Powered by Deep Web Technologies
Note: This page contains sample records for the topic "developing high impact" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Computing for Development A New High-Impact Research Area  

E-Print Network (OSTI)

... but can't afford a house In Bangladesh: Poorest devote 7 percent income to communications (Grameen Computing: Design with minimal resources Low-cost high-bandwidth connectivity Appropriate Design

2

High Performance Networks for High Impact Science  

NLE Websites -- All DOE Office Websites (Extended Search)

was printed on recycled paper. (800) High-Performance Networks for High-Impact Science Report of the August 13-15, 2002, Workshop Conducted by the Office of Advanced...

3

Environmental Impacts of Increased Hydroelectric Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Environmental Impacts of Increased Hydroelectric Development at Existing Dams Environmental Impacts of Increased Hydroelectric Development at Existing Dams This report describes...

4

Shale Gas Development Challenges: Surface Impacts | Department...  

Office of Environmental Management (EM)

Impacts Shale Gas Development Challenges: Surface Impacts More Documents & Publications Natural Gas from Shale: Questions and Answers Challenges associated with shale gas...

5

Final Systems Development Report for the Clark County Socioeconomic Impact Assessment of the Proposed High-Level Nuclear Waste Repository at Yucca Mountain, NV  

SciTech Connect

The Systems Development Report represents the third major step in the Clark County Socioeconomic Impact Assessment of the Proposed High-Level Nuclear Waste Repository at Yucca Mound Nevada. The first of these steps was to forge a Research Design that would serve as a guide for the overall research process. The second step was the construction of the Base Case, the purpose of which was to describe existing conditions in Clark County in the specified analytic areas of Economic-Demographic/Fiscal, Emergency Planning and Management, Transportation and Sociocultural analysis. The base case description will serve as a basis for assessing changes in these topic areas that might result from the Yucca Mountain project. These changes will be assessed by analyzing conditions with and without repository development in the county. Prior to performing such assessments, however, the snapshot type of data found in the base case must be operationalized or systematized to allow for more dynamic data utilization. In other words, a data system that can be used to analyze the consequences of the introduction of different variables (or variable values) in the Clark County context must be constructed. Such a system must be capable of being updated through subsequent data collection and monitoring efforts to both provide a rolling base case and supply information necessary to construct trend analyses. For example, during the Impact Assessment phase of the study process, the without repository analysis is accomplished by analyzing growth for the county given existing conditions and likely trends. These data are then compared to the with Yucca Mountain project conditions anticipated for the county. Similarly, once the emergency planning management and response needs associated with the repository are described, these needs will be juxtaposed against existing (and various future) capacity(ies) in order to determine the nature and magnitude of impacts in this analytic area. Analogous tasks will be performed for the other analytic areas detailed in the Base Case and outlined below.

NONE

1992-06-18T23:59:59.000Z

6

WINDExchange: Jobs and Economic Development Impact Models  

Wind Powering America (EERE)

from new electricity generation projects. JEDI was first developed to model wind energy impacts. It has been expanded to analyze concentrating solar power, biofuels, coal,...

7

High Impact Business Program (Illinois) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High Impact Business Program (Illinois) High Impact Business Program (Illinois) High Impact Business Program (Illinois) < Back Eligibility Commercial Construction Industrial Municipal/Public Utility Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Solar Wind Program Info State Illinois Program Type Corporate Tax Incentive Sales Tax Incentive Provider Illinois Department of Commerce and Economic Opportunity The High Impact Business Program provides tax incentives to encourage large-scale economic development. Businesses may qualify for: investment tax credits, a state sales tax exemption on building materials, an exemption from state sales tax on utilities, a state sales tax exemption on purchases of personal property used or consumed in the manufacturing

8

High Impact Technology (HIT) Catalyst  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Impact Technology (HIT) Catalyst Images courtesy CREE, True Manufacturing, A.O. Smith, Bernstein Associates, Cambridge Engineering, Alliance Laundry Systems, NREL Commercial...

9

Modelling Agricultural Trade and Policy Impacts in Less Developed Countries  

Open Energy Info (EERE)

Modelling Agricultural Trade and Policy Impacts in Less Developed Countries Modelling Agricultural Trade and Policy Impacts in Less Developed Countries Jump to: navigation, search Tool Summary Name: Modelling Agricultural Trade and Policy Impacts in Less Developed Countries Agency/Company /Organization: Organisation for Economic Co-Operation and Development Sector: Land Focus Area: Agriculture Topics: Policies/deployment programs Resource Type: Software/modeling tools Website: www.oecd.org/dataoecd/39/39/42122112.pdf Modelling Agricultural Trade and Policy Impacts in Less Developed Countries Screenshot References: Modelling Ag Policy[1] Overview "The role of agricultural policies in addressing the development needs of poorer countries is high on the political agenda, for both structural reasons and as a result of recent market developments. In the first place,

10

Geothermal Development Job Types and Impacts  

Energy.gov (U.S. Department of Energy (DOE))

Development of geothermal power plants and direct-use applications creates a variety of jobs. And the resulting job creation and economic activity within the geothermal industry positively impacts...

11

Webinar on Development Impact Assessment for Low Emissions Development |  

Open Energy Info (EERE)

Webinar on Development Impact Assessment for Low Emissions Development Webinar on Development Impact Assessment for Low Emissions Development Jump to: navigation, search Tool Summary Name: Webinar on Development Impact Assessment for Low Emissions Development Agency/Company /Organization: National Renewable Energy Laboratory, Energy Research Centre of the Netherlands (ECN), Joint Implementation Network, German Agency for International Cooperation (GIZ) Sector: Energy Focus Area: Renewable Energy, Energy Efficiency, Greenhouse Gas, People and Policy Phase: Bring the Right People Together Topics: Co-benefits assessment, Low emission development planning Resource Type: Training materials, Webinar Cost: Free Language: English Webinar Summary Constructing a LEDS requires a tool that enables governments to evaluate and prioritize policies across an economy and clearly explain the process

12

NREL: Jobs and Economic Development Impacts (JEDI) Models - About...  

NLE Websites -- All DOE Office Websites (Extended Search)

Marine & Hydrokinetic Power Model The Jobs and Economic Development Impacts (JEDI) Marine and Hydrokinetic (MHK) model allows users to estimate economic development impacts from...

13

NREL: Jobs and Economic Development Impacts (JEDI) Models - About...  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Model The Jobs and Economic Development Impacts (JEDI) Coal model allows the user to estimate economic development impacts from coal power generation projects. Applying a...

14

Development and Health The impact of health on development in  

E-Print Network (OSTI)

· breakdown of health care delivery systems · inadequate application of TB control measures · increasing drug's population are at risk - increasing due to: · breakdown of health care delivery systems · growing drugDevelopment and Health The impact of health on development in Africa #12;Health challenges

Glasgow, University of

15

Identify types of development and climate impacts that are country...  

Open Energy Info (EERE)

qualitatively development and climate impacts of LEDS technologies and measures Key Products Qualitative impact assessment of priority improved practices or technologies List...

16

JC3 High Impact Assessment Bulletins  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

high-impact-assessment-bulletins high-impact-assessment-bulletins Office of the Chief Information Officer 1000 Independence Ave., SW Washington, DC 202-586-0166 en V-215: NetworkMiner Directory Traversal and Insecure Library Loading Vulnerabilities http://energy.gov/cio/articles/v-215-networkminer-directory-traversal-and-insecure-library-loading-vulnerabilities V-215: NetworkMiner Directory Traversal and Insecure Library Loading Vulnerabilities

17

Conference Proceedings, 2011 Low Impact Development Symposium, Submitted, March 2012 Economic and Adaptation Benefits of Low Impact Development  

E-Print Network (OSTI)

Conference Proceedings, 2011 Low Impact Development Symposium, Submitted, March 2012 1 Economic.ballestero@unh.edu; web: www.unh.edu/unhsc/. #12;Conference Proceedings, 2011 Low Impact Development Symposium, Submitted

18

Cumulative biological impacts of The Geysers geothermal development  

SciTech Connect

The cumulative nature of current and potential future biological impacts from full geothermal development in the steam-dominated portion of The Geysers-Calistoga KGRA are identified by the California Energy Commission staff. Vegetation, wildlife, and aquatic resources information have been reviewed and evaluated. Impacts and their significance are discussed and staff recommendations presented. Development of 3000 MW of electrical energy will result in direct vegetation losses of 2790 acres, based on an estimate of 11.5% loss per lease-hold of 0.93 acres/MW. If unmitigated, losses will be greater. Indirect vegetation losses and damage occur from steam emissions which contain elements (particularly boron) toxic to vegetation. Other potential impacts include chronic low-level boron exposure, acid rain, local climate modification, and mechanical damage. A potential exists for significant reduction and changes in wildlife from direct habitat loss and development influences. Highly erosive soils create the potential for significant reduction of aquatic resources, particularly game fish. Toxic spills have caused some temporary losses of aquatic species. Staff recommends monitoring and implementation of mitigation measures at all geothermal development stages.

Brownell, J.A.

1981-10-01T23:59:59.000Z

19

High Level Waste System Impacts from Acid Dissolution of Sludge  

SciTech Connect

This research evaluates the ability of OLI{copyright} equilibrium based software to forecast Savannah River Site High Level Waste system impacts from oxalic acid dissolution of Tank 1-15 sludge heels. Without further laboratory and field testing, only the use of oxalic acid can be considered plausible to support sludge heel dissolution on multiple tanks. Using OLI{copyright} and available test results, a dissolution model is constructed and validated. Material and energy balances, coupled with the model, identify potential safety concerns. Overpressurization and overheating are shown to be unlikely. Corrosion induced hydrogen could, however, overwhelm the tank ventilation. While pH adjustment can restore the minimal hydrogen generation, resultant precipitates will notably increase the sludge volume. OLI{copyright} is used to develop a flowsheet such that additional sludge vitrification canisters and other negative system impacts are minimized. Sensitivity analyses are used to assess the processability impacts from variations in the sludge/quantities of acids.

KETUSKY, EDWARD

2006-04-20T23:59:59.000Z

20

Analysis of the potential impacts of shale gas development.  

E-Print Network (OSTI)

??The objective of this thesis is to analyze the considerations regarding the environmental impacts of shale gas development by a rational, objective, fact-based assessment. Flowback (more)

Yi, Hyukjoong

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "developing high impact" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Environmental Impacts of Increased Hydroelectric Development at Existing Dams  

Energy.gov (U.S. Department of Energy (DOE))

This report describes the environmental impacts of a proposed U.S. Department of Energy (DOE) initiative to promote the development of hydropower resources at existing dams.

22

JEDI: Jobs and Economic Development Impacts Model, National Renewable...  

Wind Powering America (EERE)

state) level. First developed by NREL's Wind Powering America program to model wind energy jobs and impacts, JEDI has been expanded to biofuels, concentrating solar power, coal,...

23

LEDSGP/analysis/impacts/DIAWebinar on Development Impact Assessment for Low  

Open Energy Info (EERE)

LEDSGP/analysis/impacts/DIAWebinar on Development Impact Assessment for Low LEDSGP/analysis/impacts/DIAWebinar on Development Impact Assessment for Low Emissions Development < LEDSGP‎ | analysis/impacts Jump to: navigation, search Tool Summary Name: Webinar on Development Impact Assessment for Low Emissions Development Agency/Company /Organization: National Renewable Energy Laboratory, Energy Research Centre of the Netherlands (ECN), Joint Implementation Network, German Agency for International Cooperation (GIZ) Sector: Energy Focus Area: Renewable Energy, Energy Efficiency, Greenhouse Gas, People and Policy Phase: Bring the Right People Together Topics: Co-benefits assessment, Low emission development planning Resource Type: Training materials, Webinar Cost: Free Language: English Webinar Summary Constructing a LEDS requires a tool that enables governments to evaluate

24

Stakeholder Engagement and Outreach: Jobs and Economic Development Impact  

Wind Powering America (EERE)

Jobs and Economic Development Impacts Model Resources & Tools Policy Public Lands Public Power Regional Activities State Activities State Lands Siting Jobs and Economic Development Impact Models JEDI: Jobs and Economic Development Impacts Model Fact Sheet Thumbnail of the JEDI fact sheet. The Jobs and Economic Development Impact (JEDI) models are user-friendly tools that estimate the economic impacts of constructing and operating power generation at the local and state levels. Based on project-specific or default inputs (derived from industry norms), JEDI estimates the number of jobs and economic impacts to a local area that could reasonably be supported by a power generation project. For example, JEDI estimates the number of in-state construction jobs from a new wind

25

Experimental and numerical studies of high-velocity impact fragmentation  

SciTech Connect

Developments are reported in both experimental and numerical capabilities for characterizing the debris spray produced in penetration events. We have performed a series of high-velocity experiments specifically designed to examine the fragmentation of the projectile during impact. High-strength, well-characterized steel spheres (6.35 mm diameter) were launched with a two-stage light-gas gun to velocities in the range of 3 to 5 km/s. Normal impact with PMMA plates, thicknesses of 0.6 to 11 mm, applied impulsive loads of various amplitudes and durations to the steel sphere. Multiple flash radiography diagnostics and recovery techniques were used to assess size, velocity, trajectory and statistics of the impact-induced fragment debris. Damage modes to the primary target plate (plastic) and to a secondary target plate (aluminum) were also evaluated. Dynamic fragmentation theories, based on energy-balance principles, were used to evaluate local material deformation and fracture state information from CTH, a three-dimensional Eulerian solid dynamics shock wave propagation code. The local fragment characterization of the material defines a weighted fragment size distribution, and the sum of these distributions provides a composite particle size distribution for the steel sphere. The calculated axial and radial velocity changes agree well with experimental data, and the calculated fragment sizes are in qualitative agreement with the radiographic data. A secondary effort involved the experimental and computational analyses of normal and oblique copper ball impacts on steel target plates. High-resolution radiography and witness plate diagnostics provided impact motion and statistical fragment size data. CTH simulations were performed to test computational models and numerical methods.

Kipp, M.E.; Grady, D.E.; Swegle, J.W.

1993-08-01T23:59:59.000Z

26

Potential impact of high temperature superconductors on maglev transportation  

SciTech Connect

This report describes the potential impact that high-temperature superconductors (HTSs) may have on transportation by magnetically levitated vehicles. It is not intended as a planning document, but rather as an overview of potential HTS applications to magnetic-levitation (maglev) transportation. The present maglev program in the United States is summarized, and the present status of development of HTSs is described. Areas identified for possible impact on maglev technology are (1) liquid-nitrogen-cooled levitation magnets, (2) magnetic-field shielding of the passenger compartment, (3) superconducting magnetic energy storage for wayside power, (4) superconducting bearings for flywheel energy storage for wayside power, (5) downleads to continuously powered liquid-helium-cooled levitation magnets, and (6) liquid-hydrogen-cooled levitation magnets and linear motor propulsion windings. Major technical issues that remain to be resolved for the use of HTSs in maglev applications include thermal magnetic stability, mechanical properties, and critical current density at liquid-nitrogen temperatures.

Hull, J.R.

1992-02-01T23:59:59.000Z

27

Job and Economic Development Impact Models (JEDI) | Open Energy Information  

Open Energy Info (EERE)

Job and Economic Development Impact Models (JEDI) Job and Economic Development Impact Models (JEDI) Jump to: navigation, search Site head analysis jedi.jpg Overview Originally developed in 2002 for the U.S. Department of Energy's Wind Powering America project, the Job and Economic Development Impact (JEDI) model was designed to be an easy-to-use, excel based calculator which uses IMPLAN's economic multipliers to estimate the economic impacts of constructing and operating power generation and biofuel plants at the local and state levels. It comes as a separate model for wind, PV, natural gas, CSP, coal, and biofuels. Job's, earnings, and impact are outputs. Inputs are construction costs, equipment costs, O&M costs, financing parameters and any other costs associated with the project. With its success in

28

General Renewable Energy-Productive Uses and Development Impact | Open  

Open Energy Info (EERE)

General Renewable Energy-Productive Uses and Development Impact General Renewable Energy-Productive Uses and Development Impact Jump to: navigation, search Tool Summary LAUNCH TOOL Name: General Renewable Energy-Productive Uses and Development Impact Agency/Company /Organization: World Bank Sector: Energy Topics: Implementation, Co-benefits assessment, - Energy Access Website: web.worldbank.org/WBSITE/EXTERNAL/TOPICS/EXTENERGY2/EXTRENENERGYTK/0,, References: General Renewable Energy-Productive Uses and Development Impact[1] Resources Productive Uses Productive Uses of Energy for Rural Development, R. Anil Cabraal, Douglas F. Barnes, and Sachin G. Agarwal, Annual Rev. Environ. Resour. 2005. 30:117-44. Millennium Development Goals: Status 2004, United Nations Energy and Gender Bioenergy-Based Productive Use Platforms for Rural Economic

29

High Impact Performance Incentive Grant (Florida) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Impact Performance Incentive Grant (Florida) Impact Performance Incentive Grant (Florida) High Impact Performance Incentive Grant (Florida) < Back Eligibility Commercial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Florida Program Type Grant Program Provider Enterprise Florida The High Impact Performance Incentive Grant (HIPI) is a negotiated grant used to attract and grow major high impact facilities in Florida. Grants are provided to pre-approved applicants in certain high-impact sectors such as clean energy. Projects must create at least 50 new full-time jobs in a three-year period, and make a cumulative investment in the state of at least $50 million in a three year period. The business can be granted 50%

30

Mitigating Potential Environmental Impacts of Energy Development  

Office of Energy Efficiency and Renewable Energy (EERE)

Normandeau Associates is developing a tool to check the risk of wind turbine collisions for bird and bat species.

31

Category:LEDSGP Development Impacts Assessment Toolkits | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Category Edit History Facebook icon Twitter icon » Category:LEDSGP Development Impacts Assessment Toolkits Jump to: navigation, search Development Impacts Assessment Tools help country, regional, and local policymakers find tools and online resources to assess the impacts of low-emission development strategies (LEDS). These tools equip decision makers with information to explore policy options and build consensus with stakeholders to acheive low-emission development. LEDSGP/DIA-Toolkit Pages in category "LEDSGP Development Impacts Assessment Toolkits" The following 65 pages are in this category, out of 65 total.

32

NREL: Jobs and Economic Development Impact (JEDI) Models - Help  

NLE Websites -- All DOE Office Websites (Extended Search)

Help The Jobs and Economic Development Impact (JEDI) model uses a Microsoft Excel (MS Excel) spreadsheet. MS Excel Tips Macros must to be enabled in MS Excel for JEDI to operate...

33

Geothermal : Economic Impacts of Geothermal Development in Whatcom County, Washington.  

SciTech Connect

This report estimates the local economic impacts that could be anticipated from the development of a 100 megawatt (MW) geothermal power plant in eastern Whatcom County, Washington, near Mt. Baker, as shown in Figure 1. The study was commissioned by the Bonneville Power Administration to quantify such impacts as part of regional confirmation work recommended by the Northwest Power Planning Council. Whatcom County was chosen due to both identified geotherrnal resources and developer interest. The analysis will focus on two phases: a plant construction phase, including well field development, generating plant construction, and transmission line construction; and an operations phase. Economic impacts will occur to the extent that construction and operations affect the local economy. These impacts will depend on the existing structure of the Whatcom County economy and estimates of revenues that may accrue to the county as a result of plant construction, operation, and maintenance. Specific impacts may include additional direct employment at the plant, secondary impacts from wage payments being used to purchase locally produced goods and services, and impacts due to expenditures of royalty and tax payments received by the county. The basis for the analysis of economic impacts in this study is the US Forest Service IMPLAN input-output modeling system.

Lesser, Jonathan A.

1992-07-01T23:59:59.000Z

34

HIGH FIDELITY STUDIES OF INTERSTELLAR DUST ANALOGUE IMPACTS IN STARDUST  

E-Print Network (OSTI)

HIGH FIDELITY STUDIES OF INTERSTELLAR DUST ANALOGUE IMPACTS IN STARDUST AEROGEL AND FOILS F://www.ssl.berkeley.edu/~westphal/ISPE/. In 2000 and 2002 the Stardust Mission exposed aerogel collector panels for a total of about 200 days/s] interstellar dust (ISD) analogues onto Stardust aerogel and foil flight spares. Particle impact speeds up to 50

35

Modelling Agricultural Trade and Policy Impacts in Less Developed...  

Open Energy Info (EERE)

policies in addressing the development needs of poorer countries is high on the political agenda, for both structural reasons and as a result of recent market developments....

36

Sales Tax Exemption for Wind Energy Business Designated High Impact  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sales Tax Exemption for Wind Energy Business Designated High Impact Sales Tax Exemption for Wind Energy Business Designated High Impact Business Sales Tax Exemption for Wind Energy Business Designated High Impact Business < Back Eligibility Commercial Savings Category Wind Buying & Making Electricity Program Info Start Date 07/01/2009 State Illinois Program Type Sales Tax Incentive Rebate Amount 100% exemption of Retailers' Occupation Tax for building materials incorporated into the facility Provider Illinois Department of Commerce and Economic Opportunity A business establishing a new wind power facility in Illinois that will not be located in an Enterprise Zone* may be eligible for designation as a "High Impact Business." After receiving the designation, the facility is entitled to a full exemption of the state sales tax (6.25%) and any

37

Local SST impacts on the summertime Mascarene High variability  

Science Journals Connector (OSTI)

The interannual variations in the summertime Mascarene High have great impacts on the southern African climate as well as the sea surface temperature (SST) in the southern Indian Ocean. A set of coupled general circulation model (CGCM) experiments ...

Yushi Morioka; Kotaro Takaya; Swadhin K. Behera; Yukio Masumoto

38

NREL: Jobs and Economic Development Impacts (JEDI) Models - About JEDI  

NLE Websites -- All DOE Office Websites (Extended Search)

Transmission Line Model Transmission Line Model The Transmission Line Jobs and Economic Development Impacts (JEDI) model allows the user to estimate economic development impacts associated with transmission line projects. Applying a similar user interface as other JEDI models, Transmission Line JEDI requires a few additional user inputs such as: Transmission Line Type Line Length Terrain Type Right-of-Way Characteristics. Results are presented in the same manner as those in other JEDI models. This allows the transmission line JEDI model to be used by itself or in conjunction with electricity generation JEDI models. As with all JEDI models, reasonable default values are provided. Individual projects may vary and when possible project specific data should be used to obtain the best estimate of economic development impacts.

39

Low Impact DevelopmentLow Impact Development Protecting Oregon's waters as we growProtecting Oregon's waters as we grow  

E-Print Network (OSTI)

;Rainwater HarvestingRainwater Harvesting No permit is required to harvest up to 5,000 gallons of rainwater/low-impact-development- nemonemo · SWAMP Project · Urban ForestryUrban Forestry · Rain Gardens #12; Development Courtesy May, U of W #12;The Problem: Conventional Stormwater ManagementThe Problem: Conventional

Tullos, Desiree

40

NREL: Jobs and Economic Development Impacts (JEDI) Models - About JEDI  

NLE Websites -- All DOE Office Websites (Extended Search)

CSP Model CSP Model The Jobs and Economic Development Impacts (JEDI) Concentrating Solar Power (CSP) model allows users to estimate economic development impacts from CSP projects. JEDI CSP has default information that can be utilized to run a generic impacts analysis assuming industry averages. Model users are encouraged to enter as much project-specific data as possible. Download the JEDI CSP Model Printable Version JEDI Home About JEDI Biofuels Models Coal Model CSP Model Geothermal Model Marine & Hydrokinetic Power Model Natural Gas Model Photovoltaics Model Transmission Line Model Wind Model Download JEDI Methodology Interpreting Results Advanced Users Limitations of JEDI Models Publications Forum Webinars Contact Did you find what you needed? Yes 1 No 0 Thank you for your feedback.

Note: This page contains sample records for the topic "developing high impact" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Impacts of Contaminant Storage on Indoor Air Quality: Model Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Impacts of Contaminant Storage on Indoor Air Impacts of Contaminant Storage on Indoor Air Quality: Model Development Max H. Sherman and Erin L. Hult Environmental Energy Technologies Division January 2013 In Press as Sherman, M.H., Hult, E.L. 2013. Impacts of contaminant storage on indoor air quality: Model development. Atmospheric Environment. LBNL-6114E 2 DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any

42

Big Data, Big Impact: New Possibilities for International Development  

E-Print Network (OSTI)

0 Big Data, Big Impact: New Possibilities for International Development #12;1 Executive Summary for harnessing big data. #12;2 Financial Services Data gleaned from mobile money services can provide deep is able to predict the magnitude of a disease outbreak half way around the world. Similarly, an aid agency

Chen, Keh-Hsun

43

Wind Energy Economic Development and Impacts | Open Energy Information  

Open Energy Info (EERE)

Wind Energy Economic Development and Impacts Wind Energy Economic Development and Impacts Jump to: navigation, search Wind turbine blades wind their way by train through Denver. Photo by Dennis Schroeder, NREL 20894 Meeting 20% of the nation's electricity demand with wind energy will lead to benefits to rural landowners and towns, the manufacturing sector, and infrastructure across America.[1] The following provide more information about wind energy and economic development: Resources European Wind Energy Association. Economic Benefits of Wind This page outlines the economic benefits of wind energy in Europe. National Renewable Energy Laboratory. (March 2013). Economic Development from New Generation and Transmission in Wyoming and Colorado. Accessed November 29, 2013. This fact sheet summarizes a recent analysis, commissioned by the Wyoming

44

Impact of solar-energy development: the aggregate impact on basic economic objectives  

SciTech Connect

Two categories of incentives for the development of solar energy are described: those that increase the benefits associated with the ownership of a solar energy system and those that reduce the cost of the system. The impact of two alternative (or complementary) programs are presented. The discussion distinguishes between short-run (one to five years) and long-run (over five years) impacts expected to result from the installation of passive solar designs on existing housing stock. Impacts associated with a program to deregulate natural gas and one combining tax credits and low interest loans are compared. The impacts of solar programs on seven basic economic goals are analyzed. The goals are full employment, price stability, economic efficiency, equitable distribution of income, economic growth, balancing the federal budget, and a strong national defense. (LEW)

Parker, A.; Kirschner, C.; Roach, F.

1982-01-01T23:59:59.000Z

45

Impact of High Wind Power Penetration on Hydroelectric Unit Operations  

SciTech Connect

The Western Wind and Solar Integration Study (WWSIS) investigated the operational impacts of very high levels of variable generation penetration rates (up to 35% by energy) in the western United States. This work examines the impact of this large amount of wind penetration on hydroelectric unit operations. Changes in hydroelectric unit operating unit patterns are examined for an aggregation of all hydro generators. The cost impacts of maintaining hydro unit flexibility are assessed and compared for a number of different modes of system operation.

Hodge, B. M.; Lew, D.; Milligan, M.

2011-01-01T23:59:59.000Z

46

NREL: Jobs and Economic Development Impact (JEDI) Models - Interpreting  

NLE Websites -- All DOE Office Websites (Extended Search)

Interpreting Results Interpreting Results Sample Results from JEDI. Download a text-version (MS Excel 44 KB) The Jobs and Economic Development Impact (JEDI) models estimate the number of jobs and economic impacts associated with power generation, fuel production, and other projects. Economic activity in input-output models is typically assessed in three categories. NREL's JEDI models classify the first category of results-on-site labor and professional services results-as dollars spent on labor from companies engaged in development and on-site construction and operation of power generation and transmission. These results include labor only-no materials. Companies or businesses that fall into this category of results include project developers, environmental and permitting consultants, road builders, concrete-pouring

47

JC3 High Impact Assessment Bulletins | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

High Impact High Impact Assessment Bulletins JC3 High Impact Assessment Bulletins RSS August 9, 2013 V-215: NetworkMiner Directory Traversal and Insecure Library Loading Vulnerabilities The vulnerabilities are reported in versions 1.4.1 and prior August 8, 2013 V-214: Mozilla Firefox Multiple Vulnerabilities The vulnerabilities are reported in versions prior to 23.0. August 5, 2013 V-211: IBM iNotes Multiple Vulnerabilities IBM iNotes has two cross-site scripting vulnerabilities and an ActiveX Integer overflow vulnerability August 2, 2013 V -209:Cisco WAAS (Wide Area Application Services) Arbitrary Code Execution Vulnerabilities Cisco Wide Area Application Services (WAAS) when configured as Central Manager (CM), contains a vulnerability that could allow an unauthenticated,

48

Impact of High Solar Penetration in the Western Interconnection  

NLE Websites -- All DOE Office Websites (Extended Search)

Impact of High Solar Penetration Impact of High Solar Penetration in the Western Interconnection Debra Lew National Renewable Energy Laboratory Nicholas Miller, Kara Clark, Gary Jordan, and Zhi Gao GE Energy Technical Report NREL/TP-5500-49667 December 2010 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Impact of High Solar Penetration in the Western Interconnection Debra Lew National Renewable Energy Laboratory Nicholas Miller, Kara Clark, Gary Jordan, and Zhi Gao GE Energy Prepared under Task No. SM101610

49

JC3 High Impact Assessment Bulletins | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High Impact High Impact Assessment Bulletins JC3 High Impact Assessment Bulletins RSS June 28, 2013 V-188: Apache XML Security XPointer Expressions Processing Buffer Overflow Vulnerability The vulnerability addresses the possibility of a heap overflow condition June 27, 2013 V-187: Mozilla Firefox Multiple Vulnerabilities These vulnerabilities can be exploited by malicious people to conduct cross-site scripting and spoofing attacks, disclose potentially sensitive information, bypass certain security restrictions, and compromise a user's system. June 19, 2013 V-181: Oracle Java SE Critical Patch Update Advisory - June 2013 Multiple vulnerabilities were reported in Oracle Java. June 14, 2013 V-178: IBM Data Studio Web Console Java Multiple Vulnerabilities IBM Data Studio Web Console uses the IBM Java Runtime Environment (JRE) and

50

JC3 High Impact Assessment Bulletins | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High Impact High Impact Assessment Bulletins JC3 High Impact Assessment Bulletins RSS November 7, 2012 V-018: Adobe Flash Player Buffer Overflows and Memory Corruption Errors Let Remote Users Execute Arbitrary Code Several vulnerabilities were reported in Adobe Flash Player. November 5, 2012 V-016: HP Performance Insight Bugs with Sybase Database Let Remote Users Deny Service and Take Full Control of the Target System Two vulnerabilities were reported in HP Performance Insight. November 2, 2012 V-015: Apple iOS Bugs Let Remote Users Execute Arbitrary Code, Local Users Bypass the Screen Lock, and Applications Obtain Kernel Address Information Three vulnerabilities were reported in Apple iOS. November 1, 2012 V-014: Cisco Prime Data Center Network Manager JBoss RMI Services Let

51

Developing High Capacity, Long Life Anodes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

long life and improved Safety for PHEV and EV applications. Objectives Develop a low cost synthesis methods to prepare high energy anodes Full structural and...

52

The impact of oil revenues on Arab Gulf development  

SciTech Connect

This book presents papers on Middle East oil policy. Topics considered include oil production policies in the Gulf States, oil planning, the philosophy of state development planning, prospects for Gulf economic coordination, the philosophy of infrastructural development, industrialization in the Arab Gulf, the agricultural potential of the Arab Gulf states, the future of banking as a Gulf industry, manpower problems and projections in the Gulf, education as an instrument of progress in the Arab Gulf states, and the impact of development on Gulf society.

El Azhary, M.S.

1984-01-01T23:59:59.000Z

53

Economic Development Impacts of Wind Power: A Comparative Analysis of Impacts within the Western Governors' Association States; Preprint  

SciTech Connect

This paper uses NREL's newest Jobs and Economic Development Impacts (JEDI II) model to assess economic impacts from alternative power technologies, with a focus on wind energy, for a variety of states.

Tegen, S.; Milligan, M.; Goldberg, M.

2007-06-01T23:59:59.000Z

54

Developing a Modeling Framework for Assessing Population Impacts of  

NLE Websites -- All DOE Office Websites (Extended Search)

Developing a Modeling Framework for Assessing Population Impacts of Developing a Modeling Framework for Assessing Population Impacts of Residential Air Quality Policies Speaker(s): Jennifer Logue Date: November 13, 2012 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Brett Singer People spend the majority of their time in residences and the health burden of indoor air is significant. However, the definitions of "acceptable" and "good" indoor air quality (IAQ), and the most effective, energy efficient methods for achieving various levels of IAQ are still matters of research and debate. Current ventilation standards focus on minimum requirements for overall and mechanically provided ventilation rates, and vented combustion equipment, and require only the installation of kitchen and bath exhaust fans for source control. These standards generally are

55

Tourism's Impact on Economic Growth and Development in Spain  

E-Print Network (OSTI)

Tourism's Impact on Economic Growth and Development in Spain Jessica Dennis #12;Spanish Civil War,500,000,000 International Tourism Receipts 1960-2008 (US$ in year 2000) #12;$0 $200,000,000,000 $400,000,000,000 $600 (US$ in the year 2000) #12;0.00% 1.00% 2.00% 3.00% 4.00% 5.00% 6.00% International Tourism Receipts

New Hampshire, University of

56

Call for Proposals College High-Impact Research Program 2012  

E-Print Network (OSTI)

for high impact. Since the ongoing viability of CHIRP relies on royalty income, about half of CHIRP funds will go to projects that have royalty potential. The following considerations will be used in assessing research projects. 2. For projects that do not have royalty potential, publication of the results in a top

Hart, Gus

57

Call for Proposals College High-Impact Research Program  

E-Print Network (OSTI)

for high impact. Since the ongoing viability of CHIRP relies on royalty income, about half of CHIRP funds will go to projects that have significant royalty potential. The following considerations will be used. For projects that do not have royalty potential, publication of the results in a top-tier venue is necessary

Hart, Gus

58

Call for Proposals College High-Impact Research Program  

E-Print Network (OSTI)

for high impact. Since the ongoing viability of CHIRP relies on royalty income, about half of CHIRP funds will go to projects that have significant royalty potential. The following considerations will be used than most research projects. 2. For projects that do not have royalty potential, publication

Hart, Gus

59

Identify types of development and climate impacts that are country  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Identify types of development and climate impacts that are country priorities Jump to: navigation, search Stage 3 LEDS Home Introduction to Framework Assess current country plans, policies, practices, and capacities Develop_BAU Stage 4: Prioritizing and Planning for Actions Begin execution of implementation plans 1.0. Organizing the LEDS Process 1.1. Institutional Structure for LEDS 1.2. Workplan to Develop the LEDS 1.3. Roles and responsibilities to develop LEDS 2.1. Assess current country plans, policies, practices, and capacities 2.2. Compile lessons learned and good practices from ongoing and

60

Environ. Impact Asses. Rev., Vol. 38, Jan. 2013, p. 35-43. Developing an indicator for the chronic health impact  

E-Print Network (OSTI)

of this study is to develop an emission based indicator for the health impact of the air pollution caused and reliability. Key words: Health impact, indicator, air pollution, traffic-related emissions 1. Introduction health impact of traffic-related pollutant emissions Véronique Lépicier a , Mireille Chiron b, 1 , Robert

Boyer, Edmond

Note: This page contains sample records for the topic "developing high impact" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Public service impacts of geothermal development: cumulative impacts study of the Geysers KGRA. Final staff report  

SciTech Connect

The number of workers currently involved in the various aspects of geothermal development in the Geysers are identified. Using two different development scenarios, projections are made for the number of power plants needed to reach the electrical generation capacity of the steam resource in the Geysers. The report also projects the cumulative number of workers needed to develop the steam field and to construct, operate, and maintain these power plants. Although the number of construction workers fluctuates, most are not likely to become new, permanent residents of the KGRA counties. The administrative and public service costs of geothermal development to local jurisdications are examined, and these costs are compared to geothermal revenues accruing to the local governments. Revenues do not cover the immediate fiscal needs resulting from increases in local road maintenance and school enrollment attributable to geothermal development. Several mitigation options are discussed and a framework presented for calculating mitigation costs for school and road impacts.

Matthews, K.M.

1983-07-01T23:59:59.000Z

62

High field superconductor development and understanding project, Final Report  

SciTech Connect

Over 25 years the Applied Superconductivity Center at the University of Wisconsin-Madison provided a vital technical resource to the High Energy Physics community covering development in superconducting strand for HEP accelerator magnet development. In particular the work of the group has been to develop the next generation of high field superconductors for high field application. Grad students Mike Naus, Chad Fischer, Arno Godeke and Matt Jewell improved our understanding of the microstructure and microchemistry of Nb3Sn and their impact on the physical and mechanical properties. The success of this work has led to the continued funding of this work at the ASC after it moved to the NHMFL and also to direct funding from BNL for some aspects of Nb3Sn cable evaluation.

Larbalestier, David C.; Lee, Peter J.

2009-07-15T23:59:59.000Z

63

NREL: Jobs and Economic Development Impact (JEDI) Models - Limitations of  

NLE Websites -- All DOE Office Websites (Extended Search)

Limitations of JEDI Models Limitations of JEDI Models Results are an estimate, not a precise forecast. The Jobs and Economic Development Impact (JEDI) models are input-output based models, also appropriately called calculators or screening tools. As such, they share important limitations with all models based on input-output calculation methodologies. For the interested user, the Environmental Protection Agency recently published EPA Assessing the Multiple Benefits of Clean Energy: A Resource for States1, which discusses and compares different types of models and screening tools for assessing economic impacts and jobs, including JEDI (see Chapter 5, pp. 136-142). The most important limitation to note is that JEDI results are estimates, not precise forecasts, for the following reasons.

64

Impact of Electric Industry Structure on High Wind Penetration Potential  

NLE Websites -- All DOE Office Websites (Extended Search)

273 273 July 2009 Impact of Electric Industry Structure on High Wind Penetration Potential M. Milligan and B. Kirby National Renewable Energy Laboratory R. Gramlich and M. Goggin American Wind Energy Association National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-550-46273 July 2009 Impact of Electric Industry Structure on High Wind Penetration Potential M. Milligan and B. Kirby National Renewable Energy Laboratory R. Gramlich and M. Goggin American Wind Energy Association

65

Impact of Shale Gas Development on Regional Water Quality  

Science Journals Connector (OSTI)

...human health and environmental impacts associated with the release...inadequately treated wastewater to the environment (66). In addition, spills...assess potential water quality impacts in the northeast (78, 79...shale gas extraction (54). Impacts from casing leakage, well...

R. D. Vidic; S. L. Brantley; J. M. Vandenbossche; D. Yoxtheimer; J. D. Abad

2013-05-17T23:59:59.000Z

66

Ex post analysis of economic impacts from wind power development in U.S. counties  

E-Print Network (OSTI)

Figure 1. Location of Wind Power Development in the UnitedFigure 4: Total Installed Wind Power Capacity (MW): 2000 -development impacts of wind power installations. References

Brown, Jason P

2014-01-01T23:59:59.000Z

67

Wind Program Announces $2 Million to Develop and Field Test Wind Energy Bat Impact Minimization Technologies  

Energy.gov (U.S. Department of Energy (DOE))

EERE's Wind Program announced $2 million in funding to advance technologies that address wind developments potential impacts on wildlife.

68

Draft Programmatic Environmental Impact Statement (PEIS) for Solar Energy Development  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Programmatic Environmental Impact Statement (PEIS) for Solar Energy Development in Six Southwestern States (DES 10-59; DOE/EIS-0403) Responsible Agencies: The U.S. Department of the Interior (DOI) Bureau of Land Management (BLM) and the U.S. Department of Energy (DOE) are co-lead agencies. Nineteen cooperating agencies participated in the preparation of this PEIS: U.S. Department of Defense; U.S. Bureau of Reclamation; U.S. Fish and Wildlife Service; U.S. National Park Service; U.S. Environmental Protection Agency, Region 9; U.S. Army Corps of Engineers, South Pacific Division; Arizona Game and Fish Department; California Energy Commission; California Public Utilities Commission; Nevada Department of Wildlife; N-4 Grazing Board, Nevada; Utah Public Lands Policy Coordination Office; Clark County, Nevada,

69

Impacts of contaminant storage on indoor air quality: Model development  

NLE Websites -- All DOE Office Websites (Extended Search)

of of contaminant storage on indoor air quality: Model development Max H. Sherman, Erin L. Hult * Lawrence Berkeley National Laboratory, 1 Cyclotron Road MS 90R3083, Berkeley, CA 94720-8133, USA h i g h l i g h t s < A lumped parameter model is applied to describe emission and storage buffering of contaminants. < Model is used to assess impact of ventilation on indoor formaldehyde exposure. < Observations of depletion of stored contaminants can be described by model. a r t i c l e i n f o Article history: Received 8 November 2012 Received in revised form 7 February 2013 Accepted 11 February 2013 Keywords: Buffering capacity Formaldehyde Moisture a b s t r a c t A first-order, lumped capacitance model is used to describe the buffering of airborne chemical species by building materials and furnishings in the indoor environment. The model is applied to describe the interaction between formaldehyde

70

Sub-Hourly Impacts of High Solar Penetrations in the Western United States: Preprint  

SciTech Connect

This paper presents results of analysis on the sub-hourly impacts of high solar penetrations from the Western Wind and Solar Integration Study Phase 2. Extreme event analysis showed that most large ramps were due to sunrise and sunset events, which have a significant predictability component. Variability in general was much higher in the high-solar versus high-wind scenario. Reserve methodologies that had already been developed for wind were therefore modified to take into account the predictability component of solar variability.

Lew, D.; Brinkman, G.; Ibanez, E.; Hummon, M.; Hodge, B. M.; Heaney, M.; King, J.

2012-09-01T23:59:59.000Z

71

DEVELOPMENT IMPACT FEE ADOPTION AND ITS EFFECTS IN TEXAS  

E-Print Network (OSTI)

The purpose of my thesis is to study what factors affect the adoption of impact fees in Texas and what effects impact fees have on city budgets. This research was done using two models. The first model looked at the adoption of impact fees...

Ambs, Jonathan G.

2010-01-20T23:59:59.000Z

72

Fuel dispersal in high-speed aircraft/soil impact scenarios  

SciTech Connect

The objective of this study is to determine how the jet fuel contained in aircraft wing tanks disperses on impact with a soft terrain, i.e., soils, at high impact velocities. The approach used in this study is to combine experimental and numerical methods. Tests were conducted with an approximately 1/42 linear-scale mass-model of a 1/4 span section of a C-141 wing impacting a sand/clay mixture. The test results showed that within the uncertainty of the data, the percentage of incident liquid mass remaining in the crater is the same as that qualitatively described in earlier napalm bomb development studies. Namely, the percentage of fuel in the crater ranges from near zero for grazing impacts to 25%--50% for high angles of impact. To support a weapons system safety assessment (WSSA), the data from the current study have been reduced to correlations. The numerical model used in the current study is a unique coupling of a Smooth Particle Hydrodynamics (SPH) method with the transient dynamics finite element code PRONTO. Qualitatively, the splash, erosion, and soil compression phenomena are all numerically predicted. Quantitatively, the numerical method predicted a smaller crater cross section than was observed in the tests.

Tieszen, S.R.; Attaway, S.W. [Sandia National Labs., Albuquerque, NM (United States). Engineering Sciences Center

1996-01-01T23:59:59.000Z

73

High efficiency motor program impact assessment: Load analysis  

SciTech Connect

Incentive programs that encourage customers to purchase new or replacement high efficiency motors (HEM) are an element of many utilities DSM efforts. Such a program has been in place at Ontario Hydro since late 1989. The program was expected to rebate up to 800,000 HP over its five year duration. This paper reports on the results of a recently completed load analysis study to assess the load impacts of the program. The findings are based on field metering of integral HP, three-phase induction motors up to 500HP in size, at thirty industrial sites. Using a database of manufacturers`reported effiiencies, loadings and operating times for each of 181 standard and high efficiency motors are estimated. The results will be used as part of program impact evaluation. They indicate lower motor loadings and longer operating hours than had been assumed for interim evaluation. The paper provides detailed estimates of loading by HP group, industrial segment, and end-use. Issues in sample design, field metering and extrapolation to the rebated motor population are also discussed.

Whiting, R. Sr.

1995-12-31T23:59:59.000Z

74

High Temperature Membrane & Advanced Cathode Catalyst Development  

SciTech Connect

Current project consisted of three main phases and eighteen milestones. Short description of each phase is given below. Table 1 lists program milestones. Phase 1--High Temperature Membrane and Advanced Catalyst Development. New polymers and advanced cathode catalysts were synthesized. The membranes and the catalysts were characterized and compared against specifications that are based on DOE program requirements. The best-in-class membranes and catalysts were downselected for phase 2. Phase 2--Catalyst Coated Membrane (CCM) Fabrication and Testing. Laboratory scale catalyst coated membranes (CCMs) were fabricated and tested using the down-selected membranes and catalysts. The catalysts and high temperature membrane CCMs were tested and optimized. Phase 3--Multi-cell stack fabrication. Full-size CCMs with the down-selected and optimized high temperature membrane and catalyst were fabricated. The catalyst membrane assemblies were tested in full size cells and multi-cell stack.

Protsailo, Lesia

2006-04-20T23:59:59.000Z

75

Measuring the social impacts associated with Super Bowl XLIII: Preliminary development of a psychic income scale  

Science Journals Connector (OSTI)

Sport mega-events have taken on an elevated profile and assumed a key role as urban and regional development strategies. While a number of studies have investigated the potential impacts of these events, most (not surprisingly) have focused on economic, rather than non-economic outcomes. The purpose of this study was to investigate the non-economic features associated with a high profile mega-event in the United States. Based on Crompton's (2004) psychic income paradigm and a comprehensive review of the extant literature, this article describes the development and validation of a self-report scale designed to measure the psychological impact of Super Bowl XLIII on the residents of Tampa Bay, Florida. The research method followed standard scale development techniques. Initial scale validation (i.e., face and content validity) was assessed through a panel of experts and a field test. Principal component analysis (PCA) and confirmatory factor analysis (CFA) were conducted; the results of which revealed that mega-event psychological impact can be examined using 22 items under five factors: (1) community pride as a result of enhanced image, (2) enhanced community attachment, (3) event excitement, (4) community excitement, and (5) pride in efforts to improve community infrastructure.

Woosoon Kim; Matthew Walker

2012-01-01T23:59:59.000Z

76

Summary of Oil and Natural Gas Development Impacts on Prairie Grouse September 2006  

E-Print Network (OSTI)

Summary of Oil and Natural Gas Development Impacts on Prairie Grouse September 2006 Jeffrey L. Beck Independent Avenue Grand Junction, CO 81505 Please cite as: Beck, J. L. 2006. Summary of oil and natural gas and Natural Gas Development Impacts on Prairie Grouse 2 disturbances such as oil and gas development

Beck, Jeffrey L.

77

The Impact of Manufacturing Offshore on Technology Development Paths in the Automotive and Optoelectronics Industries  

E-Print Network (OSTI)

The Impact of Manufacturing Offshore on Technology Development Paths in the Automotive Systems and Civil and Environmental Engineering #12;The Impact of Manufacturing Offshore on Technology of the impact of manufacturing offshore on the technology trajectory of the firm and the industry. It looks

de Weck, Olivier L.

78

NWCC Guidelines for Assessing the Economic Development Impacts of Wind Power  

SciTech Connect

OAK-B135 The primary objective of this study is to provide examples of thorough and consistent analysis and documentation of economic impacts from wind power development.

Michael Taylor, Northwest Economic Associates Alan Fox, Northwest Economic Associates Jill Chilton, Northwest Economic Associates NWCC Economic Development Work Group Contributors Steve Clemmer, Lisa Daniels, Ed DeMeo, Rick Halet, Ron Lehr, Michael Milligan Vince Robinson

2002-02-12T23:59:59.000Z

79

Oil revenue of the Arabian gulf Emirates: patterns of allocation and impact on economic development.  

E-Print Network (OSTI)

??The study aims to analyse the oil revenue, its allocational pattern and impact on economic development in Kuwait, Bahrain, Qatar and the UAE from the (more)

Al-Kuwari, Ali Khalifa

1974-01-01T23:59:59.000Z

80

Technology Development for High Efficiency Clean Diesel Engines...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Development for High Efficiency Clean Diesel Engines and a Pathway to 50% Thermal Efficiency Technology Development for High Efficiency Clean Diesel Engines and a...

Note: This page contains sample records for the topic "developing high impact" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

High Temperature Polymer Membrane Development at Argonne National...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Polymer Membrane Development at Argonne National Laboratory High Temperature Polymer Membrane Development at Argonne National Laboratory Summary of ANL's high temperature polymer...

82

USABC Development of Advanced High-Performance Batteries for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

USABC Development of Advanced High-Performance Batteries for EV Applications USABC Development of Advanced High-Performance Batteries for EV Applications 2012 DOE Hydrogen and Fuel...

83

High Burnup Dry Storage Cask Research and Development Project...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High Burnup Dry Storage Cask Research and Development Project: Final Test Plan High Burnup Dry Storage Cask Research and Development Project: Final Test Plan The potential need to...

84

Progress toward Development of a High-Efficiency Zonal Thermoelectric...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

toward Development of a High-Efficiency Zonal Thermoelectric HVAC System for Automotive Applications Progress toward Development of a High-Efficiency Zonal Thermoelectric HVAC...

85

Development of High-Capacity Cathode Materials with Integrated...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Development of High-Capacity Cathode Materials with Integrated Structures Development of High-Capacity Cathode Materials with Integrated Structures 2013 DOE Hydrogen and Fuel Cells...

86

Development of high-capacity cathode materials with integrated...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Development of high-capacity cathode materials with integrated structures Development of high-capacity cathode materials with integrated structures 2009 DOE Hydrogen Program and...

87

Telephone Flat Geothermal Development Project Environmental Impact Statement Environmental Impact Report. Final: Comments and Responses to Comments  

SciTech Connect

This document is the Comments and Responses to Comments volume of the Final Environmental Impact Statement and Environmental Impact Report prepared for the proposed Telephone Flat Geothermal Development Project (Final EIS/EIR). This volume of the Final EIS/EIR provides copies of the written comments received on the Draft EIS/EIR and the leady agency responses to those comments in conformance with the requirements of the National Environmental Policy Act (NEPA) and the California Environmental Quality Act (CEQA).

None

1999-02-01T23:59:59.000Z

88

High-pressure coal fuel processor development  

SciTech Connect

Caterpillar shares DOE/METC interest in demonstrating the technology required to displace petroleum-based engine fuels with various forms of low cost coal. Current DOE/METC programs on mild gasification and coal-water-slurries are addressing two approaches to this end. Engine and fuel processor system concept studies by Caterpillar have identified a third, potentially promising, option. This option includes high-pressure fuel processing of run-of-the-mine coal and direct injection of the resulting low-Btu gas stream into an ignition assisted, high compression ratio diesel engine. The compactness and predicted efficiency of the system make it suitable for application to line-haul railroad locomotives. Two overall conclusions resulted from Task 1. First direct injected, ignition assisted Diesel cycle engine combustion systems can be suitably modified to efficiently utilize low-Btu gas fuels. Second, high pressure gasification of selected run-of-the-mine coals in batch-loaded fuel processors is feasible. These two findings, taken together, significantly reduce the perceived technical risk associated with the further development of the proposed coal gas fueled Diesel cycle power plant concept. The significant conclusions from Task 2 were: An engine concept, derived from a Caterpillar 3600 series engine, and a fuel processor concept, based on scaling up a removable-canister configuration from the test rig, appear feasible; and although the results of this concept study are encouraging, further, full-scale component research and development are required before attempting a full-scale integrated system demonstration effort.

Greenhalgh, M.L. (Caterpillar, Inc., Peoria, IL (United States))

1992-12-01T23:59:59.000Z

89

NREL: Jobs and Economic Development Impact (JEDI) Models - About...  

NLE Websites -- All DOE Office Websites (Extended Search)

number of jobs and economic impacts to a local area that can reasonably be supported by a power plant, fuel production facility, or other project. For example, JEDI estimates the...

90

JEDI: Jobs and Economic Development Impacts Model, National Renewable Energy Laboratory (NREL) (Fact Sheet)  

Wind Powering America (EERE)

JEDI: Jobs and Economic Development Impacts Model JEDI: Jobs and Economic Development Impacts Model The Jobs and Economic Development Impact (JEDI) models are user-friendly tools that estimate the economic impacts of constructing and operating power generation and biofuel plants at the local (usually state) level. First developed by NREL's Wind Powering America program to model wind energy jobs and impacts, JEDI has been expanded to biofuels, concentrating solar power, coal, and natural gas power plants. Based on project-specific and default inputs (derived from industry norms), JEDI estimates the number of jobs and economic impacts to a local area (usually a state) that could reasonably be supported by a power generation project. For example, JEDI estimates the number of in-state construction

91

Economic Impacts of the World Golf Village Development for Northeast Florida and St. Johns County  

E-Print Network (OSTI)

Economic Impacts of the World Golf Village Development for Northeast Florida and St. Johns County Sciences, Food and Resource Economics Department Gainesville, Florida October 17, 2006 Food and Resource Economics Department #12;i Economic Impacts of the World Golf Village Development for Northeast Florida

Florida, University of

92

Offshore Wind Jobs and Economic Development Impact: Four Regional Scenarios (Presentation)  

SciTech Connect

NREL's Jobs and Economic Development Impact (JEDI) Model for Offshore Wind, is a computer tool for studying the economic impacts of fixed-bottom offshore wind projects in the United States. This presentation provides the results of an analysis of four offshore wind development scenarios in the Southeast Atlantic, Great Lakes, Mid-Atlantic, and Gulf of Mexico regions.

Tegen, S.

2014-11-01T23:59:59.000Z

93

Development of Strengthened Bundle High Temperature Superconductors  

SciTech Connect

In the process of developing high temperature superconducting (HTS) transmission cables, it was found that mechanical strength of the superconducting tape is the most crucial property that needs to be improved. It is also desirable to increase the current carrying capacity of the conductor so that fewer layers are needed to make the kilo-amp class cables required for electric utility usage. A process has been developed by encapsulating a stack of Bi-2223/Ag tapes with a silver or non-silver sheath to form a strengthened bundle superconductor. This process was applied to HTS tapes made by the Continuous Tube Forming and Filling (CTFF) technique pursued by Plastronic Inc. and HTS tapes obtained from other manufacturers. Conductors with a bundle of 2 to 6 HTS tapes have been made. The bundled conductor is greatly strengthened by the non-silver sheath. No superconductor degradation as compared to the sum of the original critical currents of the individual tapes was seen on the finished conductors.

Lue, J.W.; Lubell, M.S. [Oak Ridge National Lab., TN (United States); Demko, J.A. [Oak Ridge Inst. for Science and Education, TN (United States); Tomsic, M. [Plastronic, Inc., Troy, OH (United States); Sinha, U. [Southwire Company, Carollton, GA (United States)

1997-12-31T23:59:59.000Z

94

EIS-0481: Engineered High Energy Crop Programs Programmatic Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE))

Draft PEIS: Public Comment Period Ends 03/17/15This Programmatic EIS (PEIS) will evaluate the potential environmental impacts of implementing one or more programs to catalyze the deployment of engineered high energy crops (EHEC). A main component of the proposed EHEC programs would be providing financial assistance to funding recipients, such as research institutions, independent contract growers, or commercial entities, for field trials to evaluate the performance of EHECs. Confined field trials may range in size and could include development-scale (up to 5 acres), pilot-scale (up to 250 acres), or demonstration-scale (up to 15,000 acres). This PEIS will assess the potential environmental impacts of such confined field trials in the southeastern United States. DOEs proposed action under this PEIS will be limited to the states of Alabama, Florida (excluding the Everglades/Southern Florida coastal plain ecoregion), Georgia, Kentucky, Mississippi, North Carolina, South Carolina, Tennessee, and Virginia.

95

High-pressure coal fuel processor development  

SciTech Connect

The objective of Subtask 1.1 Engine Feasibility was to conduct research needed to establish the technical feasibility of ignition and stable combustion of directly injected, 3,000 psi, low-Btu gas with glow plug ignition assist at diesel engine compression ratios. This objective was accomplished by designing, fabricating, testing and analyzing the combustion performance of synthesized low-Btu coal gas in a single-cylinder test engine combustion rig located at the Caterpillar Technical Center engine lab in Mossville, Illinois. The objective of Subtask 1.2 Fuel Processor Feasibility was to conduct research needed to establish the technical feasibility of air-blown, fixed-bed, high-pressure coal fuel processing at up to 3,000 psi operating pressure, incorporating in-bed sulfur and particulate capture. This objective was accomplished by designing, fabricating, testing and analyzing the performance of bench-scale processors located at Coal Technology Corporation (subcontractor) facilities in Bristol, Virginia. These two subtasks were carried out at widely separated locations and will be discussed in separate sections of this report. They were, however, independent in that the composition of the synthetic coal gas used to fuel the combustion rig was adjusted to reflect the range of exit gas compositions being produced on the fuel processor rig. Two major conclusions resulted from this task. First, direct injected, ignition assisted Diesel cycle engine combustion systems can be suitably modified to efficiently utilize these low-Btu gas fuels. Second, high pressure gasification of selected run-of-the-mine coals in batch-loaded fuel processors is feasible. These two findings, taken together, significantly reduce the perceived technical risks associated with the further development of the proposed coal gas fueled Diesel cycle power plant concept.

Greenhalgh, M.L.

1992-11-01T23:59:59.000Z

96

Project Profile: Development and Performance Evaluation of High...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Development and Performance Evaluation of High Temperature Concrete for Thermal Energy Storage for Solar Power Generation Project Profile: Development and Performance Evaluation of...

97

Jobs and Economic Development Impacts (Postcards), Wind Powering America (WPA), Energy Efficiency & Renewable Energy (EERE)  

Wind Powering America (EERE)

Development Impacts Wind Powering America is a nationwide initiative to educate, engage, and enable critical stakeholders to make informed decisions about how wind energy contributes to the U.S. electricity supply. Jobs and Economic Development Impacts The Jobs and Economic Development Impacts (JEDI) model is a user-friendly tool that estimates the economic impacts of constructing and operating power generation at the local and state levels. Based on project-specific or default inputs (derived from industry norms), JEDI estimates the number of jobs and economic impacts to a local area that could reasonably be supported by a power generation project. For example, JEDI estimates the number of in-state construction jobs from a new wind farm. EERE Information Center

98

Development of Advanced High Temperature Fuel Cell Membranes  

Energy.gov (U.S. Department of Energy (DOE))

Presentation on Development of Advanced High Temperature Fuel Cell Membranes to the High Temperature Membrane Working Group Meeting held in Arlington, Virginia, May 26,2005.

99

Development of a 100-Watt High Temperature Thermoelectric Generator...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Generator Development of a 100-Watt High Temperature Thermoelectric Generator Test results for low and high temperature thermoelectric generators (TEG) those for a...

100

Development of 3rd Generation Advanced High Strength Steels ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3rd Generation Advanced High Strength Steels (AHSS) with an Integrated Experimental and Simulation Approach Development of 3rd Generation Advanced High Strength Steels (AHSS) with...

Note: This page contains sample records for the topic "developing high impact" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Evaluating the Impact of Development Projects on Poverty: A Handbook for  

Open Energy Info (EERE)

Evaluating the Impact of Development Projects on Poverty: A Handbook for Evaluating the Impact of Development Projects on Poverty: A Handbook for Practitioners Jump to: navigation, search LEDSGP green logo.png FIND MORE DIA TOOLS This tool is part of the Development Impacts Assessment (DIA) Toolkit from the LEDS Global Partnership. Tool Summary LAUNCH TOOL Name: Evaluating the Impact of Development Projects on Poverty: A Handbook for Practitioners Agency/Company /Organization: World Bank Sector: Climate User Interface: Other Complexity/Ease of Use: Not Available Website: siteresources.worldbank.org/INTISPMA/Resources/handbook.pdf Cost: Free Related Tools Asia-Pacific Integrated Model (AIM) Gold Standard Program Model Energy Development Index (EDI) ... further results A handbook that seeks to provide project managers and policy analysts with

102

Development of High Energy Cathode Materials  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

deposits). Al-coated cell can is suitable for high-voltage cathodes. Polyethylene-based separators (such as Celgard K1640) are stable at high V. Carbon Additives...

103

High energy neutron Computed Tomography developed  

E-Print Network (OSTI)

be observed behind high-density materials, such as depleted uranium or tungsten. Comparison of the high (bottom half) and foam (center teeth) phantom could be viewed through 76 mm of depleted uranium. Some ~ 3

104

Wind versus coal: Comparing the local economic impacts of energy resource development in Appalachia  

Science Journals Connector (OSTI)

Two energy development scenarios were compared for the Coal River Mountain in Raleigh County, West Virginia: (1) mountaintop mining (MTM) of coal, and (2) wind energy plus underground mining of coal. Economic impact computations over the life of each energy development scenario were made on a county basis for output of goods and services, the number of jobs created, and local earnings. Externality costs were assigned monetary values for coal mining and subtracted from earnings. Premature mortality within the general population due to additional coal mining accounted for 96% of these external cost computations. The results showed that economic output over the life of each scenario was twice as high for MTM mining as wind energy plus underground coal mining. Over the short term, employment and earnings were higher for MTM mining, but towards the end of the scenario, cumulative employment and earnings became higher under scenario (2). When local externality costs were subtracted from local earnings, MTM coal production had an overall negative net social impact on the citizens of Raleigh County. The external costs of MTM coal production provide an explanation of the existence of a resource curse and the conflicting results of output versus income provide insights into why coal-producing counties are underdeveloped.

Alan R. Collins; Evan Hansen; Michael Hendryx

2012-01-01T23:59:59.000Z

105

High-Temperature Solar Selective Coating Development for Power...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High-Temperature Solar Selective Coating Development for Power Tower Receivers - FY13 Q2 High-Temperature Solar Selective Coating Development for Power Tower Receivers - FY13 Q2...

106

Telephone Flat Geothermal Development Project Environmental Impact Statement Environmental Impact Report. Final  

SciTech Connect

This Final Environmental Impact Statement and Environmental Impact Report (Final EIS/EIR) has been prepared to meet the requirements of the National Environmental Policy Act (NEPA) and the California Environmental Quality Act (CEQA). The Proposed Action includes the construction, operation, and decommissioning of a 48 megawatt (gross) geothermal power plant with ancillary facilities (10-12 production well pads and 3-5 injection well pads, production and injection pipelines), access roads, and a 230-kilovolt (kV) transmission line in the Modoc National Forest in Siskiyou County, California. Alternative locations for the power plant site within a reasonable distance of the middle of the wellfield were determined to be technically feasible. Three power plant site alternatives are evaluated in the Final EIS/EIR.

None

1999-02-01T23:59:59.000Z

107

Volume 9: A Review of Socioeconomic Impacts of Oil Shale Development WESTERN OIL SHALE DEVELOPMENT: A TECHNOLOGY ASSESSMENT  

SciTech Connect

The development of an oil shale industry in northwestern Colorado and northeastern Utah has been forecast at various times since early this century, but the comparatively easy accessibility of other oil sources has forestalled development. Decreasing fuel supplies, increasing energy costs, and the threat of a crippling oil embargo finally may launch a commercial oil shale industry in this region. Concern for the possible impacts on the human environment has been fostered by experiences of rapid population growth in other western towns that have hosted energy resource development. A large number of studies have attempted to evaluate social and economic impacts of energy development and to determine important factors that affect the severity of these impacts. These studies have suggested that successful management of rapid population growth depends on adequate front-end capital for public facilities, availability of housing, attention to human service needs, long-range land use and fiscal planning. This study examines variables that affect the socioeconomic impacts of oil shale development. The study region is composed of four Colorado counties: Mesa, Moffat, Garfield and Rio Blanco. Most of the estimated population of 111 000 resides in a handful of urban areas that are separated by large distances and rugged terrain. We have projected the six largest cities and towns and one planned company town (Battlement Mesa) to be the probable centers for potential population impacts caused by development of an oil shale industry. Local planners expect Battlement Mesa to lessen impacts on small existing communities and indeed may be necessary to prevent severe regional socioeconomic impacts. Section II describes the study region and focuses on the economic trends and present conditions in the area. The population impacts analyzed in this study are contingent on a scenario of oil shale development from 1980-90 provided by the Department of Energy and discussed in Sec. III. We recognize that the rate of development, the magnitude of development, and the technology mix that will actually take place remain uncertain. Although we emphasize that other energy and mineral resources besides oil shale may be developed, the conclusions reached in this study reflect only those impacts that would be felt from the oil shale scenario. Socioeconomic impacts in the region reflect the uneven growth rate implied by the scenario and will be affected by the timing of industry developments, the length and magnitude of the construction phase of development, and the shift in employment profiles predicted in the scenario. The facilities in the southern portion of the oil shale region, those along the Colorado River and Parachute Creek, show a peak in the construction work force in the mid-1980s, whereas those f acil it i es in the Piceance Creek Bas into the north show a construction peak in the late 1980s. Together, the facilities will require a large construction work force throughout the decade, with a total of 4800 construction workers required in 1985. Construction at the northern sites and second phase construction in the south will require 6000 workers in 1988. By 1990, the operation work force will increase to 7950. Two important characteristics of oil shale development emerge from the work force estimates: (1) peak-year construction work forces will be 90-120% the size of the permanent operating work force; and (2) the yearly changes in total work force requirements will be large, as much as 900 in one year at one facility. To estimate population impacts on individual communities, we devised a population distribution method that is described in Sec. IV. Variables associated with the projection of population impacts are discussed and methodologies of previous assessments are compared. Scenario-induced population impacts estimated by the Los Alamos method are compared to projections of a model employed by the Colorado West Area Council of Governments. Oil shale development in the early decade, as defined by the scenario, will produce growth primarily

Rotariu,, G. J.

1982-02-01T23:59:59.000Z

108

Develop high energy high power Li-ion battery cathode materials : a first principles computational study  

E-Print Network (OSTI)

develop the high energy high power cathode materials for LIBNew Cathode Material for Batteries of High- Energy Density.High Energy High Power Li-ion Battery Cathode Materials A

Xu, Bo; Xu, Bo

2012-01-01T23:59:59.000Z

109

Studying Code Development for High Performance Computing: The HPCS Program  

E-Print Network (OSTI)

Studying Code Development for High Performance Computing: The HPCS Program Jeff Carver1 , Sima at measuring the development time for programs written for high performance computers (HPC). Our goal. Introduction The development of High-Performance Computing (HPC) programs (codes) is crucial to progress

Basili, Victor R.

110

Impact of Light Variation on Development of Photoprotection, Antioxidants, and Nutritional Value in Lactuca sativa L.  

Science Journals Connector (OSTI)

Impact of Light Variation on Development of Photoprotection, Antioxidants, and Nutritional Value in Lactuca sativa L. ... Department of Horticulture, Zhejiang University, Kaixuan Road 268, Hangzhou 310029, China ... Department of Horticultural Sciences, University of Florida, 1235 Fifield Hall, P.O. ...

Yan-Hong Zhou; Ying-Yun Zhang; Xin Zhao; Hai-Jing Yu; Kai Shi; Jing-Quan Yu

2009-05-12T23:59:59.000Z

111

Coordination Breakdowns and Their Impact on Development Productivity and  

E-Print Network (OSTI)

coordinating the effort of many individuals across the multiple stages of the development process. In software in a reduction of work dependencies between teams developing interdependent modules. Although that research stream has been quite influential, it considers a static view of the problem of coordination

Herbsleb, James D.

112

Integration of Green Energy into Power Distribution Systems: Study of Impacts and Development of Control Methodology  

Science Journals Connector (OSTI)

Distributed generation (DG) is gaining popularity as it has a positive environmental impact and the capability to reduce high transmission costs and power losses. Although the integration of renewable energy-base...

N. K. Roy; H. R. Pota

2014-01-01T23:59:59.000Z

113

Development of High Voltage Electron Microscope  

Science Journals Connector (OSTI)

......Cockcroft Walton Type High Voltage Generator. O Power Line O Fig. 4...pressure in the tank to the atmospheric pressure by removing freon...pump using liquid nitrogen. Water buffer and liquid nitrogen...base plate of high voltage generator. Four poles stand on this......

Shinjiro KATAGIRI; Hirokazu KIMURA; Susumu OZASA; Kazumi SHIRAISHI

1969-01-01T23:59:59.000Z

114

Development of Low-Cost, High Strength Commercial Textile Precursor...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

a project to develop develop a low-cost precursor fiber that can be converted to low-cost carbon fiber (CF) with at least 650 ksi tensile strength. Development of Low-Cost, High...

115

New Model Examines Cumulative Impacts of Wind Energy Development on Sensitive Species  

Energy.gov (U.S. Department of Energy (DOE))

DOE's Argonne National Laboratory recently developed the prototype of a spatially explicit individual-based model for examining the cumulative impacts of wind energy development on populations and habitats of the greater sage grouse (Centrocercus urophasianus)an important wildlife species that has been affected by energy development in the western United States.

116

Volume 1, Final Programmatic Environmental Impact Statement for Solar Energy Development in Six Southwestern States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Final Programmatic Environmental Impact Statement (PEIS) for Final Programmatic Environmental Impact Statement (PEIS) for Solar Energy Development in Six Southwestern States Volume 1 Executive Summary Chapters 1-7, 14-16 July 2012 Bureau of Land Management U.S. Department of Energy FES 12-24 * DOE/EIS-0403 Final Programmatic Environmental Impact Statement (PEIS) for Solar Energy Development in Six Southwestern States (FES 12-24; DOE/EIS-0403) Responsible Agencies: The U.S. Department of the Interior (DOI) Bureau of Land Management (BLM)

117

Developing high-frequency equities trading models  

E-Print Network (OSTI)

The purpose of this paper is to show evidence that there are opportunities to generate alpha in the high frequency environment of the US equity market, using Principal Component Analysis (PCA hereafter) as a basis for short ...

Infantino, Leandro Rafael

2010-01-01T23:59:59.000Z

118

High-speed rail with emerging automobiles and aircraft can reduce environmental impacts in California's future  

Science Journals Connector (OSTI)

Sustainable mobility policy for long-distance transportation services should consider emerging automobiles and aircraft as well as infrastructure and supply chain life-cycle effects in the assessment of new high-speed rail systems. Using the California corridor, future automobiles, high-speed rail and aircraft long-distance travel are evaluated, considering emerging fuel-efficient vehicles, new train designs and the possibility that the region will meet renewable electricity goals. An attributional per passenger-kilometer-traveled life-cycle inventory is first developed including vehicle, infrastructure and energy production components. A consequential life-cycle impact assessment is then established to evaluate existing infrastructure expansion against the construction of a new high-speed rail system. The results show that when using the life-cycle assessment framework, greenhouse gas footprints increase significantly and human health and environmental damage potentials may be dominated by indirect and supply chain components. The environmental payback is most sensitive to the number of automobile trips shifted to high-speed rail, and for greenhouse gases is likely to occur in 2030years. A high-speed rail system that is deployed with state-of-the-art trains, electricity that has met renewable goals, and in a configuration that endorses high ridership will provide significant environmental benefits over existing modes. Opportunities exist for reducing the long-distance transportation footprint by incentivizing large automobile trip shifts, meeting clean electricity goals and reducing material production effects.

Mikhail Chester; Arpad Horvath

2012-01-01T23:59:59.000Z

119

Impact of NDE reliability developments on risk-informed methods  

SciTech Connect

Risk informed inspection procedures are being developed to more effectively and economically manage degradation in plant piping systems. A key element of this process is applying nondestructive examination (NDE) procedures capable of detecting specific damage mechanisms that may be operative in particular locations. Thus, the needs of risk informed analysis are closely coupled with a firm understanding of the capability of NDE.

Walker, S.M.; Ammirato, F.V. [EPRI NDE Center, Charlotte, NC (United States)

1996-12-01T23:59:59.000Z

120

Shale gas development impacts on surface water quality in Pennsylvania  

Science Journals Connector (OSTI)

...Development , (2011) Plan to Study the Potential...Dissolved Solids Standard: A Guide to the...gas and solution mining regulatory program...legacy of coal mining in many Pennsylvania...description, using standard codes for brine...remediation options: A review. Sci Total...water quality standard for chloride in...

Sheila M. Olmstead; Lucija A. Muehlenbachs; Jhih-Shyang Shih; Ziyan Chu; Alan J. Krupnick

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "developing high impact" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Cumulative impacts study of The Geysers KGRA: public-service impacts of geothermal development  

SciTech Connect

Geothermal development in The Geysers KGRA has affected local public services and fiscal resources in Sonoma, Lake, Mendocino, and Napa counties. Each of these counties underwent rapid population growth between 1970 and 1980, some of which can be attributed to geothermal development. The number of workers currently involved in the various aspects of geothermal development in The Geysers is identified. Using three different development scenarios, projections are made for the number of power plants needed to reach the electrical generation capacity of the steam resource in The Geysers. The report also projects the cumulative number of workers needed to develop the steam field and to construct, operate, and maintain these power plants. Although the number of construction workers fluctuates, most are not likely to become new, permanent residents of the KGRA counties. The administrative and public service costs of geothermal development to local jurisdictions are examined and compared to geothermal revenues accruing to the local governments. Revenues do not cover the immediate fiscal needs resulting from increases in local road maintenance and school enrollment attributable to geothermal development. Several mitigation options are discussed, and a framework is presented for calculating mitigation costs per unit of public service.

Matthews, K.M.

1982-05-01T23:59:59.000Z

122

Extreme Co-movements and Extreme Impacts in High Frequency Data in Finance  

E-Print Network (OSTI)

Extreme Co-movements and Extreme Impacts in High Frequency Data in Finance Zhengjun Zhang, 2006 Abstract Extreme co-movement and extreme impact problems are inherently stochastic control in the future. Extreme co-movements among financial assets have been reported in the literature. However

Zhang, Zhengjun

123

JC3 High Impact Assessment Bulletins | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 17, 2012 October 17, 2012 V-004: Oracle Critical Patch Update Advisory - October 2012 October 2012 Critical Patch Update, security vulnerability fixes for proprietary components of Oracle Linux will be announced in Oracle Critical Patch Updates. October 16, 2012 V-003: Suse Update For Mozillafirefox - Critical An update that fixes 25 vulnerabilities is now available. October 12, 2012 V-001: Mozilla Security vulnerabilities Mozilla Firefox / Thunderbird / SeaMonkey Multiple Vulnerabilities October 10, 2012 U-278: Microsoft Security Bulletin Advance Notification for October 2012 Microsoft Security Bulletin Advance Notification for October 2012. Microsoft has posted 1 Critical Bulletins and 6 Important Bulletins. Bulletins with the Maximum Severity Rating and Vulnerability Impact of

124

Impacts of wind power on PJM market development  

Science Journals Connector (OSTI)

Recently, there has been a substantial growth in wind energy in the USA. An increasing number of states are experiencing market design, planning and investment in wind energy with this growth. Currently, wind installations exist in more than half of the states. This paper explores the market factors that have been driven and affected by large-scale wind energy development in the USA, particularly in PJM control area that have achieved in recent years and will have a substantial amount of wind energy investment in the next 10??15 years. In this paper, we also identify the key issues for wind power planning and interconnection.

Zhenyu Fan; Hui Ni

2008-01-01T23:59:59.000Z

125

Job and Economic Development Impact (JEDI) Model: A User-Friendly Tool to Calculate Economic Impacts from Wind Projects; Preprint  

Wind Powering America (EERE)

Job and Economic Job and Economic Development Impact (JEDI) Model: A User-Friendly Tool to Calculate Economic Impacts from Wind Projects Preprint March 2004 * NREL/CP-500-35953 M. Goldberg MRG & Associates K. Sinclair and M. Milligan (Consultant) National Renewable Energy Laboratory To be presented at the 2004 Global WINDPOWER Conference Chicago, Illinois March 29-31, 2004 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute * Battelle Contract No. DE-AC36-99-GO10337 NOTICE The submitted manuscript has been offered by an employee of the Midwest Research Institute (MRI), a contractor of the US Government under Contract No. DE-AC36-99GO10337. Accordingly, the US

126

Economic Impacts of Wind Turbine Development in U.S. Counties  

NLE Websites -- All DOE Office Websites (Extended Search)

are the economic development impacts on U.S. counties of are the economic development impacts on U.S. counties of wind power projects, as defined by growth in per capita income and employment? Objective To address the research question using post-project construction, county-level data, and econometric evaluation methods. Background * Wind energy is expanding rapidly in the United States: Over the last 4 years, wind power has contributed approximately 35 percent of all new electric power capacity. * Wind power plants are often developed in rural areas where local economic development impacts from the installation are projected, including land lease and property tax payments and employment growth during plant construction and operation. * Wind energy represented 2.3 percent of the U.S. electricity supply in 2010, but studies show

127

High Wind Penetration Impact on U.S. Wind Manufacturing Capacity and Critical Resources  

SciTech Connect

This study used two different models to analyze a number of alternative scenarios of annual wind power capacity expansion to better understand the impacts of high levels of wind generated electricity production on wind energy manufacturing and installation rates.

Laxson, A.; Hand, M. M.; Blair, N.

2006-10-01T23:59:59.000Z

128

Power System Planning: Emerging Practices Suitable for Evaluating the Impact of High-Penetration Photovoltaics  

SciTech Connect

This report explores the impact of high-penetration renewable generation on electric power system planning methodologies and outlines how these methodologies are evolving to enable effective integration of variable-output renewable generation sources.

Bebic, J.

2008-02-01T23:59:59.000Z

129

JEDI: Jobs and Economic Development Impacts Model, National Renewable Energy Laboratory (NREL) (Fact Sheet)  

SciTech Connect

The Jobs and Economic Development Impact (JEDI) models are user-friendly tools that estimate the economic impacts of constructing and operating power generation and biofuel plants at the local (usually state) level. First developed by NREL's Wind Powering America program to model wind energy jobs and impacts, JEDI has been expanded to biofuels, concentrating solar power, coal, and natural gas power plants. Based on project-specific and default inputs (derived from industry norms), JEDI estimates the number of jobs and economic impacts to a local area (usually a state) that could reasonably be supported by a power generation project. For example, JEDI estimates the number of in-state construction jobs from a new wind farm. This fact sheet provides an overview of the JEDI model as it pertains to wind energy projects.

Not Available

2009-12-01T23:59:59.000Z

130

Model Examines Cumulative Impacts of Wind Energy Development on the Greater Sage-Grouse  

Energy.gov (U.S. Department of Energy (DOE))

DOE's Argonne National Laboratory developed a spatially explicit individual-based model for examining the cumulative impacts of wind energy development on populations and habitats of the greater sage-grouse (Centrocercus urophasianus)a candidate for listing under the Endangered Species Act.

131

Accelerator System Development at High Voltage Engineering  

SciTech Connect

Throughout the years, HVE has continuously extended the capabilities of its accelerator systems to meet the rising demands from a diverse field of applications, among which are deep level ion implantation, micro-machining, neutron production for biomedical research, isotope production or accelerator mass spectrometry. Characteristic for HVE accelerators is the coaxial construction of the all solid state power supply around the acceleration tubes. With the use of solid state technology, the accelerators feature high stability and very low ripple. Terminal voltages range from 1 to 6 MV for HVE Singletrons and Tandetrons. The high-current versions of these accelerators can provide ion beams with powers of several kW. In the last years, several systems have been built with terminal voltages of 1.25 MV, 2 MV and 5 MV. Recently, the first system based on a 6 MV Tandetron has passed the factory tests. In this paper we describe the characteristics of the HVE accelerator systems and present as example recent systems.

Klein, M. G.; Gottdang, A.; Haitsma, R. G.; Mous, D. J. W. [High Voltage Engineering Europa B.V., P.O. Box 99, Amersfoort 3800 AB (Netherlands)

2009-03-10T23:59:59.000Z

132

Development of economically viable, highly integrated, highly modular SEGIS architecture.  

SciTech Connect

Initiated in 2008, the SEGIS initiative is a partnership involving the U.S. DOE, Sandia National Laboratories, private sector companies, electric utilities, and universities. Projects supported under the initiative have focused on the complete-system development of solar technologies, with the dual goal of expanding renewable PV applications and addressing new challenges of connecting large-scale solar installations in higher penetrations to the electric grid. Petra Solar, Inc., a New Jersey-based company, received SEGIS funds to develop solutions to two of these key challenges: integrating increasing quantities of solar resources into the grid without compromising (and likely improving) power quality and reliability, and moving the design from a concept of intelligent system controls to successful commercialization. The resulting state-of-the art technology now includes a distributed photovoltaic (PV) architecture comprising AC modules that not only feed directly into the electrical grid at distribution levels but are equipped with new functions that improve voltage stability and thus enhance overall grid stability. This integrated PV system technology, known as SunWave, has applications for 'Power on a Pole,' and comes with a suite of technical capabilities, including advanced inverter and system controls, micro-inverters (capable of operating at both the 120V and 240V levels), communication system, network management system, and semiconductor integration. Collectively, these components are poised to reduce total system cost, increase the system's overall value and help mitigate the challenges of solar intermittency. Designed to be strategically located near point of load, the new SunWave technology is suitable for integration directly into the electrical grid but is also suitable for emerging microgrid applications. SunWave was showcased as part of a SEGIS Demonstration Conference at Pepco Holdings, Inc., on September 29, 2011, and is presently undergoing further field testing as a prelude to improved and expanded commercialization.

Enslin, Johan (Petra Solar, Inc., South Plainfield, NJ); Hamaoui, Ronald (Petra Solar, Inc., South Plainfield, NJ); Gonzalez, Sigifredo; Haddad, Ghaith (Petra Solar, Inc., South Plainfield, NJ); Rustom, Khalid (Petra Solar, Inc., South Plainfield, NJ); Stuby, Rick (Petra Solar, Inc., South Plainfield, NJ); Kuran, Mohammad (Petra Solar, Inc., South Plainfield, NJ); Mark, Evlyn (Petra Solar, Inc., South Plainfield, NJ); Amarin, Ruba (Petra Solar, Inc., South Plainfield, NJ); Alatrash, Hussam (Petra Solar, Inc., South Plainfield, NJ); Bower, Ward Isaac; Kuszmaul, Scott S.; Sena-Henderson, Lisa; David, Carolyn; Akhil, Abbas Ali

2012-03-01T23:59:59.000Z

133

Judging the Impact of Conference and Journal Publications in High Performance Computing  

E-Print Network (OSTI)

Judging the Impact of Conference and Journal Publications in High Performance Computing dimensions that count most, conferences are superior. This is particularly true in high performance computing and are never published in journals. The area of high performance computing is broad, and we divide venues

Zhou, Yuanyuan

134

Variables Affecting Smooth Particle Hydrodynamics Simulation of High-Velocity Flyer Plate Impact Experiments  

SciTech Connect

This paper describes our work to characterize the variables affecting the smoothed particle hydrodynamics (SPH) method in the LS-DYNA package for simulating high-velocity flyer plate impact experiments. LS-DYNA simulations are compared with one-dimensional experimental data of an oxygen-free high-conductivity (OFHC) copper flyer plate impacting another plate of the same material. The comparison is made by measuring the velocity of a point on the back surface of the impact plate using the velocity interferometer system for any reflector (VISAR) technique.

Somasundaram, Deepak S [UNLV; Trabia, Mohamed [UNLV; O'Toole, Brendan [UNLV; Hixson, Robert S [NSTec

2014-01-23T23:59:59.000Z

135

Development of a 500 Watt High Temperature Thermoelectric Generator...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

More Documents & Publications Development of a 100-Watt High Temperature Thermoelectric Generator Automotive Waste Heat Conversion to Power Program Automotive Waste Heat...

136

High Efficiency Engine Systems Development and Evaluation | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High Efficiency Engine Systems Development and Evaluation 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

137

Development of High Energy Cathode Materials | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Materials Development of High Energy Cathode Materials 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

138

JC3 High Impact Assessment Bulletins | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 13, 2012 September 13, 2012 U-259: RSA BSAFE SSL-C Lets Remote Users Decrypt SSL/TLS Traffic and SSL Buffer Overflow Lets Remote Users Execute Arbitrary Code RSA BSAFE SSL-C Multiple Vulnerabilities September 12, 2012 U-258: Adobe Flash Player Flaw Lets Remote Users Execute Arbitrary Code A remote user can cause arbitrary code to be executed on the target user's system. September 11, 2012 U-256: Microsoft Security Bulletin Advance Notification for September 2012 Microsoft Security Bulletin Advance Notification for September 2012. Microsoft has posted 0 Critical Bulletins and 2 Important Bulletins. Bulletins with the Maximum Severity Rating and Vulnerability Impact of "Critical" may allow remote execution of code. Microsoft is hosting a webcast to address customer questions on these bulletins on September 12,

139

JC3 High Impact Assessment Bulletins | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 10, 2012 July 10, 2012 U-209: Microsoft Security Bulletin Advance Notification for July 2012 Microsoft Security Bulletin Advance Notification for July 2012. Microsoft has posted 3 Critical Bulletins and 6 Important Bulletins. Bulletins with the Maximum Severity Rating and Vulnerability Impact of "Critical" may allow remote execution of code. Microsoft is hosting a webcast to address customer questions on these bulletins on July 11, 2012, at 11:00 AM Pacific Time (US & Canada). July 10, 2012 U-208: HP Operations Agent Bugs Let Remote Users Execute Arbitrary Code Two vulnerabilities were reported in HP Operations Agent. A remote user can execute arbitrary code on the target system July 2, 2012 U-203: HP Photosmart Bug Lets Remote Users Deny Service A vulnerability was reported in HP Photosmart. A remote user can cause

140

JC3 High Impact Assessment Bulletins | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

12, 2011 12, 2011 U-058: Apache Struts Conversion Error OGNL Expression Injection Vulnerability Apache Struts Conversion Error OGNL Expression Injection Vulnerability. December 9, 2011 U-057: Microsoft Security Bulletin Advance Notification for December 2011 Microsoft Security Bulletin Advance Notification for December 2011. Microsoft has posted 3 Critical Bulletins and 11 Important bulletins. Bulletins with the Maximum Severity Rating and Vulnerability Impact of "Critical" may allow propagation of Internet worm without user action. Microsoft will host a webcast to address customer questions on the security bulletins on December 14, 2011, at 11:00 AM Pacific Time (US & Canada). December 8, 2011 U-055: Adobe Flash Player Bugs Let Remote Users Execute Arbitrary Code

Note: This page contains sample records for the topic "developing high impact" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Effectiveness of GIS suitability mapping in predicting ecological impacts of proposed wind farm development on Aristazabal Island, BC  

Science Journals Connector (OSTI)

Like any industrial development, wind farms can have negative impacts on the ... environment. These can include impacts to airborne wildlife populations, loss of habitat for fish and wildlife, changes to riparian...

James C. Griffiths; William T. Dushenko

2011-12-01T23:59:59.000Z

142

Petroleum Refinery Jobs and Economic Development Impact (JEDI) Model User Reference Guide  

SciTech Connect

The Jobs and Economic Development Impact (JEDI) models, developed through the National Renewable Energy Laboratory (NREL), are user-friendly tools utilized to estimate the economic impacts at the local level of constructing and operating fuel and power generation projects for a range of conventional and renewable energy technologies. The JEDI Petroleum Refinery Model User Reference Guide was developed to assist users in employing and understanding the model. This guide provides information on the model's underlying methodology, as well as the parameters and references used to develop the cost data utilized in the model. This guide also provides basic instruction on model add-in features, operation of the model, and a discussion of how the results should be interpreted. Based on project-specific inputs from the user, the model estimates job creation, earning and output (total economic activity) for a given petroleum refinery. This includes the direct, indirect and induced economic impacts to the local economy associated with the refinery's construction and operation phases. Project cost and job data used in the model are derived from the most current cost estimations available. Local direct and indirect economic impacts are estimated using economic multipliers derived from IMPLAN software. By determining the regional economic impacts and job creation for a proposed refinery, the JEDI Petroleum Refinery model can be used to field questions about the added value refineries may bring to the local community.

Goldberg, M.

2013-12-31T23:59:59.000Z

143

Cumulative impact assessments and bird/wind farm interactions: Developing a conceptual framework  

SciTech Connect

The wind power industry has grown rapidly in the UK to meet EU targets of sourcing 20% of energy from renewable sources by 2020. Although wind power is a renewable energy source, there are environmental concerns over increasing numbers of wind farm proposals and associated cumulative impacts. Individually, a wind farm, or indeed any action, may have minor effects on the environment, but collectively these may be significant, potentially greater than the sum of the individual parts acting alone. EU and UK legislation requires a cumulative impact assessment (CIA) as part of Environmental Impact Assessments (EIA). However, in the absence of detailed guidance and definitions, such assessments within EIA are rarely adequate, restricting the acquisition of basic knowledge about the cumulative impacts of wind farms on bird populations. Here we propose a conceptual framework to promote transparency in CIA through the explicit definition of impacts, actions and scales within an assessment. Our framework requires improved legislative guidance on the actions to include in assessments, and advice on the appropriate baselines against which to assess impacts. Cumulative impacts are currently considered on restricted scales (spatial and temporal) relating to individual development EIAs. We propose that benefits would be gained from elevating CIA to a strategic level, as a component of spatially explicit planning.

Masden, Elizabeth A., E-mail: e.masden.1@research.gla.ac.u [Department of Ecology and Evolutionary Biology, University of Glasgow, Glasgow, G12 8QQ (United Kingdom) and Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow, G12 8QQ (United Kingdom); Fox, Anthony D., E-mail: tfo@dmu.d [Department of Wildlife Ecology and Biodiversity, National Environmental Research Institute, University of Aarhus, Kalo, Grenavej 14, 8410 Ronde (Denmark); Furness, Robert W., E-mail: r.furness@bio.gla.ac.u [Department of Ecology and Evolutionary Biology, University of Glasgow, Glasgow, G12 8QQ (United Kingdom); Bullman, Rhys, E-mail: rhys.bullman@rpsgroup.co [Scottish Natural Heritage, The Beta Centre, Innovation Park, University of Stirling, Stirling FK9 4NF (United Kingdom); Haydon, Daniel T., E-mail: d.haydon@bio.gla.ac.u [Department of Ecology and Evolutionary Biology, University of Glasgow, Glasgow, G12 8QQ (United Kingdom); Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow, G12 8QQ (United Kingdom)

2010-01-15T23:59:59.000Z

144

JEDI II: Jobs and Economic Development Impacts from Coal, Naural Gas and Wind Power (Poster)  

Wind Powering America (EERE)

JEDI II: JOBS AND ECONOMIC DEVELOPMENT IMPACTS JEDI II: JOBS AND ECONOMIC DEVELOPMENT IMPACTS FROM COAL, NATURAL GAS, AND WIND POWER Marshall Goldberg MRG & Associates Nevada City, California Suzanne Tegen National Renewable Energy Laboratory Golden, Colorado The information contained in this poster is subject to a government license. * WINDPOWER 2006 * Pittsburgh, PA * June 4-7, 2006 * NREL/PO-500-39908 Michael Milligan, Consultant National Renewable Energy Laboratory Golden, Colorado How does JEDI II work? The user enters data specific to the new coal, gas, or wind plant: * Year of installation * Size of the project * Location * Cost ($/kW) * Any other site-specific information

145

Impact of High Solar Penetration in the Western Interconnection  

SciTech Connect

This paper presents an overview of the variable characteristics of solar power, as well as the accompanying grid dynamic performance and operational economics for a system with significant solar generation. The paper will show results of economic operational simulations of a very high solar generation future for the western half of the United States.

Lew, D.; Miller, N.; Clark, K.; Jordan, G.; Gao, Z.

2010-12-01T23:59:59.000Z

146

Computational and Experimental Development of Novel High-Temperature Alloys  

NLE Websites -- All DOE Office Websites (Extended Search)

Development of Novel High-Temperature Alloys Background The need for fossil-fueled power plants to run cleaner and more efficiently leads toward ever-higher operating temperatures and pressures. Gas turbines, which can be fueled by natural gas, synthetic gas (syngas), or a high-hydrogen stream derived from coal, are critical components in this development. High-temperature operation of turbines is generally achieved by using nickel-chrome superalloys with coatings

147

Development of validated QSPR models for impact sensitivity of nitroaliphatic compounds  

E-Print Network (OSTI)

1 Development of validated QSPR models for impact sensitivity of nitroaliphatic compounds Vinca des Interfaces et Modélisation pour l'Energie, CNRS UMR-7575, Chimie ParisTech, 11 rue P. et M. Curie substances is not realistic (for reasons of time, costs or ethics in case of tests on animals). Thus

Paris-Sud XI, Université de

148

Offshore Wind Jobs and Economic Development Impacts in the United States: Four Regional Scenarios  

Energy.gov (U.S. Department of Energy (DOE))

This report uses the offshore wind Jobs and Economic Development Impacts (JEDI) model and provides four case studies of potential offshore wind deployment scenarios in different regions of the United States: the Southeast, the Great Lakes, the Gulf Coast, and the Mid-Atlantic.

149

Measuring and mi-ga-ng impact of offshore oil development on  

E-Print Network (OSTI)

Measuring and mi-ga-ng impact of offshore oil development on seabirds and other effects are concentrated in the offshore ­ vicinity of the oil field J. 2001. Seabirds at risk around offshore oil pla=orms in the north

Jones, Ian L.

150

FINAL TECHNICAL REPORT Project Title: Environmental Impacts of Wind Power Development on the Population Biology  

E-Print Network (OSTI)

Collaborative Abby Arnold, Executive Director, American Wind Wildlife Institute,aarnold@awwi.org, 202- 535-7800 (x105) Taber D. Allison, Director of Research and Evaluation, American Wind Wildlife Institutei FINAL TECHNICAL REPORT Project Title: Environmental Impacts of Wind Power Development

Sandercock, Brett K.

151

Design Principles and Case Study Analysis for Low Impact Development Practices - Green Roofs, Rainwater Harvesting and Vegetated Swales.  

E-Print Network (OSTI)

??This thesis on Low Impact Development (LID) Practices provides design guidelines and principles for three important LID practices: green roofs, rainwater harvesting and bioswales. The (more)

Ramesh, Shalini

2011-01-01T23:59:59.000Z

152

JC3 High Impact Assessment Bulletins | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 22, 2013 May 22, 2013 V-161: IBM Maximo Asset Management Products Java Multiple Vulnerabilities Asset and Service Mgmt Products - Potential security exposure when using JavaTM based applications due to vulnerabilities in Java Software Developer Kits. May 17, 2013 V-158: BlackBerry Tablet OS Flash Player Multiple Vulnerabilities Multiple vulnerabilities have been reported in BlackBerry Tablet OS, which can be exploited by malicious people to bypass certain security restrictions and compromise a user's system. May 16, 2013 V-157: Adobe Reader / Acrobat Multiple Vulnerabilities These updates address vulnerabilities that could cause a crash and potentially allow an attacker to take control of the affected system May 14, 2013 V-155: Apache Tomcat FORM Authenticator Lets Remote Users Conduct Session

153

Moderate Velocity Ball Impact of a Mock High-Explosive  

SciTech Connect

Modeling of thermal and mechanical events in high-explosive materials is complicated by the composite nature of the material, which experiences viscoelastic and plastic deformations and sustains damage in the form of microcracks that can dominate its overall behavior. A mechanical event of interest is projectile interaction with the material, which leads to extreme local deformation and adiabatic heating, which can potentially lead to adverse outcomes in an energetic material. Simulations of such an event predicted large local temperature rises near the path of a spherical projectile, but these were experimentally unconfirmed and hence potentially non-physical. This work concerns the experimental verification of local temperatures both at the surface and in the wake of a spherical projectile penetrating a mock (unreactive) high-explosive at {approx}700 m/s. Fast response thermocouples were embedded radially in a mid-plane of a cylindrical target, which was bonded around the thermocouples with epoxy and recorded by an oscilloscope through a low-pass filter with a bandwidth of 500 Hz. A peak temperature rise of 70 K was measured both at the equator of the projectile and in its wake, in good agreement with the temperature predicted in the minimally distorted elements at those locations by a finite element model in ABAQUS employing the ViscoSCRAM constitutive model. Further work is needed to elucidate the extreme temperature rises in material undergoing crushing or fragmentation, which is difficult to predict with meshed finite element methods due to element distortion, and also challenging to quantify experimentally.

Furmanski, Jevan [Los Alamos National Laboratory; Rae, Philip [Los Alamos National Laboratory; Clements, Bradford E. [Los Alamos National Laboratory

2012-06-05T23:59:59.000Z

154

High-temperature superconductor applications development at Argonne National Laboratory  

SciTech Connect

Developments at Argonne National Laboratory of near and intermediate term applications using high-temperature superconductors are discussed. Near-term applications of liquid-nitrogen depth sensors, current leads, and magnetic bearings are discussed in detail.

Hull, J.R.; Poeppel, R.B.

1992-02-09T23:59:59.000Z

155

Development of High Expansion Ratio Helium Turbo Expander  

Science Journals Connector (OSTI)

The authors developed a high expansion ratio radial inflow turbine for a helium liquefier of 100 L/h capacity for use with a 70 MW superconductive generator. The following results were obtained from this devel...

N. Ino; A. Machida; K. Ttsugawa; Y. Arai; M. Matsuki

1991-01-01T23:59:59.000Z

156

Impacts of environmental laws on land development and developers in Dhaka City, Bangladesh  

Science Journals Connector (OSTI)

The fast paced land and housing development projects in Dhaka City since 1980s had generated irregularities in developers' real estate projects and policy deviations in the Dhaka Metropolitan Development Plan (DMDP). This paper explores the causes of the irregularities and reasons that trapped many buyers in the developers' unauthorised housing projects and violation of some regulations. The study argues that the untimely promulgation of laws, namely: The Natural Water Body, Open Space, Park/Play Ground Preservation Rule 2000, Private Housing Project Land Development Rules 2004 (PHPLD Rules 2004), and Real Estate Development and Management Act 2010 (REDM Act 2010) could be largely responsible for the present crisis. This paper suggests that modification of the DMDP policies and relevant laws should be urgently undertaken in order to bring about solidity and smooth functioning of the land and real estate market in Dhaka. The study also suggests that an independent assessment agency could be commissioned to assess the situation and minimise the risks of buyers and the irregularities of developers by disseminating the relevant information to respective agencies and concerned persons.

Md. Jahangir Alam; Mokbul Morshed Ahmad

2011-01-01T23:59:59.000Z

157

Development of a questionnaire to test the impact of scarce materials on design in Developing Countries  

E-Print Network (OSTI)

The objective of this thesis is to create a questionnaire that tests how designers in developing countries design with scarce resources. The questionnaire will be given to mechanical engineering students in Mexico and will ...

Grinnell, Edward (Edward M.)

2011-01-01T23:59:59.000Z

158

Spatial and Temporal Impacts on Water Consumption in Texas from Shale Gas Development and Use  

Science Journals Connector (OSTI)

Spatial and Temporal Impacts on Water Consumption in Texas from Shale Gas Development and Use ... Despite the water intensity of hydraulic fracturing, recent life cycle analyses have concluded that increased shale gas development will lead to net decreases in water consumption if the increased natural gas production is used at natural gas combined cycle power plants, shifting electricity generation away from coal-fired steam cycle power plants. ... This work expands on these studies by estimating the spatial and temporal patterns of changes in consumptive water use in Texas river basins during a period of rapid shale gas development and use in electricity generation from August 2008 through December 2009. ...

Adam P. Pacsi; Kelly T. Sanders; Michael E. Webber; David T. Allen

2014-06-24T23:59:59.000Z

159

Development of high void fraction polylactide composite foams using injection molding: Mechanical and thermal insulation properties  

Science Journals Connector (OSTI)

Abstract Polylactide (PLA) and PLA composites with void fractions as high as 65% were fabricated using low-pressure foam injection molding (FIM) and high-pressure FIM (HPFIM) equipped with mold opening and gas counter pressure. The cellular morphology and crystallinity were characterized using scanning electron microscopy and differential scanning calorimetry, respectively. The mechanical (flexural and impact resistance) and thermal insulation properties were also measured. Unlike, talc, the addition of nanoclay markedly enhanced the ductility of solid PLA samples as well as significantly improved the cell morphology of foamed samples, which resulted in the increased specific modulus, strength and impact resistance. In all the PLA samples made using HPFIM, with an increased void fraction up to 55%, the flexural rigidity increased up to four times, the specific impact resistance increased up to 15%, and the thermal insulation increased up to three times. The results of this investigation revealed that low-density PLA composite foams with improved rigidity, impact strength, and thermal insulation can be developed using HPFIM for various applications such as transportation and construction industries.

A. Ameli; D. Jahani; M. Nofar; P.U. Jung; C.B. Park

2014-01-01T23:59:59.000Z

160

Wear damage resulting from sliding impact kinematics in pressurized high temperature water: energetical and  

E-Print Network (OSTI)

1 Wear damage resulting from sliding impact kinematics in pressurized high temperature water and Cecile Langlade2,3 1 FRAMATOME-ANP Technical Center, Avenue B. Marcet, Porte Magenta, 71200 Le Creusot.bec@ec-lyon.fr Abstract Specific wear of Rod Cluster Control Assemblies (RCCA) in Pressurized Water nuclear Reactors (PWR

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "developing high impact" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

BEHAVIOUR OF A HIGHLY PRESSURISED TANK OF GHz, SUBMITTED TO A THERMAL OR MECHANICAL IMPACT  

E-Print Network (OSTI)

2000-41 BEHAVIOUR OF A HIGHLY PRESSURISED TANK OF GHz, SUBMITTED TO A THERMAL OR MECHANICAL IMPACT will significantly reduce the volume of the necessary tank(s). Whatever this pressure and whatever the volume of the tank(s), the storage System must be designed in such a way that the consequences of an accident

Paris-Sud XI, Université de

162

Impacts of high energy prices on long-term energy-economic scenarios for Germany  

E-Print Network (OSTI)

Impacts of high energy prices on long-term energy-economic scenarios for Germany Volker Krey1 , Dag and Technology Evaluation (IEF-STE), 52425 Jülich, Germany 2) DIW Berlin, Königin-Luise-Str. 5, 14195 Berlin, Germany 3) ?ko-Institut, Novalisstr. 10, 10115 Berlin, Germany Abstract Prices of oil and other fossil

163

High-speed photography and stress gauge studies of jet impact upon surfaces  

Science Journals Connector (OSTI)

...source barrel QCA5 power supply nitrogen...impact using a low power microscope...flat-ended projectile fired from a single stage gas gun onto a PMMA...However, the generation of the high-speed...results from the generation of the release...

1997-01-01T23:59:59.000Z

164

Microstructure and nanohardness distribution in a polycrystalline Zn deformed by high strain rate impact  

E-Print Network (OSTI)

-Munitions, 7 route de Guerry, 18023 Bourges Cedex, France c Department of Materials Physics, Eötvös Loránd grain size of 20 m surrounded by a fine-grained rim with an average grain size of 6 m. Transmission in high purity polycrystal- line Zn. The evolution of the microstructure due to the impact loading

Gubicza, Jenõ

165

Volume 5, Final Programmatic Environmental Impact Statement for Solar Energy Development in Six Southwestern States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 5 New Mexico and Utah Proposed Solar Energy Zones Chapters 12 and 13 July 2012 Bureau of Land Management U.S. Department of Energy FES 12-24 * DOE/EIS-0403 Final Programmatic Environmental Impact Statement (PEIS) for Solar Energy Development in Six Southwestern States (FES 12-24; DOE/EIS-0403) Responsible Agencies: The U.S. Department of the Interior (DOI) Bureau of Land Management (BLM)

166

Impacts of Contaminan t Storage on Indoor Air Quality: Model Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Impacts of Contaminan t Storage on Indoor Air Quality: Model Development Impacts of Contaminan t Storage on Indoor Air Quality: Model Development Title Impacts of Contaminan t Storage on Indoor Air Quality: Model Development Publication Type Journal Article LBNL Report Number LBNL-6114E Year of Publication 2013 Authors Sherman, Max H., and Erin L. Hult Journal Atmospheric Environment Volume 72 Start Page 41 Pagination 41-49 Date Published 01/2013 Keywords Buffering capacity, formaldehyde, moisture Abstract A first-order, lumped capacitance model is used to describe the buffering of airborne chemical species by building materials and furnishings in the indoor environment. The model is applied to describe the interaction between formaldehyde in building materials and the concentration of the species in the indoor air. Storage buffering can decrease the effect of ventilation on the indoor concentration, compared to the inverse dependence of indoor concentration on the air exchange rate that is consistent with a constant emission rate source. If the exposure time of an occupant is long relative to the time scale of depletion of the compound from the storage medium, however, the total exposure will depend inversely on the air exchange rate. This lumped capacitance model is also applied to moisture buffering in the indoor environment, which occurs over much shorter depletion timescales of the order of days. This model provides a framework to interpret the impact of storage buffering on time-varying concentrations of chemical species and resulting occupant exposure. Pseudo-steady state behavior is validated using field measurements. Model behavior over longer times is consistent with formaldehyde and moisture concentration measurements in previous studies.

167

Fluoride Salt-Cooled High-Temperature Reactor Development Roadmap  

SciTech Connect

Fluoride salt-cooled high-temperature reactors (FHRs) are an emerging reactor class with potentially advantageous performance characteristics and fully passive safety. This paper provides an overview of a technology development pathway for expeditious commercial deployment of first-generation FHRs. The paper describes the principal remaining FHR technology challenges and the development path needed to address the challenges. First-generation FHRs do not appear to require any technology breakthroughs, but will require significant technology development and demonstration. FHRs are currently entering early phase engineering development. As such, the development roadmap is not as technically detailed or specific as would be the case for a more mature reactor class. The higher cost of fuel and coolant; the lack of an approved licensing framework; the lack of qualified, salt-compatible structural materials; and the potential for tritium release into the environment are the most obvious issues that remain to be resolved.

Holcomb, David Eugene [ORNL] [ORNL; Flanagan, George F [ORNL] [ORNL; Mays, Gary T [ORNL] [ORNL; Pointer, William David [ORNL] [ORNL; Robb, Kevin R [ORNL] [ORNL; Yoder Jr, Graydon L [ORNL] [ORNL

2014-01-01T23:59:59.000Z

168

The structural impact of commodity farm programs on farms in the Southern Texas High Plains  

E-Print Network (OSTI)

OPTIMIZATION OF A HYBRID SOLAR ENERGY COLLECTOR SYSTEM A Thesis by ALAN M. SHI NEMAN Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree MASTER OF SCIENCE May 1981 Major Subject...: Mechanical Engineering 1981 Thesis 5558 THE STRUCTURAL IMPACT OP COMMODITY FARM PROGRAMS ON FARMS IN THE SOUTHERN TEXAS HIGH PLAINS A Thesis by CHRISTINA KAY SHIRLEY Submitted to the Graduate College of Texas AAM University in partial fulfillment...

Shirley, Christina Kay

1981-01-01T23:59:59.000Z

169

High energy beam impact tests on a LHC tertiary collimator at the CERN high-radiation to materials facility  

Science Journals Connector (OSTI)

The correct functioning of a collimation system is crucial to safely operate highly energetic particle accelerators, such as the Large Hadron Collider (LHC). The requirements to handle high intensity beams can be demanding. In this respect, investigating the consequences of LHC particle beams hitting tertiary collimators (TCTs) in the experimental regions is a fundamental issue for machine protection. An experimental test was designed to investigate the robustness and effects of beam accidents on a fully assembled collimator, based on accident scenarios in the LHC. This experiment, carried out at the CERN High-Radiation to Materials (HiRadMat) facility, involved 440GeV proton beam impacts of different intensities on the jaws of a horizontal TCT. This paper presents the experimental setup and the preliminary results obtained, together with some first outcomes from visual inspection and a comparison of such results with numerical simulations.

Marija Cauchi; O. Aberle; R.?W. Assmann; A. Bertarelli; F. Carra; K. Cornelis; A. Dallocchio; D. Deboy; L. Lari; S. Redaelli; A. Rossi; B. Salvachua; P. Mollicone; N. Sammut

2014-02-24T23:59:59.000Z

170

Impacts of high penetration level of fully electric vehicles charging loads on the thermal ageing of power transformers  

Science Journals Connector (OSTI)

Abstract This paper develops a methodology to determine the impacts of high penetration level of fully electric vehicles (FEVs) charging loads on the thermal ageing of power distribution transformers. The method proposed in this paper is stochastically formulated by modelling the transformer life consumption due to \\{FEVs\\} charging loads as a function of ambient temperature, start time of \\{FEVs\\} charging, initial state-of-charge and charging modes. \\{FEVs\\} loads are modelled using the results from an analytical solution that predicts a cluster of \\{FEVs\\} chargers. A UK generic LV distribution network model and real load demand data are used to simulate FEVs impacts on the thermal ageing of LV power distribution transformers. Results show that the ambient temperature, \\{FEVs\\} penetration level, and start time of charging are the main factors that affect the transformer life expectancy. It was concluded that the smart charging scenario generally shows the best outcome from the loss of life reduction perspective. Meanwhile, public charging which shifts a large percentage of charging load to commercial and industrial areas can significantly alleviate the residential transformer loading thus has little impact on the loss of life of transformers. The proposed method in this paper can be easily applied to the determination of the optimum charging time as a function of existing loads, and ambient temperature.

Kejun Qian; Chengke Zhou; Yue Yuan

2015-01-01T23:59:59.000Z

171

Volume 7, Final Programmatic Environmental Impact Statement for Solar Energy Development in Six Southwestern States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 7 Comments and Responses July 2012 Bureau of Land Management U.S. Department of Energy FES 12-24 * DOE/EIS-0403 Final Programmatic Environmental Impact Statement (PEIS) for Solar Energy Development in Six Southwestern States (FES 12-24; DOE/EIS-0403) Responsible Agencies: The U.S. Department of the Interior (DOI) Bureau of Land Management (BLM) and the U.S. Department of Energy (DOE) are co-lead agencies. Nineteen cooperating agencies participated in the preparation of this PEIS: U.S. Department of Defense; U.S. Bureau of Reclamation;

172

Volume 3, Final Programmatic Environmental Impact Statement for Solar Energy Development in Six Southwestern States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 3 Colorado Proposed Solar Energy Zones Chapter 10 July 2012 Bureau of Land Management U.S. Department of Energy FES 12-24 * DOE/EIS-0403 Final Programmatic Environmental Impact Statement (PEIS) for Solar Energy Development in Six Southwestern States (FES 12-24; DOE/EIS-0403) Responsible Agencies: The U.S. Department of the Interior (DOI) Bureau of Land Management (BLM) and the U.S. Department of Energy (DOE) are co-lead agencies. Nineteen cooperating agencies

173

Volume 2, Final Programmatic Environmental Impact Statement for Solar Energy Development in Six Southwestern States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 Arizona and California Proposed Solar Energy Zones Chapters 8 and 9 July 2012 Bureau of Land Management U.S. Department of Energy FES 12-24 * DOE/EIS-0403 Final Programmatic Environmental Impact Statement (PEIS) for Solar Energy Development in Six Southwestern States (FES 12-24; DOE/EIS-0403) Responsible Agencies: The U.S. Department of the Interior (DOI) Bureau of Land Management (BLM) and the U.S. Department of Energy (DOE) are co-lead agencies. Nineteen cooperating agencies participated in the preparation of this PEIS: U.S. Department of Defense; U.S. Bureau of Reclamation;

174

Solar Energy Development and Aquatic Ecosystems in the Southwestern United States: Potential Impacts, Mitigation, and Research Needs  

Science Journals Connector (OSTI)

One of the main impacts from a solar energy project, regardless of the technology utilized, is...2 (Table2...), although not all of the area within the SEZs is likely to be used for solar development. The size o...

Mark Grippo; John W. Hayse; Ben L. OConnor

2014-10-01T23:59:59.000Z

175

SP-100 high-temperautre advanced radiator development. [Nb; C  

SciTech Connect

Under contract to NASA-Lewis Research Center, an advanced radiator concept design has been developed meeting SP-100 thermoelectric requirements. Carbon-carbon heat pipes are utilized to produce this lightweight, high performance radiator. Two fundamental feasibility issues had to be solved to enable the design: first, to produce a carbon-carbon heat pipe tube with integral fins, meeting both thermal and mechanical requirements; and second, to develop a coating that protects the carbon-carbon substrate from 875 K potassium working fluid.

Rovang, R.D.; Hunt, M.E. (Rocketdyne Div./Rockwell Int., 6633 Canoga Ave., Canoga Park, CA (USA)); Dirling, R.B. Jr. (Science Applications International Corp., 1720 E. Wilshire, Santa Ana, CA (USA)); Holzl, R.A. (Delta G Corporation, 9960-A Glenoaks Blvd., Sun Valley, CA (USA))

1991-01-05T23:59:59.000Z

176

Regional Variation in Water-Related Impacts of Shale Gas Development and Implications for Emerging International Plays  

E-Print Network (OSTI)

Regional Variation in Water-Related Impacts of Shale Gas Development and Implications for Emerging understanding of the unique regional issues that shale gas development poses. This manuscript highlights the variation in regional water issues associated with shale gas development in the U.S. and the approaches

Alvarez, Pedro J.

177

OSRAM SYLVANIA Develops High-Efficiency LED Troffer Replacement  

Energy.gov (U.S. Department of Energy (DOE))

With the help of DOE funding, OSRAM SYLVANIA is developing a high-efficiency LED 2'x2' troffer replacement that is expected to be commercially available in the spring of 2012 and to be cost-competitive with existing troffers of that size. It is projected to have a light output of up to 4,000 lumens, an efficacy of more than 100 lm/W, and a CCT of 3500K.

178

Development of high performance sodium/metal chloride cells  

SciTech Connect

Sodium/metal chloride (MCl{sub 2}) cells and batteries are being studied at Argonne National Laboratory (ANL) for stationary energy storage and transportation applications. The work is being directed toward (1) development of thin, high-capacity density electrodes and inexpensive {beta}{double prime}-alumina-glass composite electrolyte materials to replace {beta}{double prime}-alumina and (2) the development of models to project MCl{sub 2} system performances. In our NiCl{sub 2} electrode work, the effects of charge/discharge rates, temperature, electrode porosity, and sulfur content on electrode performance were determined using annular electrodes fabricated in the uncharged state. Of all electrode design parameters mentioned, electrode porosity, sulfur content, and charge rates have the greatest effect on utilization and on the area-specific impedance. The {beta}{double prime}-alumina-glass composite electrolyte work has led to the development of a highly conductive (3.3 {times} 10{sup {minus}2}S/cm at 250{degree}C) composite material. Preliminary modeling studies indicate that the performance of the MCl{sub 2} electrodes can be fitted by a mathematic model very successfully and that cell electrolyte configurations of either multiple tubes joined at a header or compartmented flat structures of either {beta}{double prime}-alumina or of the composite material would result in high-performance batteries with power-to-energy ratios of about 5. 15 refs., 8 figs., 4 tabs.

Vissers, D.R.; Bloom, I.D.; Hash, M.C.; Redey, L.; Hammer, C.L.; Dees, D.W.; Nelson, P.A.

1990-01-01T23:59:59.000Z

179

An example of remediation of mercury impacted soil using high vacuum low temperature thermal desorption  

SciTech Connect

The purpose of this paper is to describe a high vacuum, low temperature thermal desorption (LTTD) technology which has been used to remediate soil impacted with elemental mercury and to present the results of pre-treatment and post-treatment soil sampling. The general operating principles of this high vacuum LTTD technology, the IRHV-200, are: (a) depression of the boiling points of the target compounds by lowering the ambient pressure within the treatment chamber using a vacuum pump; (b) use of infrared radiation to generate a thermal gradient in the top several inches of non-liquid material contained within the treatment chamber and use of a carrier gas to transport the desorbed contaminants from the treatment chamber to a pollution control system. The overall effect of these parameters is a batch treatment system capable of desorbing target contaminants from soil under anaerobic conditions and low temperature such that the desorbed contaminants do not degrade and generate thermal or oxidative by-products. Essentially, the desorbed contaminants undergo a reversible phase change from liquid to vapor in the treatment chamber and are condensed back to liquid in the pollution control system. Results of bench top testing are compared to full scale remediations of significant volumes of soil to demonstrate remediation of mercury impacted soil. This technology is also applicable for soils impacted with other higher boiling point organics, such as, PCP, PCBs, PAHs, PNAs, pesticides and herbicides.

Dagdigian, J.V. [McLaren/Hart, Irvine, CA (United States)

1997-12-31T23:59:59.000Z

180

Developing a High Thermal Conductivity Fuel with Silicon Carbide Additives  

SciTech Connect

The objective of this research is to increase the thermal conductivity of uranium oxide (UO{sub 2}) without significantly impacting its neutronic properties. The concept is to incorporate another high thermal conductivity material, silicon carbide (SiC), in the form of whiskers or from nanoparticles of SiC and a SiC polymeric precursor into UO{sub 2}. This is expected to form a percolation pathway lattice for conductive heat transfer out of the fuel pellet. The thermal conductivity of SiC would control the overall fuel pellet thermal conductivity. The challenge is to show the effectiveness of a low temperature sintering process, because of a UO{sub 2}-SiC reaction at 1,377C, a temperature far below the normal sintering temperature. Researchers will study three strategies to overcome the processing difficulties associated with pore clogging and the chemical reaction of SiC and UO{sub 2} at temperatures above 1,300C:

Ronald baney; James Tulenko

2012-11-20T23:59:59.000Z

Note: This page contains sample records for the topic "developing high impact" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Impact of High Wind Power Penetrations on Hydroelectric Unit Operations in the WWSIS  

NLE Websites -- All DOE Office Websites (Extended Search)

High Wind Power High Wind Power Penetrations on Hydroelectric Unit Operations in the WWSIS Bri-Mathias Hodge, Debra Lew, and Michael Milligan Technical Report NREL/TP-5500-52251 July 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 The Impact of High Wind Power Penetrations on Hydroelectric Unit Operations in the WWSIS Bri-Mathias Hodge, Debra Lew, and Michael Milligan Prepared under Task No. WE110810 Technical Report NREL/TP-5500-52251 July 2011 NOTICE

182

Development of CSS-42L{trademark}, a high performance carburizing stainless steel for high temperature aerospace applications  

SciTech Connect

Today`s aerospace engineering challenges demand materials which can operate under conditions of temperature extremes, high loads and harsh, corrosive environments. This paper presents a technical overview of the on-going development of CSS-42L (US Patent No. 5,424,028). This alloy is a case-carburizable, stainless steel alloy suitable for use in applications up to 427 C, particularly suited to high performance rolling element bearings, gears, shafts and fasteners. The nominal chemistry of CSS-42L includes: (by weight) 0.12% carbon, 14.0% chromium, 0.60% vanadium, 2.0% nickel, 4.75% molybdenum and 12.5% cobalt. Careful balancing of these components combined with VIM-VAR melting produces an alloy that can be carburized and heat treated to achieve a high surface hardness (>58 HRC at 1mm (0.040 in) depth) with excellent corrosion resistance. The hot hardness of the carburized case is equal to or better than all competitive grades, exceeding 60 HRC at 427 C. The fracture toughness and impact resistance of the heat treated core material have likewise been evaluated in detail and found to be better than M50-NiL steel. The corrosion resistance has been shown to be equivalent to that of 440C steel in tests performed to date.

Burrier, H.I.; Milam, L. [Timken Co., Canton, OH (United States); Tomasello, C.M.; Balliett, S.A.; Maloney, J.L. [Latrobe Steel Co., Latrobe, PA (United States); Ogden, W.P. [MPB Corp., Lebanon, NH (United States)

1998-12-31T23:59:59.000Z

183

Design and development of a high-concentration photovoltaic concentrator  

SciTech Connect

The design and development of a high concentration photovoltaic concentrator module is discussed. The design concept described herein incorporates a curved groove domed Fresnel lens, a high concentration etched multiple vertical junction (EMVJ) solar cell and a passively cooled direct-bonded copper cell mount all packaged in a plastic module. Two seven inch diameter 1200x domed Fresnel lenses were fabricated using single point diamond turning technology. Testing at both GE and Sandia confirmed optical transmission efficiencies of over 83%. Samples of the latest available EMVJ cells were mounted and installed, with a domed Fresnel lens, into a prototype module. Subsequent testing demonstrated net lens-cell efficiencies of 10 to 13%. As a result of this program, salient conclusions have been formulated as to this technology.

Hodge, R C

1982-04-01T23:59:59.000Z

184

Quench development in a high temperature superconducting tape  

SciTech Connect

Normal zone propagation experiments have been performed on a long length of Bi-2223/Ag high temperature superconducting (HTS) tape. Tests were conducted with liquid nitrogen and gaseous helium cooling in temperatures from 5 to 77 K. No sustained expansion of a {open_quotes}normal{close_quotes} zone was observed with a short resistive heater. Non-uniform critical currents were, however, observed over the length of the conductor. When the conductor was charged and held at a current above the critical currents of weaker sections, a quench was being developed without distinctive {open_quotes}normal{close_quotes} zone propagation. Because of the high temperature margin and broad resistive transition of the superconductor, and the good thermal conductivity of the Ag-matrix, the quench process was very slow. and no large temperature gradient along the conductor was observed.

Lue, J.W.; Lubell, M.S. [Oak Ridge National Lab., TN (United States); Aized, D.; Campbell, J.M.; Schwall, R.E. [American Superconductor Corporation, Westborough, MA (United States)

1996-12-31T23:59:59.000Z

185

Quench development in a high temperature superconducting tape  

SciTech Connect

Normal zone propagation experiments have been per-formed on a long length of Bi2223/Ag high temperature superconducting (HTS) tape. Tests were performed in liquid nitrogen and with gaseous helium cooling in temperatures ranging from 4.2 K to 77 K. No sustained expansion of a ``normal`` zone was observed with a short resistive heater. Non-uniform critical currents were, however, observed over the length of the conductor. When the conductor was charged and held at a current above the critical currents of weaker sections, a quench was being developed without distinctive ``normal`` zone propagation. Because of the high temperature margin and broad resistive transition of the superconductor, and the good thermal conductivity of the Ag-matrix, the quench process was very slow, and no large temperature gradient along the conductor was observed in the test duration of a few minutes.

Lue, J.W.; Lubell, M.S. [Argonne National Lab., IL (United States); Aized, D.; Campbell, J.M.; Schwall, R.E. [American Superconductor Corp., Westborough, MA (United States)

1995-12-01T23:59:59.000Z

186

The Political Economy of Private Management of High Impact Low Probability Risks in Finance and the Environment  

Science Journals Connector (OSTI)

An increasing number of sustainability problems involve the risks of transnational High Impact Low Probability (HILP) events. The Centre for Risk Studies at the University of Cambridge has ... financial shock, tr...

Tony Porter

2014-01-01T23:59:59.000Z

187

A Phenomenological Study of High-Impact Practices: Exploring Learning Through Coupling Internships and Service-Learning  

E-Print Network (OSTI)

This study describes the experiences of college-age students (1824 years) engaged in multiple high-impact practices simultaneously in an internship experience in Washington, DC, and in a service-learning experience. They reflected weekly...

Shehane, Melissa Renee'

2014-04-16T23:59:59.000Z

188

INTERNATIONAL STUDY OF ALUMINUM IMPACTS ON CRYSTALLIZATION IN U.S. HIGH LEVEL WASTE GLASS  

SciTech Connect

The objective of this task was to develop glass formulations for (Department of Energy) DOE waste streams with high aluminum concentrations to avoid nepheline formation while maintaining or meeting waste loading and/or waste throughput expectations as well as satisfying critical process and product performance related constraints. Liquidus temperatures and crystallization behavior were carefully characterized to support model development for higher waste loading glasses. The experimental work, characterization, and data interpretation necessary to meet these objectives were performed among three partnering laboratories: the V.G. Khlopin Radium Institute (KRI), Pacific Northwest National Laboratory (PNNL) and Savannah River National Laboratory (SRNL). Projected glass compositional regions that bound anticipated Defense Waste Processing Facility (DWPF) and Hanford high level waste (HLW) glass regions of interest were developed and used to generate glass compositions of interest for meeting the objectives of this study. A thorough statistical analysis was employed to allow for a wide range of waste glass compositions to be examined while minimizing the number of glasses that had to be fabricated and characterized in the laboratory. The glass compositions were divided into two sets, with 45 in the test matrix investigated by the U.S. laboratories and 30 in the test matrix investigated by KRI. Fabrication and characterization of the US and KRI-series glasses were generally handled separately. This report focuses mainly on the US-series glasses. Glasses were fabricated and characterized by SRNL and PNNL. Crystalline phases were identified by X-ray diffraction (XRD) in the quenched and canister centerline cooled (CCC) glasses and were generally iron oxides and spinels, which are not expected to impact durability of the glass. Nepheline was detected in five of the glasses after the CCC heat treatment. Chemical composition measurements for each of the glasses were conducted following an analytical plan. A review of the individual oxides for each glass revealed that there were no errors in batching significant enough to impact the outcome of the study. A comparison of the measured compositions of the replicates indicated an acceptable degree of repeatability as the percent differences for most of the oxides were less than 5% and percent differences for all of the oxides were less than 10 wt%. Chemical durability was measured using the Product Consistency Test (PCT). All but two of the study glasses had normalized leachate for boron (NL [B]) values that were well below that of the Environmental Assessment (EA) reference glass. The two highest NL [B] values were for the CCC versions of glasses US-18 and US-27 (10.498 g/L and 15.962 g/L, respectively). Nepheline crystallization was identified by qualitative XRD in five of the US-series glasses. Each of these five glasses (US-18, US-26, US-27, US-37 and US-43) showed a significant increase in NL [B] values after the CCC heat treatment. This reduction in durability can be attributed to the formation of nepheline during the slow cooling cycle and the removal of glass formers from the residual glass network. The liquidus temperature (T{sub L}) of each glass in the study was determined by both optical microscopy and XRD methods. The correlation coefficient of the measured XRD TL data versus the measured optical TL data was very good (R{sup 2} = 0.9469). Aside from a few outliers, the two datasets aligned very well across the entire temperature range (829 C to 1312 C for optical data and 813 C to 1310 C for XRD crystal fraction data). The data also correlated well with the predictions of a PNNL T{sub L} model. The correlation between the measured and calculated data had a higher degree of merit for the XRD crystal fraction data than for the optical data (higher R{sup 2} value of 0.9089 versus 0.8970 for the optical data). The SEM-EDS analysis of select samples revealed the presence of undissolved RuO{sub 2} in all glasses due to the low solubility of RuO{sub 2} in borosilicate glass. These

Fox, K; David Peeler, D; Tommy Edwards, T; David Best, D; Irene Reamer, I; Phyllis Workman, P; James Marra, J

2008-09-23T23:59:59.000Z

189

Ex Post Analysis of Economic Impacts from Wind Power Development in U.S. Counties  

NLE Websites -- All DOE Office Websites (Extended Search)

LBNL# 5793E LBNL# 5793E Ex Post Analysis of Economic Impacts from Wind Power Development in U.S. Counties Jason P. Brown 1 USDA, Economic Research Service 355 E St. SW, Washington, D.C. 20024 jbrown@ers.usda.gov John Pender USDA, Economic Research Service 355 E St. SW, Washington, D.C. 20024 jpender@ers.usda.gov Ryan Wiser Lawrence Berkeley National Laboratory 1 Cyclotron Road, Berkeley, CA 94720 RHWiser@lbl.gov Eric Lantz National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, CO 80401 eric.lantz@nrel.gov Ben Hoen Lawrence Berkeley National Laboratory 20 Sawmill Road, Milan, NY 1257 BHoen@lbl.gov Pre-print of article submitted for publication to Energy Economics. Download from: http://www.sciencedirect.com/science/article/pii/S0140988312001466

190

Bioenergy for Sustainable Development  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Sustainable Bioenergy High-Impact Opportunity Sustainable Energy For All BIOENERGY FOR SUSTAINABLE DEVELOPMENT Overview * Energy poverty is widespread and prevents economic...

191

High power KrF laser development at Los Alamos  

SciTech Connect

The objective of the high power laser development program at Los Alamos is to appraise the potential of the KrF laser as a driver for inertial confinement fusion (ICF), ultimately at energy levels that will produce high target gain (gain of order 100). A KrF laser system prototype, the 10-kJ Aurora laser, which is nearing initial system operation, will serve as a feasibility demonstration of KrF technology and system design concepts appropriate to large scale ICF driver systems. The issues of affordable cost, which is a major concern for all ICF drivers now under development, and technology scaling are also being examined. It is found that, through technology advances and component cost reductions, the potential exists for a KrF driver to achieve a cost goal in the neighborhood of $100 per joule. The authors suggest that the next step toward a multimegajoule laboratory microfusion facility (LMF) is an ''Intermediate Driver'' facility in the few hundred kilojoule to one megajoule range, which will help verify the scaling of driver technology and cost to an LMF size. An Intermediate Driver facility would also increase the confidence in the estimates of energy needed for an LMF and would reduce the risk in target performance. 5 refs., 4 figs., 1 tab.

McDonald, T.; Cartwright, D.; Fenstermacher, C.; Figueira, J.; Goldstone, P.; Harris, D.; Mead, W.; Rosocha, L.

1988-01-01T23:59:59.000Z

192

The development of a methodology to quantify the impacts of information management strategies on EPC projects  

E-Print Network (OSTI)

conservative changes showed impacts to the same parameters at approximately 3% and 1%. The research also provided an indication of the relative impact various level of information management may have on project elapsed time. Finally, the research illustrated...

Moreau, Karen Anne

1997-01-01T23:59:59.000Z

193

High-pressure coal fuel processor development. Final report  

SciTech Connect

Caterpillar shares DOE/METC interest in demonstrating the technology required to displace petroleum-based engine fuels with various forms of low cost coal. Current DOE/METC programs on mild gasification and coal-water-slurries are addressing two approaches to this end. Engine and fuel processor system concept studies by Caterpillar have identified a third, potentially promising, option. This option includes high-pressure fuel processing of run-of-the-mine coal and direct injection of the resulting low-Btu gas stream into an ignition assisted, high compression ratio diesel engine. The compactness and predicted efficiency of the system make it suitable for application to line-haul railroad locomotives. Two overall conclusions resulted from Task 1. First direct injected, ignition assisted Diesel cycle engine combustion systems can be suitably modified to efficiently utilize low-Btu gas fuels. Second, high pressure gasification of selected run-of-the-mine coals in batch-loaded fuel processors is feasible. These two findings, taken together, significantly reduce the perceived technical risk associated with the further development of the proposed coal gas fueled Diesel cycle power plant concept. The significant conclusions from Task 2 were: An engine concept, derived from a Caterpillar 3600 series engine, and a fuel processor concept, based on scaling up a removable-canister configuration from the test rig, appear feasible; and although the results of this concept study are encouraging, further, full-scale component research and development are required before attempting a full-scale integrated system demonstration effort.

Greenhalgh, M.L. [Caterpillar, Inc., Peoria, IL (United States)

1992-12-01T23:59:59.000Z

194

Life of Sugar: Developing Lifecycle Methods to Evaluate the Energy and Environmental Impacts of Sugarcane Biofuels  

E-Print Network (OSTI)

2003). The energy balance of corn ethanol revisited. . . . -Energy and Greenhouse Gas Emission Impacts of Different Corn

Gopal, Anand Raja

2011-01-01T23:59:59.000Z

195

High-pressure xenon detector development at Constellation Technology Corporation  

Science Journals Connector (OSTI)

Xenon-filled ionization detectors, due to their high atomic number fill gas (Z=54), moderate densities (?0.30.5g/cm3) and good energy resolution (24% at 662keV), fill an important niche between more familiar technologies such as NaI(Tl) scintillators and germanium detectors. Until recently, difficulties with obtaining sufficient xenon purity, reducing microphonic sensitivity, and developing low-noise electronics compatible with small ionization signals have hampered the development of this nuclear detection field. Constellation Technology Corporation, whose experience with xenon detectors goes back to the mid 1990s, has made significant progress in these areas and has developed a commercial line of detectors with active volumes ranging from small (35g Xe) to large (1400g Xe). Current applications for Constellation's detectors are principally in the area of defense (Unmanned Aerial Vehicles and Advanced Spectroscopic Portals), but as awareness of this technology grows, it will surely find applications in a much expanded range of fields.

Robert A. Austin

2007-01-01T23:59:59.000Z

196

Regional Variation in Water-Related Impacts of Shale Gas Development and Implications for Emerging International Plays  

Science Journals Connector (OSTI)

The manuscript also explores opportunities for emerging international shale plays to leverage the diverse experiences of U.S. states in formulating development strategies that minimize water-related impacts within their environmental, cultural, and political ecosystem. ... Despite this enhanced regulatory framework, there is public concern over lackluster enforcement in a country that is in need of new investment and energy resource development. ... Risks and Risk Governance in Unconventional Shale Gas Development ...

Meagan S. Mauter; Pedro J. J. Alvarez; Allen Burton; Diego C. Cafaro; Wei Chen; Kelvin B. Gregory; Guibin Jiang; Qilin Li; Jamie Pittock; Danny Reible; Jerald L. Schnoor

2014-03-31T23:59:59.000Z

197

Development of High Efficacy, Low Cost Phosphorescent Oled Lightning Luminaire  

SciTech Connect

In this two year program, UDC together with Armstrong World Industries, Professor Stephen Forrest (University of Michigan) and Professor Mark Thompson (University of Southern California) planned to develop and deliver high efficiency OLED lighting luminaires as part of an integrated ceiling illumination system that exceed the Department of Energy (DOE) 2010 performance projections. Specifically the UDC team in 2010 delivered two prototype OLED ceiling illumination systems, each consisting of four individual OLED lighting panels on glass integrated into Armstrong's novel TechZone open architecture ceiling systems, at an overall system efficacy of 51 lm/W, a CRI = 85 and a projected lifetime to 70% of initial luminance to exceed 10,000 hours. This accomplishment represents a 50% increase in luminaire efficacy and a factor of two in lifetime over that outlined in the solicitation. In addition, the team has also delivered one 15cm x 15cm lighting panel fabricated on a flexible metal foil substrate, demonstrating the possibility using OLEDs in a range of form factors. During this program, our Team has pursued the commercialization of these OLED based ceiling luminaires, with a goal to launch commercial products within the next three years. We have proven that our team is ideally suited to develop these highly novel and efficient solid state lighting luminaires, having both the technical experience and commercial strategy to leverage work performed under this contract. Our calculations show that the success of our program could lead to energy savings of more than 0.5 quads or 8 MMTC (million metric tons of carbon) per year by 2016.

Michael Hack

2010-07-09T23:59:59.000Z

198

Development of high temperature superconductors for magnetic field applications  

SciTech Connect

The key requirement for magnetic field applications of high temperature superconductor (HTS) materials is to have conductors with high transport critical current density available for magnet builders. After 3 or 4 years of being without any such object, conductor makers have had recent success in producing simple conductor prototypes. These have permitted the construction of simple HTS magnets having self fields exceeding 1 tesla at 4K. Thus the scientific feasibility of making powerful HTS magnets has been demonstrated. Attention to the technological aspects of making HTS conductors for magnets with strong flux pinning and reduced superconducting granularity is now sensible and attractive. However, extrinsic defects such as filament sausaging, cracking, misaligned grains and other perturbation to long range current flow must be controlled at a low level if the benefit of intrinsic improvements to the critical current density is to be maintained in the conductor form. Due to the great complexity of the HTS materials, there is sometimes confusion as to whether a given sample has an intrinsically or extrinsically limited critical current density. Systematic microstructure variation experiments and resistive transition analysis are shown to be particularly helpful in this phase of conductor development.

Larbalestier, D.C.

1991-01-01T23:59:59.000Z

199

Development of high temperature superconductors for magnetic field applications  

SciTech Connect

The key requirement for magnetic field applications of high temperature superconductor (HTS) materials is to have conductors with high transport critical current density available for magnet builders. After 3 or 4 years of being without any such object, conductor makers have had recent success in producing simple conductor prototypes. These have permitted the construction of simple HTS magnets having self fields exceeding 1 tesla at 4K. Thus the scientific feasibility of making powerful HTS magnets has been demonstrated. Attention to the technological aspects of making HTS conductors for magnets with strong flux pinning and reduced superconducting granularity is now sensible and attractive. However, extrinsic defects such as filament sausaging, cracking, misaligned grains and other perturbation to long range current flow must be controlled at a low level if the benefit of intrinsic improvements to the critical current density is to be maintained in the conductor form. Due to the great complexity of the HTS materials, there is sometimes confusion as to whether a given sample has an intrinsically or extrinsically limited critical current density. Systematic microstructure variation experiments and resistive transition analysis are shown to be particularly helpful in this phase of conductor development.

Larbalestier, D.C.

1991-12-31T23:59:59.000Z

200

Research and Development of High-Power and High-Energy Electrochemical Storage Devices  

SciTech Connect

The accomplishments and technology progressmade during the U.S. Department of Energy (DOE) Cooperative Agreement No. DE-FC26- 05NT42403 (duration: July 11, 2005 through April 30, 2014, funded for $125 million in cost- shared research) are summarized in this Final Technical Report for a total of thirty-seven (37) collaborative programs organized by the United States Advanced Battery Consortium, LLC (USABC). The USABC is a partnership, formed in 1991, between the three U.S. domestic automakers Chrysler, Ford, and General Motors, to sponsor development of advanced high-performance batteries for electric and hybrid electric vehicle applications. The USABC provides a unique opportunity for developers to leverage their resources in combination with those of the automotive industry and the Federal government. This type of pre-competitive cooperation minimizes duplication of effort and risk of failure, and maximizes the benefits to the public of the government funds. A major goal of this program is to promote advanced battery development that can lead to commercialization within the domestic, and as appropriate, the foreign battery industry. A further goal of this program is to maintain a consortium that engages the battery manufacturers with the automobile manufacturers and other key stakeholders, universities, the National Laboratories, and manufacturers and developers that supply critical materials and components to the battery industry. Typically, the USABC defines and establishes consensus goals, conducts pre-competitive, vehicle-related research and development (R&D) in advanced battery technology. The R&D carried out by the USABC is an integral part of the DOEs effort to develop advanced transportation technologies that will significantly improve fuel economy, comply with projected emissions and safety regulations, and use domestically produced fuels. The USABC advanced battery development plan has the following three focus areas: 1. Existing technology validation, implementation, and cost reduction. 2. Identification of the next viable technology with emphasis on the potential to meet USABC cost and operating temperature range goals. 3. Support high-risk, high-reward battery technology R&D. Specific to the Cooperative Agreement DE- FC26-05NT42403, addressing High-Energy and High Power Energy Storage Technologies, the USABC focus was on understanding and addressing the following factors (listed in priority of effort): Cost: Reducing the current cost of lithium- ion batteries (currently about 2-3 times the FreedomCAR target ($20/kW). Low Temperature Performance: Improving the discharge power and removing lithium plating during regenerative braking. Calendar Life: Achieving 15-year life and getting accurate life prediction. Abuse Tolerance: Developing a system level tolerance to overcharge, crush, and high temperature exposure. This Final Technical Report compilation is submitted in fulfillment of the subject Cooperative Agreement, and is intended to serve as a ready-reference for the outcomes of following eight categories of projects conducted by the USABC under award from the DOEs Energy Efficiency and Renewable Energy ) Vehicle Technologies Program: USABC DoE Final Report DoE Cooperative Agreement DE-FC26-95EE50425 8 Protected Information 1. Electric Vehicle (EV) (Section A of this report) 2. Hybrid Electric Vehicle (HEV) (Section B 3. Plug-In Hybrid Electric Vehicle (PHEV) (Section C) 4. Low-Energy Energy Storage Systems (LEESS) (Section D) 5. Technology Assessment Program (TAP) (Section E) 6. Ultracapacitors (Section F) 7. 12 Volt Start-Stop (Section G) 8. Separators (Section H) The report summarizes the main areas of activity undertaken in collaboration with the supplier community and the National Laboratories. Copies of the individual supplier final reports are available upon request. Using project gap analysis versus defined USABC goals in each area, the report documents known technology limits and provides direction on future areas of technology and performance needs for vehicle applicatio

No, author

2014-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "developing high impact" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Upcoming Funding Opportunity to Develop and Field Test Wind Energy Bat Impact Minimization Technologies  

Energy.gov (U.S. Department of Energy (DOE))

EERE's Wind Program announced a Notice of Intent to issue a funding opportunity entitled "Wind Energy Bat Impact Minimization Technologies and Field Testing Opportunities."

202

Environmental Impacts of Wind Power Development on the Population Biology of Greater Prairie-Chickens  

SciTech Connect

Executive Summary 1. We investigated the impacts of wind power development on the demography, movements, and population genetics of Greater Prairie-Chickens (Tympanuchus cupido) at three sites in northcentral and eastern Kansas for a 7-year period. Only 1 of 3 sites was developed for wind power, the 201MW Meridan Way Wind Power Facility at the Smoky Hills site in northcentral Kansas. Our project report is based on population data for prairie chickens collected during a 2-year preconstruction period (2007-2008), a 3-year postconstruction period (2009-2011) and one final year of lek surveys (2012). Where relevant, we present preconstruction data from our field studies at reference sites in the northern Flint Hills (2007-2009) and southern Flint Hills (2006-2008). 2. We addressed seven potential impacts of wind power development on prairie chickens: lek attendance, mating behavior, use of breeding habitat, fecundity rates, natal dispersal, survival rates, and population numbers. Our analyses of pre- and postconstruction impacts are based on an analysis of covariance design where we modeled population performance as a function of treatment period, distance to eventual or actual site of the nearest wind turbine, and the interaction of these factors. Our demographic and movement data from the 6-year study period at the Smoky Hills site included 23 lek sites, 251 radio-marked females monitored for 287 bird-years, and 264 nesting attempts. Our genetic data were based on genotypes of 1,760 females, males and chicks that were screened with a set of 27 microsatellite markers that were optimized in the lab. 3. In our analyses of lek attendance, the annual probability of lek persistence during the preconstruction period was ~0.9. During the postconstruction period, distance to nearest turbine did not have a significant effect on the probability of lek persistence. However, the probability of lek persistence increased from 0.69 at 0 m to 0.89 at 30 km from turbines, and most abandoned lek sites were located <5 km from turbines. Probability of lek persistence was significantly related to habitat and number of males. Leks had a higher probability of persistence in grasslands than agricultural fields, and increased from ~0.2 for leks of 5 males, to >0.9 for leks of 10 or more males. Large leks in grasslands should be a higher priority for conservation. Overall, wind power development had a weak effect on the annual probability of lek persistence. 3. We used molecular methods to investigate the mating behavior of prairie chickens. The prevailing view for lek-mating grouse is that females mate once to fertilize the clutch and that conspecific nest parasitism is rare. We found evidence that females mate multiple times to fertilize the clutch (8-18% of broods, 4-38% of chicks) and will parasitize nests of other females during egg-laying (~17% of nests). Variable rates of parentage were highest in the fragmented landscapes at the Smoky Hills field site, and were lower at the Flint Hills field site. Comparisons of the pre- and postconstruction periods showed that wind energy development did not affect the mating behaviors of prairie chickens. 4. We examined use of breeding habitats by radio-marked females and conducted separate analyses for nest site selection, and movements of females not attending nests or broods. The landscape was a mix of native prairie and agricultural habitats, and nest site selection was not random because females preferred to nest in grasslands. Nests tended to be closer to turbines during the postconstruction period and there was no evidence of behavioral avoidance of turbines by females during nest site selection. Movements of females not attending nests or broods showed that females crossed the site of the wind power development at higher rates during the preconstruction period (20%) than the postconstruction period (11%), and that movements away from turbines were more frequent during the postconstruction period. Thus, wind power development appears to affect movements in breeding habitats but not nest site s

Sandercock, Brett K. [Kansas State University

2013-05-22T23:59:59.000Z

203

Data growth and its impact on the SCOP database: new developments  

SciTech Connect

The Structural Classification of Proteins (SCOP) database is a comprehensive ordering of all proteins of known structure, according to their evolutionary and structural relationships. The SCOP hierarchy comprises the following levels: Species, Protein, Family, Superfamily, Fold and Class. While keeping the original classification scheme intact, we have changed the production of SCOP in order to cope with a rapid growth of new structural data and to facilitate the discovery of new protein relationships. We describe ongoing developments and new features implemented in SCOP. A new update protocol supports batch classification of new protein structuresby their detected relationships at Family and Superfamily levels in contrast to our previous sequential handling of new structural data by release date. We introduce pre-SCOP, a preview of the SCOP developmental version that enables earlier access to the information on new relationships. We also discuss the impact of worldwide Structural Genomics initiatives, which are producing new protein structures at an increasing rate, on the rates of discovery and growth of protein families and superfamilies. SCOP can be accessed at http://scop.mrc-lmb.cam.ac.uk/scop.

Chandonia, John-Marc; Andreeva, Antonina; Howorth, Dave; Chandonia, John-Marc; Brenner, Steven E.; Hubbard, Tim J.P.; Chothia, Cyrus; Murzin, Alexey G.

2007-11-13T23:59:59.000Z

204

Economic Development Impacts of Community Wind Projects: A Review and Empirical Evaluation; Preprint  

SciTech Connect

'Community wind' refers to a class of wind energy ownership structures. The extent of local ownership may range from a small minority share to full ownership by persons in the immediate area surrounding the wind project site. Potential project owners include local farmers, businesses, Native American tribes, universities, cooperatives, or any other local entity seeking to invest in wind energy. The opposite of community wind is an 'absentee' project, in which ownership is completely removed from the state and community surrounding the facility. Thus, there is little or no ongoing direct financial benefit to state and local populations aside from salaries for local repair technicians, local property tax payments, and land lease payments. In recent years, the community wind sector has been inhibited by manufacturers' preference for larger turbine orders. This often puts smaller community wind developers and projects at a competitive disadvantage. However, state policies specifically supporting community wind may become a more influential market factor as turbines are now more readily available given manufacturer ramp-ups and the slow-down in the industry that has accompanied the recent economic and financial crises. This report examines existing literature to provide an overview of economic impacts resulting from community wind projects, compares results, and explains variability.

Lantz, E.; Tegen, S.

2009-04-01T23:59:59.000Z

205

Experimental hydrodynamics of spherical projectiles impacting on a free surface using high speed imaging techniques  

E-Print Network (OSTI)

This thesis looks at the hydrodynamics of spherical projectiles impacting the free surface using a unique experimental WebLab facility. Experiments were performed to determine the force impact coefficients of spheres and ...

Laverty, Stephen Michael

2005-01-01T23:59:59.000Z

206

Development of Low-Cost, High Strength Commercial Textile Precursor...  

Energy Savers (EERE)

High cost of carbon fiber CF largest cost component of high pressure storage tanks. Inadequate supply base for low cost carbon fibers Timeline Barriers * ORNL:...

207

Project Profile: High-Temperature Solar Selective Coating Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

water droplets falling on a flat, dust-covered surface. The research team is exploring materials with high melting temperatures, intrinsic oxidation resistance, high thermal...

208

High Temperature Polymer Membrane Development at Argonne National Laboratory  

Energy.gov (U.S. Department of Energy (DOE))

Summary of ANLs high temperature polymer membrane work presented to the High Temperature Membrane Working Group Meeting, Orlando FL, October 17, 2003

209

Development of manufacturing capability for high-concentration, high-efficiency silicon solar cells  

SciTech Connect

This report presents a summary of the major results from a program to develop a manufacturable, high-efficiency silicon concentrator solar cell and a cost-effective manufacturing facility. The program was jointly funded by the Electric Power Research Institute, Sandia National Laboratories through the Concentrator Initiative, and SunPower Corporation. The key achievements of the program include the demonstration of 26%-efficient silicon concentrator solar cells with design-point (20 W/cm{sup 2}) efficiencies over 25%. High-performance front-surface passivations; that were developed to achieve this result were verified to be absolutely stable against degradation by 475 days of field exposure at twice the design concentration. SunPower demonstrated pilot production of more than 1500 of these cells. This cell technology was also applied to pilot production to supply 7000 17.7-cm{sup 2} one-sun cells (3500 yielded wafers) that demonstrated exceptional quality control. The average efficiency of 21.3% for these cells approaches the peak efficiency ever demonstrated for a single small laboratory cell within 2% (absolute). Extensive cost models were developed through this program and calibrated by the pilot-production project. The production levels achieved indicate that SunPower could produce 7-10 MW of concentrator cells per year in the current facility based upon the cell performance demonstrated during the program.

Sinton, R.A.; Verlinden, P.J.; Crane, R.A.; Swanson, R.N. [SunPower Corp., Sunnyvale, CA (United States)

1996-10-01T23:59:59.000Z

210

TOWARDS THE DEVELOPMENT OF A SIMULATOR FOR INVESTIGATING THE IMPACT OF PEOPLE MANAGEMENT PRACTICES ON RETAIL PERFORMANCE  

E-Print Network (OSTI)

PRACTICES ON RETAIL PERFORMANCE Peer-Olaf Siebers1 , Uwe Aickelin1 , Helen Celia2 , Chris W. Clegg2 1 for understanding the impact of management practices on retail performance are developed under the assumption of stability, equilibrium and linearity, whereas retail operations are considered in reality to be dynamic, non

Aickelin, Uwe

211

Testimony on Impacts of Proposed LPG Tank Development in Searsport, Maine on Property Values and Tourism-based Economic Activity  

E-Print Network (OSTI)

Testimony on Impacts of Proposed LPG Tank Development in Searsport, Maine on Property Values and Tourism-based Economic Activity Prepared for Thanks But No Tank (TBNT) for Presentation to the Searsport At the request of Counsel for Thanks But No Tanks (TBNT) and the Islesboro Island Trust (IIT), I have reviewed

Thomas, Andrew

212

Mathematics and Mathematics Education Development in Finland: the impact of curriculum changes on IEA, IMO and PISA results  

E-Print Network (OSTI)

390 Mathematics and Mathematics Education Development in Finland: the impact of curriculum changes on IEA, IMO and PISA results George Malaty, University of Joensuu, Finland, george.malaty@joensuu.fi Abstract Mathematics has got roots in Finland in the last quarter of the 19th century and came to flourish

Spagnolo, Filippo

213

Japanese and American competition in the development of scroll compressors and its impact on the American air conditioning industry  

SciTech Connect

This report examines the technological development of scroll compressors and its impact on the air conditioning equipment industry. Scroll compressors, although considered to be the compressors of the future for energy-efficient residential heat pumps and possibly for many other applications, are difficult to manufacture on a volume-production base. The manufacturing process requires computer-aided, numerically controlled tools for high-precision fabrication of major parts. Japan implemented a global strategy for dominating the technological world market in the 1970s, and scroll compressor technology benefited from the advent of new-generation machine tools. As a result, if American manufacturers of scroll compressors purchase or are essentially forced to purchase numerically controlled tools from Japan in the future, they will then become dependent on their own competitors because the same Japanese conglomerates that make numerically controlled tools also make scroll compressors. This study illustrates the importance of the basic machine tool industry to the health of the US economy. Without a strong machine tool industry, it is difficult for American manufacturers to put innovations, whether patented or not, into production. As we experience transformation in the air conditioning and refrigeration market, it will be critical to establish a consistent national policy to provide healthy competition among producers, to promote innovation within the industry, to enhance assimilation of new technology, and to eliminate practices that are incompatible with these goals. 72 refs., 8 figs., 1 tab.

Ushimaru, Kenji (Energy International, Inc., Bellevue, WA (USA))

1990-02-01T23:59:59.000Z

214

DEVELOPMENT OF A HIGH PERFORMANCE COLD CLIMATE HEAT PUMP  

SciTech Connect

The primary goals of the proposed project were to develop, test, and evaluate a high performance and cost-effective vapor compression air-source heat pump for use in cold climate regions. Vapor compression heat pumps are a proven technology, and have been used for many years to meet heating requirements for buildings in residential, commercial, and industrial applications. However, in climate regions that experience very low outdoor ambient temperatures both the heating capacity and coefficient of performance (COP) of traditional air-source vapor compression heat pumps drops dramatically with a decrease in the outdoor air temperature. The efficiency of heat pumping equipment has improved substantially over the past 20 years; however, the efficiencies of the highest rated equipment on the market are approaching practical limits that cannot be surpassed without modifications to the basic cycle and possibly the use of additional hardware. In this report, three technologies to improve the efficiency of vapor compression systems are described. These are a) vapor injected compression, b) oil flooded compression and c) hybrid flow control of the evaporator. Compressor prototypes for both, oil flooded and vapor injected compression were developed by Emerson Climate Technologies. For the oil flooded compressor, the oil injection port location was optimized and an internal oil separator was added using several design iterations. After initial testing at Emerson Climate Technologies, further testing was done at Purdue University, and compressor models were developed. These models were then integrated into a system model to determine the achievable improvement of seasonal energy efficiency (SEER) for Minneapolis (Minnesota) climate. For the oil flooded compression, a 34% improvement in seasonal energy efficiency was found while a 21% improvement in seasonal energy efficiency ratio was found for the vapor injected compression. It was found that one benefit of both tested compression technologies is a lower discharge temperature, which allows for continued operation at lower ambient temperatures. A bin analysis of the vapor injected prototype cold climate heat pump predicts a 6% improvement in HSPF for Minneapolis. This improvement is mainly a result of the increased capacity of the system for active vapor injection. For the oil flooded system, a slightly larger performance improvement is predicted, in this case mostly caused by an increase in heating COP. Based on an economic analysis of these results, the maximum additional cost of the system changes, for the Minneapolis location, are $430 for the vapor injected system and $391 for the oil flooded system. These estimates assume that a 3-year simple payback period is accepted by the customer. For the hybrid flow control of evaporators, a new type of balancing valve was developed together with Emerson Climate technologies to reduce the cost of the control scheme. In contrast to conventional stepper motor valves, this valve requires less cables and can be driven by a cheaper output circuit on the control board. The correct valve size was determined in a dedicated test stand in several design iterations. The performance benefits of the hybrid control of the evaporator coil were determined for clean coil conditions as well as with partial blockage of the air inlet grille and under frosting conditions. For clean coil conditions, the benefits in terms of COP and capacity are negligible. However, significant benefits were noted for severely air-maldistributed operating conditions. For the H2-test, the maximum COP improvement of 17% along with a capacity improvement of nearly 40% was observed. Overall, the hybrid control scheme leads to a significant amount of performance improvement, if the air inlet conditions to the evaporator are maldistributed.

Horton, W. Travis [Purdue University] [Purdue University; Groll, Eckhard A. [Purdue University] [Purdue University; Braun, James E. [Purdue University] [Purdue University

2014-06-01T23:59:59.000Z

215

Thermal Properties of Starch From New Corn Lines as Impacted by Environment and During Line Development  

SciTech Connect

The objectives of this research were to further characterize exotic by adapted corn inbreds by studying the impact of environment on their starch thermal properties, and investigating the development of starch thermal properties during kernel maturation by using differential scanning calorimetry (DSC). A method to expedite identification of unusual starch thermal traits was investigated by examining five corn kernels at a time, instead of one kernel, which the previous screening methods used. Corn lines with known thermal functions were blended with background starch (control) in ratios of unique starch to control starch, and analyzed by using DSC. Control starch was representative of typical corn starch. The values for each ratio within a mutant type were unique ({alpha} < 0.01) for most DSC measurements. These results supported the five-kernel method for rapidly screening large amounts of corn germplasm to identify unusual starch traits. The effects of 5 growing locations on starch thermal properties from exotic by adapted corn and Corn Belt lines were studied using DSC. The warmest location, Missouri, generally produced starch with greater gelatinization onset temperature (T{sub oG}), narrower range of gelatinization (R{sub G}), and greater enthalpy of gelatinization ({Delta}H{sub G}). The coolest location, Illinois, generally resulted in starch with lower T{sub oG}, wider R{sub G}, and lower {Delta}H{sub G}. Starch from the Ames 1 farm had thermal properties similar to those of Illinois, whereas starch from the Ames 2 farm had thermal properties similar to those of Missouri. The temperature at Ames 2 may have been warmer since it was located near a river; however, soil type and quality also were different. Final corn starch structure and function change during development and maturity. Thus, the changes in starch thermal properties during 5 stages of endosperm development from exotic by adapted corn and Corn Belt lines at two locations were studied by using DSC. The T{sub oG} tended to decrease during maturation of the kernel, whereas the {Delta}H{sub G} tended not to change. Retrogradation parameters did not vary greatly among days after pollination (DAP) and between locations. Genotypes were affected differently by environments and significant interactions were found between genotype, environment,and DAP.

Elizabeth M. Lenihan

2003-12-12T23:59:59.000Z

216

Development of a 100-Watt High Temperature Thermoelectric Generator  

Energy.gov (U.S. Department of Energy (DOE))

Test results for low and high temperature thermoelectric generators (TEG) those for a 530-watt BiTe TEG; design and construction of a 100-watt high temperature TEG currently in fabrication.

217

EIS-0023: Long-Term Management of Defense High-Level Radioactive Wastes (Research and Development Program for Immobilization), Savannah River Plant, Aiken, South Carolina  

Energy.gov (U.S. Department of Energy (DOE))

This environmental impact statement (EIS) analyzes the environmental implications of the proposed continuation of a large Federal research and development (R&D) program directed toward the immobilization of the high-level radioactive wastes resulting from chemical separations operations for defense radionuclides production at the DOE Savannah River Plant (SRP) near Aiken, South Carolina.

218

Ex Post Analysis of Economic Impacts from Wind Power Development in U.S. Counties  

E-Print Network (OSTI)

use requirements of modern wind power plants in the United2002. Economic impacts of wind power in Kittitas County:Renewable energy: Wind powers contribution to electric

Brown, Jason P.

2014-01-01T23:59:59.000Z

219

The impact of manufacturing offshore on technology development paths in the automotive and optoelectronics industries  

E-Print Network (OSTI)

This dissertation presents a two-case study of the impact of manufacturing offshore on the technology trajectory of the firm and the industry. It looks in particular at the automotive and optoelectronics industries. The ...

Fuchs, Erica R. H. (Erica Renee H.), 1977-

2006-01-01T23:59:59.000Z

220

Development of techniques for rapidly assessing the local air quality impacts of airports  

E-Print Network (OSTI)

The combustion of fossil fuels for aviation activity harms air quality and human health near airports through the production of PM2.5. Currently, dispersion models can assess these local-scale (distances ~10 km) impacts, ...

Lee, Gideon (Gideon Luther)

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "developing high impact" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Development of High-Volume Warm Forming of Low-Cost Magnesium...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 - Development of High Volume Warm Forming of Low Cost Magnesium Sheet edm2@chrysler.com February 28, 2008 Development of High-Volume Warm Forming of Low- Cost Magnesium Sheet...

222

Development of High-Volume Warm Forming of Low-Cost Magnesium...  

Energy Savers (EERE)

Development of High-Volume Warm Forming of Low-Cost Magnesium Sheet Development of High-Volume Warm Forming of Low-Cost Magnesium Sheet 2010 DOE Vehicle Technologies and Hydrogen...

223

Development of High-Volume Warm Forming of Low-Cost Magnesium...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Development of High-Volume Warm Forming of Low-Cost Magnesium Sheet Development of High-Volume Warm Forming of Low-Cost Magnesium Sheet Presentation from the U.S. DOE Office of...

224

Development of High-Volume Warm Forming of Low-Cost Magnesium...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Development of High-Volume Warm Forming of Low-Cost Magnesium Sheet Development of High-Volume Warm Forming of Low-Cost Magnesium Sheet Magnesium...

225

Level of end-user computing moderates the impact of time-based product development practices on performance  

Science Journals Connector (OSTI)

As markets and technology change, time-based competitors create integrated product development practices that reduce response-time and enhance customisation capabilities. Such Time-Based Product Development Practices (TBPDP) are often computer-mediated knowledge work, enabled by end-user computing capabilities. This paper develops a theoretical framework that describes relationships among TBPDP, firm performance, and end-user computing. Data collected from 265 manufacturing managers and executives support the claim that end-user computing moderates the impact of TBPDP on performance.

Patrick J. Rondeau; Mark A. Vonderembse; T.S. Ragu-Nathan; Mei Cao

2005-01-01T23:59:59.000Z

226

High Temperature Polymer Membrane Development at Argonne National...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Polymer Membrane Development at Argonne National Laboratory Seong-Woo Choi, Suhas Niyogi, John Kopasz, Romesh Kumar, and Debbie Myers Chemical Engineering Division Argonne National...

227

Texture development and elastic stresses in magnesiowustite at high pressure  

E-Print Network (OSTI)

similar to isostructural halite (Carter and Heard, 1970).dependent deformation of halite. Amer J Sci 269: 193-249Texture development in halite: comparison of Taylor model

Tommaseo, Caterina E.; Devine, J; Merkel, S; Speziale, S; Wenk, H R

2006-01-01T23:59:59.000Z

228

Technology Development for Light Duty High Efficient Diesel Engines...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

optimization. deer09stanton.pdf More Documents & Publications Light Duty Efficient Clean Combustion Advanced Diesel Engine Technology Development for HECC Effects of Biomass Fuels...

229

Lead Research and Development Activity for High Temperature,...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

cross-over with conductivity maintained * Low cost * High longevity and endurance in fuel cell environment * Mechanical integrity and good chemical properties 9 Summary *...

230

Recent Progress in the Development of High Efficiency Thermoelectrics...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications High-Efficiency Quantum-Well Thermoelectrics for Waste Heat Power Generation Quantum Well Thermoelectrics and Waste Heat Recovery Scale Up of Si...

231

Development of Enabling Technologies for High Efficiency, Low...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

blending marginally improved thermal efficiency due to high pressure rise rate and heat transfer loss. Gasoline blending achieves better efficiency at lower smoke...

232

Towards the Development of a Simulator for Investigating the Impact of People Management Practices on Retail Performance  

E-Print Network (OSTI)

Often models for understanding the impact of management practices on retail performance are developed under the assumption of stability, equilibrium and linearity, whereas retail operations are considered in reality to be dynamic, non-linear and complex. Alternatively, discrete event and agent-based modelling are approaches that allow the development of simulation models of heterogeneous non-equilibrium systems for testing out different scenarios. When developing simulation models one has to abstract and simplify from the real world, which means that one has to try and capture the 'essence' of the system required for developing a representation of the mechanisms that drive the progression in the real system. Simulation models can be developed at different levels of abstraction. To know the appropriate level of abstraction for a specific application is often more of an art than a science. We have developed a retail branch simulation model to investigate which level of model accuracy is required for such a mode...

Siebers, Peer-Olaf; Celia, Helen; Clegg, Chris

2010-01-01T23:59:59.000Z

233

Very high-temperature impact melt products as evidence for cosmic airbursts and impacts 12,900years ago  

Science Journals Connector (OSTI)

...Desert Glass Field, Egypt; and the Australasian...electron microscopy with energy dispersive spectroscopy (SEM-EDS...airburst with equivalent energy in terms of TNT, a cosmic...has greater melting efficiency. However, it does not...form when very high-energy lightning melts...

Ted E. Bunch; Robert E. Hermes; Andrew M.T. Moore; Douglas J. Kennett; James C. Weaver; James H. Wittke; Paul S. DeCarli; James L. Bischoff; Gordon C. Hillman; George A. Howard; David R. Kimbel; Gunther Kletetschka; Carl P. Lipo; Sachiko Sakai; Zsolt Revay; Allen West; Richard B. Firestone; James P. Kennett

2012-01-01T23:59:59.000Z

234

Method for the separation of high impact polystyrene (HIPS) and acrylonitrile butadiene styrene (ABS) plastics  

DOE Patents (OSTI)

An improved method is provided for separating acrylonitrile butadiene styrene (ABS) and high impact polystyrene (HIPS) plastics from each other. The ABS and HIPS plastics are shredded to provide a selected particle size. The shredded particles of the ABS and HIPS plastics are applied to a solution having a solution density in a predefined range between 1.055 gm/cm.sup.3 and 1.07 gm/cm.sup.3, a predefined surface tension in a range between 22 dynes/cm to 40 dynes/cm and a pH in the range of 1.77 and 2.05. In accordance with a feature of the invention, the novel method is provided for separating ABS and HIPS, two solid thermoplastics which have similar densities by selectively modifying the effective density of the HIPS using a binary solution with the appropriate properties, such as pH, density and surface tension, such as a solution of acetic acid and water or a quaternary solution having the appropriate density, surface tension, and pH.

Jody, Bassam J. (Chicago, IL); Arman, Bayram (Amherst, NY); Karvelas, Dimitrios E. (Downers Grove, IL); Pomykala, Jr., Joseph A. (Crest Hill, IL); Daniels, Edward J. (Oak Lawn, IL)

1997-01-01T23:59:59.000Z

235

Tropical coasts are highly vulnerable to climatic pressures, the future impacts of which are projected to propagate  

E-Print Network (OSTI)

Tropical coasts are highly vulnerable to climatic pressures, the future impacts of which are projected to propagate through the natural and human components of coastal systems. One single event (e the resilience of the whole system. Risks related to climate change are frequently examined in isolation through

Boyer, Edmond

236

ASTATINE-211 RADIOCHEMISTRY: THE DEVELOPMENT OF METHODOLOGIES FOR HIGH ACTIVITY LEVEL RADIOSYNTHESIS  

SciTech Connect

Targeted radionuclide therapy is emerging as a viable approach for cancer treatment because of its potential for delivering curative doses of radiation to malignant cell populations while sparing normal tissues. Alpha particles such as those emitted by 211At are particularly attractive for this purpose because of their short path length in tissue and high energy, making them highly effective in killing cancer cells. The current impact of targeted radiotherapy in the clinical domain remains limited despite the fact that in many cases, potentially useful molecular targets and labeled compounds have already been identified. Unfortunately, putting these concepts into practice has been impeded by limitations in radiochemistry methodologies. A critical problem is that the synthesis of therapeutic radiopharmaceuticals provides additional challenges in comparison to diagnostic reagents because of the need to perform radio-synthesis at high levels of radioactivity. This is particularly important for {alpha}-particle emitters such as 211At because they deposit large amounts of energy in a highly focal manner. The overall objective of this project is to develop convenient and reproducible radiochemical methodologies for the radiohalogenation of molecules with the {alpha}-particle emitter 211At at the radioactivity levels needed for clinical studies. Our goal is to address two problems in astatine radiochemistry: First, a well known characteristic of 211At chemistry is that yields for electrophilic astatination reactions decline as the time interval after radionuclide isolation from the cyclotron target increases. This is a critical problem that must be addressed if cyclotrons are to be able to efficiently supply 211At to remote users. And second, when the preparation of high levels of 211At-labeled compounds is attempted, the radiochemical yields can be considerably lower than those encountered at tracer dose. For these reasons, clinical evaluation of promising 211At-labeled targeted radiotherapeutics currently is a daunting task. Our central hypothesis is that improvements in 211At radiochemistry are critically dependent on gaining an understanding of and compensating for the effects of radiolysis induced by 211At {alpha}-particles. Because of the widespread interest in labeling antibodies, antibody fragments and peptides with 211At, our proposed work plan will initially focus on reagents that we have developed for this purpose. Part of our strategy is the use of synthetic precursors immobilized on polymeric resins or perfluorous and triarylphosphonium supports. Their use could eliminate the need for a purification step to separate unreacted tin precursor from labeled product and hopefully provide a simple kit technology that could be utilized at other institutions. The specific aims of this project are: (1) To optimze methods for 211At production and isolation of 211At from cyclotron targets; (2) To develop convenient and reproducible methodologies for high activity level and high specific activity radiohalogenation of biomolecules with 211At; (3) to develop a procedure for extending the shelf-life of 211At beyond a few hours so that this radionuclide can be utilized at centers remote from its site of production; and (4) to work out high activity level synthesis methods for utilizing support immobilized tin precursors for 211At labeling. If we are successful in achieving our goals, the radiochemical methodologies that are developed could greatly facilitate the use of 211At-labeled targeted cancer therapeutics in patients, even at institutions that are distant from the few sites currently available for 211At production.

MICHAEL R. ZALUTSKY

2012-08-08T23:59:59.000Z

237

Development of Ultra High Gradient and High Q{sub 0} Superconducting Radio Frequency Cavities  

SciTech Connect

We report on the recent progress at Jefferson Lab in developing ultra high gradient and high Q{sub 0} superconducting radio frequency (SRF) cavities for future SRF based machines. A new 1300 MHz 9-cell prototype cavity is being fabricated. This cavity has an optimized shape in terms of the ratio of the peak surface field (both magnetic and electric) to the acceleration gradient, hence the name low surface field (LSF) shape. The goal of the effort is to demonstrate an acceleration gradient of 50 MV/m with Q{sub 0} of 10{sup 10} at 2 K in a 9-cell SRF cavity. Fine-grain niobium material is used. Conventional forming, machining and electron beam welding method are used for cavity fabrication. New techniques are adopted to ensure repeatable, accurate and inexpensive fabrication of components and the full assembly. The completed cavity is to be first mechanically polished to a mirror-finish, a newly acquired in-house capability at JLab, followed by the proven ILC-style processing recipe established already at JLab. In parallel, new single-cell cavities made from large-grain niobium material are made to further advance the cavity treatment and processing procedures, aiming for the demonstration of an acceleration gradient of 50 MV/m with Q{sub 0} of 2?10{sup 10} at 2K.

Geng, Rongli [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Clemens, William A. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Follkie, James E. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Harris, Teena M. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Kushnick, Peter W. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Machie, Danny [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Martin, Robert E. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Palczewski, Ari D. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Perry, Era A. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Slack, Gary L. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Williams, R. S. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Adolphsen, C. [SLAC, Menlo Park, California, (United States); Li, Z. [SLAC, Menlo Park, California, (United States); Hao, J. K. [Peking University, Beijing (China); Li, Y. M. [Peking University, Beijing (China); Liu, K. X. [Peking University, Beijing (China)

2013-06-01T23:59:59.000Z

238

Quantifying the Economic Development Impacts of Wind Power in Six Rural Montana Counties Using NRELs JEDI Model  

Wind Powering America (EERE)

September 2004 * NREL/SR-500-36414 September 2004 * NREL/SR-500-36414 M. Costanti Bozeman, Montana Quantifying the Economic Development Impacts of Wind Power in Six Rural Montana Counties Using NREL's JEDI Model Period of Performance: December 1, 2003 - May 31, 2004 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle Contract No. DE-AC36-99-GO10337 September 2004 * NREL/SR-500-36414 Quantifying the Economic Development Impacts of Wind Power in Six Rural Montana Counties Using NREL's JEDI Model Period of Performance: December 1, 2003 - May 31, 2004 M. Costanti

239

Analysis of State-Level Economic Impacts from the Development of Wind Power Plants in San Juan County, Utah  

Wind Powering America (EERE)

An Analysis of State-Level Economic Impacts from the Development An Analysis of State-Level Economic Impacts from the Development of Wind Power Plants in San Juan County, Utah David J. Ratliff, Captain United States Air Force Cathy L. Hartman, Ph.D. Edwin R. Stafford, Ph.D. Center for the Market Diffusion of Renewable Energy and Clean Technology Jon M. Huntsman School of Business Utah State University 3560 Old Main Hill Logan, Utah 84322-3560 DOE/GO-102010-3005 March 2010 The views expressed in this article are those of the author and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the U.S. Government. The authors thank Marshall Goldberg and Elise Brown for assistance with data collection and analysis and Sandra Reategui, Suzanne Tegen, and Sara Baldwin for the helpful comments on

240

Development of a High-Temperature Diagnostics-While-Drilling...  

Office of Environmental Management (EM)

HT tool are provided. htdwdtools.pdf More Documents & Publications A History or Geothermal Energy Research and Development in the United States: Drilling 1976-2006 DOE-HDBK-1017...

Note: This page contains sample records for the topic "developing high impact" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Development of The High Speed Pellet Injector For Ignitor  

E-Print Network (OSTI)

ENEA and Oak Ridge National Laboratory (ORNL) are collaborating on the development of a four barrel, two-stage pneumatic injector for the Ignitor experiment, featuring two innovative concepts: (i) the proper shaping of the ...

Coppi, Bruno

242

Bicycle helmets are highly effective at preventing head injury during head impact: Head-form accelerations and injury criteria for helmeted and unhelmeted impacts  

Science Journals Connector (OSTI)

Abstract Cycling is a popular form of recreation and method of commuting with clear health benefits. However, cycling is not without risk. In Canada, cycling injuries are more common than in any other summer sport; and according to the US National Highway and Traffic Safety Administration, 52,000 cyclists were injured in the US in 2010. Head injuries account for approximately two-thirds of hospital admissions and three-quarters of fatal injuries among injured cyclists. In many jurisdictions and across all age levels, helmets have been adopted to mitigate risk of serious head injuries among cyclists and the majority of epidemiological literature suggests that helmets effectively reduce risk of injury. Critics have raised questions over the actual efficacy of helmets by pointing to weaknesses in existing helmet epidemiology including selection bias and lack of appropriate control for the type of impact sustained by the cyclist and the severity of the head impact. These criticisms demonstrate the difficulty in conducting epidemiology studies that will be regarded as definitive and the need for complementary biomechanical studies where confounding factors can be adequately controlled. In the bicycle helmet context, there is a paucity of biomechanical data comparing helmeted to unhelmeted head impacts and, to our knowledge, there is no data of this type available with contemporary helmets. In this research, our objective was to perform biomechanical testing of paired helmeted and unhelmeted head impacts using a validated anthropomorphic test headform and a range of drop heights between 0.5m and 3.0m, while measuring headform acceleration and Head Injury Criterion (HIC). In the 2m (6.3m/s) drops, the middle of our drop height range, the helmet reduced peak accelerations from 824g (unhelmeted) to 181g (helmeted) and HIC was reduced from 9667 (unhelmeted) to 1250 (helmeted). At realistic impact speeds of 5.4m/s (1.5m drop) and 6.3m/s (2.0m drop), bicycle helmets changed the probability of severe brain injury from extremely likely (99.9% risk at both 5.4 and 6.3m/s) to unlikely (9.3% and 30.6% risk at 1.5m and 2.0m drops respectively). These biomechanical results for acceleration and HIC, and the corresponding results for reduced risk of severe brain injury show that contemporary bicycle helmets are highly effective at reducing head injury metrics and the risk for severe brain injury in head impacts characteristic of bicycle crashes.

Peter A. Cripton; Daniel M. Dressler; Cameron A. Stuart; Christopher R. Dennison; Darrin Richards

2014-01-01T23:59:59.000Z

243

Impact of high energy high intensity proton beams on targets: Case studies for Super Proton Synchrotron and Large Hadron Collider  

Science Journals Connector (OSTI)

The Large Hadron Collider (LHC) is designed to collide two proton beams with unprecedented particle energy of 7TeV. Each beam comprises 2808 bunches and the separation between two neighboring bunches is 25ns. The energy stored in each beam is 362MJ, sufficient to melt 500kg copper. Safety of operation is very important when working with such powerful beams. An accidental release of even a very small fraction of the beam energy can result in severe damage to the equipment. The machine protection system is essential to handle all types of possible accidental hazards; however, it is important to know about possible consequences of failures. One of the critical failure scenarios is when the entire beam is lost at a single point. In this paper we present detailed numerical simulations of the full impact of one LHC beam on a cylindrical solid carbon target. First, the energy deposition by the protons is calculated with the FLUKA code and this energy deposition is used in the BIG2 code to study the corresponding thermodynamic and the hydrodynamic response of the target that leads to a reduction in the density. The modified density distribution is used in FLUKA to calculate new energy loss distribution and the two codes are thus run iteratively. A suitable iteration step is considered to be the time interval during which the target density along the axis decreases by 15%20%. Our simulations suggest that the full LHC proton beam penetrates up to 25m in solid carbon whereas the range of the shower from a single proton in solid carbon is just about 3m (hydrodynamic tunneling effect). It is planned to perform experiments at the experimental facility HiRadMat (High Radiation Materials) at CERN using the proton beam from the Super Proton Synchrotron (SPS), to compare experimental results with the theoretical predictions. Therefore simulations of the response of a solid copper cylindrical target hit by the SPS beam were performed. The particle energy in the SPS beam is 440GeV while it has the same bunch structure as the LHC beam, except that it has only up to 288 bunches. Beam focal spot sizes of ?=0.1, 0.2, and 0.5mm have been considered. The phenomenon of significant hydrodynamic tunneling due to the hydrodynamic effects is also expected for the experiments.

N. A. Tahir, J. Blanco Sancho, A. Shutov, R. Schmidt, and A. R. Piriz

2012-05-08T23:59:59.000Z

244

High Temperature Solid Oxide Fuel Cell Generator Development  

SciTech Connect

This report describes the results of the tubular SOFC development program from August 22, 1997 to September 30, 2007 under the Siemens/U.S. Department of Energy Cooperative Agreement. The technical areas discussed include cell manufacturing development, cell power enhancement, SOFC module and system cost reduction and technology advancement, and our field unit test program. Whereas significant progress has been made toward commercialization, significant effort remains to achieve our cost, performance and reliability targets for successful commercialization.

Joseph Pierre

2007-09-30T23:59:59.000Z

245

Technology Development for High Efficiency Clean Diesel Engines...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dosing Transient Drive Cycle Results Transient Drive Cycle Results 7 2009 DEER Conference Evolution of High Efficiency SCR 2% 4% 6% 8% 2% 4% 6% 8% 10% 12% Percent Improvement in...

246

High-Temperatuer Solar Selective Coating Development for Power...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

plant can be increased if the energy absorbed by the receiver is maximized while the heat loss from the receiver to the environment is minimized * Pyromark has a high solar...

247

Development of the High Efficiency X1 Rotary Diesel Engine  

Energy.gov (U.S. Department of Energy (DOE))

This poster describes the design, modeling, and build of a 70-hp prototype of a high efficiency hybrid cycle engine that is expected to attain 57 percent efficiency across a range of loads.

248

Development and optimization of high-throughput zebrafish screening platform  

E-Print Network (OSTI)

The high-throughput zebrafish screening platform is a revolutionary tool that enables subcellular precision in vivo whole animal screening of Danio Rerio. It can perform laser surgery and/or imaging in less than twenty ...

Koo, Bryan Kyo

2010-01-01T23:59:59.000Z

249

Session: Why avian impacts are a concern in wind energy development  

SciTech Connect

This lunchtime session at the Wind Energy and Birds/Bats workshop consisted of one presentation followed by a discussion/question and answer period. The session provided a more detailed overview of the environmental community's perspective on wind power's impacts on birds. The presentation described how wind projects impact birds, detailing the species distribution of collisions at various sites around the US and discussing problems such as avoidance, habitat disturbance, and cumulative effects on populations. The presentation, ''Wind Turbines and Birds'', was given by Gerald Winegrad from the American Bird Conservancy.

Winegrad, Gerald

2004-09-01T23:59:59.000Z

250

Assessment of the impacts on health due to the emissions of Cuban power plants that use fossil fuel oils with high content of sulfur. Estimation of external costs  

Science Journals Connector (OSTI)

Fossil fuel electricity generation has been demonstrated to be a main source of atmospheric pollution. The necessity of finding out a balance between the costs of achieving a lower level of environmental and health injury and the benefits of providing electricity at a reasonable cost have lead to the process of estimating the external costs derived from these impacts and not included in the electricity prices as a quantitative measure of it that, even when there are large uncertainties involved, can be used by decision makers in the process of achieving a global sustainable development. The external costs of the electricity generation in three Cuban power plants that use fossil fuel oils with high sulfur content have been assessed. With that purpose a specific implementation of the Impact Pathways Methodology for atmospheric emissions was developed. Dispersion of atmospheric pollutants is modeled at local and regional scales in a detailed way. Health impacts include mortality and those morbidity effects that showed relation with the increment of selected pollutant concentration in national studies. The external cost assessed for the three plants was 40,588,309USDyr?1 (min./max.: 10,194,833/169,013,252), representing 1.06USDCentkWh?1. Costs derived from sulfur species (SO2 and sulfate aerosol) stand for 93% of the total costs.

L. Turts Carbonell; E. Meneses Ruiz; M. Snchez Gcita; J. Rivero Oliva; N. Daz Rivero

2007-01-01T23:59:59.000Z

251

MapGraph: A High Level API for Fast Development of High Performance Graph Analytics on GPUs  

Science Journals Connector (OSTI)

High performance graph analytics are critical for a long list of application domains. In recent years, the rapid advancement of many-core processors, in particular graphical processing units (GPUs), has sparked a broad interest in developing high performance ... Keywords: GPU, Graph analytics, high-level API

Zhisong Fu; Michael Personick; Bryan Thompson

2014-06-01T23:59:59.000Z

252

High Temperature Solid Oxide Fuel Cell Generator Development  

SciTech Connect

Work performed during the period February 21, 2006 through August 21, 2006 is summarized herein. During this period, efforts were focused on 5 kWe bundle testing, development of on-cell reformation, the conceptual design of an advanced module, and the development of a manufacturing roadmap for cells and bundles. A 5 kWe SOFC system was built and delivered to the Pennsylvania State University; fabrication of a second 5 kWe SOFC for delivery to Montana State University was initiated. Cell testing and microstructural analysis in support of these efforts was also conducted.

Joseph F. Pierre

2006-08-21T23:59:59.000Z

253

Update on US High Density Fuel Fabrication Development  

SciTech Connect

Second generation uranium molybdenum fuel has shown excellent in-reactor irradiation performance. This metallic fuel type is capable of being fabricated at much higher loadings than any presently used research reactor fuel. Due to the broad range of fuel types this alloy system encompassesfuel powder to monolithic foil and binary fuel systems to multiple element additionssignificant amounts of research and development have been conducted on the fabrication of these fuels. This paper presents an update of the US RERTR effort to develop fabrication techniques and the fabrication methods used for the RERTR-9A miniplate test.

C.R. Clark; G.A. Moore; J.F. Jue; B.H. Park; N.P. Hallinan; D.M. Wachs; D.E. Burkes

2007-03-01T23:59:59.000Z

254

Develop high energy high power Li-ion battery cathode materials : a first principles computational study  

E-Print Network (OSTI)

as cathode materials for Li-ion battery. Physica B-CondensedHigh Energy High Power Li-ion Battery Cathode Materials AHigh Energy High Power Li-ion Battery Cathode Materials A

Xu, Bo; Xu, Bo

2012-01-01T23:59:59.000Z

255

Assessing the Impacts of a Special Safeguard Mechanism for Agriculture in the Doha Development Agenda.  

E-Print Network (OSTI)

??The agricultural negotiations in the World Trade Organizations (WTO) Doha Development Agenda (DDA) are calling for a specific Special Safeguard Mechanism (SSM) for developing countries (more)

Weeks, Heather Ashley

2011-01-01T23:59:59.000Z

256

Rural Telecenter Impact Assessments and the Political Economy of ICT of Development (ICT4D)  

E-Print Network (OSTI)

per capita HDI (Human. Development Indicator) GDI (GenderDevelopment Indicator) GDI (Computing) Number of householdsto use computers HH GDI (Computing) Number of households

Rothenberg-Aalami, Jessica; Pal, Joyojeet

2005-01-01T23:59:59.000Z

257

UDC Develops Prototype High-Efficiency OLED Undercabinet Luminaire  

Energy.gov (U.S. Department of Energy (DOE))

Universal Display Corporation (UDC) has demonstrated the real-world application of a novel lighting technology by developing two pre-prototype OLED undercabinet lighting systems that exceed 420 total lumens at an efficacy of more than 55 lm/W, with an estimated lifetime (LT70) in excess of 10,000 hours, and a color rendering index (CRI) greater than 85.

258

Dosimetric Impact of Interfraction Catheter Movement in High-Dose Rate Prostate Brachytherapy  

SciTech Connect

Purpose: To evaluate the impact of interfraction catheter movement on dosimetry in prostate high-dose-rate (HDR) brachytherapy. Methods and Materials: Fifteen patients were treated with fractionated HDR brachytherapy. Implants were performed on day 1 under transrectal ultrasound guidance. A computed tomography (CT) scan was performed. Inverse planning simulated annealing was used for treatment planning. The first fraction was delivered on day 1. A cone beam CT (CBCT) was performed on day 2 before the second fraction was given. A fusion of the CBCT and CT was performed using intraprostatic gold markers as landmarks. Initial prostate and urethra contours were transferred to the CBCT images. Bladder and rectum contours were drawn, and catheters were digitized on the CBCT. The planned treatment was applied to the CBCT dataset, and dosimetry was analyzed and compared to the initial dose distribution. This process was repeated after a reoptimization was performed, using the same constraints used on day 1. Results: Mean interfraction catheter displacement was 5.1 mm. When we used the initial plan on day 2, the mean prostate V100 (volume receiving 100 Gy or more) decreased from 93.8% to 76.2% (p < 0.01). Rectal V75 went from 0.75 cm{sup 3} to 1.49 cm{sup 3} (p < 0.01). A reoptimization resulted in a mean prostate V100 of 88.1%, closer to the initial plan (p = 0.05). Mean rectal V75 was also improved with a value of 0.59 cm{sup 3}. There was no significant change in bladder and urethra dose on day 2. Conclusions: A mean interfraction catheter displacement of 5.1 mm results in a significant decrease in prostate V100 and an increase in rectum dose. A reoptimization before the second treatment improves dose distribution.

Foster, William, E-mail: fosterw@radonc.ucsf.ed [Department of Radiation Oncology, University of California San Francisco, San Francisco, California (United States); Cunha, J. Adam M.; Hsu, I.-Chow; Weinberg, Vivan; Krishnamurthy, Devan; Pouliot, Jean [Department of Radiation Oncology, University of California San Francisco, San Francisco, California (United States)

2011-05-01T23:59:59.000Z

259

Impact of fluorine based reactive chemistry on structure and properties of high moment magnetic material  

SciTech Connect

The impact of the fluorine-based reactive ion etch (RIE) process on the structural, electrical, and magnetic properties of NiFe and CoNiFe-plated materials was investigated. Several techniques, including X-ray fluorescence, 4-point-probe, BH looper, transmission electron microscopy (TEM), and electron energy loss spectroscopy (EELS), were utilized to characterize both bulk film properties such as thickness, average composition, Rs, ?, Bs, Ms, and surface magnetic dead layers' properties such as thickness and element concentration. Experimental data showed that the majority of Rs and Bs changes of these bulk films were due to thickness reduction during exposure to the RIE process. ? and Ms change after taking thickness reduction into account were negligible. The composition of the bulk films, which were not sensitive to surface magnetic dead layers with nano-meter scale, showed minimum change as well. It was found by TEM and EELS analysis that although both before and after RIE there were magnetic dead layers on the top surface of these materials, the thickness and element concentration of the layers were quite different. Prior to RIE, dead layer was actually native oxidation layers (about 2?nm thick), while after RIE dead layer consisted of two sub-layers that were about 6?nm thick in total. Sub-layer on the top was native oxidation layer, while the bottom layer was RIE damaged layer with very high fluorine concentration. Two in-situ RIE approaches were also proposed and tested to remove such damaged sub-layers.

Yang, Xiaoyu, E-mail: xiaoyu.yang@wdc.com; Chen, Lifan; Han, Hongmei; Fu, Lianfeng; Sun, Ming; Liu, Feng; Zhang, Jinqiu [Western Digital Corporation, 44100 Osgood Road, Fremont, California 94539 (United States)

2014-05-07T23:59:59.000Z

260

A cross-sectional review: Impacts and sustainability of small-scale renewable energy projects in developing countries  

Science Journals Connector (OSTI)

Abstract Access to sustainable and affordable energy services is a crucial factor in reducing poverty in developing countries. In particular, small-scale and community-based renewable energy projects are recognized as important forms of development assistance for reaching the energy poor. However, to date only a few empirical evaluations exist which analyze and compare the impact of these projects on local living conditions and their sustainability ex-post implementation. To better understand the impacts and the conditions that influence sustainability of these projects, the research presented in this paper evaluated 23 local development projects post implementation. By applying an standardized evaluation design to a cross-sectional sample in terms of renewable energy sources (solar, wind, biomass, hydro), user needs (electricity, food preparation, lighting, productive uses), community management models, finance mechanisms and geographical locations, the review results provide valuable insights on the underlying conditions that influence the success or failure of these small-scale local energy interventions. The empirical evidence suggests that the sustainability of small-scale energy implementations (?100kW) in developing countries is determined by the same factors, independent of the socio-cultural, political and ecological context. These findings allow to better predict the long-term success of small sustainable energy projects in developing countries, this can help to improve project designs and increase the certainty for future investment decisions.

Julia Terrapon-Pfaff; Carmen Dienst; Julian Knig; Willington Ortiz

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "developing high impact" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Idaho National Engineering and Environmental Laboratory Development of a High  

E-Print Network (OSTI)

durability and sealing with regard to thermal cycles ­ minimize electrolyte thickness ­ improve material in the electrolysis mode · Specification and testing of hydrogen-permeation-resistant materials for a high to Electrolyser 0 20 40 60 80 100 120 100 300 500 700 900 Temperature (C) EnergyInput(MJ/kgH2) Thermal Energy

262

Development of High Performance Fluxomics Tools for Microbial Metabolism Analysis  

E-Print Network (OSTI)

,Ph.D. Dept.ofEnergy,Environmental&ChemicalEngineering WashingtonUniversityinSt.Louis Mar5th,2012 #12;Energy Engineering for bioenergy and chemicals Transcriptomics Proteomics FluxomicsMetabolomics #12;Metabolic Flux MicrobesFlux: a web platform for high-throughput model drafting · 13C tracer experiments and computational

Subramanian, Venkat

263

The development of high definition television : an ecology of games  

E-Print Network (OSTI)

This study is an analysis of the forces that shaped the overall character of a new US television system, high definition or HDTV, between the early 1980s and 2010, with a primary focus on the period leading up the Federal ...

Neil, Suzanne Chambliss

2010-01-01T23:59:59.000Z

264

Boiling during high-velocity impact of water droplets on a hot stainless steel surface  

Science Journals Connector (OSTI)

...rho, V and p 0 are water density, impact velocity and atmospheric pressure, respectively. Assuming water vapour is a perfect...droplet-on-demand generator. Exp. Fluids. 34...of hot surfaces with water sprays. J. Heat Treating...

2006-01-01T23:59:59.000Z

265

Impact of High Wind Power Penetration on Hydroelectric Unit Operations in the WWSIS  

SciTech Connect

This report examines the impact of this large amount of wind penetration on hydroelectric unit operations. Changes in hydroelectric unit operating patterns are examined both for an aggregation of all hydro generators and for select individual plants.

Hodge, B.-M.; Lew, D.; Milligan, M.

2011-07-01T23:59:59.000Z

266

Impact of High Wind Power Penetration on Hydroelectric Unit Operations: Preprint  

SciTech Connect

This paper examines the impact of this large amount of wind penetration on hydroelectric unit operations. Changes in hydroelectric unit operating unit patterns are examined for an aggregation of all hydro generators.

Hodge, B. M.; Lew, D.; Milligan, M.

2011-10-01T23:59:59.000Z

267

Failure Analysis of Power Battery Under High Environment Temperatures in Impact Test  

Science Journals Connector (OSTI)

The impact tests of the power battery were performed at 40 and 65C ... circuit, the heat can accumulate inside the battery, and those accumulated heat can lead to thermal runaway and even battery burning and ex...

Hongwei Wang; Haiqing Xiao; Yanling Fu

2013-01-01T23:59:59.000Z

268

High Level Waste System Impacts from Small Column Ion Exchange Implementation  

SciTech Connect

The objective of this task is to identify potential waste streams that could be treated with the Small Column Ion Exchange (SCIX) and perform an initial assessment of the impact of doing so on the High-Level Waste (HLW) system. Design of the SCIX system has been performed as a backup technology for decontamination of High-Level Waste (HLW) at the Savannah River Site (SRS). The SCIX consists of three modules which can be placed in risers inside underground HLW storage tanks. The pump and filter module and the ion exchange module are used to filter and decontaminate the aqueous tank wastes for disposition in Saltstone. The ion exchange module contains Crystalline Silicotitanate (CST in its engineered granular form is referred to as IONSIV{reg_sign} IE-911), and is selective for removal of cesium ions. After the IE-911 is loaded with Cs-137, it is removed and the column is refilled with a fresh batch. The grinder module is used to size-reduce the cesium-loaded IE-911 to make it compatible with the sludge vitrification system in the Defense Waste Processing Facility (DWPF). If installed at the SRS, this SCIX would need to operate within the current constraints of the larger HLW storage, retrieval, treatment, and disposal system. Although the equipment has been physically designed to comply with system requirements, there is also a need to identify which waste streams could be treated, how it could be implemented in the tank farms, and when this system could be incorporated into the HLW flowsheet and planning. This document summarizes a preliminary examination of the tentative HLW retrieval plans, facility schedules, decontamination factor targets, and vitrified waste form compatibility, with recommendations for a more detailed study later. The examination was based upon four batches of salt solution from the currently planned disposition pathway to treatment in the SCIX. Because of differences in capabilities between the SRS baseline and SCIX, these four batches were combined into three batches for a total of about 3.2 million gallons of liquid waste. The chemical and radiological composition of these batches was estimated from the SpaceMan Plus{trademark} model using the same data set and assumptions as the baseline plans.

McCabe, D. J.; Hamm, L. L.; Aleman, S. E.; Peeler, D. K.; Herman, C. C.; Edwards, T. B.

2005-08-18T23:59:59.000Z

269

Advanced Boost System Developing for High EGR Applications  

SciTech Connect

To support industry efforts of clean and efficient internal combustion engine development for passenger and commercial applications This program focuses on turbocharger improvement for medium and light duty diesel applications, from complete system optimization percepective to enable commercialization of advanced diesel combustion technologies, such as HCCI/LTC. Improve combined turbocharger efficiency up to 10% or fuel economy by 3% on FTP cycle at Tier II Bin 5 emission level.

Sun, Harold

2012-09-30T23:59:59.000Z

270

Development of light weight, high current density, superconducting magnets  

SciTech Connect

High field, high current density superconducting magnets can be achieved with force-cooled, cable-in-conduit conductors while maintaining good stability and structural integrity. The weight of the conductor was reduced by using aluminum instead of stainless steel for the conduit. A 1-km long al-conduit conductor was produced by continuous extrusion of Al-tube on the cable and then drawing to the final size and rectangular shape. The structural weight was further reduced by using carbon-fiber reinforced composite, instead of stainless steel. Small test coils with copper conduit were built first to test the above ideas and to measure the stability margins of a cable-in-conduit conductor with void fractions less than 30%, substantially lower than have been used elsewhere.

Lue, J.W.; Lubell, M.S.; Luton, J.N.; Frame, B.J.; Paulaskas, F.L.; Blake, H.W. [Oak Ridge National Lab., TN (United States)] [Oak Ridge National Lab., TN (United States)

1994-07-01T23:59:59.000Z

271

Jobs and Economic Development Impacts of Offshore Wind Webinar Text Version  

Wind Powering America (EERE)

Impacts of Offshore Wind Impacts of Offshore Wind November 20, 2013 Coordinator: Thank you all for standing by. All lines have been placed on a listen-only mode throughout the duration of today's conference. Today's conference is being recorded. If you do have any objections, you may disconnect at this time. I would now like to turn the call over to Ian Baring-Gould. Thank you. You may begin. Ian Baring-Gould: Hi, this is Ian Baring-Gould from the National Renewable Energy Laboratory. I want to thank you all for joining us for our call - or on our webinar today. This is our standard monthly series of webinars for the stakeholder engagement and outreach activities of the wind program under the Department of Energy. And pleased today that we get to have a series of presentations on a

272

ECOSYSTEM IMPACTS OF GEOENGINEERING: A Review for Developing a Science Plan  

SciTech Connect

Geoengineering methods are intended to reduce the magnitude of climate change. Climate change in some regions is already having demonstrable effects on ecosystem structure and functioning. Two different types of geoengineering activities have been proposed: carbon dioxide removal (CDR), which includes a range of engineered and biological processes to remove carbon dioxide (CO2) from the atmosphere, and solar radiation management (SRM, or sunlight reflection methods), whereby a small percentage of sunlight is reflected back into space to offset warming from greenhouse gases. In this review, we evaluate some of the possible impacts of CDR and SRM on the physical climate and their subsequent influence on ecosystems, including the risks and uncertainties associated with new kinds of purposeful perturbations to Earth. Specifically, we find evidence that, if implemented successfully, some CDR methods and continue use of some SRM methods) could alleviate some of the deleterious ecosystem impacts associated with climate changes that might occur in the foreseeable future.

Russell, Lynn M.; Rasch, Philip J.; Mace, Georgina; Jackson, Robert B.; Shepherd, John; Liss, Peter; Leinen, Margaret; Schimel, David; Vaughan, Naomi E.; Janetos, Anthony C.; Boyd, Philip W.; Norby, Richard J.; Caldeira, Ken; Merikanto, Joonas; Artaxo, Paulo; Melillo, Jerry; Morgan, M. Granger

2012-06-01T23:59:59.000Z

273

Development of CFD models to support LEU Conversion of ORNL s High Flux Isotope Reactor  

SciTech Connect

The US Department of Energy s National Nuclear Security Administration (NNSA) is participating in the Global Threat Reduction Initiative to reduce and protect vulnerable nuclear and radiological materials located at civilian sites worldwide. As an integral part of one of NNSA s subprograms, Reduced Enrichment for Research and Test Reactors, HFIR is being converted from the present HEU core to a low enriched uranium (LEU) core with less than 20% of U-235 by weight. Because of HFIR s importance for condensed matter research in the United States, its conversion to a high-density, U-Mo-based, LEU fuel should not significantly impact its existing performance. Furthermore, cost and availability considerations suggest making only minimal changes to the overall HFIR facility. Therefore, the goal of this conversion program is only to substitute LEU for the fuel type in the existing fuel plate design, retaining the same number of fuel plates, with the same physical dimensions, as in the current HFIR HEU core. Because LEU-specific testing and experiments will be limited, COMSOL Multiphysics was chosen to provide the needed simulation capability to validate against the HEU design data and previous calculations, and predict the performance of the proposed LEU fuel for design and safety analyses. To achieve it, advanced COMSOL-based multiphysics simulations, including computational fluid dynamics (CFD), are being developed to capture the turbulent flows and associated heat transfer in fine detail and to improve predictive accuracy [2].

Khane, Vaibhav B [ORNL] [ORNL; Jain, Prashant K [ORNL] [ORNL; Freels, James D [ORNL] [ORNL

2012-01-01T23:59:59.000Z

274

A Pilot Study to Evaluate Development Effort for High Performance Computing  

E-Print Network (OSTI)

1 A Pilot Study to Evaluate Development Effort for High Performance Computing Victor Basili1 the development time for programs written for high performance computers (HPC). To attack this relatively novel students in a graduate level High Performance Computing class at the University of Maryland. We collected

Basili, Victor R.

275

Analysis of State-Level Economic Impacts from the Development of Wind Power Plants in Summit County, Utah  

Wind Powering America (EERE)

An Analysis of State-Level Economic Impacts from the An Analysis of State-Level Economic Impacts from the Development of Wind Power Plants in Summit County, Utah David J. Ratliff, Captain United States Air Force Cathy L. Hartman, Ph.D. Edwin R. Stafford, Ph.D. Center for the Market Diffusion of Renewable Energy and Clean Technology Jon M. Huntsman School of Business Utah State University 3560 Old Main Hill Logan, Utah 84322-3560 DOE/GO-102009-2918 October 2009 The views expressed in this article are those of the author and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the U.S. Government. The authors thank Marshall Goldberg and Elise Brown for assistance with data collection and analysis and Sandra Reategui and Sara Baldwin for the helpful comments on an earlier draft of

276

Developing high brightness beams for heavy ion driven inertial fusion  

SciTech Connect

Heavy ion fusion (HIF) drivers require large currents and bright beams. In this paper we review the two different approaches for building HIF injectors and the corresponding ion source requirements. The traditional approach uses large aperture, low current density ion sources, resulting in a very large injector system. A more recent conceptual approach merges high current density mini-beamlets into a large current beam in order to significantly reduce the size of the injector. Experiments are being prepared to demonstrate the feasibility of this new approach.

Kwan, J.W.; Ahle, L.A.; Anders, A.; Bieniosek, F.M.; Chacon-Golcher, E.; Grote, D.P.; Henestroza, E.; Leung, K.N.; Molvik, A.W.

2001-08-29T23:59:59.000Z

277

Coal-fueled high-speed diesel engine development  

SciTech Connect

The objectives of this program are to study combustion feasibility by running Series 149 engine tests at high speeds with a fuel injection and combustion system designed for coal-water-slurry (CWS). The following criteria will be used to judge feasibility: (1) engine operation for sustained periods over the load range at speeds from 600 to 1900 rpm. The 149 engine for mine-haul trucks has a rated speed of 1900 rpm; (2) reasonable fuel economy and coal burnout rate; (3) reasonable cost of the engine design concept and CWS fuel compared to future oil prices.

Not Available

1991-11-01T23:59:59.000Z

278

Rethinking the bottom line : how externalities of private development impact the value proposition and negotiation process  

E-Print Network (OSTI)

In assessing feasibility of a project, developers typically use a classic financial model Discounted Cash Flow (DCF) to forecast the private benefit that accrues to the developer and financial partners. DCF is a rational ...

O'Connor, Caitlin (Caitlin A.)

2005-01-01T23:59:59.000Z

279

Sandia National Laboratories Develops Tool for Evaluating Wind Turbine-Radar Impacts  

Energy.gov (U.S. Department of Energy (DOE))

The TSPEAR toolkit supports energy developers that wish to design, analyze, track the progress of wind energy projects. Initially designed to support wind energy development by assessing the interaction between turbines and constraining factors, such as the NAS radar systems, TSPEAR is partially populated with information from existing databases and can integrate custom models and tools used throughout the development process.

280

Modeling and Characterization of Dynamic Failure of Soda-lime Glass Under High Speed Impact  

SciTech Connect

In this paper, the impact-induced dynamic failure of a soda-lime glass block is studied using an integrated experimental/analytical approach. The Split Hopkinson Pressure Bar (SHPB) technique is used to conduct dynamic failure test of soda-lime glass first. The damage growth patterns and stress histories are reported for various glass specimen designs. Making use of a continuum damage mechanics (CDM)-based constitutive model, the initial failure and subsequent stiffness reduction of glass are simulated and investigated. Explicit finite element analyses are used to simulate the glass specimen impact event. A maximum shear stress-based damage evolution law is used in describing the glass damage process under combined compression/shear loading. The impact test results are used to quantify the critical shear stress for the soda-lime glass under examination.

Liu, Wenning N.; Sun, Xin; Chen, Weinong W.; Templeton, Douglas W.

2012-05-27T23:59:59.000Z

Note: This page contains sample records for the topic "developing high impact" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Quenching and Partitioning Process Development to Replace Hot Stamping of High-Strength Automotive Steel  

Energy.gov (U.S. Department of Energy (DOE))

A combination of deep alloy development experience, designed experiments, computational tools, and characterization instruments will develop Quenching and Partitioning processing for Third-Generation Advanced High-Strength Steels (3GAHSS) in automotive applications.

282

Development and Investigation of a Dipole Magnet with a High-Temperature Superconductor Winding  

Science Journals Connector (OSTI)

The structure of a dipole magnet with an iron yoke, where the winding is made of a Bi-2223 high-temperature superconductor, has been developed and the magnet has been built at the Institute of High-Energy Physics...

A. I. Ageev; I. V. Bogdanov; V. V. Zubko; S. S. Kozub; K. P. Myznikov

2002-12-01T23:59:59.000Z

283

Development of High Energy Cathode for Li-ion Batteries | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

es056zhang2010p.pdf More Documents & Publications Phase Behavior and Solid State Chemistry in Olivines Development of High Energy Cathode Materials Interfacial Processes -...

284

Construction cost impact analysis of the U.S. Department of Energy mandatory performance standards for new federal commercial and multi-family, high-rise residential buildings  

SciTech Connect

In accordance with federal legislation, the U.S. Department of Energy (DOE) has conducted a project to demonstrate use of its Energy Conservation Voluntary Performance Standards for Commercial and Multi-Family High-Rise Residential Buildings; Mandatory for New Federal Buildings; Interim Rule (referred to in this report as DOE-1993). A key requisite of the legislation requires DOE to develop commercial building energy standards that are cost effective. During the demonstration project, DOE specifically addressed this issue by assessing the impacts of the standards on (1) construction costs, (2) builders (and especially small builders) of multi-family, high-rise buildings, and (3) the ability of low-to moderate-income persons to purchase or rent units in such buildings. This document reports on this project.

Di Massa, F.V.; Hadley, D.L.; Halverson, M.A.

1993-12-01T23:59:59.000Z

285

Volume 6, Part 1, Final Programmatic Environmental Impact Statement for Solar Energy Development in Six Southwestern States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6, Part 1 6, Part 1 Appendices A-I July 2012 Bureau of Land Management U.S. Department of Energy FES 12-24 * DOE/EIS-0403 Final Programmatic Environmental Impact Statement (PEIS) for Solar Energy Development in Six Southwestern States (FES 12-24; DOE/EIS-0403) Responsible Agencies: The U.S. Department of the Interior (DOI) Bureau of Land Management (BLM) and the U.S. Department of Energy (DOE) are co-lead agencies. Nineteen cooperating agencies

286

Unconventional Oil and Gas Projects Help Reduce Environmental Impact of Development  

Energy.gov (U.S. Department of Energy (DOE))

The Office of Fossil Energys National Energy Technology Laboratory has an unconventional oil and gas program devoted to research in this important area of energy development. The laboratory partners with industry and academia through cost-sharing agreements to develop scientific knowledge and advance technologies that can improve the environmental performance of unconventional resource development. Once the resulting technologies are deployed for commercial use, our nation stands to reap huge benefits.

287

Hydrogen Production from Biomass via Indirect Gasification: The Impact of NREL Process Development Unit Gasifier Correlations  

SciTech Connect

This report describes a set of updated gasifier correlations developed by NREL to predict biomass gasification products and Minimum Hydrogen Selling Price.

Kinchin, C. M.; Bain, R. L.

2009-05-01T23:59:59.000Z

288

Highrate material modelling and validation using the Taylor cylinder impact test  

Science Journals Connector (OSTI)

...validation using the Taylor cylinder impact test P. J. Maudlin G. T. Gray III C. M...topography) with measured shapes from post-test Taylor specimens and quasi-static compression...extracted from the experimental post-test geometries using classical r-value definitions...

1999-01-01T23:59:59.000Z

289

A framework for selecting strategies to impact the success of high volume roadway projects  

E-Print Network (OSTI)

that summarize the research findings. A general matrix was created to show the motivating project conditions that warrant the use of each strategy. A public relations matrix was created to display the influence the impacted road user groups have on public...

Chabannes, Clayton C.

2006-08-16T23:59:59.000Z

290

Estimated impacts of climate warming on Californias high-elevation hydropower  

E-Print Network (OSTI)

on high elevation hydropower generation in CaliforniasCalifornias high-elevation hydropower Kaveh Madani Jay R.Abstract Californias hydropower system is composed of high

Madani, Kaveh; Lund, Jay R.

2010-01-01T23:59:59.000Z

291

DEVELOPMENT OF HIGH PERFORMANCE BS-PT BASED PIEZOELECTRIC TRANSDUCERS FOR HIGH-TEMPERATURE  

E-Print Network (OSTI)

-TEMPERATURE APPLICATIONS Yu-Hung Li1 , Sang Jong Kim2 , Nathan Salowitz2 , Fu-Kuo Chang2 1 Department of Materials Science processes in industries like aerospace. However, similar ultrasonic SHM techniques for high downhole casings). Recent research in high-temperature piezoelectric materials has facilitated

Boyer, Edmond

292

An Empirical Evaluation of the Impact ofAn Empirical Evaluation of the Impact ofAn Empirical Evaluation of the Impact ofAn Empirical Evaluation of the Impact of TestTestTestTest----Driven Development onDriven Development onDriven Development onDriven Deve  

E-Print Network (OSTI)

Mainstream Software Development MilestonesDevelopment MilestonesDevelopment MilestonesDevelopment Milestones Agile (XPDriven Development onDriven Development onDriven Development on Software QualitySoftware QualitySoftware QualitySoftwareIntroductionIntroductionIntroduction · Observation ­ Test-driven development is a popular new method for designing and testing software · Problem

Janzen, David

293

Development of a Dynamic Model of a Small High-Speed Autonomous Underwater Vehicle  

E-Print Network (OSTI)

Development of a Dynamic Model of a Small High-Speed Autonomous Underwater Vehicle Haider N. Arafat-- A dynamic model is developed for a small, high- speed autonomous underwater vehicle. The vehicle has manner: 1) Wind angle and angle : From u = V cos , v = V sin sin , and w = V sin cos , we have tan

Virginia Tech

294

Further development of the RBLM model to study the impacts of greenery on urban thermal environment  

Science Journals Connector (OSTI)

A forest canopy model is developed and coupled into the Regional Boundary Layer Model (RBLM) to fully consider the vertical structure of tree morphology. Instead of a slab surface model former used to represent trees in RBLM, the new version ...

JIANBO YANG; HONGNIAN LIU; JIANNING SUN; YAN ZHU; XUEYUAN WANG; ZHE XIONG; WEIMEI JIANG

295

Assessing the impact of tumor evolution on oncology drug development and commercialization  

E-Print Network (OSTI)

This thesis investigates the commercial viability of developing and commercializing targeted oncology drugs directed at a specific tumor mutation instead of all forms and mutations of a single target. While oncologic drugs ...

Sterk, Joseph P. (Sterk, Joseph Phillip)

2011-01-01T23:59:59.000Z

296

The impact of recent ion channel science on the development and use of antiarrhythmic drugs  

Science Journals Connector (OSTI)

In the past 20 years in the basic laboratory, tools have been developed to further our understanding of the mechanism of arrhythmias and of the effect of compounds on these or their substrates. Patch clamp stu...

Marie-Noelle S. Langan MD

1999-01-01T23:59:59.000Z

297

A Study of Aerosol Impacts on Clouds and Precipitation Development in a Large Winter Cyclone  

Science Journals Connector (OSTI)

Aerosols influence cloud and precipitation development in complex ways due to myriad feedbacks at a variety of scales from individual clouds through entire storm systems. This paper describes the implementation, testing, and results of a newly ...

Gregory Thompson; Trude Eidhammer

2014-10-01T23:59:59.000Z

298

The Energy and CO2 Emissions Impact of Renewable Energy Development in China  

E-Print Network (OSTI)

Chinas recently-adopted targets for developing renewable electricitywind, solar, and biomasswould require expansion on an unprecedented scale in China and relative to existing global installations. An important question ...

Zhang, X.

299

Inner city shopping centers : national development trends and local community impacts  

E-Print Network (OSTI)

Within the past ten years, there has been increasing interest in bringing retail back into inner-city neighborhoods as a commercial revitalization and economic development strategy. In this thesis, a large data set of all ...

Deora, Amy (Amy Carter)

2006-01-01T23:59:59.000Z

300

The impact of climate change on ski resort operations and development : opportunities and threats  

E-Print Network (OSTI)

This thesis serves as a pedagogical guide to the ski resort industry, and presents a broad overview of the unique issues that accompany climate change. The paper also provides recommendations to resort developers as to ...

McGill, Daniel D. D. (Daniel Dulany deButts)

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "developing high impact" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Impact of Water Resource Development on Coastal Erosion, Brazos River, Texas  

E-Print Network (OSTI)

Major dam and reservoir development within the Brazos River Basin is correlative with a significant decrease in the suspended sediment load of the river and with increased coastal erosion rates near the delta. A hydrologic analysis of the river...

Mathewson, C. C.; Minter, L. L.

302

An Analysis of the Economic Impact on Tooele County, Utah, from the Development of Wind Power Plants  

Wind Powering America (EERE)

An Analysis of the Economic Impact on Tooele County, Utah, from the Development of Wind Power Plants Nikhil Mongha, MBA, MS Carollo Engineers Edwin R. Stafford, Ph.D. Cathy L. Hartman, Ph.D. Renewable Energy for Rural Economic Development College of Business Utah State University 3560 Old Main Hill Logan, Utah 84322-3560 August 2006 DOE/GO-102006-2353 Contract No. DE-FG48-05R810736 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents

303

An Analysis of the Economic Impact on Utah County, Utah from the Development of Wind Power Plants  

Wind Powering America (EERE)

An Analysis of the Economic Impact on Utah County, Utah from the Development of Wind Power Plants Nikhil Mongha, MBA, MS Carollo Engineers Edwin R. Stafford, Ph.D. Cathy L. Hartman, Ph.D. Renewable Energy for Rural Economic Development College of Business Utah State University 3560 Old Main Hill Logan, Utah 84322-3560 May 2006 DOE/GO-102006-2316 DE-FG48-05R810736 ACKNOWLEDGMENTS Special thanks to Marshall Goldberg for his assistance with the analysis and Sarah Wright and Christine Watson Mikell for their review of this report. ii NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or

304

Analysis of the Economic Impact on Box Elder County, Utah, from the Development of Wind Power Plants  

Wind Powering America (EERE)

An Analysis of the Economic Impact on Box Elder County, Utah, from the Development of Wind Power Plants Nikhil Mongha, MBA, MS Carollo Engineers Cathy L. Hartman, Ph.D. Edwin R. Stafford, Ph.D. Renewable Energy for Rural Economic Development College of Business Utah State University 3560 Old Main Hill Logan, Utah 84322-3560 August 2006 DOE/GO-102006-2350 Contract No. DE-FG48-05R810736 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents

305

Impact of geothermal development on the state of Hawaii. Executive summary. Volume 7  

SciTech Connect

Questions regarding the sociological, legal, environmental, and geological concerns associated with the development of geothermal resources in the Hawaiian Islands are addressed in this summary report. Major social changes, environmental degradation, legal and economic constraints, seismicity, subsidence, changes in volcanic activity, accidents, and ground water contamination are not major problems with the present state of development, however, the present single well does not provide sufficient data for extrapolation. (ACR)

Siegel, B.Z.

1980-06-01T23:59:59.000Z

306

DOE/EIS-0303D; High-Level Waste Tank Closure Draft Environmental Impact Statement (November 2000)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EIS-0303D EIS-0303D DRAFT November 2000 Summary S-iii COVER SHEET RESPONSIBLE AGENCY: U.S. Department of Energy (DOE) TITLE: Savannah River Site, High-Level Waste Tank Closure Draft Environmental Impact Statement (DOE/EIS-0303D), Aiken, SC. CONTACT: For additional information or to submit comments on this environmental impact statement (EIS), write or call: Andrew R. Grainger, NEPA Compliance Officer U.S. Department of Energy, Savannah River Operations Office Building 742A, Room 183 Aiken, South Carolina 29802 Attention: Tank Closure EIS Local and Nationwide Telephone: (800) 881-7292 Email: nepa@srs.gov The EIS is also available on the internet at: http://tis.eh.doe.gov/nepa/docs/docs.htm For general information on the process that DOE follows in complying with the National Environmental

307

Low-cost, high-power mechanical impact transducers for sonar and acoustic through-wall surveillance applications  

E-Print Network (OSTI)

A new concept is presented for mechanical acoustic transmitters and matched resonant receivers. The lightweight, compact, and low-cost transmitters produce high-power acoustic pulses at one or more discrete frequencies with very little input power. The transducer systems are well suited for coupling acoustic pulse energy into dense media, such as walls and water. Applications of the impact transducers are discussed, including detection and tracking of humans through walls and long-duration underwater surveillance by a low-cost network of autonomous, self-recharging, battery-operated sonobuoys. A conceptual design of a sonobuoy surveillance network for harbors and littoral waters is presented. An impact-transmitter and matched-receiver system that detected human motion through thick walls with only rudimentary signal processing is described, and results are presented. Signal processing methods for increasing the signal-to-noise ratio by several tens of dB are discussed.

Felber, Franklin

2014-01-01T23:59:59.000Z

308

SunShot Initiative: Development and Productization of High-Efficiency,  

NLE Websites -- All DOE Office Websites (Extended Search)

Development and Productization of Development and Productization of High-Efficiency, Low-Cost Building-Integrated PV Shingles Using Monocrystalline Silicon Thin-Film Solar Cells to someone by E-mail Share SunShot Initiative: Development and Productization of High-Efficiency, Low-Cost Building-Integrated PV Shingles Using Monocrystalline Silicon Thin-Film Solar Cells on Facebook Tweet about SunShot Initiative: Development and Productization of High-Efficiency, Low-Cost Building-Integrated PV Shingles Using Monocrystalline Silicon Thin-Film Solar Cells on Twitter Bookmark SunShot Initiative: Development and Productization of High-Efficiency, Low-Cost Building-Integrated PV Shingles Using Monocrystalline Silicon Thin-Film Solar Cells on Google Bookmark SunShot Initiative: Development and Productization of

309

Impact of feeding flaxseed oil on delaying the development of osteoporosis in ovariectomised diabetic rats  

Science Journals Connector (OSTI)

This work is aimed to study the effect of diabetes on bone health and to evaluate the impact of feeding flaxseed oil on delaying osteoporosis. About 70 female albino rats were included; 30 were ovariectomised (ovx). Experimental diabetes was induced. Rats were classified in groups as control, sham, diabetic, diabetic received flaxseed oil in the diet, ovx, ovx-diabetic and ovx-diabetic received flaxseed oil in the diet. After two months, urine and blood samples were collected. Serum IGF-1 and osteocalcin were increased in ovx and diabetic ovx groups; their lowest levels were detected in the diabetic group. Upon adding flaxseed oil, their mean values were normalised. Urinary deoxypyridinoline was increased in diabetic group; the level was decreased as rats received flaxseed oil. Bone mineral density and content in diabetic group were reduced and normalised after receiving flaxseed oil. So, diabetes has more pronounced effect on bone health than ovariectomy, and flaxseed oil has beneficial effect on the prevention of osteoporosis.

M. Elwassef; M. Anwar; M. Harvi; M.M. Abd El-Moneim; G.S. EL-Saeed; S.I. Salem; H. Wafay

2009-01-01T23:59:59.000Z

310

For Immediate Release AUB to develop its high performance computing capacities in the  

E-Print Network (OSTI)

For Immediate Release AUB to develop its high performance computing capacities in the service steps to become a high performance computing center that will be able to process massive amounts thousands of servers. According to Wikipedia, supercomputers, or high performance computing, play

Shihadeh, Alan

311

The impact of high frequency/low energy seismic waves on unreinforced masonry  

E-Print Network (OSTI)

Traditionally, the high frequency components of earthquake loading are disregarded as a source of structural damage because of their small energy content and because their frequency is too high to resonate with the natural ...

Meyer, Patrik K. (Patrik Kristof)

2006-01-01T23:59:59.000Z

312

Assessing the cumulative impacts of surface mining and coal bed methane development on shallow aquifers in the Powder River Basin, Wyoming  

SciTech Connect

Large scale surface coal mining taken place along the cropline of the Wyodak-Anderson coal seam since approximately 1977. Groundwater impacts due to surface mining of coal and other energy-related development is a primary regulatory concern and an identified Office of Surface Mining deficiency in the Wyoming coal program. The modeled aquifers are the upper unit (coal) of the Paleocene Fort Union Formation and the overlying Eocene Wasatch Formation. A regional groundwater model covering 790 square miles was constructed using MODFLOW, to simulate the impacts from three surface coal mines and coal bed methane development occurring downdip. Assessing anisotropy of the coal aquifer, quality checking of in situ aquifer tests and database quality control were precursors to modelling. Geologic data was kriged to develop the structural model of the aquifers. A Geographic Information System (GIS) was utilized to facilitate storage, analysis, display, development of input modelling arrays and assessment of hydrologic boundaries. Model output presents the predicted impacts of likely development scenarios, including impacts from coal bed methane development and surface coal mining through anticipated life of mining, and surface mining impacts independent of gas development.

Peacock, K. [Dept. of Interior, Casper, WY (United States)

1997-12-31T23:59:59.000Z

313

Development of Designer Diamond Technology for High Pressure High Temperature Experiments in Support of Stockpile Stewardship Program  

SciTech Connect

The role of nitrogen in the fabrication of designer diamond was systematically investigated by adding controlled amount of nitrogen in hydrogen/methane/oxygen plasma. This has led to a successful recipe for reproducible fabrication of designer diamond anvils for high-pressure high-temperature research in support of stockpile stewardship program. In the three-year support period, several designer diamonds fabricated with this new growth chemistry were utilized in high-pressure experiments at UAB and Lawrence Livermore National Laboratory. The designer diamond anvils were utilized in high-pressure studies on heavy rare earth metals, high pressure melting studies on metals, and electrical resistance measurements on iron-based layered superconductors under high pressures. The growth chemistry developed under NNSA support can be adapted for commercial production of designer diamonds.

Vohra, Yogesh, K.

2009-10-28T23:59:59.000Z

314

Hawaii Energy Resource Overviews. Volume 5. Social and economic impacts of geothermal development in Hawaii  

SciTech Connect

The overview statement of the socio-economic effects of developing geothermal energy in the State of Hawaii is presented. The following functions are presented: (1) identification of key social and economic issues, (2) inventory of all available pertinent data, (3) analysis and assessment of available data, and (4) identification of what additional information is required for adequate assessment.

Canon, P.

1980-06-01T23:59:59.000Z

315

Environmental Impacts of Wind Power Development on the Population Biology of Greater Prairie-Chickens  

Energy.gov (U.S. Department of Energy (DOE))

This report summarizes the results of a seven-year, DOE-funded research project, conducted by researchers from Kansas State University and the National Wind Coordinating Collaborative, to assess the effects of wind energy development in Kansas on the population and reproduction of greater prairie chickens.

316

The impact of demographic dynamics on economic development, poverty and inequality in Mozambique  

E-Print Network (OSTI)

hand and the potential to reap the benefits of a demographic gift and higher population density to reduce Africa's high fertility levels (beyond current initiatives). In a paper on population dynamics to be much smaller and partly off-set by benefits of rising population density and urbanization along

Krivobokova, Tatyana

317

Development of a High Volume Capable Process to Manufacture High Performance Photovoltaic Cells: Cooperative Research and Development Final Report, CRADA Number CRD-08-322  

SciTech Connect

The intent of the work is for RFMD and NREL to cooperate in the development of a commercially viable and high volume capable process to manufacture high performance photovoltaic cells, based on inverted metamorphic (IMM) GaAs technology. The successful execution of the agreement will result in the production of a PV cell using technology that is capable of conversion efficiency at par with the market at the time of release (reference 2009: 37-38%), using RFMD's production facilities. The CRADA work has been divided into three phases: (1) a foundation phase where the teams will demonstrate the manufacturing of a basic PV cell at RFMD's production facilities; (2) a technology demonstration phase where the teams will demonstrate the manufacturing of prototype PV cells using IMM technology at RFMD's production facilities, and; (3) a production readiness phase where the teams will demonstrate the capability to manufacture PV cells using IMM technology with high yields, high reliability, high reproducibility and low cost.

Geisz, J. F.

2012-11-01T23:59:59.000Z

318

Impact of high energy ball milling on the nanostructure of magnetitegraphite and magnetitegraphitemolybdenum disulphide blends  

SciTech Connect

Different, partly complementary and partly redundant characterization methods were applied to study the transition of magnetite, graphite and MoS{sub 2} powders to mechanically alloyed nanostructures. The applied methods were: Transmission electron microscopy (TEM), Mssbauer spectroscopy (MS), Raman spectroscopy (RS), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The main objective was to prepare a model material providing the essential features of a typical tribofilm forming during automotive braking, and to assess the impact of different constituents on sliding behaviour and friction level. Irrespective of the initial grain size, the raw materials were transferred to a nanocrystalline structure and mixed on a nanoscopic scale during high energy ball milling. Whereas magnetite remained almost unchanged, graphite and molybdenum disulphide were transformed to a nanocrystalline and highly disordered structure. The observed increase of the coefficient of friction was attributed to a loss of lubricity of the latter ingredient due to this transformation and subsequent oxidation. - Highlights: Characterization of microstructural changes induced by high energy ball milling Assessment of the potential of different characterization methods Impact of mechanical alloying on tribological performance revealed by tests Preparation of an artificial third body resembling the one formed during braking.

sterle, W., E-mail: Werner.oesterle@bam.de [BAM Federal Institute for Materials Research and Testing, 12200 Berlin (Germany); Orts-Gil, G.; Gross, T.; Deutsch, C. [BAM Federal Institute for Materials Research and Testing, 12200 Berlin (Germany); Hinrichs, R. [Instituto de Geocincias, UFRGS, P.O. Box 15001, 91501-970 Porto Alegre (Brazil); Vasconcellos, M.A.Z. [Instituto de Fsica, UFRGS, P.O. Box 15051, 91501-970 Porto Alegre (Brazil); Zoz, H.; Yigit, D.; Sun, X. [Zoz Group, 57482 Wenden (Germany)

2013-12-15T23:59:59.000Z

319

User-Friendly Tool to Calculate Economic Impacts from Coal, Natural Gas, and Wind: The Expanded Jobs and Economic Development Impact Model (JEDI II); Preprint  

SciTech Connect

In this paper we examine the impacts of building new coal, gas, or wind plants in three states: Colorado, Michigan, and Virginia. Our findings indicate that local/state economic impacts are directly related to the availability and utilization of local industries and services to build and operate the power plant. For gas and coal plants, the economic benefit depends significantly on whether the fuel is obtained from within the state, out of state, or some combination. We also find that the taxes generated by power plants can have a significant impact on local economies via increased expenditures on public goods.

Tegen, S.; Goldberg, M.; Milligan, M.

2006-06-01T23:59:59.000Z

320

New developments in high resolution borehole seismology and their applications to reservoir development and management  

SciTech Connect

Single-well seismology, Reverse Vertical Seismic Profiles (VSP`s) and Crosswell seismology are three new seismic techniques that we jointly refer to as borehole seismology. Borehole seismic techniques are of great interest because they can obtain much higher resolution images of oil and gas reservoirs than what is obtainable with currently used seismic techniques. The quality of oil and gas reservoir management decisions depend on the knowledge of both the large and the fine scale features in the reservoirs. Borehole seismology is capable of mapping reservoirs with an order of magnitude improvement in resolution compared with currently used technology. In borehole seismology we use a high frequency seismic source in an oil or gas well and record the signal in the same well, in other wells, or on the surface of the earth.

Paulsson, B.N.P. [Chevron Petroleum Technology Company, La Habra, CA (United States)

1997-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "developing high impact" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

The Impact of Collaborative Literacy Coaching on Middle and High School Teachers' Personal and General Sense of Efficacy for Literacy Teaching  

E-Print Network (OSTI)

The purpose of this qualitative multiple participant case study was to understand the impact of a nine month collaborative literacy coaching (CLC) initiative on middle and high school content teachers' personal and general ...

Howe, Kathleen Schmiedeler

2012-05-31T23:59:59.000Z

322

Development of a High-Pressure/High-Temperature Downhole Turbine Generator  

SciTech Connect

The objective of this project as originally outlined has been to achieve a viable downhole direct current (DC) power source for extreme high pressure, high temperature (HPHT) environments of >25,000 psi and >250 C. The Phase I investigation posed and answered specific questions about the power requirements, mode of delivery and form factor the industry would like to see for downhole turbine generator tool for the HPHT environment, and noted specific components, materials and design features of that commercial system that will require upgrading to meet the HPHT project goals. During the course of Phase I investigation the scope of the project was HPHT downhole DC power. Phase I also investigated the viability of modifying a commercial expanded, without additional cost expected to the project, to include the addition of HT batteries to the power supply platform.

Timothy F. Price

2007-02-01T23:59:59.000Z

323

Impact of water resource development on the hydrology and sedimentology of the Brazos River system  

E-Print Network (OSTI)

. Christopher C. Mathewson Major dam and reservoir development within the Brazos River Basin is correlative with a significant decrease in the suspended sediment load of the river and with increased coastal erosion rates near the delta. A hydrologic analysis... Interval 1: 1920' s ? 41. Interval 2: 1942 ? 51. . . . . . . ~ . . - - ~ ~ ~ ~ ~ ~ - ~ ~ Interval 5: 1952 ? 74. Interval 4: 1942 ? 74. Discharge Control During Flood Stages 20 25 25 25 51 54 54 SEDIMENTOLOGY. Suspended Load. Bed Load. Coastal...

Minter, Larry Lane

1976-01-01T23:59:59.000Z

324

Development of High-Temperature/High-Sensitivity Novel Chemical Resistive Sensor  

NLE Websites -- All DOE Office Websites (Extended Search)

Temperature/ Temperature/ High-Sensitivity Novel Chemical Resistive Sensor Background The Historically Black Colleges and Universities and Other Minority Institutions (HBCU/OMI) Program provides a mechanism for cooperative research among these institutions, the private sector, and the U.S. Department of Energy (DOE) Office of Fossil Energy. The program provides for the exchange of technical information to raise the overall level of HBCU/OMI competitiveness with other institutions in the field of fossil

325

The impact of high-frequency sedimentation cycles on stratigraphic interpretation  

SciTech Connect

Global cyclostratigraphy, a methodology that utilizes climate change to evaluate sediment flux, characterizes the impact of sediment cycles on stratigraphy. Climatic succession, sediment yield cycles, and the phase relationship of sediment cycles to eustatic cycles are all determined in the early stages of basin analysis. Sedimentologic information is then used to assist in sequence evaluations. Climatic successions are intrinsically associated with global position (paleogeography) and are not necessarily synchronous with glacioeustatic sea-level cycles. A preliminary evaluation of the effect of climate on sediment supply from modem river systems indicates that sediment yield may vary by well over two orders of magnitude during one climate cycle. Consequently, basins in different climatic belts can have distinctly different volumes and lithologies for systems tracts that have similar base-level changes. The stratigraphic computer program Sedpak was utilized to examine the possible impact of different sedimentation cycles on sequence interpretation and reservoir forecasts. The effect of sedimentation cycles on reservoir distribution in real world sequences is demonstrated with a comparison of the Miocene section of the Surma basin, Bangladesh, and the Plio-Pleistocene section of the Gulf of Mexico. In the Surma basin, reservoirs are most likely to occur in transgressive and highstand systems tracts, while reservoirs in the Gulf of Mexico are more likely in lowstand prograding complexes.

Perlmutter, M.A. [Argonne National Lab., IL (United States); Radovich, B.J.; Matthews, M.D. [Texaco Central Exploration Division, Bellaire, TX (United States)] [and others

1997-01-01T23:59:59.000Z

326

Performance of the online track reconstruction and impact on hadronic triggers at the CMS High Level Trigger  

E-Print Network (OSTI)

The trigger systems of the LHC detectors play a crucial role in determining the physics capabilities of the experiments. A reduction of several orders of magnitude of the event rate is needed to reach values compatible with the detector readout, offline storage and analysis capabilities. The CMS experiment has been designed with a two-level trigger system: the Level 1 (L1) Trigger, implemented on custom-designed electronics, and the High Level Trigger (HLT), a streamlined version of the CMS reconstruction and analysis software running on a computer farm. The software-base HLT requires a trade-off between the complexity of the algorithms, the sustainable output rate, and the selection efficiency. This is going to be even more challenging during Run II, with a higher centre-of-mass energy, a higher instantaneous luminosity and pileup, and the impact of out-of-time pileup due to the 25 ns bunch spacing. The online algorithms need to be optimised for such a complex environment in order to keep the output rate under control without impacting the physics efficiency of the online selection. Tracking, for instance, will play an even more important role in the event reconstruction. In this poster we will present the performance of the online track and vertex reconstruction algorithms, and their impact on the hadronic triggers that make use of b-tagging and of jets reconstructed with the Particle Flow technique. We will show the impact of these triggers on physics performance of the experiment, and the latest plans for improvements in view of the Run II data taking in 2015.

Valentina Gori

2014-09-09T23:59:59.000Z

327

Structural impacts of the 1985 farm bill on typical farms in the Texas Southern High Plains and delta region of Mississippi  

E-Print Network (OSTI)

STRUCTURAL IMPACTS OF THK 1985 FARM BILL ON TYPICAL FARMS IN THK TEXAS SOUTHERN HIGH PLAINS AND DELTA REGION OF MISSISSIPPI A Thesis by CHARLES FREDERICK MILLER Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE August 1988 Major Subject: Agricultural Economics STRUCTURAL IMPACTS OF THE 1985 FARM BILL ON TYPICAL FARMS IN THE TEXAS SOUTHERN HIGH PLAINS AND DELTA REGION OF MISSISSIPPI A Thesis by CHARLES FREDERICK...

Miller, Charles Frederick

2012-06-07T23:59:59.000Z

328

THE RADIOLOGICAL IMPACT OF HIGH-ENERGY ACCELERATORS ON THE ENVIRONMENT  

E-Print Network (OSTI)

High-Energy Accelerators . . 3.1 Introduction . . . .Energy Accelerators . . 4.1 Introduction . . . . . . .Produced in Air by Accelerator Operation . (a) Radionuclides

Thomas, R.H.

2011-01-01T23:59:59.000Z

329

Manganese and Ceria Sorbents for High Temperature Sulfur Removal from Biomass-Derived Syngas -- The Impact of Steam on Capacity and Sorption Mode  

SciTech Connect

Syngas derived from biomass and coal gasification for fuel synthesis or electricity generation contains sulfur species that are detrimental to downstream catalysts or turbine operation. Sulfur removal in high temperature, high steam conditions has been known to be challenging, but experimental reports on methods to tackle the problem are not often reported. We have developed sorbents that can remove hydrogen sulfide from syngas at high temperature (700 C), both in dry and high steam conditions. The syngas composition chosen for our experiments is derived from statistical analysis of the gasification products of wood under a large variety of conditions. The two sorbents, Cu-ceria and manganese-based, were tested in a variety of conditions. In syngas containing steam, the capacity of the sorbents is much lower, and the impact of the sorbent in lowering H{sub 2}S levels is only evident in low space velocities. Spectroscopic characterization and thermodynamic consideration of the experimental results suggest that in syngas containing 45% steam, the removal of H{sub 2}S is primarily via surface chemisorptions. For the Cu-ceria sorbent, analysis of the amount of H{sub 2}S retained by the sorbent in dry syngas suggests both copper and ceria play a role in H{sub 2}S removal. For the manganese-based sorbent, in dry conditions, there is a solid state transformation of the sorbent, primarily into the sulfide form.

Cheah, S.; Parent, Y. O.; Jablonski, W. S.; Vinzant, T.; Olstad, J. L.

2012-07-01T23:59:59.000Z

330

Record of Decision for the Disposition of Surplus Highly Envirched Uranium Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

19 19 Federal Register / Vol. 61, No. 151 / Monday, August 5, 1996 / Notices contact: Carol M. Borgstrom, Director, Office of NEPA Policy and Assistance (EH-42), U.S. Department of Energy, 1000 Independence Avenue, S.W., Washington, D.C. 20585, Telephone: 202-586-4600 or leave a message at 800-472-2756. SUPPLEMENTARY INFORMATION: On July 17, 1996, the Department published a notice in the Federal Register (61 FR 37247) announcing its intent to prepare an environmental impact statement for interim storage of plutonium at the RFETS and the commencement of a public scoping period that was to continue until August 16, 1996. The July 17, 1996, notice also announced a public scoping meeting scheduled for August 6, 1996. In response to a stakeholder's request, the Department is rescheduling the public scoping meeting

331

Idaho High-Level Waste & Facilities Disposition, Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Impact Statement: A detailed environmental analysis for any proposed major Federal action that could significantly affect the quality of the human environment. A tool to assist in decision-making, it describes the positive and negative environmental effects of the proposed undertaking and alternatives. A draft EIS is issued, followed by a final EIS. Scoping: An early and open process in which the public is invited to participate in identi- fying issues and alternatives to be con- sidered in this EIS. DOE allows a minimum of 30 days for the receipt of public comments. Alternatives: A range of courses of action that would meet the agency's purpose and need for action. NEPA requires that an EIS con- sider a No Action Alternative. Comment Period: A regulatory minimum 45-day

332

The impact of tourism, development, and religious change on the Highland Maya community of Santa Cruz La Laguna, Lake Atitlan, Guatemala  

E-Print Network (OSTI)

in partial fulfillment of the requirements for the degree of MASTER OF ARTS August 1993 Major Subject: Anthropology THE IMPACT OF TOURISM, DEVELOPMENT, AND RELIGIOUS CHANGE ON THE HIGHLAND MAYA COMMUNITY OF SANTA CRUZ LA LAGUNA, LAKE ATITLAN, GUATEMALA... A Thesis by LISA ANNE SCHAUMANN Approved as to style and content by: ncan N. Earle (Chair of Committee) or rt Dannhaeuse (Member) Jonathan Smith (Member) Vaughn M. B nt (Head of Department) August 1993 ABSTRACT The Impact of Tourism...

Schaumann, Lisa Anne

2012-06-07T23:59:59.000Z

333

Bakerian Lecture. Some Problems in Connexion with the Development of a High Speed Diesel Engine  

Science Journals Connector (OSTI)

27 May 1948 research-article Bakerian Lecture. Some Problems in Connexion with the Development of a High Speed Diesel Engine H. R. Ricardo The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to Proceedings...

1948-01-01T23:59:59.000Z

334

A lean enterprise approach for developing high speed rail in Japan and Portugal  

E-Print Network (OSTI)

This thesis explores and evaluates the application of the lean enterprise concept to the expansion and development of the high speed railway industry in Japan. The basic idea of the lean enterprise is increasing value-added ...

Iwamura, Nobuhiro

2007-01-01T23:59:59.000Z

335

Development of High-Throughput Microfluidic Impedance Spectroscopy Platform for Analyzing Microdroplets in Droplet Microfluidic System  

E-Print Network (OSTI)

This thesis presents the development of a high-throughput microfluidic impedance spectroscopy platform for electrically detecting analyzing impedance measurements of non-contact and label free microdroplets. This microfluidic impedance spectroscopy...

Sobahi, Nebras MohammedKamal A.

2014-07-22T23:59:59.000Z

336

Project Profile: High-Temperature Solar Selective Coating Development for Power Tower Receivers  

Energy.gov (U.S. Department of Energy (DOE))

Sandia National Laboratories (SNL), under the National Laboratory R&D competitive funding opportunity, is developing, characterizing, and refining advanced solar-selective coatings with high solar-weighted absorptivity (a > 0.95) and low emittance (e

337

Development of High-Capacity Desalination Plant Driven by Offshore Wind Turbine  

Science Journals Connector (OSTI)

This paper presents a development of the desalination plant based on the concept of the Wind Energy Marine Unit (WEMU) which is the high-capacity offshore wind turbine with the floating rotor. The great potential...

Valery V. Cheboxarov; Victor V. Cheboxarov

2009-01-01T23:59:59.000Z

338

Economic Development Impacts in Colorado from Four Vestas Manufacturing Facilities, Wind Powering America Fact Sheet Series  

SciTech Connect

This case study summarizes the economic development benefits to Colorado from four Vestas manufacturing facilities: one in Windsor, two in Brighton, and one in Pueblo (which is planned to be the world's largest tower-manufacturing facility). In the midst of an economic slowdown during which numerous U.S. manufacturers have closed their doors, wind energy component manufacturing is one U.S. industry that has experienced unprecedented growth during the past few years. As demand for wind power in the United States has increased and transportation costs have increased around the world, states have seen a significant increase in the number of manufacturers that produce wind turbine components in the United States. Vestas' Colorado operations will bring approximately $700 million in capital investment and nearly 2,500 jobs to the state.

Not Available

2009-04-01T23:59:59.000Z

339

Development of a High Pressure/High Temperature Down-hole Turbine Generator  

SciTech Connect

As oil & natural gas deposits become more difficult to obtain by conventional means, wells must extend to deeper more heat-intensive environments. The technology of the drilling equipment required to reach these depths has exceeded the availability of electrical power sources needed to operate these tools. Historically, logging while drilling (LWD) and measure while drilling (MWD) devices utilized a wireline to supply power and communication from the operator to the tool. Lithium ion batteries were used in scenarios where a wireline was not an option, as it complicated operations. In current downhole applications, lithium ion battery (LIB) packs are the primary source for electrical power. LIB technology has been proven to supply reliable downhole power at temperatures up to 175 C. Many of the deeper well s reach ambient temperatures above 200 C, creating an environment too harsh for current LIB technology. Other downfalls of LIB technology are cost, limitations on charge cycles, disposal issues and possible safety hazards including explosions and fires. Downhole power generation can also be achieved by utilizing drilling fluid flow and converting it to rotational motion. This rotational motion can be harnessed to spin magnets around a series of windings to produce power proportional to the rpm experienced by the driven assembly. These generators are, in most instances, driven by turbine blades or moyno-based drilling fluid pumps. To date, no commercially available downhole power generators are capable of operating at ambient temperatures of 250 C. A downhole power g enerator capable of operation in a 250 C and 20,000 psi ambient environment will be an absolute necessity in the future. Dexter Magnetic Technologies High-Pressure High-Temperature (HPHT) Downhole Turbine Generator is capable of operating at 250 C and 20, 000 psi, but has not been tested in an actual drilling application. The technology exists, but to date no company has been willing to test the tool.

Ben Plamp

2008-06-30T23:59:59.000Z

340

Production of High Purity Hydrogen from Domestic Coal: Assessing the Techno-Economic Impact of Emerging Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Production of High Purity Production of High Purity Hydrogen from Domestic Coal: Assessing the Techno-Economic Impact of Emerging Technologies August 30, 2010 DOE/NETL-2010/1432 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States (U.S.) government. Neither the U.S., nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily

Note: This page contains sample records for the topic "developing high impact" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Request for Information: High Impact Commercial Building Technology Deployment (DE-FOA-0001086)  

Energy.gov (U.S. Department of Energy (DOE))

Closed Deadline: May 30, 2014 This RFI seeks information regarding the development and maintenance of new and existing tools, specifications, case studies and other resources actively deployed by the Commercial Buildings Integration program.

342

Forcing and Sampling of Ocean General Circulation Models: Impact of High-Frequency Motions  

Science Journals Connector (OSTI)

Significant inertial oscillations are present in all primitive equation ocean general circulation models when they are forced with high-frequency (period order of days) wind stress fields. At specific latitudes the energy of the wind stress ...

Steven R. Jayne; Robin Tokmakian

1997-06-01T23:59:59.000Z

343

High performance steam development. Final report, Phase No. 3: 1500{degree}F steam plant for industrial cogeneration prototype development tests  

SciTech Connect

As a key part of DOE`s and industry`s R&D efforts to improve the efficiency, cost, and emissions of power generation, a prototype High Performance Steam System (HPSS) has been designed, built, and demonstrated. The world`s highest temperature ASME Section I coded power plant successfully completed over 100 hours of development tests at 1500{degrees}F and 1500 psig on a 56,000 pound per hour steam generator, control valve and topping turbine at an output power of 5500 hp. This development advances the HPSS to 400{degrees}F higher steam temperature than the current best technology being installed around the world. Higher cycle temperatures produce higher conversion efficiencies and since steam is used to produce the large majority of the world`s power, the authors expect HPSS developments will have a major impact on electric power production and cogeneration in the twenty-first century. Coal fueled steam plants now produce the majority of the United States electric power. Cogeneration and reduced costs and availability of natural gas have now made gas turbines using Heat Recovery Steam Generators (HRSG`s) and combined cycles for cogeneration and power generation the lowest cost producer of electric power in the United States. These gas fueled combined cycles also have major benefits in reducing emissions while reducing the cost of electricity. Development of HPSS technology can significantly improve the efficiency of cogeneration, steam plants, and combined cycles. Figure 2 is a TS diagram that shows the HPSS has twice the energy available from each pound of steam when expanding from 1500{degrees}F and 1500 psia to 165 psia (150 psig, a common cogeneration process steam pressure). This report describes the prototype component and system design, and results of the 100-hour laboratory tests. The next phase of the program consists of building up the steam turbine into a generator set, and installing the power plant at an industrial site for extended operation.

Duffy, T.; Schneider, P.

1996-01-01T23:59:59.000Z

344

The GridPACK toolkit for developing power grid simulations on high performance computing platforms  

Science Journals Connector (OSTI)

This paper describes the GridPACK framework, which is designed to help power grid engineers develop modeling software capable of running on high performance computers. The framework contains modules for setting up distributed power grid networks, ... Keywords: electric power grid, high performance computing, software frameworks

Bruce Palmer; William Perkins; Kevin Glass; Yousu Chen; Shuangshuang Jin; David Callahan

2013-11-01T23:59:59.000Z

345

Development of a Beowulf-Class High Performance Computing System for Computational Science Applications  

E-Print Network (OSTI)

Using Beowulf cluster computing technology, the Ateneo High Performance Computing Group has developed a high performance computing system consisting of eight compute nodes. Called the AGILA HPCS this Beowulf cluster computer is designed for computational science applications. In this paper, we present the motivation for the AGILA HPCS and some results on its performance evaluation.

Rafael Saldaa; Jerrold Garcia; Felix Muga Ii; William Yu

2001-01-01T23:59:59.000Z

346

Impact of high-energy nuclear data on radioprotection in spallation sources  

Science Journals Connector (OSTI)

......the neutron spectrum, which is...spallation neutron sources and...problems induced by high-energy reactions...low-energy neutron fluxes...tail in the spectrum of neutrons...evaporation-fission models...leading to a thermal flux of 3......

S. Leray; A. Boudard; J. C. David; L. Donadille; C. Villagrasa; C. Volant

2005-12-20T23:59:59.000Z

347

Impacts of Microphysical Scheme on Convective and Stratiform Characteristics in Two High Precipitation Squall Line Events  

SciTech Connect

This study investigates the impact of snow, graupel, and hail processes on the simulated squall lines over the Southern Great Plains in the United States. Weather Research and Forecasting (WRF) model is used to simulate two squall line events in May 2007, and the results are validated against radar and surface observations in Oklahoma. Several microphysics schemes are tested in this study, including WRF 5-Class Microphysics Scheme (WSM5), WRF 6-Class Microphysics Scheme (WSM6), Goddard Three Ice scheme (Goddard 3-ice) with graupel, Goddard Two Ice scheme (Goddard 2-ice), and Goddard 3-ice hail scheme. The simulated surface precipitation is sensitive to the microphysics scheme, and especially to whether graupel or hail category is included. All of the three ice (3-ice) schemes overestimated the total precipitation, within which WSM6 has the highest overestimation. Two ice (2-ice) schemes, missing a graupel/hail category, produced less total precipitation than 3-ice schemes. By applying a radar-based convective/stratiform partitioning algorithm, we find that by including the graupel/hail processes, there is an increase in areal coverage, precipitation intensity, updraft and downdraft intensity in convective region and a reduction of areal coverage and its precipitation intensity in stratiform region. For vertical structures, all the bulk schemes, especially 2-ice schemes, have the highest reflectivity located at upper levels (~8 km), which is unrealistic compared to observations. In addition, this study shows the radar-based convective/stratiform partitioning algorithm can reasonably identify WRF simulated precipitation, wind and microphysics fields in both convective and stratiform regions.

Wu, Di; Dong, Xiquan; Xi, Baike; Feng, Zhe; Kennedy, Aaron; Mullendore, Gretchen; Gilmore, Matthew; Tao, Wei-Kuo

2013-10-04T23:59:59.000Z

348

Thermal and radiative AGN feedback : weak impact on star formation in high-redshift disk galaxy simulations  

E-Print Network (OSTI)

Active Galactic Nuclei (AGNs) release huge amounts of energy in their host galaxies, which, if the coupling is sufficient, can affect the interstellar medium (ISM). We use a high-resolution simulation ($\\sim6$ pc) of a z $\\sim2$ star-forming galaxy hosting an AGN, to study this not yet well-understood coupling. In addition to the often considered small-scale thermal energy deposition by the AGN, which is implemented in the simulation, we model long-range photo-ionizing AGN radiation in post-processing, and quantify the impact of AGN feedback on the ability of the gas to form stars. Surprisingly, even though the AGN generates powerful outflows, the impact of AGN heating and photo-ionization on instantaneous star formation is weak: the star formation rate decreases by a few percent at most, even in a quasar regime ($L_{bol}=10^{46.5}$ erg s$^{-1}$). Furthermore, the reservoirs of atomic gas that are expected to form stars on a 100 - 200 Myrs time scale are also marginally affected. Therefore, while the AGN-driv...

Roos, Orianne; Bournaud, Frdric; Gabor, Jared

2014-01-01T23:59:59.000Z

349

Oil vulnerability in the greater Toronto area: impacts of high fuel prices on urban form and environment  

Science Journals Connector (OSTI)

The rising cost of fossil fuel is a recognized phenomenon, but its impact ... . Understanding how the socioeconomic impacts of rising fuel prices might be distributed across urban areas is...2007...)] by incorpor...

S. Akbari; K. Nurul Habib

2014-08-01T23:59:59.000Z

350

Assessment of the impact on crops of effluent gases from geothermal energy development in the Imperial Valley, California  

SciTech Connect

We have assessed the potential impact of regionally dispersed sources of geothermal gaseous effluents on crops in the Imperial Valley. We used a detailed model of the photosynthesis and growth of sugar beets fumigated by H/sub 2/S and CO/sub 2/ and generalized from the model calculations to other crops. Model calculations were made with estimates of time series of expected ground-level concentrations of H/sub 2/S and CO/sub 2/ calculated by the Air Quality Assessment element of the Imperial Valley Environmental Project (IVEP) at 22 locations around the valley. Results indicate that in the absence of interactions with other ambient pollutant gases, all locations would experience an increase (from slight to significant) in total growth of sugar beets. Seven locations will experience an increase of at least 10%. We calculated the emissions rate at which negative effects cancel out the benefits of H/sub 2/S fertilization; in the worst case, emission rates are expected to be no more than 1/13 this crossover rate. The expected emission rate will be less than that necessary for negative effects on the most sensitive species (such as alfalfa) by a factor of 4. Similar results for other crops are summarized in the report. If CO/sub 2/ emissions are increased proportionately, the dominance of deleterious effects is not expected to occur even under maximum development as set forth in IVEP scenario projections. 23 references, 8 figures, 6 tables.

Kercher, J.R.

1981-05-22T23:59:59.000Z

351

Development of Alternative and Durable High Performance Cathode Supports for PEM Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Alternative and Durable High Alternative and Durable High Performance Cathode Supports for PEM Fuel Cells Development of Alternative and Durable High Development of Alternative and Durable High Performance Cathode Supports for PEM Fuel Cells Performance Cathode Supports for PEM Fuel Cells PNNL: Yong Wang Conrad Zhang Vilayanur Viswanath Yuehe Lin Jun Liu Project kick Project kick - - off meeting off meeting Feb 13 Feb 13 - - 14, 2007 14, 2007 Ballard Power Systems: Stephen Campbell University of Delaware: Jingguang Chen ORNL: Sheng Dai 2 Technical Issues and Objective Technical Issues and Objective Current technical issues z Carbon support „ Susceptible to oxidation under fuel cell operating conditions. „ Oxidation further catalyzed by Pt „ Corrosion leads to Pt migration and agglomeration

352

Fundamental understanding and development of low-cost, high-efficiency silicon solar cells  

SciTech Connect

The overall objectives of this program are (1) to develop rapid and low-cost processes for manufacturing that can improve yield, throughput, and performance of silicon photovoltaic devices, (2) to design and fabricate high-efficiency solar cells on promising low-cost materials, and (3) to improve the fundamental understanding of advanced photovoltaic devices. Several rapid and potentially low-cost technologies are described in this report that were developed and applied toward the fabrication of high-efficiency silicon solar cells.

ROHATGI,A.; NARASIMHA,S.; MOSCHER,J.; EBONG,A.; KAMRA,S.; KRYGOWSKI,T.; DOSHI,P.; RISTOW,A.; YELUNDUR,V.; RUBY,DOUGLAS S.

2000-05-01T23:59:59.000Z

353

Development and evaluation of systems for controlling parallel high di/dt thyratrons  

SciTech Connect

Increasing numbers of high power, high repetition rate applications dictate the use or thyratrons in multiple of hard parallel configurations to achieve the required rate of current rise, di/dt. This in turn demands the development of systems to control parallel thyratron commutation with nanosecond accuracy. Such systems must be capable of real-time, fully-automated control in multi-kilohertz applications while still remaining cost effective. This paper describes the evolution of such a control methodology and system.

Litton. A.; McDuff, G.

1982-01-01T23:59:59.000Z

354

Modification of Corn Starch Ethanol Refinery to Efficiently Accept Various High-Impact Cellulosic Feedstocks  

SciTech Connect

The goal of the Corn-to-Cellulosic Migration (CCM) pilot facility was to demonstrate the implementation of advanced technologies and methods for conversion of non-food, cellulosic feedstocks into ethanol, assess the economics of the facility and evaluate potential environmental benefits for biomass to fuels conversion. The CCM project was comprised of design, build, and operate phases for the CCM pilot facility as well as research & development, and modeling components. The CCM pilot facility was designed to process 1 tonne per day of non-food biomass and biologically convert that biomass to ethanol at a rate of 70 gallons per tonne. The plant demonstrated throughputs in excess of 1 tonne per day for an extended run of 1400 hours. Although target yields were not fully achieved, the continuous operation validated the design and operability of the plant. These designs will permit the design of larger scale operations at existing corn milling operations or for greenfield plants. EdeniQ, a partner in the project and the owner of the pilot plant, continues to operate and evaluate other feedstocks.

Derr, Dan

2013-12-30T23:59:59.000Z

355

Idaho High-Level Waste & Facilities Disposition, Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Appendix A Appendix A Site Evaluation Process A-iii DOE/EIS-0287 Idaho HLW & FD EIS TABLE OF CONTENTS Section Page Appendix A Site Evaluation Process A-1 A.1 Introduction A-1 A.2 Methodology A-1 A.3 High-Level Waste Treatment and Interim Storage Site Selection A-3 A.3.1 Identification of "Must" Criteria A-3 A.3.2 Identification of "Want" Criteria A-3 A.3.3 Identification of Candidate Sites A-3 A.3.4 Evaluation Process A-4 A.3.5 Results of Evaluation Process A-6 A.4 Low-Activity Waste Disposal Site Selection A-6 A.4.1 Identification of "Must" Criteria A-7 A.4.2 Identification of "Want" Criteria A-8 A.4.3 Identification of Candidate Sites A-8 A.4.4 Evaluation Process A-8 A.4.5 Results of Evaluation Process A-9 A.4.6 Final Selection of a Low-Activity Waste Disposal Facility

356

he Impact of Primary Marine Aerosol on Atmospheric Chemistry, Radiation and Climate: A CCSM Model Development Study  

SciTech Connect

This project examined the potential large-scale influence of marine aerosol cycling on atmospheric chemistry, physics and radiative transfer. Measurements indicate that the size-dependent generation of marine aerosols by wind waves at the ocean surface and the subsequent production and cycling of halogen-radicals are important but poorly constrained processes that influence climate regionally and globally. A reliable capacity to examine the role of marine aerosol in the global-scale atmospheric system requires that the important size-resolved chemical processes be treated explicitly. But the treatment of multiphase chemistry across the breadth of chemical scenarios encountered throughout the atmosphere is sensitive to the initial conditions and the precision of the solution method. This study examined this sensitivity, constrained it using high-resolution laboratory and field measurements, and deployed it in a coupled chemical-microphysical 3-D atmosphere model. First, laboratory measurements of fresh, unreacted marine aerosol were used to formulate a sea-state based marine aerosol source parameterization that captured the initial organic, inorganic, and physical conditions of the aerosol population. Second, a multiphase chemical mechanism, solved using the Max Planck Institute for Chemistry??s MECCA (Module Efficiently Calculating the Chemistry of the Atmosphere) system, was benchmarked across a broad set of observed chemical and physical conditions in the marine atmosphere. Using these results, the mechanism was systematically reduced to maximize computational speed. Finally, the mechanism was coupled to the 3-mode modal aerosol version of the NCAR Community Atmosphere Model (CAM v3.6.33). Decadal-scale simulations with CAM v.3.6.33, were run both with and without reactive-halogen chemistry and with and without explicit treatment of particulate organic carbon in the marine aerosol source function. Simulated results were interpreted (1) to evaluate influences of marine aerosol production on the microphysical properties of aerosol populations and clouds over the ocean and the corresponding direct and indirect effects on radiative transfer; (2) atmospheric burdens of reactive halogen species and their impacts on O3, NOx, OH, DMS, and particulate non-sea-salt SO42-; and (3) the global production and influences of marine-derived particulate organic carbon. The model reproduced major characteristics of the marine aerosol system and demonstrated the potential sensitivity of global, decadal-scale climate metrics to multiphase marine-derived components of Earth??s troposphere. Due to the combined computational burden of the coupled system, the currently available computational resources were the limiting factor preventing the adequate statistical analysis of the overall impact that multiphase chemistry might have on climate-scale radiative transfer and climate.

Keene, William C. [University of Virginia] [University of Virginia; Long, Michael S. [University of Virginia] [University of Virginia

2013-05-20T23:59:59.000Z

357

Development and Testing of a High Capacity Plasma Chemical Reactor in the Ukraine  

SciTech Connect

This project, Development and Testing of a High Capacity Plasma Chemical Reactor in the Ukraine was established at the Kharkiv Institute of Physics and Technology (KIPT). The associated CRADA was established with Campbell Applied Physics (CAP) located in El Dorado Hills, California. This project extends an earlier project involving both CAP and KIPT conducted under a separate CRADA. The initial project developed the basic Plasma Chemical Reactor (PCR) for generation of ozone gas. This project built upon the technology developed in the first project, greatly enhancing the output of the PCR while also improving reliability and system control.

Reilly, Raymond W.

2012-07-30T23:59:59.000Z

358

Early NYC High School Physics and Development of the Science Magnet School  

Science Journals Connector (OSTI)

The Bronx High School of Science opened in 1938 and is often considered the premier science magnet school in the country. While Bronx High may be one of the most successful science magnet schools it was not the first such school even in New York City. It owes its existence almost entirely to the development of the science magnet program in an earlier New York City school Stuyvesant High School in Manhattan and in particular to one of its early principals physicist Dr. Ernest R. von Nardroff (18641938).

Walter Hellman

2005-01-01T23:59:59.000Z

359

DEVELOPMENT OF A HIGH BRIGHTNESS ELECTRON GUN FOR THE ACCELERATOR TEST FACILITY AT BROOKHAVEN NATIONAL LABORATORY*  

E-Print Network (OSTI)

954 DEVELOPMENT OF A HIGH BRIGHTNESS ELECTRON GUN FOR THE ACCELERATOR TEST FACILITY AT BROOKHAVEN, New York 11973 and K. McDonald Princeton [Jniversity Abstract An electron gun utilizing a radio). Here we report on the de;$n of the electron gun which will provide r.f. bunches of up to 10 electrons

McDonald, Kirk

360

Prospects for accelerated development of high performance structural materials Steven J. Zinkle a,  

E-Print Network (OSTI)

in the operational per- formance and radiation resistance of structural materials during the past few decadesProspects for accelerated development of high performance structural materials Steven J. Zinkle a for fission and fusion energy applica- tions, by linking material fabrication to thermo-mechanical properties

Ghoniem, Nasr M.

Note: This page contains sample records for the topic "developing high impact" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Development of a super high speed motor-generator and controller  

Science Journals Connector (OSTI)

To develop a super high speed motor-generator it is essential to deal with magnetic analysis dynamic analysis and experimental evaluation of the heart of the MTG (Microturbine Generator) system the motor-generator. An amorphous core is applied to a stator core for reduction of iron loss at high speed and the motor-generator is analyzed with considerations focused on magnetic losses and the statistical optimum design. The performance of the amorphous core is validated by the analysis and experiment by back-to-back tests considering the AC load. Rotor dynamics is performed for dynamic stability at high speed using transient analysis orbit diagrams and compared with the experimental results. The simulation results of the generator are compared with the experiment. Also a super high speed controller of the MTG system is developed using a sensorless algorithm power stack gate driver digital signal processing analog circuit and radiation heat design. Based on these results a high speed motor-generator and controller are successfully developed.

Do-Kwan Hong; Min-Hyuk Ahn; Dae-Suk Joo

2014-01-01T23:59:59.000Z

362

Development of a super high speed motor-generator and controller  

SciTech Connect

To develop a super high speed motor-generator, it is essential to deal with magnetic analysis, dynamic analysis, and experimental evaluation of the heart of the MTG (Microturbine Generator) system, the motor-generator. An amorphous core is applied to a stator core for reduction of iron loss at high speed, and the motor-generator is analyzed with considerations focused on magnetic losses and the statistical optimum design. The performance of the amorphous core is validated by the analysis and experiment by back-to-back tests considering the AC load. Rotor dynamics is performed for dynamic stability at high speed using transient analysis orbit diagrams and compared with the experimental results. The simulation results of the generator are compared with the experiment. Also a super high speed controller of the MTG system is developed using a sensorless algorithm, power stack, gate driver, digital signal processing, analog circuit, and radiation heat design. Based on these results, a high speed motor-generator and controller are successfully developed.

Hong, Do-Kwan, E-mail: dkhong@keri.re.kr; Ahn, Min-Hyuk; Joo, Dae-Suk; Woo, Byung-Chul; Koo, Dae-Hyun [Korea Electrotechnology Research Institute, Changwon 641-120 (Korea, Republic of)

2014-05-07T23:59:59.000Z

363

Current status and future development of coated fuel particles for high temperature gas-cooled reactors  

Science Journals Connector (OSTI)

The coated particles were first invented by Roy Huddle in Harwell 1957. Through five decades of development, the German UO2 coated particle and US LEU UCO coated particle represent the highly successful coated particle designs up to now. In this paper, current status as well as the failure mechanisms of coated particle so far is reviewed and discussed. The challenges associated with high temperatures for coated particles applied in future VHTR are evaluated. And future development prospects of advanced coated particle suited for higher temperatures are presented. According to the past coated fuel particle development experience, it is unwise to make multiple simultaneous changes in the coated particle design. Two advanced designs which are modifications of standard German UO2 coated particle (UO2? herein) and US UCO coated particle (TRIZO) are promising and feasible under the world-wide cooperations and efforts.

X.W. Zhou; C.H. Tang

2011-01-01T23:59:59.000Z

364

Assessment of the impact on crops of effluent gases from geothermal energy development in the Imperial Valley, California  

SciTech Connect

The potential impact of regionally dispersed sources of geothermal gaseous effluents on crops in the Imperial Valley was assessed. A detailed model of the photosynthesis and growth of sugar beets fumigated by H/sub 2/S and CO/sub 2/ and generalized from the model calculations to other crops was used. Model calculations were made with estimates of time series of expected ground-level concentrations of H/sub 2/S and CO/sub 2/ calculated by the air quality assessment element of the Imperial Valley Environmental Project (IVEP) at 22 locations around the valley. The model calculations also used time series data of meteorological variables such as air temperature, solar radiation, and relative humidity, which were measured by the air quality baseline element in the field of the Imperial Valley. Results indicate that, in the absence of interactions with other ambient pollutant gases, all location would experience an increase (from slight to significant) in total growth of sugar beets. Seven locations will experience an increase of at least 10%. The emissions rate at which negative effects cancel out the benefits of H/sub 2/S fertilization was calculated; in the worst case, emission rates are expected to be no more than 1/13 of this crossover rate. The expected emission rate will be less than that necessary for negative effects on the most sensitive species (such as alfalfa) by a factor of 4. Similar results for other crops are summarized in the report. If CO/sub 2/ emissions are increased proportionately, the dominance of deleterious effects is not expected to occur, even under maximum development as set forth in IVEP scenario projections. 8 figures, 6 tables.

Kercher, J.R.

1982-01-01T23:59:59.000Z

365

High efficiency multilayer blazed gratings for EUV and soft X-rays: Recent developments  

SciTech Connect

Multilayer coated blazed gratings with high groove density are the best candidates for use in high resolution EUV and soft x-ray spectroscopy. Theoretical analysis shows that such a grating can be potentially optimized for high dispersion and spectral resolution in a desired high diffraction order without significant loss of diffraction efficiency. In order to realize this potential, the grating fabrication process should provide a perfect triangular groove profile and an extremely smooth surface of the blazed facets. Here we report on recent progress achieved at the Advanced Light Source (ALS) in fabrication of high quality multilayer coated blazed gratings. The blazed gratings were fabricated using scanning beam interference lithography followed by wet anisotropic etching of silicon. A 200 nm period grating coated with a Mo/Si multilayer composed with 30 bi-layers demonstrated an absolute efficiency of 37.6percent in the 3rd diffraction order at 13.6 nm wavelength. The groove profile of the grating was thoroughly characterized with atomic force microscopy before and after the multilayer deposition. The obtained metrology data were used for simulation of the grating efficiency with the vector electromagnetic PCGrate-6.1 code. The simulations showed that smoothing of the grating profile during the multilayer deposition is the main reason for efficiency losses compared to the theoretical maximum. Investigation of the grating with cross-sectional transmission electron microscopy revealed a complex evolution of the groove profile in the course of the multilayer deposition. Impact of the shadowing and smoothing processes on growth of the multilayer on the surface of the sawtooth substrate is discussed.

Voronov, Dmitriy; Ahn, Minseung; Anderson, Erik; Cambie, Rossana; Chang, Chih-Hao; Goray, Leonid; Gullikson, Eric; Heilmann, Ralf; Salmassi, Farhad; Schattenburg, Mark; Warwick, Tony; Yashchuk, Valeriy; Padmore, Howard

2011-07-26T23:59:59.000Z

366

Development of a high average current polarized electron source with long cathode operational lifetime  

Science Journals Connector (OSTI)

Substantially more than half of the electromagnetic nuclear physics experiments conducted at the Continuous Electron Beam Accelerator Facility of the Thomas Jefferson National Accelerator Facility (Jefferson Laboratory) require highly polarized electron beams, often at high average current. Spin-polarized electrons are produced by photoemission from various GaAs-based semiconductor photocathodes, using circularly polarized laser light with photon energy slightly larger than the semiconductor band gap. The photocathodes are prepared by activation of the clean semiconductor surface to negative electron affinity using cesium and oxidation. Historically, in many laboratories worldwide, these photocathodes have had short operational lifetimes at high average current, and have often deteriorated fairly quickly in ultrahigh vacuum even without electron beam delivery. At Jefferson Lab, we have developed a polarized electron source in which the photocathodes degrade exceptionally slowly without electron emission, and in which ion back bombardment is the predominant mechanism limiting the operational lifetime of the cathodes during electron emission. We have reproducibly obtained cathode 1/e dark lifetimes over two years, and 1/e charge density and charge lifetimes during electron beam delivery of over 2105???C/cm2 and 200C, respectively. This source is able to support uninterrupted high average current polarized beam delivery to three experimental halls simultaneously for many months at a time. Many of the techniques we report here are directly applicable to the development of GaAs photoemission electron guns to deliver high average current, high brightness unpolarized beams.

C. K. Sinclair; P. A. Adderley; B. M. Dunham; J. C. Hansknecht; P. Hartmann; M. Poelker; J. S. Price; P. M. Rutt; W. J. Schneider; M. Steigerwald

2007-02-07T23:59:59.000Z

367

Infusion Pump Informatics IMPACT STATEMENT  

E-Print Network (OSTI)

Infusion Pump Informatics NEED IMPACT STATEMENT INITIATIVE Working with Purdue's Rosen Center for Advanced Computing, RCHE developed the Infusion Pump Informatics (IPI) System. IPI member hospitals upload their infusion pump alert data to the system each month. The system is web-based and highly interactive. Drawing

Ginzel, Matthew

368

Electromagnetic interference impact of the proposed emitters for the High Frequency Active Auroral Research Program (HAARP). Interim report  

SciTech Connect

The proposed HAARP emitters at the Gakona (Alaska) preferred site and at the Clear AFS (Alaska) alternative site are the Ionospheric Research Instrument (IRI), the Incoherent Scatter Radar (ISR), and the Vertical Incidence Sounder(VIS). The electromagnetic interference (EMI) impact of those emitters on receiving systems in the vicinity of the sites is estimated in this study. The results are intended for use as an input to the Air Force Environmental Impact Statement as part of the Environmental Impact Analysis Process.

Robertshaw, G.A.; Snyder, A.L.; Weiner, M.M.

1993-05-14T23:59:59.000Z

369

Draft Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal of Spend Nuclear Fuel and High-Leval Radioactive Waste at Yucca Mountain, Nye County, Nevada  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Draft Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada U.S. Department of Energy Office of Civilian Radioactive Waste Management DOE/EIS-0250F-S1D October 2007 Table of Contents Summary Draft Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada Summary U.S. Department of Energy Office of Civilian Radioactive Waste Management DOE/EIS-0250F-S1D October 2007 Printed on recycled paper with soy ink. COVER SHEET RESPONSIBLE AGENCY: U.S. Department of Energy (DOE) TITLE: Draft Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal

370

Draft Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal of Spend Nuclear Fuel and High-Leval Radioactive Waste at Yucca Mountain, Nye County, Nevada  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada Volume I Impact Analyses Chapters 1 through 13 U.S. Department of Energy Office of Civilian Radioactive Waste Management DOE/EIS-0250F-S1D October 2007 Printed on recycled paper with soy ink. COVER SHEET RESPONSIBLE AGENCY: U.S. Department of Energy (DOE) TITLE: Draft Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada (DOE/EIS-0250F-S1D) (Repository SEIS). CONTACTS: For more information about this document, For general information on the DOE NEPA process, write

371

Cold Crucible Induction Melting Technology for Vitrification of High Level Waste: Development and Status in India  

SciTech Connect

Cold crucible induction melting is globally emerging as an alternative technology for the vitrification of high level radioactive waste. The new technology offers several advantages such as high temperature availability with long melter life, high waste loading, high specific capacity etc. Based on the laboratory and bench scale studies, an engineering scale cold crucible induction melter was locally developed in India. The melter was operated continuously to assess its performance. The electrical and thermal efficiencies were found to be in the range of 70-80 % and 10-20 % respectively. Glass melting capacities up to 200 kg m{sup -2} hr{sup -1} were accomplished using the ESCCIM. Industrially adaptable melter operating procedures for start-up, melting and pouring operations were established (author)

Sugilal, G.; Sengar, P.B.S. [Nuclear Recycle Group, Bhabha Atomic Research Centre, Trombay, Mumbai (India)

2008-07-01T23:59:59.000Z

372

Development of a solar receiver for a high-efficiency thermionic/thermoelectric conversion system  

SciTech Connect

Solar energy is one of the most promising energy resources on Earth and in space, because it is clean and inexhaustible. Therefore, we have been developing a solar-powered high-efficiency thermionic-thermoelectric conversion system which combines a thermionic converter (TIC) with a thermoelectric converter (TEC) to use thermal energy efficiently and to achieve high efficiency conversion. The TIC emitter must uniformly heat up to 1800 K. The TIC emitter can be heated using thermal radiation from a solar receiver maintained at a high temperature by concentrated solar irradiation. A cylindrical cavity-type solar receiver constructed from graphite was designed and heated in a vacuum by using the solar concentrator at Tohoku University. The maximum temperature of the solar receiver enclosed by a molybdenum cup reached 1965 K, which was sufficiently high to heat a TIC emitter using thermal radiation from the receiver. 4 refs., 6 figs., 1 tab.

Naito, H.; Kohsaka, Y.; Cooke, D.; Arashi, H. [Tohoku Univ., Aramaki (Japan)] [Tohoku Univ., Aramaki (Japan)

1996-10-01T23:59:59.000Z

373

Development of an Ultra High Frequency Gyrotron with a Pulsed Magnet  

SciTech Connect

An ultra-high frequency gyrotron is being developed as a THz radiation source by using a pulsed magnet. We have achieved the highest field intensity of 20.2 T. High frequency operation at the second harmonic will achieve 1.01 THz; the corresponding cavity mode is TE6,11,1. On the other hand, an ultra-high power gyrotron with a pulsed magnet is also being developed as a millimeter to submillimeter wave radiation source. The gyrotron is a large orbit gyrotron (LOG) using an intense relativistic electron beam (IREB). A pulsed power generator 'ETIGO-IV' is applied for generation of the IREB. A prototype relativistic LOG was constructed for fundamental operation. The output of the LOG will achieve 144 GHz and 9 MW; the corresponding cavity mode is TE1,4,1. Cavities for 2nd and 4th harmonic operations were designed by numerical simulation for achievement of higher frequency. The progress of development for prototype high frequency gyrotrons with pulsed magnets is presented.

Idehara, T.; Kamada, M.; Tsuchiya, H.; Hayashi, T.; Agusu, La; Mitsudo, S.; Ogawa, I. [Research Center for Development of Far Infrared Region, University of Fukui, Bunkyo 3-9-1, Fukui-shi 910-8507 (Japan); Manuilov, V. N. [Research Center for Development of Far Infrared Region, University of Fukui, Bunkyo 3-9-1, Fukui-shi 910-8507 (Japan); Radiophysical Department of Nizhny Novgorod State University, 690005, Gagarin av., 23, Nizhny Novgorod (Russian Federation); Naito, K.; Yuyama, T.; Jiang, W.; Yatsui, K. [Extreme Energy-Density Research Institute, Nagaoka University of Technology, Kamitomioka 1603-1, Nagaoka-shi, Niigata 940-2188 (Japan)

2006-01-03T23:59:59.000Z

374

Development of high-temperature heat exchanger for hydrogen combustion turbine system  

SciTech Connect

New Rankine Cycle and Topping Regenerative Cycle are representative 500MW power generation systems for a hydrogen combustion turbine (HCT). The energy efficiency based on HHV of these is expected to be over 60% because the inlet temperature of turbine can be increased to 1,970K. These systems comprise various heat exchangers. Especially, the development of high temperature heat exchanger dealing with the high temperature and pressure steam is very important to realize the hydrogen combustion turbine system. The high-temperature heat exchanger of New Rankine Cycle is a supercritical heat recovery steam generator operating at pressure of 36MPa. This heat exchanger is heated by steam at temperature of 1,390K. On the other hand, Topping Regenerative Cycle has two high-temperature heat exchangers. One is a regenerator operating at pressure of 37MPa. The other is a regenerator operating at pressure of 5MPa. Both regenerators are heated by steam at temperature of 1,030K. The following are the principal development subject of high-temperature heat exchanger: (1) Improving the heat transfer characteristics to achieve the compact heat exchanger, and (2) Planning the heat exchanger structure suitable for the high thermal stress. To improve a heat transfer characteristic of the high-temperature heat exchangers, a parameter survey is conducted to optimize a tube arrangement and a fin configuration on tube outside and/or inside. The heat transfer areas are minimized through using the tubes with an extended heat transfer surface on both sides of a tube. Structural integrity is also estimated by conducting a structural analysis for the critical parts of the high-temperature heat exchangers.

Takakuwa, Akihiro; Mochida, Yoshio

1999-07-01T23:59:59.000Z

375

ON THE IMPACT OF SUPER RESOLUTION WSR-88D DOPPLER RADAR DATA ASSIMILATION ON HIGH RESOLUTION NUMERICAL MODEL FORECASTS  

SciTech Connect

Assimilation of radar velocity and precipitation fields into high-resolution model simulations can improve precipitation forecasts with decreased 'spin-up' time and improve short-term simulation of boundary layer winds (Benjamin, 2004 & 2007; Xiao, 2008) which is critical to improving plume transport forecasts. Accurate description of wind and turbulence fields is essential to useful atmospheric transport and dispersion results, and any improvement in the accuracy of these fields will make consequence assessment more valuable during both routine operation as well as potential emergency situations. During 2008, the United States National Weather Service (NWS) radars implemented a significant upgrade which increased the real-time level II data resolution to 8 times their previous 'legacy' resolution, from 1 km range gate and 1.0 degree azimuthal resolution to 'super resolution' 250 m range gate and 0.5 degree azimuthal resolution (Fig 1). These radar observations provide reflectivity, velocity and returned power spectra measurements at a range of up to 300 km (460 km for reflectivity) at a frequency of 4-5 minutes and yield up to 13.5 million point observations per level in super-resolution mode. The migration of National Weather Service (NWS) WSR-88D radars to super resolution is expected to improve warning lead times by detecting small scale features sooner with increased reliability; however, current operational mesoscale model domains utilize grid spacing several times larger than the legacy data resolution, and therefore the added resolution of radar data is not fully exploited. The assimilation of super resolution reflectivity and velocity data into high resolution numerical weather model forecasts where grid spacing is comparable to the radar data resolution is investigated here to determine the impact of the improved data resolution on model predictions.

Chiswell, S

2009-01-11T23:59:59.000Z

376

High transition temperature superconductor/insulator bilayers for the development of ultra-fast electronics  

SciTech Connect

High transition temperature superconductor (HTc)/SrTiO{sub 3} (STO) bilayers were fabricated by sputtering deposition on (100) STO substrates. Their transport and morphological properties were characterized using conductive atomic force microscopy. The STO barriers present good insulating properties, with long attenuation lengths (? ? 1 nm) which reduce the junction resistance and increase the operating critical current. The samples present roughness values smaller than 1 nm, with an extremely low density of surface defects (?5 10{sup ?5} defects/?m{sup 2}). The high control of the barrier quality over large defect free surfaces is encouraging for the development of microelectronics devices based in HTc Josephson junctions.

Sirena, M.; Flix, L. Avils [Consejo Nacional de Investigaciones Cientficas y Tcnicas, Centro Atmico Bariloche, CNEA, Bustillo 9500, 8400 Bariloche (Argentina) [Consejo Nacional de Investigaciones Cientficas y Tcnicas, Centro Atmico Bariloche, CNEA, Bustillo 9500, 8400 Bariloche (Argentina); Instituto Balseiro, Universidad Nacional de Cuyo and CNEA, 8400 Bariloche (Argentina); Haberkorn, N. [Consejo Nacional de Investigaciones Cientficas y Tcnicas, Centro Atmico Bariloche, CNEA, Bustillo 9500, 8400 Bariloche (Argentina)] [Consejo Nacional de Investigaciones Cientficas y Tcnicas, Centro Atmico Bariloche, CNEA, Bustillo 9500, 8400 Bariloche (Argentina)

2013-07-29T23:59:59.000Z

377

Impacts of Sedimentation from Oil and Gas Development on Stream Macroinvertebrates in Two Adjacent Watersheds of the Allegheny National Forest of Northwestern Pennsylvania  

SciTech Connect

Fritz, Kelley'*, Steven Harris', Harry Edenborn2, and James Sams2. 'Clarion University of Pennsylvania, Clarion, PA 16214, 2National Energy Technology Laboratory, U.S. Dept. Energy, Pittsburgh, PA 15236. Impacts a/Sedimentation/rom Oil and Gas Development on Stream Macroinvertebrates in Two Adjacent Watersheds a/the Allegheny National Forest a/Northwestern Pennsylvania - The Allegheny National Forest (ANF), located in northwestern Pennsy Ivania, is a multiuse forest combining commercial development with recreational and conservation activities. As such, portions of the ANF have been heavily logged and are now the subject of widespread oil and gas development. This rapid increase in oil and gas development has led to concerns about sediment runoff from the dirt and gravel roads associated with development and the potential impact on the aquatic biota of the receiving streams. We examined and compared the benthic macroinvertebrate communities in two adjacent watersheds of similar size and topography in the ANF; the Hedgehog Run watershed has no oil and gas development, while the adjacent Grunder Run watershed has extensive oil and gas development. In Hedgehog and Grunder Run, we collected monthly kicknet samples from riffles and glides at two sites from April to October 2010. At the same intervals, we measured standard water quality parameters, including conductivity and turbidity. Preliminary results have indicated much higher turbidity in Grunder Run, but little difference in the diversity and abundance of benthic macro invertebrates inhabiting the two streams.

Fritz, K.; Harris, S.; Edenborn, H.M.; Sams, J.

2011-01-01T23:59:59.000Z

378

Lead Research and Development Activity for DOE's High Temperature, Low Relative Humidity Membrane Program (Topic 2)  

SciTech Connect

The Department of Energys High Temperature, Low Relative Humidity Membrane Program was begun in 2006 with the Florida Solar Energy Center (FSEC) as the lead organization. During the first three years of the program, FSEC was tasked with developing non-Nafion proton exchange membranes with improved conductivity for fuel cells. Additionally, FSEC was responsible for developing protocols for the measurement of in-plane conductivity, providing conductivity measurements for the other funded teams, developing a method for through-plane conductivity and organizing and holding semiannual meetings of the High Temperature Membrane Working Group (HTMWG). The FSEC membrane research focused on the development of supported poly[perfluorosulfonic acid] (PFSA) Teflon membranes and a hydrocarbon membrane, sulfonated poly(ether ether ketone). The fourth generation of the PFSA membrane (designated FSEC-4) came close to, but did not meet, the Go/No-Go milestone of 0.1 S/cm at 50% relative humidity at 120 C. In-plane conductivity of membranes provided by the funded teams was measured and reported to the teams and DOE. Late in the third year of the program, DOE used this data and other factors to decide upon the teams to continue in the program. The teams that continued provided promising membranes to FSEC for development of membrane electrode assemblies (MEAs) that could be tested in an operating fuel cell. FSEC worked closely with each team to provide customized support. A logic flow chart was developed and discussed before MEA fabrication or any testing began. Of the five teams supported, by the end of the project, membranes from two of the teams were easily manufactured into MEAs and successfully characterized for performance. One of these teams exceeded performance targets, while the other requires further optimization. An additional team developed a membrane that shows great promise for significantly reducing membrane costs and increasing membrane lifetime.

James Fenton, PhD; Darlene Slattery, PhD; Nahid Mohajeri, PhD

2012-09-05T23:59:59.000Z

379

NETL: C&CBTL - Development of Kinetics and Mathematical Models for High  

NLE Websites -- All DOE Office Websites (Extended Search)

Kinetics and Mathematical Models for High Pressure Gasification of Lignite-Switchgrass Blends Kinetics and Mathematical Models for High Pressure Gasification of Lignite-Switchgrass Blends Georgia Tech Research Corporation Project Number: FE0005339 Project Description The objectives of the proposed study are to obtain experimental reactor data and develop kinetic rate expressions for pyrolysis and char gasification for the coal-biomass blends under conditions free from transport limitations, to develop a detailed understanding of the effect of pyrolysis conditions on the porous char structure, to build mathematical models that combine true kinetic rate expressions with transport models for predicting gasification behavior for a broad range of pressures and temperatures, and to investigate the physical and chemical parameters that might lead to synergistic effects in coal-biomass blends gasification.

380

Developing a Highly Efficient Multi-use Special Economic Zone in India  

NLE Websites -- All DOE Office Websites (Extended Search)

Developing a Highly Efficient Multi-use Special Economic Zone in India Developing a Highly Efficient Multi-use Special Economic Zone in India Speaker(s): Jagadeesh Taluri Kushboo Modgil Date: June 3, 2010 - 12:00pm Location: 90-3122 LBNL is collaborating with Metro Valley to create the most energy efficient built environment in India. The proposed project is an ITES (Information Technology Enabled Services) Special Economic Zone which is a multi-tenanted campus consisting of work and support spaces for companies involved in research or knowledge processing. The goal of the project reaches beyond an energy efficient built environment for the Knowledge Industry to sustainability in the broadest sense: a sustainable environment, not just from the point of view of energy consumption, but also relative to the people who use it, the organizations that inhabit it,

Note: This page contains sample records for the topic "developing high impact" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Development of ultrasonic thermometry for high-temperature high-resolution temperature profiling applications in LMFBR safety research  

SciTech Connect

Ultrasonic thermometry has been developed as a high temperature profiling diagnostic for use in the LMFBR Debris Coolability Program at Sandia National Laboratories. These instruments have been used successfully in the dc series experiments and the D10 experiment. Temperatures approaching 3000/sup 0/C with spatial resolution of 10 mm and indicated temperature gradients of 700/sup 0/C/cm have been measured. Instruments have operated in molten sodium, molten steel, and molten UO/sub 2/ environments. Up to 14 measurement zones on a single instrument in molten sodium have been used with 12 mm and 15 mm spatial resolution. Hermetically sealed units operated at elevated temperatures have been used. Posttest examination has revealed very little systematic calibration drifts (<10/sup 0/C) with random drifts occurring with less than 40/sup 0/C standard deviation in a 10 to 12 mm measurement zone. The stability of the system varies from +-1/sup 0/C to +-15/sup 0/C depending on the sensor design constraints for a particular application. Doped tungsten sensors have been developed to permit operation of total measurement zone lengths of 30 cm at temperatures above 2500/sup 0/C. 33 refs., 13 figs.

Field, M.E.

1986-05-01T23:59:59.000Z

382

Development of Kinetics and Mathematical Models for High Pressure Gasification of Lignite-Switchgrass Blends  

NLE Websites -- All DOE Office Websites (Extended Search)

Kinetics and Mathematical Kinetics and Mathematical Models for High Pressure Gasification of Lignite-Switchgrass Blends Background Significant progress has been made in recent years in controlling emissions resulting from coal-fired electricity generation in the United States through the research, development, and deployment of innovative technologies such as gasification. Gasification is a process that converts solid feedstocks such as coal, biomass, or blends

383

Coal-fueled high-speed diesel engine development: Task 2, Market assessment and economic analysis  

SciTech Connect

Based on the preliminary coal engine design developed, this task was conducted to identify the best opportunity(s) to enter the market with the future coal-fueled, high-speed diesel engine. The results of this market and economic feasibility assessment will be used to determine what specific heavy duty engine application(s) are most attractive for coal fuel, and also define basic economic targets for the engine to be competitive.

Not Available

1991-12-01T23:59:59.000Z

384

SUNY/Buffalo Developing High-Efficiency Colloidal Quantum Dot Phosphors  

Energy.gov (U.S. Department of Energy (DOE))

The State University of New York at Buffalo is working to reduce the cost and increase the performance of LEDs for general illumination by developing high-efficiency colloidal quantum dot phosphors to replace conventional phosphors (i.e., those placed directly on the chip). Colloidal quantum dot phosphors are nanocrystal emitters and contain no rare-earth elements. What's more, it's possible to tune the emission wavelength merely by changing their size.

385

High precision ultrasonic scanning system and SAFT-UT (synthetic aperture technique) development  

SciTech Connect

The NDT divisions at SNLA are continually striving to anticipate customer requests by adding advanced test facilities. This paper describes a new ultrasonic testing system being developed in Albuquerque to provide precise scanning of smaller test objects. There are two major subsystems that make-up the ultrasonic testing system, a high precision scanner/digitizer and a real-time processing system which automates the synthetic aperture focusing technique. These subsystems are described in the following sections.

Shurtleff, W.W.

1987-06-01T23:59:59.000Z

386

An Experimental Test Facility to Support Development of the Fluoride Salt Cooled High Temperature Reactor  

SciTech Connect

The need for high-temperature (greater than 600 C) energy exchange and delivery systems is significantly increasing as the world strives to improve energy efficiency and develop alternatives to petroleum-based fuels. Liquid fluoride salts are one of the few energy transport fluids that have the capability of operating at high temperatures in combination with low system pressures. The Fluoride Salt-Cooled High-Temperature Reactor design uses fluoride salt to remove core heat and interface with a power conversion system. Although a significant amount of experimentation has been performed with these salts, specific aspects of this reactor concept will require experimental confirmation during the development process. The experimental facility described here has been constructed to support the development of the Fluoride Salt Cooled High Temperature Reactor concept. The facility is capable of operating at up to 700 C and incorporates a centrifugal pump to circulate FLiNaK salt through a removable test section. A unique inductive heating technique is used to apply heat to the test section, allowing heat transfer testing to be performed. An air-cooled heat exchanger removes added heat. Supporting loop infrastructure includes a pressure control system; trace heating system; and a complement of instrumentation to measure salt flow, temperatures, and pressures around the loop. The initial experiment is aimed at measuring fluoride salt heat transfer inside a heated pebble bed similar to that used for the core of the pebble bed advanced high-temperature reactor. This document describes the details of the loop design, auxiliary systems used to support the facility, the inductive heating system, and facility capabilities.

Yoder Jr, Graydon L [ORNL] [ORNL; Aaron, Adam M [ORNL] [ORNL; Cunningham, Richard Burns [University of Tennessee, Knoxville (UTK)] [University of Tennessee, Knoxville (UTK); Fugate, David L [ORNL] [ORNL; Holcomb, David Eugene [ORNL] [ORNL; Kisner, Roger A [ORNL] [ORNL; Peretz, Fred J [ORNL] [ORNL; Robb, Kevin R [ORNL] [ORNL; Wilgen, John B [ORNL] [ORNL; Wilson, Dane F [ORNL] [ORNL

2014-01-01T23:59:59.000Z

387

General-purpose heat source: Research and development program. Radioisotope thermoelectric generator impact tests: RTG-1 and RTG-2  

SciTech Connect

The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. The first two RTG Impact Tests were designed to provide information on the response of a fully loaded RTG to end-on impact against a concrete target. The results of these tests indicated that at impact velocities up to 57 m/s the converter shell and internal components protect the GPHS capsules from excessive deformation. At higher velocities, some of the internal components of the RTG interact with the GPHS capsules to cause excessive localized deformation and failure.

Reimus, M.A.H.; Hinckley, J.E.; George, T.G.

1996-07-01T23:59:59.000Z

388

Intermediate-scale high-solids anaerobic digestion system operational development  

SciTech Connect

Anaerobic bioconversion of solid organic wastes represents a disposal option in which two useful products may be produced, including a medium Btu fuel gas (biogas) and a compost-quality organic residue. The application of high-solids technology may offer several advantages over conventional low-solids digester technology. Operation of the anaerobic digestion process at high solids reduces the level of process water and thereby the size and capital costs for the digester system. In addition, by virtue of the lack of available water, the microbial catalysts are more productive in feedstock polymer hydrolysis. The National Renewable Energy Laboratory (NREL) has developed a unique digester system capable of uniformly mixing high-solids materials at low cost. Information gained from laboratory-scale digester research was used to develop die intermediate-scale digester system. This system represents a 50-fold scale-up of the original digester system and includes continuous feed addition and computer monitoring and control. During the first 1.15 years of operation, a variety of modifications and improvements were instituted to increase the safety, reliability, and performance of the system. Those improvements -- which may be critical in further scale-up efforts using the NREL high-solids digester design -- are detailed in this report.

Rivard, C.J.

1995-02-01T23:59:59.000Z

389

Microsoft PowerPoint - Development of High Temperature_Chen_Chonglin  

NLE Websites -- All DOE Office Websites (Extended Search)

Temperature/High Temperature/High Sensitivity Novel Chemical Resistive Sensor PhD Students: Erik Enriquez, Shanyong Bao, & Brennan Mace PhD Awarded: Dr. Chunrui Ma (UK) & Dr. Gregory Collins (WVU) PIs: Patrick Nash (retired 2012) and Chonglin Chen (PI) Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX 78249-1644 Phone: 210-458-6427, Email: cl.chen@utsa.edu Grant Number: DE-FE0003780 Project Manager: Dr. Susan M. Maley Performance Period: 09/01/2010-8/31/2013 * Introduction * Mixed Ionic/Electronic Conductive LnBaCo 2 O 5.5 Oxides * Full Scale Chemical Sensor Development * Summary OBJECTIVES & GOALS * The objective of this research is: - investigate and understand the mechanisms of mixed ionic electronic conductive LaBaCo 2 O 5+ highly epitaxial

390

Development of a high current H{sup -} source for ESS  

SciTech Connect

For the European Spallation Source (ESS), a volume source based on the HIEFS (high efficiency source) is being developed. The source will be optimized to produce high current densities in pulsed operation. A pulse generator delivering 1 to 1.5 ms pulses was installed. Furthermore, cesium was supplied to the plasma generator from an external oven. The cesium injection was optimized for a low e/H{sup -} ratio and a high current. We obtained a current density of 70 mA/cm{sup 2}. This way, with an aperture radius of 4.25 mm, an H{sup -} current of 40 mA was extracted at an extraction voltage of 22 kV. After a description of the source and the experimental setup, measurements of the beam current density and the e/H{sup -} ratio will be presented in this paper.

Maaser, A.; Beller, P.; Klein, H.; Volk, K.; Weber, M. [Institut fuer Angewandte Physik, Universitaet Frankfurt Robert-Mayer-Str. 2-4, 60054 Frankfurt am Main (Germany)

1998-08-20T23:59:59.000Z

391

Development of multicathode high flux metal ion plasma sources in Korea  

SciTech Connect

Multicathode high flux metal plasma ion sources were self-developed and its performance was proved to be appropriate for the high-purity ion implantation and thin-film deposition. As key results of self-design, a bipolar pulse power supply with a peak voltage of 250 V, a repetition rate of 20 Hz, and a pulse width of 100 {mu}s showed an output current of 2 kA and an average power of 2 kW and the operational plasma flux of multicathode ion source was well sustained even at an ion current of about 5 A. A high-voltage pulse generator was employed as a trigger power supply producing a peak voltage of 12 kV, peak current of 50 A, and stable repetition rate of 20 Hz.

Kim, Do-Yun; Lee, Eui-Wan; Lee, Myoung-Bok [Department of Physics, Kyungpook National University, Taegu 702-701 (Korea, Republic of); School of Electrical and Electronics Engineering, Kyungpook National University, Taegu 702-701 (Korea, Republic of)

2004-09-01T23:59:59.000Z

392

Development of high temperature transport technology for LiCl-KCl eutectic salt in pyroprocessing  

SciTech Connect

The development of high-temperature transport technologies for molten salt is a prerequisite and a key issue in the industrialization of pyro-reprocessing for advanced fuel cycle scenarios. The solution of a molten salt centrifugal pump was discarded because of the high corrosion power of a high temperature molten salt, so the suction pump solution was selected. An apparatus for salt transport experiments by suction was designed and tested using LiC-KCl eutectic salt. The experimental results of lab-scale molten salt transport by suction showed a 99.5% transport rate (ratio of transported salt to total salt) under a vacuum range of 100 mtorr - 10 torr at 500 Celsius degrees. The suction system has been integrated to the PRIDE (pyroprocessing integrated inactive demonstration) facility that is a demonstrator using non-irradiated materials (natural uranium and surrogate materials). The performance of the suction pump for the transport of molten salts has been confirmed.

Lee, Sung Ho; Lee, Hansoo; Kim, In Tae; Kim, Jeong-Guk [Korea Atomic Energy Research Institute, 1045 Daedeok-daaro, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of)

2013-07-01T23:59:59.000Z

393

Engineering development of coal-fired high-performance power systems. Technical report, July - September 1996  

SciTech Connect

A High Performance Power System (HIPPS) is being developed. This system is a coal-fired, combined cycle plant with indirect heating of gas turbine air. Foster Wheeler Development Corporation and a team consisting of Foster Wheeler Energy Corporation, AlliedSignal Aerospace Equipment Systems, Bechtel Corporation, University of Tennessee Space Institute and Westinghouse Electric Corporation are developing this system. In Phase I of the project, a conceptual design of a commercial plant was developed. Technical and economic analyses indicated that the plant would meet the goals of the project which include a 47 percent efficiency (HHV) and a 10 percent lower cost of electricity than an equivalent size PC plant. The concept uses a pyrolyzation process to convert coal into fuel gas and char. The char is fired in a High Temperature Advanced Furnace (HITAF). It is a pulverized fuel-fired boiler/airheater where steam and gas turbine air are indirectly heated. The fuel gas generated in the pyrolyzer is then used to heat the gas turbine air further before it enters the gas turbine. The project is currently in Phase 2 which includes engineering analysis, laboratory testing and pilot plant testing. Research and development is being done on the HIPPS systems that are not commercial or being developed on other projects. Pilot plant testing of the pyrolyzer subsystem and the char combustion subsystem are being done separately, and then a pilot plant with integrated pyrolyzer and char combustion systems will be tested. In this report, progress in the pyrolyzer pilot plant preparation is reported. The results of extensive laboratory and bench scale testing of representative char are also reported. Preliminary results of combustion modeling of the char combustion system are included. There are also discussions of the auxiliary systems that are planned for the char combustion system pilot plant and the status of the integrated system pilot plant.

NONE

1996-11-01T23:59:59.000Z

394

Engineering Development of Coal-Fired High-Performance Power Systems  

SciTech Connect

A High Performance Power System (HIPPS) is being developed. This system is a coal-fired, combined cycle plant with indirect heating of gas turbine air. Foster Wheeler Development Corporation and a team consisting of Foster Wheeler Energy Corporation, Bechtel Corporation, University of Tennessee Space Institute and Westinghouse Electric Corporation are developing this system. In Phase 1 of the project, a conceptual design of a commercial plant was developed. Technical and economic analyses indicated that the plant would meet the goals of the project which include a 47 percent efficiency (HHV) and a 10 percent lower cost of electricity than an equivalent size PC plant. The concept uses a pyrolysis process to convert coal into fuel gas and char. The char is fired in a High Temperature Advanced Furnace (HITAF). The HITAF is a pulverized fuel-fired boiler/air heater where steam is generated and gas turbine air is indirectly heated. The fuel gas generated in the pyrolyzer is then used to heat the gas turbine air further before it enters the gas turbine. The project is currently in Phase 2 which includes engineering analysis, laboratory testing and pilot plant testing. Research and development is being done on the HIPPS systems that are not commercial or being developed on other projects. Pilot plant testing of the pyrolyzer subsystem and the char combustion subsystem are being done separately. This report addresses the areas of technical progress for this quarter. The detail of syngas cooler design is given in this report. The final construction work of the CFB pyrolyzer pilot plant has started during this quarter. No experimental testing was performed during this quarter. The proposed test matrix for the future CFB pyrolyzer tests is given in this report. Besides testing various fuels, bed temperature will be the primary test parameter.

York Tsuo

2000-12-31T23:59:59.000Z

395

E000308 economic development and the environment Economic development in low-income economies is initially highly resource-  

E-Print Network (OSTI)

E000308 economic development and the environment Economic development in low-income economies sources of emissions that contribute to global climate change. Economic development depends on sustained drawdowns, may affect economic development in a dynamic interaction. This feedback is hard to quantify

Coxhead, Ian

396

The Impact of the Samantha Academy of Creative Education (SACE) on Students Placed At-Risk at a Suburban High School in Southwest Texas  

E-Print Network (OSTI)

-risk can be developed within the context of a regular high school setting. Recommendations for further research and implications for practice were provided....

Valdez, Patrick J.

2010-01-16T23:59:59.000Z

397

High-efficiency cross-beam magnetic electron-impact source for improved miniature Mattauch-Herzog mass spectrometer performance  

SciTech Connect

We describe a newly designed cross-beam magnetic electron-impact ion source (CBM-EI). We demonstrate its superiority in comparison with a conventional source (CB-EI) when used with a commercial miniature sector-field-type, non-scanning mass spectrometer featuring Mattauch-Herzog geometry (MH-MS) and a permanent sector-field magnet. This paper clearly shows the value of the CBM-EI for enhancing MH-MS sensitivity. Unlike secondary electron-multiplier type detectors, the pixelated detector (IonCCD Trade-Mark-Sign ) used in the commercial MH-MS has no gain. The MH-MS/IonCCD system is therefore challenged to compete with time-of-flight and quadrupole MS systems due to their higher ion transmissions and detector gains. Using the new CBM-EI, we demonstrate an instrument sensitivity increase of 20-fold to 100-fold relative to the CB-EI-equipped instrument. This remarkable signal increase by the simple addition of the magnet assembly arises from the magnet-induced gyromotion of the thermionic electrons, which vastly increases the effective path length of the electrons through the ionization region, and the collimated nature of the electron flux, which optimizes the ion transmission through the 100-{mu}m object slit of the MH-MS. Some or all of the realized sensitivity increase may be exchanged for an increase in resolution and/or mass range through the use of a narrower object slit, or for a reduction in ion-source pressure to limit quenching. The CBM-EI should facilitate development of a differentially pumped ion source to extend the lifetime of the filament, especially in otherwise intractable applications associated with oxidizing and corrosive samples.

Hadjar, O.; Fowler, W. K. [OI Analytical/CMS Field Products, 2148 Pelham Parkway, Bldg. 400, Pelham, Alabama 35124 (United States)

2012-06-15T23:59:59.000Z

398

Environmental Impacts of Hydraulic Fracturing  

Science Journals Connector (OSTI)

...their environmental impacts, which has been published...the hydrogeological impacts of oil and gas development...Chafin, 1994), not fracking. Watson and Bachu...Frontiers Ecology Environment. 2011. 9( 9): 503...R. Environmental Impacts of Hydraulic Fracturing...

Richard Jackson

399

Vehicle Technologies Office Merit Review 2014: Development of Advanced High Strength Cast Alloys for Heavy Duty Engines  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Caterpillar at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of advanced high...

400

Engineering development of a lightweight high-pressure scarifier for tank waste retrieval  

SciTech Connect

The Retrieval Process Development and Enhancements Program (RPD&E) is sponsored by the U.S. Department of Energy Tanks Focus Area to investigate existing and emerging retrieval processes suitable for the retrieval of high-level radioactive waste inside underground storage tanks. This program, represented by industry, national laboratories, and academia, seeks to provide a technical and cost basis to support site-remediation decisions. Part of this program has involved the development of a high-pressure waterjet dislodging system and pneumatic conveyance integrated as a scarifier. Industry has used high-pressure waterjet technology for many years to mine, cut, clean, and scarify materials with a broad range of properties. The scarifier was developed as an alternate means of retrieving waste inside Hanford single-shell tanks, particularly hard, stubborn waste. Testing of the scarifier has verified its ability to retrieve a wide range of tank waste ranging from extremely hard waste that is resistant to other dislodging means to soft sludge and even supernatant fluid. Since the scarifier expends water at a low rate and recovers most of the water as it is used, the scarifier is well suited for retrieval of tanks that leak and cannot be safely sluiced or applications where significant waste dilution is not acceptable. Although the original scarifier was effective, it became evident that a lighter, more compact version that would be compatible with light weight deployment systems under development, such as the Light Duty Utility Arm, was needed. At the end of FY 95, the Light Weight Scarifier (LWS) was designed to incorporate the features of the original scarifier in a smaller, lighter end effector. During FY 96, the detailed design of the LWS was completed and two prototypes were fabricated.

Hatchell, B.K.

1997-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "developing high impact" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Generating Economic Development from a Wind Power Plant in Spanish Fork Canyon, Utah: A Case Study and Analysis of State-Level Economic Impacts  

Wind Powering America (EERE)

Generating Economic Development from a Wind Power Generating Economic Development from a Wind Power Project in Spanish Fork Canyon, Utah: A Case Study and Analysis of State-Level Economic Impacts Sandra Reategui Edwin R. Stafford, Ph.D. Cathy L. Hartman, Ph.D. Center for the Market Diffusion of Renewable Energy and Clean Technology Jon M. Huntsman School of Business Utah State University 3560 Old Main Hill Logan, Utah 84322-3560 January 2009 DOE/GO-102009-2760 Acknowledgements ....................................................................................................................... 1 Introduction ................................................................................................................................... 2 Report Overview ......................................................................................................................... 2

402

Life Cycle Environmental Impact of High-Capacity Lithium Ion Battery with Silicon Nanowires Anode for Electric Vehicles  

Science Journals Connector (OSTI)

The grid electricity used in this analysis is average U.S. electricity mix with 89.56% of nonrenewable energies. ... The results demonstrate that the major opportunity for reducing the life cycle impacts of the battery pack is to use clean energy supply for battery operation, such as solar and wind electricity, which could reduce these environmental impacts significantly. ... All the above analyses including the life cycle inventory analysis, impact analysis, uncertainty, and sensitivity analysis together confirm that the LIB pack using SiNW anode from metal-assisted chemical etching could have environmental impacts comparable with those of conventional battery pack, while significantly increasing the battery energy storage and extending the driving range of EVs in the future. ...

Bingbing Li; Xianfeng Gao; Jianyang Li; Chris Yuan

2014-01-31T23:59:59.000Z

403

Remote inspection system for impact damage in large composite structure  

Science Journals Connector (OSTI)

...development of an economically efficient method to detect barely visible or invisible impact damage...manufacture. Chirp-based excitation is used to enable single-shot measurements with high signal-to-random-noise ratio to be obtained. Signal...

2015-01-01T23:59:59.000Z

404

Engineering development of coal-fired high-performance power systems  

SciTech Connect

A High Performance Power System (HIPPS) is being developed. This system is a coal-fired, combined cycle plant with indirect heating of gas turbine air. Foster Wheeler Development Corporation and a team consisting of Foster Wheeler Energy Corporation, Bechtel Corporation, University of Tennessee Space Institute and Westinghouse Electric Corporation are developing this system. In Phase 1 of the project, a conceptual design of a commercial plant was developed. Technical and economic analyses indicated that the plant would meet the goals of the project which include a 47 percent efficiency (HHV) and a 10 percent lower cost of electricity than an equivalent size PC plant. The concept uses a pyrolysis process to convert coal into fuel gas and char. The char is fired in a High Temperature Advanced Furnace (HITAF). The HITAF is a pulverized fuel-fired boiler/air heater where steam is generated and gas turbine air is indirectly heated. The fuel gas generated in the pyrolyzer is then used to heat the gas turbine air further before it enters the gas turbine. The project is currently in Phase 2 which includes engineering analysis, laboratory testing and pilot plant testing. Research and development is being done on the HIPPS systems that are not commercial or being developed on other projects. Pilot plant testing of the pyrolyzer subsystem and the char combustion subsystem are being done separately, and after each experimental program has been completed, a larger scale pyrolyzer will be tested at the Power Systems Development Facility (PSDF) in Wilsonville, AL. The facility is equipped with a gas turbine and a topping combustor, and as such, will provide an opportunity to evaluate integrated pyrolyzer and turbine operation. This report addresses the areas of technical progress for this quarter. The char combustion tests in the arch-fired arrangement were completed this quarter. A total of twenty-one setpoints were successfully completed, firing both synthetically-made char, and char generated from the pyrolyzer tests performed at FWDC's pilot plant in Livingston, New Jersey. Construction is to begin next quarter to retrofit the CETF for additional HIPPS char combustion studies in a wall-fired configuration. Design of the char transfer system for the PSDF also progressed during this quarter. A number of arrangements have been developed to modify the existing N-Valve configuration. As an experimental test facility, the PSDF needs to maintain operating flexibility in order to test under a wide range of conditions. Although a new char transfer design is needed to support the HIPPS testing at the facility, the Second Generation PFB program will also utilize this system.

NONE

1999-05-01T23:59:59.000Z

405

Engineering Development of Coal-Fired High-Performance Power Systems  

SciTech Connect

A High Performance Power System (HIPPS) is being developed. This system is a coal-fired, combined cycle plant with indirect heating of gas turbine air. Foster Wheeler Development Corporation and a team consisting of Foster Wheeler Energy Corporation, Bechtel Corporation, University of Tennessee Space Institute and Westinghouse Electric Corporation are developing this system. In Phase 1 of the project, a conceptual design of a commercial plant was developed. Technical and economic analyses indicated that the plant would meet the goals of the project which include a 47 percent efficiency (HHV) and a 10 percent lower cost of electricity than an equivalent size PC plant. The concept uses a pyrolysis process to convert coal into fuel gas and char. The char is fired in a High Temperature Advanced Furnace (HITAF). The HITAF is a pulverized fuel-fired boiler/air heater where steam is generated and gas turbine air is indirectly heated. The fuel gas generated in the pyrolyzer is then used to heat the gas turbine air further before it enters the gas turbine. The project is currently in Phase 2 which includes engineering analysis, laboratory testing and pilot plant testing. Research and development is being done on the HIPPS systems that are not commercial or being developed on other projects. Pilot plant testing of the pyrolyzer subsystem and the char combustion subsystem are being done separately, and after each experimental program has been completed, a larger scale pyrolyzer will be tested at the Power Systems Development Facility (PSDF) in Wilsonville, AL. The facility is equipped with a gas turbine and a topping combustor, and as such, will provide an opportunity to evaluate integrated pyrolyzer and turbine operation. This report addresses the areas of technical progress for this quarter. Detailed design of the components to be used to for the circulating bed gasification tests is underway. The circulating fluidized bed will allow for easy scale-up to larger size plants. The existing pyrolyzer will be outfitted with a cyclone and a j-valve to capture and reinject char into the lower combustion zone. Additional development work has been performed to evaluate advanced cycles utilizing the HIPPS system concept.

York Tsuo

1999-12-31T23:59:59.000Z

406

Design methodology to develop a conceptual underground facility for the disposal of high-level nuclear waste at Yucca Mountain, Nevada  

SciTech Connect

This paper examines the design methodology employed to develop conceptual underground layouts for a prospective high level nuclear waste repository at Yucca Mountain, Nevada. This study is in conjunction with the Nevada Nuclear Waste Storage Investigations (NNWSI), project studying the disposal of high level waste in densely welded tuff. The fundamental design effort concentraes on the effects of the heat released from the decaying waste forms and the impact of this heat on ventilation, waste emplacement configurations, and rock stability. This effort will perfect the design of the waste emplacement layout including emplacement hole spacing, emplacement drift spacing, and the areal power density (APD) for the installed waste. This paper contains only viewgraphs. 11 figs.

Zerga, D.P.; Badie, A.

1986-12-31T23:59:59.000Z

407

ENGINEERING DEVELOPMENT OF COAL-FIRED HIGH PERFORMANCE POWER SYSTEMS PHASE II AND III  

SciTech Connect

This report presents work carried out under contract DE-AC22-95PC95144 "Engineering Development of Coal-Fired High Performance Systems Phase II and III." The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: thermal efficiency (HHV) >47%; NOx, SOx, and particulates <10% NSPS (New Source Performance Standard); coal providing >65% of heat input; all solid wastes benign; cost of electricity <90% of present plants. Phase I, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase I also included preliminary R&D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. This phase, Phase II, involves the development and testing of plant subsystems, refinement and updating of the HIPPS commercial plant design, and the site selection and engineering design of a HIPPS prototype plant. Work reported herein is from: Task 2.2 HITAF Air Heaters; Task 6 HIPPS Commercial Plant Design Update.

NONE

1998-09-30T23:59:59.000Z

408

NETL: Development of a Pre-Combustion CO2 Capture Process Using High  

NLE Websites -- All DOE Office Websites (Extended Search)

Pre-Combustion CO2 Emissions Control Development of a Precombustion Carbon Dioxide Capture Process Using High Temperature Polybenzimidazole Hollow-Fiber Membrane Project No.: DE-FE0012965 SRI is conducting a slipstream-scale demonstration of a CO2 capture system using a high-temperature polymer-membrane-based gas separator. The system was developed at bench-scale as part of a previous project, and is being optimized for integration into an IGCC plant. Membrane modules of sufficient capacity will be fabricated to process a synthesis gas (syngas) stream of approximately 0.1 MWe equivalent from an operating, oxygen-blown, coal gasifier. Design and steady-state performance data will be obtained for membrane modules under relatively long duration conditions. The membrane fabrication technology will be transferred to an industrial firm that specializes in the manufacture of hollow fiber membranes for making the membrane modules. Polybenzimidazole (PBI) will be used as a membrane material to separate H2 and CO2 at elevated temperatures (200 to 250°C). PBI will be made into hollow fibers and the fibers will be assembled into bundles and cased as membrane modules for insertion into high-pressure chambers. These modules will be tested using the syngas slipstreams available at the National Carbon Capture Center at ~225°C and 30 bar.

409

ENGINEERING DEVELOPMENT OF COAL-FIRED HIGH-PERFORMANCE POWER SYSTEMS  

SciTech Connect

A High Performance Power System (HIPPS) is being developed. This system is a coal-fired, combined cycle plant with indirect heating of gas turbine air. Foster Wheeler Development Corporation and a team consisting of Foster Wheeler Energy Corporation, Bechtel Corporation, University of Tennessee Space Institute and Westinghouse Electric Corporation are developing this system. In Phase 1 of the project, a conceptual design of a commercial plant was developed. Technical and economic analyses indicated that the plant would meet the goals of the project which include a 47 percent efficiency (HHV) and a 10 percent lower cost of electricity than an equivalent size PC plant. The concept uses a pyrolysis process to convert coal into fuel gas and char. The char is fired in a High Temperature Advanced Furnace (HITAF). The HITAF is a pulverized fuel-fired boiler/air heater where steam is generated and gas turbine air is indirectly heated. The fuel gas generated in the pyrolyzer is then used to heat the gas turbine air further before it enters the gas turbine. The project is currently in Phase 2 which includes engineering analysis, laboratory testing and pilot plant testing. Research and development is being done on the HIPPS systems that are not commercial or being developed on other projects. Pilot plant testing of the pyrolyzer subsystem and the char combustion subsystem are being done separately, and after each experimental program has been completed, a larger scale pyrolyzer will be tested at the Power Systems Development Facility (PSDF) in Wilsonville, AL. The facility is equipped with a gas turbine and a topping combustor, and as such, will provide an opportunity to evaluate integrated pyrolyzer and turbine operation. This report addresses the areas of technical progress for this quarter. A general arrangement drawing of the char transfer system was forwarded to SCS for their review. Structural steel drawings were used to generate a three-dimensional model of the char transfer system including all pressure vessels and major piping components. Experimental testing at the Combustion and Environmental Test Facility continued during this quarter. Performance of the char burner, as benchmarked by flame stability and low NOx, has been exceptional. The burner was operated successfully both without natural gas and supplemental pulverized coal.

Unknown

1999-02-01T23:59:59.000Z

410

General-purpose heat source: Research and development program, radioisotope thermoelectric generator/thin fragment impact test  

SciTech Connect

The general-purpose heat source provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. This test was designed to provide information on the response of a loaded RTG to impact by a fragment similar to the type of fragment produced by breakup of the spacecraft propulsion module system. The results of this test indicated that impact by a thin aluminum fragment traveling at 306 m/s may result in significant damage to the converter housing, failure of one fueled clad, and release of a small quantity of fuel.

Reimus, M.A.H.; Hinckley, J.E.

1996-11-01T23:59:59.000Z

411

High School Research at Jefferson Lab - Development of the GRINCH Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Nonlinear Particle Dynamics Nonlinear Particle Dynamics Previous Project (Nonlinear Particle Dynamics) High School Research Main Index Next Project (Fire Alarm Monitoring Systems) Fire Alarm Monitoring Systems Development of the GRINCH Gas Cherenkov Detector This project was done as a summation of all of the projects I have done referencing A1n and the GRINCH detector. To assist in the preparation of the A1n experiment, I helped develop and model a magnetic shielding box for an array of PMT's in the GRINCH detector. Using this box, as well as a compensation coil, seemed to provide ample shielding from the BigBite magnets magnetic field. The PMT's in the array were salvaged from a detector where they were submerged in water and sustained damage (micro-fractures) on their acceptance windows. By putting a layer of glue

412

NETL: Staged, High-Pressure Oxy-Combustion Technology: Development and  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxy-Combustion CO2 Emissions Control Oxy-Combustion CO2 Emissions Control Staged, High-Pressure Oxy-Combustion Technology: Development and Scale-up Project No.: DE-FE0009702 Washington University in St. Louis is developing a unique pressurized system to capture carbon from coal-fired power plants that incorporates a fuel-staged combustion approach. By staging the combustion, the temperature and heat transfer can be controlled. The potential benefits of the process are: higher efficiency, reduced process gas volume, increased radiative heat transfer, reduced oxygen demands, reduced capital equipment costs, increased CO2 purity entering the carbon compression and purification unit, and reduced auxiliary power demands. These benefits are expected to yield a lower cost of electricity than alternative approaches to pressurized oxy-combustion.

413

Walk the Line: The Development of Route Selection Standards for Spent Nuclear Fuel and High-level Radioactive Waste in the United States - 13519  

SciTech Connect

Although storage facilities for spent nuclear fuel (SNF) and high-level radioactive waste (HLRW) are widely dispersed throughout the United States, these materials are also relatively concentrated in terms of geographic area. That is, the impacts of storage occur in a very small geographic space. Once shipments begin to a national repository or centralized interim storage facility, the impacts of SNF and HLRW will become more geographically distributed, more publicly visible, and almost certainly more contentious. The selection of shipping routes will likely be a major source of controversy. This paper describes the development of procedures, regulations, and standards for the selection of routes used to ship spent nuclear fuel and high-level radioactive waste in the United States. The paper begins by reviewing the circumstances around the development of HM-164 routing guidelines. The paper discusses the significance of New York City versus the Department of Transportation and application of HM-164. The paper describes the methods used to implement those regulations. The paper will also describe the current HM-164 designated routes and will provide a summary data analysis of their characteristics. This analysis will reveal the relatively small spatial scale of the effects of HM 164. The paper will then describe subsequent developments that have affected route selection for these materials. These developments include the use of 'representative routes' found in the Department of Energy (DOE) 2008 Supplemental Environmental Impact Statement for the formerly proposed Yucca Mountain geologic repository. The paper will describe recommendations related to route selection found in the National Academy of Sciences 2006 report Going the Distance, as well as recommendations found in the 2012 Final Report of the Blue Ribbon Commission on America's Nuclear Future. The paper will examine recently promulgated federal regulations (HM-232) for selection of rail routes for hazardous materials transport. The paper concludes that while the HM 164 regime is sufficient for certain applications, it does not provide an adequate basis for a national plan to ship spent nuclear fuel and high-level radioactive waste to centralized storage and disposal facilities over a period of 30 to 50 years. (authors)

Dilger, Fred [Black Mountain Research, Henderson, NV 81012 (United States)] [Black Mountain Research, Henderson, NV 81012 (United States); Halstead, Robert J. [State of Nevada Agency for Nuclear Projects, Carson City, NV 80906 (United States)] [State of Nevada Agency for Nuclear Projects, Carson City, NV 80906 (United States); Ballard, James D. [Department of Sociology, California State University, Northridge, CA 91330 (United States)] [Department of Sociology, California State University, Northridge, CA 91330 (United States)

2013-07-01T23:59:59.000Z

414

Development of a dual MCP framing camera for high energy x-rays  

SciTech Connect

Recently developed diagnostic techniques at LLNL require recording backlit images of extremely dense imploded plasmas using hard x-rays, and demand the detector to be sensitive to photons with energies higher than 50 keV [R. Tommasini et al., Phys. Phys. Plasmas 18, 056309 (2011); G. N. Hall et al., AXIS: An instrument for imaging Compton radiographs using ARC on the NIF, Rev. Sci. Instrum. (these proceedings)]. To increase the sensitivity in the high energy region, we propose to use a combination of two MCPs. The first MCP is operated in a low gain regime and works as a thick photocathode, and the second MCP works as a high gain electron multiplier. We tested the concept of this dual MCP configuration and succeeded in obtaining a detective quantum efficiency of 4.5% for 59 keV x-rays, 3 times larger than with a single plate of the thickness typically used in NIF framing cameras.

Izumi, N., E-mail: izumi2@llnl.gov; Hall, G. N.; Carpenter, A. C.; Allen, F. V.; Cruz, J. G.; Felker, B.; Hargrove, D.; Holder, J.; Lumbard, A.; Montesanti, R.; Palmer, N. E.; Piston, K.; Stone, G.; Thao, M.; Vern, R.; Zacharias, R.; Landen, O. L.; Tommasini, R.; Bradley, D. K.; Bell, P. M. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

2014-11-15T23:59:59.000Z

415

Development of High-efficiency Thermoelectric Materials for Vehicle Waste Heat Utililization  

SciTech Connect

The goals of this . CRADA are: 1) Investigation of atomistic structure and nucleation of nanoprecipitates in (PbTe){sub I-x}(AgSbTe2){sub x} (LAST) system; and 2) Development of non-equilibrium synthesis of thermoelectric materials for waste heat recovery. We have made significant accomplishment in both areas. We studied the structure of LAST materials using high resolution imaging, nanoelectron diffraction, energy dispersive spectrum, arid electron energy loss spectrum, and observed a range of nanoparticles The results, published in J. of Applied Physics, provide quantitative structure information about nanoparticles, that is essential for the understanding of the origin of the high thermoelectric performance in this class of materials. We coordinated non-equilibrium synthesis and characterization of thermoelectric materials for waste heat recovery application. Our results, published in J. of Electronic Materials, show enhanced thermoelectric figure of merit and robust mechanical properties in bulk . filled skutterudites.

Li, Qiang

2009-04-30T23:59:59.000Z

416

Development of a High-Performance Office Building Simulation Model for a Hot and Humid Climate  

E-Print Network (OSTI)

to the field measured data and was presented in the previous publication (Cho and Haberl, 2008a). The calibrated simulation model was further extended to an ASHRAE 90.1 code-compliant model, which was used as the baseline model for the development of a... high-performance (energy-efficient) model. However, the code-compliant model did not use the as-built building geometry of the JBC building; rather, it used a simplified geometry. The simplified- geometry, code-compliant simulation model...

Cho, S.; Haberl, J.

417

GridPACK Toolkit for Developing Power Grid Simulations on High Performance Computing Platforms  

SciTech Connect

This paper describes the GridPACK framework, which is designed to help power grid engineers develop modeling software capable of running on todays high performance computers. The framework contains modules for setting up distributed power grid networks, assigning buses and branches with arbitrary behaviors to the network, creating distributed matrices and vectors, using parallel linear and non-linear solvers to solve algebraic equations, and mapping functionality to create matrices and vectors based on properties of the network. In addition, the framework contains additional functionality to support IO and to manage errors.

Palmer, Bruce J.; Perkins, William A.; Glass, Kevin A.; Chen, Yousu; Jin, Shuangshuang; Callahan, Charles D.

2013-11-30T23:59:59.000Z

418

Detector Developments for the High Luminosity LHC Era (2/4)  

ScienceCinema (OSTI)

Calorimetry and Muon Spectromers - Part II: When upgrading the LHC to higher luminosities, the detector and trigger performance shall be preserved - if not improved - with respect to the nominal performance. The ongoing R&D; for new radiation tolerant front-end electronics for calorimeters with higher read-out bandwidth are summarized and new possibilities for the trigger systems are presented. Similar developments are foreseen for the muon spectrometers, where also radiation tolerance of the muon detectors and functioning at high background rates is important. The corresponding plans and research work for the calorimeter and muon detectors at a LHC with highest luminsity are presented.

None

2011-10-06T23:59:59.000Z

419

Amended Record of Decision: Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement (DOE/EIS-0287) (11/28/06)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

811 Federal Register 811 Federal Register / Vol. 71, No. 228 / Tuesday, November 28, 2006 / Notices Information Relay Service (FIRS) at 1-800-877-8339. [FR Doc. E6-20124 Filed 11-27-06; 8:45 am] BILLING CODE 4000-01-P DEPARTMENT OF ENERGY Amended Record of Decision: Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement AGENCY: Department of Energy. ACTION: Amended Record of Decision. SUMMARY: The U.S. Department of Energy (DOE) is amending its Record of Decision (ROD) published December 19, 2005 (70 Federal Register [FR] 75165), pursuant to the Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement (Final EIS) (DOE/EIS-0287, September 2002). The Final EIS analyzed two sets of alternatives for accomplishing DOE's

420

Scale-Dependent Fracture-Matrix Interactions and Their Impact on Radionuclide Transport: Development of efficient particle-tracking methods  

SciTech Connect

Matrix Diffusion and Adsorption within a rock matrix are important mechanisms for retarding transport of radionuclides in fractured rock. Due to computational limitations and difficulties in characterizing complex subsurface systems, diffusive exchange between a fracture network and surrounding rock matrix is often modeled using simplified conceptual representations. There is significant uncertainty in effective parameters used in these models, such as the effective matrix diffusivity. Often, these parameters are estimated by fitting sparse breakthrough data, and estimated values fall outside meaningful ranges, because simplified interpretive models do not consider complex three-dimensional flow. There is limited understanding of the relationship between the effective parameters and rock mass characteristics including network structure and matrix properties. There is also evidence for an apparent scale-dependence in effective matrix diffusion coefficients. These observations raise questions on whether fracture-matrix interaction parameters estimated from small-scale tracer tests can be used for predicting radionuclide fate and transport at the scale of DOE field sites. High-resolution three-dimensional Discrete-Fracture-Network-Matrix (DFNM) models based on well-defined local scale transport equations can help to address some of these questions. Due to tremendous advances in computational technology over the last 10 years, DFNM modeling in relatively large domains is now feasible. The overarching objective of our research is to use DFNM modeling to improve fundamental understanding of how effective parameters in conceptual models are related to fracture network structure and matrix properties. An advanced three-dimensional DFNM model is being developed, which combines upscaled particle-tracking algorithms for fracture-matrix interaction and a parallel fracture-network flow simulator. The particle-tracking algorithms allow complexity in flow fields at different scales, and track transport across fracture-matrix interfaces based on rigorous local approximations to the transport equations. This modeling approach can incorporate aperture variability, multi-scale preferential flow and matrix heterogeneity. We developed efficient particle-tracking methods for handling matrix diffusion and adsorption on fracture walls and demonstrated their efficiency for use within the context of large-scale complex fracture network models with variability in apertures across a network of fractures and within individual fractures.

Rajaram, Harihar [University of Colorado, Boulder; Brutz, Michael [University of Colorado, Boulder; Klein, Dylan R [University of Colorado, Boulder; Mallikamas, Wasin [University of Colorado, Boulder

2014-09-18T23:59:59.000Z

Note: This page contains sample records for the topic "developing high impact" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Development of Brazing Technology for Use in High- Temperature Gas Separation Equipment  

SciTech Connect

The development of high-temperature electrochemical devices such as oxygen and hydrogen separators, fuel gas reformers, solid oxide fuel cells, and chemical sensors is part of a rapidly expanding segment of the solid state technology market. These devices employ an ionic conducting ceramic as the active membrane that establishes the electrochemical potential of the device, either under voltage (i.e. to carry out gas separation) or under chemical gradient (to develop an electrical potential and thereby generate electrical power). Because the device operates under an ionic gradient that develops across the electrolyte, hermiticity across this layer is paramount. That is, not only must this thin ceramic membrane be dense with no interconnected porosity, but it must be connected to the rest of the device, typically constructed from a heat resistant alloy, with a high-temperature, gas-tight seal. A significant engineering challenge in fabricating these devices is how to effectively join the thin electrochemically active membrane to the metallic body of the device such that the resulting seal is hermetic, rugged, and stable during continuous high temperature operation. Active metal brazing is the typical method of joining ceramic and metal engineering components. It employs a braze alloy that contains one or more reactive elements, often titanium, which will chemically reduce the ceramic faying surface and greatly improve its wetting behavior and adherence with the braze. However, recent studies of these brazes for potential use in fabricating high-temperature electrochemical devices revealed problems with interfacial oxidation and subsequent joint failure [1,2]. Specifically, it was found that the introduction of the ceramic electrolyte and/or heat resistant metal substrate dramatically affects the inherent oxidation behavior of the braze, often in a deleterious manner. These conclusions pointed to the need for an oxidation resistant, high-temperature ceramic-to-metal braze and consequently lead to the development of the novel reactive air brazing (RAB) concept. The goal in RAB is to reactively modify one or both oxide faying surfaces with an oxide compound dissolved in a molten noble metal alloy such that the newly formed surface is readily wetted by the remaining liquid filler material. In many respects, this concept is similar to active metal brazing, except that joining can be conducted in air and the final joint will be resistant to oxidation at high temperature. Potentially, there are a number of metal oxide-noble metal systems that can be considered for RAB, including Ag-CuO, Ag-V2O5, and Pt-Nb2O5. Our current interest is in determining whether the Ag-CuO system is suitable for air brazing functional ceramic-to-metal joints such as those needed in practical electrochemical devices. In a series of studies, the wetting behavior of the Ag-CuO braze was investigated with respect to a number of potential hydrogen separation, oxygen separation, and fuel cell electrolyte membrane materials and heat resistant metal systems, including: alumina, (La0.6Sr0.4)(Co0.2Fe0.8)O3, (La0.8Sr0.2)FeO3, YSZ, fecralloy, and Crofer-22APU. Selected findings from these studies as well as from our work on joint strength and durability during high-temperature exposure testing will be discussed.

Weil, K.S.; Hardy, J.S.; Kim, J.Y.

2003-04-23T23:59:59.000Z

422

DEVELOPMENT OF A MUD-PULSE HIGH-TEMPERATURE MEASUREMENT-WHILE-DRILLING (MWD) SYSTEM  

SciTech Connect

The overall program objective is to develop a mud-pulse measurement-while-drilling (MWD) tool for oil and gas drilling operations that can be used where downhole temperatures are as high as 195 C (383 F). The work was planned to be completed in two phases: Phase I and an optional Phase II. The objectives of Phase I were first to identify critical components of existing MWD systems that can or cannot operate at 195 C. For components not able to meet the higher standard, one of several strategies was pursued: (1) locate high-temperature replacement components, (2) develop new designs that eliminate the unavailable components, or (3) use cooling to keep components at acceptable operating temperatures (under 195 C). New designs and components were then tested under high temperatures in the laboratory. The final goal of Phase I was to assemble two high-temperature MWD prototype tools and test each in at least one low-temperature well to verify total system performance. Phase II was also envisioned as part of this development. Its objective would be to test the two new high-temperature MWD prototype tools in wells being drilled in the United States where the bottom-hole temperatures were 195 C (or the highest temperatures attainable). The high-temperature MWD tool is designed to send directional and formation data to the surface via mud pulses, to aid in the drilling of guided wellbores. The modules that comprise the tool are housed in sealed barrels that protect the electronics from exposure to down-hole fluids and pressures. These pressure barrels are hung inside a non-magnetic collar located above the drilling assembly. A number of significant accomplishments were achieved during the course of the Phase I project, including: (1) Tested two MWD strings for function in an oven at 195 C; (2) Conducted field test of prototype 195 C MWD tool (at well temperatures up to 140-180 C); (3) Tested ELCON hybrid chip with processor, clock, and memory in a custom package for 700 hours at 200 C; (4) Contracted with APS Technology to conduct study of thermoelectric cooling of downhole electronics; (5) Conducted successful Peltier cooling test with APS Technology; (6) Tested and improved the electronics of Sperry Sun's Geiger Muller-based gamma detector for operation at 195 C; (7) Developed two high-temperature magnetometers (one in-house, one with Tensor); and (8) Encouraged outside source to develop lithium/magnesium high-temperature batteries (operating temperature of 125 to 215 C). One of this project's greatest achievements was improvement in Sperry Sun's current tool with changes made as a direct result of work performed under this project. These improvements have resulted in longer life and a more robust MWD tool at the previous temperature rating of 175 C, as well as at higher temperatures. A field test of two prototype 195 C MWD tools was conducted in Lavaca County, Texas. The purpose of this operation was to provide directional services on a sidetrack of a straight hole. The sidetrack was to intersect the formation up-dip above the water/gas interface. In addition, the gamma tool provided formation data including seam tops and thickness. Results from these field tests indicate progress in the development of a 195 C tool. Although the pulsers failed downhole in both tools, failure of the pulsers was determined to be from mechanical rather than electrical causes. Analysis of the economics of the 195 C tool highlights the greatest obstacle to future commercialization. Costs to screen individual components, then subassemblies, and finally completed tools for high-temperature operations are very high. Tests to date also show a relatively short life for high-temperature tools--on the order of 300 hours. These factors mean that the daily cost of the tool will be higher (3 to 5 times more) than a conventional tool.

John H. Cohen; Greg Deskins; William Motion; Jay Martin

2002-01-01T23:59:59.000Z

423

A Study of the Economic Impact of Water Impoundment Through the Development of a Comparative-Projection Model  

E-Print Network (OSTI)

Using two established reservoir projects, an economic simulation model for reservoir development was constructed. The two comparative areas used for the model development are both reservoirs in central Texas and were constructed during approximately...

Pearson, J.E.

424

A comparative analysis of the environmental impacts of a Pelamis Wave Energy device with existing off shore developments and installations.  

E-Print Network (OSTI)

Scotland is currently at the forefront of development and expansion of wave energy, especially with recent renewable energy targets. Research and development has increased greatly off the Scottish coastline. Various adjectives can be used...

Quinn, Eoghan

2011-11-23T23:59:59.000Z

425

Final Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Contents Contents CR-iii TABLE OF CONTENTS Section Page 8. Transportation Modes, Routes, Affected Environment, and Impacts............................................ CR8-1 8.1 General Opposition to Transporting Spent Nuclear Fuel and High-Level Radioactive Waste ............................................................................................................ CR8-6 8.2 Number of Shipments ..................................................................................................... CR8-37 8.3 Transportation Modes and Routes .................................................................................. CR8-41 8.3.1 State Highway 127, Hoover Dam, Nevada Department of Transportation Alternatives ..............................................................................................................

426

Pilot Implementation of a Field Study Design to Evaluate the Impact of Source Control Measures on Indoor Air Quality in High Performance Homes  

SciTech Connect

To improve the indoor air quality in new, high performance homes, a variety of standards and rating programs have been introduced to identify building materials that are designed to have lower emission rates of key contaminants of concern and a number of building materials are being introduced that are certified to these standards. For example, the U.S. Department of Energy (DOE) Zero Energy Ready Home program requires certification under the U.S. Environmental Protection Agency (EPA) Indoor airPLUS (IaP) label, which requires the use of PS1 or PS2 certified plywood and OSB; low-formaldehyde emitting wood products; low- or no-VOC paints and coatings as certified by Green Seal Standard GS-11, GreenGuard, SCS Indoor Advantage Gold Standard, MPI Green Performance Standard, or another third party rating program; and Green Label-certified carpet and carpet cushions. However, little is known regarding the efficacy of the IAP requirements in measurably reducing contaminant exposures in homes. The goal of this project is to develop a robust experimental approach and collect preliminary data to support the evaluation of indoor air quality (IAQ) measures linked to IAP-approved low-emitting materials and finishes in new residential homes. To this end, the research team of Pacific Northwest National Laboratory (PNNL) and Lawrence Berkeley National Laboratory (LBNL) developed a detailed experimental plan to measure IAQ constituents and other parameters, over time, in new homes constructed with materials compliant with IAPs low-emitting material and ventilation requirements (i.e., section 6.1, 6.2, 6.3, and 7.2) and similar homes constructed to the state building code with conventional materials. The IAQ in IAP and conventional homes of similar age, location, and construction style is quantified as the differences in the speciated VOC and aldehyde concentrations, normalized to dilution rates. The experimental plan consists of methods to evaluate the difference between low-emitting and conventional materials as installed in newly constructed residential homes using both (1) highly controlled, short-term active samples to precisely characterize the building-related chemical emissions and building contents and (2) a week-long passive sample designed to capture the impact of occupant behavior and related activities on measured IAQ contaminant levels indoors. The combination of detailed short-term measurements with the home under controlled/consistent conditions during pre- and post-occupancy and the week-long passive sampling data provide the opportunity to begin to separate the different emission sources and help isolate and quantify variability in the monitored homes. Between April and August 2014, the research team performed pre-occupancy and post-occupancy sampling in one conventional home and two homes built with low-emitting materials that were generally consistent with EPAs Indoor airPLUS guidelines. However, for a number of reasons, the full experimental plan was not implemented. The project was intended to continue for up to three years to asses long-term changes in IAQ but the project was limited to one calendar year. As a result, several of the primary research questions related to seasonal impacts and the long-term trends in IAQ could not be addressed. In addition, there were several unexpected issues related to recruiting, availability of home types, and difficulty coordinating with builders/realtors/homeowners. Several field monitoring issues also came up that provide lessons learned that led to improvements to the original monitoring plan. The project produced a good experimental plan that is expected to be be useful for future efforts collecting data to support answering these same or similar research questions.

Widder, Sarah H.; Chamness, Michele A.; Petersen, Joseph M.; Singer, Brett C.; Maddalena, Randy L.; Destaillats, Hugo

2014-10-20T23:59:59.000Z

427

Development of a Two-Phase Model for the Hot Deformation of Highly-Alloyed Aluminum  

SciTech Connect

Conventional processing methods for highly alloyed aluminum consist of ingot casting, followed by hot rolling and thermal treatments. Defects result in lost productivity and wasted energy through the need to remelt and reprocess the material. This research centers on developing a fundamental understanding for deformation of wrought 705X series alloys, a key alloy system used in structural airframe applications. The development of damage at grain boundaries is characterized through a novel test that provides initiation of failure while preserving a controlled deformation response. Data from these mechanical tests are linked to computer simulations of the hot rolling process through a critical measure of damage. Transmission electron microscopy provides fundamental insight into deformation at these high working temperatures, and--in a novel link between microscale and macroscale response--the evolution of microstructure (crystallographic orientation) provides feedback for tuning of friction in the hot rolling process. The key product of this research is a modeling framework for the analysis of industrial hot rolling.

A. J. Beaudoin; J. A. Dantzig; I. M. Robertson; B. E. Gore; S. F. Harnish; H. A. Padilla

2005-10-31T23:59:59.000Z

428

Development of a High Performance Air Source Heat Pump for the US Market  

SciTech Connect

Heat pumps present a significant advantage over conventional residential heating technologies due to higher energy efficiencies and less dependence on imported oil. The US development of heat pumps dates back to the 1930 s with pilot units being commercially available in the 1950 s. Reliable and cost competitive units were available in the US market by the 1960 s. The 1973 oil embargo led to increased interest in heat pumps prompting significant research to improve performance, particularly for cold climate locations. Recent increasing concerns on building energy efficiency and environmental emissions have prompted a new wave of research in heat pump technology with special emphasis on reducing performance degradation at colder outdoor air temperatures. A summary of the advantages and limitations of several performance improvement options sought for the development of high performance air source heat pump systems for cold climate applications is the primary focus of this paper. Some recommendations for a high performance cold climate heat pump system design most suitable for the US market are presented.

Abdelaziz, Omar [ORNL] [ORNL; Shen, Bo [ORNL] [ORNL; Gao, Zhiming [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL; Iu, Ipseng [ORNL] [ORNL

2011-01-01T23:59:59.000Z

429

High Burnup Dry Storage Cask Research and Development Project, Final Test Plan  

SciTech Connect

EPRI is leading a project team to develop and implement the first five years of a Test Plan to collect data from a SNF dry storage system containing high burnup fuel.12 The Test Plan defined in this document outlines the data to be collected, and the storage system design, procedures, and licensing necessary to implement the Test Plan.13 The main goals of the proposed test are to provide confirmatory data14 for models, future SNF dry storage cask design, and to support license renewals and new licenses for ISFSIs. To provide data that is most relevant to high burnup fuel in dry storage, the design of the test storage system must mimic real conditions that high burnup SNF experiences during all stages of dry storage: loading, cask drying, inert gas backfilling, and transfer to the ISFSI for multi-year storage.15 Along with other optional modeling, SETs, and SSTs, the data collected in this Test Plan can be used to evaluate the integrity of dry storage systems and the high burnup fuel contained therein over many decades. It should be noted that the Test Plan described in this document discusses essential activities that go beyond the first five years of Test Plan implementation.16 The first five years of the Test Plan include activities up through loading the cask, initiating the data collection, and beginning the long-term storage period at the ISFSI. The Test Plan encompasses the overall project that includes activities that may not be completed until 15 or more years from now, including continued data collection, shipment of the Research Project Cask to a Fuel Examination Facility, opening the cask at the Fuel Examination Facility, and examining the high burnup fuel after the initial storage period.

none,

2014-02-27T23:59:59.000Z

430

Development and Verification of Tritium Analyses Code for a Very High Temperature Reactor  

SciTech Connect

A tritium permeation analyses code (TPAC) has been developed by Idaho National Laboratory for the purpose of analyzing tritium distributions in the VHTR systems including integrated hydrogen production systems. A MATLAB SIMULINK software package was used for development of the code. The TPAC is based on the mass balance equations of tritium-containing species and a various form of hydrogen (i.e., HT, H2, HTO, HTSO4, and TI) coupled with a variety of tritium source, sink, and permeation models. In the TPAC, ternary fission and neutron reactions with 6Li, 7Li 10B, 3He were taken into considerations as tritium sources. Purification and leakage models were implemented as main tritium sinks. Permeation of HT and H2 through pipes, vessels, and heat exchangers were importantly considered as main tritium transport paths. In addition, electroyzer and isotope exchange models were developed for analyzing hydrogen production systems including both high-temperature electrolysis and sulfur-iodine process. The TPAC has unlimited flexibility for the system configurations, and provides easy drag-and-drops for making models by adopting a graphical user interface. Verification of the code has been performed by comparisons with the analytical solutions and the experimental data based on the Peach Bottom reactor design. The preliminary results calculated with a former tritium analyses code, THYTAN which was developed in Japan and adopted by Japan Atomic Energy Agency were also compared with the TPAC solutions. This report contains descriptions of the basic tritium pathways, theory, simple user guide, verifications, sensitivity studies, sample cases, and code tutorials. Tritium behaviors in a very high temperature reactor/high temperature steam electrolysis system have been analyzed by the TPAC based on the reference indirect parallel configuration proposed by Oh et al. (2007). This analysis showed that only 0.4% of tritium released from the core is transferred to the product hydrogen. The amount of tritium in the product hydrogen was estimated to be approximately an order less than the gaseous effluent limit for tritium.

Chang H. Oh; Eung S. Kim

2009-09-01T23:59:59.000Z

431

Development and Transient Analysis of a Helical-coil Steam Generator for High Temperature Reactors  

SciTech Connect

A high temperature gas-cooled reactor (HTGR) is under development by the Next Generation Nuclear Plant (NGNP) Project at the Idaho National Laboratory (INL). Its design emphasizes electrical power production which may potentially be coupled with process heat for hydrogen production and other industrial applications. NGNP is considering a helical-coil steam generator for the primary heat transport loop heat exchanger based on its increased heat transfer and compactness when compared to other steam generators. The safety and reliability of the helical-coil steam generator is currently under evaluation as part of the development of NGNP. Transients, such as loss of coolant accidents (LOCA), are of interest in evaluating the safety of steam generators. In this study, a complete steam generator inlet pipe break (double ended pipe break) LOCA was simulated by an exponential loss of primary side pressure. For this analysis, a model of the helical-coil steam generator was developed using RELAP5-3D, an INL inhouse systems analysis code. The steam generator model behaved normally during the transient simulating the complete steam generator inlet pipe break LOCA. Further analysis is required to comprehensively evaluate the safety and reliability of the helical-coil steam generator design in the NGNP setting.

Nathan V. Hoffer; Nolan A. Anderson; Piyush Sabharwall

2011-08-01T23:59:59.000Z

432

Development of High Precision Timing Counter Based on Plastic Scintillator with SiPM Readout  

E-Print Network (OSTI)

High-time-resolution counters based on plastic scintillator with silicon photomultiplier (SiPM) readout have been developed for applications to high energy physics experiments for which relatively large-sized counters are required. We have studied counter sizes up to $120\\times40\\times5$ mm^3 with series connection of multiple SiPMs to increase the sensitive area and thus achieve better time resolution. A readout scheme with analog shaping and digital waveform analysis is optimized to achieve the highest time resolution. The timing performance is measured using electrons from a Sr-90 radioactive source, comparing different scintillators, counter dimensions, and types of near-ultraviolet sensitive SiPMs. As a result, a resolution of $\\sigma =42 \\pm 2$ ps at 1 MeV energy deposition is obtained for counter size $60\\times 30 \\times 5$ mm^3 with three SiPMs ($3\\times3$ mm^2 each) at each end of the scintillator. The time resolution improves with the number of photons detected by the SiPMs. The SiPMs from Hamamatsu Photonics give the best time resolution because of their high photon detection efficiency in the near-ultraviolet region. Further improvement is possible by increasing the number of SiPMs attached to the scintillator.

Paolo W. Cattaneo; Matteo De Gerone; Flavio Gatti; Miki Nishimura; Wataru Ootani; Massimo Rossella; Yusuke Uchiyama

2014-08-11T23:59:59.000Z

433

ENGINEERING DEVELOPMENT OF COAL-FIRED HIGH-PERFORMANCE POWER SYSTEMS  

SciTech Connect

A High Performance Power System (HIPPS) is being developed. This system is a coal-fired, combined cycle plant with indirect heating of gas turbine air. Foster Wheeler Development Corporation and a team consisting of Foster Wheeler Energy Corporation, Bechtel Corporation, University of Tennessee Space Institute and Westinghouse Electric Corporation are developing this system. In Phase 1 of the project, a conceptual design of a commercial plant was developed. Technical and economic analyses indicated that the plant would meet the goals of the project which include a 47 percent efficiency (HHV) and a 10 percent lower cost of electricity than an equivalent size PC plant. The concept uses a pyrolyzation process to convert coal into fuel gas and char. The char is fired in a High Temperature Advanced Furnace (HITAF). The HITAF is a pulverized fuel-fired boiler/air heater where steam is generated and gas turbine air is indirectly heated. The fuel gas generated in the pyrolyzer is then used to heat the gas turbine air further before it enters the gas turbine. The project is currently in Phase 2, which includes engineering analysis, laboratory testing and pilot plant testing. Research and development is being done on the HIPPS systems that are not commercial or being developed on other projects. Pilot plant testing of the pyrolyzer subsystem and the char combustion subsystem are being done separately, and after each experimental program has been completed, a larger scale pyrolyzer will be tested at the Power Systems Development Facility (PSDF) in Wilsonville, Al. The facility is equipped with a gas turbine and a topping combustor, and as such, will provide an opportunity to evaluate integrated pyrolyzer and turbine operation. The design of the char burner was completed during this quarter. The burner is designed for arch-firing and has a maximum capacity of 30 MMBtu/hr. This size represents a half scale version of a typical commercial burner. The burner is outfitted with nozzles for separate injection of char, coal, and limestone. Burner performance will be rated according to three criteria, carbon conversion efficiency, NOx generation, and flame stability. If initial testing in the arch configuration proves successful, further tests will be performed in the wall-fired arrangement. A complete set of process and instrumentation drawings (P/ID's) were completed for the Combustion and Environmental Test Facility (CETF) this quarter. These drawings established an ISA approved instrument tagging structure, and provided a coherent database for the development of a data acquisition system. The data acquisition system polls tag information (value, range, engineering units, etc.) from the distributed control system (DCS) highway, and provides a platform for data reduction. The quadrupole mass spectrometer, used during the pyrolyzer tests performed at the pilot plant in Livingston, N.J., has been redesigned for use at the CETF. The mass spectrometer is designed to provide on-line gas analysis by identifying all of the chemical components within the secondary air line, the flue gas recycle line, and the furnace exit ducting. The construction effort at the CETF continued this quarter with the completion of the char storage system, reheat burner, flue gas recycle piping, and the pulverized coal feed system.

NONE

1998-11-01T23:59:59.000Z

434

Engineering development of coal-fired high-performance power systems  

SciTech Connect

In Phase I of the project, a conceptual design of a coal-fired high performance power system was developed, and small scale R&D was done in critical areas of the design. The current Phase Of the project includes development through the pilot plant stage, and design of a prototype plant that would be built in Phase 3. Foster Wheeler Development Corporation is leading a team of companies in this effort: AlliedSignal Aerospace Equipment Systems, Bechtel Corporation, University of Tennessee Space Institute (UTSI), and Westinghouse Electric Corporation. The power generating system being developed in this project will be an improvement over current coal-fired systems. The following goals have been identified that relate to the efficiency,emissions, costs and general operation of the system: total station efficiency of at least 4 percent on a higher heating value basis; emissions--NOx {lt} 0.06 lb/MMBtu, SOx {lt} 0.06 lb/MMBtu, particulates {lt} 0.003 lb/MMBtu; all solid wastes must be benign with regard to disposal; over 95 percent of the total heat input is ultimately from coal, with initial systems capable of using coal for at least 65 percent of the heat input; 10 percent lower cost of electricity relative to a modern coal-fired plant conforming to NSPS. The base case arrangement of the HIPPS cycle is a combined cycle plant, and is referred to as the All Coal HIPPS because it does not require any other fuels for normal operation. An alternative HIPPS cycle uses a ceramic air heater to heat the air to temperatures above what can be achieved with alloy tubes. This arrangement is referred to as the 35 percent natural gas HIPPS. 2 refs., 11 figs. 3 tabs.

NONE

1996-06-01T23:59:59.000Z

435

Natural Gas Development and Grassland Songbird Abundance in Southwestern Saskatchewan: The Impact of Gas Wells and Cumulative Disturbance .  

E-Print Network (OSTI)

??The quantity and quality of remaining grasslands in southwestern Saskatchewan, Canada, are threatened by expansion of natural gas development. The number of natural gas wells (more)

Bogard, Holly Jayne Kalyn

2011-01-01T23:59:59.000Z

436

LANDS WITH WILDERNESS CHARACTERISTICS, RESOURCE MANAGEMENT PLAN CONSTRAINTS, AND LAND EXCHANGES: CROSS-JURISDICTIONAL MANAGEMENT AND IMPACTS ON UNCONVENTIONAL FUEL DEVELOPMENT IN UTAHS UINTA BASIN  

SciTech Connect

Utah is rich in oil shale and oil sands resources. Chief among the challenges facing prospective unconventional fuel developers is the ability to access these resources. Access is heavily dependent upon land ownership and applicable management requirements. Understanding constraints on resource access and the prospect of consolidating resource holdings across a fragmented management landscape is critical to understanding the role Utahs unconventional fuel resources may play in our nations energy policy. This Topical Report explains the historic roots of the crazy quilt of western land ownership, how current controversies over management of federal public land with wilderness character could impact access to unconventional fuels resources, and how land exchanges could improve management efficiency. Upon admission to the Union, the State of Utah received the right to title to more than one-ninth of all land within the newly formed state. This land is held in trust to support public schools and institutions, and is managed to generate revenue for trust beneficiaries. State trust lands are scattered across the state in mostly discontinuous 640-acre parcels, many of which are surrounded by federal land and too small to develop on their own. Where state trust lands are developable but surrounded by federal land, federal land management objectives can complicate state trust land development. The difficulty generating revenue from state trust lands can frustrate state and local government officials as well as citizens advocating for economic development. Likewise, the prospect of industrial development of inholdings within prized conservation landscapes creates management challenges for federal agencies. One major tension involves whether certain federal public lands possess wilderness character, and if so, whether management of those lands should emphasize wilderness values over other uses. On December 22, 2010, Secretary of the Interior Ken Salazar issued Secretarial Order 3310, Protecting Wilderness Characteristics on Lands Managed by the Bureau of Land Management. Supporters argue that the Order merely provides guidance regarding implementation of existing legal obligations without creating new rights or duties. Opponents describe Order 3310 as subverting congressional authority to designate Wilderness Areas and as closing millions of acres of public lands to energy development and commodity production. While opponents succeeded in temporarily defunding the Orders implementation and forcing the Bureau of Land Management (BLM) to adopt a more collaborative approach, the fundamental questions remain: Which federal public lands possess wilderness characteristics and how should those lands be managed? The closely related question is: How might management of such resources impact unconventional fuel development within Utah? These questions remain pressing independent of the Order because the BLM, which manages the majority of federal land in Utah, is statutorily obligated to maintain an up-to-date inventory of federal public lands and the resources they contain, including lands with wilderness characteristics. The BLM is also legally obligated to develop and periodically update land use plans, relying on information obtained in its public lands inventory. The BLM cannot sidestep these hard choices, and failure to consider wilderness characteristics during the planning process will derail the planning effort. Based on an analysis of the most recent inventory data, lands with wilderness characteristics whether already subject to mandatory protection under the Wilderness Act, subject to discretionary protections as part of BLM Resource Management Plan revisions, or potentially subject to new protections under Order 3310 are unlikely to profoundly impact oil shale development within Utahs Uinta Basin. Lands with wilderness characteristics are likely to v have a greater impact on oil sands resources, particularly those resources found in the southern part of the state. Management requirements independent of l

Keiter, Robert; Ruple, John; Holt, Rebecca; Tanana, Heather; McNeally, Phoebe; Tribby, Clavin

2012-10-01T23:59:59.000Z

437

High-pressure crystallography  

Science Journals Connector (OSTI)

The history and development of high-pressure crystallography are briefly described and examples of structural transformations in compressed compounds are given. The review is focused on the diamond-anvil cell, celebrating its 50th anniversary this year, the principles of its operation and the impact it has had on high-pressure X-ray diffraction.

Katrusiak, A.

2007-12-21T23:59:59.000Z

438

High-Performance Computing Enables Huge Leap Forward in Engine Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Computing Enables Huge Leap Forward in Engine Development When we turn the key in our car's ignition, we usually don't think about the combustion process that takes place inside the engine that enables the car to go. We just know that it works. From left, Argonne researchers Raymond Bair, Doug Longman, Qingluan Xue, Marta Garcia, Shashi Aithal (seated) and Sibendu Som are part of a multidisciplinary team working to advance diesel and spark engine modeling and simulation tools into the high-performance computing realm. TransForum News from Argonne's Transportation Technology R&D Center www.transportation.anl.gov Reprint from Volume 13 | Issue 1 | Winter 2013 2 Volume 13 | Issue 1 | Winter 2013 2 3 TransForum TransForum facilities, Argonne is one of the few places in the world with the

439

Development of fast cooling pulsed magnets at the Wuhan National High Magnetic Field Center  

SciTech Connect

Pulsed magnets with fast cooling channels have been developed at the Wuhan National High Magnetic Field Center. Between the inner and outer sections of a coil wound with a continuous length of CuNb wire, G10 rods with cross section 4 mm 5 mm were inserted as spacers around the entire circumference, parallel to the coil axis. The free space between adjacent rods is 6 mm. The liquid nitrogen flows freely in the channels between these rods, and in the direction perpendicular to the rods through grooves provided in the rods. For a typical 60 T pulsed magnetic field with pulse duration of 40 ms, the cooling time between subsequent pulses is reduced from 160 min to 35 min. Subsequently, the same technology was applied to a 50 T magnet with 300 ms pulse duration. The cooling time of this magnet was reduced from 480 min to 65 min.

Peng, Tao; Sun, Quqin; Zhao, Jianlong; Jiang, Fan; Li, Liang; Xu, Qiang [Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan (China)] [Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan (China); Herlach, Fritz [Department of Physics, Katholieke Universiteit Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium)] [Department of Physics, Katholieke Universiteit Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium)

2013-12-15T23:59:59.000Z

440

Philips Lumileds Develops a Low-Cost, High-Power, Warm-White LED Package  

Energy.gov (U.S. Department of Energy (DOE))

With the help of DOE funding, Philips Lumileds has developed a low-cost, high-power, warm-white LED package for general illumination. During the course of the two-year project, this package was used to commercialize a series of products with correlated color temperatures (CCTs) ranging from 2700 to 5700 K, under the product name LUXEON M. A record efficacy of nearly 125 lm/W was demonstrated at a flux of 1023 lumens, a CCT of 3435 K, and a color rendering index (CRI) of more than 80 at room temperature in the productized package. In an R&D package, a record efficacy of more than 133 lm/W at a flux of 1015 lumens, a CCT of 3475 K, and a CRI greater than 80 at room temperature were demonstrated.

Note: This page contains sample records for the topic "developing high impact" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Impact of using high-density polyethylene geomembrane layer as landfill intermediate cover on landfill gas extraction  

Science Journals Connector (OSTI)

Clay is widely used as a traditional cover material for landfills. As clay becomes increasingly costly and scarce, and it also reduces the storage capacity of landfills, alternative materials with low hydraulic conductivity are employed. In developing countries such as China, landfill gas (LFG) is usually extracted for utilization during filling stage, therefore, the intermediate covering system is an important part in a landfill. In this study, a field test of LFG extraction was implemented under the condition of using high-density polyethylene (HDPE) geomembrane layer as the only intermediate cover on the landfill. Results showed that after welding the HDPE geomembranes together to form a whole airtight layer upon a larger area of landfill, the gas flow in the general pipe increased 25% comparing with the design that the HDPE geomembranes were not welded together, which means that the gas extraction ability improved. However as the heat isolation capacity of the HDPE geomembrane layer is low, the gas generation ability of a shallow landfill is likely to be weakened in cold weather. Although using HDPE geomembrane layer as intermediate cover is acceptable in practice, the management and maintenance of it needs to be investigated in order to guarantee its effective operation for a long term.

Zezhi Chen; Huijuan Gong; Mengqun Zhang; Weili Wu; Yu Liu; Jin Feng

2011-01-01T23:59:59.000Z

442

Laboratory Development of A High Capacity Gas-Fired paper Dryer  

SciTech Connect

Paper drying is the most energy-intensive and temperature-critical aspect of papermaking. It is estimated that about 67% of the total energy required in papermaking is used to dry paper. The conventional drying method uses a series of steam-heated metal cylinders that are required to meet ASME codes for pressure vessels, which limits the steam pressure to about 160 psig. Consequently, the shell temperature and the drying capacity are also limited. Gas Technology Institute together with Boise Paper Solutions, Groupe Laparrier and Verreault (GL&V) USA Inc., Flynn Burner Corporation and with funding support from the U.S. Department of Energy, U.S. natural gas industry, and Gas Research Institute is developing a high efficiency gas-fired paper dryer based on a combination of a ribbon burner and advanced heat transfer enhancement technique. The Gas-Fired Paper Dryer (GFPD) is a high-efficiency alternative to conventional steam-heated drying drums that typically operate at surface temperatures in the 300???????????????ºF range. The new approach was evaluated in laboratory and pilot-scale testing at the Western Michigan University Paper Pilot Plant. Drum surface temperatures of more than 400???????????????ºF were reached with linerboard (basis weight 126 lb/3000 ft2) production and resulted in a 4-5 times increase in drying rate over a conventional steam-heated drying drum. Successful GFPD development and commercialization will provide large energy savings to the paper industry and increase paper production rates from dryer-limited (space- or steam-limited) paper machines by an estimated 10 to 20%, resulting in significant capital costs savings for both retrofits and new capacity.

Yaroslav Chudnovsky; Aleksandr Kozlov; Lester Sherrow

2005-09-30T23:59:59.000Z

443

Final Report: Laboratory Development of a High Capacity Gas-Fired Paper Dryer  

SciTech Connect

Paper drying is the most energy-intensive and temperature-critical aspect of papermaking. It is estimated that about 67% of the total energy required in papermaking is used to dry paper. The conventional drying method uses a series of steam-heated metal cylinders that are required to meet ASME codes for pressure vessels, which limits the steam pressure to about 160 psig. Consequently, the shell temperature and the drying capacity are also limited. Gas Technology Institute together with Boise Paper Solutions, Groupe Laperrier and Verreault (GL&V) USA Inc., Flynn Burner Corporation and with funding support from the U.S. Department of Energy, U.S. natural gas industry, and Gas Research Institute is developing a high efficiency gas-fired paper dryer based on a combination of a ribbon burner and advanced heat transfer enhancement technique. The Gas-Fired Paper Dryer (GFPD) is a high-efficiency alternative to conventional steam-heated drying drums that typically operate at surface temperatures in the 300 deg F range. The new approach was evaluated in laboratory and pilot-scale testing at the Western Michigan University Paper Pilot Plant. Drum surface temperatures of more than 400 deg F were reached with linerboard (basis weight 126 lb/3000 ft2) production and resulted in a 4-5 times increase in drying rate over a conventional steam-heated drying drum. Successful GFPD development and commercialization will provide large energy savings to the paper industry and increase paper production rates from dryer-limited (space- or steam-limited) paper machines by an estimated 10 to 20%, resulting in significant capital costs savings for both retrofits and new capacity.

Yaroslav Chudnovsky; Aleksandr Kozlov; Lester Sherrow

2005-09-30T23:59:59.000Z

444

Development of a high-temperature diagnostics-while-drilling tool.  

SciTech Connect

The envisioned benefits of Diagnostics-While-Drilling (DWD) are based on the principle that high-speed, real-time information from the downhole environment will promote better control of the drilling process. Although in practice a DWD system could provide information related to any aspect of exploration and production of subsurface resources, the current DWD system provides data on drilling dynamics. This particular set of new tools provided by DWD will allow quicker detection of problems, reduce drilling flat-time and facilitate more efficient drilling (drilling optimization) with the overarching result of decreased drilling costs. In addition to providing the driller with an improved, real-time picture of the drilling conditions downhole, data generated from DWD systems provides researchers with valuable, high fidelity data sets necessary for developing and validating enhanced understanding of the drilling process. Toward this end, the availability of DWD creates a synergy with other Sandia Geothermal programs, such as the hard-rock bit program, where the introduction of alternative rock-reduction technologies are contingent on the reduction or elimination of damaging dynamic effects. More detailed descriptions of the rationale for the program and early development efforts are described in more detail by others [SAND2003-2069 and SAND2000-0239]. A first-generation low-temperature (LT) DWD system was fielded in a series of proof-of-concept tests (POC) to validate functionality. Using the LT system, DWD was subsequently used to support a single-laboratory/multiple-partner CRADA (Cooperative Research and Development Agreement) entitled Advanced Drag Bits for Hard-Rock Drilling. The drag-bit CRADA was established between Sandia and four bit companies, and involved testing of a PDC bit from each company [Wise, et al., 2003, 2004] in the same lithologic interval at the Gas Technology Institute (GTI) test facility near Catoosa, OK. In addition, the LT DWD system has been fielded in cost-sharing efforts with an industrial partner to support the development of new generation hard-rock drag bits. Following the demonstrated success of the POC DWD system, efforts were initiated in FY05 to design, fabricate and test a high-temperature (HT) capable version of the DWD system. The design temperature for the HT DWD system was 225 C. Programmatic requirements dictated that a HT DWD tool be developed during FY05 and that a working system be demonstrated before the end of FY05. During initial design discussions regarding a high-temperature system it was decided that, to the extent possible, the HT DWD system would maintain functionality similar to the low temperature system, that is, the HT DWD system would also be designed to provide the driller with real-time information on bit and bottom-hole-assembly (BHA) dynamics while drilling. Additionally, because of time and fiscal constraints associated with the HT system development, the design of the HT DWD tool would follow that of the LT tool. The downhole electronics package would be contained in a concentrically located pressure barrel and the use of externally applied strain gages with thru-tool connectors would also be used in the new design. Also, in order to maximize the potential wells available for the HT DWD system and to allow better comparison with the low-temperature design, the diameter of the tool was maintained at 7-inches. This report discusses the efforts associated with the development of a DWD system capable of sustained operation at 225 C. This report documents work performed in the second phase of the Diagnostics-While-Drilling (DWD) project in which a high-temperature (HT) version of the phase 1 low-temperature (LT) proof-of-concept (POC) DWD tool was built and tested. Descriptions of the design, fabrication and field testing of the HT tool are provided. Background on prior phases of the project can be found in SAND2003-2069 and SAND2000-0239.

Chavira, David J.; Huey, David (Stress Engineering Services, Inc.); Hetmaniak, Chris (Stress Engineering Services, Inc.); Polsky, Yarom; King, Dennis K.; Jacobson, Ronald David; Blankenship, Douglas Alan; Knudsen, Steven Dell; Henfling, Joseph Anthony; Mansure, Arthur James

2009-01-01T23:59:59.000Z

445

Draft Supplemental Environmental Impact Statement for a Geologice Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mounta  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

v v COVER SHEET RESPONSIBLE AGENCY: U.S. Department of Energy (DOE) TITLE: Draft Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada - Nevada Rail Transportation Corridor (DOE/EIS-0250F-S2D; the Nevada Rail Corridor SEIS), and Draft Environmental Impact Statement for a Rail Alignment for the Construction and Operation of a Railroad in Nevada to a Geologic Repository at Yucca Mountain, Nye County, Nevada (DOE/EIS-0369D; the Rail Alignment EIS) CONTACTS: For more information about this document, write or call: For general information on the DOE NEPA process, write or call: U.S. Department of Energy Office of Civilian Radioactive Waste Management

446

Effect of zirconium addition on the impact toughness of the heat affected zone in a high strength low alloy pipeline steel  

SciTech Connect

The effect of zirconium additions on the impact toughness of the heat affected zone in a high strength low alloy pipeline steel was studied, and the corresponding toughening mechanism examined when the welding was conducted with large heat input. The welding of steels was simulated on a Gleeble 2000. Microstructural observations, energy dispersive X-ray spectroscopy and diffraction analyses were conducted using optical microscopy, scanning electron microscopy and transmission electron microscopy, respectively. The impact toughness of the heat affected zone was improved by addition of zirconium into steel, especially when a large welding heat input was used. This improvement is attributable to MnS precipitation on the pre-formed ZrO{sub 2} as well as the formation of intragranular ferrite.

Guo, A.M. [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Technology Center, Wuhan Iron and Steel (Group) Company, Wuhan 430080 (China); Department of Applied Physics, Wuhan University of Science and Technology, Wuhan 430081 (China); Li, S.R. [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Technology Center, Wuhan Iron and Steel (Group) Company, Wuhan 430080 (China); Guo, J. [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Li, P.H.; Ding, Q.F. [Technology Center, Wuhan Iron and Steel (Group) Company, Wuhan 430080 (China); Wu, K.M. [Department of Applied Physics, Wuhan University of Science and Technology, Wuhan 430081 (China)], E-mail: wukaiming@wust.edu.cn; He, X.L. [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China)

2008-02-15T23:59:59.000Z

447

Engineering development of coal-fired high performance power systems phase 2 and 3  

SciTech Connect

The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: thermal efficiency (HHV) {ge} 47%; NOx, SOx, and particulates {le}10% NSPS (New Source Performance Standard); coal providing {ge} 65% of heat input; all solid wastes benign; and cost of electricity {le} 90% of present plants. Phase 1, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase 1 also included preliminary R and D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. This phase, Phase 2, involves the development and testing of plant subsystems, refinement and updating of the HIPPS commercial plant design, and the site selection and engineering design of a HIPPS prototype plant. Work reported herein is from: Task 2.2 HITAF Air Heaters; and Task 2.4 Duct Heater and Gas Turbine Integration.

Unknown

1999-08-01T23:59:59.000Z

448

Development of fundamental power coupler for high-current superconducting RF cavity  

SciTech Connect

Brookhaven National Laboratory took a project of developing a 704 MHz five-cell superconducting RF cavity for high-current linacs, including Energy Recovery Linac (ERL) for planned electron-hadron collider eRHIC. The cavity will be fed by a high-power RF amplifier using a coaxial Fundamental Power Coupler (FPC), which delivers 20 kW of CW RF power to the cavity. The design of FPC is one of the important aspects as one has to take into account the heat losses dissipated on the surface of the conductor by RF fields along with that of the static heat load. Using a simple simulation model we show the temperature profile and the heat load dissipated along the coupler length. To minimize the heat load on FPC near the cavity end, a thermal intercept is required at an appropriate location on FPC. A 10 K intercept was chosen and its location optimized with our simulation code. The requirement on the helium gas flow rate for the effective heat removal from the thermal intercept is also discussed.

Jain P.; Belomestnykh, S.; Ben-Zvi, I.; Xu, W.

2012-05-20T23:59:59.000Z

449

DOWNSTREAM IMPACTS OF SLUDGE MASS REDUCTION VIA ALUMINUM DISSOLUTION ON DWPF PROCESSING OF SAVANNAH RIVER SITE HIGH LEVEL WASTE - 9382  

SciTech Connect

The SRS sludge that was to become a major fraction of Sludge Batch 5 (SB5) for the Defense Waste Processing Facility (DWPF) contained a large fraction of H-Modified PUREX (HM) sludge, containing a large fraction of aluminum compounds that could adversely impact the processing and increase the vitrified waste volume. It is beneficial to reduce the non-radioactive fraction of the sludge to minimize the number of glass waste canisters that must be sent to a Federal Repository. Removal of aluminum compounds, such as boehmite and gibbsite, from sludge can be performed with the addition of NaOH solution and heating the sludge for several days. Preparation of SB5 involved adding sodium hydroxide directly to the waste tank and heating the contents to a moderate temperature through slurry pump operation to remove a fraction of this aluminum. The Savannah River National Laboratory (SRNL) was tasked with demonstrating this process on actual tank waste sludge in our Shielded Cells Facility. This paper evaluates some of the impacts of aluminum dissolution on sludge washing and DWPF processing by comparing sludge processing with and without aluminum dissolution. It was necessary to demonstrate these steps to ensure that the aluminum removal process would not adversely impact the chemical and physical properties of the sludge which could result in slower processing or process upsets in the DWPF.

Pareizs, J; Cj Bannochie, C; Michael Hay, M; Daniel McCabe, D

2009-01-14T23:59:59.000Z

450

Potential Impact of Interfacial Bonding Efficiency on High-Burnup Spent Nuclear Fuel Vibration Integrity during Normal Transportation  

SciTech Connect

Finite element analysis (FEA) was used to investigate the impacts of interfacial bonding efficiency at pellet pellet and pellet clad interfaces on spent nuclear fuel (SNF) vibration integrity. The FEA simulation results were also validated and benchmarked with reverse bending fatigue test results on surrogate rods consisting of stainless steel (SS) tubes with alumina-pellet inserts. Bending moments (M) are applied to the FEA models to evaluate the system responses of the surrogate rods. From the induced curvature, , the flexural rigidity EI can be estimated as EI=M/ . The impacts of interfacial bonding efficiency on SNF vibration integrity include the moment carrying capacity distribution between pellets and clad and the impact of cohesion on the flexural rigidity of the surrogate rod system. The result also indicates that the immediate consequences of interfacial de-bonding are a load carrying capacity shift from the fuel pellets to the clad and a reduction of the composite rod flexural rigidity. Therefore, the flexural rigidity of the surrogate rod and the bending moment bearing capacity between the clad and fuel pellets are strongly dependent on the efficiency of interfacial bonding at the pellet pellet and pellet clad interfaces. The above-noted phenomenon was calibrated and validated by reverse bending fatigue testing using a surrogate rod system.

Jiang, Hao [ORNL] [ORNL; Wang, Jy-An John [ORNL] [ORNL; Wang, Hong [ORNL] [ORNL

2014-01-01T23:59:59.000Z

451

ROAD MAP FOR DEVELOPMENT OF CRYSTAL-TOLERANT HIGH LEVEL WASTE GLASSES  

SciTech Connect

The U.S. Department of Energy (DOE) is building a Tank Waste Treatment and Immobilization Plant (WTP) at the Hanford Site in Washington to remediate 55 million gallons of radioactive waste that is being temporarily stored in 177 underground tanks. Efforts are being made to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product quality requirements. This road map guides the research and development for formulation and processing of crystaltolerant glasses, identifying near- and long-term activities that need to be completed over the period from 2014 to 2019. The primary objective is to maximize waste loading for Hanford waste glasses without jeopardizing melter operation by crystal accumulation in the melter or melter discharge riser. The potential applicability to the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) will also be addressed in this road map. The planned research described in this road map is motivated by the potential for substantial economic benefits (significant reductions in glass volumes) that will be realized if the current constraints (T1% for WTP and TL for DWPF) are approached in an appropriate and technically defensible manner for defense waste and current melter designs. The basis of this alternative approach is an empirical model predicting the crystal accumulation in the WTP glass discharge riser and melter bottom as a function of glass composition, time, and temperature. When coupled with an associated operating limit (e.g., the maximum tolerable thickness of an accumulated layer of crystals), this model could then be integrated into the process control algorithms to formulate crystal-tolerant high-level waste (HLW) glasses targeting high waste loadings while still meeting process related limits and melter lifetime expectancies. The modeling effort will be an iterative process, where model form and a broader range of conditions, e.g., glass composition and temperature, will evolve as additional data on crystal accumulation are gathered. Model validation steps will be included to guide the development process and ensure the value of the effort (i.e., increased waste loading and waste throughput). A summary of the stages of the road map for developing the crystal-tolerant glass approach, their estimated durations, and deliverables is provided.

Fox, K.; Peeler, D.; Herman, C.

2014-05-15T23:59:59.000Z

452

Finding of No Significant Impact and Final Environmental Assessment of Three Site Development Projects at the National Renewable Energy Laboratory South Table Mountain Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FINDING OF NO SIGNIFICANT IMPACT AND FINDING OF NO SIGNIFICANT IMPACT AND FINAL ENVIRONMENTAL ASSESSMENT OF THREE SITE DEVELOPMENT PROJECTS AT THE NATIONAL RENEWABLE ENERGY LABORATORY SOUTH TABLE MOUNTAIN SITE July 2007 U . S . D e p a r t m e n t o f E n e r g y G o l d e n F i e l d O f f i c e N a t i o n a l R e n e w a b l e E n e r g y L a b o r a t o r y 1 6 1 7 C o l e B o u l e v a r d G o l d e n , C o l o r a d o 8 0 4 0 1 DOE/EA-1573 Final Environmental Assessment of Three Site Development Projects at the National Renewable Energy Laboratory South Table Mountain Site i TABLE OF CONTENTS ACRONYMS AND ABBREVIATIONS ....................................................................................................iv EXECUTIVE SUMMARY ..........................................................................................................................

453

Finding of No Significant Impact for the Environmental Assessment for the Proposed Consolidation and Expansion of Idaho National Laboratory Reseach and Development at a Science and Technology Campus  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FOR THE ENVIRONMENTAL FOR THE ENVIRONMENTAL ASSESSMENT FOR THE PROPOSED CONSOLIDATION AND EXPANSION OF IDAHO NATIONAL LABORATORY RESEARCH AND DEVELOPMENT AT A SCIENCE AND TECHNOLOGY CAMPUS Agency: U.S. Department of Energy (DOE) Action: Finding of No Significant Impact (FONSI) Summary: DOE prepared an Environmental Assessment (EA) for the Proposed Consolidation and Expansion of the Idaho National Laboratory Research and Development at a Science and Technology Campus (STC) (DOEIEA-1555). The proposed action consists of consolidating and expanding existing laboratory and business capabilities and operations within a single geographic area, or central campus. The proposed action would accommodate anticipated program growth while allowing for the consolidation of various activities located in the Idaho

454

Contaminated soil and sediments in a highly developed catchment-estuary system (Sydney estuary, Australia): an innovative stormwater remediation strategy  

Science Journals Connector (OSTI)

The objective of the current research was to provide a strategy to remediate stormwater from an old, high-developed catchment dominated (94%) by diffuse sources. Contaminated catchment soils, a dense road netw...

Gavin F. Birch

2011-01-01T23:59:59.000Z

455

Development of an uncoupled, viscoplastic constitutive model for cyclic plasticity of Hastelloy-X at high temperature  

E-Print Network (OSTI)

DEVELOPMENT OF AN UNCOUPLED, VISCOPLASTIC CONSTITUTIVE MODEL FOR CYCLIC PLASTICITY OF HASTELLOY-X AT HIGH TEMPERATURE A Thesis Submitted to the Graduate School of Texas A&M University in partial fulfillment of the requirement for the degree... of MASTER OF SCIENCE May 1983 Major Subject: Mechanical Engineering DEVELOPMENT OF AN UNCOUPLED, VISCOPLASTIC CONSTITUTIVE MODEL FOR CYCLIC PLASTICITY OF HASTELLOY-X AT HIGH TEMPERATURE A Thesis by SHIK HUNG YUEN Approved as to style and content by...

Yuen, Shik Hung

1983-01-01T23:59:59.000Z

456

Final Environmental Impact Statement (Supplement to ERDA-1537, September 1977) Waste Management Operations Double-Shell Tanks for Defense High-Level Radioactive Waste Storage Savannah River Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Do Do E/EIS-0062 FINAL ENVIRONMENTAL IMPACT mATEIUIENT (Supplement to ERDA-1537, September 1977) Waste ~ Management Operations Savannah River Plant ! Aiken, South Carolina Double-Shell Tanks for Defense High-Level Radioactive Waste Storage April 1980 U.S. DEPARTMENT OF ENERGY WASHINGTON. D.C.20545 1980 WL 94273 (F.R.) NOTICES DEPARTMENT OF ENERGY Office of Deputy Assistant Secretary for Nuclear Waste Management Double-Shell Tanks for Defense High-Level Radioactive Waste Storage, Savannah River Plant, Aiken, S.C. Wednesday, July 9, 1980 *46154 Record of Decision Decision. The decision has been made to complete the construction of the 14 double-shell tanks and use them to store defense high-level radioactive waste at the Savannah River Plant (SRP). Background. The SRP, located near Aiken, South Carolina, is a major installation of the

457

The Offshore Wind Market Deployment: Forecasts For 2020, 2030 And Impacts On The European Supply Chain Development  

Science Journals Connector (OSTI)

Almost 4 GW of offshore wind power capacity will be installed in European waters at the end of 2011. The impressive growth of the sector during the last decades continues and by 2020, EWEA expects 40 GW of offshore wind capacity to be installed across Europe and 150 GW by 2030. However, the growth of the offshore wind sector will not happen without a strong supply chain underpinning its development. This paper presents the latest developments of the offshore wind power market and the objectives the supply chain needs to meet to assist the growth of the industry.

Arapogianni Athanasia; Genachte Anne-Bndicte; Moccia Jacopo

2012-01-01T23:59:59.000Z

458

Development of Advanced CdTe Solar Cells Based on High Temperature Corning Glass Substrates: Cooperative Research and Development Final Report, CRADA Number CRD-10-373  

SciTech Connect

NREL has developed advanced processes for CdTe solar cells, but because of the temperature limitations of conventional soda lime glass, many of these processes have not been transferred to manufacturing. Corning is developing high temperature substrate glasses that are believed to be manufacturable and will lead to lower $/watt modules costs. The purpose of this CRADA is to evaluate these glasses in the advanced NREL processes. In addition, the CRADA seeks to develop manufacturable processes for transparent conductive oxide layers based on cadmium stannate.

Barnes, T.

2013-08-01T23:59:59.000Z

459

Impact Loans (Wisconsin) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Impact Loans (Wisconsin) Impact Loans (Wisconsin) Impact Loans (Wisconsin) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor Industrial Installer/Contractor Investor-Owned Utility Retail Supplier Systems Integrator Transportation Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Wisconsin Program Type Loan Program Provider Wisconsin Economic Development Corporation WEDC may provide forgivable loans to businesses that have expansion projects that will have a significant impact on job creation, job retention, capital investment, and on the surrounding area as a whole. Loans may be up to $2,000,000 and may be forgiven if contract requirements are met for high performing projects.

460

Advanced High-Speed Framing Camera Development for Fast, Visible Imaging Experiments  

SciTech Connect

The advances in high-voltage switching developed in this project allow a camera user to rapidly vary the number of output frames from 1 to 25. A high-voltage, variable-amplitude pulse train shifts the deflection location to the new frame location during the interlude between frames, making multiple frame counts and locations possible. The final deflection circuit deflects to five different frame positions per axis, including the center position, making for a total of 25 frames. To create the preset voltages, electronically adjustable {+-}500 V power supplies were chosen. Digital-to-analog converters provide digital control of the supplies. The power supplies are clamped to {+-}400 V so as not to exceed the voltage ratings of the transistors. A field-programmable gated array (FPGA) receives the trigger signal and calculates the combination of plate voltages for each frame. The interframe time and number of frames are specified by the user, but are limited by the camera electronics. The variable-frame circuit shifts the plate voltages of the first frame to those of the second frame during the user-specified interframe time. Designed around an electrostatic image tube, a framing camera images the light present during each frame (at the photocathode) onto the tubes phosphor. The phosphor persistence allows the camera to display multiple frames on the phosphor at one time. During this persistence, a CCD camera is triggered and the analog image is collected digitally. The tube functions by converting photons to electrons at the negatively charged photocathode. The electrons move quickly toward the more positive charge of the phosphor. Two sets of deflection plates skew the electrons path in horizontal and vertical (x axis and y axis, respectively) directions. Hence, each frames electrons bombard the phosphor surface at a controlled location defined by the voltages on the deflection plates. To prevent the phosphor from being exposed between frames, the image tube is gated off between exposures.

Amy Lewis, Stuart Baker, Brian Cox, Abel Diaz, David Glass, Matthew Martin

2011-05-11T23:59:59.000Z

Note: This page contains sample records for the topic "developing high impact" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.