications. As the initial step in SLMP Technology introduction, industry can use commercially available LiMn2O4 or LiFePO4, for example, that are the only proven safer and cheaper lithium providing cathodes available on the market. Unfortunately, these cathodes alone are inferior to the energy density of the conventional LiCoO2 cathode and, even when paired with the advanced anode materials, such as silicon composite material, the resulting cell will still not meet the energy density requirements. We have demonstrated, however, if SLMP Technology is used to compensate for the irreversible capacity in the anode, the efficiency of the cathode utilization will be improved and the cost of the cell, based on the materials, will decrease.

  3. Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries

    E-Print Network [OSTI]

    Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries g h l i g h t s We demonstrated that thermal management of Li-ion batteries improves dramatically incorporation leads to significant decrease in the temperature rise in Li-ion batteries. Graphene leads

  4. Li ion migration in Li3PO4 electrolytes: Effects of O vacancies and N substitutions

    E-Print Network [OSTI]

    Holzwarth, Natalie

    Li ion migration in Li3PO4 electrolytes: Effects of O vacancies and N substitutions Y. A. Dua and N an understanding of detailed mechanisms of Li ion migration in these materials. In previous work, (7) we used first-principles calculations to model Li ion migration in crystalline Li3PO4, finding very good agreement with the experimental

  5. High Capacity Graphite Anodes for Li-Ion battery applications

    E-Print Network [OSTI]

    Popov, Branko N.

    High Capacity Graphite Anodes for Li-Ion battery applications using Tin microencapsulation Basker range 1.6V to 0.01V at 0.05 mV/s Physical characterization SEM, EDAX and XRD #12;SEM images of Bare

  6. Silicon Based Anodes for Li-Ion Batteries

    SciTech Connect (OSTI)

    Zhang, Jiguang; Wang, Wei; Xiao, Jie; Xu, Wu; Graff, Gordon L.; Yang, Zhenguo; Choi, Daiwon; Li, Xiaolin; Wang, Deyu; Liu, Jun

    2012-06-15

    Silicon is environmentally benign and ubiquitous. Because of its high specific capacity, it is considered one of the most promising candidates to replace the conventional graphite negative electrode used in today's Li ion batteries. Silicon has a theoretical specific capacity of nearly 4200 mAh/g (Li21Si5), which is 10 times larger than the specific capacity of graphite (LiC6, 372 mAh/g). However, the high capacity of silicon is associated with huge volume changes (more than 300 percent) when alloyed with lithium, which can cause severe cracking and pulverization of the electrode and lead to significant capacity loss. Significant scientific research has been conducted to circumvent the deterioration of silicon based anode materials during cycling. Various strategies, such as reduction of particle size, generation of active/inactive composites, fabrication of silicon based thin films, use of alternative binders, and the synthesis of 1-D silicon nanostructures have been implemented by a number of research groups. Fundamental mechanistic research has also been performed to better understand the electrochemical lithiation and delithiation process during cycling in terms of crystal structure, phase transitions, morphological changes, and reaction kinetics. Although efforts to date have not attained a commercially viable Si anode, further development is expected to produce anodes with three to five times the capacity of graphite. In this chapter, an overview of research on silicon based anodes used for lithium-ion battery applications will be presented. The overview covers electrochemical alloying of the silicon with lithium, mechanisms responsible for capacity fade, and methodologies adapted to overcome capacity degradation observed during cycling. The recent development of silicon nanowires and nanoparticles with significantly improved electrochemical performance will also be discussed relative to the mechanistic understanding. Finally, future directions on the development of silicon based anodes will be considered.

  7. Surface treated natural graphite as anode material for high-power Li-ion battery applications.

    SciTech Connect (OSTI)

    Liu, J.; Vissers, D. R.; Amine, K.; Barsukov, I. V.; Henry, F.; Doniger, J.; Chemical Engineering; Superior Graphite Co.

    2006-01-01

    High power application of Li-ion battery in hybrid electrical vehicles requires low cost and safe cell materials. Among the various carbon anode materials used in lithium ion batteries, natural graphite shows the most promise with advantages in performance and cost. However, natural graphite is not compatible with propylene carbonate (PC)-based electrolytes, which have a lower melting point and improved safety characteristics. The problem with it is that the molecules of propylene carbonate intercalate with Li+ into graphite, and that frequently leads to the exfoliation of the graphite matrix.

  8. GM Li-Ion Battery Pack Manufacturing

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  9. Polymer graphite composite anodes for Li-ion batteries

    E-Print Network [OSTI]

    Popov, Branko N.

    Polymer graphite composite anodes for Li-ion batteries Basker Veeraraghavan, Bala Haran, Ralph analysis #12;TGA analysis of polymer composite SFG10 samples -0.0 150.0 300.0 450.0 600.0 750.0 900-discharge curves of polymer composite SFG10 samples 0 200 400 600 800 Specific Capacity (mAh/g) 0.0 1.0 2.0 3.0 4

  10. Miniature all-solid-state heterostructure nanowire Li-ion batteries...

    Office of Scientific and Technical Information (OSTI)

    all-solid-state heterostructure nanowire Li-ion batteries as a tool for engineering and structural diagnostics of nanoscale electrochemical processes Citation Details In-Document...

  11. Miniature All-solid-state Heterostructure Nanowire Li-ion Batteries...

    Office of Scientific and Technical Information (OSTI)

    All-solid-state Heterostructure Nanowire Li-ion Batteries as a Toll for Engineering and Structural Diagnostics of Nanoscale Electrochemical Processes Citation Details In-Document...

  12. Platforms and Methods for In Situ Characterization of Li-ion...

    Office of Scientific and Technical Information (OSTI)

    Platforms and Methods for In Situ Characterization of Li-ion Battery Materials. Citation Details In-Document Search Title: Platforms and Methods for In Situ Characterization of...

  13. PHEV/EV Li-Ion Battery Second-Use Project (Presentation)

    SciTech Connect (OSTI)

    Neubauer, J.; Pesaran, A.

    2010-04-01

    Accelerated development and market penetration of plug-in hybrid electric vehicles (PHEVs) and electric vehicles (Evs) are restricted at present by the high cost of lithium-ion (Li-ion) batteries. One way to address this problem is to recover a fraction of the battery cost via reuse in other applications after the battery is retired from service in the vehicle, if the battery can still meet the performance requirements of other energy storage applications. In several current and emerging applications, the secondary use of PHEV and EV batteries may be beneficial; these applications range from utility peak load reduction to home energy storage appliances. However, neither the full scope of possible opportunities nor the feasibility or profitability of secondary use battery opportunities have been quantified. Therefore, with support from the Energy Storage activity of the U.S. Department of Energy's Vehicle Technologies Program, the National Renewable Energy Laboratory (NREL) is addressing this issue. NREL will bring to bear its expertise and capabilities in energy storage for transportation and in distributed grids, advanced vehicles, utilities, solar energy, wind energy, and grid interfaces as well as its understanding of stakeholder dynamics. This presentation introduces NREL's PHEV/EV Li-ion Battery Secondary-Use project.

  14. Automotive Li-ion Battery Cooling Requirements | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Research atDepartmentAuditsDepartment of EnergyConversionLi-ion

  15. Probing the Degradation Mechanisms in Electrolyte Solutions for Li-ion Batteries by In-Situ Transmission Electron Microscopy

    SciTech Connect (OSTI)

    Abellan Baeza, Patricia; Mehdi, Beata L.; Parent, Lucas R.; Gu, Meng; Park, Chiwoo; Xu, Wu; Zhang, Yaohui; Arslan, Ilke; Zhang, Jiguang; Wang, Chong M.; Evans, James E.; Browning, Nigel D.

    2014-03-12

    One of the goals in the development of new battery technologies is to find new electrolytes with increased electrochemical stability. In-situ (scanning) transmission electron microscopy ((S)TEM) using an electrochemical fluid cell provides the ability to rapidly and directly characterize electrode/electrolyte interfacial reactions under battery relevant electrochemical conditions. Furthermore, as the electron beam itself causes a localized electrochemical reaction when it interacts with the electrolyte, the breakdown products that occur during the first stages of battery operation can potentially be simulated and characterized using a straightforward in-situ liquid stage (without electrochemical biasing capabilities). In this paper, we have studied the breakdown of a range of inorganic/salt complexes that are used in state-of-the-art Li-ion battery systems. The results of the in-situ (S)TEM experiments matches with previous stability tests performed during battery operation and the breakdown products and mechanisms are also consistent with known mechanisms. This analysis indicates that in-situ liquid stage (S)TEM observations can be used to directly test new electrolyte designs and provide structural insights into the origin of the solid electrolyte interphase (SEI) formation mechanism.

  16. Aalborg Universitet Multi-Objective Control of Balancing Systems for Li-Ion Battery Packs

    E-Print Network [OSTI]

    Andreasen, Søren Juhl

    in a e-mobility application. Simulation results demonstrate the technical feasibility of this newlyAalborg Universitet Multi-Objective Control of Balancing Systems for Li-Ion Battery Packs Barreras, R. E. (2014). Multi-Objective Control of Balancing Systems for Li-Ion Battery Packs: A paradigm

  17. Electrochemical Lithium Harvesting from Waste Li-ion Batteries Byron M. Wolfe III1

    E-Print Network [OSTI]

    Zhou, Yaoqi

    Electrochemical Lithium Harvesting from Waste Li-ion Batteries Byron M. Wolfe III1 , Wen Chao Lee1 This study demonstrates the feasibility of using water and the contents of waste Li-ion batteries for the electrodes in a Li-liquid battery system. Li metal was collected electrochemically from a waste Li

  18. Stochastic Simulation Model for the 3D Morphology of Composite Materials in Li-Ion Batteries

    E-Print Network [OSTI]

    Schmidt, Volker

    Stochastic Simulation Model for the 3D Morphology of Composite Materials in Li-Ion Batteries Ralf August 30, 2010 Abstract Battery technology plays an important role in energy storage. In particular, lithium­ ion (Li-ion) batteries are of great interest, because of their high capacity, long cycle life

  19. Electrolyte Stability Determines Scaling Limits for Solid-State 3D Li Ion Batteries

    E-Print Network [OSTI]

    Electrolyte Stability Determines Scaling Limits for Solid-State 3D Li Ion Batteries Dmitry Ruzmetov, all-solid-state Li ion batteries (LIBs) with high specific capacity and small footprint are highly, into the nanometer regime, can lead to rapid self-discharge of the battery even when the electrolyte layer

  20. Adsorption and Diffusion of Lithium on Layered Silicon for Li-Ion Georgios A. Tritsaris,,

    E-Print Network [OSTI]

    -dimensional silicon in the form of silicene layers for Li-ion storage. KEYWORDS: Lithium-ion battery, energy storage batteries constitute a promising energy storage technology suitable for portable and grid applicationsAdsorption and Diffusion of Lithium on Layered Silicon for Li-Ion Storage Georgios A. Tritsaris

  1. Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries

    E-Print Network [OSTI]

    Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries to a transformative change in thermal management of Li-ion batteries. a r t i c l e i n f o Article history: Received September 2013 Keywords: Battery Thermal management Graphene Phase change material a b s t r a c t Li

  2. First principles simulations of Li ion migration in materials related to LiPON electrolytes

    E-Print Network [OSTI]

    Holzwarth, Natalie

    energies for Li ion migration. In the course of this work, we discovered new stable crystalline forms of Li. For crystalline materials the activa- tion energy EA is related to the migration energy Em and the "formationFirst principles simulations of Li ion migration in materials related to LiPON electrolytes Y. A

  3. A Simplified Electrochemical and Thermal Aging Model of LiFePO4-Graphite Li-ion Batteries

    E-Print Network [OSTI]

    1 A Simplified Electrochemical and Thermal Aging Model of LiFePO4-Graphite Li-ion Batteries: Power of a commercial LiFePO4-graphite Li-ion battery. Compared to the isothermal reference, the mechanism of porosity;2 Due to their high power and energy densities, Li-ion technologies are the leading battery systems

  4. Multiscale Simulations of Li Ion Conductivity in Solid Electrolyte

    SciTech Connect (OSTI)

    Sushko, Maria L.; Rosso, Kevin M.; Zhang, Jiguang; Liu, Jun

    2011-09-15

    Optimizing solid electrolyte design for its application in Li-ion and Li-metal batteries requires a fundamental understanding of the mechanism of ion and electron transport in the material at the nano- to micron-scales. We have performed simulations of Li+ and electron conductivity in lithium phosphorus oxynitride, one of the most widely used solid electrolytes, using novel hierarchical multiscale models. By comparing the results of one- and three-dimensional models we show that for this material with complex non-linear Li+ diffusion pathways three-dimensional description is essential for reproducing experimentally measured conductivity. We also suggest some basic principles to design optimum electrolyte tailored for low and high temperature regimes.

  5. Second-Use Li-Ion Batteries to Aid Automotive and Utility Industries (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-01-01

    Repurposing Li-ion batteries at the end of useful life in electric drive vehicles could eliminate owners' disposal concerns and offer low-cost energy storage for certain applications.

  6. An ultra-compact and efficient Li-ion battery charger circuit for biomedical applications

    E-Print Network [OSTI]

    Do Valle, Bruno Guimaraes

    This paper describes an ultra-compact analog lithium-ion (Li-ion) battery charger for wirelessly powered implantable medical devices. The charger presented here takes advantage of the tanh output current profile of an ...

  7. Facile synthesis of nanostructured vanadium oxide as cathode materials for efficient Li-ion batteries

    E-Print Network [OSTI]

    Cao, Guozhong

    -ion batteries Yanyi Liu,a Evan Uchaker,a Nan Zhou,ab Jiangang Li,ac Qifeng Zhanga and Guozhong Cao*a Received 23 and VO2 (B) nanorods were tested as active cathode materials for Li-ion batteries. The V2O5 sheet for efficient Li-ion batteries. Introduction The expansion and demands for energy use in the past several

  8. Li-Ion Battery Cell Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIALU.S.Leadership on Clean Energys o u tMr.Leveraging

  9. Novel Laser-Based Manufacturing of nano-LiFePO4-Based Materials for High Power Li Ion Batteries

    E-Print Network [OSTI]

    Horne, Craig R.; Jaiswal, Abhishek; Chang, On; Crane, S.; Doeff, Marca M.; Wang, Emile

    2006-01-01

    II “Olivines in Lithium Batteries” The Beckman Institute,for High Power Li Ion Batteries C.R. Horne 1 , A. Jaiswal

  10. Improved layered mixed transition metal oxides for Li-ion batteries

    SciTech Connect (OSTI)

    Doeff, Marca M.; Conry, Thomas; Wilcox, James

    2010-03-05

    Recent work in our laboratory has been directed towards development of mixed layered transition metal oxides with general composition Li[Ni, Co, M, Mn]O2 (M=Al, Ti) for Li ion battery cathodes. Compounds such as Li[Ni1/3Co1/3Mn1/3]O2 (often called NMCs) are currently being commercialized for use in consumer electronic batteries, but the high cobalt content makes them too expensive for vehicular applications such as electric vehicles (EV), plug-in hybrid electric vehicles (PHEVs), or hybrid electric vehicles (HEVs). To reduce materials costs, we have explored partial or full substitution of Co with Al, Ti, and Fe. Fe substitution generally decreases capacity and results in poorer rate and cycling behavior. Interestingly, low levels of substitution with Al or Ti improve aspects of performance with minimal impact on energy densities, for some formulations. High levels of Al substitution compromise specific capacity, however, so further improvements require that the Ni and Mn content be increased and Co correspondingly decreased. Low levels of Al or Ti substitution can then be used offset negative effects induced by the higher Ni content. The structural and electrochemical characterization of substituted NMCs is presented in this paper.

  11. Aalborg Universitet Influence of Li-ion Battery Models in the Sizing of Hybrid Storage Systems with

    E-Print Network [OSTI]

    Andreasen, Søren Juhl

    Aalborg Universitet Influence of Li-ion Battery Models in the Sizing of Hybrid Storage Systems, R. E. (2014). Influence of Li-ion Battery Models in the Sizing of Hybrid Storage Systems Storage Systems with Supercapacitors Cl´audio Pinto, Jorge V. Barreras, Ricardo de Castro, Erik Schaltz

  12. Semi-Solid Flowable Battery Electrodes: Semi-Solid Flow Cells for Automotive and Grid-Level Energy Storage

    SciTech Connect (OSTI)

    2010-09-01

    BEEST Project: Scientists at 24M are crossing a Li-Ion battery with a fuel cell to develop a semi-solid flow battery. This system relies on some of the same basic chemistry as a standard Li-Ion battery, but in a flow battery the energy storage material is held in external tanks, so storage capacity is not limited by the size of the battery itself. The design makes it easier to add storage capacity by simply increasing the size of the tanks and adding more paste. In addition, 24M's design also is able to extract more energy from the semi-solid paste than conventional Li-Ion batteries. This creates a cost-effective, energy-dense battery that can improve the driving range of EVs or be used to store energy on the electric grid.

  13. Electrostatic Energy Harvester and Li-Ion Charger Circuit for Micro-Scale Applications

    E-Print Network [OSTI]

    Rincon-Mora, Gabriel A.

    of the available technologies [7]. Mobile and outdoors applications, for instance, are more likely to vibrateElectrostatic Energy Harvester and Li-Ion Charger Circuit for Micro-Scale Applications Erick O-cycle operation, smart power-aware net- work architectures, and batteries with improved energy density, the stored

  14. Atomistic insights into Li-ion diffusion in amorphous silicon , Afif Gouissem a

    E-Print Network [OSTI]

    Sharma, Pradeep

    are a critical part of the future energy storage needs in a broad range of applica- tions: portable electronics is currently focused on understanding the basic materials science underscoring these energy storage devicesAtomistic insights into Li-ion diffusion in amorphous silicon Xin Yan a , Afif Gouissem a , Pradeep

  15. First principles simulations of Li ion migration in materials related to LiPON electrolytes a

    E-Print Network [OSTI]

    Holzwarth, Natalie

    of known materials reported in the literature together with new stable and meta-stable predictedFirst principles simulations of Li ion migration in materials related to LiPON electrolytes materials in the LixPOyNz family (x = 2y + 3z - 5). In order to systematize the current state

  16. Nanoparticle iron-phosphate anode material for Li-ion battery Dongyeon Son

    E-Print Network [OSTI]

    Park, Byungwoo

    density.1 The graphite generally used in lithium rechargeable batteries has a capacity of 372 mNanoparticle iron-phosphate anode material for Li-ion battery Dongyeon Son School of Materials rechargeable batteries. The electrochemical properties of the nanoparticle iron phosphates were characterized

  17. Aalborg Universitet A novel BEV concept based on fixed and swappable li-ion battery packs

    E-Print Network [OSTI]

    Berning, Torsten

    and Control, Robotics and Mechatronics Center German Aerospace Center (DLR), Wessling, D-82234, Germany Email@fe.up.pt Abstract--In this paper a novel battery electric vehicle (BEV) concept based on a small fixed and a big swappable li-ion battery pack is proposed in order to achieve: longer range, lower initial purchase price

  18. Block Copolymer Solid Battery Electrolyte with High Li-Ion Transference Number

    E-Print Network [OSTI]

    Rubloff, Gary W.

    Block Copolymer Solid Battery Electrolyte with High Li-Ion Transference Number Ayan Ghosh The electrochemical properties of a solid polymer electrolyte consisting of a diblock copolymer and lithium bis of withstanding such high voltage conditions. Unlike traditional liquid electrolytes, solid-state polymer electro

  19. Measurements of the Fracture Energy of Lithiated Silicon Electrodes of Li-Ion Batteries

    E-Print Network [OSTI]

    Suo, Zhigang

    Measurements of the Fracture Energy of Lithiated Silicon Electrodes of Li-Ion Batteries Matt Pharr, Cambridge, Massachusetts 02138, United States ABSTRACT: We have measured the fracture energy of lithiated of the observed cracks appear brittle in nature. By determining the condition for crack initiation, the fracture

  20. Structural Integration of Silicon Solar Cells and Lithium-ion Batteries Using Printed Electronics

    E-Print Network [OSTI]

    Kang, Jin Sung

    2012-01-01

    of thin- film Li-ion batteries under flexural deflection,”thin-film solar cells and batteries (2) Characterizesolar cells and batteries for multifunctional performance (

  1. High Voltage Electrolytes for Li-ion Batteries

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  2. Composit, Nanoparticle-Based Anode material for Li-ion Batteries Applied in Hybrid Electric (HEV's)

    SciTech Connect (OSTI)

    Dr. Malgorzata Gulbinska

    2009-08-24

    Lithium-ion batteries are promising energy storage devices in hybrid and electric vehicles with high specific energy values ({approx}150 Wh/kg), energy density ({approx}400 Wh/L), and long cycle life (>15 years). However, applications in hybrid and electric vehicles require increased energy density and improved low-temperature (<-10 C) performance. Silicon-based anodes are inexpensive, environmentally benign, and offer excellent theoretical capacity values ({approx}4000 mAh/g), leading to significantly less anode material and thus increasing the overall energy density value for the complete battery (>500 Wh/L). However, tremendous volume changes occur during cycling of pure silicon-based anodes. The expansion and contraction of these silicon particles causes them to fracture and lose electrical contact to the current collector ultimately severely limiting their cycle life. In Phase I of this project Yardney Technical Products, Inc. proposed development of a carbon/nano-silicon composite anode material with improved energy density and silicon's cycleability. In the carbon/nano-Si composite, silicon nanoparticles were embedded in a partially-graphitized carbonaceous matrix. The cycle life of anode material would be extended by decreasing the average particle size of active material (silicon) and by encapsulation of silicon nanoparticles in a ductile carbonaceous matrix. Decreasing the average particle size to a nano-region would also shorten Li-ion diffusion path and thus improve rate capability of the silicon-based anodes. Improved chemical inertness towards PC-based, low-temperature electrolytes was expected as an additional benefit of a thin, partially graphitized coating around the active electrode material.

  3. NREL/NASA Internal Short-Circuit Instigator in Lithium Ion Cells; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Long, Dirk; Ireland, John; Pesaran, Ahmad; Darcy, Eric; Shoesmith, Mark; McCarthy, Ben

    2013-11-14

    NREL has developed a device to test one of the most challenging failure mechanisms of lithium-ion (Li-ion) batteries -- a battery internal short circuit. Many members of the technical community believe that this type of failure is caused by a latent flaw that results in a short circuit between electrodes during use. As electric car manufacturers turn to Li-ion batteries for energy storage, solving the short circuit problem becomes more important. To date, no reliable and practical method exists to create on-demand internal shorts in Li-ion cells that produce a response that is relevant to the ones produced by field failures. NREL and NASA have worked to establish an improved ISC cell-level test method that simulates an emergent internal short circuit, is capable of triggering the four types of cell internal shorts, and produces consistent and reproducible results. Internal short circuit device design is small, low-profile and implantable into Li-ion cells, preferably during assembly. The key component is an electrolyte-compatible phase change material (PCM). The ISC is triggered by heating the cell above PCM melting temperature (presently 40 degrees C – 60 degrees C). In laboratory testing, the activated device can handle currents in excess of 300 A to simulate hard shorts (< 2 mohms). Phase change from non-conducting to conducting has been 100% successful during trigger tests.

  4. Construction of a Li Ion Battery (LIB) Cathode Production Plant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt007esconner2012p.pdf More Documents & Publications...

  5. Identity of Passive Film Formed on Aluminum in Li-ion Battery Electrolytes with LiPF6

    E-Print Network [OSTI]

    Zhang, Xueyuan; Devine, T.M.

    2008-01-01

    Influence Formation of AlF 3 Passive Film on Aluminum in Li-Identity of Passive Film Formed on Aluminum in Li-ionEngineering Abstract The passive film that forms on aluminum

  6. NANOSTRUCTURED METAL OXIDES FOR ANODES OF LI-ION RECHARGEABLE BATTERIES

    SciTech Connect (OSTI)

    Au, M.

    2009-12-04

    The aligned nanorods of Co{sub 3}O{sub 4} and nanoporous hollow spheres (NHS) of SnO{sub 2} and Mn{sub 2}O{sub 3} were investigated as the anodes for Li-ion rechargeable batteries. The Co{sub 3}O{sub 4} nanorods demonstrated 1433 mAh/g reversible capacity. The NHS of SnO{sub 2} and Mn{sub 2}O{sub 3} delivered 400 mAh/g and 250 mAh/g capacities respectively in multiple galvonastatic discharge-charge cycles. It was found that high capacity of NHS of metal oxides is sustainable attributed to their unique structure that maintains material integrity during cycling. The nanostructured metal oxides exhibit great potential as the new anode materials for Li-ion rechargeable batteries with high energy density, low cost and inherent safety.

  7. Improved Positive Electrode Materials for Li-ion Batteries

    E-Print Network [OSTI]

    Conry, Thomas Edward

    2012-01-01

    T. , Tozawa, K. Prog. Batteries Solar Cells 1990, 9, 209. E.Costs of Lithium-Ion Batteries for Vechicles. ” Center forin Solids: Solid State Batteries and Devices, Ed. by W. vn

  8. ALD of Al2O3 for Highly Improved Performance in Li-Ion Batteries

    SciTech Connect (OSTI)

    Dillon, A.; Jung, Y. S.; Ban, C.; Riley, L.; Cavanagh, A.; Yan, Y.; George, S.; Lee, S. H.

    2012-01-01

    Significant advances in energy density, rate capability and safety will be required for the implementation of Li-ion batteries in next generation electric vehicles. We have demonstrated atomic layer deposition (ALD) as a promising method to enable superior cycling performance for a vast variety of battery electrodes. The electrodes range from already demonstrated commercial technologies (cycled under extreme conditions) to new materials that could eventually lead to batteries with higher energy densities. For example, an Al2O3 ALD coating with a thickness of ~ 8 A was able to stabilize the cycling of unexplored MoO3 nanoparticle anodes with a high volume expansion. The ALD coating enabled stable cycling at C/2 with a capacity of ~ 900 mAh/g. Furthermore, rate capability studies showed the ALD-coated electrode maintained a capacity of 600 mAh/g at 5C. For uncoated electrodes it was only possible to observe stable cycling at C/10. Also, we recently reported that a thin ALD Al2O3 coating with a thickness of ~5 A can enable natural graphite (NG) electrodes to exhibit remarkably durable cycling at 50 degrees C. The ALD-coated NG electrodes displayed a 98% capacity retention after 200 charge-discharge cycles. In contrast, bare NG showed a rapid decay. Additionally, Al2O3 ALD films with a thickness of 2 to 4 A have been shown to allow LiCoO2 to exhibit 89% capacity retention after 120 charge-discharge cycles performed up to 4.5 V vs Li/Li+. Bare LiCoO2 rapidly deteriorated in the first few cycles. The capacity fade is likely caused by oxidative decomposition of the electrolyte at higher potentials or perhaps cobalt dissolution. Interestingly, we have recently fabricated full cells of NG and LiCoO2 where we coated both electrodes, one or the other electrode as well as neither electrode. In creating these full cells, we observed some surprising results that lead us to obtain a greater understanding of the ALD coatings. We have also recently coated a binder free LiNi0.04Mn0.04Co02O2 electrode containing 5 wt% single-walled carbon nanotubes as the conductive additive and demonstrated both high rate capability as well as the ability to cycle the cathode to 5 V vrs. Li/Li+. Finally, we coated a Celgard (TM) separator and enabled stable cycling in a high dielectric electrolyte. These results will be presented in detail.

  9. High Rate and High Capacity Li-Ion Electrodes for Vehicular Applications

    SciTech Connect (OSTI)

    Dillon, A. C.

    2012-01-01

    Significant advances in both energy density and rate capability for Li-ion batteries are necessary for implementation in electric vehicles. We have employed two different methods to improve the rate capability of high capacity electrodes. For example, we previously demonstrated that thin film high volume expansion MoO{sub 3} nanoparticle electrodes ({approx}2 {micro}m thick) have a stable capacity of {approx}630 mAh/g, at C/2 (charge/dicharge in 2 hours). By fabricating thicker conventional electrodes, an improved reversible capacity of {approx}1000 mAh/g is achieved, but the rate capability decreases. To achieve high-rate capability, we applied a thin Al{sub 2}O{sub 3} atomic layer deposition coating to enable the high volume expansion and prevent mechanical degradation. Also, we recently reported that a thin ALD Al{sub 2}O{sub 3} coating can enable natural graphite (NG) electrodes to exhibit remarkably durable cycling at 50 C. Additionally, Al{sub 2}O{sub 3} ALD films with a thickness of 2 to 4 {angstrom} have been shown to allow LiCoO{sub 2} to exhibit 89% capacity retention after 120 charge-discharge cycles performed up to 4.5 V vs. Li/Li{sup +}. Capacity fade at this high voltage is generally caused by oxidative decomposition of the electrolyte or cobalt dissolution. We have recently fabricated full cells of NG and LiCoO{sub 2} and coated both electrodes, one or the other electrode as well as neither electrode. In creating these full cells, we observed some surprising results that lead us to obtain a greater understanding of the ALD coatings. In a different approach we have employed carbon single-wall nanotubes (SWNTs) to synthesize binder-free, high-rate capability electrodes, with 95 wt.% active materials. In one case, Fe{sub 3}O{sub 4} nanorods are employed as the active storage anode material. Recently, we have also employed this method to demonstrate improved conductivity and highly improved rate capability for a LiNi{sub 0.4}Mn{sub 0.4}Co{sub 0.2}O{sub 2} cathode material. Raman spectroscopy was employed to understand how the SWNTs function as a highly flexible conductive additive.

  10. Silicon Nanoparticles-Graphene Paper Composites for Li Ion Battery Anodes

    SciTech Connect (OSTI)

    Lee, Jeong K.; Smith, Kurt B.; Hayner, Cary M.; Kung, Harold H

    2010-01-01

    Composites of Si nanoparticles highly dispersed between graphene sheets, and supported by a 3-D network of graphite formed by reconstituting regions of graphene stacks exhibit high Li ion storage capacities and cycling stability. An electrode was prepared with a storage capacity >2200 mA h g{sup ?1} after 50 cycles and >1500 mA h g{sup ?1} after 200 cycles that decreased by <0.5% per cycle.

  11. Anode Materials for Rechargeable Li-Ion Batteries

    SciTech Connect (OSTI)

    Fultz, B.

    2001-01-12

    This research is on materials for anodes and cathodes in electrochemical cells. The work is a mix of electrochemical measurements and analysis of the materials by transmission electron microscopy and x-ray diffractometry. At present, our experimental work involves only materials for Li storage, but we have been writing papers from our previous work on hydrogen-storage materials.

  12. Beyond Conventional Cathode Materials for Li-ion Batteries and Na-ion Batteries Nickel fluoride conversion materials and P2 type Na-ion intercalation cathodes /

    E-Print Network [OSTI]

    Lee, Dae Hoe

    2013-01-01

    Electrode for Sodium Ion Batteries. Chemistry of Materialsnickel fluoride in Li ion batteries. Electrochimica Actafor advanced lithium ion batteries. Materials Science and

  13. Beyond Conventional Cathode Materials for Li-ion Batteries and Na-ion Batteries Nickel fluoride conversion materials and P2 type Na-ion intercalation cathodes /

    E-Print Network [OSTI]

    Lee, Dae Hoe

    2013-01-01

    lithium batteries. Electrochemistry Communications 9, 262 (Amatucci, Structure and Electrochemistry of Copper FluorideLi-ion battery, Fe2OF4. Electrochemistry Communications 11,

  14. Sphere-Shaped Hierarchical Cathode with Enhanced Growth of Nanocrystal Planes for High-Rate and Cycling-Stable Li-Ion Batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Linjing [Beijing Inst. of Technology (China). Key Lab. of Environmental Science and Engineering, School of Chemical Engineering and the Environment; Li, Ning [Beijing Inst. of Technology (China). Key Lab. of Environmental Science and Engineering, School of Chemical Engineering and the Environment; Wu, Borong [Beijing Inst. of Technology (China). Key Lab. of Environmental Science and Engineering, School of Chemical Engineering and the Environment; Beijing Higher Institution Engineering Research Center of Power Battery and Chemical Energy Materials (China); Xu, Hongliang [Beijing Inst. of Technology (China). Key Lab. of Environmental Science and Engineering, School of Chemical Engineering and the Environment; Wang, Lei [Beijing Inst. of Technology (China). Key Lab. of Environmental Science and Engineering, School of Chemical Engineering and the Environment; Yang, Xiao-Qing [Brookhaven National Lab. (BNL), Upton, NY (United States). Chemistry Dept.; Wu, Feng [Beijing Inst. of Technology (China). Key Lab. of Environmental Science and Engineering, School of Chemical Engineering and the Environment

    2015-01-14

    High-energy and high-power Li-ion batteries have been intensively pursued as power sources in electronic vehicles and renewable energy storage systems in smart grids. With this purpose, developing high-performance cathode materials is urgently needed. Here we report an easy and versatile strategy to fabricate high-rate and cycling-stable hierarchical sphered cathode Li1.2Ni0.13Mn0.54Co0.13O2, by using an ionic interfusion method. The sphere-shaped hierarchical cathode is assembled with primary nanoplates with enhanced growth of nanocrystal planes in favor of Li+ intercalation/deintercalation, such as (010), (100), and (110) planes. This material with such unique structural features exhibits outstanding rate capability, cyclability, and high discharge capacities, achieving around 70% (175 mAhg–1) of the capacity at 0.1 C rate within about 2.1 min of ultrafast charging. Such cathode is feasible to construct high-energy and high-power Li-ion batteries.

  15. Sphere-Shaped Hierarchical Cathode with Enhanced Growth of Nanocrystal Planes for High-Rate and Cycling-Stable Li-Ion Batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Linjing; Li, Ning; Wu, Borong; Xu, Hongliang; Wang, Lei; Yang, Xiao-Qing; Wu, Feng

    2015-01-14

    High-energy and high-power Li-ion batteries have been intensively pursued as power sources in electronic vehicles and renewable energy storage systems in smart grids. With this purpose, developing high-performance cathode materials is urgently needed. Here we report an easy and versatile strategy to fabricate high-rate and cycling-stable hierarchical sphered cathode Li1.2Ni0.13Mn0.54Co0.13O2, by using an ionic interfusion method. The sphere-shaped hierarchical cathode is assembled with primary nanoplates with enhanced growth of nanocrystal planes in favor of Li+ intercalation/deintercalation, such as (010), (100), and (110) planes. This material with such unique structural features exhibits outstanding rate capability, cyclability, and high discharge capacities, achievingmore »around 70% (175 mAhg–1) of the capacity at 0.1 C rate within about 2.1 min of ultrafast charging. Such cathode is feasible to construct high-energy and high-power Li-ion batteries.« less

  16. Novel Energy Sources -Material Architecture and Charge Transport in Solid State Ionic Materials for Rechargeable Li ion Batteries

    SciTech Connect (OSTI)

    Katiyar, Ram S; Gómez, M; Majumder, S B; Morell, G; Tomar, M S; Smotkin, E; Bhattacharya, P; Ishikawa, Y

    2009-01-19

    Since its introduction in the consumer market at the beginning of 1990s by Sony Corporation ‘Li-ion rechargeable battery’ and ‘LiCoO2 cathode’ is an inseparable couple for highly reliable practical applications. However, a separation is inevitable as Li-ion rechargeable battery industry demand more and more from this well serving cathode. Spinel-type lithium manganate (e.g., LiMn2O4), lithium-based layered oxide materials (e.g., LiNiO2) and lithium-based olivine-type compounds (e.g., LiFePO4) are nowadays being extensively studied for application as alternate cathode materials in Li-ion rechargeable batteries. Primary goal of this project was the advancement of Li-ion rechargeable battery to meet the future demands of the energy sector. Major part of the research emphasized on the investigation of electrodes and solid electrolyte materials for improving the charge transport properties in Li-ion rechargeable batteries. Theoretical computational methods were used to select electrodes and electrolyte material with enhanced structural and physical properties. The effect of nano-particles on enhancing the battery performance was also examined. Satisfactory progress has been made in the bulk form and our efforts on realizing micro-battery based on thin films is close to give dividend and work is progressing well in this direction.

  17. Anodic polymerization of vinyl ethylene carbonate in Li-Ion battery electrolyte

    SciTech Connect (OSTI)

    Chen, Guoying; Zhuang, Guorong V.; Richardson, Thomas J.; Gao, Liu; Ross Jr., Philip N.

    2005-02-28

    A study of the anodic oxidation of vinyl ethylene carbonate (VEC) was conducted with post-mortem analysis of reaction products by ATR-FTIR and gel permeation chromatography (GPC). The half-wave potential (E1/2) for oxidation of VEC is ca. 3.6 V producing a resistive film on the electrode surface. GPC analysis of the film on a gold electrode produced by anodization of a commercial Li-ion battery electrolyte containing 2 percent VEC at 4.1 V showed the presence of a high molecular weight polymer. IR analysis indicated polycarbonate with alkyl carbonate rings linked by aliphatic methylene and methyl branches.

  18. Li ion Motors Corp formerly EV Innovations Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformationWinds Jump to:LaredoLeelanauLeonicsLewisville,Li ion

  19. Internal Short Circuits in Lithium-Ion Cells for PHEVs

    SciTech Connect (OSTI)

    Sriramulu, Suresh; Stringfellow, Richard

    2013-05-25

    Development of Plug-in Hybrid Electric Vehicles (PHEVs) has recently become a high national priority because of their potential to enable significantly reduced petroleum consumption by the domestic transportation sector in the relatively near term. Lithium-ion (Li-ion) batteries are a critical enabling technology for PHEVs. Among battery technologies with suitable operating characteristics for use in vehicles, Li-ion batteries offer the best combination of energy, power, life and cost. Consequently, worldwide, leading corporations and government agencies are supporting the development of Li-ion batteries for PHEVs, as well as the full spectrum of vehicular applications ranging from mild hybrid to all-electric. In this project, using a combination of well-defined experiments, custom designed cells and simulations, we have improved the understanding of the process by which a Li-ion cell that develops an internal short progresses to thermal runaway. Using a validated model for thermal runaway, we have explored the influence of environmental factors and cell design on the propensity for thermal runaway in full-sized PHEV cells. We have also gained important perspectives about internal short development and progression; specifically that initial internal shorts may be augmented by secondary shorts related to separator melting. Even though the nature of these shorts is very stochastic, we have shown the critical and insufficiently appreciated role of heat transfer in influencing whether a developing internal short results in a thermal runaway. This work should lead to enhanced perspectives on separator design, the role of active materials and especially cathode materials with respect to safety and the design of automotive cooling systems to enhance battery safety in PHEVs.

  20. Cahn-Hilliard Reaction Model for Isotropic Li-ion Battery Particles Yi Zeng1, Martin Z. Bazant1,2

    E-Print Network [OSTI]

    Bazant, Martin Z.

    Cahn-Hilliard Reaction Model for Isotropic Li-ion Battery Particles Yi Zeng1, Martin Z. Bazant1,2 1 particle. This general approach extends previous Li-ion battery models, which either neglect phase separation or postulate a spherical shrinking-core phase boundary under all conditions, by predicting phase

  1. Structural Underpinnings of the Enhanced Cycling Stability upon Al-Substitution in LiNi0.45Mn0.45Co0.1-yAlyO2 Positive Electrode Materials for Li-ion Batteries

    E-Print Network [OSTI]

    Conry, Thomas E.

    2013-01-01

    materials for Li-ion batteries Thomas E. Conry, a,b Apurvamaterials in Li-ion batteries. Synchrotron-based high-materials for Li-ion batteries. LiNi z Mn z Co 1-2z O 2 (NMC

  2. Robustness analysis of State-of-Charge estimation methods for two types of Li-ion batteries

    E-Print Network [OSTI]

    Peng, Huei

    Robustness analysis of State-of-Charge estimation methods for two types of Li-ion batteries i g h l i g h t s battery model parameters are optimized. 2012 Accepted 1 June 2012 Available online 9 June 2012 Keywords: Battery management systems SOC

  3. Ultrathin Spinel LiMn2O4 Nanowires as High Power Cathode Materials for Li-Ion Batteries

    E-Print Network [OSTI]

    Cui, Yi

    Ultrathin Spinel LiMn2O4 Nanowires as High Power Cathode Materials for Li-Ion Batteries Hyun diameters less than 10 nm and lengths of several micrometers. Galvanostatic battery testing showed that Li, lithium ion battery, LiMn2O4 nanowires, high power density, Jahn-Teller distortion T he high energy

  4. Applied Surface Science 266 (2013) 516 Interphase chemistry of Si electrodes used as anodes in Li-ion batteries

    E-Print Network [OSTI]

    Boyer, Edmond

    2013-01-01

    to the lithiation of graphite, which also contributes to the increase of the energy density of the battery. Among in Li-ion batteries Catarina Pereira-Nabaisa,b , Jolanta S´wiatowskaa, , Alexandre Chagnesb, , Franc made to increase the energy density of lithium-ion batteries (LiB), namely for electric vehicle

  5. Li Ion Diffusion Mechanisms in the Crystalline Electrolyte Yaojun A. Du and N. A. W. Holzwarth*,z

    E-Print Network [OSTI]

    Holzwarth, Natalie

    electronically September 6, 2007. Recently, there has been a lot of interest in solid electrolyte ma- terialsLi Ion Diffusion Mechanisms in the Crystalline Electrolyte -Li3PO4 Yaojun A. Du and N. A. W. Holzwarth*,z Department of Physics, Wake-Forest University, Winston-Salem, North Carolina 27109, USA Solid

  6. Breakthrough Vehicle Development - Fuel Cells

    Fuel Cell Technologies Publication and Product Library (EERE)

    Document describing research and development program for fuel cell power systems for transportation applications.

  7. Microwave Plasma Chemical Vapor Deposition of Nano-Structured Sn/C Composite Thin-Film Anodes for Li-ion Batteries

    E-Print Network [OSTI]

    Marcinek, M.

    2008-01-01

    Meeting on Lithium Batteries, Biarritz, France, June 18–23,Thin-Film Anodes for Li-ion Batteries M. Marcinek, L. J.Sn/C anodes for lithium batteries. Thin layers of graphitic

  8. Electrochemical characteristics of plasma-etched black silicon as anodes for Li-ion batteries

    SciTech Connect (OSTI)

    Lee, Gibaek; Wehrspohn, Ralf B., E-mail: ralf.b.wehrspohn@iwmh.fraunhofer.de [Fraunhofer Institute for Mechanics of Materials IWM, Halle (Saale) 06120, Germany and Department of Physics, Martin-Luther University, Halle (Saale) 06099 (Germany); Schweizer, Stefan L. [Department of Physics, Martin-Luther University, Halle (Saale) 06099 (Germany)

    2014-11-01

    Nanostructured silicon as an anode material for Li-ion batteries is produced for the first time by inductively coupled plasma–plasma etching of Si wafers in the black silicon regime. The microscopic structure strongly resembles other types of nanostructured silicon, with a well-arranged nanostructure possessing a sufficient porosity for accommodating large volume expansion. Despite these features, however, a high first-cycle irreversible capacity loss and a poor cycle life are observed. The main reason for these poor features is the formation of a thick solid-electrolyte interphase (SEI) layer related to the surface condition of the pristine nanostructured black silicon (b-Si) electrode. Therefore, the cycle life of the b-Si electrode is heavily influenced by the constant reformation of the SEI layer depending upon the surface composition in spite of the presence of nanostructured Si. In the fast lithiation experiments, the nanostructure region of the b-Si electrode is detached from the Si substrate owing to the kinetics difference between the lithium ion diffusion and the electron injection and phase transformation in the nanostructured Si region. This means that more Si substrate is involved in lithiation at high current rates. It is therefore important to maintain balance in the chemical kinetics during the lithiation of nanostructured Si electrodes with a Si substrate.

  9. Effect of electrolyte additives in improving the cycle and calendar life of graphite/Li{sub1.1}[Ni{sub1/3}Co{sub1/3}Mn{sub1/3}]{0.9}O{sub 2} Li-ion cells.

    SciTech Connect (OSTI)

    Liu, J.; Chen, Z.; Busking, S.; Belharouak, I.; Amine, K.; Chemical Engineering

    2007-12-06

    Lithium-rich layered metal oxide Li{sub 1.1}[Ni{sub 1/3}Co{sub 1/3}Mn{sub 1/3}]{sub 0.9}O{sub 2} was investigated as a potential positive electrode material for high-power batteries for hybrid electric vehicle (HEV) applications. In order to evaluate the power and life characteristics of the graphite/Li{sub 1.1}[Ni{sub 1/3}Co{sub 1/3}Mn{sub 1/3}]{sub 0.9}O{sub 2} cell chemistry, hybrid pulse power characterization (HPPC) and accelerated calendar life tests were conducted on several pouch cells containing electrolytes with and without additives. The data show that the cells containing 0.5 wt% lithium bis(oxalate)borate (LiBOB) or vinyl ethyl carbonate (VEC) additives, or the novel lithium difluoro(oxalato)borate (LiDFOB) additive, have much improved cycle and calendar life performance.

  10. New Electrode Manufacturing Process Equipment: Novel High Energy Density Lithium-Ion Cell Designs via Innovative Manufacturing Process Modules for Cathode and Integrated Separator

    SciTech Connect (OSTI)

    2010-07-01

    BEEST Project: Applied Materials is developing new tools for manufacturing Li-Ion batteries that could dramatically increase their performance. Traditionally, the positive and negative terminals of Li-Ion batteries are mixed with glue-like materials called binders, pressed onto electrodes, and then physically kept apart by winding a polymer mesh material between them called a separator. With the Applied Materials system, many of these manually intensive processes will be replaced by next generation coating technology to apply each component. This process will improve product reliability and performance of the cells at a fraction of the current cost. These novel manufacturing techniques will also increase the energy density of the battery and reduce the size of several of the battery’s components to free up more space within the cell for storage.

  11. Biphasic Electrode Suspensions for Li-Ion Semi-solid Flow Cells...

    Office of Scientific and Technical Information (OSTI)

    and Low-Dissipation Flow Authors: Wei, Teng-Sing ; Fan, Frank Y. ; Helal, Ahmed ; Smith, Kyle C. ; McKinley, Gareth H. ; Chiang, Yet-Ming ; Lewis, Jennifer A. 1 ; MIT) 2...

  12. Significant Cost Improvement of Li-Ion Cells Through Non-NMP Electrode

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo.Hydrogen4 » Searchwith Ultra-DeepwaterShutting the

  13. Statistical Design of Experiment for Li-ion Cell Formation Parameters using

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergyPlan | Department of Energy 1 DOE HydrogenDepartment of Energy

  14. Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReportOfficeAcqguide18pt0DepartmentDepartment of

  15. 2010 DOE, Li-Ion Battery Cell Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReport FY2014 -EnergyEnergySenior2007DepartmentTechnologiesDOE,

  16. Study of novel nonflammable electrolytes in Sandia-built Li-ion cells.

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail. (Conference)Feedback System inStatus ofSmall GTPases withfrom an Isolatedof

  17. Thermally Stable Electrolyte For Li-ion Cells. (Conference) | SciTech

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of rare Kaon and Pion decays CitationConnect Thermally Stable Electrolyte

  18. Lithium Source For High Performance Li-ion Cells | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIALU.S.Leadership on CleanUpList of EERE Waivers in10 DOE

  19. Electrolytes and Separators for High Voltage Li Ion Cells | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofAprilof

  20. Effect of entropy of lithium intercalation in cathodes and anodes on Li-ion battery thermal management

    SciTech Connect (OSTI)

    Viswanathan, Vilayanur V.; Choi, Daiwon; Wang, Donghai; Xu, Wu; Towne, Silas A.; Williford, Ralph E.; Zhang, Jiguang; Liu, Jun; Yang, Zhenguo

    2010-06-01

    The entropy changes (?S) in various cathode and anode materials, as well as complete Li-ion batteries, were measured using an electrochemical thermodynamic measurement system (ETMS). LiCoO2 has a much larger entropy change than electrodes based on LiNixCoyMnzO2 and LiFePO4, while lithium titanate based anode has lower entropy change compared to graphite anodes. Reversible heat generation rate was found to be a significant portion of the total heat generation rate. The appropriate combinations of cathode and anode were investigated to minimize reversible heat.

  1. Develop high energy high power Li-ion battery cathode materials : a first principles computational study

    E-Print Network [OSTI]

    Xu, Bo; Xu, Bo

    2012-01-01

    Designing new electrode materials for energy devices byTo1) - a New Cathode Material for Batteries of High- Energy

  2. Develop high energy high power Li-ion battery cathode materials : a first principles computational study

    E-Print Network [OSTI]

    Xu, Bo; Xu, Bo

    2012-01-01

    2x/3Mn2/3-x/3]O2 for Lithium-Ion Batteries. Electrochemicalfor advanced lithium-ion batteries. Journal of Powerfor high-power lithium-ion batteries. Electrochimica Acta,

  3. Develop high energy high power Li-ion battery cathode materials : a first principles computational study

    E-Print Network [OSTI]

    Xu, Bo; Xu, Bo

    2012-01-01

    it appears in Energy & Environmental Science, 4(6), 2011. BoTheoretical Study", Energy & Environmental Science, 4(6), 3.it appears in Energy & Environmental Science, 4(6), 2011. Bo

  4. Develop high energy high power Li-ion battery cathode materials : a first principles computational study

    E-Print Network [OSTI]

    Xu, Bo; Xu, Bo

    2012-01-01

    cycle, a so-called solid-electrolyte-interphase (SEI) layerof a thick amorphous solid-electrolyte interface (SEI) onacross the electrode/ electrolyte (solid/liquid) interface .

  5. Development of High Capacity Anode for Li-ion Batteries | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8,Department of Energy 1 DOEEnergy 2Integratedin

  6. / www.sciencexpress.org / 2 April 2009/ Page 1 / 10.1126/science.1171541 Development of materials that deliver more energy at

    E-Print Network [OSTI]

    Ceder, Gerbrand

    portable electronic devices and hybrid electric vehicles. Reducing materials dimensions for lithium ion batteries can boost Li+ ion and electron transfer in nanostructured electrodes. We developed a strategy transport of Li+ ions and electrons in electrodes can enhance energy storage at high charge and discharge

  7. Abstract--A novel, accurate, compact, and power efficient Lith-ium-Ion (Li-Ion) battery charger designed to yield maximum

    E-Print Network [OSTI]

    Rincon-Mora, Gabriel A.

    1 Abstract-- A novel, accurate, compact, and power efficient Lith- ium-Ion (Li-Ion) battery charger verified. The proposed charger uses a diode to smoothly (i.e., continuously) transition between two high Terms-- Adaptive power supply, constant current charger (CC), constant voltage charger (CV), Li

  8. Recent advances on the understanding of structural and composition evolution of LMR cathodes for Li-ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yan, Pengfei; Zheng, Jianming; Xiao, Jie; Wang, Chong-Min; Zhang, Jiguang

    2015-06-08

    Lithium-rich, magnesium-rich (LMR) cathode materials have been regarded as one of the very promising cathodes for Li-ion battery applications. However, their practical application is still limited by several challenges, especially by their limited electrochemical stability rate capability. In this work, we present recent progresses on the understanding of the structural and composition evolution of LMR cathode materials with emphasis being placed on the correlation between structural/chemical evolution and electrochemical properties. In particular, using Li [Li0.2Ni0.2Mn0.6O2 as a typical example, we clearly illustrate the structural characteristics of the pristine materials and their dependence on the materials processing history, cycling induced structuralmore »degradation/chemical partition and their correlation with degradation of electrochemical performance. The fundamental understanding obtained in this work may also guide the design and preparation of new cathode materials based on ternary system of transitional metal oxide.« less

  9. Diagnostic Studies to Improve Abuse Tolerance and Life of Li-ion Batteries

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  10. Role of Surface Structure on Li-ion Energy Storage Capacity of...

    Office of Scientific and Technical Information (OSTI)

    solar (fuels), energy storage (including batteries and capacitors), hydrogen and fuel cells, electrodes - solar, mechanical behavior, charge transport, materials and...

  11. Multi-Scale Multi-Dimensional Li-Ion Battery Model for Better Design and Management (Presentation)

    SciTech Connect (OSTI)

    Kim, G.-H.; Smith, K.

    2008-10-01

    The developed model used is to provide a better understanding and help answer engineering questions about improving the design, operational strategy, management, and safety of cells.

  12. Systems, methods and computer readable media for estimating capacity loss in rechargeable electrochemical cells

    DOE Patents [OSTI]

    Gering, Kevin L.

    2013-06-18

    A system includes an electrochemical cell, monitoring hardware, and a computing system. The monitoring hardware periodically samples charge characteristics of the electrochemical cell. The computing system periodically determines cell information from the charge characteristics of the electrochemical cell. The computing system also periodically adds a first degradation characteristic from the cell information to a first sigmoid expression, periodically adds a second degradation characteristic from the cell information to a second sigmoid expression and combines the first sigmoid expression and the second sigmoid expression to develop or augment a multiple sigmoid model (MSM) of the electrochemical cell. The MSM may be used to estimate a capacity loss of the electrochemical cell at a desired point in time and analyze other characteristics of the electrochemical cell. The first and second degradation characteristics may be loss of active host sites and loss of free lithium for Li-ion cells.

  13. Modeling of Nonuniform Degradation in Large-Format Li-ion Batteries (Presentation)

    SciTech Connect (OSTI)

    Smith, K.; Kim, G. H.; Pesaran, A.

    2009-05-01

    Study of impacts of large-format cell design features on battery useful life to improve battery engineering models, including both realistic geometry and physics.

  14. Vehicle Technologies Office Merit Review 2014: Fluorinated Electrolyte for 5-V Li-Ion Chemistry

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about fluorinated...

  15. Study of novel nonflammable electrolytes in Sandia-built Li-ion...

    Office of Scientific and Technical Information (OSTI)

    in cells fabricated at Sandia. In particular, we are investigating two solvents as nonflammable additives. These are: (1) 2-trifluoromethyl-3-methoxyperfluoropentane...

  16. Vehicle Technologies Office Merit Review 2015: Fluorinated Electrolyte for 5-V Li-Ion Chemistry

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about fluorinated...

  17. A Computational Investigation of Li(subscript 9)M(subscript 3)(P(subscript 2)O(subscript 7))(subscript 3)(PO(subscript 4))(subscript 2) (M = V, Mo) as Cathodes for Li Ion Batteries

    E-Print Network [OSTI]

    Jain, Anubhav

    Cathodes with high energy density and safety are sought to improve the performance of Li ion batteries for electric vehicle and consumer electronics applications. In this study, we examine the properties of the potential ...

  18. Thermal/Electrical Modeling for Abuse-Tolerant Design of Li-Ion Modules (Presentation)

    SciTech Connect (OSTI)

    Smith, K.; Kim, G.-H.; Pesaran, A.; Darcy, E.

    2008-11-01

    To help design safe, high-performing batteries, NREL and NASA created and verified a new multicell math model capturing electrical-thermal interactions of cells with PTC devices during thermal abuse.

  19. Vehicle Technologies Office Merit Review 2014: Metal-Based High Capacity Li-Ion Anodes

    Broader source: Energy.gov [DOE]

    Presentation given by Binghamton University-SUNY at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about metal-based high...

  20. Novel materials for Li-ion batteries is one of the principle thrust areas of current research in energy storage. One of the major limiting factors in a Li-ion battery's performance is the low specific capacities of the active

    E-Print Network [OSTI]

    in energy storage. One of the major limiting factors in a Li-ion battery's performance is the low specific capacities of the active materials in the electrodes. Anode materials based on silicon have generated much interest of late. Both cubic and amorphous silicon can reversibly alloy with lithium and have a theoretical

  1. Development of alkaline fuel cells.

    SciTech Connect (OSTI)

    Hibbs, Michael R.; Jenkins, Janelle E.; Alam, Todd Michael; Janarthanan, Rajeswari; Horan, James L.; Caire, Benjamin R.; Ziegler, Zachary C.; Herring, Andrew M.; Yang, Yuan; Zuo, Xiaobing; Robson, Michael H.; Artyushkova, Kateryna; Patterson, Wendy; Atanassov, Plamen Borissov

    2013-09-01

    This project focuses on the development and demonstration of anion exchange membrane (AEM) fuel cells for portable power applications. Novel polymeric anion exchange membranes and ionomers with high chemical stabilities were prepared characterized by researchers at Sandia National Laboratories. Durable, non-precious metal catalysts were prepared by Dr. Plamen Atanassov's research group at the University of New Mexico by utilizing an aerosol-based process to prepare templated nano-structures. Dr. Andy Herring's group at the Colorado School of Mines combined all of these materials to fabricate and test membrane electrode assemblies for single cell testing in a methanol-fueled alkaline system. The highest power density achieved in this study was 54 mW/cm2 which was 90% of the project target and the highest reported power density for a direct methanol alkaline fuel cell.

  2. Lithium-Sulfur Batteries: Development of High Energy Lithium-Sulfur Cells for Electric Vehicle Applications

    SciTech Connect (OSTI)

    2010-10-01

    BEEST Project: Sion Power is developing a lithium-sulfur (Li-S) battery, a potentially cost-effective alternative to the Li-Ion battery that could store 400% more energy per pound. All batteries have 3 key parts—a positive and negative electrode and an electrolyte—that exchange ions to store and release electricity. Using different materials for these components changes a battery’s chemistry and its ability to power a vehicle. Traditional Li-S batteries experience adverse reactions between the electrolyte and lithium-based negative electrode that ultimately limit the battery to less than 50 charge cycles. Sion Power will sandwich the lithium- and sulfur-based electrode films around a separator that protects the negative electrode and increases the number of charges the battery can complete in its lifetime. The design could eventually allow for a battery with 400% greater storage capacity per pound than Li-Ion batteries and the ability to complete more than 500 recharge cycles.

  3. Modular Approach for Continuous Cell-Level Balancing to Improve Performance of Large Battery Packs: Preprint

    SciTech Connect (OSTI)

    Muneed ur Rehman, M.; Evzelman, M.; Hathaway, K.; Zane, R.; Plett, G. L.; Smith, K.; Wood, E.; Maksimovic, D.

    2014-10-01

    Energy storage systems require battery cell balancing circuits to avoid divergence of cell state of charge (SOC). A modular approach based on distributed continuous cell-level control is presented that extends the balancing function to higher level pack performance objectives such as improving power capability and increasing pack lifetime. This is achieved by adding DC-DC converters in parallel with cells and using state estimation and control to autonomously bias individual cell SOC and SOC range, forcing healthier cells to be cycled deeper than weaker cells. The result is a pack with improved degradation characteristics and extended lifetime. The modular architecture and control concepts are developed and hardware results are demonstrated for a 91.2-Wh battery pack consisting of four series Li-ion battery cells and four dual active bridge (DAB) bypass DC-DC converters.

  4. Self-limiting lithiation of electrode nanoparticles in Li-ion batteries

    SciTech Connect (OSTI)

    Drozdov, A. D., E-mail: add@teknologisk.dk [Center for Plastics Technology, Danish Technological Institute, Gregersensvej 7, Taastrup 2630 (Denmark); Department of Mechanical and Manufacturing Engineering, Aalborg University, Fibigerstraede 16, Aalborg 9220 (Denmark); Sommer-Larsen, P. [Center for Plastics Technology, Danish Technological Institute, Gregersensvej 7, Taastrup 2630 (Denmark); Claville Christiansen, J. de [Department of Mechanical and Manufacturing Engineering, Aalborg University, Fibigerstraede 16, Aalborg 9220 (Denmark)

    2013-12-14

    A model is derived for the viscoplastic behavior of a host medium driven by stress-induced diffusion of guest atoms. The constitutive equations are applied to study development of stresses in a spherical electrode particle subjected to insertion of lithium. Numerical simulation demonstrates the ability of the model to capture basic phenomena observed in anode nanoparticles under lithiation: formation of a sharp interphase between a Li-poor core and a Li-rich shell, slowing down of the interphase motion revealed as self-limiting lithiation, and growth of tensile hoop stresses near the outer surface of a particle leading to its fracture.

  5. A New Charging Method for Li-ion Batteries: Dependence of the charging time on the Direction of an Additional Oscillating Field

    E-Print Network [OSTI]

    Hamad, I Abou; Wipf, D O; Rikvold, P A

    2010-01-01

    We have recently proposed a new method for charging Li-ion batteries based on large-scale molecular dynamics studies (I. Abou Hamad et al, Phys. Chem. Chem. Phys., 12, 2740 (2010)). Applying an additional oscillating electric field in the direction perpendicular to the graphite sheets of the anode showed an exponential decrease in charging time with increasing amplitude of the applied oscillating field. Here we present new results exploring the effect on the charging time of changing the orientation of the oscillating field. Results for oscillating fields in three orthogonal directions are compared.

  6. Study of Li-ion Cell Formation Parameters using "Gen3" Electrode Materials: Summary of Stage 1-3 Experiments

    Broader source: Energy.gov [DOE]

    Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland.

  7. Thermal Model for a Li-Ion Cell Karthikeyan Kumaresan,* Godfrey Sikha,** and Ralph E. White***,z

    E-Print Network [OSTI]

    the performance of the battery under various operating conditions such as charge/discharge rate, temperature, etc the performance of the battery under different operating conditions, thus reducing the experimental efforts re, 2007. The comparison of experimental charge and discharge data with mathematical models helps battery

  8. Tubular solid oxide fuel cell developments

    SciTech Connect (OSTI)

    Bratton, R.J.; Singh, P.

    1995-08-01

    An overview of the tubular solid oxide fuel cell (SOFC) development at Westinghouse is presented in this paper. The basic operating principles of SOFCs, evolution in tubular cell design and performance improvement, selection criteria for cell component materials, and cell processing techniques are discussed. The commercial goal is to develop a cell that can operate for 5 to 10 years. Results of cell test operated for more than 50,000 hours are presented. Since 1986, significant progress has been made in the evolution of cells with higher power, lower cost and improved thermal cyclic capability. Also in this period, successively larger multi-kilowatt electrical generators systems have been built and successfully operated for more than 7000 hours.

  9. Tin (Sn) has a high-specific capacity (993 mAhg-1) as an anode material for Li-ion batteries. To overcome the poor cycling performance issue caused by its large volume expansion and

    E-Print Network [OSTI]

    polymeric binders for Lithium-ion battery anode Tianxiang Gao Advisor: Dr. Ximin He April 20, 2015; 2:00 PMTin (Sn) has a high-specific capacity (993 mAhg-1) as an anode material for Li-ion batteries polymeric structure can offer the pathway for Lithium ion transfer between the anode and electrolyte

  10. Tubular solid oxide fuel cell development program

    SciTech Connect (OSTI)

    Ray, E.R.; Cracraft, C.

    1995-12-31

    This paper presents an overview of the Westinghouse Solid Oxide Fuel Cell (SOFC) development activities and current program status. The Westinghouse goal is to develop a cost effective cell that can operate for 50,000 to 100,000 hours. Progress toward this goal will be discussed and test results presented for multiple single cell tests which have now successfully exceeded 56,000 hours of continuous power operation at temperature. Results of development efforts to reduce cost and increase power output of tubular SOFCs are described.

  11. Nanoscale LiFePO4 and Li4Ti5O12 for High Rate Li-ion Batteries

    E-Print Network [OSTI]

    Jaiswal, A.

    2010-01-01

    a LiFePO 4 /Li 4 Ti 5 O 12 full-cell at several different4 /Li 4 Ti 5 O 12 coin full-cell. Figure 1. 0.2 µ m (a) (b)in LiFePO 4 /Li 4 Ti 5 O 12 full cells. Nano-LiFePO 4 showed

  12. Fossil Energy-Developed Fuel Cell Technology Being Adapted by...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fossil Energy-Developed Fuel Cell Technology Being Adapted by Navy for Advanced Unmanned Undersea Vehicles Fossil Energy-Developed Fuel Cell Technology Being Adapted by Navy for...

  13. Hydrogen and Fuel Cell Technologies Research, Development, and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell Technologies Research, Development, and Demonstrations Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations March 3, 2015 - 2:33pm Addthis Funding: Up...

  14. Fuel Cell Technologies Office Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan The...

  15. Fuel Cell Technologies Office Multi-Year Research, Development...

    Office of Environmental Management (EM)

    Technologies Office Multi-Year Research, Development, and Demonstration Plan Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan The Fuel Cell...

  16. Hydrogen and Fuel Cell Technologies Research, Development, and...

    Office of Environmental Management (EM)

    and Fuel Cell Technologies Research, Development, and Demonstrations Funding Opportunity Announcement Webinar Slides Hydrogen and Fuel Cell Technologies Research, Development, and...

  17. Vehicle Technologies Office Merit Review 2014: Nanoscale Heterostructures and Thermoplastic Resin Binders: Novel Li-ion Anode Systems

    Broader source: Energy.gov [DOE]

    Presentation given by University of Pittsburgh at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about nanoscale...

  18. Solvent Diffusion Model for Aging of Lithium-Ion Battery Cells Harry J. Ploehn,z

    E-Print Network [OSTI]

    Solvent Diffusion Model for Aging of Lithium-Ion Battery Cells Harry J. Ploehn,z Premanand Ramadass model of solvent diffusion describing the growth of solid-electrolyte inter- faces SEIs in Li-ion cells incorporating carbon anodes. The model assumes that a reactive solvent component diffuses through the SEI

  19. The Influence of High-Energy Lithium Ion Irradiation on Electrical Characteristics of Silicon and GaAs Solar Cells

    E-Print Network [OSTI]

    B. Jayashree; Ramani; M. C. Radhakrishna; Anil Agrawal; Saif Ahmad Khan; A. Meulenberg

    2006-10-22

    Space-grade Si and GaAs solar cells were irradiated with 15 & 40 MeV Li ions. Illuminated (AM0 condition) and unilluminated I-V curves reveal that the effect of high-energy Li ion irradiation has produced similar effects to that of proton irradiation. However, an additional, and different, defect mechanism is suggested to dominate in the heavier-ion results. Comparison is made with proton-irradiated solar-cell work and with non-ionizing energy-loss (NIEL) radiation-damage models.

  20. Advanced Cell Development and Degradation Studies

    SciTech Connect (OSTI)

    J. E. O'Brien; C. M. Stoots; J. S. Herring; R. C. O'Brien; K. G. Condie; M. Sohal; G. K. Housley; J. J. Hartvigsen; D. Larsen; G. Tao; B. Yildiz; V. Sharma; P. Singh; N. Petigny; T. L. Cable

    2010-09-01

    The Idaho National Laboratory (INL) has been researching the application of solid-oxide electrolysis cells for large-scale hydrogen production from steam over a temperature range of 800 to 900ºC. From 2003 – 2009, this work was sponsored by the DOE Nuclear Hydrogen Initiative (NHI). Starting in 2010, the HTE research program has been sponsored by the Next Generation Nuclear Plant (NGNP) program. HTSE research priorities in FY10 are centered on understanding and reducing cell and stack performance degradation to an acceptable level to advance the technology readiness level of HTSE and to justify further large-scale demonstration activities. This report provides a summary of our FY10 experimental program, which has been focused on advanced cell and stack development and degradation studies. Advanced cell and stack development activities are under way at five technology partners: MSRI, Versa Power, Ceramatec, NASA Glenn, and St. Gobain. Performance evaluation of the advanced technology cells and stacks has been performed by the technology partners, by MIT and the University of Connecticut and at the INL HTE Laboratory. Summaries of these development activities and test results are presented.

  1. Solid oxide fuel cell power system development

    SciTech Connect (OSTI)

    Kerr, Rick; Wall, Mark; Sullivan, Neal

    2015-06-26

    This report summarizes the progress made during this contractual period in achieving the goal of developing the solid oxide fuel cell (SOFC) cell and stack technology to be suitable for use in highly-efficient, economically-competitive, commercially deployed electrical power systems. Progress was made in further understanding cell and stack degradation mechanisms in order to increase stack reliability toward achieving a 4+ year lifetime, in cost reduction developments to meet the SECA stack cost target of $175/kW (in 2007 dollars), and in operating the SOFC technology in a multi-stack system in a real-world environment to understand the requirements for reliably designing and operating a large, stationary power system.

  2. Vehicle Technologies Office Merit Review 2014: Real-time Metrology for Li-ion Battery R&D and Manufacturing

    Broader source: Energy.gov [DOE]

    Presentation given by Applied Spectra, Inc at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about real-time metrology for...

  3. Vehicle Technologies Office Merit Review 2015: Real-time Metrology for Li-ion Battery R&D and Manufacturing

    Broader source: Energy.gov [DOE]

    Presentation given by Applied Spectra at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about real-time metrology for Li...

  4. Vehicle Technologies Office Merit Review 2015: Low-cost, High Energy Si/Graphene Anodes for Li-ion Batteries

    Broader source: Energy.gov [DOE]

    Presentation given by XG Sciences at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about low-cost, high energy Si/graphene...

  5. First-Principles Study of Novel Conversion Reactions for High-Capacity Li-Ion Battery Anodes in the Li-Mg-B-N-H System

    SciTech Connect (OSTI)

    Mason, T.H.; Graetz, J.; Liu, X.; Hong, J.; Majzoub, E.H.

    2011-07-28

    Anodes for Li-ion batteries are primarily carbon-based due to their low cost and long cycle life. However, improvements to the Li capacity of carbon anodes, LiC{sub 6} in particular, are necessary to obtain a larger energy density. State-of-the-art light-metal hydrides for hydrogen storage applications often contain Li and involve reactions requiring Li transport, and light-metal ionic hydrides are candidates for novel conversion materials. Given a set of known solid-state and gas-phase reactants, we have determined the phase diagram in the Li-Mg-B-N-H system in the grand canonical ensemble, as a function of lithium chemical potential. We present computational results for several new conversion reactions with capacities between 2400 and 4000 mAh g{sup -1} that are thermodynamically favorable and that do not involve gas evolution. We provide experimental evidence for the reaction pathway on delithiation for the compound Li{sub 4}BN{sub 3}H{sub 10}. While the predicted reactions involve multiple steps, the maximum volume increase for these materials on lithium insertion is significantly smaller than that for Si.

  6. Studies of Local Degradation Phenomena in Composite Cathodes for Lithium-Ion Batteries

    E-Print Network [OSTI]

    Kerlau, M.; Marcinek, M.; Srinivasan, V.; Kostecki, R.M.

    2008-01-01

    Composite Cathodes for Li-ion Batteries Marie Kerlau, Marekfrom commercial Li-ion batteries and mode cells which

  7. Accelerating Development of EV Batteries Through Computer-Aided Engineering (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.; Kim, G. H.; Smith, K.; Santhanagopalan, S.

    2012-12-01

    The Department of Energy's Vehicle Technology Program has launched the Computer-Aided Engineering for Automotive Batteries (CAEBAT) project to work with national labs, industry and software venders to develop sophisticated software. As coordinator, NREL has teamed with a number of companies to help improve and accelerate battery design and production. This presentation provides an overview of CAEBAT, including its predictive computer simulation of Li-ion batteries known as the Multi-Scale Multi-Dimensional (MSMD) model framework. MSMD's modular, flexible architecture connects the physics of battery charge/discharge processes, thermal control, safety and reliability in a computationally efficient manner. This allows independent development of submodels at the cell and pack levels.

  8. Hydrogen Fuel Cell Development in Columbia (SC)

    SciTech Connect (OSTI)

    Reifsnider, Kenneth

    2011-07-31

    This is an update to the final report filed after the extension of this program to May of 2011. The activities of the present program contributed to the goals and objectives of the Fuel Cell element of the Hydrogen, Fuel Cells and Infrastructure Technologies Program of the Department of Energy through five sub-projects. Three of these projects have focused on PEM cells, addressing the creation of carbon-based metal-free catalysts, the development of durable seals, and an effort to understand contaminant adsorption/reaction/transport/performance relationships at low contaminant levels in PEM cells. Two programs addressed barriers in SOFCs; an effort to create a new symmetrical and direct hydrocarbon fuel SOFC designs with greatly increased durability, efficiency, and ease of manufacturing, and an effort to create a multiphysics engineering durability model based on electrochemical impedance spectroscopy interpretations that associate the micro-details of how a fuel cell is made and their history of (individual) use with specific prognosis for long term performance, resulting in attendant reductions in design, manufacturing, and maintenance costs and increases in reliability and durability.

  9. Hydrogen Fuel Cell Development in Columbia (SC)

    SciTech Connect (OSTI)

    Reifsnider, Kenneth; Chen, Fanglin; Popov, Branko; Chao, Yuh; Xue, Xingjian

    2012-09-15

    This is an update to the final report filed after the extension of this program to May of 2011. The activities of the present program contributed to the goals and objectives of the Fuel Cell element of the Hydrogen, Fuel Cells and Infrastructure Technologies Program of the Department of Energy through five sub-projects. Three of these projects have focused on PEM cells, addressing the creation of carbon-based metal-free catalysts, the development of durable seals, and an effort to understand contaminant adsorption/reaction/transport/performance relationships at low contaminant levels in PEM cells. Two programs addressed barriers in SOFCs; an effort to create a new symmetrical and direct hydrocarbon fuel SOFC designs with greatly increased durability, efficiency, and ease of manufacturing, and an effort to create a multiphysics engineering durability model based on electrochemical impedance spectroscopy interpretations that associate the micro-details of how a fuel cell is made and their history of (individual) use with specific prognosis for long term performance, resulting in attendant reductions in design, manufacturing, and maintenance costs and increases in reliability and durability.

  10. Fuel Cells for Transportation - Research and Development: Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research and Development: Program Abstracts Fuel Cells for Transportation - Research and Development: Program Abstracts Remarkable progress has been achieved in the development of...

  11. Nanoscale LiFePO4 and Li4Ti5O12 for High Rate Li-ion Batteries

    SciTech Connect (OSTI)

    Jaiswal, A.; Horne, C.R.; Chang, O.; Zhang, W.; Kong, W.; Wang, E.; Chern, T.; Doeff, M. M.

    2009-08-04

    The electrochemical performances of nanoscale LiFePO4 and Li4Ti5O12 materials are described in this communication. The nanomaterials were synthesized by pyrolysis of an aerosol precursor. Both compositions required moderate heat-treatment to become electrochemically active. LiFePO4 nanoparticles were coated with a uniform, 2-4 nm thick carbon-coating using an organic precursor in the heat treatment step and showed high tap density of 1.24 g/cm3, in spite of 50-100 nm particle size and 2.9 wtpercent carbon content. Li4Ti5O12 nanoparticles were between 50-200 nm in size and showed tap density of 0.8 g/cm3. The nanomaterials were tested both in half cell configurations against Li-metal and also in LiFePO4/Li4Ti5O12 full cells. Nano-LiFePO4 showed high discharge rate capability with values of 150 and 138 mAh/g at C/25 and 5C, respectively, after constant C/25 charges. Nano-Li4Ti5O12 also showed high charge capability with values of 148 and 138 mAh/g at C/25 and 5C, respectively, after constant C/25 discharges; the discharge (lithiation) capability was comparatively slower. LiFePO4/Li4Ti5O12 full cells deliver charge/discharge capacity values of 150 and 122 mAh/g at C/5 and 5C, respectively.

  12. Cell development obeys maximum Fisher information

    E-Print Network [OSTI]

    B. R. Frieden; R. A. Gatenby

    2014-04-29

    Eukaryotic cell development has been optimized by natural selection to obey maximal intracellular flux of messenger proteins. This, in turn, implies maximum Fisher information on angular position about a target nuclear pore complex (NPR). The cell is simply modeled as spherical, with cell membrane (CM) diameter 10 micron and concentric nuclear membrane (NM) diameter 6 micron. The NM contains about 3000 nuclear pore complexes (NPCs). Development requires messenger ligands to travel from the CM-NPC-DNA target binding sites. Ligands acquire negative charge by phosphorylation, passing through the cytoplasm over Newtonian trajectories toward positively charged NPCs (utilizing positive nuclear localization sequences). The CM-NPC channel obeys maximized mean protein flux F and Fisher information I at the NPC, with first-order delta I = 0 and approximate 2nd-order delta I = 0 stability to environmental perturbations. Many of its predictions are confirmed, including the dominance of protein pathways of from 1-4 proteins, a 4nm size for the EGFR protein and the approximate flux value F =10^16 proteins/m2-s. After entering the nucleus, each protein ultimately delivers its ligand information to a DNA target site with maximum probability, i.e. maximum Kullback-Liebler entropy HKL. In a smoothness limit HKL approaches IDNA/2, so that the total CM-NPC-DNA channel obeys maximum Fisher I. Thus maximum information approaches non-equilibrium, one condition for life.

  13. Development of a New Generation, High Efficiency PEM Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a New Generation, High Efficiency PEM Fuel Cell Based, CHP System Development of a New Generation, High Efficiency PEM Fuel Cell Based, CHP System Part of a 100 million fuel cell...

  14. CRADA Final Report: Process development for hybrid solar cells

    E-Print Network [OSTI]

    Ager, Joel W

    2011-01-01

    development for hybrid solar cells Summary of the specific20 wafers with full tandem solar cell test structure perIII–Nitride/Silicon Tandem Solar Cell,” Appl. Phys. Express

  15. CRADA Final Report: Process development for hybrid solar cells

    E-Print Network [OSTI]

    Ager, Joel W

    2011-01-01

    development for hybrid solar cells Summary of the specific20 wafers with full tandem solar cell test structure perNitride/Silicon Tandem Solar Cell,” Appl. Phys. Express 2

  16. Fuel Cell Development and Test Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Fuel Cell Development and Test Laboratory at the Energy Systems Integration Facility. NREL's state-of-the-art Fuel Cell Development and Test Laboratory in the Energy Systems Integration Facility (ESIF) supports NREL's fuel cell research and development projects through in-situ fuel cell testing. Current projects include various catalyst development projects, a system contaminant project, and the manufacturing project. Testing capabilities include but are not limited to single cell fuel cells and fuel cell stacks.

  17. Modelling and control strategy development for fuel cell electric vehicles

    E-Print Network [OSTI]

    Peng, Huei

    Modelling and control strategy development for fuel cell electric vehicles Andreas Schell b , Huei applicable to the development of fuel cell electric vehicles (FCEVs) and hybrid electric vehicles (HEVs reserved. Keywords: Fuel cell electric vehicle; Hybrid vehicles; Modelling 1. Introduction Advanced

  18. Dazl regulates mouse embryonic germ cell development

    E-Print Network [OSTI]

    Gill, Mark E

    2010-01-01

    In the mouse, germ cells can undergo differentiation to become either oocytes or spermatozoa in response to sex of their gonadal environment. The nature of the germ cell-intrinsic aspects of this signaling have not been ...

  19. Development of Large Format Lithium Ion Cells with Higher Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Large Format Lithium Ion Cells with Higher Energy Density Exceeding 500WhL Development of Large Format Lithium Ion Cells with Higher Energy Density Exceeding 500WhL 2012 DOE...

  20. Cell fate control in the developing central nervous system

    SciTech Connect (OSTI)

    Guérout, Nicolas; Li, Xiaofei; Barnabé-Heider, Fanie, E-mail: Fanie.Barnabe-Heider@ki.se

    2014-02-01

    The principal neural cell types forming the mature central nervous system (CNS) are now understood to be diverse. This cellular subtype diversity originates to a large extent from the specification of the earlier proliferating progenitor populations during development. Here, we review the processes governing the differentiation of a common neuroepithelial cell progenitor pool into mature neurons, astrocytes, oligodendrocytes, ependymal cells and adult stem cells. We focus on studies performed in mice and involving two distinct CNS structures: the spinal cord and the cerebral cortex. Understanding the origin, specification and developmental regulators of neural cells will ultimately impact comprehension and treatments of neurological disorders and diseases. - Highlights: • Similar mechanisms regulate cell fate in different CNS cell types and structures. • Cell fate regulators operate in a spatial–temporal manner. • Different neural cell types rely on the generation of a diversity of progenitor cells. • Cell fate decision is dictated by the integration of intrinsic and extrinsic signals.

  1. Fuel Cell Technologies Office Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research, Development and Demonstration Plan Page 4 - 1 4.0 Systems Analysis The Fuel Cell Technologies Program (FCT Program) conducts a coordinated, comprehensive effort in...

  2. Development of Advanced High Temperature Fuel Cell Membranes

    Broader source: Energy.gov [DOE]

    Presentation on Development of Advanced High Temperature Fuel Cell Membranes to the High Temperature Membrane Working Group Meeting held in Arlington, Virginia, May 26,2005.

  3. Pennsylvania Company Develops Solar Cell Printing Technology

    Broader source: Energy.gov [DOE]

    The technology uses Plextronics’ conductive inks that can be printed by manufacturers worldwide to make solar cells, potentially as easily as they might print a newspaper.

  4. Second-Use Li-Ion Batteries to Aid Automotive and Utility Industries (Fact Sheet), NREL Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque| StanfordOffice ofTorushigh-powerSearchSeating

  5. Development of a cell-based stream flow routing model 

    E-Print Network [OSTI]

    Raina, Rajeev

    2005-08-29

    This study presents the development of a cell-based routing model. The model developed is a two parameter hydrological routing model that uses a coarse resolution stream network to route runoff from each cell in the watershed to the outlet...

  6. A Phenomenological Model of Bulk Force in a Li-Ion Battery Pack and Its Application to State of Charge Estimation

    SciTech Connect (OSTI)

    Mohan, S; Kim, Y; Siegel, JB; Samad, NA; Stefanopoulou, AG

    2014-09-19

    A phenomenological model of the bulk force exerted by a lithium ion cell during various charge, discharge, and temperature operating conditions is developed. The measured and modeled force resembles the carbon expansion behavior associated with the phase changes during intercalation, as there are ranges of state of charge (SOC) with a gradual force increase and ranges of SOC with very small change in force. The model includes the influence of temperature on the observed force capturing the underlying thermal expansion phenomena. Moreover the model is capable of describing the changes in force during thermal transients, when internal battery heating due to high C-rates or rapid changes in the ambient temperature, which create a mismatch in the temperature of the cell and the holding fixture. It is finally shown that the bulk force model can be very useful for a more accurate and robust SOC estimation based on fusing information from voltage and force (or pressure) measurements. (C) The Author(s) 2014. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives 4.0 License (CC BY-NC-ND, http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reuse, distribution, and reproduction in any medium, provided the original work is not changed in any way and is properly cited. For permission for commercial reuse, please email oa@electrochem.org. All rights reserved.

  7. Solid Oxide Fuel Cell Development at Topsoe Fuel Cell A/S and Ris National Laboratory

    E-Print Network [OSTI]

    catalyst. The range of fuels has further been extended to include ethanol and coal syn-gas by development of a new coke resistant catalyst suitable for future SOFC technology. CELL DEVELOPMENT AND PRODUCTION

  8. CRADA Final Report: Process development for hybrid solar cells

    SciTech Connect (OSTI)

    Ager, Joel W

    2011-02-14

    TCF funding of a CRADA between LBNL and RSLE leveraged RSLE's original $1M investment in LBNL research and led to development of a solar cell fabrication process that will bring the high efficiency, high voltage hybrid tandem solar cell closer to commercialization. RSLE has already built a pilot line at its Phoenix, Arizona site.

  9. Development of nuclear receptor transfected Caco-2 cell lines

    E-Print Network [OSTI]

    Korjamo, Timo

    2006-10-27

    DEVELOPMENT OF NUCLEAR RECEPTOR TRANSFECTED CACO-2 CELL LINES Timo Korjamo University of Kuopio Finland 27th October 2006 ? Background ? Cell lines ? Gene expression ? Functional experiments ? Conclusions Intestinal absorption ? Small intestine... Reinisalo ? Technical assistance: Paula Nyyss?nen, Markku Taskinen ? Collaboration: Professor Pelkonen's group (Univ. Oulu, Finland) ? Funding: Finnish Funding Agency for Technology and Innovation (TEKES) ...

  10. 2010 Hydrogen and Fuel Cell Global Commercialization & Development Update

    SciTech Connect (OSTI)

    none,

    2010-11-01

    This report offers examples of real-world applications and technical progress of hydrogen and fuel cell technologies, including policies adopted by countries to increase technology development and commercialization.

  11. 2010 Hydrogen and Fuel Cell Global Commercialization & Development Update

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report offers examples of real-world applications and technical progress of hydrogen and fuel cell technologies, including policies adopted by countries to increase technology development and com

  12. 4135DEVELOPMENT AND STEM CELLS RESEARCH ARTICLE INTRODUCTION

    E-Print Network [OSTI]

    Perrimon, Norbert

    Warts (Wts), lead to cellular proliferation coupled with resistance to cell death (Hamaratoglu et al, mice mutant for Lats, the ortholog of Drosophila Wts, develop ovarian tumors and soft-tissue sarcomas

  13. High Temperature Solid Oxide Fuel Cell Generator Development

    SciTech Connect (OSTI)

    Joseph Pierre

    2007-09-30

    This report describes the results of the tubular SOFC development program from August 22, 1997 to September 30, 2007 under the Siemens/U.S. Department of Energy Cooperative Agreement. The technical areas discussed include cell manufacturing development, cell power enhancement, SOFC module and system cost reduction and technology advancement, and our field unit test program. Whereas significant progress has been made toward commercialization, significant effort remains to achieve our cost, performance and reliability targets for successful commercialization.

  14. LG Solid Oxide Fuel Cell (SOFC) Model Development

    SciTech Connect (OSTI)

    Haberman, Ben; Martinez-Baca, Carlos; Rush, Greg

    2013-03-31

    This report presents a summary of the work performed by LG Fuel Cell Systems Inc. during the project LG Solid Oxide Fuel Cell (SOFC) Model Development (DOE Award Number: DE-FE0000773) which commenced on October 1, 2009 and was completed on March 31, 2013. The aim of this project is for LG Fuel Cell Systems Inc. (formerly known as Rolls-Royce Fuel Cell Systems (US) Inc.) (?LGFCS?) to develop a multi-physics solid oxide fuel cell (SOFC) computer code (MPC) for performance calculations of the LGFCS fuel cell structure to support fuel cell product design and development. A summary of the initial stages of the project is provided which describes the MPC requirements that were developed and the selection of a candidate code, STAR-CCM+ (CD-adapco). This is followed by a detailed description of the subsequent work program including code enhancement and model verification and validation activities. Details of the code enhancements that were implemented to facilitate MPC SOFC simulations are provided along with a description of the models that were built using the MPC and validated against experimental data. The modeling work described in this report represents a level of calculation detail that has not been previously available within LGFCS.

  15. Design and Evaluation of Novel High Capacity Cathode Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications Lithium Source For High Performance Li-ion Cells Design and Evaluation of Novel High Capacity Cathode Materials Lithium Source For High Performance Li-ion Cells...

  16. Nanoscale Phase Separation, Cation Ordering, and Surface Oxygen Chemistry in Pristine Li1.2Ni0.2Mn0.6O2 for Li-Ion Batteries

    SciTech Connect (OSTI)

    Gu, Meng; Genc, Arda; Belharouak, Ilias; Wang, Dapeng; Amine, Khalil; Thevuthasan, Suntharampillai; Baer, Donald R.; Zhang, Jiguang; Browning, Nigel D.; Liu, Jun; Wang, Chong M.

    2013-05-14

    Li-rich layered material Li1.2Ni0.2Mn0.6O2 possesses high voltage and high specific capacity, which makes it an attractive candidate for the transportation industry and sustainable energy storage systems. The rechargeable capacity of the Li-ion battery is linked largely to the structural stability of the cathode materials during the charge-discharge cycles. However, the structure and cation distribution in pristine (un-cycled) Li1.2Ni0.2Mn0.6O2 have not yet been fully characterized. Using a combination of aberration-corrected scanning/transmission electron microscopy, X-ray dispersive energy spectroscopy (XEDS), electron energy loss spectroscopy (EELS), and complementary multislice image simulation, we have probed the crystal structure, cation/anion distribution, and electronic structure of Li1.2Ni0.2Mn0.6O2 nanoparticle. We discovered that the electronic structure and valence state of transition metal ions show significant variations, which have been identified to be attributed to the oxygen deficiency near the particle surfaces. Characterization of the nanoscale phase separation and cation ordering in the pristine material are critical for understanding the capacity and voltage fading of this material for battery application.

  17. Recent Developments in Mems-Based Micro Fuel Cells

    E-Print Network [OSTI]

    Pichonat, T

    2007-01-01

    Micro fuel cells ($\\mu$-FC) represent promising power sources for portable applications. Today, one of the technological ways to make $\\mu$-FC is to have recourse to standard microfabrication techniques used in the fabrication of micro electromechanical systems (MEMS). This paper shows an overview on the applications of MEMS techniques on miniature FC by presenting several solutions developed throughout the world. It also describes the latest developments of a new porous silicon-based miniature fuel cell. Using a silane grafted on an inorganic porous media as the proton-exchange membrane instead of a common ionomer such as Nafion, the fuel cell achieved a maximum power density of 58 mW cm-2 at room temperature with hydrogen as fuel.

  18. Development of Sensors for Automotive PEM-based Fuel Cells

    E-Print Network [OSTI]

    environments ­Path to low cost (sensor) at 500k qty ­Develop test rig for sensor evaluation · Program Evaluation ­ UTRC Benchmark Sensor Test ­ IIT Sensor Test & Refinement ­ UTRC Program Lead And Evaluation UTCDevelopment of Sensors for Automotive PEM-based Fuel Cells DOE Agreement DE-FC04-02AL67616 Brian

  19. Continued development of metallization for GaAs concentrator cells

    SciTech Connect (OSTI)

    Tobin, S.P.

    1988-11-01

    The objective of this work was the integration of thermally stable metallizations with a high-efficiency GaAs concentrator cell process. For p-GaAs we used a Pt-TiN-Au metallization developed under a previous Sandia Contract. For n-GaAs the best results were obtained for AuGe-TiN-Au. Baseline p/n cells with a CrAu metallization achieved efficiencies of 25.4% at 200 suns. Efficiencies were about 22% at one sun. At one sun, p/n cells with high-temperature contacts were 22.2% efficient, showing that there is no efficiency penalty with the high-temperature metallization. Development efforts on n/p cells yielded high short-circuit currents and open-circuit voltages, with both conventional and high-temperature metallizations. Thermal annealing tests showed that cells with the Pt-TiN-Au metallization were more stable than those with the baseline metallization, withstanding a 15-minute anneal at 500/degree/C with negligible efficiency degradation. 22 refs., 64 figs., 54 tabs.

  20. An Investigation of the Effect of Graphite Degradation on the Irreversible Capacity in Lithium-ion Cells

    SciTech Connect (OSTI)

    Stevenson, Cynthia; Hardwick, Laurence J.; Marcinek, Marek; Beer, Leanne; Kerr, John B.; Kostecki, Robert

    2008-03-03

    The effect of surface structural damage on graphitic anodes, commonly observed in tested Li-ion cells, was investigated. Similar surface structural disorder was artificially induced in Mag-10 synthetic graphite anodes using argon-ion sputtering. Raman microscopy, scanning electron microscopy (SEM) and Brunauer Emmett Teller (BET) measurements confirmed that Ar-ion sputtered Mag-10 electrodes display similar degree of surface degradation as the anodes from tested Li-ion cells. Artificially modified Mag-10 anodes showed double the irreversible charge capacity during the first formation cycle, compared to fresh un-altered anodes. Impedance spectroscopy and Fourier transform infrared (FTIR) spectroscopy on surface modified graphite anodes indicated the formation of a thicker and slightly more resistive SEI layer. Gas chromatography/mass spectroscopy (GC/MS) analysis of solvent extracts from the electrodes detected the presence of new compounds with M{sub w} on the order of 1600 g mol{sup -1} for the surface modified electrode with no evidence of elevated M{sub w} species for the unmodified electrode. The structural disorder induced in the graphite during long-term cycling maybe responsible for the slow and continuous SEI layer reformation, and consequently, the loss of reversible capacity due to the shift of lithium inventory in cycled Li-ion cells.

  1. Microwave Plasma Chemical Vapor Deposition of Nano-Structured Sn/C Composite Thin-Film Anodes for Li-ion Batteries

    SciTech Connect (OSTI)

    Stevenson, Cynthia; Marcinek, M.; Hardwick, L.J.; Richardson, T.J.; Song, X.; Kostecki, R.

    2008-02-01

    In this paper we report results of a novel synthesis method of thin-film composite Sn/C anodes for lithium batteries. Thin layers of graphitic carbon decorated with uniformly distributed Sn nanoparticles were synthesized from a solid organic precursor Sn(IV) tert-butoxide by a one step microwave plasma chemical vapor deposition (MPCVD). The thin-film Sn/C electrodes were electrochemically tested in lithium half cells and produced a reversible capacity of 440 and 297 mAhg{sup -1} at C/25 and 5C discharge rates, respectively. A long term cycling of the Sn/C nanocomposite anodes showed 40% capacity loss after 500 cycles at 1C rate.

  2. Development/Plasticity/Repair Identification of Modulators of Hair Cell Regeneration in the

    E-Print Network [OSTI]

    Rubel, Edwin

    Development/Plasticity/Repair Identification of Modulators of Hair Cell Regeneration levels, environmental toxins, and some medications can readily induce damage or loss of hair cells, often

  3. Solid Oxide Fuel Cell Development at Topsoe Fuel Cell A/S and Ris N. Christiansen1

    E-Print Network [OSTI]

    employing metallic interconnects. The consortium of Topsoe Fuel Cell A/S and Risø has up-scaled its1 Solid Oxide Fuel Cell Development at Topsoe Fuel Cell A/S and Risø N. Christiansen1 , J. Hansen2 , H. Holm-Larsen1 , S. Linderoth3 , P. Larsen3 , P. Hendriksen3 , M. Mogensen3 1 Topsøe Fuel Cell A

  4. Combining mechanical and chemical effects in the deformation and failure of a cylindrical electrode particle in a Li-ion battery

    E-Print Network [OSTI]

    Jeevanjyoti Chakraborty; Colin P. Please; Alain Goriely; S. Jonathan Chapman

    2014-07-31

    A general framework to study the mechanical behaviour of a cylindrical silicon anode particle in a lithium ion battery as it undergoes lithiation is presented. The two-way coupling between stress and concentration of lithium in silicon, including the possibility of plastic deformation, is taken into account and two particular cases are considered. First, the cylindrical particle is assumed to be free of surface traction and second, the axial deformation of the cylinder is prevented. In both cases plastic stretches develop through the entire cylinder and not just near the surface as is commonly found in spherical anode particles. It is shown that the stress evolution depends both on the lithiation rate and the external constraints. Furthermore, as the cylinder expands during lithiation it can develop a compressive axial stress large enough to induce buckling, which in turn may lead to mechanical failure. An explicit criterion for swelling-induced buckling obtained as a modification of the classical Euler buckling criterion shows the competition between the stabilising effect of radius increase and the destabilising effect of axial stress.

  5. Lithium Ion Cell Development for Photovoltaic Energy Storage Applications

    SciTech Connect (OSTI)

    Susan Babinec

    2012-02-08

    The overall project goal is to reduce the cost of home and neighborhood photovoltaic storage systems by reducing the single largest cost component â?? the energy storage cells. Solar power is accepted as an environmentally advantaged renewable power source. Its deployment in small communities and integrated into the grid, requires a safe, reliable and low cost energy storage system. The incumbent technology of lead acid cells is large, toxic to produce and dispose of, and offer limited life even with significant maintenance. The ideal PV storage battery would have the safety and low cost of lead acid but the performance of lithium ion chemistry. Present lithium ion batteries have the desired performance but cost and safety remain the two key implementation barriers. The purpose of this project is to develop new lithium ion cells that can meet PVES cost and safety requirements using A123Systems phosphate-based cathode chemistries in commercial PHEV cell formats. The cost target is a cell design for a home or neighborhood scale at <$25/kWh. This DOE program is the continuation and expansion of an initial MPSC (Michigan Public Service Commission) program towards this goal. This program further pushes the initial limits of some aspects of the original program â?? even lower cost anode and cathode actives implemented at even higher electrode loadings, and as well explores new avenues of cost reduction via new materials â?? specifically our higher voltage cathode. The challenge in our materials development is to achieve parity in the performance metrics of cycle life and high temperature storage, and to produce quality materials at the production scale. Our new cathode material, M1X, has a higher voltage and so requires electrolyte reformulation to meet the high temperature storage requirements. The challenge of thick electrode systems is to maintain adequate adhesion and cycle life. The composite separator has been proven in systems having standard loading electrodes; the challenge with this material will be to maintain proven performance when this composite is coated onto a thicker electrode; as well the high temperature storage must meet application requirements. One continuing program challenge was the lack of specific performance variables for this PV application and so the low power requirements of PHEV/EV transportation markets were again used.

  6. Recent developments in proton exchange membranes for fuel cells

    SciTech Connect (OSTI)

    Devanathan, Ramaswami

    2008-07-23

    Proton exchange membranes (PEMs) that operate at temperatures above 120 °C are needed to avoid catalyst poisoning, speed up electrochemical reactions, simplify the design and reduce the cost of fuel cells. This review summarizes developments in PEMs over the last five years. In order to design new membranes for elevated temperature operation, one must understand the chemistry, morphology and dynamics of protons and small molecules in existing membranes. The integration of experiments with modeling and simulation can shed light on the hierarchical structure of the membrane and dynamical processes associated with molecular transport. Based on such a fundamental understanding, membranes can be modified by controlling the polymer chemistry and architecture or adding inorganic fillers that can retain water under low relative humidity conditions. In addition, the development of anhydrous membranes based on phosphoric acid doped polymers, ionic liquid-infused polymer gels and solid acids can enable fuel cell operation above 150 °C. Considerable work remains to be done to identify proton transport mechanisms in novel membranes and evaluate membrane durability under real world operating conditions.

  7. Three-Dimensional Thermal-Electrochemical Coupled Model for Spirally Wound Large-Format Lithium-Ion Batteries (Presentation)

    SciTech Connect (OSTI)

    Lee, K. J.; Smith K.; Kim, G. H.

    2011-04-01

    This presentation discusses the behavior of spirally wound large-format Li-ion batteries with respect to their design. The objectives of the study include developing thermal and electrochemical models resolving 3-dimensional spirally wound structures of cylindrical cells, understanding the mechanisms and interactions between local electrochemical reactions and macroscopic heat and electron transfers, and developing a tool and methodology to support macroscopic designs of cylindrical Li-ion battery cells.

  8. Material Development for Highly Processable Thin Film Solar Cells

    E-Print Network [OSTI]

    Bob, Brion

    2014-01-01

    H. Sudibyo, and D. Hartanto, in Solar Cells - Research andon the Cu 2 (Zn,Sn)Se 4 solar cells open-circuit voltage. ”on the Cu 2 (Zn,Sn)Se 4 solar cells open-circuit voltage. ”

  9. Material Development for Highly Processable Thin Film Solar Cells

    E-Print Network [OSTI]

    Bob, Brion

    2014-01-01

    Structuring of Thin-film Solar Cells with a Single Laser1. Background on Thin Film Solar Cells and TransparentCuIn(Se,S)2 thin film solar cells: Secondary phases and

  10. Negative Electrodes for Li-Ion Batteries

    E-Print Network [OSTI]

    Kinoshita, Kim; Zaghib, Karim

    2001-01-01

    on New Sealed Rechargeable Batteries and Supercapacitors, B.10. S. Hossain, in Handbook of Batteries, Second Edition, D.Workshop on Advanced Batteries (Lithium Batteries), February

  11. 2010 Hydrogen and Fuel Cell Global Commercialization & Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Polymer and Composite Materials Meetings Fuel Cell Technologies Program Overview: 2012 IEA HIA Hydrogen Safety Stakeholder Workshop Fuel Cell Technologies Program Overview: 2012...

  12. CRADA Final Report: Process development for hybrid solar cells

    E-Print Network [OSTI]

    Ager, Joel W

    2011-01-01

    the U.S. economy. The solar cell’s target market is the highmarket. By reaching their target efficiency of 30%, the hybrid tandem solar

  13. Fuel Cell Technologies Program Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    in the Office of Fuel Cell Technologies, SCS participates in the DOE's Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review (AMR) where all of...

  14. Pressure-Compensated Hydrogen Fuel Cell WiSys Prototype Development Fund

    E-Print Network [OSTI]

    Wu, Mingshen

    Pressure-Compensated Hydrogen Fuel Cell WiSys Prototype Development Fund Final Report Principal Description The purpose of this project was to reduce-to-practice the pressure-compensated hydrogen fuel cell the performance of the new fuel cell innovation against proven strategies. The pressure-compensated fuel cell

  15. Stresa, Italy, 26-28 April 2006 RECENT DEVELOPMENTS IN MEMS-BASED MICRO FUEL CELLS

    E-Print Network [OSTI]

    Boyer, Edmond

    Stresa, Italy, 26-28 April 2006 RECENT DEVELOPMENTS IN MEMS-BASED MICRO FUEL CELLS Tristan Pichonat ABSTRACT Micro fuel cells (µ-FC) represent promising power sources for portable applications. Today, one describes the latest developments of a new porous silicon- based miniature fuel cell. Using a silane grafted

  16. Algorithm Development for Electrochemical Impedance Spectroscopy Diagnostics in PEM Fuel Cells

    E-Print Network [OSTI]

    Victoria, University of

    Algorithm Development for Electrochemical Impedance Spectroscopy Diagnostics in PEM Fuel Cells Abstract The purpose of this work is to develop algorithms to identify fuel cell faults using-board fuel cell diagnostic hardware. Impedance can identify faults that cannot be identified solely by a drop

  17. Aalborg Universitet Development of a 400 W High Temperature PEM Fuel Cell Power Pack -Modelling and

    E-Print Network [OSTI]

    Berning, Torsten

    Aalborg Universitet Development of a 400 W High Temperature PEM Fuel Cell Power Pack - Modelling., Korsgaard, A., Nielsen, M. P., & Kær, S. K. (2006). Development of a 400 W High Temperature PEM Fuel Cell Power Pack - Modelling and System Control. Poster session presented at Fuel Cell Seminar 2006 Conference

  18. CIBS Solar Cell Development Final Scientific/Technical Report

    SciTech Connect (OSTI)

    Exstrom, Christopher L.; Soukup, Rodney J.; Ianno, Natale J.

    2011-09-28

    Efforts to fabricate and study a new photovoltaic material, copper indium boron diselenide (CuInxB1-xSe2 or CIBS), were undertaken. Attempts to prepare CIBS using sputtering deposition techniques resulted in segregation of boron from the rest of elements in the material. CIBS nanocrystals were prepared from the reaction of elemental Se with CuCl, InCl3, and boric acid in solution, but the product material quickly decomposed upon heating that was required in attempts to convert the nanocrystals into a thin film. The investigation of the reasons for the lack of CIBS material stability led to new structure-property studies of closely-related photovoltaic systems as well as studies of new solar cell materials and processing methods that could enhance the development of next-generation solar technologies. A detailed compositional study of CuIn1-xAlxSe2 (CIAS, a system closely related to CIBS) revealed a non-linear correlation between crystal lattice size and the Al/(In+Al) ratios with dual-phase formation being observed. A new nanocrystal-to-thin-film processing method was developed for the preparation of CuIn1-xGaxSe2 (CIGS) thin films in which colloidal Se particles are sprayed in contact with CuIn1-xGaxS2 nanoparticles and heated in an argon atmosphere with no other Se source in the system. The process is non-vacuum and does not require toxic gases such as Se vapor or H2Se. Expertise gained from these studies was applied to new research in the preparation of thin-film pyrite FeS2, an attractive earth-abundant candidate material for next-generation photovoltaics. Three methods successfully produced pure pyrite FeS2 films: sulfurization of sputtered Fe films, chemical bath deposition, and sulfurization of Fe2O3 sol-gel precursors. The last method produced pinhole-free films that may be viable for device development. Nickel, platinum, and possibly carbon would appear to serve as good ohmic contact materials. While CdS has a reasonable conduction band energy match to serve as an n-type buffer material in a pyrite FeS2-based solar cell, the less toxic SnS2 is being explored for this purpose.

  19. Development of biomimetic microfluidic adhesive substrates for cell separation

    E-Print Network [OSTI]

    Lee, Chia-Hua

    2014-01-01

    Cell separation is important in medical, biological research, clinical therapy, diagnostics and many other areas. The conventional methods of cell sorting have limited applications due to sophisticated equipment settings, ...

  20. Catalysts and materials development for fuel cell power generation

    E-Print Network [OSTI]

    Weiss, Steven E

    2005-01-01

    Catalytic processing of fuels was explored in this thesis for both low-temperature polymer electrolyte membrane (PEM) fuel cell as well as high-temperature solid oxide fuel cell (SOFC) applications. Novel catalysts were ...

  1. CRADA Final Report: Process development for hybrid solar cells

    E-Print Network [OSTI]

    Ager, Joel W

    2011-01-01

    the high efficiency, high voltage hybrid tandem solar celltarget efficiency of 30%, the hybrid tandem solar cells have

  2. Development of High Energy Density Lithium-Sulfur Cells

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  3. CRADA Final Report: Process development for hybrid solar cells

    E-Print Network [OSTI]

    Ager, Joel W

    2011-01-01

    global market. By reaching their target efficiency of 30%, the hybrid tandem solar cells have the potential

  4. 653DEVELOPMENT AND STEM CELLS RESEARCH ARTICLE INTRODUCTION

    E-Print Network [OSTI]

    Sander, Maike

    of the organ (Seymour et al., 2007; Zhou et al., 2007; Solar et al., 2009; Schaffer et al., 2010). During) in the trunk and give rise to the endocrine cells of the postnatal pancreas (Seymour et al., 2008; Solar et al endocrine and duct cells but not acinar cells (Solar et al., 2009). Based on these findings it has been

  5. A MULTISCALE, CELL-BASED FRAMEWORK FOR MODELING CANCER DEVELOPMENT

    SciTech Connect (OSTI)

    JIANG, YI

    2007-01-16

    Cancer remains to be one of the leading causes of death due to diseases. We use a systems approach that combines mathematical modeling, numerical simulation, in vivo and in vitro experiments, to develop a predictive model that medical researchers can use to study and treat cancerous tumors. The multiscale, cell-based model includes intracellular regulations, cellular level dynamics and intercellular interactions, and extracellular level chemical dynamics. The intracellular level protein regulations and signaling pathways are described by Boolean networks. The cellular level growth and division dynamics, cellular adhesion and interaction with the extracellular matrix is described by a lattice Monte Carlo model (the Cellular Potts Model). The extracellular dynamics of the signaling molecules and metabolites are described by a system of reaction-diffusion equations. All three levels of the model are integrated through a hybrid parallel scheme into a high-performance simulation tool. The simulation results reproduce experimental data in both avasular tumors and tumor angiogenesis. By combining the model with experimental data to construct biologically accurate simulations of tumors and their vascular systems, this model will enable medical researchers to gain a deeper understanding of the cellular and molecular interactions associated with cancer progression and treatment.

  6. CRADA Final Report: Process development for hybrid solar cells

    E-Print Network [OSTI]

    Ager, Joel W

    2011-01-01

    solar cells have the potential to reduce the cost of concentrator photovoltaic power generation (CPV) by 10-15%--an improvement

  7. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    Currently, hydrogen production is capital-intensive. Widespread adoption of hydrogen fuel cells requires consumers to have access to cost-competitive hydrogen. Steam methane...

  8. NREL scientists develop robust, high-performance IZO transparent contact for CIGS solar cells.

    E-Print Network [OSTI]

    NREL scientists develop robust, high-performance IZO transparent contact for CIGS solar cells indium gallium diselenide (CIGS) solar cell is zinc oxide (ZnO). The problem is that unprotected Zn improve humidity resistance in CIGS solar cells. Key Result This new method yields increased product

  9. Development of high-power electrodes for a liquid-feed direct methanol fuel cell

    E-Print Network [OSTI]

    Development of high-power electrodes for a liquid-feed direct methanol fuel cell C. Lim, C.Y. Wang for a liquid-feed direct methanol fuel cell (DMFC) were fabricated by using a novel method of modi®ed Na.V. All rights reserved. Keywords: Direct methanol fuel cells; Membrane-electrode assembly (MEA); Polymer

  10. Newsletters Researchers at Penn State announce breakthrough in microbial fuel cell development

    E-Print Network [OSTI]

    & Publishing Researchers at Penn State announce breakthrough in microbial fuel cell development A technological breakthrough has made it possible to use microbial fuel cells for large-scale electricity production has been devised. It is hoped that the combination of the two will allow microbial fuel cells

  11. Integrated Cellular and Gene Interaction Model for Cell Migration in Embryonic Development

    E-Print Network [OSTI]

    Song, Joe

    Integrated Cellular and Gene Interaction Model for Cell Migration in Embryonic Development Hien Nguyen and Mingzhou (Joe) Song Department of Computer Science New Mexico State University Las Cruces, NM, cells have their own operations, including mitosis, migration, communication with other cells, and death

  12. Recent developments in high-efficiency PV cells

    SciTech Connect (OSTI)

    Deb, S.

    2000-05-22

    Enormous progress has been made in recent years on a number of photovoltaic (PV) materials and devices in terms of conversion efficiencies. Ultrahigh-efficiency (>30{percent}) PV cells have been fabricated from gallium arsenide (GaAs) and its ternary alloys such as gallium indium phosphide (GaInP{sub 2}). The high-efficiency GaAs-based solar cells are being produced on a commercial scale, particularly for space applications. Efficiencies in the range of 18{percent} to 24{percent} have been achieved in traditional silicon-based devices fabricated from both multicrystalline and single-crystal materials. Major advances in efficiency have also been made on various thin-film solar cells based on amorphous silicon (aSi:H), copper gallium indium diselenide (CIGS), and cadmium telluride materials. This paper gives a brief overview of the recent progress in PV cell efficiencies based on these materials and devices.

  13. NREL Develops High-Speed Scanner to Monitor Fuel Cell Material Defects

    SciTech Connect (OSTI)

    2015-09-01

    This highlight describes results of recent work in which polymer electrolyte membrane fuel cell electrodes with intentionally introduced known defects were imaged and analyzed using a fuel cell scanner recently developed at NREL. The highlight is being developed for the September 2015 Alliance S&T Board meeting.

  14. Inverted Metamorphic Cell Development: Cooperative Research and Development Final Report, CRADA Number CRD-05-156

    SciTech Connect (OSTI)

    Wanlass, M.

    2012-05-01

    This CRADA targeted technology transfer of the inverted metamorphic multi-junction (IMM) solar cell innovation from NREL to Emcore Photovoltaics. The technology transfer was successfully completed. Additionally, NREL provided materials characterization of solar cell structures produced at Emcore.

  15. Process Development for High Voc CdTe Solar Cells

    SciTech Connect (OSTI)

    Ferekides, C. S.; Morel, D. L.

    2011-05-01

    This is a cumulative and final report for Phases I, II and III of this NREL funded project (subcontract # XXL-5-44205-10). The main research activities of this project focused on the open-circuit voltage of the CdTe thin film solar cells. Although, thin film CdTe continues to be one of the leading materials for large-scale cost-effective production of photovoltaics, the efficiency of the CdTe solar cells have been stagnant for the last few years. This report describes and summarizes the results for this 3-year research project.

  16. HIGH-TEMPERATURE TUBULAR SOLID OXIDE FUEL CELL GENERATOR DEVELOPMENT

    SciTech Connect (OSTI)

    S.E. Veyo

    1998-09-01

    During the Westinghouse/USDOE Cooperative Agreement period of November 1, 1990 through November 30, 1997, the Westinghouse solid oxide fuel cell has evolved from a 16 mm diameter, 50 cm length cell with a peak power of 1.27 watts/cm to the 22 mm diameter, 150 cm length dimensions of today's commercial prototype cell with a peak power of 1.40 watts/cm. Accompanying the increase in size and power density was the elimination of an expensive EVD step in the manufacturing process. Demonstrated performance of Westinghouse's tubular SOFC includes a lifetime cell test which ran for a period in excess of 69,000 hours, and a fully integrated 25 kWe-class system field test which operated for over 13,000 hours at 90% availability with less than 2% performance degradation over the entire period. Concluding the agreement period, a 100 kW SOFC system successfully passed its factory acceptance test in October 1997 and was delivered in November to its demonstration site in Westervoort, The Netherlands.

  17. Development of Supported Bifunctional Electrocatalysts for Unitized Regenerative Fuel Cells

    E-Print Network [OSTI]

    . Unitized regenerative fuel cells URFCs are promising energy storage systems for uninterrupted power supplies, solar-powered air- craft, satellites and micro-spacecraft, and certain terrestrial vehicles. They are also potentially useful for load leveling of distributed power generation from sources such as wind

  18. Hydrogen & Fuel Cells: Review of National Research and Development...

    Open Energy Info (EERE)

    and Development (R&D) Programs Focus Area: Hydrogen Topics: Policy Impacts Website: www.iea.orgTextbasenpsumhydrogenSUM.pdf Equivalent URI: cleanenergysolutions.orgcontent...

  19. Energy storage research and development

    SciTech Connect (OSTI)

    None, None

    2008-01-01

    In 2007, US consumers experienced the highest sustained gasoline prices in recent history, in real terms, including those seen in the early 1980s1. Partially as a result of the $3/gallon gasoline prices, sales of hybrid electric vehicles (HEVs) increased almost 60% in 20072, and several automakers announced plans to develop plug-in hybrid electric vehicles (PHEVs)3. However, total sales of HEVs remained in the 2-3 percent range of all vehicle sales. An important step for continued HEV market penetration, as well as electrifying the nation's personal transportation, is the development of cost effective, long lasting, and abuse tolerant Li-ion batteries.

  20. Fuel Cells for Transportation - Research and Development: Program Abstracts

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathy LoftusFuel CellFuel Fuelgreen hfor|

  1. Development of a 5 kW Prototype Coal-Based Fuel Cell

    SciTech Connect (OSTI)

    Chuang, Steven S.C.; Mirzababaei, Jelvehnaz; Rismanchian, Azadeh

    2014-01-20

    The University of Akron Fuel Cell Laboratory pioneered the development of a laboratory scale coal-based fuel cell, which allows the direct use of high sulfur content coal as fuel. The initial research and coal fuel cell technology development (“Coal-based Fuel Cell,” S. S. C. Chuang, PCT Int. Appl. 2006, i.e., European Patent Application, 35 pp. CODEN: PIXXD2 WO 2006028502 A2 20060316) have demonstrated that it is feasible to electrochemically oxidize carbon to CO2, producing electricity. The key innovative concept of this coal-based fuel cell technology is that carbon in coal can be converted through an electrochemical oxidation reaction into manageable carbon dioxide, efficiently generating electricity without involving coal gasification, reforming, and water-gas shift reaction. This study has demonstrated that electrochemical oxidation of carbon can take place on the Ni anode surface and the CO and CO2 product produced can further react with carbon to initiate the secondary reaction. A carbon injection system was developed to inject the solid fuel without bringing air into the anode chamber; a fuel cell stack was developed and tested to demonstrate the feasibility of the fuel cell stack. Further improvement of anode catalyst activity and durability is needed to bring this novel coal fuel cell to a highly efficient, super clean, multi-use electric generation technology, which promises to provide low cost electricity by expanding the utilization of U.S. coal supplies and relieving our dependence on foreign oil.

  2. Development status of triple-junction solar cells optimized for low intensity low temperature applications

    E-Print Network [OSTI]

    Development status of triple-junction solar cells optimized for low intensity low temperature triple-junction solar cells manufactured by AZUR SPACE Solar Power GmbH under low intensity low unusable for deep space missions. Fig. 1: Example of a flat spot effect present in a triple- junction solar

  3. Development/Plasticity/Repair Hair Cell Replacement in Adult Mouse Utricles after

    E-Print Network [OSTI]

    Rubel, Edwin

    Development/Plasticity/Repair Hair Cell Replacement in Adult Mouse Utricles after Targeted Ablation of Hair Cells with Diphtheria Toxin Justin S. Golub,1 Ling Tong,1 Tot B. Ngyuen,1 Cliff R. Hume,1 Richard utricle by inserting the human diphtheria toxin receptor (DTR) gene into the Pou4f3 gene, which encodes

  4. Prenatal cadmium exposure alters postnatal immune cell development and function

    SciTech Connect (OSTI)

    Hanson, Miranda L.; Holásková, Ida; Elliott, Meenal; Brundage, Kathleen M.; Schafer, Rosana; Barnett, John B., E-mail: jbarnett@hsc.wvu.edu

    2012-06-01

    Cadmium (Cd) is generally found in low concentrations in the environment due to its widespread and continual use, however, its concentration in some foods and cigarette smoke is high. Although evidence demonstrates that adult exposure to Cd causes changes in the immune system, there are limited reports of immunomodulatory effects of prenatal exposure to Cd. This study was designed to investigate the effects of prenatal exposure to Cd on the immune system of the offspring. Pregnant C57Bl/6 mice were exposed to an environmentally relevant dose of CdCl{sub 2} (10 ppm) and the effects on the immune system of the offspring were assessed at two time points following birth (2 and 7 weeks of age). Thymocyte and splenocyte phenotypes were analyzed by flow cytometry. Prenatal Cd exposure did not affect thymocyte populations at 2 and 7 weeks of age. In the spleen, the only significant effect on phenotype was a decrease in the number of macrophages in male offspring at both time points. Analysis of cytokine production by stimulated splenocytes demonstrated that prenatal Cd exposure decreased IL-2 and IL-4 production by cells from female offspring at 2 weeks of age. At 7 weeks of age, splenocyte IL-2 production was decreased in Cd-exposed males while IFN-? production was decreased from both male and female Cd-exposed offspring. The ability of the Cd-exposed offspring to respond to immunization with a S. pneumoniae vaccine expressing T-dependent and T-independent streptococcal antigens showed marked increases in the levels of both T-dependent and T-independent serum antibody levels compared to control animals. CD4{sup +}FoxP3{sup +}CD25{sup +} (nTreg) cell percentages were increased in the spleen and thymus in all Cd-exposed offspring except in the female spleen where a decrease was seen. CD8{sup +}CD223{sup +} T cells were markedly decreased in the spleens in all offspring at 7 weeks of age. These findings suggest that even very low levels of Cd exposure during gestation can result in long term detrimental effects on the immune system of the offspring and these effects are to some extent sex-specific. -- Highlights: ? Prenatal exposure to Cd causes no thymocyte phenotype changes in the offspring ? Analysis of the splenocyte phenotype demonstrates a macrophage-specific effect only in male offspring ? The cytokine profiles suggest an effect on peripheral Th1 cells in female and to a lesser degree in male offspring ? There was a marked increase in serum anti-streptococcal antibody levels after immunization in both sexes ? There was a marked decrease in the numbers of splenic CD8{sup +}CD223{sup +} cells in both sexes.

  5. Vehicle Technologies Office Merit Review 2015: Dramatically Improve the Safety Performance of Li Ion Battery Separators and Reduce the Manufacturing Cost using Ultraviolet Curing and High Precision Coating Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Miltec UV International at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about dramatically improve...

  6. NREL: Workforce Development and Education Programs - Hydrogen and Fuel Cell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatialDevelopment of MarineOpportunities,High

  7. Development of Commercial Technology for Thin Film Silicon Solar Cells on Glass: Cooperative Research and Development Final Report, CRADA Number CRD-07-209

    SciTech Connect (OSTI)

    Sopori, B.

    2013-03-01

    NREL has conducted basic research relating to high efficiency, low cost, thin film silicon solar cell design and the method of making solar cells. Two patents have been issued to NREL in the above field. In addition, specific process and metrology tools have been developed by NREL. Applied Optical Sciences Corp. (AOS) has expertise in the manufacture of solar cells and has developed its own unique concentrator technology. AOS wants to complement its solar cell expertise and its concentrator technology by manufacturing flat panel thin film silicon solar cell panels. AOS wants to take NREL's research to the next level, using it to develop commercially viable flat pane, thin film silicon solar cell panels. Such a development in equipment, process, and metrology will likely produce the lowest cost solar cell technology for both commercial and residential use. NREL's fundamental research capability and AOS's technology and industrial background are complementary to achieve this product development.

  8. A possible role for the canonical Wnt pathway in endocrine cell development in chicks

    SciTech Connect (OSTI)

    Pedersen, Anna Hauntoft; Heller, R. Scott . E-mail: shll@hagedorn.dk

    2005-08-05

    Wnt signalling is involved in many developmental processes such as proliferation, differentiation, cell fate decisions, and morphogenesis. However, little is known about Wnt signalling during pancreas development. Multiple Wnt ligands and Frizzled receptors are expressed in the embryonic mouse pancreas, the surrounding mesenchyme, and have also been detected in the chicken endoderm during development. The aim of this study was to investigate the role of canonical Wnt signalling on endocrine cell development by use of the in ovo electroporation of the chicken endoderm. Overexpression with a constitutive active form of {beta}-catenin in combination with Ngn3 resulted in reduced numbers of glucagon cells. dnLEF-1 or naked-1 did not alter endocrine cell differentiation when co-expressed with Ngn3, but dnLEF-1 appeared to have some potential for inhibiting delamination of Ngn3 cells. In addition, neuronal {beta}-III-tubulin, which had previously been considered a specific marker for neuronal cells, was observed in the pancreas and was upregulated in the electroporated Ngn3 cells and thus may be a new endocrine marker in the chicken.

  9. Dysfunction of irradiated thymus for the development of helper T cells

    SciTech Connect (OSTI)

    Amagai, T.; Kina, T.; Hirokawa, K.; Nishikawa, S.; Imanishi, J.; Katsura, Y.

    1987-07-15

    The development of cytotoxic T cells and helper T cells in an intact or irradiated thymus was investigated. C57BL/6 (H-2b, Thy-1.2) mice were whole body-irradiated, or were irradiated with shielding over either the thymus or right leg and tail, and were transferred with 1.5 X 10(7) bone marrow cells from B10.Thy-1.1 mice (H-2b, Thy-1.1). At various days after reconstitution, thymus cells from the recipient mice were harvested and a peanut agglutinin low-binding population was isolated. This population was further treated with anti-Thy-1.2 plus complement to remove host-derived cells and was assayed for the frequency of cytotoxic T cell precursors (CTLp) and for the activity of helper T cells (Th). In the thymus of thymus-shielded and irradiated mice, Th activity reached normal control level by day 25, whereas CTLp frequency remained at a very low level during these days. In the thymus of whole body-irradiated mice, generation of CTLp was highly accelerated while that of Th was retarded, the period required for reconstitution being 25 days and more than 42 days for CTLp and Th, respectively. Preferential development of CTLp was also seen in right leg- and tail-shielded (L-T-shielded) and irradiated recipients. Histological observation indicated that Ia+ nonlymphoid cells were well preserved in the thymus of thymus-shielded and irradiated recipients, whereas in L-T-shielded and irradiated recipients, such cells in the medulla were markedly reduced in number. These results suggest strongly that the generation of Th but not CTLp is dependent on radiosensitive thymic component(s), and that such components may represent Ia+ cells themselves in the medulla or some microenvironment related to Ia+ cells.

  10. The development and characterization of a somatic cell line for feline nuclear transfer 

    E-Print Network [OSTI]

    Hutchison, Sarah Adrianne

    2013-02-22

    (Austin, TX) Graduated 1996, Advanced Curriculum with honors Salutatorian GPA: 4. 0 Honors Dean's Honor Role ? fall, 1998, spring, 1999, and fall, 1999 Distinguished Student ? fa11, 1996 spring, 1997, fall, 1997, spring, 1998 Phi Eta Sigma National... stages of development. Earlier the same team had shown that division of these anchorage-independent granulosa cells which exhibited stem cell properties were stimulated by insulin-like growth factors (IGF) as well as inhibited by insulin-like growth...

  11. The novel usage of spectroscopic ellipsometry for the development of amorphous Si solar cells

    E-Print Network [OSTI]

    Park, Byungwoo

    :H/mc-Si:H double junction or a-Si:H/a-SiGe:H/mc-Si:H triple junction are being researched. In the multi-junctionThe novel usage of spectroscopic ellipsometry for the development of amorphous Si solar cells Seung May 2010 Keywords: a-Si:H Thin film Si solar cell Spectroscopic ellipsometry (SE) a b s t r a c t We

  12. Final Report: Development of a Thermal and Water Management System for PEM Fuel Cell

    SciTech Connect (OSTI)

    Zia Mirza, Program Manager

    2011-12-06

    This final program report is prepared to provide the status of program activities performed over the period of 9 years to develop a thermal and water management (TWM) system for an 80-kW PEM fuel cell power system. The technical information and data collected during this period are presented in chronological order by each calendar year. Balance of plant (BOP) components of a PEM fuel cell automotive system represents a significant portion of total cost based on the 2008 study by TIAX LLC, Cambridge, MA. The objectives of this TWM program were two-fold. The first objective was to develop an advanced cooling system (efficient radiator) to meet the fuel cell cooling requirements. The heat generated by the fuel cell stack is a low-quality heat (small difference between fuel cell stack operating temperature and ambient air temperature) that needs to be dissipated to the ambient air. To minimize size, weight, and cost of the radiator, advanced fin configurations were evaluated. The second objective was to evaluate air humidification systems which can meet the fuel cell stack inlet air humidity requirements. The moisture from the fuel cell outlet air is transferred to inlet air, thus eliminating the need for an outside water source. Two types of humidification devices were down-selected: one based on membrane and the other based on rotating enthalpy wheel. The sub-scale units for both of these devices have been successfully tested by the suppliers. This project addresses System Thermal and Water Management.

  13. Development and Application of ANN Model for Worker Assignment into Virtual Cells of Large Sized Configurations

    SciTech Connect (OSTI)

    Murali, R. V.; Fathi, Khalid [Faculty Members, Department of Mechanical and Industrial Engineering, Caledonian College of Engineering (Oman); Puri, A. B. [Associate Professor, Department of Mechanical Engineering, NIT, Durgapur, West Bengal (India)

    2010-10-26

    This paper presents an extended version of study already undertaken on development of an artificial neural networks (ANNs) model for assigning workforce into virtual cells under virtual cellular manufacturing systems (VCMS) environments. Previously, the same authors have introduced this concept and applied it to virtual cells of two-cell configuration and the results demonstrated that ANNs could be a worth applying tool for carrying out workforce assignments. In this attempt, three-cell configurations problems are considered for worker assignment task. Virtual cells are formed under dual resource constraint (DRC) context in which the number of available workers is less than the total number of machines available. Since worker assignment tasks are quite non-linear and highly dynamic in nature under varying inputs and conditions and, in parallel, ANNs have the ability to model complex relationships between inputs and outputs and find similar patterns effectively, an attempt was earlier made to employ ANNs into the above task. In this paper, the multilayered perceptron with feed forward (MLP-FF) neural network model has been reused for worker assignment tasks of three-cell configurations under DRC context and its performance at different time periods has been analyzed. The previously proposed worker assignment model has been reconfigured and cell formation solutions available for three-cell configuration in the literature are used in combination to generate datasets for training ANNs framework. Finally, results of the study have been presented and discussed.

  14. Fundamental understanding and development of low-cost, high-efficiency silicon solar cells

    SciTech Connect (OSTI)

    ROHATGI,A.; NARASIMHA,S.; MOSCHER,J.; EBONG,A.; KAMRA,S.; KRYGOWSKI,T.; DOSHI,P.; RISTOW,A.; YELUNDUR,V.; RUBY,DOUGLAS S.

    2000-05-01

    The overall objectives of this program are (1) to develop rapid and low-cost processes for manufacturing that can improve yield, throughput, and performance of silicon photovoltaic devices, (2) to design and fabricate high-efficiency solar cells on promising low-cost materials, and (3) to improve the fundamental understanding of advanced photovoltaic devices. Several rapid and potentially low-cost technologies are described in this report that were developed and applied toward the fabrication of high-efficiency silicon solar cells.

  15. Development of fuel processors for transportation and stationary fuel cell systems

    SciTech Connect (OSTI)

    Mitchell, W.L.; Bentley, J.M.; Thijssen, J.H.J. [Arthur D. Little, Inc., Cambridge, MA (United States)

    1996-12-31

    Five years of development effort at Arthur D. Little have resulted in a family of low-cost, small-scale fuel processor designs which have been optimized for multiple fuels, applications, and fuel cell technologies. The development activities discussed in this paper involve Arthur D. Little`s proprietary catalytic partial oxidation fuel processor technology. This technology is inherently compact and fuel-flexible, and has been shown to have system efficiencies comparable to steam reformers when integrated properly with a wide range of fuel cell types.

  16. 1/12/14 Researchers Develop Micro-Windmills to Recharge Cell Phones www.sciencespacerobots.com/researchers-develop-micro-windmills-to-recharge-cell-phones-11020142 1/2

    E-Print Network [OSTI]

    Chiao, Jung-Chih

    1/12/14 Researchers Develop Micro-Windmills to Recharge Cell Phones www.sciencespacerobots.com/researchers-develop-micro-windmills-to-recharge-cell-phones-11020142 1/2 Permalink | Subscribe | 0 Comments | Tweet 40 36Like Search Researchers Develop Micro-Windmills professor have created a micro- windmill that generates wind energy. The device is just 1.8 mm at its widest

  17. Performance and degradation evaluation of five different commercial lithium-ion cells

    SciTech Connect (OSTI)

    Striebel, Kathryn A.; Shim, Joongpyo

    2004-04-20

    The initial performance of five different types of Li-ion rechargeable batteries, from Quallion Corp, UltraLife Battery and Toshiba, was measured and compared. Cell characterization included variable-rate constant-current cycling, various USDOE pulse-test protocols and full-spectrum electrochemical impedance spectroscopy. Changes in impedance and capacity were monitored during electrochemical cycling under various conditions, including constant-current cycling over 100 percent DOD at a range of temperature and pulse profile cycling over a very narrow range of DOD at room temperature. All cells were found to maintain more than 80 percent of their rated capacity for more than 400 constant current 100 percent DOD cycles. The power fade (or impedance rise) of the cells varied considerably. New methods for interpreting the pulse resistance data were evaluated for their usefulness in interpreting performance mechanism as a function of test protocol and cell design.

  18. Supporting information Development of Lead Iodide Perovskite Solar Cells Using Three-Dimensional

    E-Print Network [OSTI]

    Wang, Xudong

    Supporting information Development of Lead Iodide Perovskite Solar Cells Using Three: xudong@engr.wisc.edu #12;Figure S1. Planar view SEM images of sequential deposited perovskite-ray diffraction patterns of sequentially deposited perovskite on a variety of 3D TiO2 frameworks with length

  19. Molten carbonate fuel cell (MCFC) product development test. Annual report, October 1994--September 1995

    SciTech Connect (OSTI)

    1996-01-01

    This report summarizes the technical progress that has occurred in conjunction with Cooperative Agreement No. DE-FC21-92MC28065, Molten Carbonate Fuel Cell Product Development Test (PDT) during the period of October 1, 1994 through September 30, 1995. Information is presented on stack design, manufacturing, stack assembly, procurement, site preparation, and test plan.

  20. Fundamental stack and system issues in molten carbonate fuel cell development

    SciTech Connect (OSTI)

    Williams, M.C.; Parsons, E.L. Jr.; Mayfield, M.J.

    1993-12-31

    Stack research and system issues in molten carbonate fuel cell (MCFC) technology development and commercialization are discussed within context of status of MCFC development and commercialization in US. Status of MCFC development is addressed. Major known fundamental stack research issues remaining for the MCFC technology are identified and discussed. The cathode remains a focal point of performance improvement and cost reduction. The various aspects of MCFC power plant network and systems issues are also addressed and discussed. These include cost, heat loss management, startup and shutdown modes, dynamic response, footprint, packaging and integration, parasitic power losses, pressurization and reforming. Potential of MCFC networks is discussed. With the initial demonstration of full-area, fullheight 250-kW to 2-MW MCFC power plants, the spatial configuration of the MCFC stacks into networks in the fuel cell power plant takes on importance for the first time.

  1. Understanding the interactions between cells and materials is important for the development of new materials for biological

    E-Print Network [OSTI]

    Chen, Christopher S.

    Understanding the interactions between cells and materials is important for the development of new discuss how these findings may impact design considerations for new materials in biology. Wendy F. Liu1 materials for biological applications1. To study cell biology, cells are typically removed from their host

  2. V. Cortical Development and Neural Disorder Fates and functions of NG2 cells in the postnatal CNS

    E-Print Network [OSTI]

    Kazama, Hokto

    V. Cortical Development and Neural Disorder Fates and functions of NG2 cells in the postnatal CNS: Oligodendrocyte precursors (OLPs, also known as NG2 cells) are generated in the ventricular zones (VZ neurons at earlier developmental times. NG2 cells subsequently proliferate and migrate widely throughout

  3. Development of Novel PEM Membrane and Multiphase CD Modeling of PEM Fuel Cell

    SciTech Connect (OSTI)

    K. J. Berry; Susanta Das

    2009-12-30

    To understand heat and water management phenomena better within an operational proton exchange membrane fuel cell's (PEMFC) conditions, a three-dimensional, two-phase computational fluid dynamic (CFD) flow model has been developed and simulated for a complete PEMFC. Both liquid and gas phases are considered in the model by taking into account the gas flow, diffusion, charge transfer, change of phase, electro-osmosis, and electrochemical reactions to understand the overall dynamic behaviors of species within an operating PEMFC. The CFD model is solved numerically under different parametric conditions in terms of water management issues in order to improve cell performance. The results obtained from the CFD two-phase flow model simulations show improvement in cell performance as well as water management under PEMFCs operational conditions as compared to the results of a single phase flow model available in the literature. The quantitative information obtained from the two-phase model simulation results helped to develop a CFD control algorithm for low temperature PEM fuel cell stacks which opens up a route in designing improvement of PEMFC for better operational efficiency and performance. To understand heat and water management phenomena better within an operational proton exchange membrane fuel cell's (PEMFC) conditions, a three-dimensional, two-phase computational fluid dynamic (CFD) flow model has been developed and simulated for a complete PEMFC. Both liquid and gas phases are considered in the model by taking into account the gas flow, diffusion, charge transfer, change of phase, electro-osmosis, and electrochemical reactions to understand the overall dynamic behaviors of species within an operating PEMFC. The CFD model is solved numerically under different parametric conditions in terms of water management issues in order to improve cell performance. The results obtained from the CFD two-phase flow model simulations show improvement in cell performance as well as water management under PEMFCs operational conditions as compared to the results of a single phase flow model available in the literature. The quantitative information obtained from the two-phase model simulation results helped to develop a CFD control algorithm for low temperature PEM fuel cell stacks which opens up a route in designing improvement of PEMFC for better operational efficiency and performance.

  4. Design and development of a cooling device for solid polymer electrolyte fuel cells 

    E-Print Network [OSTI]

    Nandi, Asis

    1991-01-01

    DESIGN AND DEVEI OPMENT OF A COOLING DEVICE FOR SOLID POLYMER ELECTROLYTE FUEL CELLS A Thesis by- ASIS NANDI Submitted to the Office of Graduate Studies of Texas ALA'I Ifniversity in partial fulfillment of the requirements I' or the degree ot...' MASTER OF SCIENCE December 1991 Major Subject: Mechanical Engineering DESIGN AND DEVELOPMENT OF A COOLING DEVICE FOR SOLID POLYMER ELECTROLYTE FUEL CELLS A Thesis ASIS lVAiVDI Approved as to style and content by: q. v, 4~. V. K. Anand (' Chair...

  5. Structural Integration of Silicon Solar Cells and Lithium-ion Batteries Using Printed Electronics

    E-Print Network [OSTI]

    Kang, Jin Sung

    2012-01-01

    Lithium-Ion Polymer Battery ..Performance of Lithium-Ion Polymer Battery Introduction Assolid state lithium-ion (Li-ion) battery were adhesively

  6. Development of metallization for GaAs and AlGaAs concentrator solar cells

    SciTech Connect (OSTI)

    Tobin, S.P.

    1987-04-01

    A three-layer metallization system was developed for high temperature stability on GaAs and AlGaAs solar cells. The layers are a Pt ohmic contact metal that forms thermally stable compounds with GaAs, a TiN diffusion barrier, and a gold conductor. The solar cell structure was also designed for contact stability, with the key component being a heavily doped GaAs cap layer. Reactively sputtered TiN was found to act as an excellent barrier when deposited under the proper conditions. The conditions were carefully optimized for low resistivity and low stress in the films. A low but nonzero substrate bias during sputtering was found to be important. Solar cells with sputtered metallizations of Pt/TiN/Ti/Pt/Au were found to be thermally stable up to 500/sup 0/C for 15 minutes in vacuum. At 600/sup 0/C there was catastrophic degradation of the cells due to dissociation of uncapped GaAs surfaces. Below this temperature the metallization performed as designed. The Pt and GaAs layers reacted to form a stable PtGa compound layer that gave low contact resistance. There was no penetration of Au or GaAs through the barrier layer. These results are a very encouraging first step leading to stable, reliable GaAs and AlGaAs concentrator cells.

  7. GeOx/Reduced Graphene Oxide Composite as an Anode for Li-ion Batteries: Enhanced Capacity via Reversible Utilization of Li2O along with Improved Rate Performance

    SciTech Connect (OSTI)

    Lv, Dongping; Gordin, Mikhail; Yi, Ran; Xu, Terrence (Tianren); Song, Jiangxuan; Jiang, Yingbing; Choi, Daiwon; Wang, Donghai

    2014-09-01

    A self-assembled GeOx/reduced graphene oxide (GeOx/RGO) composite, where GeOx nanoparticles were grown directly on reduced graphene oxide sheets, was synthesized via a facile one-step reduction approach and studied by X-ray diffraction, transmission electron microscopy, energy dispersive X-ray spectroscopy, electron energy loss spectroscopy elemental mapping, and other techniques. Electrochemical evaluation indicates that incorporation of reduced graphene oxide enhances both the rate capability and reversible capacity of GeOx, with the latter being due to the RGO enabling reversible utilization of Li2O. The composite delivers a high reversible capacity of 1600 mAhg-1 at a current density of 100 mAg-1, and still maintains a capacity of 410 mAhg-1 at a high current density of 20 Ag-1. Owing to the flexible reduced graphene oxide sheets enwrapping the GeOx particles, the cycling stability of the composite was also improved significantly. To further demonstrate its feasibility in practical applications, the synthesized GeOx/RGO composite anode was successfully paired with a high voltage LiNi0.5Mn1.5O4 cathode to form a full cell, which showed good cycling and rate performance.

  8. Molten carbonate fuel cell product development test environmental assessment/protection plan

    SciTech Connect (OSTI)

    Not Available

    1992-11-01

    Objective of proposed action is to conduct a 250-kW product development test of M-C Power Corporation`s molten carbonate fuel cell concept, at the Kaiser Permanente San Diego Medical Center. Review of environmental impacts of this test indicate the following: no impact on solid waste disposal, water quality, noise levels, floodplains, wetlands, ecology, historic areas, or socioeconomic resources. Impact on air quality are expected to be positive.

  9. Molten carbonate fuel cell product development test environmental assessment/protection plan

    SciTech Connect (OSTI)

    Brunton, Jack; Furukawa, Vance; Frost, Grant; Danna, Mike; Figueroa, Al; Scroppo, Joseph

    1992-11-01

    Objective of proposed action is to conduct a 250-kW product development test of M-C Power Corporation's molten carbonate fuel cell concept, at the Kaiser Permanente San Diego Medical Center. Review of environmental impacts of this test indicate the following: no impact on solid waste disposal, water quality, noise levels, floodplains, wetlands, ecology, historic areas, or socioeconomic resources. Impact on air quality are expected to be positive.

  10. Summary Report on Solid-oxide Electrolysis Cell Testing and Development

    SciTech Connect (OSTI)

    J.E. O'Brien; X. Zhang; R.C. O'Brien; G.L. Hawkes

    2012-01-01

    Idaho National Laboratory (INL) has been researching the application of solid-oxide electrolysis cells (SOECs) for large-scale hydrogen production from steam over a temperature range of 800 to 900 C. From 2003 to 2009, this work was sponsored by the United States Department of Energy Nuclear Hydrogen Initiative, under the Office of Nuclear Energy. Starting in 2010, the high-temperature electrolysis (HTE) research program has been sponsored by the INL Next Generation Nuclear Plant Project. This report provides a summaryof program activities performed in Fiscal Year (FY) 2011 and the first quarter of FY-12, with a focus on small-scale testing and cell development activities. HTE research priorities during this period have included the development and testing of SOEC and stack designs that exhibit high-efficiency initial performance and low, long-term degradation rates. This report includes contributions from INL and five industry partners: Materials and Systems Research, Incorporated (MSRI); Versa Power Systems, Incorporated (VPS); Ceramatec, Incorporated; National Aeronautics and Space Administration - Glenn Research Center (NASA - GRC); and the St. Gobain Advanced Materials Division. These industry partners have developed SOEC cells and stacks for in-house testing in the electrolysis mode and independent testing at INL. Additional fundamental research and post-test physical examinations have been performed at two university partners: Massachusetts Institute of Technology (MIT) and the University of Connecticut. Summaries of these activities and test results are also presented in this report.

  11. Development of Novel Nanocrystal-based Solar Cell to Exploit Multiple Exciton Generation: Cooperative Research and Development Final Report, CRADA Number CRD-07-00227

    SciTech Connect (OSTI)

    Ellingson, R.

    2010-08-01

    The purpose of the project was to develop new design and fabrication techniques for NC solar cells with the goal of demonstrating enhanced photocurrent and efficiency by exploiting multiple exciton generation and to investigate multiple exciton generation and charge carrier dynamics in semiconductor NC films used in NC-based solar cells.

  12. DEVELOPMENT AND SELECTION OF IONIC LIQUID ELECTROLYTES FOR HYDROXIDE CONDUCTING POLYBENZIMIDAZOLE MEMBRANES IN ALKALINE FUEL CELLS

    SciTech Connect (OSTI)

    Fox, E.

    2012-05-01

    Alkaline fuel cell (AFC) operation is currently limited to specialty applications such as low temperatures and pure H{sub 2}/O{sub 2} due to the corrosive nature of the electrolyte and formation of carbonates. AFCs are the cheapest and potentially most efficient (approaching 70%) fuel cells. The fact that non-Pt catalysts can be used, makes them an ideal low cost alternative for power production. The anode and cathode are separated by and solid electrolyte or alkaline porous media saturated with KOH. However, CO{sub 2} from the atmosphere or fuel feed severely poisons the electrolyte by forming insoluble carbonates. The corrosivity of KOH (electrolyte) limits operating temperatures to no more than 80?C. This chapter examines the development of ionic liquids electrolytes that are less corrosive, have higher operating temperatures, do not chemically bond to CO{sub 2}, and enable alternative fuels. Work is detailed on the IL selection and characterization as well as casting methods within the polybenzimidazole based solid membrane. This approach is novel as it targets the root of the problem (the electrolyte) unlike other current work in alkaline fuel cells which focus on making the fuel cell components more durable.

  13. Research and development of Proton-Exchange-Membrane (PEM) fuel cell system for transportation applications. Fuel cell infrastructure and commercialization study

    SciTech Connect (OSTI)

    1996-11-01

    This paper has been prepared in partial fulfillment of a subcontract from the Allison Division of General Motors under the terms of Allison`s contract with the U.S. Department of Energy (DE-AC02-90CH10435). The objective of this task (The Fuel Cell Infrastructure and Commercialization Study) is to describe and prepare preliminary evaluations of the processes which will be required to develop fuel cell engines for commercial and private vehicles. This report summarizes the work undertaken on this study. It addresses the availability of the infrastructure (services, energy supplies) and the benefits of creating public/private alliances to accelerate their commercialization. The Allison prime contract includes other tasks related to the research and development of advanced solid polymer fuel cell engines and preparation of a demonstration automotive vehicle. The commercialization process starts when there is sufficient understanding of a fuel cell engine`s technology and markets to initiate preparation of a business plan. The business plan will identify each major step in the design of fuel cell (or electrochemical) engines, evaluation of the markets, acquisition of manufacturing facilities, and the technical and financial resources which will be required. The process will end when one or more companies have successfully developed and produced fuel cell engines at a profit. This study addressed the status of the information which will be required to prepare business plans, develop the economic and market acceptance data, and to identify the mobility, energy and environment benefits of electrochemical or fuel cell engines. It provides the reader with information on the status of fuel cell or electrochemical engine development and their relative advantages over competitive propulsion systems. Recommendations and descriptions of additional technical and business evaluations that are to be developed in more detail in Phase II, are included.

  14. Development and characterization of PCDTBT:CdSe QDs hybrid solar cell

    SciTech Connect (OSTI)

    Dixit, Shiv Kumar Bhatnagar, Chhavi Kumari, Anita Madhwal, Devinder Bhatnagar, P. K. Mathur, P. C.

    2014-10-15

    Solar cell consisting of low band gap polymer poly[N-900-hepta-decanyl-2,7-carbazole-alt-5,5-(40,70-di-2-thienyl-20,10, 30-benzothiadiazole)] (PCDTBT) as donor and cadmium selenide/zinc sulphide (CdSe/ZnS) core shell quantum dots (QDs) as an acceptor has been developed. The absorption measurements show that the absorption coefficient increases in bulk heterojunction (BHJ) structure covering broad absorption spectrum (200nm–700nm). Also, the photoluminescence (PL) of the PCDTBT:QDs film is found to decrease by an order of magnitude showing a significant transfer of electrons to the QDs. With this approach and under broadband white light with an irradiance of 8.19 mW/cm{sup 2}, we have been able to achieve a power conversion efficiency (PCE) of 3.1 % with fill factor 0.42 for our typical solar cell.

  15. Research and Development of a PEM Fuel Cell, Hydrogen Reformer, and Vehicle Refueling Facility

    SciTech Connect (OSTI)

    Edward F. Kiczek

    2007-08-31

    Air Products and Chemicals, Inc. has teamed with Plug Power, Inc. of Latham, NY, and the City of Las Vegas, NV, to develop, design, procure, install and operate an on-site hydrogen generation system, an alternative vehicle refueling system, and a stationary hydrogen fuel cell power plant, located in Las Vegas. The facility will become the benchmark for validating new natural gas-based hydrogen systems, PEM fuel cell power generation systems, and numerous new technologies for the safe and reliable delivery of hydrogen as a fuel to vehicles. Most important, this facility will serve as a demonstration of hydrogen as a safe and clean energy alternative. Las Vegas provides an excellent real-world performance and durability testing environment.

  16. Development of sensors and sensing technology for hydrogen fuel cell vehicle applications

    SciTech Connect (OSTI)

    Brosha, Eric L; Sekhar, Praveen K; Mukundan, Rangchary; Williamson, Todd L; Barzon, Fernando H; Woo, Leta Y; Glass, Robert S

    2010-01-01

    One related area of hydrogen fuel cell vehicle (FCV) development that cannot be overlooked is the anticipated requirement for new sensors for both the monitoring and control of the fuel cell's systems and for those devices that will be required for safety. Present day automobiles have dozens of sensors on-board including those for IC engine management/control, sensors for state-of-health monitoring/control of emissions systems, sensors for control of active safety systems, sensors for triggering passive safety systems, and sensors for more mundane tasks such as fluids level monitoring to name the more obvious. The number of sensors continues to grow every few years as a result of safety mandates but also in response to consumer demands for new conveniences and safety features.

  17. INTRODUCTION Among different types of rechargeable batteries, polymer

    E-Print Network [OSTI]

    Bahrami, Majid

    INTRODUCTION Among different types of rechargeable batteries, polymer lithium-ion (Li-ion) cells% per month), and long cycling life [1]. Such desired features have made Li-ion batteries one the most vehicles with Li- ion batteries in order to reduce or remove the contribution of internal combustion engine

  18. The role of retinoic acid in germ cell development in embryonic mouse gonads

    E-Print Network [OSTI]

    Koubová, Jana C

    2007-01-01

    Germ cells are the only cell type to undergo meiosis, a specialized cell division process necessary for the formation of haploid gametes. Timing of this process is sex-specific. Ovarian germ cells initiate meiosis during ...

  19. Development of Sensors and Sensing Technology for Hydrogen Fuel Cell Vehicle Applications

    SciTech Connect (OSTI)

    Brosha, E L; Sekhar, P K; Mukundan, R; Williamson, T; Garzon, F H; Woo, L Y; Glass, R R

    2010-01-06

    One related area of hydrogen fuel cell vehicle (FCV) development that cannot be overlooked is the anticipated requirement for new sensors for both the monitoring and control of the fuel cell's systems and for those devices that will be required for safety. Present day automobiles have dozens of sensors on-board including those for IC engine management/control, sensors for state-of-health monitoring/control of emissions systems, sensors for control of active safety systems, sensors for triggering passive safety systems, and sensors for more mundane tasks such as fluids level monitoring to name the more obvious. The number of sensors continues to grow every few years as a result of safety mandates but also in response to consumer demands for new conveniences and safety features. Some of these devices (e.g. yaw sensors for dynamic stability control systems or tire presure warning RF-based devices) may be used on fuel cell vehicles without any modification. However the use of hydrogen as a fuel will dictate the development of completely new technologies for such requirements as the detection of hydrogen leaks, sensors and systems to continuously monitor hydrogen fuel purity and protect the fuel cell stack from poisoning, and for the important, yet often taken for granted, tasks such as determining the state of charge of the hydrogen fuel storage and delivery system. Two such sensors that rely on different transduction mechanisms will be highlighted in this presentation. The first is an electrochemical device for monitoring hydrogen levels in air. The other technology covered in this work, is an acoustic-based approach to determine the state of charge of a hydride storage system.

  20. Infrastructure Development of Single Cell Testing Capability at A0 Facility

    SciTech Connect (OSTI)

    Dhanaraj, Nandhini; Padilla, R.; Reid, J.; Khabiboulline, T.; Ge, M.; Mukherjee, A.; Rakhnov, I.; Ginsburg, C.; Wu, G.; Harms, E.; Carter, H.; /Fermilab

    2009-09-01

    The objective of this technical note is to document the details of the infrastructure development process that was realized at the A0 photo injector facility to establish RF cold testing capability for 1.3 GHz superconducting niobium single cell cavities. The activity began the last quarter of CY 2006 and ended the first quarter of CY 2009. The whole process involved addressing various aspects such as design of vertical insert and lifting fixture, modification of existing RF test station and design of new couplers, development of a Temperature Mapping (T-Map) system, radiation considerations for the test location (north cave), update of existing High Pressure Rinse (HPR) system, preparation of necessary safety documents and eventually obtaining an Operational Readiness Clearance (ORC). Figure 1 illustrates the various components of the development process. In the past, the north cave test station at A0 has supported the cold testing 3.9 GHz nine cell and single cell cavities, thus some of the components were available for use and some needed modification. The test dewar had the capacity to accommodate 1.3 GHz single cells although a new vertical insert that could handle both cavity types (1.3 and 3.9 GHz) had to be designed. The existing cryogenic system with an average capacity of {approx} 0.5 g/sec was deemed sufficient. The RF system was updated with broadband components and an additional amplifier with higher power capacity to handle higher gradients usually achieved in 1.3 GHz cavities. The initial testing phase was arbitrated to proceed with fixed power coupling. A new temperature mapping system was developed to provide the diagnostic tool for hot spot studies, quench characterization and field emission studies. The defining feature of this system was the use of diode sensors instead of the traditional carbon resistors as sensing elements. The unidirectional current carrying capacity (forward bias) of the diodes provided for the ease of multiplexing of the system, thus substantially reducing the number of cables required to power the sensors. The high gradient capacity of the 1.3 GHz cavities required a revision of the radiation shielding and interlocks. The cave was updated as per the recommendations of the radiation safety committee. The high pressure rinse system was updated with new adapters to assist the rinsing 1.3 GHz single cell cavities. Finally, a proposal for cold testing 1.3 GHz single cell cavities at A0 north cave was made to the small experiments approval committee, radiation safety committee and the Tevatron cryogenic safety sub-committee for an operational readiness clearance and the same was approved. The project was classified under research and development of single cell cavities (project 18) and was allocated a budget of $200,000 in FY 2007.

  1. Decoding the Regulatory Network for Blood Development from Single-Cell Gene Expression Measurements

    E-Print Network [OSTI]

    Moignard, Victoria; Woodhouse, Steven; Haghverdi, Laleh; Lilly, Andrew J.; Tanaka, Yosuke; Wilkinson, Adam C.; Buettner, Florian; Macaulay, Iain C.; Jawaid, Wajid; Diamanti, Evangelia; Nishikawa, Shin-Ichi; Piterman, Nir; Kouskoff, Valerie; Theis, Fabian J.; Fisher, Jasmin; Göttgens, Berthold

    2015-02-09

    of the regulatory interactions proposed in our model may be direct upstream regulator/ downstream target gene relationships. To provide further validation, we focused on Erg, which our models predicted is activated by Sox17, or by Hoxb4 in combination with Lyl1... not specify which gene is the upstream regulator and which is the downstream target, and therefore do not reveal mechanistic logic. To our knowledge no previous study has analyzed the development of an entire mammalian organ at single-cell resolution. Here...

  2. The selective effect of dietary n-3 polyunsaturated fatty acids on murine Th1 and Th2 cell development 

    E-Print Network [OSTI]

    Zhang, Ping

    2006-10-30

    To examine how dietary n-3 polyunsaturated fatty acids affect Th2 cell development, female C57BL/6 mice were fed a washout corn oil (CO) diet for 1 wk followed by 2 wk of either the same CO diet or a fish oil (FO) diet. CD4+ T cells were isolated...

  3. Directed evolution has become a powerful tool for developing enzyme and whole cell based biocatalysts. Significant recent

    E-Print Network [OSTI]

    Zhao, Huimin

    104 Directed evolution has become a powerful tool for developing enzyme and whole cell based sequence homology-independent protein recombination Introduction The use of enzymes and whole cells catalytic power (high selec- tivity and environmental friendliness) unmatched by conventional catalysts

  4. Fetal germ cell development in the rat testis and the impact of di (n-Butyl) phthalate exposure 

    E-Print Network [OSTI]

    Jobling, Matthew S.

    2010-01-01

    During gonad development and fetal life, the germ cells (GC) undergo a range of different developmental processes necessary for correct postnatal gametogenesis and the production of the next generation. If these fetal ...

  5. A genome-wide regulatory network identifies key transcription factors for memory CD8[superscript +] T-cell development

    E-Print Network [OSTI]

    Hu, Guangan

    Memory CD8[superscript +] T-cell development is defined by the expression of a specific set of memory signature genes. Despite recent progress, many components of the transcriptional control of memory CD8[superscript +] ...

  6. Webinar: Overview of Funding Opportunity Announcement DE-FOA-0001224: Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations

    Broader source: Energy.gov [DOE]

    Text version and video recording of the webinar titled "Overview of Funding Opportunity Announcement DE-FOA-0001224: Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations," originally presented on March 10, 2015.

  7. Vehicle Technologies Office Merit Review 2014: Development of Large Format Lithium Ion Cells with Higher Energy Density

    Broader source: Energy.gov [DOE]

    Presentation given by XALT Energy LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of large format...

  8. Organic Based Nanocomposite Solar Cells: Cooperative Research and Development Final Report, CRADA Number CRD-04-145

    SciTech Connect (OSTI)

    Olson, D.

    2013-01-01

    This CRADA will focus on the development of organic-based solar cells. Key interfacial issues in these cells will be investigated. In this rapidly emerging technology, it is increasingly clear that cell architecture will need to be at the nanoscale and the interfacial issues between organic elements (small molecule and polymer), transparent conducting oxides, and contact metallizations are critical. Thus this work will focus on the development of high surface area and nanostructured nanocarpets of inorganic oxides, the development of appropriate surface binding/acceptor molecules for the inorganic/organic interface, and the development of next-generation organic materials. Work will be performed in all three areas jointly at NREL and Konarka (with their partner in the third area of the University of Delaware). Results should be more rapid progress toward cheap large-area photovoltaic cells.

  9. The self assembly of cells into tissues and organs is an elegant and intricate process that is vital for development

    E-Print Network [OSTI]

    Nelson, Celeste M.

    that is vital for development and homeostasis. During organogenesis, the assembly of cells is controlled stereotyped branching system such as this, however, the role of cellular dynamics is vital and can be seen

  10. A general approach to develop reduced order models for simulation of solid oxide fuel cell stacks

    SciTech Connect (OSTI)

    Pan, Wenxiao; Bao, Jie; Lo, Chaomei; Lai, Canhai; Agarwal, Khushbu; Koeppel, Brian J.; Khaleel, Mohammad A.

    2013-06-15

    A reduced order modeling approach based on response surface techniques was developed for solid oxide fuel cell stacks. This approach creates a numerical model that can quickly compute desired performance variables of interest for a stack based on its input parameter set. The approach carefully samples the multidimensional design space based on the input parameter ranges, evaluates a detailed stack model at each of the sampled points, and performs regression for selected performance variables of interest to determine the responsive surfaces. After error analysis to ensure that sufficient accuracy is established for the response surfaces, they are then implemented in a calculator module for system-level studies. The benefit of this modeling approach is that it is sufficiently fast for integration with system modeling software and simulation of fuel cell-based power systems while still providing high fidelity information about the internal distributions of key variables. This paper describes the sampling, regression, sensitivity, error, and principal component analyses to identify the applicable methods for simulating a planar fuel cell stack.

  11. IMPROVEMENT OF THERMAL STABILITY OF LI-ION BATTERIES BY

    E-Print Network [OSTI]

    · Overall Technology Assessment · Appendices o Appendix A: Final Report (under separate cover) o Appendix B Funding: $75,000 Term: July 2002 ­ June 2003 PIER Subject Area: Renewable Energy Technologies #12;Page i · Renewable Energy Technologies · Environmentally-Preferred Advanced Generation · Energy-Related Environmental

  12. Improved Positive Electrode Materials for Li-ion Batteries

    E-Print Network [OSTI]

    Conry, Thomas Edward

    2012-01-01

    NY. 1999. Definition. Pyrolysis: the application of heat toComplete and Unabridged, 10 th ed. 2009. “Pyrolysis. ”en.wikipedia.org/wiki/Pyrolysis. Accessed 12/14/11. Bickmore

  13. Searching for Sustainable and "Greener" Li-ion Batteries

    ScienceCinema (OSTI)

    Tarascon, Jean-Marie [University of Picardie at Aimens, France

    2010-01-08

    Lithium-ion batteries are strong candidates for powering upcoming generations of hybrid electric vehicles and plug-in hybrid electric vehicles. But improvements in safety must be achieved while keeping track of materials resources and abundances, as well as materials synthesis and recycling processes, all of which could inflict a heavy energy cost. Thus, electrode materials that have a minimum footprint in nature and are made via eco-efficient processes are sorely needed. The arrival of electrode materials based on minerals such as LiFePO4 (tryphilite) is a significant, but not sufficient, step toward the long-term demand for materials sustainability. The eco-efficient synthesis of LiFePO4 nanopowders via hydrothermal/ solvo-thermal processes using latent bases, structure directing templates, or other bio-related approaches will be presented in this talk. However, to secure sustainability and greeness, organic electrodes appear to be ideal candidates.... We took a fresh look at organic based electrodes; the results of this research into sequentially metal-organic-framework electrodes and Li-based organic electrodes (LixCyOz) will be reported and discussed.

  14. Thin, Flexible Secondary Li-Ion Paper Liangbing Hu,

    E-Print Network [OSTI]

    Cui, Yi

    can be paper- thin, flexible, lightweight and manufactured by a low cost, roll-to-roll printing for su- percapacitors.6 We recently demonstrated that paper coated with CNTs or silver nanowires can coating and peeling process. The double layer films were laminated onto commercial paper, and the paper

  15. Improved Positive Electrode Materials for Li-ion Batteries

    E-Print Network [OSTI]

    Conry, Thomas Edward

    2012-01-01

    battery cathodes for portable electronics (and is even the material used in batteries for the original Tesla

  16. Investigation of critical parameters in Li-ion battery electrodes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Negative Electrodes: Novel and Optimized Materials Novel and Optimized Materials Phases for High Energy Density Batteries FY 2012 Annual Progress Report for Energy Storage R&D...

  17. Predictive Models of Li-ion Battery Lifetime (Presentation) (Conference) |

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report:Speeding access toSmall Reactor forPatents -SciTech Connect Predictive

  18. Batteries - Next-generation Li-ion batteries Breakout session

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p uBUS SERVICE SUBSIDIESDepartment of585 October

  19. Investigation of critical parameters in Li-ion battery electrodes |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIALU.S. Department of(Presentation) | Department ofFuelDepartment of

  20. GM Li-Ion Battery Pack Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,Executive Compensation References: FARWashers | Department ofOctober0032 DOE

  1. GM Li-Ion Battery Pack Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,Executive Compensation References: FARWashers | Department ofOctober0032 DOE1

  2. GM Li-Ion Battery Pack Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,Executive Compensation References: FARWashers | Department ofOctober0032 DOE10

  3. Hepatocyte growth factor regulated tyrosine kinase substrate in the peripheral development and function of B-cells

    SciTech Connect (OSTI)

    Nagata, Takayuki [Department of Pharmacy, Iwaki Meisei University, 5-5-1 Chuodai Iino, Iwaki, Fukushima 970-8551 (Japan) [Department of Pharmacy, Iwaki Meisei University, 5-5-1 Chuodai Iino, Iwaki, Fukushima 970-8551 (Japan); Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan); Murata, Kazuko, E-mail: murata-k@iwakimu.ac.jp [Department of Pharmacy, Iwaki Meisei University, 5-5-1 Chuodai Iino, Iwaki, Fukushima 970-8551 (Japan)] [Department of Pharmacy, Iwaki Meisei University, 5-5-1 Chuodai Iino, Iwaki, Fukushima 970-8551 (Japan); Murata, Ryo [Department of Pharmacy, Iwaki Meisei University, 5-5-1 Chuodai Iino, Iwaki, Fukushima 970-8551 (Japan)] [Department of Pharmacy, Iwaki Meisei University, 5-5-1 Chuodai Iino, Iwaki, Fukushima 970-8551 (Japan); Sun, Shu-lan [Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan)] [Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan); Saito, Yutaro; Yamaga, Shuhei [Department of Pharmacy, Iwaki Meisei University, 5-5-1 Chuodai Iino, Iwaki, Fukushima 970-8551 (Japan)] [Department of Pharmacy, Iwaki Meisei University, 5-5-1 Chuodai Iino, Iwaki, Fukushima 970-8551 (Japan); Tanaka, Nobuyuki; Tamai, Keiichi [Division of Immunology, Miyagi Cancer Research Institute, 47-1 Nodayama, Medeshima-Shiode, Natori 981-1293 (Japan)] [Division of Immunology, Miyagi Cancer Research Institute, 47-1 Nodayama, Medeshima-Shiode, Natori 981-1293 (Japan); Moriya, Kunihiko [Department of Pediatrics, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan)] [Department of Pediatrics, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan); Kasai, Noriyuki [Institute for Animal Experimentation, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan)] [Institute for Animal Experimentation, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan); Sugamura, Kazuo [Division of Immunology, Miyagi Cancer Research Institute, 47-1 Nodayama, Medeshima-Shiode, Natori 981-1293 (Japan)] [Division of Immunology, Miyagi Cancer Research Institute, 47-1 Nodayama, Medeshima-Shiode, Natori 981-1293 (Japan); Ishii, Naoto [Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan)] [Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan)

    2014-01-10

    Highlights: •ESCRT-0 protein regulates the development of peripheral B-cells. •BCR expression on cell surface should be controlled by the endosomal-sorting system. •Hrs plays important roles in responsiveness to Ag stimulation in B lymphocytes. -- Abstract: Hepatocyte growth factor (HGF)-regulated tyrosine kinase substrate (Hrs) is a vesicular sorting protein that functions as one of the endosomal-sorting proteins required for transport (ESCRT). Hrs, which binds to ubiquitinated proteins through its ubiquitin-interacting motif (UIM), contributes to the lysosomal transport and degradation of ubiquitinated membrane proteins. However, little is known about the relationship between B-cell functions and ESCRT proteins in vivo. Here we examined the immunological roles of Hrs in B-cell development and functions using B-cell-specific Hrs-deficient (Hrs{sup flox/flox};mb1{sup cre/+}:Hrs-cKO) mice, which were generated using a cre-LoxP recombination system. Hrs deficiency in B-cells significantly reduced T-cell-dependent antibody production in vivo and impaired the proliferation of B-cells treated in vitro with an anti-IgM monoclonal antibody but not with LPS. Although early development of B-cells in the bone marrow was normal in Hrs-cKO mice, there was a significant decrease in the number of the peripheral transitional B-cells and marginal zone B-cells in the spleen of Hrs-cKO mice. These results indicate that Hrs plays important roles during peripheral development and physiological functions of B lymphocytes.

  4. Development of a Hybrid Compressor/Expander Module for Automotive Fuel Cell Applications

    SciTech Connect (OSTI)

    McTaggart, Paul

    2004-12-31

    In this program TIAX LLC conducted the development of an advanced technology compressor/expander for supplying compressed air to Proton Exchange Membrane (PEM) fuel cells in transportation applications. The overall objective of this program was to develop a hybrid compressor/expander module, based on both scroll and high-speed turbomachinery technologies, which will combine the strengths of each technology to create a concept with superior performance at minimal size and cost. The resulting system was expected to have efficiency and pressure delivery capability comparable to that of a scroll-only machine, at significantly reduced system size and weight when compared to scroll-only designs. Based on the results of detailed designs and analyses of the critical system elements, the Hybrid Compressor/Expander Module concept was projected to deliver significant improvements in weight, volume and manufacturing cost relative to previous generation systems.

  5. Development of a High Volume Capable Process to Manufacture High Performance Photovoltaic Cells: Cooperative Research and Development Final Report, CRADA Number CRD-08-322

    SciTech Connect (OSTI)

    Geisz, J. F.

    2012-11-01

    The intent of the work is for RFMD and NREL to cooperate in the development of a commercially viable and high volume capable process to manufacture high performance photovoltaic cells, based on inverted metamorphic (IMM) GaAs technology. The successful execution of the agreement will result in the production of a PV cell using technology that is capable of conversion efficiency at par with the market at the time of release (reference 2009: 37-38%), using RFMD's production facilities. The CRADA work has been divided into three phases: (1) a foundation phase where the teams will demonstrate the manufacturing of a basic PV cell at RFMD's production facilities; (2) a technology demonstration phase where the teams will demonstrate the manufacturing of prototype PV cells using IMM technology at RFMD's production facilities, and; (3) a production readiness phase where the teams will demonstrate the capability to manufacture PV cells using IMM technology with high yields, high reliability, high reproducibility and low cost.

  6. The effect of inanition upon the development of the gonads and germ cells of larval frogs

    E-Print Network [OSTI]

    Swingle, W W (Wilbur Willis), 1891-1975

    1916-01-01

    April 11 to May 20. X 660 Hag. a. Germ cell. "b. Follicle cell. c. Mesorchium. d. Primae genital space. Fig. 6 Transverse section through the gonad of con­ trol of starvation larvae hilled May 20. X 660 Hag a. Germ cell. b. Sex cord cell. c. lies... or ch iura. d. Primary genital space. X. Germ cells in diplotene stage t. nuclei of germ cells in päcyt'.ene stage, Fig. 7 Cross section through the gonad of larvae starved from April 11 to June 1. X 660 Hag. a. Germ cell. b. Sex cord "cell. c...

  7. Designing Data-Driven Battery Prognostic Approaches for Variable Loading Profiles: Some Lessons Learned

    E-Print Network [OSTI]

    Roychoudhury, Indranil

    - driven approach for a variable load discharge scenario for Lithium-ion (Li-ion) batteries using for predicting end of discharge of Li-ion batteries using constant load experiment data and challenges faced when to develop prognostic health management solutions for Li-ion batteries as the use of power storage

  8. Molten carbonate fuel cell (MCFC) product development test. Annual report, September 1993--September 1994

    SciTech Connect (OSTI)

    1995-02-01

    M-C Power Corporation will design, fabricate, install, test and evaluate a 250 kW Proof-of-Concept Molten Carbonate Fuel Cell (MCFC) Power Plant. The plant is to be located at the Naval Air Station Miramar in San Diego, California. This report summarizes the technical progress that has occurred in conjunction with this project in 1994. M-C Power has completed the tape casting and sintering of cathodes and is proceeding with the tape casting and sintering of anodes for the first 250 cell stack. M-C Power and San Diego Gas and Electric relocated the fuel cell demonstration project to an alternate site at the Naval Air Station Miramar. For the new project location at the Naval Air Station Miramar, an Environmental Assessment has been prepared by the Department of Energy in compliance with the National Environmental Policy Act of 1969. The Environmental Assessment resulted in a categorical exclusion of the proposed action from all environmental permit requirements. Bechtel Corporation has completed the reformer process design coordination, a Process Description, the Pipe and Instrumentation Diagrams, a Design Criteria Document and General Project Requirement Document. Bechtel developed the requirements for soils investigation report and issued the following equipment bid packages to the suppliers for bids: Inverter, Reformer, Desulfurization Vessels, Hot Gas Recycle Blower, Heat Recovery Steam Generator, and Recycle Gas Cooler. SDG and E has secured necessary site permits, conducted soils investigations, and is working on the construction plan. They are in final negotiations with the US Navy on a site agreement. Site drawings are required for finalization of the agreement.

  9. Development and Validation of a Slurry Model for Chemical Hydrogen Storage in Fuel Cell Applications

    SciTech Connect (OSTI)

    Brooks, Kriston P.; Pires, Richard P.; Simmons, Kevin L.

    2014-07-25

    The US Department of Energy's (DOE) Hydrogen Storage Engineering Center of Excellence (HSECoE) is developing models for hydrogen storage systems for fuel cell-based light duty vehicle applications for a variety of promising materials. These transient models simulate the performance of the storage system for comparison to the DOE’s Technical Targets and a set of four drive cycles. The purpose of this research is to describe the models developed for slurry-based chemical hydrogen storage materials. The storage systems of both a representative exothermic system based on ammonia borane and endothermic system based on alane were developed and modeled in Simulink®. Once complete the reactor and radiator components of the model were validated with experimental data. The model was then run using a highway cycle, an aggressive cycle, cold-start cycle and hot drive cycle. The system design was adjusted to meet these drive cycles. A sensitivity analysis was then performed to identify the range of material properties where these DOE targets and drive cycles could be met. Materials with a heat of reaction greater than 11 kJ/mol H2 generated and a slurry hydrogen capacity of greater than 11.4% will meet the on-board efficiency and gravimetric capacity targets, respectively.

  10. Developing new optical imaging techniques for single particle and molecule tracking in live cells

    SciTech Connect (OSTI)

    Sun, Wei

    2010-12-15

    Differential interference contrast (DIC) microscopy is a far-field as well as wide-field optical imaging technique. Since it is non-invasive and requires no sample staining, DIC microscopy is suitable for tracking the motion of target molecules in live cells without interfering their functions. In addition, high numerical aperture objectives and condensers can be used in DIC microscopy. The depth of focus of DIC is shallow, which gives DIC much better optical sectioning ability than those of phase contrast and dark field microscopies. In this work, DIC was utilized to study dynamic biological processes including endocytosis and intracellular transport in live cells. The suitability of DIC microscopy for single particle tracking in live cells was first demonstrated by using DIC to monitor the entire endocytosis process of one mesoporous silica nanoparticle (MSN) into a live mammalian cell. By taking advantage of the optical sectioning ability of DIC, we recorded the depth profile of the MSN during the endocytosis process. The shape change around the nanoparticle due to the formation of a vesicle was also captured. DIC microscopy was further modified that the sample can be illuminated and imaged at two wavelengths simultaneously. By using the new technique, noble metal nanoparticles with different shapes and sizes were selectively imaged. Among all the examined metal nanoparticles, gold nanoparticles in rod shapes were found to be especially useful. Due to their anisotropic optical properties, gold nanorods showed as diffraction-limited spots with disproportionate bright and dark parts that are strongly dependent on their orientation in the 3D space. Gold nanorods were developed as orientation nanoprobes and were successfully used to report the self-rotation of gliding microtubules on kinesin coated substrates. Gold nanorods were further used to study the rotational motions of cargoes during the endocytosis and intracellular transport processes in live mammalian cells. New rotational information was obtained: (1) during endocytosis, cargoes lost their rotation freedom at the late stage of internalization; (2) cargoes performed train-like motion when they were transported along the microtubule network by motor proteins inside live cells; (3) During the pause stage of fast axonal transport, cargoes were still bound to the microtubule tracks by motor proteins. Total internal reflection fluorescence microscopy (TIRFM) is another non-invasive and far-field optical imaging technique. Because of its near-field illumination mechanism, TIRFM has better axial resolution than epi-fluorescence microscopy and confocal microscopy. In this work, an auto-calibrated, prism type, angle-scanning TIRFM instrument was built. The incident angle can range from subcritical angles to nearly 90{sup o}, with an angle interval less than 0.2{sup o}. The angle precision of the new instrument was demonstrated through the finding of the surface plasmon resonance (SPR) angle of metal film coated glass slide. The new instrument improved significantly the precision in determining the axial position. As a result, the best obtained axial resolution was {approx} 8 nm, which is better than current existing instruments similar in function. The instrument was further modified to function as a pseudo TIRF microscope. The illumination depth can be controlled by changing the incident angle of the excitation laser beam or adjusting the horizontal position of the illumination laser spot on the prism top surface. With the new technique, i.e., variable-illumination-depth pseudo TIRF microscopy, the whole cell body from bottom to top was scanned.

  11. Role of a Transcriptional Regulator in Programmed Cell Death and Plant Development

    SciTech Connect (OSTI)

    Julie M. Stone

    2008-09-13

    The long-term goal of this research is to understand the role(s) and molecular mechanisms of programmed cell death (PCD) in the controlling plant growth, development and responses to biotic and abiotic stress. We developed a genetic selection scheme to identify A. thaliana FB1-resistant (fbr) mutants as a way to find genes involved in PCD (Stone et al., 2000; Stone et al., 2005; Khan and Stone, 2008). The disrupted gene in fbr6 (AtSPL14) responsible for the FB1-insensitivity and plant architecture phenotypes encodes a plant-specific SBP DNA-binding domain transcriptional regulator (Stone et al., 2005; Liang et al., 2008). This research plan is designed to fill gaps in the knowledge about the role of SPL14 in plant growth and development. The work is being guided by three objectives aimed at determining the pathways in which SPL14 functions to modulate PCD and/or plant development: (1) determine how SPL14 functions in plant development, (2) identify target genes that are directly regulated by SPL14, and (3) identify SPL14 modifications and interacting proteins. We made significant progress during the funding period. Briefly, some major accomplishments are highlighted below: (1) To identify potential AtSPL14 target genes, we identified a consensus DNA binding site for the AtSPL14 SBP DNA-binding domain using systematic evolution of ligands by exponential selection (SELEX) and site-directed mutagenesis (Liang et al., 2008). This consensus binding site was used to analyze Affymetrix microarray gene expression data obtained from wild-type and fbr6 mutant plants to find possible AtSPL14-regulated genes. These candidate AtSPL14-regulated genes are providing new information on the molecular mechanisms linking plant PCD and plant development through modulation of the 26S proteasome. (2) Transgenic plants expressing epitope-tagged versions of AtSPL14 are being used to confirm the AtSPL14 targets (by ChIP-PCR) and further dissect the molecular interactions (Nazarenus, Liang and Stone, in preparation) (3) Double mutants generated between fbr6 and various accelerated cell death (acd) mutants indicate that sphingolipid metabolism is influenced by AtSPL14 and sphingolipidomics profiling supports this conclusion (Lin, Markham and Stone, in preparation). (4) A new set of phenotypes have been uncovered in the original fbr6-1 mutant, including a short-root phenotype related to auxin signaling and altered photosynthetic parameters related to stomatal density and conductance (Lin and Stone, in preparation; Lin, Madhavan and Stone, in preparation). Additional AtSPL14-related mutants and transgenic plants have been generated to effectively dissect the functions of AtSPL14, including a dominant negative fbr6-2 allele and transgenic plants overexpressing FBR6/AtSPL14 that display an accelerated cell death (acd) phenotype.

  12. Curriculum Vitae HyungMo Jeong

    E-Print Network [OSTI]

    Yaghi, Omar M.

    Development of energy storage & conversion systems including hydrogen energy, solar cell, and Li-ion battery Nanoparticles" February 2012 Silver Prize from 18th Samsung Human Technology Paper Award "Silicon Nanoparticles. Omar M. Yaghi March 2011-Febuary 2012 Silicon@Nitrogen doped Carbon Sphere Anode for High performance

  13. 7th European SOFC Forum, Session B03, Tuesday, 4 July 2006, 14:45h, File No. B034 Solid Oxide Fuel Cell Development at

    E-Print Network [OSTI]

    Fuel Cell Development at Topsoe Fuel Cell A/S and Risø Niels Christiansen1 , John B. Hansen1 , Helge Fuel Cell A/S Nymøllevej 55 DK-2800 Lyngby / Denmark Tel.: +45-4527-2085 Fax: +45-4527-2999 nc@topsoe.dk 2 Risø National Laboratory DK-4000 Roskilde / Denmark Abstract The consortium of Topsoe Fuel Cell A

  14. RD&D Cooperation for the Development of Fuel Cell, Hybrid and Electric Vehicles within the International Energy Agency: Preprint

    SciTech Connect (OSTI)

    Telias, G.; Day, K.; Dietrich, P.

    2011-01-01

    Annex XIII on 'Fuel Cell Vehicles' of the Implementing Agreement Hybrid and Electric Vehicles of the International Energy Agency has been operating since 2006, complementing the ongoing activities on battery and hybrid electric vehicles within this group. This paper provides an overview of the Annex XIII final report for 2010, compiling an up-to-date, neutral, and comprehensive assessment of current trends in fuel cell vehicle technology and related policy. The technological description includes trends in system configuration as well as a review of the most relevant components including the fuel cell stack, batteries, and hydrogen storage. Results from fuel cell vehicle demonstration projects around the world and an overview of the successful implementation of fuel cells in specific transport niche markets will also be discussed. The final section of this report provides a detailed description of national research, development, and demonstration (RD&D) efforts worldwide.

  15. Rechargeable Lithium-Air Batteries: Development of Ultra High Specific Energy Rechargeable Lithium-Air Batteries Based on Protected Lithium Metal Electrodes

    SciTech Connect (OSTI)

    2010-07-01

    BEEST Project: PolyPlus is developing the world’s first commercially available rechargeable lithium-air (Li-Air) battery. Li-Air batteries are better than the Li-Ion batteries used in most EVs today because they breathe in air from the atmosphere for use as an active material in the battery, which greatly decreases its weight. Li-Air batteries also store nearly 700% as much energy as traditional Li-Ion batteries. A lighter battery would improve the range of EVs dramatically. Polyplus is on track to making a critical breakthrough: the first manufacturable protective membrane between its lithium–based negative electrode and the reaction chamber where it reacts with oxygen from the air. This gives the battery the unique ability to recharge by moving lithium in and out of the battery’s reaction chamber for storage until the battery needs to discharge once again. Until now, engineers had been unable to create the complex packaging and air-breathing components required to turn Li-Air batteries into rechargeable systems.

  16. Development of a cell culture surface conversion technique using alginate thin film for evaluating effect upon cellular differentiation

    SciTech Connect (OSTI)

    Nakashima, Y.; Tsusu, K.; Minami, K.; Nakanishi, Y.

    2014-06-15

    Here, we sought to develop a cell culture surface conversion technique that would not damage living cells. An alginate thin film, formed on a glass plate by spin coating of sodium alginate solution and dipping into calcium chloride solution, was used to inhibit adhesion of cells. The film could be removed by ethylenediaminetetraacetate (EDTA) at any time during cell culture, permitting observation of cellular responses to conversion of the culture surface in real time. Additionally, we demonstrated the validity of the alginate thin film coating method and the performance of the film. The thickness of the alginate thin film was controlled by varying the rotation speed during spin coating. Moreover, the alginate thin film completely inhibited the adhesion of cultured cells to the culture surface, irrespective of the thickness of the film. When the alginate thin film was removed from the culture surface by EDTA, the cultured cells adhered to the culture surface, and their morphology changed. Finally, we achieved effective differentiation of C2C12 myoblasts into myotube cells by cell culture on the convertible culture surface, demonstrating the utility of our novel technique.

  17. Development of Advanced CdTe Solar Cells Based on High Temperature Corning Glass Substrates: Cooperative Research and Development Final Report, CRADA Number CRD-10-373

    SciTech Connect (OSTI)

    Barnes, T.

    2013-08-01

    NREL has developed advanced processes for CdTe solar cells, but because of the temperature limitations of conventional soda lime glass, many of these processes have not been transferred to manufacturing. Corning is developing high temperature substrate glasses that are believed to be manufacturable and will lead to lower $/watt modules costs. The purpose of this CRADA is to evaluate these glasses in the advanced NREL processes. In addition, the CRADA seeks to develop manufacturable processes for transparent conductive oxide layers based on cadmium stannate.

  18. Development of low-temperature solution-processed colloidal quantum dot-based solar cells

    E-Print Network [OSTI]

    Chang, Liang-Yi, Ph. D. Massachusetts Institute of Technology

    2013-01-01

    Solution-processed solar cells incorporating organic semiconductors and inorganic colloidal quantum dots (QDs) are potential alternatives to conventional solar cells fabricated via vacuum or high-temperature sintering ...

  19. Transport Model for Microfluidic Device for Cell Culture and Tissue Development

    E-Print Network [OSTI]

    Inamdar, Niraj K.

    2011-01-01

    In recent years, microfluidic devices have emerged as a platform in which to culture tissue for various applications such as drug discovery, toxicity testing, and fundamental investigations of cell-cell interactions. We ...

  20. Combinatorial Development of Biomaterials for Clonal Growth of Human Pluripotent Stem Cells

    E-Print Network [OSTI]

    Mei, Ying

    Both human embryonic stem cells and induced pluripotent stem cells can self-renew indefinitely in culture; however, present methods to clonally grow them are inefficient and poorly defined for genetic manipulation and ...

  1. Abstract--The proposed research effort explores the development of active cells -simple contractile electro-

    E-Print Network [OSTI]

    Haller, Gary L.

    . Each cell, which might be considered a "muscle unit", consists of a contractile Nitinol SMA core of the cell, investigating the implementation of active material actuator elements (Nitinol Shape Memory Alloy

  2. Molten carbonate fuel cell product development test. Final report, September 30, 1992--March 31, 1997

    SciTech Connect (OSTI)

    1997-12-31

    This report summarizes the work performed for manufacturing and demonstrating the performance of its 250-kW molten carbonate fuel cell (MCFC) stack in an integrated system at the Naval Air Station Miramar (NAS Miramar) located in San Diego, California. The stack constructed for the demonstration test at the NAS Miramar consisted of 250 cells. It was manufactured using M-C Power`s patented Internally Manifolded Heat Exchanger (IMHEX{reg_sign}) stack design. The demonstration test at NAS Miramar was designed to operate the 250-kW MCFC stack in a cogeneration mode. This test represented the first attempt to thermally integrate an MCFC stack in a cogeneration system. The test was started on January 10, 1997, and voluntarily terminated on May 12, 1997, after 2,350 hours of operation at temperatures above 1,100 F and at a pressure of three atmospheres. It produced 160 MWh of d.c. power and 346,000 lbs of 110 psig steam for export during 1,566 hours of on-load operations. The test demonstrated a d.c. power output of 206 kW. Most of the balance of the plant (BOP) equipment operated satisfactorily. However, the off-the-shelf automotive turbocharger used for supplying air to the plant failed on numerous occasions and the hot gas blower developed seal leakage problems which impacted continuous plant operations. Overall the demonstration test at NAS Miramar was successful in demonstrating many critical features of the IMHEX technology. Lessons learned from this test will be very useful for improving designs and operations for future MCFC power plants.

  3. Development of Large Format Lithium Ion Cells with Higher Energy Density

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  4. Development of Thin Film Membrane Assemblies with Novel Nanostructured Electrocatalyst for Next Generation Fuel Cells

    E-Print Network [OSTI]

    Popov, Branko N.

    of the efficiency loss (80%) in a fuel cell arises due to the cathode. Oxygen reduction at the cathode requires Generation Fuel Cells Abstract: While problems related to CO poisoning still exist for the anode, most the largest amount of the catalyst in PEM fuel cells due to its lower activity. This problem needs

  5. Development of an electronic device quality aluminum antimonide (AlSb) semiconductor for solar cell applications

    DOE Patents [OSTI]

    Sherohman, John W; Yee, Jick Hong; Combs, III, Arthur W

    2014-11-11

    Electronic device quality Aluminum Antimonide (AlSb)-based single crystals produced by controlled atmospheric annealing are utilized in various configurations for solar cell applications. Like that of a GaAs-based solar cell devices, the AlSb-based solar cell devices as disclosed herein provides direct conversion of solar energy to electrical power.

  6. Modeling Cold Start in a Polymer-Electrolyte Fuel Cell

    E-Print Network [OSTI]

    Balliet, Ryan

    2010-01-01

    renewable source of energy, a signi?cant drawback of PEFCS relative to batteriesrenewable Table 1.1: Comparison of the overall ef?ciency for PEFCs to that of Li—ion batteries.

  7. Development of remote crane system for use inside small argon hot-cell

    SciTech Connect (OSTI)

    Lee, Jong Kwang; Park, Byung Suk; Yu, Seung-Nam; Kim, Kiho; Cho, Ilje

    2013-07-01

    In this paper, we describe the design of a novel crane system for the use in a small argon hot-cell where only a pair of master-slave manipulators (MSM) is available for the remote maintenance of the crane. To increase the remote maintainability in the space-limited environment, we devised a remote actuation mechanism in which electrical parts consisting of a servo-motor, a position sensor, and two limit switches located inside the workspace of the MSM transmit power to the mechanical parts located in the ceiling. Even though the design concept does not provide thoroughly sufficient solution because the mechanical parts are placed out of the MSM's workspace, the durability of mechanical parts can be easily increased if they have a high safety margin. Therefore, the concept may be one of the best solutions for our special crane system. In addition, we developed a servo-control system based on absolute positioning technology; therefore, it is possible for us to perform the given tasks more safely through an automatic operation. (authors)

  8. DOE's Hydrogen Fuel Cell Activities: Developing Technology and Validating it through Real-World Evaluation (Presentation)

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Garbak, J.

    2008-05-12

    Presentation prepared for the May 12, 2008 Alternative Fuels and Vehicles Conference that describes DOE's current hydrogen fuel cell technology validation projects.

  9. NREL Develops ZnSiP2 for Silicon-Based Tandem Solar Cells (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-08-01

    Combining an Earth-abundant chalcopyrite with a silicon layer could significantly boost conversion efficiency above that of single-junction silicon solar cells.

  10. The goal of this work is to develop low cost and highly efficient hybrid solar cells based on semiconductor nanoparticles (NPs). Hybrid solar cells have been demonstrated to take advantages of both inorganic and

    E-Print Network [OSTI]

    The goal of this work is to develop low cost and highly efficient hybrid solar cells based on semiconductor nanoparticles (NPs). Hybrid solar cells have been demonstrated to take advantages of both to improve optical and electrical properties of photovoltaic devices. Hybrid solar cells having long-armed Cd

  11. Metallic Inks for Solar Cells: Cooperative Research and Development Final Report, CRADA Number CRD-10-370

    SciTech Connect (OSTI)

    van Hest, M.

    2013-04-01

    This document describes the statement of work for National Renewable Energy Laboratory (NREL) as a subcontractor for Applied Nanotech, Inc. (ANI) for the Phase II SBIR contract with the Department of Energy to build silicon solar cells using non-contact printed, nanoparticle-based metallic inks. The conductive inks are based upon ANI's proprietary method for nanoparticle dispersion. The primary inks under development are aluminum for silicon solar cell back plane contacts and copper for top interdigitated contacts. The current direction of silicon solar cell technology is to use thinner silicon wafers. The reduction in wafer thickness reduces overall material usage and can increase efficiency. These thin silicon wafers are often very brittle and normal methods used for conductive feed line application, such as screen-printing, are detrimental. The Phase II program will be focused on materials development for metallic inks that can be applied to a silicon solar cell using non-contact methods. Uniform BSF (Back Surface Field) formation will be obtained by optimizing ink formulation and curing conditions to improve cell efficiency.

  12. Development of low cost contacts to silicon solar cells. Final report, 15 October 1978-30 April 1980

    SciTech Connect (OSTI)

    Tanner, D.P.; Iles, P.A.

    1980-01-01

    A summary of work done on the development of a copper based contact system for silicon solar cells is presented. The work has proceeded in three phases: (1) Development of a copper based contact system using plated Pd-Cr-Cu. Good cells were made but cells degraded under low temperature (300/sup 0/C) heat treatments. (2) The degradation in Phase I was identified as copper migration into the cells junction region. A paper study was conducted to find a proper barrier to the copper migration problem. Nickel was identified as the best candidate barrier and this was verified in a heat treatment study using evaporated metal layers. (3) An electroless nickel solution was substituted for the electroless chrominum solution in the original process. Efforts were made to replace the palladium bath with an appropriate nickel layer, but these were unsuccessful. 150 cells using the Pd-Ni-Cu contact system were delivered to JPL. Also a cost study was made on the plating process to assess the chance of reaching 5 cents/watt.

  13. Mat. Res. Soc. Symp. Proc. Vol. 668 @ 2001 Materials Research Society Influence of proton irradiation and development of flexible CdTe solar cells on polyimide

    E-Print Network [OSTI]

    Romeo, Alessandro

    investigations on Cu(In,Ga)Se2 (called CIGS) solar cells have proven that their stability against high energy cells on polymer films can yield more than 2- kW/kg specific power. CIGS solar cells of about 10 to 12 irradiation and development of flexible CdTe solar cells on polyimide A. Romeo, D.L. Bätzner, H. Zogg and A

  14. Blimp1 Expression Predicts Embryonic Stem Cell Development In Vitro

    E-Print Network [OSTI]

    Chu, Li-Fang

    Despite recent critical insights into the pluripotent state of embryonic stem cells (ESCs), there is little agreement over the inaugural and subsequent steps leading to its generation [1, 2, 3 and 4]. Here we show that ...

  15. Development and application of chemical tools for investigating dynamic processes in cell migration

    E-Print Network [OSTI]

    Goguen, Brenda Nicole

    2011-01-01

    Cell migration is a dynamic process essential for many fundamental physiological functions, including wound repair and the immune response. Migration relies on precisely orchestrated events that are regulated in a spatially ...

  16. Lysophosphatidic acid (LPA) signaling in neuropathic pain development and Schwann cell biology

    E-Print Network [OSTI]

    Lin, Mu-En

    2012-01-01

    the effects of LPA on migration of primary mouse SCs using aprimary culture, we showed that S1P signaling can regulate cell migrationmigration suggested that this response is receptor-mediated. Indeed, primary

  17. Role of Programmed Cell Death in Disease Development of Sclerotinia sclerotiorum 

    E-Print Network [OSTI]

    Kim, Hyo Jin

    2012-02-14

    Plant programmed cell death (PCD) is an essential process in plant-pathogen interactions. Importantly, PCD can have contrasting effects on the outcome depending on context. For example, plant PCD in plant-biotroph interactions ...

  18. Development and analysis of recombinant fluorescent probes for use in live cell imaging of filamentous fungi 

    E-Print Network [OSTI]

    Altenbach, Kirsten

    2010-01-01

    The molecular cloning and subsequent engineering of the green fluorescent protein (GFP) of the jellyfish Aequoria victoria allowed a novel approach to the investigation of cell signalling. GFP and its mutants can now not ...

  19. Development of Lattice QCD Tool Kit on Cell Broadband Engine Processor

    E-Print Network [OSTI]

    Shinji Motok; i Yoshiyuki Nakagawa; Keitaro Nagata; Koichi Hashimoto; Kiyoshi Mizumaru; Atsushi Nakamura

    2012-03-15

    We report an implementation of a code for SU(3) matrix multiplication on Cell/B.E., which is a part of our project, Lattice Tool Kit on Cell/B.E.. On QS20, the speed of the matrix multiplication on SPE in single precision is 227GFLOPS and it becomes 20GFLOPS {this vaule was remeasured and corrcted.} together with data transfer from main memory by DNA transfer, which is 4.6% of the hardware peak speed (460GFLOPS), and is 7.4% of the theoretical peak speed of this calculation (268.77GFLOPS). We briefly describe our tuning procedure.

  20. Design and Evaluation of Novel High Capacity Cathode Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Design and Evaluation of Novel High Capacity Cathode Materials Lithium Source For High Performance Li-ion Cells Lithium Source For...

  1. Development of an Application Ontology for Beta Cell Genomics Based On the Ontology for Biomedical Investigations

    E-Print Network [OSTI]

    Kissinger, Jessica

    studies. The Open Biological and Biomedical Ontologies (OBO) Foundry established a set of principles integration (Smith et al., 2007). OBO Foundry (candidate) ontologies are built on the basis * To whom et al., 2005). Each OBO Foundry reference ontology covers a specific domain. For example, the Cell

  2. Lecture 18: Cell/B.E. Introduction: Software Development Kamesh Madduri

    E-Print Network [OSTI]

    Lanterman, Aaron

    Execution Environment #12;Systems and Technology Group © 2006 IBM Corporation8 SW Stack in Simulation Environment: Traces Execution Environment #12;Systems and Technology Group © 2006 IBM Corporation9 Cell Simulator Debugging Environment Execution Environment #12;Systems and Technology Group © 2006 IBM

  3. Development and validation of a combustion model for a fuel cell off-gas burner

    E-Print Network [OSTI]

    Collins, William Tristan

    2008-10-14

    Burner Details 164 C.1 Burner Inlet Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 C.2 Emission Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 List of References 173 List of Figures 1.1 SOFC... Steady Laminar Flamelet Model . . . . . . . . . . . . . . . . . . . . . . 16 SOFC Solid Oxide Fuel Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 UDF User De?ned Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73...

  4. Analysis of Factors Controlling Cell Cycle that Can Be Synchronized Nondestructively During Root Cap Development

    SciTech Connect (OSTI)

    Martha Hawes

    2011-02-04

    Publications and presentations during the final funding period, including progress in defining the substrate specificity, the primary goal of the project, are listed below. Both short-term and long-term responses mediated by PsUGT1 have been characterized in transgenic or mutant pea, alfalfa, and Arabidopsis with altered expression of PsUGT1. Additional progress includes evaluation of the relationship between control of the cell cycle by PsUGT1 and other glycosyltransferase and glycosidase enzymes that are co-regulated in the legume root cap during the onset of mitosis and differentiation. Transcriptional profiling and multidimensional protein identification technology ('MudPIT') have been used to establish the broader molecular context for the mechanism by which PsUGT1 controls cell cycle in response to environmental signals. A collaborative study with the Norwegian Forest Research Institute (who provided $10,000.00 in supplies and travel funds for collaborator Dr. Toril Eldhuset to travel to Arizona and Dr. H. H. Woo to travel to Norway) made it possible to establish that the inducible root cap system for studying carbohydrate synthesis and solubilization is expressed in gymnosperm as well as angiosperm species. This discovery provides an important tool to amplify the potential applications of the research in defining conserved cell cycle machinery across a very broad range of plant species and habitats. The final work, published during 2009, revealed an additional surprising parallel with mammalian immune responses: The cells whose production is controlled by PsUGT1 appear to function in a manner which is analogous to that of white blood cells, by trapping and killing in an extracellular manner. This may explain why mutation within the coding region of PsUGT1 and its homolog in humans (UGT1) is lethal to plants and animals. The work has been the subject of invited reviews. A postdoctoral fellow, eight undergraduate students, four M.S. students and three Ph.D. students have been supported.

  5. Solid Oxide Fuel Cell and PowerSolid Oxide Fuel Cell and Power S t D l t t PNNLS t D l t t PNNLSystem Development at PNNLSystem Development at PNNL

    E-Print Network [OSTI]

    Solid Oxide Fuel Cell and PowerSolid Oxide Fuel Cell and Power S t D l t t PNNLS t D l;Solid Oxide Fuel Cell CharacteristicsSolid Oxide Fuel Cell Characteristics High temperature (~700 ­ 800

  6. Development of a Breast Cancer Stem Cell Model and the Inhibitory Regulation of Small Molecule Phytochemicals on Various Stages of Human Breast Cancer Cells

    E-Print Network [OSTI]

    Tin, Antony Shen

    2013-01-01

    stem   cells   in   breast   cancer   and   metastasis.  Breast  cancer  research  and  treatment  118(2):241-­?Birnbaum  D  (2009)  Breast  cancer  stem  cells:  tools  

  7. Machine studies for the development of storage cells at the ANKE facility of COSY

    E-Print Network [OSTI]

    K. Grigoryev; F. Rathmann; R. Engels; A. Kacharava; F. Klehr; B. Lorentz; S. Martin; M. Mikirtytchiants; D. Prasuhn; J. Sarkadi; H. Seyfarth; H. J. Stein; H. Ströher; A. Vasilyev

    2009-02-06

    We present a measurement of the transverse intensity distributions of the COSY proton beam at the target interaction point at ANKE at the injection energy of 45 MeV, and after acceleration at 2.65 GeV. At 2.65 GeV, the machine acceptance was determined as well. From the intensity distributions the beam size is determined, and together with the measured machine acceptance, the dimensions of a storage cell for the double-polarized experiments with the polarized internal gas target at the ANKE spectrometer are specified. An optimum storage cell for the ANKE experiments should have dimensions of 15mm x 20mm x 390mm (vertical x horizontal x longitudinal), whereby a luminosity of about 2.5*10^29 cm^-2*s^-1 with beams of 10^10 particles stored in COSY could be reached.

  8. Technology development goals for automotive fuel cell power systems. Final report

    SciTech Connect (OSTI)

    James, B.D.; Baum, G.N.; Kuhn, I.F. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

    1994-08-01

    This report determines cost and performance requirements for Proton Exchange Membrane (PEM) fuel cell vehicles carrying pure H{sub 2} fuel, to achieve parity with internal combustion engine (ICE) vehicles. A conceptual design of a near term FCEV (fuel cell electric vehicle) is presented. Complete power system weight and cost breakdowns are presented for baseline design. Near term FCEV power system weight is 6% higher than ICE system, mid-term FCEV projected weights are 29% lower than ICE`s. There are no inherently high-cost components in FCE, and at automotive production volumes, near term FCEV cost viability is closer at hand than at first thought. PEM current vs voltage performance is presented for leading PEM manufacturers and researchers. 5 current and proposed onboard hydrogen storage techniques are critically compared: pressurized gas, cryogenic liquid, combined pressurized/cryogenic, rechargeable hydride, adsorption. Battery, capacitor, and motor/controller performance is summarized. Fuel cell power system component weight and cost densities (threshold and goal) are tabulated.

  9. Repeated exposure of the developing rat brain to magnetic resonance imaging did not affect neurogenesis, cell death or memory function

    SciTech Connect (OSTI)

    Zhu, Changlian [Center for Brain Repair and Rehabilitation, University of Gothenburg (Sweden) [Center for Brain Repair and Rehabilitation, University of Gothenburg (Sweden); Department of Pediatrics, The Third Affiliated Hospital, Zhengzhou University (China); Gao, Jianfeng [Center for Brain Repair and Rehabilitation, University of Gothenburg (Sweden) [Center for Brain Repair and Rehabilitation, University of Gothenburg (Sweden); Department of Pediatrics, The Third Affiliated Hospital, Zhengzhou University (China); Department of Physiology, Henan Traditional Medical University (China); Li, Qian; Huang, Zhiheng; Zhang, Yu; Li, Hongfu [Center for Brain Repair and Rehabilitation, University of Gothenburg (Sweden) [Center for Brain Repair and Rehabilitation, University of Gothenburg (Sweden); Department of Pediatrics, The Third Affiliated Hospital, Zhengzhou University (China); Kuhn, Hans-Georg [Center for Brain Repair and Rehabilitation, University of Gothenburg (Sweden)] [Center for Brain Repair and Rehabilitation, University of Gothenburg (Sweden); Blomgren, Klas, E-mail: klas.blomgren@neuro.gu.se [Center for Brain Repair and Rehabilitation, University of Gothenburg (Sweden) [Center for Brain Repair and Rehabilitation, University of Gothenburg (Sweden); Department of Pediatric Oncology, The Queen Silvia Children's Hospital, Gothenburg (Sweden)

    2011-01-07

    Research highlights: {yields} The effect of MRI on the developing brain is a matter of debate. {yields} Repeated exposure to MRI did not affect neurogenesis. {yields} Memory function was not affected by repeated MRI during development. {yields} Neither late gestation nor young postnatal brains were affected by MRI. {yields} Repeated MRI did not cause cell death in the neurogenic region of the hippocampus. -- Abstract: The effect of magnetic fields on the brain is a matter of debate. The objective of this study was to investigate whether repeated exposure to strong magnetic fields, such as during magnetic resonance imaging (MRI), could elicit changes in the developing rat brain. Embryonic day 15 (E15) and postnatal day 14 (P14) rats were exposed to MRI using a 7.05 T MR system. The animals were anesthetized and exposed for 35 min per day for 4 successive days. Control animals were anesthetized but no MRI was performed. Body temperature was maintained at 37 {sup o}C. BrdU was injected after each session (50 mg/kg). One month later, cell proliferation, neurogenesis and astrogenesis in the dentate gyrus were evaluated, revealing no effects of MRI, neither in the E15, nor in the P14 group. DNA damage in the dentate gyrus in the P14 group was evaluated on P18, 1 day after the last session, using TUNEL staining. There was no difference in the number of TUNEL-positive cells after MRI compared with controls, neither in mature neurons, nor in newborn progenitors (BrdU/TUNEL double-labeled cells). Novel object recognition was performed to assess memory function 1 month after MRI. There was no difference in the recognition index observed after MRI compared with the control rats, neither for the E15, nor for the P14 group. In conclusion, repeated exposure to MRI did not appear to affect neurogenesis, cell death or memory function in rats, neither in late gestation (E15-E18) nor in young postnatal (P14-P17) rats.

  10. Development of a coal-fueled Internal Manifold Heat Exchanger (IMHEX reg sign ) molten carbonate fuel cell

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    The design of a CGMCFC electric generation plant that will provide a cost of eletricity (COE) which is lower than that of current electric generation technologies and which is competitive with other long-range electric generating systems is presented. This effort is based upon the Internal Manifold Heat Exchanger (IMHEX) technology as developed by the Institute of Gas Technology (IGT). The project was executed by selecting economic and performance objectives for alternative plant arrangements while considering process constraints identified during IMHEX fuel cell development activities at ICT. The four major subsystems of a coal-based MCFC power plant are coal gasification, gas purification, fuel cell power generation and the bottoming cycle. The design and method of operation of each subsystem can be varied, and, depending upon design choices, can have major impact on both the design of other subsystems and the resulting cost of electricity. The challenge of this project was to select, from a range of design parameters, those operating conditions that result in a preferred plant design. Computer modelling was thus used to perform sensitivity analyses of as many system variables as program resources and schedules would permit. In any systems analysis, it is imperative that the evaluation methodology be verifiable and comparable. The TAG Class I develops comparable (if imprecise) data on performance and costs for the alternative cases being studied. It identifies, from a range of options, those which merit more exacting scrutiny to be undertaken at the second level, TAG class II analysis.

  11. Research and development of a phosphoric acid fuel cell/battery power source integrated in a test-bed bus. Final report

    SciTech Connect (OSTI)

    1996-05-30

    This project, the research and development of a phosphoric acid fuel cell/battery power source integrated into test-bed buses, began as a multi-phase U.S. Department of Energy (DOE) project in 1989. Phase I had a goal of developing two competing half-scale (25 kW) brassboard phosphoric acid fuel cell systems. An air-cooled and a liquid-cooled fuel cell system were developed and tested to verify the concept of using a fuel cell and a battery in a hybrid configuration wherein the fuel cell supplies the average power required for operating the vehicle and a battery supplies the `surge` or excess power required for acceleration and hill-climbing. Work done in Phase I determined that the liquid-cooled system offered higher efficiency.

  12. Development and Demonstration of a New Generation High Efficiency 10kW Stationary Fuel Cell System

    SciTech Connect (OSTI)

    Howell, Thomas Russell

    2013-04-30

    The overall project objective is to develop and demonstrate a polymer electrolyte membrane fuel cell combined heat and power (PEMFC CHP) system that provides the foundation for commercial, mass produced units which achieve over 40% electrical efficiency (fuel to electric conversion) from 50-100% load, greater than 70% overall efficiency (fuel to electric energy + usable waste heat energy conversion), have the potential to achieve 40,000 hours durability on all major process components, and can be produced in high volumes at under $400/kW (revised to $750/kW per 2011 DOE estimates) capital cost.

  13. Development of Ultra-low Platinum Alloy Cathode Catalyst for PEM Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8,Department of Energy2 DOE Hydrogen and Fuel Cells0|

  14. Development of a novel in vitro model to study the tryptic : endothelial cells, monocytes and flow

    E-Print Network [OSTI]

    Turjman, Alexis S. (Alexis Salomon)

    2014-01-01

    This thesis describes the development of a novel in vitro model of monocytes transmigration under flow and use in the study of early molecular events of atherogenesis. In this work, we focused on how endothelial dysfunction, ...

  15. Business & technology strategies to promote the development and commercialization of alternative energy technologies like fuel cells

    E-Print Network [OSTI]

    Jayaraman, Sundar

    2008-01-01

    Globalization has led to the development of emerging markets and economies. With economic expansion around the globe, there is a greater energy demand to sustain this growth. Increasing energy demand has resulted in increase ...

  16. EA-0510: High-Temperature Solid Oxide Fuel Cell (Sofc) Generator Development Project (METC), Churchill, Pennsylvania

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to enter into a 5-year cooperative agreement with the Westinghouse Electric Corporation for the development of high-temperature solid oxide...

  17. DEVELOPMENT OF HIGH EFFICIENCY FLEXIBLE CdTe SOLAR CELLS A.Romeo, M. Arnold, D.L. Btzner, H. Zogg and A.N. Tiwari*

    E-Print Network [OSTI]

    Romeo, Alessandro

    applications that require a very high specific power (ratio of output electrical power to the solar module specific power is an important issue for space solar cells: if satellites are lighter they are easierDEVELOPMENT OF HIGH EFFICIENCY FLEXIBLE CdTe SOLAR CELLS A.Romeo, M. Arnold, D.L. Bätzner, H. Zogg

  18. NREL researchers develop a new tool that confirms the stability of the IMM solar cell's 1-eV metamorphic junction.

    E-Print Network [OSTI]

    .friedman@nrel.gov References: J.F. Geisz et al."40.8% Efficient Inverted Triple-Junction Solar cell with Two IndependentlyV metamorphic junction. To test the robustness of NREL's inverted metamorphic multijunction (IMM) solarNREL researchers develop a new tool that confirms the stability of the IMM solar cell's 1-e

  19. Methodology development for imaging histone modifications and for site-specific protein labeling in vitro and on the surface of living cells

    E-Print Network [OSTI]

    Lin, Chi-Wang

    2006-01-01

    A new methodology for monitoring post-translational modifications of histone H3 in living cells was developed using genetically encoded fluorescent reporters. These reporters were constructed for sensing histone phosphorylation ...

  20. Subsurface Hybrid Power Options for Oil & Gas Production at Deep Ocean Sites

    SciTech Connect (OSTI)

    Farmer, J C; Haut, R; Jahn, G; Goldman, J; Colvin, J; Karpinski, A; Dobley, A; Halfinger, J; Nagley, S; Wolf, K; Shapiro, A; Doucette, P; Hansen, P; Oke, A; Compton, D; Cobb, M; Kopps, R; Chitwood, J; Spence, W; Remacle, P; Noel, C; Vicic, J; Dee, R

    2010-02-19

    An investment in deep-sea (deep-ocean) hybrid power systems may enable certain off-shore oil and gas exploration and production. Advanced deep-ocean drilling and production operations, locally powered, may provide commercial access to oil and gas reserves otherwise inaccessible. Further, subsea generation of electrical power has the potential of featuring a low carbon output resulting in improved environmental conditions. Such technology therefore, enhances the energy security of the United States in a green and environmentally friendly manner. The objective of this study is to evaluate alternatives and recommend equipment to develop into hybrid energy conversion and storage systems for deep ocean operations. Such power systems will be located on the ocean floor and will be used to power offshore oil and gas exploration and production operations. Such power systems will be located on the oceans floor, and will be used to supply oil and gas exploration activities, as well as drilling operations required to harvest petroleum reserves. The following conceptual hybrid systems have been identified as candidates for powering sub-surface oil and gas production operations: (1) PWR = Pressurized-Water Nuclear Reactor + Lead-Acid Battery; (2) FC1 = Line for Surface O{sub 2} + Well Head Gas + Reformer + PEMFC + Lead-Acid & Li-Ion Batteries; (3) FC2 = Stored O2 + Well Head Gas + Reformer + Fuel Cell + Lead-Acid & Li-Ion Batteries; (4) SV1 = Submersible Vehicle + Stored O{sub 2} + Fuel Cell + Lead-Acid & Li-Ion Batteries; (5) SV2 = Submersible Vehicle + Stored O{sub 2} + Engine or Turbine + Lead-Acid & Li-Ion Batteries; (6) SV3 = Submersible Vehicle + Charge at Docking Station + ZEBRA & Li-Ion Batteries; (7) PWR TEG = PWR + Thermoelectric Generator + Lead-Acid Battery; (8) WELL TEG = Thermoelectric Generator + Well Head Waste Heat + Lead-Acid Battery; (9) GRID = Ocean Floor Electrical Grid + Lead-Acid Battery; and (10) DOC = Deep Ocean Current + Lead-Acid Battery.

  1. Final Project Report: Development of Micro-Structural Mitigation Strategies for PEM Fuel Cells: Morphological Simulations and Experimental Approaches

    SciTech Connect (OSTI)

    Wessel, Silvia; Harvey, David

    2013-06-28

    The durability of PEM fuel cells is a primary requirement for large scale commercialization of these power systems in transportation and stationary market applications that target operational lifetimes of 5,000 hours and 40,000 hours by 2015, respectively. Key degradation modes contributing to fuel cell lifetime limitations have been largely associated with the platinum-based cathode catalyst layer. Furthermore, as fuel cells are driven to low cost materials and lower catalyst loadings in order to meet the cost targets for commercialization, the catalyst durability has become even more important. While over the past few years significant progress has been made in identifying the underlying causes of fuel cell degradation and key parameters that greatly influence the degradation rates, many gaps with respect to knowledge of the driving mechanisms still exist; in particular, the acceleration of the mechanisms due to different structural compositions and under different fuel cell conditions remains an area not well understood. The focus of this project was to address catalyst durability by using a dual path approach that coupled an extensive range of experimental analysis and testing with a multi-scale modeling approach. With this, the major technical areas/issues of catalyst and catalyst layer performance and durability that were addressed are: 1. Catalyst and catalyst layer degradation mechanisms (Pt dissolution, agglomeration, Pt loss, e.g. Pt in the membrane, carbon oxidation and/or corrosion). a. Driving force for the different degradation mechanisms. b. Relationships between MEA performance, catalyst and catalyst layer degradation and operational conditions, catalyst layer composition, and structure. 2. Materials properties a. Changes in catalyst, catalyst layer, and MEA materials properties due to degradation. 3. Catalyst performance a. Relationships between catalyst structural changes and performance. b. Stability of the three-phase boundary and its effect on performance/catalyst degradation. The key accomplishments of this project are: • The development of a molecular-dynamics based description of the carbon supported-Pt and ionomer system • The development of a composition-based, 1D-statistical Unit Cell Performance model • A modified and improved multi-pathway ORR model • An extension of the existing micro-structural catalyst model to transient operation • The coupling of a Pt Dissolution model to the modified ORR pathway model • The Development A Semi-empirical carbon corrosion model • The integration and release of an open-source forward predictive MEA performance and degradation model • Completion of correlations of BOT (beginning of test) and EOT (end of test) performance loss breakdown with cathode catalyst layer composition, morphology, material properties, and operational conditions • Catalyst layer durability windows and design curves • A design flow path of interactions from materials properties and catalyst layer effective properties to performance loss breakdown for virgin and degraded catalyst layers In order to ensure the best possible user experience we will perform a staged release of the software leading up to the webinar scheduled in October 2013. The release schedule will be as follows (please note that the manual will be released with the beta release as direct support is provided in Stage 1): • Stage 0 - Internal Ballard Release o Cross check of compilation and installation to ensure machine independence o Implement code on portable virtual machine to allow for non-UNIX use (pending) • Stage 1 - Alpha Release o The model code will be made available via a GIT, sourceforge, or other repository (under discussion at Ballard) for download and installation by a small pre-selected group of users o Users will be given three weeks to install, apply, and evaluate features of the code, providing feedback on issues or software bugs that require correction prior to beta release • Stage 2 - Beta Release o The model code repository is opened to the general public on a beta release c

  2. The Function and Genetic Interactions of Zebrafish atoh1 and sox2: Genes Involved in Hair Cell Development and Regeneration 

    E-Print Network [OSTI]

    Millimaki, Bonny Butler

    2010-10-12

    The sensory cells of the inner ear, hair cells, provide vertebrates with the ability to detect auditory stimuli and balance. In mammals, cochlear hair cells, those responsible for hearing, do not regenerate. Zebrafish ...

  3. A novel three-dimensional system to study interactions between endothelial cells and neural cells of the developing central nervous system

    E-Print Network [OSTI]

    Milner, Richard

    2007-01-02

    and cells were resuspended and fil- tered through a 40 µm cell strainer (Falcon, Oxford, United Kingdom) to separate the vascular tubes from sin- gle cells. The tubes were then washed and centrifuged in mented with 10% FCS, Heparin, ascorbic acid, L...

  4. Cell Stem Cell The Systematic Production

    E-Print Network [OSTI]

    Zandstra, Peter W.

    Cell Stem Cell Review The Systematic Production of Cells for Cell Therapies Daniel C. Kirouac1 to guide the development of next-generation technologies capable of producing cell-based products in a safe will enhance cell therapy product quality and safety, expediting clinical development. Breakthroughs

  5. Performance of MicroLink Cells Developed Under Navy STTR: Cooperative Research and Development Final Report, CRADA Number CRD-11-426

    SciTech Connect (OSTI)

    Emery, K.

    2013-06-01

    Evaluate MicroLink cells as a function of temperature and spectral irradiance following the teams' standard procedures. These measurements will include the standard procedures for evaluating multijunction cells including quantum efficiency measurements and current versus voltage measurements.

  6. Solid Oxide Fuel Cell Development for Auxiliary Power in Heavy Duty Vehicle Applications

    SciTech Connect (OSTI)

    Daniel T. Hennessy

    2010-06-15

    Changing economic and environmental needs of the trucking industry is driving the use of auxiliary power unit (APU) technology for over the road haul trucks. The trucking industry in the United States remains the key to the economy of the nation and one of the major changes affecting the trucking industry is the reduction of engine idling. Delphi Automotive Systems, LLC (Delphi) teamed with heavy-duty truck Original Equipment Manufacturers (OEMs) PACCAR Incorporated (PACCAR), and Volvo Trucks North America (VTNA) to define system level requirements and develop an SOFC based APU. The project defines system level requirements, and subsequently designs and implements an optimized system architecture using an SOFC APU to demonstrate and validate that the APU will meet system level goals. The primary focus is on APUs in the range of 3-5 kW for truck idling reduction. Fuels utilized were derived from low-sulfur diesel fuel. Key areas of study and development included sulfur remediation with reformer operation; stack sensitivity testing; testing of catalyst carbon plugging and combustion start plugging; system pre-combustion; and overall system and electrical integration. This development, once fully implemented and commercialized, has the potential to significantly reduce the fuel idling Class 7/8 trucks consume. In addition, the significant amounts of NOx, CO2 and PM that are produced under these engine idling conditions will be virtually eliminated, inclusive of the noise pollution. The environmental impact will be significant with the added benefit of fuel savings and payback for the vehicle operators / owners.

  7. Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage...

    Broader source: Energy.gov (indexed) [DOE]

    Offices DOE's Energy Storage Program is funding research to develop longer-lifetime, lower-cost Li-ion batteries. Researchers at Pacific Northwest National Laboratory are...

  8. Self-Assembled, Nanostructured Carbon for Energy Storage and...

    Broader source: Energy.gov (indexed) [DOE]

    January 2011 Development of High Capacity Anode for Li-ion Batteries Synthesis and Characterization of Structured Si-Carbon Nanocomposite Anodes and Functional Polymer Binders...

  9. Interoperability of Materials Database Systems in Support of Nuclear Energy Development and Potential Applications for Fuel Cell Material Selection

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lin, Lianshan; Austin, Timothy; Ren, Weiju

    2015-01-01

    Materials database interoperability has been of great interest in recent years for information exchange in support of research and development (R&D). In response to data and knowledge sharing needs of the GenIV International Forum (GIF) for global collaboration in nuclear energy R&D, the European Commission JRC Institute for Energy and Transport (JRC-IET) and the Oak Ridge National Laboratory (ORNL) have established a materials database interoperability project that develops techniques for automated materials data exchange between systems hosted at the two institutes MatDB Online at JRC IET and the Gen IV Materials Handbook at ORNL, respectively. The work to enable automatedmore »exchange of data between the two systems leverages the XML data import and export functionalities of both systems in combination with recently developed standards for engineering materials data. The preliminary results of data communication between the two systems have demonstrated the feasibility and efficiency of materials database interoperability, which constructs an interoperation framework that can be seamlessly integrated into the high-throughput First Principles material databases and thus advance the discovery of novel materials in fuel cell applications.« less

  10. Interoperability of Materials Database Systems in Support of Nuclear Energy Development and Potential Applications for Fuel Cell Material Selection

    SciTech Connect (OSTI)

    Lin, Lianshan; Austin, Timothy; Ren, Weiju

    2015-01-01

    Materials database interoperability has been of great interest in recent years for information exchange in support of research and development (R&D). In response to data and knowledge sharing needs of the GenIV International Forum (GIF) for global collaboration in nuclear energy R&D, the European Commission JRC Institute for Energy and Transport (JRC-IET) and the Oak Ridge National Laboratory (ORNL) have established a materials database interoperability project that develops techniques for automated materials data exchange between systems hosted at the two institutes MatDB Online at JRC IET and the Gen IV Materials Handbook at ORNL, respectively. The work to enable automated exchange of data between the two systems leverages the XML data import and export functionalities of both systems in combination with recently developed standards for engineering materials data. The preliminary results of data communication between the two systems have demonstrated the feasibility and efficiency of materials database interoperability, which constructs an interoperation framework that can be seamlessly integrated into the high-throughput First Principles material databases and thus advance the discovery of novel materials in fuel cell applications.

  11. Progress Letter Report on Bending Fatigue Test System Development for Spent Nuclear Fuel Vibration Integrity Study (Out-of-cell fatigue testing development - Task 2.4)

    SciTech Connect (OSTI)

    Wang, Jy-An John [ORNL; Wang, Hong [ORNL; Cox, Thomas S [ORNL; Baldwin, Charles A [ORNL; Bevard, Bruce Balkcom [ORNL

    2013-08-01

    Vibration integrity of high burn-up spent nuclear fuel in transportation remains to be a critical component of US nuclear waste management system. The structural evaluation of package for spent fuel transportation eventually will need to see if the content or spent fuel is in a subcritical condition. However, a system for testing and characterizing such spent fuel is still lacking mainly due to the complication involved with dealing radioactive specimens in a hot cell environment. Apparently, the current state-of-the-art in spent fuel research and development is quite far away from the delivery of reliable mechanical property data for the assessment of spent fuels in the transport package evaluation. Under the sponsorship of US NRC, ORNL has taken the challenge in developing a robust testing system for spent fuel in hot cell. An extensive literature survey was carried out and unique requirements of such testing system were identified. The U-frame setup has come to the top among various designs examined for reverse bending fatigue test of spent fuel rod. The U-frame has many features that deserve mentioned here: Easy to install spent fuel rod in test; Less linkages than in conventional bending test setup such as three-point or four-point bending; Target the failure mode relevant to the fracture of spent fuel rod in transportation by focusing on pure bending; The continuous calibrations and modifications resulted in the third generation (3G) U-frame testing setup. Rigid arms are split along the LBB axis at rod sample ends. For each arm, this results in a large arm body and an end piece. Mating halves of bushings were modified into two V-shaped surfaces on which linear roller bearings (LRB) are embedded. The rod specimen is installed into the test fixture through opening and closing slide end-pieces. The 3G apparently has addressed major issues of setup identified in the previous stage and been proven to be eligible to be further pursued in this project. On the other hand, the purchase of universal testing machine or Bose dual LM2 TB was completed and the testing system was delivered to ORNL in August 2012. The preliminary confirmation of the system and on-site training were given by Bose field engineer and regional manager on 8/1-8/2/2012. The calibration of Bose testing system has been performed by ORNL because the integration of ORNL setup into the Bose TestBench occurred after the installation. Major challenge with this process arose from two aspects: 1) the load control involves two load cells, and 2) U-frame setup itself is a non-standard specimen. ORNL has been able to implement the load control through Cycle Indirect along with pinning the U-frame setup. Two meetings with ORNL hot-cell group (November 2012 and January 2013) were held to discuss the potential issues with both epoxy mounting of rigid sleeve and U-frame setup. Many suggestions were provided to make the procedure friendlier to the manipulator in hot cell. Addressing of these suggestions resulted in another cycle of modifications of both vise mold and setup. The initial meeting with ORNL I&C group occurred in November 2012 with regard to the Bose cable modification and design of central panel to integrate the cables and wires. The first round of cable modification and central panel fabrication was completed in February 2012. The testing with the modified cables exhibited substantial noises and the testing system was not shown to be stable. It was believed the cross talk was responsible to the noise, and a central panel with a better grounding and shielding was highly recommended. The central panel has been re-designed and fabricated in March 2013. In the subsequent period, the ORNL made substantial effort to debug the noises with the load cell channel, and to resolve the noises and nonlinearity with RDP LVDTs related to the integration of RDP LVDTs to Bose system. At the same time, ORNL has completed the verification tests of Bose test system, including cycle tests under reversal bending in load control, bending tests under monotonic load, and cycle test

  12. Development of Na/sup +/-dependent hexose transport in cultured renal epithelial cells (LLC-PK/sub 1/)

    SciTech Connect (OSTI)

    Weiss, E.R.; Amsler, K.; Dawson, W.D.; Cook, J.S.

    1984-01-01

    A number of factors were explored to analyze how they interact to yield the increasing transport capacity in differentiating cell populations. These factors include the number of functional transporters in the population, the distribution of these transporters among the individual cells, the Na/sup +/ chemical gradient, the transmembrane potential, the pathways and activities of these pathways for efflux of glucoside, and cell-cell coupling between accumulating and non-accumulating cells. 35 references, 9 figures, 2 tables. (ACR)

  13. Development of Novel RTP-like Processing for Solar Cell Fabrication using UV-Rich Light Sources: Cooperative Research and Development Final Report, CRADA No. CRD-11-442

    SciTech Connect (OSTI)

    Sopori, B.

    2013-01-01

    NREL and Mattson Technology are interested in developing new processing techniques for fabrication of solar cells using UV-rich optical processing. UV light has a very high absorption coefficient in most semiconductors, allowing the semiconductor surface to be heated locally and, in some cases, without a significant increase in the substrate temperature. NREL has several projects related to cell processing that currently use an optical furnace (having a spectrum rich in visible and infrared light). Mattson Technology has developed a UV rich light source that can be used in either pulse or continuous modes. The objective of this CRADA is to explore applications in solar cell processing where absorption characteristics of UV light can lead to lower cell cost and/or higher efficiencies.

  14. Thermal Characterization and Analysis of A123 Systems Battery Cells, Modules and Packs: Cooperative Research and Development Final Report, CRADA Number CRD-07-243

    SciTech Connect (OSTI)

    Pesaran, A.

    2012-03-01

    In support of the A123 Systems battery development program with USABC/DOE, NREL provided technical support in thermal characterization, analysis and management of batteries. NREL's effort was part of Energy Storage Project funded by DOE Vehicle Technologies Program. The purpose of this work was for NREL to perform thermal characterization and analysis of A123 Systems cells and modules with the aim for Al23 Systems to improve the thermal performance of their battery cells, modules and packs.

  15. Development of Ni1-xCoxO as the cathode/interconnect contact for solid oxide fuel cells

    SciTech Connect (OSTI)

    Lu, Zigui; Xia, Guanguang; Templeton, Joshua D.; Li, Xiaohong S.; Nie, Zimin; Yang, Zhenguo; Stevenson, Jeffry W.

    2011-06-01

    A new type of material, Ni1-xCoxO, was developed for solid oxide fuel cell (SOFC) cathode/interconnect contact applications. The phase structure, coefficient of thermal expansion, sintering behavior, electrical property, and mechanical bonding strength of these materials were evaluated against the requirements of the SOFC cathode/interconnect contact. A dense cathode/interconnect contact layer was developed through reaction sintering from Ni and Co metal powders. An area specific resistance (ASR) as low as 5.5 mohm.cm2 was observed after 1000 h exposure in air at 800 °C for the LSM/Ni0.33Co0.67O/AISI441 assembly. Average mechanical strengths of 6.8 and 5.0 MPa were obtained for the cathode/contact/cathode and interconnect/contact/interconnect structures, respectively. The significantly low ASR was probably due to the dense structure and therefore improved electrical conductivity of the Ni0.33Co0.67O contact and the good bonding of the interfaces between the contact and the cathode, and between the contact and the interconnect.

  16. National Metal Casting Research Institute final report. Development of an automated ultrasonic inspection cell for detecting subsurface discontinuities in cast gray iron. Volume 3

    SciTech Connect (OSTI)

    Burningham, J.S.

    1995-08-01

    This inspection cell consisted of an ultrasonic flaw detector, transducer, robot, immersion tank, computer, and software. Normal beam pulse-echo ultrasonic nondestructive testing, using the developed automated cell, was performed on 17 bosses on each rough casting. Ultrasonic transducer selection, initial inspection criteria, and ultrasonic flow detector (UFD) setup parameters were developed for the gray iron castings used in this study. The software were developed for control of the robot and UFD in real time. The software performed two main tasks: emulating the manual operation of the UFD, and evaluating the ultrasonic signatures for detecting subsurface discontinuities. A random lot of 105 castings were tested; the 100 castings that passed were returned to the manufacturer for machining into finished parts and then inspection. The other 5 castings had one boss each with ultrasonic signatures consistent with subsurface discontinuities. The cell was successful in quantifying the ultrasonic echo signatures for the existence of signature characteristics consistent with Go/NoGo criteria developed from simulated defects. Manual inspection showed that no defects in the areas inspected by the automated cell avoided detection in the 100 castings machined into finished parts. Of the 5 bosses found to have subsurface discontinuities, two were verified by manual inspection. The cell correctly classified 1782 of the 1785 bosses (99.832%) inspected.

  17. Development of in vitro screening assays for potentially neurotoxic polyaromatic hydrocarbons in SY5Y and C6 cells 

    E-Print Network [OSTI]

    Tang, Yan

    1999-01-01

    exclusion and total cell count were measured as indicators of cytotoxicity. In addition acetycholinesterase (ACM) activity was measured as a direct indicator of neurotoxicity. Cells were exposed to three model PAHs, benzo(a)pyrene (BAP), cosine...

  18. Development of a lithium hydride powered hydrogen generator for use in long life, low power PEM fuel cell power supplies

    E-Print Network [OSTI]

    Strawser, Daniel DeWitt

    2012-01-01

    This thesis studies a hybrid PEM fuel cell system for use in low power, long life sensor networks. PEM fuel cells offer high efficiency and environmental friendliness but have not been widely adopted due to cost, reliability, ...

  19. The Development of Structure Activity Relationships for Advance Cell Chemistries within the ABR Program, 2009 thru 2012

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  20. Direct Visualization of Solid Electrolyte Interphase Formation in Lithium-Ion Batteries with In Situ Electrochemical Transmission Electron Microscopy

    SciTech Connect (OSTI)

    Unocic, Raymond R [ORNL] [ORNL; Sun, Xiao-Guang [ORNL] [ORNL; Sacci, Robert L [ORNL] [ORNL; Adamczyk, Leslie A [ORNL] [ORNL; Alsem, Daan Hein [Hummingbird Scientific] [Hummingbird Scientific; Dai, Sheng [ORNL] [ORNL; Dudney, Nancy J [ORNL] [ORNL; More, Karren Leslie [ORNL] [ORNL

    2014-01-01

    Complex, electrochemically driven transport processes form the basis of electrochemical energy storage devices. The direct imaging of electrochemical processes at high spatial resolution and within their native liquid electrolyte would significantly enhance our understanding of device functionality, but has remained elusive. In this work we use a recently developed liquid cell for in situ electrochemical transmission electron microscopy to obtain insight into the electrolyte decomposition mechanisms and kinetics in lithium-ion (Li-ion) batteries by characterizing the dynamics of solid electrolyte interphase (SEI) formation and evolution. Here we are able to visualize the detailed structure of the SEI that forms locally at the electrode/electrolyte interface during lithium intercalation into natural graphite from an organic Li-ion battery electrolyte. We quantify the SEI growth kinetics and observe the dynamic self-healing nature of the SEI with changes in cell potential.

  1. Development of OTM Syngas Process and Testing of Syngas Derived Ultra-clean Fuels in Diesel Engines and Fuel Cells

    SciTech Connect (OSTI)

    E.T. Robinson; John Sirman; Prasad Apte; Xingun Gui; Tytus R. Bulicz; Dan Corgard; John Hemmings

    2005-05-01

    This final report summarizes work accomplished in the Program from January 1, 2001 through December 31, 2004. Most of the key technical objectives for this program were achieved. A breakthrough material system has lead to the development of an OTM (oxygen transport membrane) compact planar reactor design capable of producing either syngas or hydrogen. The planar reactor shows significant advantages in thermal efficiency and a step change reduction in costs compared to either autothermal reforming or steam methane reforming with CO{sub 2} recovery. Syngas derived ultra-clean transportation fuels were tested in the Nuvera fuel cell modular pressurized reactor and in International Truck and Engine single cylinder test engines. The studies compared emission and engine performance of conventional base fuels to various formulations of ultra-clean gasoline or diesel fuels. A proprietary BP oxygenate showed significant advantage in both applications for reducing emissions with minimal impact on performance. In addition, a study to evaluate new fuel formulations for an HCCI engine was completed.

  2. Inks for Ink Jet Printed Contacts for High Performance Silicon Solar Cells: Cooperative Research and Development Final Report, CRADA No. CRD-06-199

    SciTech Connect (OSTI)

    Ginley, D.

    2013-01-01

    The work under the proposed CRADA will be a joint effort by BP Solar and NREL to develop new types of high performance inks for high quality contacts to silicon solar cells. NREL will develop inks that have electronic properties that will allow the formation of high quality ohmic contacts to n- and p-type crystalline silicon, and BP Solar will evaluate these contacts in test contact structures.

  3. u c l a Col le g e R e p or t 27 In the push to develop practical hydrogen fuel cells

    E-Print Network [OSTI]

    Corporation, MOFs are used as storage devices in which hydrogen is physically absorbed. How would hydrogenu c l a Col le g e R e p or t 27 In the push to develop practical hydrogen fuel cells to power cars and other devices, one of the biggest challenges has been finding ways to store hydrogen at the right

  4. Clustered regularly interspaced short palindromic repeat (CRISPR)-mediated development of an improved model for metastatic renal cell carcinoma

    E-Print Network [OSTI]

    Schokrpur, Shiruyeh

    2015-01-01

    to generate lentivirus that efficiently transduces murineRENCA cell line. These efficient, relatively cheap and quick3 targeting VHL led to efficient gene disruption, but that

  5. New Multijunction Design Leads to Ultra-Efficient Solar Cell; Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-09-01

    NREL has demonstrated a 45.7% conversion efficiency for a four-junction solar cell at 234 suns concentration. This achievement represents one of the highest photovoltaic research cell efficiencies ever achieved across all types of solar cells. NREL's new solar cell, which is designed for operation in a concentrator photovoltaic (CPV) system where it can receive more than 1,000 suns of concentrated sunlight, greatly improves earlier designs by adding an additional high quality absorber layer to achieve an ultra-high efficiency.

  6. Novel Materials Development for Polycrystalline Thin-Film Solar Cells: Final Subcontract Report, 26 July 2004--15 June 2008

    SciTech Connect (OSTI)

    Keszler, D. A.; Wager, J. F.

    2008-11-01

    Focus on player interfacial assessment using Schottky barrier and heterojunction theory, and analysis of p-windows for CIGS and CdTe cells.

  7. doi: 10.1149/2.047304jes 2013, Volume 160, Issue 4, Pages A636-A649.J. Electrochem. Soc.

    E-Print Network [OSTI]

    is proposed for the first time for Li-ion cells and more generally for thermally coupled batteries. Detailed+ diffusion in the electrolyte and solid-state Li diffusion in graphite particles, instead of charge of hybrid electric vehicles (HEV) and pure electric vehicles (EVs). Rechargeable Li-ion batteries

  8. Low Cost High Efficiency InP-Based Solar Cells: Cooperative Research and Development Final Report, CRADA Number CRD-09-344

    SciTech Connect (OSTI)

    Wanlass, M.

    2012-07-01

    NREL will develop a method of growing and fabricating single junction InP solar cells on 2-inch InP substrates on which a release layer has been deposited by MicroLink Devices. NREL will transfer to MicroLink the details of the InP solar cell layer structure and test results in order that the 2-inch results can be replicated on 4-inch InP substrates. NREL will develop a method of growing and fabricating single junction InP solar cells, including a metamorphic layer, on 2-inch GaAs substrates on which a release layer has been deposited by MicroLink Devices. NREL will transfer to MicroLink the details of the InP solar cell layer structure and test results in order that the 2-inch results can be replicated on 6-inch GaAs substrates. NREL will perform characterization measurements of the solar cells, including I-V and quantum efficiency measurements at AM1.5 1-sun.

  9. Ethanol's Effect on Stem Cell Subpopulations And The Implications For Cortical Patterning And Development In Fetal Alcohol Syndrome 

    E-Print Network [OSTI]

    Tingling, Joseph Duane

    that is ethanol sensitive and serves to indentify a neural stem cell (NSC) subpopulation that is reduced with ethanol exposure. The data presented identifies CD24 as a cell surface marker expressed in mouse neurosphere culture that is decreased with ethanol...

  10. A Finite Strain Model of Stress, Diffusion, Plastic Flow and Electrochemical Reactions in a Lithium-ion Half-cell

    E-Print Network [OSTI]

    Bower, Allan F; Sethuraman, Vijay A; 10.1016/j.jmps.2011.01.003

    2011-01-01

    We formulate the continuum field equations and constitutive equations that govern deformation, stress, and electric current flow in a Li-ion half-cell. The model considers mass transport through the system, deformation and stress in the anode and cathode, electrostatic fields, as well as the electrochemical reactions at the electrode/electrolyte interfaces. It extends existing analyses by accounting for the effects of finite strains and plastic flow in the electrodes, and by exploring in detail the role of stress in the electrochemical reactions at the electrode-electrolyte interfaces. In particular, we find that that stress directly influences the rest potential at the interface, so that a term involving stress must be added to the Nernst equation if the stress in the solid is significant. The model is used to predict the variation of stress and electric potential in a model 1-D half-cell, consisting of a thin film of Si on a rigid substrate, a fluid electrolyte layer, and a solid Li cathode. The predicted c...

  11. Development Development

    E-Print Network [OSTI]

    Programme 2007 - 2010 The aim of the Timber Development Programme (TDP) is "to contribute to the sustainable development to underpin sustainable forest management and support economic growth and employment acrossDevelopment Timber Development Programme 2007 - 2010 #12;2 | Timber Development Programme 2007

  12. The Development of Microfabricated Microbial Fuel Cell Array as a High Throughput Screening Platform for Electrochemically Active Microbes 

    E-Print Network [OSTI]

    Hou, Huijie

    2012-02-14

    Microbial fuel cells (MFCs) are novel green technologies that convert chemical energy stored in biomass into electricity through microbial metabolisms. Both fossil fuel depletion and environmental concern have fostered significant interest in MFCs...

  13. Development of High-throughput and Robust Microfluidic Live Cell Assay Platforms for Combination Drug and Toxin Screening 

    E-Print Network [OSTI]

    Wang, Han

    2012-02-14

    Combination chemotherapies that introduce multi-agent treatments to target cancer cells are emerging as new paradigms to overcome chemotherapy resistance and side effects involved with conventional monotherapies. In environmental toxicology...

  14. Evaluation of Ion Damage in Solar Cells: Cooperative Research and Development Final Report, CRADA Number CRD-07-00234

    SciTech Connect (OSTI)

    Young, D.

    2013-01-01

    Equipment will be used by Greenville College to enhance a previously established collaboration in the area of radiation hardness of solar cells, using Greenville's unique Ion Accelerator. Equipment will be located at the E. College Avenue site.

  15. Penn State Chemical Engineering Self-Assembly, Nanoscience, Colloids,

    E-Print Network [OSTI]

    Giles, C. Lee

    , fibrosis and cancer, biosensors #12;Computational Quantum Mechanics Catalysis, fuel cells, batteries and coarse- grained molecular simulation Li ion batteries, fuel cells, solar cells, biomimetic membranes Computational Strain Optimization for Biofuel Production #12;Neutron scattering and spectroscopy, atomistic

  16. Process Development for High Voc CdTe Solar Cells: Phase I, Annual Technical Report, October 2005 - September 2006

    SciTech Connect (OSTI)

    Ferekides, C. S.; Morel, D. L.

    2007-04-01

    The focus of this project is the open-circuit voltage of the CdTe thin-film solar cell. CdTe continues to be one of the leading materials for large-scale cost-effective production of photovoltaics, but the efficiency of the CdTe solar cell has been stagnant for the last few years. At the manufacturing front, the CdTe technology is fast paced and moving forward with U.S.-based First Solar LLC leading the world in CdTe module production. To support the industry efforts and continue the advancement of this technology, it will be necessary to continue improvements in solar cell efficiency. A closer look at the state-of-the-art performance levels puts the three solar cell efficiency parameters of short-circuit current density (JSC), open-circuit voltage (VOC), and fill factor (FF) in the 24-26 mA/cm2, 844?850 mV, and 74%-76% ranges respectively. During the late 1090s, efforts to improve cell efficiency were primarily concerned with increasing JSC, simply by using thinner CdS window layers to enhance the blue response (<510 nm) of the CdTe cell. These efforts led to underscoring the important role 'buffers' (or high-resistivity transparent films) play in CdTe cells. The use of transparent bi-layers (low-p/high-p) as the front contact is becoming a 'standard' feature of the CdTe cell.

  17. Studies involving high temperature desulfurization/regeneration reactions of metal oxides for fuel cell development. Final report

    SciTech Connect (OSTI)

    Jalan, V.

    1983-10-01

    Research conducted at Giner, Inc. during 1981 to 1983 under the present contract has been a continuation of the investigation of a high temperature regenerable desulfurization process capable of reducing the sulfur content in coal gases from 200 ppM to 1 ppM. The overall objective has been the integration of a coal gasifier with a molten carbonate fuel cell, which requires that the sulfur content be below 1 ppM. Commercially available low temperature processes incur an excessive energy penalty. Results obtained with packed-bed and fluidized bed reactors have demonstrated that a CuO/ZnO mixed oxide sorbent is regenerable and capable of lowering the sulfur content (as H/sub 2/S and COS) from 200 ppM in simulated hot coal-derived gases to below 1 ppM level at 600 to 650/sup 0/C. Four potential sorbents (copper, tungsten oxide, vanadium oxide and zinc oxide) were initially selected for experimental use in hot regenerable desulfurization in the temperature range 500 to 650/sup 0/C. Based on engineering considerations, such as desulfurization capacity in per weight or volume of sorbents, a coprecipitated CuO/ZnO was selected for further study. A structural reorganization mechanism, unique to mixed oxides, was identified: the creation of relatively fine crystallites of the sulfided components (Cu/sub 2/S and ZnS) to counteract the loss of surface area due to sintering during regeneration. Studies with 9 to 26% water vapor in simulated coal gases show that sulfur levels below 1 ppM can be achieved in the temperature range of 500/sup 0/ to 650/sup 0/C. The ability of CuO/ZnO to remove COS, CS/sub 2/ and CH/sub 3/SH at these conditions has been demonstrated in this study. Also a previously proposed pore-plugging model was further developed with good success for data treatment of both packed bed and fluidized-bed reactors. 96 references, 42 figures, 21 tables.

  18. NREL Develops High Speed Scanner to Monitor Fuel Cell Material Defects (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof EnergyY-12 NationalNO FEAR Act Noticefuel cell scanner

  19. NREL Develops ZnSiP2 for Silicon-Based Tandem Solar Cells (Fact Sheet), NREL Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof EnergyY-12 NationalNO FEAR Act Noticefuel cell

  20. This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research

    E-Print Network [OSTI]

    Cao, Guozhong

    as Li-ion battery cathode without adding any polymer binder or conductive additives. SEM images showed Porous film Li-ion battery Li+ intercalation Porous nanostructured V2O5 films were prepared-ion battery has been intensively studied and developed as one of the most successful energy storage

  1. 4/6/2012 Seminar: University of Louisville 1 Solid electrolytes for battery applications

    E-Print Network [OSTI]

    Holzwarth, Natalie

    4/6/2012 Seminar: University of Louisville 1 Solid electrolytes for battery applications of a Li ion battery #12;4/6/2012 Seminar: University of Louisville 3 Example: Thin-film battery developed liquid electrolytes in Li ion batteries Advantages 1. Excellent chemical and physical stability. 2

  2. A FGF-Hh feedback loop controls stem cell proliferation in the developing larval brain of drosophila melanogaster 

    E-Print Network [OSTI]

    Barrett, Andrea Lynn

    2009-05-15

    The adult Drosophila central nervous system is produced by two phases of neurogenesis: the first phase occurs during embryonic development where the larval brain is formed and the second occurs during larval development ...

  3. Pitx3, its role in lens development and application as a midbrain dopaminergic neuron reporter in embryonic stem cell differentiation 

    E-Print Network [OSTI]

    Ho, Hsin-Yi

    The homeobox gene Pitx3 has been implicated as a key regulator for lens development because homozygous mutant aphakia mice, which are hypomorph for Pitx3, fail to develop lenses. One aim of my thesis is to investigate the ...

  4. uel cell systems offer clean and efficient energy production and are currently under intensive development by several manufac-

    E-Print Network [OSTI]

    Peng, Huei

    , hydro- gen generation by means of water electrolysis based on renewable energy from wind, waves, and sunF uel cell systems offer clean and efficient energy production and are currently under intensive- vide useful electric energy. A typical PEM-FC pro- vides up to 0.6 W/cm2 depending on the catalyst

  5. High Performance Photovoltaic Solar Cells: Cooperative Research and Development Final Report, CRADA Number CRD-05-169

    SciTech Connect (OSTI)

    Steiner, M.

    2012-07-01

    NREL will provide certified measurements of the conversion efficiency at high concentration for several multijunction solar cells that were fabricated by Cyrium Technologies. In an earlier phase of the CRADA, Cyrium provided epitaxially-grown material and NREL processed the samples into devices and measured the performance.

  6. The development of a sensitive method to study volatile organic compounds in gaseous emissions of lung cancer cell lines 

    E-Print Network [OSTI]

    Maroly, Anupam

    2005-08-29

    ]. Workers exposed to tar and soot (which contains benzo[a]pyrene), such as coke oven workers, [7, 8] in concentrations exceeding those present in urban air are at increased risk of lung cancer. Occupational exposures to a number of metals, including... detection of lung cancer. Tests involved the quantitation of gaseous metabolic emissions from immortalized lung cancer cell lines in order to correlate the chemical markers to be of cancerous origin. The specific aims of the project were the study of gas...

  7. Improved layered mixed transition metal oxides for Li-ion batteries

    E-Print Network [OSTI]

    Doeff, Marca M.

    2010-01-01

    for rechargeable lithium batteries," Science 311(5763), 977-^ for Advanced Lithium-Ion Batteries," J. Electrochem. Soc.02 for lithium-ion batteries," Chem. Lett. , [3] Yabuuchi,

  8. Source fabrication and lifetime for Li+ ion beams extracted from alumino-silicate sources

    SciTech Connect (OSTI)

    Roy, Prabir K.; Greenway, Wayne G.; Kwan, Joe W

    2012-03-05

    A space-charge-limited beam with current densities (J) exceeding 1 mA/cm{sup 2} have been measured from lithium alumino-silicate ion sources at a temperature of #24;~1275#14;{degrees} C. At higher extraction voltages, the source appears to become emission limited with J #21;{>=} 1.5 mA/cm{sup 2}, and J increases weakly with the applied voltage. A 6.35 mm diameter source with an alumino-silicate coating, {<=}#20;0.25 mm thick, has a measured lifetime of ~#24;40 hours at ~#24;1275#14;{degrees} C, when pulsed at 0.05 Hz and with pulse length of #24;~6 μs each. At this rate, the source lifetime was independent of the actual beam charge extracted due to the loss of neutral atoms at high temperature. The source lifetime increases with the amount of alumino-silicate coated on the emitting surface, and may also be further extended if the temperature is reduced between pulses.

  9. Improved layered mixed transition metal oxides for Li-ion batteries

    E-Print Network [OSTI]

    Doeff, Marca M.

    2010-01-01

    State Chemistry and Electrochemistry of LiCoi Ni, Mni/ 0 forState Chemistry and Electrochemistry of LiCo Nii/ Mn 0 forM. , "Structure and electrochemistry of LiNii/ Coi/ . M Mn

  10. LIFETIME OF THE METASTABLE 23S1 STATE IN STORED Li+ IONS

    E-Print Network [OSTI]

    Knight, R.D.

    2010-01-01

    such a cloud was determined by a computer integration, usingbeam - ion cloud interaction. H. THE COMPUTER SYSTEM /.

  11. Understanding Phase Transformation in Crystalline Ge Anodes for Li-Ion Batteries

    E-Print Network [OSTI]

    Cui, Yi

    studies. 1. INTRODUCTION One of the most important renewable energy storage technologies is lithium to silicon. Despite recent studies on Ge electrode reactions, there is still limited understanding elements, such as silicon (Si) and germanium (Ge), are very attractive candidates for high- capacity

  12. Platforms and Methods for In Situ Characterization of Li-ion...

    Office of Scientific and Technical Information (OSTI)

    (SNL-CA), Livermore, CA (United States) Sponsoring Org: USDOE National Nuclear Security Administration (NNSA) Country of Publication: United States Language: English...

  13. Improved layered mixed transition metal oxides for Li-ion batteries

    E-Print Network [OSTI]

    Doeff, Marca M.

    2010-01-01

    Mn 02 for lithium-ion batteries," Chem. Lett. , [3]0 for advanced lithium-ion batteries," J. Power Sources,Mni/ 0 for Advanced Lithium-Ion Batteries," J. Electrochem.

  14. Nanoscale In Situ Characterization of Li-ion Battery Electrochemistry Via Scanning Ion Conductance Microscopy

    SciTech Connect (OSTI)

    Lipson, Albert L. [Northwestern Univ., Evanston, IL (United States). Department of Materials Science and Engineering, Dept. of Chemistry; Ginder, Ryan S. [Northwestern Univ., Evanston, IL (United States). Department of Materials Science and Engineering, Dept. of Chemistry; Hersam, Mark C. [Northwestern Univ., Evanston, IL (United States). Department of Materials Science and Engineering, Dept. of Chemistry

    2011-12-15

    Scanning ion conductance microscopy imaging of battery electrodes, using the geometry shown in the figure, is a tool for in situ nanoscale mapping of surface topography and local ion current. Images of silicon and tin electrodes show that the combination of topography and ion current provides insight into the local electrochemical phenomena that govern the operation of lithium ion batteries.

  15. Li ion diffusion mechanism in the crystalline electrolyte -Li3PO4

    E-Print Network [OSTI]

    Holzwarth, Natalie

    -interstitial pair (Frenkel pair), which yields1 kTEEkTE fmm eneT /)2/(/ ~ +-- = For doped crystal. extrinsic

  16. Modeling and simulation of Li-ion conduction in poly(ethylene oxide)

    E-Print Network [OSTI]

    Averbuch, Amir

    rechargeable batteries for consumer portable applications. A lithium-ion battery employs a metal oxide/discharge voltage depends on the current and resistance of all battery components. In most solid-state lithium-ion of Computational Physics 227 (2007) 1162­1175 www.elsevier.com/locate/jcp #12;1. Introduction Lithium and lithium-ion

  17. High Capacity MoO3 Nanoparticle Li-Ion Battery Anode | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Nanostructured Metal Oxide Anodes Nanostructured Metal Oxide Anodes Novel Lithium Ion Anode Structures: Overview of New DOE BATT Anode Projects...

  18. Computer-Aided Engineering of Batteries for Designing Better Li-Ion Batteries (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.; Kim, G. H.; Smith, K.; Lee, K. J.; Santhanagopalan, S.

    2012-02-01

    This presentation describes the current status of the DOE's Energy Storage R and D program, including modeling and design tools and the Computer-Aided Engineering for Automotive Batteries (CAEBAT) program.

  19. Layer cathode methods of manufacturing and materials for Li-ion rechargeable batteries

    DOE Patents [OSTI]

    Kang, Sun-Ho (Naperville, IL); Amine, Khalil (Downers Grove, IL)

    2008-01-01

    A positive electrode active material for lithium-ion rechargeable batteries of general formula Li.sub.1+xNi.sub..alpha.Mn.sub..beta.A.sub..gamma.O.sub.2 and further wherein A is Mg, Zn, Al, Co, Ga, B, Zr, or Ti and 0

  20. Insights into capacity loss mechanisms in Li-ion all-solid-state...

    Office of Scientific and Technical Information (OSTI)

    Research Org: Energy Frontier Research Centers (EFRC); Nanostructures for Electrical Energy Storage (NEES) Sponsoring Org: USDOE SC Office of Basic Energy Sciences (SC-22)...

  1. Model-Experimental Studies on Next-generation Li-ion Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    10 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. es086srinivasan2010p.pdf More Documents &...

  2. Diagnostic Studies to Improve Abuse Tolerance and Life of Li-ion Batteries

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  3. A Yolk-Shell Design for Stabilized and Scalable Li-Ion Battery Alloy Anodes

    SciTech Connect (OSTI)

    Liu, Nian; Wu, Hui; Mcdowell, Matthew T.; Yao, Yan; Wang, Chong M.; Cui, Yi

    2012-05-02

    Silicon is regarded as one of the most promising anode materials for next generation lithium-ion batteries. For use in practical applications, a Si electrode must have high capacity, long cycle life, high efficiency, and the fabrication must be industrially scalable. Here, we design and fabricate a yolk-shell structure to meet all these needs. The fabrication is carried out without special equipment and mostly at room temperature. Commercially available Si nanoparticles are completely sealed inside conformal, thin, self-supporting carbon shells, with rationally designed void space in between the particles and the shell. The well-defined void space allows the Si particles to expand freely without breaking the outer carbon shell, therefore stabilizing the solid-electrolyte interphase on the shell surface. High capacity (?2800 mAh/g at C/10), long cycle life (1000 cycles with 74% capacity retention), and high Coulombic efficiency (99.84%) have been realized in this yolk-shell structured Si electrode.

  4. Low-Cost Graphite and Olivine-Based Materials for Li-Ion Batteries

    Broader source: Energy.gov [DOE]

    Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland.

  5. Modeling and simulation of Li-ion conduction in poly(ethylene oxide)

    SciTech Connect (OSTI)

    Gitelman, L. [Faculty of Applied Mathematics, Technion, Haifa 32000 (Israel); Israeli, M. [Faculty of Computer Science, Technion, Haifa 32000 (Israel); Averbuch, A. [School of Computer Science, Tel Aviv University, Tel Aviv 69978 (Israel)], E-mail: amir@math.tau.ac.il; Nathan, M. [School of Electrical Engineering, Tel Aviv University, Tel Aviv 69978 (Israel); Schuss, Z. [School of Mathematical Sciences, Department of Applied Mathematics, Tel Aviv University, Tel Aviv 69978 (Israel); Golodnitsky, D. [School of Chemistry, Tel Aviv University, Tel Aviv 69978 (Israel)

    2007-12-10

    Polyethylene oxide (PEO) containing a lithium salt (e.g., LiI) serves as a solid polymer electrolyte (SPE) in thin-film batteries and its ionic conductivity is a key parameter of their performance. We model and simulate Li{sup +} ion conduction in a single PEO molecule. Our simplified stochastic model of ionic motion is based on an analogy between protein channels of biological membranes that conduct Na{sup +}, K{sup +}, and other ions, and the PEO helical chain that conducts Li{sup +} ions. In contrast with protein channels and salt solutions, the PEO is both the channel and the solvent for the lithium salt (e.g., LiI). The mobile ions are treated as charged spherical Brownian particles. We simulate Smoluchowski dynamics in channels with a radius of ca. 0.1 nm and study the effect of stretching and temperature on ion conductivity. We assume that each helix (molecule) forms a random angle with the axis between these electrodes and the polymeric film is composed of many uniformly distributed oriented boxes that include molecules with the same direction. We further assume that mechanical stretching aligns the molecular structures in each box along the axis of stretching (intra-box alignment). Our model thus predicts the PEO conductivity as a function of the stretching, the salt concentration and the temperature. The computed enhancement of the ionic conductivity in the stretch direction is in good agreement with experimental results. The simulation results are also in qualitative agreement with recent theoretical and experimental results.

  6. Influence of constraints on axial growth reduction of cylindrical Li-ion battery electrode particles

    E-Print Network [OSTI]

    Jeevanjyoti Chakraborty; Colin P. Please; Alain Goriely; S. Jonathan Chapman

    2014-11-24

    Volumetric expansion of silicon anode particles in a lithium-ion battery during charging may lead to the generation of undesirable internal stresses. For a cylindrical particle such growth may also lead to failure by buckling if the expansion is constrained in the axial direction due to other particles or supporting structures. To mitigate this problem, the possibility of reducing axial growth is investigated theoretically by studying simple modifications of the solid cylinder geometry. First, an annular cylinder is considered with lithiation either from the inside or from the outside. In both cases, the reduction of axial growth is not found to be significant. Next, explicit physical constraints are studied by addition of a non-growing elasto-plastic material: first, an outer annular constraint on a solid silicon cylinder, and second a rod-like inner constraint for an annular silicon cylinder. In both cases, it is found that axial growth can be reduced if the yield stress of the constraining material is significantly higher than that of silicon and/or the thickness of the constraint is relatively high. Phase diagrams are presented for both the outer and the inner constraint cases to identify desirable operating zones. Finally, to interpret the phase diagrams and isolate the key physical principles two different simplified models are presented and are shown to recover important qualitative trends of the numerical simulation results.

  7. Transport and Failure in Li-ion Batteries | Stanford Synchrotron Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout / Transforming Y-12Capacity-Forum Sign In AboutApril

  8. Fail-Safe Design for Large Capacity Li-Ion Battery Systems - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES OctoberEvan Racah861 ANNUAL|FacilityAbout »Faculty

  9. Model-Experimental Studies on Next-generation Li-ion Materials | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecialAPPENDIX F Wetlandsof Energy Model RepairCladdings: A Statusof

  10. Model-Experimental Studies on Next-generation Li-ion Materials | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecialAPPENDIX F Wetlandsof Energy Model RepairCladdings: A Statusofof

  11. Multifunctional, Inorganic-Filled Separators for Large Format, Li-ion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecialAPPENDIX F WetlandsofOpen-AccessMotorMultifamily

  12. Multifunctional, Inorganic-Filled Separators for Large Format, Li-ion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecialAPPENDIX F WetlandsofOpen-AccessMotorMultifamilyBatteries |

  13. Multifunctional, Inorganic-Filled Separators for Large Format, Li-ion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecialAPPENDIX F WetlandsofOpen-AccessMotorMultifamilyBatteries |Batteries

  14. Streamlining the Optimization of Li-Ion Battery Electrodes | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergyPlan | Department of Energy 1 DOE|EnergyDepartment of

  15. Characterization of Li-ion Batteries using Neutron Diffraction and Infrared

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels|Programs | DepartmentDepartmentChallengeSuccess Stories from

  16. Characterization of Materials for Li-ion Batteries: Success Stories from

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels|Programs | DepartmentDepartmentChallengeSuccess Stories fromthe High

  17. Construction of a Li Ion Battery (LIB) Cathode Production Plant in Elyria,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels|ProgramsLake PaiuteHanford, IncofWorker ScreeningOhio | Department

  18. Construction of a Li Ion Battery (LIB) Cathode Production Plant in Elyria,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels|ProgramsLake PaiuteHanford, IncofWorker ScreeningOhio |

  19. Predictive Models of Li-ion Battery Lifetime (Presentation), NREL (National Renewable Energy Laboratory)

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report:Speeding accessby aLEDSpeeding accessSpeedingPATENTS- 05The

  20. 3D Printing of Interdigitated Li-Ion Microbattery Architectures (Journal

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnicalInformation4563 LLNL Small-scale Friction(TechnicalRandomConnect

  1. Insights into capacity loss mechanisms in Li-ion all-solid-state batteries

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journal Article)lasers(JournalatBaBarthe Gold-Ionic25-dimethylhexane.(Patent)with Al

  2. Electrolyte Stability Determines Scaling Limits for Solid-State 3D Li Ion

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journal Article) | SciTech(Journal Article) |ContinuumPhotoactiveMixtures:

  3. Miniature All-solid-state Heterostructure Nanowire Li-ion Batteries as a

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(JournalspectroscopyReport) |(Patent)Inter-NucleonMiniapplications: Vehicles forToll for

  4. Miniature all-solid-state heterostructure nanowire Li-ion batteries as a

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(JournalspectroscopyReport) |(Patent)Inter-NucleonMiniapplications: Vehicles forToll

  5. Miniature all-solid-state heterostructure nanowire Li-ion batteries as a

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(JournalspectroscopyReport) |(Patent)Inter-NucleonMiniapplications: Vehicles forTolltool

  6. Platforms and Methods for In Situ Characterization of Li-ion Battery

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTech ConnectSpeeding accessusers' guide.representation (Conference)TurbulentMaterials

  7. Platforms and Methods for In Situ Characterization of Li-ion Battery

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTech ConnectSpeeding accessusers' guide.representation

  8. Role of Surface Structure on Li-ion Energy Storage Capacity of

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail. (Conference) | SciTech Connect Robust emergent climateSciTechTwo-dimensional

  9. A Safer Replacement for Highly Flammable Liquids Currently Used in Li-ion

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thI D- 6 0GrantsThe Life of Enrico's The20155ScienceA

  10. Diagnostic Studies to Improve Abuse Tolerance and Life of Li-ion Batteries

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8,Department of Energy2 DOE| Department of Energy 2 DOE

  11. Diagnostic Studies to Improve Abuse Tolerance and Life of Li-ion Batteries

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8,Department of Energy2 DOE| Department of Energy 2

  12. Electrolytes in Support of 5 V Li-ion Chemistries | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofAprilofEnergy 1 DOE Hydrogen and Fuelin Support

  13. Hard Carbon Materials for High-Capacity Li-ion Battery Anodes | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing ProgramsDepartment of Energy HanfordofHallogreen!of

  14. High Voltage Electrolytes for Li-ion Batteries | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing ProgramsDepartment of¡HighApproaches | 03.25.2015DOE2

  15. High Voltage Electrolytes for Li-ion Batteries | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing ProgramsDepartment of¡HighApproaches | 03.25.2015DOE21 DOE

  16. High Voltage Electrolytes for Li-ion Batteries | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing ProgramsDepartment of¡HighApproaches | 03.25.2015DOE21

  17. Electrode Materials for Rechargeable Li-ion Batteries: a New Synthetic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas Nuclear ProfileMultiferroic 2015ProgramWoodwardandC Supports

  18. Enabling the Future of Li-Ion Batteries | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas NuclearElectronic StructureEly M.EmilioDave

  19. Development of a coal-fueled Internal Manifold Heat Exchanger (IMHEX{reg_sign}) molten carbonate fuel cell. Volumes 1--6, Final report

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    The design of a CGMCFC electric generation plant that will provide a cost of eletricity (COE) which is lower than that of current electric generation technologies and which is competitive with other long-range electric generating systems is presented. This effort is based upon the Internal Manifold Heat Exchanger (IMHEX) technology as developed by the Institute of Gas Technology (IGT). The project was executed by selecting economic and performance objectives for alternative plant arrangements while considering process constraints identified during IMHEX fuel cell development activities at ICT. The four major subsystems of a coal-based MCFC power plant are coal gasification, gas purification, fuel cell power generation and the bottoming cycle. The design and method of operation of each subsystem can be varied, and, depending upon design choices, can have major impact on both the design of other subsystems and the resulting cost of electricity. The challenge of this project was to select, from a range of design parameters, those operating conditions that result in a preferred plant design. Computer modelling was thus used to perform sensitivity analyses of as many system variables as program resources and schedules would permit. In any systems analysis, it is imperative that the evaluation methodology be verifiable and comparable. The TAG Class I develops comparable (if imprecise) data on performance and costs for the alternative cases being studied. It identifies, from a range of options, those which merit more exacting scrutiny to be undertaken at the second level, TAG class II analysis.

  20. Development of a combined model of tissue kinetics and radiation response of human bronchiolar epithelium with single cell resolution 

    E-Print Network [OSTI]

    Ostrovskaya, Natela Grigoryevna

    2006-10-30

    cells of the airways due to internal exposure to alpha-particle emitters, e.g. radon. Inhalation of radon, a colorless and odorless gas, one of the products of the decay of uranium which occurs naturally in the earth?s crust, is the second major cause... epithelial tissue plays an important role in normal lung physiology. square4 lung epithelia are target tissues for occupational internal exposures and for radon exposure (26); square4 the epithelium of bronchioles appears to be the origin...

  1. Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.2 Hydrogen Delivery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathy LoftusFuel Cell Seminar2015 |Brayton cycle,

  2. Fuel Cell Vehicles Enhance NREL Hydrogen Research Capabilities (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES OctoberEvanServicesAmesFourFromFuel Cell Handbook (SeventhFuel*

  3. Process Development for Nanostructured Photovoltaics

    SciTech Connect (OSTI)

    None

    2011-05-31

    Fact sheet describing low-cost nanofabrication method to develop nanostructured, dye-sensitized solar cells

  4. Development of GaAs/Si and GaAs/Si monolithic structures for future space solar cells

    SciTech Connect (OSTI)

    Spitzer, M.B.; Vernon, S.M.; Wolfson, R.G.; Tobin, S.P.

    1984-01-01

    The results of heteroepitaxial growth of GaAs and GaAlAs directly on Si are presented, and applications to new cell structures are suggested. The novel feature is the elimination of a Ge lattice transition region. This feature not only reduces the cost of substrate preparation, but also makes possible the fabrication of high efficiency monolithic cascade structures. All films to be discussed were grown by organometallic chemical vapor deposition at atmospheric pressure. This process yielded reproducible, large-area films of GaAs, grown directly on Si, that are tightly adherent and smooth, and are characterized by a defect density of 5 x 10(6) power/sq cm. Preliminary studies indicate that GaAlAs can also be grown in this way. A number of promising applications are suggested. Certainly these substrates are ideal for low-weight GaAs space solar ells. For very high efficiency, the absence of Ge makes the technology attractive for GaAlAs/Si monolithic cascades, in which the Si substrates would first be provided with a suitable p/n junction. An evaluation of a three bandgap cascade consisting of appropriately designed GaAlAs/GaAs/Si layers is also presented.

  5. Recent progress on the development of biofuel cells for self-powered electrochemical biosensing and logic biosensing: A review

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, Ming

    2015-06-12

    Biofuel cells (BFCs) based on enzymes and microorganisms have been recently received considerable attention because they are recognized as an attractive type of energy conversion technology. In addition to the research activities related to the application of BFCs as power source, we have witnessed recently a growing interest in using BFCs for self-powered electrochemical biosensing and electrochemical logic biosensing applications. Compared with traditional biosensors, one of the most significant advantages of the BFCs-based self-powered electrochemical biosensors and logic biosensors is their ability to detect targets integrated with chemical-to-electrochemical energy transformation, thus obviating the requirement of external power sources. Following mymore »previous review (Electroanalysis 2012, 24, 197-209), the present review summarizes, discusses and updates the most recent progress and latest advances on the design and construction of BFCs-based self-powered electrochemical biosensors and logic biosensors. In addition to the traditional approaches based on substrate effect, inhibition effect, blocking effect and gene regulation effect for BFCs-based self-powered electrochemical biosensors and logic biosensors design, some new principles including enzyme effect, co-stabilization effect, competition effect and hybrid effect are summarized and discussed by me in details. The outlook and recommendation of future directions of BFCs-based self-powered electrochemical biosensors and logic biosensors are discussed in the end.« less

  6. Illinois: High-Energy, Concentration-Gradient Cathode Material...

    Office of Environmental Management (EM)

    plug-in hybrid and all-electric vehicles. Unlike existing cathodes used in lithium (Li)-ion batteries on the market, this cell has an outer shell that separates the very reactive...

  7. A. M. Sastry Department of Mechanical Engineering and

    E-Print Network [OSTI]

    Sastry, Ann Marie

    C. W. Wang L. Berhan A. M. Sastry Department of Mechanical Engineering and Applied Mechanics-metal hydride and Li-ion lithium ion cells. High energy densities demand low-density bat- tery materials

  8. CEES Conference Proceedings, Abstracts, Presentations, and Poster...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A. Fenter, M. C. Hersam, and M. J. Bedzyk, "Atomic-scale X-ray Study of ElectrolyteGrapheneSiC(0001) Interfaces in Li-ion Battery Cell," 2011 Materials Research Society Spring...

  9. Modeling - Scale-Bridging Simulations Active Materials in Li...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Society, v. 154 (10), pp. A978-A986. 3. Wang, C.-W. and Sastry, A.M., 2007, "Mesoscale Modeling of a Li-Ion Poly Cell," Journal of the Electrochemical Society, v. 154...

  10. SIAM/ASA J. UNCERTAINTY QUANTIFICATION c xxxx Society for Industrial and Applied Mathematics Vol. xx, pp. x xx

    E-Print Network [OSTI]

    Haasdonk, Bernard

    media flows (e.g. groundwater, Li-ion batteries or fuel cells), models in finance or inverse problems or optimization. Such a multi-query situation requires the numerical solution of the PDE for many instances

  11. Nearly Constant Electrical Resistance over Large Temperature Range in

    E-Print Network [OSTI]

    Zexian, Cao

    , to be used as electrode material in Li-ion batteries9 , as cathode catalyst in alkaline fuel cells10 on the optimal synthesis and its employment as write- once optical recording media4,8 . In recently years, some

  12. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    fade. A significant improvement in cycling stability was achieved via Ketjen black coating of the cathode. A Li-ion full cell with Ketjen black modified LiFePO4 cathode and an...

  13. Role of Nck adaptors in the regulation of endothelial cell-cell adhesion 

    E-Print Network [OSTI]

    Bray, Kristyn

    2011-08-08

    The establishment of endothelial cell-cell contacts is critical for the development and maintenance of the vascular network. Endothelial cell adherens junctions (AJ) are cell-cell adhesion complexes consisting of clusters of vascular endothelial (VE...

  14. Interfacing devices with cells

    E-Print Network [OSTI]

    Voldman, Joel

    To detect electrical properties of cells, we have developed a method called iso-dielectric separation (IDS), where cells are placed in a spatially varying electric field and a spatially varying conductivity gradient that ...

  15. Cell-cell and cell-medium interactions in the growth of mouse embryonic stem cells

    E-Print Network [OSTI]

    Mittal, Nikhil, 1979-

    2010-01-01

    Embryonic stem cells serve as powerful models for the study of development and disease and hold enormous potential for future therapeutics. Due to the potential for embryonic stem cells (ESCs) to provide a variety of tissues ...

  16. FINAL REPORT FOR PSO project 5728 Title of the project: Development of more efficient and cheaper MEA's for PEM fuel cells

    E-Print Network [OSTI]

    MEA's for PEM fuel cells Projekttitel på dansk: Udvikling af mere effektive og billigere MEA'er til, Technical University of Denmark (KI-DTU) IRD Fuel Cell A/S (IRD) Danish Power System Aps (DPS) Dansk Polymer.............................................................................................................................20 3.6. FUEL CELL PERFORMANCE

  17. Programmed cell death

    SciTech Connect (OSTI)

    NONE

    1995-12-31

    The purpose of this conference to provide a multidisciplinary forum for exchange of state-of-the-art information on the role programmed cell death plays in normal development and homeostasis of many organisms. This volume contains abstracts of papers in the following areas: invertebrate development; immunology/neurology; bcl-2 family; biochemistry; programmed cell death in viruses; oncogenesis; vertebrate development; and diseases.

  18. Development of an IR-transparent, inverted-grown, thin-film, Al[sub 0. 34]Ga[sub 0. 66]As/GaAs cascade solar cell

    SciTech Connect (OSTI)

    Venkatasubramanian, R.; Timmons, M.L.; Sharps, P.R.; Colpitts, T.S.; Hills, J.S.; Hancock, J.; Hutchby, J.A. )

    1992-12-01

    Inverted growth and the development of associated cell processing, are likely to offer a significant degree of freedom for improving the performance of many III-V multijunction cascades and open new avenues for advanced multijunction concepts. This is especially true for the development of high-efficiency Al[sub 0.37]Ga[sub 0.63]As/GaAs cascades where the high growth temperatures required for the AlGaAs top cell growth can cause the deterioration of the tunnel junction interconnect. In the approach of inverted-grown AlGaAs/GaAs cascade cells, the AlGaAs top cell is grown first at 780 [degree]C and the GaAs tunnel junction and bottom cell are grown at 675 [degree]C. After the inverted growth, the AlGaAs/GaAs cascade structure is selectively removed from the parent substrate. The feasibility of inverted growth is demonstrated by a fully-processed, inverted-grown, thin film GaAs cell with a 1-sun AM1.5 efficiency of 20.3%. Also, an inverted-grown, thin-film, Al[sub 0.34]Ga[sub 0.66]As/GaAs cascade with AM1.5 efficiencies of 19.9% and 21% at 1-sun and 7-suns, respectively, has been obtained.

  19. Fuel Cell Technologies Budget

    SciTech Connect (OSTI)

    EERE

    2012-03-16

    The Fuel Cell Technologies Office receives appropriations from Energy and Water Development. The offices's major activities and budget are outlined in this Web page.

  20. Annealing induced interfacial layers in niobium-clad stainless steel developed as a bipolar plate material for polymer electrolyte membrane fuel cell stacks

    SciTech Connect (OSTI)

    Hong, Sung Tae; Weil, K. Scott; Choi, Jung-Pyung; Bae, In-Tae; Pan, Jwo

    2010-05-01

    Niobium (Nb)-clad 304L stainless steel (SS) manufactured by cold rolling is currently under consideration for use as a bipolar plate material in polymer electrolyte membrane fuel cell (PEMFC) stacks. To make the fabrication of bipolar plates using the Nb-clad SS feasible, annealing may be necessary for the Nb-clad SS to reduce the springback induced by cold rolling. However, the annealing can develop an interfacial layer between the Nb cladding and the SS core and the interfacial layer plays a key role in the failure of the Nb-clad SS as reported earlier [JPS our work]. In this investigation, the Nb-clad SS specimens in as-rolled condition were annealed at different combinations of temperature and time. Based on the results of scanning electron microscope (SEM) analysis, an annealing process map for the Nb-clad SS was obtained. The results of SEM analysis and Transmission Electron Microscope (TEM) analysis also suggest that different interfacial layers occurred based on the given annealing conditions.