Powered by Deep Web Technologies
Note: This page contains sample records for the topic "developing li-ion cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Advanced technology development program for lithium-ion batteries : thermal abuse performance of 18650 Li-ion cells.  

SciTech Connect

Li-ion cells are being developed for high-power applications in hybrid electric vehicles currently being designed for the FreedomCAR (Freedom Cooperative Automotive Research) program. These cells offer superior performance in terms of power and energy density over current cell chemistries. Cells using this chemistry are the basis of battery systems for both gasoline and fuel cell based hybrids. However, the safety of these cells needs to be understood and improved for eventual widespread commercial application in hybrid electric vehicles. The thermal behavior of commercial and prototype cells has been measured under varying conditions of cell composition, age and state-of-charge (SOC). The thermal runaway behavior of full cells has been measured along with the thermal properties of the cell components. We have also measured gas generation and gas composition over the temperature range corresponding to the thermal runaway regime. These studies have allowed characterization of cell thermal abuse tolerance and an understanding of the mechanisms that result in cell thermal runaway.

Crafts, Chris C.; Doughty, Daniel Harvey; McBreen, James. (Bookhaven National Lab, Upton, NY); Roth, Emanuel Peter

2004-03-01T23:59:59.000Z

2

Thermal Abuse Modeling of Li-Ion Cells and Propagation in Modules (Presentation)  

DOE Green Energy (OSTI)

The objectives of this paper are: (1) continue to explore thermal abuse behaviors of Li-ion cells and modules that are affected by local conditions of heat and materials; (2) use the 3D Li-ion battery thermal abuse 'reaction' model developed for cells to explore the impact of the location of internal short, its heating rate, and thermal properties of the cell; (3) continue to understand the mechanisms and interactions between heat transfer and chemical reactions during thermal runaway for Li-ion cells and modules; and (4) explore the use of the developed methodology to support the design of abuse-tolerant Li-ion battery systems.

Kim, G.-H.; Pesaran, A.; Smith, K.

2008-05-01T23:59:59.000Z

3

Analysis of Heat Dissipation in Li-Ion Cells & Modules for Modeling of Thermal Runaway (Presentation)  

DOE Green Energy (OSTI)

The objectives of this study are: (1) To develop 3D Li-Ion battery thermal abuse ''reaction'' models for cell and module analysis; (2) To understand the mechanisms and interactions between heat transfer and chemical reactions during thermal runaway for Li-Ion cells and modules; (3) To develop a tool and methodology to support the design of abuse-tolerant Li-Ion battery systems for PHEVs/HEVs; and (4) To help battery developers accelerate delivery of abuse-tolerant Li-Ion battery systems in support of the FreedomCAR's Energy Storage Program.

Kim, G.-H.; Pesaran, A.

2007-05-15T23:59:59.000Z

4

Thermal Stability of Li-Ion Cells  

DOE Green Energy (OSTI)

The thermal stability of Li-ion cells with intercalating carbon anodes and metal oxide cathodes was measured as a function of state of charge and temperature for two advanced cell chemistries. Cells of the 18650 design with Li{sub x}CoO{sub 2} cathodes (commercial SONY cells) and Li{sub x}Ni{sub 0.8}Co{sub 0.2}O{sub 2} cathodes were measured for thermal reactivity in the open circuit cell condition. Accelerating rate calorimetry (ARC) was used to measure cell thermal runaway as a function of state of charge (SOC). Microcalorimetry was used to measure the time dependence of heat generating side reactions also as a function of SOC. Components of cells were measured using differential scanning calorimetry (DSC) to study the thermal reactivity of the individual electrodes to determine the temperature regimes and conditions of the major thermal reactions. Thermal decomposition of the SEI layer at the anodes was identified as the initiating source for thermal runaway. The cells with Li{sub x}CoO{sub 2} cathodes showed greater sensitivity to SOC and higher accelerating heating rates than seen for the cells with Li{sub x}Ni{sub 0.8}Co{sub 0.2}O{sub 2}cathodes. Lower temperature reactions starting as low as 40 C were also observed that were SOC dependent but not accelerating. These reactions were also measured in the microcalorimeter and observed to decay over time with a power-law dependence and are believed to result in irreversible capacity loss in the cells.

ROTH,EMANUEL P.

1999-09-17T23:59:59.000Z

5

Low Temperature Electrical Performance Characteristics of Li-Ion Cells  

DOE Green Energy (OSTI)

Advanced rechargeable lithium-ion batteries are presently being developed and commercialized worldwide for use in consumer electronics, military and space applications. The motivation behind these efforts involves, among other things, a favorable combination of energy and power density. For some of the applications the power sources may need to perform at a reasonable rate at subambient temperatures. Given the nature of the lithium-ion cell chemistry the low temperature performance of the cells may not be very good. At Sandia National Laboratories, we have used different electrochemical techniques such as impedance and charge/discharge at ambient and subambient temperatures to probe the various electrochemical processes that are occurring in Li-ion cells. The purpose of this study is to identify the component that reduces the cell performance at subambient temperatures. We carried out 3-electrode impedance measurements on the cells which allowed us to measure the anode and cathode impedances separately. Our impedance data suggests that while the variation in the electrolyte resistance between room temperature and -20"C is negligible, the cathode electrolyte interracial resistance increases substantially in the same temperature span. We believe that the slow interracial charge transfer kinetics at the cathode electrolyte may be responsible for the increase in cell impedance and poor cell performance.

Nagasubramanian, Ganesan

1999-04-29T23:59:59.000Z

6

A Practical Circuit-based Model for State of Health Estimation of Li-ion Battery Cells in Electric Vehicles.  

E-Print Network (OSTI)

??In this thesis the development of the state of health of Li-ion battery cells under possible real-life operating conditions in electric cars has been characterised.… (more)

Lam, L.

2011-01-01T23:59:59.000Z

7

Fluoro-Carbonate Solvents for Li-Ion Cells  

DOE Green Energy (OSTI)

A number of fluoro-carbonate solvents were evaluated as electrolytes for Li-ion cells. These solvents are fluorine analogs of the conventional electrolyte solvents such as dimethyl carbonate, ethylene carbonate, diethyl carbonate in Li-ion cells. Conductivity of single and mixed fluoro carbonate electrolytes containing 1 M LiPF{sub 6} was measured at different temperatures. These electrolytes did not freeze at -40 C. We are evaluating currently, the irreversible 1st cycle capacity loss in carbon anode in these electrolytes and the capacity loss will be compared to that in the conventional electrolytes. Voltage stability windows of the electrolytes were measured at room temperature and compared with that of the conventional electrolytes. The fluoro-carbon electrolytes appear to be more stable than the conventional electrolytes near Li voltage. Few preliminary electrochemical data of the fluoro-carbonate solvents in full cells are reported in the literature. For example, some of the fluorocarbonate solvents appear to have a wider voltage window than the conventional electrolyte solvents. For example, methyl 2,2,2 trifluoro ethyl carbonate containing 1 M LiPF{sub 6} electrolyte has a decomposition voltage exceeding 6 V vs. Li compared to <5 V for conventional electrolytes. The solvent also appears to be stable in contact with lithium at room temperature.

NAGASUBRAMANIAN,GANESAN

1999-09-17T23:59:59.000Z

8

Development of a Novel Test Method for On-Demand Internal Short Circuit in a Li-Ion Cell (Presentation)  

DOE Green Energy (OSTI)

This presentation describes a cell-level test method that simulates an emergent internal short circuit, produces consistent and reproducible test results, can establish the locations and temperatures/power/SOC conditions where an internal short circuit will result in thermal runaway, and provides relevant data to validate internal short circuit models.

Keyser, M.; Long, D.; Jung, Y. S.; Pesaran, A.; Darcy, E.; McCarthy, B.; Patrick, L.; Kruger, C.

2011-01-01T23:59:59.000Z

9

Comparative Modeling of Li-Ion Cell and LiFePO4 - Programmaster ...  

Science Conference Proceedings (OSTI)

Presentation Title, Comparative Modeling of Li-Ion Cell and LiFePO4 Cell for Automotive ... The cathode active material of a LiFePO4 cell is assumed to undergo ...

10

Thermal characterization of Li-ion cells using calorimetric techniques  

DOE Green Energy (OSTI)

The thermal stability of Li-ion cells with intercalating carbon anodes and metal oxide cathodes was measured as a function of state of charge and temperature for two advanced cell chemistries. Cells of the 18650 design with Li{sub x}CoO{sub 2} cathodes (commercial Sony cells) and Li{sub x}Ni{sub 0.8}Co{sub 0.2}O{sub 2} cathodes were measured for thermal reactivity. Accelerating rate calorimetry (ARC) was used to measure cell thermal runaway as a function of state of charge (SOC), microcalorimetry was used to measure the time dependence of thermal output, and differential scanning calorimetry (DSC) was used to study the thermal reactivity of the individual components. Thermal decomposition of the anode solid electrolyte interphase (SEI) layer occurred at low temperatures and contributes to the initiation of thermal runaway. Low temperature reactions from 40 C--70 C were observed during the ARC runs that were SOC dependent. These reactions measured in the microcalorimeter decayed over time with power-law dependence and were highly sensitive to SOC and temperature. ARC runs of aged and cycled cells showed complete absence of these low-temperature reactions but showed abrupt exothermic spikes between 105--135 C. These results suggest that during aging the anode SEI layer is decomposing from a metastable state to a stable composition that is breaking down at elevated temperatures.

ROTH,EMANUEL P.

2000-05-31T23:59:59.000Z

11

Electrical and Electrochemical Performance Characteristics of Small Commercial Li-Ion Cells  

DOE Green Energy (OSTI)

Advanced rechargeable lithium-ion batteries are presently being developed and commercialized worldwide for use in consumer electronics, military and space applications. At Sandia National Laboratories we have used different electrochemical techniques such as impedance and charge/discharge at ambient and subambient temperatures to probe the various electrochemical processes that are occurring in Li-ion cell. The purpose of this study is to identify the component that reduces the cell performance at subambient temperatures. Our impedance data suggest that while the variation in the electrolyte resistance between room temperature and {minus}20 C is negligible the anode electrolyte interfacial resistance increases by an order of magnitude in the same temperature regime. We believe that the solid electrolyte interface (SEI) layer on the carbon anode may be responsible for the increase in cell impedance. We have also evaluated the cells in hybrid mode with capacitors. High-current operation in the hybrid mode allowed fill usage of the Li-ion cell capacity at 25 C and showed a factor of 5 improvement in delivered capacity at {minus}20 C.

Ingersoll, D.; Nagasubramanian, G.; Roth, E.P.

1998-12-22T23:59:59.000Z

12

Safety testing of 18650-style Li-Ion cells  

DOE Green Energy (OSTI)

To address lithium-ion cell safety issues in demanding power applications, electrical and thermal abuse tests were performed on 18650 sized cells. Video and electrically monitored abuse tests in air included short circuit, forced overcharge, forced reversal, and controlled overheating (thermal) modes. Controlled overheating tests to 200 C were performed in a sealed chamber under a helium atmosphere and the gases released from the cell during thermal runaway were analyzed at regular intervals using gas chromatography and mass spectrometry. In addition to alkane and alkene solvent breakdown fragments, significant H{sub 2} was detected and evidence that HF was evolved was also found.

CRAFTS,CHRIS C.; BOREK III,THEODORE T.; MOWRY,CURTIS DALE

2000-06-08T23:59:59.000Z

13

Two and Three-Electrode Impedance Studies on 18650 Li-Ion Cells  

DOE Green Energy (OSTI)

Two and three electrode impedance measurements were made on 18650 Li-ion cells at different QB temperatures ranging from 35 C to {minus}40 C. The ohmic resistance of the cell is nearly constant the temperature range studied although the total cell impedance increases by an order of magnitude in the same temperature range. In contrast to what is commonly believed, we show from our three-electrode impedance results that, the increase in cell impedance comes mostly from the cathode and not from the anode. Further, the anode and cathode contribute to both the impedance loops (in the NyQuist plot).

Nagasubramanian, Ganesan

1999-08-11T23:59:59.000Z

14

Electrical Characteristics of 18650 Li-Ion Cells at Low Temperatures  

DOE Green Energy (OSTI)

Low temperature electrical performance characteristics of A and T, Moli, and Panasonic 18650 Li-ion cells are described. Ragone plots of energy and power data of the cells for different temperatures from 25 C to {minus}40 C are compared. Although the electrical performance of these cells at and around room temperature is respectable, at temperatures below 0 C the performance is poor. For example, the delivered power and energy densities of the Panasonic cells at 25 C are {approximately}800 W/l and {approximately}100 Wh/l respectively and those at {minus}40 C are <10 W/l and {approximately}5 Wh/l. In order to identify the source for this poor performance at subambient temperatures, both 2- and 3-electrode impedance studies were made on these cells. The 2-electrode impedance data suggests that the cell ohmic resistance remains nearly constant from 25 C to {minus}20 C but increases modestly at {minus}40 C while the overall cell impedance increases by an order of magnitude over the same temperature range. The 3-electrode impedance data of the A and T cells show that the increase in cell resistance comes mostly from the cathode electrolyte interface and very little either from the anode electrolyte interface or from the ohmic resistance of the cell. This suggests that the poor performance of the cells comes mainly from the high cathode/electrolyte interfacial impedance.

Nagasubramanian, Ganesan

1999-08-05T23:59:59.000Z

15

The effects of silicon doping on the performance of PMAN carbon anodes in Li-ion cells  

DOE Green Energy (OSTI)

Carbons derived from polymethylacrylonitrile (PMAN) have been studied for use as intercalation anodes in Li-ion cells. The effect of Si doping upon the electrochemical performance of PMAN carbons was studied using tetravinylsilane (TVS) and tetramethysilane (TMS) as sources of Si during the formation of the PMAN precursors. The carbons were characterized by galvanostatic cycling, cyclic voltammetry, and complex impedance. The presence of 9 to 11 w/o Si in the PMAN lattice greatly increased the irreversible capacity of these materials.

Guidotti, R.A.; Johnson, B.J. [Sandia National Labs., Albuquerque, NM (United States); Even, W. Jr. [Sandia National Labs., Livermore, CA (United States)

1996-05-01T23:59:59.000Z

16

Investigation of Path Dependence in Commercial Li-ion Cells Chosen for PHEV Duty Cycle Protocols (paper)  

Science Conference Proceedings (OSTI)

Path dependence is emerging as a premier issue of how electrochemical cells age in conditions that are diverse and variable in the time domain. For example, lithium-ion cells in a vehicle configuration will experience a variable combination of usage and rest periods over a range of temperature and state of charge (SOC). This is complicated by the fact that some aging can actually become worse (or better) when a lithium-ion cell is idle for extended periods under calendar-life (calL) aging, as opposed to cycle-life (cycL) conditions where the cell is used within a predictable schedule. The purpose of this study is to bridge the gap between highly idealized and controlled laboratory test conditions and actual field conditions regarding PHEV applications, so that field-type aging mechanisms can be mimicked and quantified in a repeatable laboratory setting. The main parameters are the magnitude and frequency of the thermal cycling, looking at isothermal, mild, and severe scenarios. To date, little is known about Li-ion aging effects caused by thermal cycling superimposed onto electrochemical cycling, and related path dependence. This scenario is representative of what Li-ion batteries will experience in vehicle service, where upon the typical start of a HEV/PHEV, the batteries will be cool or cold, will gradually warm up to normal temperature and operate there for a time, then will cool down after the vehicle is turned off. Such thermal cycling will occur thousands of times during the projected life of a HEV/PHEV battery pack. We propose to quantify the effects of thermal cycling on Li-ion batteries using a representative chemistry that is commercially available. The secondary Li-ion cells used in this study are of the 18650 configuration, have a nominal capacity rating of 1.9 Ah, and consist of a {LiMn2O4 + LiMn(1/3)Ni(1/3)Co(1/3)O2} cathode and a graphite anode. Electrochemical cycling is based on PHEV-relevant cycle-life protocols that are a combination of charge depleting (CD) and charge sustaining (CS) modes discussed in the Battery Test Manual for Plug-in Hybrid Electric Vehicles (INL, March 2008, rev0). A realistic duty cycle will involve both CD and CS modes, the proportion of each defined by the severity of the power demands. We assume that the cells will start each cycling day at 90% SOC, and that they will not be allowed to go below 35% SOC, with operation around 70% SOC being a nominal condition. The 35, 70, and 90% SOC conditions are also being used to define critical aspects of the related reference performance test (RPT) for this investigation. There are three primary components to the RPT, all assessed at room temperature: (A) static and residual capacity (SRC) over a matrix of current, (B) kinetics and pulse performance testing (PPT) over current for SOCs of interest, and (C) EIS for SOCs of interest. The RPT is performed on all cells every 30 day test interval, as well as a pulse-per-day to provide a quick diagnostic snapshot. Where feasible, we utilize various elements of Diagnostic Testing (DT) to characterize performance of the cells and to gain mechanistic-level knowledge regarding both performance features and limitations. We will present the rationale behind the experimental design, early data, and discuss the fundamental tools used to elucidate performance degradation mechanisms.

Kevin L. Gering

2011-04-01T23:59:59.000Z

17

Improved performance of Li-ion cells under pulsed load using double-layer capacitors in a hybrid circuit mode  

DOE Green Energy (OSTI)

Electrical characteristics of hybrid power sources consisting of Li-ion cells and double-layer capacitors were studied at 25 C and {minus}20 C. The cells were initially evaluated for pulse performance and then measured in hybrid modes of operation where they were coupled with the high-power capacitors. Cells manufactured by Panasonic measured at 25 C delivered full capacities of 0.76 Ah for pulses up to 3A and cells from A and T delivered full capacities of 0.73 Ah for pulses up to 4A. Measured cell resistances were 0.15 ohms and 0.12 ohms, respectively. These measurements were repeated at {minus}20 C. Direct coupling of the cells and capacitors (coupled hybrid) using 10F Panasonic capacitors in a 8F series/parallel combination extended the full capacity pulse limits (3.0V threshold) to 5.6A for the Panasonic cells and to 9A for the A and T cells. A similar arrangement using 100F capacitors from Elna in a 60F combination increased the Panasonic cell limit to 10 A. Operation in an uncoupled hybrid mode using uncoupled cell/capacitor discharge allowed fill cell capacity usage at 25 C up to the capacitor discharge limit and showed a factor of 5 improvement in delivered capacity at {minus}20 C.

ROTH,EMANUEL P.; NAGASUBRAMANIAN,GANESAN

2000-02-07T23:59:59.000Z

18

Screening report on cell materials for high-power Li-Ion HEV batteries.  

DOE Green Energy (OSTI)

The Battery Technology Department at Argonne National Laboratory is a major participant in the U.S. Department of Energy's Advanced Technology Development (ATD) program. This multi-national laboratory program is dedicated to improving lithium-ion batteries for high-power HEV and FCEV applications. As part of the FreedomCAR Partnership, this program is addressing the three key barriers for high-power lithium-ion batteries: calendar life, abuse tolerance, and cost. All three of these barriers can be addressed by the choice of materials used in the cell chemistry. To date, the ATD program has developed two high-power cell chemistries, denoted our Gen 1 and Gen 2 cell chemistries. The selection of materials for use in the Gen 2 cell chemistry was based largely on reducing material cost and extending cell calendar life, relative to our Gen 1 cell chemistry. Table 1 provides a list of the materials used in our Gen 2 cell chemistry and their projected costs, when produced in large-scale quantities. In evaluating advanced materials, we have focused our efforts on materials that are lower cost than those listed in Table 1, while simultaneously offering enhanced chemical, structural, and thermal stability. Therefore, we have focused on natural graphite anode materials (having round-edge particle morphologies), cathode materials that contain more Mn and less Co and Ni (which can be produced via low-cost processes), lower cost electrode binders and/or binders that possess superior bonding properties at lower concentrations, and lower cost salts and solvents (with superior thermal and oxidation/reduction stability) for use in the electrolyte. The purpose of this report is to document the results of screening tests that were performed on a large number of advanced low-cost materials. These materials were screened for their potential to impact positively on the calendar life, safety, and/or cost of high-power lithium-ion cell chemistries, relative to our Gen 2 cell chemistry. As part of this effort, we developed and employed a set of standard test protocols to evaluate all of the materials. After brief descriptions of the screening test methodologies and equipment, relevant data on each material are summarized in the body of this report. We have evaluated five categories of materials, and the report is organized accordingly. Results will be presented on advanced carbons for anodes, improved cathode materials, new salts and solvent systems, alternative binders, and novel separators.

Liu, J.; Kahaian, A.; Belharouak, I.; Kang, S.; Oliver, S.; Henriksen, S.; Amine, K.

2003-04-24T23:59:59.000Z

19

Experimental design and analysis for accelerated degradation tests with Li-ion cells.  

DOE Green Energy (OSTI)

This document describes a general protocol (involving both experimental and data analytic aspects) that is designed to be a roadmap for rapidly obtaining a useful assessment of the average lifetime (at some specified use conditions) that might be expected from cells of a particular design. The proposed experimental protocol involves a series of accelerated degradation experiments. Through the acquisition of degradation data over time specified by the experimental protocol, an unambiguous assessment of the effects of accelerating factors (e.g., temperature and state of charge) on various measures of the health of a cell (e.g., power fade and capacity fade) will result. In order to assess cell lifetime, it is necessary to develop a model that accurately predicts degradation over a range of the experimental factors. In general, it is difficult to specify an appropriate model form without some preliminary analysis of the data. Nevertheless, assuming that the aging phenomenon relates to a chemical reaction with simple first-order rate kinetics, a data analysis protocol is also provided to construct a useful model that relates performance degradation to the levels of the accelerating factors. This model can then be used to make an accurate assessment of the average cell lifetime. The proposed experimental and data analysis protocols are illustrated with a case study involving the effects of accelerated aging on the power output from Gen-2 cells. For this case study, inadequacies of the simple first-order kinetics model were observed. However, a more complex model allowing for the effects of two concurrent mechanisms provided an accurate representation of the experimental data.

Doughty, Daniel Harvey; Thomas, Edward Victor; Jungst, Rudolph George; Roth, Emanuel Peter

2003-08-01T23:59:59.000Z

20

Corrosion of current-collector materials in Li-ion cells  

DOE Green Energy (OSTI)

The primary current-collector materials being used in lithium-ion cells are susceptible to environmental degradation: aluminum to pitting corrosion and copper to environmentally assisted cracking. Pitting occurs at the highly oxidizing potentials associated with the positive-electrode charge condition. However, the pitting mechanism is more complex than that typically observed in aqueous systems in that the pits are filled with a mixed metal/oxide product and exist as mounds or nodules on the surface. Electrochemical impedance was shown to be an effective analytical tool for quantification and verification of visual observations and trends. Two fluorocarbon-based coatings were shown to improve the resistance of Al to localized pitting. Finally, environmental cracking of copper can occur at or near the lithium potential and only if specific metallurgical conditions exist (work hardening and large grain size).

Braithwaite, J.; Nagasubramanian, G.; Gonzales, A.; Lucero, S.; Cieslak, W.

1996-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "developing li-ion cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Li-Ion and Other Advanced Battery Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

scientist viewing computer screen scientist viewing computer screen Li-Ion and Other Advanced Battery Technologies The research aims to overcome the fundamental chemical and mechanical instabilities that have impeded the development of batteries for vehicles with acceptable range, acceleration, costs, lifetime, and safety. Its aim is to identify and better understand cell performance and lifetime limitations. These batteries have many other applications, in mobile electronic devices, for example. The work addresses synthesis of components into battery cells with determination of failure modes, materials synthesis and evaluation, advanced diagnostics, and improved electrochemical model development. This research involves: Battery development and analysis; Mathematical modeling; Sophisticated diagnostics;

22

Impedance studies on Li-ion cathodes  

DOE Green Energy (OSTI)

This paper describes the author's 2- and 3-electrode impedance results of metal oxide cathodes. These results were extracted from impedance data on 18650 Li-ion cells. The impedance results indicate that the ohmic resistance of the cell is very nearly constant with state-of-charge (SOC) and temperature. For example, the ohmic resistance of 18650 Li-ion cells is around 60 m{Omega} for different SOCS (4.1V to 3.0V) and temperatures from 35 C to {minus}20 C. However, the interfacial impedance shows a modest increase with SOC and a huge increase of between 10 and 100 times with decreasing temperature. For example, in the temperature regime (35 C down to {minus}20 C) the overall cell impedance has increased from nearly 200 m{Omega} to 8,000 m{Omega}. Most of the increase in cell impedance comes from the metal oxide cathode/electrolyte interface.

NAGASUBRAMANIAN, GANESAN

2000-04-17T23:59:59.000Z

23

A Historical-Data-Based Method for Health Assessment of Li-Ion Battery.  

E-Print Network (OSTI)

??Nowadays, rechargeable Li-ion batteries have been widely used in laptops, cell phones and hybrid electric vehicles (HEV). The health information of battery is very important.… (more)

Dai, Wanchen

2012-01-01T23:59:59.000Z

24

Platform Li-Ion Battery Risk Assessment Tool: Cooperative Research and Development Final Report, CRADA Number CRD-10-407  

DOE Green Energy (OSTI)

Creare was awarded a Phase 1 STTR contract from the US Office of Naval Research, with a seven month period of performance from 6/28/2010 to 1/28/2011. The objectives of the STTR were to determine the feasibility of developing a software package for estimating reliability of battery packs, and develop a user interface to allow the designer to assess the overall impact on battery packs and host platforms for cell-level faults. NREL served as sub-tier partner to Creare, providing battery modeling and battery thermal safety expertise.

Smith, K.

2012-01-01T23:59:59.000Z

25

Li-ion Batteries  

Science Conference Proceedings (OSTI)

Mar 12, 2012... are critical for the development of zero-emission electrical vehicles, large scale smart grid, and energy efficient cargo ships and locomotives.

26

Real Space Mapping of Li-Ion Transport in Amorphous Si Anodes with Nanometer Resolution  

SciTech Connect

The electrical bias driven Li-ion motion in silicon anode materials in thin film battery heterostructures is investigated using electrochemical strain microscopy (ESM), which is a newly developed scanning probe microscopy based characterization method. ESM utilizes the intrinsic link between bias-controlled Li-ion concentration and molar volume of electrode materials, providing the capability for studies on the sub-20 nm scale, and allows the relationship between Li-ion flow and microstructure to be established. The evolution of Li-ion transport during the battery charging is directly observed.

Balke, Nina [ORNL; Jesse, Stephen [ORNL; Kim, Yoongu [Oak Ridge National Laboratory (ORNL); Adamczyk, Leslie A [ORNL; Tselev, Alexander [ORNL; Ivanov, Ilia N [ORNL; Dudney, Nancy J [ORNL; Kalinin, Sergei V [ORNL

2010-01-01T23:59:59.000Z

27

Platform Li-Ion Battery Risk Assessment Tool: Cooperative Research and Development Final Report, CRADA Number CRD-01-406  

Science Conference Proceedings (OSTI)

The pressure within a lithium-ion cell changes due to various chemical reactions. When a battery undergoes an unintended short circuit, the pressure changes are drastic - and often lead to uncontrolled failure of the cells. As part of work for others with Oceanit Laboratories Inc. for the NAVY STTR, NREL built Computational Fluid Dynamic (CFD) simulations that can identify potential weak spots in the battery during such events, as well as propose designs to control violent failure of batteries.

Santhanagopalan, S.

2012-07-01T23:59:59.000Z

28

Li-ion Batteries and Beyond  

Science Conference Proceedings (OSTI)

Mar 12, 2012 ... Energy Nanomaterials: Li-ion Batteries and Beyond Sponsored by: The Minerals, Metals and Materials Society, TMS Materials Processing and ...

29

An investigation of the impedance rise and power fade in high-power, Li-ion cells.  

DOE Green Energy (OSTI)

Two different cell chemistries, Gen 1 and Gen 2, were subjected to accelerated aging experiments. In Gen 1 calendar life experiments, useful cell life was strongly affected by temperature and time. Higher temperature accelerated cell performance degradation. The rates of impedance increase and power fade followed simple laws based on a power of time and Arrhenius kinetics. The data have been modeled using these two concepts, and the calculated data agree well with the experimental values. The Gen 1 calendar life increase and power fade data follow (time){sup 1/2} kinetics. This may be due to solid electrolyte interface (SEI) layer growth. From the cycle life experiments, the impedance increase data follow (time){sup 1/2} kinetics also, there is an apparent change in overall power fade mechanism, from 3% to 6% {Delta}SOC. Here, the power of time changes to a value less than 0.5 indicating that the power fade mechanism is due to factors more complex than just SEI layer growth. The Gen 2 calendar and cycle life experiments show the effect of cell chemistry on kinetics. The calendar life impedance data follow either ''linear'' or (time){sup 1/2} plus linear kinetics, depending on time and temperature.

Bloom, I.; Jones, S. A.; Battaglia, V. S.; Polzin, E. G.; Henriksen, G. L.; Motloch, C. G.; Christophersen, J. P.; Belt, J. R.; Ho, C. D.; Wright, R. B.; Jungst, R. G.; Case, H. L.; Doughty, D. H.

2002-07-18T23:59:59.000Z

30

An investigation of the resistance rise and power fade in high-power Li-ion cells.  

DOE Green Energy (OSTI)

Two different cell chemistries, Gen 1 and Gen 2, were subjected to accelerated aging experiments. In Gen 1 calendar-life experiments, useful cell life was strongly affected by temperature and time. Higher temperatures accelerated the degradation of cell performance. The rates of resistance increase and power fade followed simple laws based on a power of time and Arrhenius kinetics. The data have been modeled using these two concepts, and the calculated data agree well with the experimental values. The Gen 1 calendar-life resistance increase and power fade data follow (time){sup 1/2} kinetics. This may be due to solid electrolyte interface (SEI) layer growth. From the cycle-life experiments, the resistance increase data also follow (time){sup 1/2} kinetics. But there is an apparent change in overall power fade mechanism going from 3% to 6% {Delta}SOC. Here, the power of time changes to a value less than 0.5, indicating that the power fade mechanism is more complex than layer growth. The Gen 2 calendar- and cycle-life experiments show the effect of cell chemistry on kinetics. The calendar-life resistance and power fade follow either linear or linear plus (time){sup 1/2} kinetics, depending on temperature. Temperature dependence for the kinetic law was also found in the cycle-life data. At 25 C, the resistance increase (and power fade) follows linear kinetics, while at 45 C, (time){sup 1/2} kinetics are found.

Bloom, I.; Jones, S. A.; Battaglia, V. S.; Polzin, E. G.; Henriksen, G. L.; Motloch, C. G.; Christophersen, J. P.; Belt, J. R.; Ho, C. D.; Wright, R. B.; Jungst, R. G.; Case, H. L.; Doughty, D. H.

2002-02-20T23:59:59.000Z

31

Second-Use Li-Ion Batteries to Aid Automotive and Utility Industries (Fact Sheet), NREL Highlights in Research & Development, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Repurposing lithium-ion batteries at the end of useful life Repurposing lithium-ion batteries at the end of useful life in electric drive vehicles could eliminate owners' disposal concerns and offer low-cost energy storage for certain applications. Increasing the number of plug-in electric drive vehicles (PEVs) is one major strategy for reduc- ing the nation's oil imports and greenhouse gas emissions. However, the high up-front cost and end-of-service disposal concerns of their lithium-ion (Li-ion) batteries could impede the proliferation of such vehicles. Re-using Li-ion batteries after their useful automotive life has been proposed as a way to remedy both matters. In response, the National Renewable Energy Laboratory (NREL) and its partners are conducting research to identify, assess, and verify profitable

32

ESS 2012 Peer Review - Unique Li-ion Batteries for Utility Applications - Daiwon Choi, PNNL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Unique Li-ion Batteries for Utility Unique Li-ion Batteries for Utility Applications Daiwon Choi, Vilayanur V. Viswanathan, Wei Wang, Vincent L. Sprenkle Pacific Northwest National Laboratory 902 Battelle Blvd., P. O. Box 999, Richland, WA 99352, USA DOE Energy Storage Program Review, Washington, DC Sept. 26-28, 2012 Acknowledgment: Dr. Imre Gyuk - Energy Storage Program Manager, Office of Electricity Delivery and Energy Reliability  Investigate the Li-ion battery for stationary energy storage unit in ~kWh level.  Fabrication and optimization of LiFePO 4 / Li 4 Ti 5 O 12 18650 cell.  Li-ion battery energy storage with effective thermal management.  Improve rate and cycle life of Li-ion battery.  Screen possible new cathode/anode electrode materials and its combinations

33

Program on Technology Innovation: Technology Assessment Presentation on Li-Ion Energy Storage Technology for Stationary Electric Uti lity Applications  

Science Conference Proceedings (OSTI)

Emerging Li-ion (Li-ion) energy storage technology, which is being developed and applied in the transportation sector, could have a profound impact to in the electric sector by serving applications for distributed energy storage (DES). An earlier EPRI Report, Technology Review and Assessment of Distributed Energy ResourcesDistributed Energy Storage (1012983), identified Li-ion batteries as a potential disruptive technology for the electric power sector. This project was undertaken to assess the potential...

2008-05-20T23:59:59.000Z

34

Nanotechnology in Li-ion Batteries  

DOE Green Energy (OSTI)

This is the second of three talks on nanostructures for li-ion batteries. The talks provide an up-to-date review of the issues and challenges facing Li-ion battery research with special focus on how nanostructures/ nanotechnology are being applied to this field. Novel materials reported as prospective candidates for anode, cathode and electrolyte will be summarized. The expected role of nanostructures in improving the performance of Li-ion batteries and the actual pros and cons of using such structures in this device will be addressed. Electrochemical experiments used to study Li-ion batteries will also be discussed. This includes the introduction to the standard experimental set-up and how experimental data (from charge-discharge experiments, cyclic voltammetry, impedance spectroscopy, etc) are interpreted.

Mukaibo, Hitomi (University of Florida, Martin Research Group)

2010-06-04T23:59:59.000Z

35

Vehicle Specifications Battery Type: Li-Ion  

NLE Websites -- All DOE Office Websites (Extended Search)

1 All-Electric Conversion of the USPS Long Life Vehicle (LLV) Vehicle Specifications Battery Type: Li-Ion Pack Locations: Underbody (inboard of frame rails) Nominal System Voltage:...

36

Ion Beam Preparation of Li-Ion Battery Electrodes Li-Ion  

Science Conference Proceedings (OSTI)

One key factor to producing such batteries is the electrode architecture. In order to tune the morphologies of Li-ion battery electrodes, a dual beam Focused Ion ...

37

Negative Electrodes for Li-Ion Batteries  

DOE Green Energy (OSTI)

Graphitized carbons have played a key role in the successful commercialization of Li-ion batteries. The physicochemical properties of carbon cover a wide range; therefore identifying the optimum active electrode material can be time consuming. The significant physical properties of negative electrodes for Li-ion batteries are summarized, and the relationship of these properties to their electrochemical performance in nonaqueous electrolytes, are discussed in this paper.

Kinoshita, Kim; Zaghib, Karim

2001-10-01T23:59:59.000Z

38

In situ XRD Studies of Li-ion Cells with Mixed LiMn2O4 and LiCo1/3Ni1/3Mn1/3O2 Composite Cathode  

Science Conference Proceedings (OSTI)

The structural changes of the composite cathode made by mixing spinel LiMn2O4 and layered LiNi1/3Co1/3Mn1/3O2 in 1:1 wt% in both Li-half and Li-ion cells during charge/discharge are studied by in situ XRD. During the first charge up to {approx}5.2 V vs. Li/Li+, the in situ XRD spectra for the composite cathode in the Li-half cell track the structural changes of each component. At the early stage of charge, the lithium extraction takes place in the LiNi1/3Co1/3Mn1/3O2 component only. When the cell voltage reaches at {approx}4.0 V vs. Li/Li+, lithium extraction from the spinel LiMn2O4 component starts and becomes the major contributor for the cell capacity due to the higher rate capability of LiMn2O4. When the voltage passed 4.3 V, the major structural changes are from the LiNi1/3Co1/3Mn1/3O2 component, while the LiMn2O4 component is almost unchanged. In the Li-ion cell using a MCMB anode and a composite cathode cycled between 2.5 V and 4.2 V, the structural changes are dominated by the spinel LiMn2O4 component, with much less changes in the layered LiNi1/3Co1/3Mn1/3O2 component, comparing with the Li-half cell results. These results give us valuable information about the structural changes relating to the contributions of each individual component to the cell capacity at certain charge/discharge state, which are helpful in designing and optimizing the composite cathode using spinel- and layered-type materials for Li-ion battery research.

Nam, K.; Yoon, W; Shin, H; Chung, K; Choi, S; Yang, X

2009-01-01T23:59:59.000Z

39

Technology Assessment of Li-Ion Energy Storage Technology for Stationary Electric Utility Applications  

Science Conference Proceedings (OSTI)

Emerging Lithium-ion (Li-ion) energy storage technology, which is being developed and applied in the transportation sector, could have a profound impact in the electric sector by serving applications for distributed energy storage (DES). An earlier EPRI Report, Technology Review and Assessment of Distributed Energy Resources: Distributed Energy Storage (1012983, February 2006), identified Li-ion batteries as a potential disruptive technology for the electric power sector. EPRI undertook this project to a...

2008-03-13T23:59:59.000Z

40

Improved Electrode Materials in Lithium-Ion (Li-ion) Batteries: Innovation  

NLE Websites -- All DOE Office Websites (Extended Search)

Improved Electrode Materials in Lithium-Ion (Li-ion) Batteries: Innovation Improved Electrode Materials in Lithium-Ion (Li-ion) Batteries: Innovation and Optimization Speaker(s): Jordi Cabana-Jimenez Date: January 14, 2008 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Venkat Srinivasan The advent of Li-ion batteries has played a central role in the impressive development of portable digital and wireless technology. Such success has triggered further efforts to utilize them as key components in other applications with an even larger impact on society, which include electric vehicles and energy backup for renewable energy sources. However, several challenges need to be met before these expectations can be realized, as Li-ion batteries currently do not meet the power and energy density requirements of these devices. New and better materials for the electrodes

Note: This page contains sample records for the topic "developing li-ion cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Investigation of particle isolation in Li-ion battery electrodes...  

NLE Websites -- All DOE Office Websites (Extended Search)

Investigation of particle isolation in Li-ion battery electrodes using 7Li NMR spectroscopy Title Investigation of particle isolation in Li-ion battery electrodes using 7Li NMR...

42

Mesoscale Phase Distribution in Li-ion Battery Electrode Materials...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Science SSRL Phone List People Search Maps Mesoscale Phase Distribution in Li-ion Battery Electrode Materials Friday, May 31, 2013 Li-ion batteries are regarded as key devices...

43

Li ion Motors Corp formerly EV Innovations Inc | Open Energy...  

Open Energy Info (EERE)

Page Edit with form History Facebook icon Twitter icon Li ion Motors Corp formerly EV Innovations Inc Jump to: navigation, search Name Li-ion Motors Corp (formerly EV...

44

Electrode Materials for Rechargeable Li-ion Batteries: a New ...  

High-energy density Li-ion batteries available in the market today have low power and progressively lose their energy due to voltage fade during ...

45

Metal Oxide-Graphene Nanocomposites for Li-Ion Battery  

Science Conference Proceedings (OSTI)

Presentation Title, Metal Oxide-Graphene Nanocomposites for Li-Ion Battery. Author(s), Donghai Wang, Daiwon Choi, Juan Li, Zhenguo Yang, Zimin Nie, Rong ...

46

A Comparison of Li-Ion Battery Recycling Options  

NLE Websites -- All DOE Office Websites (Extended Search)

1 A Comparison of Li-Ion Battery Recycling Options Linda Gaines and Jennifer Dunn Center for Transportation Research Argonne National Laboratory SAE World Congress April 2012 PAPER...

47

Ultrathin Surface Coatings for Enhanced Cycleability of Li-Ion ...  

Science Conference Proceedings (OSTI)

Characterization of Battery Cycling by In-Situ Microscopy · Chemical ... as Li-ion Battery Electrodes · In Situ and In Operando Studies of High Capacity Cathodes.

48

NREL's PHEV/EV Li-Ion Battery Secondary-Use Project  

SciTech Connect

Accelerated development and market penetration of plug-in hybrid electric vehicles (PHEVs) and electric vehicles (EVs) is restricted at present by the high cost of lithium-ion (Li-ion) batteries. One way to address this problem is to recover a fraction of the Li-ion battery's cost via reuse in other applications after it is retired from service in the vehicle, when the battery may still have sufficient performance to meet the requirements of other energy storage applications.

Newbauer, J.; Pesaran, A.

2010-06-01T23:59:59.000Z

49

Recycling of Li-Ion Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Linda Gaines Center for Transportation Research Argonne National Laboratory Recycling of Li-Ion Batteries Illinois Sustainable Technology Center University of Illinois We don't want to trade one crisis for another!  Battery material shortages are unlikely - We demonstrated that lithium demand can be met - Recycling mitigates potential scarcity  Life-cycle analysis checks for unforeseen impacts  We need to find something to do with the used materials - Safe - Economical 2 We answer these questions to address material supply issues  How many electric-drive vehicles will be sold in the US and world-wide?  What kind of batteries might they use? - How much lithium would each battery use?  How much lithium would be needed each year?

50

Electrochemical Experiments Used to Study Li-ion Batteries  

DOE Green Energy (OSTI)

This is the third of three talks on nanostructures for Li-ion batteries. The talks provide an up-to-date review of the issues and challenges facing Li-ion battery research with special focus on how nanostructures/nanotechnology are being applied to this field. Novel materials reported as prospective candidates for anode, cathode and electrolyte will be summarized. The expected role of nanostructures in improving the performance of Li-ion batteries and the actual pros and cons of using such structures in this device will be addressed. Electrochemical experiments used to study Li-ion batteries will also be discussed. This includes the introduction to the standard experimental set-up and how experimental data (from charge-discharge experiments, cyclic voltammetry, impedance spectroscopy, etc) are interpreted.

Mukaibo, Hitomi (University of Florida, Martin Research Group)

2010-06-04T23:59:59.000Z

51

Li-Ion Batteries for Transportation Applications II  

Science Conference Proceedings (OSTI)

Oct 27, 2009 ... Energy Storage: Materials, Systems, and Applications: Li-Ion Batteries for ... storage and utilization of renewable energies like solar and wind. Cost ... Rahul Singhal1; Karina Asmar1; Ram Katiyar1; 1University of Puerto Rico

52

Transport and Failure in Li-ion Batteries | Stanford Synchrotron...  

NLE Websites -- All DOE Office Websites (Extended Search)

Transport and Failure in Li-ion Batteries Monday, February 13, 2012 - 1:30pm SSRL Conference Room 137-322 Stephen J. Harris, General Motors R&D While battery performance is well...

53

Nanostructured ion beam-modified Ge films for high capacity Li ion battery anodes  

SciTech Connect

Nanostructured ion beam-modified Ge electrodes fabricated directly on Ni current collector substrates were found to exhibit excellent specific capacities during electrochemical cycling in half-cell configuration with Li metal for a wide range of cycling rates. Structural characterization revealed that the nanostructured electrodes lose porosity during cycling but maintain excellent electrical contact with the metallic current collector substrate. These results suggest that nanostructured Ge electrodes have great promise for use as high performance Li ion battery anodes.

Rudawski, N. G.; Darby, B. L.; Yates, B. R.; Jones, K. S. [Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611-6400 (United States); Elliman, R. G. [Department of Electronic Materials Engineering, Research School of Physics and Engineering, Australian National University, Canberra, Australian Capital Territory 0200 (Australia); Volinsky, A. A. [Department of Mechanical Engineering, University of South Florida, Tampa Florida 33620 (United States)

2012-02-20T23:59:59.000Z

54

Synthesis, Characterization and Testing of Novel Anode and Cathode Materials for Li-Ion Batteries  

DOE Green Energy (OSTI)

During this program we have synthesized and characterized several novel cathode and anode materials for application in Li-ion batteries. Novel synthesis routes like chemical doping, electroless deposition and sol-gel method have been used and techniques like impedance, cyclic voltammetry and charge-discharge cycling have been used to characterize these materials. Mathematical models have also been developed to fit the experimental result, thus helping in understanding the mechanisms of these materials.

White, Ralph E.; Popov, Branko N.

2002-10-31T23:59:59.000Z

55

Batteries - Next-generation Li-ion batteries Breakout session  

NLE Websites -- All DOE Office Websites (Extended Search)

Next-generation Li-ion batteries Next-generation Li-ion batteries EV Everywhere Workshop July 26, 2012 Breakout Session #1 - Discussion of Performance Targets and Barriers Comments on the Achievability of the Targets * Overall, everything is achievable, but, clearly, the cost targets are dramatic, particularly for AEV 300. (I have discussed this with Yet-Ming Chiang, who has a good feel for cost reductions, both their importance and interesting approaches.) * AEV 100 achievable with a good silicon/graphite composite anode and LMRNMC (unsure timeline) * AEV 300 would require cycleable Li-metal anode and UHVHC cathode (can't get there with Li-ion intercalation on both electrodes) (unsure timeline) Barriers Interfering with Reaching the Targets * Pack - too high a fraction of inactive materials/inefficient engineering designs.

56

Review on Current State of Li-ion Batteries  

DOE Green Energy (OSTI)

This is an up-to-date review of the issues and challenges facing Li-ion battery research with special focus on how nanostructures/ nanotechnology are being applied to this field. Novel materials reported as prospective candidates for anode, cathode and electrolyte will be summarized. The expected role of nanostructures in improving the performance of Li-ion batteries and the actual pros and cons of using such structures in this device will be addressed. Electrochemical experiments used to study Li-ion batteries will also be discussed. This includes the introduction to the standard experimental set-up and how experimental data (from charge-discharge experiments, cyclic voltammetry, impedance spectroscopy, etc) are interpreted.

Mukaibo, Hitomi (University of Florida, Martin Research Group)

2010-06-04T23:59:59.000Z

57

Selected test results from the neosonic polymer Li-ion battery.  

DOE Green Energy (OSTI)

The performance of the Neosonic polymer Li-ion battery was measured using a number of tests including capacity, capacity as a function of temperature, ohmic resistance, spectral impedance, hybrid pulsed power test, utility partial state of charge (PSOC) pulsed cycle test, and an over-charge/voltage abuse test. The goal of this work was to evaluate the performance of the polymer Li-ion battery technology for utility applications requiring frequent charges and discharges, such as voltage support, frequency regulation, wind farm energy smoothing, and solar photovoltaic energy smoothing. Test results have indicated that the Neosonic polymer Li-ion battery technology can provide power levels up to the 10C{sub 1} discharge rate with minimal energy loss compared to the 1 h (1C) discharge rate. Two of the three cells used in the utility PSOC pulsed cycle test completed about 12,000 cycles with only a gradual loss in capacity of 10 and 13%. The third cell experienced a 40% loss in capacity at about 11,000 cycles. The DC ohmic resistance and AC spectral impedance measurements also indicate that there were increases in impedance after cycling, especially for the third cell. Cell No.3 impedance Rs increased significantly along with extensive ballooning of the foil pouch. Finally, at a 1C (10 A) charge rate, the over charge/voltage abuse test with cell confinement similar to a multi cell string resulted in the cell venting hot gases at about 45 C 45 minutes into the test. At 104 minutes into the test the cell voltage spiked to the 12 volt limit and continued out to the end of the test at 151 minutes. In summary, the Neosonic cells performed as expected with good cycle-life and safety.

Ingersoll, David T.; Hund, Thomas D.

2010-07-01T23:59:59.000Z

58

Finite volume discretization of equations describing nonlinear diffusion in Li-Ion batteries  

Science Conference Proceedings (OSTI)

Numerical modeling of electrochemical process in Li-Ion battery is an emerging topic of great practical interest. In this work we present a Finite Volume discretization of electrochemical diffusive processes occurring during the operation of Li-Ion batteries. ...

P. Popov; Y. Vutov; S. Margenov; O. Iliev

2010-08-01T23:59:59.000Z

59

IMPROVEMENT OF THERMAL STABILITY OF LI-ION BATTERIES BY  

E-Print Network (OSTI)

and Commercial Building End-Use Energy Efficiency · Industrial/Agricultural/Water End-Use Energy EfficiencyIMPROVEMENT OF THERMAL STABILITY OF LI-ION BATTERIES BY POLYMER COATING OF LIMN2O4 Prepared For: California Energy Commission Energy Innovations Small Grant Program Prepared By: Pieter Stroeve, UC Davis

60

Silicon Based Anodes for Li-Ion Batteries  

SciTech Connect

Silicon is environmentally benign and ubiquitous. Because of its high specific capacity, it is considered one of the most promising candidates to replace the conventional graphite negative electrode used in today's Li ion batteries. Silicon has a theoretical specific capacity of nearly 4200 mAh/g (Li21Si5), which is 10 times larger than the specific capacity of graphite (LiC6, 372 mAh/g). However, the high capacity of silicon is associated with huge volume changes (more than 300 percent) when alloyed with lithium, which can cause severe cracking and pulverization of the electrode and lead to significant capacity loss. Significant scientific research has been conducted to circumvent the deterioration of silicon based anode materials during cycling. Various strategies, such as reduction of particle size, generation of active/inactive composites, fabrication of silicon based thin films, use of alternative binders, and the synthesis of 1-D silicon nanostructures have been implemented by a number of research groups. Fundamental mechanistic research has also been performed to better understand the electrochemical lithiation and delithiation process during cycling in terms of crystal structure, phase transitions, morphological changes, and reaction kinetics. Although efforts to date have not attained a commercially viable Si anode, further development is expected to produce anodes with three to five times the capacity of graphite. In this chapter, an overview of research on silicon based anodes used for lithium-ion battery applications will be presented. The overview covers electrochemical alloying of the silicon with lithium, mechanisms responsible for capacity fade, and methodologies adapted to overcome capacity degradation observed during cycling. The recent development of silicon nanowires and nanoparticles with significantly improved electrochemical performance will also be discussed relative to the mechanistic understanding. Finally, future directions on the development of silicon based anodes will be considered.

Zhang, Jiguang; Wang, Wei; Xiao, Jie; Xu, Wu; Graff, Gordon L.; Yang, Zhenguo; Choi, Daiwon; Li, Xiaolin; Wang, Deyu; Liu, Jun

2012-06-15T23:59:59.000Z

Note: This page contains sample records for the topic "developing li-ion cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Surface treated natural graphite as anode material for high-power Li-ion battery applications.  

Science Conference Proceedings (OSTI)

High power application of Li-ion battery in hybrid electrical vehicles requires low cost and safe cell materials. Among the various carbon anode materials used in lithium ion batteries, natural graphite shows the most promise with advantages in performance and cost. However, natural graphite is not compatible with propylene carbonate (PC)-based electrolytes, which have a lower melting point and improved safety characteristics. The problem with it is that the molecules of propylene carbonate intercalate with Li+ into graphite, and that frequently leads to the exfoliation of the graphite matrix.

Liu, J.; Vissers, D. R.; Amine, K.; Barsukov, I. V.; Henry, F.; Doniger, J.; Chemical Engineering; Superior Graphite Co.

2006-01-01T23:59:59.000Z

62

Li-Ion Batteries from LiFePO4 Cathode and Anatase/Graphene Composite Anode for Stationary Energy Storage  

SciTech Connect

Li-ion batteries based on LiFePO4 cathode and anatase TiO2/graphene anode were investigated for possible stationary energy storage application. Fine-structured LiFePO4 was synthesized by novel molten surfactant approach. Anatase TiO2/graphene nanocomposite was prepared via self assembly method. The full cell that operated at flat 1.6V demonstrated negligible fade after more than 700 cycles. The LiFePO4/TiO2 combination Li-ion battery is inexpensive, environmentally benign, safe and stable. Therefore, it can be practically applied as stationary energy storage for renewable power sources.

Choi, Daiwon; Wang, Donghai; Viswanathan, Vilayanur V.; Bae, In-Tae; Wang, Wei; Nie, Zimin; Zhang, Jiguang; Graff, Gordon L.; Liu, Jun; Yang, Zhenguo; Duong, Tien Q.

2009-11-06T23:59:59.000Z

63

Battery-level material cost model facilitates high-power li-ion battery cost reductions.  

SciTech Connect

Under the FreedomCAR Partnership, Argonne National Laboratory (ANL) is working to identify and develop advanced anode, cathode, and electrolyte components that can significantly reduce the cost of the cell chemistry, while simultaneously enhancing the calendar life and inherent safety of high-power Li-Ion batteries. Material cost savings are quantified and tracked via the use of a cell and battery design model that establishes the quantity of each material needed in batteries designed to meet the requirements of hybrid electric vehicles (HEVs). In order to quantify the material costs, relative to the FreedomCAR battery cost goals, ANL uses (1) laboratory cell performance data, (2) its battery design model and (3) battery manufacturing process yields to create battery-level material cost models. Using these models and industry-supplied material cost information, ANL assigns battery-level material costs for different cell chemistries. These costs can then be compared to the battery cost goals to determine the probability of meeting the goals with these cell chemistries. The most recent freedomCAR cost goals for 25-kW and 40-kW power-assist HEV batteries are $500 and $800, respectively, which is $20/kW in both cases. In 2001, ANL developed a high-power cell chemistry that was incorporated into high-power 18650 cells for use in extensive accelerated aging and thermal abuse characterization studies. This cell chemistry serves as a baseline for this material cost study. It incorporates a LiNi0.8Co0.15Al0.05O2 cathode, a synthetic graphite anode, and a LiPF6 in EC:EMC electrolyte. Based on volume production cost estimates for these materials-as well as those for binders/solvents, cathode conductive additives, separator, and current collectors--the total cell winding material cost for a 25-kW power-assist HEV battery is estimated to be $399 (based on a 48- cell battery design, each cell having a capacity of 15.4 Ah). This corresponds to {approx}$16/kW. Our goal is to reduce the cell winding material cost to <$10/kW, in order to allow >$10/kW for the cell and battery manufacturing costs, as well as profit for the industrial manufacturer. The material cost information is obtained directly from the industrial material suppliers, based on supplying the material quantities necessary to support an introductory market of 100,000 HEV batteries/year. Using its battery design model, ANL provides the material suppliers with estimates of the material quantities needed to meet this market, for both 25-kW and 40-kW power-assist HEV batteries. Also, ANL has funded a few volume-production material cost analyses, with industrial material suppliers, to obtain needed cost information. In a related project, ANL evaluates and develops low-cost advanced materials for use in high-power Li-Ion HEV batteries. [This work is the subject of one or more separate papers at this conference.] Cell chemistries are developed from the most promising low-cost materials. The performance characteristics of test cells that employ these cell chemistries are used as input to the cost model. Batteries, employing these cell chemistries, are designed to meet the FreedomCAR power, energy, weight, and volume requirements. The cost model then provides a battery-level material cost and material cost breakdown for each battery design. Two of these advanced cell chemistries show promise for significantly reducing the battery-level material costs (see Table 1), as well as enhancing calendar life and inherent safety. It is projected that these two advanced cell chemistries (A and B) could reduce the battery-level material costs by an estimated 24% and 43%, respectively. An additional cost advantage is realized with advanced chemistry B, due to the high rate capability of the 3-dimensional LiMn{sub 2}O{sub 4} spinel cathode. This means that a greater percentage of the total Ah capacity of the cell is usable and cells with reduced Ah capacity can be used. This allows for a reduction in the quantity of the anode, electrolyte, separator, and current collector materials needed f

Henriksen, G.; Chemical Engineering

2003-01-01T23:59:59.000Z

64

ESS 2012 Peer Review - Organic and Inorganic Solid Electrolytes for Li-ion Batteries - Nader Hagh, NEI Corporation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Organic and Inorganic Solid Electrolytes for Li-ion Batteries Organic and Inorganic Solid Electrolytes for Li-ion Batteries Background & Objectives * Lithium ion batteries widely used in consumer applications Solvent leakage and flammability of conventional liquid electrolytes * Current solid state electrolytes suffer from low ionic conductivity, inferior rate capability, and interfacial instability * Objective of the program is to develop solid state organic and inorganic electrolyte that has enhanced ionic conductivity * PEO based polymer electrolyte has poor room ionic conductivity due to crystallinity * The current program develops a PEO based hybrid copolymer that disrupts crystallization and at the same time provides mechanical integrity Abstract: The use of a solid polymer electrolyte instead of the conventional liquid or gel electrolyte can drastically improve the safety

65

Flexible, Thin, and Rechargeable Li-ion Battery Based on Semi ...  

Science Conference Proceedings (OSTI)

Symposium, Energy Storage III: Materials, Systems and Applications Symposium. Presentation Title, Flexible, Thin, and Rechargeable Li-ion Battery Based on ...

66

Why are there no volume Li-ion battery manufacturers in the ...  

Science Conference Proceedings (OSTI)

... There No Volume Lithium-Ion Battery Manufacturers in ... R&D; US Manufacturing of Li-ion Batteries. ... The Innovation Process for Battery Technologies. ...

2008-07-28T23:59:59.000Z

67

Modeling, Simulation & Implementation of Li-ion Battery Powered Electric and Plug-in Hybrid Vehicles.  

E-Print Network (OSTI)

??The modeling, simulation and hardware implementation of a Li-ion battery powered electric vehicle are presented in this thesis. The results obtained from simulation and experiments… (more)

Mantravadi, Siva Rama Prasanna

2011-01-01T23:59:59.000Z

68

Comparison of Li-Ion Battery Recycling Processes by Life-Cycle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Center for Transportation Research Argonne National Laboratory Comparison of Li-Ion Battery Recycling Processes by Life-Cycle Analysis Electric Vehicles and the Environment...

69

(V2O5) Films for Li-ion Battery and Supercapacitor Applications  

Science Conference Proceedings (OSTI)

These binder and carbon free films are characterized electrochemically for Li-ion battery applications with impedance, and galvanostatic charge-discharge cyclic ...

70

ESS 2012 Peer Review - Unique Li-ion Batteries for Utility Application...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Unique Li-ion Batteries for Utility Applications Daiwon Choi, Vilayanur V. Viswanathan, Wei Wang, Vincent L. Sprenkle Pacific Northwest National Laboratory 902 Battelle Blvd., P....

71

PHEV/EV Li-Ion Battery Second-Use Project (Presentation)  

SciTech Connect

Accelerated development and market penetration of plug-in hybrid electric vehicles (PHEVs) and electric vehicles (Evs) are restricted at present by the high cost of lithium-ion (Li-ion) batteries. One way to address this problem is to recover a fraction of the battery cost via reuse in other applications after the battery is retired from service in the vehicle, if the battery can still meet the performance requirements of other energy storage applications. In several current and emerging applications, the secondary use of PHEV and EV batteries may be beneficial; these applications range from utility peak load reduction to home energy storage appliances. However, neither the full scope of possible opportunities nor the feasibility or profitability of secondary use battery opportunities have been quantified. Therefore, with support from the Energy Storage activity of the U.S. Department of Energy's Vehicle Technologies Program, the National Renewable Energy Laboratory (NREL) is addressing this issue. NREL will bring to bear its expertise and capabilities in energy storage for transportation and in distributed grids, advanced vehicles, utilities, solar energy, wind energy, and grid interfaces as well as its understanding of stakeholder dynamics. This presentation introduces NREL's PHEV/EV Li-ion Battery Secondary-Use project.

Neubauer, J.; Pesaran, A.

2010-04-01T23:59:59.000Z

72

The development and fabrication of miniaturized direct methanol fuel cells and thin-film lithium ion battery hybrid system for portable applications .  

E-Print Network (OSTI)

??In this work, a hybrid power module comprising of a direct methanol fuel cell (DMFC) and a Li-ion battery has been proposed for low power… (more)

Prakash, Shruti

2009-01-01T23:59:59.000Z

73

Selected test results from the LiFeBatt iron phosphate Li-ion battery.  

DOE Green Energy (OSTI)

In this paper the performance of the LiFeBatt Li-ion cell was measured using a number of tests including capacity measurements, capacity as a function of temperature, ohmic resistance, spectral impedance, high power partial state of charge (PSOC) pulsed cycling, pulse power measurements, and an over-charge/voltage abuse test. The goal of this work was to evaluate the performance of the iron phosphate Li-ion battery technology for utility applications requiring frequent charges and discharges, such as voltage support, frequency regulation, and wind farm energy smoothing. Test results have indicated that the LiFeBatt battery technology can function up to a 10C{sub 1} discharge rate with minimal energy loss compared to the 1 h discharge rate (1C). The utility PSOC cycle test at up to the 4C{sub 1} pulse rate completed 8,394 PSOC pulsed cycles with a gradual loss in capacity of 10 to 15% depending on how the capacity loss is calculated. The majority of the capacity loss occurred during the initial 2,000 cycles, so it is projected that the LiFeBatt should PSOC cycle well beyond 8,394 cycles with less than 20% capacity loss. The DC ohmic resistance and AC spectral impedance measurements also indicate that there were only very small changes after cycling. Finally, at a 1C charge rate, the over charge/voltage abuse test resulted in the cell venting electrolyte at 110 C after 30 minutes and then open-circuiting at 120 C with no sparks, fire, or voltage across the cell.

Ingersoll, David T.; Hund, Thomas D.

2008-09-01T23:59:59.000Z

74

A Combustion Chemistry Analysis of Carbonate Solvents in Li-Ion Batteries  

DOE Green Energy (OSTI)

Under abusive conditions Li-ion batteries can rupture, ejecting electrolyte and other flammable gases. In this paper we consider some of the thermochemical properties of these gases that will determine whether they ignite and how energetically they burn. We show that flames of carbonate solvents are fundamentally less energetic than those of conventional hydrocarbons. An example of this difference is given using a recently developed mechanism for dimethyl carbonate (DMC) combustion, where we show that a diffusion flame burning DMC has only half the peak energy release rate of an analogous propane flame. We find a significant variation among the carbonate solvents in the factors that are important to determining flammability, such as combustion enthalpy and vaporization enthalpy. This result suggests that thermochemical and kinetic factors might well be considered when choosing solvent mixtures.

Harris, S J; Timmons, A; Pitz, W J

2008-11-13T23:59:59.000Z

75

Second-Use Li-Ion Batteries to Aid Automotive and Utility Industries (Fact Sheet)  

SciTech Connect

Repurposing Li-ion batteries at the end of useful life in electric drive vehicles could eliminate owners' disposal concerns and offer low-cost energy storage for certain applications.

Not Available

2014-01-01T23:59:59.000Z

76

Improved Electrode Materials in Lithium-Ion (Li-ion) Batteries...  

NLE Websites -- All DOE Office Websites (Extended Search)

Improved Electrode Materials in Lithium-Ion (Li-ion) Batteries: Innovation and Optimization Speaker(s): Jordi Cabana-Jimenez Date: January 14, 2008 - 12:00pm Location: 90-3122...

77

Reductive Leaching Behavior of Valuable Metals from Spent Li-Ion ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Commercial trend of cathode material for Li-ion batteries, LiCoO2, ... The Challenge of Allocation in LCA: The Case of Open-Loop Recycling.

78

An ultra-compact and efficient Li-ion battery charger circuit for biomedical applications  

E-Print Network (OSTI)

This paper describes an ultra-compact analog lithium-ion (Li-ion) battery charger for wirelessly powered implantable medical devices. The charger presented here takes advantage of the tanh output current profile of an ...

Do Valle, Bruno Guimaraes

79

Anodic polymerization of vinyl ethylene carbonate in Li-Ion battery electrolyte  

E-Print Network (OSTI)

R.A. Sutula, F. McLamon, Battery Rsearch Pograms of theof Energy, in Selected Battery Topics. Proceedings of theEthylene Carbonate in Li-Ion Battery Electrolyte Guoying

Chen, Guoying; Zhuang, Guorong V.; Richardson, Thomas J.; Gao, Liu; Ross Jr., Philip N.

2005-01-01T23:59:59.000Z

80

Li-Ion Battery with LiFePO4 Cathode and Li4Ti5O12 Anode for Stationary Energy Storage  

Science Conference Proceedings (OSTI)

i-ion batteries based on commercially available LiFePO4 cathode and Li4Ti5O12 anode were investigated for potential stationary energy storage applications. The full cell that operated at flat 1.85V demonstrated stable cycling for 200 cycles followed by a rapid fade. A significant improvement in cycling stability was achieved via Ketjen black coating of the cathode. A Li-ion full cell with Ketjen black modified LiFePO4 cathode and an unmodified Li4Ti5O12 anode exhibited negligible fade after more than 1200 cycles with a capacity of ~130mAh/g. The improved stability, along with its cost-effectiveness, environmentally benignity and safety, make the LiFePO4/ Li4Ti5O12 Li-ion battery a promising option of storing renewable energy.

Wang, Wei; Choi, Daiwon; Yang, Zhenguo

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "developing li-ion cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Understanding Li-ion battery processes at the atomic to nano-scale.  

Science Conference Proceedings (OSTI)

Reducing battery materials to nano-scale dimensions may improve battery performance while maintaining the use of low-cost materials. However, we need better characterization tools with atomic to nano-scale resolution in order to understand degradation mechanisms and the structural and mechanical changes that occur in these new materials during battery cycling. To meet this need, we have developed a micro-electromechanical systems (MEMS)-based platform for performing electrochemical measurements using volatile electrolytes inside a transmission electron microscope (TEM). This platform uses flip-chip assembly with special alignment features and multiple buried electrode configurations. In addition to this platform, we have developed an unsealed platform that permits in situ TEM electrochemistry using ionic liquid electrolytes. As a test of these platform concepts, we have assembled MnO{sub 2} nanowires on to the platform using dielectrophoresis and have examined their electrical and structural changes as a function of lithiation. These results reveal a large irreversible drop in electronic conductance and the creation of a high degree of lattice disorder following lithiation of the nanowires. From these initial results, we conclude that the future full development of in situ TEM characterization tools will enable important mechanistic understanding of Li-ion battery materials.

Zhan, Yongjie (Rice University, Houston, TX); Subramanian, Arunkumar; Hudak, Nicholas; Sullivan, John Patrick; Shaw, Michael J.; Huang, Jian Yu

2010-05-01T23:59:59.000Z

82

A study of lithium ion intercalation induced fracture of silicon particles used as anode material in Li-ion battery  

Science Conference Proceedings (OSTI)

The fracture of Si particles due to internal stresses formed during the intercalation of lithium ions was described by means of thermal analogy model and brittle fracture damage parameter. The stresses were calculated following the diffusion equation and equations of elasticity with appropriate volumetric expansion term. The damage parameter takes into account triaxiality of the stress state and change in elasticity upon tension and compression, and represents the probability of fracture under given stress state, - an approach suitable for brittle materials. The results were compared with the acoustic emission data from the experiments on electrochemical cycling of Li ion half-cells with silicon electrodes. A good correlation between experiment and prediction was observed.

Daniel, Claus [ORNL; Kalnaus, Sergiy [ORNL; Rhodes, Kevin [University of Tennessee, Knoxville (UTK)

2011-01-01T23:59:59.000Z

83

Self-Aligned Cu-Si Core-Shell Nanowire Array as a High-Performance Anode for Li-Ion Batteries  

SciTech Connect

Silicon nanowires (NWs) have been reported as a promising anode that demonstrated high capacity without pulverization during cycling, however, they present some technical issues that remain to be solved. The high aspect ratio of the NWs and their small contact areas with the current collector cause high electrical resistance, which results in inefficient electron transport. The nano-size interface between a NW and the substrate experiences high shear stress during lithiation, causing the wire to separate from the current collector. In addition, most reported methods for producing silicon NWs involve high-temperature processing and require catalysts that later become contaminants. This study developed a new self-aligned Cu-Si core-shell NW array using a low-temperature, catalyst-free process to address the issues described. The silicon shell is amorphous as synthesized and accommodates Li-ions without phase transformation. The copper core functions as a built-in current collector to provide very short (nm) electron transport pathways as well as backbone to improve mechanical strength. Initial electrochemical evaluation has demonstrated good capacity retention and high Coulombic efficiency for this new anode material in a half-cell configuration. No wire fracture or core-shell separation was observed after cycling. However, electrolyte decomposition products largely covered the top surface of the NW array, restricting electrolyte access and causing capacity reduction at high charging rates.

Qu, Jun [ORNL; Li, Huaqing [ORNL; Henry Jr, John James [ORNL; Martha, Surendra K [ORNL; Dudney, Nancy J [ORNL; Lance, Michael J [ORNL; Mahurin, Shannon Mark [ORNL; Besmann, Theodore M [ORNL; Dai, Sheng [ORNL

2012-01-01T23:59:59.000Z

84

Polymer electrolytes for a rechargeable li-Ion battery  

SciTech Connect

Lithium-ion polymer electrolyte battery technology is attractive for many consumer and military applications. A Li{sub x}C/Li{sub y}Mn{sub 2}O{sub 4} battery system incorporating a polymer electrolyte separator base on novel Li-imide salts is being developed under sponsorship of US Army Research Laboratory (Fort Monmouth NJ). This paper reports on work currently in progress on synthesis of Li-imide salts, polymer electrolyte films incorporating these salts, and development of electrodes and cells. A number of Li salts have been synthesized and characterized. These salts appear to have good voltaic stability. PVDF polymer gel electrolytes based on these salts have exhibited conductivities in the range 10{sup -4} to 10{sub -3} S/cm.

Argade, S.D.; Saraswat, A.K.; Rao, B.M.L. [Technochem Co., Greensboro, NC (United States); Lee, H.S.; Xiang, C.L.; McBreen, J. [Brookhaven National Lab., Upton, NY (United States)

1996-10-01T23:59:59.000Z

85

Composit, Nanoparticle-Based Anode material for Li-ion Batteries Applied in Hybrid Electric (HEV's)  

DOE Green Energy (OSTI)

Lithium-ion batteries are promising energy storage devices in hybrid and electric vehicles with high specific energy values ({approx}150 Wh/kg), energy density ({approx}400 Wh/L), and long cycle life (>15 years). However, applications in hybrid and electric vehicles require increased energy density and improved low-temperature (<-10 C) performance. Silicon-based anodes are inexpensive, environmentally benign, and offer excellent theoretical capacity values ({approx}4000 mAh/g), leading to significantly less anode material and thus increasing the overall energy density value for the complete battery (>500 Wh/L). However, tremendous volume changes occur during cycling of pure silicon-based anodes. The expansion and contraction of these silicon particles causes them to fracture and lose electrical contact to the current collector ultimately severely limiting their cycle life. In Phase I of this project Yardney Technical Products, Inc. proposed development of a carbon/nano-silicon composite anode material with improved energy density and silicon's cycleability. In the carbon/nano-Si composite, silicon nanoparticles were embedded in a partially-graphitized carbonaceous matrix. The cycle life of anode material would be extended by decreasing the average particle size of active material (silicon) and by encapsulation of silicon nanoparticles in a ductile carbonaceous matrix. Decreasing the average particle size to a nano-region would also shorten Li-ion diffusion path and thus improve rate capability of the silicon-based anodes. Improved chemical inertness towards PC-based, low-temperature electrolytes was expected as an additional benefit of a thin, partially graphitized coating around the active electrode material.

Dr. Malgorzata Gulbinska

2009-08-24T23:59:59.000Z

86

Investigation of interface between cell and minerals under near real environment using environmental holders  

NLE Websites -- All DOE Office Websites (Extended Search)

Figure 1. Schematic drawing showing the components Figure 1. Schematic drawing showing the components of a Li-ion battery cell and the information that can be collected in a TEM during the in situ experiment. EMSL Research and Capability Development Proposals In Situ Electron Microscopy and Spectroscopy Studies of Interfaces in Advanced Li-ion Batteries Under Dynamic Operation Conditions Project start date: Spring 2008 EMSL Lead Investigator: Chongmin Wang, Senior Research Scientist, EMSL Interfacial & Nanoscale Science Facility Co-Investigators: S. Thevuthasan (EMSL, PNNL), Gary Yang (EED, PNNL), Jun Liu (FCSD, PNNL), and Norman Salmon, Hummingbird Scientific LLC (8300 28th Ct NE, Unit 200, Lacey, Washington 98516) Electrochemical energy storage devices (EES) such as Li-ion batteries are complex multi-

87

Self-assembled TiO2-Graphene Hybrid Nanostructures for Enhanced Li-ion Insertion  

SciTech Connect

We used anionic sulfate surfactants to assist the stabilization of graphene in aqueous solutions and facilitate the self-assembly of in-situ grown nanocrystalline TiO2, rutile and anatase, with graphene. These nanostructured TiO2-graphene hybrid materials were used for investigation of Li-ion insertion properties. The hybrid materials showed significantly enhanced Li-ion insertion/extraction in TiO2. The specific capacity was more than doubled at high charge rates, as compared with the pure TiO2 phase. The improved capacity at high charge-discharge rate may be attributed to increased electrode conductivity in presence of a percolated graphene network embedded into the metal oxide electrodes.

Wang, Donghai; Choi, Daiwon; Li, Juan; Yang, Zhenguo; Nie, Zimin; Kou, Rong; Hu, Dehong; Wang, Chong M.; Saraf, Laxmikant V.; Zhang, Jiguang; Aksay, Ilhan A.; Liu, Jun

2009-04-01T23:59:59.000Z

88

NANOSTRUCTURED METAL OXIDES FOR ANODES OF LI-ION RECHARGEABLE BATTERIES  

DOE Green Energy (OSTI)

The aligned nanorods of Co{sub 3}O{sub 4} and nanoporous hollow spheres (NHS) of SnO{sub 2} and Mn{sub 2}O{sub 3} were investigated as the anodes for Li-ion rechargeable batteries. The Co{sub 3}O{sub 4} nanorods demonstrated 1433 mAh/g reversible capacity. The NHS of SnO{sub 2} and Mn{sub 2}O{sub 3} delivered 400 mAh/g and 250 mAh/g capacities respectively in multiple galvonastatic discharge-charge cycles. It was found that high capacity of NHS of metal oxides is sustainable attributed to their unique structure that maintains material integrity during cycling. The nanostructured metal oxides exhibit great potential as the new anode materials for Li-ion rechargeable batteries with high energy density, low cost and inherent safety.

Au, M.

2009-12-04T23:59:59.000Z

89

Hollow Core-Shell Structured Porous Si-C Nanocomposites for Li-Ion Battery Anodes  

SciTech Connect

Hollow core-shell structured porous Si-C nanocomposites with void space up to tens of nanometers are designed to accommodate the volume expansion during lithiation for high-performance Li-ion battery anodes. An initial capacity of {approx}760 mAh/g after formation cycles (based on the entire electrode weight) with {approx}86% capacity retention over 100 cycles is achieved at a current density of 1 A/g. Good rate performance is also demonstrated.

Li, Xiaolin; Meduri, Praveen; Chen, Xilin; Qi, Wen N.; Engelhard, Mark H.; Xu, Wu; Ding, Fei; Xiao, Jie; Wang, Wei; Wang, Chong M.; Zhang, Jiguang; Liu, Jun

2012-06-14T23:59:59.000Z

90

Degradation Reactions in SONY-Type Li-Ion Batteries  

DOE Green Energy (OSTI)

Thermal instabilities were identified in SONY-type lithium-ion cells and correlated with interactions of cell constituents and reaction products. Three temperature regions of interaction were identified and associated with the state of charge (degree of Li intercalation) of the cell. Anodes were shown to undergo exothermic reactions as low as 100°C involving the solid electrolyte interface (SEI) layer and the LiPF6 salt in the electrolyte (EC: PC: DEC/LiPF6). These reactions could account for the thermal runaway observed in these cells beginning at 100°C. Exothermic reactions were also observed in the 200°C-300°C region between the intercalated lithium anodes, the LiPF6 salt and the PVDF. These reactions were followed by a high- temperature reaction region, 300°C-400°C, also involving the PVDF binder and the intercalated lithium anodes. The solvent was not directly involved in these reactions but served as a moderator and transport medhun. Cathode exotherrnic reactions with the PVDF binder were observed above 200oC and increased with the state of charge (decreasing Li content). This offers an explanation for the observed lower thermal runaway temperatures for charged cells.

Nagasubramanian, G.; Roth, E. Peter

1999-05-04T23:59:59.000Z

91

ALD of Al2O3 for Highly Improved Performance in Li-Ion Batteries  

Science Conference Proceedings (OSTI)

Significant advances in energy density, rate capability and safety will be required for the implementation of Li-ion batteries in next generation electric vehicles. We have demonstrated atomic layer deposition (ALD) as a promising method to enable superior cycling performance for a vast variety of battery electrodes. The electrodes range from already demonstrated commercial technologies (cycled under extreme conditions) to new materials that could eventually lead to batteries with higher energy densities. For example, an Al2O3 ALD coating with a thickness of ~ 8 A was able to stabilize the cycling of unexplored MoO3 nanoparticle anodes with a high volume expansion. The ALD coating enabled stable cycling at C/2 with a capacity of ~ 900 mAh/g. Furthermore, rate capability studies showed the ALD-coated electrode maintained a capacity of 600 mAh/g at 5C. For uncoated electrodes it was only possible to observe stable cycling at C/10. Also, we recently reported that a thin ALD Al2O3 coating with a thickness of ~5 A can enable natural graphite (NG) electrodes to exhibit remarkably durable cycling at 50 degrees C. The ALD-coated NG electrodes displayed a 98% capacity retention after 200 charge-discharge cycles. In contrast, bare NG showed a rapid decay. Additionally, Al2O3 ALD films with a thickness of 2 to 4 A have been shown to allow LiCoO2 to exhibit 89% capacity retention after 120 charge-discharge cycles performed up to 4.5 V vs Li/Li+. Bare LiCoO2 rapidly deteriorated in the first few cycles. The capacity fade is likely caused by oxidative decomposition of the electrolyte at higher potentials or perhaps cobalt dissolution. Interestingly, we have recently fabricated full cells of NG and LiCoO2 where we coated both electrodes, one or the other electrode as well as neither electrode. In creating these full cells, we observed some surprising results that lead us to obtain a greater understanding of the ALD coatings. We have also recently coated a binder free LiNi0.04Mn0.04Co02O2 electrode containing 5 wt% single-walled carbon nanotubes as the conductive additive and demonstrated both high rate capability as well as the ability to cycle the cathode to 5 V vrs. Li/Li+. Finally, we coated a Celgard (TM) separator and enabled stable cycling in a high dielectric electrolyte. These results will be presented in detail.

Dillon, A.; Jung, Y. S.; Ban, C.; Riley, L.; Cavanagh, A.; Yan, Y.; George, S.; Lee, S. H.

2012-01-01T23:59:59.000Z

92

High Rate and High Capacity Li-Ion Electrodes for Vehicular Applications  

Science Conference Proceedings (OSTI)

Significant advances in both energy density and rate capability for Li-ion batteries are necessary for implementation in electric vehicles. We have employed two different methods to improve the rate capability of high capacity electrodes. For example, we previously demonstrated that thin film high volume expansion MoO{sub 3} nanoparticle electrodes ({approx}2 {micro}m thick) have a stable capacity of {approx}630 mAh/g, at C/2 (charge/dicharge in 2 hours). By fabricating thicker conventional electrodes, an improved reversible capacity of {approx}1000 mAh/g is achieved, but the rate capability decreases. To achieve high-rate capability, we applied a thin Al{sub 2}O{sub 3} atomic layer deposition coating to enable the high volume expansion and prevent mechanical degradation. Also, we recently reported that a thin ALD Al{sub 2}O{sub 3} coating can enable natural graphite (NG) electrodes to exhibit remarkably durable cycling at 50 C. Additionally, Al{sub 2}O{sub 3} ALD films with a thickness of 2 to 4 {angstrom} have been shown to allow LiCoO{sub 2} to exhibit 89% capacity retention after 120 charge-discharge cycles performed up to 4.5 V vs. Li/Li{sup +}. Capacity fade at this high voltage is generally caused by oxidative decomposition of the electrolyte or cobalt dissolution. We have recently fabricated full cells of NG and LiCoO{sub 2} and coated both electrodes, one or the other electrode as well as neither electrode. In creating these full cells, we observed some surprising results that lead us to obtain a greater understanding of the ALD coatings. In a different approach we have employed carbon single-wall nanotubes (SWNTs) to synthesize binder-free, high-rate capability electrodes, with 95 wt.% active materials. In one case, Fe{sub 3}O{sub 4} nanorods are employed as the active storage anode material. Recently, we have also employed this method to demonstrate improved conductivity and highly improved rate capability for a LiNi{sub 0.4}Mn{sub 0.4}Co{sub 0.2}O{sub 2} cathode material. Raman spectroscopy was employed to understand how the SWNTs function as a highly flexible conductive additive.

Dillon, A. C.

2012-01-01T23:59:59.000Z

93

Anode Materials for Rechargeable Li-Ion Batteries  

DOE Green Energy (OSTI)

This research is on materials for anodes and cathodes in electrochemical cells. The work is a mix of electrochemical measurements and analysis of the materials by transmission electron microscopy and x-ray diffractometry. At present, our experimental work involves only materials for Li storage, but we have been writing papers from our previous work on hydrogen-storage materials.

Fultz, B.

2001-01-12T23:59:59.000Z

94

Semi-Solid Flowable Battery Electrodes: Semi-Solid Flow Cells for Automotive and Grid-Level Energy Storage  

DOE Green Energy (OSTI)

BEEST Project: Scientists at 24M are crossing a Li-Ion battery with a fuel cell to develop a semi-solid flow battery. This system relies on some of the same basic chemistry as a standard Li-Ion battery, but in a flow battery the energy storage material is held in external tanks, so storage capacity is not limited by the size of the battery itself. The design makes it easier to add storage capacity by simply increasing the size of the tanks and adding more paste. In addition, 24M's design also is able to extract more energy from the semi-solid paste than conventional Li-Ion batteries. This creates a cost-effective, energy-dense battery that can improve the driving range of EVs or be used to store energy on the electric grid.

2010-09-01T23:59:59.000Z

95

Semi-Solid Flowable Battery Electrodes: Semi-Solid Flow Cells for Automotive and Grid-Level Energy Storage  

SciTech Connect

BEEST Project: Scientists at 24M are crossing a Li-Ion battery with a fuel cell to develop a semi-solid flow battery. This system relies on some of the same basic chemistry as a standard Li-Ion battery, but in a flow battery the energy storage material is held in external tanks, so storage capacity is not limited by the size of the battery itself. The design makes it easier to add storage capacity by simply increasing the size of the tanks and adding more paste. In addition, 24M's design also is able to extract more energy from the semi-solid paste than conventional Li-Ion batteries. This creates a cost-effective, energy-dense battery that can improve the driving range of EVs or be used to store energy on the electric grid.

2010-09-01T23:59:59.000Z

96

FREE STANDING NANOSTRUCTURED ANODES FOR LI-ION RECHARGEABLE BATTERIES  

DOE Green Energy (OSTI)

The free standing nanorodes of aluminum and cobalt oxides were grown on electrode and tested as the anodes directly in the half-cell. The average diameter and length of the nanorods are 80 nm and 200 nm respectively. The aligned nanorods demonstrated high initial capacity from 1200-1400 mAh/g at rate of 0.5C. The gradually decrease of initial capacity was observed. The preliminary characterization shows that the changes of the crystalline structure and morphology during cycling may be responsible for the capacity decay.

Au, M.

2009-07-20T23:59:59.000Z

97

Anode Materials for Rechargeable Li-Ion Batteries  

DOE Green Energy (OSTI)

This is the annual progress report for the Grant DE-FG03-00ER15035. This research is on materials for anodes and cathodes in electrochemical cells. The work is a mix of electrochemical measurements and analysis of the materials by transmission electron microscopy and x-ray diffractometry. Our materials studies on electrode materials divide into electronic studies of the valence at and around Li atoms, and the crystal structures of these materials. We are addressing the basic questions of how these change with Li concentration, and what long-term changes take place during charge/discharge cycling of the materials.

B. Fultz

2001-01-12T23:59:59.000Z

98

Anodic polymerization of vinyl ethylene carbonate in Li-Ion battery electrolyte  

DOE Green Energy (OSTI)

A study of the anodic oxidation of vinyl ethylene carbonate (VEC) was conducted with post-mortem analysis of reaction products by ATR-FTIR and gel permeation chromatography (GPC). The half-wave potential (E1/2) for oxidation of VEC is ca. 3.6 V producing a resistive film on the electrode surface. GPC analysis of the film on a gold electrode produced by anodization of a commercial Li-ion battery electrolyte containing 2 percent VEC at 4.1 V showed the presence of a high molecular weight polymer. IR analysis indicated polycarbonate with alkyl carbonate rings linked by aliphatic methylene and methyl branches.

Chen, Guoying; Zhuang, Guorong V.; Richardson, Thomas J.; Gao, Liu; Ross Jr., Philip N.

2005-02-28T23:59:59.000Z

99

Novel Energy Sources -Material Architecture and Charge Transport in Solid State Ionic Materials for Rechargeable Li ion Batteries  

Science Conference Proceedings (OSTI)

Since its introduction in the consumer market at the beginning of 1990s by Sony Corporation ‘Li-ion rechargeable battery’ and ‘LiCoO2 cathode’ is an inseparable couple for highly reliable practical applications. However, a separation is inevitable as Li-ion rechargeable battery industry demand more and more from this well serving cathode. Spinel-type lithium manganate (e.g., LiMn2O4), lithium-based layered oxide materials (e.g., LiNiO2) and lithium-based olivine-type compounds (e.g., LiFePO4) are nowadays being extensively studied for application as alternate cathode materials in Li-ion rechargeable batteries. Primary goal of this project was the advancement of Li-ion rechargeable battery to meet the future demands of the energy sector. Major part of the research emphasized on the investigation of electrodes and solid electrolyte materials for improving the charge transport properties in Li-ion rechargeable batteries. Theoretical computational methods were used to select electrodes and electrolyte material with enhanced structural and physical properties. The effect of nano-particles on enhancing the battery performance was also examined. Satisfactory progress has been made in the bulk form and our efforts on realizing micro-battery based on thin films is close to give dividend and work is progressing well in this direction.

Katiyar, Ram S; Gómez, M; Majumder, S B; Morell, G; Tomar, M S; Smotkin, E; Bhattacharya, P; Ishikawa, Y

2009-01-19T23:59:59.000Z

100

Predicted Structure, Thermo-Mechanical Properties and Li Ion Transport in LiAlF4 Glass  

Science Conference Proceedings (OSTI)

Materials with the LiAlF{sub 4} composition are of interest as protective electrode coatings in Li ion battery applications due to their high cationic conductivity. Here classical molecular dynamics calculations are used to produce amorphous model structures by simulating a quench from the molten state. These are analysed in terms of their individual pair correlation functions and atomic coordination environments. This indicates that amorphous LiAlF{sub 4} is formed of a network of corner sharing AlF{sub 6} octahedra. Li ions are distributed within this network, primarily associated with non-bridging fluorine atoms. The nature of the octahedral network is further analysed through intra- and interpolyhedral bond angle distributions and the relative populations of bridging and non-bridging fluorine ions are calculated. Network topology is considered through the use of ring statistics, which indicates that, although topologically well connected, LiAlF{sub 4} contains an appreciable number of corner-linked branch-like AlF{sub 6} chains. Thermal expansion values are determined above and below the predicted glass transition temperature of 1340 K. Finally, movement of Li ions within the network is examined with predictions of the mean squared displacements, diffusion coefficients and Li ion activation energy. Different regimes for lithium ion movement are identified, with both diffusive and sessile Li ions observed. For migrating ions, a typical trajectory is illustrated and discussed in terms of a hopping mechanism for Li transport.

Stechert, T. R.; Rushton, M. J. D.; Grimes, R. W.; Dillon, A. C.

2012-08-15T23:59:59.000Z

Note: This page contains sample records for the topic "developing li-ion cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Cathode/Anode Selection and Full Cell Performance for Stationary ...  

Science Conference Proceedings (OSTI)

Presentation Title, Cathode/Anode Selection and Full Cell Performance for Stationary Li-ion Battery System. Author(s), Daiwon Choi, Donghai Wang, Vilayanur ...

102

Demonstration Initiative for a Grid Support Energy Storage System using Li-ion Technology: Phase I Report  

Science Conference Proceedings (OSTI)

This report documents a research project to scope and implement an initiative to catalyze the early market deployment of a utility-scale electric energy storage system, a project that leverages Lithium-ion (Li-ion) battery technology being globally scaled to serve emerging electric and hybrid electric vehicle markets. The impressive scale of Li-ion battery production and R&D is driving a trend in cost reduction and performance improvements that make this technology attractive for certain grid storage app...

2012-07-31T23:59:59.000Z

103

Recent Development of Materials for Green Energy in Korea  

Science Conference Proceedings (OSTI)

For a energy storage system (ESS), sodium sulfur battery, Li-ion battery, and redox ... A Strategy of Metal Supply for Sustainable Development and Supporting

104

Design of composite polymer electrolytes for Li ion batteries based on mechanical stability criteria  

Science Conference Proceedings (OSTI)

Mechanical properties and conductivity were computed for several composite polymer electrolyte structures. A multi-phase effective medium approach was used to estimate effective conductivity. The Mori-Tanaka approach was applied for calculating the effective stiffness tensor of the composites. An analysis of effective mechanical properties was performed in order to identify the composite structures, which would be capable of blocking the dendrites forming in Li-ion battery when Li metal is used as anode. The data on conductivity, elastic modulus, and Poisson s ratio can be used to formulate design criteria for solid electrolytes that would exhibit appropriate stiffness and compressibility to suppress lithium dendrite growth while maintaining high effective conductivities.

Kalnaus, Sergiy [ORNL; Sabau, Adrian S [ORNL; Tenhaeff, Wyatt E [ORNL; Daniel, Claus [ORNL; Dudney, Nancy J [ORNL

2012-01-01T23:59:59.000Z

105

Investigation of induced fission of natPb by accelerated 7Li ions  

E-Print Network (OSTI)

The cross-section of the natPb binary fission, induced by 7Li ions at 245 MeV energy, was measured and the fission product cross-sections studied by means of activation analysis in the off-line regimen. The analysis of charge and mass distributions of fission products allows to calculate the fission cross-section. The recoil technique ("thick target- thick catcher"), based on the two step model mathematical formalism, is used for the determination of the kinematical characteristics of reaction products. The data concerning transferred linear momentum provides information on the initial projectile-target interaction, and is compared to measurements of the proton-induced fission.

N. A. Demekhina; G. S. Karapetyan; V. Guimaraes

2013-02-02T23:59:59.000Z

106

Amorphous Hierarchical Porous GeOx as High-Capacity Anodes for LiIon Batteries with Very Long Cycling Life  

SciTech Connect

Many researchers have focused in recent years on resolving the crucial problem of capacity fading in Li ion batteries when carbon anodes are replaced by other group-IV elements (Si, Ge, Sn) with much higher capacities. Some progress was achieved by using different nanostructures (mainly carbon coatings), with which the cycle numbers reached 100-200. However, obtaining longer stability via a simple process remains challenging. Here we demonstrate that a nanostructure of amorphous hierarchical porous GeO{sub x} whose primary particles are {approx}3.7 nm diameter has a very stable capacity of {approx}1250 mA h g{sup -1} for 600 cycles. Furthermore, we show that a full cell coupled with a Li(NiCoMn){sub 1/3}O{sub 2} cathode exhibits high performance.

Wang, X.L.; Han, W.-Q.; Chen, H.; Bai, J.; Tyson, T.A.; Yu, X.-Q.; Wang, X.-J.; Yang, X.-Q.

2011-12-28T23:59:59.000Z

107

Modeling of species and charge transport in Li-Ion batteries based on non-equilibrium thermodynamics  

Science Conference Proceedings (OSTI)

In order to improve the design of Li ion batteries the complex interplay of various physical phenomena in the active particles of the electrodes and in the electrolyte has to be balanced. The separate transport phenomena in the electrolyte and in the ...

Arnulf Latz; Jochen Zausch; Oleg Iliev

2010-08-01T23:59:59.000Z

108

Reinvestigation on the state-of-the-art nonaqueous carbonate electrolytes for 5 V Li-ion battery applications  

SciTech Connect

The charging voltage limits of mixed carbonate solvents for Li-ion batteries have been systematically investigated from 4.9 to 5.3 V in half cells using Cr-doped spinel cathode material LiNi0.45Cr0.05Mn1.5O4. We found that the stability of conventional carbonate electrolytes is strongly related to the stability and properties of the cathode materials at both lithiated and de-lithiated states. It is the first time to report that the conventional electrolytes based on mixtures of ethylene carbonate (EC) and linear carbonate (dimethyl carbonate - DMC, ethyl methyl carbonate - EMC, and diethyl carbonate - DEC) have shown very similar long-term cycling performance when cycled up to 5.2 V on LiNi0.45Cr0.05Mn1.5O4. The discharge capacity increases with the charge cutoff voltage and reaches the highest discharge capacity at 5.2 V. The capacity retention is about 87% after 500 cycles at 1C rate for all three carbonate mixtures when cycled between 3.0 V and 5.2V. The first-cycle efficiency has a maximum value at 5.1 V, with an average from 83% to 85% at C/10 rate. When cycled to 5.3 V, EC-DMC still shows good cycling performance but EC-EMC and EC-DEC show faster capacity fading. EC-DMC and EC-EMC have much better rate capability than EC-DEC. In addition, the first-cycle irreversible capacity loss increases with the cutoff voltage and the 'inactive' conductive carbon has also been found to be partly associated with the low first-cycle Coulombic efficiency at high voltages due to electrolyte decomposition and probably the PF6- anion irreversible intercalation.

Xu, Wu; Chen, Xilin; Ding, Fei; Xiao, Jie; Wang, Deyu; Pan, Anqiang; Zheng, Jianming; Li, Xiaohong S.; Padmaperuma, Asanga B.; Zhang, Jiguang

2012-09-01T23:59:59.000Z

109

Composit, Nanoparticle-Based Anode material for Li-ion Batteries Applied in Hybrid Electric (HEV's)  

SciTech Connect

Lithium-ion batteries are promising energy storage devices in hybrid and electric vehicles with high specific energy values ({approx}150 Wh/kg), energy density ({approx}400 Wh/L), and long cycle life (>15 years). However, applications in hybrid and electric vehicles require increased energy density and improved low-temperature (<-10 C) performance. Silicon-based anodes are inexpensive, environmentally benign, and offer excellent theoretical capacity values ({approx}4000 mAh/g), leading to significantly less anode material and thus increasing the overall energy density value for the complete battery (>500 Wh/L). However, tremendous volume changes occur during cycling of pure silicon-based anodes. The expansion and contraction of these silicon particles causes them to fracture and lose electrical contact to the current collector ultimately severely limiting their cycle life. In Phase I of this project Yardney Technical Products, Inc. proposed development of a carbon/nano-silicon composite anode material with improved energy density and silicon's cycleability. In the carbon/nano-Si composite, silicon nanoparticles were embedded in a partially-graphitized carbonaceous matrix. The cycle life of anode material would be extended by decreasing the average particle size of active material (silicon) and by encapsulation of silicon nanoparticles in a ductile carbonaceous matrix. Decreasing the average particle size to a nano-region would also shorten Li-ion diffusion path and thus improve rate capability of the silicon-based anodes. Improved chemical inertness towards PC-based, low-temperature electrolytes was expected as an additional benefit of a thin, partially graphitized coating around the active electrode material.

Dr. Malgorzata Gulbinska

2009-08-24T23:59:59.000Z

110

Electrostatic energy harvester and Li-Ion charger circuit for microscale applications  

E-Print Network (OSTI)

Abstract—Modern portable micro-systems like biomedical implants and ad-hoc wireless transceiver micro-sensors continue to integrate more functions into smaller devices, which result in low energy levels and short operational lives. Researchers and industry alike are consequently considering harvesting energy from the surrounding environment as a means of offsetting this energy deficit. Even with power efficient designs, low duty-cycle operation, smart power-aware network architectures, and batteries with improved energy density, the stored energy in micro-scale systems is simply not sufficient to sustain extended lifetimes. Fortunately, the surrounding environment is a rich source of energy, from solar and thermal to kinetic, but harnessing it without dissipating much power in the process is challenging. In this paper, an electrostatic vibrational energy harvester circuit is proposed and evaluated. It harnesses energy from inherent vibrations in the system (e.g., engine-powered applications) by modulating the parallelplate distance of a variable capacitor and channeling the resulting change in charge into a secondary Li-Ion micro-battery. The varactor, in essence, behaves like a vibration-dependent current source. Simulations show that a 100-to-1 pF variable plate capacitor subjected to vibrations with a period of 15 µs produces an average harvesting current of 40.8 µA, an energy gain of 569 pJ per cycle, and a net average power gain of 38 µW.

Erick O. Torres; Student Member; Gabriel A. Rincón-mora; Senior Member

2006-01-01T23:59:59.000Z

111

Na and Li ion diffusion in modified ASTM C 1260 test by Magnetic Resonance Imaging (MRI)  

SciTech Connect

In the current study, MRI was applied to investigate lithium and sodium ion diffusion in cement paste and mortars containing inert sand and borosilicate glass. Paste and mortars were treated by complying with ASTM C 1260. Lithium and sodium distribution profiles were collected at different ages after different treatments. Results revealed that sodium ions had a greater diffusion rate than lithium ions, suggesting that Na reaches the aggregate particle surface before Li. Results also showed that Na and Li ions had a competitive diffusion process in mortars; soaking in a solution with higher [Li] favored Li diffusion but hindered Na diffusion. In mortars containing glass, a substantial amount of Li was consumed by the formation of ASR products. When [Li] in soaking solution was reduced to 0.37 N, a distinctive Na distribution profile was observed, indicating the free-state Na ions were continuously transformed to solid reaction products by ASR. Hence, in the modified ASTM C 1260 test, [Li] in the storage solution should be controlled at 0.74 N, in order to completely prevent the consumption of Na ions and thus stop ASR.

Feng, X. [Department of Civil Engineering, University of New Brunswick, Fredericton, NB (Canada)], E-mail: XFeng@ctlgroup.com; Balcom, B.J. [MRI Center, Department of Physics, University of New Brunswick, Fredericton, NB (Canada); Thomas, M.D.A.; Bremner, T.W. [Department of Civil Engineering, University of New Brunswick, Fredericton, NB (Canada)

2008-12-15T23:59:59.000Z

112

In-situ raman microscopy of individual LiNi0.8Co0.15Al0.05O2 particles in the Li-ion battery composite cathode  

DOE Green Energy (OSTI)

Kinetic characteristics of Li{sup +} intercalation/deintercalation into/from individual LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2} particles in a composite cathode were studied in-situ using Raman microscopy during electrochemical charge-discharge in 1.2 M LiPF{sub 6}, ethylene carbonate (EC): ethyl-methyl carbonate (EMC), 3:7 by volume. Spectroscopic analysis of a cathode that was removed from a tested high-power Li-ion cell, which suffered substantial power and capacity loss, showed that the state of charge (SOC) of oxide particles on the cathode surface was highly non-uniform despite deep discharge of the Li-ion cell at the end of the test. In-situ monitoring of the SOC of selected oxide particles in the composite cathode in a sealed spectro-electrochemical cell revealed that the rate at which particles charge and discharge varied with time and location. The inconsistent kinetic behavior of individual oxide particles was attributed to degradation of the electronically conducting matrix in the composite cathode upon testing. These local micro-phenomena are responsible for the overall impedance rise of the cathode and contribute to the mechanism of lithium-ion cell failure.

Lei, Jinglei; McLarnon, Frank; Kostecki, Robert

2004-10-01T23:59:59.000Z

113

Effect of electrolyte additives in improving the cycle and calendar life of graphite/Li{sub1.1}[Ni{sub1/3}Co{sub1/3}Mn{sub1/3}]{0.9}O{sub 2} Li-ion cells.  

DOE Green Energy (OSTI)

Lithium-rich layered metal oxide Li{sub 1.1}[Ni{sub 1/3}Co{sub 1/3}Mn{sub 1/3}]{sub 0.9}O{sub 2} was investigated as a potential positive electrode material for high-power batteries for hybrid electric vehicle (HEV) applications. In order to evaluate the power and life characteristics of the graphite/Li{sub 1.1}[Ni{sub 1/3}Co{sub 1/3}Mn{sub 1/3}]{sub 0.9}O{sub 2} cell chemistry, hybrid pulse power characterization (HPPC) and accelerated calendar life tests were conducted on several pouch cells containing electrolytes with and without additives. The data show that the cells containing 0.5 wt% lithium bis(oxalate)borate (LiBOB) or vinyl ethyl carbonate (VEC) additives, or the novel lithium difluoro(oxalato)borate (LiDFOB) additive, have much improved cycle and calendar life performance.

Liu, J.; Chen, Z.; Busking, S.; Belharouak, I.; Amine, K.; Chemical Engineering

2007-12-06T23:59:59.000Z

114

Challenges in Developing High Energy Density Li-ion Batteries with ...  

Science Conference Proceedings (OSTI)

The approaches that have been taken recently include the use of high voltage cathodes coupled with graphite or high capacity Li-alloy anodes. In either ...

115

Develop high energy high power Li-ion battery cathode materials : a first principles computational study  

E-Print Network (OSTI)

Coating for Lithium-Ion Battery Cathodes", Chemistry ofas the cathode of the lithium ion battery by Thackeray et

Xu, Bo; Xu, Bo

2012-01-01T23:59:59.000Z

116

Develop high energy high power Li-ion battery cathode materials : a first principles computational study  

E-Print Network (OSTI)

electric vehicle (PEV), performance requirements are raised especially from the aspects of energy/power density, cycling life and safety

Xu, Bo; Xu, Bo

2012-01-01T23:59:59.000Z

117

Effect of entropy of lithium intercalation in cathodes and anodes on Li-ion battery thermal management  

Science Conference Proceedings (OSTI)

The entropy changes (?S) in various cathode and anode materials, as well as complete Li-ion batteries, were measured using an electrochemical thermodynamic measurement system (ETMS). LiCoO2 has a much larger entropy change than electrodes based on LiNixCoyMnzO2 and LiFePO4, while lithium titanate based anode has lower entropy change compared to graphite anodes. Reversible heat generation rate was found to be a significant portion of the total heat generation rate. The appropriate combinations of cathode and anode were investigated to minimize reversible heat.

Viswanathan, Vilayanur V.; Choi, Daiwon; Wang, Donghai; Xu, Wu; Towne, Silas A.; Williford, Ralph E.; Zhang, Jiguang; Liu, Jun; Yang, Zhenguo

2010-06-01T23:59:59.000Z

118

Oxidation Potentials of Functionalized Sulfone Solvents for High-Voltage Li-Ion Batteries: A Computational Study  

Science Conference Proceedings (OSTI)

New electrolytes with large electrochemical windows are needed to meet the challenge for high-voltage Li-ion batteries. Sulfone as an electrolyte solvent boasts of high oxidation potentials. Here we examine the effect of multiple functionalization on sulfone's oxidation potential. We compute oxidation potentials for a series of sulfone-based molecules functionalized with fluorine, cyano, ester, and carbonate groups by using a quantum chemistry method within a continuum solvation model. We find that multifunctionalization is a key to achieving high oxidation potentials. This can be realized through either a fluorether group on a sulfone molecule or sulfonyl fluoride with a cyano or ester group.

Shao, Nan [ORNL; Sun, Xiao-Guang [ORNL; Dai, Sheng [ORNL; Jiang, Deen [ORNL

2012-01-01T23:59:59.000Z

119

Thermal Stability of LiPF6 Salt and Li-ion Battery ElectrolytesContaining LiPF6  

DOE Green Energy (OSTI)

The thermal stability of the neat LiPF6 salt and of 1 molal solutions of LiPF6 in prototypical Li-ion battery solvents was studied with thermogravimetric analysis (TGA) and on-line FTIR. Pure LiPF6 salt is thermally stable up to 380 K in a dry inert atmosphere, and its decomposition path is a simple dissociation producing LiF as solid and PF5 as gaseous products. In the presence of water (300 ppm) in the carrier gas, its decomposition onset temperature is lowered as a result of direct thermal reaction between LiPF6 and water vapor to form POF3 and HF. No new products were observed in 1 molal solutions of LiPF6 in EC, DMC and EMC by on-line TGA-FTIR analysis. The storage of the same solutions in sealed containers at 358 K for 300 420 hrs. did not produce any significant quantity of new products as well. In particular, noalkylflurophosphates were found in the solutions after storage at elevated temperature. In the absence of either an impurity like alcohol or cathode active material that may (or may not) act as a catalyst, there is no evidence of thermally induced reaction between LiPF6 and the prototypical Li-ion battery solvents EC, PC, DMC or EMC.

Yang, Hui; Zhuang, Guorong V.; Ross Jr., Philip N.

2006-03-08T23:59:59.000Z

120

Fuel Cell Development Status  

NLE Websites -- All DOE Office Websites (Extended Search)

Development Status Michael Short Systems Engineering Manager United Technologies Corporation Research Center Hamilton Sundstrand UTC Power UTC Fire & Security Fortune 50 corporation $52.9B in annual sales in 2009 ~60% of Sales are in building technologies Transportation Stationary Fuel Cells Space & Defense * Fuel cell technology leader since 1958 * ~ 550 employees * 768+ Active U.S. patents, more than 300 additional U.S. patents pending * Global leader in efficient, reliable, and sustainable fuel cell solutions UTC Power About Us PureCell ® Model 400 Solution Process Overview Power Conditioner Converts DC power to high-quality AC power 3 Fuel Cell Stack Generates DC power from hydrogen and air 2 Fuel Processor Converts natural gas fuel to hydrogen

Note: This page contains sample records for the topic "developing li-ion cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Materials cost evaluation report for high-power Li-ion batteries.  

SciTech Connect

The U.S. Department of Energy (DOE) is the lead federal agency in the partnership between the U.S. automobile industry and the federal government to develop fuel cell electric vehicles (FCEVs) and hybrid electric vehicles (HEVs) as part of the FreedomCAR Partnership. DOE's FreedomCAR and Vehicle Technologies Office sponsors the Advanced Technology Development (ATD) Program--involving 5 of its national laboratories--to assist the industrial developers of high-power lithium-ion batteries to overcome the barriers of cost, calendar life, and abuse tolerance so that this technology can be rendered practical for use in HEV and FCEV applications under the FreedomCAR Partnership. In the area of cost reduction, Argonne National Laboratory (ANL) is working to identify and develop advanced anode, cathode, and electrolyte components that can significantly reduce the cost of the cell chemistry, while simultaneously extending the calendar life and enhancing the inherent safety of this electrochemical system. The material cost savings are quantified and tracked via the use of a cell and battery design model that establishes the quantity of each material needed in the production of batteries that are designed to meet the requirements of a minimum-power-assist HEV battery or a maximum-power-assist HEV battery for the FreedomCAR Partnership. Similar models will be developed for FEV batteries when the requirements for those batteries are finalized. In order to quantify the material costs relative to the FreedomCAR battery cost goals, ANL uses (1) laboratory cell performance data, (2) its battery design model and (3) battery manufacturing process yields to create battery-level material cost models. Using these models and industry-supplied material cost information, ANL assigns battery-level material costs for different cell chemistries. These costs can then be compared with the battery cost goals to determine the probability of meeting the goals with these cell chemistries. As can be seen from the results of this materials cost study, a cell chemistry based on the use of a LiMn{sub 2}O{sub 4} cathode material is lowest-cost and meets our battery-level material cost goal of <$250 for a 25-kW minimum-power-assist HEV battery. A major contributing factor is the high-rate capability of this material, which allows one to design a lower-capacity cell to meet the battery-level power and energy requirements. This reduces the quantities of the other materials needed to produce a 25-kW minimum-power-assist HEV battery. The same is true for the 40-kW maximum-power-assist HEV battery. Additionally, the LiMn{sub 2}O{sub 4} cathode is much more thermally and chemically stable than the LiNi{sub 0.8}Co{sub 0.2}O{sub 2} type cathode, which should enhance inherent safety and extend calendar life (if the LiMn{sub 2}O{sub 4} cathode can be stabilized against dissolution via HF attack). Therefore, we recommend that the FreedomCAR Partnership focus its research and development efforts on developing this type of low-cost high-power lithium-ion cell chemistry. Details supporting this recommendation are provided in the body of this report.

Henriksen, G. L.; Amine, K.; Liu, J.

2003-01-10T23:59:59.000Z

122

Materials cost evaluation report for high-power Li-ion batteries.  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) is the lead federal agency in the partnership between the U.S. automobile industry and the federal government to develop fuel cell electric vehicles (FCEVs) and hybrid electric vehicles (HEVs) as part of the FreedomCAR Partnership. DOE's FreedomCAR and Vehicle Technologies Office sponsors the Advanced Technology Development (ATD) Program--involving 5 of its national laboratories--to assist the industrial developers of high-power lithium-ion batteries to overcome the barriers of cost, calendar life, and abuse tolerance so that this technology can be rendered practical for use in HEV and FCEV applications under the FreedomCAR Partnership. In the area of cost reduction, Argonne National Laboratory (ANL) is working to identify and develop advanced anode, cathode, and electrolyte components that can significantly reduce the cost of the cell chemistry, while simultaneously extending the calendar life and enhancing the inherent safety of this electrochemical system. The material cost savings are quantified and tracked via the use of a cell and battery design model that establishes the quantity of each material needed in the production of batteries that are designed to meet the requirements of a minimum-power-assist HEV battery or a maximum-power-assist HEV battery for the FreedomCAR Partnership. Similar models will be developed for FEV batteries when the requirements for those batteries are finalized. In order to quantify the material costs relative to the FreedomCAR battery cost goals, ANL uses (1) laboratory cell performance data, (2) its battery design model and (3) battery manufacturing process yields to create battery-level material cost models. Using these models and industry-supplied material cost information, ANL assigns battery-level material costs for different cell chemistries. These costs can then be compared with the battery cost goals to determine the probability of meeting the goals with these cell chemistries. As can be seen from the results of this materials cost study, a cell chemistry based on the use of a LiMn{sub 2}O{sub 4} cathode material is lowest-cost and meets our battery-level material cost goal of battery. A major contributing factor is the high-rate capability of this material, which allows one to design a lower-capacity cell to meet the battery-level power and energy requirements. This reduces the quantities of the other materials needed to produce a 25-kW minimum-power-assist HEV battery. The same is true for the 40-kW maximum-power-assist HEV battery. Additionally, the LiMn{sub 2}O{sub 4} cathode is much more thermally and chemically stable than the LiNi{sub 0.8}Co{sub 0.2}O{sub 2} type cathode, which should enhance inherent safety and extend calendar life (if the LiMn{sub 2}O{sub 4} cathode can be stabilized against dissolution via HF attack). Therefore, we recommend that the FreedomCAR Partnership focus its research and development efforts on developing this type of low-cost high-power lithium-ion cell chemistry. Details supporting this recommendation are provided in the body of this report.

Henriksen, G. L.; Amine, K.; Liu, J.

2003-01-10T23:59:59.000Z

123

New Electrode Manufacturing Process Equipment: Novel High Energy Density Lithium-Ion Cell Designs via Innovative Manufacturing Process Modules for Cathode and Integrated Separator  

Science Conference Proceedings (OSTI)

BEEST Project: Applied Materials is developing new tools for manufacturing Li-Ion batteries that could dramatically increase their performance. Traditionally, the positive and negative terminals of Li-Ion batteries are mixed with glue-like materials called binders, pressed onto electrodes, and then physically kept apart by winding a polymer mesh material between them called a separator. With the Applied Materials system, many of these manually intensive processes will be replaced by next generation coating technology to apply each component. This process will improve product reliability and performance of the cells at a fraction of the current cost. These novel manufacturing techniques will also increase the energy density of the battery and reduce the size of several of the battery’s components to free up more space within the cell for storage.

None

2010-07-01T23:59:59.000Z

124

Breakthrough Vehicle Development - Fuel Cells  

Fuel Cell Technologies Publication and Product Library (EERE)

Document describing research and development program for fuel cell power systems for transportation applications.

125

Redox-active Ionic Liquids in Energy Storage: Application to Li-ion ...  

Science Conference Proceedings (OSTI)

Electric Cell-impedance Spectroscopy at the Biological-inorganic Interface, Shewanella Oneidensis - Gold, for Microbial Fuel Cell Applications · Encapsulating ...

126

Low-cost flexible packaging for high-power Li-Ion HEV batteries.  

DOE Green Energy (OSTI)

Batteries with various types of chemistries are typically sold in rigid hermetically sealed containers that, at the simplest level, must contain the electrolyte while keeping out the exterior atmosphere. However, such rigid containers can have limitations in packaging situations where the form of the battery is important, such as in hand-held electronics like personal digital assistants (PDAs), laptops, and cell phones. Other limitations exist as well. At least one of the electrode leads must be insulated from the metal can, which necessitates the inclusion of an insulated metal feed-through in the containment hardware. Another limitation may be in hardware and assembly cost, such as exists for the lithium-ion batteries that are being developed for use in electric vehicles (EVs) and hybrid electric vehicles (HEVs). The large size (typically 10-100 Ah) of these batteries usually results in electric beam or laser welding of the metal cap to the metal can. The non-aqueous electrolyte used in these batteries are usually based on flammable solvents and therefore require the incorporation of a safety rupture vent to relieve pressure in the event of overcharging or overheating. Both of these features add cost to the battery. Flexible packaging provides an alternative to the rigid container. A common example of this is the multi-layered laminates used in the food packaging industry, such as for vacuum-sealed coffee bags. However, flexible packaging for batteries does not come without concerns. One of the main concerns is the slow egress of the electrolyte solvent through the face of the inner laminate layer and at the sealant edge. Also, moisture and air could enter from the outside via the same method. These exchanges may be acceptable for brief periods of time, but for the long lifetimes required for batteries in electric/hybrid electric vehicles, batteries in remote locations, and those in satellites, these exchanges are unacceptable. Argonne National Laboratory (ANL), in collaboration with several industrial partners, is working on low-cost flexible packaging as an alternative to the packaging currently being used for lithium-ion batteries [1,2]. This program is funded by the FreedomCAR & Vehicle Technologies Office of the U.S. Department of Energy. (It was originally funded under the Partnership for a New Generation of Vehicles, or PNGV, Program, which had as one of its mandates to develop a power-assist hybrid electric vehicle with triple the fuel economy of a typical sedan.) The goal in this packaging effort is to reduce the cost associated with the packaging of each cell several-fold to less than $1 per cell ({approx} 50 cells are required per battery, 1 battery per vehicle), while maintaining the integrity of the cell contents for a 15-year lifetime. Even though the battery chemistry of main interest is the lithium-ion system, the methodology used to develop the most appropriate laminate structure will be very similar for other battery chemistries.

Jansen, A. N.; Amine, K.; Henriksen, G. L.

2004-06-18T23:59:59.000Z

127

Batteries and Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Collage of electric cars, plug, battery research lab Collage of electric cars, plug, battery research lab Batteries and Fuel Cells EETD researchers study the basic science and development of advanced batteries and fuel cells for transportation, electric grid storage, and other stationary applications. This research is aimed at developing more environmentally friendly technologies for generating and storing energy, including better batteries and fuel cells. Li-Ion and Other Advanced Battery Technologies Research conducted here on battery technology is aimed at developing low-cost rechargeable advanced electrochemical batteries for both automotive and stationary applications. The goal of fuel cell research is to provide the technologies for the successful commercialization of polymer-electrolyte and solid oxide fuel

128

Modeling of Nonuniform Degradation in Large-Format Li-ion Batteries (Presentation)  

DOE Green Energy (OSTI)

Study of impacts of large-format cell design features on battery useful life to improve battery engineering models, including both realistic geometry and physics.

Smith, K.; Kim, G. H.; Pesaran, A.

2009-05-01T23:59:59.000Z

129

Thermal/Electrical Modeling for Abuse-Tolerant Design of Li-Ion Modules (Presentation)  

DOE Green Energy (OSTI)

To help design safe, high-performing batteries, NREL and NASA created and verified a new multicell math model capturing electrical-thermal interactions of cells with PTC devices during thermal abuse.

Smith, K.; Kim, G.-H.; Pesaran, A.; Darcy, E.

2008-11-01T23:59:59.000Z

130

Multi-Scale Multi-Dimensional Li-Ion Battery Model for Better Design and Management (Presentation)  

DOE Green Energy (OSTI)

The developed model used is to provide a better understanding and help answer engineering questions about improving the design, operational strategy, management, and safety of cells.

Kim, G.-H.; Smith, K.

2008-10-01T23:59:59.000Z

131

Sn/SnOx Core-Shell Nanospheres: Synthesis, Anode Performance in Li Ion Batteries, and Superconductivity  

Science Conference Proceedings (OSTI)

Sn/SnO{sub x} core?shell nanospheres have been synthesized via a modified polyol process. Their size can be readily controlled by tuning the usage of surface stabilizers and the temperature. Anode performance in Li ion batteries and their superconducting properties is detailed. As anode materials, 45 nm nanospheres outperform both larger and smaller ones. Thus, they exhibit a capacity of about 3443 mAh cm{sup -3} and retain about 88% of after 10 cycles. We propose a model based on the microstructural evolution to explain the size impact on nanosphere performance. Magnetic measurements indicate that the nanospheres become superconducting below the transition temperature T{sub C} = 3.7 K, which is similar to the value obtained in bulk tin. Although T{sub C} does not significantly change with the size of the Sn core, we determined that the critical field H{sub C} of nanospheres can be as much as a factor of 30 larger compared to the bulk value. Alternating current measurements demonstrated that a transition from conventional to filamentary superconducting structure occurs in Sn/SnO{sub x} particles as their size increases. The transition is determined by the relationship between the particle size and the magnetic field penetration depth.

Wang, X.L.; Feygenson, M.; Aronson, M.C.; Han, W.-Q.

2010-09-09T23:59:59.000Z

132

A Computational Investigation of Li(subscript 9)M(subscript 3)(P(subscript 2)O(subscript 7))(subscript 3)(PO(subscript 4))(subscript 2) (M = V, Mo) as Cathodes for Li Ion Batteries  

E-Print Network (OSTI)

Cathodes with high energy density and safety are sought to improve the performance of Li ion batteries for electric vehicle and consumer electronics applications. In this study, we examine the properties of the potential ...

Jain, Anubhav

133

Modeling of Nonuniform Degradation in Large-Format Li-ion Batteries (Poster)  

DOE Green Energy (OSTI)

Shows results of an empirical model capturing effects of both storage and cycling and developed the lithium ion nickel cobalt aluminum advanced battery chemistry.

Smith, K.; Kim, G. H.; Pesaran, A.

2009-06-01T23:59:59.000Z

134

Sulfone-based electrolytes for high voltage li-ion batteries.  

Science Conference Proceedings (OSTI)

Sulfone-based electrolytes have been investigated as electrolytes for lithium-ion cells using high-voltage positive electrodes, such as LiMn{sub 2}O{sub 4} and LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} spinels, and Li{sub 4}Ti{sub 5}O{sub 12} spinel as negative electrode. In the presence of imide salt (LiTFSI) and ethyl methyl sulfone or tetramethyl sulfone (TMS) electrolytes, the Li{sub 4}Ti{sub 5}O{sub 12}/LiMn{sub 2}O{sub 4} cell exhibited a specific capacity of 80 mAh g{sup -1} with an excellent capacity retention after 100 cycles. In a cell with high-voltage LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} positive electrode and 1 M LiPF{sub 6} in TMS as electrolyte, the capacity reached 110 mAh g{sup -1} at the C/12 rate. When TMS was blended with ethyl methyl carbonate, the Li{sub 4}Ti{sub 5}O{sub 12}/LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} cell delivered an initial capacity of 80 mAh g{sup -1} and cycled fairly well for 1000 cycles under 2C rate. The exceptional electrochemical stability of the sulfone electrolytes and their compatibility with the Li{sub 4}Ti{sub 5}O{sub 12} safer and stable anode were the main reason behind the outstanding electrochemical performance observed with high-potential spinel cathode materials. These electrolytes could be promising alternative electrolytes for high-energy density battery applications such as plug-in hybrid and electric vehicles that require a long cycle life.

Abouimrane, A.; Belharouak, I.; Amine, K. (Chemical Sciences and Engineering Division)

2009-05-01T23:59:59.000Z

135

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 Daejeon, South Korea Developing Li-ion Cells for Electric Vehicle Batteries Develop Li-ion cells using Mn-rich cathode and Si nanowires on graphite particle composite materials...

136

Degradation of the materials of construction in Li-ion batteries  

DOE Green Energy (OSTI)

The primary current-collector materials being used in lithium-ion cells are susceptible to environmental degradation: aluminum to pitting corrosion and copper to environmentally assisted cracking. Pitting occurs at the highly oxidizing potentials associated with the positive-electrode charge condition. However, the pitting mechanism is more complex than that typically observed in aqueous systems in that the pits are filled with a mixed metal/oxide product and exist as mounds or nodules on the surface. Electrochemical impedance spectroscopy was shown to be an effective analytical tool for quantifying and verifying aluminum corrosion behavior. Two fluorocarbon-based coatings were shown to improve the resistance of Al to pitting attack. Detailed x-ray photoelectron spectroscopy (XPS) surface analyses showed that there was very little difference in the films observed after simple immersion in either PC:DEC or EC:DMC electrolytes versus those following electrical cycling. Li and P are the predominant surface species. Finally, environmental cracking of copper can occur at or near the lithium potential and only if specific metallurgical conditions exist (work-hardening and large grain size).

Braithwaite, J.W.; Gonzales, A.; Lucero, S.J. [and others

1997-03-01T23:59:59.000Z

137

Prediction of Retained Capacity and EODV of Li-ion Batteries in LEO Spacecraft Batteries  

E-Print Network (OSTI)

In resent years ANN is widely reported for modeling in different areas of science including electro chemistry. This includes modeling of different technological batteries such as lead acid battery, Nickel cadmium batteries etc. Lithium ion batteries are advance battery technology which satisfy most of the space mission requirements. Low earth orbit (LEO)space craft batteries undergo large number of charge discharge cycles (about 25000 cycles)compared to other ground level or space applications. This study is indented to develop ANN model for about 25000 cycles, cycled under various temperature, Depth Of Discharge (DOD) settings with constant charge voltage limit to predict the retained capacity and End of Discharge Voltage (EODV). To extract firm conclusion and distinguish the capability of ANN method, the predicted values are compared with experimental result by statistical method and Bland Altman plot.

Ramakrishnan, S; Jeyakumar, A Ebenezer

2010-01-01T23:59:59.000Z

138

Electrochemical Windows of Sulfone-Based Electrolytes for High-Voltage Li-Ion Batteries  

Science Conference Proceedings (OSTI)

Further development of high-voltage lithium-ion batteries requires electrolytes with electrochemical windows greater than 5 V. Sulfone-based electrolytes are promising for such a purpose. Here we compute the electrochemical windows for experimentally tested sulfone electrolytes by different levels of theory in combination with various solvation models. The MP2 method combined with the polarizable continuum model is shown to be the most accurate method to predict oxidation potentials of sulfone-based electrolytes with mean deviation less than 0.29 V. Mulliken charge analysis shows that the oxidation happens on the sulfone group for ethylmethyl sulfone and tetramethylene sulfone, and on the ether group for ether functionalized sulfones. Large electrochemical windows of sulfone-based electrolytes are mainly contributed by the sulfone group in the molecules which helps lower the HOMO level. This study can help understand the voltage limits imposed by the sulfone-based electrolytes and aid in designing new electrolytes with greater electrochemical windows.

Shao, Nan [ORNL; Sun, Xiao-Guang [ORNL; Dai, Sheng [ORNL; Jiang, Deen [ORNL

2011-01-01T23:59:59.000Z

139

Conductive Rigid Skeleton Supported Silicon as High-Performance Li-Ion Battery Anodes  

Science Conference Proceedings (OSTI)

A cost effective and scalable method is developed to prepare a core-shell structured Si/B4C composite with graphite coating with high efficiency, exceptional rate performance and long-term stability. In this material, conductive B4C with high Mohs hardness serves not only as micro-/nano- millers in the ball-milling process to break down micron-sized Si but also as the conductive rigid skeleton to support the in-situ formed sub-10 nm Si particles to alleviate the volume expansion during charge/discharge. The Si/B4C composite is coated with a few graphitic layers to further improve the conductivity and stability of the composite. The Si/B4C/graphite (SBG) composite anode shows excellent cyclability with a specific capacity of ~822 mAh?g-1 (based on the weight of the entire electrode, including binder and conductive carbon) and ~94% capacity retention over 100 cycles at 0.8C rate. This new structure has the potential to provide adequate storage capacity and stability for practical applications, and good opportunity for large scale manufacturing using commercially available materials and technologies.

Chen, Xilin; Li, Xiaolin; Ding, Fei; Xu, Wu; Xiao, Jie; Cao, Yuliang; Meduri, Praveen; Liu, Jun; Graff, Gordon L.; Zhang, Jiguang

2012-08-08T23:59:59.000Z

140

CIBS Solar Cell Development  

DOE Green Energy (OSTI)

This research focused on efforts to prepare and characterize the first copper-indium-boron-diselenide (CIBS) photovoltaic materials. Attempts to fabricate CIBS in thin-film form followed a three-step process: 1) RF sputtering of copper, indium, and boron to form a copper-indium-boron (CIB) alloy; 2) ex-situ selenization of CIB via physical vapor deposition; 3) annealing the final product. No CIBS materials were produced with this method due to the formation of an unstable boron diselenide species that formed in step 2. Detailed investigations of the CIB alloy formation revealed that boron does not adequately mix with the copper and indium in step 1. In the last year, a nanoscience-based method has shown greater promise for successful CIBS preparation. In this two-step method, sources of copper, indium, boron, and selenium are combined and heated in a high-boiling amine solvent. The isolated product is then annealed at temperatures between 400-500 deg. C. Currently, purified CIBS has not been isolated and characterized but further study and development of this nanoscience-based method is in progress through the support of two grants from the DOE Office of Energy Renewability and Efficiency and the State of Nebraska’s Nebraska Research Initiative program. The research described in this report resulted in four scientific publications and 12 presentations at regional, national and international scientific and engineering conferences.

Exstrom, Christopher L.

2008-10-06T23:59:59.000Z

Note: This page contains sample records for the topic "developing li-ion cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Lithium-Sulfur Batteries: Development of High Energy Lithium-Sulfur Cells for Electric Vehicle Applications  

SciTech Connect

BEEST Project: Sion Power is developing a lithium-sulfur (Li-S) battery, a potentially cost-effective alternative to the Li-Ion battery that could store 400% more energy per pound. All batteries have 3 key parts—a positive and negative electrode and an electrolyte—that exchange ions to store and release electricity. Using different materials for these components changes a battery’s chemistry and its ability to power a vehicle. Traditional Li-S batteries experience adverse reactions between the electrolyte and lithium-based negative electrode that ultimately limit the battery to less than 50 charge cycles. Sion Power will sandwich the lithium- and sulfur-based electrode films around a separator that protects the negative electrode and increases the number of charges the battery can complete in its lifetime. The design could eventually allow for a battery with 400% greater storage capacity per pound than Li-Ion batteries and the ability to complete more than 500 recharge cycles.

2010-10-01T23:59:59.000Z

142

Systems, methods and computer readable media for estimating capacity loss in rechargeable electrochemical cells  

DOE Patents (OSTI)

A system includes an electrochemical cell, monitoring hardware, and a computing system. The monitoring hardware periodically samples charge characteristics of the electrochemical cell. The computing system periodically determines cell information from the charge characteristics of the electrochemical cell. The computing system also periodically adds a first degradation characteristic from the cell information to a first sigmoid expression, periodically adds a second degradation characteristic from the cell information to a second sigmoid expression and combines the first sigmoid expression and the second sigmoid expression to develop or augment a multiple sigmoid model (MSM) of the electrochemical cell. The MSM may be used to estimate a capacity loss of the electrochemical cell at a desired point in time and analyze other characteristics of the electrochemical cell. The first and second degradation characteristics may be loss of active host sites and loss of free lithium for Li-ion cells.

Gering, Kevin L.

2013-06-18T23:59:59.000Z

143

Development of concentrator solar cells  

DOE Green Energy (OSTI)

A limited pilot production run on PESC silicon solar cells for use at high concentrations (200 to 400 suns) is summarized. The front contact design of the cells was modified for operation without prismatic covers. The original objective of the contract was to systematically complete a process consolidation phase, in which all the, process improvements developed during the contract would be combined in a pilot production run. This pilot run was going to provide, a basis for estimating cell costs when produced at high throughput. Because of DOE funding limitations, the Photovoltaic Concentrator Initiative is on hold, and Applied Solar`s contract was operated at a low level of effort for most of 1993. The results obtained from the reduced scope pilot run showed the effects of discontinuous process optimization and characterization. However, the run provided valuable insight into the technical areas that can be optimized to achieve the original goals of the contract.

Not Available

1994-08-01T23:59:59.000Z

144

Li6La3SnMO12 (M = Sb, Nb, Ta), a Family of Lithium Garnets with High Li-Ion Conductivity  

Science Conference Proceedings (OSTI)

In order to investigate the influence of covalent bonding within the garnet framework on the conductivity of Li+ in the interstitial space, the Li+ conductivities in the family of Sn-based compounds Li6La3 SnMO12 (M = Sb, Nb, Ta) have been obtained and are compared with those of Li6La3ZrMO12. Refinement of the neutron diffraction pattern of Li6La3 SnNbO12shows that the interstitial tetrahedral sites (24d ) are about half-occupied and most of the Li in the interstitial bridging octahedral sites are displaced from the center position (48g ). The Sb-based compound has the largest lattice parameter while the Ta-based compound has the highest Li+-ion conductivity of 0.42 10 4 Scm 1.

Bridges, Craig A [ORNL; Goodenough, J. B. [University of Texas, Austin; Gupta, Dr Asha [University of Texas, Austin; Nakanishi, Masahiro [ORNL; Paranthaman, Mariappan Parans [ORNL; Sokolov, Alexei P [ORNL; Bi, Zhonghe [ORNL; Li, Yutao [University of Texas, Austin; Han, Jiantao [University of Texas, Austin; Dong, Youzhong [South China University of Technology, Guangzhou, PR China; Wang, Long [University of Texas, Austin; Xu, Maowen [University of Texas, Austin

2012-01-01T23:59:59.000Z

145

Li4Ti5O12 as an anode material for Li ion batteries in situ XRD and XPS studies.  

E-Print Network (OSTI)

?? This thesis examines parts of the kinetics and performance in Li-battery cells using lithium titanate anodes and lithium manganese oxide cathodes. Lithium titanate (Li4Ti5O12)… (more)

Nordh, Tim

2013-01-01T23:59:59.000Z

146

First-Principles Study of Novel Conversion Reactions for High-Capacity Li-Ion Battery Anodes in the Li-Mg-B-N-H System  

DOE Green Energy (OSTI)

Anodes for Li-ion batteries are primarily carbon-based due to their low cost and long cycle life. However, improvements to the Li capacity of carbon anodes, LiC{sub 6} in particular, are necessary to obtain a larger energy density. State-of-the-art light-metal hydrides for hydrogen storage applications often contain Li and involve reactions requiring Li transport, and light-metal ionic hydrides are candidates for novel conversion materials. Given a set of known solid-state and gas-phase reactants, we have determined the phase diagram in the Li-Mg-B-N-H system in the grand canonical ensemble, as a function of lithium chemical potential. We present computational results for several new conversion reactions with capacities between 2400 and 4000 mAh g{sup -1} that are thermodynamically favorable and that do not involve gas evolution. We provide experimental evidence for the reaction pathway on delithiation for the compound Li{sub 4}BN{sub 3}H{sub 10}. While the predicted reactions involve multiple steps, the maximum volume increase for these materials on lithium insertion is significantly smaller than that for Si.

Mason, T.H.; Graetz, J.; Liu, X.; Hong, J.; Majzoub, E.H.

2011-07-28T23:59:59.000Z

147

Nanospheres of a New Intermetalic FeSn5 Phase: Synthesis Magnetic Properties and Anode Performance in Li-ion Batteries  

Science Conference Proceedings (OSTI)

We synthesized monodisperse nanospheres of an intermetallic FeSn{sub 5} phase via a nanocrystal-conversion protocol using preformed Sn nanospheres as templates. This tetragonal phase in P4/mcc space group, along with the defect structure Fe{sub 0.74}Sn{sub 5} of our nanospheres, has been resolved by synchrotron X-ray diffraction and Rietveld refinement. Importantly, FeSn{sub 5}, which is not yet established in the Fe-Sn phase diagram, exhibits a quasi-one dimensional crystal structure along the c-axis, thus leading to interesting anisotropic thermal expansion and magnetic properties. Magnetization measurements indicate that nanospheres are superparamagnetic above the blocking temperature T{sub B} = 300 K, which is associated with the higher magnetocrystalline anisotropy constant K = 3.33 kJ m{sup -3}. The combination of the magnetization measurements and first-principles density functional theory calculations reveals the canted antiferromagnetic nature with significant spin fluctuation in lattice a-b plane. The low Fe concentration also leads Fe{sub 0.74}Sn{sub 5} to enhanced capacity as an anode in Li ion batteries.

X Wang; M Feygenson; H Chen; C Lin; W Ku; J Bai; M Aronson; T Tyson; W Han

2011-12-31T23:59:59.000Z

148

A 3D Porous Architecture of Si/graphene Nanocomposite as High-performance Anode Materials for Li-ion Batteries  

SciTech Connect

A 3D porous architecture of Si/graphene nanocomposite has been rationally designed and constructed through a series of controlled chemical processes. In contrast to random mixture of Si nanoparticles and graphene nanosheets, the porous nanoarchitectured composite has superior electrochemical stability because the Si nanoparticles are firmly riveted on the graphene nanosheets through a thin SiO{sub x} layer. The 3D graphene network enhances electrical conductivity, and improves rate performance, demonstrating a superior rate capability over the 2D nanostructure. This 3D porous architecture can deliver a reversible capacity of {approx}900 mA h g{sup -1} with very little fading when the charge rates change from 100 mA g{sup -1} to 1 A g{sup -1}. Furthermore, the 3D nanoarchitechture of Si/graphene can be cycled at extremely high Li{sup +} extraction rates, such as 5 A g{sup -1} and 10 A g{sup -1}, for over than 100 times. Both the highly conductive graphene network and porous architecture are considered to contribute to the remarkable rate capability and cycling stability, thereby pointing to a new synthesis route to improving the electrochemical performances of the Si-based anode materials for advanced Li-ion batteries.

Xin X.; Zhu Y.; Zhou, X.; Wang, F.; Yao, X.; Xu, X.; Liu, Z.

2012-04-28T23:59:59.000Z

149

Development Efforts on Silicon Solar Cells  

Science Conference Proceedings (OSTI)

A stable, high-efficiency photovoltaic cell technology was developed for use in advanced systems that generate electricity from highly concentrated sunlight.

1992-02-01T23:59:59.000Z

150

The Lithium-Ion Cell: Model, State Of Charge Estimation  

E-Print Network (OSTI)

The Lithium-Ion Cell: Model, State Of Charge Estimation and Battery Management System Tutor degradation mechanisms of a Li-ion cell based on LiCoO2", Journal of Power Sources #12;Lithium ions and e and Y. Fuentes. Computer simulations of a lithium-ion polymer battery and implications for higher

Schenato, Luca

151

Enhanced Li+ ion transport in LiNi0.5Mn1.5O4 through Control of Site Disorder  

SciTech Connect

High voltage spinel LiNi0.5Mn1.5O4 is a very promising cathode material for lithium ion batteries that can be used to power hybrid electrical vehicles (HEVs). In an effort to maximize the performances of high voltage spinel, it is found that the presence of an appropriate amount of oxygen deficiency and/or Mn3+ is critical to accelerate the transport of Li+ ions within the crystalline structure. Through careful control of the cooling rates after high temperature calcination, LiNi0.5Mn1.5O4 spinels with different disordered phase and/or Mn3+ contents have been synthesized. It is revealed that during slow cooling process (<3oC/min), oxygen deficiency is reduced by the oxygen intake, thus residual Mn3+ amount is also decreased in spinels due to charge neutrality. The relative ratio of ordered/disordered phases in high voltage spinels are systematically investigated and finally correlated with Li+ transport phenomena in the lattice through electrochemical evaluation and in-situ XRD technique. LiNi0.5Mn1.5O4 with an appropriate amount of disordered phase or Mn3+ ions offers high rate capability (96 mAh g-1 at 10 C) and excellent cycling performance with 94.8% capacity retention after 300 cycles. The fundamental findings in this work can be widely used to guide the synthesis of other mixed oxides or spinels as high performance electrode materials for lithium ion batteries.

Zheng, Jianming; Xiao, Jie; Yu, Xiqian; Kovarik, Libor; Gu, Meng; Omenya, Fredrick; Chen, Xilin; Yang, Xiao-Qing; Liu, Jun; Graff, Gordon L.; Whittingham, M. S.; Zhang, Jiguang

2012-10-31T23:59:59.000Z

152

Fuel Cells: Identifying Promising Development Opportunities  

Science Conference Proceedings (OSTI)

Low temperature PEM (proton exchange membrane) fuel cells are in the initial stage of commercialization, while high temperature SOFC (solid oxide fuel cells) are under development because they hold promise of higher efficiency and lower costs. To assess their future market potential, this study analyzed several innovative market applications and technical improvements: PEM fuel cells for peak shaving, PEM fuel cells for uninterruptible power supply (UPS), tubular and planar SOFC units for residential use...

2000-12-08T23:59:59.000Z

153

Photovoltaic concentrator initiative: Concentrator cell development  

DOE Green Energy (OSTI)

This project involves the development of a large-area, low-cost, high-efficiency concentrator solar cell for use in the Entech 22-sun linear-focus Fresnel lens concentrator system. The buried contact solar cell developed at the University of New South Wales was selected for this project. Both Entech and the University of New South Wales are subcontractors. This annual report presents the program efforts from November 1990 through December 1991, including the design of the cell, development of a baseline cell process, and presentation of the results of preliminary cell processing. Important results include a cell designed for operation in a real concentrator system and substitution of mechanical grooving for the previously utilized laser scribing.

Wohlgemuth, J.H.; Narayanan, S. [Solarex Corp., Frederick, MD (US)

1993-05-01T23:59:59.000Z

154

Tubular solid oxide fuel cell developments  

DOE Green Energy (OSTI)

An overview of the tubular solid oxide fuel cell (SOFC) development at Westinghouse is presented in this paper. The basic operating principles of SOFCs, evolution in tubular cell design and performance improvement, selection criteria for cell component materials, and cell processing techniques are discussed. The commercial goal is to develop a cell that can operate for 5 to 10 years. Results of cell test operated for more than 50,000 hours are presented. Since 1986, significant progress has been made in the evolution of cells with higher power, lower cost and improved thermal cyclic capability. Also in this period, successively larger multi-kilowatt electrical generators systems have been built and successfully operated for more than 7000 hours.

Bratton, R.J.; Singh, P.

1995-08-01T23:59:59.000Z

155

In-situ Transmission Electron Microscopy and Spectroscopy Studies of Interfaces in Li-ion Batteries: Challenges and Opportunities  

SciTech Connect

The critical challenge facing the lithium ion battery development is the basic understanding of the structural evolution during the cyclic operation of the battery and the consequence of the structural evolution on the properties of the battery. Although transmission electron microscopy (TEM) and spectroscopy have been evolved to a stage such that it can be routinely used to probe into both the structural and chemical composition of the materials with a spatial resolution of a single atomic column, a direct in-situ TEM observation of structural evolution of the materials in lithium ion battery during the dynamic operation of the battery has never been reported. This is related to three factors: high vacuum operation of a TEM; electron transparency requirement of the region to be observed, and the difficulties dealing with the liquid electrolyte of lithium ion battery. In this paper, we report the results of exploring the in-situ TEM techniques for observation of the interface in lithium ion battery during the operation of the battery. A miniature battery was fabricated using a nanowire and an ionic liquid electrolyte. The structure and chemical composition of the interface across the anode and the electrolyte was studied using TEM imaging, electron diffraction, and electron energy loss spectroscopy. In addition, we also explored the possibilities of carrying out in-situ TEM studies of lithium ion batteries with a solid state electrolyte.

Wang, Chong M.; Xu, Wu; Liu, Jun; Choi, Daiwon; Arey, Bruce W.; Saraf, Laxmikant V.; Zhang, Jiguang; Yang, Zhenguo; Thevuthasan, Suntharampillai; Baer, Donald R.; Salmon, Norman

2010-08-01T23:59:59.000Z

156

Si concentrator solar cell development. [Final report  

DOE Green Energy (OSTI)

This is the final report of a program to develop a commercial, high-efficiency, low-cost concentrator solar cell compatible with Spectrolab`s existing manufacturing infrastructure for space solar cells. The period covered is between 1991 and 1993. The program was funded through Sandia National Laboratories through the DOE concentrator initiative and, was also cost shared by Spectrolab. As a result of this program, Spectrolab implemented solar cells achieving an efficiency of over 19% at 200 to 300X concentration. The cells are compatible with DOE guidelines for a cell price necessary to achieve a cost of electricity of 12 cents a kilowatthour.

Krut, D.D. [Spectrolab, Inc., Sylmar, CA (United States)

1994-10-01T23:59:59.000Z

157

Tubular solid oxide fuel cell development program  

DOE Green Energy (OSTI)

This paper presents an overview of the Westinghouse Solid Oxide Fuel Cell (SOFC) development activities and current program status. The Westinghouse goal is to develop a cost effective cell that can operate for 50,000 to 100,000 hours. Progress toward this goal will be discussed and test results presented for multiple single cell tests which have now successfully exceeded 56,000 hours of continuous power operation at temperature. Results of development efforts to reduce cost and increase power output of tubular SOFCs are described.

Ray, E.R.; Cracraft, C.

1995-12-31T23:59:59.000Z

158

The Influence of High-Energy Lithium Ion Irradiation on Electrical Characteristics of Silicon and GaAs Solar Cells  

E-Print Network (OSTI)

Space-grade Si and GaAs solar cells were irradiated with 15 & 40 MeV Li ions. Illuminated (AM0 condition) and unilluminated I-V curves reveal that the effect of high-energy Li ion irradiation has produced similar effects to that of proton irradiation. However, an additional, and different, defect mechanism is suggested to dominate in the heavier-ion results. Comparison is made with proton-irradiated solar-cell work and with non-ionizing energy-loss (NIEL) radiation-damage models.

B. Jayashree; Ramani; M. C. Radhakrishna; Anil Agrawal; Saif Ahmad Khan; A. Meulenberg

2006-10-20T23:59:59.000Z

159

Accelerating Development of EV Batteries Through Computer-Aided Engineering (Presentation)  

Science Conference Proceedings (OSTI)

The Department of Energy's Vehicle Technology Program has launched the Computer-Aided Engineering for Automotive Batteries (CAEBAT) project to work with national labs, industry and software venders to develop sophisticated software. As coordinator, NREL has teamed with a number of companies to help improve and accelerate battery design and production. This presentation provides an overview of CAEBAT, including its predictive computer simulation of Li-ion batteries known as the Multi-Scale Multi-Dimensional (MSMD) model framework. MSMD's modular, flexible architecture connects the physics of battery charge/discharge processes, thermal control, safety and reliability in a computationally efficient manner. This allows independent development of submodels at the cell and pack levels.

Pesaran, A.; Kim, G. H.; Smith, K.; Santhanagopalan, S.

2012-12-01T23:59:59.000Z

160

A Combined Model for Determining Capacity Usage and Battery Size...  

NLE Websites -- All DOE Office Websites (Extended Search)

More Search Research & Development Batteries and Fuel Cells Li-Ion and Other Advanced Battery Technologies Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs...

Note: This page contains sample records for the topic "developing li-ion cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Sulfur-graphene oxide material for lithium-sulfur battery cathodes  

NLE Websites -- All DOE Office Websites (Extended Search)

More Search Research & Development Batteries and Fuel Cells Li-Ion and Other Advanced Battery Technologies Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs...

162

Al-laminated film packaged organic radical battery for high-power...  

NLE Websites -- All DOE Office Websites (Extended Search)

More Search Research & Development Batteries and Fuel Cells Li-Ion and Other Advanced Battery Technologies Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs...

163

Miquel Salmeron  

NLE Websites -- All DOE Office Websites (Extended Search)

More Search Research & Development Batteries and Fuel Cells Li-Ion and Other Advanced Battery Technologies Buildings Energy Efficiency Applications Commercial Buildings Cool...

164

Atomic Force Microscopy - Applications to Energy & Environmental...  

NLE Websites -- All DOE Office Websites (Extended Search)

More Search Research & Development Batteries and Fuel Cells Li-Ion and Other Advanced Battery Technologies Buildings Energy Efficiency Applications Commercial Buildings Cool...

165

2011 Elsevier/Spectrochimica Acta Atomic Spectroscopy Award  

NLE Websites -- All DOE Office Websites (Extended Search)

More Search Research & Development Batteries and Fuel Cells Li-Ion and Other Advanced Battery Technologies Buildings Energy Efficiency Applications Commercial Buildings Cool...

166

JoLynn Carroll  

NLE Websites -- All DOE Office Websites (Extended Search)

More Search Research & Development Batteries and Fuel Cells Li-Ion and Other Advanced Battery Technologies Buildings Energy Efficiency Applications Commercial Buildings Cool...

167

Chee Yuen (George) Chan  

NLE Websites -- All DOE Office Websites (Extended Search)

More Search Research & Development Batteries and Fuel Cells Li-Ion and Other Advanced Battery Technologies Buildings Energy Efficiency Applications Commercial Buildings Cool...

168

Milena Horvat  

NLE Websites -- All DOE Office Websites (Extended Search)

More Search Research & Development Batteries and Fuel Cells Li-Ion and Other Advanced Battery Technologies Buildings Energy Efficiency Applications Commercial Buildings Cool...

169

Lester W. Strock Award  

NLE Websites -- All DOE Office Websites (Extended Search)

More Search Research & Development Batteries and Fuel Cells Li-Ion and Other Advanced Battery Technologies Buildings Energy Efficiency Applications Commercial Buildings Cool...

170

Marta Litter  

NLE Websites -- All DOE Office Websites (Extended Search)

More Search Research & Development Batteries and Fuel Cells Li-Ion and Other Advanced Battery Technologies Buildings Energy Efficiency Applications Commercial Buildings Cool...

171

Overview of Fuel Cell Electric Bus Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview of Fuel Cell Overview of Fuel Cell Electric Bus Development Leslie Eudy, National Renewable Energy Laboratory September 12, 2013 2 Why Fuel Cells for Transit Buses? * Reduce transit bus emissions * Improve fuel efficiency * Improve vehicle performance * Consumer Acceptance * Transit industry is excellent test-bed for new technologies o Centrally fueled and maintained o Fixed routes with urban stop-go duty cycle o Professional operators and mechanics o Federal Capital Funding Support o High Visibility & High Impact 3 FCEB Development Timeline since 2000 California Air Resources Board Transit Rule Early demonstrations of single prototypes DOE begins funding NREL technology validation for FCEBs First multiple bus fleet demonstrations in California FTA initiates National Fuel Cell Bus Program and

172

Advanced Cell Development and Degradation Studies  

SciTech Connect

The Idaho National Laboratory (INL) has been researching the application of solid-oxide electrolysis cells for large-scale hydrogen production from steam over a temperature range of 800 to 900ºC. From 2003 – 2009, this work was sponsored by the DOE Nuclear Hydrogen Initiative (NHI). Starting in 2010, the HTE research program has been sponsored by the Next Generation Nuclear Plant (NGNP) program. HTSE research priorities in FY10 are centered on understanding and reducing cell and stack performance degradation to an acceptable level to advance the technology readiness level of HTSE and to justify further large-scale demonstration activities. This report provides a summary of our FY10 experimental program, which has been focused on advanced cell and stack development and degradation studies. Advanced cell and stack development activities are under way at five technology partners: MSRI, Versa Power, Ceramatec, NASA Glenn, and St. Gobain. Performance evaluation of the advanced technology cells and stacks has been performed by the technology partners, by MIT and the University of Connecticut and at the INL HTE Laboratory. Summaries of these development activities and test results are presented.

J. E. O' Brien; C. M. Stoots; J. S. Herring; R. C. O' Brien; K. G. Condie; M. Sohal; G. K. Housley; J. J. Hartvigsen; D. Larsen; G. Tao; B. Yildiz; V. Sharma; P. Singh; N. Petigny; T. L. Cable

2010-09-01T23:59:59.000Z

173

Fuel Cell Development and Test Laboratory (Fact Sheet), NREL...  

NLE Websites -- All DOE Office Websites (Extended Search)

NREL's state-of-the-art Fuel Cell Development and Test Laboratory in the Energy Systems Integration Facility (ESIF) supports NREL's fuel cell research and development...

174

An observer looks at the cell temperature in automotive battery packs  

E-Print Network (OSTI)

An observer looks at the cell temperature in automotive battery packs Maxime Deberta , Guillaume.bloch@univ-lorraine.fr Abstract The internal temperature of Li-ion batteries for electric or hybrid vehicles is an important measurement and a model. This paper presents the simplified modelling of heat transfers in a battery module

Paris-Sud XI, Université de

175

Sensor Development for PEM Fuel Cell Systems  

DOE Green Energy (OSTI)

This document reports on the work done by Honeywell Sensing and Control to investigate the feasibility of modifying low cost Commercial Sensors for use inside a PEM Fuel Cell environment. Both stationary and automotive systems were considered. The target environment is hotter (100 C) than the typical commercial sensor maximum of 70 C. It is also far more humid (100% RH condensing) than the more typical 95% RH non-condensing at 40 C (4% RH maximum at 100 C). The work focused on four types of sensors, Temperature, Pressure, Air Flow and Relative Humidity. Initial design goals were established using a market research technique called Market Driven Product Definition (MDPD). A series of interviews were conducted with various users and system designers in their facilities. The interviewing team was trained in data taking and analysis per the MDPD process. The final result was a prioritized and weighted list of both requirements and desires for each sensor. Work proceeded on concept development for the 4 types of sensors. At the same time, users were developing the actual fuel cell systems and gaining knowledge and experience in the use of sensors and controls systems. This resulted in changes to requirements and desires that were not anticipated during the MDPD process. The concepts developed met all the predicted requirements. At the completion of concept development for the Pressure Sensor, it was determined that the Fuel Cell developers were happy with off-the-shelf automotive pressure sensors. Thus, there was no incentive to bring a new Fuel Cell Specific Pressure Sensor into production. Work was therefore suspended. After the experience with the Pressure Sensor, the requirements for a Temperature Sensor were reviewed and a similar situation applied. Commercially available temperature sensors were adequate and cost effective and so the program was not continued from the Concept into the Design Phase.

Steve Magee; Richard Gehman

2005-07-12T23:59:59.000Z

176

NIST Develops Experimental Validation Tool for Cell Phone ...  

Science Conference Proceedings (OSTI)

NIST Develops Experimental Validation Tool for Cell Phone Forensics. For Immediate Release: December 1, 2009. ...

2010-11-05T23:59:59.000Z

177

Hydrogen Fuel Cell Development in Columbia (SC)  

DOE Green Energy (OSTI)

This is an update to the final report filed after the extension of this program to May of 2011. The activities of the present program contributed to the goals and objectives of the Fuel Cell element of the Hydrogen, Fuel Cells and Infrastructure Technologies Program of the Department of Energy through five sub-projects. Three of these projects have focused on PEM cells, addressing the creation of carbon-based metal-free catalysts, the development of durable seals, and an effort to understand contaminant adsorption/reaction/transport/performance relationships at low contaminant levels in PEM cells. Two programs addressed barriers in SOFCs; an effort to create a new symmetrical and direct hydrocarbon fuel SOFC designs with greatly increased durability, efficiency, and ease of manufacturing, and an effort to create a multiphysics engineering durability model based on electrochemical impedance spectroscopy interpretations that associate the micro-details of how a fuel cell is made and their history of (individual) use with specific prognosis for long term performance, resulting in attendant reductions in design, manufacturing, and maintenance costs and increases in reliability and durability.

Reifsnider, Kenneth

2011-07-31T23:59:59.000Z

178

Fossil Energy-Developed Fuel Cell Technology Being Adapted by...  

NLE Websites -- All DOE Office Websites (Extended Search)

31, 2013 Fossil Energy-Developed Fuel Cell Technology Being Adapted by Navy for Advanced Unmanned Undersea Vehicles Solid Oxide Fuel Cell Technology Supported by Research Funding...

179

Hydrogen & Fuel Cells: Review of National Research and Development...  

Open Energy Info (EERE)

Hydrogen & Fuel Cells: Review of National Research and Development (R&D) Programs Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Hydrogen & Fuel Cells: Review of...

180

Berkeley Lab Startup Brings Fuel Cells to the Developing ...  

Biomass and Biofuels Berkeley Lab Startup Brings Fuel Cells to the Developing World Point Source Power’s cheap, rugged fuel cells can provide ...

Note: This page contains sample records for the topic "developing li-ion cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

CRADA Final Report: Process development for hybrid solar cells  

E-Print Network (OSTI)

development for hybrid solar cells Summary of the specific20 wafers with full tandem solar cell test structure perIII–Nitride/Silicon Tandem Solar Cell,” Appl. Phys. Express

Ager, Joel W

2011-01-01T23:59:59.000Z

182

Fuel Cell Development and Test Laboratory (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Fuel Cell Development and Test Laboratory at the Energy Systems Integration Facility. NREL's state-of-the-art Fuel Cell Development and Test Laboratory in the Energy Systems Integration Facility (ESIF) supports NREL's fuel cell research and development projects through in-situ fuel cell testing. Current projects include various catalyst development projects, a system contaminant project, and the manufacturing project. Testing capabilities include but are not limited to single cell fuel cells and fuel cell stacks.

Not Available

2011-10-01T23:59:59.000Z

183

Extending the lifetime of fuel cell based hybrid systems  

E-Print Network (OSTI)

Fuel cells are clean power sources that have much higher energy densities and lifetimes compared to batteries. However, fuel cells have limited load following capabilities and cannot be efficiently utilized if used in isolation. In this work, we consider a hybrid system where a fuel cell based hybrid power source is used to provide power to a DVFS processor. The hybrid power source consists of a room temperature fuel cell operating as the primary power source and a Li-ion battery (that has good load following capability) operating as the secondary source. Our goal is to develop polices to extend the lifetime of the fuel cell based hybrid system. First, we develop a charge based optimization framework which minimizes the charge loss of the hybrid system (and not the energy consumption of the DVFS processor). Next, we propose a new algorithm to minimize the charge loss by judiciously scaling the load current. We compare the performance of this algorithm with one that has been optimized for energy, and demonstrate its superiority. Finally, we evaluate the performance of the hybrid system under different system configurations and show how to determine the best combination of fuel cell size and battery capacity for a given embedded application.

Jianli Zhuo; Chaitali Chakrabarti; Naehyuck Chang; Sarma Vrudhula

2006-01-01T23:59:59.000Z

184

Energy Conversion Devices Fuel Cell Electrocatalyst Development...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell(tm) Texaco Ovonic Fuel Cell Company, LLC non-precious metal catalysts regenerative braking energy absorption capability wide temperature range instant...

185

Fuel Cell Technologies Office: Manufacturing Research and Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Manufacturing Research and Development The Fuel Cell Technologies Office's manufacturing research and development (R&D) activity improves processes and reduces the cost of...

186

Fuel Cell Technologies Program Multi-Year Research, Development...  

NLE Websites -- All DOE Office Websites (Extended Search)

Preface Multi-Year Research, Development, and Demonstration Plan Page i Preface The Fuel Cell Technologies Program Multi-Year Research, Development, and Demonstration Plan (MYRD&D...

187

AvAilAble for licensing A unique method for anode and cathode manufacture.  

E-Print Network (OSTI)

and portable device battery markets. Lithium-ion batteries offer significant advantages in weight and energy is developing advanced cell components that will enable new market applications for lithium-ion (Li-ion batteries. Battery Technology 20-cell 80-volt 8-kW Li-ion battery module designed by ANL for Hybrid Electric

Kemner, Ken

188

[Gas cooled fuel cell systems technology development program  

DOE Green Energy (OSTI)

Objective is the development of a gas-cooled phosphoric acid fuel cell for electric utility power plant application. Primary objectives are to: demonstrate performance endurance in 10-cell stacks at 70 psia, 190 C, and 267 mA/cm[sup 2]; improve cell degradation rate to less than 8 mV/1000 hours; develop cost effective criteria, processes, and design configurations for stack components; design multiple stack unit and a single 100 kW fuel cell stack; design a 375 kW fuel cell module and demonstrate average cell beginning-of-use performance; manufacture four 375-kW fuel cell modules and establish characteristics of 1.5 MW pilot power plant. The work is broken into program management, systems engineering, fuel cell development and test, facilities development.

Not Available

1988-03-01T23:59:59.000Z

189

Advanced Planar Solid Oxide Fuel Cell Development  

Science Conference Proceedings (OSTI)

Advanced fuel cells have many potential utility applications including new multi-megawatt central power plants, repowering existing plants, and dispersed generation. A newly designed 25 kW planar solid oxide fuel cell (SOFC) system offers simplicity of construction, low cost manufacturing, efficient recovery of by product heat, and straight-forward system integration.

1997-01-01T23:59:59.000Z

190

Fuel Cell Technologies Program Multi-Year Research, Development...  

NLE Websites -- All DOE Office Websites (Extended Search)

- 1 Executive Summary The United States pioneered the development of hydrogen and fuel cell technologies, and we continue to lead the way as these technologies emerge from the...

191

Fuel Cells vs. Batteries: Issues and Challenges Facing the Development...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells vs. Batteries: Issues and Challenges Facing the Development of Electrochemical Power Systems for Transportation Applications Speaker(s): Elton Cairns Frank McLarnon John...

192

Fuel Cell Technologies Office: Manufacturing Research and Development  

NLE Websites -- All DOE Office Websites (Extended Search)

and Development on AddThis.com... Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Safety, Codes & Standards Education Systems...

193

Carbons for lithium ion cells prepared using sepiolite as an inorganic template.  

DOE Green Energy (OSTI)

Carbon anodes for Li ion cells have been prepared by the in situ polymerization of olefins such as propylene and ethylene in the channels of sepiolite clay mineral. Upon dissolution of the inorganic framework, a disordered carbon was obtained. The carbon was tested as anode in coin cells, yielding a reversible capacity of 633 mAh/g, 1.70 times higher than the capacity delivered by graphitic carbon, assuming 100% efficiency. The coulombic efficiency was higher than 90%.

Sandi, G.

1998-12-09T23:59:59.000Z

194

Intermediate Temperature Solid Oxide Fuel Cell Development  

DOE Green Energy (OSTI)

Solid oxide fuel cells (SOFCs) are high efficiency energy conversion devices. Present materials set, using yttria stabilized zirconia (YSZ) electrolyte, limit the cell operating temperatures to 800 C or higher. It has become increasingly evident however that lowering the operating temperature would provide a more expeditious route to commercialization. The advantages of intermediate temperature (600 to 800 C) operation are related to both economic and materials issues. Lower operating temperature allows the use of low cost materials for the balance of plant and limits degradation arising from materials interactions. When the SOFC operating temperature is in the range of 600 to 700 C, it is also possible to partially reform hydrocarbon fuels within the stack providing additional system cost savings by reducing the air preheat heat-exchanger and blower size. The promise of Sr and Mg doped lanthanum gallate (LSGM) electrolyte materials, based on their high ionic conductivity and oxygen transference number at the intermediate temperature is well recognized. The focus of the present project was two-fold: (a) Identify a cell fabrication technique to achieve the benefits of lanthanum gallate material, and (b) Investigate alternative cathode materials that demonstrate low cathode polarization losses at the intermediate temperature. A porous matrix supported, thin film cell configuration was fabricated. The electrode material precursor was infiltrated into the porous matrix and the counter electrode was screen printed. Both anode and cathode infiltration produced high performance cells. Comparison of the two approaches showed that an infiltrated cathode cells may have advantages in high fuel utilization operations. Two new cathode materials were evaluated. Northwestern University investigated LSGM-ceria composite cathode while Caltech evaluated Ba-Sr-Co-Fe (BSCF) based pervoskite cathode. Both cathode materials showed lower polarization losses at temperatures as low as 600 C than conventional manganite or cobaltite cathodes.

S. Elangovan; Scott Barnett; Sossina Haile

2008-06-30T23:59:59.000Z

195

Microsoft PowerPoint - NanoAnode for Li-ion Batteries SRNL-L9100-2009-00153p1.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanostructured Anodes for Lithium-Ion Nanostructured Anodes for Lithium-Ion Batteries at a glance  patent pending  increase energy density  longer cyclic life  replaces graphite anodes  simple and lower cost manufacturing Current carbon-based anodes are fabricated through a series of processes of mixing carbon, binder and conductive additives in organic solution, pasting the slurry on current collector and baking to remove solvent. It involves intensive labor, fire safety and environment emission control resulting in high cost. Background Savannah River Nuclear Solutions (SRNS), managing contractor of the Savannah River Site (SRS) for the Department of Energy, has developed new anodes for lithium-ion batteries that are reported to increase the energy density four-fold. It is

196

Development of internal reforming carbonate fuel cell stack technology  

DOE Green Energy (OSTI)

Activities under this contract focused on the development of a coal-fueled carbonate fuel cell system design and the stack technology consistent with the system design. The overall contract effort was divided into three phases. The first phase, completed in January 1988, provided carbonate fuel cell component scale-up from the 1ft{sup 2} size to the commercial 4ft{sup 2} size. The second phase of the program provided the coal-fueled carbonate fuel cell system (CGCFC) conceptual design and carried out initial research and development needs of the CGCFC system. The final phase of the program emphasized stack height scale-up and improvement of stack life. The results of the second and third phases are included in this report. Program activities under Phase 2 and 3 were designed to address several key development areas to prepare the carbonate fuel cell system, particularly the coal-fueled CFC power plant, for commercialization in late 1990's. The issues addressed include: Coal-Gas Related Considerations; Cell and Stack Technology Improvement; Carbonate Fuel Cell Stack Design Development; Stack Tests for Design Verification; Full-Size Stack Design; Test Facility Development; Carbonate Fuel Cell Stack Cost Assessment; and Coal-Fueled Carbonate Fuel Cell System Design. All the major program objectives in each of the topical areas were successfully achieved. This report is organized along the above-mentioned topical areas. Each topical area has been processed separately for inclusion on the data base.

Farooque, M.

1990-10-01T23:59:59.000Z

197

Task 1. 0, Development of improved molten carbonate fuel cell  

DOE Green Energy (OSTI)

The overall objective of this task was to develop an improved cell configuration for molten carbonate fuel cells which has improved performance, meets a 40,000 hour projected life, maintains existing cell cost, and is adaptable to a range of power plant applications. A new cell configuration designed to be manufactured using conventional and available equipment and processes was developed and verified in subscale single cells. This cell configuration is adaptable to a broad range of fuels without redesign, operating on very weak low Btu coal gas as well as high Btu gas and natural gas. The success of this program has provided the confidence to proceed with a scale-up to 8-ft{sup 2} cells and a stack verification in a 20-cell, 25 kW stack test. Design requirements and specifications for components in an improved cell design were defined. Electrolyte requirements for the cell components were established, the estimated time-to-short was updated, and a design operating point and gas composition for single cell testing was defined. Four anode, four cathode, five matrix configurations, and three end-cell reservoirs were defined. A total of 54 single cell tests were conducted to evaluate the performance of individual improvements and combinations of improved configurations. Anodes were successfully fabricated by tape casting. A new tape cast cathode for improved electrolyte sharing, new tape cast matrix materials and matrix reinforcement, and an end-cell reservoir configuration using conductive material were developed. Reports on the separate subtasks have been processed for inclusion on the data base.

Johnson, W.H.

1990-10-01T23:59:59.000Z

198

Supporting R&D of industrial fuel cell developers.  

DOE Green Energy (OSTI)

Argonne National Laboratory is supporting the industrial developers of molten carbonate fuel cells (MCFCs) and tubular solid oxide fuel cells (SOFCs). The results suggest that a lithium concentration level of 65-75 mol% in the LiNa electrolyte will improve cell performance. They have made inroads in understanding the interfacial resistance of bipolar plate materials, and they have reduced the air electrode overpotential in OSFCs by adding dopants.

Krumpelt, M.

1998-09-11T23:59:59.000Z

199

Carbonate fuel cell powerplant development and commercialization  

DOE Green Energy (OSTI)

CFC powerplants offer the potential for ultrahigh efficiency energy conversion and the enhancement of the quality of our environment. Since combustion is not utilized, CFCs generate very low amounts of NOx. CFC powerplants have been exempt from air permitting requirements in California, Massachusetts. CFC is attractive for both polluted urban areas and remote applications. It is ideal as a distributed generator (sited at or near the electricity user). The US CFC developers enjoy the support of user groups (utility, other end-user members). DOE cooperates with GRI and EPRI in funding the US CFC program.

Williams, M.C. [Fuel Cells Product Manager, USDOE Federal Energy Technology Center, Morgantown, WV (United States)

1997-04-01T23:59:59.000Z

200

CRADA Final Report: Process development for hybrid solar cells  

Science Conference Proceedings (OSTI)

TCF funding of a CRADA between LBNL and RSLE leveraged RSLE's original $1M investment in LBNL research and led to development of a solar cell fabrication process that will bring the high efficiency, high voltage hybrid tandem solar cell closer to commercialization. RSLE has already built a pilot line at its Phoenix, Arizona site.

Ager, Joel W

2011-02-14T23:59:59.000Z

Note: This page contains sample records for the topic "developing li-ion cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

2010 Hydrogen and Fuel Cell Global Commercialization & Development Update  

Fuel Cell Technologies Publication and Product Library (EERE)

This report offers examples of real-world applications and technical progress of hydrogen and fuel cell technologies, including policies adopted by countries to increase technology development and com

202

High Temperature Solid Oxide Fuel Cell Generator Development  

SciTech Connect

This report describes the results of the tubular SOFC development program from August 22, 1997 to September 30, 2007 under the Siemens/U.S. Department of Energy Cooperative Agreement. The technical areas discussed include cell manufacturing development, cell power enhancement, SOFC module and system cost reduction and technology advancement, and our field unit test program. Whereas significant progress has been made toward commercialization, significant effort remains to achieve our cost, performance and reliability targets for successful commercialization.

Joseph Pierre

2007-09-30T23:59:59.000Z

203

Vehicle Specifications Battery Type: Li-Ion  

NLE Websites -- All DOE Office Websites (Extended Search)

Under hood above powertrain Under hood above powertrain Nominal System Voltage: 333 V Rated Capacity (C/3): 40 Ah Cooling Method: Glycol / Water mix Powertrain Motor Type: DC Brushless Number of Motors: One Motor Cooling Type: Glycol / Water mix Drive Wheels: Rear Wheel Drive Transmission: None (gear ratio only in rear axle) Charger Location: Underhood Charger Port: Driver's side, front quarter panel Type: Conductive (J1772 connector) Input Voltage(s): 120 or 240 VAC Chassis Aluminum Body on Steel Frame Rear Suspension: Solid Axle with Leaf Springs Front Suspension: Dual A-arm with Coil Springs Weights Design Curb Weight: 3250 lbs Delivered Curb Weight: 3310 lbs 7 Distribution F/R: 55.2/44.8% GVWR: 4450 lbs Max Payload: 940 lbs + 200 lbs driver 1 Performance Goal Payload: 1000 lbs + 200 lbs driver

204

Advanced Solid State Li-Ion Battery  

Research on all-solid-state rechargeable lithium batteries has increased considerably in recent years due to raised concerns relating to safety hazards such as solvent leakage and flammability of liquid electrolytes used for commercial lithium-ion ...

205

The Lady and the Li-ion  

Science Conference Proceedings (OSTI)

Laptops desperately need a better Lithium-ion battery. Boston-Power's Christina Lampe-Onnerud says she's got it. Your world increasingly runs on lithium-ion batteries. Chances are good that your phone, laptop, camera, portable music and video players, ...

C. Lampe-Onnerud

2008-03-01T23:59:59.000Z

206

Vehicle Specifications Battery Type: Li-Ion  

NLE Websites -- All DOE Office Websites (Extended Search)

267 V Rated Capacity (C3): 80 Ah Cooling Method: Glycol Water mix heat exchanger Powertrain Motor Type: 3 Phase Permanent Magnet Number of Motors: One Motor Cooling Type: Oil to...

207

High Temperature Solid Oxide Fuel Cell Generator Development  

DOE Green Energy (OSTI)

Work performed during the period February 21, 2006 through August 21, 2006 is summarized herein. During this period, efforts were focused on 5 kWe bundle testing, development of on-cell reformation, the conceptual design of an advanced module, and the development of a manufacturing roadmap for cells and bundles. A 5 kWe SOFC system was built and delivered to the Pennsylvania State University; fabrication of a second 5 kWe SOFC for delivery to Montana State University was initiated. Cell testing and microstructural analysis in support of these efforts was also conducted.

Joseph F. Pierre

2006-08-21T23:59:59.000Z

208

Pennsylvania Company Develops Solar Cell Printing Technology | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pennsylvania Company Develops Solar Cell Printing Technology Pennsylvania Company Develops Solar Cell Printing Technology Pennsylvania Company Develops Solar Cell Printing Technology April 15, 2010 - 4:20pm Addthis Joshua DeLung What does this project do? The technology uses Plextronics' conductive inks that can be printed by manufacturers worldwide to make solar cells, potentially as easily as they might print a newspaper. This method is much less expensive than many others in terms of raw materials and manufacturing costs. Pittsburgh-based Plextronics, plans to commercialize low-cost solar power globally with its conductive ink technologies, a goal that has been helped by a government incubator program focused on finding marketable prototypes by 2012. "For any technology to be truly successful, you have to enable a new

209

Advanced water-cooled phosphoric acid fuel cell development  

DOE Green Energy (OSTI)

The Advanced Water Cooled Phosphoric Acid Fuel Cell Development program is being conducted by International Fuel Cells Corporation (IFC) to improve the performance and minimize the cost of water-cooled, electric utility phosphoric acid fuel cell stacks. The program adapts the existing on-site Configuration B cell design to electric utility operating conditions and introduces additional new design features. Task 1 consists of the conceptual design of a full-scale electric utility cell stack that meets program objectives. Tasks 2 and 3 develop the materials and processes required to fabricate the components that meet the program objective. The design of the small area and two 10-ft[sup 2] short stacks is conducted in Task 4. The conceptual design also is updated to incorporate the results of material and process developments, as well as results of stack tests conducted in Task 6. Fabrication and assembly of the short stacks are conducted in Task 5 and subsequent tests are conducted in Task 6. The Contractor expects to enter into a contract with the Electric Power Research Institute (EPRI) to assemble and endurance test the second 10-ft[sup 2] short stack. The management and reporting functions of Task 7 provide DOE/METC with program visibility through required documentation and program reviews. This report describes the cell design and development effort that is being conducted to demonstrate, by subscale stack test, the technical achievements made toward the above program objectives.

Not Available

1992-07-01T23:59:59.000Z

210

Development of simplified process for environmentally resistant cells. Final report  

DOE Green Energy (OSTI)

A program to develop a simple, foolproof, all-vacuum solar cell manufacturing process which can be completely automated and which results in medium efficiency cells which are inherently environmentally resistant is described. All components of the completed cells are integrated into a monolithic structure with no material interfaces. The exposed materials (Si, Al/sub 2/O/sub 3/, Al, Ni) are all resistant to atmospheric attack and the junction, per se, is passivated to prevent long term degradation. Such cells are intended to be incorporated into a simple module consisting basically of a press-formed metallic superstructure with a separated glass cover for missile, etc., protection. A 5 cm x 5 cm test cell configuration was designed in which the various efficiency loss factors were adjusted to yield a 10% AMI cell. Each of the cell elements was individually optimized for combination with the others. The basic cell consists of alloyed front (Al) and back (Ag plus Ni) contacts, a multi-purpose (AR, hermetic seal, implantation oxide) front surface coating of Al/sub 2/O/sub 3/, and an implanted front junction. Implantation damage annealing and contact alloying are carried out in a simple one step thermal treatment at 870/sup 0/C using a resistance heated furnace in vacuum. The use of non-analyzed and semi-analyzed beams for fabricating these cells was developed by KCI. A final lot of 50 cells made using the semi-analyzed beam method had an average efficiency of 10.4% at AMI (28 +- 1/sup 0/C). An economic analysis predicts a manufacturing cost of $.45/peak-watt for these cells using a one machine automatic method.

King, W.J.

1980-12-01T23:59:59.000Z

211

Fuel Cell Economic Development Plan Hydrogen Roadmap | Open Energy  

Open Energy Info (EERE)

Fuel Cell Economic Development Plan Hydrogen Roadmap Fuel Cell Economic Development Plan Hydrogen Roadmap Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Fuel Cell Economic Development Plan Hydrogen Roadmap Agency/Company /Organization: Connecticut Department of Economic & Community Development Focus Area: Fuels & Efficiency, Hydrogen Topics: Analysis Tools, Policy Impacts, Socio-Economic Website: www.chfcc.org/Publications/reports/Fuel_Cell_Plan%201-31-08_DECD.pdf Equivalent URI: cleanenergysolutions.org/content/fuel-cell-economic-development-plan-h Language: English Policies: "Regulations,Financial Incentives" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. Regulations: "Safety Standards,Emissions Standards" is not in the list of possible values (Agriculture Efficiency Requirements, Appliance & Equipment Standards and Required Labeling, Audit Requirements, Building Certification, Building Codes, Cost Recovery/Allocation, Emissions Mitigation Scheme, Emissions Standards, Enabling Legislation, Energy Standards, Feebates, Feed-in Tariffs, Fuel Efficiency Standards, Incandescent Phase-Out, Mandates/Targets, Net Metering & Interconnection, Resource Integration Planning, Safety Standards, Upgrade Requirements, Utility/Electricity Service Costs) for this property.

212

Advanced ECU Software Development Method for Fuel Cell Systems  

E-Print Network (OSTI)

The electronic control unit (ECU) in electrical powered hybrid and fuel cell vehicles is exceedingly complex. Rapid prototyping control is used to reduce development time and eliminate errors during software development. This paper describes a high-efficiency development method and a flexible tool chain suitable for various applications in automotive engineering. The control algorithm can be deployed directly from a Matlab/Simulink/Stateflow environment into the ECU hardware together with an OSEK real-time operating system (RTOS). The system has been successfully used to develop a 20-kW fuel cell system ECU based on a Motorola PowerPC 555 (MPC555) microcontroller. The total software development time is greatly reduced and the code quality and reliability are greatly enhanced.

Tian Shuo; Liu Yuan; Xia Wenchuan; Li Jianqiu; Yang Minggao

2005-01-01T23:59:59.000Z

213

Development of a bipolar cell for lithium production  

SciTech Connect

The authors report development and bench-scale testing of an electrolytic process for reduction of LiOH to lithium metal through an amalgam intermediate. The amalgam is formed in an aqueous-electrolyte cell and stripped in a molten salt cell using a LiI-CsI eutectic at 225 C. Total energy efficiency is >70%. The process obviates high temperature materials problems, chlorine evolution and anhydrous feedstocks. While the principle is proven, sustained operation of the cell is now needed to obtain statistical data on reliability and maintainability.

Cooper, J.F.; Ebbinghaus, B.B.; Peterman, K.; Weinland, S. [Lawrence Livermore National Lab., CA (United States); McKenzie, P. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States)

1995-07-01T23:59:59.000Z

214

Automotive Fuel Processor Development and Demonstration with Fuel Cell Systems  

DOE Green Energy (OSTI)

The potential for fuel cell systems to improve energy efficiency and reduce emissions over conventional power systems has generated significant interest in fuel cell technologies. While fuel cells are being investigated for use in many applications such as stationary power generation and small portable devices, transportation applications present some unique challenges for fuel cell technology. Due to their lower operating temperature and non-brittle materials, most transportation work is focusing on fuel cells using proton exchange membrane (PEM) technology. Since PEM fuel cells are fueled by hydrogen, major obstacles to their widespread use are the lack of an available hydrogen fueling infrastructure and hydrogen's relatively low energy storage density, which leads to a much lower driving range than conventional vehicles. One potential solution to the hydrogen infrastructure and storage density issues is to convert a conventional fuel such as gasoline into hydrogen onboard the vehicle using a fuel processor. Figure 2 shows that gasoline stores roughly 7 times more energy per volume than pressurized hydrogen gas at 700 bar and 4 times more than liquid hydrogen. If integrated properly, the fuel processor/fuel cell system would also be more efficient than traditional engines and would give a fuel economy benefit while hydrogen storage and distribution issues are being investigated. Widespread implementation of fuel processor/fuel cell systems requires improvements in several aspects of the technology, including size, startup time, transient response time, and cost. In addition, the ability to operate on a number of hydrocarbon fuels that are available through the existing infrastructure is a key enabler for commercializing these systems. In this program, Nuvera Fuel Cells collaborated with the Department of Energy (DOE) to develop efficient, low-emission, multi-fuel processors for transportation applications. Nuvera's focus was on (1) developing fuel processor subsystems (fuel reformer, CO cleanup, and exhaust cleanup) that were small enough to integrate on a vehicle and (2) evaluating the fuel processor system performance for hydrogen production, efficiency, thermal integration, startup, durability and ability to integrate with fuel cells. Nuvera carried out a three-part development program that created multi-fuel (gasoline, ethanol, natural gas) fuel processing systems and investigated integration of fuel cell / fuel processor systems. The targets for the various stages of development were initially based on the goals of the DOE's Partnership for New Generation Vehicles (PNGV) initiative and later on the Freedom Car goals. The three parts are summarized below with the names based on the topic numbers from the original Solicitation for Financial Assistance Award (SFAA).

Nuvera Fuel Cells

2005-04-15T23:59:59.000Z

215

Program plan for molten carbonate fuel-cell systems development  

DOE Green Energy (OSTI)

The purpose of this document is to describe in both programmatic and technical terms the methodology that the US Department of Energy will use to commercialize a molten carbonate fuel cell power plant. Responsibility for the planning and management of the program resides in the molten carbonate fuel cell program office at the Argonne National Laboratory which reports to the Assistant Director for Fuel Cells in the Division of Fossil Fuel utilization of DOE/FE. The actual development of technology is carried out by selected contractors. The technology development phase of the program will culminate with the construction and operation of two demonstration power plants. The first power plant will be an industrial cogeneration plant which will be completed in 1987. The other power plant will be a baseload electric power plant to be completed in 1989.

Not Available

1978-10-27T23:59:59.000Z

216

Recent Developments in Mems-Based Micro Fuel Cells  

E-Print Network (OSTI)

Micro fuel cells ($\\mu$-FC) represent promising power sources for portable applications. Today, one of the technological ways to make $\\mu$-FC is to have recourse to standard microfabrication techniques used in the fabrication of micro electromechanical systems (MEMS). This paper shows an overview on the applications of MEMS techniques on miniature FC by presenting several solutions developed throughout the world. It also describes the latest developments of a new porous silicon-based miniature fuel cell. Using a silane grafted on an inorganic porous media as the proton-exchange membrane instead of a common ionomer such as Nafion, the fuel cell achieved a maximum power density of 58 mW cm-2 at room temperature with hydrogen as fuel.

Pichonat, T

2007-01-01T23:59:59.000Z

217

Component Development - Advanced Fuel Cells for Transportation Applications  

DOE Green Energy (OSTI)

Report summarizes results of second phase of development of Vairex air compressor/expander for automotive fuel cell power systems. Project included optimizing key system performance parameters, as well as reducing number of components and the project cost, size and weight of the air system. Objectives were attained. Advanced prototypes are in commercial test environments.

Butler, William

2000-06-19T23:59:59.000Z

218

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

NLE Websites -- All DOE Office Websites (Extended Search)

2014-15 Ralph Nine Hayward, CA High Energy Density Li-ion Cells for EV's Based on Novel, High Voltage Cathode Material Systems The objective of this project is to develop a PHEV40...

219

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

NLE Websites -- All DOE Office Websites (Extended Search)

Alto, Santa Clara County, CA High Energy Density Li-ion Cells for EV's Based on Novel, High Voltage Cathode Material Systems The objective of this project is to develop a PHEV40...

220

Advanced water-cooled phosphoric acid fuel cell development  

DOE Green Energy (OSTI)

This program was conducted to improve the performance and minimize the cost of existing water-cooled phosphoric acid fuel cell stacks for electric utility and on-site applications. The goals for the electric utility stack technology were a power density of at least 175 watts per square foot over a 40,000-hour useful life and a projected one-of-a-kind, full-scale manufactured cost of less than $400 per kilowatt. The program adapted the existing on-site Configuration-B cell design to electric utility operating conditions and introduced additional new design features. Task 1 consisted of the conceptual design of a full-scale electric utility cell stack that meets program objectives. The conceptual design was updated to incorporate the results of material and process developments in Tasks 2 and 3, as well as results of stack tests conducted in Task 6. Tasks 2 and 3 developed the materials and processes required to fabricate the components that meet the program objectives. The design of the small area and 10-ft{sup 2} stacks was conducted in Task 4. Fabrication and assembly of the short stacks were conducted in Task 5 and subsequent tests were conducted in Task 6. The management and reporting functions of Task 7 provided DOE/METC with program visibility through required documentation and program reviews. This report describes the cell design and development effort that was conducted to demonstrate, by subscale stack test, the technical achievements made toward the above program objectives.

Not Available

1992-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "developing li-ion cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Advanced Water-Cooled Phosphoric Acid Fuel Cell Development  

DOE Green Energy (OSTI)

This program is being conducted to improve the performance and minimize the cost of water cooled, electric utility phosphoric acid fuel cell stacks. The program adapts the existing on-site Configuration B cell design to electric utility operating conditions and introduces additional new design features. Task 1 consists of the conceptual design of a full-scale electric utility cell stack that meets program objectives. Tasks 2 and 3 develop the materials and processes requested to fabricate the components that meet the program objective. The design of the small area and two 10-ft[sup 2] short stacks is conducted in Task 4. The conceptual design also is updated to incorporate the results of material and process developments, as well as results of stack tests conducted in Task 6. Fabrication and assembly of the short stacks are conducted in Task 5 and subsequent tests are conducted in Task 6. The Contractor expects to enter into a contract with the Electric Power Research Institute (EPRI) to assemble and endurance test the second 10-ft[sup 2] short stack. The management and reporting functions of Task 7 provide DOE/METC with program visibility through required documentation and program reviews. This report describes the cell design and development effort that is being conducted to demonstrate, by subscale stack test, the technical achievements made toward the above program objectives.

Not Available

1992-05-01T23:59:59.000Z

222

Three-Dimensional Thermal-Electrochemical Coupled Model for Spirally Wound Large-Format Lithium-Ion Batteries (Presentation)  

DOE Green Energy (OSTI)

This presentation discusses the behavior of spirally wound large-format Li-ion batteries with respect to their design. The objectives of the study include developing thermal and electrochemical models resolving 3-dimensional spirally wound structures of cylindrical cells, understanding the mechanisms and interactions between local electrochemical reactions and macroscopic heat and electron transfers, and developing a tool and methodology to support macroscopic designs of cylindrical Li-ion battery cells.

Lee, K. J.; Smith K.; Kim, G. H.

2011-04-01T23:59:59.000Z

223

Flow field design development using the segmented cell approach  

DOE Green Energy (OSTI)

We report on fuel cell flow-field development employing two-dimensional computational fluid dynamics (2-D CFD). Simulation of the flow distribution of a parallel channel flow-field, with a simple one-channel manifold, predicted inhomogeneous performance distribution within the cell. Further modeling, focusing on modification of the inlet and outlet flow fields, was used to predict a more homogeneous flow distribution in the flow-field. Attempts were made to verify the theoretical predictions experimentally by application of the segmented cell system. Measurements of the current distribution and CO transient response supported the 2-D CFD predictions. However, the margin of error between predicted and experimental results was considered insufficient to be of practical use. Future work will involve the evaluation of 3-D CFD to achieve the appropriate level of accuracy.

Bender, G. (Guido); Ramsey, J. C. (John C.)

2002-01-01T23:59:59.000Z

224

Status of Automotive Fuel Cell Development: Applicability to Stationary Fuel Cell Generators  

Science Conference Proceedings (OSTI)

Developers of polymer electrolyte membrane fuel cell (PEMFC) technology -- targeting the automotive as well as the stationary markets -- are making significant strides in performance improvements and cost reductions. In concept, PEMFC systems could either replace internal combustion engine drivetrains or power auxiliary loads that would otherwise be powered by propulsion power plants. This report describes how automotive PEMFC development and stationary power PEMFC development will complement each other.

2002-03-05T23:59:59.000Z

225

Development of Reliable Methods for Sealing Solid Oxide Fuel Cell Stacks  

DOE Green Energy (OSTI)

This presentation discusses the development of reliable methods for sealing solid oxide fuel cell stacks.

Loehman, R.; Brochu. M.; Gauntt, B.; Shah, R.

2005-01-27T23:59:59.000Z

226

Update on Fuel Cell Development: Review of Major and Stealth Fuel Cell Players' Activities: Stealth Player Reviews  

Science Conference Proceedings (OSTI)

EPRI has been conducting fuel cell technology assessments and sponsoring research and development of fuel cell technologies for distributed power market applications for the past 20 years. Over the past several years, four fuel cell technologies have emerged for stationary power generation applications: • Molten carbonate fuel cells (MCFCs) • Phosphoric acid fuel cells (PAFCs) • Proton exchange membrane fuel cells (PEMFCs) • Solid oxide fuel cells (SOFCs) There are dozens of companies...

2004-12-21T23:59:59.000Z

227

Center punched solar cell module development effort. Final report  

SciTech Connect

The results of an advanced module development program with the objective of providing a low cost solar cell mechanical interconnect design are presented. The design approach, which avoids soldering or welding operations, lends itself to automated assembly techniques thus supporting the Low-Cost Silicon Solar Array Project goals. During the course of the program, a total of twelve modules were delivered to JPL for qualification testing. The first group of six modules contained aluminum contact cells and the second group of six modules contained silver-titanium-palladium contact cells. Extensive component and environmental testing by Xerox Electro-Optical Systems at the module level has shown that reliable cell mechanical interconnection can be achieved when utilizing the proper electrical contact materials and pressures. Environmental testing of XEOS modules at JPL, in accordance with the same JPL specification used by XEOS, will be performed and the results will be separately published. The module design, manufacturing procedure, test program, significant problem areas and solutions, and conclusions and recommendations as formulated and conducted by XEOS are discussed.

Ross, R.E.; Mortensen, W.E.

1978-06-01T23:59:59.000Z

228

DEVELOPMENT OF NOVEL ELECTROCATALYSTS FOR PROTON EXCHANGE MEMBRANE FUEL CELLS  

DOE Green Energy (OSTI)

Proton Exchange Membrane Fuel Cell (PEMFC) is one of the most promising power sources for space and electric vehicle applications. Platinum (Pt) catalyst is used for both fuel and air electrodes in PEMFCs. The carbon monoxide (CO) contamination of H{sub 2} greatly affects electrocatalysts used at the anode of PEMFCs and decrease the cell performance. This irreversible poisoning of the anode can happen even in CO concentrations as low as few ppm, and therefore, require expensive scrubbing of the H{sub 2}-fuel to reduce the contaminant concentration to acceptable level. In order to commercialize this environmentally sound source of energy/power system, development of suitable CO-tolerant catalyst is needed. In this work, we have synthesized several novel electrocatalysts (Pt/C, Pt/Ru/C Pt/Mo/C, Pt/Ir and Pt/Ru/Mo) for PEMFCs. These catalysts have been tested for CO tolerance in the H{sub 2}/air fuel cell. The concentration of CO in the H{sub 2} fuel varied from 10 ppm to 100 ppm. The performance of the electrodes was evaluated by determining the cell potential against current density. The effect of temperature, catalyst compositions, and electrode film preparation methods on the performance of PEM fuel cell has also been studied. It was found that at 70 C and 3.5 atm pressure at the cathode, Pt-alloy catalysts (10 wt % Pt/Ru/C, 20 wt % Pt/Mo/C) were more CO-tolerant than 20 wt % Pt catalyst alone. It was also observed that spraying method is better for the preparation of electrode film than the brushing technique. Some of these results are summarized in this report.

Shamsuddin Ilias

2001-07-06T23:59:59.000Z

229

Development of improved cathodes for solid oxide fuel cells  

DOE Green Energy (OSTI)

The University of Missouri-Rolla conducted a 17 month research program focused on the development and evaluation of improved cathode materials for solid oxide fuel cells (SOFC). The objectives of this program were: (1) the development of cathode materials of improved stability in reducing environments; and (2) the development of cathode materials with improved electrical conductivity. The program was successful in identifying some potential candidate materials: Air sinterable (La,Ca)(Cr,Co)O{sub 3} compositions were developed and found to be more stable than La{sub .8}Sr{sub .2}MnO{sub 3} towards reduction. Their conductivity at 1000{degrees}C ranged between 30 to 60 S/cm. Compositions within the (Y,Ca)(Cr,Co,Mn)O{sub 3} system were developed and found to have higher electrical conductivity than La{sub .8}Sr{sub .2}MnO{sub 3} and preliminary results suggest that their stability towards reduction is superior.

Anderson, H.U.

1991-03-01T23:59:59.000Z

230

Layered Nickel Oxide-Based Cathodes for Lithium Cells: Analysis ofPerformance Loss Mechanisms  

DOE Green Energy (OSTI)

Spectroscopic and electrochemical diagnostic measurements are reported for the cell components of a Generation 2 (Gen 2) Li-Ion cell from the US Department of Energy's Advanced Technology Development (ATD) project. The cells are composed of LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2} positive electrodes (cathode), carbon graphite anodes and electrolyte consisting of 1.2 M LiPF{sub 6} in EC:EMC 3:7. Fluorophosphates were observed by {sup 19}F and {sup 31}P NMR in the electrolyte obtained from a Gen 2 cell aged 72 weeks at 45 C and presenting 50% power fade. These electrolyte decomposition products were also observed by {sup 31}P solid-state NMR on the surface of the cathode of the same cell. Samples were cut from the aged cathode from the original cell, subjected to different treatments (ultrasonic washing in anhydrous DMC, pressing, ultrasonic washing and pressing), and subsequently reassembled into small lab cells for electrochemical characterization. These treatments recovered the capacity of the electrodes to within a few percent of the original value, with the most improvement being obtained with the washed and pressed cathode. The impedance of the cathodes was also lowered after the ultrasonic washing and pressing treatments. Electron microscopy revealed that the ultrasonic washing of the aged Gen 2 cathode material resulted in the removal of small particles covering the surface of the active cathode. These findings are interpreted in terms of a model whereby capacity loss, and thus power capability, is restored by removing the fluorophosphate deposit and restoring electronic contact to the active cathode material.

Kerlau, Marie; Reimer, Jeffrey A.; Cairns, Elton J.

2004-10-01T23:59:59.000Z

231

Lithium Ion Cell Development for Photovoltaic Energy Storage Applications  

Science Conference Proceedings (OSTI)

The overall project goal is to reduce the cost of home and neighborhood photovoltaic storage systems by reducing the single largest cost component â?? the energy storage cells. Solar power is accepted as an environmentally advantaged renewable power source. Its deployment in small communities and integrated into the grid, requires a safe, reliable and low cost energy storage system. The incumbent technology of lead acid cells is large, toxic to produce and dispose of, and offer limited life even with significant maintenance. The ideal PV storage battery would have the safety and low cost of lead acid but the performance of lithium ion chemistry. Present lithium ion batteries have the desired performance but cost and safety remain the two key implementation barriers. The purpose of this project is to develop new lithium ion cells that can meet PVES cost and safety requirements using A123Systems phosphate-based cathode chemistries in commercial PHEV cell formats. The cost target is a cell design for a home or neighborhood scale at <$25/kWh. This DOE program is the continuation and expansion of an initial MPSC (Michigan Public Service Commission) program towards this goal. This program further pushes the initial limits of some aspects of the original program â?? even lower cost anode and cathode actives implemented at even higher electrode loadings, and as well explores new avenues of cost reduction via new materials â?? specifically our higher voltage cathode. The challenge in our materials development is to achieve parity in the performance metrics of cycle life and high temperature storage, and to produce quality materials at the production scale. Our new cathode material, M1X, has a higher voltage and so requires electrolyte reformulation to meet the high temperature storage requirements. The challenge of thick electrode systems is to maintain adequate adhesion and cycle life. The composite separator has been proven in systems having standard loading electrodes; the challenge with this material will be to maintain proven performance when this composite is coated onto a thicker electrode; as well the high temperature storage must meet application requirements. One continuing program challenge was the lack of specific performance variables for this PV application and so the low power requirements of PHEV/EV transportation markets were again used.

Susan Babinec

2012-02-08T23:59:59.000Z

232

160 C PROTON EXCHANGE MEMBRANE (PEM) FUEL CELL SYSTEM DEVELOPMENT  

DOE Green Energy (OSTI)

The objectives of this program were: (a) to develop and demonstrate a new polymer electrolyte membrane fuel cell (PEMFC) system that operates up to 160 C temperatures and at ambient pressures for stationary power applications, and (b) to determine if the GTI-molded composite graphite bipolar separator plate could provide long term operational stability at 160 C or higher. There are many reasons that fuel cell research has been receiving much attention. Fuel cells represent environmentally friendly and efficient sources of electrical power generation that could use a variety of fuel sources. The Gas Technology Institute (GTI), formerly Institute of Gas Technology (IGT), is focused on distributed energy stationary power generation systems. Currently the preferred method for hydrogen production for stationary power systems is conversion of natural gas, which has a vast distribution system in place. However, in the conversion of natural gas into a hydrogen-rich fuel, traces of carbon monoxide are produced. Carbon monoxide present in the fuel gas will in time cumulatively poison, or passivate the active platinum catalysts used in the anodes of PEMFC's operating at temperatures of 60 to 80 C. Various fuel processors have incorporated systems to reduce the carbon monoxide to levels below 10 ppm, but these require additional catalytic section(s) with sensors and controls for effective carbon monoxide control. These CO cleanup systems must also function especially well during transient load operation where CO can spike 300% or more. One way to circumvent the carbon monoxide problem is to operate the fuel cell at a higher temperature where carbon monoxide cannot easily adsorb onto the catalyst and poison it. Commercially available polymer membranes such as Nafion{trademark} are not capable of operation at temperatures sufficiently high to prevent this. Hence this project investigated a new polymer membrane alternative to Nafion{trademark} that is capable of operation at temperatures up to 160 C.

L.G. Marianowski

2001-12-21T23:59:59.000Z

233

Inferring epigenetic and transcriptional regulation during blood cell development with a mixture of sparse linear models  

Science Conference Proceedings (OSTI)

Motivation: Blood cell development is thought to be controlled by a circuit of transcription factors (TFs) and chromatin modifications that determine the cell fate through activating cell type-specific expression programs. To shed light on the ...

Thais G. do Rego; Helge G. Roider; Francisco A. T. de Carvalho; Ivan G. Costa

2012-09-01T23:59:59.000Z

234

CALPHAD and Its Development for Materials Genome  

Science Conference Proceedings (OSTI)

Thermodynamic Assessment of Pu-based Alloys · Thermodynamic Assessment of the Sn Based Anode Material Systems for Li-ion Batteries · Thermodynamic ...

235

Single Cell Oils: Microbial and Algal Oils, 2nd EditionChapter 20 Future Development of Single Cell Oils  

Science Conference Proceedings (OSTI)

Single Cell Oils: Microbial and Algal Oils, 2nd Edition Chapter 20 Future Development of Single Cell Oils Biofuels and Bioproducts and Biodiesel Biofuels - Bioproducts eChapters Press Downloadable pdf of Chapter 2

236

Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle applications. Part I: Initial characterizations  

Science Conference Proceedings (OSTI)

Evaluating commercial Li-ion batteries presents some unique benefits. One of them is to use cells made from established fabrication process and form factor, such as those offered by the 18650 cylindrical configuration, to provide a common platform to investigate and understand performance deficiency and aging mechanism of target chemistry. Such an approach shall afford us to derive relevant information without influence from processing or form factor variability that may skew our understanding on cell-level issues. A series of 1.9 Ah 18650 lithium ion cells developed by a commercial source using a composite positive electrode comprising (LiMn1/3Ni1/3Co1/3O2 + LiMn2O4) is being used as a platform for the investigation of certain key issues, particularly path-dependent aging and degradation in future plug-in hybrid electric vehicle (PHEV) applications, under the US Department of Energy's Applied Battery Research (ABR) program. Here we report in Part I the initial characterizations of the cell performance and Part II some aspects of cell degradation in 2C cycle aging. The initial characterizations, including cell-to-cell variability, are essential for life cycle performance characterization in the second part of the report when cell-aging phenomena are discussed. Due to the composite nature of the positive electrode, the features (or signature) derived from the incremental capacity (IC) of the cell appear rather complex. In this work, the method to index the observed IC peaks is discussed. Being able to index the IC signature in details is critical for analyzing and identifying degradation mechanism later in the cycle aging study.

Matthieu Dubarry; Cyril Truchot; Mikael Cugnet; Bor Yann Liaw; Kevin Gering; Sergiy Sazhin; David Jamison; Christopher Michelbacher

2011-12-01T23:59:59.000Z

237

CIBS Solar Cell Development Final Scientific/Technical Report  

SciTech Connect

Efforts to fabricate and study a new photovoltaic material, copper indium boron diselenide (CuInxB1-xSe2 or CIBS), were undertaken. Attempts to prepare CIBS using sputtering deposition techniques resulted in segregation of boron from the rest of elements in the material. CIBS nanocrystals were prepared from the reaction of elemental Se with CuCl, InCl3, and boric acid in solution, but the product material quickly decomposed upon heating that was required in attempts to convert the nanocrystals into a thin film. The investigation of the reasons for the lack of CIBS material stability led to new structure-property studies of closely-related photovoltaic systems as well as studies of new solar cell materials and processing methods that could enhance the development of next-generation solar technologies. A detailed compositional study of CuIn1-xAlxSe2 (CIAS, a system closely related to CIBS) revealed a non-linear correlation between crystal lattice size and the Al/(In+Al) ratios with dual-phase formation being observed. A new nanocrystal-to-thin-film processing method was developed for the preparation of CuIn1-xGaxSe2 (CIGS) thin films in which colloidal Se particles are sprayed in contact with CuIn1-xGaxS2 nanoparticles and heated in an argon atmosphere with no other Se source in the system. The process is non-vacuum and does not require toxic gases such as Se vapor or H2Se. Expertise gained from these studies was applied to new research in the preparation of thin-film pyrite FeS2, an attractive earth-abundant candidate material for next-generation photovoltaics. Three methods successfully produced pure pyrite FeS2 films: sulfurization of sputtered Fe films, chemical bath deposition, and sulfurization of Fe2O3 sol-gel precursors. The last method produced pinhole-free films that may be viable for device development. Nickel, platinum, and possibly carbon would appear to serve as good ohmic contact materials. While CdS has a reasonable conduction band energy match to serve as an n-type buffer material in a pyrite FeS2-based solar cell, the less toxic SnS2 is being explored for this purpose.

Exstrom, Christopher L.; Soukup, Rodney J.; Ianno, Natale J.

2011-09-28T23:59:59.000Z

238

Development of electrolysis-cell separator for 125/sup 0/C operation. Advanced alkaline electrolysis cell development. Final report  

DOE Green Energy (OSTI)

This report contains the findings of a seven-month contracted effort. The major technical task involved a 125/sup 0/C operating temperature test of the 20 v/o polybenzimidazole (PBI) - 80 v/o potassium titanate (K/sub 2/TiO/sub 3/) separator in combination with the nickel-molybdenum cathode electrocatalyst system dubbed the C-AN cathode using the ARIES test system which was developed previously. The test of the PBI-K/sub 2/TiO/sub 3/ separator was only partially successful. The anticipated 1.85 (75/sup 0/C) and 1.75 volt per cell (100/sup 0/C) input requirement at 550 ma/cm/sup 2/ were surpassed slightly. The test module operated stably for about 550 hr. Although there were some mechanical difficulties with the ARIES test unit, testing at 125/sup 0/C proceeded from 745 hr on test until the test was terminated at 2318 operating hours to allow diagnostic disassembly. The input voltage degraded to a value of 1.82 volt per cell at 125/sup 0/C which is unacceptable. Diagnostic disassembly showed the PBI portion of the separator was no longer present. PBI had been shown to be stable in 123/sup 0/C, 45 w/o KOH solutions in a 1000-hr test. The attack is suggested to be attributable to a peroxide or perchlorate type oxidizer which would be unique to the electrolysis mode and probably not present in alkaline fuel cell applications. Recommendations for further testing include an evaluation of the chemical compatibility of PBI with alkaline/oxidizer solutions and endurance testing the C-AN cathode with new improved anode structures at 125/sup 0/C using asbestos separators in combination with a silicate saturated KOH electrolyte. Demonstration of the stability of this 1.65 volt per cell (90% voltage efficiency) technology at 500 ma/cm/sup 2/ will document an inexpensive and intelligent hydrogen production process which will satisfy the needs of the United States in the 1990s.

Murray, J N

1983-03-01T23:59:59.000Z

239

Catalysts and materials development for fuel cell power generation  

E-Print Network (OSTI)

Catalytic processing of fuels was explored in this thesis for both low-temperature polymer electrolyte membrane (PEM) fuel cell as well as high-temperature solid oxide fuel cell (SOFC) applications. Novel catalysts were ...

Weiss, Steven E

2005-01-01T23:59:59.000Z

240

Development of high efficiency cascade solar cells. Quarterly technical progress report No. 2  

DOE Green Energy (OSTI)

Research has continued in the development of selected ternary and quaternary III-V materials that are potential candidates for cascade solar cell applications. In addition, various simple and multi-junction cascade solar cell components have been fabricated and evaluated in a continuing study of several different solar cell designs (materials combinations). During the present reporting period, work has concentrated on the following major areas: GaAlAs/GaAs cell development; AlGaAsSb/GaAsSb materials development; GaInP materials development via VPE; inverted structure development; and MO/CVD growth system work at NCSU. Progress in each of these areas is summarized.

Not Available

1979-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "developing li-ion cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

CRADA Final Report: Process development for hybrid solar cells  

E-Print Network (OSTI)

III-Nitride Alloys for Solar Power Conversion. ” List ofsolar cells have the potential to reduce the cost of concentrator photovoltaic power

Ager, Joel W

2011-01-01T23:59:59.000Z

242

Fuel Cell Technologies Program Multi-Year Research, Development...  

NLE Websites -- All DOE Office Websites (Extended Search)

petroleum gas (LPG, consisting predominantly of propane) or renewable fuels such as biogas from wastewater treatments plants. Fuel cells for auxiliary power units in trucks will...

243

Fuel Cell Technologies Program Multi-Year Research, Development...  

NLE Websites -- All DOE Office Websites (Extended Search)

variety of other fuels, including natural gas and renewable fuels such as methanol or biogas. Fuel cells provide these benefits and address critical challenges in all energy...

244

NREL Makes Substantial Progress in Developing CZTSe Solar Cells...  

NLE Websites -- All DOE Office Websites (Extended Search)

non-toxic, Earth-abundant elements. Recently, NREL demonstrated an 8.4%-efficient CZTSe solar cell produced using commercially acceptable manufacturing techniques. Scientists...

245

Mechanisms of Cell Regeneration, Development, and Propagation within a Two-Dimensional Multicell Storm  

Science Conference Proceedings (OSTI)

In this study, mechanisms of cell regeneration, development, and propagation within a two-dimensional multicell storm are investigated using a numerical cloud model. The cell regeneration is explained by the advection mechanism. The following ...

Yuh-Lang Lin; Roy L. Deal; Mark S. Kulie

1998-05-01T23:59:59.000Z

246

Cell Development and Merger in an Illinois Thunderstorm Observed by Doppler Radar  

Science Conference Proceedings (OSTI)

A reflectivity and triple-Doppler radar study of the development of several cells and their successive union within a nonsevere thunderstorm is presented. Two characteristic separations were found between the newly formed cells and the parent ...

Nancy E. Westcott; Patrick C. Kennedy

1989-01-01T23:59:59.000Z

247

Inverted Metamorphic Cell Development: Cooperative Research and Development Final Report, CRADA Number CRD-05-156  

DOE Green Energy (OSTI)

This CRADA targeted technology transfer of the inverted metamorphic multi-junction (IMM) solar cell innovation from NREL to Emcore Photovoltaics. The technology transfer was successfully completed. Additionally, NREL provided materials characterization of solar cell structures produced at Emcore.

Wanlass, M.

2012-05-01T23:59:59.000Z

248

DOE Announces up to $74 Million for Fuel Cell Research and Development...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

a total of up to 74 million to support the research and development of clean, reliable fuel cells for stationary and transportation applications. The solicitations include up to...

249

2010 Hydrogen and Fuel Cell Global Commercialization & Development Update  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen is a clean fuel. When used in fuel cells, the Hydrogen is a clean fuel. When used in fuel cells, the only byproducts are water and heat. * Clean hydrogen technology has the potential to strengthen national economies and create high-quali- ty jobs in industries such as fuel cell manufacturing. * Hydrogen can be derived from renewable sources and is fully interchangeable with electricity - hydrogen can be used to generate electricity, while electricity can be used to produce hydrogen. * Over 100 years of safe production, transportation and use of hydrogen shows that it carries no more risk than natural gas or gasoline. * Hydrogen can be produced from diverse domestic sources and processes, freeing it from the political instabilities that affect the world's oil and gas supplies. * Fuel cells have more than double the energy-efficien-

250

Solid Oxide Fuel Cell and Power System Development at PNNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology echnology Hydro- -Desulfurization T Funded by y Arm y y TARDEC Brass board, transportable system Ran 10 kW PEM fuel cell Demonstrated on JP-8 with...

251

Development of Reversible Fuel Cell Systems at Proton Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

M H x N i H 2 N i C d P b a c i d Energy Storage System Source: Mitlitsky, et al, "Regenerative Fuel Cells", Energy and Fuels, 1998. Packaged specific energy of up to 1,000...

252

Fuel Cell Technologies Program Multi-Year Research, Development...  

NLE Websites -- All DOE Office Websites (Extended Search)

Plan Page 3.8 - 1 3.8 Education and Outreach Expanding the role of hydrogen and fuel cell technologies as an integral part of the Nation's energy portfolio requires sustained...

253

DEVELOPMENT OF NOVEL ELECTROCATALYSTS FOR PROTON EXCHANGE MEMBRANE FUEL CELLS  

DOE Green Energy (OSTI)

Fuel cells are electrochemical devices that convert the available chemical free energy directly into electrical energy, without going through heat exchange process. Of all different types of fuel cells, the Proton Exchange Membrane Fuel Cell (PEMFC) is one of the most promising power sources for stand-alone utility and electric vehicle applications. Platinum (Pt) Catalyst is used for both fuel and air electrodes in PEMFCs. However, carbon monoxide (CO) contamination of H{sub 2} greatly affects electro catalysts used at the anode of PEMFCs and decreases cell performance. The irreversible poisoning of the anode can occur even in CO concentrations as low as few parts per million (ppm). In this work, we have synthesized several novel elctrocatalysts (Pt/C, Pt/Ru/C, Pt/Mo/C, Pt/Ir and Pt/Ru/Mo) for PEMFCs. These catalysts have been tested for CO tolerance in the H{sub 2}/air fuel cell, using CO concentrations in the H{sub 2} fuel that varies from 10 to 100 ppm. The performance of the electrodes was evaluated by determining the cell potential against current density. The effects of catalyst composition and electrode film preparation method on the performance of PEM fuel cell were also studied. It was found that at 70 C and 3.5 atm pressure at the cathode, Pt-alloy catalyst (10 wt% Pt/Ru/C, 20 wt% Pt/Mo/C) were more CO tolerant than the 20 wt% Pt/C catalyst alone. It was also observed that spraying method was better than the brushing technique for the preparation of electrode film.

Shamsuddin Ilias

2003-04-24T23:59:59.000Z

254

Investigation of layered intergrowth Li{sub x}M{sub y}Mn{sub 1-y}O{sub 2+z} (M=Ni,Co,Al) compounds as positive electrodes for Li-ion batteries  

DOE Green Energy (OSTI)

Layered substituted lithium manganese oxides suitable for use as lithium ion battery electrodes may be prepared from the corresponding sodium manganese metal oxide compounds by ion-exchange. Stacking arrangements (O2, O3, or O2/O3 intergrowths) in the lithiated materials are dependent upon the Na/transition metal ratio in the sodium-containing precursors, the degree of substitution, and the identity of the substituting metal. O3 layered materials deliver up to 200 mAh/g at moderate current densities in lithium cell configurations, but convert rapidly to spinels upon cell cycling, while O2 compounds are more stable but deliver less capacity. Intergrowths show intermediate behavior, with higher capacities than pure O2 materials and better phase stability than O3 compounds. Some intergrowth structures do not appear to convert to spinel during normal cycling, suggesting it may be possible to tailor high energy density, phase stable layered manganese oxide electrodes for lithium batteries.

Dolle, M.; Hollingsworth, J.; Richardson, T.J.; Doeff, M.M.

2003-07-14T23:59:59.000Z

255

Fuel Cell Technologies Program Multi-Year Research, Development...  

NLE Websites -- All DOE Office Websites (Extended Search)

Plan Page B - 1 Multi-Year Research, Development and Demonstration Plan Page B - 2 Multi-Year Research, Development and Demonstration Plan Page B - 3 Multi-Year Research,...

256

DEVELOPMENT OF NOVEL ELECTROCATALYSTS FOR PROTON EXCHANGE MEMBRANE FUEL CELLS  

DOE Green Energy (OSTI)

The Proton Exchange Membrane Fuel Cell (PEMFC) is one of the most promising power sources for stand-alone utility and electric vehicle applications. Platinum (Pt) Catalyst is used for both fuel and air electrodes in PEMFCs. However, carbon monoxide (CO) contamination of H{sub 2} greatly affects electro catalysts used at the anode of PEMFCs and decreases cell performance. The irreversible poisoning of the anode can occur even in CO concentrations as low as few parts per million (ppm). In this work, we have synthesized several novel elctrocatalysts (Pt/C, Pt/Ru/C, Pt/Mo/C, Pt/Ir and Pt/Ru/Mo) for PEMFCs. These catalysts have been tested for CO tolerance in the H{sub 2}/air fuel cell, using CO concentrations in the H{sub 2} fuel that varies from 10 to 100 ppm. The performance of the electrodes was evaluated by determining the cell potential against current density. The effects of catalyst composition and electrode film preparation method on the performance of PEM fuel cell were also studied. It was found that at 70 C and 3.5 atm pressure at the cathode, Pt-alloy catalyst (10 wt% Pt/Ru/C, 20 wt% Pt/Mo/C) were more CO tolerant than the 20 wt% Pt/C catalyst alone. It was also observed that spraying method was better than the brushing technique for the preparation of electrode film.

Shamsuddin Ilias

2002-06-11T23:59:59.000Z

257

Process Development for High Voc CdTe Solar Cells  

DOE Green Energy (OSTI)

This is a cumulative and final report for Phases I, II and III of this NREL funded project (subcontract # XXL-5-44205-10). The main research activities of this project focused on the open-circuit voltage of the CdTe thin film solar cells. Although, thin film CdTe continues to be one of the leading materials for large-scale cost-effective production of photovoltaics, the efficiency of the CdTe solar cells have been stagnant for the last few years. This report describes and summarizes the results for this 3-year research project.

Ferekides, C. S.; Morel, D. L.

2011-05-01T23:59:59.000Z

258

DOE Announces up to $74 Million for Fuel Cell Research and Development |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Announces up to $74 Million for Fuel Cell Research and Announces up to $74 Million for Fuel Cell Research and Development DOE Announces up to $74 Million for Fuel Cell Research and Development December 22, 2010 - 12:00am Addthis WASHINGTON, DC - The U.S. Department of Energy today announced it is accepting applications for a total of up to $74 million to support the research and development of clean, reliable fuel cells for stationary and transportation applications. The solicitations include up to $65 million over three years to fund continued research and development (R&D) on fuel cell components, such as catalysts and membrane electrode assemblies, with the goal of reducing costs, improving durability and increasing the efficiency of fuel cell systems. The funding also includes up to $9 million to conduct independent cost analyses that will assess the progress of the

259

HIGH-TEMPERATURE TUBULAR SOLID OXIDE FUEL CELL GENERATOR DEVELOPMENT  

DOE Green Energy (OSTI)

During the Westinghouse/USDOE Cooperative Agreement period of November 1, 1990 through November 30, 1997, the Westinghouse solid oxide fuel cell has evolved from a 16 mm diameter, 50 cm length cell with a peak power of 1.27 watts/cm to the 22 mm diameter, 150 cm length dimensions of today's commercial prototype cell with a peak power of 1.40 watts/cm. Accompanying the increase in size and power density was the elimination of an expensive EVD step in the manufacturing process. Demonstrated performance of Westinghouse's tubular SOFC includes a lifetime cell test which ran for a period in excess of 69,000 hours, and a fully integrated 25 kWe-class system field test which operated for over 13,000 hours at 90% availability with less than 2% performance degradation over the entire period. Concluding the agreement period, a 100 kW SOFC system successfully passed its factory acceptance test in October 1997 and was delivered in November to its demonstration site in Westervoort, The Netherlands.

S.E. Veyo

1998-09-01T23:59:59.000Z

260

4135DEVELOPMENT AND STEM CELLS RESEARCH ARTICLE INTRODUCTION  

E-Print Network (OSTI)

Warts (Wts), lead to cellular proliferation coupled with resistance to cell death (Hamaratoglu et al to regenerative medicine, but also in understanding the evasion of growth control during oncogenesis (Hanahan a framework of the structure of this pathway. Activation of the Serine/Threonine kinase Hippo (Hpo) leads

Higgins, Darren

Note: This page contains sample records for the topic "developing li-ion cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Fuel Cell Technologies Program Multi-Year Research, Development...  

NLE Websites -- All DOE Office Websites (Extended Search)

Appendix D - Project Evaluation Form Multi-Year Research, Development and Demonstration Plan Page D- 1 DOE Hydrogen Program 2011 Annual Merit Review Project Evaluation Form...

262

Fossil Energy-Developed Fuel Cell Technology Being Adapted by Navy for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy-Developed Fuel Cell Technology Being Adapted by Navy Energy-Developed Fuel Cell Technology Being Adapted by Navy for Advanced Unmanned Undersea Vehicles Fossil Energy-Developed Fuel Cell Technology Being Adapted by Navy for Advanced Unmanned Undersea Vehicles January 31, 2013 - 12:00pm Addthis An unmanned undersea vehicle (UUV) being deployed during a U.S. Office of Naval Research demonstration near Panama City. Solid oxide fuel cell technology being developed by the Office of Fossil Energy for coal-fueled central power generation is being adapted to power UUVs. U.S. Navy photo by Mr. John F. Williams/Released. An unmanned undersea vehicle (UUV) being deployed during a U.S. Office of Naval Research demonstration near Panama City. Solid oxide fuel cell technology being developed by the Office of Fossil Energy for coal-fueled

263

Dendritic cells are accessory cells for the development of anti-trinitrophenyl cytotoxic T lymphocytes  

E-Print Network (OSTI)

The adherent cell population from mouse spleen is a heterogeneous collection of cells that includes mononuclear phagocytes and a novel entity, the dendritic cell. As reviewed recently (1), dendritic ceils and macrophages differ in many important respects, including their structure at the light and electron microscopic level, endocytic activity, behavior in in vitro systems, life history and phylogeny, and surface antigens and receptors. It is now possible to separate dendritic cells and macrophages from complex parenchymal mixtures, to monitor the purity of the preparations, and to cultivate each cell type for prolonged periods in a tissue culture environment. With the availability of the above techniques, it has been possible to evaluate the separate roles of dendritic cells and macrophages in the induction of immune responses. We have reported that dendritic cells serve as powerful stimulators of both the allogeneic and syngeneic mixed leukocyte reactions (MLR),I whereas macrophages (Mth) are either weak or inactive (2-4). We now compare the accessory cell function of dendritic cells (DC) and Mth, specifically their ability to support the generation of anti-trinitrophenol (TNP) cytotoxic T lymphocytes (CTL) in a primary in vitro response. The evidence will show that DC are the critical accessory cells, whereas M~b, regardless of source or expression of Ia antigen, are without significant activity. Mth, however, can serve as potent inhibitors of the DC-dependent production of CTL via an indomethacin-sensitive mechanism.

C. Nussenzweig; Ralph M. Steinman; Bodma Gutchinov; Zanvil; A. Cohn; Cell Preparations

1980-01-01T23:59:59.000Z

264

Microwave Plasma Chemical Vapor Deposition of Carbon Coatings on LiNi1/3Co1/3Mn1/3O2 for Li-Ion Battery Composite Cathodes  

DOE Green Energy (OSTI)

In this paper, we report results of a novel synthesis method of thin film conductive carbon coatings on LiNi{sub 1/3}Co{sub 1/3}Mn{sub 1/3}O{sub 2} cathode active material powders for lithium-ion batteries. Thin layers of graphitic carbon were produced from a solid organic precursor, anthracene, by a one-step microwave plasma chemical vapor deposition (MPCVD) method. The structure and morphology of the carbon coatings were examined using SEM, TEM, and Raman spectroscopy. The composite LiNi{sub 1/3}Co{sub 1/3}Mn{sub 1/3}O{sub 2} electrodes were electrochemically tested in lithium half coin cells. The composite cathodes made of the carbon-coated LiNi{sub 1/3}Co{sub 1/3}Mn{sub 1/3}O{sub 2} powder showed superior electrochemical performance and increased capacity compared to standard composite LiNi{sub 1/3}Co{sub 1/3}Mn{sub 1/3}O{sub 2} electrodes.

Doeff, M.M.; Kostecki, R.; Marcinek, M.; Wilcoc, J.D.

2008-12-10T23:59:59.000Z

265

Development of contractor cells. Technical status report, Phase 1 report  

DOE Green Energy (OSTI)

The microgrooved passivated emitter solar cell approach combines a thin diffused top junction layer of approximately 0.2{mu}m depth and 120--180{Omega}/square sheet resistance with a tin (100--200A) silicon dioxide surface passivation layer. The front gridlines sit on top of a heavily diffused N++ region to reduce contact resistance between front gridlines and the N surface. High-quality float zone silicon with nominal resistivity of 0.20{Omega}-cm or 0.15 {Omega}-cm is used for this work. To achieve the highest possible concentration performance and lower system cost, the cell area was educed to 1 square centimeter from 1.58 square centimeters used at the University of new South Wales. The gridlines spacing is 127 microns designed to match the available prismatic cover. The baseline process requites four lithographic masking steps. A single lift-of process for evaporated gridlines is used to provide 8-microns-thick metallization to avoid the non-uniform metal plating and disposal of hazardous plating solutions. The front and back contact materials are space-qualified, vacuum-deposited layers of titanium-palladium and silver. A double-layer antireflection coating of TiO{sub x}and Al{sub 2}O{sub 3} is used to reduce surface reflection from the cells; this antireflection coating is designed to match with the SiO{sub 2} passivation layer. Four different gridlines widths (20, 16, 8, and 2 microns) we tested and evaluated for the best performance at high intensities. A three-level lithographic masking process was evaluated for reduced costs and a five-level lithographic masking process was evaluated for increased yield.

Not Available

1992-06-01T23:59:59.000Z

266

Preliminary development of thermal nuclear cell homogenization code  

SciTech Connect

Nuclear fuel cell homogenization for thermal reactors usually include three main parts, i.e., fast energy resonance part which usually adopt narrow resonance approximation to treat the resonance, low (intermediate) energy region in which the resonance can not be treated accurately using NR approximation and therefore we should use intermediate resonance treatment, and thermal energy region (very low) in which the effect of thermal must be treated properly. In n this study the application of the intermediate resonance approximation treatment for low energy nuclear resonance is discussed. The method is iterative based. As a sample the method is applied in U-235 low lying resonance and the result is presented and discussed.

Su'ud, Z.; Shafii, M. A.; Yudha, S. P.; Waris, A.; Rijal, K. [Nuclear Research group, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Jl. Ganesha 10, Bandung40132 (Indonesia)

2012-06-06T23:59:59.000Z

267

Development of Supported Bifunctional Electrocatalysts for Unitized Regenerative Fuel Cells  

E-Print Network (OSTI)

Industrial Partnerships Program to further the development of their wind turbine. #12;Success Stories of Past drug, PTH-CBD, is being prepared for licensing to a pharmaceutical company after the Phase I trials the provisional patent for the technology, process and delivery of LOCUS. This is a single- chambered microbial

268

Development of high efficiency cascade solar cells. Quarterly technical progress report No. 3  

DOE Green Energy (OSTI)

Progress is reported in the following areas: AlGaAsSb/GaAsSb materials development, GaInP materials development via VPE, GaAlAs/GaAs cell development, and OM/CVD studies. Spectral response, V-I characteristics, and electron microprobe analysis results are presented. (WHK)

Not Available

1980-03-31T23:59:59.000Z

269

Solid Oxide Fuel Cell (SOFC) Development at Pacific Northwest National Laboratory  

Science Conference Proceedings (OSTI)

Pacific Northwest National Laboratory (PNNL), in collaboration with government agencies and industries, is actively engaged in the development, testing, and characterization of high efficiency, low cost modular solid oxide fuel cell power generation systems for stationary, automotive and military applications. Advanced SOFC systems are being developed which will offer ease of operation on a variety of gaseous liquid hydrocarbon and coal-derived fuels as well as "zero emissions" capability. SOFC R&D activities at PNNL continue in the areas of cell component materials, electrochemistry, cell design and modeling, high temperature corrosion, and fuel processing. Specific activities include development of optimized materials and cost effective fabrication techniques for high power density anode-supported cells operating at temperatures below 800 degrees C, characterization of processes responsible for high electrical performance and long term performance degradation, optimization and cell and stack designs using computational engineering models, and hydrocarbon fuel processing using micro technology.

Stevenson, Jeffry W.; Baskaran, Suresh; Chick, Lawrence A.; Chou, Y. S.; Deibler, John E.; Khaleel, Mohammad A.; Marina, Olga A.; Meinhardt, Kerry D.; Paxton, Dean M.; Pederson, Larry R.; Recknagle, Kurtis P.; Simner, Steve P.; Sprenkle, Vince L.; Weil, K. Scott; Yang, Z Gary; Singh, Prabhakar; McVay, Gary L.

2003-01-20T23:59:59.000Z

270

Development of Advanced Solid Oxide Fuel Cell Hybrids for Distributed Power Market Applications  

Science Conference Proceedings (OSTI)

A project was initiated with Rolls-Royce PLC to assess the technical and economic feasibility of their advanced solid oxide fuel cell (SOFC) technology and to better understand the development hurdles to achieving megawatt-scale commercial products. This effort was part of a series of projects in 2001 assessing solid oxide fuel cell technology.

2002-05-02T23:59:59.000Z

271

Development of manufacturing capability for high-concentration, high-efficiency silicon solar cells  

DOE Green Energy (OSTI)

This report presents a summary of the major results from a program to develop a manufacturable, high-efficiency silicon concentrator solar cell and a cost-effective manufacturing facility. The program was jointly funded by the Electric Power Research Institute, Sandia National Laboratories through the Concentrator Initiative, and SunPower Corporation. The key achievements of the program include the demonstration of 26%-efficient silicon concentrator solar cells with design-point (20 W/cm{sup 2}) efficiencies over 25%. High-performance front-surface passivations; that were developed to achieve this result were verified to be absolutely stable against degradation by 475 days of field exposure at twice the design concentration. SunPower demonstrated pilot production of more than 1500 of these cells. This cell technology was also applied to pilot production to supply 7000 17.7-cm{sup 2} one-sun cells (3500 yielded wafers) that demonstrated exceptional quality control. The average efficiency of 21.3% for these cells approaches the peak efficiency ever demonstrated for a single small laboratory cell within 2% (absolute). Extensive cost models were developed through this program and calibrated by the pilot-production project. The production levels achieved indicate that SunPower could produce 7-10 MW of concentrator cells per year in the current facility based upon the cell performance demonstrated during the program.

Sinton, R.A.; Verlinden, P.J.; Crane, R.A.; Swanson, R.N. [SunPower Corp., Sunnyvale, CA (United States)

1996-10-01T23:59:59.000Z

272

DESIGN AND PERFORMANCE OBJECTIVES OF THE SINGLE CELL TEST SYSTEM FOR SO2 DEPOLARIZED ELECTROLYZER DEVELOPMENT  

SciTech Connect

The single cell test system development for the SRNL sulfur dioxide-depolarized electrolyzer has been completed. Operating experience and improved operating procedures were developed during test operations in FY06 and the first quarter of FY07. Eight different cell configurations, using various MEA designs, have been tested. The single cell test electrolyzer has been modified to overcome difficulties experienced during testing, including modifications to the inlet connection to eliminate minute acid leaks that caused short circuits. The test facility was modified by adding a water bath for cell heating, thus permitting operation over a wider range of flowrates and cell temperatures. Modifications were also identified to permit continuous water flushing of the cathode to remove sulfur, thus extending operating time between required shutdowns. This is also expected to permit a means of independently measuring the rate of sulfur formation, and the corresponding SO{sub 2} flux through the membrane. This report contains a discussion of the design issues being addressed by the single cell test program, a test matrix being conducted to address these issues, and a summary of the performance objectives for the single cell test system. The current primary objective of single cell test system is to characterize and qualify electrolyzer configurations for the following 100-hour longevity tests. Although the single cell test system development is considered complete, SRNL will continue to utilize the test facility and the single cell electrolyzer to measure the operability and performance of various cell design configurations, including new MEA's produced by the component development tasks.

Steimke, J

2007-01-15T23:59:59.000Z

273

Development of Rie-Textured Silicon Solar Cells  

DOE Green Energy (OSTI)

The Xyce{trademark} Parallel Electronic Simulator has been written to support the simulation needs of the Sandia National Laboratories electrical designers. As such, the development has focused on providing the capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). In addition, they are providing improved performance for numerical kernels using state-of-the-art algorithms, support for modeling circuit phenomena at a variety of abstraction levels and using object-oriented and modern coding-practices that ensure the code will be maintainable and extensible far into the future. The code is a parallel code in the most general sense of the phrase--a message passing parallel implementation--which allows it to run efficiently on the widest possible number of computing platforms. These include serial, shared-memory and distributed-memory parallel as well as heterogeneous platforms. Furthermore, careful attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved even as the number of processors grows.

DAMIANI,B.M.; LUDEMANN,R.; RUBY,DOUGLAS S.; ZAIDI,S.H.; ROHATGI,A.

2000-12-01T23:59:59.000Z

274

Improved Positive Electrode Materials for Li-ion Batteries  

E-Print Network (OSTI)

from conventional petroleum sources, while the dottedline includes non-petroleum sources like ethanol and otherpowered by petroleum-based energy sources, a value that does

Conry, Thomas Edward

2012-01-01T23:59:59.000Z

275

Batteries - Next-generation Li-ion batteries Breakout session  

NLE Websites -- All DOE Office Websites (Extended Search)

power, stability) * Lack of new high-energy intercalation materials * Lack of stable high-voltage electrolytes * Lack of cycleable, high-density anode (e.g. metallic lithium)...

276

ELECTROLYTE MIXTURES USEFUL FOR LI-ION BATTERIES - Energy ...  

Solar Photovoltaic; Solar Thermal; Startup America; Vehicles and Fuels; ... The Regents of the University of California (Oakland CA) Application Number: 12/ 274,012:

277

Probing Li-Ion Battery Electrode Architectures with a  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2009. Symposium, Energy Storage: Materials, Systems, and Applications. Presentation Title ...

278

Graphenic Material for High Performance Li-Ion Battery Electrodes  

Science Conference Proceedings (OSTI)

3D Nanostructured Bicontinuous Electrodes: Path to Ultra-High Power and Energy ... High Energy Density Lithium Capacitors Using Carbon-Carbon Electrodes.

279

Graphene Based Anodes for Li-ion Batteries  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2013 TMS Annual Meeting & Exhibition. Symposium , Nanostructured Materials for Lithium Ion Batteries and for Supercapacitors.

280

Improved Positive Electrode Materials for Li-ion Batteries  

E-Print Network (OSTI)

of US dependence on foreign oil. The United States has morethat US dependence on foreign oil can be decreased by up to

Conry, Thomas Edward

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "developing li-ion cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Recovery of Metallic Values from Spent Li Ion Secondary Batteries  

Science Conference Proceedings (OSTI)

During the first step, 92% of the cobalt was recovered as CoSO4 by the use of ethanol at a volume ratio of 3 : 1. In the second step, the remaining cobalt was ...

282

Berkeley Lab Researchers Evaluate Tin Nanocrystals for Li-ion...  

NLE Websites -- All DOE Office Websites (Extended Search)

with EETD scientists on cooperative research? Get a job in EETD? Make my home more energy-efficient? Find a source within EETD for a news story I'm writing, shooting, or...

283

Novel Electrode Material Offers Alternative for Li-ion Batteries  

Science Conference Proceedings (OSTI)

Jun 10, 2013 ... Further increasing the capacity of lithium-ion batteries could enable laptops to work longer and electric cars to drive farther, among many ...

284

New Model Predicts Dendrite Formation in Li-Ion Batteries  

Science Conference Proceedings (OSTI)

Mar 28, 2013 ... The dendrites are lithium deposits that form on electrode surfaces that can potentially cause an internal short circuit, resulting in battery failure ...

285

Integrating SOC Dependent Material Properties into Li-Ion Battery ...  

Science Conference Proceedings (OSTI)

During battery operation, Li flows into and out of electrode particles, causing microstructural changes and deformation-induced degradation. A variety of models ...

286

Improved Positive Electrode Materials for Li-ion Batteries  

E-Print Network (OSTI)

could double Chevy Volt battery capacity. ” http://could-double-chevy-volt-battery-capacity/chevy-volt3-4/; “Volt’s Battery Capacity Could Double. ” http://

Conry, Thomas Edward

2012-01-01T23:59:59.000Z

287

Direct Observation of Microstructure Evolution in Li-Ion Battery ...  

Science Conference Proceedings (OSTI)

Catalytic Properties of Ni3Al Foils for Methane Steam Reforming · Characterization of the Crystallographic Textures and Mechanical Anisotropy Factors in Two ...

288

Porous Graphene Nanosheets for Li-ion Battery Anodes  

Science Conference Proceedings (OSTI)

A21: First-Principles Molecular Dynamics Simulation of Chemical ... A3: Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass Char by ... Lithium Redox Process for Thermochemical Water-Splitting as Energy Conversion.

289

Hydrogen & Fuel Cells: Review of National Research and Development (R&D)  

Open Energy Info (EERE)

Hydrogen & Fuel Cells: Review of National Research and Development (R&D) Hydrogen & Fuel Cells: Review of National Research and Development (R&D) Programs Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Hydrogen & Fuel Cells: Review of National Research and Development (R&D) Programs Focus Area: Hydrogen Topics: Policy Impacts Website: www.iea.org/Textbase/npsum/hydrogenSUM.pdf Equivalent URI: cleanenergysolutions.org/content/hydrogen-fuel-cells-review-national-r Language: English Policies: "Regulations,Deployment Programs,Financial Incentives" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Public-Private Partnerships Regulations: Safety Standards This book maps the various governmental research activities and policies

290

Development of Commercial Technology for Thin Film Silicon Solar Cells on Glass: Cooperative Research and Development Final Report, CRADA Number CRD-07-209  

DOE Green Energy (OSTI)

NREL has conducted basic research relating to high efficiency, low cost, thin film silicon solar cell design and the method of making solar cells. Two patents have been issued to NREL in the above field. In addition, specific process and metrology tools have been developed by NREL. Applied Optical Sciences Corp. (AOS) has expertise in the manufacture of solar cells and has developed its own unique concentrator technology. AOS wants to complement its solar cell expertise and its concentrator technology by manufacturing flat panel thin film silicon solar cell panels. AOS wants to take NREL's research to the next level, using it to develop commercially viable flat pane, thin film silicon solar cell panels. Such a development in equipment, process, and metrology will likely produce the lowest cost solar cell technology for both commercial and residential use. NREL's fundamental research capability and AOS's technology and industrial background are complementary to achieve this product development.

Sopori, B.

2013-03-01T23:59:59.000Z

291

Microscopy and spectroscopy of lithium nickel oxide based particles used in high-power lithium-ion cells.  

DOE Green Energy (OSTI)

Structural and electronic investigations were conducted on lithium nickel oxide-based particles used in positive electrodes of 18650-type high-power Li-ion cells. K-edge X-ray absorption spectroscopy (XAS) revealed trivalent Ni and Co ions in the bulk LiNi{sub 0.8}Co{sub 0.2}O{sub 2} powder used to prepare the high power electrode laminates. Using oxygen K-edge XAS, high resolution electron microscopy, nanoprobe diffraction, and electron energy-loss spectroscopy, we identified a <5 nm thick modified layer on the surface of the oxide particles, which results from the loss of Ni and Li ordering in the layered R{bar 3}m structure. This structural change was accompanied by oxygen loss and a lowering of the Ni- and Co-oxidation states in the surface layer. Growth of this surface layer may contribute to the impedance rise observed during accelerated aging of these Li-ion cells.

Abraham, D. P.; Twesten, R. D.; Balasubramanian, M.; Kropf, A. J.; Fischer, D.; McBreen, J.; Petrov, I.; Amine, K.; Chemical Engineering; Univ. of Illinois; BNL; NIST

2003-11-01T23:59:59.000Z

292

Final Technical Report for the Martin County Hydrogen Fuel Cell Development Project  

DOE Green Energy (OSTI)

In September 2008, the U.S. Department of Energy and Martin County Economic Development Corporation entered into an agreement to further the advancement of a microtubular PEM fuel cell developed by Microcell Corporation. The overall focus of this project was on research and development related to high volume manufacturing of fuel cells and cost reduction in the fuel cell manufacturing process. The extrusion process used for the microfiber fuel cells in this project is inherently a low cost, high volume, high speed manufacturing process. In order to take advantage of the capabilities that the extrusion process provides, all subsequent manufacturing processes must be enhanced to meet the extrusion line’s speed and output. Significant research and development was completed on these subsequent processes to ensure that power output and performance were not negatively impacted by the higher speeds, design changes and process improvements developed in this project. All tasks were successfully completed resulting in cost reductions, performance improvements and process enhancements in the areas of speed and quality. These results support the Department of Energy’s goal of fuel cell commercialization.

Eshraghi, Ray

2011-03-09T23:59:59.000Z

293

Performance and degradation evaluation of five different commercial lithium-ion cells  

DOE Green Energy (OSTI)

The initial performance of five different types of Li-ion rechargeable batteries, from Quallion Corp, UltraLife Battery and Toshiba, was measured and compared. Cell characterization included variable-rate constant-current cycling, various USDOE pulse-test protocols and full-spectrum electrochemical impedance spectroscopy. Changes in impedance and capacity were monitored during electrochemical cycling under various conditions, including constant-current cycling over 100 percent DOD at a range of temperature and pulse profile cycling over a very narrow range of DOD at room temperature. All cells were found to maintain more than 80 percent of their rated capacity for more than 400 constant current 100 percent DOD cycles. The power fade (or impedance rise) of the cells varied considerably. New methods for interpreting the pulse resistance data were evaluated for their usefulness in interpreting performance mechanism as a function of test protocol and cell design.

Striebel, Kathryn A.; Shim, Joongpyo

2004-04-20T23:59:59.000Z

294

Single Cell Oils: Microbial and Algal Oils, 2nd EditionChapter 17 Recent Developments in the Human Nutrition of Polyunsaturated Fatty Acids from Single Cell Oils  

Science Conference Proceedings (OSTI)

Single Cell Oils: Microbial and Algal Oils, 2nd Edition Chapter 17 Recent Developments in the Human Nutrition of Polyunsaturated Fatty Acids from Single Cell Oils Biofuels and Bioproducts and Biodiesel Biofuels - Bioproducts eChapters 322

295

Development of Alternative and Durable High Performance Cathode Supports for PEM Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Alternative and Durable High Alternative and Durable High Performance Cathode Supports for PEM Fuel Cells Development of Alternative and Durable High Development of Alternative and Durable High Performance Cathode Supports for PEM Fuel Cells Performance Cathode Supports for PEM Fuel Cells PNNL: Yong Wang Conrad Zhang Vilayanur Viswanath Yuehe Lin Jun Liu Project kick Project kick - - off meeting off meeting Feb 13 Feb 13 - - 14, 2007 14, 2007 Ballard Power Systems: Stephen Campbell University of Delaware: Jingguang Chen ORNL: Sheng Dai 2 Technical Issues and Objective Technical Issues and Objective Current technical issues z Carbon support „ Susceptible to oxidation under fuel cell operating conditions. „ Oxidation further catalyzed by Pt „ Corrosion leads to Pt migration and agglomeration

296

Structural Integration of Silicon Solar Cells and Lithium-ion Batteries Using Printed Electronics  

E-Print Network (OSTI)

Lithium-Ion Polymer Battery ..Performance of Lithium-Ion Polymer Battery Introduction Assolid state lithium-ion (Li-ion) battery were adhesively

Kang, Jin Sung

2012-01-01T23:59:59.000Z

297

Molten Carbonate Fuel Cell (MCFC) Product Development Test. Second annual report  

DOE Green Energy (OSTI)

This is the second annual report covering progress made under DOE cooperative agreement DE-FC21-92MC29237, Molten Carbonate Fuel Cell Product Development Test. The project is for the design, construction, and testing of a 2MW carbonate fuel cell power plant in the City of Santa Clara, California. The report is divided into sections which describe the progress in various program activities, and provides an overview of the program, including the project objectives, site location, and schedule.

Not Available

1994-12-15T23:59:59.000Z

298

Development of molten-carbonate fuel-cell technology. Final report, February-December 1980  

DOE Green Energy (OSTI)

The objective of the work was to focus on the basic technology for producing molten carbonate fuel cell (MCFC) components. This included the development and fabrication of stable anode structures, preparation of lithiated nickel oxide cathodes, synthesis and characterization of a high surface area (gamma-lithium-aluminate) electrolyte support, pressurized cell testing and modeling of the overall electrolyte distribution within a cell to aid performance optimization of the different cell components. The electrode development program is highlighted by two successful 5000 hour bench-scale tests using stabilized anode structures. One of these provided better performance than in any previous state-of-the-art, bench-scale cell (865 mV at 115 mA/cm/sup 2/ under standard conditions). Pressurized testing at 10 atmosphere of a similar stabilized, high surface area, Ni/Co anode structure in a 300 cm/sup 2/ cell showed that the 160 mA/cm/sup 2/ performance goal of 850 mV on low Btu fuel (80% conversion) can be readily met. A study of the H/sub 2/S-effects on molten carbonate fuel cells showed that ERC's Ni/Co anode provided better tolerance than a Ni/Cr anode. Prelithiated nickel oxide plaques were prepared from materials made by a low temperature and a high temperature powder-production process. The methods for fabricating handleable cathodes of various thicknesses were also investigated. In electrolyte matrix development, accelerated out-of-cell and in-cell tests have confirmed the superior stability of ..gamma..-LiAlO/sub 2/.

Not Available

1980-01-01T23:59:59.000Z

299

Microsoft Word - LiFe battery highlight long bh  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Highlight - May 2013 Mesoscale Phase Distribution in Li-ion Battery Electrode Materials Li-ion batteries are regarded as key devices in the effort to develop efficient...

300

Technical Assistance to Developers - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program T. Rockward and R.L. Borup (Primary Contacts), F. Garzon, R. Mukundan, and D. Spernjak Los Alamos National Laboratory (LANL) P.O. Box 1663 Los Alamos, NM 87545 Phone: (505) 667-9587 and (505) 667-2823 Emails: trock@lanl.gov, borup@lanl.gov DOE Manager HQ: Nancy Garland Phone: (202) 586-5673 Email: Nancy.Garland@ee.doe.gov Project Start Date: October 2003 Project End Date: Project continuation and direction determined annually by DOE Objectives Support technically, as directed by DOE, fuel cell * component and system developers Assess fuel cell materials and components and give * feedback to developers Assist the DOE Durability Working Group with the * development of various new material durability testing

Note: This page contains sample records for the topic "developing li-ion cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Final Report: Development of a Thermal and Water Management System for PEM Fuel Cell  

DOE Green Energy (OSTI)

This final program report is prepared to provide the status of program activities performed over the period of 9 years to develop a thermal and water management (TWM) system for an 80-kW PEM fuel cell power system. The technical information and data collected during this period are presented in chronological order by each calendar year. Balance of plant (BOP) components of a PEM fuel cell automotive system represents a significant portion of total cost based on the 2008 study by TIAX LLC, Cambridge, MA. The objectives of this TWM program were two-fold. The first objective was to develop an advanced cooling system (efficient radiator) to meet the fuel cell cooling requirements. The heat generated by the fuel cell stack is a low-quality heat (small difference between fuel cell stack operating temperature and ambient air temperature) that needs to be dissipated to the ambient air. To minimize size, weight, and cost of the radiator, advanced fin configurations were evaluated. The second objective was to evaluate air humidification systems which can meet the fuel cell stack inlet air humidity requirements. The moisture from the fuel cell outlet air is transferred to inlet air, thus eliminating the need for an outside water source. Two types of humidification devices were down-selected: one based on membrane and the other based on rotating enthalpy wheel. The sub-scale units for both of these devices have been successfully tested by the suppliers. This project addresses System Thermal and Water Management.

Zia Mirza, Program Manager

2011-12-06T23:59:59.000Z

302

DEVELOPMENT OF LOW-COST MANUFACTURING PROCESSES FOR PLANAR, MULTILAYER SOLID OXIDE FUEL CELL ELEMENTS  

DOE Green Energy (OSTI)

This report summarizes the results of a four-year project, entitled, ''Low-Cost Manufacturing Of Multilayer Ceramic Fuel Cells'', jointly funded by the U.S. Department of Energy, the State of Ohio, and by project participants. The project was led by NexTech Materials, Ltd., with subcontracting support provided by University of Missouri-Rolla, Michael A. Cobb & Co., Advanced Materials Technologies, Inc., Edison Materials Technology Center, Gas Technology Institute, Northwestern University, and The Ohio State University. Oak Ridge National Laboratory, though not formally a subcontractor on the program, supported the effort with separate DOE funding. The objective of the program was to develop advanced manufacturing technologies for making solid oxide fuel cell components that are more economical and reliable for a variety of applications. The program was carried out in three phases. In the Phase I effort, several manufacturing approaches were considered and subjected to detailed assessments of manufacturability and development risk. Estimated manufacturing costs for 5-kW stacks were in the range of $139/kW to $179/kW. The risk assessment identified a number of technical issues that would need to be considered during development. Phase II development work focused on development of planar solid oxide fuel cell elements, using a number of ceramic manufacturing methods, including tape casting, colloidal-spray deposition, screen printing, spin-coating, and sintering. Several processes were successfully established for fabrication of anode-supported, thin-film electrolyte cells, with performance levels at or near the state-of-the-art. The work in Phase III involved scale-up of cell manufacturing methods, development of non-destructive evaluation methods, and comprehensive electrical and electrochemical testing of solid oxide fuel cell materials and components.

Scott Swartz; Matthew Seabaugh; William Dawson; Harlan Anderson; Tim Armstrong; Michael Cobb; Kirby Meacham; James Stephan; Russell Bennett; Bob Remick; Chuck Sishtla; Scott Barnett; John Lannutti

2004-06-12T23:59:59.000Z

303

Fundamental understanding and development of low-cost, high-efficiency silicon solar cells  

DOE Green Energy (OSTI)

The overall objectives of this program are (1) to develop rapid and low-cost processes for manufacturing that can improve yield, throughput, and performance of silicon photovoltaic devices, (2) to design and fabricate high-efficiency solar cells on promising low-cost materials, and (3) to improve the fundamental understanding of advanced photovoltaic devices. Several rapid and potentially low-cost technologies are described in this report that were developed and applied toward the fabrication of high-efficiency silicon solar cells.

ROHATGI,A.; NARASIMHA,S.; MOSCHER,J.; EBONG,A.; KAMRA,S.; KRYGOWSKI,T.; DOSHI,P.; RISTOW,A.; YELUNDUR,V.; RUBY,DOUGLAS S.

2000-05-01T23:59:59.000Z

304

Developing SAE Safety Standards for Hydrogen and Fuel Cell Vehicles (FCVs)  

NLE Websites -- All DOE Office Websites (Extended Search)

Developing SAE Safety Standards for Developing SAE Safety Standards for Hydrogen and Fuel Cell Vehicles (FCVs) Polymer and Composite Materials R&D Gaps for Hydrogen Systems Michael Veenstra Ford Motor Company October 17, 2012 1 SAE Fuel Cell Vehicle Committee � Developing vehicle and systems-level, performance- based standards based on best available knowledge. � Cooperating with other organizations to verify current standards and develop new capabilities, when appropriate. � DOE-funded verification testing of methodologies � Japan Automobile Research Institute (JARI) � CSA America � Overall objective � Use FCVs as current ICEs are used (without restrictions) � Facilitate rapid advances by the industry � Provide a technical basis for national and global requirements 2 SAE FCV ENABLING Standards

305

Cathode Contact Materials for Anode-Supported Cell Development - Lawrence Berkeley National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Cathode Contact Materials for Anode- Cathode Contact Materials for Anode- Supported Cell Development- Lawrence Berkeley National Laboratory Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid State Energy Conversion Alliance (SECA), NETL is leading the research, development, and demonstration of solid oxide

306

[Gas cooled fuel cell systems technology development program]. Quarterly technical progress narrative No. 21, December 1, 1987--February 29, 1988  

DOE Green Energy (OSTI)

Objective is the development of a gas-cooled phosphoric acid fuel cell for electric utility power plant application. Primary objectives are to: demonstrate performance endurance in 10-cell stacks at 70 psia, 190 C, and 267 mA/cm{sup 2}; improve cell degradation rate to less than 8 mV/1000 hours; develop cost effective criteria, processes, and design configurations for stack components; design multiple stack unit and a single 100 kW fuel cell stack; design a 375 kW fuel cell module and demonstrate average cell beginning-of-use performance; manufacture four 375-kW fuel cell modules and establish characteristics of 1.5 MW pilot power plant. The work is broken into program management, systems engineering, fuel cell development and test, facilities development.

Not Available

1988-03-01T23:59:59.000Z

307

Molten carbonate fuel cell (MCFC) product development test. Annual report, October 1994--September 1995  

DOE Green Energy (OSTI)

This report summarizes the technical progress that has occurred in conjunction with Cooperative Agreement No. DE-FC21-92MC28065, Molten Carbonate Fuel Cell Product Development Test (PDT) during the period of October 1, 1994 through September 30, 1995. Information is presented on stack design, manufacturing, stack assembly, procurement, site preparation, and test plan.

NONE

1996-01-01T23:59:59.000Z

308

Neuron, Vol. 24, 871878, December, 1999, Copyright 1999 by Cell Press Asymmetric Growth and Development  

E-Print Network (OSTI)

of deiodinases. D3 transgenes inhibitto proliferate if deiodinase activity is inhibited. D3 or the response and Development of the Xenopus laevis Retina during Metamorphosis Is Controlled by Type III Deiodinase time to increase its proliferation, butSummary also to affect the fate of cells that derive from it (Hoskins, 1986

Dong, Xinzhong

309

Development of Kilowatt-Scale Coal Fuel Cell Technology - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Steven S.C. Chuang (Primary Contact), Tritti Siengchum, Jelvehnaz Mirzababaei, Azadeh Rismanchian, and Seyed Ali Modjtahedi The University of Akron 302 Buchtel Common Akron, OH 44310-3906 Phone: (330) 972-6993 Email: schuang@uakron.edu DOE Managers HQ: Dimitrios Papageorgopoulos Phone: (202) 586-5463 Email: Dimitrios.Papageorgopoulos@ee.doe.gov GO: Reg Tyler Phone: (720) 356-1805 Email: Reginald.Tyler@go.doe.gov Contract Number: DE-FC36-08GO0881114 Project Start Date: June 1, 2008 Project End Date: May 31, 2012 *Congressionally directed project Fiscal Year (FY) 2012 Objectives To develop a kilowatt-scale coal-based solid oxide fuel cell (SOFC) technology. The outcome of this research effort

310

Process development for automated solar cell and module production. Task 4: automated array assembly  

DOE Green Energy (OSTI)

The scope of work under this contract involves specifying a process sequence which can be used in conjunction with automated equipment for the mass production of solar cell modules for terrestrial use. This process sequence is then critically analyzed from a technical and economic standpoint to determine the technological readiness of each process step for implementation. The process steps are ranked according to the degree of development effort required and according to their significance to the overall process. Under this contract the steps receiving analysis were: back contact metallization, automated cell array layup/interconnect, and module edge sealing. For automated layup/interconnect both hard automation and programmable automation (using an industrial robot) were studied. The programmable automation system was then selected for actual hardware development. Economic analysis using the SAMICS system has been performed during these studies to assure that development efforts have been directed towards the ultimate goal of price reduction. Details are given. (WHK)

Hagerty, J.J.

1980-06-30T23:59:59.000Z

311

Development of pulsed processes for the manufacture of solar cells. [Ion implantation and annealing process  

DOE Green Energy (OSTI)

This report describes the results of a 1-year program to develop the processes required for low-energy ion implantation for the automated production of silicon solar cells. The program included (1) demonstrating state-of-the-art ion implantation equipment and designing an automated ion implanter, (2) making efforts to improve the performance of ion-implanted solar cells to 16.5 percent AM1, (3) developing a model of the pulse annealing process used in solar cell production, and (4) preparing an economic analysis of the process costs of ion implantation. During the program, phosphorus ions at an energy of 10 keV and dose of 2 x 10/sup 15/ cm/sup -2/ were implanted in silicon solar cells to produce junctions, while boron ions at 25 keV and 5 x 10/sup 15/ cm/sup -2/ were implanted in the cells to produce effective back surface fields. An ion implantation facility with a beam current up to 4 mA and a production throughput of 300 wafers per hour was designed and installed. A design was prepared for a 100-mA, automated implanter with a production capacity of 100 MW/sub e/ per year. A Solar Array Manufacturing Industry Costing Standards (SAMICS) economic analysis of the automated process steps of ion implantation and pulse annealing indicated that junctions can be formed and annealed at a cost of less than 3 cents per watt. The efforts during this program represent a major advancement in developing the automated production of silicon solar cells with efficiencies greater than 16 percent AM1.

Minnucci, J.A.

1978-12-01T23:59:59.000Z

312

Advanced water-cooled phosphoric acid fuel cell development. Final report  

DOE Green Energy (OSTI)

This program was conducted to improve the performance and minimize the cost of existing water-cooled phosphoric acid fuel cell stacks for electric utility and on-site applications. The goals for the electric utility stack technology were a power density of at least 175 watts per square foot over a 40,000-hour useful life and a projected one-of-a-kind, full-scale manufactured cost of less than $400 per kilowatt. The program adapted the existing on-site Configuration-B cell design to electric utility operating conditions and introduced additional new design features. Task 1 consisted of the conceptual design of a full-scale electric utility cell stack that meets program objectives. The conceptual design was updated to incorporate the results of material and process developments in Tasks 2 and 3, as well as results of stack tests conducted in Task 6. Tasks 2 and 3 developed the materials and processes required to fabricate the components that meet the program objectives. The design of the small area and 10-ft{sup 2} stacks was conducted in Task 4. Fabrication and assembly of the short stacks were conducted in Task 5 and subsequent tests were conducted in Task 6. The management and reporting functions of Task 7 provided DOE/METC with program visibility through required documentation and program reviews. This report describes the cell design and development effort that was conducted to demonstrate, by subscale stack test, the technical achievements made toward the above program objectives.

Not Available

1992-09-01T23:59:59.000Z

313

Development of analytical cell support for vitrification at the West Valley Demonstration Project. Topical report  

SciTech Connect

Analytical and Process Chemistry (A&PC) support is essential to the high-level waste vitrification campaign at the West Valley Demonstration Project (WVDP). A&PC characterizes the waste, providing information necessary to formulate the recipe for the target radioactive glass product. High-level waste (HLW) samples are prepared and analyzed in the analytical cells (ACs) and Sample Storage Cell (SSC) on the third floor of the main plant. The high levels of radioactivity in the samples require handling them in the shielded cells with remote manipulators. The analytical hot cells and third floor laboratories were refurbished to ensure optimal uninterrupted operation during the vitrification campaign. New and modified instrumentation, tools, sample preparation and analysis techniques, and equipment and training were required for A&PC to support vitrification. Analytical Cell Mockup Units (ACMUs) were designed to facilitate method development, scientist and technician training, and planning for analytical process flow. The ACMUs were fabricated and installed to simulate the analytical cell environment and dimensions. New techniques, equipment, and tools could be evaluated m in the ACMUs without the consequences of generating or handling radioactive waste. Tools were fabricated, handling and disposal of wastes was addressed, and spatial arrangements for equipment were refined. As a result of the work at the ACMUs the remote preparation and analysis methods and the equipment and tools were ready for installation into the ACs and SSC m in July 1995. Before use m in the hot cells, all remote methods had been validated and four to eight technicians were trained on each. Fine tuning of the procedures has been ongoing at the ACs based on input from A&PC technicians. Working at the ACs presents greater challenges than had development at the ACMUs. The ACMU work and further refinements m in the ACs have resulted m in a reduction m in analysis turnaround time (TAT).

Barber, F.H.; Borek, T.T.; Christopher, J.Z. [and others

1997-12-01T23:59:59.000Z

314

Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Appendix E: Acronyms  

NLE Websites -- All DOE Office Websites (Extended Search)

E - Acronyms E - Acronyms Multi-Year Research, Development and Demonstration Plan Page E - 1 Appendix E - Acronyms AEI Advanced Energy Initiative AEO Annual Energy Outlook AFC Alkaline Fuel Cell AHJ Authorities Having Jurisdiction AMFC Alkaline Membrane Fuel Cells AMR Annual Merit Review ANL (DOE) Argonne National Laboratory APU Auxiliary Power Unit ARRA American Recovery and Reinvestment Act of 2009 ASES American Solar Energy Society ASME American Society of Mechanical Engineers AST Accelerated Stress Test ASTM American Society for Testing and Materials ATP Adenosine-5'-Triphosphate Bchl Bacteriochlorophyll BES (DOE Office of) Basic Energy Sciences BEV Battery Electric Vehicle BNL (DOE) Brookhaven National Laboratory BOP Balance of Plant

315

Develop and test fuel cell powered on-site integrated total energy systems  

DOE Green Energy (OSTI)

This report describes the design, fabrication and testing of a 25kW phosphoric acid fuel cell system aimed at stationary applications, and the technology development underlying that system. The 25kW fuel cell ran at rated power in both the open and closed loop mode in the summer of 1988. Problems encountered and solved include acid replenishment leakage, gas cross-leakage and edge-leakage in bipolar plates, corrosion of metallic cooling plates and current collectors, cooling groove depth variations, coolant connection leaks, etc. 84 figs., 7 tabs.

Kaufman, A.; Werth, J.

1988-12-01T23:59:59.000Z

316

Development of Novel PEM Membrane and Multiphase CD Modeling of PEM Fuel Cell  

DOE Green Energy (OSTI)

To understand heat and water management phenomena better within an operational proton exchange membrane fuel cell's (PEMFC) conditions, a three-dimensional, two-phase computational fluid dynamic (CFD) flow model has been developed and simulated for a complete PEMFC. Both liquid and gas phases are considered in the model by taking into account the gas flow, diffusion, charge transfer, change of phase, electro-osmosis, and electrochemical reactions to understand the overall dynamic behaviors of species within an operating PEMFC. The CFD model is solved numerically under different parametric conditions in terms of water management issues in order to improve cell performance. The results obtained from the CFD two-phase flow model simulations show improvement in cell performance as well as water management under PEMFCs operational conditions as compared to the results of a single phase flow model available in the literature. The quantitative information obtained from the two-phase model simulation results helped to develop a CFD control algorithm for low temperature PEM fuel cell stacks which opens up a route in designing improvement of PEMFC for better operational efficiency and performance. To understand heat and water management phenomena better within an operational proton exchange membrane fuel cell's (PEMFC) conditions, a three-dimensional, two-phase computational fluid dynamic (CFD) flow model has been developed and simulated for a complete PEMFC. Both liquid and gas phases are considered in the model by taking into account the gas flow, diffusion, charge transfer, change of phase, electro-osmosis, and electrochemical reactions to understand the overall dynamic behaviors of species within an operating PEMFC. The CFD model is solved numerically under different parametric conditions in terms of water management issues in order to improve cell performance. The results obtained from the CFD two-phase flow model simulations show improvement in cell performance as well as water management under PEMFCs operational conditions as compared to the results of a single phase flow model available in the literature. The quantitative information obtained from the two-phase model simulation results helped to develop a CFD control algorithm for low temperature PEM fuel cell stacks which opens up a route in designing improvement of PEMFC for better operational efficiency and performance.

K. J. Berry; Susanta Das

2009-12-30T23:59:59.000Z

317

The U.S. molten carbonate fuel-cell development and commercialization effort  

SciTech Connect

The authors discuss the status of molten carbonate fuel-cell (MCFC) development in the U.S., including the role of the U.S. Department of Energy (DOE) in commercializing MCFC power-plant products for use by gas utility and electric power industries. They describe major fundamental stack research issues, as well as MCF power-plant network and system issues, that need to be resolved before MCFC technology can be commercialized. A significant initiative in MCFC research is the spatial configuration of MCFC stacks into networks in a fuel-cell power plant.

Williams, M.C.; Parsons, E.L. Jr.; Mayfield, M.J.

1994-09-01T23:59:59.000Z

318

The U.S. molten carbonate fuel-cell development and commercialization effort  

SciTech Connect

The authors discuss the status of molten carbonate fuel-cell (MCFC) development in the US, including the role of the US Department of Energy (DOE) in commercializing MCFC power-plant products for use by gas utility and electric power industries. The authors describe major fundamental stack research issues, as well as MCFC power-plant network and system issues, that need to be resolved before MCFC technology can be commercialized. A significant initiative in MCFC research is the spatial configuration of MCFC stacks into networks in a fuel-cell power plant.

Williams, M.C.; Parsons, E.L. Jr.; Mayfield, M.J.

1995-03-01T23:59:59.000Z

319

Development of Low-Cost Manufacturing Processes for Planar, Multilayer Solid Oxide Fuel Cell Elements  

DOE Green Energy (OSTI)

This report summarizes the results of Phase II of this program, 'Low-Cost Manufacturing Of Multilayer Ceramic Fuel Cells'. The objective of the program is to develop advanced ceramic manufacturing technologies for making planar solid oxide fuel cell (SOFC) components that are more economical and reliable for a variety of applications. Phase II development work focused on three distinct manufacturing approaches (or tracks) for planar solid oxide fuel cell elements. Two development tracks, led by NexTech Materials and Oak Ridge National Laboratory, involved co-sintering of planar SOFC elements of cathode-supported and anode-supported variations. A third development track, led by the University of Missouri-Rolla, focused on a revolutionary approach for reducing operating temperature of SOFCs by using spin-coating to deposit ultra-thin, nano-crystalline YSZ electrolyte films. The work in Phase II was supported by characterization work at Ohio State University. The primary technical accomplishments within each of the three development tracks are summarized. Track 1--NexTech's targeted manufacturing process for planar SOFC elements involves tape casting of porous electrode substrates, colloidal-spray deposition of YSZ electrolyte films, co-sintering of bi-layer elements, and screen printing of opposite electrode coatings. The bulk of NexTech's work focused on making cathode-supported elements, although the processes developed at NexTech also were applied to the fabrication of anode-supported cells. Primary accomplishments within this track are summarized below: (1) Scale up of lanthanum strontium manganite (LSM) cathode powder production process; (2) Development and scale-up of tape casting methods for cathode and anode substrates; (3) Development of automated ultrasonic-spray process for depositing YSZ films; (4) Successful co-sintering of flat bi-layer elements (both cathode and anode supported); (5) Development of anode and cathode screen-printing processes; and (6) Demonstration of novel processes for composite cathode and cermet anode materials. Track 2--ORNL's development work focused solely on making anode-supported planar cells by tape casting of a porous anode substrate, screen printing of a YSZ electrolyte film, co-sintering of the bi-layer element, and screen-printing of an opposite cathode coating. Primary accomplishments within this track are summarized below: (1) Development and scale-up of anode tape casting and lamination processes; (2) Development of proprietary ink vehicle for screen-printing processes; (3) Development of screen-printing process for depositing YSZ films; (4) Successful co-sintering of flat bi-layer anode-supported elements; and (5) Development of cathode screen-printing process. Track 3--UMR's process development work involved fabrication of a micro-porous cathode substrate, deposition of a nano-porous interlayer film, deposition of nano-crystalline YSZ electrolyte films from polymeric precursor solutions, and deposition of an anode coating. Primary accomplishments within this track are summarized below: (1) Development and scale up of tape casting and sintering methods for cathode substrates; (2) Deposition of nano-porous ceria interlayer films on cathode substrates; (3) Successful deposition of dense YSZ films on porous cathode substrates; and (4) Identification of several anode material options.

Scott Swartz; Matthew Seabaugh; William Dawson; Tim Armstrong; Harlan Anderson; John Lannutti

2001-09-30T23:59:59.000Z

320

High-performance porous silicon solar cell development. Final report, October 1, 1993--September 30, 1995  

DOE Green Energy (OSTI)

The goal of the program was to demonstrate use of porous silicon in new solar cell structures. Porous silicon technology has been developed at Spire for producing visible light-emitting diodes (LEDs). The major aspects that they have demonstrated are the following: porous silicon active layers have been made to show photovoltaic action; porous silicon surface layers can act as antireflection coatings to improve the performance of single-crystal silicon solar cells; and porous silicon surface layers can act as antireflection coatings on polycrystalline silicon solar cells. One problem with the use of porous silicon is to achieve good lateral conduction of electrons and holes through the material. This shows up in terms of poor blue response and photocurrents which increase with increasing reverse bias applied to the diode.

Maruska, P. [Spire Corp., Bedford, MA (United States)

1996-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "developing li-ion cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Development of Micro-structural Mitigation Strategies for PEM Fuel Cells: Morphological Simulation and Experimental Approaches  

NLE Websites -- All DOE Office Websites (Extended Search)

October 2009 October 2009 BUILDING A CLEAN ENERGY GROWTH COMPANY B A L L A R D P O W E R S Y S T E M S Development of Micro-structural Mitigation Strategies for PEM Fuel Cells: Morphological Simulation and Experimental Approaches DOE Fuel Cell Projects Kick-off Meeting COPYRIGHT © 2009 BALLARD POWER SYSTEMS, INC. ALL RIGHTS RESERVED Project Objectives ƒ Understand and quantify the fundamental degradation mechanisms Establish relationships between morphology, operational conditions, and the rate of catalyst/catalyst layer degradation ƒ Understand the impact of degradation on the mechanical/chemical stability of the component interfaces, including the stability of the 3-phase interface ƒ Develop mechanistic, forward predictive kinetic and materials aging models for catalyst layer degradation

322

Development of Ultra-low Platinum Alloy Cathode Catalyst for PEM Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Development of Ultra-low Platinum Alloy Development of Ultra-low Platinum Alloy C th d C t l t f PEM F l C ll Cathode Catalyst for PEM Fuel Cells 2010 DOE Hydrogen Program Fuel Cell Project Kick-Off P I : Branko N Popov P. I.: Branko N. Popov Center for Electrochemical Engineering University of South Carolina Columbia SC 29208. September 28, 2010 This presentation does not contain any proprietary, confidential, or otherwise restricted information Center for Electrochemical Engineering, University of South Carolina 1 Overview Timeline * S Start d date: J June 01 2010 01 2010 * End date: Nov 30 2012 (Phase I) : May 31 2014 (Phase II) Budget * Total project funding ¾ DOE share: $ 4 400 000 ¾ DOE share: $ 4,400,000 ¾ Contractor share: $1,100,000 * Incremental funding received in FY10: $750,000

323

Development and Testing of Solid Oxide Fuel Cells for Cogeneration Applications: FY 2000 Progress Report  

Science Conference Proceedings (OSTI)

This interim technical progress report describes efforts to develop, test, demonstrate, and commercialize solid oxide fuel cell (SOFC) systems that provide both electric power generation and heating, ventilation, and air conditioning (HVAC). Since SOFC systems operate at high temperature (650 to 1000 degrees Celsius), cogeneration seems to be a natural fit. In SOFC-HVAC systems, the exhaust heat from the SOFC is used to drive heat-actuated HVAC subsystems such as absorption chillers or boilers. SOFC-HVAC...

2000-12-21T23:59:59.000Z

324

Development and validation of a combustion model for a fuel cell off-gas burner  

E-Print Network (OSTI)

and environmentally clean power generation has never been so important. The increasing cost of fossil fuels and more stringent regulations on emissions (particularly CO2 and NOx), together with increasing demand for electricity, make the provision of cost... Development and Validation of a Combustion Model for a Fuel Cell Off-Gas Burner W. Tristan Collins Magdalene College University of Cambridge A dissertation submitted to the University of Cambridge for the degree of Doctor of Philosophy June 2008...

Collins, William Tristan

2008-10-14T23:59:59.000Z

325

U.S. solid oxide fuel cell powerplant development and commercialization  

DOE Green Energy (OSTI)

SOFC powerplants have many potential attributes which make them suitable for distributed generation applications. Power densities for SOFCs are very promising. Power densities possibilities of 20 watts per square centimeter have been reported to be possible. Westinghouse Electric is the leader in tubular SOFC technology. Several completely packaged and self-contained generators, up to nominal 25-kW size, have been manufactured and tested by Westinghouse Electric. A manufacturing facility currently produces these generators. In the US, several planar designs are also under development. Organizations developing planar designs include IGT, Celamalec, Ztek, TMI, and Allied Signal Aerospace. One of the most promising developments in SOFC powerplants is the conceptual development of very high efficiency fuel cell gas turbine powerplants. Combination of SOFC and turbine has the potential for enormous synergies.

Williams, M.C. [Fuel Cells Product Manager, USDOE Federal Energy Technology Center, Morgantown, WV (United States)

1997-04-01T23:59:59.000Z

326

Simulated Coal-Gas-Fueled Molten Carbonate Fuel Cell Development Program. Final report  

DOE Green Energy (OSTI)

This final report summarizes the technical work performed under Department of Energy Contract DE-AC21-91MC27393, ``Simulated Coal- Gas-Fueled Molten Carbonate Fuel Cell Development Program.`` This work consists of five major tasks and their respective subtasks as listed below. A brief description of each task is also provided. The Stack Design Requirements task focused on requirements and specification for designing, constructing, and testing a nominal 100-kilowatt integrated stack and on requirements for the balance-of-plant equipment to support a 1000-kilowatt integrated stack demonstrator. The Stack Design Preparation task focused on the mechanical design of a 100-kilowatt stack comprised of 8-ft{sup 2} cells incorporating the new cell configuration and component technology improvements developed in the previous DOE MCFC contract. Electrode Casting focused on developing a faster drying solvent for use in the electrode tape casting process. Electrode Heat Treatment was directed at scaling up the laboratory continuous debinding process to a new full-size IFC debinding oven coupled to a continuous belt furnace that will both debind and sinter the electrodes in one continuous process train. Repeat Part Quality Assurance and Testing provided the appropriate effort to ensure consistent, high-quality, reproducible and comparable repeat parts.

Not Available

1992-08-01T23:59:59.000Z

327

Simulated Coal-Gas-Fueled Molten Carbonate Fuel Cell Development Program  

DOE Green Energy (OSTI)

This final report summarizes the technical work performed under Department of Energy Contract DE-AC21-91MC27393, Simulated Coal- Gas-Fueled Molten Carbonate Fuel Cell Development Program.'' This work consists of five major tasks and their respective subtasks as listed below. A brief description of each task is also provided. The Stack Design Requirements task focused on requirements and specification for designing, constructing, and testing a nominal 100-kilowatt integrated stack and on requirements for the balance-of-plant equipment to support a 1000-kilowatt integrated stack demonstrator. The Stack Design Preparation task focused on the mechanical design of a 100-kilowatt stack comprised of 8-ft[sup 2] cells incorporating the new cell configuration and component technology improvements developed in the previous DOE MCFC contract. Electrode Casting focused on developing a faster drying solvent for use in the electrode tape casting process. Electrode Heat Treatment was directed at scaling up the laboratory continuous debinding process to a new full-size IFC debinding oven coupled to a continuous belt furnace that will both debind and sinter the electrodes in one continuous process train. Repeat Part Quality Assurance and Testing provided the appropriate effort to ensure consistent, high-quality, reproducible and comparable repeat parts.

Not Available

1992-08-01T23:59:59.000Z

328

Summary Report on Solid-oxide Electrolysis Cell Testing and Development  

DOE Green Energy (OSTI)

Idaho National Laboratory (INL) has been researching the application of solid-oxide electrolysis cells (SOECs) for large-scale hydrogen production from steam over a temperature range of 800 to 900 C. From 2003 to 2009, this work was sponsored by the United States Department of Energy Nuclear Hydrogen Initiative, under the Office of Nuclear Energy. Starting in 2010, the high-temperature electrolysis (HTE) research program has been sponsored by the INL Next Generation Nuclear Plant Project. This report provides a summaryof program activities performed in Fiscal Year (FY) 2011 and the first quarter of FY-12, with a focus on small-scale testing and cell development activities. HTE research priorities during this period have included the development and testing of SOEC and stack designs that exhibit high-efficiency initial performance and low, long-term degradation rates. This report includes contributions from INL and five industry partners: Materials and Systems Research, Incorporated (MSRI); Versa Power Systems, Incorporated (VPS); Ceramatec, Incorporated; National Aeronautics and Space Administration - Glenn Research Center (NASA - GRC); and the St. Gobain Advanced Materials Division. These industry partners have developed SOEC cells and stacks for in-house testing in the electrolysis mode and independent testing at INL. Additional fundamental research and post-test physical examinations have been performed at two university partners: Massachusetts Institute of Technology (MIT) and the University of Connecticut. Summaries of these activities and test results are also presented in this report.

J.E. O'Brien; X. Zhang; R.C. O'Brien; G.L. Hawkes

2012-01-01T23:59:59.000Z

329

Development of Novel Nanocrystal-based Solar Cell to Exploit Multiple Exciton Generation: Cooperative Research and Development Final Report, CRADA Number CRD-07-00227  

Science Conference Proceedings (OSTI)

The purpose of the project was to develop new design and fabrication techniques for NC solar cells with the goal of demonstrating enhanced photocurrent and efficiency by exploiting multiple exciton generation and to investigate multiple exciton generation and charge carrier dynamics in semiconductor NC films used in NC-based solar cells.

Ellingson, R.

2010-08-01T23:59:59.000Z

330

Development & experimental validation of a SINDA/FLUINT thermal/fluid/electrical model of a multi-tube AMTEC cell  

Science Conference Proceedings (OSTI)

AMTEC (Alkali Metal Thermal-to-Electric Conversion) cell development has received increased attention and funding in the space power community because of several desirable performance characteristics compared to current radioisotope thermoelectric generation and solar photovoltaic (PV) power generation. AMTEC cell development is critically dependent upon the ability to predict thermal

Terry J. Hendricks; Chris A. Borkowski; Chendong Huang

1998-01-01T23:59:59.000Z

331

Rechargeable Lithium-Air Batteries: Development of Ultra High Specific Energy Rechargeable Lithium-Air Batteries Based on Protected Lithium Metal Electrodes  

SciTech Connect

BEEST Project: PolyPlus is developing the world’s first commercially available rechargeable lithium-air (Li-Air) battery. Li-Air batteries are better than the Li-Ion batteries used in most EVs today because they breathe in air from the atmosphere for use as an active material in the battery, which greatly decreases its weight. Li-Air batteries also store nearly 700% as much energy as traditional Li-Ion batteries. A lighter battery would improve the range of EVs dramatically. Polyplus is on track to making a critical breakthrough: the first manufacturable protective membrane between its lithium–based negative electrode and the reaction chamber where it reacts with oxygen from the air. This gives the battery the unique ability to recharge by moving lithium in and out of the battery’s reaction chamber for storage until the battery needs to discharge once again. Until now, engineers had been unable to create the complex packaging and air-breathing components required to turn Li-Air batteries into rechargeable systems.

2010-07-01T23:59:59.000Z

332

High-temperature fuel cell research and development. Final technical status report, June 1977-September 1978  

DOE Green Energy (OSTI)

An initial survey of the literature produced a list of ceramic materials with properties which made them potential candidates for use in molten-carbonate fuel cell tiles or electrodes. Seven of the materials in the original list were dropped from consideration because of unfavorable thermodynamic properties; four materials were set aside because of high cost, lack of availability, or fabrication difficulties. Thirteen compositions were tested statically at 1000 K in a Li/sub 2/CO/sub 3/-K/sub 2/CO/sub 3/ bath under a dry CO/sub 2/ atmosphere. Only four of the materials tested showed severe degradation reactions in the molten carbonate. A low-temperature process for forming small diameter, high-aspect ratio ceramic fibers for fuel cell use has been developed. A short-term program to initiate a computer study on the thermodynamic analysis of fuel cell materials was initiated at Montana State University. The report on this program is included as Appendix B. The MHD and high-temperature fuel cell literature was surveyed, and material properties were evaluated to identify MHD materials with potential use for fuel cell applications. A technology transfer report of these findings was prepared. This report is included as Appendix A. Laboratory facilities were established to conduct research on interfacial diffusion processes which could be detrimental to successful long-term operation of the solid-electrolyte fuel cell. A variety of physical and chemical techniques were examined for the preparation of high-density substituted LaCrO/sub 3/ which was to be one component of a diffusion couple with Y/sub 2/O/sub 3/-stabilized ZrO/sub 2/. Hydrolysis of a mixed metal-nitrate solution with urea produced the most reactive powder. A final theoretical density of almost 98% was attained in cold-pressed sintered discs of this material. (Extensive list of references)

Not Available

1978-10-15T23:59:59.000Z

333

Development of copper sulfide/cadmium sulfide thin-film solar cells  

DOE Green Energy (OSTI)

The purpose of this work has been to identify aspects of cell fabrication and treatment which are critical for achieving high efficiency Cu/sub 2/S/CdS solar cells. In approaching the problem several comparisons were made of the effects of specific steps in two methods of cell fabrication. These methods had previously given cells of about 6% and a maximum of 9% efficiency. Three areas requiring special attention and specific means to achieve acceptable results were identified. (1) The Cu/sub 2/S/CdS heterojunction area must be minimized. If single source evaporations of CdS are made on substrates whose temperatures (approx. 220/sup 0/C) are monitored and controlled using welded thermocouples, the CdS films will have adequately large grains (grain diameter greater than or equal to 2 ..mu..m) and will not develop significant etch pits during texturing in a mild etchant solution. (2) The termination of the wet barrier processing steps must be done carefully. An acceptable termination involves minimizing the amount of cuprous chloride retained on the cell surface during transfer to a rinsing stage while providing adequate exclusion of air from the space above the surface of the cuprous chloride solution. (3) Once formed, the Cu/sub 2/S layer should not be exposed to high temperatures (>100/sup 0/C) for long periods of time (> 5 min) if surface adsorbed moisture or oxygen are present. Heat treatments in ampoules under flowing hydrogen atmospheres should be preceded and followed by periods of at least 30 minutes at room temperature in the reducing ambient. If all these precautions are taken, wet chemical barrier processing of thermally evaporated CdS films on zinc-plated copper foil substrates yields cells of nearly 8% conversion efficiency without AR coating.

Szedon, J.R.; Biter, W.J.; Abel, J.A.; Dickey, H.C.; Shirland, F.A.

1981-02-27T23:59:59.000Z

334

NREL Develops Technique to Measure Membrane Thickness and Defects in Polymer Electrode Membrane Fuel Cells (Fact Sheet), Hydrogen and Fuel Cell Technical Highlights (HFCTH)  

NLE Websites -- All DOE Office Websites (Extended Search)

4 * November 2010 4 * November 2010 2-D image of a PEM fuel cell membrane sample measured with the NREL device (corresponding optical image in inset). The image shows bubble defects and a color shift in the sample. An area of approximately three inches by three inches is shown. NREL Develops Technique to Measure Membrane Thickness and Defects in Polymer Electrode Membrane Fuel Cells Project: Fuel Cell MEA Manufacturing R&D NREL Team: Hydrogen Technologies & Systems Center and National Center for Photovoltaics Accomplishment: NREL developed a technique to measure the two-dimensional thickness of polymer electrolyte membrane (PEM) fuel cell membranes for in-line quality control during manufacturing (first reported in May 2009). The technique is based on an NREL-developed instrument currently used in continuous manufacturing of photovoltaic cells. This

335

Development and testing of shingle-type solar cell modules. Final report  

DOE Green Energy (OSTI)

The design, development, fabrication and testing of a shingle-type terrestrial solar cell module which produces 98 watts/m/sup 2/ of exposed module area at 1 kW/m/sup 2/ insolation and 61/sup 0/C are reported. These modules make it possible to easily incorporate photovoltaic power generation into the sloping roofs of residential or commercial buildings by simply nailing the modules to the plywood roof sheathing. This design consists of nineteen series-connected 53 mm diameter solar cells arranged in a closely packaged hexagon configuration. These cells are individually bonded to the embossed surface of a 3 mm thick thermally tempered hexagon-shaped piece of ASG SUNADEX glass. Monsanto SAFLEX polyvinyl butyral is used as the laminating adhesive. RTVII functions as the encapsulant between the underside of the glass superstrate and a rear protective sheet of 0.8 mm thick TEXTOLITE. The semi-flexible portion of each shingle module is a composite laminate construction consisting of outer layers of B.F. Goodrich FLEXSEAL and an epichlorohydrin closed cell foam core. The module design has satisfactorily survived the JPL-defined qualification testing program which includes 50 thermal cycles between -40 and +90/sup 0/C, a seven-day temperature-humidity exposure test and a mechanical integrity test consisting of a bidirectional cyclic loading at 2390 Pa (50 lb/ft/sup 2/) which is intended to simulate loads due to a 45 m/s (100 mph) wind.

Shepard, N.F.

1979-02-28T23:59:59.000Z

336

Simulated coal-gas-fueled molten carbonate fuel cell development program  

DOE Green Energy (OSTI)

In previous work, International Fuel Cells Corporation (EFC) found interactions between molten carbonate fuel cell cathode materials being considered as replacements for the presently used nickel oxide and matrix materials. Consequently, this work was conducted to screen additional new materials for mutual compatibility. As part of this program, experiments were performed to examine the compatibility of several candidate, alternative cathode materials with the standard lithium aluminate matrix material in the presence of electrolyte at cell potentials. Initial cathode candidates were materials lithium ferrite, yttrium iron garnet, lithium manganite and doped ceria which were developed by universities, national laboratories, or contractors to DOE, EPRI, or GRI. These investigations were conducted in laboratory scale experiments. None of the materials tested can directly replace nickel oxide or indicate greater stability of cell performance than afforded by nickel oxide. Specifically: (1) no further work on niobium doped ceria is warranted; (2) cobalt migration was found in the lithium ferrite cathode tested. This could possibly lead to shorting problems similiar to those encountered with nickel oxide; (3) Possible shorting problems may also exist with the proprietary dopant in YIG; (4) lithium ferrite and YIG cathode were not single phase materials. Assessment of the chemical stability, i.e., dopant loss, was severely impeded by dissolution of these second phases in the electrolyte; and (5) Magnesium doped lithium manganite warrants further work. Electrolytes should contain Mg ions to suppress dopant loss.

Johnson, W.H.

1992-07-01T23:59:59.000Z

337

Simulated coal-gas-fueled molten carbonate fuel cell development program. Topical report: Cathode compatibility tests  

DOE Green Energy (OSTI)

In previous work, International Fuel Cells Corporation (EFC) found interactions between molten carbonate fuel cell cathode materials being considered as replacements for the presently used nickel oxide and matrix materials. Consequently, this work was conducted to screen additional new materials for mutual compatibility. As part of this program, experiments were performed to examine the compatibility of several candidate, alternative cathode materials with the standard lithium aluminate matrix material in the presence of electrolyte at cell potentials. Initial cathode candidates were materials lithium ferrite, yttrium iron garnet, lithium manganite and doped ceria which were developed by universities, national laboratories, or contractors to DOE, EPRI, or GRI. These investigations were conducted in laboratory scale experiments. None of the materials tested can directly replace nickel oxide or indicate greater stability of cell performance than afforded by nickel oxide. Specifically: (1) no further work on niobium doped ceria is warranted; (2) cobalt migration was found in the lithium ferrite cathode tested. This could possibly lead to shorting problems similiar to those encountered with nickel oxide; (3) Possible shorting problems may also exist with the proprietary dopant in YIG; (4) lithium ferrite and YIG cathode were not single phase materials. Assessment of the chemical stability, i.e., dopant loss, was severely impeded by dissolution of these second phases in the electrolyte; and (5) Magnesium doped lithium manganite warrants further work. Electrolytes should contain Mg ions to suppress dopant loss.

Johnson, W.H.

1992-07-01T23:59:59.000Z

338

Development of high efficiency (14%) solar cell array module. Final report, November 1979-June 1980  

DOE Green Energy (OSTI)

More effort was concentrated on development of procedures to provide large area (3 in. dia) high efficiency (16.5% AM1, 28/sup 0/C) P+NN+ solar cells. Intensive tests with 3 in. slices gave consistently lower efficiency (13.5%). The problems were identified as incomplete formation of an optimum back surface field (BSF), and interaction of the BSF process and the shallow P+ junction. The problem was shown not to be caused by reduced quality of silicon near the edges of the larger slices. A promising process sequence was identified. A reasonably large number of fairly efficient (13.5% average) 3 in. P+NN+ cells were made and combined with no problems with the module design developed for this project. In the module, one hundred and twenty (120) cells were connected, eight (8) in parallel and fifteen (15) in series. Six (6) modules were delivered with an average power output (per total module area of 6890 cm/sup 2/) of 75.3 watts and a module overall average efficiency of 10.9%.

Iles, P.A.; Khemthong, S.; Olah, S.; Sampson, W.J.; Ling, K.S.

1980-01-01T23:59:59.000Z

339

Development of molten-carbonate fuel cells for power generation. Quarterly progress report, 15 November 1978-15 February 1979  

DOE Green Energy (OSTI)

Molten carbonate fuel cell research and development at General Electric Company during the three month period beginning 15 November 1978 and ending 15 February 1979 is described. The objectives of this Phase I effort include the development of promising concepts to circumvent a number of outstanding technical challenges in molten carbonate fuel cell technology and the better definition of the operating limits of molten carbonate fuel cells and power plant based thereupon. During this quarter of the program, principal activities have been the operation of experimental molten carbonate fuel cells using pure and H/sub 2/S- and HCl-contaminated fuels which simulate coal-derived fuels, the development of synthesis and fabrication techniques to prepare electrolyte tiles, the diagnostic analysis of new and used electrolyte tiles, the quantification of anode sintering, the fabrication of a 10 in. x 10 in. scaled-up single cell, and design activities leading to a stackable 10 in. x 10 in. cell.

Not Available

1979-03-01T23:59:59.000Z

340

Development of a scintillation flow-cell detection system for environmental restoration and waste management applications  

Science Conference Proceedings (OSTI)

A flow-cell detection system was developed utilizing a coincidence circuit and tested with BaF{sub 2}, CaF{sub 2}:Eu and scintillating glass. The coincidence detection system reduced the background from {approximately}200 cps to {approximately}0.5 cps. The detection efficiencies for these cells ranged from 0.38 to 0.66 for {sup 45}Ca beta particles (E{sub max} = 0.257 MeV) and from 0.45 to 0.52 for {sup 233}U alpha particles (E{sub {alpha}} = 4.8 MeV). The minimum detectable activity was calculated for a 30 s count time and determined to be in the range of 1-2 Bq.

DeVol, T.A.; Branton, S.D.; Fjeld, R.A.

1996-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "developing li-ion cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Research and Development of a PEM Fuel Cell, Hydrogen Reformer, and Vehicle Refueling Facility  

DOE Green Energy (OSTI)

Air Products and Chemicals, Inc. has teamed with Plug Power, Inc. of Latham, NY, and the City of Las Vegas, NV, to develop, design, procure, install and operate an on-site hydrogen generation system, an alternative vehicle refueling system, and a stationary hydrogen fuel cell power plant, located in Las Vegas. The facility will become the benchmark for validating new natural gas-based hydrogen systems, PEM fuel cell power generation systems, and numerous new technologies for the safe and reliable delivery of hydrogen as a fuel to vehicles. Most important, this facility will serve as a demonstration of hydrogen as a safe and clean energy alternative. Las Vegas provides an excellent real-world performance and durability testing environment.

Edward F. Kiczek

2007-08-31T23:59:59.000Z

342

Technology development goals for automotive fuel cell power systems. Final report, Appendix B-2  

DOE Green Energy (OSTI)

Directed Technologies, Inc. has previously submitted a detailed technical assessment and concept design for a mid-size, five-passenger fuel cell electric vehicle (FCEV), under contract to the Argonne National Laboratory. As a supplement to that contract, DTI has reviewed the literature and conducted a preliminary evaluation of two energy carriers for the FCEV: hydrogen and methanol. This report compares the estimated fuel efficiency, cost of producing and delivering the fuel, and the resultant life cycle costs of the FCEV when fueled directly by hydrogen and when fueled by methanol with on-board reforming to produce the required hydrogen-rich gas for the fuel cell. This work will be supplemented and expanded under the Ford contract with the Department of Energy to develop the FCEV and its fuel infrastructure.

Thomas, C.E.; James, B.D.

1995-07-01T23:59:59.000Z

343

Development of electrochemical photovoltaic cells. Third technical progress report, November 1, 1979-January 31, 1980  

DOE Green Energy (OSTI)

The development of stable, efficient, electrochemical photovoltaic cells based on silicon and gallium arsenide in non-aqueous electrolyte systems is being investigated. The effect of surface condition of silicon electrodes on electrochemical and physical characteristics has been studied. An electrode-supporting electrolyte interaction in acetonitrile has been identified which leads to etching of the surface. Improved performance can result, which has practical significance. Gallium arsenide electrodes have been electrochemically characterized in cells containing propylene carbonate with a ferrocene/ferricenium redox additive. Degradation of the ferricenium salt under illumination has been investigated. Other redox couples studied to date have not given promising results. Long-term stability experiments have been deferred while a better understanding of electrode behavior is being obtained.

Byker, H.J.; Schwerzel, R.E.; Wood, V.E.; Austin, A.E.; Brooman, E.W.

1980-03-07T23:59:59.000Z

344

Infrastructure Development of Single Cell Testing Capability at A0 Facility  

Science Conference Proceedings (OSTI)

The objective of this technical note is to document the details of the infrastructure development process that was realized at the A0 photo injector facility to establish RF cold testing capability for 1.3 GHz superconducting niobium single cell cavities. The activity began the last quarter of CY 2006 and ended the first quarter of CY 2009. The whole process involved addressing various aspects such as design of vertical insert and lifting fixture, modification of existing RF test station and design of new couplers, development of a Temperature Mapping (T-Map) system, radiation considerations for the test location (north cave), update of existing High Pressure Rinse (HPR) system, preparation of necessary safety documents and eventually obtaining an Operational Readiness Clearance (ORC). Figure 1 illustrates the various components of the development process. In the past, the north cave test station at A0 has supported the cold testing 3.9 GHz nine cell and single cell cavities, thus some of the components were available for use and some needed modification. The test dewar had the capacity to accommodate 1.3 GHz single cells although a new vertical insert that could handle both cavity types (1.3 and 3.9 GHz) had to be designed. The existing cryogenic system with an average capacity of {approx} 0.5 g/sec was deemed sufficient. The RF system was updated with broadband components and an additional amplifier with higher power capacity to handle higher gradients usually achieved in 1.3 GHz cavities. The initial testing phase was arbitrated to proceed with fixed power coupling. A new temperature mapping system was developed to provide the diagnostic tool for hot spot studies, quench characterization and field emission studies. The defining feature of this system was the use of diode sensors instead of the traditional carbon resistors as sensing elements. The unidirectional current carrying capacity (forward bias) of the diodes provided for the ease of multiplexing of the system, thus substantially reducing the number of cables required to power the sensors. The high gradient capacity of the 1.3 GHz cavities required a revision of the radiation shielding and interlocks. The cave was updated as per the recommendations of the radiation safety committee. The high pressure rinse system was updated with new adapters to assist the rinsing 1.3 GHz single cell cavities. Finally, a proposal for cold testing 1.3 GHz single cell cavities at A0 north cave was made to the small experiments approval committee, radiation safety committee and the Tevatron cryogenic safety sub-committee for an operational readiness clearance and the same was approved. The project was classified under research and development of single cell cavities (project 18) and was allocated a budget of $200,000 in FY 2007.

Dhanaraj, Nandhini; Padilla, R.; Reid, J.; Khabiboulline, T.; Ge, M.; Mukherjee, A.; Rakhnov, I.; Ginsburg, C.; Wu, G.; Harms, E.; Carter, H.; /Fermilab

2009-09-01T23:59:59.000Z

345

Development of Sensors and Sensing Technology for Hydrogen Fuel Cell Vehicle Applications  

DOE Green Energy (OSTI)

One related area of hydrogen fuel cell vehicle (FCV) development that cannot be overlooked is the anticipated requirement for new sensors for both the monitoring and control of the fuel cell's systems and for those devices that will be required for safety. Present day automobiles have dozens of sensors on-board including those for IC engine management/control, sensors for state-of-health monitoring/control of emissions systems, sensors for control of active safety systems, sensors for triggering passive safety systems, and sensors for more mundane tasks such as fluids level monitoring to name the more obvious. The number of sensors continues to grow every few years as a result of safety mandates but also in response to consumer demands for new conveniences and safety features. Some of these devices (e.g. yaw sensors for dynamic stability control systems or tire presure warning RF-based devices) may be used on fuel cell vehicles without any modification. However the use of hydrogen as a fuel will dictate the development of completely new technologies for such requirements as the detection of hydrogen leaks, sensors and systems to continuously monitor hydrogen fuel purity and protect the fuel cell stack from poisoning, and for the important, yet often taken for granted, tasks such as determining the state of charge of the hydrogen fuel storage and delivery system. Two such sensors that rely on different transduction mechanisms will be highlighted in this presentation. The first is an electrochemical device for monitoring hydrogen levels in air. The other technology covered in this work, is an acoustic-based approach to determine the state of charge of a hydride storage system.

Brosha, E L; Sekhar, P K; Mukundan, R; Williamson, T; Garzon, F H; Woo, L Y; Glass, R R

2010-01-06T23:59:59.000Z

346

Development of molten-carbonate fuel-cell technology. Technical status report, August-October 1980  

DOE Green Energy (OSTI)

Efforts in the development of mechanically stable anodes with more enduring pore structures are being concentrated at present on the powder/metal alloy fabrication process. One of the new alloy compositions being prepared for electrode production concerns a new 50 at. % nickel-copper powder. Another task in the electrode development area is directed at producing low resistance cathodes. The newly developed fabrication procedure of wet-forming thin nickel powder films from aqueous PVA-binder slurries is showing promising results. The relatively low-cost, standard electrolyte of 50Li/50K cation ratio used at ERC is being re-examined for performance level compared to higher lithium content melts. All other cell components and the tile matrix material used in these tests are of exactly the same type so as to be able to positively identify the electrolyte composition effect. A second pressurized, bench-scale (300 cm/sup 2/), cell test has been operated successfully showing that under the demanding conditions of 80% utilization with low-Btu fuel, the performance goal of 850 mV at 160 mA/cm/sup 2/ can be met with 10 atmosphere pressurization. Details are given. (WHK)

Not Available

1980-01-01T23:59:59.000Z

347

Direct methanol fuel cells: Developments for portable power and for potential transportation applications  

DOE Green Energy (OSTI)

The authors describe here results of recent efforts at Los Alamos National Laboratory (LANL), devoted to potential application of Direct Methanol Fuel Cells (DMFCs) as (1) portable power sources at the 50 W level, and (2) primary power sources for electric vehicles. In general, DMFC R and D efforts focus on further improvements in anode catalytic activity, fuel utilization (as related to methanol crossover) and air cathode performance in the presence of the presence of the significant flux of aqueous methanol from anode to cathode. There are significant differences between technical parameters and targets for the two different DMFC applications, which the authors have addressed. They include the lower cell temperature (about 60 C) preferred in portable power vs. operation around 100 C as target temperature for transportation applications, and the much stronger concern for cost of catalyst and any other stack materials in DMFCs developed for potential transportation applications. Most, if not all, recent DMFC work for either portable power or potential transportation applications has strongly focused on cells with polymeric (primarily PFSA) membrane electrolytes. In work at LANL, thin film catalysts bonded to the membrane, e.g., by the decal method, provided best results in terms of catalyst utilization and overall cell performance. In most tests, the single DMFC hardware consisted of uncatalyzed carbon-cloth gas-diffusion backings and graphite blocks with machined serpentine flow channels--quite similar to hardware employed in work with hydrogen/air PEFCs. However, the machined graphite hardware has recently been replaced by alternative, non-machined flow-field/bipolar plates, which enables effective air and aqueous methanol solution distribution along an active area of 50 cm{sup 2}, at a pitch per cell of 2 mm.

Ren, X.; Thomas, S.C.; Zelenay, P.; Gottesfeld, S.

1998-12-31T23:59:59.000Z

348

Film Si Solar Cells with Nano Si: Cooperative Research and Development Final Report, CRADA Number CRD-09-00356  

DOE Green Energy (OSTI)

Nevada Nanotechnology Center and Si group at NREL will work together to develop a-Si based solar cells with nano-Si technique. We will explore the existing a-Si based film solar cell technology at NREL and nano scale Si technology at Nevada Nanotechnology Center. By exchanging information, we will come; up with some new cell structures using nano-Si. We expect the new a-Si based cells will have optical enhancement or better electronic or optical properties of absorber layer to improve solar cell performance.

Wang, Q.

2011-05-01T23:59:59.000Z

349

Development of a Wide Bandgap Cell for Thin Film Tandem Solar Cells: Final Technical Report, 6 November 2003 - 5 January 2007  

DOE Green Energy (OSTI)

The objective of this research program was to develop approaches for a transparent wide-bandgap cell to be used in a thin-film tandem polycrystalline solar cell that can ultimately attain 25% efficiency. Specific goals included the research and development of Cu(InGa)(SeS)2 and Cd1-xZnxTe alloys with a bandgap from 1.5 to 1.8 eV, demonstrating the potential of a 15% cell efficiency with a transparent contact, and supporting the High Performance PV Program. This Final Report presents results that emphasize the 3rd phase of the program.

Shafarman, W.; McCandless, B.

2008-08-01T23:59:59.000Z

350

FY2005 Progress Report for Energy Research and Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Chem (Li-ion polymer). 0% 20% 40% 60% 80% 100% 120% 140% Discharge Pulse Power (25 kW) Regenerative Pulse Power (20 kW) Available Energy (300 Wh) Efficiency (90%) Cycle Life...

351

Development of improved cathodes for solid oxide fuel cells. Final report  

DOE Green Energy (OSTI)

The University of Missouri-Rolla conducted a 17 month research program focused on the development and evaluation of improved cathode materials for solid oxide fuel cells (SOFC). The objectives of this program were: (1) the development of cathode materials of improved stability in reducing environments; and (2) the development of cathode materials with improved electrical conductivity. The program was successful in identifying some potential candidate materials: Air sinterable (La,Ca)(Cr,Co)O{sub 3} compositions were developed and found to be more stable than La{sub .8}Sr{sub .2}MnO{sub 3} towards reduction. Their conductivity at 1000{degrees}C ranged between 30 to 60 S/cm. Compositions within the (Y,Ca)(Cr,Co,Mn)O{sub 3} system were developed and found to have higher electrical conductivity than La{sub .8}Sr{sub .2}MnO{sub 3} and preliminary results suggest that their stability towards reduction is superior.

Anderson, H.U.

1991-03-01T23:59:59.000Z

352

Development of a Hybrid Compressor/Expander Module for Automotive Fuel Cell Applications  

DOE Green Energy (OSTI)

In this program TIAX LLC conducted the development of an advanced technology compressor/expander for supplying compressed air to Proton Exchange Membrane (PEM) fuel cells in transportation applications. The overall objective of this program was to develop a hybrid compressor/expander module, based on both scroll and high-speed turbomachinery technologies, which will combine the strengths of each technology to create a concept with superior performance at minimal size and cost. The resulting system was expected to have efficiency and pressure delivery capability comparable to that of a scroll-only machine, at significantly reduced system size and weight when compared to scroll-only designs. Based on the results of detailed designs and analyses of the critical system elements, the Hybrid Compressor/Expander Module concept was projected to deliver significant improvements in weight, volume and manufacturing cost relative to previous generation systems.

McTaggart, Paul

2004-12-31T23:59:59.000Z

353

Research and development of Proton-Exchange-Membrane (PEM) fuel cell system for transportation applications. Fuel cell infrastructure and commercialization study  

DOE Green Energy (OSTI)

This paper has been prepared in partial fulfillment of a subcontract from the Allison Division of General Motors under the terms of Allison`s contract with the U.S. Department of Energy (DE-AC02-90CH10435). The objective of this task (The Fuel Cell Infrastructure and Commercialization Study) is to describe and prepare preliminary evaluations of the processes which will be required to develop fuel cell engines for commercial and private vehicles. This report summarizes the work undertaken on this study. It addresses the availability of the infrastructure (services, energy supplies) and the benefits of creating public/private alliances to accelerate their commercialization. The Allison prime contract includes other tasks related to the research and development of advanced solid polymer fuel cell engines and preparation of a demonstration automotive vehicle. The commercialization process starts when there is sufficient understanding of a fuel cell engine`s technology and markets to initiate preparation of a business plan. The business plan will identify each major step in the design of fuel cell (or electrochemical) engines, evaluation of the markets, acquisition of manufacturing facilities, and the technical and financial resources which will be required. The process will end when one or more companies have successfully developed and produced fuel cell engines at a profit. This study addressed the status of the information which will be required to prepare business plans, develop the economic and market acceptance data, and to identify the mobility, energy and environment benefits of electrochemical or fuel cell engines. It provides the reader with information on the status of fuel cell or electrochemical engine development and their relative advantages over competitive propulsion systems. Recommendations and descriptions of additional technical and business evaluations that are to be developed in more detail in Phase II, are included.

NONE

1996-11-01T23:59:59.000Z

354

Development of an External Fuel Processor for a Solid Oxide Fuel Cell  

DOE Green Energy (OSTI)

A 250 kW External Fuel Processor was developed and tested that will supply the gases needed by a pipeline natural gas fueled, solid oxide fuel cell during all modes of operation. The fuel processor consists of three major subsystems--a desulfurizer to remove fuel sulfur to an acceptable level, a synthesis gas generator to support plant heat-up and low load fuel cell operations, and a start gas generator to supply a non-flammable, reducing gas to the fuel cell during startup and shutdown operations. The desulfurization subsystem uses a selective catalytic sulfur oxidation process that was developed for operation at elevated pressure and removes the fuel sulfur to a total sulfur content of less than 80 ppbv. The synthesis gas generation subsystem uses a waterless, catalytic partial oxidation reactor to produce a hydrogen-rich mixture from the natural gas and air. An operating window was defined that allows carbon-free operation while maintaining catalyst temperatures that will ensure long-life of the reactor. The start gas subsystem generates an oxygen-free, reducing gas from the pipeline natural gas using a low-temperature combustion technique. These physically and thermally integrated subsystems comprise the 250 kW External Fuel Processor. The 250 kW External Fuel Processor was tested at the Rolls-Royce facility in North Canton, Ohio to verify process performance and for comparison with design specifications. A step wise operation of the automatic controls through the startup, normal operation and shutdown sequences allowed the control system to be tuned and verified. A fully automated system was achieved that brings the fuel processor through its startup procedure, and then await commands from the fuel cell generator module for fuel supply and shutdown. The fuel processor performance met all design specifications. The 250 kW External Fuel Processor was shipped to an American Electric Power site where it will be tested with a Rolls-Royce solid oxide fuel cell generator module.

Daniel Birmingham; Crispin Debellis; Mark Perna; Anant Upadhyayula

2008-02-28T23:59:59.000Z

355

Molten carbonate fuel cell product development test. Annual report, October 1992--September 1993  

DOE Green Energy (OSTI)

Advanced fuel cell active components have been developed and scaled up from laboratory scale to commercial scale. Full width components of both the stabilized nickel cathodes and the low chrome anodes have been successfully cast on M-C Power`s production tape caster. An improved design for a fuel cell separator plate has been developed. The improved design meets the goals of lower cost and manufacturing simplicity, and addresses performance issues of the current commercial area plate. The engineering that the Bechtel Corporation has completed for the MCFC power plant includes a site design, a preliminary site layout, a Process Flow Diagram, and specification for the procurement of some of the major equipment items. Raw materials for anode and cathode components were ordered and received during the first half of 1993. Tape casting of anodes was started in late summer and continued through August. In addition to the technical progress mentioned above, an environment assessment was prepared in compliance with the National Environmental Policy Act of 1969 (NEPA). As a result, the PDT has received a categorical exclusion from the Air Pollution Control District permit requirements. The PDT is configured to demonstrate the viability of natural gas-fueled MCFC for the production of electricity and thermal energy in an environmentally benign manner for use in commercial and industrial applications.

Not Available

1993-12-01T23:59:59.000Z

356

Development of a High Volume Capable Process to Manufacture High Performance Photovoltaic Cells: Cooperative Research and Development Final Report, CRADA Number CRD-08-322  

DOE Green Energy (OSTI)

The intent of the work is for RFMD and NREL to cooperate in the development of a commercially viable and high volume capable process to manufacture high performance photovoltaic cells, based on inverted metamorphic (IMM) GaAs technology. The successful execution of the agreement will result in the production of a PV cell using technology that is capable of conversion efficiency at par with the market at the time of release (reference 2009: 37-38%), using RFMD's production facilities. The CRADA work has been divided into three phases: (1) a foundation phase where the teams will demonstrate the manufacturing of a basic PV cell at RFMD's production facilities; (2) a technology demonstration phase where the teams will demonstrate the manufacturing of prototype PV cells using IMM technology at RFMD's production facilities, and; (3) a production readiness phase where the teams will demonstrate the capability to manufacture PV cells using IMM technology with high yields, high reliability, high reproducibility and low cost.

Geisz, J. F.

2012-11-01T23:59:59.000Z

357

Center for Fuel Cell Research and Applications development phase. Final report  

DOE Green Energy (OSTI)

The deployment and operation of clean power generation is becoming critical as the energy and transportation sectors seek ways to comply with clean air standards and the national deregulation of the utility industry. However, for strategic business decisions, considerable analysis is required over the next few years to evaluate the appropriate application and value added from this emerging technology. To this end the Houston Advanced Research Center (HARC) is proposing a three-year industry-driven project that centers on the creation of ``The Center for Fuel Cell Research and Applications.`` A collaborative laboratory housed at and managed by HARC, the Center will enable a core group of six diverse participating companies--industry participants--to investigate the economic and operational feasibility of proton-exchange-membrane (PEM) fuel cells in a variety of applications (the core project). This document describes the unique benefits of a collaborative approach to PEM applied research, among them a shared laboratory concept leading to cost savings and shared risks as well as access to outstanding research talent and lab facilities. It also describes the benefits provided by implementing the project at HARC, with particular emphasis on HARC`s history of managing successful long-term research projects as well as its experience in dealing with industry consortia projects. The Center is also unique in that it will not duplicate the traditional university role of basic research or that of the fuel cell industry in developing commercial products. Instead, the Center will focus on applications, testing, and demonstration of fuel cell technology.

NONE

1998-12-01T23:59:59.000Z

358

Final Scientific Report : Development of Transition Metal/ Chalcogen Based Cathode Catalysts for PEM Fuel Cells  

DOE Green Energy (OSTI)

The aim of this project was to investigate the potential for using base metal sulfides and selenides as low cost replacements for precious metal catalysts, such as platinum, currently being used in PEM fuel cells. The approach was to deposit thin films of the materials to be evaluated onto inert electrodes and evaluate their activity for the cathode reaction (oxygen reduction) as well as ex-situ structural and compositional characterization. The most active materials identified are CoS2 and the 50:50 solid solution (Co,Ni)S2. However, the OCP of these materials is still considered too low, at 0.83V and 0.89V vs. RHE respectively, for testing in fuel cells. The methods employed here were necessary to compare with the activity of platinum as, when nano-dispersed on carbon supports, the active surface area of these materials is difficult to measure, making comparisons inaccurate. This research adds to the knowledge of potential candidates for platinum replacement in order to reduce the cost of PEM fuel cell technology and promote commercialization. Although the fabrication methods employed here are strictly experimental, methods were also developed to produce nano-dispersed catalysts with similar compositions, structure and activity. Cycling of these catalysts to highly oxidizing potentials resulted in an increase of the open circuit voltage to approach that of platinum, however, it proved difficult to determine why using these dispersed materials. The potential for non-precious, non-metallic, low cost, compound catalysts for PEM fuel cells has been investigated and demonstrated.

Campbell, Stephen, A.

2008-02-29T23:59:59.000Z

359

Development of high-efficiency silicon solar cells and modeling the impact of system parameters on levelized cost of electricity .  

E-Print Network (OSTI)

??The objective of this thesis is to develop low-cost high-efficiency crystalline silicon solar cells which are at the right intersection of cost and performance to… (more)

Kang, Moon Hee

2013-01-01T23:59:59.000Z

360

A Further Study of the Mechanisms of Cell Regeneration, Propagation, and Development within Two-Dimensional Multicell Storms  

Science Conference Proceedings (OSTI)

The mechanisms of cell regeneration, development, and propagation within a two-dimensional multicell storm proposed by Lin, Deal, and Kulie (hereafter LDK) were further investigated by conducting a series of sensitivity tests. LDK's advection ...

Yuh-Lang Lin; Lara E. Joyce

2001-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "developing li-ion cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

NREL Develops Technique to Measure Membrane Thickness and Defects in Polymer Electrode Membrane Fuel Cells (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet describes NREL's accomplishments in fuel cell membrane electrode assembly research and development. Work was performed by the Hydrogen Technologies and Systems Center and the National Center for Photovoltaics.

Not Available

2010-11-01T23:59:59.000Z

362

Organic Based Nanocomposite Solar Cells: Cooperative Research and Development Final Report, CRADA Number CRD-04-145  

DOE Green Energy (OSTI)

This CRADA will focus on the development of organic-based solar cells. Key interfacial issues in these cells will be investigated. In this rapidly emerging technology, it is increasingly clear that cell architecture will need to be at the nanoscale and the interfacial issues between organic elements (small molecule and polymer), transparent conducting oxides, and contact metallizations are critical. Thus this work will focus on the development of high surface area and nanostructured nanocarpets of inorganic oxides, the development of appropriate surface binding/acceptor molecules for the inorganic/organic interface, and the development of next-generation organic materials. Work will be performed in all three areas jointly at NREL and Konarka (with their partner in the third area of the University of Delaware). Results should be more rapid progress toward cheap large-area photovoltaic cells.

Olson, D.

2013-01-01T23:59:59.000Z

363

Development of nanostructured and surface modified semiconductors for hybrid organic-inorganic solar cells.  

DOE Green Energy (OSTI)

Solar energy conversion is increasingly being recognized as one of the principal ways to meet future energy needs without causing detrimental environmental impact. Hybrid organic-inorganic solar cells (SCs) are attracting particular interest due to the potential for low cost manufacturing and for use in new applications, such as consumer electronics, architectural integration and light-weight sensors. Key materials advantages of these next generation SCs over conventional semiconductor SCs are in design opportunities--since the different functions of the SCs are carried out by different materials, there are greater materials choices for producing optimized structures. In this project, we explore the hybrid organic-inorganic solar cell system that consists of oxide, primarily ZnO, nanostructures as the electron transporter and poly-(3-hexylthiophene) (P3HT) as the light-absorber and hole transporter. It builds on our capabilities in the solution synthesis of nanostructured semiconducting oxide arrays to this photovoltaic (PV) technology. The three challenges in this hybrid material system for solar applications are (1) achieving inorganic nanostructures with critical spacing that matches the exciton diffusion in the polymer, {approx} 10 nm, (2) infiltrating the polymer completely into the dense nanostructure arrays, and (3) optimizing the interfacial properties to facilitate efficient charge transfer. We have gained an understanding and control over growing oriented ZnO nanorods with sub-50 nm diameters and the required rod-to-rod spacing on various substrates. We have developed novel approaches to infiltrate commercially available P3HT in the narrow spacing between ZnO nanorods. Also, we have begun to explore ways to modify the interfacial properties. In addition, we have established device fabrication and testing capabilities at Sandia for prototype devices. Moreover, the control synthesis of ZnO nanorod arrays lead to the development of an efficient anti-reflection coating for multicrystalline Si solar cells. An important component of this project is the collaboration with Dr. Dave Ginley's group at NREL. The NREL efforts, which are funded by NREL's LDRD program, focus on measuring device performance, external quantum efficiency, photoconductance through highly specialized non-contact time-resolved microwave conductivity (TRMC) measurements, and vapor phase deposition of oxide materials. The close collaboration with NREL enables us to enter this competitive field in such short time. Joint publications and presentations have resulted from this fruitful collaboration. To this date, 5 referred journal papers have resulted from this project, with 2 more in preparation. Several invited talks and numerous contributed presentations in international conferences are also noted. Sandia has gained the reputation of being one of forefront research groups on nanostructured hybrid solar cells.

Hsu, Julia, W. P.

2008-09-01T23:59:59.000Z

364

Development of Type 1 Diabetes: Monocytes and dendritic cells in the pancreas.  

E-Print Network (OSTI)

??This thesis focuses on the presence of precursors for dendritic cells and the characterization of dendritic cell subsets in the normal pancreas in mice and… (more)

Welzen-Coppens, J.M.C.

2013-01-01T23:59:59.000Z

365

Categorical Exclusion D  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6) Oak Ridge National Laboratory -Temperature Self-Regulation for Large Format Li-ion Cells 6) Oak Ridge National Laboratory -Temperature Self-Regulation for Large Format Li-ion Cells Program or Field Office:Advanced Research Projects Agency - Energy LocationCs) CCity/County/State): Oak Ridge, TN; Hayward, CA Proposed Action Description: Funding will support efforts to develop large format U-ion cells capable of controlling and regulating temperature. Proposed work will consist of: (1) developing and validating models for baseline cells; (2) performing thermal control testing to validate and improve the developed cells in order to achieve established performance and safety metrics; and (3) performing thermal control testing on large- cells to validate and improve the developed cells and in order to achieve established performance and safety metrics.

366

Molten carbonate fuel cell (MCFC) product development test. Annual report, September 1993--September 1994  

DOE Green Energy (OSTI)

M-C Power Corporation will design, fabricate, install, test and evaluate a 250 kW Proof-of-Concept Molten Carbonate Fuel Cell (MCFC) Power Plant. The plant is to be located at the Naval Air Station Miramar in San Diego, California. This report summarizes the technical progress that has occurred in conjunction with this project in 1994. M-C Power has completed the tape casting and sintering of cathodes and is proceeding with the tape casting and sintering of anodes for the first 250 cell stack. M-C Power and San Diego Gas and Electric relocated the fuel cell demonstration project to an alternate site at the Naval Air Station Miramar. For the new project location at the Naval Air Station Miramar, an Environmental Assessment has been prepared by the Department of Energy in compliance with the National Environmental Policy Act of 1969. The Environmental Assessment resulted in a categorical exclusion of the proposed action from all environmental permit requirements. Bechtel Corporation has completed the reformer process design coordination, a Process Description, the Pipe and Instrumentation Diagrams, a Design Criteria Document and General Project Requirement Document. Bechtel developed the requirements for soils investigation report and issued the following equipment bid packages to the suppliers for bids: Inverter, Reformer, Desulfurization Vessels, Hot Gas Recycle Blower, Heat Recovery Steam Generator, and Recycle Gas Cooler. SDG and E has secured necessary site permits, conducted soils investigations, and is working on the construction plan. They are in final negotiations with the US Navy on a site agreement. Site drawings are required for finalization of the agreement.

NONE

1995-02-01T23:59:59.000Z

367

Role of a Transcriptional Regulator in Programmed Cell Death and Plant Development  

SciTech Connect

The long-term goal of this research is to understand the role(s) and molecular mechanisms of programmed cell death (PCD) in the controlling plant growth, development and responses to biotic and abiotic stress. We developed a genetic selection scheme to identify A. thaliana FB1-resistant (fbr) mutants as a way to find genes involved in PCD (Stone et al., 2000; Stone et al., 2005; Khan and Stone, 2008). The disrupted gene in fbr6 (AtSPL14) responsible for the FB1-insensitivity and plant architecture phenotypes encodes a plant-specific SBP DNA-binding domain transcriptional regulator (Stone et al., 2005; Liang et al., 2008). This research plan is designed to fill gaps in the knowledge about the role of SPL14 in plant growth and development. The work is being guided by three objectives aimed at determining the pathways in which SPL14 functions to modulate PCD and/or plant development: (1) determine how SPL14 functions in plant development, (2) identify target genes that are directly regulated by SPL14, and (3) identify SPL14 modifications and interacting proteins. We made significant progress during the funding period. Briefly, some major accomplishments are highlighted below: (1) To identify potential AtSPL14 target genes, we identified a consensus DNA binding site for the AtSPL14 SBP DNA-binding domain using systematic evolution of ligands by exponential selection (SELEX) and site-directed mutagenesis (Liang et al., 2008). This consensus binding site was used to analyze Affymetrix microarray gene expression data obtained from wild-type and fbr6 mutant plants to find possible AtSPL14-regulated genes. These candidate AtSPL14-regulated genes are providing new information on the molecular mechanisms linking plant PCD and plant development through modulation of the 26S proteasome. (2) Transgenic plants expressing epitope-tagged versions of AtSPL14 are being used to confirm the AtSPL14 targets (by ChIP-PCR) and further dissect the molecular interactions (Nazarenus, Liang and Stone, in preparation) (3) Double mutants generated between fbr6 and various accelerated cell death (acd) mutants indicate that sphingolipid metabolism is influenced by AtSPL14 and sphingolipidomics profiling supports this conclusion (Lin, Markham and Stone, in preparation). (4) A new set of phenotypes have been uncovered in the original fbr6-1 mutant, including a short-root phenotype related to auxin signaling and altered photosynthetic parameters related to stomatal density and conductance (Lin and Stone, in preparation; Lin, Madhavan and Stone, in preparation). Additional AtSPL14-related mutants and transgenic plants have been generated to effectively dissect the functions of AtSPL14, including a dominant negative fbr6-2 allele and transgenic plants overexpressing FBR6/AtSPL14 that display an accelerated cell death (acd) phenotype.

Julie M. Stone

2008-09-13T23:59:59.000Z

368

Developing new optical imaging techniques for single particle and molecule tracking in live cells  

SciTech Connect

Differential interference contrast (DIC) microscopy is a far-field as well as wide-field optical imaging technique. Since it is non-invasive and requires no sample staining, DIC microscopy is suitable for tracking the motion of target molecules in live cells without interfering their functions. In addition, high numerical aperture objectives and condensers can be used in DIC microscopy. The depth of focus of DIC is shallow, which gives DIC much better optical sectioning ability than those of phase contrast and dark field microscopies. In this work, DIC was utilized to study dynamic biological processes including endocytosis and intracellular transport in live cells. The suitability of DIC microscopy for single particle tracking in live cells was first demonstrated by using DIC to monitor the entire endocytosis process of one mesoporous silica nanoparticle (MSN) into a live mammalian cell. By taking advantage of the optical sectioning ability of DIC, we recorded the depth profile of the MSN during the endocytosis process. The shape change around the nanoparticle due to the formation of a vesicle was also captured. DIC microscopy was further modified that the sample can be illuminated and imaged at two wavelengths simultaneously. By using the new technique, noble metal nanoparticles with different shapes and sizes were selectively imaged. Among all the examined metal nanoparticles, gold nanoparticles in rod shapes were found to be especially useful. Due to their anisotropic optical properties, gold nanorods showed as diffraction-limited spots with disproportionate bright and dark parts that are strongly dependent on their orientation in the 3D space. Gold nanorods were developed as orientation nanoprobes and were successfully used to report the self-rotation of gliding microtubules on kinesin coated substrates. Gold nanorods were further used to study the rotational motions of cargoes during the endocytosis and intracellular transport processes in live mammalian cells. New rotational information was obtained: (1) during endocytosis, cargoes lost their rotation freedom at the late stage of internalization; (2) cargoes performed train-like motion when they were transported along the microtubule network by motor proteins inside live cells; (3) During the pause stage of fast axonal transport, cargoes were still bound to the microtubule tracks by motor proteins. Total internal reflection fluorescence microscopy (TIRFM) is another non-invasive and far-field optical imaging technique. Because of its near-field illumination mechanism, TIRFM has better axial resolution than epi-fluorescence microscopy and confocal microscopy. In this work, an auto-calibrated, prism type, angle-scanning TIRFM instrument was built. The incident angle can range from subcritical angles to nearly 90{sup o}, with an angle interval less than 0.2{sup o}. The angle precision of the new instrument was demonstrated through the finding of the surface plasmon resonance (SPR) angle of metal film coated glass slide. The new instrument improved significantly the precision in determining the axial position. As a result, the best obtained axial resolution was {approx} 8 nm, which is better than current existing instruments similar in function. The instrument was further modified to function as a pseudo TIRF microscope. The illumination depth can be controlled by changing the incident angle of the excitation laser beam or adjusting the horizontal position of the illumination laser spot on the prism top surface. With the new technique, i.e., variable-illumination-depth pseudo TIRF microscopy, the whole cell body from bottom to top was scanned.

Sun, Wei

2010-12-15T23:59:59.000Z

369

Component Standard Research and Development - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Robert Burgess (Primary Contact), William Buttner, Matthew Post, Carl Rivkin, Chad Blake National Renewable Energy Laboratory (NREL) 15013 Denver West Parkway Golden, CO 80401 Phone: (303) 275-3823 Email: robert.burgess@nrel.gov DOE Manager HQ: Antonio Ruiz Phone: (202) 586-0729 Email: Antonio.Ruiz@ee.doe.gov Subcontractor: SAE International, Troy, MI Project Start Date: Fiscal Year (FY) 2008 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Support development of new codes and standards * required for commercialization of hydrogen technologies. Create code language that is based on the latest scientific *

370

Development and fabrication of a solar cell junction processing system. Quarterly progress report No. 4  

DOE Green Energy (OSTI)

The basic objectives of the program are the following: (1) to design, develop, construct and deliver a junction processing system which will be capable of producing solar cell junctions by means of ion implantation followed by pulsed electron beam annealing; (2) to include in the system a wafer transport mechanism capable of transferring 4-inch-diameter wafers into and out of the vacuum chamber where the ion implantation and pulsed electron beam annealing processes take place; (3) to integrate, test and demonstrate the system prior to its delivery to JPL along with detailed operating and maintenance manuals; and (4) to estimate component lifetimes and costs, as necessary for the contract, for the performance of comprehensive analyses in accordance with the Solar Array Manufacturing Industry Costing Standards (SAMICS). Progress is reported. (WHK)

None

1981-01-01T23:59:59.000Z

371

NREL Makes Substantial Progress in Developing CZTSe Solar Cells (Fact Sheet) (Revised)  

DOE Green Energy (OSTI)

By defining the deposition process, NREL has significantly improved the conversion efficiency of CZTSe solar cells.

Not Available

2011-11-01T23:59:59.000Z

372

Characterization of the passivation layer on disordered carbons in lithium-ion cells  

DOE Green Energy (OSTI)

Intercalation anodes of graphite or disordered carbon in rechargeable Li-ion batteries (based on aprotic organic solvents) develop a passivating film during the first intercalation of Li{sup +}. The formation of this film reduces the cycling efficiency and results in excessive consumption of Li{sup +}. The exact nature of this film is not well defined, although there are many similarities in properties to the films that form on Li anodes under similar cycling conditions. In this study we report on characterization studies of films formed during galvanostatic cycling of disordered carbons derived from polymethylacryolintrile (PMAN) in a 1M LiPF{sub 6} solution in ethylene carbonateldimethyl carbonate solution (1:1 by vol.). Complementary tests were also conducted with glass carbon, where intercalation cannot occur. Complex-impedance spectroscopy was the primary measurement technique, supplemented by cyclic voltammetry.

Guidotti, R.; Johnson, B.

1995-12-01T23:59:59.000Z

373

Advanced water-cooled phosphoric acid fuel cell development. Quarterly technical progress report No. 50, April--June 1992  

DOE Green Energy (OSTI)

The Advanced Water Cooled Phosphoric Acid Fuel Cell Development program is being conducted by International Fuel Cells Corporation (IFC) to improve the performance and minimize the cost of water-cooled, electric utility phosphoric acid fuel cell stacks. The program adapts the existing on-site Configuration B cell design to electric utility operating conditions and introduces additional new design features. Task 1 consists of the conceptual design of a full-scale electric utility cell stack that meets program objectives. Tasks 2 and 3 develop the materials and processes required to fabricate the components that meet the program objective. The design of the small area and two 10-ft{sup 2} short stacks is conducted in Task 4. The conceptual design also is updated to incorporate the results of material and process developments, as well as results of stack tests conducted in Task 6. Fabrication and assembly of the short stacks are conducted in Task 5 and subsequent tests are conducted in Task 6. The Contractor expects to enter into a contract with the Electric Power Research Institute (EPRI) to assemble and endurance test the second 10-ft{sup 2} short stack. The management and reporting functions of Task 7 provide DOE/METC with program visibility through required documentation and program reviews. This report describes the cell design and development effort that is being conducted to demonstrate, by subscale stack test, the technical achievements made toward the above program objectives.

Not Available

1992-07-01T23:59:59.000Z

374

Development of Advanced CdTe Solar Cells Based on High Temperature Corning Glass Substrates: Cooperative Research and Development Final Report, CRADA Number CRD-10-373  

DOE Green Energy (OSTI)

NREL has developed advanced processes for CdTe solar cells, but because of the temperature limitations of conventional soda lime glass, many of these processes have not been transferred to manufacturing. Corning is developing high temperature substrate glasses that are believed to be manufacturable and will lead to lower $/watt modules costs. The purpose of this CRADA is to evaluate these glasses in the advanced NREL processes. In addition, the CRADA seeks to develop manufacturable processes for transparent conductive oxide layers based on cadmium stannate.

Barnes, T.

2013-08-01T23:59:59.000Z

375

MATERIAL AND PROCESS DEVELOPMENT LEADING TO ECONOMICAL HIGH-PERFORMANCE THIN-FILM SOLID OXIDE FUEL CELLS  

DOE Green Energy (OSTI)

This document summarizes the technical progress from September 2002 to March 2003 for the program, Material and Process Development Leading to Economical High-Performance Thin-Film Solid Oxide Fuel Cells, contract number DE-AC26-00NT40711. The causes have been identified for the unstable open circuit voltage (OCV) and low performance exhibited by the anode-supported lanthanum gallate based cells from the earlier development. Promising results have been obtained in the area of synthesis of electrolyte and cathode powders, which showed excellent sintering and densification at low temperatures. The fabrication of cells using tapecalendering process for anode-supported thin lanthanum gallate electrolyte cells and their performance optimization is in progress.

Jie Guan; Atul Verma; Nguyen Minh

2003-04-01T23:59:59.000Z

376

Molten carbonate fuel cell product development test. Final report, September 30, 1992--March 31, 1997  

DOE Green Energy (OSTI)

This report summarizes the work performed for manufacturing and demonstrating the performance of its 250-kW molten carbonate fuel cell (MCFC) stack in an integrated system at the Naval Air Station Miramar (NAS Miramar) located in San Diego, California. The stack constructed for the demonstration test at the NAS Miramar consisted of 250 cells. It was manufactured using M-C Power`s patented Internally Manifolded Heat Exchanger (IMHEX{reg_sign}) stack design. The demonstration test at NAS Miramar was designed to operate the 250-kW MCFC stack in a cogeneration mode. This test represented the first attempt to thermally integrate an MCFC stack in a cogeneration system. The test was started on January 10, 1997, and voluntarily terminated on May 12, 1997, after 2,350 hours of operation at temperatures above 1,100 F and at a pressure of three atmospheres. It produced 160 MWh of d.c. power and 346,000 lbs of 110 psig steam for export during 1,566 hours of on-load operations. The test demonstrated a d.c. power output of 206 kW. Most of the balance of the plant (BOP) equipment operated satisfactorily. However, the off-the-shelf automotive turbocharger used for supplying air to the plant failed on numerous occasions and the hot gas blower developed seal leakage problems which impacted continuous plant operations. Overall the demonstration test at NAS Miramar was successful in demonstrating many critical features of the IMHEX technology. Lessons learned from this test will be very useful for improving designs and operations for future MCFC power plants.

NONE

1997-12-31T23:59:59.000Z

377

RD&D Cooperation for the Development of Fuel Cell, Hybrid and Electric Vehicles within the International Energy Agency: Preprint  

DOE Green Energy (OSTI)

Annex XIII on 'Fuel Cell Vehicles' of the Implementing Agreement Hybrid and Electric Vehicles of the International Energy Agency has been operating since 2006, complementing the ongoing activities on battery and hybrid electric vehicles within this group. This paper provides an overview of the Annex XIII final report for 2010, compiling an up-to-date, neutral, and comprehensive assessment of current trends in fuel cell vehicle technology and related policy. The technological description includes trends in system configuration as well as a review of the most relevant components including the fuel cell stack, batteries, and hydrogen storage. Results from fuel cell vehicle demonstration projects around the world and an overview of the successful implementation of fuel cells in specific transport niche markets will also be discussed. The final section of this report provides a detailed description of national research, development, and demonstration (RD&D) efforts worldwide.

Telias, G.; Day, K.; Dietrich, P.

2011-01-01T23:59:59.000Z

378

Simulation and process development for ion-implanted N-type silicon solar cells .  

E-Print Network (OSTI)

??As the efficiency potential for the industrial P-type Al-BSF silicon solar cell reaches its limit, new solar cell technologies are required to continue the pursuit… (more)

Ning, Steven

2013-01-01T23:59:59.000Z

379

Survey of Development of CZTS-based Thin Film Solar Cells  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2013 TMS Annual Meeting & Exhibition. Symposium , Alloys and Compounds for Thermoelectric and Solar Cell Applications.

380

Research and development of proton-exchange membrane (PEM) fuel cell system for transportation applications. Phase I final report  

DOE Green Energy (OSTI)

Objective during Phase I was to develop a methanol-fueled 10-kW fuel cell power source and evaluate its feasibility for transportation applications. This report documents research on component (fuel cell stack, fuel processor, power source ancillaries and system sensors) development and the 10-kW power source system integration and test. The conceptual design study for a PEM fuel cell powered vehicle was documented in an earlier report (DOE/CH/10435-01) and is summarized herein. Major achievements in the program include development of advanced membrane and thin-film low Pt-loaded electrode assemblies that in reference cell testing with reformate-air reactants yielded performance exceeding the program target (0.7 V at 1000 amps/ft{sup 2}); identification of oxidation catalysts and operating conditions that routinely result in very low CO levels ({le} 10 ppm) in the fuel processor reformate, thus avoiding degradation of the fuel cell stack performance; and successful integrated operation of a 10-kW fuel cell stack on reformate from the fuel processor.

NONE

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "developing li-ion cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

MATERIAL AND PROCESS DEVELOPMENT LEADING TO ECONOMICAL HIGH-PERFORMANCE THIN-FILM SOLID OXIDE FUEL CELLS  

DOE Green Energy (OSTI)

This report summarizes the results of the work conducted under the program: ''Material and Process Development Leading to Economical High-Performance Thin-Film Solid Oxide Fuel Cells'' under contract number DE-AC26-00NT40711. The program goal is to advance materials and processes that can be used to produce economical, high-performance solid oxide fuel cells (SOFC) capable of achieving extraordinary high power densities at reduced temperatures. Under this program, anode-supported thin electrolyte based on lanthanum gallate (LSMGF) has been developed using tape-calendering process. The fabrication parameters such as raw materials characteristics, tape formulations and sintering conditions have been evaluated. Dense anode supported LSGMF electrolytes with thickness range of 10-50 micron have been fabricated. High performance cathode based on Sr{sub 0.5}Sm{sub 0.5}CoO{sub 3} (SSC) has been developed. Polarization of {approx}0.23 ohm-cm{sup 2} has been achieved at 600 C with Sr{sub 0.5}Sm{sub 0.5}CoO{sub 3}cathode. The high-performance SSC cathode and thin gallate electrolyte have been integrated into single cells and cell performance has been characterized. Tested cells to date generally showed low performance because of low cell OCVs and material interactions between NiO in the anode and lanthanum gallate electrolyte.

Jie Guan; Nguyen Minh

2003-12-01T23:59:59.000Z

382

Development of inexpensive metal macrocyclic complexes for use in fuel cells  

DOE Green Energy (OSTI)

Several metal macrocyclic complexes were synthesized for use as catalysts in fuel cells. An initial evaluation of their ability to catalyze the fuel cell reactions were completed. Based on this initial evaluation, one metal macrocyclic catalyst was selected and long-term stability testing in a fuel cell was initiated. The fuel cell employing this catalyst was operated continuously for one year with little signs of catalyst degradation. The effect of synthetic reformates on the performance of the catalyst in the fuel cell environment also demonstrated high tolerance of this catalyst for common contaminants and poisons.

Doddapaneni, N.; Ingersoll, D. [Sandia National Labs., Albuquerque, NM (United States). Lithium Battery Research and Development Dept.; Kosek, J.A.; Cropley, C.C.; Hamdan, M. [Giner, Inc., Waltham, MA (United States)

1998-01-01T23:59:59.000Z

383

Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Section 3.6 Technology Validation  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Validation Technology Validation Multi-Year Research, Development and Demonstration Plan Page 3.6 - 1 3.6 Technology Validation The Technology Validation sub-program tests, demonstrates, and validates hydrogen (production, delivery, storage) and fuel cell systems and their integrated components in real-world environments. Feedback provided to the DOE hydrogen and fuel cell research and development (RD&D) projects, industry partners, and end users helps determine the additional RD&D required to move the technologies forward or to determine whether the technologies are ready for commercialization. Evaluations conducted include the following: * Applications - transportation; primary power; combined heat and power (CHP); combined

384

CX-010933: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Determination CX-010933: Categorical Exclusion Determination High Energy Density Lithium (Li)-ion Cells for Electric Vehicles (EV) Based on Novel, High Voltage Cathode...

385

CX-010932: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Determination CX-010932: Categorical Exclusion Determination High Energy Density Lithium (Li)-ion Cells for Electric Vehicles (EV) Based on Novel, High Voltage Cathode...

386

CX-007459: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

12202011 Location(s): California, Michigan, Wisconsin, Oregon Offices(s): National Energy Technology Laboratory Reduce manufactured cost of large format Li-ion cells by 50%...

387

Lithium Ion Batteries: Materials Processing and Mechanical ...  

Science Conference Proceedings (OSTI)

Assessing Cast Alloys for Use in Advanced Ultra-supercritical Steam Turbines · Cathode/Anode Selection and Full Cell Performance for Stationary Li-ion Battery

388

Development of Thin Film Silicon Solar Cell Using Inkjet Printed Silicon and Other Inkjet Processes: Cooperative Research and Development Final Report, CRADA Number CRD-07-260  

Science Conference Proceedings (OSTI)

The cost of silicon photovoltaics (Si-PV) can be greatly lowered by developing thin-film crystalline Si solar cells on glass or an equally lower cost substrate. Typically, Si film is deposited by thermal evaporation, plasma enhanced chemical vapor deposition, and sputtering. NREL and Silexos have worked under a CRADA to develop technology to make very low cost solar cells using liquid organic precursors. Typically, cyclopentasilane (CPS) is deposited on a glass substrate and then converted into an a-Si film by UV polymerization followed by low-temperature optical process that crystallizes the amorphous layer. This technique promises to be a very low cost approach for making a Si film.

Sopori, B.

2012-04-01T23:59:59.000Z

389

Development and fabrication of advanced cover glass for a GaAs solar cell  

DOE Green Energy (OSTI)

This report summarizes work on improving solar cell conversion efficiencies by modifying the cell cover glass. Two approaches were investigated during the course of this work: grooved cover glasses to reduce the effect of top contact obscuration and secondary concentrators to improve concentrator solar cell performances in tracking modules. The grooved cover glass work used an array of metallized V shaped grooves in a thin cover glass (plastic) window to deflect incident light rays away from solar cell front surface regions covered by the solar cell electrical contact metallization onto unobstructed, optically active regions of the solar cell. Secondary concentrators are being considered for use on concentrator solar cells to improve overall system conversion efficiency and reduce receiver module cost. Secondary concentrators designed and fabricated during this project consist of small glass cones to attach directly to the top of the receiver solar cell. When appropriately designed, these secondary concentrator glass cones increase sunlight concentration on the solar cell, improve solar flux uniformity on the cell, improve system tolerance to tracking error, and allow for concentration ratios greater than can be ordinarily achieved with acrylic Fresnel lenses.

Borden, P.G.; Kaminar, N.R.; Grounner, M.

1984-01-01T23:59:59.000Z

390

Improving the Performance of Lithium Ion Batteries at Low Temperature  

DOE Green Energy (OSTI)

The ability for Li-ion batteries to operate at low temperatures is extremely critical for the development of energy storage for electric and hybrid electric vehicle technologies. Currently, Li-ion cells have limited success in operating at temperature below –10 deg C. Electrolyte conductivity at low temperature is not the main cause of the poor performance of Li-ion cells. Rather the formation of a tight interfacial film between the electrolyte and the electrodes has often been an issue that resulted in a progressive capacity fading and limited discharge rate capability. The objective of our Phase I work is to develop novel electrolytes that can form low interfacial resistance solid electrolyte interface (SEI) films on carbon anodes and metal oxide cathodes. From the results of our Phase I work, we found that the interfacial impedance of Fluoro Ethylene Carbonate (FEC) electrolyte at the low temperature of –20degC is astonishingly low, compared to the baseline 1.2M LiPFEMC:EC:PC:DMC (10:20:10:60) electrolyte. We found that electrolyte formulations with fluorinated carbonate co-solvent have excellent film forming properties and better de-solvation characteristics to decrease the interfacial SEI film resistance and facilitate the Li-ion diffusion across the SEI film. The very overwhelming low interfacial impedance for FEC electrolytes will translate into Li-ion cells with much higher power for cold cranking and high Regen/charge at the low temperature. Further, since the SEI film resistance is low, Li interaction kinetics into the electrode will remain very fast and thus Li plating during Regen/charge period be will less likely to happen.

Trung H. Nguyen; Peter Marren; Kevin Gering

2007-04-20T23:59:59.000Z

391

DOE's Hydrogen Fuel Cell Activities: Developing Technology and Validating it through Real-World Evaluation (Presentation)  

DOE Green Energy (OSTI)

Presentation prepared for the May 12, 2008 Alternative Fuels and Vehicles Conference that describes DOE's current hydrogen fuel cell technology validation projects.

Wipke, K.; Sprik, S.; Kurtz, J.; Garbak, J.

2008-05-12T23:59:59.000Z

392

Ampulse Raises $8 Million to Develop Low-Cost Solar Cells I  

Low-Cost Solar Cells In November 2009 Ampulse ... For consumers the benefits of using this appliance will vary depending on family size and hot

393

Development of enzymatic biofuel cell based on carbon nanotube electrodes on porous silicon.  

E-Print Network (OSTI)

??The work presented in this thesis has focused on designing and characterizing biofuel cell electrodes using porous silicon (p-Si) as the substrate or current collecting… (more)

Yang, Fan

2007-01-01T23:59:59.000Z

394

Lead effects on development and function of bone marrow-derived dendritic cells promote Th2 immune responses  

SciTech Connect

Although lead (Pb) has significant effects on the development and function of macrophages, B cells, and T cells and has been suggested to promote allergic asthma in mice and humans, Pb modulation of bone marrow (BM)-derived dendritic cells (DCs) and the resultant DC effects on Th1 and Th2 development have not been examined. Accordingly, we cultured BM cells with murine granulocyte macrophage-colony stimulating factor (mGM-CSF) {+-} PbCl{sub 2}. At day 10, culture supernatant (SN) and non-adherent cells were harvested for analysis. Additionally, day 10 non-adherent BM-DCs were harvested and recultured with mGM-CSF + LPS {+-} Pb for 2 days. The day 10 Pb exposure significantly inhibited BM-DC generation, based on CD11c expression. Although fewer DCs were generated with Pb, the existing Pb-exposed DCs had significantly greater MHC-II expression than did the non-Pb-exposed DCs. However, these differences diminished upon LPS stimulation. After LPS stimulation, CD80, CD86, CD40, CD54, and MHC-II were all up-regulated on both Pb-DCs and DCs, but Pb-DCs expressed significantly less CD80 than did DCs. The CD86:CD80 ratio suggests a Pb-DC potential for Th2 cell development. After LPS stimulation, IL-6, IL-10, IL-12 (p70), and TNF-{alpha} levels significantly increased with both Pb-DCs and DCs, but Pb-DCs produced significantly less cytokines than did DCs, except for IL-10, which further supports Pb-DC preferential skewing toward type-2 immunity. In vitro studies confirm that Pb-DCs have the ability to polarize antigen-specific T cells to Th2 cells. Pb-DCs also enhanced allogeneic and autologous T cell proliferation in vitro, and in vivo studies suggested that Pb-DCs inhibited Th1 effects on humoral and cell-mediated immunity. The Pb effect was mainly on DCs, rather than on T cells, and Pb's modification of DC function appears to be the main cause of Pb's promotion of type-2-related immunity, which may relate to Pb's enhanced activation of the Erk/MAP kinase pathway.

Gao Donghong [Biggs Laboratory, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201-0509 (United States); Mondal, Tapan K. [Biggs Laboratory, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201-0509 (United States); Lawrence, David A. [Biggs Laboratory, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201-0509 (United States)]. E-mail: lawrencd@wadsworth.org

2007-07-01T23:59:59.000Z

395

Thin Film Solar Cells Derived from Sintered Semiconductor Quantum Dots: Cooperative Research and Development Final Report, CRADA number CRD-07-00226  

Science Conference Proceedings (OSTI)

The NREL/Evident team will develop techniques to fabricate thin film solar cells where the absorption layers comprising the solar cells are derived from sintered semiconductor quantum dots.

Ginley, D. S.

2010-07-01T23:59:59.000Z

396

Development of high efficiency (14%) solar cell array module. Third quarterly report, July 15, 1979-November 15, 1979  

DOE Green Energy (OSTI)

Most effort was concentrated on development of procedures to provide large area (3'' diameter) high efficiency (approx. 15.5% AM1, 28/sup 0/C) P/N solar cells. These efficiencies had been obtained for 2 x 2 cm area cells, but tests showed that the problem was not reduced silicon quality near the edges of the larger slices. The problems were in optimizing the back-surface field (BSF) process, and its possible interaction with the shallow P+ layer formation. Towards the end of this reporting period a promising process sequence had been identified and is being tested. The module design has been finalized. One hundred and twenty (120) cells will be connected eight (8) in parallel and fifteen (15) in series. The designs and tooling phases have been completed and are awaiting completion of the cells.

Iles, P.A.; Khemthong, S.; Olah, S.; Sampson, W.J.; Ling, K.S.

1980-01-01T23:59:59.000Z

397

Development of polycrystal GaAs solar cells. Quarterly technical progress report No. 1, January 15-April 30, 1979  

DOE Green Energy (OSTI)

The objective of this program is to develop a thin film GaAs solar cell technology with the potential of yielding cells with 12 to 15% efficiency and to develop thin film growth techniques which are compatible with the low cost production goal of $500/kW-peak. Progress is reported on a study of junction formation in large grain polycrystal GaAs; characterization of the electronic properties of polycrystal GaAs grown by MBE on low cost foreign substrates; optimizing the structure of AlGaAs-GaAs heterojunction Schottky barrier solar cells; and a variety of grain boundary measurements, including Scanning Light Microscopy (SLM), Deep Level Transient Spectroscopy (DLTS), SIMS, and temperature dependent resistivity.

Miller, D.L.; Cohen, M.J.; Harris, J.S. Jr.; Ballantyne, J.; Hoyte, A.; Stefanakos, E.

1979-05-01T23:59:59.000Z

398

Advanced Water-Cooled Phosphoric Acid Fuel Cell Development. Quarterly technical progress report No. 5, July--September 1988  

DOE Green Energy (OSTI)

The initial conceptual design configuration was completed. Baseline on-site electrodes were tested at electric utility conditions in 2 x 2 inch cells. GSB-18P cathodes were fabricated. Design of small area development stack was initiated and long lead time items ordered. Molded cooler thermal cycling tests were initiated. Equipment to evaluate alternative manifold coating processes and materials were procured.

Not Available

1988-12-31T23:59:59.000Z

399

Directed evolution has become a powerful tool for developing enzyme and whole cell based biocatalysts. Significant recent  

E-Print Network (OSTI)

104 Directed evolution has become a powerful tool for developing enzyme and whole cell based of several new efficient directed evolution methods. The combination of directed evolution and rational, directed evolution has emerged as a powerful tool for biocatalyst engineering [6,7·,8]. As shown in Figure

Zhao, Huimin

400

Development of polycrystal GaAs solar cells. Quarterly technical progress report No. 3, August 1, 1979-October 30, 1979  

DOE Green Energy (OSTI)

Progress at Rockwell International, Cornell University, and North Carolina A and T State University on the development of thin film polycrystal GaAs solar cells with a 10% conversion efficiency is described. Highlights include the growth of Ge on Fe substrates and the investigation of various grain boundary passivation schemes. (WHK)

Miller, D.L.; Cohen, M.J.; Harris, J.S. Jr.; Ballantyne, J.; Stefanakos, E.

1979-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "developing li-ion cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Development of low cost contacts to silicon solar cells. Final report, 15 October 1978-30 April 1980  

DOE Green Energy (OSTI)

A summary of work done on the development of a copper based contact system for silicon solar cells is presented. The work has proceeded in three phases: (1) Development of a copper based contact system using plated Pd-Cr-Cu. Good cells were made but cells degraded under low temperature (300/sup 0/C) heat treatments. (2) The degradation in Phase I was identified as copper migration into the cells junction region. A paper study was conducted to find a proper barrier to the copper migration problem. Nickel was identified as the best candidate barrier and this was verified in a heat treatment study using evaporated metal layers. (3) An electroless nickel solution was substituted for the electroless chrominum solution in the original process. Efforts were made to replace the palladium bath with an appropriate nickel layer, but these were unsuccessful. 150 cells using the Pd-Ni-Cu contact system were delivered to JPL. Also a cost study was made on the plating process to assess the chance of reaching 5 cents/watt.

Tanner, D.P.; Iles, P.A.

1980-01-01T23:59:59.000Z

402

Metallic Inks for Solar Cells: Cooperative Research and Development Final Report, CRADA Number CRD-10-370  

DOE Green Energy (OSTI)

This document describes the statement of work for National Renewable Energy Laboratory (NREL) as a subcontractor for Applied Nanotech, Inc. (ANI) for the Phase II SBIR contract with the Department of Energy to build silicon solar cells using non-contact printed, nanoparticle-based metallic inks. The conductive inks are based upon ANI's proprietary method for nanoparticle dispersion. The primary inks under development are aluminum for silicon solar cell back plane contacts and copper for top interdigitated contacts. The current direction of silicon solar cell technology is to use thinner silicon wafers. The reduction in wafer thickness reduces overall material usage and can increase efficiency. These thin silicon wafers are often very brittle and normal methods used for conductive feed line application, such as screen-printing, are detrimental. The Phase II program will be focused on materials development for metallic inks that can be applied to a silicon solar cell using non-contact methods. Uniform BSF (Back Surface Field) formation will be obtained by optimizing ink formulation and curing conditions to improve cell efficiency.

van Hest, M.

2013-04-01T23:59:59.000Z

403

Advanced Water-Cooled Phosphoric Acid Fuel Cell Development. Quarterly technical progress report No. 47, January--March, 1992  

DOE Green Energy (OSTI)

This program is being conducted to improve the performance and minimize the cost of water cooled, electric utility phosphoric acid fuel cell stacks. The program adapts the existing on-site Configuration B cell design to electric utility operating conditions and introduces additional new design features. Task 1 consists of the conceptual design of a full-scale electric utility cell stack that meets program objectives. Tasks 2 and 3 develop the materials and processes requested to fabricate the components that meet the program objective. The design of the small area and two 10-ft{sup 2} short stacks is conducted in Task 4. The conceptual design also is updated to incorporate the results of material and process developments, as well as results of stack tests conducted in Task 6. Fabrication and assembly of the short stacks are conducted in Task 5 and subsequent tests are conducted in Task 6. The Contractor expects to enter into a contract with the Electric Power Research Institute (EPRI) to assemble and endurance test the second 10-ft{sup 2} short stack. The management and reporting functions of Task 7 provide DOE/METC with program visibility through required documentation and program reviews. This report describes the cell design and development effort that is being conducted to demonstrate, by subscale stack test, the technical achievements made toward the above program objectives.

Not Available

1992-05-01T23:59:59.000Z

404

Process development for automated solar cell and module production. Task 4. Automated array assembly. Quarterly report No. 1  

DOE Green Energy (OSTI)

Work has been divided into five phases. The first phase is to modify existing hardware and controlling computer software to: (1) improve cell-to-cell placement accuracy, (2) improve the solder joint while reducing the amount of solder and flux smear on the cell's surface, and (3) reduce the system cycle time to 10 seconds. The second phase involves expanding the existing system's capabilities to be able to reject broken cells and make post-solder electrical tests. Phase 3 involves developing new hardware to allow for the automated encapsulation of solar modules. This involves three discrete pieces of hardware: (1) a vacuum platen end effector for the robot which allows it to pick up the 1' x 4' array of 35 inter-connected cells. With this, it can also pick up the cover glass and completed module, (2) a lamination preparation station which cuts the various encapsulation components from roll storage and positions them for encapsulation, and (3) an automated encapsulation chamber which interfaces with the above two and applies the heat and vacuum to cure the encapsulants. Phase 4 involves the final assembly of the encapsulated array into a framed, edge-sealed module completed for installation. For this we are using MBA's Glass Reinforced Concrete (GRC) in panels such as those developed by MBA for JPL under contract No. 955281. The GRC panel plays the multiple role of edge frame, substrate and mounting structure. An automated method of applying the edge seal will also be developed. The final phase (5) is the fabrication of six 1' x 4' electrically active solar modules using the above developed equipment. Progress is reported. (WHK)

Hagerty, J. J.

1980-10-15T23:59:59.000Z

405

Development and application of chemical tools for investigating dynamic processes in cell migration  

E-Print Network (OSTI)

Cell migration is a dynamic process essential for many fundamental physiological functions, including wound repair and the immune response. Migration relies on precisely orchestrated events that are regulated in a spatially ...

Goguen, Brenda Nicole

2011-01-01T23:59:59.000Z

406

FreedomCAR Partnership 2003 Highlights of Technical Accomplishments  

NLE Websites -- All DOE Office Websites (Extended Search)

FreedomCAR Partnership FreedomCAR Partnership 2003 Highlights of Technical Accomplishments Item Page Preamble 2 Advanced Combustion & Emissions Control * Charge Stratification to Improve HCCI Combustion Efficiency 3 * Lower Temperature Diesel Combustion 4 * Sensors for Closed-Loop Diesel Engine Control 5 Electrical & Electronics * High Voltage Power Module Hits Performance & Cost Targets 6 Electrochemical Energy Storage * 42V Battery Test Manual Issued 7 * Abuse Tolerant Li-Ion Cathode 8 * Li-Ion Battery Thermal Run-Away Mechanism 9 * Li-Ion Electrolyte Model for Low Temperatures 10 * Li-Ion HEV Battery Cost Reduced 11 Fuel Cells * Advanced Fuel Cell Membrane Electrolyte 12

407

Subsurface Hybrid Power Options for Oil & Gas Production at Deep Ocean Sites  

Science Conference Proceedings (OSTI)

An investment in deep-sea (deep-ocean) hybrid power systems may enable certain off-shore oil and gas exploration and production. Advanced deep-ocean drilling and production operations, locally powered, may provide commercial access to oil and gas reserves otherwise inaccessible. Further, subsea generation of electrical power has the potential of featuring a low carbon output resulting in improved environmental conditions. Such technology therefore, enhances the energy security of the United States in a green and environmentally friendly manner. The objective of this study is to evaluate alternatives and recommend equipment to develop into hybrid energy conversion and storage systems for deep ocean operations. Such power systems will be located on the ocean floor and will be used to power offshore oil and gas exploration and production operations. Such power systems will be located on the oceans floor, and will be used to supply oil and gas exploration activities, as well as drilling operations required to harvest petroleum reserves. The following conceptual hybrid systems have been identified as candidates for powering sub-surface oil and gas production operations: (1) PWR = Pressurized-Water Nuclear Reactor + Lead-Acid Battery; (2) FC1 = Line for Surface O{sub 2} + Well Head Gas + Reformer + PEMFC + Lead-Acid & Li-Ion Batteries; (3) FC2 = Stored O2 + Well Head Gas + Reformer + Fuel Cell + Lead-Acid & Li-Ion Batteries; (4) SV1 = Submersible Vehicle + Stored O{sub 2} + Fuel Cell + Lead-Acid & Li-Ion Batteries; (5) SV2 = Submersible Vehicle + Stored O{sub 2} + Engine or Turbine + Lead-Acid & Li-Ion Batteries; (6) SV3 = Submersible Vehicle + Charge at Docking Station + ZEBRA & Li-Ion Batteries; (7) PWR TEG = PWR + Thermoelectric Generator + Lead-Acid Battery; (8) WELL TEG = Thermoelectric Generator + Well Head Waste Heat + Lead-Acid Battery; (9) GRID = Ocean Floor Electrical Grid + Lead-Acid Battery; and (10) DOC = Deep Ocean Current + Lead-Acid Battery.

Farmer, J C; Haut, R; Jahn, G; Goldman, J; Colvin, J; Karpinski, A; Dobley, A; Halfinger, J; Nagley, S; Wolf, K; Shapiro, A; Doucette, P; Hansen, P; Oke, A; Compton, D; Cobb, M; Kopps, R; Chitwood, J; Spence, W; Remacle, P; Noel, C; Vicic, J; Dee, R

2010-02-19T23:59:59.000Z

408

Major Government-Supported Fuel Cell Vehicle Projects Government support for fuel cell projects is critical to the development of fuel cell technology.  

E-Print Network (OSTI)

provide most of its power. In the future, there are plans to use fuel cells, a solar-thermal system. The Centre also will house a "National Research Flagship," entitled "Energy Transformed," that will focus sustainable energy technologies, including solar, gas micro-turbines, and wind generators that will initially

409

Development of Ultra-Low Platinum Alloy Cathode Catalyst for PEM Fuel Cells - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Branko N. Popov University of South Carolina (USC) 301 Main Street Columbia, SC 29208 Phone: (803) 777-7314 Email: popov@cec.sc.edu DOE Managers HQ: Donna Lee Ho Phone: (202) 586-8000 Email: Donna.Ho@ee.doe.gov GO: David Peterson Phone: (720) 356-1747 Email: David.Peterson@go.doe.gov Technical Advisor Thomas Benjamin Phone: (630) 252-1632 Email: benjamin@anl.gov Contract Number: DE-EE0000460 Subcontractor: Dr. Hansung Kim (Co-PI) Yonsei University, S. Korea. Project Start Date: September 1, 2010 Project End Date: May 31, 2014 Objectives Develop low-cost and durable hybrid cathode catalyst * (HCC). Develop Pt alloy/activated graphitic carbon catalyst. * Develop corrosion resistant supports. *

410

Process development for automated solar cell and module production. Task 4: automated array assembly. Quarterly report No. 5  

DOE Green Energy (OSTI)

Construction of an automated solar cell layup and interconnect system is now complete. This system incorporates a Unimate 2000 B industrial robot with an end effector consisting of a vacuum pick up and induction heating coil. The robot interfaces with a smart cell preparation station which correctly orients the cell, applies solder paste and forms and positions the correct lengths of interconnect lead. The system is controlled and monitored by a TRS-80 micro computer. The first operational tests of the fully integrated station have been run. These tests proved the soundness of the basic design concept but also pointed to areas in which modifications are necessary. These modifications are nearly complete and the improved parts are being integrated. Development of the controlling computer program is progressing to both reflect these changes and reduce operating time.

Hagerty, J.J.

1980-01-31T23:59:59.000Z

411

Molecular Organization in the Native State of Wood Cell Walls: Studies of Nanoscale Structure and its Development  

DOE Green Energy (OSTI)

With respect to cell wall biogenesis we have developed a theory concerning the formation of lignin in which the regulation of structure is attributed to the hemicelluloses; they are viewed as templates for the assembly of lignin. The key supporting evidence is derived from the symmetry of annual rings in trees free of reaction wood. This symmetry is interpreted to point to genetic encoding as the dominant factor in the pattern of interunit linkages in lignin. More recently, we have explored further the implications of annual ring symmetries within the contexts of systems and information theory and theories of organization of hierarchic structures. This has led us to proposed a unifying model for cell wall biogenesis that comprehends cell wall polysaccharides as well as lignin. The model is based on examining the implications of symmetries and of hierarchic relationships between different levels of structure, with respect to synchrony and coordination of the stages of formation of the individual constituents.

Atalla, R. H.

2001-02-01T23:59:59.000Z

412

Development of ZnTe:Cu Contacts for CdTe Solar Cells: Cooperative Research and Development Final Report, CRADA Number CRD-08-320  

DOE Green Energy (OSTI)

The main focus of the work at NREL was on the development of Cu-doped ZnTe contacts to CdTe solar cells in the substrate configuration. The work performed under the CRADA utilized the substrate device structure used at NREL previously. All fabrication was performed at NREL. We worked on the development of Cu-doped ZnTe as well as variety of other contacts such as Sb-doped ZnTe, CuxTe, and MoSe2. We were able to optimize the contacts to improve device parameters. The improvement was obtained primarily through increasing the open-circuit voltage, to values as high as 760 mV, leading to device efficiencies of 7%.

Dhere, R.

2012-04-01T23:59:59.000Z

413

Growth and development of GaInAsP for use in high-efficiency solar cells  

DOE Green Energy (OSTI)

This report describes work done during Phase II of the subcontract. Goals for Phase II include the following: (1) Optimize the GaInAsP cell on GaAs and demonstrate a 500-sun at air mass (AM) 1.5 efficiency of >23%. (2) Develop a window layer, including the evaluation of AlGaAs, GaInP, AlGaAsP, AlGaInP, and GaP. (3) Develop a front-surface contact, with a grid designed for 500-sun concentration, and a goal of a contact resistivity of [approximately]10[sup 5] ohm-cm[sup 2]. (4) Grow GaInAsP cells on Ge, with a goal of a 1-sun (AM 1.5) efficiency of >15%. Accomplishments reported herein include (1) the fabrication of p-on-n and n-on-p GaInAsP cells on GaAs, with the n-on-p cell demonstrating a 10-sun (AM 1.5) active-area efficiency of 23.4% as measured at NREL (2) the evaluation of Al[sub x]Ga([sub 1-x])As, GaInP[sub 2], and AlInP[sub 2] window layers; and (3) the fabrication of GaInAsP cells on Ge, with the demonstration of a p-on-n GaInAsP cell grown on Ge with a 1-sun (AM 1.5) active-area efficiency of 14.4%.

Sharps, P.R. (Research Triangle Inst., Research Triangle Park, NC (United States))

1993-04-01T23:59:59.000Z

414

Redox Shuttle Electrolyte Additive Could Help Make Batteries Safer ...  

Argonne National Laboratory has developed a way to make commercially viable lithium-ion (Li-ion) batteries for plug-in hybrid electric vehicles (PHEVs) and electric ...

415

Media Center - TTRDC in the News  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory, which has contributed heavily to the research and development of Li-ion battery technology, is now pursuing research into Lithium-air batteries. December 17, 2009...

416

Research and Development of Proton-Exchange Membrane (PEM) Fuel Cell System for Transportation Applications: Initial Conceptual Design Report  

DOE Green Energy (OSTI)

This report addresses Task 1.1, model development and application, and Task 1.2, vehicle mission definition. Overall intent is to produce a methanol-fueled 10-kW power source, and to evaluate electrochemical engine (ECE) use in transportation. Major achievements include development of an ECE power source model and its integration into a comprehensive power source/electric vehicle propulsion model, establishment of candidate FCV (fuel cell powered electric vehicle) mission requirements, initial FCV studies, and a candidate FCV recommendation for further study.

Not Available

1993-11-30T23:59:59.000Z

417

Materials and process development for the monolithic interconnected module (MIM) InGaAs/InP TPV cells  

DOE Green Energy (OSTI)

Four major components of a thermophotovoltaic (TPV) energy conversion system are a heat source, a graybody or a selective emitter, spectrum shaping elements such as filters, and photovoltaic (PV) cells. One approach to achieving a high voltage/low current configuration is to fabricate a device, where small area PV cells are monolithically series connected. The authors have termed this device a monolithic interconnected module (MIM). A MIM device has other advantages over conventional one-junction cells, such as simplified array interconnections and heat-sinking, and radiation recycling capability via a back surface reflector (BSR). The authors confine the contents of this article to the MIM materials, process development, and some optical results. The successful fabrication of InGaAs/InP MIM devices entails the development and optimization of several key components and processes. These include: isolation trench via geometry, selective chemical etching, contact and interconnect metallization, dielectric isolation barrier, back surface reflector (BSR), and anti-reflection (AR) coating. The selection, development, and testing of the materials and processes described above for MIM fabrication will be described.

Fatemi, N.S.; Jenkins, P.P.; Hoffman, R.W. Jr.; Weizer, V.G. [Essential Research, Inc., Cleveland, OH (United States); Wilt, D.M. [National Aeronautics and Space Administration, Cleveland, OH (United States). Lewis Research Center; Murray, C.S.; Riley, D. [Westinghouse Electric Corp., West Mifflin, PA (United States)

1997-06-01T23:59:59.000Z

418

Development of OTM Syngas Process and Testing of Syngas Derived Ultra-clean Fuels in Diesel Engines and Fuel Cells  

DOE Green Energy (OSTI)

This topical report summarizes work accomplished for the Program from November 1, 2001 to December 31, 2002 in the following task areas: Task 1: Materials Development; Task 2: Composite Development; Task 4: Reactor Design and Process Optimization; Task 8: Fuels and Engine Testing; 8.1 International Diesel Engine Program; 8.2 Nuvera Fuel Cell Program; and Task 10: Program Management. Major progress has been made towards developing high temperature, high performance, robust, oxygen transport elements. In addition, a novel reactor design has been proposed that co-produces hydrogen, lowers cost and improves system operability. Fuel and engine testing is progressing well, but was delayed somewhat due to the hiatus in program funding in 2002. The Nuvera fuel cell portion of the program was completed on schedule and delivered promising results regarding low emission fuels for transportation fuel cells. The evaluation of ultra-clean diesel fuels continues in single cylinder (SCTE) and multiple cylinder (MCTE) test rigs at International Truck and Engine. FT diesel and a BP oxygenate showed significant emissions reductions in comparison to baseline petroleum diesel fuels. Overall through the end of 2002 the program remains under budget, but behind schedule in some areas.

E.T. (Skip) Robinson; James P. Meagher; Prasad Apte; Xingun Gui; Tytus R. Bulicz; Siv Aasland; Charles Besecker; Jack Chen Bart A. van Hassel; Olga Polevaya; Rafey Khan; Piyush Pilaniwalla

2002-12-31T23:59:59.000Z

419

Development of a digital optical diagnostic system for the CASPER GEC rf reference cell.  

E-Print Network (OSTI)

??The development and implementation of a completely digital optical analysis system for dusty plasma research has been completed. This system minimizes data loss during acquisition… (more)

Boesse, Carolyn M.

2005-01-01T23:59:59.000Z

420

Thermal stability of electrodes in Lithium-ion cells  

DOE Green Energy (OSTI)

Differential scanning calorimetry (DSC) analysis was used to identify thermal reactions in Sony-type lithium-ion cells and to correlate these reactions with interactions of cell constituents and reaction products. An electrochemical half-cell was used to cycle the anode and cathode materials and to set the state-of-charge (SOC). Three temperature regions of interaction were identified and associated with the SOC (degree of Li intercalation) of the cell. Anodes were shown to undergo exothermic reactions as low as 80 C involving decomposition of the solid electrolyte interphase (SEI) layer. The LiPF{sub 6} salt in the electrolyte (EC:PC:DEC/1M LiPF{sub 6}) was seen to play an essential role in this reaction. DSC analysis of the anodes from disassembled Sony cells showed similar behavior to the half-cell anodes with a strong exotherm beginning in the 80 C--90 C range. Exothermic reactions were also observed in the 200 C--300 C region between the intercalated lithium anodes, the LiPF{sub 6} salt, and the PVDF binder. These reactions were followed by a high-temperature reaction region, 300 C--400 C, also involving the PVDF binder and the intercalated lithium anodes. Cathode exothermic reactions with the PVDF binder were observed above 200 C and increased with the SOC (decreasing Li content in the cathode). No thermal reactions were seen at lower temperatures suggesting that thermal runaway reactions in this type of cell are initiated at the anode. An Accelerating Rate Calorimeter (ARC) was used to perform measurements of thermal runaway on commercial Sony Li-ion cells as a function of SOC. The cells showed sustained thermal output as low as 80 C in agreement with the DSC observations of anode materials but the heating rate was strongly dependent on the SOC.

ROTH,EMANUEL P.; NAGASUBRAMANIAN,GANESAN

2000-02-07T23:59:59.000Z

Note: This page contains sample records for the topic "developing li-ion cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Photon Sciences | Operating the National Synchrotron Light Source,  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Highlights Science Highlights high-resolution scanning transmission electron microscopy image Nanocrystal Catalyst Transforms Impure Hydrogen into Electricity September 18, 2013 Brookhaven Lab scientists use simple, 'green' process to create novel core-shell catalyst that tolerates carbon monoxide in fuel cells and opens new, inexpensive pathways for zero-emission vehicles. Organic Solar Cells Shedding New Light on the 'Electron Highways' of Organic Solar Cells August 30, 2013 Researchers at Brookhaven Lab and Stony Brook University have developed a way to map out the degree of "traffic congestion" on the electron highways within the photoactive layer of organic solar cells. Li-ion Batteries For Better Li-ion Batteries, Scientists Watch One at Work August 29, 2013

422

Categorical Exclusion Determination Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1572) DNV - Sensor Enhanced and Model Validated Life Extension of Batteries for Energy Storage Program or Field Office: Advanced Research Projects Agency - Energy LocationCs) CCity/County/State): Dublin, OH; North Ridgeville, OH; Lewis Center, OH; Chalfont, PA Proposed Action Description: Funding will support efforts to develop a novel analytical tool to more accurately measure battery health and wear. Proposed work will consist of: (1) modeling and analysis of various sensor metrics to drive design; (2) testing of the sensor technology on individual, new Li-ion cells and cell packs to analyze how the sensors gather data and how they can be optimized; and (3) application of the sensor technology to worn Li-ion cells to assess the viability of cell renewal or continued use.

423

Machine studies for the development of storage cells at the ANKE facility of COSY  

E-Print Network (OSTI)

We present a measurement of the transverse intensity distributions of the COSY proton beam at the target interaction point at ANKE at the injection energy of 45 MeV, and after acceleration at 2.65 GeV. At 2.65 GeV, the machine acceptance was determined as well. From the intensity distributions the beam size is determined, and together with the measured machine acceptance, the dimensions of a storage cell for the double-polarized experiments with the polarized internal gas target at the ANKE spectrometer are specified. An optimum storage cell for the ANKE experiments should have dimensions of 15mm x 20mm x 390mm (vertical x horizontal x longitudinal), whereby a luminosity of about 2.5*10^29 cm^-2*s^-1 with beams of 10^10 particles stored in COSY could be reached.

K. Grigoryev; F. Rathmann; R. Engels; A. Kacharava; F. Klehr; B. Lorentz; S. Martin; M. Mikirtytchiants; D. Prasuhn; J. Sarkadi; H. Seyfarth; H. J. Stein; H. Ströher; A. Vasilyev

2008-05-14T23:59:59.000Z

424

Development of economical improved thick film solar cell contact. Final report, September 1978-April 1979  

DOE Green Energy (OSTI)

The potential for economy and efficiency has been demonstrated for the thick film metallization process using screen printing for solar cell electrodes. However, process reliability and materials economy remain deficient. It is believed that these deficiencies can be removed by the use of ink formulations designed specifically for silicon solar cells, departing from ceramic technology tradition and utilizing all metal systems. The objectives of this investigation are as follows: 1) eliminate the glass frit which has been the conventional liquid phase sintering medium and adhesive for metallization inks; 2) provide an appropriate metal which can serve as the liquid phase sintering medium; 3) find a chemical constituent which effectively removes the native oxide from the silicon during the firing step, which can be made part of the ink, and which either becomes fugitive or remains an inert part of the matured metallization; and 4) maintain cognizance of the cost objectives of the LSA Project in selecting materials and processes. Progress is reported. (WHK)

Ross, B.

1979-04-01T23:59:59.000Z

425

Development and testing of shingle-type solar cell modules. Quarterly report No. 2  

DOE Green Energy (OSTI)

The details of a shingle module design which produces in excess of 97 watts/m/sup 2/ of module area at 1 kW/m/sup 2/ insolation and at 60/sup 0/C are reported. This selected design employs a tempered glass coverplate to provide the primary solar cell structural support. The use of the B.F. Goodrich FLEXSEAL roofing system as the outer skin of the shingle substrate provides a high confidence of achieving the 15 year service life goal. The fabrication and testing of a preproduction module of this design has demonstrated that this selected approach will meet the environmental testing requirements imposed by the contract. Attempts to fabricate a preproduction module of an alternative design, which embeds the solar cell assembly within a methyl methacrylate casting, proved unsuccessful.

Shepard, N.F.

1978-01-05T23:59:59.000Z

426

Process development for automated solar cell and module production. Task 4. Automated array assembly. Annual report  

DOE Green Energy (OSTI)

MBA has been working on the automated array assembly task of the Low-Cost Solar Array project. A baseline sequence for the manufacture of solar cell modules is specified. Starting with silicon wafers, the process goes through damage etching, texture etching, junction formation, plasma edge etch, aluminum back surface field formation, and screen printed metallization to produce finished solar cells which are then series connected on a ribbon and bonded into a finished glass, PVB, tedlar module. A number of steps required additional developmental effort to verify technical and economic feasibility. These steps include texture etching, plasma edge etch, aluminum back surface field formation, array layup and interconnect, and module edge sealing and framing.

Witham, C.R.

1979-06-12T23:59:59.000Z

427

Technology development goals for automotive fuel cell power systems. Final report  

Science Conference Proceedings (OSTI)

This report determines cost and performance requirements for Proton Exchange Membrane (PEM) fuel cell vehicles carrying pure H{sub 2} fuel, to achieve parity with internal combustion engine (ICE) vehicles. A conceptual design of a near term FCEV (fuel cell electric vehicle) is presented. Complete power system weight and cost breakdowns are presented for baseline design. Near term FCEV power system weight is 6% higher than ICE system, mid-term FCEV projected weights are 29% lower than ICE`s. There are no inherently high-cost components in FCE, and at automotive production volumes, near term FCEV cost viability is closer at hand than at first thought. PEM current vs voltage performance is presented for leading PEM manufacturers and researchers. 5 current and proposed onboard hydrogen storage techniques are critically compared: pressurized gas, cryogenic liquid, combined pressurized/cryogenic, rechargeable hydride, adsorption. Battery, capacitor, and motor/controller performance is summarized. Fuel cell power system component weight and cost densities (threshold and goal) are tabulated.

James, B.D.; Baum, G.N.; Kuhn, I.F. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

1994-08-01T23:59:59.000Z

428

Advanced nickel-metal hydride cell development. Final report, September 1993--March 1996  

DOE Green Energy (OSTI)

Inert gas atomization using metal hydride alloys for a Ni/MH{sub x}cell was studied. Atomization of the alloys was demonstrated on a small production scale up to batch size of several kg. Relative performance of the atomized and nonatomized alloys was investigated for the electrode material in a Ni/MH{sub x} cell. The study included effects of charge-discharge rates, temperature, and particle size on cell voltage (polarization) and specific capacity. Results show that the specific capacity of the present atomized alloys was apprecialy smaller than that of the nonatomized powder, especially for initial cycles. Full activation of the atomized alloys oftentook several hundreds of cycles. However, no appreciable difference in discharge rate capability was observed with R10 and R12 alloys. Chemical compositions were indistinguishable, although the oxygen contents of the atomized alloys were always higher. Effects of Ni and Cu coating on alloy performance were studied after electroless coating; the coatings noticeably improved the electrode rate capability for all the alloys. The electrode polarization was esecially improved, but not the cycle life. Further studies are needed.

Lim, Hong S.

1996-03-01T23:59:59.000Z

429

Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration (MYRDD) Plan - Section 1.0: Introduction  

NLE Websites -- All DOE Office Websites (Extended Search)

Introduction Introduction Multi-Year Research, Development and Demonstration Plan Page 1 - 1 Multi-Year Research, Development and Demonstration Plan Page 1 - 1 1.0 Introduction The U. S. Department of Energy's (DOE's or the Department's) hydrogen and fuel cell efforts are part of a broad portfolio of activities to build a competitive and sustainable clean energy economy to secure the nation's energy future. Reducing greenhouse gas emissions 80 percent by 2050 1 and eliminating dependence on imported fuel will require the use of diverse domestic energy sources and advanced fuels and technologies in all sectors of the economy. Achieving these goals requires a robust, comprehensive research and development (R&D) portfolio that balances short-term

430

Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Section 5.0 Systems Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 3.8 Page 3.8 2012 Systems Integration Multi-Year Research, Development and Demonstration Plan Page 5 - 1 5.0 Systems Integration The Systems Integration function of the DOE Hydrogen and Fuel Cells Program (the Program) provides independent, strategic, systems-level expertise and processes to enable system-level planning, data-driven decision-making, effective portfolio management, and program integration. System Integration ensures that system-level targets are developed, verified, and met and that the sub- programs are well-coordinated. Systems Integration provides tailored technical and programmatic support to ensure a disciplined approach to the research, design, development, and validation of complex systems. Systems Integration provides

431

Development of high-efficiency solar cells on silicon web. First quarterly progress report, April 20-July 15, 1984  

DOE Green Energy (OSTI)

The major objective of the work reported is to improve web base material with a goal toward obtaining solar cell efficiencies in excess of 18% (AM1). The program consists of the investigation of carrier loss mechanisms in web silicon, development of techniques to reduce carrier recombination in web, and web cell fabrication using effective surface passivation. Web surfaces have been bevelled with the intention of measuring the electrical activity of the twin plane. Web crystals have been intentionally contaminated with vanadium and titanium to examine the twin-plane-assisted internal gettering by DLTS. Model calculations were done to see the effect of twin-plane activity on V/sub oc/ as a function of resistivity of the web material. Experiments were initiated to study the effect of heat treatment and gettering on the minority carrier diffusion length in webs. Fabrication of high-efficiency web cells using several web crystals was initiated. These cells will include surface passivation and double-layer antireflection coating. (LEW)

Rohatgi, A.; Meier, D.L.; Campbell, R.B.; Rai-Choudhury, P.

1984-08-09T23:59:59.000Z

432

Business & technology strategies to promote the development and commercialization of alternative energy technologies like fuel cells  

E-Print Network (OSTI)

Globalization has led to the development of emerging markets and economies. With economic expansion around the globe, there is a greater energy demand to sustain this growth. Increasing energy demand has resulted in increase ...

Jayaraman, Sundar

2008-01-01T23:59:59.000Z

433

The development of an automated system for electrical characterization of cells using a novel force balance method  

E-Print Network (OSTI)

Dielectrophoresis (DEP), a cell separation technique based on the dielectric properties, has significantly advanced biomedical research in diverse applications ranging from blood stem cells purification to cancer cells ...

Su, Hao-Wei

2012-01-01T23:59:59.000Z

434

Molten carbonate fuel cell product development test at SDG&E  

DOE Green Energy (OSTI)

Design goals of a fuel cell power plant are described. The PDT design objectives will include improved performance at reduced cost compared with the UNOCAL demonstration project. Several specific objectives that differentiate the San Diego Gas & Electric PDT project from the UNOCAL demonstration are the following: packaging designs are more compact in the PDT program; it will also have longer unattended operation and increased reliability. Additionally, the experience gained during the design, construction and start-up of the UNOCAL power plant will be incorporated into the SDG&E design. This power plant is. being designed for compatibility with the SDG&E electrical distribution grid.

Scroppo, J.A.; Laurens, R.M.; Petraglia, V.J.

1995-12-31T23:59:59.000Z

435

Development of Hydrogen Education Programs for Government Officials - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Shannon Baxter-Clemmons South Carolina Hydrogen and Fuel Cell Alliance (SCHFCA) P.O. Box 12302 Columbia, SC 29211 Phone: (803) 545-0189 Email: baxterclemmons@schydrogen.org DOE Manager GO: Gregory Kleen Phone: (720) 356-1672 Email: Gregory.Kleen@go.doe.gov Technical Advisor Kim Cierpik Phone: (720) 356-1266 Email: kim.cierpik@go.doe.gov Contract Number: DE-FG36-08GO18113 Subcontractors: * Greenway Energy, Aiken, SC * Advanced Technology International, Charleston, SC Project Start Date: October 1, 2008 Project End Date: January 31, 2013 Fiscal Year (FY) 2012 Objectives Further develop relationships with government *

436

Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Section 3.2 Hydrogen Delivery  

NLE Websites -- All DOE Office Websites (Extended Search)

Technical Plan - Delivery Technical Plan - Delivery Multi-Year Research, Development and Demonstration Plan Page 3.2 - 1 3.2 Hydrogen Delivery Delivery is an essential component of any future hydrogen infrastructure. It encompasses those processes needed to transport hydrogen from a central or semi-central production facility to the final point of use and those required to load the energy carrier directly onto a given fuel cell system. Successful commercialization of hydrogen-fueled fuel cell systems, including those used in vehicles, back-up power sources, and distributed power generators, will likely depend on a hydrogen delivery infrastructure that provides the same level of safety, convenience, and functionality as existing liquid and gaseous fossil

437

Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Section 4.0 Systems Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems Analysis Systems Analysis Multi-Year Research, Development and Demonstration Plan Page 4 - 1 4.0 Systems Analysis The Fuel Cell Technologies Program (FCT Program) conducts a coordinated, comprehensive effort in modeling and analysis to clarify where hydrogen and fuel cells can be most effective from an economic, environmental, and energy security standpoint, as well as to guide RD&D priorities and set program goals. These activities support the FCT Program's decision- making process by evaluating technologies and pathways and determining technology gaps, risks, and benefits. The Systems Analysis sub-program works at all levels of the program, including technology analysis for specific sub-programs, policy and infrastructure analysis, and high-level implementation and

438

Development of economical improved thick film solar cell contact. Extension final report, April-December 1979  

DOE Green Energy (OSTI)

In the second half of the investigation of all metal screened electrodes, the focus was on base metal pastes in addition to further work with the silver systems. Contact resistance measurements were refined. A facility allowing firing in hydrogen and other atmospheres was acquired. Several experiments were made applying screenable pastes to solar cells. Doping investigations emphasized eutectic alloys reduced to powders. Metal systems were reviewed. A previously published vapor pressure curve for silver fluoride was corrected. Base metal experiments were done with nickel and copper using lead and tin as the frit metals. Severe adhesion problems were experienced with hydrogen atmospheres in all metal systems. A two step firing schedule was devised based upon experimentation which gave evidence that the silver fluoride-silicon dioxide reaction was modified by the presence of hydrogen. It was found that nitrogen prefiring allowed the silver fluoride dissociation and oxide removal without causing catastrophic oxidation of the base metal powders. The subsequent hydrogen firing step reduced oxides tht had formed and gave the proper sintered structure. Electrodes were coherent, adherent, and solderable in both nickel lead and copper lead systems. Towards the end of the contractual period aluminum-silicon and aluminum-germanium eutectic doping additions to copper pastes were tried on 2 1/4'' diameter solar cell back contacts, both with good results (eta = 9.4% AM1 uncoated).

Ross, B.

1979-12-01T23:59:59.000Z

439

Development of a coal-fueled Internal Manifold Heat Exchanger (IMHEX reg sign ) molten carbonate fuel cell  

DOE Green Energy (OSTI)

The design of a CGMCFC electric generation plant that will provide a cost of eletricity (COE) which is lower than that of current electric generation technologies and which is competitive with other long-range electric generating systems is presented. This effort is based upon the Internal Manifold Heat Exchanger (IMHEX) technology as developed by the Institute of Gas Technology (IGT). The project was executed by selecting economic and performance objectives for alternative plant arrangements while considering process constraints identified during IMHEX fuel cell development activities at ICT. The four major subsystems of a coal-based MCFC power plant are coal gasification, gas purification, fuel cell power generation and the bottoming cycle. The design and method of operation of each subsystem can be varied, and, depending upon design choices, can have major impact on both the design of other subsystems and the resulting cost of electricity. The challenge of this project was to select, from a range of design parameters, those operating conditions that result in a preferred plant design. Computer modelling was thus used to perform sensitivity analyses of as many system variables as program resources and schedules would permit. In any systems analysis, it is imperative that the evaluation methodology be verifiable and comparable. The TAG Class I develops comparable (if imprecise) data on performance and costs for the alternative cases being studied. It identifies, from a range of options, those which merit more exacting scrutiny to be undertaken at the second level, TAG class II analysis.

Not Available

1991-09-01T23:59:59.000Z

440

Development of 50 kW Fuel Processor for Stationary Fuel Cell Applications  

DOE Green Energy (OSTI)

The objective of the project was to develop and test a fuel processor capable of producing high hydrogen concentration (>98%) with less than ppm quantities of carbon dioxide and carbon monoxide at lower capital cost and higher efficiency, compared to conventional natural gas reformers. It was intended that we achieve our objective by developing simple reactor/process design, and high durability CO2 absorbents, to replace pressure swing adsorption (PSA) or membrane separators. Cost analysis indicated that we would not meet DOE cost goals so the project was terminated before construction of the full scale fuel processor. The work on adsorbent development was focused on the development of calcium oxide-based reversible CO2 absorbents with various microstructures and morphologies to determine the optimum microstructure for long-term reversible CO2 absorption. The effect of powder production process variables was systematically studied including: the final target compositions, the reagents from which the final products were derived, the pore forming additives, the processing time and temperature. The sorbent materials were characterized in terms of their performance in the reversible reaction with CO2 and correlation made to their microstructure.

James F. Stevens; Balaji Krishnamurthy; Paolina Atanassova; Kerry Spilker

2007-08-29T23:59:59.000Z

Note: This page contains sample records for the topic "developing li-ion cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Development and Demonstration of a New Generation High Efficiency 10kW Stationary Fuel Cell System  

SciTech Connect

The overall project objective is to develop and demonstrate a polymer electrolyte membrane fuel cell combined heat and power (PEMFC CHP) system that provides the foundation for commercial, mass produced units which achieve over 40% electrical efficiency (fuel to electric conversion) from 50-100% load, greater than 70% overall efficiency (fuel to electric energy + usable waste heat energy conversion), have the potential to achieve 40,000 hours durability on all major process components, and can be produced in high volumes at under $400/kW (revised to $750/kW per 2011 DOE estimates) capital cost.

Howell, Thomas Russell

2013-04-30T23:59:59.000Z

442

Development of 1.25 eV InGaAsN for triple junction solar cells  

DOE Green Energy (OSTI)

Development of next generation high efficiency space monolithic multifunction solar cells will involve the development of new materials lattice matched to GaAs. One promising material is 1.05 eV InGaAsN, to be used in a four junction GaInP{sub 2}/GaAs/InGaAsN/Ge device. The AMO theoretical efficiency of such a device is 38--42%. Development of the 1.05 eV InGaAsN material for photovoltaic applications, however, has been difficult. Low electron mobilities and short minority carrier lifetimes have resulted in short minority carrier diffusion lengths. Increasing the nitrogen incorporation decreases the minority carrier lifetime. The authors are looking at a more modest proposal, developing 1.25 eV InGaAsN for a triple junction GaInP{sub 2}/InGaAsN/Ge device. The AMO theoretical efficiency of this device is 30--34%. Less nitrogen and indium are required to lower the bandgap to 1.25 eV and maintain the lattice matching to GaAs. Hence, development and optimization of the 1.25 eV material for photovoltaic devices should be easier than that for the 1.05 eV material.

LI,N.Y.; SHARPS,P.R.; HILLS,J.S.; HOU,H.; CHANG,PING-CHIH; BACA,ALBERT G.

2000-05-16T23:59:59.000Z

443

Research and development of a phosphoric acid fuel cell/battery power source integrated in a test-bed bus. Final report  

DOE Green Energy (OSTI)

This project, the research and development of a phosphoric acid fuel cell/battery power source integrated into test-bed buses, began as a multi-phase U.S. Department of Energy (DOE) project in 1989. Phase I had a goal of developing two competing half-scale (25 kW) brassboard phosphoric acid fuel cell systems. An air-cooled and a liquid-cooled fuel cell system were developed and tested to verify the concept of using a fuel cell and a battery in a hybrid configuration wherein the fuel cell supplies the average power required for operating the vehicle and a battery supplies the `surge` or excess power required for acceleration and hill-climbing. Work done in Phase I determined that the liquid-cooled system offered higher efficiency.

NONE

1996-05-30T23:59:59.000Z

444

Development of a Low-Cost, Durable Membrane and MEA for Stationary and Mobile Fuel Cell Applications  

DOE Green Energy (OSTI)

The development of low cost, durable membranes and membranes electrode assemblies (MEAs) remain a critical challenge for the successful introduction of fuel cells into mass markets. It was the goal of the team lead by Arkema, Inc. (formerly Atofina, Inc.) to address these shortages. Thus, this project addresses the following technical barriers from the Fuel Cells section of the Hydrogen Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan: (A) Durability (B) Cost Arkema’s approach consisted in using blends of polyvinylidenefluoride (PVDF) and proprietary sulfonated polyelectrolytes. The strength and originality of Arkema’s approach lies in the decoupling of ion conductivity from the other requirements. Kynar® (Arkema trade name for PVDF) provides an exceptional combination of properties that make it ideally suited for a membrane matrix. In a first phase, Arkema demonstrated the feasibility of the concept with the M31 membrane generation. After MEA optimization, it was shown that the beginning-of-life (BOL) performance of M3