National Library of Energy BETA

Sample records for developing high impact

  1. High Impact Technology Hub

    Broader source: Energy.gov [DOE]

    The High Impact Technology Hub is a one stop shop for information associated with technology demonstrations in occupied, operational buildings. Resources posted to Hub should accelerate the selection and evaluation of technology demonstration projects and enable transparency into DOEs market stimulation and tech to market activities.

  2. High Impact Technology Hub- Results

    Broader source: Energy.gov [DOE]

    Highlights, outcomes and activities to support the adoption of High Impact Technologies. Technology Highlights preview early results from current technology demonstrations. Case Studies overview...

  3. High Impact Technology HQ- Results

    Broader source: Energy.gov [DOE]

    Highlights, outcomes and activities to support the adoption of High Impact Technologies.  Technology Highlights preview early results from current technology demonstrations.  Case Studies overview...

  4. High Impact Technology Catalyst: Technology Deployment Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalyst: Technology Deployment Strategies High Impact Technology Catalyst: Technology Deployment Strategies The Energy Department released the High Impact Technology Catalyst: ...

  5. High Impact Technology (HIT) Catalyst

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impact Technology (HIT) Catalyst Images courtesy CREE, True Manufacturing, A.O. Smith, Bernstein Associates, Cambridge Engineering, Alliance Laundry Systems, NREL Commercial Buildings Integration Building Technologies Office 2 How can we catalyze the adoption of high impact commercial building technologies? Occupants Financial Institutions Government Utilities Scientists Manufacturers Dealers Suppliers Owners Stakeholder Engagement & Partnerships Managers Designers Engineers 3 Building

  6. JC3 High Impact Assessment Bulletins | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Impact Assessment Bulletins JC3 High

  7. High Impact Technology - Request for Information | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Impact Technology - Request for Information High Impact Technology - Request for Information October 5, 2014 - 4:11pm Addthis This Request for Information is closed. View the Request for Information DE-FOA-0001226, "High Impact Commercial Building Technology." BTO has developed the High Impact Technology (HIT) Catalyst, a framework for accelerating the voluntary adoption of high impact, cost-effective, energy-saving, and underutilized commercial building technologies. Advances in

  8. Environmental Impacts of Increased Hydroelectric Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impacts of Increased Hydroelectric Development at Existing Dams Environmental Impacts of Increased Hydroelectric Development at Existing Dams This report describes the ...

  9. WINDExchange: Jobs and Economic Development Impact Models

    Wind Powering America (EERE)

    Deployment Activities Printable Version Bookmark and Share Regional Resource Centers Economic Development Jobs and Economic Development Impacts Model Resources & Tools Siting Jobs and Economic Development Impact Models JEDI: Jobs and Economic Development Impacts Model Fact Sheet PDF The Jobs and Economic Development Impact (JEDI) models are user-friendly tools that estimate the economic impacts of constructing and operating power generation at the local and state levels. Based on

  10. High Impact Technology HQ | Department of Energy

    Energy Savers [EERE]

    Impact Technology Catalyst » High Impact Technology HQ High Impact Technology HQ High Impact Technology HQ Home Resources for Evaluators -- Site Evaluation Checklists, General M&V Plans, General Templates Host a Site -- Current Opportunities for Owners and Operators Provide Information About Technologies -- Open Opportunities, Upcoming Events, Prioritization Tool Input Form Results -- Technology Highlights, Case Studies, Final Technical Reports, Market Stimulation Activities The High Impact

  11. High Impact Technology Catalyst | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Buildings » High Impact Technology Catalyst High Impact Technology Catalyst High impact technologies (HITs) are cost-effective, underutilized energy-efficient commercial building technologies. Through the High Impact Technology Catalyst program, initiated in 2014, the U.S. Department of Energy (DOE) identifies and guides HITs through their early market introduction phases, ultimately leading them to the broader market through partnerships with the commercial buildings industry via

  12. High impact resistant ceramic composite

    DOE Patents [OSTI]

    Derkacy, James A. (Pittsburgh, PA)

    1991-07-16

    A ceramic material and a method of forming a ceramic material which possesses a high impact resistance. The material comprises: (a) a first continuous phase of .beta.-SiC; and (b) a second phase of about 25-40 vol % TiB.sub.2. Al.sub.2 O.sub.3 is preferably used as a densification aid. The material is formed by hot-pressing the mixture at a temperature from greater than about 1800.degree. C. to less than the transition temperature of .beta.-SiC to .alpha.-SiC. The hot-pressing is performed at a pressure of about 2000 psi to about 4000 psi in an inert atmosphere for several hours and results in the formation of a two phase sintered ceramic composite material.

  13. High impact resistant ceramic composite

    DOE Patents [OSTI]

    Derkacy, J.A.

    1991-07-16

    A ceramic material and a method of forming a ceramic material which possesses a high impact resistance are disclosed. The material comprises: (a) a first continuous phase of [beta]-SiC; and (b) a second phase of about 25-40 vol % TiB[sub 2]. Al[sub 2]O[sub 3] is preferably used as a densification aid. The material is formed by hot-pressing the mixture at a temperature from greater than about 1800 C to less than the transition temperature of [beta]-SiC to [alpha]-SiC. The hot-pressing is performed at a pressure of about 2000 psi to about 4000 psi in an inert atmosphere for several hours and results in the formation of a two phase sintered ceramic composite material. 6 figures.

  14. High Impact Technology - Request for Information | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    This Request for Information is closed. View the Request for Information DE-FOA-0001226, "High Impact Commercial Building Technology." BTO has developed the High Impact Technology (HIT) Catalyst, a framework for accelerating the voluntary adoption of high impact, cost-effective, energy-saving, and underutilized commercial building technologies. Advances in commercial building technologies can enable the cost-effective delivery of new buildings and retrofits that significantly reduce

  15. Request for Information: High Impact Commercial Building Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deployment (DE-FOA-0001086) | Department of Energy High Impact Commercial Building Technology Deployment (DE-FOA-0001086) Request for Information: High Impact Commercial Building Technology Deployment (DE-FOA-0001086) March 6, 2014 - 1:19pm Addthis This Request for Information is closed The U.S. Department of Energy's (DOE) Building Technologies Office (BTO) is developing a pipeline of high impact, cost-effective, energy saving and underutilized commercial building technologies. The RFI

  16. Mitigating Potential Environmental Impacts of Energy Development |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Mitigating Potential Environmental Impacts of Energy Development Mitigating Potential Environmental Impacts of Energy Development April 15, 2013 - 12:00am Addthis Partnering with EERE, Normandeau Associates of Bedford, New Hampshire, developed a tool that characterizes the risk for bird and bat species that may be susceptible to collisions with wind turbines. This tool will be used in environmental decision-making for the planning, siting, and assessments of wind

  17. National Laboratory Impacts and Developments

    Broader source: Energy.gov [DOE]

    The Technology-to-Market program supports U.S. Department of Energy (DOE) initiatives that make access to laboratory-developed technologies and capabilities easier and increase partnerships with the clean energy private sector.

  18. Geothermal Development Job Types and Impacts

    Broader source: Energy.gov [DOE]

    Development of geothermal power plants and direct-use applications creates a variety of jobs. And the resulting job creation and economic activity within the geothermal industry positively impacts...

  19. High Impact Commercial Technology RFI Review

    Broader source: Energy.gov [DOE]

    This webinar will review the Request for Information (RFI) DE-FOA-0001352. This RFI covers the High Impact Technology (HIT) Catalyst, which supports the technology-related market transformation...

  20. High Impact Technology Catalyst Industry Roundtable

    Broader source: Energy.gov [DOE]

    Please join the Department of Energy Commercial Buildings Integration Program for an Industry Roundtable discussion on the High Impact Technology Catalyst. The Roundtable will be part of the BTO...

  1. High Impact Technology Catalyst: Technology Deployment Strategies |

    Energy Savers [EERE]

    Department of Energy Catalyst: Technology Deployment Strategies High Impact Technology Catalyst: Technology Deployment Strategies The Energy Department released the High Impact Technology Catalyst: Technology Deployment Strategies to serve as an overview of the HIT Catalyst program activities, including a summary of the selection process undertaken to identify, evaluate and prioritize the current HITs, descriptions of the technologies and markets for each HIT, and plans for deployment. PDF

  2. Development Impact Assessment (DIA) Case Study: South Africa

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Social impacts may include health (mortality and morbidity), poverty reduction, education, ... impacts and certain development impacts including GDP, employment, and povertywelfare. ...

  3. Shale Gas Development Challenges: Surface Impacts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Surface Impacts Shale Gas Development Challenges: Surface Impacts PDF icon Shale Gas Development Challenges: Surface Impacts More Documents & Publications Natural Gas from Shale: Questions and Answers Challenges associated with shale gas production Shale Gas Development Challenges: Fracture Fluids

  4. Offshore Wind Jobs and Economic Development Impacts in the United...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offshore Wind Jobs and Economic Development Impacts in the United States: Four Regional ... * www.nrel.gov Offshore Wind Jobs and Economic Development Impacts in the United ...

  5. Offshore Wind Jobs and Economic Development Impacts in the United...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Jobs and Economic Development Impacts in the United States: Four Regional Scenarios Offshore Wind Jobs and Economic Development Impacts in the United States: Four Regional ...

  6. Environmental Impacts of Wind Power Development on the Population...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impacts of Wind Power Development on the Population Biology of Greater Prairie-Chickens Environmental Impacts of Wind Power Development on the Population Biology of Greater ...

  7. NREL: Jobs and Economic Development Impacts (JEDI) Models - About...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Jobs and Economic Development Impacts (JEDI) biofuel models include JEDI Dry Mill Corn ... These JEDI models allow users to estimate economic development impacts from biofuel ...

  8. Request for Information: High Impact Commercial Building Technology...

    Office of Environmental Management (EM)

    High Impact Commercial Building Technology Deployment (DE-FOA-0001086) Request for Information: High Impact Commercial Building Technology Deployment (DE-FOA-0001086) March 6, 2014...

  9. General Renewable Energy-Productive Uses and Development Impact...

    Open Energy Info (EERE)

    Impact Jump to: navigation, search Tool Summary LAUNCH TOOL Name: General Renewable Energy-Productive Uses and Development Impact AgencyCompany Organization: World Bank...

  10. NREL: Energy Analysis - Jobs and Economic Development Impact...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Jobs and Economic Development Impact (JEDI) models are user-friendly tools that estimate the economic impacts of constructing and operating power generation and biofuel plants ...

  11. Idaho National Laboratory Research & Development Impacts

    SciTech Connect (OSTI)

    Stricker, Nicole

    2015-01-01

    Technological advances that drive economic growth require both public and private investment. The U.S. Department of Energy’s national laboratories play a crucial role by conducting the type of research, testing and evaluation that is beyond the scope of regulators, academia or industry. Examples of such work from the past year can be found in these pages. Idaho National Laboratory’s engineering and applied science expertise helps deploy new technologies for nuclear energy, national security and new energy resources. Unique infrastructure, nuclear material inventory and vast expertise converge at INL, the nation’s nuclear energy laboratory. Productive partnerships with academia, industry and government agencies deliver high-impact outcomes. This edition of INL’s Impacts magazine highlights national and regional leadership efforts, growing capabilities, notable collaborations, and technology innovations. Please take a few minutes to learn more about the critical resources and transformative research at one of the nation’s premier applied science laboratories.

  12. OTEC power system development and environmental impacts

    SciTech Connect (OSTI)

    Sather, N.F.

    1980-02-20

    Ocean Thermal Energy Conversion (OTEC) is a proven solar energy technology with enormous potential as a supplier of electric power. However, before this potential can be realized there must be significant reductions in OTEC plant investment costs estimated for state-of-the-art designs. A comprehensive survey of the opportunities for reducing costs of the heat exchangers and other components of the power system of closed-cycle OTEC plants is given. These cost-reducing inventives are strongly dependent on the extent to which the environmental impacts of OTEC plants will have to be controlled. The environmental concerns associated with the deployment of OTEC plants are reviewed, and approaches to alleviating these concerns are described. Finally, the key roles of the OTEC-1 component test facility and the OTEC pilot plant planned for a 1984 start up in providing information about the critical power system development and environmental impact problems are summarized.

  13. 2015 High Impact Technologies Forum Agenda | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Impact Technologies Forum Agenda 2015 High Impact Technologies Forum Agenda The agenda for the 2015 High Impact Technologies Forum at the Better Buildings Summit. PDF icon 2015 High Impact Technologies Forum at the Better Buildings Summit agenda More Documents & Publications Biomass 2010 Conference Agenda Funding Opportunity Webinar - Advancing Solutions to Improve Energy Efficiency of Commercial Buildings Funding Opportunity Webinar - Advancing Solutions to Improve Energy Efficiency

  14. Job and Economic Development Impact (JEDI) Model: A User-Friendly Tool to Calculate Economic Impacts from Wind Projects

    SciTech Connect (OSTI)

    None

    2009-02-26

    Brochure on the Jobs and Economic Development Impact (JEDI) Model for calculating the economic impacts of wind development.

  15. High Level Waste System Impacts from Acid Dissolution of Sludge

    SciTech Connect (OSTI)

    KETUSKY, EDWARD

    2006-04-20

    This research evaluates the ability of OLI{copyright} equilibrium based software to forecast Savannah River Site High Level Waste system impacts from oxalic acid dissolution of Tank 1-15 sludge heels. Without further laboratory and field testing, only the use of oxalic acid can be considered plausible to support sludge heel dissolution on multiple tanks. Using OLI{copyright} and available test results, a dissolution model is constructed and validated. Material and energy balances, coupled with the model, identify potential safety concerns. Overpressurization and overheating are shown to be unlikely. Corrosion induced hydrogen could, however, overwhelm the tank ventilation. While pH adjustment can restore the minimal hydrogen generation, resultant precipitates will notably increase the sludge volume. OLI{copyright} is used to develop a flowsheet such that additional sludge vitrification canisters and other negative system impacts are minimized. Sensitivity analyses are used to assess the processability impacts from variations in the sludge/quantities of acids.

  16. Environmental impacts of increased hydroelectric development at existing dams

    SciTech Connect (OSTI)

    Railsback, S. F.; Cada, G. F.; Petrich, C. H.; Sale, M. J.; Shaakir-Ali, J. A.; Watts, J. A.; Webb, J. W.

    1991-04-01

    This report describes the environmental impacts of a proposed U.S. Department of Energy (DOE) initiative to promote the development of hydropower resources at existing dams. Hydropower development at existing dams has, in general, fewer impacts than development of additional fossil-fueled resources or hydropower at new dams, although potential cumulative impacts of developing multiple hydropower projects have not been explicitly addressed. Environmental review of project impacts and mitigation needs can ensure that additional hydropower development at existing dams can provide a renewable resource with fewer impacts than alternative resources.

  17. Environmental Impacts of Increased Hydroelectric Development at Existing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dams | Department of Energy Impacts of Increased Hydroelectric Development at Existing Dams Environmental Impacts of Increased Hydroelectric Development at Existing Dams This report describes the environmental impacts of a proposed U.S. Department of Energy (DOE) initiative to promote the development of hydropower resources at existing dams. PDF icon enviro_impacts_hydroelectric_dev_existing_dams.pdf More Documents & Publications EA-2017: Final Environmental Assessment An Assessment of

  18. NREL: Jobs and Economic Development Impact (JEDI) Models - Advanced Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Users The Jobs and Economic Development Impact (JEDI) models are an input-output based model designed to provide estimates for project impacts. Due to the many variables involved with developing and analyzing projects of this type, these impact estimates are not intended to be viewed as exact impacts, but rather as reasonable estimates given the available data. To the extent users can use the detailed, local cost data and local share values, the results will be more specific to the

  19. LEDSGP/analysis/impacts/DIAWebinar on Development Impact Assessment...

    Open Energy Info (EERE)

    for Low Emissions Development AgencyCompany Organization: National Renewable Energy Laboratory, Energy Research Centre of the Netherlands (ECN), Joint Implementation...

  20. Environmental impacts during geothermal development: Some examples from Central America

    SciTech Connect (OSTI)

    Goff, S.; Goff, F.

    1997-04-01

    The impacts of geothermal development projects are usually positive. However, without appropriate monitoring plans and mitigation actions firmly incorporated into the project planning process, there exists the potential for significant negative environmental impacts. The authors present five examples from Central America of environmental impacts associated with geothermal development activities. These brief case studies describe landslide hazards, waste brine disposal, hydrothermal explosions, and air quality issues. Improved Environmental Impact Assessments are needed to assist the developing nations of the region to judiciously address the environmental consequences associated with geothermal development.

  1. New Model Examines Cumulative Impacts of Wind Energy Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Model Examines Cumulative Impacts of Wind Energy Development on Sensitive Species New Model ... and this information could be used to help design improved mitigation strategies. ...

  2. Wind Energy Economic Development and Impacts | Open Energy Information

    Open Energy Info (EERE)

    a particular utility-scale wind configuration project that has been referred to as the "Big Wind" project. Lantz, E.; Tegen, S. (April 2009). Economic Development Impacts of...

  3. NREL: Jobs and Economic Development Impact (JEDI) Models - Methodology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methodology The intent of the Jobs and Economic Development Impact (JEDI) models is to construct a reasonable profile of investments (e.g., solar plant construction and operating...

  4. High Impact Technology HQ - Resources for Evaluators - General...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HQ - Resources for Evaluators - General Measurement and Verification Plans High Impact ... Microsoft Office document icon Advanced Lighting Controls More Documents & Publications ...

  5. Water Impacts of High Solar PV Electricity Penetration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Impacts of High Solar PV Electricity Penetration Jordan Macknick and Stuart Cohen National Renewable Energy Laboratory (NREL) Technical Report NRELTP-6A20-63011 September...

  6. High Impact Technology HQ - Results - LED Troffer, Cove (linear...

    Energy Savers [EERE]

    HQ - Results - LED Troffer, Cove (linear) and Downlight Retrofit Kits: Princeton Icahn Laboratory High Impact Technology HQ - Results - LED Troffer, Cove (linear) and Downlight ...

  7. High Density Sensor Network Development | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Density Sensor Network Development

  8. JEDI: Jobs and Economic Development Impacts Model Fact Sheet

    SciTech Connect (OSTI)

    S. Hendrickson; S.Tegen

    2009-12-01

    The Jobs and Economic Development Impact (JEDI) models are user-friendly tools that estimate the economic impacts of constructing and operating power generation and biofuel plants at the local(usually state) level. First developed by NREL's Wind Powering America program to model wind energy jobs and impacts, JEDI has been expanded to biofuels,concentrating solar power, coal, and natural gas power plants.

  9. NREL: Jobs and Economic Development Impacts (JEDI) Models - About JEDI

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrating Solar Power Model CSP Model The Jobs and Economic Development Impacts (JEDI) Concentrating Solar Power (CSP) model allows users to estimate economic development impacts from CSP projects. JEDI CSP has default information that can be utilized to run a generic impacts analysis assuming industry averages. Model users are encouraged to enter as much project-specific data as possible. Download the JEDI CSP Model Printable Version JEDI Home About JEDI Biofuels Models Coal Model

  10. NREL: Jobs and Economic Development Impacts (JEDI) Models - About JEDI

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaics Model Photovoltaics Model The Jobs and Economic Development Impacts (JEDI) Photovoltaics (PV) model allows users to estimate economic development impacts from PV projects. JEDI PV has default information that can be utilized to run a generic impacts analysis assuming industry averages. Model users are encouraged to enter as much project-specific data as possible. The PV JEDI model is designed for use on a PC and has very limited functionality on a Mac. However, this model is

  11. NREL: Jobs and Economic Development Impacts (JEDI) Models - About JEDI

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conventional Hydro Model Conventional Hydro Model The Jobs and Economic Development Impact (JEDI) Conventional Hydro model was developed to demonstrate the economic benefits associated with conventional hydro power plants in the United States. The primary goal in developing the state level model was to provide a tool for developers, renewable energy advocates, government officials, decision makers and other potential users, to easily identify the local economic impacts associated with

  12. Mitigating Potential Environmental Impacts of Energy Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Associates of Bedford, New Hampshire, developed a tool that characterizes the risk for bird and bat species that may be susceptible to collisions with wind turbines. This tool...

  13. Jobs and Economic Development Impacts (Postcard)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01

    The U.S. Department of Energy's Wind Powering America initiative provides information on the Jobs and Economic Development Benefits model. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to the Jobs and Economic Development Benefits model section on the Wind Powering America website.

  14. Environmental Impacts of Wind Power Development on the Population Biology

    Office of Environmental Management (EM)

    of Greater Prairie-Chickens | Department of Energy Environmental Impacts of Wind Power Development on the Population Biology of Greater Prairie-Chickens Environmental Impacts of Wind Power Development on the Population Biology of Greater Prairie-Chickens This report summarizes the results of a seven-year, DOE-funded research project, conducted by researchers from Kansas State University and the National Wind Coordinating Collaborative, to assess the effects of wind energy development in

  15. High Impact Technology Hub Resources for Evaluators

    Broader source: Energy.gov [DOE]

    The HIT Catalyst conducts technology demonstrations in three main phases: Site Evaluation, Selection and Project Kick-Off, Measurement and Verification Scoping and Plan Development. The following...

  16. NREL: Jobs and Economic Development Impact (JEDI) Models - About JEDI

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Models Models The Jobs and Economic Development Impact (JEDI) models are user-friendly screening tools that estimate the economic impacts of constructing and operating power plants, fuel production facilities, and other projects at the local (usually state) level. JEDI results are intended to be estimates, not precise predictions. Based on user-entered project-specific data or default inputs (derived from industry norms), JEDI estimates the number of jobs and economic impacts to a local area

  17. NREL: Jobs and Economic Development Impacts (JEDI) Models - About JEDI

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal Model Geothermal Model The Jobs and Economic Development Impact (JEDI) Geothermal model allows users to estimate project costs and direct economic impacts for both hydrothermal and Enhanced Geothermal Systems (EGS) power generation projects based on exploration and drilling activities, power plant construction, and ongoing operations. By determining the regional economic impacts and job creation for a proposed power facility, the geothermal JEDI model can be used to answer

  18. High-Impact, Low-Frequency Event Risk Report

    Office of Environmental Management (EM)

    nerc.com | www.doe.gov June 2010 High-Impact, Low-Frequency Event Risk to the North American Bulk Power System A Jointly-Commissioned Summary Report of the North American Electric Reliability Corporation and the U.S. Department of Energy's November 2009 Workshop About This Report High-Impact, Low-Frequency Event Risk to the North American Bulk Power System June 2010 2 About the High-Impact, Low-Frequency (HILF) Event Risk Effort The North American Electric Reliability Corporation (NERC) and the

  19. NREL: Jobs and Economic Development Impact (JEDI) Models - Publication...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 1603 Grant. 2011. U.S. Partnership for Renewable Energy Finance, Washington, DC (US). ... Reategui, S., and S. Hendrickson. 2011. Economic Development Impact of 1,000 MW of Wind ...

  20. NREL: Jobs and Economic Development Impacts (JEDI) Models - About JEDI

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Natural Gas Model Natural Gas Model The Jobs and Economic Development Impacts (JEDI) Natural Gas model allows users to estimate economic development impacts from natural gas power generation projects. The basic user interface for the natural gas model is the same as the wind and coal models. Results are provided in the same format as the coal and wind models allowing for straightforward comparison with other generation types. JEDI Natural Gas relies on a similar set of standard user inputs

  1. NREL: Jobs and Economic Development Impacts (JEDI) Models - About JEDI

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transmission Line Model Transmission Line Model The Transmission Line Jobs and Economic Development Impacts (JEDI) model allows the user to estimate economic development impacts associated with transmission line projects. Applying a similar user interface as other JEDI models, Transmission Line JEDI requires a few additional user inputs such as: Transmission Line Type Line Length Terrain Type Right-of-Way Characteristics. Results are presented in the same manner as those in other JEDI

  2. Assessing Development Impacts Associated with Low Emission Development...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... As opposed to programs strictly focused on GHG emission mitigation, LEDS actions are aligned with the development goals of the country, such as poverty alleviation, economic ...

  3. Development Impact Assessment (DIA) Case Study. South Africa

    SciTech Connect (OSTI)

    Cox, Sadie; Nawaz, Kathleen; Sandor, Debra

    2015-05-19

    This case study reviews South Africa’s experience in considering the impacts of climate change action on development goals, focusing on the South African energy sector and development impact assessments (DIAs) that have and could be used to influence energy policy or inform the selection of energy activities. It includes a review of assessments—conducted by government ministries, technical partners, and academic institutes and non-governmental organizations (NGOs)—that consider employment, health, and water implications of possible energy sector actions, as well as multi-criteria impact assessments.

  4. Producing a High Impact Technology | Department of Energy

    Energy Savers [EERE]

    Producing a High Impact Technology Producing a High Impact Technology November 3, 2015 - 2:43pm Addthis Amy Jiron Amy Jiron Technology Manager, Building Technologies Office The spectrum of commercial building efficiency technologies is large. Opportunities to save cost and energy diverge across market sectors, types, by systems and application, based on programming and occupant behavior and organizational mission. Fortunately, the Commercial Buildings Energy Consumption Survey (CBECS) provides a

  5. Cross-impacts analysis development and energy policy analysis applications

    SciTech Connect (OSTI)

    Roop, J.M.; Scheer, R.M.; Stacey, G.S.

    1986-12-01

    Purpose of this report is to describe the cross-impact analysis process and microcomputer software developed for the Office of Policy, Planning, and Analysis (PPA) of DOE. First introduced in 1968, cross-impact analysis is a technique that produces scenarios of future conditions and possibilities. Cross-impact analysis has several unique attributes that make it a tool worth examining, especially in the current climate when the outlook for the economy and several of the key energy markets is uncertain. Cross-impact analysis complements the econometric, engineering, systems dynamics, or trend approaches already in use at DOE. Cross-impact analysis produces self-consistent scenarios in the broadest sense and can include interaction between the economy, technology, society and the environment. Energy policy analyses that couple broad scenarios of the future with detailed forecasting can produce more powerful results than scenario analysis or forecasts can produce alone.

  6. NREL: Jobs and Economic Development Impact (JEDI) Models - Interpreting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Results Interpreting Results Sample Results from JEDI. Download a text-version (MS Excel 44 KB) The Jobs and Economic Development Impact (JEDI) models estimate the number of jobs and economic impacts associated with power generation, fuel production, and other projects. Economic activity in input-output models is typically assessed in three categories. NREL's JEDI models classify the first category of results-on-site labor and professional services results-as dollars spent on labor from

  7. Development of High Performance Heavy Duty Engine Oils | Department of

    Office of Environmental Management (EM)

    Energy of High Performance Heavy Duty Engine Oils Development of High Performance Heavy Duty Engine Oils FAME biodiesel will likely remain a part of the global diesel pool for the coming years and the use of biodiesel can lead to lubrication issues. PDF icon deer09_lauterwasser.pdf More Documents & Publications The Road to Improved Heavy Duty Fuel Economy Effects of Fuel Dilution with Biodiesel on Lubricant Acidity, Oxidation and Corrosion Biodiesel Impact on Engine Lubricant Oil

  8. Impact of High Wind Power Penetration on Hydroelectric Unit Operations

    SciTech Connect (OSTI)

    Hodge, B. M.; Lew, D.; Milligan, M.

    2011-01-01

    The Western Wind and Solar Integration Study (WWSIS) investigated the operational impacts of very high levels of variable generation penetration rates (up to 35% by energy) in the western United States. This work examines the impact of this large amount of wind penetration on hydroelectric unit operations. Changes in hydroelectric unit operating unit patterns are examined for an aggregation of all hydro generators. The cost impacts of maintaining hydro unit flexibility are assessed and compared for a number of different modes of system operation.

  9. The impact of oil on a developing country

    SciTech Connect (OSTI)

    Ikein, A.

    1990-01-01

    This book provides an analysis of the impact of the oil industry on a particular developing country, Nigeria over a period of 32 years. Arguing that previous studies on the oil industry in developing countries have tended to focus only on the economic significance of oil, ignoring its societal costs, the author uses a multidimensional approach that enables him to identify the linkage between the performance of the oil industry and the pattern of Nigeria's national and regional development.

  10. Assessing human rights impacts in corporate development projects

    SciTech Connect (OSTI)

    Salcito, Kendyl; University of Basel, P.O. Box, CH-4003 Basel; NomoGaia, 1900 Wazee Street, Suite 303, Denver, CO 80202; NewFields, LLC, Denver, CO 80202 ; Utzinger, Jrg; University of Basel, P.O. Box, CH-4003 Basel ; Weiss, Mitchell G.; Mnch, Anna K.; Singer, Burton H.; Krieger, Gary R.; Wielga, Mark; NewFields, LLC, Denver, CO 80202

    2013-09-15

    Human rights impact assessment (HRIA) is a process for systematically identifying, predicting and responding to the potential impact on human rights of a business operation, capital project, government policy or trade agreement. Traditionally, it has been conducted as a desktop exercise to predict the effects of trade agreements and government policies on individuals and communities. In line with a growing call for multinational corporations to ensure they do not violate human rights in their activities, HRIA is increasingly incorporated into the standard suite of corporate development project impact assessments. In this context, the policy world's non-structured, desk-based approaches to HRIA are insufficient. Although a number of corporations have commissioned and conducted HRIA, no broadly accepted and validated assessment tool is currently available. The lack of standardisation has complicated efforts to evaluate the effectiveness of HRIA as a risk mitigation tool, and has caused confusion in the corporate world regarding company duties. Hence, clarification is needed. The objectives of this paper are (i) to describe an HRIA methodology, (ii) to provide a rationale for its components and design, and (iii) to illustrate implementation of HRIA using the methodology in two selected corporate development projectsa uranium mine in Malawi and a tree farm in Tanzania. We found that as a prognostic tool, HRIA could examine potential positive and negative human rights impacts and provide effective recommendations for mitigation. However, longer-term monitoring revealed that recommendations were unevenly implemented, dependent on market conditions and personnel movements. This instability in the approach to human rights suggests a need for on-going monitoring and surveillance. -- Highlights: We developed a novel methodology for corporate human rights impact assessment. We piloted the methodology on two corporate projectsa mine and a plantation. Human rights impact assessment exposed impacts not foreseen in ESIA. Corporations adopted the majority of findings, but not necessarily immediately. Methodological advancements are expected for monitoring processes.

  11. High field superconductor development and understanding project, Final Report

    SciTech Connect (OSTI)

    Larbalestier, David C.; Lee, Peter J.

    2009-07-15

    Over 25 years the Applied Superconductivity Center at the University of Wisconsin-Madison provided a vital technical resource to the High Energy Physics community covering development in superconducting strand for HEP accelerator magnet development. In particular the work of the group has been to develop the next generation of high field superconductors for high field application. Grad students Mike Naus, Chad Fischer, Arno Godeke and Matt Jewell improved our understanding of the microstructure and microchemistry of Nb3Sn and their impact on the physical and mechanical properties. The success of this work has led to the continued funding of this work at the ASC after it moved to the NHMFL and also to direct funding from BNL for some aspects of Nb3Sn cable evaluation.

  12. NREL: Jobs and Economic Development Impact (JEDI) Models - Limitations of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JEDI Models Limitations of JEDI Models Results are an estimate, not a precise forecast. The Jobs and Economic Development Impact (JEDI) models are input-output based models, also appropriately called calculators or screening tools. As such, they share important limitations with all models based on input-output calculation methodologies. For the interested user, the Environmental Protection Agency recently published EPA Assessing the Multiple Benefits of Clean Energy: A Resource for States1,

  13. High Impact Technology HQ - Results - LED Troffer, Cove (linear) and

    Energy Savers [EERE]

    Downlight Retrofit Kits: Princeton Icahn Laboratory | Department of Energy HQ - Results - LED Troffer, Cove (linear) and Downlight Retrofit Kits: Princeton Icahn Laboratory High Impact Technology HQ - Results - LED Troffer, Cove (linear) and Downlight Retrofit Kits: Princeton Icahn Laboratory PDF icon LED Troffer, Cove (linear) and Downlight Retrofit Kits: Princeton Icahn Laboratory More Documents & Publications DOE Booth Presentations From Grainger Show 2015 Downloads Exterior LED

  14. Public service impacts of geothermal development: cumulative impacts study of the Geysers KGRA. Final staff report

    SciTech Connect (OSTI)

    Matthews, K.M.

    1983-07-01

    The number of workers currently involved in the various aspects of geothermal development in the Geysers are identified. Using two different development scenarios, projections are made for the number of power plants needed to reach the electrical generation capacity of the steam resource in the Geysers. The report also projects the cumulative number of workers needed to develop the steam field and to construct, operate, and maintain these power plants. Although the number of construction workers fluctuates, most are not likely to become new, permanent residents of the KGRA counties. The administrative and public service costs of geothermal development to local jurisdications are examined, and these costs are compared to geothermal revenues accruing to the local governments. Revenues do not cover the immediate fiscal needs resulting from increases in local road maintenance and school enrollment attributable to geothermal development. Several mitigation options are discussed and a framework presented for calculating mitigation costs for school and road impacts.

  15. EA-0510: High-Temperature Solid Oxide Fuel Cell (Sofc) Generator Development Project (METC), Churchill, Pennsylvania

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to enter into a 5-year cooperative agreement with the Westinghouse Electric Corporation for the development of high-temperature solid oxide...

  16. JEDI: Jobs and Economic Development Impact Model (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JEDI: Jobs and Economic Development Impact Model The Jobs and Economic Development Impact (JEDI) models are user-friendly tools that estimate the gross economic impacts of constructing and operating power generation, transmission, and biofuel plants at the state or national level. First developed by NREL's researchers to model wind energy jobs and impacts, JEDI has been expanded to also estimate the economic impacts of biofuels and biopower, coal, conventional hydro, concentrating solar power,

  17. JEDI: Jobs and Economic Development Impact Model (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Wind Powering America (EERE)

    JEDI: Jobs and Economic Development Impact Model The Jobs and Economic Development Impact (JEDI) models are user-friendly tools that estimate the gross economic impacts of constructing and operating power generation, transmission, and biofuel plants at the state or national level. First developed by NREL's researchers to model wind energy jobs and impacts, JEDI has been expanded to also estimate the economic impacts of biofuels and biopower, coal, conventional hydro, concentrating solar power,

  18. High-voltage miniature igniter development

    SciTech Connect (OSTI)

    Willkens, C.A.; Axelson, S.R.; Bateman, L.S.; Croucher, D.D.

    1996-09-01

    In 1988, Norton introduced its line of low-voltage 12- and 24-V miniature igniters made from a patented ceramic/intermetallic material. These igniters demonstrated superior strength and speed in a compact low-wattage assembly for gas-fired ignition. High-voltage igniters are being developed to complete the family of igniters for gas-fired ignition. These igniters have extremely low power requirements in the range of 50--100 W, are designed to operate at line voltages of 120 V, and are leading to designs for operation up to 230 V. These were developed using compositional and dimensional changes to the low voltage igniters. The 120 V igniter has exceeded 200,000 cycles in life testing and has been submitted for agency approval. These igniters are also undergoing field testing in various demanding gas-fired appliances. The evolution of the low-voltage igniter into the high-voltage model, as well as performance and material development issues are discussed.

  19. The impact of subsea boosting on deepwater field development

    SciTech Connect (OSTI)

    Ribeiro, O.J.S.; Camargo, R.M.T.; Paulo, C.A.S.

    1996-12-31

    This paper describes the impact that the use of a subsea boosting system will have on the development of a deepwater field. The analysis covers the technology demands and constraints encountered on screening studies executed for the fields of Marlim, Albacora and Barracuda, as well as an overview of the economic benefits encountered. The paper focuses on the technological demands and constraints identified as well as some considerations about possible alternatives. The demands and constraints identified in the study will provide the industry with some more input to guide the development of the subsea boosting technology, as well as a better understanding of how to apply this new tool on the development of deepwater prospects. The results of the screening study are showing that the subsea boosting systems are a valuable tool to reduce the costs of deepwater developments. The cost cutting possibilities through an integration between the conventional subsea hardware and the subsea boosting systems and the combination of boosting systems are promising alternatives. The encouraging economic results found, as well as the demands and constraints raised in the paper will be of use for those trying to apply these technologies in various areas of the world.

  20. Water Impacts of High Solar PV Electricity Penetration

    SciTech Connect (OSTI)

    Macknick, Jordan; Cohen, Stuart

    2015-09-01

    This analysis provides a detailed national and regional description of the water-related impacts and constraints of high solar electricity penetration scenarios in the U.S. in 2030 and 2050. A modified version of the Regional Energy Deployment System (ReEDS) model that incorporates water resource availability and costs as a constraint in each of its 134 Balancing Area (BA) regions was utilized to explore national and regional differences in water use impacts and solar deployment locations under different solar energy cost and water availability scenarios (Macknick et al. 2015). Water resource availability and cost data are from recently completed research at Sandia National Laboratories (Tidwell et al. 2013a). Scenarios analyzed include two business-as-usual solar energy cost cases, one with and one without considering available water resources, and four solar energy cost cases that meet the SunShot cost goals (i.e., $1/watt for utility-scale PV systems), with varying levels of water availability restrictions. This analysis provides insight into the role solar energy technologies have in the broader electricity sector under scenarios of water constraints.

  1. Sub-Hourly Impacts of High Solar Penetrations in the Western United States: Preprint

    SciTech Connect (OSTI)

    Lew, D.; Brinkman, G.; Ibanez, E.; Hummon, M.; Hodge, B. M.; Heaney, M.; King, J.

    2012-09-01

    This paper presents results of analysis on the sub-hourly impacts of high solar penetrations from the Western Wind and Solar Integration Study Phase 2. Extreme event analysis showed that most large ramps were due to sunrise and sunset events, which have a significant predictability component. Variability in general was much higher in the high-solar versus high-wind scenario. Reserve methodologies that had already been developed for wind were therefore modified to take into account the predictability component of solar variability.

  2. Study of domestic social and economic impacts of ocean thermal energy conversion (OTEC) commercial development. Volume I. Economic impacts

    SciTech Connect (OSTI)

    1981-12-22

    This analysis identifies the economic impacts associated with OTEC development and quantifies them at the national, regional, and industry levels. It focuses on the effects on the United States' economy of the domestic development and utilization of twenty-five and fifty 400 MWe OTEC power plants by the year 2000. The methodology employed was characteristic of economic impact analysis. After conducting a literature review, a likely future OTEC scenario was developed on the basis of technological, siting, and materials requirements parameters. These parameters were used to identify the industries affected by OTEC development; an economic profile was constructed for each of these industries. These profiles established an industrial baseline from which the direct, indirect, and induced economic impacts of OTEC implementation could be estimated. Each stage of this analysis is summarized; and the economic impacts are addressed. The methodology employed in estimating the impacts is described.

  3. Progress toward Development of a High-Efficiency Zonal Thermoelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    toward Development of a High-Efficiency Zonal Thermoelectric HVAC System for Automotive Applications Progress toward Development of a High-Efficiency Zonal Thermoelectric HVAC...

  4. High Burnup Dry Storage Cask Research and Development Project...

    Energy Savers [EERE]

    High Burnup Dry Storage Cask Research and Development Project: Final Test Plan High Burnup Dry Storage Cask Research and Development Project: Final Test Plan The potential need to ...

  5. USABC Development of Advanced High-Performance Batteries for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development of Advanced High-Performance Batteries for EV Applications USABC Development of Advanced High-Performance Batteries for EV Applications 2012 DOE Hydrogen and Fuel Cells...

  6. Heavy Duty HCCI Development Activities - DOE High Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heavy Duty HCCI Development Activities - DOE High Efficiency Clean Combustion (HECC) Heavy Duty HCCI Development Activities - DOE High Efficiency Clean Combustion (HECC) ...

  7. High Average Brightness Photocathode Development for FEL Applications...

    Office of Scientific and Technical Information (OSTI)

    Conference: High Average Brightness Photocathode Development for FEL Applications Citation Details In-Document Search Title: High Average Brightness Photocathode Development for...

  8. Developments in High Efficiency Engine Technologies and an Introductio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Developments in High Efficiency Engine Technologies and an Introduction to SwRI's Dedicated EGR Concept Developments in High Efficiency Engine Technologies and an Introduction to...

  9. Baoding High Tech Industry Development Zone | Open Energy Information

    Open Energy Info (EERE)

    Name: Baoding High-Tech Industry Development Zone Place: China Product: Government & NGO ( State-owned commercial entity ) References: Baoding High-Tech Industry Development...

  10. The impact of a filament eruption on nearby high-lying cool loops

    SciTech Connect (OSTI)

    Harra, L. K.; Matthews, S. A.; Long, D. M.; Doschek, G. A.; De Pontieu, B.

    2014-09-10

    The first spectroscopic observations of cool Mg II loops above the solar limb observed by NASA's Interface Region Imaging Spectrograph (IRIS) are presented. During the observation period, IRIS is pointed off-limb, allowing the observation of high-lying loops, which reach over 70 Mm in height. Low-lying cool loops were observed by the IRIS slit-jaw camera for the entire four-hour observing window. There is no evidence of a central reversal in the line profiles, and the Mg II h/k ratio is approximately two. The Mg II spectral lines show evidence of complex dynamics in the loops with Doppler velocities reaching 40 km s{sup 1}. The complex motions seen indicate the presence of multiple threads in the loops and separate blobs. Toward the end of the observing period, a filament eruption occurs that forms the core of a coronal mass ejection. As the filament erupts, it impacts these high-lying loops, temporarily impeding these complex flows, most likely due to compression. This causes the plasma motions in the loops to become blueshifted and then redshifted. The plasma motions are seen before the loops themselves start to oscillate as they reach equilibrium following the impact. The ratio of the Mg h/k lines also increases following the impact of the filament.

  11. Development of a 100-Watt High Temperature Thermoelectric Generator...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a 100-Watt High Temperature Thermoelectric Generator Development of a 100-Watt High Temperature Thermoelectric Generator Test results for low and high temperature thermoelectric ...

  12. JEDI: Jobs and Economic Development Impacts Model, National Renewable...

    Wind Powering America (EERE)

    project owners, and others interested in the economic impacts from new electricity generation projects. JEDI's user-friendly design allows novices to explore the statewide...

  13. Identify types of development and climate impacts that are country...

    Open Energy Info (EERE)

    Modeling the Global Trade and Environmental Impacts of Biofuel Policies Modified Microgrid Concept for Rural Electrification in Africa NREL State Clean Energy Policies...

  14. Category:LEDSGP Development Impacts Assessment Toolkits | Open...

    Open Energy Info (EERE)

    Model S SEAGA Intermediate Level Handbook SimCLIM Simple Interactive Models for better air quality (SIM-air) Simplified Approach for Estimating Impacts of Electricity Generation...

  15. High-Yield Hybrid Cellulosic Ethanol Process Using High-Impact Feedstock

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a d e b y N a t u r e , R e f i n e d b y Z e a C h e m DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review High-Yield Hybrid Cellulosic Ethanol Process Using High- Impact Feedstock March 24, 2015 Demonstration and Market Transformation Program Tim Eggeman, Ph.D., P.E. ZeaChem Inc. This presentation does not contain any proprietary, confidential, or otherwise restricted information Goal Statement * Goals of IBR Project: - Mitigate risks so that a 1 st Commercial Plant can be

  16. Assessing Development Impacts Associated with Low Emission Development Strategies: Lessons Learned from Pilot Efforts in Kenya and Montenegro

    SciTech Connect (OSTI)

    Cox, S.; Katz, J.; Wurtenberger, L.

    2014-01-01

    Low emission development strategies (LEDS) articulate economy-wide policies and implementation plans designed to enable a country to meet its long-term development objectives while reducing greenhouse gas emissions. A development impact assessment tool was developed to inform an analytically robust and transparent prioritization of LEDS actions based on their economic, social, and environmental impacts. The graphical tool helps policymakers communicate the development impacts of LEDS options and identify actions that help meet both emissions reduction and development goals. This paper summarizes the adaptation and piloting of the tool in Kenya and Montenegro. The paper highlights strengths of the tool and discusses key needs for improving it.

  17. Jobs and Economic Development Impacts from Small Wind: JEDI Model in the Works (Presentation)

    SciTech Connect (OSTI)

    Tegen, S.

    2012-06-01

    This presentation covers the National Renewable Energy Laboratory's role in economic impact analysis for wind power Jobs and Economic Development Impacts (JEDI) models, JEDI results, small wind JEDI specifics, and a request for information to complete the model.

  18. Developing High Capacity, Long Life Anodes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Life Anodes Developing High Capacity, Long Life Anodes 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon es020_amine_2011_p.pdf More Documents & Publications Developing A New High Capacity Anode With Long Cycle Life Developing High Capacity, Long Life Anodes Development of High Capacity Anode for Li-ion Batteries

  19. Evaluating the Impact of Development Projects on Poverty: A Handbook...

    Open Energy Info (EERE)

    on: LEDS icon social blue.png Social LEDS icon economic blue.png Economic LEDS icon environmental bw.png Environmental Learn more about the topics for assessing the impacts...

  20. Job and Economic Development Impact Models (JEDI) | Open Energy...

    Open Energy Info (EERE)

    and biofuel plants at the local and state levels. It comes as a separate model for wind, PV, natural gas, CSP, coal, and biofuels. Job's, earnings, and impact are outputs. Inputs...

  1. Offshore Wind Jobs and Economic Development Impacts in the United States:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Four Regional Scenarios | Department of Energy Jobs and Economic Development Impacts in the United States: Four Regional Scenarios Offshore Wind Jobs and Economic Development Impacts in the United States: Four Regional Scenarios Offshore wind has tremendous potential in the United States as a clean, renewable source of electricity. This report uses the offshore wind Jobs and Economic Development Impacts (JEDI) model and provides four case studies of potential offshore wind deployment

  2. NWCC Guidelines for Assessing the Economic Development Impacts of Wind Power

    SciTech Connect (OSTI)

    Michael Taylor, Northwest Economic Associates Alan Fox, Northwest Economic Associates Jill Chilton, Northwest Economic Associates NWCC Economic Development Work Group Contributors Steve Clemmer, Lisa Daniels, Ed DeMeo, Rick Halet, Ron Lehr, Michael Milligan Vince Robinson

    2002-02-12

    OAK-B135 The primary objective of this study is to provide examples of thorough and consistent analysis and documentation of economic impacts from wind power development.

  3. Assessment of the Value, Impact, and Validity of the Jobs and Economic Development Impacts (JEDI) Suite of Models

    SciTech Connect (OSTI)

    Billman, L.; Keyser, D.

    2013-08-01

    The Jobs and Economic Development Impacts (JEDI) models, developed by the National Renewable Energy Laboratory (NREL) for the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE), use input-output methodology to estimate gross (not net) jobs and economic impacts of building and operating selected types of renewable electricity generation and fuel plants. This analysis provides the DOE with an assessment of the value, impact, and validity of the JEDI suite of models. While the models produce estimates of jobs, earnings, and economic output, this analysis focuses only on jobs estimates. This validation report includes an introduction to JEDI models, an analysis of the value and impact of the JEDI models, and an analysis of the validity of job estimates generated by JEDI model through comparison to other modeled estimates and comparison to empirical, observed jobs data as reported or estimated for a commercial project, a state, or a region.

  4. High temperature solid oxide fuel development activities

    SciTech Connect (OSTI)

    Ray, E.R.

    1993-11-01

    This paper presents an overview of the Westinghouse tubular SOFC development activities and current program status. Goal is to develop a cell that can operate for 50,000 to 100,000 h. Test results are presented for multiple single cell tests which have now successfully exceeded 40,000 hours of continuous power operation at temperature. Two 25-kW SOFC customer tests units were delivered in 1992; a 20-kW SOFC system is bein manufactured and will be operated by Southern California Edison in 1995. Megawatt class generators are being developed.

  5. High Impact Technologies Forum: Harnessing American Ingenuity and Innovation to Catalyze Building Efficiency

    Broader source: Energy.gov [DOE]

    Take advantage of DOE’s high impact technology programs, partnerships and products as we drive toward our building energy reduction goals.

  6. Telephone Flat Geothermal Development Project Environmental Impact Statement Environmental Impact Report. Final: Comments and Responses to Comments

    SciTech Connect (OSTI)

    1999-02-01

    This document is the Comments and Responses to Comments volume of the Final Environmental Impact Statement and Environmental Impact Report prepared for the proposed Telephone Flat Geothermal Development Project (Final EIS/EIR). This volume of the Final EIS/EIR provides copies of the written comments received on the Draft EIS/EIR and the leady agency responses to those comments in conformance with the requirements of the National Environmental Policy Act (NEPA) and the California Environmental Quality Act (CEQA).

  7. Development of High-Capacity Cathode Materials with Integrated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications Development of High-Capacity Cathode Materials with Integrated Structures Vehicle Technologies Office Merit Review 2015: Design and Evaluation of High...

  8. Technology Development for Light Duty High Efficient Diesel Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Duty High Efficient Diesel Engines Technology Development for Light Duty High Efficient Diesel Engines Improve the efficiency of diesel engines for light duty applications ...

  9. Development of Advanced High Temperature Fuel Cell Membranes

    Broader source: Energy.gov [DOE]

    Presentation on Development of Advanced High Temperature Fuel Cell Membranes to the High Temperature Membrane Working Group Meeting held in Arlington, Virginia, May 26,2005.

  10. Development of a 500 Watt High Temperature Thermoelectric Generator...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a 500 Watt High Temperature Thermoelectric Generator Development of a 500 Watt High Temperature Thermoelectric Generator A low temperature TEG has been built and tested providing ...

  11. NREL Develops High Speed Scanner to Monitor Fuel Cell Material...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fuel cell scanner could provide effective in-line quality control in a high-volume manufacturing facility. NREL scientists have developed and built a high-throughput,...

  12. Los Alamos develops new technique for growing high-efficiency...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January Growing high-efficiency perovskite solar cells Los Alamos develops new technique for growing high-efficiency perovskite solar cells Researchers reveal a new...

  13. Technology Development for High Efficiency Clean Diesel Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    deer09stanton.pdf More Documents & Publications High Efficient Clean Combustion for SuperTruck Advanced Diesel Engine Technology Development for HECC Enabling High Efficiency...

  14. Development of High-Capacity Cathode Materials with Integrated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Peer Evaluation PDF icon es019kang2011p.pdf More Documents & Publications Development of High-Capacity Cathode Materials with Integrated Structures Development of...

  15. Development of a High-Efficiency Zonal Thermoelectric HVAC System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    toward Development of a High-Efficiency Zonal Thermoelectric HVAC System for Automotive Applications Improving Energy Efficiency by Developing Components for Distributed Cooling...

  16. The commercial development of water repellent coatings for high...

    Office of Scientific and Technical Information (OSTI)

    development of water repellent coatings for high voltage transmission lines Citation Details In-Document Search Title: The commercial development of water repellent coatings ...

  17. Development of a High-Temperature Diagnostics-While-Drilling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development of a High-Temperature Diagnostics-While-Drilling Tool Development of a High-Temperature Diagnostics-While-Drilling Tool This report documents work performed in the ...

  18. High Burnup Dry Storage Cask Research and Development Project: Final Test

    Office of Environmental Management (EM)

    Plan | Department of Energy High Burnup Dry Storage Cask Research and Development Project: Final Test Plan High Burnup Dry Storage Cask Research and Development Project: Final Test Plan The potential need to store Spent Nuclear Fuel (SNF) for many decades will have a near-term and potentially significant impact on nuclear plant licensing and operations. While dry storage of lower burnup SNF [less than 45 gigawatt days per metric ton uranium (GWD / MTU)] has occurred since 1986, dry storage

  19. NREL: Jobs and Economic Development Impacts (JEDI) Models - About JEDI Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Model Wind Model The Jobs and Economic Development Impacts (JEDI) Wind model allows the user to estimate economic development impacts from wind power generation projects. JEDI Wind has default information that can be used to run a generic impacts analysis assuming wind industry averages. Model users are encouraged to enter as much project-specific data as possible. User inputs specific to JEDI Wind include: Construction materials and labor costs Turbine, tower, blade costs, and local content

  20. Development of Centrifugal Contactor with High Reliability

    SciTech Connect (OSTI)

    Okamura, Nobuo; Takeuchi, Masayuki; Ogino, Hideki; Kase, Takeshi; Koizumi, Tsutomu

    2007-07-01

    In Japan Atomic Energy Agency (JAEA), an innovative centrifugal contactor system has been developed for a future reprocessing plant. It was confirmed that it had a higher extraction capacity through the uranium test already. But it was necessary that it had the higher mechanical reliability to be applied in a reprocessing plant. In this study, two types of driving units that use a ball bearing or a magnetic bearing have been developed for it. It was confirmed that they had enough abilities trough endurance tests. The driving unit with ball bearing could be operated continuously for 5000 hours that was equal to a term of an annual operation. It was found that it could be operated for a year without maintenance. JAEA will continue to improve them and select more advantageous one on the basis of economy and lifetime in near future. (authors)

  1. Modeling High-Impact Weather and Climate: Lessons From a Tropical Cyclone Perspective

    SciTech Connect (OSTI)

    Done, James; Holland, Greg; Bruyere, Cindy; Leung, Lai-Yung R.; Suzuki-Parker, Asuka

    2012-06-01

    Although the societal impact of a weather event increases with the rarity of the event, our current ability to assess extreme events and their impacts is limited by not only rarity but also by current model fidelity and a lack of understanding of the underlying physical processes. This challenge is driving fresh approaches to assess high-impact weather and climate. Recent lessons learned in modeling high-impact weather and climate are presented using the case of tropical cyclones as an illustrative example. Through examples using the Nested Regional Climate Model to dynamically downscale large-scale climate data the need to treat bias in the driving data is illustrated. Domain size, location, and resolution are also shown to be critical and should be guided by the need to: include relevant regional climate physical processes; resolve key impact parameters; and to accurately simulate the response to changes in external forcing. The notion of sufficient model resolution is introduced together with the added value in combining dynamical and statistical assessments to fill out the parent distribution of high-impact parameters. Finally, through the example of a tropical cyclone damage index, direct impact assessments are presented as powerful tools that distill complex datasets into concise statements on likely impact, and as highly effective communication devices. Capsule: "Combining dynamical modeling of high-impact weather using traditional regional climate models with statistical techniques allows for comprehensive sampling of the full distribution, uncertainty estimation, direct assessment of impacts, and increased confidence in future changes."

  2. Improved Modeling Tools Development for High Penetration Solar

    SciTech Connect (OSTI)

    Washom, Byron

    2014-12-11

    One of the significant objectives of the High Penetration solar research is to help the DOE understand, anticipate, and minimize grid operation impacts as more solar resources are added to the electric power system. For Task 2.2, an effective, reliable approach to predicting solar energy availability for energy generation forecasts using the University of California, San Diego (UCSD) Sky Imager technology has been demonstrated. Granular cloud and ramp forecasts for the next 5 to 20 minutes over an area of 10 square miles were developed. Sky images taken every 30 seconds are processed to determine cloud locations and cloud motion vectors yielding future cloud shadow locations respective to distributed generation or utility solar power plants in the area. The performance of the method depends on cloud characteristics. On days with more advective cloud conditions, the developed method outperforms persistence forecasts by up to 30% (based on mean absolute error). On days with dynamic conditions, the method performs worse than persistence. Sky Imagers hold promise for ramp forecasting and ramp mitigation in conjunction with inverter controls and energy storage. The pre-commercial Sky Imager solar forecasting algorithm was documented with licensing information and was a Sunshot website highlight

  3. Offshore Wind Jobs and Economic Development Impact: Four Regional Scenarios (Presentation)

    SciTech Connect (OSTI)

    Tegen, S.

    2014-11-01

    NREL's Jobs and Economic Development Impact (JEDI) Model for Offshore Wind, is a computer tool for studying the economic impacts of fixed-bottom offshore wind projects in the United States. This presentation provides the results of an analysis of four offshore wind development scenarios in the Southeast Atlantic, Great Lakes, Mid-Atlantic, and Gulf of Mexico regions.

  4. Development of economically viable, highly integrated, highly modular SEGIS architecture.

    SciTech Connect (OSTI)

    Enslin, Johan; Hamaoui, Ronald; Gonzalez, Sigifredo; Haddad, Ghaith; Rustom, Khalid; Stuby, Rick; Kuran, Mohammad; Mark, Evlyn; Amarin, Ruba; Alatrash, Hussam; Bower, Ward Isaac; Kuszmaul, Scott S.; Sena-Henderson, Lisa; David, Carolyn; Akhil, Abbas Ali

    2012-03-01

    Initiated in 2008, the SEGIS initiative is a partnership involving the U.S. DOE, Sandia National Laboratories, private sector companies, electric utilities, and universities. Projects supported under the initiative have focused on the complete-system development of solar technologies, with the dual goal of expanding renewable PV applications and addressing new challenges of connecting large-scale solar installations in higher penetrations to the electric grid. Petra Solar, Inc., a New Jersey-based company, received SEGIS funds to develop solutions to two of these key challenges: integrating increasing quantities of solar resources into the grid without compromising (and likely improving) power quality and reliability, and moving the design from a concept of intelligent system controls to successful commercialization. The resulting state-of-the art technology now includes a distributed photovoltaic (PV) architecture comprising AC modules that not only feed directly into the electrical grid at distribution levels but are equipped with new functions that improve voltage stability and thus enhance overall grid stability. This integrated PV system technology, known as SunWave, has applications for 'Power on a Pole,' and comes with a suite of technical capabilities, including advanced inverter and system controls, micro-inverters (capable of operating at both the 120V and 240V levels), communication system, network management system, and semiconductor integration. Collectively, these components are poised to reduce total system cost, increase the system's overall value and help mitigate the challenges of solar intermittency. Designed to be strategically located near point of load, the new SunWave technology is suitable for integration directly into the electrical grid but is also suitable for emerging microgrid applications. SunWave was showcased as part of a SEGIS Demonstration Conference at Pepco Holdings, Inc., on September 29, 2011, and is presently undergoing further field testing as a prelude to improved and expanded commercialization.

  5. Prospects for Future Very High-Energy Gamma-Ray Sky Survey: Impact...

    Office of Scientific and Technical Information (OSTI)

    Future Very High-Energy Gamma-Ray Sky Survey: Impact of Secondary Gamma Rays Citation Details In-Document Search Title: Prospects for Future Very High-Energy Gamma-Ray Sky Survey:...

  6. Model Examines Cumulative Impacts of Wind Energy Development on the Greater

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sage-Grouse | Department of Energy Model Examines Cumulative Impacts of Wind Energy Development on the Greater Sage-Grouse Model Examines Cumulative Impacts of Wind Energy Development on the Greater Sage-Grouse March 31, 2014 - 11:34am Addthis Photo of a sage grouse. The U.S. Department of Energy's (DOE's) Argonne National Laboratory developed a spatially explicit individual-based model for examining the cumulative impacts of wind energy development on populations and habitats of the greater

  7. JEDI: Jobs and Economic Development Impact Model; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-08-01

    The Jobs and Economic Development Impact (JEDI) models are user-friendly tools that estimate the economic impacts of constructing and operating power generation and biofuel plants at the local (usually state) level. First developed by NREL’s researchers to model wind energy jobs and impacts, JEDI has been expanded to also estimate the economic impacts of biofuels, coal, conventional hydro, concentrating solar power, geothermal, marine and hydrokinetic power, natural gas, photovoltaics, and transmission lines. This fact sheet focuses on JEDI for wind energy projects.

  8. Model Examines Cumulative Impacts of Wind Energy Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the greater sage-grouse (Centrocercus urophasianus)-a candidate for listing under the Endangered Species Act. Model development was initiated with funding from DOE's Wind Program. ...

  9. Telephone Flat Geothermal Development Project Environmental Impact Statement Environmental Impact Report. Final

    SciTech Connect (OSTI)

    1999-02-01

    This Final Environmental Impact Statement and Environmental Impact Report (Final EIS/EIR) has been prepared to meet the requirements of the National Environmental Policy Act (NEPA) and the California Environmental Quality Act (CEQA). The Proposed Action includes the construction, operation, and decommissioning of a 48 megawatt (gross) geothermal power plant with ancillary facilities (10-12 production well pads and 3-5 injection well pads, production and injection pipelines), access roads, and a 230-kilovolt (kV) transmission line in the Modoc National Forest in Siskiyou County, California. Alternative locations for the power plant site within a reasonable distance of the middle of the wellfield were determined to be technically feasible. Three power plant site alternatives are evaluated in the Final EIS/EIR.

  10. Pulse Pressure Forming of Lightweight Materials, Development of High

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strength Superplastic Al Sheet, Friction Stir Spot Welding of Advanced High Strength Steels | Department of Energy Pulse Pressure Forming of Lightweight Materials, Development of High Strength Superplastic Al Sheet, Friction Stir Spot Welding of Advanced High Strength Steels Pulse Pressure Forming of Lightweight Materials, Development of High Strength Superplastic Al Sheet, Friction Stir Spot Welding of Advanced High Strength Steels 2010 DOE Vehicle Technologies and Hydrogen Programs Annual

  11. Jobs and Economic Development Impact (JEDI) Model: Offshore Wind User Reference Guide

    SciTech Connect (OSTI)

    Lantz, E.; Goldberg, M.; Keyser, D.

    2013-06-01

    The Offshore Wind Jobs and Economic Development Impact (JEDI) model, developed by NREL and MRG & Associates, is a spreadsheet based input-output tool. JEDI is meant to be a user friendly and transparent tool to estimate potential economic impacts supported by the development and operation of offshore wind projects. This guide describes how to use the model as well as technical information such as methodology, limitations, and data sources.

  12. High Impact Technology HQ – Resources for Evaluators

    Broader source: Energy.gov [DOE]

    The HIT Catalyst conducts technology demonstrations in three main phases: Site Evaluation, Selection and Project Kick-Off, Measurement and Verification Scoping and Plan Development. The following...

  13. Modelling Agricultural Trade and Policy Impacts in Less Developed...

    Open Energy Info (EERE)

    that there is a need for greater investment in the sector, both to achieve immediate poverty reduction and to stimulate broader pro-poor economic development. This is a core...

  14. High Impact Technology HQ- Resources for Evaluators- General Templates

    Broader source: Energy.gov [DOE]

    The HIT Catalyst conducts technology demonstrations in three main phases: Site Evaluation, Selection and Project Kick-Off, Measurement and Verification Scoping and Plan Development. The following Templates were developed in collaboration with third party evaluators, the Energy Department, and technology providers as a part of recent demonstration projects.

  15. High Impact Technology Hub- Resources for Evaluators- General Templates

    Broader source: Energy.gov [DOE]

    The HIT Catalyst conducts technology demonstrations in three main phases: Site Evaluation, Selection and Project Kick-Off, Measurement and Verification Scoping and Plan Development. The following Templates were developed in collaboration with third party evaluators, the Energy Department, and technology providers as a part of recent demonstration projects.

  16. Heavy Duty HCCI Development Activities - DOE High Efficiency Clean

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion (HECC) | Department of Energy Heavy Duty HCCI Development Activities - DOE High Efficiency Clean Combustion (HECC) Heavy Duty HCCI Development Activities - DOE High Efficiency Clean Combustion (HECC) Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. PDF icon 2006_deer_duffy.pdf More Documents & Publications Development of Enabling Technologies for High

  17. High-Temperatuer Solar Selective Coating Development for Power Tower

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Receivers | Department of Energy High-Temperatuer Solar Selective Coating Development for Power Tower Receivers High-Temperatuer Solar Selective Coating Development for Power Tower Receivers This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23-25, 2013 near Phoenix, Arizona. PDF icon csp_review_meeting_042413_ambrosini.pdf More Documents & Publications High-Temperature Solar Selective Coating Development for Power Tower

  18. Development of High Power Density Driveline for Vehicles | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon vss058_ajayi_2012_o.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2014: Development of High Power Density Driveline for Vehicles Vehicle Technologies Office Merit Review 2015: Development of High Power Density Driveline for Vehicles Development of High Power Density

  19. Development of High-Capacity Cathode Materials with Integrated Structures |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon es019_kang_2010_o.pdf More Documents & Publications Development of high-capacity cathode materials with integrated structures Development of High-Capacity Cathode Materials with Integrated Structures Development of High-Capacity Cathode Materials with Integrated Structures

  20. Development of High-Efficiency Clean Combustion Engines Designs...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Efficiency Clean Combustion Engines Designs for SI and CI Engines Development of High-Efficiency Clean Combustion Engines Designs for SI and CI Engines 2010 DOE Vehicle...

  1. Development of a New Generation, High Efficiency PEM Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Efficiency PEM Fuel Cell Based, CHP System Development of a New Generation, High Efficiency PEM Fuel Cell Based, CHP System Part of a 100 million fuel cell award ...

  2. Development of High-Capacity Cathode Materials with Integrated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2010 -- Washington D.C. PDF icon es019kang2010o.pdf More Documents & Publications Development of high-capacity cathode materials with integrated structures Development of...

  3. Dalian Xinyang High Tech Development | Open Energy Information

    Open Energy Info (EERE)

    Dalian, Liaoning Province, China Product: Dalian based maker of cathode materials of Lithium secondary batteries. References: Dalian Xinyang High-Tech Development1 This article...

  4. Development of 3rd Generation Advanced High Strength Steels ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Office: 2013 Lightweight Materials R&D Annual Progress Report Quenching and Partitioning Process Development to Replace Hot Stamping of High-Strength Automotive Steel

  5. Figure 7. Projected Production for the High Development Rate...

    U.S. Energy Information Administration (EIA) Indexed Site

    7. Projected Production for the High Development Rate of Technically Recoverable Oil Estimated at 5 Percent, Mean, and 95 Percent Probabilities for the ANWR Coastal Plain of the...

  6. Project Profile: High-Temperature Solar Selective Coating Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tower Receivers Project Profile: High-Temperature Solar Selective Coating Development for ... Characterize the optical performance, material properties, and temperature stability. ...

  7. High Average Brightness Photocathode Development for FEL Applications...

    Office of Scientific and Technical Information (OSTI)

    High Average Brightness Photocathode Development for FEL Applications Citation Details ... OFFICE OF SCIENCE (SC) Country of Publication: United States Language: English Subject: 46

  8. Development of High Energy Lithium Batteries for Electric Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lithium Batteries for Electric Vehicles Development of High Energy Lithium Batteries for Electric Vehicles 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program...

  9. Volume 9: A Review of Socioeconomic Impacts of Oil Shale Development WESTERN OIL SHALE DEVELOPMENT: A TECHNOLOGY ASSESSMENT

    SciTech Connect (OSTI)

    Rotariu,, G. J.

    1982-02-01

    The development of an oil shale industry in northwestern Colorado and northeastern Utah has been forecast at various times since early this century, but the comparatively easy accessibility of other oil sources has forestalled development. Decreasing fuel supplies, increasing energy costs, and the threat of a crippling oil embargo finally may launch a commercial oil shale industry in this region. Concern for the possible impacts on the human environment has been fostered by experiences of rapid population growth in other western towns that have hosted energy resource development. A large number of studies have attempted to evaluate social and economic impacts of energy development and to determine important factors that affect the severity of these impacts. These studies have suggested that successful management of rapid population growth depends on adequate front-end capital for public facilities, availability of housing, attention to human service needs, long-range land use and fiscal planning. This study examines variables that affect the socioeconomic impacts of oil shale development. The study region is composed of four Colorado counties: Mesa, Moffat, Garfield and Rio Blanco. Most of the estimated population of 111 000 resides in a handful of urban areas that are separated by large distances and rugged terrain. We have projected the six largest cities and towns and one planned company town (Battlement Mesa) to be the probable centers for potential population impacts caused by development of an oil shale industry. Local planners expect Battlement Mesa to lessen impacts on small existing communities and indeed may be necessary to prevent severe regional socioeconomic impacts. Section II describes the study region and focuses on the economic trends and present conditions in the area. The population impacts analyzed in this study are contingent on a scenario of oil shale development from 1980-90 provided by the Department of Energy and discussed in Sec. III. We recognize that the rate of development, the magnitude of development, and the technology mix that will actually take place remain uncertain. Although we emphasize that other energy and mineral resources besides oil shale may be developed, the conclusions reached in this study reflect only those impacts that would be felt from the oil shale scenario. Socioeconomic impacts in the region reflect the uneven growth rate implied by the scenario and will be affected by the timing of industry developments, the length and magnitude of the construction phase of development, and the shift in employment profiles predicted in the scenario. The facilities in the southern portion of the oil shale region, those along the Colorado River and Parachute Creek, show a peak in the construction work force in the mid-1980s, whereas those f acil it i es in the Piceance Creek Bas into the north show a construction peak in the late 1980s. Together, the facilities will require a large construction work force throughout the decade, with a total of 4800 construction workers required in 1985. Construction at the northern sites and second phase construction in the south will require 6000 workers in 1988. By 1990, the operation work force will increase to 7950. Two important characteristics of oil shale development emerge from the work force estimates: (1) peak-year construction work forces will be 90-120% the size of the permanent operating work force; and (2) the yearly changes in total work force requirements will be large, as much as 900 in one year at one facility. To estimate population impacts on individual communities, we devised a population distribution method that is described in Sec. IV. Variables associated with the projection of population impacts are discussed and methodologies of previous assessments are compared. Scenario-induced population impacts estimated by the Los Alamos method are compared to projections of a model employed by the Colorado West Area Council of Governments. Oil shale development in the early decade, as defined by the scenario, will produce growth primarily

  10. The commercial development of water repellent coatings for high voltage

    Office of Scientific and Technical Information (OSTI)

    transmission lines (Technical Report) | SciTech Connect Technical Report: The commercial development of water repellent coatings for high voltage transmission lines Citation Details In-Document Search Title: The commercial development of water repellent coatings for high voltage transmission lines The purpose of the Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC and Southwire Company was to jointly develop a low cost, commercially viable, water-repellant

  11. Session: Bat ecology related to wind development and lessons learned about impacts on bats from wind development

    SciTech Connect (OSTI)

    Johnson, Greg; Kunz, Thomas

    2004-09-01

    This session at the Wind Energy and Birds/Bats workshop consisted of two paper presentations followed by a discussion/question and answer period. It was the first of the sessions to shift the focus to the issue of wind energy development's impacts specifically to bats. The presentations discussed lessons that have been learned regarding direct and indirect impacts on bats and strategies planned to address such issues. Presenters addressed what the existing science demonstrates about land-based wind turbine impacts on bats, including: mortality, avoidance, direct habitat impacts, species and numbers killed, per turbine rates/per MW generated, and impacts on threatened and endangered species. They discussed whether there is sufficient data for wind turbines and bat impacts for projects in the eastern US, especially on ridge tops. Finally, the subject of offshore impacts on bats was briefly addressed, including what lessons have been learned in Europe and how these can be applied in the U S. Paper one, by Greg Johnson, was titled ''A Review of Bat Impacts at Wind Farms in the US''. Paper two, by Thomas Kunz, was titled ''Wind Power: Bats and Wind Turbines''.

  12. Modeling High-Impact Weather and Climate: Lessons From a Tropical Cyclone Perspective

    SciTech Connect (OSTI)

    Done, James; Holland, Greg; Bruyere, Cindy; Leung, Lai-Yung R.; Suzuki-Parker, Asuka

    2013-10-19

    Although the societal impact of a weather event increases with the rarity of the event, our current ability to assess extreme events and their impacts is limited by not only rarity but also by current model fidelity and a lack of understanding of the underlying physical processes. This challenge is driving fresh approaches to assess high-impact weather and climate. Recent lessons learned in modeling high-impact weather and climate are presented using the case of tropical cyclones as an illustrative example. Through examples using the Nested Regional Climate Model to dynamically downscale large-scale climate data the need to treat bias in the driving data is illustrated. Domain size, location, and resolution are also shown to be critical and should be guided by the need to: include relevant regional climate physical processes; resolve key impact parameters; and to accurately simulate the response to changes in external forcing. The notion of sufficient model resolution is introduced together with the added value in combining dynamical and statistical assessments to fill out the parent distribution of high-impact parameters. Finally, through the example of a tropical cyclone damage index, direct impact assessments are resented as powerful tools that distill complex datasets into concise statements on likely impact, and as highly effective communication devices.

  13. Stakeholder Engagement and Outreach Webinar: Jobs and Economic Development Impacts of Offshore Wind

    Broader source: Energy.gov [DOE]

    Starting more than a year ago, NREL initiated work to expand the Jobs and Economic Development Impacts (JEDI) model to include fixed-bottom offshore wind technology. Following the completion of the...

  14. Impact of High Solar Penetration in the Western Interconnection

    SciTech Connect (OSTI)

    Lew, D.; Miller, N.; Clark, K.; Jordan, G.; Gao, Z.

    2010-12-01

    This paper presents an overview of the variable characteristics of solar power, as well as the accompanying grid dynamic performance and operational economics for a system with significant solar generation. The paper will show results of economic operational simulations of a very high solar generation future for the western half of the United States.

  15. Data growth and its impact on the SCOP database: new developments (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Journal Article: Data growth and its impact on the SCOP database: new developments Citation Details In-Document Search Title: Data growth and its impact on the SCOP database: new developments The Structural Classification of Proteins (SCOP) database is a comprehensive ordering of all proteins of known structure, according to their evolutionary and structural relationships. The SCOP hierarchy comprises the following levels: Species, Protein, Family, Superfamily,

  16. NREL: Jobs and Economic Development Impacts (JEDI) Models - About JEDI Coal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Model Coal Model The Jobs and Economic Development Impacts (JEDI) Coal model allows the user to estimate economic development impacts from coal power generation projects. Applying a similar user interface as the JEDI Wind model, JEDI Coal requires a few additional user inputs. JEDI Coal user inputs include: Capacity Factor Heat Rate Fuel Costs Fuel Produced Locally (Percent)* Results are presented in the same manner as those in the JEDI Wind and Natural Gas models. This allows

  17. Argonne National Laboratory Develops New Model to Quantify the Impacts of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Variable Energy Resources on Generation Expansion and System Reliability | Department of Energy Argonne National Laboratory Develops New Model to Quantify the Impacts of Variable Energy Resources on Generation Expansion and System Reliability Argonne National Laboratory Develops New Model to Quantify the Impacts of Variable Energy Resources on Generation Expansion and System Reliability September 16, 2015 - 6:45pm Addthis The penetration level of variable energy resources, such as wind and

  18. High Wind Penetration Impact on U.S. Wind Manufacturing Capacity and Critical Resources

    SciTech Connect (OSTI)

    Laxson, A.; Hand, M. M.; Blair, N.

    2006-10-01

    This study used two different models to analyze a number of alternative scenarios of annual wind power capacity expansion to better understand the impacts of high levels of wind generated electricity production on wind energy manufacturing and installation rates.

  19. Impacts of High Penetration of PV with Energy Storage at Flagstaff Arizona

    Broader source: Energy.gov [DOE]

    The project team, led by Arizona Public Service, will evaluate the impacts of high penetrations of distributed PV and energy storage on a dedicated feeder to identify the technical and operational...

  20. Developing new high energy gradient concentration cathode material |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy new high energy gradient concentration cathode material Developing new high energy gradient concentration cathode material 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon esp_10_amine.pdf More Documents & Publications New High Energy Gradient Concentration Cathode Material New High Energy Gradient Concentration Cathode Material New High Energy Gradient

  1. New Model Examines Cumulative Impacts of Wind Energy Development on Sensitive Species

    Broader source: Energy.gov [DOE]

    DOE's Argonne National Laboratory recently developed the prototype of a spatially explicit individual-based model for examining the cumulative impacts of wind energy development on populations and habitats of the greater sage grouse (Centrocercus urophasianus)—an important wildlife species that has been affected by energy development in the western United States.

  2. Development of High Energy Cathode Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Development of High Energy Cathode Materials 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon es056_zhang_2011_o.pdf More Documents & Publications Development of High Energy Cathode for Li-ion Batteries Phase Behavior and Solid State Chemistry in Olivines Low Cost SiOx-Graphite and Olivine Materials

  3. Prospects for Future Very High-Energy Gamma-Ray Sky Survey: Impact of

    Office of Scientific and Technical Information (OSTI)

    Secondary Gamma Rays (Journal Article) | SciTech Connect Future Very High-Energy Gamma-Ray Sky Survey: Impact of Secondary Gamma Rays Citation Details In-Document Search Title: Prospects for Future Very High-Energy Gamma-Ray Sky Survey: Impact of Secondary Gamma Rays Authors: Inoue, Yoshiyuki ; /KIPAC, Menlo Park /Stanford U., Physics Dept. /SLAC ; Kalashev, Oleg E. ; /Moscow, INR ; Kusenko, Alexander ; /UCLA /Tokyo U., KIPMU ; , Publication Date: 2013-12-18 OSTI Identifier: 1111379 Report

  4. Lab-Corps Initiative Moves High-Impact Innovations into the Marketplace |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Lab-Corps Initiative Moves High-Impact Innovations into the Marketplace Lab-Corps Initiative Moves High-Impact Innovations into the Marketplace October 23, 2015 - 11:40am Addthis Clean energy technologies like the solar energy innovations underway at Lawrence Berkeley National Lab are transitioning into the marketplace more rapidly because of a new initiative called Lab-Corps. Clean energy technologies like the solar energy innovations underway at Lawrence Berkeley

  5. Development of High-Capacity Cathode Materials with Integrated Structures |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon es019_thackeray_2012_o.pdf More Documents & Publications Development of High-Capacity Cathode Materials with Integrated Structures Vehicle Technologies Office Merit Review 2015: Design and Evaluation of High Capacity Cathodes Development of High-Capacity Cathode Materials with Integrated Structures

  6. Development of a 500 Watt High Temperature Thermoelectric Generator |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy a 500 Watt High Temperature Thermoelectric Generator Development of a 500 Watt High Temperature Thermoelectric Generator A low temperature TEG has been built and tested providing over 500 watts electric power at a ∆T of 2000C PDF icon deer09_lagrandeur.pdf More Documents & Publications Development of a 100-Watt High Temperature Thermoelectric Generator Automotive Waste Heat Conversion to Power Program Automotive Waste Heat Conversion to Power Program

  7. Development of high-capacity cathode materials with integrated structures |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy high-capacity cathode materials with integrated structures Development of high-capacity cathode materials with integrated structures 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon esp_14_kang.pdf More Documents & Publications Development of High-Capacity Cathode Materials with Integrated Structures Novel Composite Cathode

  8. Vehicle Technologies Office Merit Review 2014: Development of High Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Density Lithium-Sulfur Cells | Department of Energy of High Energy Density Lithium-Sulfur Cells Vehicle Technologies Office Merit Review 2014: Development of High Energy Density Lithium-Sulfur Cells Presentation given by The Pennsylvania State University at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of high energy density lithium-sulfur cells. PDF icon es125_wang_2014_p.pdf More Documents &

  9. Technology Development for High Efficiency Clean Diesel Engines and a

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pathway to 50% Thermal Efficiency | Department of Energy High Efficiency Clean Diesel Engines and a Pathway to 50% Thermal Efficiency Technology Development for High Efficiency Clean Diesel Engines and a Pathway to 50% Thermal Efficiency Cost reduction is a key area of emphasis for the Cummins 2nd Generation ORC WHR System. PDF icon deer09_stanton.pdf More Documents & Publications High Efficient Clean Combustion for SuperTruck Advanced Diesel Engine Technology Development for HECC

  10. Development of Austenitic ODS Strengthened Alloys for Very High Temperature

    Office of Scientific and Technical Information (OSTI)

    Applications (Technical Report) | SciTech Connect Technical Report: Development of Austenitic ODS Strengthened Alloys for Very High Temperature Applications Citation Details In-Document Search Title: Development of Austenitic ODS Strengthened Alloys for Very High Temperature Applications This "Blue Sky" project was directed at exploring the opportunities that would be gained by developing Oxide Dispersion Strengthened (ODS) alloys based on the Fe-Cr-Ni austenitic alloy system. A

  11. Project Profile: Advanced High Temperature Trough Collector Development |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy High Temperature Trough Collector Development Project Profile: Advanced High Temperature Trough Collector Development Solar Millennium logo The Solar Millennium Group and its subsidiary Flagsol, under the CSP R&D FOA, are completing work on an advanced parabolic trough collector that uses molten salt as a heat transfer fluid. Approach Solar Millenium's Flagsol SKAL-ET heliotrough. Solar Millennium has developed a preliminary design of an advanced geometry parabolic

  12. Project Profile: High-Temperature Solar Selective Coating Development for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Tower Receivers | Department of Energy Solar Selective Coating Development for Power Tower Receivers Project Profile: High-Temperature Solar Selective Coating Development for Power Tower Receivers Sandia National Laboratories logo Sandia National Laboratories (SNL), under the National Laboratory R&D competitive funding opportunity, is developing, characterizing, and refining advanced solar-selective coatings with high solar-weighted absorptivity (a > 0.95) and low emittance (e

  13. Multidimensional simulation and chemical kinetics development for high

    Office of Environmental Management (EM)

    efficiency clean combustion engines | Department of Energy Multidimensional simulation and chemical kinetics development for high efficiency clean combustion engines Multidimensional simulation and chemical kinetics development for high efficiency clean combustion engines Developing chemical kinetic mechanisms and applying them to simulating engine combustion processes. PDF icon deer09_aceves.pdf More Documents & Publications Chemical Kinetic Research on HCCI & Diesel Fuels Chemical

  14. Economic Development Impact of 1,000 MW of Wind Energy in Texas

    SciTech Connect (OSTI)

    Reategui, S.; Hendrickson, S.

    2011-08-01

    Texas has approximately 9,727 MW of wind energy capacity installed, making it a global leader in installed wind energy. As a result of the significant investment the wind industry has brought to Texas, it is important to better understand the economic development impacts of wind energy in Texas. This report analyzes the jobs and economic impacts of 1,000 MW of wind power generation in the state. The impacts highlighted in this report can be used in policy and planning decisions and can be scaled to get a sense of the economic development opportunities associated with other wind scenarios. This report can also inform stakeholders in other states about the potential economic impacts associated with the development of 1,000 MW of new wind power generation and the relationships of different elements in the state economy.

  15. Moderate Velocity Ball Impact of a Mock High-Explosive

    SciTech Connect (OSTI)

    Furmanski, Jevan; Rae, Philip; Clements, Bradford E.

    2012-06-05

    Modeling of thermal and mechanical events in high-explosive materials is complicated by the composite nature of the material, which experiences viscoelastic and plastic deformations and sustains damage in the form of microcracks that can dominate its overall behavior. A mechanical event of interest is projectile interaction with the material, which leads to extreme local deformation and adiabatic heating, which can potentially lead to adverse outcomes in an energetic material. Simulations of such an event predicted large local temperature rises near the path of a spherical projectile, but these were experimentally unconfirmed and hence potentially non-physical. This work concerns the experimental verification of local temperatures both at the surface and in the wake of a spherical projectile penetrating a mock (unreactive) high-explosive at {approx}700 m/s. Fast response thermocouples were embedded radially in a mid-plane of a cylindrical target, which was bonded around the thermocouples with epoxy and recorded by an oscilloscope through a low-pass filter with a bandwidth of 500 Hz. A peak temperature rise of 70 K was measured both at the equator of the projectile and in its wake, in good agreement with the temperature predicted in the minimally distorted elements at those locations by a finite element model in ABAQUS employing the ViscoSCRAM constitutive model. Further work is needed to elucidate the extreme temperature rises in material undergoing crushing or fragmentation, which is difficult to predict with meshed finite element methods due to element distortion, and also challenging to quantify experimentally.

  16. Development of a 100-Watt High Temperature Thermoelectric Generator |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy a 100-Watt High Temperature Thermoelectric Generator Development of a 100-Watt High Temperature Thermoelectric Generator Test results for low and high temperature thermoelectric generators (TEG) those for a 530-watt BiTe TEG; design and construction of a 100-watt high temperature TEG currently in fabrication. PDF icon deer08_lagrandeur.pdf More Documents & Publications Status of Segmented Element Thermoelectric Generator for Vehicle Waste Heat Recovery Status of

  17. High Flux Microchannel Solar Receiver Development with Adaptive Flow

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Control | Department of Energy Flux Microchannel Solar Receiver Development with Adaptive Flow Control High Flux Microchannel Solar Receiver Development with Adaptive Flow Control This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23-25, 2013 near Phoenix, Arizona. PDF icon csp_review_meeting_042313_drost.pdf More Documents & Publications Microchannel Receiver Development - FY12 Q4 Microchannel Receiver Development - FY13 Q2

  18. Evaluating impacts of development and conservation projects using sustainability indicators: Opportunities and challenges

    SciTech Connect (OSTI)

    Agol, Dorice; Latawiec, Agnieszka E.; Strassburg, Bernardo B.N.

    2014-09-15

    There has been an increased interest in using sustainability indicators for evaluating the impacts of development and conservation projects. Past and recent experiences have shown that sustainability indicators can be powerful tools for measuring the outcomes of various interventions, when used appropriately and adequately. Currently, there is a range of methods for applying sustainability indicators for project impact evaluation at the environment–development interface. At the same time, a number of challenges persist which have implication for impact evaluation processes especially in developing countries. We highlight some key and recurrent challenges, using three cases from Kenya, Indonesia and Brazil. In this study, we have conducted a comparative analysis across multiple projects from the three countries, which aimed to conserve biodiversity and improve livelihoods. The assessments of these projects were designed to evaluate their positive, negative, short-term, long term, direct and indirect impacts. We have identified a set of commonly used sustainability indicators to evaluate the projects and have discussed opportunities and challenges associated with their application. Our analysis shows that impact evaluation processes present good opportunities for applying sustainability indicators. On the other hand, we find that project proponents (e.g. managers, evaluators, donors/funders) face challenges with establishing full impacts of interventions and that these are rooted in monitoring and evaluation processes, lack of evidence-based impacts, difficulties of measuring certain outcomes and concerns over scale of a range of impacts. We outline key lessons learnt from the multiple cases and propose ways to overcome common problems. Results from our analysis demonstrate practical experiences of applying sustainability indicators in developing countries context where there are different prevailing socio-economic, cultural and environmental conditions. The knowledge derived from this study may therefore be useful to a wider range of audience who are concerned with sustainable integration of development and environmental conservation. - Highlights: • Sustainability indicators are increasingly used for evaluating project impacts. • Lessons learnt are based on case studies from Africa, Asia and South America. • Similar challenges when assessing impacts of development and conservation projects • Need for pragmatic solutions to overcome challenges when assessing project impacts.

  19. Transmission Line Jobs and Economic Development Impact (JEDI) Model User Reference Guide

    SciTech Connect (OSTI)

    Goldberg, M.; Keyser, D.

    2013-10-01

    The Jobs and Economic Development Impact (JEDI) models, developed through the National Renewable Energy Laboratory (NREL), are freely available, user-friendly tools that estimate the potential economic impacts of constructing and operating power generation projects for a range of conventional and renewable energy technologies. The Transmission Line JEDI model can be used to field questions about the economic impacts of transmission lines in a given state, region, or local community. This Transmission Line JEDI User Reference Guide was developed to provide basic instruction on operating the model and understanding the results. This guide also provides information on the model's underlying methodology, as well as the parameters and references used to develop the cost data contained in the model.

  20. JEDI: Jobs and Economic Development Impacts Model, National Renewable Energy Laboratory (NREL) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-12-01

    The Jobs and Economic Development Impact (JEDI) models are user-friendly tools that estimate the economic impacts of constructing and operating power generation and biofuel plants at the local (usually state) level. First developed by NREL's Wind Powering America program to model wind energy jobs and impacts, JEDI has been expanded to biofuels, concentrating solar power, coal, and natural gas power plants. Based on project-specific and default inputs (derived from industry norms), JEDI estimates the number of jobs and economic impacts to a local area (usually a state) that could reasonably be supported by a power generation project. For example, JEDI estimates the number of in-state construction jobs from a new wind farm. This fact sheet provides an overview of the JEDI model as it pertains to wind energy projects.

  1. GE Develops High Water Recovery Technology in China | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Develops High Water Recovery Technology in China Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window)...

  2. Development of high-capacity cathode materials with integrated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon esp14kang.pdf More Documents & Publications Development of High-Capacity Cathode Materials ...

  3. The potential impacts of sodium management on Frit Development for Coupled Operations

    SciTech Connect (OSTI)

    Johnson, F. C.; Edwards, T. B.; Peeler, D. K.

    2015-06-10

    In this report, Section 2.0 provides a description of sodium management and its impact on the glass waste form, Section 3.0 provides background information on phase separation, Section 4.0 provides the impact of sodium management on SB9 frit development efforts and the results of a limited scoping study investigating phase separation in potential DWPF frits, and Section 5.0 discusses potential technical issues associated with using a phase separated frit for DWPF operations.

  4. Modelling and Development of a High Performance Milling Process with

    Office of Scientific and Technical Information (OSTI)

    Monolithic Cutting Tools (Journal Article) | SciTech Connect Modelling and Development of a High Performance Milling Process with Monolithic Cutting Tools Citation Details In-Document Search Title: Modelling and Development of a High Performance Milling Process with Monolithic Cutting Tools Critical aerospace components usually require difficult to machine workpiece materials like nickel based alloys. Moreover; there is a pressing need to maximize the productivity of machining operations.

  5. High Average Brightness Photocathode Development for FEL Applications

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect High Average Brightness Photocathode Development for FEL Applications Citation Details In-Document Search Title: High Average Brightness Photocathode Development for FEL Applications Authors: Rao T. ; Ben-Zvi I. ; Skarita, J. ; Wang, E. Publication Date: 2013-08-26 OSTI Identifier: 1095687 Report Number(s): BNL--101607-2013-CP KA-04 DOE Contract Number: DE-AC02-98CH10886 Resource Type: Conference Resource Relation: Conference: 35th International Free Electron

  6. Development of Austenitic ODS Strengthened Alloys for Very High

    Office of Scientific and Technical Information (OSTI)

    11-3251 Development of Austenitic ODS Strengthened Alloys for Very High Temperature Applications Nuclear Energy Enabling Technologies Dr. J a m e s Stubbing University o f Illinois-Urbana Champaign In c o ll a b o r a tio n with: International Institute fo r Carbon Neutral Energy Research Sue Lesica, Federal ROC Lizhen Tan, Technical ROC Development of Austenitic ODS Strengthened Alloys for Very High Temperature Applications Final Report 22 April 2015 Authors Dr. Yinbin Miao (main author) with

  7. Development of Alternative and Durable High Performance Cathode Supporst

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for PEM Fuel Cells | Department of Energy Supporst for PEM Fuel Cells Development of Alternative and Durable High Performance Cathode Supporst for PEM Fuel Cells Part of a $100 million fuel cell award announced by DOE Secretary Bodman on Oct. 25, 2006. PDF icon 3_pnnl.pdf More Documents & Publications Development of Alternative and Durable High Performance Cathode Supports for PEM Fuel Cells Fuel Cell Kickoff Meeting Agenda 2012 Pathways to Commercial Success: Technologies and Products

  8. Development of Alternative and Durable High Performance Cathode Supports

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for PEM Fuel Cells | Department of Energy Supports for PEM Fuel Cells Development of Alternative and Durable High Performance Cathode Supports for PEM Fuel Cells This presentation, which focuses on cathode supports for PEM fuel cells, was given by Yong Wang of PNNL at a February 2007 meeting on new fuel cell projects. PDF icon new_fc_wang_pnnl.pdf More Documents & Publications Development of Alternative and Durable High Performance Cathode Supporst for PEM Fuel Cells Fuel Cell Kickoff

  9. Technology Development for Light Duty High Efficient Diesel Engines |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Light Duty High Efficient Diesel Engines Technology Development for Light Duty High Efficient Diesel Engines Improve the efficiency of diesel engines for light duty applications through technical advances in system optimization. PDF icon deer09_stanton.pdf More Documents & Publications Light Duty Efficient Clean Combustion Advanced Diesel Engine Technology Development for HECC Effects of Biomass Fuels on Engine & System Out Emissions for Short Term Enduran

  10. Development of a Real-Time, High-Speed Distribution Level Data Acquisition System

    SciTech Connect (OSTI)

    Bank, J.; Kroposki, B.

    2012-01-01

    With the development of smart grids and the deployment of their enabling technologies, improved data acquisition will be needed at the distribution level to understand the full impact of these changes. With this in mind, NREL has developed a high-speed measurement and data collection network targeted specifically at the distribution level. This network is based around adaptable, rugged measurement devices designed for deployment at a variety of low and medium voltage locations below the sub-station. Each of these devices is capable of real-time data transmission via an Internet connection. Additionally, several analysis and visualization applications have been developed around the incoming data streams.

  11. Energy Storage Testing and Analysis High Power and High Energy Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Testing and Analysis High Power and High Energy Development Energy Storage Testing and Analysis High Power and High Energy Development 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon es_09_murphy.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2014: INL Electrochemical Performance Testing Overview and Progress of the Battery Testing,

  12. Recent Progress in the Development of High Efficiency Thermoelectrics |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy High Efficiency Thermoelectrics Recent Progress in the Development of High Efficiency Thermoelectrics PDF icon 2003_deer_bass.pdf More Documents & Publications High-Efficiency Quantum-Well Thermoelectrics for Waste Heat Power Generation Quantum Well Thermoelectrics and Waste Heat Recovery Scale Up of Si/Si0.8GE0.2 and B4C/B9C Superlattices for Harvesting of Waste Heat in Diesel Engines

  13. Wind Energy Impacts: Slides

    Wind Powering America (EERE)

    help to alleviate common misconceptions about wind energy. Wind Energy Impacts Photo from Invenergy LLC, NREL 14371 Wildlife impacts vary by location,* and new developments have helped to reduce these effects. Photo from LuRay Parker, NREL 17429 Wind Energy Impacts Pre- and post-development studies, educated siting, and curtailment during high-activity periods have decreased wildlife impacts.** Additional strategies are being researched to better understand and further decrease impacts.

  14. Petroleum Refinery Jobs and Economic Development Impact (JEDI) Model User Reference Guide

    SciTech Connect (OSTI)

    Goldberg, M.

    2013-12-31

    The Jobs and Economic Development Impact (JEDI) models, developed through the National Renewable Energy Laboratory (NREL), are user-friendly tools utilized to estimate the economic impacts at the local level of constructing and operating fuel and power generation projects for a range of conventional and renewable energy technologies. The JEDI Petroleum Refinery Model User Reference Guide was developed to assist users in employing and understanding the model. This guide provides information on the model's underlying methodology, as well as the parameters and references used to develop the cost data utilized in the model. This guide also provides basic instruction on model add-in features, operation of the model, and a discussion of how the results should be interpreted. Based on project-specific inputs from the user, the model estimates job creation, earning and output (total economic activity) for a given petroleum refinery. This includes the direct, indirect and induced economic impacts to the local economy associated with the refinery's construction and operation phases. Project cost and job data used in the model are derived from the most current cost estimations available. Local direct and indirect economic impacts are estimated using economic multipliers derived from IMPLAN software. By determining the regional economic impacts and job creation for a proposed refinery, the JEDI Petroleum Refinery model can be used to field questions about the added value refineries may bring to the local community.

  15. Developments in High Efficiency Engine Technologies and an Introduction to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SwRI's Dedicated EGR Concept | Department of Energy Developments in High Efficiency Engine Technologies and an Introduction to SwRI's Dedicated EGR Concept Developments in High Efficiency Engine Technologies and an Introduction to SwRI's Dedicated EGR Concept Provides overview of high efficiency engine technologies and introduces a dedicated exhaust gas recirculation concept where EGR production and gas stream is separate from the rest of the exhaust2012-11-06 PDF icon deer12_alger.pdf More

  16. Cumulative impact assessments and bird/wind farm interactions: Developing a conceptual framework

    SciTech Connect (OSTI)

    Masden, Elizabeth A.; Fox, Anthony D.; Furness, Robert W.; Bullman, Rhys; Haydon, Daniel T.

    2010-01-15

    The wind power industry has grown rapidly in the UK to meet EU targets of sourcing 20% of energy from renewable sources by 2020. Although wind power is a renewable energy source, there are environmental concerns over increasing numbers of wind farm proposals and associated cumulative impacts. Individually, a wind farm, or indeed any action, may have minor effects on the environment, but collectively these may be significant, potentially greater than the sum of the individual parts acting alone. EU and UK legislation requires a cumulative impact assessment (CIA) as part of Environmental Impact Assessments (EIA). However, in the absence of detailed guidance and definitions, such assessments within EIA are rarely adequate, restricting the acquisition of basic knowledge about the cumulative impacts of wind farms on bird populations. Here we propose a conceptual framework to promote transparency in CIA through the explicit definition of impacts, actions and scales within an assessment. Our framework requires improved legislative guidance on the actions to include in assessments, and advice on the appropriate baselines against which to assess impacts. Cumulative impacts are currently considered on restricted scales (spatial and temporal) relating to individual development EIAs. We propose that benefits would be gained from elevating CIA to a strategic level, as a component of spatially explicit planning.

  17. Offshore Wind Jobs and Economic Development Impacts in the United States: Four Regional Scenarios

    SciTech Connect (OSTI)

    Tegen, S.; Keyser, D.; Flores-Espino, F.; Miles, J.; Zammit, D.; Loomis, D.

    2015-02-01

    This report uses the offshore wind Jobs and Economic Development Impacts (JEDI) model and provides four case studies of potential offshore deployment scenarios in different regions of the United States: the Southeast, the Great Lakes, the Gulf Coast, and the Mid-Atlantic. Researchers worked with developers and industry representatives in each region to create potential offshore wind deployment and supply chain growth scenarios, specific to their locations. These scenarios were used as inputs into the offshore JEDI model to estimate jobs and other gross economic impacts in each region.

  18. Prospects for future very high-energy gamma-ray sky survey: impact of

    Office of Scientific and Technical Information (OSTI)

    secondary gamma rays (Journal Article) | SciTech Connect future very high-energy gamma-ray sky survey: impact of secondary gamma rays Citation Details In-Document Search Title: Prospects for future very high-energy gamma-ray sky survey: impact of secondary gamma rays Authors: Inoue, Yoshiyuki Publication Date: 2014-05-05 OSTI Identifier: 1131468 Report Number(s): SLAC-PUB-15865 DOE Contract Number: AC02-76SF00515 Resource Type: Journal Article Resource Relation: Journal Name: arXiv:1308.5710

  19. USABC Development of Advanced High-Performance Batteries for EV

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applications | Department of Energy Development of Advanced High-Performance Batteries for EV Applications USABC Development of Advanced High-Performance Batteries for EV Applications 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon es138_karditsas_2012_p.pdf More Documents & Publications FY 2011 Annual Progress Report for Energy Storage R&D FY 2012 Annual Progress Report for Energy Storage R&D U.S.

  20. COLLOQUIUM: Development of High Resolution X-Ray Spectroscopy at PPPL |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab January 21, 2015, 4:00pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM: Development of High Resolution X-Ray Spectroscopy at PPPL Dr. Kenneth Hill Princeton Plasma Physics Laboratory This lecture reviews the development of x-ray spectroscopy at PPPL, which began in the 1970's on the ST (Symmetric Tokamak) and has had a significant impact on the magnetic fusion research program worldwide. Several important physics parameters can be measured with these techniques.

  1. Development of High Energy Lithium Batteries for Electric Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Lithium Batteries for Electric Vehicles Development of High Energy Lithium Batteries for Electric Vehicles 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon es137_lopez_2012_p.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2015: High Energy Lithium Batteries for Electric Vehicles FY 2011 Annual Progress Report for Energy Storage R&D

  2. Jobs and Economic Development Impact (JEDI) Model Geothermal User Reference Guide

    SciTech Connect (OSTI)

    Johnson, C.; Augustine, C.; Goldberg, M.

    2012-09-01

    The Geothermal Jobs and Economic Development Impact (JEDI) model, developed through the National Renewable Energy Laboratory (NREL), is an Excel-based user-friendly tools that estimates the economic impacts of constructing and operating hydrothermal and Enhanced Geothermal System (EGS) power generation projects at the local level for a range of conventional and renewable energy technologies. The JEDI Model Geothermal User Reference Guide was developed to assist users in using and understanding the model. This guide provides information on the model's underlying methodology, as well as the parameters and references used to develop the cost data utilized in the model. This guide also provides basic instruction on model add-in features, operation of the model, and a discussion of how the results should be interpreted.

  3. The role of the international professional organization in the growth and development of environmental impact assessment

    SciTech Connect (OSTI)

    Voland, M.E. ); Page, J.M. )

    1993-01-01

    Environmental impact assessment is an international phenomenon. A concept begun by the National Environmental Policy Act (NEPA) of 1969 in the US is becoming an important component of development planning throughout the world. In the summer of 1992, professionals from 44 countries attended the annual meeting of the International Association for Impact Assessment (IAIA). The impact studies can go beyond the project focus of the US to encompass regional and country planning. Through active involvement in the meetings of the international professional organization, the environmental professional has the opportunity to hear formal presentations by those who have differing experiences based upon what is possible within their political and cultural systems. Further, informal interaction at these meetings provides the opportunity to share information, and learn from one another. This presentation will address the role of the professional organization in supporting environmental impact assessment internationally, particularly in developing nations; ways the professional organization can fulfill that role; and how a particular organization, the International Association for Impact Assessment, addresses these challenges.

  4. Effective use of environmental impact assessments (EIAs) for geothermal development projects

    SciTech Connect (OSTI)

    Goff, S.J.

    2000-05-28

    Both the developed and developing nations of the world would like to move toward a position of sustainable development while paying attention to the restoration of natural resources, improving the environment, and improving the quality of life. The impacts of geothermal development projects are generally positive. It is important, however, that the environmental issues associated with development be addressed in a systematic fashion. Drafted early in the project planning stage, a well-prepared Environmental Impact Assessment (EIA) can significantly add to the quality of the overall project. An EIA customarily ends with the decision to proceed with the project. The environmental analysis process could be more effective if regular monitoring, detailed in the EIA, continues during project implementation. Geothermal development EIAs should be analytic rather than encyclopedic, emphasizing the impacts most closely associated with energy sector development. Air quality, water resources and quality, geologic factors, and socioeconomic issues will invariably be the most important factors. The purpose of an EIA should not be to generate paperwork, but to enable superb response. The EIA should be intended to help public officials make decisions that are based on an understanding of environmental consequences and take proper actions. The EIA process has been defined in different ways throughout the world. In fact, it appears that no two countries have defined it in exactly the same way. Going hand in hand with the different approaches to the process is the wide variety of formats available. It is recommended that the world geothermal community work towards the adoption of a standard. The Latin American Energy Organization (OLADE) and the Inter-American Development Bank (IDB)(OLADE, 1993) prepared a guide that presents a comprehensive discussion of the environmental impacts and suggested mitigation alternatives associated with geothermal development projects. The OLADE guide is a good start for providing the geothermal community a standard EIA format. As decision makers may only read the Executive Summary of the EIA, this summary should be well written and present the significant impacts (in order of importance), clarifying which are unavoidable and which are irreversible; the measures which can be taken to mitigate them; the cumulative effects of impacts; and the requirements for monitoring and supervision. Quality plans and Public Participation plans should also be included as part of the environmental analysis process.

  5. Developing High Capacity, Long Life, and High Power Anodes | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Life, and High Power Anodes Developing High Capacity, Long Life, and High Power Anodes 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon es020_amine_2010_o.pdf More Documents & Publications Developing a new high capacity anode with long life Vehicle Technologies Office: 2010 Energy Storage R&D Annual Progress Report Vehicle Technologies Office: 2009 Energy Storage R&D Annual

  6. High Efficiency Engine Systems Development and Evaluation | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ace017_briggs_2011_o.pdf More Documents & Publications Achieving and Demonstrating Vehicle Technologies Engine Fuel Efficiency Milestones Identification and Evaluation of Near-term Opportunities for Efficiency Improvement High Efficiency Engine Systems Development and Evaluation

  7. Health impact assessment in planning: Development of the design for health HIA tools

    SciTech Connect (OSTI)

    Forsyth, Ann; Slotterback, Carissa Schively; Krizek, Kevin J.

    2010-01-15

    How can planners more systematically incorporate health concerns into practical planning processes? This paper describes a suite of health impact assessment tools (HIAs) developed specifically for planning practice. Taking an evidence-based approach the tools are designed to fit into existing planning activities. The tools include: a short audit tool, the Preliminary Checklist; a structured participatory workshop, the Rapid HIA; an intermediate health impact assessment, the Threshold Analysis; and a set of Plan Review Checklists. This description provides a basis for future work including assessing tool validity, refining specific tools, and creating alternatives.

  8. Jobs and Economic Development Impact (JEDI) User Reference Guide: Fast Pyrolysis Biorefinery Model

    SciTech Connect (OSTI)

    Zhang, Y.; Goldberg, M.

    2015-02-01

    This guide -- the JEDI Fast Pyrolysis Biorefinery Model User Reference Guide -- was developed to assist users in operating and understanding the JEDI Fast Pyrolysis Biorefinery Model. The guide provides information on the model's underlying methodology, as well as the parameters and data sources used to develop the cost data utilized in the model. This guide also provides basic instruction on model add-in features and a discussion of how the results should be interpreted. Based on project-specific inputs from the user, the JEDI Fast Pyrolysis Biorefinery Model estimates local (e.g., county- or state-level) job creation, earnings, and output from total economic activity for a given fast pyrolysis biorefinery. These estimates include the direct, indirect and induced economic impacts to the local economy associated with the construction and operation phases of biorefinery projects.Local revenue and supply chain impacts as well as induced impacts are estimated using economic multipliers derived from the IMPLAN software program. By determining the local economic impacts and job creation for a proposed biorefinery, the JEDI Fast Pyrolysis Biorefinery Model can be used to field questions about the added value biorefineries might bring to a local community.

  9. OSRAM SYLVANIA Develops High-Efficiency LED Troffer Replacement

    Broader source: Energy.gov [DOE]

    With the help of DOE funding, OSRAM SYLVANIA is developing a high-efficiency LED 2'x2' troffer replacement that is expected to be commercially available in the spring of 2012 and to be cost-competitive with existing troffers of that size. It is projected to have a light output of up to 4,000 lumens, an efficacy of more than 100 lm/W, and a CCT of 3500K.

  10. Development of Enabling Technologies for High Efficiency, Low Emissions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Homogeneous Charge Compression Ignition (HCCI) Engines | Department of Energy 10 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon ace038_fiveland_2010_o.pdf More Documents & Publications Development of Enabling Technologies for High Efficiency, Low Emissions Homogeneous Charge Compression Ignition (HCCI) Engines The Role of Advanced Combustion in Improving Thermal Efficiency

  11. Development of Enabling Technologies for High Efficiency, Low Emissions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Homogeneous Charge Compression Ignition (HCCI) Engines | Department of Energy 09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ace_38_fiveland.pdf More Documents & Publications The Role of Advanced Combustion in Improving Thermal Efficiency Development of Enabling Technologies for High Efficiency, Low Emissions Homogeneous Charge Compression Ignition (HCCI) Engines

  12. LAND USE AND ECOLOGICAL IMPACTS FROM SHALE DEVELOPMENT IN THE APPALACHIANS

    Broader source: Energy.gov (indexed) [DOE]

    LAND USE AND ECOLOGICAL IMPACTS FROM SHALE DEVELOPMENT IN THE APPALACHIANS THE NATURE CONSERVANCY Summary Statement for DOE Quadrennial Energy Review Public Stakeholder Meeting Pittsburgh, PA July 21, 2014 Background The Central Appalachians are a national and global hotspot for forest and freshwater diversity. They have some of the world's best remaining examples of diverse, intact, and connected temperate forests and freshwater streams. Appalachian forests and rivers are also intricately

  13. Offshore Wind Jobs and Economic Development Impacts in the United States: Four Regional Scenarios

    Energy Savers [EERE]

    Offshore Wind Jobs and Economic Development Impacts in the United States: Four Regional Scenarios S. Tegen, D. Keyser, and F. Flores-Espino National Renewable Energy Laboratory J. Miles and D. Zammit James Madison University D. Loomis Great Lakes Wind Network Technical Report NREL/TP-5000-61315 February 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is

  14. Advanced waste form and melter development for treatment of troublesome high-level wastes

    SciTech Connect (OSTI)

    Marra, James; Kim, Dong -Sang; Maio, Vincent

    2015-09-02

    A number of waste components in US defense high level radioactive wastes (HLW) have proven challenging for current Joule heated ceramic melter (JHCM) operations and have limited the ability to increase waste loadings beyond already realized levels. Many of these "troublesome" waste species cause crystallization in the glass melt that can negatively impact product quality or have a deleterious effect on melter processing. Recent efforts at US Department of Energy laboratories have focused on understanding crystallization behavior within HLW glass melts and investigating approached to mitigate the impacts of crystallization so that increases in waste loading can be realized. Advanced glass formulations have been developed to highlight the unique benefits of next-generation melter technologies such as the Cold Crucible Induction Melter (CCIM). Crystal-tolerant HLW glasses have been investigated to allow sparingly soluble components such as chromium to crystallize in the melter but pass out of the melter before accumulating.

  15. Successful development and application of high performance plate steels

    SciTech Connect (OSTI)

    Wilson, A.D.

    1995-12-31

    New high performance plate steels (HPPS) are developed in reaction to customer requirements and the availability of essential steelmaking facilities. In this decade significant improvements to steelmaking equipment has made possible the development and production of a variety of new HPPS. Four case studies are presented reviewing the key metallurgical needs and the innovative steel processing that was required. These applications include: (1) Hydrogen Induced Cracking Resistant A516 C-Mn pressure vessel steel with ultra low sulfur and controlled carbon equivalent levels, (2) Temper Embrittlement Resistant A387 Cr-Mo alloy steels for high temperature pressure vessels with low phosphorus, J Factor and sulfur levels with high toughness, (3) formable, weldable, 400HB abrasion resistant alloy steels, which are produced with extra low sulfur levels, reduced carbon and carbon equivalent levels and rigorous heat treatment controls, and (4) weldable, high strength structural steels with low carbon levels, based on Cu-Ni precipitation hardening and A710. Future opportunities for HPPS will result with the installation of additional new steelmaking facilities.

  16. Final project report: High energy rotor development, test and evaluation

    SciTech Connect (OSTI)

    1996-09-01

    Under the auspices of the {open_quotes}Government/Industry Wind Technology Applications Project{close_quotes} [{open_quotes}Letter of Interest{close_quotes} (LOI) Number RC-1-11101], Flo Wind Corp. has successfully developed, tested, and delivered a high-energy rotor upgrade candidate for their 19-meter Vertical Axis Wind Turbine. The project included the demonstration of the innovative extended height-to-diameter ratio concept, the development of a continuous span single-piece composite blade, the demonstration of a continuous blade manufacturing technique, the utilization of the Sandia National Laboratories developed SNLA 2150 natural laminar flow airfoil and the reuse of existing wind turbine and wind power plant infrastructure.

  17. Effects of hazardous wastes on housing and urban development and mitigation of impacts

    SciTech Connect (OSTI)

    Boyer, K.R.; Conrad, E.T.; Kane, P.F.; McLaughlin, M.W.; Morgan, J.T.

    1980-10-10

    This report determines the nature and scope of the hazardous waste problem affecting HUD programs and community development and redevelopment activities. It defines the problem and develops categories of hazardous wastes most applicable to HUD. The report identifies sources of hazardous waste and gives examples of their impacts. The role of HUD and other agencies in controlling hazardous waste is reviewed, and recommendations are made for mitigating known and potential impacts. Three case studies -- in Dover Township and Elizabeth, N.J., and in Richmond, Va., illustrate the wide range of impacts made possible because of improper handling of or lack of appreciation for hazardous substances. The report suggests that a Hazard Identification Guidebook be developed, similar to others addressing housing safety and noise assessment, that would require HUD personnel to carry out a number of investigations on and around a site. This process is briefly described here and could serve as a basis for a guidebook. Flow charts illustrate this process. Tables and 23 references are supplied.

  18. Improving network performance on multicore systems: Impact of core affinities on high throughput flows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Future Generation Computer Systems ( ) - Contents lists available at ScienceDirect Future Generation Computer Systems journal homepage: www.elsevier.com/locate/fgcs Improving network performance on multicore systems: Impact of core affinities on high throughput flows Nathan Hanford a,∗ , Vishal Ahuja a , Matthew Farrens a , Dipak Ghosal a , Mehmet Balman b , Eric Pouyoul b , Brian Tierney b a Department of Computer Science, University of California, Davis, CA, United States b Energy Sciences

  19. Low Cost, High Impact Cable Condition Monitoring System Improves U. S.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Power Plant Operations, Safety, and Systems Reliability | U.S. DOE Office of Science (SC) Low Cost, High Impact Cable Condition Monitoring System Improves U. S. Nuclear Power Plant Operations, Safety, and Systems Reliability Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) SBIR/STTR Home About Funding Opportunity Announcements (FOAs) Applicant and Awardee Resources Commercialization Assistance Other Resources Awards SBIR/STTR Highlights

  20. A multi-scale approach to address environmental impacts of small hydropower development

    SciTech Connect (OSTI)

    McManamay, Ryan A; Samu, Nicole M; Kao, Shih-Chieh; Bevelhimer, Mark S; Hetrick, Shelaine L

    2014-01-01

    Hydropower development continues to grow worldwide in developed and developing countries. While the ecological and physical responses to dam construction have been well documented, translating this information into planning for hydropower development is extremely difficult. Very few studies have conducted environmental assessments to guide site-specific or widespread hydropower development. Herein, we propose a spatial approach for estimating environmental effects of hydropower development at multiple scales, as opposed to individual site-by-site assessments (e.g., environmental impact assessment). Because the complex, process-driven effects of future hydropower development may be uncertain or, at best, limited by available information, we invested considerable effort in describing novel approaches to represent environmental concerns using spatial data and in developing the spatial footprint of hydropower infrastructure. We then use two case studies in the US, one at the scale of the conterminous US and another within two adjoining rivers basins, to examine how environmental concerns can be identified and related to areas of varying energy capacity. We use combinations of reserve-design planning and multi-metric ranking to visualize tradeoffs among environmental concerns and potential energy capacity. Spatial frameworks, like the one presented, are not meant to replace more in-depth environmental assessments, but to identify information gaps and measure the sustainability of multi-development scenarios as to inform policy decisions at the basin or national level. Most importantly, the approach should foster discussions among environmental scientists and stakeholders regarding solutions to optimize energy development and environmental sustainability.

  1. Development of High Temperature Capacitor Technology and Manufacturing Capability

    SciTech Connect (OSTI)

    2011-05-15

    The goal of the Development of High Temperature Capacitor Technology and Manufacturing Capability program was to mature a production-ready supply chain for reliable 250C FPE (fluorinated polyester) film capacitors by 2011. These high-temperature film capacitors enable both the down hole drilling and aerospace industries by enabling a variety of benefits including: ? Deeper oil exploration in higher temperature and pressure environments ? Enabling power electronic and control equipment to operate in higher temperature environments ? Enabling reduced cooling requirements of electronics ? Increasing reliability and life of capacitors operating below rated temperature ? Enabling capacitors to handle higher electrical losses without overheating. The key challenges to bringing the FPE film capacitors to market have been manufacturing challenges including: ? FPE Film is difficult to handle and wind, resulting in poor yields ? Voltage breakdown strength decreases when the film is wound into capacitors (~70% decrease) ? Encapsulation technologies must be improved to enable higher temperature operation ? Manufacturing and test cycle time is very long As a direct result of this program most of the manufacturing challenges have been met. The FPE film production metalization and winding yield has increased to over 82% from 70%, and the voltage breakdown strength of the wound capacitors has increased 270% to 189 V/?m. The high temperature packaging concepts are showing significant progress including promising results for lead attachments and hermetic packages at 200C and non-hermetic packages at 250C. Manufacturing and test cycle time will decrease as the market for FPE capacitors develops.

  2. Towards increased waste loading in high level waste glasses: Developing a better understanding of crystallization behavior

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Marra, James C.; Kim, Dong -Sang

    2014-12-18

    A number of waste components in US defense high level radioactive wastes (HLW) have proven challenging for current Joule heated ceramic melter (JCHM) operations and have limited the ability to increase waste loadings beyond already realized levels. Many of these ''troublesome'' waste species cause crystallization in the glass melt that can negatively impact product quality or have a deleterious effect on melter processing. Thus, recent efforts at US Department of Energy laboratories have focused on understanding crystallization behavior within HLW glass melts and investigating approaches to mitigate the impacts of crystallization so that increases in waste loading can be realized.more » Advanced glass formulations have been developed to highlight the unique benefits of next-generation melter technologies such as the Cold Crucible Induction Melter (CCIM). Crystal-tolerant HLW glasses have been investigated to allow sparingly soluble components such as chromium to crystallize in the melter but pass out of the melter before accumulating. The Hanford site AZ-101 tank waste composition represents a waste group that is waste loading limited primarily due to high concentrations of Fe2O3 (with higher Al2O3). Systematic glass formulation development utilizing slightly higher process temperatures and higher tolerance to spinel crystals demonstrated that an increase in waste loading of more than 20% could be achieved for this waste composition, and by extension higher loadings for wastes in the same group.« less

  3. Towards increased waste loading in high level waste glasses: Developing a better understanding of crystallization behavior

    SciTech Connect (OSTI)

    Marra, James C.; Kim, Dong -Sang

    2014-12-18

    A number of waste components in US defense high level radioactive wastes (HLW) have proven challenging for current Joule heated ceramic melter (JCHM) operations and have limited the ability to increase waste loadings beyond already realized levels. Many of these ''troublesome'' waste species cause crystallization in the glass melt that can negatively impact product quality or have a deleterious effect on melter processing. Thus, recent efforts at US Department of Energy laboratories have focused on understanding crystallization behavior within HLW glass melts and investigating approaches to mitigate the impacts of crystallization so that increases in waste loading can be realized. Advanced glass formulations have been developed to highlight the unique benefits of next-generation melter technologies such as the Cold Crucible Induction Melter (CCIM). Crystal-tolerant HLW glasses have been investigated to allow sparingly soluble components such as chromium to crystallize in the melter but pass out of the melter before accumulating. The Hanford site AZ-101 tank waste composition represents a waste group that is waste loading limited primarily due to high concentrations of Fe2O3 (with higher Al2O3). Systematic glass formulation development utilizing slightly higher process temperatures and higher tolerance to spinel crystals demonstrated that an increase in waste loading of more than 20% could be achieved for this waste composition, and by extension higher loadings for wastes in the same group.

  4. Towards increased waste loading in high level waste glasses: developing a better understanding of crystallization behavior

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Marra, James C.; Kim, Dong-Sang

    2014-12-18

    A number of waste components in US defense high level radioactive wastes (HLW) have proven challenging for current Joule heated ceramic melter (JHM) operations and have limited the ability to increase waste loadings beyond already realized levels. Many of these troublesome" waste species cause crystallization in the glass that can negatively impact product quality or have a deleterious effect on melter processing. Recent efforts at US Department of Energy laboratories have focused on understanding crystallization behavior within HLW glasses and investigating approaches to mitigate the impacts of crystallization so that increases in waste loading can be realized. Advanced glass formulationsmorehave been developed to highlight the unique benefits of next-generation melter technologies such as the Cold Crucible Induction Melter (CCIM). Crystal-tolerant HLW glasses have been investigated to allow sparingly soluble components such as chromium to crystallize in the melter but pass out of the melter before accumulating. The Hanford site AZ-101 composition represents a waste group that is waste loading limited primarily due to high concentration of Fe2O3. Systematic glass formulation development utilizing slightly higher process temperatures and higher tolerance to spinel crystals demonstrated that an increase in waste loading of more than 20% could be achieved for this waste group.less

  5. Towards increased waste loading in high level waste glasses: developing a better understanding of crystallization behavior

    SciTech Connect (OSTI)

    Marra, James C.; Kim, Dong-Sang

    2014-12-18

    A number of waste components in US defense high level radioactive wastes (HLW) have proven challenging for current Joule heated ceramic melter (JHM) operations and have limited the ability to increase waste loadings beyond already realized levels. Many of these troublesome" waste species cause crystallization in the glass that can negatively impact product quality or have a deleterious effect on melter processing. Recent efforts at US Department of Energy laboratories have focused on understanding crystallization behavior within HLW glasses and investigating approaches to mitigate the impacts of crystallization so that increases in waste loading can be realized. Advanced glass formulations have been developed to highlight the unique benefits of next-generation melter technologies such as the Cold Crucible Induction Melter (CCIM). Crystal-tolerant HLW glasses have been investigated to allow sparingly soluble components such as chromium to crystallize in the melter but pass out of the melter before accumulating. The Hanford site AZ-101 composition represents a waste group that is waste loading limited primarily due to high concentration of Fe2O3. Systematic glass formulation development utilizing slightly higher process temperatures and higher tolerance to spinel crystals demonstrated that an increase in waste loading of more than 20% could be achieved for this waste group.

  6. Role of slope stability in cumulative impact assessment of hydropower development: North Cascades, Washington

    SciTech Connect (OSTI)

    Lee, R.R.; Staub, W.P.

    1993-08-01

    Two environmental assessments considered the potential cumulative environmental impacts resulting from the development of eight proposed hydropower projects in the Nooksack River Basin and 11 proposed projects in the Skagit River Basin, North Cascades, Washington, respectively. While not identified as a target resource, slope stability and the alteration of sediment supply to creeks and river mainstems significantly affect other resources. The slope stability assessment emphasized the potential for cumulative impacts under disturbed conditions (e.g., road construction and timber harvesting) and a landslide-induced pipeline rupture scenario. In the case of small-scale slides, the sluicing action of ruptured pipeline water on the fresh landslide scarp was found to be capable of eroding significantly more material than the original landslide. For large-scale landslides, sluiced material was found to be a small increment of the original landslide. These results predicted that hypothetical accidental pipeline rupture by small-scale landslides may result in potential cumulative impacts for 12 of the 19 projects with pending license applications in both river basins. 5 refs., 2 tabs.

  7. Investigation of Coupled Processes and Impact of High Temperature Limits in Argillite Rock

    SciTech Connect (OSTI)

    Zheng, Liange; Rutqvist, Jonny; Kim, Kunhwi; Houseworth, Jim

    2015-07-01

    The focus of research within the UFD Campaign is on repository-induced interactions that may affect the key safety characteristics of an argillaceous rock. These include thermal-hydrological-mechanical-chemical (THMC) process interactions that occur as a result of repository construction and waste emplacement. Some of the key questions addressed in this report include the development of fracturing in the excavation damaged zone (EDZ) and THMC effects on the near-field argillaceous rock and buffer minerals and petrophysical characteristics, particularly the impacts of induced temperature rise caused by waste heat.

  8. Participatory health impact assessment for the development of local government regulation on hazard control

    SciTech Connect (OSTI)

    Inmuong, Uraiwan; Rithmak, Panee; Srisookwatana, Soomol; Traithin, Nathathai; Maisuporn, Pornpun

    2011-07-15

    The Thai Public Health Act 1992 required the Thai local governments to issue respective regulations to take control of any possible health-hazard related activities, both from commercial and noncommercial sources. Since 1999, there has been centrally decentralized of power to a new form of local government establishment, namely Sub-district Administrative Organization (SAO). The SAO is asmall-scale local governing structure while its legitimate function is for community services, including control of health impact related activities. Most elected SAO administrators and officers are new and less experience with any of public health code of practice, particularly on health-hazard control. This action research attempted to introduce and apply a participatory health impact assessment (HIA) tool for the development of SAO health-hazard control regulation. The study sites were at Ban Meang and Kok See SAOs, Khon Kaen Province, Thailand, while all intervention activities conducted during May 2005-April 2006. A set of cooperative activities between researchers and community representatives were planned and organized by; surveying and identifying place and service base locally causing local environmental health problems, organizing community participatory workshops for drafting and proposing the health-hazard control regulation, and appropriate practices for health-hazard controlling measures. This action research eventually could successfully enable the SAO administrators and officers understanding of local environmental-related health problem, as well as development of imposed health-hazard control regulation for local community.

  9. The Biofuels Revolution: Understanding the Social, Cultural and Economic Impacts of Biofuels Development on Rural Communities

    SciTech Connect (OSTI)

    Dr. Theresa L. Selfa; Dr. Richard Goe; Dr. Laszlo Kulcsar; Dr. Gerad Middendorf; Dr. Carmen Bain

    2013-02-11

    The aim of this research was an in-depth analysis of the impacts of biofuels industry and ethanol plants on six rural communities in the Midwestern states of Kansas and Iowa. The goal was to provide a better understanding of the social, cultural, and economic implications of biofuels development, and to contribute to more informed policy development regarding bioenergy.Specific project objectives were: 1. To understand how the growth of biofuel production has affected and will affect Midwestern farmers and rural communities in terms of economic, demographic, and socio-cultural impacts; 2. To determine how state agencies, groundwater management districts, local governments and policy makers evaluate or manage bioenergy development in relation to competing demands for economic growth, diminishing water resources, and social considerations; 3. To determine the factors that influence the water management practices of agricultural producers in Kansas and Iowa (e.g. geographic setting, water management institutions, competing water-use demands as well as producers?? attitudes, beliefs, and values) and how these influences relate to bioenergy feedstock production and biofuel processing; 4. To determine the relative importance of social-cultural, environmental and/or economic factors in the promotion of biofuels development and expansion in rural communities; The research objectives were met through the completion of six detailed case studies of rural communities that are current or planned locations for ethanol biorefineries. Of the six case studies, two will be conducted on rural communities in Iowa and four will be conducted on rural communities in Kansas. A ??multi-method? or ??mixed method? research methodology was employed for each case study.

  10. THE HIGH-RESOLUTION EXTREME-ULTRAVIOLET SPECTRUM OF N{sub 2} BY ELECTRON IMPACT

    SciTech Connect (OSTI)

    Heays, A. N.; Ajello, J. M.; Aguilar, A.; Lewis, B. R.; Gibson, S. T.

    2014-04-01

    We have analyzed high-resolution (FWHM = 0.2 ) extreme-ultraviolet (EUV, 800-1350 ) laboratory emission spectra of molecular nitrogen excited by an electron impact at 20 and 100 eV under (mostly) optically thin, single-scattering experimental conditions. A total of 491 emission features were observed from N{sub 2} electronic-vibrational transitions and atomic N I and N II multiplets and their emission cross sections were measured. Molecular emission was observed at vibrationally excited ground-state levels as high as v'' = 17, from the a {sup 1}? {sub g} , b {sup 1}? {sub u} , and b'{sup 1}? {sub u} {sup +} excited valence states and the Rydberg series c'{sub n} {sub +1} {sup 1}? {sub u} {sup +}, c{sub n} {sup 1}? {sub u} , and o{sub n} {sup 1}? {sub u} for n between 3 and 9. The frequently blended molecular emission bands were disentangled with the aid of a sophisticated and predictive quantum-mechanical model of excited states that includes the strong coupling between valence and Rydberg electronic states and the effects of predissociation. Improved model parameters describing electronic transition moments were obtained from the experiment and allowed for a reliable prediction of the vibrationally summed electronic emission cross section, including an extrapolation to unobserved emission bands and those that are optically thick in the experimental spectra. Vibrationally dependent electronic excitation functions were inferred from a comparison of emission features following 20 and 100 eV electron-impact collisional excitation. The electron-impact-induced fluorescence measurements are compared with Cassini Ultraviolet Imaging Spectrograph observations of emissions from Titan's upper atmosphere.

  11. Colorado oil shale development on policy and impact mitigation plan. Final report, March 31, 1980-November 30, 1982

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    The impacts of accelerated oil shale development in four northwestern Colorado counties, Moffat, Rio Blanco, Mesa, and Garfield are being monitored and managed through a grant to the Colorado Department of Highways.

  12. High Temperature Polymer Membrane Development at Argonne National Laboratory

    Broader source: Energy.gov [DOE]

    Summary of ANL’s high temperature polymer membrane work presented to the High Temperature Membrane Working Group Meeting, Orlando FL, October 17, 2003

  13. Advanced waste form and Melter development for treatment of troublesome high-level wastes

    SciTech Connect (OSTI)

    Marra, James; Kim, Dong -Sang; Maio, Vincent

    2015-10-01

    A number of waste components in US defense high level radioactive wastes (HLW) have proven challenging for current Joule heated ceramic melter (JHCM) operations and have limited the ability to increase waste loadings beyond already realized levels. Many of these troublesome" waste species cause crystallization in the glass melt that can negatively impact product quality or have a deleterious effect on melter processing. Recent efforts at US Department of Energy laboratories have focused on understanding crystallization behavior within HLW glass melts and investigating approaches to mitigate the impacts of crystallization so that increases in waste loading can be realized. Advanced glass formulations have been developed to highlight the unique benefits of next-generation melter technologies such as the Cold Crucible Induction Melter (CCIM). Crystal-tolerant HLW glasses have been investigated to allow sparingly soluble components such as chromium to crystallize in the melter but pass out of the melter before accumulating.The Hanford site AZ-101 tank waste composition represents a waste group that is waste loading limited primarily due to high concentrations of Fe2O3 (also with high Al2O3 concentrations). Systematic glass formulation development utilizing slightly higher process temperatures and higher tolerance to spinel crystals demonstrated that an increase in waste loading of more than 20% could be achieved for this waste composition, and by extension higher loadings for wastes in the same group. An extended duration CCIM melter test was conducted on an AZ-101 waste simulant using the CCIM platform at the Idaho National Laboratory (INL). The melter was continually operated for approximately 80 hours demonstrating that the AZ-101 high waste loading glass composition could be readily processed using the CCIM technology. The resulting glass was close to the targeted composition and exhibited excellent durability in both the as poured state and after being slowly cooled according to the canister centerline cooling (CCC) profile. Glass formulation development was also completed on other Hanford tank wastes that were identified to further challenge waste loading due to the presence of appreciable quantities (>750 g) of plutonium in the waste tanks. In addition to containing appreciable Pu quantities, the C-102 waste tank and the 244-TX waste tank contain high concentrations of aluminum and iron, respectively that will further challenge vitrification processing. Glass formulation testing also demonstrated that high waste loadings could be achieved with these tank compositions using the attributes afforded by the CCIM technology.

  14. Playa basin development, southern High Plains, Texas and New Mexico

    SciTech Connect (OSTI)

    Gustavson, T.C. (Univ. of Texas, Austin, TX (United States)); Holliday, V.T. (Univ. of Wisconsin, Madison, WI (United States))

    1992-01-01

    More than 20,000 playa basins have formed on fine-grained eolian sediments of the Quaternary Blackwater Draw and Tertiary Ogallala Formations on the High Plains of TX and NM. Numerous hypotheses have been proposed for the development of playa basins: (1) subsidence due to dissolution of underlying Permian bedded salt, (2) dissolution of soil carbonate and piping of clastic sediment into the subsurface, (3) animal activity, and (4) deflation. Evidence of eolian processes includes lee dunes and straightened shorelines on the eastern and southern margins of many playas. Lee dunes, which occur on the eastern side of ca 15% of playa basins and contain sediment deflated from adjacent playas, are cresentic to oval in plain view and typically account for 15--40% of the volume of the playa basin. Quaternary fossil biotas and buried calcic soils indicate that grasslands and semi-arid to aid climatic conditions prevailed as these basins formed. Evidence of fluviolacustrine processes in playa basins includes centripetal drainage leading to fan deltas at playa margins and preserved deltaic and lacustrine sediments. Playa basins expanded as fluvial processes eroded basin slopes and carried sediment to the basin floor where, during periods of minimal vegetation cover, loose sediment was removed by deflation. Other processes that played secondary roles in the development of certain playa basins include subsidence induced by dissolution of deeply buried Permian salt, dissolution of soil carbonate and piping, and animal activity. Two small lake basins in Gray County, TX, occur above strata affected by dissolution-induced subsidence. Dissolution of soil carbonate was observed in exposures and cores of strata underlying playa basins. Cattle, and in the past vast numbers of migrating buffalo, destroy soil crusts in dry playas, making these sediments more susceptible to deflation, and carry sediment out of flooded playas on their hooves.

  15. New results of development on high efficiency high gradient superconducting rf cavities

    SciTech Connect (OSTI)

    Geng, Rongli; Li, Z.; Hao, K.; Liu, K.-X.; Zhao, H.-Y.; Adolphsen, C.

    2015-09-01

    We report on the latest results of development on high efficiency high gradient superconducting radio frequency (SRF) cavities. Several 1-cell cavities made of large-grain niobium (Nb) were built, processed and tested. Two of these cavities are of the Low Surface Field (LSF) shape. Series of tests were carried out following controlled thermal cycling. Experiments toward zero-field cooling were carried out. The best experimentally achieved results are Eacc = 41 MV/m at Q0 = 6.5×1010 at 1.4 K by a 1-cell 1.3 GHz large-grain Nb TTF shape cavity and Eacc = 49 MV/m at Q0 = 1.5×1010 at 1.8 K by a 1-cell 1.5 GHz large-grain Nb CEBAF upgrade low-loss shape cavity.

  16. Development and Application of Insulated Drill Pipe for High Temperature, High Pressure Drilling

    SciTech Connect (OSTI)

    Tom Champness; Tony Worthen; John Finger

    2008-12-31

    This project aimed to extend the insulated drill pipe (IDP) technology already demonstrated for geothermal drilling to HTHP drilling in deep gas reservoirs where temperatures are high enough to pose a threat to downhole equipment such as motors and electronics. The major components of the project were: a preliminary design; a market survey to assess industry needs and performance criteria; mechanical testing to verify strength and durability of IDP; and development of an inspection plan that would quantify the ability of various inspection techniques to detect flaws in assembled IDP. This report is a detailed description of those activities.

  17. DEVELOPMENT OF A HIGH PERFORMANCE COLD CLIMATE HEAT PUMP

    SciTech Connect (OSTI)

    Horton, W. Travis; Groll, Eckhard A.; Braun, James E.

    2014-06-01

    The primary goals of the proposed project were to develop, test, and evaluate a high performance and cost-effective vapor compression air-source heat pump for use in cold climate regions. Vapor compression heat pumps are a proven technology, and have been used for many years to meet heating requirements for buildings in residential, commercial, and industrial applications. However, in climate regions that experience very low outdoor ambient temperatures both the heating capacity and coefficient of performance (COP) of traditional air-source vapor compression heat pumps drops dramatically with a decrease in the outdoor air temperature. The efficiency of heat pumping equipment has improved substantially over the past 20 years; however, the efficiencies of the highest rated equipment on the market are approaching practical limits that cannot be surpassed without modifications to the basic cycle and possibly the use of additional hardware. In this report, three technologies to improve the efficiency of vapor compression systems are described. These are a) vapor injected compression, b) oil flooded compression and c) hybrid flow control of the evaporator. Compressor prototypes for both, oil flooded and vapor injected compression were developed by Emerson Climate Technologies. For the oil flooded compressor, the oil injection port location was optimized and an internal oil separator was added using several design iterations. After initial testing at Emerson Climate Technologies, further testing was done at Purdue University, and compressor models were developed. These models were then integrated into a system model to determine the achievable improvement of seasonal energy efficiency (SEER) for Minneapolis (Minnesota) climate. For the oil flooded compression, a 34% improvement in seasonal energy efficiency was found while a 21% improvement in seasonal energy efficiency ratio was found for the vapor injected compression. It was found that one benefit of both tested compression technologies is a lower discharge temperature, which allows for continued operation at lower ambient temperatures. A bin analysis of the vapor injected prototype cold climate heat pump predicts a 6% improvement in HSPF for Minneapolis. This improvement is mainly a result of the increased capacity of the system for active vapor injection. For the oil flooded system, a slightly larger performance improvement is predicted, in this case mostly caused by an increase in heating COP. Based on an economic analysis of these results, the maximum additional cost of the system changes, for the Minneapolis location, are $430 for the vapor injected system and $391 for the oil flooded system. These estimates assume that a 3-year simple payback period is accepted by the customer. For the hybrid flow control of evaporators, a new type of balancing valve was developed together with Emerson Climate technologies to reduce the cost of the control scheme. In contrast to conventional stepper motor valves, this valve requires less cables and can be driven by a cheaper output circuit on the control board. The correct valve size was determined in a dedicated test stand in several design iterations. The performance benefits of the hybrid control of the evaporator coil were determined for clean coil conditions as well as with partial blockage of the air inlet grille and under frosting conditions. For clean coil conditions, the benefits in terms of COP and capacity are negligible. However, significant benefits were noted for severely air-maldistributed operating conditions. For the H2-test, the maximum COP improvement of 17% along with a capacity improvement of nearly 40% was observed. Overall, the hybrid control scheme leads to a significant amount of performance improvement, if the air inlet conditions to the evaporator are maldistributed.

  18. Builders Challenge High Performance Builder Spotlight - Rural Development Inc., Turner Falls, Massachusetts

    SciTech Connect (OSTI)

    2008-01-01

    Building America/Builders Challenge fact sheet on Rural Development Inc, an energy-efficient home builder in cold climate using radiant floor heat, solar hot water, and PV. Examines cost impacts.

  19. Research and Development of High-Power and High-Energy Electrochemical Storage Devices

    SciTech Connect (OSTI)

    No, author

    2014-04-30

    The accomplishments and technology progressmade during the U.S. Department of Energy (DOE) Cooperative Agreement No. DE-FC26- 05NT42403 (duration: July 11, 2005 through April 30, 2014, funded for $125 million in cost- shared research) are summarized in this Final Technical Report for a total of thirty-seven (37) collaborative programs organized by the United States Advanced Battery Consortium, LLC (USABC). The USABC is a partnership, formed in 1991, between the three U.S. domestic automakers Chrysler, Ford, and General Motors, to sponsor development of advanced high-performance batteries for electric and hybrid electric vehicle applications. The USABC provides a unique opportunity for developers to leverage their resources in combination with those of the automotive industry and the Federal government. This type of pre-competitive cooperation minimizes duplication of effort and risk of failure, and maximizes the benefits to the public of the government funds. A major goal of this program is to promote advanced battery development that can lead to commercialization within the domestic, and as appropriate, the foreign battery industry. A further goal of this program is to maintain a consortium that engages the battery manufacturers with the automobile manufacturers and other key stakeholders, universities, the National Laboratories, and manufacturers and developers that supply critical materials and components to the battery industry. Typically, the USABC defines and establishes consensus goals, conducts pre-competitive, vehicle-related research and development (R&D) in advanced battery technology. The R&D carried out by the USABC is an integral part of the DOEs effort to develop advanced transportation technologies that will significantly improve fuel economy, comply with projected emissions and safety regulations, and use domestically produced fuels. The USABC advanced battery development plan has the following three focus areas: 1. Existing technology validation, implementation, and cost reduction. 2. Identification of the next viable technology with emphasis on the potential to meet USABC cost and operating temperature range goals. 3. Support high-risk, high-reward battery technology R&D. Specific to the Cooperative Agreement DE- FC26-05NT42403, addressing High-Energy and High Power Energy Storage Technologies, the USABC focus was on understanding and addressing the following factors (listed in priority of effort): Cost: Reducing the current cost of lithium- ion batteries (currently about 2-3 times the FreedomCAR target ($20/kW). Low Temperature Performance: Improving the discharge power and removing lithium plating during regenerative braking. Calendar Life: Achieving 15-year life and getting accurate life prediction. Abuse Tolerance: Developing a system level tolerance to overcharge, crush, and high temperature exposure. This Final Technical Report compilation is submitted in fulfillment of the subject Cooperative Agreement, and is intended to serve as a ready-reference for the outcomes of following eight categories of projects conducted by the USABC under award from the DOEs Energy Efficiency and Renewable Energy ) Vehicle Technologies Program: USABC DoE Final Report DoE Cooperative Agreement DE-FC26-95EE50425 8 Protected Information 1. Electric Vehicle (EV) (Section A of this report) 2. Hybrid Electric Vehicle (HEV) (Section B 3. Plug-In Hybrid Electric Vehicle (PHEV) (Section C) 4. Low-Energy Energy Storage Systems (LEESS) (Section D) 5. Technology Assessment Program (TAP) (Section E) 6. Ultracapacitors (Section F) 7. 12 Volt Start-Stop (Section G) 8. Separators (Section H) The report summarizes the main areas of activity undertaken in collaboration with the supplier community and the National Laboratories. Copies of the individual supplier final reports are available upon request. Using project gap analysis versus defined USABC goals in each area, the report documents known technology limits and provides direction on future areas of technology and performance needs for vehicle applications. The report was developed using information such as program plans, gap analysis charts, quarterly reports and final project reports submitted by the developers. The public benefit served by this USABC program is that it continues the development of critical advanced battery technology that is needed to make electric, hybrid electric, and fuel cell vehicles attractive to a wide segment of the vehicle market. This will allow for a substantial savings in petroleum fuel use as these vehicles are introduced into the nations transportation system. It will also allow a sharp reduction in automotive air pollution emissions in critical areas that are currently classified as non-attainment by the Environmental Protection Agency. This program will also help ensure the long term health and viability of the U.S. Battery and Ultracapacitor Manufacturing Industry. The goals of eight categories of projects follow and summarization of each of the projects accomplishments are in sequence of the list above.

  20. Local population impacts of geothermal energy development in the Geysers: Calistoga region

    SciTech Connect (OSTI)

    Haven, K.F.; Berg, V.; Ladson, Y.W.

    1980-09-01

    The country-level population increase implications of two long-term geothermal development scenarios for the Geysers region in California are addressed. This region is defined to include the counties of Lake, Sonoma, Mendocino and Napa, all four in northern California. The development scenarios include two components: development for electrical energy production and direct use applications. Electrical production scenarios are derived by incorporating current development patterns into previous development scenarios by both industry and research organizations. The scenarios are made county-specific, specific to the type of geothermal system constructed, and are projected through the year 2000. Separate high growth rate and low growth rate scenarios are developed, based on a set of specified assumptions. Direct use scenarios are estimated from the nature of the available resource, existing local economic and demographic patterns, and available experience with various separate direct use options. From the composite development scenarios, required numbers of direct and indirect employees and the resultant in-migration patterns are estimated. In-migration patterns are compared to current county level population and ongoing trends in the county population change for each of the four counties. From this comparison, conclusions are drawn concerning the contributions of geothermal resource development to future population levels and the significance of geothermally induced population increase from a county planning perspective.

  1. The impact of Hall physics on magnetized high energy density plasma jets

    SciTech Connect (OSTI)

    Gourdain, P.-A.; Seyler, C. E.; Atoyan, L.; Greenly, J. B.; Hammer, D. A.; Kusse, B. R.; Pikuz, S. A.; Potter, W. M.; Schrafel, P. C.; Shelkovenko, T. A.

    2014-05-15

    Hall physics is often neglected in high energy density plasma jets due to the relatively high electron density of such jets (n{sub e}???10{sup 19}?cm{sup ?3}). However, the vacuum region surrounding the jet has much lower densities and is dominated by Hall electric field. This electric field redirects plasma flows towards or away from the axis, depending on the radial current direction. A resulting change in the jet density has been observed experimentally. Furthermore, if an axial field is applied on the jet, the Hall effect is enhanced and ignoring it leads to serious discrepancies between experimental results and numerical simulations. By combining high currents (?1 MA) and magnetic field helicity (15 angle) in a pulsed power generator such as COBRA, plasma jets can be magnetized with a 10?T axial field. The resulting field enhances the impact of the Hall effect by altering the density profile of current-free plasma jets and the stability of current-carrying plasma jets (e.g., Z-pinches)

  2. Development of Austenitic ODS Strengthened Alloys for Very High...

    Office of Scientific and Technical Information (OSTI)

    at elevated temperature from the enhanced strengthening effects. The study analyzed the microstructural mechanisms that provide this enhanced high temperature performance. ...

  3. OLEDWORKS DEVELOPS INNOVATIVE HIGH-PERFORMANCE DEPOSITION TECHNOLOGY...

    Energy Savers [EERE]

    high-performance deposition technology that addresses two major aspects of this manufacturing cost: the expense of organic materials per area of useable product, and the...

  4. Developing Low-Cost, Highly Efficient Heat Recovery for Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Introduction Fuel cells are electrochemical devices that produce electricity without combustion. Due to their high effciency and minimal emissions, fuel cells are an attractive ...

  5. Impact of cycle chemistry on fossil-fueled high pressure boilers - BHEL approach and experience

    SciTech Connect (OSTI)

    Somu, M.; Gourishankar, S.

    1995-01-01

    Cycle chemistry in high pressure boilers plays an important role as far as availability and reliability of the boilers are concerned. Up keep of proper cycle chemistry is a stupendous task and care must be taken, right from design stage to commissioning and operation of the boilers. It calls for selection of proper design, method of manufacture of critical components and practicing proper procedures during commissioning and regular operation of boilers. Control of cycle chemistry is important from the view point of proper quality of steam and prevention of corrosion. The corrosion is like a double edged knife which reduces the boiler availability on one side and steam quality on the other. The steam quality dictates the efficiency of the turbine. Apart from the internal and external Water Treatment practices, selection of proper deaerator, sizing of drum, steam loading, selection of appropriate drum internals etc. help achieve the desired cycle chemistry. The impact of such cycle chemistry, selection of equipment, Water Treatment practice and operational practices are presented in this paper, in the back drop of BHEL`s design, fabrication and operational guidelines and experience on high pressure boilers. The critical components in the pre-boiler circuit as well as in the main circuit are assessed from the point of view of appropriate water chemistry parameters.

  6. Framework for Modeling High-Impact, Low-Frequency Power Grid Events to Support Risk-Informed Decisions

    SciTech Connect (OSTI)

    Veeramany, Arun; Unwin, Stephen D.; Coles, Garill A.; Dagle, Jeffery E.; Millard, W. David; Yao, Juan; Glantz, Clifford S.; Gourisetti, Sri Nikhil Gup

    2015-12-03

    Natural and man-made hazardous events resulting in loss of grid infrastructure assets challenge the electric power grid’s security and resilience. However, the planning and allocation of appropriate contingency resources for such events requires an understanding of their likelihood and the extent of their potential impact. Where these events are of low likelihood, a risk-informed perspective on planning can be problematic as there exists an insufficient statistical basis to directly estimate the probabilities and consequences of their occurrence. Since risk-informed decisions rely on such knowledge, a basis for modeling the risk associated with high-impact low frequency events (HILFs) is essential. Insights from such a model can inform where resources are most rationally and effectively expended. The present effort is focused on development of a HILF risk assessment framework. Such a framework is intended to provide the conceptual and overarching technical basis for the development of HILF risk models that can inform decision makers across numerous stakeholder sectors. The North American Electric Reliability Corporation (NERC) 2014 Standard TPL-001-4 considers severe events for transmission reliability planning, but does not address events of such severity that they have the potential to fail a substantial fraction of grid assets over a region, such as geomagnetic disturbances (GMD), extreme seismic events, and coordinated cyber-physical attacks. These are beyond current planning guidelines. As noted, the risks associated with such events cannot be statistically estimated based on historic experience; however, there does exist a stable of risk modeling techniques for rare events that have proven of value across a wide range of engineering application domains. There is an active and growing interest in evaluating the value of risk management techniques in the State transmission planning and emergency response communities, some of this interest in the context of grid modernization activities. The availability of a grid HILF risk model, integrated across multi-hazard domains which, when interrogated, can support transparent, defensible and effective decisions, is an attractive prospect among these communities. In this report, we document an integrated HILF risk framework intended to inform the development of risk models. These models would be based on the systematic and comprehensive (to within scope) characterization of hazards to the level of detail required for modeling risk, identification of the stressors associated with the hazards (i.e., the means of impacting grid and supporting infrastructure), characterization of the vulnerability of assets to these stressors and the probabilities of asset compromise, the grid’s dynamic response to the asset failures, and assessment of subsequent severities of consequence with respect to selected impact metrics, such as power outage duration and geographic reach. Specifically, the current framework is being developed to;1. Provide the conceptual and overarching technical paradigms for the development of risk models; 2. Identify the classes of models required to implement the framework - providing examples of existing models, and also identifying where modeling gaps exist; 3. Identify the types of data required, addressing circumstances under which data are sparse and the formal elicitation of informed judgment might be required; and 4. Identify means by which the resultant risk models might be interrogated to form the necessary basis for risk management.

  7. Development of Ultra High Gradient and High Q{sub 0} Superconducting Radio Frequency Cavities

    SciTech Connect (OSTI)

    Geng, Rongli [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Clemens, William A. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Follkie, James E. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Harris, Teena M. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Kushnick, Peter W. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Machie, Danny [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Martin, Robert E. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Palczewski, Ari D. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Perry, Era A. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Slack, Gary L. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Williams, R. S. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Adolphsen, C. [SLAC, Menlo Park, California, (United States); Li, Z. [SLAC, Menlo Park, California, (United States); Hao, J. K. [Peking University, Beijing (China); Li, Y. M. [Peking University, Beijing (China); Liu, K. X. [Peking University, Beijing (China)

    2013-06-01

    We report on the recent progress at Jefferson Lab in developing ultra high gradient and high Q{sub 0} superconducting radio frequency (SRF) cavities for future SRF based machines. A new 1300 MHz 9-cell prototype cavity is being fabricated. This cavity has an optimized shape in terms of the ratio of the peak surface field (both magnetic and electric) to the acceleration gradient, hence the name low surface field (LSF) shape. The goal of the effort is to demonstrate an acceleration gradient of 50 MV/m with Q{sub 0} of 10{sup 10} at 2 K in a 9-cell SRF cavity. Fine-grain niobium material is used. Conventional forming, machining and electron beam welding method are used for cavity fabrication. New techniques are adopted to ensure repeatable, accurate and inexpensive fabrication of components and the full assembly. The completed cavity is to be first mechanically polished to a mirror-finish, a newly acquired in-house capability at JLab, followed by the proven ILC-style processing recipe established already at JLab. In parallel, new single-cell cavities made from large-grain niobium material are made to further advance the cavity treatment and processing procedures, aiming for the demonstration of an acceleration gradient of 50 MV/m with Q{sub 0} of 2?10{sup 10} at 2K.

  8. Recent Progress in the Development of High Efficiency Thermoelectrics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Efficiency Quantum-Well Thermoelectrics for Waste Heat Power Generation Quantum Well Thermoelectrics and Waste Heat Recovery Scale Up of SiSi0.8GE0.2 and B4CB9C ...

  9. Developing new high energy gradient concentration cathode material...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon esp10amine.pdf More Documents & Publications New High Energy Gradient Concentration ...

  10. Development of the High Efficiency X1 Rotary Diesel Engine

    Office of Energy Efficiency and Renewable Energy (EERE)

    This poster describes the design, modeling, and build of a 70-hp prototype of a high efficiency hybrid cycle engine that is expected to attain 57 percent efficiency across a range of loads.

  11. Analysis of the Impacts of Distribution-Connected PV Using High-Speed Data Sets: Preprint

    SciTech Connect (OSTI)

    Bank, J.; Mather, B.

    2013-03-01

    This paper, presented at the IEEE Green Technologies Conference 2013, utilizes information from high resolution data acquisition systems developed at the National Renewable Energy Laboratory and deployed on a high-penetration PV distribution system to analyze the variability of different electrical parameters. High-resolution solar irradiance data is also available in the same area which is used to characterize the available resource and how it affects the electrical characteristics of the study circuit. This paper takes a data-driven look at the variability caused by load and compares those results against times when significant PV production is present. Comparisons between the variability in system load and the variability of distributed PV generation are made.

  12. Development of a high-output dual-fuel engine

    SciTech Connect (OSTI)

    Danyluk, P.R. . Fairbanks Morse Engineering Division)

    1993-10-01

    This paper presents the results of a new dual-fuel engine development program. The engine is the largest commercially available in terms of power output (650 hp/cyl) and features very low emissions (1 g/hp-hr NO[sub x]) and excellent fuel consumption (43 percent thermal efficiency). A two-cylinder turbocharged prototype was designed and built for the initial development. Results from testing on 18-cylinder production versions are also reported.

  13. High Temperature Solid Oxide Fuel Cell Generator Development

    SciTech Connect (OSTI)

    Joseph Pierre

    2007-09-30

    This report describes the results of the tubular SOFC development program from August 22, 1997 to September 30, 2007 under the Siemens/U.S. Department of Energy Cooperative Agreement. The technical areas discussed include cell manufacturing development, cell power enhancement, SOFC module and system cost reduction and technology advancement, and our field unit test program. Whereas significant progress has been made toward commercialization, significant effort remains to achieve our cost, performance and reliability targets for successful commercialization.

  14. System Impacts from Interconnection of Distributed Resources: Current Status and Identification of Needs for Further Development

    SciTech Connect (OSTI)

    Basso, T. S.

    2009-01-01

    This report documents and evaluates system impacts from the interconnection of distributed resources to transmission and distribution systems, including a focus on renewable distributed resource technologies. The report also identifies system impact-resolution approaches and actions, including extensions of existing approaches. Lastly, the report documents the current challenges and examines what is needed to gain a clearer understanding of what to pursue to better avoid or address system impact issues.

  15. Upcoming Funding Opportunity to Develop and Field Test Wind Energy Bat Impact Minimization Technologies

    Broader source: Energy.gov [DOE]

    EERE's Wind Program announced a Notice of Intent to issue a funding opportunity entitled "Wind Energy Bat Impact Minimization Technologies and Field Testing Opportunities."

  16. Environmental Impacts of Wind Power Development on the Population Biology of Greater Prairie-Chickens

    SciTech Connect (OSTI)

    Sandercock, Brett K.

    2013-05-22

    Executive Summary 1. We investigated the impacts of wind power development on the demography, movements, and population genetics of Greater Prairie-Chickens (Tympanuchus cupido) at three sites in northcentral and eastern Kansas for a 7-year period. Only 1 of 3 sites was developed for wind power, the 201MW Meridan Way Wind Power Facility at the Smoky Hills site in northcentral Kansas. Our project report is based on population data for prairie chickens collected during a 2-year preconstruction period (2007-2008), a 3-year postconstruction period (2009-2011) and one final year of lek surveys (2012). Where relevant, we present preconstruction data from our field studies at reference sites in the northern Flint Hills (2007-2009) and southern Flint Hills (2006-2008). 2. We addressed seven potential impacts of wind power development on prairie chickens: lek attendance, mating behavior, use of breeding habitat, fecundity rates, natal dispersal, survival rates, and population numbers. Our analyses of pre- and postconstruction impacts are based on an analysis of covariance design where we modeled population performance as a function of treatment period, distance to eventual or actual site of the nearest wind turbine, and the interaction of these factors. Our demographic and movement data from the 6-year study period at the Smoky Hills site included 23 lek sites, 251 radio-marked females monitored for 287 bird-years, and 264 nesting attempts. Our genetic data were based on genotypes of 1,760 females, males and chicks that were screened with a set of 27 microsatellite markers that were optimized in the lab. 3. In our analyses of lek attendance, the annual probability of lek persistence during the preconstruction period was ~0.9. During the postconstruction period, distance to nearest turbine did not have a significant effect on the probability of lek persistence. However, the probability of lek persistence increased from 0.69 at 0 m to 0.89 at 30 km from turbines, and most abandoned lek sites were located <5 km from turbines. Probability of lek persistence was significantly related to habitat and number of males. Leks had a higher probability of persistence in grasslands than agricultural fields, and increased from ~0.2 for leks of 5 males, to >0.9 for leks of 10 or more males. Large leks in grasslands should be a higher priority for conservation. Overall, wind power development had a weak effect on the annual probability of lek persistence. 3. We used molecular methods to investigate the mating behavior of prairie chickens. The prevailing view for lek-mating grouse is that females mate once to fertilize the clutch and that conspecific nest parasitism is rare. We found evidence that females mate multiple times to fertilize the clutch (8-18% of broods, 4-38% of chicks) and will parasitize nests of other females during egg-laying (~17% of nests). Variable rates of parentage were highest in the fragmented landscapes at the Smoky Hills field site, and were lower at the Flint Hills field site. Comparisons of the pre- and postconstruction periods showed that wind energy development did not affect the mating behaviors of prairie chickens. 4. We examined use of breeding habitats by radio-marked females and conducted separate analyses for nest site selection, and movements of females not attending nests or broods. The landscape was a mix of native prairie and agricultural habitats, and nest site selection was not random because females preferred to nest in grasslands. Nests tended to be closer to turbines during the postconstruction period and there was no evidence of behavioral avoidance of turbines by females during nest site selection. Movements of females not attending nests or broods showed that females crossed the site of the wind power development at higher rates during the preconstruction period (20%) than the postconstruction period (11%), and that movements away from turbines were more frequent during the postconstruction period. Thus, wind power development appears to affect movements in breeding habitats but not nest site s

  17. Economic Development Impacts of Community Wind Projects. A Review and Empirical Evaluation

    SciTech Connect (OSTI)

    Lantz, E.; Tegen, S.

    2009-04-01

    "Community wind" refers to a class of wind energy ownership structures. The extent of local ownership may range from a small minority share to full ownership by persons in the immediate area surrounding the wind project site. Potential project owners include local farmers, businesses, Native American tribes, universities, cooperatives, or any other local entity seeking to invest in wind energy. The opposite of community wind is an "absentee" project, in which ownership is completely removed from the state and community surrounding the facility. Thus, there is little or no ongoing direct financial benefit to state and local populations aside from salaries for local repair technicians, local property tax payments, and land lease payments. In recent years, the community wind sector has been inhibited by manufacturers' preference for larger turbine orders. This often puts smaller community wind developers and projects at a competitive disadvantage. However, state policies specifically supporting community wind may become a more influential market factor as turbines are now more readily available given manufacturer ramp-ups and the slow-down in the industry that has accompanied the recent economic and financial crises. This report examines existing literature to provide an overview of economic impacts resulting from community wind projects, compares results, and explains variability.

  18. Economic Development Impacts of Community Wind Projects: A Review and Empirical Evaluation; Preprint

    SciTech Connect (OSTI)

    Lantz, E.; Tegen, S.

    2009-04-01

    'Community wind' refers to a class of wind energy ownership structures. The extent of local ownership may range from a small minority share to full ownership by persons in the immediate area surrounding the wind project site. Potential project owners include local farmers, businesses, Native American tribes, universities, cooperatives, or any other local entity seeking to invest in wind energy. The opposite of community wind is an 'absentee' project, in which ownership is completely removed from the state and community surrounding the facility. Thus, there is little or no ongoing direct financial benefit to state and local populations aside from salaries for local repair technicians, local property tax payments, and land lease payments. In recent years, the community wind sector has been inhibited by manufacturers' preference for larger turbine orders. This often puts smaller community wind developers and projects at a competitive disadvantage. However, state policies specifically supporting community wind may become a more influential market factor as turbines are now more readily available given manufacturer ramp-ups and the slow-down in the industry that has accompanied the recent economic and financial crises. This report examines existing literature to provide an overview of economic impacts resulting from community wind projects, compares results, and explains variability.

  19. Road Map for Development of Crystal-Tolerant High Level Waste...

    Office of Scientific and Technical Information (OSTI)

    Road Map for Development of Crystal-Tolerant High Level Waste Glasses Citation Details In-Document Search Title: Road Map for Development of Crystal-Tolerant High Level Waste...

  20. NOVEL TECHNOLOGIES DEVELOPED BY CREE LOWER THE COST OF HIGH-PERFORMANC...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NOVEL TECHNOLOGIES DEVELOPED BY CREE LOWER THE COST OF HIGH-PERFORMANCE LED TROFFERS ON THE MARKET NOVEL TECHNOLOGIES DEVELOPED BY CREE LOWER THE COST OF HIGH-PERFORMANCE LED ...

  1. High-Yield Feedstock and Biomass Conversion Technology for Renewable Energy and Economic Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Andrew Hashimoto University of Hawaii This presentation does not contain any proprietary, confidential, or otherwise restricted information Develop sustainable, renewable energy systems for Hawaii and the tropics through: * Biomass feedstocks that grow year-round. * Feedstock characteristics that impact conversion processes. * Renewable energy projects that reduce dependence on fossil fuels. * Impact of renewable energy projects on rural communities. This project addresses the BETO goal to

  2. UDC Develops Prototype High-Efficiency OLED Undercabinet Luminaire

    Broader source: Energy.gov [DOE]

    Universal Display Corporation (UDC) has demonstrated the real-world application of a novel lighting technology by developing two pre-prototype OLED undercabinet lighting systems that exceed 420 total lumens at an efficacy of more than 55 lm/W, with an estimated lifetime (LT70) in excess of 10,000 hours, and a color rendering index (CRI) greater than 85.

  3. Method for the separation of high impact polystyrene (HIPS) and acrylonitrile butadiene styrene (ABS) plastics

    DOE Patents [OSTI]

    Jody, Bassam J. (Chicago, IL); Arman, Bayram (Amherst, NY); Karvelas, Dimitrios E. (Downers Grove, IL); Pomykala, Jr., Joseph A. (Crest Hill, IL); Daniels, Edward J. (Oak Lawn, IL)

    1997-01-01

    An improved method is provided for separating acrylonitrile butadiene styrene (ABS) and high impact polystyrene (HIPS) plastics from each other. The ABS and HIPS plastics are shredded to provide a selected particle size. The shredded particles of the ABS and HIPS plastics are applied to a solution having a solution density in a predefined range between 1.055 gm/cm.sup.3 and 1.07 gm/cm.sup.3, a predefined surface tension in a range between 22 dynes/cm to 40 dynes/cm and a pH in the range of 1.77 and 2.05. In accordance with a feature of the invention, the novel method is provided for separating ABS and HIPS, two solid thermoplastics which have similar densities by selectively modifying the effective density of the HIPS using a binary solution with the appropriate properties, such as pH, density and surface tension, such as a solution of acetic acid and water or a quaternary solution having the appropriate density, surface tension, and pH.

  4. Impact of high-order moments on the statistical modeling of transition arrays

    SciTech Connect (OSTI)

    Gilleron, Franck; Pain, Jean-Christophe; Bauche, Jacques; Bauche-Arnoult, Claire

    2008-02-15

    The impact of high-order moments on the statistical modeling of transition arrays in complex spectra is studied. It is shown that a departure from the Gaussian, which is usually employed in such an approach, may be observed even in the shape of unresolved spectra due to the large value of the kurtosis coefficient. The use of a Gaussian shape may also overestimate the width of the spectra in some cases. Therefore, it is proposed to simulate the statistical shape of the transition arrays by the more flexible generalized Gaussian distribution which introduces an additional parameter--the power of the argument in the exponential--that can be constrained by the kurtosis value. The relevance of the statistical line distribution is checked by comparisons with smoothed spectra obtained from detailed line-by-line calculations. The departure from the Gaussian is also confirmed through the analysis of 2p-3d transitions of recent absorption measurements. A numerical fit is proposed for an easy implementation of the statistical profile in atomic-structure codes.

  5. Development of a high-voltage, high-power thermal battery

    SciTech Connect (OSTI)

    Guidotti, R.A.; Scharrer, G.L.; Binasiewicz, E.; Reinhardt, F.W.

    1998-04-01

    The power requirements for an inverter application were specified to be 500 V at 360 A, or 180 kW per each of six 1-s pulses delivered over a period of 10 minutes. Conventional high-power sources (e.g., flywheels) could not meet these requirements and the use of a thermal battery was considered. The final design involved four, 125-cell, 50-kW modules connected in series. A module using the LiSi/CoS{sub 2} couple and all-Li (LiCI-LiBr-LiF minimum-melting) electrolyte was successfully developed and tested. A power level of over 40 kW was delivered during a 0.5-s pulse. This translates into a specific power level of over 9 kW/kg or 19.2 kW/L delivered from a module. The module was still able to deliver over 30 kW during a 1-s pulse after 10 minutes.

  6. Challenges in the Development of High Temperature Reactors

    SciTech Connect (OSTI)

    Piyush Sabharwall; Shannon M. Bragg-Sitton; Carl Stoots

    2013-10-01

    Advanced reactor designs offer potentially significant improvements over currently operating light water reactors including improved fuel utilization, increased efficiency, higher temperature operation (enabling a new suite of non-electric industrial process heat applications), and increased safety. As with most technologies, these potential performance improvements come with a variety of challenges to bringing advanced designs to the marketplace. There are technical challenges in material selection and thermal hydraulic and power conversion design that arise particularly for higher temperature, long life operation (possibly >60 years). The process of licensing a new reactor design is also daunting, requiring significant data collection for model verification and validation to provide confidence in safety margins associated with operating a new reactor design under normal and off-normal conditions. This paper focuses on the key technical challenges associated with two proposed advanced reactor concepts: the helium gas cooled Very High Temperature Reactor (VHTR) and the molten salt cooled Advanced High Temperature Reactor (AHTR).

  7. Advanced Boost System Developing for High EGR Applications

    SciTech Connect (OSTI)

    Sun, Harold

    2012-09-30

    To support industry efforts of clean and efficient internal combustion engine development for passenger and commercial applications This program focuses on turbocharger improvement for medium and light duty diesel applications, from complete system optimization percepective to enable commercialization of advanced diesel combustion technologies, such as HCCI/LTC. Improve combined turbocharger efficiency up to 10% or fuel economy by 3% on FTP cycle at Tier II Bin 5 emission level.

  8. ASTATINE-211 RADIOCHEMISTRY: THE DEVELOPMENT OF METHODOLOGIES FOR HIGH ACTIVITY LEVEL RADIOSYNTHESIS

    SciTech Connect (OSTI)

    MICHAEL R. ZALUTSKY

    2012-08-08

    Targeted radionuclide therapy is emerging as a viable approach for cancer treatment because of its potential for delivering curative doses of radiation to malignant cell populations while sparing normal tissues. Alpha particles such as those emitted by 211At are particularly attractive for this purpose because of their short path length in tissue and high energy, making them highly effective in killing cancer cells. The current impact of targeted radiotherapy in the clinical domain remains limited despite the fact that in many cases, potentially useful molecular targets and labeled compounds have already been identified. Unfortunately, putting these concepts into practice has been impeded by limitations in radiochemistry methodologies. A critical problem is that the synthesis of therapeutic radiopharmaceuticals provides additional challenges in comparison to diagnostic reagents because of the need to perform radio-synthesis at high levels of radioactivity. This is particularly important for {alpha}-particle emitters such as 211At because they deposit large amounts of energy in a highly focal manner. The overall objective of this project is to develop convenient and reproducible radiochemical methodologies for the radiohalogenation of molecules with the {alpha}-particle emitter 211At at the radioactivity levels needed for clinical studies. Our goal is to address two problems in astatine radiochemistry: First, a well known characteristic of 211At chemistry is that yields for electrophilic astatination reactions decline as the time interval after radionuclide isolation from the cyclotron target increases. This is a critical problem that must be addressed if cyclotrons are to be able to efficiently supply 211At to remote users. And second, when the preparation of high levels of 211At-labeled compounds is attempted, the radiochemical yields can be considerably lower than those encountered at tracer dose. For these reasons, clinical evaluation of promising 211At-labeled targeted radiotherapeutics currently is a daunting task. Our central hypothesis is that improvements in 211At radiochemistry are critically dependent on gaining an understanding of and compensating for the effects of radiolysis induced by 211At {alpha}-particles. Because of the widespread interest in labeling antibodies, antibody fragments and peptides with 211At, our proposed work plan will initially focus on reagents that we have developed for this purpose. Part of our strategy is the use of synthetic precursors immobilized on polymeric resins or perfluorous and triarylphosphonium supports. Their use could eliminate the need for a purification step to separate unreacted tin precursor from labeled product and hopefully provide a simple kit technology that could be utilized at other institutions. The specific aims of this project are: (1) To optimze methods for 211At production and isolation of 211At from cyclotron targets; (2) To develop convenient and reproducible methodologies for high activity level and high specific activity radiohalogenation of biomolecules with 211At; (3) to develop a procedure for extending the shelf-life of 211At beyond a few hours so that this radionuclide can be utilized at centers remote from its site of production; and (4) to work out high activity level synthesis methods for utilizing support immobilized tin precursors for 211At labeling. If we are successful in achieving our goals, the radiochemical methodologies that are developed could greatly facilitate the use of 211At-labeled targeted cancer therapeutics in patients, even at institutions that are distant from the few sites currently available for 211At production.

  9. Japanese and American competition in the development of scroll compressors and its impact on the American air conditioning industry

    SciTech Connect (OSTI)

    Ushimaru, Kenji )

    1990-02-01

    This report examines the technological development of scroll compressors and its impact on the air conditioning equipment industry. Scroll compressors, although considered to be the compressors of the future for energy-efficient residential heat pumps and possibly for many other applications, are difficult to manufacture on a volume-production base. The manufacturing process requires computer-aided, numerically controlled tools for high-precision fabrication of major parts. Japan implemented a global strategy for dominating the technological world market in the 1970s, and scroll compressor technology benefited from the advent of new-generation machine tools. As a result, if American manufacturers of scroll compressors purchase or are essentially forced to purchase numerically controlled tools from Japan in the future, they will then become dependent on their own competitors because the same Japanese conglomerates that make numerically controlled tools also make scroll compressors. This study illustrates the importance of the basic machine tool industry to the health of the US economy. Without a strong machine tool industry, it is difficult for American manufacturers to put innovations, whether patented or not, into production. As we experience transformation in the air conditioning and refrigeration market, it will be critical to establish a consistent national policy to provide healthy competition among producers, to promote innovation within the industry, to enhance assimilation of new technology, and to eliminate practices that are incompatible with these goals. 72 refs., 8 figs., 1 tab.

  10. Recent developments in high-efficiency PV cells

    SciTech Connect (OSTI)

    Deb, S.

    2000-05-22

    Enormous progress has been made in recent years on a number of photovoltaic (PV) materials and devices in terms of conversion efficiencies. Ultrahigh-efficiency (>30{percent}) PV cells have been fabricated from gallium arsenide (GaAs) and its ternary alloys such as gallium indium phosphide (GaInP{sub 2}). The high-efficiency GaAs-based solar cells are being produced on a commercial scale, particularly for space applications. Efficiencies in the range of 18{percent} to 24{percent} have been achieved in traditional silicon-based devices fabricated from both multicrystalline and single-crystal materials. Major advances in efficiency have also been made on various thin-film solar cells based on amorphous silicon (aSi:H), copper gallium indium diselenide (CIGS), and cadmium telluride materials. This paper gives a brief overview of the recent progress in PV cell efficiencies based on these materials and devices.

  11. Development of a high capacity longwall conveyor. Final technical report

    SciTech Connect (OSTI)

    Sparks, C

    1982-05-01

    The objectives of this program were to develop, fabricate, and demonstrate a longwall conveying system capable of transporting coal at a rate of 9000 tons/day (1000 tons/hr) and capable of accommodating a surge rate of 20 tons/min. The equipment was required to have the structural durability to perform with an operating availability of 90%. A review of available literature and discussions with longwall operators identified the problem areas of conveyor design that required attention. The conveyor under this contract was designed and fabricated with special attention given to these areas, and also to be easily maintainable. The design utilized twin 300 hp drives and twin inboard 26-mm chain at 270 ft/min; predictions of capacity and reliability based on the design indicating that it would satisfy the program requirements. Conveyor components were critically tested and the complete conveyor was surface-tested, the results verifying the design specifications. In addition, an instrumentation system was developed with analysis by computer techniques to monitor the performance of the conveyor. The conveyor was installed at a selected mine site, and it was the intention to monitor its performance over the entire longwall panel. Monitoring of the conveyor performance was conducted over approximately one-third of the longwall panel, at which point further effort was suspended. However, during the monitored period, data collected from various sources showed the conveyor to have exhibited its capability of transporting coal at the desired rate, and also to have conformed to the program requirements of reliability and availability.

  12. Developing A New High Capacity Anode With Long Cycle Life | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy A New High Capacity Anode With Long Cycle Life Developing A New High Capacity Anode With Long Cycle Life 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon es020_amine_2012_o.pdf More Documents & Publications Developing High Capacity, Long Life Anodes Developing High Capacity, Long Life Anodes FY 2011 Annual Progress Report for Energy Storage R&D

  13. Development of Modified Pag (Polyalkylene Glycol) High VI High Fuel Efficient Lubricant for LDV Applications

    SciTech Connect (OSTI)

    Gangopadhyay, Arup; McWatt, D. G.; Zdrodowski, R. J.; Liu, Zak; Elie, Larry; Simko, S. J.; Erdemir, Ali; Ramirez, Giovanni; Cuthbert, J.; Hock, E. D.

    2015-09-30

    Engine oils play a critical role in friction reduction. Improvements in engine oil technology steadily improved fuel economy as the industry moved through ILSAC GF-1 to GF-5 specifications. These improvements were influenced by changes in base oil chemistry, development of new friction modifiers and their treat levels, and the total additive package consisting of various other components. However, the improvements are incremental and further fuel consumption reduction opportunities are becoming more challenging. Polyalkylene glycol (PAG) based engine oils are being explored as a step forward for significant fuel consumption reduction. Although PAG fluids are used in many industrial applications, its application as an engine oil has been explored in a limited way. The objective of this project is to deep dive in exploring the applicability of PAG technology in engine oil, understanding the benefits, and limitations, elucidating the mechanism(s) for friction benefits, if any, and finally recommending how to address any limitations. The project was designed in four steps, starting with selection of lubricant technology, followed by friction and wear evaluations in laboratory bench tests which are relatively simple and inexpensive and also served as a screener for further evaluation. Selected formulations were chosen for more complex engine component level tests i.e., motored valvetrain friction and wear, piston ring friction using a motored single cylinder, and motored engine tests. A couple of formulations were further selected based on component level tests for engine dyno tests i.e., Sequence VID (ASTM D6709) for fuel economy, Sequence IVA (ASTM D6891) for valvetrain wear, and Sequence VG (ASTM D6593) for sludge and varnish protection. These are some of the industry standard tests required for qualifying engine oils. Out of these tests, a single PAG oil was selected for chassis roll dynamometer tests for fuel economy and emission measurements using FTP (Federal Test Procedure) metro/highway cycles. Five different PAG chemistries were selected by varying the starting alcohol, the oxide monomers (ethylene oxide, propylene oxide, or butylene oxide), capped or uncapped, homopolymer or random copolymer. All formulations contained a proprietary additive package and one which contained additional antiwear and friction modifier additives. Laboratory bench tests (Pin-on-Disk, High Frequency Reciprocating Rig (HFRR), Block-on-Ring, Mini-Traction Machine (MTM) identified formulations having friction, wear, and load carrying characteristics similar to or better than baseline GF-5 SAE 5W-20 oil. Motored valvetrain and motored piston ring friction tests showed nearly 50% friction reduction for some of the PAG formulations compared to GF-5 SAE 5W-20 oil. Motored engine tests showed up to 15% friction benefit over GF-5 SAE 5W-20 oil. It was observed that friction benefits are more related to PAG base oil chemistry than their lower viscosity compared to GF-5 SAE 5W-20 oil. Analysis of wear surfaces from laboratory bench tests and bucket tappets from motored valvetrain tests confirmed the presence of PAG molecules. The adsorption of these polar molecules is believed to be reason for friction reduction. However, the wear surfaces also had thin tribo-film derived from additive components. The tribo-film consisting of phosphates, sulfides, and molybdenum disulfide (when molybdenum additive was present) were observed for both GF-5 SAE 5W-20 and PAG fluids. However, when using PAG fluids, motored valvetrain tests showed high initial wear, which is believed to be due to delay in protective tribo-film formation. After the initial wear, the wear rate of PAG fluids was comparable to GF-5 SAE 5W-20 oil. The PAG oil containing additional antiwear and friction reducing additives showed low initial wear as expected. However, when this oil was evaluated in Sequence IVA test, it showed initially low wear comparable to GF-5 oil but wear accelerated with oil aging indicating rapid deterioration of additive components. ASTM Sequence VG test showed good sludge protection capability but failed to meet varnish rating for GF-5 requirement. Chassis roll dynamometer tests with PAG oil 15-1 showed about 1% fuel economy benefit over GF-5 SAE 5W-20 oil in EPA city cycles only and when the oil was slightly aged (500 miles). No fuel economy benefits could be observed in combined EPA metro/highway cycles. Also, no fuel economy benefit could be observed with continued (500- 10000 miles) oil aging. However, the emission level was comparable to the reference oil and was within EPA limits. Analysis of the PAG oil following tests showed low iron content although additive components were significantly degraded. The results indicate that PAG fluids have significant friction reduction potential but there are challenges with wear and varnish protection capabilities. These limitations are primarily because the selected additive components were chosen to provide a fluid with no metal content that forms little or no sulphated ash. Significant development work is needed to identify additive components compatible with PAG chemistry including their solubility in PAG oil. Miscibility of PAG fluids with mineral base oil is another challenge for oil change service. There is PAG chemistry (oil soluble PAG, OSP) which is soluble in mineral oils but the formulation explored in this investigation did not show significant friction reduction in motored engine tests. Again, highlighting the need for additive development for specific PAG chemistry. The thermal oxidation behavior of these oils has not been explored in this investigation and needs attention.

  14. Impact of High Wind Power Penetration on Hydroelectric Unit Operations in the WWSIS

    SciTech Connect (OSTI)

    Hodge, B.-M.; Lew, D.; Milligan, M.

    2011-07-01

    This report examines the impact of this large amount of wind penetration on hydroelectric unit operations. Changes in hydroelectric unit operating patterns are examined both for an aggregation of all hydro generators and for select individual plants.

  15. Impact of High Wind Power Penetration on Hydroelectric Unit Operations: Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Lew, D.; Milligan, M.

    2011-10-01

    This paper examines the impact of this large amount of wind penetration on hydroelectric unit operations. Changes in hydroelectric unit operating unit patterns are examined for an aggregation of all hydro generators.

  16. High Level Waste System Impacts from Small Column Ion Exchange Implementation

    SciTech Connect (OSTI)

    McCabe, D. J.; Hamm, L. L.; Aleman, S. E.; Peeler, D. K.; Herman, C. C.; Edwards, T. B.

    2005-08-18

    The objective of this task is to identify potential waste streams that could be treated with the Small Column Ion Exchange (SCIX) and perform an initial assessment of the impact of doing so on the High-Level Waste (HLW) system. Design of the SCIX system has been performed as a backup technology for decontamination of High-Level Waste (HLW) at the Savannah River Site (SRS). The SCIX consists of three modules which can be placed in risers inside underground HLW storage tanks. The pump and filter module and the ion exchange module are used to filter and decontaminate the aqueous tank wastes for disposition in Saltstone. The ion exchange module contains Crystalline Silicotitanate (CST in its engineered granular form is referred to as IONSIV{reg_sign} IE-911), and is selective for removal of cesium ions. After the IE-911 is loaded with Cs-137, it is removed and the column is refilled with a fresh batch. The grinder module is used to size-reduce the cesium-loaded IE-911 to make it compatible with the sludge vitrification system in the Defense Waste Processing Facility (DWPF). If installed at the SRS, this SCIX would need to operate within the current constraints of the larger HLW storage, retrieval, treatment, and disposal system. Although the equipment has been physically designed to comply with system requirements, there is also a need to identify which waste streams could be treated, how it could be implemented in the tank farms, and when this system could be incorporated into the HLW flowsheet and planning. This document summarizes a preliminary examination of the tentative HLW retrieval plans, facility schedules, decontamination factor targets, and vitrified waste form compatibility, with recommendations for a more detailed study later. The examination was based upon four batches of salt solution from the currently planned disposition pathway to treatment in the SCIX. Because of differences in capabilities between the SRS baseline and SCIX, these four batches were combined into three batches for a total of about 3.2 million gallons of liquid waste. The chemical and radiological composition of these batches was estimated from the SpaceMan Plus{trademark} model using the same data set and assumptions as the baseline plans.

  17. EIS-0023: Long-Term Management of Defense High-Level Radioactive Wastes (Research and Development Program for Immobilization), Savannah River Plant, Aiken, South Carolina

    Broader source: Energy.gov [DOE]

    This environmental impact statement (EIS) analyzes the environmental implications of the proposed continuation of a large Federal research and development (R&D) program directed toward the immobilization of the high-level radioactive wastes resulting from chemical separations operations for defense radionuclides production at the DOE Savannah River Plant (SRP) near Aiken, South Carolina.

  18. Developing a new high capacity anode with long life | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a new high capacity anode with long life Developing a new high capacity anode with long life 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon esp_11_amine.pdf More Documents & Publications Developing High Capacity, Long Life, and High Power Anodes New High Power Li2MTi6O14Anode Material Cathodes

  19. Development and application of procedures to evaluate air quality and visibility impacts of low-altitude flying operations

    SciTech Connect (OSTI)

    Liebsch, E.J.

    1990-08-01

    This report describes the development and application of procedures to evaluate the effects of low-altitude aircraft flights on air quality and visibility. The work summarized in this report was undertaken as part of the larger task of assessing the various potential environmental impacts associated with low-altitude military airspaces. Accomplishing the air quality/visibility analysis for the GEIS included (1) development and application of an integrated air quality model and aircraft emissions database specifically for Military Training Route (MTR) or similar flight operations, (2) selection and application of an existing air quality model to analyze the more widespread and less concentrated aircraft emissions from military Operations Areas (MOAs) and Restricted Areas (RAs), and (3) development and application of procedures to assess impacts of aircraft emissions on visibility. Existing air quality models were considered to be inadequate for predicting ground-level concentrations of pollutants emitted by aircraft along MTRs; therefore, the Single-Aircraft Instantaneous Line Source (SAILS) and Multiple-Aircraft Instantaneous Line Source (MAILS) models were developed to estimate potential impacts along MTRs. Furthermore, a protocol was developed and then applied in the field to determine the degree of visibility impairment caused by aircraft engine exhaust plumes. 19 refs., 2 figs., 3 tabs.

  20. Philips Lumileds Develops a Low-Cost, High-Power, Warm-White LED Package |

    Energy Savers [EERE]

    Department of Energy Research & Development » R&D Highlights » Philips Lumileds Develops a Low-Cost, High-Power, Warm-White LED Package Philips Lumileds Develops a Low-Cost, High-Power, Warm-White LED Package High-power white LED die-on-ceramic package developed by Philips Lumileds. With the help of DOE funding, Philips Lumileds has developed a low-cost, high-power, warm-white LED package for general illumination. During the course of the two-year project, this package was used to

  1. Development of Metric for Measuring the Impact of RD&D Funding on GTO's Geothermal Exploration Goals (Presentation)

    SciTech Connect (OSTI)

    Jenne, S.; Young, K. R.; Thorsteinsson, H.

    2013-04-01

    The Department of Energy's Geothermal Technologies Office (GTO) provides RD&D funding for geothermal exploration technologies with the goal of lowering the risks and costs of geothermal development and exploration. In 2012, NREL was tasked with developing a metric to measure the impacts of this RD&D funding on the cost and time required for exploration activities. The development of this metric included collecting cost and time data for exploration techniques, creating a baseline suite of exploration techniques to which future exploration and cost and time improvements could be compared, and developing an online tool for graphically showing potential project impacts (all available at http://en.openei.org/wiki/Gateway:Geothermal). The conference paper describes the methodology used to define the baseline exploration suite of techniques (baseline), as well as the approach that was used to create the cost and time data set that populates the baseline. The resulting product, an online tool for measuring impact, and the aggregated cost and time data are available on the Open EI website for public access (http://en.openei.org).

  2. Economic Development Impacts from Wind Power in the Western Governors' Association States (Poster)

    SciTech Connect (OSTI)

    Tegen, S.; Goldberg, M.; Milligan, M.

    2007-06-01

    The Western Governors' Association created the Clean and Diversified Energy Advisory Committee (CDEAC) "to utilize the region's diverse resources to produce affordable, sustainable, and environmentally reponsible energy." This conference poster, prepared for WINDPOWER 2007 in Los Angeles, outlines the economic impact to the Western United States from new wind energy projects.

  3. Staged, High-Pressure Oxy-Combustion Technology: Development and Scale-Up

    SciTech Connect (OSTI)

    Axelbaum, Richard; Xia, Fei; Gopan, Akshay; Kumfer, Benjamin

    2014-09-30

    Washington University in St. Louis and its project partners are developing a unique pressurized oxy-combustion process that aims to improve efficiency and costs by reducing the recycling of flue gas to near zero. Normally, in the absence of recycled flue gas or another inert gas, combustion of fuel and oxygen results in a dramatic increase in temperature of the combustion products and radiant energy, as compared to combustion in air. High heat flux to the boiler tubes may result in a tube surface temperatures that exceed safe operating limits. In the Staged Pressurized Oxy-Combustion (SPOC) process, this problem is addressed by staging the delivery of fuel and by novel combustion design that allows control of heat flux. In addition, the main mode of heat transfer to the steam cycle is by radiation, as opposed to convection. Therefore, the requirement for recycling large amounts of flue gas, for temperature control or to improve convective heat transfer, is eliminated, resulting in a reduction in auxiliary loads. The following report contains a detailed summary of scientific findings and accomplishments for the period of Oct. 1, 2013 to Sept 30, 2014. Results of ASPEN process and CFD modelling activities aimed at improving the SPOC process and boiler design are presented. The effects of combustion pressure and fuel moisture on the plant efficiency are discussed. Combustor pressure is found to have only a minor impact beyond 16 bar. For fuels with moisture content greater than approx 30%, e.g. coal/water slurries, the amount of latent heat of condensation exceeds that which can be utilized in the steam cycle and plant efficiency is reduced significantly. An improved boiler design is presented that achieves a more uniform heat flux profile. In addition, a fundamental study of radiation in high-temperature, high-pressure, particle-laden flows is summarized which provides a more complete understanding of heat transfer in these unusual conditions and to allow for optimization. The results reveal that for the SPOC design, absorption and emission due to particles is the dominant factor for determining the wall heat flux. The mechanism of “radiative trapping” of energy within the high-temperature flame region and the approach to utilizing this mechanism to control wall heat flux are described. This control arises, by design, from the highly non-uniform (non-premixed) combustion characteristics within the SPOC boiler, and the resulting gradients in temperature and particle concentration. Finally, a simple method for estimating the wall heat flux in pressurized combustion systems is presented.

  4. Development of High-Volume Warm Forming of Low-Cost Magnesium...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Volume Warm Forming of Low-Cost Magnesium Sheet Development of High-Volume Warm Forming of Low-Cost Magnesium Sheet 2009 DOE Hydrogen Program and Vehicle Technologies Program...

  5. Development of High-Volume Warm Forming of Low-Cost Magnesium...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of High-Volume Warm Forming of Low-Cost Magnesium Sheet Development of High-Volume Warm Forming of Low-Cost Magnesium Sheet 2010 DOE Vehicle Technologies and Hydrogen Programs...

  6. OLEDWORKS DEVELOPS INNOVATIVE HIGH-PERFORMANCE DEPOSITION TECHNOLOGY TO REDUCE MANUFACTURING COST OF OLED LIGHTING

    Broader source: Energy.gov [DOE]

    The high manufacturing cost of OLED lighting is a major barrier to the growth of the emerging OLED lighting industry. OLEDWorks is developing high-performance deposition technology that addresses...

  7. The Development and Demonstration of an Electric Submersible Pump at High

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Temperatures - High-temperature Motor Windings for Down-hole Pumps Used in Geothermal Energy Production; 2010 Geothermal Technology Program Peer Review Report | Department of Energy The Development and Demonstration of an Electric Submersible Pump at High Temperatures - High-temperature Motor Windings for Down-hole Pumps Used in Geothermal Energy Production; 2010 Geothermal Technology Program Peer Review Report The Development and Demonstration of an Electric Submersible Pump at High

  8. SUNY/Buffalo Developing High-Efficiency Colloidal Quantum Dot Phosphors |

    Energy Savers [EERE]

    Department of Energy Research & Development » R&D Highlights » SUNY/Buffalo Developing High-Efficiency Colloidal Quantum Dot Phosphors SUNY/Buffalo Developing High-Efficiency Colloidal Quantum Dot Phosphors Photo of a synthesis flask containing newly formed nanocrystal emitters. The emitters show bright yellow luminescence. The State University of New York at Buffalo is working to reduce the cost and increase the performance of LEDs for general illumination by developing

  9. Technological problems associated with subsea development of high pressure and high temperature hydrocarbon reservoirs

    SciTech Connect (OSTI)

    Grillo, P.; Natarajan, S.

    1996-12-31

    The paper analyzes the implications in design of subsea completion for exploitation of HP/HT hydrocarbon reservoirs. The paper characterizes limitations associated with current subsea technology for HP/HT applications and outlines the engineering and technological development considered necessary to demonstrate the viability of subsea production technology for the exploitation of HP/HT reservoirs.

  10. Understanding Energy Impacts of Oversized Air Conditioners; NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This NREL highlight describes a simulation-based study that analyzes the energy impacts of oversized residential air conditioners. Researchers found that, if parasitic power losses are minimal, there is very little increase in energy use for oversizing an air conditioner. The research demonstrates that new residential air conditioners can be sized primarily based on comfort considerations, because capacity typically has minimal impact on energy efficiency. The results of this research can be useful for contractors and homeowners when choosing a new air conditioner or heat pump during retrofits of existing homes. If the selected unit has a crankcase heater, performing proper load calculations to be sure the new unit is not oversized will help avoid excessive energy use.

  11. EERE Success Story—Mitigating Potential Environmental Impacts of Energy Development

    Broader source: Energy.gov [DOE]

    Normandeau Associates is developing a tool to check the risk of wind turbine collisions for bird and bat species.

  12. Idaho High-Level Waste & Facilities Disposition, Final Environmental Impact Statement

    Office of Environmental Management (EM)

    National Environmental Policy Act Environmental Impact Statement: A detailed environmental analysis for any proposed major Federal action that could significantly affect the quality of the human environment. A tool to assist in decision-making, it describes the positive and negative environmental effects of the proposed undertaking and alternatives. A draft EIS is issued, followed by a final EIS. Scoping: An early and open process in which the public is invited to participate in identi- fying

  13. Sandia National Laboratories Develops Tool for Evaluating Wind Turbine-Radar Impacts

    Broader source: Energy.gov [DOE]

    The TSPEAR toolkit supports energy developers that wish to design, analyze, track the progress of wind energy projects. Initially designed to support wind energy development by assessing the interaction between turbines and constraining factors, such as the NAS radar systems, TSPEAR is partially populated with information from existing databases and can integrate custom models and tools used throughout the development process.

  14. Development of Designer Diamond Technology for High Pressure High Temperature Experiments in Support of Stockpile Stewardship Program

    SciTech Connect (OSTI)

    Vohra, Yogesh, K.

    2009-10-28

    The role of nitrogen in the fabrication of designer diamond was systematically investigated by adding controlled amount of nitrogen in hydrogen/methane/oxygen plasma. This has led to a successful recipe for reproducible fabrication of designer diamond anvils for high-pressure high-temperature research in support of stockpile stewardship program. In the three-year support period, several designer diamonds fabricated with this new growth chemistry were utilized in high-pressure experiments at UAB and Lawrence Livermore National Laboratory. The designer diamond anvils were utilized in high-pressure studies on heavy rare earth metals, high pressure melting studies on metals, and electrical resistance measurements on iron-based layered superconductors under high pressures. The growth chemistry developed under NNSA support can be adapted for commercial production of designer diamonds.

  15. New developments in high resolution borehole seismology and their applications to reservoir development and management

    SciTech Connect (OSTI)

    Paulsson, B.N.P.

    1997-08-01

    Single-well seismology, Reverse Vertical Seismic Profiles (VSP`s) and Crosswell seismology are three new seismic techniques that we jointly refer to as borehole seismology. Borehole seismic techniques are of great interest because they can obtain much higher resolution images of oil and gas reservoirs than what is obtainable with currently used seismic techniques. The quality of oil and gas reservoir management decisions depend on the knowledge of both the large and the fine scale features in the reservoirs. Borehole seismology is capable of mapping reservoirs with an order of magnitude improvement in resolution compared with currently used technology. In borehole seismology we use a high frequency seismic source in an oil or gas well and record the signal in the same well, in other wells, or on the surface of the earth.

  16. Development of a High Pressure/High Temperature Down-hole Turbine Generator

    SciTech Connect (OSTI)

    Ben Plamp

    2008-06-30

    As oil & natural gas deposits become more difficult to obtain by conventional means, wells must extend to deeper more heat-intensive environments. The technology of the drilling equipment required to reach these depths has exceeded the availability of electrical power sources needed to operate these tools. Historically, logging while drilling (LWD) and measure while drilling (MWD) devices utilized a wireline to supply power and communication from the operator to the tool. Lithium ion batteries were used in scenarios where a wireline was not an option, as it complicated operations. In current downhole applications, lithium ion battery (LIB) packs are the primary source for electrical power. LIB technology has been proven to supply reliable downhole power at temperatures up to 175 °C. Many of the deeper well s reach ambient temperatures above 200 °C, creating an environment too harsh for current LIB technology. Other downfalls of LIB technology are cost, limitations on charge cycles, disposal issues and possible safety hazards including explosions and fires. Downhole power generation can also be achieved by utilizing drilling fluid flow and converting it to rotational motion. This rotational motion can be harnessed to spin magnets around a series of windings to produce power proportional to the rpm experienced by the driven assembly. These generators are, in most instances, driven by turbine blades or moyno-based drilling fluid pumps. To date, no commercially available downhole power generators are capable of operating at ambient temperatures of 250 °C. A downhole power g enerator capable of operation in a 250 °C and 20,000 psi ambient environment will be an absolute necessity in the future. Dexter Magnetic Technologies’ High-Pressure High-Temperature (HPHT) Downhole Turbine Generator is capable of operating at 250 °C and 20, 000 psi, but has not been tested in an actual drilling application. The technology exists, but to date no company has been willing to test the tool.

  17. Development of a High Volume Capable Process to Manufacture High Performance Photovoltaic Cells: Cooperative Research and Development Final Report, CRADA Number CRD-08-322

    SciTech Connect (OSTI)

    Geisz, J. F.

    2012-11-01

    The intent of the work is for RFMD and NREL to cooperate in the development of a commercially viable and high volume capable process to manufacture high performance photovoltaic cells, based on inverted metamorphic (IMM) GaAs technology. The successful execution of the agreement will result in the production of a PV cell using technology that is capable of conversion efficiency at par with the market at the time of release (reference 2009: 37-38%), using RFMD's production facilities. The CRADA work has been divided into three phases: (1) a foundation phase where the teams will demonstrate the manufacturing of a basic PV cell at RFMD's production facilities; (2) a technology demonstration phase where the teams will demonstrate the manufacturing of prototype PV cells using IMM technology at RFMD's production facilities, and; (3) a production readiness phase where the teams will demonstrate the capability to manufacture PV cells using IMM technology with high yields, high reliability, high reproducibility and low cost.

  18. Los Alamos develops new technique for growing high-efficiency perovskite

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solar cells Los Alamos develops new technique for growing high-efficiency perovskite solar cells Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit Los Alamos develops new technique for growing high-efficiency perovskite solar cells Researchers reveal a new solution-based hot-casting technique that allows growth of highly efficient and reproducible solar cells from large-area perovskite crystals. March 1, 2015

  19. Development of High Energy Density Lithium-Sulfur Cells | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Density Lithium-Sulfur Cells Development of High Energy Density Lithium-Sulfur Cells 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon es125_wang_2012_p.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2015: High Energy Lithium-Sulfur Cathodes Vehicle Technologies Office Merit Review 2014: Development of High Energy Density Lithium-Sulfur Cells

  20. Development of Si-based High Capacity Anodes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Si-based High Capacity Anodes Development of Si-based High Capacity Anodes 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon es144_zhang_2012_p.pdf More Documents & Publications Synthesis and Characterization of Structured Si-Carbon Nanocomposite Anodes and Functional Polymer Binders Development of Si-based High Capacity Anodes Vehicle Technologies Office Merit Review 2014: Synthesis and Characterization of

  1. Hydrogen Production from Biomass via Indirect Gasification: The Impact of NREL Process Development Unit Gasifier Correlations

    SciTech Connect (OSTI)

    Kinchin, C. M.; Bain, R. L.

    2009-05-01

    This report describes a set of updated gasifier correlations developed by NREL to predict biomass gasification products and Minimum Hydrogen Selling Price.

  2. The impact of high-frequency sedimentation cycles on stratigraphic interpretation

    SciTech Connect (OSTI)

    Perlmutter, M.A.; Radovich, B.J.; Matthews, M.D.

    1997-01-01

    Global cyclostratigraphy, a methodology that utilizes climate change to evaluate sediment flux, characterizes the impact of sediment cycles on stratigraphy. Climatic succession, sediment yield cycles, and the phase relationship of sediment cycles to eustatic cycles are all determined in the early stages of basin analysis. Sedimentologic information is then used to assist in sequence evaluations. Climatic successions are intrinsically associated with global position (paleogeography) and are not necessarily synchronous with glacioeustatic sea-level cycles. A preliminary evaluation of the effect of climate on sediment supply from modem river systems indicates that sediment yield may vary by well over two orders of magnitude during one climate cycle. Consequently, basins in different climatic belts can have distinctly different volumes and lithologies for systems tracts that have similar base-level changes. The stratigraphic computer program Sedpak was utilized to examine the possible impact of different sedimentation cycles on sequence interpretation and reservoir forecasts. The effect of sedimentation cycles on reservoir distribution in real world sequences is demonstrated with a comparison of the Miocene section of the Surma basin, Bangladesh, and the Plio-Pleistocene section of the Gulf of Mexico. In the Surma basin, reservoirs are most likely to occur in transgressive and highstand systems tracts, while reservoirs in the Gulf of Mexico are more likely in lowstand prograding complexes.

  3. Impacts of a high-burnup spent fuel on a geological disposal system design

    SciTech Connect (OSTI)

    Cho, D.K.; Lee, Y.; Lee, J.Y.; Choi, H.J.; Choi, J.W. [Korea Atomic Energy Research Institute, Yuseong-gu, Daejeon-city (Korea, Republic of)

    2007-07-01

    The influence of a burnup increase of a spent nuclear fuel on a deep geological disposal system was evaluated in this study. First, the impact of a burnup increase on each aspect related to thermal and nuclear safety concerns was quantified. And then, the tunnel length, excavation volume, and the raw materials for a cast insert, copper, bentonite, and backfill needed to constitute a disposal system were comprehensively analyzed based on the spent fuel inventory to generate 1 Terawatt-year (TWa), to establish the overall effects and consequences on a geological disposal. As a result, impact of a burnup increase on the criticality safety and radiation shielding was shown to be negligible. The disposal area, however, is considerably affected because of a higher thermal load. And, it is reasonable to use a canister such as the Korean Reference Disposal Canister (KDC-1) containing 4 spent fuels up to 50 GWD/MtU, and to use a canister containing 3 spent fuels beyond 50 GWD/MtU. Although a considerable increased, 33 % in the tunnel length and 30 % in the excavation volume, was observed as the burnup increases from 50 to 60 GWD/MtU, because a decrease in the canister needs can offset an increase in the excavation volume, it can be concluded that a burnup increase of a spent fuel is not a critical concern for a geological disposal of a spent fuel. (authors)

  4. Local governments' efforts to implement environmental impact assessment requirements on development activities: Cause and effect in North Carolina

    SciTech Connect (OSTI)

    Spangler, J.A. )

    1993-01-01

    Various government entities in North Carolina have seen the need to implement specific policy which requires organizations responsible for certain development activities to perform a detailed assessment of comprehensive environmental impacts. Some governments have enacted policy, and a number of others are evaluating the need for policy implementation. The consideration of environmental effects of the development action early in the project planning process is, in many cases, an effect of the implementation of such policies, rather than a purpose. This study evaluates the varying ideals and rationale upon which local leaders have based environmental policies. Also, this study assesses the effectiveness of a variety of policies currently enacted and compares the final results of projects which have had to comply with the policies. Through the use of a survey distributed to officials responsible for policy enactment, local government personnel responsible for implementation and others involved in both public and private development, a relative assessment of effectiveness of different policies is postulated.

  5. Development of High-Efficiency Clean Combustion Engines Designs for SI and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CI Engines | Department of Energy High-Efficiency Clean Combustion Engines Designs for SI and CI Engines Development of High-Efficiency Clean Combustion Engines Designs for SI and CI Engines 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon ace036_patton_2010_o.pdf More Documents & Publications High Efficiency Clean Combustion Engine Designs for Gasoline and Diesel Engines High Efficiency Clean

  6. Development of High-Volume Warm Forming of Low-Cost Magnesium Sheet |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy High-Volume Warm Forming of Low-Cost Magnesium Sheet Development of High-Volume Warm Forming of Low-Cost Magnesium Sheet 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon lm_19_quinn.pdf More Documents & Publications Development of High-Volume Warm Forming of Low-Cost Magnesium Sheet Magnesium Front End Research and Development AMD 604 Magnesium Front End Research

  7. Impact of geothermal development on the state of Hawaii. Executive summary. Volume 7

    SciTech Connect (OSTI)

    Siegel, B.Z.

    1980-06-01

    Questions regarding the sociological, legal, environmental, and geological concerns associated with the development of geothermal resources in the Hawaiian Islands are addressed in this summary report. Major social changes, environmental degradation, legal and economic constraints, seismicity, subsidence, changes in volcanic activity, accidents, and ground water contamination are not major problems with the present state of development, however, the present single well does not provide sufficient data for extrapolation. (ACR)

  8. Job and Output Benefits of Stationary Fuel Cells (JOBS FC): An Economic Impact Tool Developed for USDOE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Job and Output Benefits of Stationary Fuel Cells (JOBS FC): An Economic Impact Tool Developed for USDOE Marianne Mintz Argonne National Lab 2 2 What is JOBS FC? � JOBS FC is a user friendly model that can be used to show the economic benefits of near- to mid-term fuel cell deployment for a variety of fuel cell applications and markets � These estimates will enable your organization to quantify the economic advantages of fuel cells and communicate those benefits to community leaders, local

  9. Development of High Yield Feedstocks and Biomass Conversion Technology for Renewable Energy

    SciTech Connect (OSTI)

    Hashimoto, Andrew G.; Crow, Susan; DeBeryshe, Barbara; Ha, Richard; Jakeway, Lee; Khanal, Samir; Nakahata, Mae; Ogoshi, Richard; Shimizu, Erik; Stern, Ivette; Turano, Brian; Turn, Scott; Yanagida, John

    2015-04-09

    This project had two main goals. The first goal was to evaluate several high yielding tropical perennial grasses as feedstock for biofuel production, and to characterize the feedstock for compatible biofuel production systems. The second goal was to assess the integration of renewable energy systems for Hawaii. The project focused on high-yield grasses (napiergrass, energycane, sweet sorghum, and sugarcane). Field plots were established to evaluate the effects of elevation (30, 300 and 900 meters above sea level) and irrigation (50%, 75% and 100% of sugarcane plantation practice) on energy crop yields and input. The test plots were extensive monitored including: hydrologic studies to measure crop water use and losses through seepage and evapotranspiration; changes in soil carbon stock; greenhouse gas flux (CO2, CH4, and N2O) from the soil surface; and root morphology, biomass, and turnover. Results showed significant effects of environment on crop yields. In general, crop yields decrease as the elevation increased, being more pronounced for sweet sorghum and energycane than napiergrass. Also energy crop yields were higher with increased irrigation levels, being most pronounced with energycane and less so with sweet sorghum. Daylight length greatly affected sweet sorghum growth and yields. One of the energy crops (napiergrass) was harvested at different ages (2, 4, 6, and 8 months) to assess the changes in feedstock characteristics with age and potential to generate co-products. Although there was greater potential for co-products from younger feedstock, the increased production was not sufficient to offset the additional cost of harvesting multiple times per year. The feedstocks were also characterized to assess their compatibility with biochemical and thermochemical conversion processes. The project objectives are being continued through additional support from the Office of Naval Research, and the Biomass Research and Development Initiative. Renewable energy assessments included: biomass feedstocks currently being produced by Hawaiian Commercial & Sugar Co., and possibilities of producing methane from agricultural and livestock wastes and the potential of photovoltaic systems for irrigation pumping at HC&S. Finally, the impact of a micro-hydroelectric system on a small-farm economics and the local community was assessed.

  10. HIGH-ORDER MODELING OF AN ERL FOR ELECTRON COOLING IN THE RHIC LUMINOSITY UPGRADE USING MARYLIE/IMPACT.

    SciTech Connect (OSTI)

    RANJBAR,V.; BEN-ZVI,I.; PAUL, K.; ABELL, D.T.; TECH-X CORP.; KEWISCH, J.; RYNE, R.D.; QIANG, J.

    2007-06-25

    Plans for the RHIC luminosity upgrade call for an electron cooling system that will place substantial demands on the energy, current, brightness, and beam quality of the electron beam. In particular, the requirements demand a new level of fidelity in beam dynamics simulations. New developments in MARYLIE/IMPACT have improved both the space charge computations for beams with large aspect ratios and the beam dynamic computations for rf cavities. We present the results of beam dynamics simulations that include the effects of space charge and nonlinearities, and aim to assess the tolerance for errors and nonlinearities on current designs for a super-conducting ERL.

  11. Vehicle Technologies Office Merit Review 2015: Development of High-Performance Cast Crankshafts

    Broader source: Energy.gov [DOE]

    Presentation given by Caterpillar at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of high-performance...

  12. A review of high-temperature geothermal developments in the Northern...

    Open Energy Info (EERE)

    review of high-temperature geothermal developments in the Northern Basin and Range Province Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: A review of...

  13. Advanced High-Temperature Reactor Dynamic System Model Development: April 2012 Status

    SciTech Connect (OSTI)

    Qualls, A L; Cetiner, M S; Wilson, Jr, T L

    2012-04-30

    The Advanced High-Temperature Reactor (AHTR) is a large-output fluoride-salt-cooled high-temperature reactor (FHR). An early-phase preconceptual design of a 1500 MW(e) power plant was developed in 2011 [Refs. 1 and 2]. An updated version of this plant is shown as Fig. 1. FHRs feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The AHTR is designed to be a “walk away” reactor that requires no action to prevent large off-site releases following even severe reactor accidents. This report describes the development of dynamic system models used to further the AHTR design toward that goal. These models predict system response during warmup, startup, normal operation, and limited off-normal operating conditions. Severe accidents that include a loss-of-fluid inventory are not currently modeled. The scope of the models is limited to the plant power system, including the reactor, the primary and intermediate heat transport systems, the power conversion system, and safety-related or auxiliary heat removal systems. The primary coolant system, the intermediate heat transport system and the reactor building structure surrounding them are shown in Fig. 2. These systems are modeled in the most detail because the passive interaction of the primary system with the surrounding structure and heat removal systems, and ultimately the environment, protects the reactor fuel and the vessel from damage during severe reactor transients. The reactor silo also plays an important role during system warmup. The dynamic system modeling tools predict system performance and response. The goal is to accurately predict temperatures and pressures within the primary, intermediate, and power conversion systems and to study the impacts of design changes on those responses. The models are design tools and are not intended to be used in reactor qualification. The important details to capture in the primary system relate to flows within the reactor vessel during severe events and the resulting temperature profiles (temperature and duration) for major components. Critical components include the fuel, reactor vessel, primary piping, and the primary-to-intermediate heat exchangers (P-IHXs). The major AHTR power system loops are shown in Fig. 3. The intermediate heat transfer system is a group of three pumped salt loops that transports the energy produced in the primary system to the power conversion system. Two dynamic system models are used to analyze the AHTR. A Matlab/Simulink-based model initiated in 2011 has been updated to reflect the evolving design parameters related to the heat flows associated with the reactor vessel. The Matlab model utilizes simplified flow assumptions within the vessel and incorporates an empirical representation of the Direct Reactor Auxiliary Cooling System (DRACS). A Dymola/Modelica model incorporates a more sophisticated representation of primary coolant flow and a physics-based representation of the three-loop DRACS thermal hydraulics. This model is not currently operating in a fully integrated mode. The Matlab model serves as a prototype and provides verification for the Dymola model, and its use will be phased out as the Dymola model nears completion. The heat exchangers in the system are sized using spreadsheet-based, steady-state calculations. The detail features of the heat exchangers are programmed into the dynamic models, and the overall dimensions are used to generate realistic plant designs. For the modeling cases where the emphasis is on understanding responses within the intermediate and primary systems, the power conversion system may be modeled as a simple boundary condition at the intermediate-to-power conversion system heat exchangers.

  14. Environmental Impacts of Wind Power Development on the Population Biology of Greater Prairie-Chickens

    SciTech Connect (OSTI)

    Sandercock, Brett K.

    2013-05-22

    This report summarizes the results of a seven-year, DOE-funded research project, conducted by researchers from Kansas State University and the National Wind Coordinating Collaborative, to assess the effects of wind energy development in Kansas on the population and reproduction of greater prairie chickens.

  15. Impacts of Energy Research and Development With Analyses of Price-Andersen Act & Hydro Relicensing

    Reports and Publications (EIA)

    2002-01-01

    This report deals primarily with the Research and Development provisions of S. 1766, organized across four areas: energy efficiency, renewable energy, fossil energy, and nuclear energy. The provisions are assessed using the results from Annual Energy Outlook 2002 and other side cases, rather than a direct quantitative analysis.

  16. Development of A Self Biased High Efficiency Solid-State Neutron Detector

    Office of Scientific and Technical Information (OSTI)

    for MPACT Applications (Technical Report) | SciTech Connect Development of A Self Biased High Efficiency Solid-State Neutron Detector for MPACT Applications Citation Details In-Document Search Title: Development of A Self Biased High Efficiency Solid-State Neutron Detector for MPACT Applications Neutron detection is an important aspect of materials protection, accounting, and control for transmutation (MPACT). Currently He-3 filled thermal neutron detectors are utilized in many applications;

  17. Development of High Energy Cathode for Li-ion Batteries | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy for Li-ion Batteries Development of High Energy Cathode for Li-ion Batteries 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon es056_zhang_2010_p.pdf More Documents & Publications Phase Behavior and Solid State Chemistry in Olivines Development of High Energy Cathode Materials Interfacial Processes - Diagnostics

  18. Development of Novel Electrolytes for Use in High Energy Lithium-Ion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Batteries with Wide Operating Temperature Range | Department of Energy 09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon es_37_srinivasan.pdf More Documents & Publications Development of Novel Electrolytes for Use in High Energy Lithium-Ion Batteries with Wide Operating Temperature Range Development of Novel Electrolytes for Use in High Energy Lithium-Ion Batteries with Wide Operating

  19. Development of a Bulk-Format System to Harvest, Handle, Store, and Deliver High-Tonnage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Abstract Development of a Bulk-Format System to Harvest, Handle, Store, and Deliver High- Tonnage Low-Moisture Switchgrass Feedstock Genera Energy (Lead), University of Tennessee, Laidig Systems, Inc., Marathon Equipment, Dupont-Danisco Cellulosic Ethanol, Deere & Company, Idaho National Lab, Oak Ridge National Lab Prepared by Alvin Womac, Biosystems Engineering, Univ. Tenn. A high-tonnage feedstock supply system was developed using agricultural, transportation, and industrial technologies

  20. Development of a High-Efficiency Zonal Thermoelectric HVAC System for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Automotive Applications | Department of Energy a High-Efficiency Zonal Thermoelectric HVAC System for Automotive Applications Development of a High-Efficiency Zonal Thermoelectric HVAC System for Automotive Applications Identify a technical and business approach to accelerate the deployment of light-duty automotive TE HVAC technology, maintain occupant comfort, and improve energy efficiency. PDF icon deer09_maranville.pdf More Documents & Publications Progress toward Development of a

  1. Quenching and Partitioning Process Development to Replace Hot Stamping of High Strength Automotive Steel

    Energy Savers [EERE]

    Emmanuel De Moor Colorado School of Mines U.S. DOE Advanced Manufacturing Office Peer Review Meeting Washington, D.C. May 6-7, 2014 This presentation does not contain any proprietary, confidential, or otherwise restricted information. Elongation (% %) Second Generation AHSS 70 60 50 40 Hot Stamping Mild 30 BH 20 10 MART Before hardening 0 0 300 600 600 900 1200 1600 Tensile Strength (MPa) Elongation ( ) Develop High Strength Formable Steels � � Develop High Strength Sheet Steels for the

  2. Development of a high-density gas-jet target for nuclear astrophysics and reaction studies with rare isotope beams. Final Report

    SciTech Connect (OSTI)

    Uwe, Greife

    2014-08-12

    The purpose of this project was to develop a high-density gas jet target that will enable a new program of transfer reaction studies with rare isotope beams and targets of hydrogen and helium that is not currently possible and will have an important impact on our understanding of stellar explosions and of the evolution of nuclear shell structure away from stability. This is the final closeout report for the project.

  3. Multilayer co-extrusion technique for developing high energy density organic devices.

    SciTech Connect (OSTI)

    Spangler, Scott W.; Schroeder, John Lee; Mrozek, Randy; Bieg, Lothar Franz; Rao, Rekha Ranjana; Lenhart, Joseph Ludlow; Stavig, Mark Edwin; Cole, Phillip James; Mondy, Lisa Ann; Winter, Michael R.; Schneider, Duane Allen

    2009-11-01

    The purpose of this project is to develop multi-layered co-extrusion (MLCE) capabilities at Sandia National Laboratories to produce multifunctional polymeric structures. Multi-layered structures containing layers of alternating electrical, mechanical, optical, or structural properties can be applied to a variety of potential applications including energy storage, optics, sensors, mechanical, and barrier applications relevant to the internal and external community. To obtain the desired properties, fillers must be added to the polymer materials that are much smaller than the end layer thickness. We developed two filled polymer systems, one for conductive layers and one for dielectric layers and demonstrated the potential for using MLCE to manufacture capacitors. We also developed numerical models to help determine the material and processing parameters that impact processing and layer stability.

  4. Application of nonparametric regression and statistical testing to identify the impact of oil and natural gas development on local air quality

    SciTech Connect (OSTI)

    Pekney, Natalie J.; Cheng, Hanqi; Small, Mitchell J.

    2015-11-05

    Abstract: The objective of the current work was to develop a statistical method and associated tool to evaluate the impact of oil and natural gas exploration and production activities on local air quality.

  5. Los Alamos develops new technique for growing high-efficiency perovskite

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solar cells Growing high-efficiency perovskite solar cells Los Alamos develops new technique for growing high-efficiency perovskite solar cells Researchers reveal a new solution-based hot-casting technique that allows growth of highly efficient and reproducible solar cells from large-area perovskite crystals. January 29, 2015 Scientists Aditya Mohite, left, and Wanyi Nie are perfecting a crystal production technique to improve perovskite crystal production for solar cells at Los Alamos

  6. Development of High-Volume Warm Forming of Low-Cost Magnesium Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    USAMP AMD 602 - High-Volume Warm Forming of Low-Cost Magnesium Sheet Development of High-Volume Warm Forming of Low-Cost Magnesium Sheet Project ID "LM10" AMD 602 1 This presentation does not contain any proprietary, confidential or otherwise protected information 2010 DOE Merit Review Presentation Prepared by: Peter Friedman, Ford Motor Company USAMP AMD 602 - High-Volume Warm Forming of Low-Cost Magnesium Sheet Acknowledgement This presentation does not contain any proprietary,

  7. Impacts of Microphysical Scheme on Convective and Stratiform Characteristics in Two High Precipitation Squall Line Events

    SciTech Connect (OSTI)

    Wu, Di; Dong, Xiquan; Xi, Baike; Feng, Zhe; Kennedy, Aaron; Mullendore, Gretchen; Gilmore, Matthew; Tao, Wei-Kuo

    2013-10-04

    This study investigates the impact of snow, graupel, and hail processes on the simulated squall lines over the Southern Great Plains in the United States. Weather Research and Forecasting (WRF) model is used to simulate two squall line events in May 2007, and the results are validated against radar and surface observations in Oklahoma. Several microphysics schemes are tested in this study, including WRF 5-Class Microphysics Scheme (WSM5), WRF 6-Class Microphysics Scheme (WSM6), Goddard Three Ice scheme (Goddard 3-ice) with graupel, Goddard Two Ice scheme (Goddard 2-ice), and Goddard 3-ice hail scheme. The simulated surface precipitation is sensitive to the microphysics scheme, and especially to whether graupel or hail category is included. All of the three ice (3-ice) schemes overestimated the total precipitation, within which WSM6 has the highest overestimation. Two ice (2-ice) schemes, missing a graupel/hail category, produced less total precipitation than 3-ice schemes. By applying a radar-based convective/stratiform partitioning algorithm, we find that by including the graupel/hail processes, there is an increase in areal coverage, precipitation intensity, updraft and downdraft intensity in convective region and a reduction of areal coverage and its precipitation intensity in stratiform region. For vertical structures, all the bulk schemes, especially 2-ice schemes, have the highest reflectivity located at upper levels (~8 km), which is unrealistic compared to observations. In addition, this study shows the radar-based convective/stratiform partitioning algorithm can reasonably identify WRF simulated precipitation, wind and microphysics fields in both convective and stratiform regions.

  8. Development of the high-level waste high-temperature melter feed preparation flowsheet for vitrification process testing

    SciTech Connect (OSTI)

    Seymour, R.G.

    1995-02-17

    High-level waste (HLW) feed preparation flowsheet development was initiated in fiscal year (FY) 1994 to evaluate alternative flowsheets for preparing melter feed for high-temperature melter (HTM) vitrification testing. Three flowsheets were proposed that might lead to increased processing capacity relative to the Hanford Waste Vitrification Plant (HWVP) and that were flexible enough to use with other HLW melter technologies. This document describes the decision path that led to the selection of flowsheets to be tested in the FY 1994 small-scale HTM tests. Feed preparation flowsheet development for the HLW HTM was based on the feed preparation flowsheet that was developed for the HWVP. This approach allowed the HLW program to build upon the extensive feed preparation flowsheet database developed under the HWVP Project. Primary adjustments to the HWVP flowsheet were to the acid adjustment and glass component additions. Developmental background regarding the individual features of the HLW feed preparation flowsheets is provided. Applicability of the HWVP flowsheet features to the new HLW vitrification mission is discussed. The proposed flowsheets were tested at the laboratory-scale at Pacific Northwest Laboratory. Based on the results of this testing and previously established criteria, a reductant-based flowsheet using glycolic acid and a nitric acid-based flowsheet were selected for the FY 1994 small-scale HTM testing.

  9. Development of a High-Temperature Diagnostics-While-Drilling Tool |

    Office of Environmental Management (EM)

    Department of Energy Development of a High-Temperature Diagnostics-While-Drilling Tool Development of a High-Temperature Diagnostics-While-Drilling Tool This report documents work performed in the second phase of the Diagnostics-While-Drilling (DWD) project in which a high-temperature (HT) version of the phase 1 low-temperature (LT) proof-of-concept (POC) DWD tool was built and tested. Descriptions of the design, fabrication and field testing of the HT tool are provided. PDF icon

  10. GE Develops High Water Recovery Technology in China | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Develops High Water Recovery Technology in China Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) GE Develops High Water Recovery Technology in China Technology aims to boost development of China's household water purification industry SHANGHAI, September. 17, 2015 - A team of scientists led by the Coating and Membrane

  11. Road Map for Development of Crystal-Tolerant High Level Waste Glasses

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Road Map for Development of Crystal-Tolerant High Level Waste Glasses Citation Details In-Document Search Title: Road Map for Development of Crystal-Tolerant High Level Waste Glasses This road map guides the research and development for formulation and processing of crystal-tolerant glasses, identifying near- and long-term activities that need to be completed over the period from 2014 to 2019. The primary objective is to maximize waste loading for Hanford

  12. Development of High Rate Coating Technology for Low Cost Electrochromic Dynamic Windows

    SciTech Connect (OSTI)

    Kwak, B.; Joshi, Ajey

    2013-03-31

    Objectives of the Project: The objective of this project was to develop and demonstrate the feasibility of depositing critical electrochromic layers at high rate using new novel vacuum coating sources, to develop a full electrochromic process flow by combining conventional processes with new deposition sources, to characterize, test, evaluate, and optimize the resulting coatings and devices, and, to demonstrate an electrochromic device using the new process flow and sources. As addendum objectives, this project was to develop and demonstrate direct patterning methods with novel integration schemes. The long term objective, beyond this program, is to integrate these innovations to enable production of low-cost, high-performance electrochromic windows produced on highly reliable and high yielding manufacturing equipment and systems.

  13. The Potential Impacts of OTEC Intakes on Aquatic Organisms at an OTEC Site under Development on Kauai, HI

    SciTech Connect (OSTI)

    Oney, Stephen K.; Hogan, Timothy; Steinbeck, John

    2013-08-31

    Ocean thermal energy conversion (OTEC) is a marine renewable energy technology with the potential to contribute significantly to the baseload power needs of tropical island communities and remote U.S. military installations. As with other renewable energy technologies, however, there are potential challenges to its commercialization: technological, financial, social, and environmental. Given the large volumes of seawater required to drive the electricity-producing cycle, there is potential for the intakes to negatively impact the marine resources of the source waterbody through the impingement and entrainment of marine organisms. The goal of this project was to identify feasible warm water intake designs for a land-based OTEC facility proposed for development in Port Allen, Kauai and to characterize the populations of ichthyoplankton near the proposed warm water intake location that could be at risk of entrainment. The specific objectives of this project were to: • Complete a site-specific assessment of available and feasible warm water intake technologies to determine the best intake designs for minimizing impacts to aquatic organisms at the proposed land-based OTEC site in Port Allen, Kauai. • Complete a field sampling program to collect biological data to characterize the baseline populations of ichthyoplankton near the sites being considered for the warm water intake at the proposed land-based OTEC site in Port Allen, Kauai. Various intake design options are presented with the focus on providing adequate environmental protection to the local ichthyoplankton population while providing an economically viable intake option to the OTEC developer. Further definition by NOAA and other environmental regulators is required to further refine the designs presented to meet all US regulations for future OTEC development.

  14. Manganese and Ceria Sorbents for High Temperature Sulfur Removal from Biomass-Derived Syngas -- The Impact of Steam on Capacity and Sorption Mode

    SciTech Connect (OSTI)

    Cheah, S.; Parent, Y. O.; Jablonski, W. S.; Vinzant, T.; Olstad, J. L.

    2012-07-01

    Syngas derived from biomass and coal gasification for fuel synthesis or electricity generation contains sulfur species that are detrimental to downstream catalysts or turbine operation. Sulfur removal in high temperature, high steam conditions has been known to be challenging, but experimental reports on methods to tackle the problem are not often reported. We have developed sorbents that can remove hydrogen sulfide from syngas at high temperature (700 C), both in dry and high steam conditions. The syngas composition chosen for our experiments is derived from statistical analysis of the gasification products of wood under a large variety of conditions. The two sorbents, Cu-ceria and manganese-based, were tested in a variety of conditions. In syngas containing steam, the capacity of the sorbents is much lower, and the impact of the sorbent in lowering H{sub 2}S levels is only evident in low space velocities. Spectroscopic characterization and thermodynamic consideration of the experimental results suggest that in syngas containing 45% steam, the removal of H{sub 2}S is primarily via surface chemisorptions. For the Cu-ceria sorbent, analysis of the amount of H{sub 2}S retained by the sorbent in dry syngas suggests both copper and ceria play a role in H{sub 2}S removal. For the manganese-based sorbent, in dry conditions, there is a solid state transformation of the sorbent, primarily into the sulfide form.

  15. Economic Development Impacts in Colorado from Four Vestas Manufacturing Facilities, Wind Powering America Fact Sheet Series

    SciTech Connect (OSTI)

    Not Available

    2009-04-01

    This case study summarizes the economic development benefits to Colorado from four Vestas manufacturing facilities: one in Windsor, two in Brighton, and one in Pueblo (which is planned to be the world's largest tower-manufacturing facility). In the midst of an economic slowdown during which numerous U.S. manufacturers have closed their doors, wind energy component manufacturing is one U.S. industry that has experienced unprecedented growth during the past few years. As demand for wind power in the United States has increased and transportation costs have increased around the world, states have seen a significant increase in the number of manufacturers that produce wind turbine components in the United States. Vestas' Colorado operations will bring approximately $700 million in capital investment and nearly 2,500 jobs to the state.

  16. The impact of interface/connection technology on determination of risk in a subsea development

    SciTech Connect (OSTI)

    Frisbie, F.R.

    1995-12-31

    Subsea production is a long time player in offshore oil and gas scenarios, particularly in relatively shallow waters and in combination with uncomplicated reservoir workover requirements and simple product chemistries. The increasing emphasis on deepwater hydrocarbon potential creates significant new opportunities for utilizing subsea production systems, if some of the risk factors can be fully quantified and mitigated. This paper will address those aspects of subsea production risk associated with the interface requirements, specifically those associated with providing override and replacement capabilities for failed subsea hardware, and with the connection technology for lowlines and umbilicals. If these areas of potential failure can be shown to be manageable, then a major area of risk associated with subsea developments can be eliminated.

  17. THERMAL AND RADIATIVE ACTIVE GALACTIC NUCLEUS FEEDBACK HAVE A LIMITED IMPACT ON STAR FORMATION IN HIGH-REDSHIFT GALAXIES

    SciTech Connect (OSTI)

    Roos, Orianne; Juneau, Stphanie; Bournaud, Frdric; Gabor, Jared M.

    2015-02-10

    The effects of active galactic nuclei (AGNs) on their host galaxies depend on the coupling between the injected energy and the interstellar medium (ISM). Here, we model and quantify the impact of long-range AGN ionizing radiationin addition to the often considered small-scale energy depositionon the physical state of the multi-phase ISM of the host galaxy and on its total star formation rate (SFR). We formulate an AGN spectral energy distribution matched with observations, which we use with the radiative transfer (RT) code Cloudy to compute AGN ionization in a simulated high-redshift disk galaxy. We use a high-resolution (?6 pc) simulation including standard thermal AGN feedback and calculate RT in post-processing. Surprisingly, while these models produce significant AGN-driven outflows, we find that AGN ionizing radiation and heating reduce the SFR by a few percent at most for a quasar luminosity (L {sub bol} = 10{sup 46.5} erg s{sup 1}). Although the circumgalactic gaseous halo can be kept almost entirely ionized by the AGN, most star-forming clouds (n ? 10{sup 2} {sup } {sup 3} cm{sup 3}) and even the reservoirs of cool atomic gas (n ? 0.3-10 cm{sup 3})which are the sites of future star formation (SF; 100-200 Myr), are generally too dense to be significantly affected. Our analysis ignores any absorption from a putative torus, making our results upper limits on the effects of ionizing radiation. Therefore, while the AGN-driven outflows can remove substantial amounts of gas in the long term, the impact of AGN feedback on the SF efficiency in the interstellar gas in high-redshift galaxies is marginal, even when long-range radiative effects are accounted for.

  18. High performance steam development. Final report, Phase No. 3: 1500{degree}F steam plant for industrial cogeneration prototype development tests

    SciTech Connect (OSTI)

    Duffy, T.; Schneider, P.

    1996-01-01

    As a key part of DOE`s and industry`s R&D efforts to improve the efficiency, cost, and emissions of power generation, a prototype High Performance Steam System (HPSS) has been designed, built, and demonstrated. The world`s highest temperature ASME Section I coded power plant successfully completed over 100 hours of development tests at 1500{degrees}F and 1500 psig on a 56,000 pound per hour steam generator, control valve and topping turbine at an output power of 5500 hp. This development advances the HPSS to 400{degrees}F higher steam temperature than the current best technology being installed around the world. Higher cycle temperatures produce higher conversion efficiencies and since steam is used to produce the large majority of the world`s power, the authors expect HPSS developments will have a major impact on electric power production and cogeneration in the twenty-first century. Coal fueled steam plants now produce the majority of the United States electric power. Cogeneration and reduced costs and availability of natural gas have now made gas turbines using Heat Recovery Steam Generators (HRSG`s) and combined cycles for cogeneration and power generation the lowest cost producer of electric power in the United States. These gas fueled combined cycles also have major benefits in reducing emissions while reducing the cost of electricity. Development of HPSS technology can significantly improve the efficiency of cogeneration, steam plants, and combined cycles. Figure 2 is a TS diagram that shows the HPSS has twice the energy available from each pound of steam when expanding from 1500{degrees}F and 1500 psia to 165 psia (150 psig, a common cogeneration process steam pressure). This report describes the prototype component and system design, and results of the 100-hour laboratory tests. The next phase of the program consists of building up the steam turbine into a generator set, and installing the power plant at an industrial site for extended operation.

  19. The development and application of the chemical mixture methodology in analysis of potential health impacts from airborne release in emergencies

    SciTech Connect (OSTI)

    Yu, Xiao-Ying; Petrocchi, Achille J.; Craig, Douglas K.; Glantz, Clifford S.; Trott, Donna M.; Ciolek, John T.; Lu, Po-Yung; Bond, Jayne-Anne; Tuccinardi, Thomas E.; Bouslaugh, Philip R.

    2010-07-15

    The Chemical Mixture Methodology (CMM) is used for emergency response and safety planning by the U.S. Department of Energy, its contractors, and other private and public sector organizations. The CMM estimates potential health impacts on individuals and their ability to take protective actions as a result of exposure to airborne chemical mixtures. They are based on the concentration of each chemical in the mixture at a designated receptor location, the protective action criteria (PAC) providing chemical-specific exposure limit values, and the health code numbers (HCNs) that identify the target organ groupings that may be impacted by exposure to each chemical in a mixture. The CMM has been significantly improved since its introduction more than 10 years ago. Major enhancements involve the expansion of the number of HCNs from 44 to 60 and inclusion of updated PAC values based on an improved development methodology and updates in the data used to derive the PAC values. Comparisons between the 1999 and 2009 versions of the CMM show potentially substantial changes in the assessment results for selected sets of chemical mixtures. In particular, the toxic mode hazard indices (HIs) and target organ HIs are based on more refined acute HCNs, thereby improving the quality of chemical consequence assessment, emergency planning, and emergency response decision making. Seven hypothetical chemical storage and processing scenarios are used to demonstrate how the CMM is applied in emergency planning and hazard assessment.

  20. Modification of Corn Starch Ethanol Refinery to Efficiently Accept Various High-Impact Cellulosic Feedstocks

    SciTech Connect (OSTI)

    Derr, Dan

    2013-12-30

    The goal of the Corn-to-Cellulosic Migration (CCM) pilot facility was to demonstrate the implementation of advanced technologies and methods for conversion of non-food, cellulosic feedstocks into ethanol, assess the economics of the facility and evaluate potential environmental benefits for biomass to fuels conversion. The CCM project was comprised of design, build, and operate phases for the CCM pilot facility as well as research & development, and modeling components. The CCM pilot facility was designed to process 1 tonne per day of non-food biomass and biologically convert that biomass to ethanol at a rate of 70 gallons per tonne. The plant demonstrated throughputs in excess of 1 tonne per day for an extended run of 1400 hours. Although target yields were not fully achieved, the continuous operation validated the design and operability of the plant. These designs will permit the design of larger scale operations at existing corn milling operations or for greenfield plants. EdeniQ, a partner in the project and the owner of the pilot plant, continues to operate and evaluate other feedstocks.

  1. High speed measurements of neutral beam turn-on and impact of beam modulation on measurements of ion density

    SciTech Connect (OSTI)

    Grierson, B. A. Grisham, L.; Burrell, K. H.; Crowley, B.; Scoville, J. T.

    2014-10-15

    Modulation of neutral beams on tokamaks is performed routinely, enabling background rejection for active spectroscopic diagnostics, and control of injected power and torque. We find that there exists an anomalous initial transient in the beam neutrals delivered to the tokamak that is not accounted for by the accelerator voltage and power supply current. Measurements of the charge-exchange and beam photoemission on the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] at high speed (200 ?s) reveal that the energy of the beam neutrals is constant, but the density of beam neutrals displays dramatic variation in the first 23 ms following beam turn-on. The impact of this beam density variation on inferred ion densities and impurity transport is presented, with suggested means to correct for the anomalous transient.

  2. Progress in model development to quantify High Explosive Violent Response (HEVR) to mechancial insult

    SciTech Connect (OSTI)

    Reaugh, J E

    2008-07-29

    The rapid release of chemical energy has found application for industrial and military purposes since the invention of gunpowder. Black powder, smokeless powder of various compositions, and pyrotechnics all exhibit the rapid release of energy without detonation when they are being used as designed. The rapidity of energy release for these materials is controlled by adjustments to the particle surface area (propellant grain configuration or powder particle size) in conjunction with the measured pressure-dependent burning rate, which is very subsonic. In this way a manufacturing process can be used to engineer the desired violence of the explosion. Detonations in molecular explosives, in contrast, propagate with a supersonic velocity that depends on the loading density, but is independent of the surface area. In ideal detonations, the reaction is complete within a small distance of the propagating shock front. Non-ideal detonations in molecular and composite explosives proceed with a slower velocity, and the reaction may continue well behind the shock front. We are developing models to describe the circumstances when molecular and composite explosives undergo a rapid release of energy without detonating. The models also apply to the behavior of rocket propellants subject to mechanical insult, whether for accidents (Hazards) or the suite of standardized tests used to assess whether the system can be designated an Insensitive Munition (IM). In the application described here, we are studying an HMX (1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane) explosive developed in the UK, which is 91% by weight HMX and 9% binder-plasticizer. Most explosives and propellants, when subjected to a mechanical insult, drop or impact that is well below the threshold for detonation have been observed to react violently. This behavior is known as High Explosive Violent Reaction (HEVR). The basis of our model is the observation that the mechanical insult produces damage in a volume of the explosive near the trajectory of the impactor. The damage is manifest as surface area through the creation of cracks and fragments, and also as porosity through the separation of crack faces and isolation of the fragments. Open porosity permits a flame to spread easily and so ignite the surface area that was created. The surface area itself leads to in increase in the mass-burning rate. As the kinetic energy and power of the insult increases, the degree of damage and the volume of damage both increase. Upon a localized ignition, the flame spreads to envelop the damaged volume, and the pressure rises at an accelerated rate until neither mechanical strength nor inertial confinement can successfully contain the pressure. The confining structure begins to expand. This reduces the pressure and may even extinguish the flame. Both the mass of explosive involved and the rate at which the gas is produced contribute to each of several different measures of violence. Such measures include damage to the confinement, the velocity and fragment size distributions from what was the confinement, and air blast. Figure 1 illustrates the interaction of the various phenomena described above. Our model comprises several interacting elements. The production of damage, the ignition criterion, the mass rate of burning (reaction rate), the equations of state and constitutive models of the solid explosive reactant (unburned) and gas products, flame propagation in damaged reactant, and the progressive failure of the confinement are all elements of the model. The model is intended for implementation in a general-purpose simulation program (hydrocode) that solves the partial differential equations for the conservation of mass, momentum, and energy in conjunction with equations of state and strength.

  3. Fundamental understanding and development of low-cost, high-efficiency silicon solar cells

    SciTech Connect (OSTI)

    ROHATGI,A.; NARASIMHA,S.; MOSCHER,J.; EBONG,A.; KAMRA,S.; KRYGOWSKI,T.; DOSHI,P.; RISTOW,A.; YELUNDUR,V.; RUBY,DOUGLAS S.

    2000-05-01

    The overall objectives of this program are (1) to develop rapid and low-cost processes for manufacturing that can improve yield, throughput, and performance of silicon photovoltaic devices, (2) to design and fabricate high-efficiency solar cells on promising low-cost materials, and (3) to improve the fundamental understanding of advanced photovoltaic devices. Several rapid and potentially low-cost technologies are described in this report that were developed and applied toward the fabrication of high-efficiency silicon solar cells.

  4. Development of high-intensity D-D and D-T neutron sources and neutron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    filters for medical and industrial applications (Thesis/Dissertation) | SciTech Connect Thesis/Dissertation: Development of high-intensity D-D and D-T neutron sources and neutron filters for medical and industrial applications Citation Details In-Document Search Title: Development of high-intensity D-D and D-T neutron sources and neutron filters for medical and industrial applications × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a

  5. Quenching and Partitioning Process Development to Replace Hot Stamping of High-Strength Automotive Steel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quenching and Partitioning Process ADVANCED MANUFACTURING OFFICE Quenching and Partitioning Process Development to Replace Hot Stamping of High-Strength Automotive Steel Novel Steel Heat Treatment Process to Produce Third Generation AHSS Allowing Room-Temperature Stamping Operations. The automotive industry is meeting the challenge of improving fuel effciency without compromising vehicle safety in part by using lighter-weight materials such as frst-generation Advanced High-Strength Steels

  6. Development of 3rd Generation Advanced High Strength Steels (AHSS) with an

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Experimental and Simulation Approach | Department of Energy 3rd Generation Advanced High Strength Steels (AHSS) with an Integrated Experimental and Simulation Approach Development of 3rd Generation Advanced High Strength Steels (AHSS) with an Integrated Experimental and Simulation Approach 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon lm082_sun_2013_o.pdf More Documents & Publications Vehicle

  7. Development of a High Efficiency Hot Gas Turbo-expander and Low Cost Heat

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exchangers for Optimized CSP Supercritical CO2 Operation | Department of Energy a High Efficiency Hot Gas Turbo-expander and Low Cost Heat Exchangers for Optimized CSP Supercritical CO2 Operation Development of a High Efficiency Hot Gas Turbo-expander and Low Cost Heat Exchangers for Optimized CSP Supercritical CO2 Operation This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23-25, 2013 near Phoenix, Arizona. PDF icon

  8. Development of a New Generation, High Efficiency PEM Fuel Cell Based, CHP

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System | Department of Energy a New Generation, High Efficiency PEM Fuel Cell Based, CHP System Development of a New Generation, High Efficiency PEM Fuel Cell Based, CHP System Part of a $100 million fuel cell award announced by DOE Secretary Bodman on Oct. 25, 2006. PDF icon 7_intelligent.pdf More Documents & Publications 2012 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program 2011 Pathways to Commercial Success: Technologies and

  9. A pilot-scale field study on the anaerobic biotreatment of soil impacted with highly chlorinated benzenes

    SciTech Connect (OSTI)

    Ramanand, K.; Foulke, B.; Delnicki, W.A.; Ying, A.C.; Baek, N.H.; Coats, M.L.; Duffy, J.J.

    1995-12-31

    An on-site pilot-scale demonstration of anaerobic biodegradation of highly chlorinated benzenes was successfully performed at a chemical manufacturing industrial facility in Niagara Falls, New York. The field investigation was conducted in 6-yd{sup 3} capacity soil boxes. Approximately 4 yd{sup 3} of soil impacted with chlorinated compounds was placed in each soil box. Chlorinated benzenes with 3 or more chlorines accounted for about 85% of the total chemistry in the soil. The soil box amended with water, nutrients, and acclimated soil microbial inoculum exhibited greater than 78% reduction in the levels of highly chlorinated compounds after one year of field study. The total concentrations of hexa-, penta-, tetra-, and trichlorobenzenes decreased from 920 mg/kg to less than 190 mg/kg, while the total concentrations of di-, and monochlorobenzene increased from 8 mg/kg to greater than 400 mg/kg during one year of field operation. The control soil that did not receive any external nutrient or microbial amendments maintained the same percentage of the highly chlorinated benzenes after one year and di-, and monochlorobenzene never exceeded more than 4 mg/kg at any given time period. The anaerobic activity was further confirmed by monitored parameters such as nutrient consumption (butyrate, nitrogen, organic matter), sulfate depletion, and methane production.

  10. High-Performance Computing for Alloy Development | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High-Performance Computing for Alloy Development alloy-development.jpg Tomorrow's fossil-fuel based power plants will achieve higher efficiencies by operating at higher pressures and temperatures and under harsher and more corrosive conditions. Unfortunately, conventional metals simply cannot withstand these extreme environments, so advanced alloys must be designed and fabricated to meet the needs of these advanced systems. The properties of metal alloys, which are mixtures of metallic elements,

  11. Development of High Capacity Anode for Li-ion Batteries | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy High Capacity Anode for Li-ion Batteries Development of High Capacity Anode for Li-ion Batteries 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon es065_zhang_2010_p.pdf More Documents & Publications Novel Lithium Ion Anode Structures: Overview of New DOE BATT Anode Projects Hybrid Nano Carbon Fiber/Graphene Platelet-Based High-Capacity Anodes for Lithium Ion Batteries Hybrid Nano Carbon

  12. Development and Testing of a High Capacity Plasma Chemical Reactor in the Ukraine

    SciTech Connect (OSTI)

    Reilly, Raymond W.

    2012-07-30

    This project, Development and Testing of a High Capacity Plasma Chemical Reactor in the Ukraine was established at the Kharkiv Institute of Physics and Technology (KIPT). The associated CRADA was established with Campbell Applied Physics (CAP) located in El Dorado Hills, California. This project extends an earlier project involving both CAP and KIPT conducted under a separate CRADA. The initial project developed the basic Plasma Chemical Reactor (PCR) for generation of ozone gas. This project built upon the technology developed in the first project, greatly enhancing the output of the PCR while also improving reliability and system control.

  13. Assessment of H-Coal process developments: impact on the performance and economics of a proposed commercial plant

    SciTech Connect (OSTI)

    Talib, A.; Gray, D.; Neuworth, M.

    1984-01-01

    This report assesses the performance of the H-Coal process, a catalytic direct liquefaction process, at a process development and large pilot-plant scale of operation. The assessment focused on the evaluation of operating results from selected long-term successful process development unit (PDU) and pilot plant runs made on Illinois No. 6 coal. The pilot plant has largely duplicated the product yield structure obtained during the PDU runs. Also, the quality of products, particularly liquid products, produced during the pilot plant run is quite comparable to that produced during the PDU runs. This confirms the scalability of the H-Coal ebullated-bed reactor system from a PDU-scale, 3 tons of coal per day, to a large pilot scale, 220 tons of coal per day, plant. The minor product yield differences, such as higher yields of C/sub 3/, C/sub 4/, and naphtha fractions, and lower yields of distillate oils obtained during pilot plant runs as compared to the PDU runs, will not impact the projected technical and economic performance of a first-of-a-kind commercial H-Coal plant. Thus, the process yield and operating data collected during the PDU operations provided an adequate basis for projecting the technical and economic performance of the proposed H-Coal commercial plant. 18 references, 9 figures, 56 tables.

  14. DEVELOPMENT OF A NEW GLOVE FOR GLOVE BOXES WITH HIGH-LEVEL PERFORMANCES

    SciTech Connect (OSTI)

    Blancher, J.; Poirier, J.M.

    2003-02-27

    This paper describes the results of a joint technological program of COGEMA and MAPA to develop a new generation of glove for glove boxes. The mechanical strength of this glove is twice as high as the best characteristics of gloves available on the market. This new generation of product has both a higher level of performance and better ergonomics.

  15. Figure 7. Projected Production for the High Development Rate of Technically

    U.S. Energy Information Administration (EIA) Indexed Site

    Recoverable Oil 7. Projected Production for the High Development Rate of Technically Recoverable Oil Estimated at 5 Percent, Mean, and 95 Percent Probabilities for the ANWR Coastal Plain of the Alaska North Slope fig7.jpg (43335 bytes) Source

  16. Development of a super high speed motor-generator and controller

    SciTech Connect (OSTI)

    Hong, Do-Kwan Ahn, Min-Hyuk; Joo, Dae-Suk; Woo, Byung-Chul; Koo, Dae-Hyun

    2014-05-07

    To develop a super high speed motor-generator, it is essential to deal with magnetic analysis, dynamic analysis, and experimental evaluation of the heart of the MTG (Microturbine Generator) system, the motor-generator. An amorphous core is applied to a stator core for reduction of iron loss at high speed, and the motor-generator is analyzed with considerations focused on magnetic losses and the statistical optimum design. The performance of the amorphous core is validated by the analysis and experiment by back-to-back tests considering the AC load. Rotor dynamics is performed for dynamic stability at high speed using transient analysis orbit diagrams and compared with the experimental results. The simulation results of the generator are compared with the experiment. Also a super high speed controller of the MTG system is developed using a sensorless algorithm, power stack, gate driver, digital signal processing, analog circuit, and radiation heat design. Based on these results, a high speed motor-generator and controller are successfully developed.

  17. PROJECT PROFILE: Rapid QSTS Simulations for High-Resolution Comprehensive Assessment of Distributed PV Impacts (SuNLaMP)

    Broader source: Energy.gov [DOE]

    This project, led by Sandia National Laboratory and supported by the National Renewable Energy Laboratory, will accelerate Quasi Static Time Series (QSTS) simulation capabilities through the use of new and innovative methods for advanced time-series analysis. Currently, QSTS analysis is not commonly performed in photovoltaic (PV) interconnection studies because of the data requirements and computational burden. This project will address both of these issues by developing advanced QSTS methods that greatly reduce the required computational time and by developing high-proxy data sets.

  18. Development of a high average current polarized electron source with long cathode operational lifetime

    SciTech Connect (OSTI)

    C. K. Sinclair; P. A. Adderley; B. M. Dunham; J. C. Hansknecht; P. Hartmann; M. Poelker; J. S. Price; P. M. Rutt; W. J. Schneider; M. Steigerwald

    2007-02-01

    Substantially more than half of the electromagnetic nuclear physics experiments conducted at the Continuous Electron Beam Accelerator Facility of the Thomas Jefferson National Accelerator Facility (Jefferson Laboratory) require highly polarized electron beams, often at high average current. Spin-polarized electrons are produced by photoemission from various GaAs-based semiconductor photocathodes, using circularly polarized laser light with photon energy slightly larger than the semiconductor band gap. The photocathodes are prepared by activation of the clean semiconductor surface to negative electron affinity using cesium and oxidation. Historically, in many laboratories worldwide, these photocathodes have had short operational lifetimes at high average current, and have often deteriorated fairly quickly in ultrahigh vacuum even without electron beam delivery. At Jefferson Lab, we have developed a polarized electron source in which the photocathodes degrade exceptionally slowly without electron emission, and in which ion back bombardment is the predominant mechanism limiting the operational lifetime of the cathodes during electron emission. We have reproducibly obtained cathode 1/e dark lifetimes over two years, and 1/e charge density and charge lifetimes during electron beam delivery of over 2?105???C/cm2 and 200 C, respectively. This source is able to support uninterrupted high average current polarized beam delivery to three experimental halls simultaneously for many months at a time. Many of the techniques we report here are directly applicable to the development of GaAs photoemission electron guns to deliver high average current, high brightness unpolarized beams.

  19. Cold Crucible Induction Melting Technology for Vitrification of High Level Waste: Development and Status in India

    SciTech Connect (OSTI)

    Sugilal, G.; Sengar, P.B.S. [Nuclear Recycle Group, Bhabha Atomic Research Centre, Trombay, Mumbai (India)

    2008-07-01

    Cold crucible induction melting is globally emerging as an alternative technology for the vitrification of high level radioactive waste. The new technology offers several advantages such as high temperature availability with long melter life, high waste loading, high specific capacity etc. Based on the laboratory and bench scale studies, an engineering scale cold crucible induction melter was locally developed in India. The melter was operated continuously to assess its performance. The electrical and thermal efficiencies were found to be in the range of 70-80 % and 10-20 % respectively. Glass melting capacities up to 200 kg m{sup -2} hr{sup -1} were accomplished using the ESCCIM. Industrially adaptable melter operating procedures for start-up, melting and pouring operations were established (author)

  20. The commercial development of water repellent coatings for high voltage transmission lines

    SciTech Connect (OSTI)

    Hunter, S. R.; Daniel, A.

    2013-10-31

    The purpose of the Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC and Southwire Company was to jointly develop a low cost, commercially viable, water-repellant anti-icing coating system for high voltage transmission lines. Icing of power lines and other structures caused by freezing rain events occurs annually in the United States, and leads to severe and prolonged power outages. These outages cause untold economic and personal distress for many American families and businesses. Researchers at the Department of Energy?s Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee have previously developed a set of superhydrophobic coatings with remarkable anti-icing properties that could potentially be sprayed or painted onto high-tension power lines and pylons. These coatings drastically reduce ice accumulation on these structures during freezing rain events. The project involved obtaining technical input, supplies and test high voltage cables from Southwire, along with the joint development of anti-icing coating techniques, which would result in a commercial license agreement between Southwire and ORNL, and potentially other companies requiring water repellent anti-icing coatings.

  1. The commercial development of water repellent coatings for high voltage transmission lines

    SciTech Connect (OSTI)

    Hunter, Scott Robert

    2013-10-01

    The purpose of the Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC and Southwire Company was to jointly develop a low cost, commercially viable, water-repellant anti-icing coating system for high voltage transmission lines. Icing of power lines and other structures caused by freezing rain events occurs annually in the United States, and leads to severe and prolonged power outages. These outages cause untold economic and personal distress for many American families and businesses. Researchers at the Department of Energy s Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee have previously developed a set of superhydrophobic coatings with remarkable anti-icing properties that could potentially be sprayed or painted onto high-tension power lines and pylons. These coatings drastically reduce ice accumulation on these structures during freezing rain events. The project involved obtaining technical input, supplies and test high voltage cables from Southwire, along with the joint development of anti-icing coating techniques, which would result in a commercial license agreement between Southwire and ORNL, and potentially other companies requiring water repellent anti-icing coatings.

  2. High transition temperature superconductor/insulator bilayers for the development of ultra-fast electronics

    SciTech Connect (OSTI)

    Sirena, M.; Flix, L. Avils; Instituto Balseiro, Universidad Nacional de Cuyo and CNEA, 8400 Bariloche ; Haberkorn, N.

    2013-07-29

    High transition temperature superconductor (HTc)/SrTiO{sub 3} (STO) bilayers were fabricated by sputtering deposition on (100) STO substrates. Their transport and morphological properties were characterized using conductive atomic force microscopy. The STO barriers present good insulating properties, with long attenuation lengths (? ? 1 nm) which reduce the junction resistance and increase the operating critical current. The samples present roughness values smaller than 1 nm, with an extremely low density of surface defects (?5 10{sup ?5} defects/?m{sup 2}). The high control of the barrier quality over large defect free surfaces is encouraging for the development of microelectronics devices based in HTc Josephson junctions.

  3. The development of a subsea high integrity pipeline protection system (HIPPS)

    SciTech Connect (OSTI)

    Frafjord, P.; Corneliussen, S.; Adriaansen, L.A.

    1995-12-31

    This paper considers the design criteria for a subsea High Integrity Pipeline pressure Protection System (HIPPS), which enables subsea pipelines to be designed for the operating, rather than the shut in wellhead pressure. Such systems will save considerable investment cost in the development of high pressure offshore oil and gas fields, particularly where the distance to the processing infrastructure is long. The conceptual design of a HIPPS which comprises two rapidly closing valves to protect the pipeline from over-pressure, is described. The reliability of the system is assessed and dynamic simulation of the valve and process flow are discussed.

  4. Lead Research and Development Activity for DOE's High Temperature, Low Relative Humidity Membrane Program (Topic 2)

    SciTech Connect (OSTI)

    James Fenton, PhD; Darlene Slattery, PhD; Nahid Mohajeri, PhD

    2012-09-05

    The Department of Energys High Temperature, Low Relative Humidity Membrane Program was begun in 2006 with the Florida Solar Energy Center (FSEC) as the lead organization. During the first three years of the program, FSEC was tasked with developing non-Nafion proton exchange membranes with improved conductivity for fuel cells. Additionally, FSEC was responsible for developing protocols for the measurement of in-plane conductivity, providing conductivity measurements for the other funded teams, developing a method for through-plane conductivity and organizing and holding semiannual meetings of the High Temperature Membrane Working Group (HTMWG). The FSEC membrane research focused on the development of supported poly[perfluorosulfonic acid] (PFSA) Teflon membranes and a hydrocarbon membrane, sulfonated poly(ether ether ketone). The fourth generation of the PFSA membrane (designated FSEC-4) came close to, but did not meet, the Go/No-Go milestone of 0.1 S/cm at 50% relative humidity at 120 C. In-plane conductivity of membranes provided by the funded teams was measured and reported to the teams and DOE. Late in the third year of the program, DOE used this data and other factors to decide upon the teams to continue in the program. The teams that continued provided promising membranes to FSEC for development of membrane electrode assemblies (MEAs) that could be tested in an operating fuel cell. FSEC worked closely with each team to provide customized support. A logic flow chart was developed and discussed before MEA fabrication or any testing began. Of the five teams supported, by the end of the project, membranes from two of the teams were easily manufactured into MEAs and successfully characterized for performance. One of these teams exceeded performance targets, while the other requires further optimization. An additional team developed a membrane that shows great promise for significantly reducing membrane costs and increasing membrane lifetime.

  5. Development of high temperature solid lubricant coatings. Final report, 15 August 1997--14 August 1998

    SciTech Connect (OSTI)

    Bhattacharya, R.S.; Keller, S.

    1999-01-29

    The primary research objective of this work was to develop a solid lubricant coating that can function over a broad temperature range. The approach investigated consisted of developing adaptive lubricant coating from materials that undergo chemical change with increasing temperature by reacting together and with the environment. To test this approach, UES and Cleveland State University have conducted experiments to form cesium oxythiotungstate, a high temperature lubricant, on Inconel 718 surface from composite coatings of cesium tungstate and tungsten sulfide. The coatings were deposited by RF sputtering and characterized by X-ray Photoelectron Spectroscopy (XPS). The results indicate that sulfur escapes from the composite coating upon exposure to temperature above 5000C in air. Thus, the desired adaptive lubricant phase, cesium oxythiotungstate could not be formed. However, cesium oxythiotungstate phase has been found to form upon annealing at high temperature in vacuum. The friction coefficients of sputtered cesium oxythiotungstate and cesium tungstate coatings have been measured.

  6. Quenching and Partitioning Process Development to Replace Hot Stamping of High Strength Automotive Steel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. DOE Advanced Manufacturing Office Peer Review Meeting Washington, D.C. May 28-29, 2015 This presentation does not contain any proprietary, confidential, or otherwise restricted information. Project Objective  Develop high strength sheet steels for the automotive industry that can be formed at room temperature  Lean alloying to reduce cost  Practice today: Hot Stamping Process  Reheating to > 900 C and forming, quenching in die  Energy consumption associated with

  7. Coal-fueled high-speed diesel engine development: Task 2, Market assessment and economic analysis

    SciTech Connect (OSTI)

    Kakwani, R. M.; Wilson, Jr., R. P.; Winsor, R. E.

    1991-12-01

    Based on the preliminary coal engine design developed, this task was conducted to identify the best opportunity(s) to enter the market with the future coal-fueled, high-speed diesel engine. The results of this market and economic feasibility assessment will be used to determine what specific heavy duty engine application(s) are most attractive for coal fuel, and also define basic economic targets for the engine to be competitive.

  8. he Impact of Primary Marine Aerosol on Atmospheric Chemistry, Radiation and Climate: A CCSM Model Development Study

    SciTech Connect (OSTI)

    Keene, William C.; Long, Michael S.

    2013-05-20

    This project examined the potential large-scale influence of marine aerosol cycling on atmospheric chemistry, physics and radiative transfer. Measurements indicate that the size-dependent generation of marine aerosols by wind waves at the ocean surface and the subsequent production and cycling of halogen-radicals are important but poorly constrained processes that influence climate regionally and globally. A reliable capacity to examine the role of marine aerosol in the global-scale atmospheric system requires that the important size-resolved chemical processes be treated explicitly. But the treatment of multiphase chemistry across the breadth of chemical scenarios encountered throughout the atmosphere is sensitive to the initial conditions and the precision of the solution method. This study examined this sensitivity, constrained it using high-resolution laboratory and field measurements, and deployed it in a coupled chemical-microphysical 3-D atmosphere model. First, laboratory measurements of fresh, unreacted marine aerosol were used to formulate a sea-state based marine aerosol source parameterization that captured the initial organic, inorganic, and physical conditions of the aerosol population. Second, a multiphase chemical mechanism, solved using the Max Planck Institute for Chemistry??s MECCA (Module Efficiently Calculating the Chemistry of the Atmosphere) system, was benchmarked across a broad set of observed chemical and physical conditions in the marine atmosphere. Using these results, the mechanism was systematically reduced to maximize computational speed. Finally, the mechanism was coupled to the 3-mode modal aerosol version of the NCAR Community Atmosphere Model (CAM v3.6.33). Decadal-scale simulations with CAM v.3.6.33, were run both with and without reactive-halogen chemistry and with and without explicit treatment of particulate organic carbon in the marine aerosol source function. Simulated results were interpreted (1) to evaluate influences of marine aerosol production on the microphysical properties of aerosol populations and clouds over the ocean and the corresponding direct and indirect effects on radiative transfer; (2) atmospheric burdens of reactive halogen species and their impacts on O3, NOx, OH, DMS, and particulate non-sea-salt SO42-; and (3) the global production and influences of marine-derived particulate organic carbon. The model reproduced major characteristics of the marine aerosol system and demonstrated the potential sensitivity of global, decadal-scale climate metrics to multiphase marine-derived components of Earth??s troposphere. Due to the combined computational burden of the coupled system, the currently available computational resources were the limiting factor preventing the adequate statistical analysis of the overall impact that multiphase chemistry might have on climate-scale radiative transfer and climate.

  9. Discovery of star formation in the extreme outer galaxy possibly induced by a high-velocity cloud impact

    SciTech Connect (OSTI)

    Izumi, Natsuko; Kobayashi, Naoto; Hamano, Satoshi; Yasui, Chikako; Tokunaga, Alan T.; Saito, Masao

    2014-11-01

    We report the discovery of star formation activity in perhaps the most distant molecular cloud in the extreme outer galaxy. We performed deep near-infrared imaging with the Subaru 8.2 m telescope, and found two young embedded clusters at two CO peaks of 'Digel Cloud 1' at the kinematic distance of D = 16 kpc (Galactocentric radius R {sub G} = 22 kpc). We identified 18 and 45 cluster members in the two peaks, and the estimated stellar densities are ?5 and ?3 pc{sup 2}, respectively. The observed K-band luminosity function suggests that the age of the clusters is less than 1 Myr and also that the distance to the clusters is consistent with the kinematic distance. On the sky, Cloud 1 is located very close to the H I peak of high-velocity cloud Complex H, and there are some H I intermediate velocity structures between the Complex H and the Galactic disk, which could indicate an interaction between them. We suggest the possibility that Complex H impacting on the Galactic disk has triggered star formation in Cloud 1 as well as the formation of the Cloud 1 molecular cloud.

  10. An Experimental Test Facility to Support Development of the Fluoride Salt Cooled High Temperature Reactor

    SciTech Connect (OSTI)

    Yoder Jr, Graydon L; Aaron, Adam M; Cunningham, Richard Burns; Fugate, David L; Holcomb, David Eugene; Kisner, Roger A; Peretz, Fred J; Robb, Kevin R; Wilgen, John B; Wilson, Dane F

    2014-01-01

    The need for high-temperature (greater than 600 C) energy exchange and delivery systems is significantly increasing as the world strives to improve energy efficiency and develop alternatives to petroleum-based fuels. Liquid fluoride salts are one of the few energy transport fluids that have the capability of operating at high temperatures in combination with low system pressures. The Fluoride Salt-Cooled High-Temperature Reactor design uses fluoride salt to remove core heat and interface with a power conversion system. Although a significant amount of experimentation has been performed with these salts, specific aspects of this reactor concept will require experimental confirmation during the development process. The experimental facility described here has been constructed to support the development of the Fluoride Salt Cooled High Temperature Reactor concept. The facility is capable of operating at up to 700 C and incorporates a centrifugal pump to circulate FLiNaK salt through a removable test section. A unique inductive heating technique is used to apply heat to the test section, allowing heat transfer testing to be performed. An air-cooled heat exchanger removes added heat. Supporting loop infrastructure includes a pressure control system; trace heating system; and a complement of instrumentation to measure salt flow, temperatures, and pressures around the loop. The initial experiment is aimed at measuring fluoride salt heat transfer inside a heated pebble bed similar to that used for the core of the pebble bed advanced high-temperature reactor. This document describes the details of the loop design, auxiliary systems used to support the facility, the inductive heating system, and facility capabilities.

  11. High-energy gas-fracturing development. Annual report, April 1981-March 1982

    SciTech Connect (OSTI)

    Cuderman, J.F.

    1982-04-01

    The objective of this program is to develop and optimize the High Energy Gas Fracturing technique for producing multiple fractures about a wellbore and thereby stimulate natural gas production. Most gas wells in Devonian shales require stimulation to obtain commercially economic production. A propellant based technology has been developed which permits control of pressure loading to obtain multiple fracturing in a borehole. The High Energy Fracturing technique uses a full borehole charge of propellant tailored to produce multiple fractures radiating from the wellbore. The multiple fracture regime has been defined as a function of borehole size, pressure risetime, and surface wave velocity. The pressure risetime and peak pressure obtained in a borehole have been measured for different propellants and borehole diameters. These data make possible propellant specifications for a given peak pressure and pressure risetime. Semiempirical models using results from earlier experiments successfully predict stress and acceleration levels and fracture radii in surrounding rock. A finite element model has been developed which predicts fracture type, and direction of fractures as a function of pressure loading, in situ stress, and material properties. The High Energy Gas Fracturing program consists of three parts: (1) In situ experiments at DOE's Nevada Test Site (NTS), (2) modeling activities, and (3) a full scale experimemt in a Devonian shale gas well.

  12. ON THE IMPACT OF SUPER RESOLUTION WSR-88D DOPPLER RADAR DATA ASSIMILATION ON HIGH RESOLUTION NUMERICAL MODEL FORECASTS

    SciTech Connect (OSTI)

    Chiswell, S

    2009-01-11

    Assimilation of radar velocity and precipitation fields into high-resolution model simulations can improve precipitation forecasts with decreased 'spin-up' time and improve short-term simulation of boundary layer winds (Benjamin, 2004 & 2007; Xiao, 2008) which is critical to improving plume transport forecasts. Accurate description of wind and turbulence fields is essential to useful atmospheric transport and dispersion results, and any improvement in the accuracy of these fields will make consequence assessment more valuable during both routine operation as well as potential emergency situations. During 2008, the United States National Weather Service (NWS) radars implemented a significant upgrade which increased the real-time level II data resolution to 8 times their previous 'legacy' resolution, from 1 km range gate and 1.0 degree azimuthal resolution to 'super resolution' 250 m range gate and 0.5 degree azimuthal resolution (Fig 1). These radar observations provide reflectivity, velocity and returned power spectra measurements at a range of up to 300 km (460 km for reflectivity) at a frequency of 4-5 minutes and yield up to 13.5 million point observations per level in super-resolution mode. The migration of National Weather Service (NWS) WSR-88D radars to super resolution is expected to improve warning lead times by detecting small scale features sooner with increased reliability; however, current operational mesoscale model domains utilize grid spacing several times larger than the legacy data resolution, and therefore the added resolution of radar data is not fully exploited. The assimilation of super resolution reflectivity and velocity data into high resolution numerical weather model forecasts where grid spacing is comparable to the radar data resolution is investigated here to determine the impact of the improved data resolution on model predictions.

  13. Intermediate-Scale High-Solids Anaerobic Digestion System Operational Development

    SciTech Connect (OSTI)

    Rivard, C. J.

    1995-02-01

    Anaerobic bioconversion of solid organic wastes represents a disposal option in which two useful products may be produced, including a medium Btu fuel gas (biogas) and a compost-quality organic residue. The application of high-solids technology may offer several advantages over conventional low-solids digester technology. The National Renewable Energy Laboratory (NREL) has developed a unique digester system capable of uniformly mixing high-solids materials at low cost. During the first 1.5 years of operation, a variety of modifications and improvements were instituted to increase the safety, reliability, and performance of the system. Those improvements, which may be critical in further scale-up efforts using ,the NREL high-solids digester design are detailed in this report.

  14. Development of high temperature transport technology for LiCl-KCl eutectic salt in pyroprocessing

    SciTech Connect (OSTI)

    Lee, Sung Ho; Lee, Hansoo; Kim, In Tae; Kim, Jeong-Guk

    2013-07-01

    The development of high-temperature transport technologies for molten salt is a prerequisite and a key issue in the industrialization of pyro-reprocessing for advanced fuel cycle scenarios. The solution of a molten salt centrifugal pump was discarded because of the high corrosion power of a high temperature molten salt, so the suction pump solution was selected. An apparatus for salt transport experiments by suction was designed and tested using LiC-KCl eutectic salt. The experimental results of lab-scale molten salt transport by suction showed a 99.5% transport rate (ratio of transported salt to total salt) under a vacuum range of 100 mtorr - 10 torr at 500 Celsius degrees. The suction system has been integrated to the PRIDE (pyroprocessing integrated inactive demonstration) facility that is a demonstrator using non-irradiated materials (natural uranium and surrogate materials). The performance of the suction pump for the transport of molten salts has been confirmed.

  15. Intermediate-scale high-solids anaerobic digestion system operational development

    SciTech Connect (OSTI)

    Rivard, C.J.

    1995-02-01

    Anaerobic bioconversion of solid organic wastes represents a disposal option in which two useful products may be produced, including a medium Btu fuel gas (biogas) and a compost-quality organic residue. The application of high-solids technology may offer several advantages over conventional low-solids digester technology. Operation of the anaerobic digestion process at high solids reduces the level of process water and thereby the size and capital costs for the digester system. In addition, by virtue of the lack of available water, the microbial catalysts are more productive in feedstock polymer hydrolysis. The National Renewable Energy Laboratory (NREL) has developed a unique digester system capable of uniformly mixing high-solids materials at low cost. Information gained from laboratory-scale digester research was used to develop die intermediate-scale digester system. This system represents a 50-fold scale-up of the original digester system and includes continuous feed addition and computer monitoring and control. During the first 1.15 years of operation, a variety of modifications and improvements were instituted to increase the safety, reliability, and performance of the system. Those improvements -- which may be critical in further scale-up efforts using the NREL high-solids digester design -- are detailed in this report.

  16. Leadership development study :success profile competencies and high-performing leaders at Sandia National Laboratories.

    SciTech Connect (OSTI)

    Becker, Katherine M.; Mulligan, Deborah Rae; Szenasi, Gail L.; Crowder, Stephen Vernon

    2005-04-01

    Sandia is undergoing tremendous change. Sandia's executive management recognized the need for leadership development. About ten years ago the Business, Leadership, and Management Development department in partnership with executive management developed and implemented the organizational leadership Success Profile Competencies to help address some of the changes on the horizon such as workforce losses and lack of a skill set in the area of interpersonal skills. This study addresses the need for the Business, Leadership, and Management Development department to provide statistically sound data in two areas. One is to demonstrate that the organizational 360-degree success profile assessment tool has made a difference for leaders. A second area is to demonstrate the presence of high performing leaders at the Labs. The study utilized two tools to address these two areas. Study participants were made up of individuals who have solid data on Sandia's 360-degree success profile assessment tool. The second assessment tool was comprised of those leaders who participated in the Lockheed Martin Corporation Employee Preferences Survey. Statistical data supports the connection between leader indicators and the 360-degree assessment tool. The study also indicates the presence of high performing leaders at Sandia.

  17. Fluoride Salt-Cooled High-Temperature Reactor Technology Development and Demonstration Roadmap

    SciTech Connect (OSTI)

    Holcomb, David Eugene; Flanagan, George F; Mays, Gary T; Pointer, William David; Robb, Kevin R; Yoder Jr, Graydon L

    2013-11-01

    Fluoride salt-cooled High-temperature Reactors (FHRs) are an emerging reactor class with potentially advantageous performance characteristics, and fully passive safety. This roadmap describes the principal remaining FHR technology challenges and the development path needed to address the challenges. This roadmap also provides an integrated overview of the current status of the broad set of technologies necessary to design, evaluate, license, construct, operate, and maintain FHRs. First-generation FHRs will not require any technology breakthroughs, but do require significant concept development, system integration, and technology maturation. FHRs are currently entering early phase engineering development. As such, this roadmap is not as technically detailed or specific as would be the case for a more mature reactor class. The higher cost of fuel and coolant, the lack of an approved licensing framework, the lack of qualified, salt-compatible structural materials, and the potential for tritium release into the environment are the most obvious issues that remain to be resolved.

  18. Development of high-performance Na/NiCl{sub 2} cell

    SciTech Connect (OSTI)

    Redey, L.: Prakash, J.; Vissers, D.R.; Myles, K.M.

    1992-07-01

    The performance of the Ni/NiCl{sub 2} positive electrode for the Na/NiCl{sub 2} battery has been significantly improved by lowering the impedance and increasing the usable capacity through the use of chemical additives and a tailored electrode morphology. The improved electrode has excellent performance even below 200{degrees}C and can be recharged within one hour. The performance of this new electrode was measured by a conventional galvanostatic method and by a newly developed ``powerdynamic`` method. These measurements were used to project the performance of 40 to 60-kWh batteries built with this new electrode combined with already highly developed sodium/{beta} -- alumina negative electrode. These calculated results yielded a specific power of 150--400 W/kg and a specific energy of 110--200 Wh/kg for batteries with single-tube and bipolar cell designs. This high performance, along with the high cell voltage, mid-temperature operation, fast recharge capability, and short-circuited failure mode of the electrode couple, makes the NA/NiCl{sub 2} battery attractive for electric vehicle applications.

  19. Development of high-performance Na/NiCl sub 2 cell

    SciTech Connect (OSTI)

    Redey, L.: Prakash, J.; Vissers, D.R.; Myles, K.M.

    1992-01-01

    The performance of the Ni/NiCl{sub 2} positive electrode for the Na/NiCl{sub 2} battery has been significantly improved by lowering the impedance and increasing the usable capacity through the use of chemical additives and a tailored electrode morphology. The improved electrode has excellent performance even below 200{degrees}C and can be recharged within one hour. The performance of this new electrode was measured by a conventional galvanostatic method and by a newly developed powerdynamic'' method. These measurements were used to project the performance of 40 to 60-kWh batteries built with this new electrode combined with already highly developed sodium/{beta} -- alumina negative electrode. These calculated results yielded a specific power of 150--400 W/kg and a specific energy of 110--200 Wh/kg for batteries with single-tube and bipolar cell designs. This high performance, along with the high cell voltage, mid-temperature operation, fast recharge capability, and short-circuited failure mode of the electrode couple, makes the NA/NiCl{sub 2} battery attractive for electric vehicle applications.

  20. Thermal model development and validation for rapid filling of high pressure hydrogen tanks

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Johnson, Terry A.; Bozinoski, Radoslav; Ye, Jianjun; Sartor, George; Zheng, Jinyang; Yang, Jian

    2015-06-30

    This paper describes the development of thermal models for the filling of high pressure hydrogen tanks with experimental validation. Two models are presented; the first uses a one-dimensional, transient, network flow analysis code developed at Sandia National Labs, and the second uses the commercially available CFD analysis tool Fluent. These models were developed to help assess the safety of Type IV high pressure hydrogen tanks during the filling process. The primary concern for these tanks is due to the increased susceptibility to fatigue failure of the liner caused by the fill process. Thus, a thorough understanding of temperature changes ofmore » the hydrogen gas and the heat transfer to the tank walls is essential. The effects of initial pressure, filling time, and fill procedure were investigated to quantify the temperature change and verify the accuracy of the models. In this paper we show that the predictions of mass averaged gas temperature for the one and three-dimensional models compare well with the experiment and both can be used to make predictions for final mass delivery. Furthermore, due to buoyancy and other three-dimensional effects, however, the maximum wall temperature cannot be predicted using one-dimensional tools alone which means that a three-dimensional analysis is required for a safety assessment of the system.« less

  1. Progress and future developments of high current ion source for neutral beam injector in the ASIPP

    SciTech Connect (OSTI)

    Hu, Chundong; Xie, Yahong Xie, Yuanlai; Liu, Sheng; Liu, Zhimin; Xu, Yongjian; Liang, Lizhen; Sheng, Peng; Jiang, Caichao

    2015-04-08

    A high current hot cathode bucket ion source, which based on the US long pulse ion source is developed in Institute of Plasma Physics, Chinese Academy of Sciences. The ion source consists of a bucket plasma generator with multi-pole cusp fields and a set of tetrode accelerator with slit apertures. So far, four ion sources are developed and conditioned on the ion source test bed. 4 MW hydrogen beam with beam energy of 80 keV is extracted. In Aug. 2013, EAST NBI 1 with two ion source installed on the EAST, and achieved H-mode plasma with NBI injection for the first time. In order to achieve stable long pulse operation of high current ion source and negative ion source research, the RF ion source with 200 mm diameter and 120 mm depth driver is designed and developed. The first RF plasma generated with 2 kW power of 1 MHz frequency. More of the RF plasma tests and negative source relative research need to do in the future.

  2. Thermal model development and validation for rapid filling of high pressure hydrogen tanks

    SciTech Connect (OSTI)

    Johnson, Terry A.; Bozinoski, Radoslav; Ye, Jianjun; Sartor, George; Zheng, Jinyang; Yang, Jian

    2015-06-30

    This paper describes the development of thermal models for the filling of high pressure hydrogen tanks with experimental validation. Two models are presented; the first uses a one-dimensional, transient, network flow analysis code developed at Sandia National Labs, and the second uses the commercially available CFD analysis tool Fluent. These models were developed to help assess the safety of Type IV high pressure hydrogen tanks during the filling process. The primary concern for these tanks is due to the increased susceptibility to fatigue failure of the liner caused by the fill process. Thus, a thorough understanding of temperature changes of the hydrogen gas and the heat transfer to the tank walls is essential. The effects of initial pressure, filling time, and fill procedure were investigated to quantify the temperature change and verify the accuracy of the models. In this paper we show that the predictions of mass averaged gas temperature for the one and three-dimensional models compare well with the experiment and both can be used to make predictions for final mass delivery. Furthermore, due to buoyancy and other three-dimensional effects, however, the maximum wall temperature cannot be predicted using one-dimensional tools alone which means that a three-dimensional analysis is required for a safety assessment of the system.

  3. Development of a high-throughput microfluidic integrated microarray for the detection of chimeric bioweapons.

    SciTech Connect (OSTI)

    Sheppod, Timothy; Satterfield, Brent; Hukari, Kyle W.; West, Jason A. A.; Hux, Gary A.

    2006-10-01

    The advancement of DNA cloning has significantly augmented the potential threat of a focused bioweapon assault, such as a terrorist attack. With current DNA cloning techniques, toxin genes from the most dangerous (but environmentally labile) bacterial or viral organism can now be selected and inserted into robust organism to produce an infinite number of deadly chimeric bioweapons. In order to neutralize such a threat, accurate detection of the expressed toxin genes, rather than classification on strain or genealogical decent of these organisms, is critical. The development of a high-throughput microarray approach will enable the detection of unknowns chimeric bioweapons. The development of a high-throughput microarray approach will enable the detection of unknown bioweapons. We have developed a unique microfluidic approach to capture and concentrate these threat genes (mRNA's) upto a 30 fold concentration. These captured oligonucleotides can then be used to synthesize in situ oligonucleotide copies (cDNA probes) of the captured genes. An integrated microfluidic architecture will enable us to control flows of reagents, perform clean-up steps and finally elute nanoliter volumes of synthesized oligonucleotides probes. The integrated approach has enabled a process where chimeric or conventional bioweapons can rapidly be identified based on their toxic function, rather than being restricted to information that may not identify the critical nature of the threat.

  4. Development of High Efficiency Clean Combustion Engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines

    SciTech Connect (OSTI)

    Marriott, Craig; Gonzalez, Manual; Russell, Durrett

    2011-06-30

    This report summarizes activities related to the revised STATEMENT OF PROJECT OBJECTIVES (SOPO) dated June 2010 for the Development of High-Efficiency Clean Combustion engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines (COOPERATIVE AGREEMENT NUMBER DE-FC26-05NT42415) project. In both the spark- (SI) and compression-ignition (CI) development activities covered in this program, the goal was to develop potential production-viable internal combustion engine system technologies that both reduce fuel consumption and simultaneously met exhaust emission targets. To be production-viable, engine technologies were also evaluated to determine if they would meet customer expectations of refinement in terms of noise, vibration, performance, driveability, etc. in addition to having an attractive business case and value. Prior to this activity, only proprietary theoretical / laboratory knowledge existed on the combustion technologies explored The research reported here expands and develops this knowledge to determine series-production viability. Significant SI and CI engine development occurred during this program within General Motors, LLC over more than five years. In the SI program, several engines were designed and developed that used both a relatively simple multi-lift valve train system and a Fully Flexible Valve Actuation (FFVA) system to enable a Homogeneous Charge Compression Ignition (HCCI) combustion process. Many technical challenges, which were unknown at the start of this program, were identified and systematically resolved through analysis, test and development. This report documents the challenges and solutions for each SOPO deliverable. As a result of the project activities, the production viability of the developed clean combustion technologies has been determined. At this time, HCCI combustion for SI engines is not considered production-viable for several reasons. HCCI combustion is excessively sensitive to control variables such as internal dilution level and charge temperature. As a result, HCCI combustion has limited robustness when variables exceed the required narrow ranges determined in this program. HCCI combustion is also not available for the entire range of production engine speeds and loads, (i.e., the dynamic range is limited). Thus, regular SI combustion must be employed for a majority of the full dynamic range of the engine. This degrades the potential fuel economy impact of HCCI combustion. Currently-available combustion control actuators for the simple valve train system engine do not have the authority for continuous air - fuel or torque control for managing the combustion mode transitions between SI and HCCI and thus, require further refinement to meet customer refinement expectations. HCCI combustion control sensors require further development to enable robust long-term HCCI combustion control. Finally, the added technologies required to effectively manage HCCI combustion such as electric cam phasers, central direct fuel injection, cylinder pressure sensing, high-flow exhaust gas recirculation system, etc. add excessive on-engine cost and complexity that erodes the production-viability business

  5. Customer-Economics of Residential Photovoltaic Systems: The Impact of High Renewable Energy Penetrations on Electricity Bill Savings with Net Metering

    Broader source: Energy.gov [DOE]

    Residential photovoltaic (PV) systems in the US are often compensated at the customer's underlying retail electricity rate through net metering. There is growing interest in understanding how potential changes in rates may impact the value of bill savings from PV. This article uses a production cost and capacity expansion model to project California hourly wholesale electricity market prices under a reference scenario and a 33% renewables scenario. Second, based on the wholesale electricity market prices generated by the model, the article develops retail rates (i.e., flat, time-of-use, and real-time pricing) for each future scenario based on standard retail rate design principles. Finally, based on these retail rates, the bill savings from PV are estimated for 226 California residential customers under two types of net metering, for each scenario. The article finds that high renewable penetrations can drive substantial changes in residential retail rates and that these changes, together with variations in retail rate structures and PV compensation mechanisms, interact to place substantial uncertainty on the future value of bill savings from residential PV.

  6. Development and operation of a high-throughput accurate-wavelength lens-based spectrometera)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bell, Ronald E.

    2014-07-11

    A high-throughput spectrometer for the 400-820 nm wavelength range has been developed for charge exchange recombination spectroscopy or general spectroscopy. A large 2160 mm-1 grating is matched with fast f /1.8 200 mm lenses, which provide stigmatic imaging. A precision optical encoder measures the grating angle with an accuracy ≤ 0.075 arc seconds. A high quantum efficiency low-etaloning CCD detector allows operation at longer wavelengths. A patch panel allows input fibers to interface with interchangeable fiber holders that attach to a kinematic mount behind the entrance slit. The computer-controlled hardware allows automated control of wavelength, timing, f-number, automated data collection,more » and wavelength calibration.« less

  7. Development of High-efficiency Thermoelectric Materials for Vehicle Waste Heat Utililization

    SciTech Connect (OSTI)

    Li, Qiang

    2009-04-30

    The goals of this . CRADA are: 1) Investigation of atomistic structure and nucleation of nanoprecipitates in (PbTe){sub I-x}(AgSbTe2){sub x} (LAST) system; and 2) Development of non-equilibrium synthesis of thermoelectric materials for waste heat recovery. We have made significant accomplishment in both areas. We studied the structure of LAST materials using high resolution imaging, nanoelectron diffraction, energy dispersive spectrum, arid electron energy loss spectrum, and observed a range of nanoparticles The results, published in J. of Applied Physics, provide quantitative structure information about nanoparticles, that is essential for the understanding of the origin of the high thermoelectric performance in this class of materials. We coordinated non-equilibrium synthesis and characterization of thermoelectric materials for waste heat recovery application. Our results, published in J. of Electronic Materials, show enhanced thermoelectric figure of merit and robust mechanical properties in bulk . filled skutterudites.

  8. Development and operation of a high-throughput accurate-wavelength lens-based spectrometera

    SciTech Connect (OSTI)

    Bell, Ronald E.

    2014-11-01

    A high-throughput spectrometer for the 400-820 nm wavelength range has been developed for charge exchange recombination spectroscopy or general spectroscopy. A large 2160 mm-1 grating is matched with fast f /1.8 200 mm lenses, which provide stigmatic imaging. A precision optical encoder measures the grating angle with an accuracy ? 0.075 arc seconds. A high quantum efficiency low-etaloning CCD detector allows operation at longer wavelengths. A patch panel allows input fibers to interface with interchangeable fiber holders that attach to a kinematic mount behind the entrance slit. Computer-controlled hardware allows automated control of wavelength, timing, f-number, automated data collection, and wavelength calibration.

  9. Development and Operation of High-throughput Accurate-wavelength Lens-based Spectrometer

    SciTech Connect (OSTI)

    Bell, Ronald E

    2014-07-01

    A high-throughput spectrometer for the 400-820 nm wavelength range has been developed for charge exchange recombination spectroscopy or general spectroscopy. A large 2160 mm-1 grating is matched with fast f /1.8 200 mm lenses, which provide stigmatic imaging. A precision optical encoder measures the grating angle with an accuracy < 0.075 arc seconds. A high quantum efficiency low-etaloning CCD detector allows operation at longer wavelengths. A patch panel allows input fibers to interface with interchangeable fiber holders that attach to a kinematic mount behind the entrance slit. Computer-controlled hardware allows automated control of wavelength, timing, f-number, automated data collection, and wavelength calibration.

  10. Development and operation of a high-throughput accurate-wavelength lens-based spectrometer

    SciTech Connect (OSTI)

    Bell, Ronald E.

    2014-11-15

    A high-throughput spectrometer for the 400820 nm wavelength range has been developed for charge exchange recombination spectroscopy or general spectroscopy. A large 2160 mm{sup ?1} grating is matched with fast f/1.8 200 mm lenses, which provide stigmatic imaging. A precision optical encoder measures the grating angle with an accuracy ?0.075 arc sec. A high quantum efficiency low-etaloning CCD detector allows operation at longer wavelengths. A patch panel allows input fibers to interface with interchangeable fiber holders that attach to a kinematic mount at the entrance slit. Computer-controlled hardware allows automated control of wavelength, timing, f-number, automated data collection, and wavelength calibration.

  11. Guidelines for development of structural integrity programs for DOE high-level waste storage tanks

    SciTech Connect (OSTI)

    Bandyopadhyay, K.; Bush, S.; Kassir, M.; Mather, B.; Shewmon, P.; Streicher, M.; Thompson, B.; Rooyen, D. van; Weeks, J.

    1997-01-01

    Guidelines are provided for developing programs to promote the structural integrity of high-level waste storage tanks and transfer lines at the facilities of the Department of Energy. Elements of the program plan include a leak-detection system, definition of appropriate loads, collection of data for possible material and geometric changes, assessment of the tank structure, and non-destructive examination. Possible aging degradation mechanisms are explored for both steel and concrete components of the tanks, and evaluated to screen out nonsignificant aging mechanisms and to indicate methods of controlling the significant aging mechanisms. Specific guidelines for assessing structural adequacy will be provided in companion documents. Site-specific structural integrity programs can be developed drawing on the relevant portions of the material in this document.

  12. GridPACK Toolkit for Developing Power Grid Simulations on High Performance Computing Platforms

    SciTech Connect (OSTI)

    Palmer, Bruce J.; Perkins, William A.; Glass, Kevin A.; Chen, Yousu; Jin, Shuangshuang; Callahan, Charles D.

    2013-11-30

    This paper describes the GridPACK framework, which is designed to help power grid engineers develop modeling software capable of running on todays high performance computers. The framework contains modules for setting up distributed power grid networks, assigning buses and branches with arbitrary behaviors to the network, creating distributed matrices and vectors, using parallel linear and non-linear solvers to solve algebraic equations, and mapping functionality to create matrices and vectors based on properties of the network. In addition, the framework contains additional functionality to support IO and to manage errors.

  13. Detector Developments for the High Luminosity LHC Era (2/4)

    ScienceCinema (OSTI)

    None

    2011-10-06

    Calorimetry and Muon Spectromers - Part II: When upgrading the LHC to higher luminosities, the detector and trigger performance shall be preserved - if not improved - with respect to the nominal performance. The ongoing R&D; for new radiation tolerant front-end electronics for calorimeters with higher read-out bandwidth are summarized and new possibilities for the trigger systems are presented. Similar developments are foreseen for the muon spectrometers, where also radiation tolerance of the muon detectors and functioning at high background rates is important. The corresponding plans and research work for the calorimeter and muon detectors at a LHC with highest luminsity are presented.

  14. Vehicle Technologies Office Merit Review 2015: Development of Advanced High Strength Cast Alloys for Heavy Duty Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Caterpillar at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of advanced high...

  15. Vehicle Technologies Office Merit Review 2015: Development of Advanced High-Performance Batteries for 12V Start Stop Vehicle Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Maxwell at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of advanced high...

  16. Vehicle Technologies Office Merit Review 2014: Development of Advanced High Strength Cast Alloys for Heavy Duty Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Caterpillar at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of advanced high...

  17. Development of Probabilistic Design Basis Earthquake (DBE) Parameters for Moderate and High Hazard Facilities at INEEL

    SciTech Connect (OSTI)

    S. M. Payne; V. W. Gorman; S. A. Jensen; M. E. Nitzel; M. J. Russell; R. P. Smith

    2000-03-01

    Design Basis Earthquake (DBE) horizontal and vertical response spectra are developed for moderate and high hazard facilities or Performance Categories (PC) 3 and 4, respectively, at the Idaho National Engineering and Environmental Laboratory (INEEL). The probabilistic DBE response spectra will replace the deterministic DBE response spectra currently in the U.S. Department of Energy Idaho Operations Office (DOE-ID) Architectural Engineering Standards that govern seismic design criteria for several facility areas at the INEEL. Probabilistic DBE response spectra are recommended to DOE Naval Reactors for use at the Naval Reactor Facility at INEEL. The site-specific Uniform Hazard Spectra (UHS) developed by URS Greiner Woodward Clyde Federal Services are used as the basis for developing the DBE response spectra. In 1999, the UHS for all INEEL facility areas were recomputed using more appropriate attenuation relationships for the Basin and Range province. The revised UHS have lower ground motions than those produced in the 1996 INEEL site-wide probabilistic ground motion study. The DBE response spectra were developed by incorporating smoothed broadened regions of the peak accelerations, velocities, and displacements defined by the site-specific UHS. Portions of the DBE response spectra were adjusted to ensure conservatism for the structural design process.

  18. State-of-the-art and recent developments of high-power gyrotron oscillators

    SciTech Connect (OSTI)

    Thumm, Manfred [Forschungszentrum Karlsruhe, Association EURATOM-FZK, ITP, P.O. Box 3640, D-76012 Karlsruhe (Germany); Universitaet Karlsruhe, Institut fuer Hoechstfrequenztechnik und Elektronik, Kaiserstrasse 12, D-76128 Karlsruhe (Germany)

    1999-05-07

    Gyrotron oscillators (gyromonotrons) are mainly used as high-power millimeter wave sources for electron cyclotron resonance heating (ECRH) and diagnostics of magnetically confined plasmas for generation of energy by controlled thermonuclear fusion. High unit power and high efficiency single-mode CW gyrotrons with conventional cylindrical (1 MW) and advanced coaxial (2 MW) cavities are worldwide under development. 118 GHz, 140 GHz and 170 GHz conventional cavity gyrotrons with output power P{sub out}{approx_equal}0.5 MW, pulse length {tau}{approx_equal}5.0 s and efficiency {eta}{approx_equal}35% are commercially available. Advanced internal quasi-optical mode converters generate linearly polarized output wave beams from the high-order cavity modes (e.g., TE{sub 22,6}) with efficiencies of 90-95% and separate the millimeter-wave beam from the electron beam, thus allowing the use of large CW-relevant depressed collectors for energy recovery. Overall efficiencies between 50 and 60% have been already achieved at JAERI, FZK, and GYCOM employing single-stage depressed collectors (SDC). First successful experiments at FZK employing a broadband Brewster window gave up to 1.5 MW output power at around 50% efficiency (SDC) for all operating mode series in the frequency range from 114 to 166 GHz (frequency tuning in 3.7 GHz steps by variation of the magnetic field strength in the cavity). Gyrotrons with advanced coaxial cavities designed for operation in the TE{sub 28,16} and TE{sub 31,17} modes at 140 and 165 GHz, respectively, are under development and test at IAP Nizhny Novgorod and FZK Karlsruhe. A maximum output power of 1.7 MW has been measured at 165 GHz with an efficiency of 35.2% (SDC, FZK). Cryogenically edge-cooled single-disk sapphire (T=77 K) and Au-doped silicon (T=230 K) windows as well as CVD-diamond windows with water edge-cooling at room temperature are under investigation in order to solve the window problem. Commercial CVD-diamond disks will easily allow the transmission of 2 MW power level at 170 GHz, CW. Bonding and brazing techniques are available. Recently, gyrotron oscillators have also been successfully used in materials processing. Such technological applications require gyrotrons with the following parameters: ISM frequency f{>=}24 GHz, P{sub out}=10-50 kW, CW, {eta}=30%. The present paper reviews recent developments and the state-of-the-art of high-power gyrotron oscillators for fusion plasma and industrial applications.

  19. High Burnup Dry Storage Cask Research and Development Project, Final Test Plan

    SciTech Connect (OSTI)

    2014-02-27

    EPRI is leading a project team to develop and implement the first five years of a Test Plan to collect data from a SNF dry storage system containing high burnup fuel.12 The Test Plan defined in this document outlines the data to be collected, and the storage system design, procedures, and licensing necessary to implement the Test Plan.13 The main goals of the proposed test are to provide confirmatory data14 for models, future SNF dry storage cask design, and to support license renewals and new licenses for ISFSIs. To provide data that is most relevant to high burnup fuel in dry storage, the design of the test storage system must mimic real conditions that high burnup SNF experiences during all stages of dry storage: loading, cask drying, inert gas backfilling, and transfer to the ISFSI for multi-year storage.15 Along with other optional modeling, SETs, and SSTs, the data collected in this Test Plan can be used to evaluate the integrity of dry storage systems and the high burnup fuel contained therein over many decades. It should be noted that the Test Plan described in this document discusses essential activities that go beyond the first five years of Test Plan implementation.16 The first five years of the Test Plan include activities up through loading the cask, initiating the data collection, and beginning the long-term storage period at the ISFSI. The Test Plan encompasses the overall project that includes activities that may not be completed until 15 or more years from now, including continued data collection, shipment of the Research Project Cask to a Fuel Examination Facility, opening the cask at the Fuel Examination Facility, and examining the high burnup fuel after the initial storage period.

  20. Final base case community analysis: Indian Springs, Nevada for the Clark County socioeconomic impact assessment of the proposed high- level nuclear waste repository at Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    1992-06-18

    This document provides a base case description of the rural Clark County community of Indian Springs in anticipation of change associated with the proposed high-level nuclear waste repository at Yucca Mountain. As the community closest to the proposed site, Indian Springs may be seen by site characterization workers, as well as workers associated with later repository phases, as a logical place to live. This report develops and updates information relating to a broad spectrum of socioeconomic variables, thereby providing a `snapshot` or `base case` look at Indian Springs in early 1992. With this as a background, future repository-related developments may be analytically separated from changes brought about by other factors, thus allowing for the assessment of the magnitude of local changes associated with the proposed repository. Given the size of the community, changes that may be considered small in an absolute sense may have relatively large impacts at the local level. Indian Springs is, in many respects, a unique community and a community of contrasts. An unincorporated town, it is a small yet important enclave of workers on large federal projects and home to employees of small- scale businesses and services. It is a rural community, but it is also close to the urbanized Las Vega Valley. It is a desert community, but has good water resources. It is on flat terrain, but it is located within 20 miles of the tallest mountains in Nevada. It is a town in which various interest groups diverge on issues of local importance, but in a sense of community remains an important feature of life. Finally, it has a sociodemographic history of both surface transience and underlying stability. If local land becomes available, Indian Springs has some room for growth but must first consider the historical effects of growth on the town and its desired direction for the future.

  1. Advanced Production Surface Preparation Technology Development for Ultra-High Pressure Diesel Injection

    SciTech Connect (OSTI)

    Grant, Marion B.

    2012-04-30

    In 2007, An Ultra High Injection Pressure (UHIP) fueling method has been demonstrated by Caterpillar Fuel Systems - Product Development, demonstrating ability to deliver U.S. Environment Protection Agency (EPA) Tier 4 Final diesel engine emission performance with greatly reduced emissions handling components on the engine, such as without NOx reduction after-treatment and with only a through-flow 50% effective diesel particulate trap (DPT). They have shown this capability using multiple multi-cylinder engine tests of an Ultra High Pressure Common Rail (UHPCR) fuel system with higher than traditional levels of CEGR and an advanced injector nozzle design. The system delivered better atomization of the fuel, for more complete burn, to greatly reduce diesel particulates, while CEGR or high efficiency NOx reduction after-treatment handles the NOx. With the reduced back pressure of a traditional DPT, and with the more complete fuel burn, the system reduced levels of fuel consumption by 2.4% for similar delivery of torque and horsepower over the best Tier 4 Interim levels of fuel consumption in the diesel power industry. The challenge is to manufacture the components in high-volume production that can withstand the required higher pressure injection. Production processes must be developed to increase the toughness of the injector steel to withstand the UHIP pulsations and generate near perfect form and finish in the sub-millimeter size geometries within the injector. This project resulted in two developments in 2011. The first development was a process and a machine specification by which a high target of compressive residual stress (CRS) can be consistently imparted to key surfaces of the fuel system to increase the toughness of the steel, and a demonstration of the feasibility of further refinement of the process for use in volume production. The second development was the demonstration of the feasibility of a process for imparting near perfect, durable geometry to these same feature surfaces to withstand the pulsating UHIP diesel injection without fatigue failure, through the expected life of the fuel system's components (10,000 hours for the pump and common rail, 5000 hours for the injector). The potential to Caterpillar of this fueling approach and the overall emissions reduction system is the cost savings of the fuel, the cost savings of not requiring a full emissions module and other emissions hardware, and the enabling of the use of biodiesel fuel due to the reduced dependency on after-treatment. A proprietary production CRS generating process was developed to treat the interior of the sac-type injector nozzle tip region (particularly for the sac region). Ninety-five tips passed ultra high pulsed pressure fatigue testing with no failures assignable to treated surfaces or materials. It was determined that the CRS impartation method does not weaken the tip internal seat area. Caterpillar Fuel Systems - Product Development accepts that the CRS method initial production technical readiness level has been established. A method to gage CRS levels in production was not yet accomplished, but it is believed that monitoring process parameters call be used to guarantee quality. A precision profiling process for injector seat and sac regions has been shown to be promising but not yet fully confirmed. It was demonstrated that this precision profiling process can achieve form and geometry to well under an aggressively small micron peak-to-valley and that there are no surface flaws that approach an even tighter micron peak-to-valley tolerance. It is planned to purchase machines to further develop and move the process towards production. The system is targeted towards the high-power diesel electric power generators and high-power diesel marine power generators, with displacement from 20 liters to 80 liters and with power from 800 brake horsepower (BHP) to 3200BHP (0.6 megawatts to 2.4 megawatts). However, with market adoption, this system has the potential to meet EPA exhaust standards for all diesel engines nine liters and up, or 300B

  2. Development of a High Performance Air Source Heat Pump for the US Market

    SciTech Connect (OSTI)

    Abdelaziz, Omar [ORNL] [ORNL; Shen, Bo [ORNL] [ORNL; Gao, Zhiming [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL; Iu, Ipseng [ORNL] [ORNL

    2011-01-01

    Heat pumps present a significant advantage over conventional residential heating technologies due to higher energy efficiencies and less dependence on imported oil. The US development of heat pumps dates back to the 1930 s with pilot units being commercially available in the 1950 s. Reliable and cost competitive units were available in the US market by the 1960 s. The 1973 oil embargo led to increased interest in heat pumps prompting significant research to improve performance, particularly for cold climate locations. Recent increasing concerns on building energy efficiency and environmental emissions have prompted a new wave of research in heat pump technology with special emphasis on reducing performance degradation at colder outdoor air temperatures. A summary of the advantages and limitations of several performance improvement options sought for the development of high performance air source heat pump systems for cold climate applications is the primary focus of this paper. Some recommendations for a high performance cold climate heat pump system design most suitable for the US market are presented.

  3. Development of High Efficiency Carbon Dioxide Commercial Heat Pump Water Heater

    SciTech Connect (OSTI)

    Michael PETERSEN; Chad D. BOWERS; Stefan ELBEL; Pega HRNJAK

    2012-07-01

    Although heat pump water heaters are today widely accepted in both Japan and Europe, where energy costs are high and government incentives for their use exist, acceptance of such products in the US has been limited. While this trend is slowly changing with the introduction of heat pump water heaters into the residential market, but acceptance remains low in the commercial sector. The objective of the presented work is the development of a high efficiency R744 heat pump water heater for commercial applications with effective utilization of the cooling capability for air conditioning and/or refrigeration. The ultimate goal is to achieve total system COP of up to 8. This unit will be targeted at commercial use where some cooling load is typically needed year round, such as restaurants, hotels, nursing homes, and hospitals. This paper presents the performance results from the development of four R744 commercial heat pump water heater packages of approximately 35 kW and comparison to a commercially available baseline R134a unit of the same capacity and footprint. In addition, the influences of an internal heat exchanger and an enhanced evaporator on the system performance are described and recommendations are made for further improvements of the R744 system.

  4. Development and Verification of Tritium Analyses Code for a Very High Temperature Reactor

    SciTech Connect (OSTI)

    Chang H. Oh; Eung S. Kim

    2009-09-01

    A tritium permeation analyses code (TPAC) has been developed by Idaho National Laboratory for the purpose of analyzing tritium distributions in the VHTR systems including integrated hydrogen production systems. A MATLAB SIMULINK software package was used for development of the code. The TPAC is based on the mass balance equations of tritium-containing species and a various form of hydrogen (i.e., HT, H2, HTO, HTSO4, and TI) coupled with a variety of tritium source, sink, and permeation models. In the TPAC, ternary fission and neutron reactions with 6Li, 7Li 10B, 3He were taken into considerations as tritium sources. Purification and leakage models were implemented as main tritium sinks. Permeation of HT and H2 through pipes, vessels, and heat exchangers were importantly considered as main tritium transport paths. In addition, electroyzer and isotope exchange models were developed for analyzing hydrogen production systems including both high-temperature electrolysis and sulfur-iodine process. The TPAC has unlimited flexibility for the system configurations, and provides easy drag-and-drops for making models by adopting a graphical user interface. Verification of the code has been performed by comparisons with the analytical solutions and the experimental data based on the Peach Bottom reactor design. The preliminary results calculated with a former tritium analyses code, THYTAN which was developed in Japan and adopted by Japan Atomic Energy Agency were also compared with the TPAC solutions. This report contains descriptions of the basic tritium pathways, theory, simple user guide, verifications, sensitivity studies, sample cases, and code tutorials. Tritium behaviors in a very high temperature reactor/high temperature steam electrolysis system have been analyzed by the TPAC based on the reference indirect parallel configuration proposed by Oh et al. (2007). This analysis showed that only 0.4% of tritium released from the core is transferred to the product hydrogen. The amount of tritium in the product hydrogen was estimated to be approximately an order less than the gaseous effluent limit for tritium.

  5. General-purpose heat source: Research and development program. Radioisotope thermoelectric generator impact tests: RTG-1 and RTG-2

    SciTech Connect (OSTI)

    Reimus, M.A.H.; Hinckley, J.E.; George, T.G.

    1996-07-01

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. The first two RTG Impact Tests were designed to provide information on the response of a fully loaded RTG to end-on impact against a concrete target. The results of these tests indicated that at impact velocities up to 57 m/s the converter shell and internal components protect the GPHS capsules from excessive deformation. At higher velocities, some of the internal components of the RTG interact with the GPHS capsules to cause excessive localized deformation and failure.

  6. The Impact of Wind Development on County-Level Income and Employment: A Review of Methods and an Empirical Analysis

    SciTech Connect (OSTI)

    Eric Lantz

    2012-09-21

    To gain an understanding of the long-term county-level impacts from a large sample of wind power projects and to understand the potential significance of methodological criticisms, the U.S. Department of Agriculture, the Lawrence Berkeley National Laboratory, and the National Renewable Energy Laboratory recently joined efforts to complete a first-of-its-kind study that quantifies the annual impact on county-level personal income resulting from wind power installations in nearly 130 counties across 12 states. The results of this study as well as a comparison with the prior county-level estimates generated from input-output models, are summarized in the fact sheet.

  7. Development and Transient Analysis of a Helical-coil Steam Generator for High Temperature Reactors

    SciTech Connect (OSTI)

    Nathan V. Hoffer; Nolan A. Anderson; Piyush Sabharwall

    2011-08-01

    A high temperature gas-cooled reactor (HTGR) is under development by the Next Generation Nuclear Plant (NGNP) Project at the Idaho National Laboratory (INL). Its design emphasizes electrical power production which may potentially be coupled with process heat for hydrogen production and other industrial applications. NGNP is considering a helical-coil steam generator for the primary heat transport loop heat exchanger based on its increased heat transfer and compactness when compared to other steam generators. The safety and reliability of the helical-coil steam generator is currently under evaluation as part of the development of NGNP. Transients, such as loss of coolant accidents (LOCA), are of interest in evaluating the safety of steam generators. In this study, a complete steam generator inlet pipe break (double ended pipe break) LOCA was simulated by an exponential loss of primary side pressure. For this analysis, a model of the helical-coil steam generator was developed using RELAP5-3D, an INL inhouse systems analysis code. The steam generator model behaved normally during the transient simulating the complete steam generator inlet pipe break LOCA. Further analysis is required to comprehensively evaluate the safety and reliability of the helical-coil steam generator design in the NGNP setting.

  8. NEW GUN CAPABILITY WITH INTERCHANGABLE BARRELS TO INVESTIGATE LOW VELOCITY IMPACT REGIMES AT THE LAWRENCE LIVERMORE NATIONAL LABORATORY HIGH EXPLOSIVES APPLICATIONS FACILITY

    SciTech Connect (OSTI)

    Vandersall, K S; Behn, A; Gresshoff, M; Jr., L F; Chiao, P I

    2009-09-16

    A new gas gun capability is being activated at Lawrence Livermore National Laboratories located in the High Explosives Applications Facility (HEAF). The single stage light gas (dry air, nitrogen, or helium) gun has interchangeable barrels ranging from 25.4 mm to 76.2 mm in diameter with 1.8 meters in length and is being fabricated by Physics Applications, Inc. Because it is being used for safety studies involving explosives, the gun is planned for operation inside a large enclosed firing tank, with typical velocities planned in the range of 10-300 m/s. Three applications planned for this gun include: low velocity impact of detonator or detonator/booster assemblies with various projectile shapes, the Steven Impact test that involves impact initiation of a cased explosive target, and the Taylor impact test using a cylindrical explosive sample impacted onto a rigid anvil for fracture studies of energetic materials. A highlight of the gun features, outline on work in progress for implementing this capability, and discussion of the planned areas of research will be included.

  9. Technology Development Roadmap for the Advanced High Temperature Reactor Secondary Heat Exchanger

    SciTech Connect (OSTI)

    P. Sabharwall; M. McCllar; A. Siahpush; D. Clark; M. Patterson; J. Collins

    2012-09-01

    This Technology Development Roadmap (TDRM) presents the path forward for deploying large-scale molten salt secondary heat exchangers (MS-SHX) and recognizing the benefits of using molten salt as the heat transport medium for advanced high temperature reactors (AHTR). This TDRM will aid in the development and selection of the required heat exchanger for: power production (the first anticipated process heat application), hydrogen production, steam methane reforming, methanol to gasoline production, or ammonia production. This TDRM (a) establishes the current state of molten salt SHX technology readiness, (b) defines a path forward that systematically and effectively tests this technology to overcome areas of uncertainty, (c) demonstrates the achievement of an appropriate level of maturity prior to construction and plant operation, and (d) identifies issues and prioritizes future work for maturing the state of SHX technology. This study discusses the results of a preliminary design analysis of the SHX and explains the evaluation and selection methodology. An important engineering challenge will be to prevent the molten salt from freezing during normal and off-normal operations because of its high melting temperature (390°C for KF ZrF4). The efficient transfer of energy for industrial applications depends on the ability to incorporate cost-effective heat exchangers between the nuclear heat transport system and industrial process heat transport system. The need for efficiency, compactness, and safety challenge the capabilities of existing heat exchanger technology. The description of potential heat exchanger configurations or designs (such as printed circuit, spiral or helical coiled, ceramic, plate and fin, and plate type) were covered in an earlier report (Sabharwall et al. 2011). Significant future work, much of which is suggested in this report, is needed before the benefits and full potential of the AHTR can be realized. The execution of this TDRM will focuses research efforts on the near-term qualification, selection, or maturation strategy as detailed in this report. Development of the integration methodology feasibility study, along with research and development (R&D) needs, are ongoing tasks that will be covered in the future reports as work progresses. Section 2 briefly presents the integration of AHTR technology with conventional chemical industrial processes., See Idaho National Laboratory (INL) TEV-1160 (2011) for further details

  10. Combined Heat and Power Systems Technology Development and Demonstration 370 kW High Efficiency Microturbine

    SciTech Connect (OSTI)

    none,

    2015-10-14

    The C370 Program was awarded in October 2010 with the ambitious goal of designing and testing the most electrically efficient recuperated microturbine engine at a rated power of less than 500 kW. The aggressive targets for electrical efficiency, emission regulatory compliance, and the estimated price point make the system state-of-the-art for microturbine engine systems. These goals will be met by designing a two stage microturbine engine identified as the low pressure spool and high pressure spool that are based on derivative hardware of Capstone’s current commercially available engines. The development and testing of the engine occurred in two phases. Phase I focused on developing a higher power and more efficient engine, that would become the low pressure spool which is based on Capstone’s C200 (200kW) engine architecture. Phase II integrated the low pressure spool created in Phase I with the high pressure spool, which is based on Capstone’s C65 (65 kW) commercially available engine. Integration of the engines, based on preliminary research, would allow the dual spool engine to provide electrical power in excess of 370 kW, with electrical efficiency approaching 42%. If both of these targets were met coupled with the overall CHP target of 85% total combined heating and electrical efficiency California Air Resources Board (CARB) level emissions, and a price target of $600 per kW, the system would represent a step change in the currently available commercial generation technology. Phase I of the C370 program required the development of the C370 low pressure spool. The goal was to increase the C200 engine power by a minimum of 25% — 250 kW — and efficiency from 32% to 37%. These increases in the C200 engine output were imperative to meet the power requirements of the engine when both spools were integrated. An additional benefit of designing and testing the C370 low pressure spool was the possibility of developing a stand-alone product for possible commercialization. The low pressure spool design activity focused on an aeropath derivative of the current C200 engine. The aeropath derivative included changes to the compressor section —compressor and inducer — and to the turbine nozzle. The increased power also necessitated a larger, more powerful generator and generator controller to support the increased power requirements. These two major design changes were completed by utilizing both advanced 3D modeling and computational fluid dynamics modelling. After design, modeling, and analysis, the decision was made to acquire and integrate the components for testing. The second task of Phase I was to integrate and test the components of the low pressure spool to validate power and efficiency. Acquisition of the components for the low pressure spool was completed utilizing Capstone’s current supplier base. Utilization of Capstone’s supply base for integration of the test article would allow — if the decision was made —expedited commercialization of the product. After integration of the engine components, the engine was tested and evaluated for performance and emissions. Test data analysis confirmed that the engine met all power and efficiency requirements and did so while maintaining CARB level emissions. The emissions were met without the use of any post processing or catalyst. After testing was completed, the DOE authorized — via a milestone review — proceeding to Phase II: the development of the integrated C370 engine. The C370 high pressure spool design activity required significant changes to the C65 engine architecture. The engine required a high power density generator, completely redesigned compressor stage, turbine section, recuperator, controls architecture, and intercooler stage asThe two most critical design challenges were the turbine section (the nozzle and turbine) and the controls architecture. The design and analysis of all of the components was completed and integrated into a system model. The system model — after numerous iterations — indicated that, once integrated, the engine will meet or exceed all system requirements. Unfortunately, the turbine section’s life requirements remain a technical challenge and will require continued refinement of the bi-metallic turbine wheel design and manufacturing approach to meet the life requirement at theses high temperatures. The current controls architecture requires substantial effort to develop a system capable of handling the high-speed, near real-time controls requirement, but it was determined not to be a technical roadblock for the project. The C370 Program has been a significant effort with state-of-the-art technical targets. The targets have pushed Capstone’s designers to the limits of current technology. The program has been fortunate to see many successes: the successful testing of the low pressure spool (C250), the development of new material processes, and the implementation of new design practices. The technology and practices learned during the program will be utilized in Capstone’s current product lines and future products. The C370 Program has been a resounding success on many fronts for the DOE and for Capstone.

  11. DEVELOPMENT OF DISPOSABLE SORBENTS FOR CHLORIDE REMOVAL FROM HIGH TEMPERATURE COAL-DERIVED GASES

    SciTech Connect (OSTI)

    Gopala Krishnan; Raghubir Gupta

    1999-09-01

    Advanced integrated-gasification combined-cycle (IGCC) and integrated-gasification fuel cell (IGFC) systems require the development of high temperature sorbents for the removal of hydrogen chloride (HCl) vapor to less than 1 parts-per-million (ppm) levels. HCl is a highly reactive, corrosive, and toxic gas which must be removed to meet environmental regulations, to protect power generation equipment, and to minimize deterioration of hot gas desulfurization sorbents. The objective of this program was to develop disposable, alkali-based sorbents capable of reducing HCl vapor levels to less than 1 ppm in the temperature range from 400 to 750 C and pressures in the range from 1 to 20 atm. The primary areas of focus of this program were to investigate different methods of sorbent fabrication, testing their suitability for different reactor configurations, obtaining reaction kinetics data, and conducting a preliminary economic feasibility assessment. This program was a joint effort between SRI International (SRI), Research Triangle Institute (RTI), and General Electric Corporate Research and Development (GE-CRD). SRI, the prime contractor and RTI, a major subcontractor, performed most of the work in this program. Thermochemical calculations indicated that sodium-based sorbents were capable of reducing HCl vapor levels to less than 1 ppm at temperatures up to 650 C, but the regeneration of spent sorbents would require complex process steps. Nahcolite (NaHCO{sub 3}), a naturally-occurring mineral, could be used as an inexpensive sorbent to remove HCl vapor in hot coal gas streams. In the current program, nahcolite powder was used to fabricate pellets suitable for fixed-bed reactors and granules suitable for fluidized-bed reactors. Pilot-scale equipment were used to prepare sorbents in large batches: pellets by disk pelletization and extrusion techniques, and granules by granulation and spray-drying techniques. Bench-scale fixed- and fluidized-bed reactors were assembled at SRI and RTI to conduct tests at high-temperature, high-pressure conditions (HTHP). The HTHP tests confirmed the ability of nahcolite pellets and granules to reduce the HCl vapor levels to less than 1 ppm levels with a very high sorbent utilization for chloride capture. The effect of several operating variables such as temperature, pressure, presence of hydrogen sulfide, and sorbent preparation methods was studied on the efficacy of HCl removal by the sorbent. Pilot-scale tests were performed in the fluidized-bed mode at the gasifier facility at the GE-CRD. Sorbent exposure tests were also conducted using a hot coal gas stream from the DOE/FETC's fluidized-bed gasifier at Morgantown, WV. These tests confirmed the results obtained at SRI and RTI. A preliminary economic assessment showed that the cost of HCl removal in a commercial IGCC system will be about $0.001/kWh (1 mills/kWh).

  12. Development of fundamental power coupler for high-current superconducting RF cavity

    SciTech Connect (OSTI)

    Jain P.; Belomestnykh, S.; Ben-Zvi, I.; Xu, W.

    2012-05-20

    Brookhaven National Laboratory took a project of developing a 704 MHz five-cell superconducting RF cavity for high-current linacs, including Energy Recovery Linac (ERL) for planned electron-hadron collider eRHIC. The cavity will be fed by a high-power RF amplifier using a coaxial Fundamental Power Coupler (FPC), which delivers 20 kW of CW RF power to the cavity. The design of FPC is one of the important aspects as one has to take into account the heat losses dissipated on the surface of the conductor by RF fields along with that of the static heat load. Using a simple simulation model we show the temperature profile and the heat load dissipated along the coupler length. To minimize the heat load on FPC near the cavity end, a thermal intercept is required at an appropriate location on FPC. A 10 K intercept was chosen and its location optimized with our simulation code. The requirement on the helium gas flow rate for the effective heat removal from the thermal intercept is also discussed.

  13. Development of high performance scientific components for interoperability of computing packages

    SciTech Connect (OSTI)

    Gulabani, Teena Pratap

    2008-12-01

    Three major high performance quantum chemistry computational packages, NWChem, GAMESS and MPQC have been developed by different research efforts following different design patterns. The goal is to achieve interoperability among these packages by overcoming the challenges caused by the different communication patterns and software design of each of these packages. A chemistry algorithm is hard to develop as well as being a time consuming process; integration of large quantum chemistry packages will allow resource sharing and thus avoid reinvention of the wheel. Creating connections between these incompatible packages is the major motivation of the proposed work. This interoperability is achieved by bringing the benefits of Component Based Software Engineering through a plug-and-play component framework called Common Component Architecture (CCA). In this thesis, I present a strategy and process used for interfacing two widely used and important computational chemistry methodologies: Quantum Mechanics and Molecular Mechanics. To show the feasibility of the proposed approach the Tuning and Analysis Utility (TAU) has been coupled with NWChem code and its CCA components. Results show that the overhead is negligible when compared to the ease and potential of organizing and coping with large-scale software applications.

  14. Development of high productivity medium current ion implanter 'EXCEED 3000AH Evo2'

    SciTech Connect (OSTI)

    Ikejiri, T.; Hamamoto, N.; Hisada, S.; Iwasawa, K.; Kawakami, K.; Kokuryu, K.; Miyamoto, N.; Nogami, T.; Sakamoto, T.; Sasada, Y.; Tanaka, K.; Yamamoto, Y.; Yamashita, T. [Nissin Ion Equipment Co., LTD., 575, Kuze-tonoshiro-cho, Minami-ku, Kyoto, 601-8205 (Japan)

    2011-01-07

    High productivity medium current ion implanter 'EXCEED 3000AH Evo2' is developed. In semiconductor manufacturing field, improvement of the productivity is continuously required. Especially mass production lines recently tend to use low energy beam and 2 pass implant for higher throughput. The 'Evo2' has been developed in an effort to fulfill these requirements. The 'Evo2' increases low energy beam current by 150 to 250% by applying electrostatic einzel lens called 'V-lens' installed at the exit of the Collimator magnet. This lens is also able to control the beam incident angle by adjusting the upper and lower electrode's voltages independently. Besides, mechanical scanning speed is enhanced to minimize process time of 2 pass implant, while also frequency of the fast beam scanning is enhanced to keep dose uniformity. In addition, a vacuum pumping capability at the target chamber is enhanced to reduce a vacuum waiting time during processing photo-resist wafers. This improvement achieved to reduce process time by 40% for a specific recipe. Furthermore, a modified Indirectly Heated Cathode with electron active Reflection 2 (IHC-R2) ion source which has a long life time filament has been installed. These new elements and/or functions have realized typically 25% improvement of productivity compared to standard EXCEED, and also improve a precise implantation capability.

  15. Engineering development of coal-fired high performance power systems, Phase II and III

    SciTech Connect (OSTI)

    1998-07-01

    The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: thermal efficiency (HHV) {ge} 47%, NOx, SOx, and particulates {le} 10% NSPS (New Source Performance Standard), coal providing {ge} 65% of heat input, all solid wastes benign cost of electricity {le} 90% of present plants. Phase 1, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase 1 also included preliminary R and D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. This phase, Phase 2, involves the development and testing of plant subsystems, refinement and updating of the HIPPS commercial plant design, and the site selection and engineering design of a HIPPS prototype plant. Work reported herein is from: Task 2.1 HITAF Combustor; Task 2.2 HITAF Air Heaters; Task 6 HIPPS Commercial Plant Design Update.

  16. Development of high frequency spice models for ferrite core inductors and transformers

    SciTech Connect (OSTI)

    Muyshondt, G.P.; Portnoy, W.M. . Dept. of Electrical Engineering)

    1989-01-01

    In this work high frequency SPICE models were developed to simulate the hysteresis and saturation effects of toroidal shaped ferrite core inductors and transformers. The models include the nonlinear, multi-valued B-H characteristic of the core material, leakage flux, stray capacitances, and core losses. The saturation effects were modeled using two diode clamping arrangements in conjunction with nonlinear dependent sources. Two possible controlling schemes were developed for the saturation switch. One of the arrangements used the current flowing through a series RC branch to control the switch, while the other used a NAND gate. The NAND gate implementation of the switch proved to be simpler and the parameters associated with it were easier to determine from the measurements and the B-H characteristics of the material. Lumped parameters were used to simulate the parasitic effects. Techniques for measuring these parasitic are described. The models were verified using manganese-zinc ferrite-type toroidal cores and they have general applicability to all circuit analysis codes equivalent function blocks such as multipliers, adders, and logic components. 7 refs., 22 figs.

  17. Engineering development of coal-fired high performance power systems, Phase II and III

    SciTech Connect (OSTI)

    1999-01-01

    The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: thermal efficiency (HHV) {ge} 47%; NOx, SOx, and particulates {le} 10% NSPS (New Source Performance Standard) coal providing {ge} 65% of heat input; all solid wastes benign; cost of electricity {le} 90% of present plants. Phase 1, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase 1 also included preliminary R and D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. This phase, Phase 2, involves the development and testing of plant subsystems, refinement and updating of the HIPPS commercial plant design, and the site selection and engineering design of a HIPPS prototype plant. Work reported herein is from: Task 2.1 HITAC Combustors; Task 2.2 HITAF Air Heaters; Task 6 HIPPS Commercial Plant Design Update.

  18. Development of metal-ceramic coaxial cable Fabry-Prot interferometric sensors for high temperature monitoring

    SciTech Connect (OSTI)

    Trontz, Adam; Cheng, Baokai; Zeng, Shixuan; Xiao, Hai; Dong, Junhang

    2015-09-25

    Metal-ceramic coaxial cable Fabry-Prot interferometric (MCCC-FPI) sensors have been developed using a stainless steel tube and a stainless steel wire as the outer and inner conductors, respectively; a tubular ?-alumina insulator; and a pair of air gaps created in the insulator along the cable to serve as weak reflectors for the transmitting microwave (MW) signal. The MCCC-FPI sensors have been demonstrated for high temperature measurements using MW signals in a frequency range of 28 GHz. The temperature measurement is achieved by monitoring the frequency shift (?) of the MW interferogram reflected from the pair of weak reflectors. The MW sensor exhibited excellent linear dependence of ? on temperature; small measurement deviations (2.7%); and fast response in a tested range of 200500 C. The MCCC has the potential for further developing multipoint FPI sensors in a single-cable to achieve in situ and continuous measurement of spatially distributed temperature in harsh environments.

  19. EIS-0481: Draft Programmatic Environmental Impact Statement | Department of

    Office of Environmental Management (EM)

    Energy Draft Programmatic Environmental Impact Statement EIS-0481: Draft Programmatic Environmental Impact Statement Engineered High Energy Crop (EHEC) Programs Draft Programmatic Environmental Impact Statement The Draft PEIS evaluates the potential environmental impacts associated with DOE's Proposed Action to implement one or more programs to catalyze the development and demonstration of crops specifically engineered for increased energy production. A main component of the proposed

  20. Generalized chemical route to develop fatty acid capped highly dispersed semiconducting metal sulphide nanocrystals

    SciTech Connect (OSTI)

    Patel, Jayesh D.; Chemical Engineering Department, University of Laval, Quebec, QC, G1K 7P4 ; Mighri, Frej; Chemical Engineering Department, University of Laval, Quebec, QC, G1K 7P4 ; Ajji, Abdellah; Chemical Engineering Department, Ecole Polytechnique, C.P. 6079, Succ. Centre-Ville Montreal, QC, H3C 3A7

    2012-08-15

    Highlights: ► Chemical route for the synthesis of OA-capped CdS, ZnS and PbS at low temperature. ► Synthesized nanocrystals via thermolysis of their metal–oleate complexes. ► Size quantized nanocrystals were highly dispersed and stable at room temperature. -- Abstract: This work deals with the synthesis of highly dispersed semiconducting nanocrystals (NCs) of cadmium sulphide (CdS), zinc sulphide (ZnS) and lead sulphide (PbS) through a simple and generalized process using oleic acid (OA) as surfactant. To synthesize these NCs, metal–oleate (M–O) complexes were obtained from the reaction at 140 °C between metal acetates and OA in hexanes media. Subsequently, M–O complexes were sulphurized using thioacetamide at the same temperature. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) characterizations show that the synthesized products are of nanoscale-size with highly crystalline cubic phase. The optical absorption of OA-capped metal sulphide NCs confirms that their size quantization induced a large shift towards visible region. Photoluminescence (PL) spectrum of CdS NCs shows a broad band-edge emission with shallow and deep-trap emissions, while PL spectrum of ZnS NCs reveals a broad emission due to defects states on the surface. The thermogravimetric analysis (TGA) and Fourier transform infrared (FTIR) spectroscopy indicate that fatty acid monolayers were bound strongly on the nanocrystal surface as a carboxylate and the two oxygen atoms of the carboxylate were coordinated symmetrically to the surface of the NCs. The strong binding between the fatty acid and the NCs surface enhances the stability of NCs colloids. In general, this generalized route has a great potential in developing nanoscale metal sulphides for opto-electronic devices.

  1. Very High Temperature Reactor (VHTR) Survey of Materials Research and Development Needs to Support Early Deployment

    SciTech Connect (OSTI)

    Eric Shaber; G. Baccaglini; S. Ball; T. Burchell; B. Corwin; T. Fewell; M. Labar; P. MacDonald; P. Rittenhouse; Russ Vollam; F. Southworth

    2003-01-01

    The VHTR reference concept is a helium-cooled, graphite moderated, thermal neutron spectrum reactor with an outlet temperature of 1000 C or higher. It is expected that the VHTR will be purchased in the future as either an electricity producing plant with a direct cycle gas turbine or a hydrogen producing (or other process heat application) plant. The process heat version of the VHTR will require that an intermediate heat exchanger (IHX) and primary gas circulator be located in an adjoining power conversion vessel. A third VHTR mission - actinide burning - can be accomplished with either the hydrogen-production or gas turbine designs. The first ''demonstration'' VHTR will produce both electricity and hydrogen using the IHX to transfer the heat to either a hydrogen production plant or the gas turbine. The plant size, reactor thermal power, and core configuration will be designed to assure passive decay heat removal without fuel damage during accidents. The fuel cycle will be a once-through very high burnup low-enriched uranium fuel cycle. The purpose of this report is to identify the materials research and development needs for the VHTR. To do this, we focused on the plant design described in Section 2, which is similar to the GT-MHR plant design (850 C core outlet temperature). For system or component designs that present significant material challenges (or far greater expense) there may be some viable design alternatives or options that can reduce development needs or allow use of available (cheaper) materials. Nevertheless, we were not able to assess those alternatives in the time allotted for this report and, to move forward with this material research and development assessment, the authors of this report felt that it was necessary to use a GT-MHR type design as the baseline design.

  2. Walk the Line: The Development of Route Selection Standards for Spent Nuclear Fuel and High-level Radioactive Waste in the United States - 13519

    SciTech Connect (OSTI)

    Dilger, Fred; Halstead, Robert J.; Ballard, James D.

    2013-07-01

    Although storage facilities for spent nuclear fuel (SNF) and high-level radioactive waste (HLRW) are widely dispersed throughout the United States, these materials are also relatively concentrated in terms of geographic area. That is, the impacts of storage occur in a very small geographic space. Once shipments begin to a national repository or centralized interim storage facility, the impacts of SNF and HLRW will become more geographically distributed, more publicly visible, and almost certainly more contentious. The selection of shipping routes will likely be a major source of controversy. This paper describes the development of procedures, regulations, and standards for the selection of routes used to ship spent nuclear fuel and high-level radioactive waste in the United States. The paper begins by reviewing the circumstances around the development of HM-164 routing guidelines. The paper discusses the significance of New York City versus the Department of Transportation and application of HM-164. The paper describes the methods used to implement those regulations. The paper will also describe the current HM-164 designated routes and will provide a summary data analysis of their characteristics. This analysis will reveal the relatively small spatial scale of the effects of HM 164. The paper will then describe subsequent developments that have affected route selection for these materials. These developments include the use of 'representative routes' found in the Department of Energy (DOE) 2008 Supplemental Environmental Impact Statement for the formerly proposed Yucca Mountain geologic repository. The paper will describe recommendations related to route selection found in the National Academy of Sciences 2006 report Going the Distance, as well as recommendations found in the 2012 Final Report of the Blue Ribbon Commission on America's Nuclear Future. The paper will examine recently promulgated federal regulations (HM-232) for selection of rail routes for hazardous materials transport. The paper concludes that while the HM 164 regime is sufficient for certain applications, it does not provide an adequate basis for a national plan to ship spent nuclear fuel and high-level radioactive waste to centralized storage and disposal facilities over a period of 30 to 50 years. (authors)

  3. ROAD MAP FOR DEVELOPMENT OF CRYSTAL-TOLERANT HIGH LEVEL WASTE GLASSES

    SciTech Connect (OSTI)

    Fox, K.; Peeler, D.; Herman, C.

    2014-05-15

    The U.S. Department of Energy (DOE) is building a Tank Waste Treatment and Immobilization Plant (WTP) at the Hanford Site in Washington to remediate 55 million gallons of radioactive waste that is being temporarily stored in 177 underground tanks. Efforts are being made to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product quality requirements. This road map guides the research and development for formulation and processing of crystaltolerant glasses, identifying near- and long-term activities that need to be completed over the period from 2014 to 2019. The primary objective is to maximize waste loading for Hanford waste glasses without jeopardizing melter operation by crystal accumulation in the melter or melter discharge riser. The potential applicability to the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) will also be addressed in this road map. The planned research described in this road map is motivated by the potential for substantial economic benefits (significant reductions in glass volumes) that will be realized if the current constraints (T1% for WTP and TL for DWPF) are approached in an appropriate and technically defensible manner for defense waste and current melter designs. The basis of this alternative approach is an empirical model predicting the crystal accumulation in the WTP glass discharge riser and melter bottom as a function of glass composition, time, and temperature. When coupled with an associated operating limit (e.g., the maximum tolerable thickness of an accumulated layer of crystals), this model could then be integrated into the process control algorithms to formulate crystal-tolerant high-level waste (HLW) glasses targeting high waste loadings while still meeting process related limits and melter lifetime expectancies. The modeling effort will be an iterative process, where model form and a broader range of conditions, e.g., glass composition and temperature, will evolve as additional data on crystal accumulation are gathered. Model validation steps will be included to guide the development process and ensure the value of the effort (i.e., increased waste loading and waste throughput). A summary of the stages of the road map for developing the crystal-tolerant glass approach, their estimated durations, and deliverables is provided.

  4. General-purpose heat source: Research and development program, radioisotope thermoelectric generator/thin fragment impact test

    SciTech Connect (OSTI)

    Reimus, M.A.H.; Hinckley, J.E.

    1996-11-01

    The general-purpose heat source provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. This test was designed to provide information on the response of a loaded RTG to impact by a fragment similar to the type of fragment produced by breakup of the spacecraft propulsion module system. The results of this test indicated that impact by a thin aluminum fragment traveling at 306 m/s may result in significant damage to the converter housing, failure of one fueled clad, and release of a small quantity of fuel.

  5. Pilot Implementation of a Field Study Design to Evaluate the Impact of Source Control Measures on Indoor Air Quality in High Performance Homes

    SciTech Connect (OSTI)

    Widder, Sarah H.; Chamness, Michele A.; Petersen, Joseph M.; Singer, Brett C.; Maddalena, Randy L.; Destaillats, Hugo

    2014-10-20

    To improve the indoor air quality in new, high performance homes, a variety of standards and rating programs have been introduced to identify building materials that are designed to have lower emission rates of key contaminants of concern and a number of building materials are being introduced that are certified to these standards. For example, the U.S. Department of Energy (DOE) Zero Energy Ready Home program requires certification under the U.S. Environmental Protection Agency (EPA) Indoor airPLUS (IaP) label, which requires the use of PS1 or PS2 certified plywood and OSB; low-formaldehyde emitting wood products; low- or no-VOC paints and coatings as certified by Green Seal Standard GS-11, GreenGuard, SCS Indoor Advantage Gold Standard, MPI Green Performance Standard, or another third party rating program; and Green Label-certified carpet and carpet cushions. However, little is known regarding the efficacy of the IAP requirements in measurably reducing contaminant exposures in homes. The goal of this project is to develop a robust experimental approach and collect preliminary data to support the evaluation of indoor air quality (IAQ) measures linked to IAP-approved low-emitting materials and finishes in new residential homes. To this end, the research team of Pacific Northwest National Laboratory (PNNL) and Lawrence Berkeley National Laboratory (LBNL) developed a detailed experimental plan to measure IAQ constituents and other parameters, over time, in new homes constructed with materials compliant with IAPs low-emitting material and ventilation requirements (i.e., section 6.1, 6.2, 6.3, and 7.2) and similar homes constructed to the state building code with conventional materials. The IAQ in IAP and conventional homes of similar age, location, and construction style is quantified as the differences in the speciated VOC and aldehyde concentrations, normalized to dilution rates. The experimental plan consists of methods to evaluate the difference between low-emitting and conventional materials as installed in newly constructed residential homes using both (1) highly controlled, short-term active samples to precisely characterize the building-related chemical emissions and building contents and (2) a week-long passive sample designed to capture the impact of occupant behavior and related activities on measured IAQ contaminant levels indoors. The combination of detailed short-term measurements with the home under controlled/consistent conditions during pre- and post-occupancy and the week-long passive sampling data provide the opportunity to begin to separate the different emission sources and help isolate and quantify variability in the monitored homes. Between April and August 2014, the research team performed pre-occupancy and post-occupancy sampling in one conventional home and two homes built with low-emitting materials that were generally consistent with EPAs Indoor airPLUS guidelines. However, for a number of reasons, the full experimental plan was not implemented. The project was intended to continue for up to three years to asses long-term changes in IAQ but the project was limited to one calendar year. As a result, several of the primary research questions related to seasonal impacts and the long-term trends in IAQ could not be addressed. In addition, there were several unexpected issues related to recruiting, availability of home types, and difficulty coordinating with builders/realtors/homeowners. Several field monitoring issues also came up that provide lessons learned that led to improvements to the original monitoring plan. The project produced a good experimental plan that is expected to be be useful for future efforts collecting data to support answering these same or similar research questions.

  6. Development of Criteria for Flameholding Tendencies within Premixer Passages for High Hydrogen Content Fuels

    SciTech Connect (OSTI)

    Lewis, Elliot; McDonell, Vincent

    2015-03-31

    Due to increasingly stringent air quality requirements stationary power gas turbines have moved to lean-premixed operation, which reduces pollutant emissions but can result in flashback. Flashback can cause serious damage to the premixer hardware. Curtailing flashback can be difficult with hydrocarbon fuels and becomes even more challenging when hydrogen is used as the fuel. The two main approaches for coping with flashback are either to design a combustor that is resistant to flashback, or to design a premixer that will not anchor a flame if flashback occurs. Even with a well-designed combustor flashback can occur under certain circumstances, thus it is necessary to determine how to avoid flameholding within the premixer passageways of a gas turbine. To this end, an experiment was designed that would determine the flameholding propensities at elevated pressures and temperatures of three different classes of geometric features commonly found in gas turbine premixers, with both natural gas and hydrogen fuel. Experiments to find the equivalence ratio at blow off were conducted within an optically accessible test apparatus with four flameholders: 0.25 and 0.50 inch diameter cylinders, a reverse facing step with a height of 0.25 inches, and a symmetric airfoil with a thickness of 0.25 inches and a chord length of one inch. Tests were carried out at temperatures between 300 K and 750 K, at pressures up to 9 atmospheres. Typical bulk velocities were between 40 and 100 m/s. The effect of airfoils angle of rotation was also investigated. Blow off for hydrogen flames was found to occur at much lower adiabatic flame temperatures than natural gas flames. Additionally it was observed that at high pressures and high turbulence intensities, reactant velocity does not have a noticeable effect on the point of blow off due in large part to corresponding increases in turbulent flame speed. Finally a semi empirical correlation was developed that predicts flame extinction for both natural gas and hydrogen flames.

  7. The development of high-performance alkali-hybrid polarized He3 targets for electron scattering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Singh, Jaideep T.; Dolph, Peter A.M.; Tobias, William Al; Averett, Todd D.; Kelleher, Aiden; Mooney, K. E.; Nelyubin, Vladimir V.; Wang, Yunxiao; Zheng, Yuan; Cates, Gordon D.

    2015-05-01

    We present the development of high-performance polarized ³He targets for use in electron scattering experiments that utilize the technique of alkali-hybrid spin-exchange optical pumping. We include data obtained during the characterization of 24 separate target cells, each of which was constructed while preparing for one of four experiments at Jefferson Laboratory in Newport News, Virginia. The results presented here document dramatic improvement in the performance of polarized ³He targets, as well as the target properties and operating parameters that made those improvements possible. Included in our measurements were determinations of the so-called X-factors that quantify a temperature-dependent and as-yet poorly understood spin-relaxation mechanism that limits the maximum achievable ³He polarization to well under 100%. The presence of this spin-relaxation mechanism was clearly evident in our data. We also present results from a simulation of the alkali-hydrid spin-exchange optical pumping process that was developed to provide guidance in the design of these targets. Good agreement with actual performance was obtained by including details such as off-resonant optical pumping. Now benchmarked against experimental data, the simulation is useful for the design of future targets. Included in our results is a measurement of the K- ³He spin-exchange rate coefficientmore » $$k^\\mathrm{K}_\\mathrm{se} = \\left ( 7.46 \\pm 0.62 \\right )\\!\\times\\!10^{-20}\\ \\mathrm{cm^3/s}$$ over the temperature range 503 K to 563 K.« less

  8. Design and development of a high-concentration and high-efficiency photovoltaic concentrator using a curved Fresnel lens

    SciTech Connect (OSTI)

    Scharlack, R.S.; Moffat, A.

    1983-08-01

    Thermo Electron has designed a high concentration photovoltaic module that uses a domed, point-focus Fresnel lens. Their design, design optimization process, and results from lens and receiver tests are described in this report. A complete module has not been fabricated and probably will not be fabricated in the future; however, Thermo Electron's optical design, analysis, and testing of both secondary optical units and domed Fresnel lenses have made a significant contribution to our project. Tooling errors prevented the lens from reaching its potential efficiency by the end of the contract, and resolution of these tooling problems is currently being attempted with a follow-on contract, No. 68-9463.

  9. Development of high energy density fuels from mild gasification of coal

    SciTech Connect (OSTI)

    Not Available

    1990-10-01

    The overall objective of the program is the determination of the minimal processing requirements to produce High Energy Density Fuels (HEDF), meeting a minimal energy density of 130,000 Btu/gal (conventional jet fuels have energy densities in the vicinity of 115,000--120,000 Btu/gal) and having acceptable advanced fuel specifications in accordance with the three defined categories of HEDF. The program encompasses assessing current technology capability; selecting acceptable processing and refining schemes; and generating samples of advanced test fuels. A task breakdown structure was developed containing eight key tasks. This report summarizes the work that Amoco Oil Company (AOC), as key subcontractor, performed in the execution of Task 4, Proposed Upgrading Schemes for Advanced Fuel. The intent of the Task 4 study was to represent all the candidate processing options, that were either studied in the experimental efforts of Task 3 or were available from the prior art in the open literature, in a linear program (LP) model. The LP model would allow scaling of the bench-scale Task 3 results to commercial scale and would perform economic evaluations on any combination of the processes which might be used to make HEDF. Section 2.0 of this report summarizes the process and economic bases used. Sections 3.0 and 4.0 details the economics and processing sensitivities for HEDF production. 1 ref., 15 figs., 9 tabs.

  10. Nuclear design of small-sized high temperature gas-cooled reactor for developing countries

    SciTech Connect (OSTI)

    Goto, M.; Seki, Y.; Inaba, Y.; Ohashi, H.; Sato, H.; Fukaya, Y.; Tachibana, Y.

    2012-07-01

    Japan Atomic Energy Agency (JAEA) has started a conceptual design of a small-sized HTGR with 50 MW thermal power (HTR50S), which is a first-of-a-kind commercial or demonstration plant of a small-sized HTGR to be deployed in developing countries such as Kazakhstan in the 2020's. The nuclear design of the HTR50S is performed by upgrading the proven technology of the High Temperature Engineering Test Reactor (HTTR) to reduce the cost for the construction. In the HTTR design, twelve kinds of fuel enrichment was used to optimize the power distribution, which is required to make the maximum fuel temperature below the thermal limitation during the burn-up period. However, manufacture of many kinds of fuel enrichment causes increase of the construction cost. To solve this problem, the present study challenges the nuclear design by reducing the number of fuel enrichment to as few as possible. The nuclear calculations were performed with SRAC code system whose validity was proven by the HTTR burn-up data. The calculation results suggested that the optimization of the power distribution was reasonably achieved and the maximum fuel temperature was kept below the limitation by using three kinds of fuel enrichment. (authors)

  11. A Large-Scale, High-Resolution Hydrological Model Parameter Data Set for Climate Change Impact Assessment for the Conterminous US

    SciTech Connect (OSTI)

    Oubeidillah, Abdoul A; Kao, Shih-Chieh; Ashfaq, Moetasim; Naz, Bibi S; Tootle, Glenn

    2014-01-01

    To extend geographical coverage, refine spatial resolution, and improve modeling efficiency, a computation- and data-intensive effort was conducted to organize a comprehensive hydrologic dataset with post-calibrated model parameters for hydro-climate impact assessment. Several key inputs for hydrologic simulation including meteorologic forcings, soil, land class, vegetation, and elevation were collected from multiple best-available data sources and organized for 2107 hydrologic subbasins (8-digit hydrologic units, HUC8s) in the conterminous United States at refined 1/24 (~4 km) spatial resolution. Using high-performance computing for intensive model calibration, a high-resolution parameter dataset was prepared for the macro-scale Variable Infiltration Capacity (VIC) hydrologic model. The VIC simulation was driven by DAYMET daily meteorological forcing and was calibrated against USGS WaterWatch monthly runoff observations for each HUC8. The results showed that this new parameter dataset may help reasonably simulate runoff at most US HUC8 subbasins. Based on this exhaustive calibration effort, it is now possible to accurately estimate the resources required for further model improvement across the entire conterminous United States. We anticipate that through this hydrologic parameter dataset, the repeated effort of fundamental data processing can be lessened, so that research efforts can emphasize the more challenging task of assessing climate change impacts. The pre-organized model parameter dataset will be provided to interested parties to support further hydro-climate impact assessment.

  12. A frictional work predictive method for the initiation of solid high explosives from low-pressure impacts

    SciTech Connect (OSTI)

    Chidester, S.K.; Green, L.G.; Lee, C.G.

    1993-07-01

    The goal of these tests was to provide information that would aid in the prediction of HE response in accident situations where the initiating stimulus was less than that required for direct shock initiation. Before these tests were run, a prediction of threshold impact velocity was made (70m/s) using a rough average of previously reported threshold factional work from skid tests (1 cal/cm{sub 2}) and the experimental value for coefficient of friction of 0.5({plus_minus}) measured in the same tests for PBX-9404. The actual testing proved the threshold impact velocity to be much less, and the pretest prediction was not only wrong, it was not conservative. This work presents a methodology for more accurately predicting the reaction threshold for HE involved in an accident such as an airplane crash or a severe land transportation accident. The main focus of this work is on LX-10-1 (94.5% 5.5% Viton A binder, density 1.86g/cm{sup 3}). Additional work was done on LX-17 (92.5% TATB, 7.5% KelF binder, density 1.90g/cm{sub 3}), a very insensitive explosive. The explicit two-dimensional finite element code, DYNA2D, was used to model the tests and predict the HE response. The finite element mesh of the projectile and target were generated using MAZE. The post-processing of the DYNA2D analysis was done with ORION.

  13. Development of Advanced CdTe Solar Cells Based on High Temperature Corning Glass Substrates: Cooperative Research and Development Final Report, CRADA Number CRD-10-373

    SciTech Connect (OSTI)

    Barnes, T.

    2013-08-01

    NREL has developed advanced processes for CdTe solar cells, but because of the temperature limitations of conventional soda lime glass, many of these processes have not been transferred to manufacturing. Corning is developing high temperature substrate glasses that are believed to be manufacturable and will lead to lower $/watt modules costs. The purpose of this CRADA is to evaluate these glasses in the advanced NREL processes. In addition, the CRADA seeks to develop manufacturable processes for transparent conductive oxide layers based on cadmium stannate.

  14. IMPACT OF NOBLE METALS AND MERCURY ON HYDROGEN GENERATION DURING HIGH LEVEL WASTE PRETREATMENT AT THE SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Stone, M; Tommy Edwards, T; David Koopman, D

    2009-03-03

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site vitrifies radioactive High Level Waste (HLW) for repository internment. The process consists of three major steps: waste pretreatment, vitrification, and canister decontamination/sealing. HLW consists of insoluble metal hydroxides (primarily iron, aluminum, calcium, magnesium, manganese, and uranium) and soluble sodium salts (carbonate, hydroxide, nitrite, nitrate, and sulfate). The pretreatment process in the Chemical Processing Cell (CPC) consists of two process tanks, the Sludge Receipt and Adjustment Tank (SRAT) and the Slurry Mix Evaporator (SME) as well as a melter feed tank. During SRAT processing, nitric and formic acids are added to the sludge to lower pH, destroy nitrite and carbonate ions, and reduce mercury and manganese. During the SME cycle, glass formers are added, and the batch is concentrated to the final solids target prior to vitrification. During these processes, hydrogen can be produced by catalytic decomposition of excess formic acid. The waste contains silver, palladium, rhodium, ruthenium, and mercury, but silver and palladium have been shown to be insignificant factors in catalytic hydrogen generation during the DWPF process. A full factorial experimental design was developed to ensure that the existence of statistically significant two-way interactions could be determined without confounding of the main effects with the two-way interaction effects. Rh ranged from 0.0026-0.013% and Ru ranged from 0.010-0.050% in the dried sludge solids, while initial Hg ranged from 0.5-2.5 wt%, as shown in Table 1. The nominal matrix design consisted of twelve SRAT cycles. Testing included: a three factor (Rh, Ru, and Hg) study at two levels per factor (eight runs), three duplicate midpoint runs, and one additional replicate run to assess reproducibility away from the midpoint. Midpoint testing was used to identify potential quadratic effects from the three factors. A single sludge simulant was used for all tests and was spiked with the required amount of noble metals immediately prior to performing the test. Acid addition was kept effectively constant except to compensate for variations in the starting mercury concentration. SME cycles were also performed during six of the tests.

  15. Development and Performance Evaluation of High Temperature Concrete for Thermal Energy Storage for Solar Power Generation

    SciTech Connect (OSTI)

    R. Panneer Selvam, Micah Hale and Matt strasser

    2013-03-31

    Thermal energy can be stored by the mechanism of sensible or latent heat or heat from chemical reactions. Sensible heat is the means of storing energy by increasing the temperature of the solid or liquid. Since the concrete as media cost per kWhthermal is $1, this seems to be a very economical material to be used as a TES. This research is focused on extending the concrete TES system for higher temperatures (500 ?ºC to 600 ?ºC) and increasing the heat transfer performance using novel construction techniques. To store heat at high temperature special concretes are developed and tested for its performance. The storage capacity costs of the developed concrete is in the range of $0.91-$3.02/kWhthermal Two different storage methods are investigated. In the first one heat is transported using molten slat through a stainless steel tube and heat is transported into concrete block through diffusion. The cost of the system is higher than the targeted DOE goal of $15/kWhthermal The increase in cost of the system is due to stainless steel tube to transfer the heat from molten salt to the concrete blocks.The other method is a one-tank thermocline system in which both the hot and cold fluid occupy the same tank resulting in reduced storage tank volume. In this model, heated molten salt enters the top of the tank which contains a packed bed of quartzite rock and silica sand as the thermal energy storage (TES) medium. The single-tank storage system uses about half the salt that is required by the two-tank system for a required storage capacity. This amounts to a significant reduction in the cost of the storage system. The single tank alternative has also been proven to be cheaper than the option which uses large concrete modules with embedded heat exchangers. Using computer models optimum dimensions are determined to have an round trip efficiency of 84%. Additionally, the cost of the structured concrete thermocline configuration provides the TES capacity cost of $33.80$/kWhthermal compared with $30.04/kWhthermal for a packed-bed thermocline (PBTC) configuration and $46.11/kWhthermal for a two-tank liquid configuration.

  16. Membrane Development for Medium and High Temperature PEMFC in Europe (Presentation)

    Broader source: Energy.gov [DOE]

    Presented at the High Temperature Membrane Working Group Meeting (HTMWG) held October 10, 2007 in Washington, D.C.

  17. Development of Appropriate Spot Welding Practice for Advanced High Strength Steels (TRP 0114)

    SciTech Connect (OSTI)

    Brian Girvin; Warren Peterson; Jerry Gould

    2004-09-17

    This program evaluated the effects of common manufacturing variables on spike-tempering effectiveness. The investigation used design-of-experiment (DOE) techniques, and examined both dual-phase and martensitic grades of high-strength steels (HSS). The specific grades chosen for this project were: Dual-phase (DP) 600, galvannealed (GA), 1.55 mm (DP) 600; Dual-phase (DP) 980 (uncoated), 1.55 mm (DP) 980; and Martensitic (M) 1300, 1.55 mm (M) 1300. Common manufacturing conditions of interest included tempering practice (quench and temper time), button size, simulated part fitup (sheet angular misalignment and fitup), and electrode wear (increased electrode face diameter). All of these conditions were evaluated against mechanical performance (static and dynamic tensile shear). Weld hardness data was also used to examine correlations between mechanical performance and the degree of tempering. Mechanical performance data was used to develop empirical models. The models were used to examine the robustness of weld strength and toughness to the selected processing conditions. This was done using standard EWI techniques. Graphical representations of robustness were then coupled with metallographic data to relate mechanical properties to the effectiveness of spike tempering. Mechanical properties for all three materials were relatively robust to variation in tempering. Major deviations in mechanical properties were caused by degradation of the weld itself. This was supported by a lack of correlation between hardness data and mechanical results. Small button sizes and large electrode face diameters (worn electrodes) produced large reductions in both static and dynamic strength levels when compared to standard production setups. Dynamic strength was further degraded by edge-located welds.

  18. Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OF IMAGING We require: (1) a high quality ion beam, (2) computer vision and image processing techniques for isolating and re- constructing the beam, and (3) wavelengths suitable...

  19. High Throughput Computing Impact on Meta Genomics (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema (OSTI)

    Gore, Brooklin [Morgridge Institute for Research

    2013-01-22

    This presentation includes a brief background on High Throughput Computing, correlating gene transcription factors, optical mapping, genotype to phenotype mapping via QTL analysis, and current work on next gen sequencing.

  20. High Throughput Computing Impact on Meta Genomics (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    SciTech Connect (OSTI)

    Gore, Brooklin [Morgridge Institute for Research] [Morgridge Institute for Research

    2011-10-12

    This presentation includes a brief background on High Throughput Computing, correlating gene transcription factors, optical mapping, genotype to phenotype mapping via QTL analysis, and current work on next gen sequencing.

  1. Amended Record of Decision for the Idaho High-Level Waste (HLW) and Facilities Disposition Final Environmental Impact Statement

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) is amending its Record of Decision (ROD) published December 19, 2005 (70 Federal Register (FR) 75165), pursuant to the Idaho HIgh-Level Waste and Facilities...

  2. EIS-0287: Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement, EIS-0287 (September 2002)

    Broader source: Energy.gov [DOE]

    This EIS analyzes the potential environmental consequences of alternatives for managing high-level waste (HLW) calcine, mixed transuranic waste/sodium bearing waste (SBW) and newly generated liquid...

  3. How Do High Levels of Wind and Solar Impact the Grid? The Western Wind and Solar Integration Study

    SciTech Connect (OSTI)

    Lew, D.; Piwko, D.; Miller, N.; Jordan, G.; Clark, K.; Freeman, L.

    2010-12-01

    This paper is a brief introduction to the scope of the Western Wind and Solar Integration Study (WWSIS), inputs and scenario development, and the key findings of the study.

  4. Vehicle Technologies Office Merit Review 2014: Development of High Power Density Driveline for Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the development...

  5. Vehicle Technologies Office Merit Review 2015: Development of High Power Density Driveline for Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation meeting about development of...

  6. high

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1999 Highlights International Oil Markets Prices. World oil prices for the remainder of 1999 and all of 2000 are expected to remain above $20 per barrel. EIA believes that prices will rise from average November levels (an estimated $23.50 per barrel for the price paid by U.S. refiners for imported crude) by about $1 per barrel by December, due to increased demand in the winter and Y2K precautionary building of end-user inventories (see a brief discussion on Y2K impacts below). The world oil

  7. Hawaii Energy Resource Overviews. Volume II. Impact of geothermal development on the geology and hydrology of the Hawaiian Islands

    SciTech Connect (OSTI)

    Feldman, C.; Siegel, B.Z.

    1980-06-01

    The following topics are discussed: the geological setting of the Hawaiian Islands, regional geology of the major islands, geohydrology of the Hawaiian Islands, Hawaiis' geothermal resources, and potential geological/hydrological problems associated with geothermal development. Souces of information on the geology of Hawaii are presented. (MHR)

  8. Hawaii Energy Resource Overviews. Volume 4. Impact of geothermal resource development in Hawaii (including air and water quality)

    SciTech Connect (OSTI)

    Siegel, S.M.; Siegel, B.Z.

    1980-06-01

    The environmental consequences of natural processes in a volcanic-fumerolic region and of geothermal resource development are presented. These include acute ecological effects, toxic gas emissions during non-eruptive periods, the HGP-A geothermal well as a site-specific model, and the geothermal resources potential of Hawaii. (MHR)

  9. Development Of High Waste-Loading HLW Glasses For High Bismuth Phosphate Wastes, VSL-12R2550-1, Rev 0

    SciTech Connect (OSTI)

    Kruger, A. A.; Pegg, Ian L.; Gan, Hao; Kot, Wing K.

    2012-12-13

    This report presents results from tests with new glass formulations that have been developed for several high Bi-P HLW compositions that are expected to be processed at the WTP that have not been tested previously. WTP HLW feed compositions were reviewed to select waste batches that are high in Bi-P and that are reasonably distinct from the Bi-limited waste that has been tested previously. Three such high Bi-P HLW compositions were selected for this work. The focus of the present work was to determine whether the same type of issues as seen in previous work with high-Bi HLW will be seen in HLW with different concentrations of Bi, P and Cr and also whether similar glass formulation development approaches would be successful in mitigating these issues. New glass compositions were developed for each of the three representative Bi-P HLW wastes and characterized with respect to key processing and product quality properties and, in particular, those relating to crystallization and foaming tendency.

  10. High-resolution (e, 2e + ion) study of electron-impact ionization and fragmentation of methane

    SciTech Connect (OSTI)

    Ren, Xueguang Pflger, Thomas; Weyland, Marvin; Baek, Woon Yong; Rabus, Hans; Ullrich, Joachim; Dorn, Alexander

    2015-05-07

    The ionization and fragmentation of methane induced by low-energy (E{sub 0} = 66 eV) electron-impact is investigated using a reaction microscope. The momentum vectors of all three charged final state particles, two outgoing electrons, and one fragment ion, are detected in coincidence. Compared to the earlier study [Xu et al., J. Chem. Phys. 138, 134307 (2013)], considerable improvements to the instrumental mass and energy resolutions have been achieved. The fragment products CH{sub 4}{sup +}, CH{sub 3}{sup +}, CH{sub 2}{sup +}, CH{sup +}, and C{sup +} are clearly resolved. The binding energy resolution of ?E = 2.0 eV is a factor of three better than in the earlier measurements. The fragmentation channels are investigated by measuring the ion kinetic energy distributions and the binding energy spectra. While being mostly in consistence with existing photoionization studies the results show differences including missing fragmentation channels and previously unseen channels.

  11. Development and utilization of a coiled tubing equipment package for work in high pressure wells

    SciTech Connect (OSTI)

    Adrichem, W.P. van; Gordon, D.G.; Newlands, D.J.

    1995-12-31

    Cleanouts of deep, high pressure, high temperature gas wells are a common operation in South Texas. Until recently, these cleanouts required the use of snubbing units due to the high pressures encountered. This resulted in time consuming (7--12 days) and thus expensive operations. Because of this expense, efforts have been made to extend the application of coiled tubing (CT) to operations where wellhead pressures approach 10,000 psi. Testing of a specially equipped 1-1/4 inch CT unit in conditions simulating a 10,000 psi South Texas well cleanout proved that the use of a CT unit was a viable alternative to snubbing operations. Since then, some 50 high pressure cleanouts have been successfully performed at an average cost saving of 50% while taking 1--3 days to complete. This paper will focus on the operating parameters, the design, the testing and the field implementation of a high pressure CT unit.

  12. NREL Develops High-Speed Scanner to Monitor Fuel Cell Material Defects

    SciTech Connect (OSTI)

    2015-09-01

    This highlight describes results of recent work in which polymer electrolyte membrane fuel cell electrodes with intentionally introduced known defects were imaged and analyzed using a fuel cell scanner recently developed at NREL. The highlight is being developed for the September 2015 Alliance S&T Board meeting.

  13. Finding of No Significant Impact and Final Environmental Assessment of Three Site Development Projects at the National Renewable Energy Laboratory South Table Mountain Site

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FINDING OF NO SIGNIFICANT IMPACT AND FINAL ENVIRONMENTAL ASSESSMENT OF THREE SITE DEVELOPMENT PROJECTS AT THE NATIONAL RENEWABLE ENERGY LABORATORY SOUTH TABLE MOUNTAIN SITE July 2007 U . S . D e p a r t m e n t o f E n e r g y G o l d e n F i e l d O f f i c e N a t i o n a l R e n e w a b l e E n e r g y L a b o r a t o r y 1 6 1 7 C o l e B o u l e v a r d G o l d e n , C o l o r a d o 8 0 4 0 1 DOE/EA-1573 Final Environmental Assessment of Three Site Development Projects at the National

  14. Development of a high-performance coal-fired power generating system with pyrolysis gas and char-fired high temperature furnace (HITAF). Volume 1, Final report

    SciTech Connect (OSTI)

    NONE

    1996-02-01

    A major objective of the coal-fired high performance power systems (HIPPS) program is to achieve significant increases in the thermodynamic efficiency of coal use for electric power generation. Through increased efficiency, all airborne emissions can be decreased, including emissions of carbon dioxide. High Performance power systems as defined for this program are coal-fired, high efficiency systems where the combustion products from coal do not contact the gas turbine. Typically, this type of a system will involve some indirect heating of gas turbine inlet air and then topping combustion with a cleaner fuel. The topping combustion fuel can be natural gas or another relatively clean fuel. Fuel gas derived from coal is an acceptable fuel for the topping combustion. The ultimate goal for HIPPS is to, have a system that has 95 percent of its heat input from coal. Interim systems that have at least 65 percent heat input from coal are acceptable, but these systems are required to have a clear development path to a system that is 95 percent coal-fired. A three phase program has been planned for the development of HIPPS. Phase 1, reported herein, includes the development of a conceptual design for a commercial plant. Technical and economic feasibility have been analysed for this plant. Preliminary R&D on some aspects of the system were also done in Phase 1, and a Research, Development and Test plan was developed for Phase 2. Work in Phase 2 include s the testing and analysis that is required to develop the technology base for a prototype plant. This work includes pilot plant testing at a scale of around 50 MMBtu/hr heat input. The culmination of the Phase 2 effort will be a site-specific design and test plan for a prototype plant. Phase 3 is the construction and testing of this plant.

  15. Scientific Impact

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Impact Since its inception over twenty years ago, CAMS has achieved noteworthy scientific progress by developing new capabilities and by combining state-of-the-art tools and expertise to address important scientific challenges. Scientific Leadership CAMS scientists are recognized as scientific leaders in the field of AMS and the disciplines that it supports. Many CAMS staff participate on federal agency (NIH, NSF, NOAA and DOE) scientific review panels as well as giving a multitude

  16. Detector Developments for the High Luminosity LHC Era (1/4)

    SciTech Connect (OSTI)

    2010-09-22

    Calorimetry and Muon Spectrometers - Part I : In the first part of the lecture series, the motivation for a high luminosity upgrade of the LHC will be quickly reviewed together with the challenges for the LHC detectors. In particular, the plans and ongoing research for new calorimeter detectors will be explained. The main issues in the high-luminosity era are an improved radiation tolerance, natural ageing of detector components and challenging trigger and physics requirements. The new technological solutions for calorimetry at a high-luminosity LHC will be reviewed.

  17. Detector Developments for the High Luminosity LHC Era (1/4)

    ScienceCinema (OSTI)

    None

    2011-10-06

    Calorimetry and Muon Spectrometers - Part I : In the first part of the lecture series, the motivation for a high luminosity upgrade of the LHC will be quickly reviewed together with the challenges for the LHC detectors. In particular, the plans and ongoing research for new calorimeter detectors will be explained. The main issues in the high-luminosity era are an improved radiation tolerance, natural ageing of detector components and challenging trigger and physics requirements. The new technological solutions for calorimetry at a high-luminosity LHC will be reviewed.

  18. NREL: Innovation Impact - Bioenergy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and catalytic conversion, for development to the pilot scale. Learn More Learn more Close Learn more about NREL's bioenergy innovation impacts. Photo and composite photo...

  19. Development and Analysis of Advanced High-Temperature Technology for Nuclear Heat Transport and Power Conversion

    SciTech Connect (OSTI)

    Per F. Peterson

    2010-03-01

    This project by the Thermal Hydraulics Research Laboratory at U.C. Berkeley Studied advanced high-temperature heat transport and power conversion technology, in support of the Nuclear Hydrogen Initiative and Generation IV.

  20. Overview of Fraunhofer IPM Activities in High Temperature Bulk Materials and Device Development

    Broader source: Energy.gov [DOE]

    Presentation given at the 2011 Thermoelectrics Applications Workshop including an overview about Fraunhofer IPM, new funding situation in Germany, high temperature material and modules, energy-autarkic sensors, and thermoelectric metrology.

  1. Vehicle Technologies Office Merit Review 2015: High Energy Anode Material Development for Li-ion Batteries

    Broader source: Energy.gov [DOE]

    Presentation given by Sinode Systems at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy anode material...

  2. Development of a High Resolution X-Ray Imaging Crystal Spectrometer

    Office of Scientific and Technical Information (OSTI)

    for Measurement of Ion-Temperature and Rotation-Velocity ... prepared as an account of work sponsored by an agency of ... were available from small area crystals on the high ...

  3. Development of a High Resolution X-Ray Imaging Crystal Spectrometer...

    Office of Scientific and Technical Information (OSTI)

    for Measurement of Ion-Temperature and Rotation-Velocity ... prepared as an account of work sponsored by an agency of ... were avail- able from small area crystals on the high ...

  4. Development and operation of a high-throughput accurate-wavelength...

    Office of Scientific and Technical Information (OSTI)

    imaging. A precision optical encoder measures the grating angle with an accuracy 0.075 arc sec. A high quantum efficiency low-etaloning CCD detector allows operation at longer...

  5. Hydration and strength development of binder based on high-calcium oil shale fly ash

    SciTech Connect (OSTI)

    Freidin, C. [Ben-Gurion Univ. of the Negev, Sede-Boqer (Israel)] [Ben-Gurion Univ. of the Negev, Sede-Boqer (Israel)

    1998-06-01

    The properties of high-calcium oil shale fly ash and low-calcium coal fly ash, which are produced in Israeli power stations, were investigated. High-calcium oil shale fly ash was found to contain a great amount of CaO{sub free} and SO{sub 3} in the form of lime and anhydrite. Mixtures of high-calcium oil shale fly ash and low-calcium coal fly ash, termed fly ash binder, were shown to cure and have improved strength. The influence of the composition and curing conditions on the compressive strength of fly ash binders was examined. The microstructure and the composition of fly ash binder after curing and long-term exposure in moist air, water and open air conditions were studied. It was determined that ettringite is the main variable in the strength and durability of cured systems. The positive effect of calcium silicate hydrates, CSH, which are formed by interaction of high-calcium oil shale fly ash and low-calcium coal fly ash components, on the carbonation and dehydration resistance of fly ash binder in open air is pronounced. It was concluded that high-calcium oil shale fly ash with high CaO{sub free} and SO{sub 3} content can be used as a binder for building products.

  6. Expanded High-Level Waste Glass Property Data Development: Phase I

    SciTech Connect (OSTI)

    Schweiger, Michael J.; Riley, Brian J.; Crum, Jarrod V.; Hrma, Pavel R.; Rodriguez, Carmen P.; Arrigoni, Benjamin M.; Lang, Jesse B.; Kim, Dong-Sang; Vienna, John D.; Raszewski, F. C.; Peeler, David K.; Edwards, Tommy B.; Best, D. R.; Reamer, Irene A.; Riley, W. T.; Simmons, P. T.; Workman, R. J.

    2011-01-21

    Two separate test matrices were developed as part if the EM-21 Glass Matrix Crucible Testing. The first matrix, developed using a single component-at-a-time design method and covering glasses of interest primarily to Hanford, is addressed in this data package. This data package includes methods and results from glass fabrication, chemical analysis of glass compositions, viscosity, electrical conductivity, liquidus temperature, canister centerline cooling, product consistency testing, and the toxicity characteristic leach procedure.

  7. A review of water and greenhouse gas impacts of unconventional natural gas development in the United States

    SciTech Connect (OSTI)

    Arent, Doug; Logan, Jeff; Macknick, Jordan; Boyd, William; Medlock , Kenneth; O'Sullivan, Francis; Edmonds, James A.; Clarke, Leon E.; Huntington, Hill; Heath, Garvin; Statwick, Patricia M.; Bazilian, Morgan

    2015-01-01

    This paper reviews recent developments in the production and use of unconventional natural gas in the United States with a focus on water and greenhouse gas emission implications. If unconventional natural gas in the U.S. is produced responsibly, transported and distributed with little leakage, and incorporated into integrated energy systems that are designed for future resiliency, it could play a significant role in realizing a more sustainable energy future; however, the increased use of natural gas as a substitute for more carbon intensive fuels will alone not substantially alter world carbon dioxide concentration projections.

  8. Assessment of Tidal Energy Removal Impacts on Physical Systems: Development of MHK Module and Analysis of Effects on Hydrodynamics

    SciTech Connect (OSTI)

    Yang, Zhaoqing; Wang, Taiping

    2011-09-01

    In this report we describe (1) the development, test, and validation of the marine hydrokinetic energy scheme in a three-dimensional coastal ocean model (FVCOM); and (2) the sensitivity analysis of effects of marine hydrokinetic energy configurations on power extraction and volume flux in a coastal bay. Submittal of this report completes the work on Task 2.1.2, Effects of Physical Systems, Subtask 2.1.2.1, Hydrodynamics and Subtask 2.1.2.3, Screening Analysis, for fiscal year 2011 of the Environmental Effects of Marine and Hydrokinetic Energy project.

  9. THE IMPACT OF OZONE ON THE LOWER FLAMMABLE LIMIT OF HYDROGEN IN VESSELS CONTAINING SAVANNAH RIVER SITE HIGH LEVEL WASTE

    SciTech Connect (OSTI)

    Sherburne, Carol; Osterberg, Paul; Johnson, Tom; Frawely, Thomas

    2013-01-23

    The Savannah River Site, in conjunction with AREVA Federal services, has designed a process to treat dissolved radioactive waste solids with ozone. It is known that in this radioactive waste process, radionuclides radiolytically break down water into gaseous hydrogen and oxygen, which presents a well defined flammability hazard. Flammability limits have been established for both ozone and hydrogen separately; however, there is little information on mixtures of hydrogen and ozone. Therefore, testing was designed to provide critical flammability information necessary to support safety related considerations for the development of ozone treatment and potential scale-up to the commercial level. Since information was lacking on flammability issues at low levels of hydrogen and ozone, a testing program was developed to focus on filling this portion of the information gap. A 2-L vessel was used to conduct flammability tests at atmospheric pressure and temperature using a fuse wire ignition source at 1 percent ozone intervals spanning from no ozone to the Lower Flammable Limit (LFL) of ozone in the vessel, determined as 8.4%(v/v) ozone. An ozone generator and ozone detector were used to generate and measure the ozone concentration within the vessel in situ, since ozone decomposes rapidly on standing. The lower flammability limit of hydrogen in an ozone-oxygen mixture was found to decrease from the LFL of hydrogen in air, determined as 4.2 % (v/v) in this vessel. From the results of this testing, Savannah River was able to develop safety procedures and operating parameters to effectively minimize the formation of a flammable atmosphere.

  10. Development of Metal Oxide Nanostructure-based Optical Sensors for Fossil Fuel Derived Gases Measurement at High Temperature

    SciTech Connect (OSTI)

    Chen, Kevin

    2014-08-31

    This final technical report details research works performed supported by a Department of Energy grant (DE-FE0003859), which was awarded under the University Coal Research Program administrated by National Energy Technology Laboratory. This research program studied high temperature fiber sensor for harsh environment applications. It developed two fiber optical sensor platform technology including regenerative fiber Bragg grating sensors and distributed fiber optical sensing based on Rayleigh backscattering optical frequency domain reflectometry. Through the studies of chemical and thermal regenerative techniques for fiber Bragg grating (FBG) fabrication, high-temperature stable FBG sensors were successfully developed and fabricated in air-hole microstructured fibers, high-attenuation fibers, rare-earth doped fibers, and standard telecommunication fibers. By optimizing the laser processing and thermal annealing procedures, fiber grating sensors with stable performance up to 1100oC have been developed. Using these temperature-stable FBG gratings as sensor platform, fiber optical flow, temperature, pressure, and chemical sensors have been developed to operate at high temperatures up to 800oC. Through the integration of on-fiber functional coating, the use of application-specific air-hole microstructural fiber, and application of active fiber sensing scheme, distributed fiber sensor for temperature, pressure, flow, liquid level, and chemical sensing have been demonstrated with high spatial resolution (1-cm or better) with wide temperature ranges. These include the demonstration of 1) liquid level sensing from 77K to the room temperature, pressure/temperature sensing from the room temperature to 800C and from the 15psi to 2000 psi, and hydrogen concentration measurement from 0.2% to 10% with temperature ranges from the room temperature to 700C. Optical sensors developed by this program has broken several technical records including flow sensors with the highest operation temperature up to 750oC, first distributed chemical measurements at the record high temperature up to 700oC, first distributed pressure measurement at the record high temperature up to 800oC, and the fiber laser sensors with the record high operation temperature up to 700oC. The research performed by this program dramatically expand the functionality, adaptability, and applicability of distributed fiber optical sensors with potential applications in a number of high-temperature energy systems such as fossil-fuel power generation, high-temperature fuel cell applications, and potential for nuclear energy systems.

  11. A major cogeneration system goes in at JFK International Airport. Low-visibility privatization in a high-impact environment

    SciTech Connect (OSTI)

    Leibler, J.; Luxton, R.; Ostberg, P.

    1998-04-01

    This article describes the first major privatization effort to be completed at John F. Kennedy International Airport. The airport owner and operator, the Port Authority of New York and New Jersey, decided to seek private sector involvement in a capital-intensive project to expand and upgrade the airport`s heating and air conditioning facilities and construct a new cogeneration plant. Kennedy International Airport Cogeneration (KIAC) Partners, a partnership between Gas Energy Incorporated of New York and Community Energy Alternatives of New Jersey, was selected to develop an energy center to supply electricity and hot and chilled water to meet the airport`s growing energy demand. Construction of a 110 MW cogeneration plant, 7,000 tons of chilled water equipment, and 30,000 feet of hot water delivery piping started immediately. JFK Airport`s critical international position called for this substantial project to be developed almost invisibly; no interruption in heating and air conditioning service and no interference in the airport`s active operations could be tolerated. Commercial operation was achieved in February 1995.

  12. A Review of High-Temperature Geothermal Developments in the Northern...

    Open Energy Info (EERE)

    Intensive geothermal exploration i n the northernBasin.and Range province has r e s u l t e d i n thethe discovery of nine high-temperature (>ZOO"C)geothermal r e s e r v o i r...

  13. Detector Developments for the High Luminosity LHC Era (4/4)

    ScienceCinema (OSTI)

    None

    2011-10-06

    Tracking Detectors - Part II. Calorimetry, muon detection, vertexing, and tracking will play a central role in determining the physics reach for the High Luminosity LHC Era. In these lectures we will cover the requirements, options, and the R&D; efforts necessary to upgrade the current LHC detectors and enabling discoveries.

  14. Detector Developments for the High Luminosity LHC Era (3/4)

    ScienceCinema (OSTI)

    None

    2011-10-06

    Tracking Detectors - Part I. Calorimetry, muon detection, vertexing, and tracking will play a central role in determining the physics reach for the High Luminosity LHC Era. In these lectures we will cover the requirements, options, and the R&D; efforts necessary to upgrade the current LHC detectors and enabling discoveries.

  15. Development test report for the high pressure water jet system nozzles

    SciTech Connect (OSTI)

    Takasumi, D.S.

    1995-09-28

    The high pressure water jet nozzle tests were conducted to identify optimum water pressure, water flow rate, nozzle orifice size and fixture configuration needed to effectively decontaminate empty fuel storage canisters in KE-Basin. This report gives the tests results and recommendations from the these tests.

  16. Development of High-Temperature Ferritic Alloys and Performance Prediction Methods for Advanced Fission Energy Systems

    SciTech Connect (OSTI)

    G. RObert Odette; Takuya Yamamoto

    2009-08-14

    Reports the results of a comprehensive development and analysis of a database on irradiation hardening and embrittlement of tempered martensitic steels (TMS). Alloy specific quantitative semi-empirical models were derived for the dpa dose, irradiation temperature (ti) and test (Tt) temperature of yield stress hardening (or softening) .

  17. Physics of laser fusion. Volume IV. The future development of high-power solid-state laser systems

    SciTech Connect (OSTI)

    Emmett, J.L.; Krupke, W.F.; Trenholme, J.B.

    1982-11-01

    Solid state lasers, particularly neodymium glass systems, have undergone intensive development during the last decade. In this paper, we review solid state laser technology in the context of high-peak-power systems for inertial confinement fusion. Specifically addressed are five major factors: efficiency, wavelength flexibility, average power, system complexity, and cost; these factors today limit broader application of the technology. We conclude that each of these factors can be greatly improved within current fundamental physical limits. We further conclude that the systematic development of new solid state laser madia, both vitreous and crystalline, should ultimately permit the development of wavelength-flexible, very high average power systems with overall efficiencies in the range of 10 to 20%.

  18. Biodiesel Impact on Engine Lubricant Oil Dilution | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impact on Engine Lubricant Oil Dilution Biodiesel Impact on Engine Lubricant Oil Dilution Heavy-duty engine and light-duty vehicle experiments were conducted to investigate the potential for lubricant dilution by fuel during DPF regeneration events. PDF icon p-11_he.pdf More Documents & Publications Development of High Performance Heavy Duty Engine Oils Impact of Biodiesel on Modern Diesel Engine Emissions Performance of Biofuels and Biofuel Blends

  19. Development of design criteria for a high pressure vessel construction code

    SciTech Connect (OSTI)

    Mraz, G.J.

    1987-05-01

    Out of concern for public safety, most legal jurisdictions now require unfired pressure vessel construction to comply with the ASME Boiler and Pressure Vessel Code. Because the present two divisions of Section VIII of that Code are not well suited for high pressure design, a new division is needed. The currently anticipated main design criteria of the proposed division are full plastic flow or full overstrain pressure, stress intensity in the bore, fatigue, and fracture mechanics. The rules are expected to allow better utilization of high strength steels already included in the present Section VIII. At the same time materials of even higher strength are introduced. The benefits of compressive prestress are recognized. Construction methods allowing it's achievement, such as autofrettage, shrink fitting and wire winding are included. Reasons for selection of the criteria are given.

  20. Development of High-Efficiency Low-Lift Vapor Compression System - Final Report

    SciTech Connect (OSTI)

    Katipamula, Srinivas; Armstrong, Peter; Wang, Weimin; Fernandez, Nicholas; Cho, Heejin; Goetzler, W.; Burgos, J.; Radhakrishnan, R.; Ahlfeldt, C.

    2010-03-31

    PNNL, with cofunding from the Bonneville Power Administration (BPA) and Building Technologies Program, conducted a research and development activity targeted at addressing the energy efficiency goals targeted in the BPA roadmap. PNNL investigated an integrated heating, ventilation and air conditioning (HVAC) system option referred to as the low-lift cooling system that potentially offers an increase in HVAC energy performance relative to ASHRAE Standard 90.1-2004.

  1. Bioenergy for Sustainable Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gerard J. Ostheimer, Ph.D. Global Lead Sustainable Bioenergy High-Impact Opportunity Sustainable Energy For All BIOENERGY FOR SUSTAINABLE DEVELOPMENT Overview * Energy poverty is widespread and prevents economic development * The international development community is beginning to act * Momentum is building to grow the bioeconomy across the globe Energy Poverty: Statistics * 1.2 Billion people lack access to modern energy services - 0.5 Billion in sub-Saharan Africa * 2.7 Billion people lack

  2. Environmental Assessment and Finding of No Significant Impact: The Nevada Test Site Development Corporations's Desert Rock Sky Park at the Nevada Test Site

    SciTech Connect (OSTI)

    N /A

    2000-03-01

    The United States Department of Energy has prepared an Environmental Assessment (DOE/EA-1300) (EA) which analyzes the potential environmental effects of developing operating and maintaining a commercial/industrial park in Area 22 of the Nevada Test Site, between Mercury Camp and U.S. Highway 95 and east of Desert Rock Airport. The EA evaluates the potential impacts of infrastructure improvements necessary to support fill build out of the 512-acre Desert Rock Sky Park. Two alternative actions were evaluated: (1) Develop, operate and maintain a commercial/industrial park in Area 22 of the Nevada Test Site, and (2) taking no action. The purpose and need for the commercial industrial park are addressed in Section 1.0 of the EA. A detailed description of the proposed action and alternatives is in section 2.0. Section 3.0 describes the affected environment. Section 4.0 the environmental consequences of the proposed action and alternative. Cumulative effects are addressed in Section 5.0. Mitigation measures are addressed in Section 6.0. The Department of Energy determined that the proposed action of developing, operating and maintaining a commercial/industrial park in Area 22 of the Nevada Test Site would best meet the needs of the agency.

  3. Hanford High-Level Waste Vitrification Program at the Pacific Northwest National Laboratory: technology development - annotated bibliography

    SciTech Connect (OSTI)

    Larson, D.E.

    1996-09-01

    This report provides a collection of annotated bibliographies for documents prepared under the Hanford High-Level Waste Vitrification (Plant) Program. The bibliographies are for documents from Fiscal Year 1983 through Fiscal Year 1995, and include work conducted at or under the direction of the Pacific Northwest National Laboratory. The bibliographies included focus on the technology developed over the specified time period for vitrifying Hanford pretreated high-level waste. The following subject areas are included: General Documentation; Program Documentation; High-Level Waste Characterization; Glass Formulation and Characterization; Feed Preparation; Radioactive Feed Preparation and Glass Properties Testing; Full-Scale Feed Preparation Testing; Equipment Materials Testing; Melter Performance Assessment and Evaluations; Liquid-Fed Ceramic Melter; Cold Crucible Melter; Stirred Melter; High-Temperature Melter; Melter Off-Gas Treatment; Vitrification Waste Treatment; Process, Product Control and Modeling; Analytical; and Canister Closure, Decontamination, and Handling

  4. Development of a high-resolution bathymetry dataset for the Columbia River through the Hanford Reach

    SciTech Connect (OSTI)

    Coleman, Andre M.; Ward, Duane L.; Larson, Kyle B.; Lettrick, Joseph W.

    2010-10-08

    A bathymetric and topographic data collection and processing effort involving existing and newly collected data has been performed for the Columbia River through the Hanford Reach in central Washington State, extending 60-miles from the tailrace of Priest Rapids Dam (river mile 397) to near the vicinity of the Interstate 182 bridge just upstream of the Yakima River confluence (river mile 337). The contents of this report provide a description of the data collections, data inputs, processing methodology, and final data quality assessment used to develop a comprehensive and continuous merged 1m resolution bathymetric and topographic surface dataset for the Columbia River through the Hanford Reach.

  5. Development of a High-Speed Static Switch for Distributed Energy and Microgrid Applications

    SciTech Connect (OSTI)

    Kroposki, B.; Pink, C.; Lynch, J.; John, V.; Meor Daniel, S.; Benedict, E.; Vihinen, I.

    2007-01-01

    Distributed energy resources can provide power to local loads in the electric distribution system and benefits such as improved reliability. Microgrids are intentional islands formed at a facility or in an electrical distribution system that contains at least one distributed resource and associated loads. Microgrids that operate both electrical generation and loads in a coordinated manner can offer additional benefits to the customer and local utility. The loads and energy sources can be disconnected from and reconnected to the area or local utility with minimal disruption to the local loads, thereby improving reliability. This paper details the development and testing of a highspeed static switch for distributed energy and microgrid applications.

  6. Development of a High Latent Effectiveness Energy Recovery Ventilator with Integration into Rooftop Package Equipment

    SciTech Connect (OSTI)

    Gregory M. Dobbs; Norberto O. Lemcoff; Frederick J. Cogswell; Jeffrey T. Benolt

    2006-03-01

    This Final Report covers the Cooperative Program carried out to design and optimize an enhanced flat-plate energy recovery ventilator and integrate it into a packaged unitary (rooftop) air conditioning unit. The project objective was to optimize the design of a flat plate energy recovery ventilator (ERV) core that compares favorably to flat plate air-to-air heat exchanger cores on the market and to cost wise to small enthalpy wheel devices. The benefits of an integrated unit incorporating an enhanced ERV core and a downsized heating/cooling unit were characterized and the design of an integrated unit considering performance and cost was optimized. Phase I was to develop and optimize the design of a membrane based heat exchanger core. Phase II was the creation and observation of a system integrated demonstrator unit consisting of the Enhanced Energy Recovery Ventilator (EERV) developed in Phase I coupled to a standard Carrier 50HJ rooftop packaged unitary air conditioning unit. Phase III was the optimization of the system prior to commercialization based on the knowledge gained in Phase II. To assure that the designs chosen have the possibility of meeting cost objectives, a preliminary manufacturability and production cost study was performed by the Center for Automation Technologies at RPI. Phase I also included a preliminary design for the integrated unit to be further developed in Phase II. This was to assure that the physical design of the heat exchanger designed in Phase I would be acceptable for use in Phase II. An extensive modeling program was performed by the Center for Building Performance & Diagnostics of CMU. Using EnergyPlus as the software, a typical office building with multiple system configurations in multiple climatic zones in the US was simulated. The performance of energy recovery technologies in packaged rooftop HVAC equipment was evaluated. The experimental program carried out in Phases II and III consisted of fabricating and testing a demonstrator unit using Carrier Comfort Network (CCN) based controls. Augmenting the control signals, CCN was also used to monitor and record additional performance data that supported modeling and conceptual understanding. The result of the testing showed that the EERV core developed in Phase I recovered energy in the demonstrator unit at the expected levels based on projections. In fact, at near-ARI conditions the core recovered about one ton of cooling enthalpy when operating with a three-ton rooftop packaged unit.

  7. Next Generation Hole Injection/Transport Nano-Composites for High Efficiency OLED Development

    SciTech Connect (OSTI)

    King Wang

    2009-07-31

    The objective of this program is to use a novel nano-composite material system for the OLED anode coating/hole transport layer. The novel anode coating is intended to significantly increase not only hole injection/transport efficiency, but the device energy efficiency as well. Another goal of the Core Technologies Program is the optimization and scale-up of air-stable and cross-linkable novel HTL nano-composite materials synthesis and the development of low-cost, large-scale mist deposition processes for polymer OLED fabrication. This proposed technology holds the promise to substantially improve OLED energy efficiency and lifetime.

  8. Jobs and Economic Development Modeling

    Office of Energy Efficiency and Renewable Energy (EERE)

    Project objective: Develop models to estimate jobs and economic impacts from geothermal project development and operation.

  9. Feasibility of High-Power Diode Laser Array Surrogate to Support Development of Predictive Laser Lethality Model

    SciTech Connect (OSTI)

    Lowdermilk, W H; Rubenchik, A M; Springer, H K

    2011-01-13

    Predictive modeling and simulation of high power laser-target interactions is sufficiently undeveloped that full-scale, field testing is required to assess lethality of military directed-energy (DE) systems. The cost and complexity of such testing programs severely limit the ability to vary and optimize parameters of the interaction. Thus development of advanced simulation tools, validated by experiments under well-controlled and diagnosed laboratory conditions that are able to provide detailed physics insight into the laser-target interaction and reduce requirements for full-scale testing will accelerate development of DE weapon systems. The ultimate goal is a comprehensive end-to-end simulation capability, from targeting and firing the laser system through laser-target interaction and dispersal of target debris; a 'Stockpile Science' - like capability for DE weapon systems. To support development of advanced modeling and simulation tools requires laboratory experiments to generate laser-target interaction data. Until now, to make relevant measurements required construction and operation of very high power and complex lasers, which are themselves costly and often unique devices, operating in dedicated facilities that don't permit experiments on targets containing energetic materials. High power diode laser arrays, pioneered by LLNL, provide a way to circumvent this limitation, as such arrays capable of delivering irradiances characteristic of De weapon requires are self-contained, compact, light weight and thus easily transportable to facilities, such as the High Explosives Applications Facility (HEAF) at Lawrence Livermore National Laboratory (LLNL) where testing with energetic materials can be performed. The purpose of this study was to establish the feasibility of using such arrays to support future development of advanced laser lethality and vulnerability simulation codes through providing data for materials characterization and laser-material interaction models and to validate the accuracy of code predictions. This project was a Feasibility Study under the LLNL Laboratory Directed Research and Development (LDRD) Program.

  10. Development of neutron measurement in high gamma field using new nuclear emulsion

    SciTech Connect (OSTI)

    Kawarabayashi, J.; Ishihara, K.; Takagi, K.; Tomita, H.; Iguchi, T.; Naka, T.; Morishima, K.; Maeda, S.

    2011-07-01

    To precisely measure the neutron emissions from a spent fuel assembly of a fast breeder reactor, we formed nuclear emulsions based on a non-sensitized Oscillation Project with Emulsion tracking Apparatus (OPERA) film with AgBr grain sizes of 60, 90, and 160 nm. The efficiency for {sup 252}Cf neutron detection of the new emulsion was calculated to be 0.7 x 10{sup -4}, which corresponded to an energy range from 0.3 to 2 MeV and was consistent with a preliminary estimate based on experimental results. The sensitivity of the new emulsion was also experimentally estimated by irradiating with 565 keV and 14 MeV neutrons. The emulsion with an AgBr grain size of 60 nm had the lowest sensitivity among the above three emulsions but was still sensitive enough to detect protons. Furthermore, the experimental data suggested that there was a threshold linear energy transfer of 15 keV/{mu}m for the new emulsion, below which no silver clusters developed. Further development of nuclear emulsion with an AgBr grain size of a few tens of nanometers will be the next stage of the present study. (authors)

  11. Development of extruded and molded straight joint for ultra high-voltage XLPE cable

    SciTech Connect (OSTI)

    Shimomura, T.; Ando, K.; Asahi, K.; Sugiyama, K.

    1986-01-01

    In Japan, 154-kV crosslinked polyethylene-insulated cables (XLPE) are already in use for long-distance tranmission lines, but 275-kV XLPE cables are used only for short-distance lines (without joints) on the premises of power-generation plants and substations. 275-kV XLPE cable is expected to be used for long-distance transmission lines in the near future because of its overall cost advantage. To respond to this need, a straight-through joint with the same reliability as the cable should be developed. Reliable joints should be formed and molded with the same curable PE compounds as the cable insulation. At present, 154-kV XLPE cables for long-distance transmission lines are usually constructed with the joint comprising XLPE insulation wrapped with curable PE tape and molded by heating. However, this taped molded joint has the disadvantages of troublesome tape handling. On the other hand, extruded molded joints are constructed by injecting curable melted PE into a mold with an extruder, eliminating contamination. The report describes the characteristics of the extruded and molded joint developed for 154, 275 and 500 kV class XLPE cables.

  12. Northwest Energy Efficient Manufactured Housing Program: High Performance Manufactured Home Prototyping and Construction Development

    SciTech Connect (OSTI)

    Hewes, Tom; Peeks, Brady

    2013-11-01

    The Building America Partnership for Improved Residential Construction, the Bonneville Power Administration (BPA), and Northwest Energy Works (NEW), the current Northwest Energy Efficient Manufactured Housing Program (NEEM) administrator, have been collaborating to conduct research on new specifications that would improve on the energy requirements of a NEEM home. In its role as administrator, NEW administers the technical specs, performs research and engineering analysis, implements ongoing construction quality management procedures, and maintains a central database with home tracking. This project prototyped and assessed the performances of cost-effective high performance building assemblies and mechanical systems that are not commonly deployed in the manufacturing setting. The package of measures is able to reduce energy used for space conditioning, water heating and lighting by 50% over typical manufactured homes produced in the northwest.

  13. Northwest Energy Efficient Manufactured Housing Program: High Performance Manufactured Home Prototyping and Construction Development

    SciTech Connect (OSTI)

    Hewes, T.; Peeks, B.

    2013-11-01

    The Building America Partnership for Improved Residential Construction, the Bonneville Power Administration (BPA), and Northwest Energy Works (NEW), the current Northwest Energy Efficient Manufactured Housing Program (NEEM) administrator, have been collaborating to conduct research on new specifications that would improve on the energy requirements of a NEEM home. In its role as administrator, NEW administers the technical specs, performs research and engineering analysis, implements ongoing construction quality management procedures, and maintains a central database with home tracking. This project prototyped and assessed the performances of cost-effective high performance building assemblies and mechanical systems that are not commonly deployed in the manufacturing setting. The package of measures is able to reduce energy used for space conditioning, water heating and lighting by 50 percent over typical manufactured homes produced in the northwest.

  14. High-performance porous silicon solar cell development. Final report, October 1, 1993--September 30, 1995

    SciTech Connect (OSTI)

    Maruska, P.

    1996-09-01

    The goal of the program was to demonstrate use of porous silicon in new solar cell structures. Porous silicon technology has been developed at Spire for producing visible light-emitting diodes (LEDs). The major aspects that they have demonstrated are the following: porous silicon active layers have been made to show photovoltaic action; porous silicon surface layers can act as antireflection coatings to improve the performance of single-crystal silicon solar cells; and porous silicon surface layers can act as antireflection coatings on polycrystalline silicon solar cells. One problem with the use of porous silicon is to achieve good lateral conduction of electrons and holes through the material. This shows up in terms of poor blue response and photocurrents which increase with increasing reverse bias applied to the diode.

  15. Enhanced Carbon Concentration in Camelina: Development of a Dedicated, High-value Biofuels Crop

    SciTech Connect (OSTI)

    2012-01-01

    PETRO Project: UMass is developing an enhanced, biofuels-producing variant of Camelina, a drought-resistant, cold-tolerant oilseed crop that can be grown in many places other plants cannot. The team is working to incorporate several genetic traits into Camelina that increases its natural ability to produce oils and add the production of energy-dense terpene molecules that can be easily converted into liquid fuels. UMass is also experimenting with translating a component common in algae to Camelina that should allow the plants to absorb higher levels of carbon dioxide (CO2), which aids in enhancing photosynthesis and fuel conversion. The process will first be demonstrated in tobacco before being applied in Camelina.

  16. Development of High Throughput Process for Constructing 454 Titanium and Illumina Libraries

    SciTech Connect (OSTI)

    Deshpande, Shweta; Hack, Christopher; Tang, Eric; Malfatti, Stephanie; Ewing, Aren; Lucas, Susan; Cheng, Jan-Fang

    2010-05-28

    We have developed two processes with the Biomek FX robot to construct 454 titanium and Illumina libraries in order to meet the increasing library demands. All modifications in the library construction steps were made to enable the adaptation of the entire processes to work with the 96-well plate format. The key modifications include the shearing of DNA with Covaris E210 and the enzymatic reaction cleaning and fragment size selection with SPRI beads and magnetic plate holders. The construction of 96 Titanium libraries takes about 8 hours from sheared DNA to ssDNA recovery. The processing of 96 Illumina libraries takes less time than that of the Titanium library process. Although both processes still require manual transfer of plates from robot to other work stations such as thermocyclers, these robotic processes represent about 12- to 24-folds increase of library capacity comparing to the manual processes. To enable the sequencing of many libraries in parallel, we have also developed sets of molecular barcodes for both library types. The requirements for the 454 library barcodes include 10 bases, 40-60percent GC, no consecutive same base, and no less than 3 bases difference between barcodes. We have used 96 of the resulted 270 barcodes to construct libraries and pool to test the ability of accurately assigning reads to the right samples. When allowing 1 base error occurred in the 10 base barcodes, we could assign 99.6percent of the total reads and 100percent of them were uniquely assigned. As for the Illumina barcodes, the requirements include 4 bases, balanced GC, and at least 2 bases difference between barcodes. We have begun to assess the ability to assign reads after pooling different number of libraries. We will discuss the progress and the challenges of these scale-up processes.

  17. High Performance Networks for High Impact Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Physics Network HTML hyper text markup language IP Internet Protocol LHC CERN's Large Hadron Collider MICS Mathematical, Information, and Computational Sciences MPLS ...

  18. Improvement of Moist and Radiative Processes in Highly Parallel Atmospheric General Circulation Models: Validation and Development

    SciTech Connect (OSTI)

    Frank, William M.; Hack, James J.; Kiehl, Jeffrey T.

    1997-02-24

    Research on designing an integrated moist process parameterization package was carried. This work began with a study that coupled an ensemble of cloud models to a boundary layer model to examine the feasibility of such a methodology for linking boundary layer and cumulus parameterization schemes. The approach proved feasible, prompting research to design and evaluate a coupled parameterization package for GCMS. This research contributed to the development of an Integrated Cumulus Ensemble-Turbulence (ICET) parameterization package. This package incorporates a higher-order turbulence boundary layer that feeds information concerning updraft properties and the variances of temperature and water vapor to the cloud parameterizations. The cumulus ensemble model has been developed, and initial sensitivity tests have been performed in the single column model (SCM) version of CCM2. It is currently being coupled to a convective wake/gust front model. The major function of the convective wake/gust front model is to simulate the partitioning of the boundary layer into disturbed and undisturbed regions. A second function of this model is to predict the nonlinear enhancement of surface to air sensible heat and moisture fluxes that occur in convective regimes due to correlations between winds and anomalously cold, dry air from downdrafts in the gust front region. The third function of the convective wake/gust front model is to predict the amount of undisturbed boundary layer air lifted by the leading edge of the wake and the height to which this air is lifted. The development of the wake/gust front model has been completed, and it has done well in initial testing as a stand-alone component. The current task, to be completed by the end of the funding period, is to tie the wake model to a cumulus ensemble model and to install both components into the single column model version of CCM3 for evaluation. Another area of parametrization research has been focused on the representation of cloud radiative properties. An examination of the CCM2 simulation characteristics indicated that many surface temperature and warm land precipitation problems were linked to deficiencies in the specification of cloud optical properties, which allowed too much shortwave radiation to reach the surface. In-cloud liquid water path was statically specified in the CCM2 using a "prescribed, meridionally and height varying, but time independent, cloud liquid water density profile, which was analytically determined from a meridionally specified liquid water scale height. Single-column model integrations were conducted to explore alternative formulations for the cloud liquid water path diagnostic, converging on an approach that employs a similar, but state-dependent technique for determining in-cloud liquid water concentration. The new formulation, results in significant improvements to both the top-of- atmosphere and surface energy budgets. In particular, when this scheme is incorporated in the three-dimensional GCM, simulated July surface temperature biases are substantially reduced, where summer precipitation over the northern hemisphere continents, as well as precipitation rates over most all warm land areas, is more consistent with observations". This improved parameterization has been incorporated in the CCM3.

  19. High resolution capillary column development for selective separations in gas chromatography

    SciTech Connect (OSTI)

    Przybyciel, M.

    1985-01-01

    A review of techniques for the preparation of high resolution capillary columns for gas chromatography is presented. Surface roughing, surface deactivation, stationary phase coating, and stationary phase crosslinking are discussed. Criteria for the selection of GC stationary phases and procedures for column evaluation are presented. A method is proposed for the isolation and determination of crude oil contamination in tropical plants and sediments. The method uses Florisil (TM) chromatography for the simultaneous clean-up and fractionation of aliphatic and aromatic hydrocarbons. Crosslinked SE-54 fused silica capillary columns prepared in our laboratory were employed for all GC separations. Mass spectrometry was used to help locate and identify specific oil components despite the intense background of the chromatogram. Crude oil components were identified in extracts of mangrove plant samples collected from the Peck Slip oil spill site at Media Munda, Puerto Rico. Crude oil components were also identified in sediment samples from controlled oil spill of Prudhoe Bay oil at Laguna de Chiriqui, Panama.

  20. Development of high strength hydroxyapatite for bone tissue regeneration using nanobioactive glass composites

    SciTech Connect (OSTI)

    Shrivastava, Pragya; Dalai, Sridhar; Vijayalakshmi, S.; Sudera, Prerna; Sivam, Santosh Param; Sharma, Pratibha

    2013-02-05

    With an increasing demand of biocompatible bone substitutes for the treatment of bone diseases and bone tissue regeneration, bioactive glass composites are being tested to improvise the osteoconductive as well as osteoinductive properties. Nanobioactive glass (nBG) composites, having composition of SiO{sub 2} 70 mol%, CaO 26 mol % and P{sub 2}O{sub 5} 4 mol% were prepared by Freeze drying method using PEG-PPG-PEG co-polymer. Polymer addition improves the mechanical strength and porosity of the scaffold of nBG. Nano Bioactive glass composites upon implantation undergo specific reactions leading to the formation of crystalline hydroxyapatite (HA). This is tested in vitro using Simulated Body Fluid (SBF). This high strength hydroxyapatite (HA) layer acts as osteoconductive in cellular environment, by acting as mineral base of bones, onto which new bone cells proliferate leading to new bone formation. Strength of the nBG composites as well as HA is in the range of cortical and cancellous bone, thus proving significant for bone tissue regeneration substitutes.