National Library of Energy BETA

Sample records for developing gas stripping

  1. Development of a Novel Gas Pressurized Stripping Process-Based Technology for CO? Capture from Post-Combustion Flue Gases

    SciTech Connect (OSTI)

    Chen, Shiaoguo

    2015-09-30

    A novel Gas Pressurized Stripping (GPS) post-combustion carbon capture (PCC) process has been developed by Carbon Capture Scientific, LLC, CONSOL Energy Inc., Nexant Inc., and Western Kentucky University in this bench-scale project. The GPS-based process presents a unique approach that uses a gas pressurized technology for CO? stripping at an elevated pressure to overcome the energy use and other disadvantages associated with the benchmark monoethanolamine (MEA) process. The project was aimed at performing laboratory- and bench-scale experiments to prove its technical feasibility and generate process engineering and scale-up data, and conducting a techno-economic analysis (TEA) to demonstrate its energy use and cost competitiveness over the MEA process. To meet project goals and objectives, a combination of experimental work, process simulation, and technical and economic analysis studies were applied. The project conducted individual unit lab-scale tests for major process components, including a first absorption column, a GPS column, a second absorption column, and a flasher. Computer simulations were carried out to study the GPS column behavior under different operating conditions, to optimize the column design and operation, and to optimize the GPS process for an existing and a new power plant. The vapor-liquid equilibrium data under high loading and high temperature for the selected amines were also measured. The thermal and oxidative stability of the selected solvents were also tested experimentally and presented. A bench-scale column-based unit capable of achieving at least 90% CO? capture from a nominal 500 SLPM coal-derived flue gas slipstream was designed and built. This integrated, continuous, skid-mounted GPS system was tested using real flue gas from a coal-fired boiler at the National Carbon Capture Center (NCCC). The technical challenges of the GPS technology in stability, corrosion, and foaming of selected solvents, and environmental, health and safety risks have been addressed through experimental tests, consultation with vendors and engineering analysis. Multiple rounds of TEA were performed to improve the GPS-based PCC process design and operation, and to compare the energy use and cost performance of a nominal 550-MWe supercritical pulverized coal (PC) plant among the DOE/NETL report Case 11 (the PC plant without CO? capture), the DOE/NETL report Case 12 (the PC plant with benchmark MEA-based PCC), and the PC plant using GPS-based PCC. The results reveal that the net power produced in the PC plant with GPS-based PCC is 647 MWe, greater than that of the Case 12 (550 MWe). The 20-year LCOE for the PC plant with GPS-based PCC is 97.4 mills/kWh, or 152% of that of the Case 11, which is also 23% less than that of the Case 12. These results demonstrate that the GPS-based PCC process is energy-efficient and cost-effective compared with the benchmark MEA process.

  2. Cryogenic fractionator gas as stripping gas of fines slurry in a coking and gasification process

    DOE Patents [OSTI]

    DeGeorge, Charles W. (Chester, NJ)

    1981-01-01

    In an integrated coking and gasification process wherein a stream of fluidized solids is passed from a fluidized bed coking zone to a second fluidized bed and wherein entrained solid fines are recovered by a scrubbing process and wherein the resulting solids-liquid slurry is stripped with a stripping gas to remove acidic gases, at least a portion of the stripping gas comprises a gas comprising hydrogen, nitrogen and methane separated from the coker products.

  3. Development of a Novel Gas Pressurized Process-Based Technology for CO2 Capture from Post-Combustion Flue Gases Preliminary Year 1 Techno-Economic Study Results and Methodology for Gas Pressurized Stripping Process

    SciTech Connect (OSTI)

    Chen, Shiaoguo

    2013-03-01

    Under the DOE’s Innovations for Existing Plants (IEP) Program, Carbon Capture Scientific, LLC (CCS) is developing a novel gas pressurized stripping (GPS) process to enable efficient post-combustion carbon capture (PCC) from coal-fired power plants. A technology and economic feasibility study is required as a deliverable in the project Statement of Project Objectives. This study analyzes a fully integrated pulverized coal power plant equipped with GPS technology for PCC, and is carried out, to the maximum extent possible, in accordance to the methodology and data provided in ATTACHMENT 3 – Basis for Technology Feasibility Study of DOE Funding Opportunity Number: DE-FOA-0000403. The DOE/NETL report on “Cost and Performance Baseline for Fossil Energy Plants, Volume 1: Bituminous Coal and Natural Gas to Electricity (Original Issue Date, May 2007), NETL Report No. DOE/NETL-2007/1281, Revision 1, August 2007” was used as the main source of reference to be followed, as per the guidelines of ATTACHMENT 3 of DE-FOA-0000403. The DOE/NETL-2007/1281 study compared the feasibility of various combinations of power plant/CO2 capture process arrangements. The report contained a comprehensive set of design basis and economic evaluation assumptions and criteria, which are used as the main reference points for the purpose of this study. Specifically, Nexant adopted the design and economic evaluation basis from Case 12 of the above-mentioned DOE/NETL report. This case corresponds to a nominal 550 MWe (net), supercritical greenfield PC plant that utilizes an advanced MEAbased absorption system for CO2 capture and compression. For this techno-economic study, CCS’ GPS process replaces the MEA-based CO2 absorption system used in the original case. The objective of this study is to assess the performance of a full-scale GPS-based PCC design that is integrated with a supercritical PC plant similar to Case 12 of the DOE/NETL report, such that it corresponds to a nominal 550 MWe supercritical PC plant with 90% CO2 capture. This plant has the same boiler firing rate and superheated high pressure steam generation as the DOE/NETL report’s Case 12 PC plant. However, due to the difference in performance between the GPS-based PCC and the MEA-based CO2 absorption technology, the net power output of this plant may not be exactly at 550 MWe.

  4. Development of a thin steel strip casting process. Final report

    SciTech Connect (OSTI)

    Williams, R.S.

    1994-04-01

    This is a comprehensive effort to develop direct strip casting to the point where a pilot scale program for casting carbon steel strip could be initiated. All important aspects of the technology were being investigated, however the program was terminated early due to a change in the business strategy of the primary contractor, Armco Inc. (focus to be directed at specialty steels, not low carbon steel). At termination, the project was on target on all milestones and under budget. Major part was casting of strip at the experiment casting facility. A new caster, capable of producing direct cast strip of up to 12 in. wide in heats of 1000 and 3000 lb, was used. A total of 81 1000-1200 lb heats were cast as well as one test heat of 3000 lb. Most produced strip of from 0.016 to 0.085 in. thick. Process reliability was excellent for short casting times; quality was generally poor from modern hot strip mill standards, but the practices necessary for good surface quality were identified.

  5. Micro Strip Gas Chambers Overcoated with Carbon, Hydrogenated Amorphous Silicon, and Glass Films

    E-Print Network [OSTI]

    Micro Strip Gas Chambers Overcoated with Carbon, Hydrogenated Amorphous Silicon, and Glass Films M Moscow GSP­1, Russia c Moscow Power Engineering Institute, Krasnokazarmennaya St. 14, Moscow, Russia Abstract The performance of glass and sapphire substrate Micro Strip Gas Chambers with chromium

  6. Coplanar strip analysis and component development 

    E-Print Network [OSTI]

    Tilley, Keith Andrew

    1994-01-01

    to transform the unbalanced coplanar waveguide (CPW) to the balanced CPS line have been developed. The baluns were then used to feed a printed dipole which was characterized by transformation to an equivalent cylindrical dipole with a dielectric coating...

  7. Regeneration of an aqueous solution from an acid gas absorption process by matrix stripping

    DOE Patents [OSTI]

    Rochelle, Gary T. (Austin, TX); Oyenekan, Babatunde A. (Katy, TX)

    2011-03-08

    Carbon dioxide and other acid gases are removed from gaseous streams using aqueous absorption and stripping processes. By replacing the conventional stripper used to regenerate the aqueous solvent and capture the acid gas with a matrix stripping configuration, less energy is consumed. The matrix stripping configuration uses two or more reboiled strippers at different pressures. The rich feed from the absorption equipment is split among the strippers, and partially regenerated solvent from the highest pressure stripper flows to the middle of sequentially lower pressure strippers in a "matrix" pattern. By selecting certain parameters of the matrix stripping configuration such that the total energy required by the strippers to achieve a desired percentage of acid gas removal from the gaseous stream is minimized, further energy savings can be realized.

  8. Compression stripping of flue gas with energy recovery

    DOE Patents [OSTI]

    Ochs, Thomas L. (Albany, OR); O'Connor, William K. (Lebanon, OR)

    2005-05-31

    A method of remediating and recovering energy from combustion products from a fossil fuel power plant having at least one fossil fuel combustion chamber, at least one compressor, at least one turbine, at least one heat exchanger and a source of oxygen. Combustion products including non-condensable gases such as oxygen and nitrogen and condensable vapors such as water vapor and acid gases such as SO.sub.X and NO.sub.X and CO.sub.2 and pollutants are produced and energy is recovered during the remediation which recycles combustion products and adds oxygen to support combustion. The temperature and/or pressure of the combustion products are changed by cooling through heat exchange with thermodynamic working fluids in the power generation cycle and/or compressing and/or heating and/or expanding the combustion products to a temperature/pressure combination below the dew point of at least some of the condensable vapors to condense liquid having some acid gases dissolved and/or entrained and/or directly condense acid gas vapors from the combustion products and to entrain and/or dissolve some of the pollutants while recovering sensible and/or latent heat from the combustion products through heat exchange between the combustion products and thermodynamic working fluids and/or cooling fluids used in the power generating cycle. Then the CO.sub.2, SO.sub.2, and H.sub.2 O poor and oxygen enriched remediation stream is sent to an exhaust and/or an air separation unit and/or a turbine.

  9. Compression Stripping of Flue Gas with Energy Recovery

    DOE Patents [OSTI]

    Ochs, Thomas L.; O'Connor, William K.

    2005-05-31

    A method of remediating and recovering energy from combustion products from a fossil fuel power plant having at least one fossil fuel combustion chamber, at least one compressor, at least one turbine, at least one heat exchanger and a source of oxygen. Combustion products including non-condensable gases such as oxygen and nitrogen and condensable vapors such as water vapor and acid gases such as SOX and NOX and CO2 and pollutants are produced and energy is recovered during the remediation which recycles combustion products and adds oxygen to support combustion. The temperature and/or pressure of the combustion products are changed by cooling through heat exchange with thermodynamic working fluids in the power generation cycle and/or compressing and/or heating and/or expanding the combustion products to a temperature/pressure combination below the dew point of at least some of the condensable vapors to condense liquid having some acid gases dissolved and/or entrained and/or directly condense acid gas vapors from the combustion products and to entrain and/or dissolve some of the pollutants while recovering sensible and/or latent heat from the combustion products through heat exchange between the combustion products and thermodynamic working fluids and/or cooling fluids used in the power generating cycle. Then the CO2, SO2, and H2O poor and oxygen enriched remediation stream is sent to an exhaust and/or an air separation unit and/or a turbine.

  10. Renewable Natural Gas- Developer Perspective

    Broader source: Energy.gov [DOE]

    Breakout Session 3-C: Renewable Gaseous FuelsRenewable Natural Gas - Developer PerspectiveDavid Ross, Managing Director, MultiGen International, LLC

  11. Silicon strip tracking detector development and prototyping for the Phase-2 Upgrade of the ATLAS experiment

    E-Print Network [OSTI]

    Kuehn, Susanne; The ATLAS collaboration

    2015-01-01

    In about ten years from now, the Phase-2 upgrade of the LHC is planned. This will result in a severe radiation dose and high particle rates for the multipurpose exeperiments because of a foreseen luminosity of ten times higher the LHC design luminosity. Several detector components will have to be upgraded in the experiments. In the ATLAS experiment the current inner detector will be replaced by an all silicon tracking detector aiming for high performance. The poster will present the development and the latest prototyping of the upgrade silicon strip tracking detector. Its layout foresees low mass and modular double-sided structures for the barrel and forward region. Silicon sensors and readout electronics, so-called modules, are planned to be assembled double-sided on larger carbon-core structures. The modularity allows assembly and testing at multiple sites. Many components need to be developed and their prototyping towards full-size components is ongoing. New developments and test results will be presented....

  12. Development Of Chemical Reduction And Air Stripping Processes To Remove Mercury From Wastewater

    SciTech Connect (OSTI)

    Jackson, Dennis G.; Looney, Brian B.; Craig, Robert R.; Thompson, Martha C.; Kmetz, Thomas F.

    2013-07-10

    This study evaluates the removal of mercury from wastewater using chemical reduction and air stripping using a full-scale treatment system at the Savannah River Site. The existing water treatment system utilizes air stripping as the unit operation to remove organic compounds from groundwater that also contains mercury (C ~ 250 ng/L). The baseline air stripping process was ineffective in removing mercury and the water exceeded a proposed limit of 51 ng/L. To test an enhancement to the existing treatment modality a continuous dose of reducing agent was injected for 6-hours at the inlet of the air stripper. This action resulted in the chemical reduction of mercury to Hg(0), a species that is removable with the existing unit operation. During the injection period a 94% decrease in concentration was observed and the effluent satisfied proposed limits. The process was optimized over a 2-day period by sequentially evaluating dose rates ranging from 0.64X to 297X stoichiometry. A minimum dose of 16X stoichiometry was necessary to initiate the reduction reaction that facilitated the mercury removal. Competing electron acceptors likely inhibited the reaction at the lower 1 doses, which prevented removal by air stripping. These results indicate that chemical reduction coupled with air stripping can effectively treat large-volumes of water to emerging part per trillion regulatory standards for mercury.

  13. Air stripping of volatile organic chlorocarbons: System development, performance, and lessons learned

    SciTech Connect (OSTI)

    McKillip, S.T.; Sibley, K.L.; Horvath, J.G.

    1991-12-31

    The Savannah River Site, which has been in operation since the 1950`s, is a 780-square kilometer reservation that produces tritium for the national defense program. As a result of past waste handling practices, the ground water at several locations on the Site has become contaminated with solvents, metals, and radionuclides. In 1981, the ground water located under the Site`s fuel and target rod fabrication area (M-Area) was found to be contaminated with degreasing solvents, specifically trichloroethylene (TCE) and tetrachloroethylene (PCE). In 1983, a program was started to evaluate air stripping and determine its applicability to cleanup of M-Area contamination. Lessons learned regarding the efficiency and effectiveness of air stripping technology are presented.

  14. Air stripping of volatile organic chlorocarbons: System development, performance, and lessons learned

    SciTech Connect (OSTI)

    McKillip, S.T.; Sibley, K.L.; Horvath, J.G.

    1991-01-01

    The Savannah River Site, which has been in operation since the 1950's, is a 780-square kilometer reservation that produces tritium for the national defense program. As a result of past waste handling practices, the ground water at several locations on the Site has become contaminated with solvents, metals, and radionuclides. In 1981, the ground water located under the Site's fuel and target rod fabrication area (M-Area) was found to be contaminated with degreasing solvents, specifically trichloroethylene (TCE) and tetrachloroethylene (PCE). In 1983, a program was started to evaluate air stripping and determine its applicability to cleanup of M-Area contamination. Lessons learned regarding the efficiency and effectiveness of air stripping technology are presented.

  15. Development of nanodiamond foils for H- stripping to Support the Spallation Neutron Source (SNS) using hot filament chemical vapor deposition

    SciTech Connect (OSTI)

    Vispute, R D; Ermer, Henry K; Sinsky, Phillip; Seiser, Andrew; Shaw, Robert W; Wilson, Leslie L

    2014-01-01

    Thin diamond foils are needed in many particle accelerator experiments regarding nuclear and atomic physics, as well as in some interdisciplinary research. Particularly, nanodiamond texture is attractive for this purpose as it possesses a unique combination of diamond properties such as high thermal conductivity, mechanical strength and high radiation hardness; therefore, it is a potential material for energetic ion beam stripper foils. At the ORNL Spallation Neutron Source (SNS), the installed set of foils must be able to survive a nominal five-month operation period, without the need for unscheduled costly shutdowns and repairs. Thus, a small foil about the size of a postage stamp is critical to the operation of SNS and similar sources in U.S. laboratories and around the world. We are investigating nanocrystalline, polycrystalline and their admixture films fabricated using a hot filament chemical vapor deposition (HFCVD) system for H- stripping to support the SNS at Oak Ridge National Laboratory. Here we discuss optimization of process variables such as substrate temperature, process gas ratio of H2/Ar/CH4, substrate to filament distance, filament temperature, carburization conditions, and filament geometry to achieve high purity diamond foils on patterned silicon substrates with manageable intrinsic and thermal stresses so that they can be released as free standing foils without curling. An in situ laser reflectance interferometry tool (LRI) is used for monitoring the growth characteristics of the diamond thin film materials. The optimization process has yielded free standing foils with no pinholes. The sp3/sp2 bonds are controlled to optimize electrical resistivity to reduce the possibility of surface charging of the foils. The integrated LRI and HFCVD process provides real time information on the growth of films and can quickly illustrate growth features and control film thickness. The results are discussed in the light of development of nanodiamond foils that will be able to withstand a few MW proton beam and hopefully will be able to be used after possible future upgrades to the SNS to greater than a 3MW beam.

  16. Note: Design and development of improved indirectly heated cathode based strip electron gun

    SciTech Connect (OSTI)

    Maiti, Namita; Patil, D. S.; Dasgupta, K.; Bade, Abhijeet; Tembhare, G. U.

    2015-02-15

    An improved design of indirectly heated solid cathode based electron gun (200 kW, 45 kV, 270° bent strip type electron gun) has been presented. The solid cathode is made of thoriated tungsten, which acts as an improved source of electron at lower temperature. So, high power operation is possible without affecting structural integrity of the electron gun. The design issues are addressed based on the uniformity of temperature on the solid cathode and the single long filament based design. The design approach consists of simulation followed by extensive experimentation. In the design, the effort has been put to tailor the non-uniformity of the heat flux from the filament to the solid cathode to obtain better uniformity of temperature on the solid cathode. Trial beam experiments have been carried out and it is seen that the modified design achieves one to one correspondence of the solid cathode length and the electron beam length.

  17. Shale Gas Development Challenges: Water | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development Challenges: Water Shale Gas Development Challenges: Water Shale Gas Development Challenges: Water More Documents & Publications Natural Gas from Shale: Questions and...

  18. Oil and Gas CDT Using noble gas isotopes to develop a mechanistic understanding of shale gas

    E-Print Network [OSTI]

    Henderson, Gideon

    Oil and Gas CDT Using noble gas isotopes to develop a mechanistic understanding of shale gas relevance to the oil and gas industry: 10 weeks in Year 1 and 5 weeks each in Years 2 and 3. Instructors will be both from expert academics from across the CDT and also experienced oil and gas industry professionals

  19. Development of Alaskan gas hydrate resources

    SciTech Connect (OSTI)

    Kamath, V.A.; Sharma, G.D.; Patil, S.L.

    1991-06-01

    The research undertaken in this project pertains to study of various techniques for production of natural gas from Alaskan gas hydrates such as, depressurization, injection of hot water, steam, brine, methanol and ethylene glycol solutions through experimental investigation of decomposition characteristics of hydrate cores. An experimental study has been conducted to measure the effective gas permeability changes as hydrates form in the sandpack and the results have been used to determine the reduction in the effective gas permeability of the sandpack as a function of hydrate saturation. A user friendly, interactive, menu-driven, numerical difference simulator has been developed to model the dissociation of natural gas hydrates in porous media with variable thermal properties. A numerical, finite element simulator has been developed to model the dissociation of hydrates during hot water injection process.

  20. Natural Gas Engine Development Gaps (Presentation)

    SciTech Connect (OSTI)

    Zigler, B.T.

    2014-03-01

    A review of current natural gas vehicle offerings is presented for both light-duty and medium- and heavy-duty applications. Recent gaps in the marketplace are discussed, along with how they have been or may be addressed. The stakeholder input process for guiding research and development needs via the Natural Gas Vehicle Technology Forum (NGVTF) to the U.S. Department of Energy and the California Energy Commission is reviewed. Current high-level natural gas engine development gap areas are highlighted, including efficiency, emissions, and the certification process.

  1. Modern Shale Gas Development in the United States: A Primer ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modern Shale Gas Development in the United States: A Primer Modern Shale Gas Development in the United States: A Primer This Primer on Modern Shale Gas Development in the United...

  2. Spray Rolling Aluminum Strip

    SciTech Connect (OSTI)

    Lavernia, E.J.; Delplanque, J-P; McHugh, K.M.

    2006-05-10

    Spray forming is a competitive low-cost alternative to ingot metallurgy for manufacturing ferrous and non-ferrous alloy shapes. It produces materials with a reduced number of processing steps, while maintaining materials properties, with the possibility of near-net-shape manufacturing. However, there are several hurdles to large-scale commercial adoption of spray forming: 1) ensuring strip is consistently flat, 2) eliminating porosity, particularly at the deposit/substrate interface, and 3) improving material yield. Through this program, a new strip/sheet casting process, termed spray rolling, has been developed, which is an innovative manufacturing technique to produce aluminum net-shape products. Spray rolling combines the benefits of twin-roll casting and conventional spray forming, showing a promising potential to overcome the above hurdles associated with spray forming. Spray rolling requires less energy and generates less scrap than conventional processes and, consequently, enables the development of materials with lower environmental impacts in both processing and final products. Spray Rolling was developed as a collaborative project between the University of California-Davis, the Colorado School of Mines, the Idaho National Engineering and Environmental Laboratory, and an industry team. The following objectives of this project were achieved: (1) Demonstration of the feasibility of the spray rolling process at the bench-scale level and evaluation of the materials properties of spray rolled aluminum strip alloys; and (2) Demonstration of 2X scalability of the process and documentation of technical hurdles to further scale up and initiate technology transfer to industry for eventual commercialization of the process.

  3. Development of a thermoacoustic natural gas liquefier.

    SciTech Connect (OSTI)

    Wollan, J. J.; Swift, G. W.; Backhaus, S. N.; Gardner, D. L.

    2002-01-01

    Praxair, in conjunction with the Los Alamos National Laboratory, is developing a new technology, thermoacoustic heat engines and refrigerators, for liquefaction of natural gas. This is the only technology capable of producing refrigeration power at cryogenic temperatures with no moving parts. A prototype, with a projected natural gas liquefaction capacity of 500 gallons/day, has been built and tested. The power source is a natural gas burner. Systems will be developed with liquefaction capacities up to 10,000 to 20,000 gallons per day. The technology, the development project, accomplishments and applications are discussed. In February 2001 Praxair, Inc. purchased the acoustic heat engine and refrigeration development program from Chart Industries. Chart (formerly Cryenco, which Chart purchased in 1997) and Los Alamos had been working on the technology development program since 1994. The purchase included assets and intellectual property rights for thermoacoustically driven orifice pulse tube refrigerators (TADOPTR), a new and revolutionary Thermoacoustic Stirling Heat Engine (TASHE) technology, aspects of Orifice Pulse Tube Refrigeration (OPTR) and linear motor compressors as OPTR drivers. Praxair, in cooperation with Los Alamos National Laboratory (LANL), the licensor of the TADOPTR and TASHE patents, is continuing the development of TASHE-OPTR natural gas powered, natural gas liquefiers. The liquefaction of natural gas, which occurs at -161 C (-259 F) at atmospheric pressure, has previously required rather sophisticated refrigeration machinery. The 1990 TADOPTR invention by Drs. Greg Swift (LANL) and Ray Radebaugh (NIST) demonstrated the first technology to produce cryogenic refrigeration with no moving parts. Thermoacoustic engines and refrigerators use acoustic phenomena to produce refrigeration from heat. The basic driver and refrigerator consist of nothing more than helium-filled heat exchangers and pipes, made of common materials, without exacting tolerances. The liquefier development program is divided into two components: Thermoacoustically driven refrigerators and linear motor driven refrigerators (LOPTRs). LOPTR technology will, for the foreseeable future, be limited to natural gas liquefaction capacities on the order of hundreds of gallons per day. TASHE-OPTR technology is expected to achieve liquefaction capacities of tens of thousands of gallons per day. This paper will focus on the TASHE-OPTR technology because its natural gas liquefaction capacity has greater market opportunity. LOPTR development will be mentioned briefly. The thermoacoustically driven refrigerator development program is now in the process of demonstrating the technology at a capacity of about 500 gallon/day (gpd) i.e., approximately 42,000 standard cubic feet/day, which requires about 7 kW of refrigeration power. This capacity is big enough to illuminate the issues of large-scale acoustic liquefaction at reasonable cost and to demonstrate the liquefaction of about 70% of an input gas stream, while burning about 30%. Subsequent to this demonstration a system with a capacity of approximately 10{sup 6} standard cubic feet/day (scfd) = 10,000 gpd with a projected liquefaction rate of about 85% of the input gas stream will be developed. When commercialized, the TASHE-OPTRs will be a totally new type of heat-driven cryogenic refrigerator, with projected low manufacturing cost, high reliability, long life, and low maintenance. A TASHE-OPTR will be able to liquefy a broad range of gases, one of the most important being natural gas (NG). Potential NG applications range from distributed liquefaction of pipeline gas as fuel for heavy-duty fleet and long haul vehicles to large-scale liquefaction at on-shore and offshore gas wellheads. An alternative to the thermoacoustic driver, but with many similar technical and market advantages, is the linear motor compressor. Linear motors convert electrical power directly into oscillating linear, or axial, motion. Attachment of a piston to the oscillator results in a direct drive compressor. Such a compressor

  4. Lateral flow strip assay

    DOE Patents [OSTI]

    Miles, Robin R. (Danville, CA); Benett, William J. (Livermore, CA); Coleman, Matthew A. (Oakland, CA); Pearson, Francesca S. (Livermore, CA); Nasarabadi, Shanavaz L. (Livermore, CA)

    2011-03-08

    A lateral flow strip assay apparatus comprising a housing; a lateral flow strip in the housing, the lateral flow strip having a receiving portion; a sample collection unit; and a reagent reservoir. Saliva and/or buccal cells are collected from an individual using the sample collection unit. The sample collection unit is immersed in the reagent reservoir. The tip of the lateral flow strip is immersed in the reservoir and the reagent/sample mixture wicks up into the lateral flow strip to perform the assay.

  5. OPTIMAL DEVELOPMENT PLANNING OF OFFSHORE OIL AND GAS FIELD

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    development planning. Keywords Multiperiod Optimization, Planning, Offshore Oil and Gas, MINLP, MILP, FPSO

  6. Groundwater and Shale Gas Development (Updated May 29, 2015)

    E-Print Network [OSTI]

    Walter, M.Todd

    Groundwater and Shale Gas Development (Updated May 29, 2015) Background In parts of New York where shale gas extraction is possible, the Marcellus distance separates shale gas and potable water there are still risks associated

  7. Geometrical deuteron stripping revisited

    SciTech Connect (OSTI)

    Neoh, Y. S.; Yap, S. L. [Plasma Research Technology Center, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2014-03-05

    We investigate the reality of the idea of geometrical deuteron stripping originally envisioned by Serber. By taking into account of realistic deuteron wavefunction, nuclear density, and nucleon stopping mean free path, we are able to estimate inclusive deuteron stripping cross section for deuteron energy up to before pion production. Our semiclassical model contains only one global parameter constant for all nuclei which can be approximated by Woods-Saxon or any other spherically symmetric density distribution.

  8. Risks and Risk Governance in Unconventional Shale Gas Development

    E-Print Network [OSTI]

    Jackson, Robert B.

    Risks and Risk Governance in Unconventional Shale Gas Development Mitchell J. Small,*, Paul C, Desert Research Institute, Reno, Nevada 89512, United States 1. INTRODUCTION The recent U.S. shale gas Issue: Understanding the Risks of Unconventional Shale Gas Development Published: July 1, 2014 A broad

  9. Energy Transitions: A Systems Approach Including Marcellus Shale Gas Development

    E-Print Network [OSTI]

    Chen, Tsuhan

    Energy Transitions: A Systems Approach Including Marcellus Shale Gas Development A Report Transitions: A Systems Approach Including Marcellus Shale Gas Development Executive Summary In the 21st the Marcellus shale In addition to the specific questions identified for the case of Marcellus shale gas in New

  10. Spills and leaks Associated with Shale Gas Development

    E-Print Network [OSTI]

    Walter, M.Todd

    1 Spills and leaks Associated with Shale Gas Development (Updated April 27th , 2012) Brief of toxic chemicals, contaminated water, or hazardous materials. Spills and leaks associated with shale gas associated with shale gas development will depend on the pace and scale with which the industry grows

  11. Stormwater, Erosion and Shale Gas Development (Updated May 11, 2014)

    E-Print Network [OSTI]

    Walter, M.Todd

    Stormwater, Erosion and Shale Gas Development (Updated May 11, 2014) Why and erosion at shale gas well sites do not receive a great deal of attention from are a major reason for the proposed ban on shale gas development within the New

  12. Markets slow to develop for Niger delta gas reserves

    SciTech Connect (OSTI)

    Thomas, D. [Thomas and Associates, Hastings (United Kingdom)

    1995-11-27

    Nigeria produces a very high quality, light, sweet crude oil but with a large percentage of associated gas derived from a high gas-to-oil ratio. Official proved gas reserves, both associated and nonassociated, are 120 tcf. Proved and probable reserves are estimated as high as 300 tcf. The internal market for gas has only begun to develop since the 1980s, and as a result approximately 77% of associated gas production is flared. Domestic gas consumption is currently approximately 700 MMcfd and is projected to have a medium term potential of 1.450 bcfd. The article discusses resource development, gas markets, gas flaring, gas use programs, the Bonny LNG scheme, the gas reserve base, LNG project status, competition, and energy opportunities.

  13. Research and Development Concerning Coalbed Natural Gas

    SciTech Connect (OSTI)

    William Ruckelshaus

    2008-09-30

    The Powder River Basin in northeastern Wyoming is one of the most active areas of coalbed natural gas (CBNG) development in the western United States. This resource provides clean energy but raises environmental concerns. Primary among these is the disposal of water that is co-produced with the gas during depressurization of the coal seam. Beginning with a few producing wells in Wyoming's Powder River Basin (PRB) in 1987, CBNG well numbers in this area increased to over 13,600 in 2004, with projected growth to 20,900 producing wells in the PRB by 2010. CBNG development is continuing apace since 2004, and CBNG is now being produced or evaluated in four other Wyoming coal basins in addition to the PRB, with roughly 3500-4000 new CBNG wells permitted statewide each year since 2004. This is clearly a very valuable source of clean fuel for the nation, and for Wyoming the economic benefits are substantial. For instance, in 2003 alone the total value of Wyoming CBNG production was about $1.5 billion, with tax and royalty income of about $90 million to counties, $140 million to the state, and $27 million to the federal government. In Wyoming, cumulative CBNG water production from 1987 through December 2004 was just over 380,000 acre-feet (2.9 billion barrels), while producing almost 1.5 trillion cubic feet (tcf) of CBNG gas statewide. Annual Wyoming CBNG water production in 2003 was 74,457 acre-feet (577 million barrels). Total production of CBNG water across all Wyoming coal fields could total roughly 7 million acre-feet (55.5 billion barrels), if all of the recoverable CBNG in the projected reserves of 31.7 tcf were produced over the coming decades. Pumping water from coals to produce CBNG has been designated a beneficial water use by the Wyoming State Engineer's Office (SEO), though recently the SEO has limited this beneficial use designation by requiring a certain gas/water production ratio. In the eastern part of the PRB where CBNG water is generally of good quality, most of it is discharged to surface drainages or to soil (for irrigation). CBNG water quality generally declines when moving from the Cheyenne River drainage northwestward to the Belle Fourche, Little Powder, and Powder River drainages and in the central and western part of the PRB, most CBNG water goes to evaporation-infiltration ponds or is discharged directly to surface drainages. Concerns center on the salinity of the water, usually measured as total dissolved solids (TDS), or electrical conductivity (EC) and sodium adsorption ratio (SAR). Other management options currently in use include injection, managed irrigation (with additives to mitigate the effects of high salinity), atomization, and treatment by reverse osmosis or ion exchange. A key water quality issue is the cumulative effect of numerous CBNG water discharges on the overall water quality of basin streams. This leads to one of the most contentious issues in CBNG development in Wyoming's PRB: Montana's concern about the potential downstream effects of water quality degradation on rivers flowing north into Montana. Many of the benefits and costs associated with CBNG development have been debated, but dealing with CBNG water quantity and quality arguably has been the most difficult of all the issues. Given the importance of these issues for continued development of CBNG resources in Wyoming and elsewhere, the DOE-NETL funded project presented here focuses on CBNG co-produced water management. The research was organized around nine separate, but interrelated, technical project tasks and one administrative task (Task 1). The nine technical project tasks were pursued by separate research teams at the University of Wyoming, but all nine tasks were coordinated to the extent possible in order to maximize information gained about CBNG co-produced waters. In addition to project management in Task 1, the key research tasks included: (2) estimating groundwater recharge rates in the PRB; (3) groundwater contamination of trace elements from CBNG disposal ponds; (4) use of environmental tracers in assessing wate

  14. Analysis of the Development of Messoyakha Gas Field: A Commercial Gas Hydrate Reservoir 

    E-Print Network [OSTI]

    Omelchenko, Roman 1987-

    2012-12-11

    Natural gas is an important energy source that contributes up to 25% of the total US energy reserves (DOE 2011). An increase in natural gas demand spurs further development of unconventional resources, including methane hydrate (Rajnauth 2012...

  15. Expert system technology for natural gas resource development

    SciTech Connect (OSTI)

    Munro, R.G.

    1997-12-31

    Materials data are used in all aspects of the development of natural gas resources. Unconventional gas resources require special attention in their development and may benefit from heuristic assessments of the materials data, geological site conditions, and the knowledge base accumulated from previous unconventional site developments. Opportunities for using expert systems in the development of unconventional natural gas resources are discussed. A brief introduction to expert systems is provided in a context that emphasizes the practical nature of their service. The discussion then focuses on the development of unconventional gas reserves. Whenever possible, the likelihood of success in constructing useful expert systems for gas resource development is indicated by comparisons to existing expert systems that perform comparable functions in other industries. Significant opportunities are found for applications to site assessment, the interpretation of well log data, and the monitoring and optimization of gas processing in small-scale recovery operations.

  16. Development of Large Area Gas Electron Multiplier Detector and...

    Office of Scientific and Technical Information (OSTI)

    Development of Large Area Gas Electron Multiplier Detector and Its Application to a Digital Hadron Calorimeter for Future Collider Experiments Citation Details In-Document Search...

  17. Natural Gas Engine Development: July 2003 -- July 2005

    SciTech Connect (OSTI)

    Lekar, T. C.; Martin, T. J.

    2006-11-01

    Discusses project to develop heavy-duty, 8.1L natural gas vehicle engines that would be certifiable below the 2004 federal emissions standards and commercially viable.

  18. Natural Gas Engine Development: July 2003--July 2005

    SciTech Connect (OSTI)

    Lekar, T. C.; Martin, T. J.

    2006-03-01

    Describes project to develop natural gas engines that would be certifiable to nitrogen oxide and nonmethane hydrocarbon emission levels below 2004 federal standards.

  19. EIA - Natural Gas Pipeline Network - Natural Gas Pipeline Development &

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table272/S TheEnergyEnergyMapExpansion

  20. Oil and gas development in East Siberia

    SciTech Connect (OSTI)

    Sagers, M.J.

    1994-03-01

    The East Siberian region, which comprises nearly 43% of Russia`s territory (including the Sakha (Yakut) republic), has substantial hydrocarbon potential that is impeded by significant logistical problems, the daunting physical environment, and technical challenges posed by the geological complexity of the region. The area`s three major oil and gas provinces are the Lena-Tunguska (with the greatest potential), Lena-Vilyuy, and Yenisey-Anabar. The paper focuses on assessment of reserves, production potential, and history, as well as joint-venture activity involving foreign capital. Foreign investment is targeting gas deposits in the Vilyuy basin and elsewhere in the Sakha republic and small oil deposits serving local markets in the Yakutsk and Noril`sk areas. Forecasts do not envisage substantial production of oil from the region before the year 2010. Future gas production levels are less predictable despite the ambitious plans to export gas from Sakha to South Korea. 14 refs., 1 fig., 1 tab.

  1. Development of a Compressed Hydrogen Gas

    E-Print Network [OSTI]

    ,321,775 (Gas Manifold, Nov 2001) NGV versions safety certified to FMVSS # 304 and undergoing long · Design » T700 carbon fiber overwrap with high interspersed winding pattern with design FOS of 2.45 » NGV

  2. Optimizing Development Strategies to Increase Reserves in Unconventional Gas Reservoirs 

    E-Print Network [OSTI]

    Turkarslan, Gulcan

    2011-10-21

    The ever increasing energy demand brings about widespread interest to rapidly, profitably and efficiently develop unconventional resources, among which tight gas sands hold a significant portion. However, optimization of development strategies...

  3. Stripping Coupons with Linear Programming 

    E-Print Network [OSTI]

    Allen, David E; Thomas, Lyn C; Zheng, Harry

    2000-01-01

    When using market prices to fit the parameters of models for the price of bonds, the first step is to strip the market bonds of their coupons. The standard bootstrapping technique of stripping coupons can cause mispricing ...

  4. Retractable barrier strip

    DOE Patents [OSTI]

    Marts, Donna J. (Idaho Falls, ID); Barker, Stacey G. (Idaho Falls, ID); Wowczuk, Andrew (Wheeling, WV); Vellenoweth, Thomas E. (Wheeling, WV)

    2002-01-01

    A portable barrier strip having retractable tire-puncture spikes for puncturing a vehicle tire. The tire-puncture spikes have an armed position for puncturing a tire and a retracted position for not puncturing a tire. The strip comprises a plurality of barrier blocks having the tire-puncture spikes removably disposed in a shaft that is rotatably disposed in each barrier block. The plurality of barrier blocks hare hingedly interconnected by complementary hinges integrally formed into the side of each barrier block which allow the strip to be rolled for easy storage and retrieval, but which prevent irregular or back bending of the strip. The shafts of adjacent barrier blocks are pivotally interconnected via a double hinged universal joint to accommodate irregularities in a roadway surface and to transmit torsional motion of the shaft from block to block. A single flexshaft cable is connected to the shaft of an end block to allow a user to selectively cause the shafts of a plurality of adjacently connected barrier blocks to rotate the tire-puncture spikes to the armed position for puncturing a vehicle tire, and to the retracted position for not puncturing the tire. The flexshaft is provided with a resiliently biased retracting mechanism, and a release latch for allowing the spikes to be quickly retracted after the intended vehicle tire is punctured.

  5. Retractable barrier strip

    DOE Patents [OSTI]

    Marts, D.J.; Barker, S.G.; McQueen, M.A.

    1996-04-16

    A portable barrier strip is described having retractable tire-puncture means for puncturing a vehicle tire. The tire-puncture means, such as spikes, have an armed position for puncturing a tire and a retracted position for not puncturing a tire. The strip comprises a plurality of barrier blocks having the tire-puncture means removably disposed in a shaft that is rotatably disposed in each barrier block. The shaft removably and pivotally interconnects the plurality of barrier blocks. Actuation cables cause the shaft to rotate the tire-puncture means to the armed position for puncturing a vehicle tire and to the retracted position for not puncturing the tire. Each tire-puncture means is received in a hollow-bed portion of its respective barrier block when in the retracted position. The barrier strip rests in its deployed position and substantially motionless as a tire rolls thereon and over. The strip is rolled up for retrieval, portability, and storage purposes, and extended and unrolled in its deployed position for use. 13 figs.

  6. Development of a natural Gas Systems Analysis Model (GSAM)

    SciTech Connect (OSTI)

    Godec, M.; Haas, M.; Pepper, W.; Rose, J.

    1993-12-31

    Recent dramatic changes in natural gas markets have significant implications for the scope and direction of DOE`s upstream as well as downstream natural gas R&D. Open access transportation changes the way gas is bought and sold. The end of the gas deliverability surplus requires increased reserve development above recent levels. Increased gas demand for power generation and other new uses changes the overall demand picture in terms of volumes, locations and seasonality. DOE`s Natural Gas Strategic Plan requires that its R&D activities be evaluated for their ability to provide adequate supplies of reasonably priced gas. Potential R&D projects are to be evaluated using a full fuel cycle, benefit-cost approach to estimate likely market impact as well as technical success. To assure R&D projects are evaluated on a comparable basis, METC has undertaken the development of a comprehensive natural gas technology evaluation framework. Existing energy systems models lack the level of detail required to estimate the impact of specific upstream natural gas technologies across the known range of geological settings and likely market conditions. Gas Systems Analysis Model (GSAM) research during FY 1993 developed and implemented this comprehensive, consistent natural gas system evaluation framework. Rather than a isolated research activity, however, GSAM represents the integration of many prior and ongoing natural gas research efforts. When complete, it will incorporate the most current resource base description, reservoir modeling, technology characterization and other geologic and engineering aspects developed through recent METC and industry gas R&D programs.

  7. DEVELOPMENT OF A THERMOACOUSTIC NATURAL GAS LIQUEFIER-UPDATE

    SciTech Connect (OSTI)

    J. WOLLAN; G. SWIFT

    2001-05-01

    Thermoacoustic heat engines and refrigerators are being developed for liquefaction of natural gas. This is the only technology capable of producing refrigeration power at cryogenic temperatures with no moving parts. A prototype, with a projected natural gas liquefaction capacity of 500 gallons/day, has been built and tested. The power source is a natural gas burner. Systems are developed with liquefaction capacities up to 10,000 to 20,000 gallons per day. The technology, the development project, accomplishments and applications are discussed.

  8. DEVELOPMENT OF THFEGENERAL ELECTRIC STIRLING ENGINE GAS HEAT PUMP

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    DEVELOPMENT OF THFEGENERAL ELECTRIC STIRLING ENGINE GAS HEAT PUMP R. C. Meier, Program Manager, Gas Heat Pump Program General Electric Company P. 0. Box 8555 Philadelphia, Pennsylvania 19101 FILE COPY DO NOT REMOVE SUMMARY The Stirling/Rankine Heat Activated Heat Pump is a high performance product for space

  9. Development of Alaskan gas hydrate resources. Final report

    SciTech Connect (OSTI)

    Kamath, V.A.; Sharma, G.D.; Patil, S.L.

    1991-06-01

    The research undertaken in this project pertains to study of various techniques for production of natural gas from Alaskan gas hydrates such as, depressurization, injection of hot water, steam, brine, methanol and ethylene glycol solutions through experimental investigation of decomposition characteristics of hydrate cores. An experimental study has been conducted to measure the effective gas permeability changes as hydrates form in the sandpack and the results have been used to determine the reduction in the effective gas permeability of the sandpack as a function of hydrate saturation. A user friendly, interactive, menu-driven, numerical difference simulator has been developed to model the dissociation of natural gas hydrates in porous media with variable thermal properties. A numerical, finite element simulator has been developed to model the dissociation of hydrates during hot water injection process.

  10. Developing a tight gas sand advisor for completion and stimulation in tight gas reservoirs worldwide 

    E-Print Network [OSTI]

    Bogatchev, Kirill Y.

    2009-05-15

    and experience about completion and stimulation technologies used in TGS reservoirs. We developed the principal design and two modules of a computer program called Tight Gas Sand Advisor (TGS Advisor), which can be used to assist engineers in making decisions...

  11. Strip casting apparatus and method

    DOE Patents [OSTI]

    Williams, Robert S. (Plum, PA); Baker, Donald F. (Hempfield, PA)

    1988-01-01

    Strip casting apparatus including a molten-metal-holding container and a nozzle to deposit molten metal onto a moving chill drum to directly cast continuous metallic strip. The nozzle body includes a slot bounded between a back and a front lip. The slot width exceeds about 20 times the gap distance between the nozzle and the chill drum surface. Preferably, the slot width exceeds 0.5 inch. This method of strip casting minimizes pressure drop, insuring better metal-to-chill-drum contact which promotes heat transfer and results in a better quality metallic strip.

  12. Strip casting apparatus and method

    DOE Patents [OSTI]

    Williams, R.S.; Baker, D.F.

    1988-09-20

    Strip casting apparatus including a molten-metal-holding container and a nozzle to deposit molten metal onto a moving chill drum to directly cast continuous metallic strip. The nozzle body includes a slot bounded between a back and a front lip. The slot width exceeds about 20 times the gap distance between the nozzle and the chill drum surface. Preferably, the slot width exceeds 0.5 inch. This method of strip casting minimizes pressure drop, insuring better metal-to-chill-drum contact which promotes heat transfer and results in a better quality metallic strip. 6 figs.

  13. Integration of stripping of fines slurry in a coking and gasification process

    DOE Patents [OSTI]

    DeGeorge, Charles W. (Chester, NJ)

    1980-01-01

    In an integrated fluid coking and gasification process wherein a stream of fluidized solids is passed from a fluidized bed coking zone to a second fluidized bed and wherein entrained solid fines are recovered by a wet scrubbing process and wherein the resulting solids-liquid slurry is stripped to remove acidic gases, the stripped vapors of the stripping zone are sent to the gas cleanup stage of the gasification product gas. The improved stripping integration is particularly useful in the combination coal liquefaction process, fluid coking of bottoms of the coal liquefaction zone and gasification of the product coke.

  14. Gas in developing countries: Volume 2, Country studies

    SciTech Connect (OSTI)

    Not Available

    1987-01-01

    This volume contains detailed case-studies of the history and prospects for natural gas utilization in eight developing countries: Argentina, Egypt, Malaysia, Nigeria, Pakistan, Tanzania, Thailand and Tunisia. All of these countries have been visited by members of the research team, with the exception of Pakistan. Running through all the case-histories is the importance of defining a clear market for the gas. In some cases this can prove remarkably difficult, especially when the oil price is relatively low. In other cases a market does exist, but is very limited in relation to the size of available reserves. The other theme which recurs over and over again is the importance of the relationship between the government and its agencies, and the foreign oil companies which are involved in exploration and development of gas reserves. These two issues are addressed in detail in each case study. But it is also the case that each country highlights specific aspects of the gas story.

  15. Pf/Zeolite Catalyst for Tritium Stripping

    SciTech Connect (OSTI)

    Hsu, R.H.

    2001-03-26

    This report described promising hydrogen (protium and tritium) stripping results obtained with a Pd/zeolite catalyst at ambient temperature. Preliminary results show 90-99+ percent tritium stripping efficiency may be obtained, with even better performance expected as bed configuration and operating conditions are optimized. These results suggest that portable units with single beds of the Pd/zeolite catalyst may be utilized as ''catalytic absorbers'' to clean up both tritium gas and tritiated water. A cart-mounted prototype stripper utilizing this catalyst has been constructed for testing. This portable stripper has potential applications in maintenance-type jobs such as tritium line breaks. This catalyst can also potentially be utilized in an emergency stripper for the Replacement Tritium Facility.

  16. Bismuth-based electrochemical stripping analysis

    DOE Patents [OSTI]

    Wang, Joseph

    2004-01-27

    Method and apparatus for trace metal detection and analysis using bismuth-coated electrodes and electrochemical stripping analysis. Both anodic stripping voltammetry and adsorptive stripping analysis may be employed.

  17. Ambient Laboratory Coater for Advanced Gas Reactor Fuel Development

    SciTech Connect (OSTI)

    Duane D. Bruns; Robert M. Counce; Irma D. Lima Rojas

    2010-06-09

    this research is targeted at developing improved experimentally-based scaling relationships for the hydrodynamics of shallow, gas-spouted beds of dense particles. The work is motivated by the need to more effctively scale up shallow spouted beds used in processes such as in the coating of nuclear fuel particles where precise control of solids and gas circulation is critically important. Experimental results reported here are for a 50 mm diameter spouted bed containing two different types of bed solids (alumina and zirconia) at different static bed depths and fluidized by air and helium. Measurements of multiple local average pressures, inlet gas pressure fluctuations, and spout height were used to characterize the bed hydrodynamics for each operating condition. Follow-on studies are planned that include additional variations in bed size, particle properties, and fluidizing gas. The ultimate objective is to identify the most important non-dimensional hydrodynamic scaling groups and possible spouted-bed design correlations based on these groups.

  18. The DOE Advanced Gas Reactor Fuel Development and Qualification Program

    SciTech Connect (OSTI)

    David Petti

    2010-09-01

    The high outlet temperatures and high thermal-energy conversion efficiency of modular High Temperature Gas-cooled Reactors (HTGRs) enable an efficient and cost effective integration of the reactor system with non-electricity generation applications, such as process heat and/or hydrogen production, for the many petrochemical and other industrial processes that require temperatures between 300°C and 900°C. The Department of Energy (DOE) has selected the HTGR concept for the Next Generation Nuclear Plant (NGNP) Project as a transformative application of nuclear energy that will demonstrate emissions-free nuclear-assisted electricity, process heat, and hydrogen production, thereby reducing greenhouse-gas emissions and enhancing energy security. The objective of the DOE Advanced Gas Reactor (AGR) Fuel Development and Qualification program is to qualify tristructural isotropic (TRISO)-coated particle fuel for use in HTGRs. The Advanced Gas Reactor Fuel Development and Qualification Program consists of five elements: fuel manufacture, fuel and materials irradiations, post-irradiation examination (PIE) and safety testing, fuel performance modeling, and fission-product transport and source term evaluation. An underlying theme for the fuel development work is the need to develop a more complete, fundamental understanding of the relationship between the fuel fabrication process and key fuel properties, the irradiation and accident safety performance of the fuel, and the release and transport of fission products in the NGNP primary coolant system. An overview of the program and recent progress is presented.

  19. Range gated strip proximity sensor

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1996-01-01

    A range gated strip proximity sensor uses one set of sensor electronics and a distributed antenna or strip which extends along the perimeter to be sensed. A micro-power RF transmitter is coupled to the first end of the strip and transmits a sequence of RF pulses on the strip to produce a sensor field along the strip. A receiver is coupled to the second end of the strip, and generates a field reference signal in response to the sequence of pulse on the line combined with received electromagnetic energy from reflections in the field. The sensor signals comprise pulses of radio frequency signals having a duration of less than 10 nanoseconds, and a pulse repetition rate on the order of 1 to 10 MegaHertz or less. The duration of the radio frequency pulses is adjusted to control the range of the sensor. An RF detector feeds a filter capacitor in response to received pulses on the strip line to produce a field reference signal representing the average amplitude of the received pulses. When a received pulse is mixed with a received echo, the mixing causes a fluctuation in the amplitude of the field reference signal, providing a range-limited Doppler type signature of a field disturbance.

  20. Range gated strip proximity sensor

    DOE Patents [OSTI]

    McEwan, T.E.

    1996-12-03

    A range gated strip proximity sensor uses one set of sensor electronics and a distributed antenna or strip which extends along the perimeter to be sensed. A micro-power RF transmitter is coupled to the first end of the strip and transmits a sequence of RF pulses on the strip to produce a sensor field along the strip. A receiver is coupled to the second end of the strip, and generates a field reference signal in response to the sequence of pulse on the line combined with received electromagnetic energy from reflections in the field. The sensor signals comprise pulses of radio frequency signals having a duration of less than 10 nanoseconds, and a pulse repetition rate on the order of 1 to 10 MegaHertz or less. The duration of the radio frequency pulses is adjusted to control the range of the sensor. An RF detector feeds a filter capacitor in response to received pulses on the strip line to produce a field reference signal representing the average amplitude of the received pulses. When a received pulse is mixed with a received echo, the mixing causes a fluctuation in the amplitude of the field reference signal, providing a range-limited Doppler type signature of a field disturbance. 6 figs.

  1. Advancing Development and Greenhouse Gas Reductions in Vietnam's Wind Sector

    SciTech Connect (OSTI)

    Bilello, D.; Katz, J.; Esterly, S.; Ogonowski, M.

    2014-09-01

    Clean energy development is a key component of Vietnam's Green Growth Strategy, which establishes a target to reduce greenhouse gas (GHG) emissions from domestic energy activities by 20-30 percent by 2030 relative to a business-as-usual scenario. Vietnam has significant wind energy resources, which, if developed, could help the country reach this target while providing ancillary economic, social, and environmental benefits. Given Vietnam's ambitious clean energy goals and the relatively nascent state of wind energy development in the country, this paper seeks to fulfill two primary objectives: to distill timely and useful information to provincial-level planners, analysts, and project developers as they evaluate opportunities to develop local wind resources; and, to provide insights to policymakers on how coordinated efforts may help advance large-scale wind development, deliver near-term GHG emission reductions, and promote national objectives in the context of a low emission development framework.

  2. The development of a passive dosimeter for chlorine gas 

    E-Print Network [OSTI]

    Montier, Earl Woodson

    1981-01-01

    I'HE DEVELOPMENT OF A PASSIVE DOSIMETER FOR CHLORINE GAS A Thesis EARL WOODSON MONTIER, JR. Submitt* d to the Graduate College of Texas A&M Cniversity in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE December 198... Major Subject: Industrial Hygiene THE DEVELOPNENT CF A PASSIVE DOSII'%TER FOR CHLORINE GAS A Tbesis EARL %GODSON NONTIER JR. Appcoved as to style and content by: Chainman Co ttee ad of Depart ent 7 g Herbe' i'iembe December 981 ABSTRA CT...

  3. Oil and gas developments in North Africa in 1986

    SciTech Connect (OSTI)

    Michel, R.C.

    1987-10-01

    Licensed oil acreage in the 6 North Africa countries (Algeria, Egypt, Libya, Morocco, Sudan and Tunisia) totaled 1,500,000 km/sup 2/ at the end of 1986, down 290,000 km/sup 2/ from 1985. About 50% of the relinquishments were in Libya. Most oil and gas discoveries were made in Egypt (16 oil and 2 gas). Several oil finds were reported in onshore Libya, and 1 was reported in Algeria in the southeastern Sahara. According to available statistics, development drilling decreased from 1985 levels, except in Tunisia. A 6.3% decline in oil production took place in 1986, falling below the 3 million bbl level (2,912,000 b/d). Only sparse data are released on the gas output in North Africa. 6 figures, 27 tables.

  4. Recent Developments in Kansas Oil and Gas Law

    E-Print Network [OSTI]

    DeLaTorre, Phillip E.

    1983-01-01

    stream_size 1410 stream_content_type text/plain stream_name Phillip E. DeLaTorre, Recent Developments in Kansas Oil and Gas Law, 32 U. Kan. L. Rev. 595 (1983-1984).pdf.txt stream_source_info Phillip E. DeLaTorre, Recent Developments... in Kansas Oil and Gas Law, 32 U. Kan. L. Rev. 595 (1983-1984).pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 HeinOnline -- 32 U. Kan. L. Rev. 595 1983-1984 HeinOnline -- 32 U. Kan. L. Rev. 596 1983-1984 Hein...

  5. Development of a passive soil gas flux sampler 

    E-Print Network [OSTI]

    McQuown, Brian C

    1991-01-01

    was also identical to the laboratory procedure except for the insulated housing. The stainless steel canister was left in place between sampling events without the flow system. Experimental Procedure ? Land Treatment Unit. Passive samplers were also...DEVELOPMENT OF A PASSIVE SOIL GAS FLUX SAMPLER A Thesis by BRIAN C. McQUOWN Submitted to the Office of Graduate Studies of Texas ARM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 1991...

  6. The 1991 natural gas vehicle challenge: Developing dedicated natural gas vehicle technology

    SciTech Connect (OSTI)

    Larsen, R.; Rimkus, W. [Argonne National Lab., IL (United States); Davies, J. [General Motors of Canada Ltd., Toronto, ON (Canada); Zammit, M. [AC Rochester, NY (United States); Patterson, P. [USDOE, Washington, DC (United States)

    1992-02-01

    An engineering research and design competition to develop and demonstrate dedicated natural gas-powered light-duty trucks, the Natural Gas Vehicle (NGV) Challenge, was held June 6--11, 1191, in Oklahoma. Sponsored by the US Department of Energy (DOE), Energy, Mines, and Resources -- Canada (EMR), the Society of Automative Engineers (SAE), and General Motors Corporation (GM), the competition consisted of rigorous vehicle testing of exhaust emissions, fuel economy, performance parameters, and vehicle design. Using Sierra 2500 pickup trucks donated by GM, 24 teams of college and university engineers from the US and Canada participated in the event. A gasoline-powered control testing as a reference vehicle. This paper discusses the results of the event, summarizes the technologies employed, and makes observations on the state of natural gas vehicle technology.

  7. The 1991 natural gas vehicle challenge: Developing dedicated natural gas vehicle technology

    SciTech Connect (OSTI)

    Larsen, R.; Rimkus, W. (Argonne National Lab., IL (United States)); Davies, J. (General Motors of Canada Ltd., Toronto, ON (Canada)); Zammit, M. (AC Rochester, NY (United States)); Patterson, P. (USDOE, Washington, DC (United States))

    1992-01-01

    An engineering research and design competition to develop and demonstrate dedicated natural gas-powered light-duty trucks, the Natural Gas Vehicle (NGV) Challenge, was held June 6--11, 1191, in Oklahoma. Sponsored by the US Department of Energy (DOE), Energy, Mines, and Resources -- Canada (EMR), the Society of Automative Engineers (SAE), and General Motors Corporation (GM), the competition consisted of rigorous vehicle testing of exhaust emissions, fuel economy, performance parameters, and vehicle design. Using Sierra 2500 pickup trucks donated by GM, 24 teams of college and university engineers from the US and Canada participated in the event. A gasoline-powered control testing as a reference vehicle. This paper discusses the results of the event, summarizes the technologies employed, and makes observations on the state of natural gas vehicle technology.

  8. Development of a low swirl injector concept for gas turbines

    E-Print Network [OSTI]

    Cheng, R.K.; Fable, S.A.; Schmidt, D.; Arellano, L.; Smith, K.O.

    2000-01-01

    Injector Concept for Gas Turbines Robert K. Cheng * , Scottconcept for ultra- low NO x gas turbines. Low-swirl flamevirtually every industrial gas turbine manufacturer to meet

  9. Zero Discharge Water Management for Horizontal Shale Gas Well Development

    SciTech Connect (OSTI)

    Paul Ziemkiewicz; Jennifer Hause; Raymond Lovett; David Locke Harry Johnson; Doug Patchen

    2012-03-31

    Hydraulic fracturing technology (fracking), coupled with horizontal drilling, has facilitated exploitation of huge natural gas (gas) reserves in the Devonian-age Marcellus Shale Formation (Marcellus) of the Appalachian Basin. The most-efficient technique for stimulating Marcellus gas production involves hydraulic fracturing (injection of a water-based fluid and sand mixture) along a horizontal well bore to create a series of hydraulic fractures in the Marcellus. The hydraulic fractures free the shale-trapped gas, allowing it to flow to the well bore where it is conveyed to pipelines for transport and distribution. The hydraulic fracturing process has two significant effects on the local environment. First, water withdrawals from local sources compete with the water requirements of ecosystems, domestic and recreational users, and/or agricultural and industrial uses. Second, when the injection phase is over, 10 to 30% of the injected water returns to the surface. This water consists of flowback, which occurs between the completion of fracturing and gas production, and produced water, which occurs during gas production. Collectively referred to as returned frac water (RFW), it is highly saline with varying amounts of organic contamination. It can be disposed of, either by injection into an approved underground injection well, or treated to remove contaminants so that the water meets the requirements of either surface release or recycle use. Depending on the characteristics of the RFW and the availability of satisfactory disposal alternatives, disposal can impose serious costs to the operator. In any case, large quantities of water must be transported to and from well locations, contributing to wear and tear on local roadways that were not designed to handle the heavy loads and increased traffic. The search for a way to mitigate the situation and improve the overall efficiency of shale gas production suggested a treatment method that would allow RFW to be used as make-up water for successive fracs. RFW, however, contains dissolved salts, suspended sediment and oils that may interfere with fracking fluids and/or clog fractures. This would lead to impaired well productivity. The major technical constraints to recycling RFW involves: identification of its composition, determination of industry standards for make-up water, and development of techniques to treat RFW to acceptable levels. If large scale RFW recycling becomes feasible, the industry will realize lower transportation and disposal costs, environmental conflicts, and risks of interruption in well development schedules.

  10. Oil and gas developments in North Africa in 1985

    SciTech Connect (OSTI)

    Michel, R.C.

    1986-10-01

    Petroleum rights in the 6 North African countries (Algeria, Egypt, Libya, Morocco, Sudan, and Tunisia) covered in this paper were 1,839,817 km/sup 2/ at the end of 1985, a decrease of 3% from the 1,896,446 km/sup 2/ held at the end of 1984. This decrease mainly is due to significant relinquishments made in Algeria, Egypt, and Tunisia. Morocco, however, had an increase of 18,087 km/sup 2/. Oil discoveries were reported in Algeria (possibly 5), Libya (at least 2), and Egypt (16). Only 1 gas find was made (in Morocco). According to sparse information, development drilling may have decreased markedly during 1985. Oil and condensate production increased by 3.1% to approximately 3,054,000 b/d compared to about 2,963,400 b/d in 1984. No statistics are currently available on gas production in North Africa. 8 figures, 27 tables.

  11. Pipeline issues shape southern FSU oil, gas development

    SciTech Connect (OSTI)

    1995-05-22

    To future production from southern republics of the former Soviet Union (FSU), construction and revitalization of pipelines are as important as the supply of capital. Export capacity will limit production and slow development activity in the region until new pipelines are in place. Plenty of pipeline proposals have come forward. The problem is politics, which for every proposal so far complicates routing or financing or both. Russia has made clear its intention to use pipeline route decisions to retain influence in the region. As a source of external pressure, it is not alone. Iran and Turkey also have made strong bids for the southern FSU`s oil and gas transport business. Diplomacy thus will say as much as commerce does about how transportation issues are settled and how quickly the southern republics move toward their potentials to produce oil and gas. The paper discusses possible routes and the problems with them, the most likely proposal, and future oil flows.

  12. OGEL (Oil, Gas & Energy Law Intelligence): Focussing on recent developments in the area of oil-gas-energy law,

    E-Print Network [OSTI]

    Dixon, Juan

    About OGEL OGEL (Oil, Gas & Energy Law Intelligence): Focussing on recent developments in the area of oil-gas-energy law, regulation, treaties, judicial and arbitral cases, voluntary guidelines, tax and contracting, including the oil-gas- energy geopolitics. For full Terms & Conditions and subscription rates

  13. Strip casting with fluxing agent applied to casting roll

    DOE Patents [OSTI]

    Williams, Robert S. (Fairfield, OH); O'Malley, Ronald J. (Miamisburg, OH); Sussman, Richard C. (West Chester, OH)

    1997-01-01

    A strip caster (10) for producing a continuous strip (24) includes a tundish (12) for containing a melt (14), a pair of horizontally disposed water cooled casting rolls (22) and devices (29) for electrostatically coating the outer peripheral chill surfaces (44) of the casting rolls with a powder flux material (56). The casting rolls are juxtaposed relative to one another for forming a pouting basin (18) for receiving the melt through a teeming tube (16) thereby establishing a meniscus (20) between the rolls for forming the strip. The melt is protected from the outside air by a non-oxidizing gas passed through a supply line (28) to a sealing chamber (26). A preferred flux is boron oxide having a melting point of about 550.degree. C. The flux coating enhances wetting of the steel melt to the casting roll and dissolves any metal oxide formed on the roll.

  14. Strip casting with fluxing agent applied to casting roll

    DOE Patents [OSTI]

    Williams, R.S.; O`Malley, R.J.; Sussman, R.C.

    1997-07-29

    A strip caster for producing a continuous strip includes a tundish for containing a melt, a pair of horizontally disposed water cooled casting rolls and devices for electrostatically coating the outer peripheral chill surfaces of the casting rolls with a powder flux material. The casting rolls are juxtaposed relative to one another for forming a pouting basin for receiving the melt through a teeming tube thereby establishing a meniscus between the rolls for forming the strip. The melt is protected from the outside air by a non-oxidizing gas passed through a supply line to a sealing chamber. A preferred flux is boron oxide having a melting point of about 550 C. The flux coating enhances wetting of the steel melt to the casting roll and dissolves any metal oxide formed on the roll. 3 figs.

  15. Gas in developing countries: Volume 1, Main report

    SciTech Connect (OSTI)

    Not Available

    1987-12-17

    When gas is discovered in a developing country, and there is either insufficient to justify an Liquified Natural Gas (LNG) export project, or a surplus over-and-above LNG requirements, what are the problems that hinder its development for the internal market in that country. Are there positive steps that can be taken to facilitate such development. The major focus of this study is therefore on the problems that arise in negotiating and implementing agreements between companies and governments. The asymmetries and differences between the behavior and perceptions of the two groups impinge on the conduct of negotiations and the nature of agreements reached between the parties. Objectives are examined for each group as well as the procedures they follow and the constraints under which they operate. The effect of differences on exploration contracts, on pricing and on fiscal regimes are examined and practical ways in which the different objectives of governments and companies can be reconciled to their mutual advantage are suggested. The report is divided into two parts. This Volume, Part One of the report, contains a synthesis of our views on the issues raised by research, and the main conclusions.

  16. DEVELOPMENT OF A NATURAL GAS TO HYDROGEN FUEL STATION William E. Liss

    E-Print Network [OSTI]

    for compressed natural gas vehicles. The integrated natural gas-to-hydrogen system includes a high efficiency on leveraging of developments in the stationary PEM fuel cell and compressed natural gas vehicle market sectorsDEVELOPMENT OF A NATURAL GAS TO HYDROGEN FUEL STATION William E. Liss P: 847-768-0753; E: william

  17. Crude Oil and Natural Gas Exploratory and Development Wells

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYearEnergyPresentationsWeekU.S.Changing3 Oil3BExploratory and Development

  18. Analysis of Developing Gas/liquid Two-Phase Flows

    SciTech Connect (OSTI)

    Elena A. Tselishcheva; Michael Z. Podowski; Steven P. Antal; Donna Post Guillen; Matthias Beyer; Dirk Lucas

    2010-06-01

    The goal of this work is to develop a mechanistically based CFD model that can be used to simulate process equipment operating in the churn-turbulent regime. The simulations were performed using a state-of-the-art computational multiphase fluid dynamics code, NPHASE–CMFD [Antal et al,2000]. A complete four-field model, including the continuous liquid field and three dispersed gas fields representing bubbles of different sizes, was first carefully tested for numerical convergence and accuracy, and then used to reproduce the experimental results from the TOPFLOW test facility at Forschungszentrum Dresden-Rossendorf e.V. Institute of Safety Research [Prasser et al,2007]. Good progress has been made in simulating the churn-turbulent flows and comparison the NPHASE-CMFD simulations with TOPFLOW experimental data. The main objective of the paper is to demonstrate capability to predict the evolution of adiabatic churn-turbulent gas/liquid flows. The proposed modelling concept uses transport equations for the continuous liquid field and for dispersed bubble fields [Tselishcheva et al, 2009]. Along with closure laws based on interaction between bubbles and continuous liquid, the effect of height on air density has been included in the model. The figure below presents the developing flow results of the study, namely total void fraction at different axial locations along the TOPFLOW facility test section. The complete model description, as well as results of simulations and validation will be presented in the full paper.

  19. ECONOMIC DEVELOPMENT BENEFITS OF THE OIL AND GAS INDUSTRY IN NEWFOUNDLAND AND LABRADOR

    E-Print Network [OSTI]

    deYoung, Brad

    ECONOMIC DEVELOPMENT BENEFITS OF THE OIL AND GAS INDUSTRY IN NEWFOUNDLAND AND LABRADOR Conference Report - September 2007 & The Oil And Gas Development Partnership #12;ECONOMIC DEVELOPMENT BENEFITS OF THE OIL AND GAS INDUSTRY IN NEWFOUNDLAND AND LABRADOR May 16, 2007 St. John's Conference Report September

  20. Visual Impact Assessment in British Oil and Gas Developments1 Dennis F. Gillespie

    E-Print Network [OSTI]

    Visual Impact Assessment in British Oil and Gas Developments1 2/ Dennis F. Gillespie 3/ Brian D Unit, Department of Geography, University of Aberdeen, Scotland. Abstract: Development of oil and gas these effects into account. Since 1970, the offshore discovery and development of oil and gas resources

  1. Oil and Gas Energy Developments and Changes in Crash Trends in Texas

    E-Print Network [OSTI]

    Oil and Gas Energy Developments and Changes in Crash Trends in Texas Final report PRC 15-35 F #12;2 Oil and Gas Energy Developments and Changes in Crash Trends in Texas Texas A&M Transportation ................................................................................................ 41 Oil and Gas Well Developments

  2. Low NOx system for gas turbines in cogen being developed

    SciTech Connect (OSTI)

    Not Available

    1994-12-19

    A catalytic combustion system that reduces NOx emissions from natural-gas turbines used to generate electricity is being developed for cogeneration systems built by AES Manufacturing Services Inc., Broken Arrow, OK. Each compact unit is mounted on an enclosed semi-trailer and contains two Kawasaki turbines with shaft-driven generators and a single heat-recovery boiler. Its net output is 3 MW of electricity and more than 28,000 lb/hr of high-pressure steam. At an industrial or commercial site where electrical capacity needs exceed 3 MW, several units may be installed in parallel. Currently, AES units can control NOx to about 25 ppm with traditional steam-injection technology. The paper describes conventional firing, testing that is under way, and the companies involved.

  3. Spatial and Temporal Impacts on Water Consumption in Texas from Shale Gas Development and Use

    E-Print Network [OSTI]

    in water consumption if the increased natural gas production is used at natural gas combined cycle power water consumption in natural gas production have focused on quantifying the total water used4Spatial and Temporal Impacts on Water Consumption in Texas from Shale Gas Development and Use Adam

  4. Commercialization Development of Oxygen Fired CFB for Greenhouse Gas Control

    SciTech Connect (OSTI)

    Nsakala ya Nsakala; Gregory N. Liljedahl; David G. Turek

    2007-03-31

    Given that fossil fuel fired power plants are among the largest and most concentrated producers of CO{sub 2} emissions, recovery and sequestration of CO{sub 2} from the flue gas of such plants has been identified as one of the primary means for reducing anthropogenic (i.e., man-made) CO{sub 2} emissions. In 2001, ALSTOM Power Inc. (ALSTOM) began a two-phase program to investigate the feasibility of various carbon capture technologies. This program was sponsored under a Cooperative Agreement from the US Department of Energy's National Energy Technology Laboratory (DOE). The first phase entailed a comprehensive study evaluating the technical feasibility and economics of alternate CO{sub 2} capture technologies applied to Greenfield US coal-fired electric generation power plants. Thirteen cases, representing various levels of technology development, were evaluated. Seven cases represented coal combustion in CFB type equipment. Four cases represented Integrated Gasification Combined Cycle (IGCC) systems. Two cases represented advanced Chemical Looping Combined Cycle systems. Marion, et al. reported the details of this work in 2003. One of the thirteen cases studied utilized an oxygen-fired circulating fluidized bed (CFB) boiler. In this concept, the fuel is fired with a mixture of oxygen and recirculated flue gas (mainly CO{sub 2}). This combustion process yields a flue gas containing over 80 percent (by volume) CO{sub 2}. This flue gas can be processed relatively easily to enrich the CO{sub 2} content to over 96 percent for use in enhanced oil or gas recovery (EOR or EGR) or simply dried for sequestration. The Phase I study identified the O{sub 2}-fired CFB as having a near term development potential, because it uses conventional commercial CFB technology and commercially available CO{sub 2} capture enabling technologies such as cryogenic air separation and simple rectification or distillation gas processing systems. In the long term, air separation technology advancements offer significant reductions in power requirements, which would improve plant efficiency and economics for the oxygen-fired technology. The second phase consisted of pilot-scale testing followed by a refined performance and economic evaluation of the O{sub 2} fired CFB concept. As a part of this workscope, ALSTOM modified its 3 MW{sub th} (9.9 MMBtu/hr) Multiuse Test Facility (MTF) pilot plant to operate with O{sub 2}/CO{sub 2} mixtures of up to 70 percent O{sub 2} by volume. Tests were conducted with coal and petroleum coke. The test objectives were to determine the impacts of oxygen firing on heat transfer, bed dynamics, potential agglomeration, and gaseous and particulate emissions. The test data results were used to refine the design, performance, costs, and economic models developed in Phase-I for the O{sub 2}-fired CFB with CO{sub 2} capture. Nsakala, Liljedahl, and Turek reported results from this study in 2004. ALSTOM identified several items needing further investigation in preparation for large scale demonstration of the oxygen-fired CFB concept, namely: (1) Operation and performance of the moving bed heat exchanger (MBHE) to avoid recarbonation and also for cost savings compared to the standard bubbling fluid bed heat exchanger (FBHE); (2) Performance of the back-end flash dryer absorber (FDA) for sulfur capture under high CO{sub 2}/high moisture flue gas environment using calcined limestone in the fly ash and using fresh commercial lime directly in the FDA; (3) Determination of the effect of recarbonation on fouling in the convective pass; (4) Assessment of the impact of oxygen firing on the mercury, other trace elements, and volatile organic compound (VOC) emissions; and (5) Develop a proposal-level oxygen-fired retrofit design for a relatively small existing CFB steam power plant in preparation for a large-scale demonstration of the O{sub 2} fired CFB concept. Hence, ALSTOM responded to a DOE Solicitation to address all these issues with further O{sub 2} fired MTF pilot testing and a subsequent retrofit design study of oxygen firing and CO{s

  5. Roll Casting of Aluminum Alloy Clad Strip

    SciTech Connect (OSTI)

    Nakamura, R.; Tsuge, H. [Graduate School of Osaka Institute of Technology (Japan); Haga, T. [Osaka Institute of Technology, 5-16-1 Omiya Asahiku Osaka city 535-8585 (Japan); Watari, H. [Tokyo Institute of Technology, 4259 Nagatsuda Midoriku Yokohama city 226-8502 (Japan); Kumai, S. [Gunma University, 1-5-1 tenjin cho Kiryu city 376-8515 (Japan)

    2011-01-17

    Casting of aluminum alloy three layers of clad strip was tried using the two sets of twin roll casters, and effects of the casting parameters on the cladding conditions were investigated. One twin roll caster was mounted on the other twin roll caster. Base strip was 8079 aluminum alloy and overlay strips were 6022 aluminum alloy. Effects of roll-load of upper and lower casters and melt temperature of the lower caster were investigated. When the roll-load of the upper and lower caster was large enough, the overlay strip could be solidified and be connected. The overlay strip could be connected when the melt of the overlay strip cast by the lower caster was low enough. Sound three layers of clad strip could be cast by proper conditions.

  6. Development of a low swirl injector concept for gas turbines

    E-Print Network [OSTI]

    Cheng, R.K.; Fable, S.A.; Schmidt, D.; Arellano, L.; Smith, K.O.

    2000-01-01

    and robust combustion concept for gas turbines. The use of acombustion systems have been adopted by virtually every industrial gas turbinegas turbines is non-trivial due to the dynamic nature of the combustion

  7. AN ADVISORY SYSTEM FOR THE DEVELOPMENT OF UNCONVENTIONAL GAS RESERVOIRS 

    E-Print Network [OSTI]

    Wei, Yunan

    2010-01-16

    With the rapidly increasing demand for energy and the increasing prices for oil and gas, the role of unconventional gas reservoirs (UGRs) as energy sources is becoming more important throughout the world. Because of high risks and uncertainties...

  8. Antenna structure with distributed strip

    DOE Patents [OSTI]

    Rodenbeck, Christopher T. (Albuquerque, NM)

    2008-10-21

    An antenna comprises electrical conductors arranged to form a radiating element including a folded line configuration and a distributed strip configuration, where the radiating element is in proximity to a ground conductor. The folded line and the distributed strip can be electrically interconnected and substantially coplanar. The ground conductor can be spaced from, and coplanar to, the radiating element, or can alternatively lie in a plane set at an angle to the radiating element. Embodiments of the antenna include conductor patterns formed on a printed wiring board, having a ground plane, spacedly adjacent to and coplanar with the radiating element. Other embodiments of the antenna comprise a ground plane and radiating element on opposed sides of a printed wiring board. Other embodiments of the antenna comprise conductors that can be arranged as free standing "foils". Other embodiments include antennas that are encapsulated into a package containing the antenna.

  9. Antenna structure with distributed strip

    DOE Patents [OSTI]

    Rodenbeck, Christopher T. (Albuquerque, NM)

    2008-03-18

    An antenna comprises electrical conductors arranged to form a radiating element including a folded line configuration and a distributed strip configuration, where the radiating element is in proximity to a ground conductor. The folded line and the distributed strip can be electrically interconnected and substantially coplanar. The ground conductor can be spaced from, and coplanar to, the radiating element, or can alternatively lie in a plane set at an angle to the radiating element. Embodiments of the antenna include conductor patterns formed on a printed wiring board, having a ground plane, spacedly adjacent to and coplanar with the radiating element. Other embodiments of the antenna comprise a ground plane and radiating element on opposed sides of a printed wiring board. Other embodiments of the antenna comprise conductors that can be arranged as free standing "foils". Other embodiments include antennas that are encapsulated into a package containing the antenna.

  10. Energy Transitions: A Systems Approach Including Marcellus Shale Gas Development

    E-Print Network [OSTI]

    Angenent, Lars T.

    hydrocarbons such as natural gas. Whereas an over- all goal for the century is to achieve a sustainable system to increased use of unconventional gas resources as a result of declining supplies of conventional resources case study of energy transitions we focused on the case of un- conventional natural gas recovery from

  11. Oil and Gas Energy Developments and Changes in Pavement Conditions in Texas

    E-Print Network [OSTI]

    Oil and Gas Energy Developments and Changes in Pavement Conditions in Texas Final report PRC 14-35F #12;2 Oil and Gas Energy Developments and Changes in Pavement Conditions in Texas Texas A.............................................................................................................. 10 Chapter 2. Oil and Gas Well and Hydrocarbon Production Data

  12. Summary of Oil and Natural Gas Development Impacts on Prairie Grouse September 2006

    E-Print Network [OSTI]

    Beck, Jeffrey L.

    Summary of Oil and Natural Gas Development Impacts on Prairie Grouse September 2006 Jeffrey L. Beck Independent Avenue Grand Junction, CO 81505 Please cite as: Beck, J. L. 2006. Summary of oil and natural gas). These statistics suggest oil and gas development is rapidly increasing in the West, propelled by national

  13. REVISED NOTICE OF PROPOSED AWARDS Advanced Natural Gas Engine Research and Development for Class 3

    E-Print Network [OSTI]

    REVISED NOTICE OF PROPOSED AWARDS Advanced Natural Gas Engine Research and Development for Class 3 Notice (PON-12-504) entitled "Advanced Natural Gas Engine research and Development for Class 3 through of natural gas engine concepts for application in light heavy-duty vehicles (LHDV) and medium heavy duty

  14. Development and Implementation of Interactive/Visual Software for Simple Aircraft Gas Turbine Design

    E-Print Network [OSTI]

    Ghajar, Afshin J.

    Development and Implementation of Interactive/Visual Software for Simple Aircraft Gas Turbine of software to analyze and design gas turbine systems has been an important part of this course since 1988 of this project was to develop MS Windows based software: Simple Aircraft Gas Turbine Design, that is easy to use

  15. Development of the High-Pressure Direct-Injection ISX G Natural Gas Engine

    SciTech Connect (OSTI)

    Not Available

    2004-08-01

    Fact sheet details work by Cummins and Westport Innovations to develop a heavy-duty, low-NOx, high-pressure direct-injection natural gas engine for the Next Generation Natural Gas Vehicle activity.

  16. On-Road Development of the C-Gas Plus Engine in Heavy-Duty Vehicles

    SciTech Connect (OSTI)

    Not Available

    2003-06-01

    Fact sheet details on-road development of C-Gas Plus natural gas engine in Viking Freight heavy-duty trucks, including emissions, fuel costs, and petroleum displacement.

  17. Development of fission gas swelling and release models for metallic nuclear fuels

    E-Print Network [OSTI]

    Andrews, Nathan Christopher

    2012-01-01

    Fuel swelling and fission gas generation for fast reactor fuels are of high importance since they are among the main limiting factors in the development of metallic fast reactor fuel. Five new fission gas and swelling ...

  18. Development of a High Efficiency Hot Gas Turbo-expander and Low...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a High Efficiency Hot Gas Turbo-expander and Low Cost Heat Exchangers for Optimized CSP Supercritical CO2 Operation Development of a High Efficiency Hot Gas Turbo-expander and...

  19. A review of water and greenhouse gas impacts of unconventional natural gas development in the United States

    SciTech Connect (OSTI)

    Arent, Doug; Logan, Jeff; Macknick, Jordan; Boyd, William; Medlock , Kenneth; O'Sullivan, Francis; Edmonds, James A.; Clarke, Leon E.; Huntington, Hill; Heath, Garvin; Statwick, Patricia M.; Bazilian, Morgan

    2015-01-01

    This paper reviews recent developments in the production and use of unconventional natural gas in the United States with a focus on water and greenhouse gas emission implications. If unconventional natural gas in the U.S. is produced responsibly, transported and distributed with little leakage, and incorporated into integrated energy systems that are designed for future resiliency, it could play a significant role in realizing a more sustainable energy future; however, the increased use of natural gas as a substitute for more carbon intensive fuels will alone not substantially alter world carbon dioxide concentration projections.

  20. Numerical simulations of stripping effects in high-intensity hydrogen ion linacs

    SciTech Connect (OSTI)

    Carneiro, J.-P.; Mustapha, B.; Ostroumov, P.N.; /Argonne

    2008-12-01

    Numerical simulations of H{sup -} stripping losses from blackbody radiation, electromagnetic fields, and residual gas have been implemented into the beam dynamics code TRACK. Estimates of the stripping losses along two high-intensity H{sup -} linacs are presented: the Spallation Neutron Source linac currently being operated at Oak Ridge National Laboratory and an 8 GeV superconducting linac currently being designed at Fermi National Accelerator Laboratory.

  1. Alaskan Natural Gas Pipeline Developments (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    The Annual Energy Outlook 2007 reference case projects that an Alaska natural gas pipeline will go into operation in 2018, based on the Energy Information Administration's current understanding of the projects time line and economics. There is continuing debate, however, about the physical configuration and the ownership of the pipeline. In addition, the issue of Alaskas oil and natural gas production taxes has been raised, in the context of a current market environment characterized by rising construction costs and falling natural gas prices. If rates of return on investment by producers are reduced to unacceptable levels, or if the project faces significant delays, other sources of natural gas, such as unconventional natural gas production and liquefied natural gas imports, could fulfill the demand that otherwise would be served by an Alaska pipeline.

  2. ENGINEERING DEVELOPMENT OF CERAMIC MEMBRANE REACTOR SYSTEM FOR CONVERTING NATURAL GAS TO HYDROGEN AND SYNTHESIS GAS FOR LIQUID TRANSPORTATION FUELS

    SciTech Connect (OSTI)

    NONE

    1998-08-01

    The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through July 1999.

  3. Engineering development of ceramic membrane reactor system for converting natural gas to hydrogen and synthesis gas for liquid transportation fuels

    SciTech Connect (OSTI)

    NONE

    1998-07-01

    The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through June 1998.

  4. ENGINEERING DEVELOPMENT OF CERAMIC MEMBRANE REACTOR SYSTEM FOR CONVERTING NATURAL GAS TO HYDROGEN AND SYNTHESIS GAS FOR LIQUID TRANSPORTATION FUELS

    SciTech Connect (OSTI)

    NONE

    1999-12-01

    The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through November 1999.

  5. ENGINEERING DEVELOPMENT OF CERAMIC MEMBRANE REACTOR SYSTEM FOR CONVERTING NATURAL GAS TO HYDROGEN AND SYNTHESIS GAS FOR LIQUID TRANSPORTATION FUELS

    SciTech Connect (OSTI)

    NONE

    1999-03-01

    The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through February 1999.

  6. Engineering development of ceramic membrane reactor system for converting natural gas to hydrogen and synthesis gas for liquid transportation fuels

    SciTech Connect (OSTI)

    NONE

    1998-05-01

    The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through April 1998.

  7. ENGINEERING DEVELOPMENT OF CERAMIC MEMBRANE REACTOR SYSTEM FOR CONVERTING NATURAL GAS TO HYDROGEN AND SYNTHESIS GAS FOR LIQUID TRANSPORTATION FUELS

    SciTech Connect (OSTI)

    NONE

    1999-10-01

    The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through September 1999.

  8. ENGINEERING DEVELOPMENT OF CERAMIC MEMBRANE REACTOR SYSTEM FOR CONVERTING NATURAL GAS TO HYDROGEN AND SYNTHESIS GAS FOR LIQUID TRANSPORTATION FUELS

    SciTech Connect (OSTI)

    NONE

    2000-02-01

    The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through January 2000.

  9. ENGINEERING DEVELOPMENT OF CERAMIC MEMBRANE REACTOR SYSTEM FOR CONVERTING NATURAL GAS TO HYDROGEN AND SYNTHESIS GAS FOR LIQUID TRANSPORTATION FUELS

    SciTech Connect (OSTI)

    NONE

    2000-01-01

    The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through December 1999.

  10. ENGINEERING DEVELOPMENT OF CERAMIC MEMBRANE REACTOR SYSTEM FOR CONVERTING NATURAL GAS TO HYDROGEN AND SYNTHESIS GAS FOR LIQUID TRANSPORTATION FUELS

    SciTech Connect (OSTI)

    NONE

    1999-11-01

    The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through October 1999.

  11. Proceedings of the natural gas research and development contractors review meeting

    SciTech Connect (OSTI)

    Malone, R.D.; Shoemaker, H.D.; Byrer, C.W.

    1990-11-01

    The purpose of this meeting was to present results of the research in the DOE-sponsored Natural Gas Program, and simultaneously to provide a forum for real-time technology transfer, to the active research community, to the interested public, and to the natural gas industry, who are the primary users of this technology. The current research focus is to expand the base of near-term and mid-term economic gas resources through research activities in Eastern Tight Gas, Western Tight Gas, Secondary Gas Recovery (increased recovery of gas from mature fields); to enhance utilization, particularly of remote gas resources through research in Natural Gas to Liquids Conversion; and to develop additional, long term, potential gas resources through research in Gas Hydrates and Deep Gas. With the increased national emphasis on the use of natural gas, this forum has been expanded to include summaries of DOE-sponsored research in energy-related programs and perspectives on the importance of gas to future world energy. Thirty-two papers and fourteen poster presentations were given in seven formal, and one informal, sessions: Three general sessions (4 papers); Western Tight Gas (6 papers); Eastern Tight Gas (8 papers); Conventional/Speculative Resources (8 papers); and Gas to Liquids (6 papers). Individual reports are processed separately on the data bases.

  12. Energy Transitions: A Systems Approach Including Marcellus Shale Gas Development

    E-Print Network [OSTI]

    Walter, M.Todd

    , renewable sources, but at least in the short term many may be new ways of extracting and using hydrocarbons of unconventional gas resources as a result of declining supplies of conventional resources, local and regional we focused on the case of un- conventional natural gas recovery from the Marcellus shale In addition

  13. Development of hydrogen gas getters for TRU waste

    SciTech Connect (OSTI)

    Kaszuba, J. P. (John P.); Mroz, E. J. (Eugene J.); Peterson, E. (Eric); Stone, M. (Mark); Haga, M. J. (Marc J.)

    2004-01-01

    Alpha radiolysis of hydrogenous waste and packaging materials generates hydrogen gas in radioactive storage containers. For this reason, the flammable gas (hydrogen) concentration in waste shipment containers (Transuranic Package Transporter-II or TP-II containers) is limited to the lower explosion limit of hydrogen in air (5 vol%). The use of hydrogen getters is being investigated to prevent the build up of hydrogen during storage and transport of the TP-II containers (up to 60 days). Preferred hydrogen getters are solid materials that scavenge hydrogen from the gas phase and chemically and irreversibly bind it in the solid state. One proven getter, 1,4-bis(phenylethynyl)benzene or DEB, belongs to a class of compounds called alkynes, which are characterized by the presence of carbon-carbon triple bonds. These carbon atoms will, in the presence of suitable catalysts such as palladium, irreversibly react with hydrogen to form the corresponding saturated alkane compounds. Because DEB contains two triple bonds, one mole of DEB reacts with 4 moles of hydrogen. The standard formulation for the 'DEB getter' is a mixture of 75% DEB and 25% carbon catalyst (5% palladium on carbon). Certain chemicals such as volatile organic compounds (VOCs) are known to 'poison' and reduce the activity of the catalyst. Therefore, in addition to the standard formulation, a semi-permeable barrier that encapsulates and protects the getter and its catalyst from poisons was also developed. The uncoated and polymer coated getter formulations were subjected to tests that determined the performance of the getters with regard to capacity, operating temperature range (with hydrogen in nitrogen and in air), hydrogen concentration, poisons, aging, pressure, reversibility, and radiation effects. This testing program was designed to address the following performance requirements: (1) Minimum rate for hydrogen removal of 1.2E-5 moles hydrogen per second for 60 days; (2) Sufficient getter material within the TP-II to ensure that no more than 50% of getter material is consumed during the 60 days; and (3) Adequate hydrogen removal rate from the getter reaction in the absence of the recombination reaction of hydrogen to produce water. This conservative approach provides a measure of safety for waste shipments by ensuring that sufficient getter material is present and by not taking credit for the recombination reaction. The rationale for measuring and reporting the hydrogen removal rate at 50% getter capacity is thus derived. All of the coated getters as well as the uncoated DEB performed well above the performance requirements. Coating the DEB with polymers did not significantly enhance getter performance in the presence of poisons relative to uncoated DEB. The next phase of the project is to evaluate a scaled-up getter package for performance under waste shipping conditions anticipated in the TP-II.

  14. Method of stripping metals from organic solvents

    DOE Patents [OSTI]

    Todd, Terry A. (Aberdeen, ID); Law, Jack D. (Pocatello, ID); Herbst, R. Scott (Idaho Falls, ID); Romanovskiy, Valeriy N. (St. Petersburg, RU); Smirnov, Igor V. (St.-Petersburg, RU); Babain, Vasily A. (St-Petersburg, RU); Esimantovski, Vyatcheslav M. (St-Petersburg, RU)

    2009-02-24

    A new method to strip metals from organic solvents in a manner that allows for the recycle of the stripping agent. The method utilizes carbonate solutions of organic amines with complexants, in low concentrations, to strip metals from organic solvents. The method allows for the distillation and reuse of organic amines. The concentrated metal/complexant fraction from distillation is more amenable to immobilization than solutions resulting from current practice.

  15. Transmission through Biased Graphene Strip

    E-Print Network [OSTI]

    Hocine Bahlouli; El Bouazzaoui Choubabi; Abderrahim El Mouhafid; Ahmed Jellal

    2011-05-26

    We solve the 2D Dirac equation describing graphene in the presence of a linear vector potential. The discretization of the transverse momentum due to the infinite mass boundary condition reduced our 2D Dirac equation to an effective massive 1D Dirac equation with an effective mass equal to the quantized transverse momentum. We use both a numerical Poincare Map approach, based on space discretization of the original Dirac equation, and direct analytical method. These two approaches have been used to study tunneling phenomena through a biased graphene strip. The numerical results generated by the Poincare Map are in complete agreement with the analytical results.

  16. Next Generation Natural Gas Vehicle Activity: Natural Gas Engine and Vehicle Research & Development (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2003-09-01

    This fact sheet describes the status of the Next Generation Natural Gas Vehicle (NGNGV) activity, including goals, R&D progress, NGV implementation, and the transition to hydrogen.

  17. Oil and gas developments in North Africa in 1984

    SciTech Connect (OSTI)

    Michel, R.Ch.

    1985-10-01

    Petroleum rights in the 6 North African countries (Algeria, Egypt, Libya, Morocco, Sudan, and Tunisia) covered in this paper were 1,906,065 km/sup 2/ at the end of 1984, an increase of 4.6% from the 1,821,966 km/sup 2/ in force at the end of 1983. This increase is due to large awards in the Sudan despite significant relinquishments elsewhere. Seismic surveys conducted during 1984 decreased to about 510.5 crew-months onshore and 29.5 crew-months offshore. However, exploration in and off Egypt was higher compared to 1983. Exploratory drilling was lower, with only 125 wells drilled compared to 179 tests completed in 1983. The main decrease was in Egypt and Sudan, but drilling in Libya resulted in 20 more completions. A significant oil discovery was made in the offshore part of the Sirte basin, off southwest Cyrenaica. The success rate in North Africa ranged from 19% to 50% (Libya). Development drilling increased during 1984, as higher activity appears to have taken place in 3 countries. Oil production, with an estimated daily rate of 2,952,570 bbl, was up 2.8% from 1983 (2,871,460 BOPD). In Egypt, 7 fields located in the Gulf of Suez area went on stream during the year. Political unrest, which prevailed in southern Sudan during most of 1984, will likely delay the start-up of production in several fields. No statistics are available on gas production in North African countries.

  18. Oil and gas developments in North Africa in 1984

    SciTech Connect (OSTI)

    Michel, R.C.

    1985-10-01

    Petroleum rights in the 6 North African countries (Algeria, Egypt, Libya, Morocco, Sudan, and Tunisia) covered in this paper were 1,906,065 km/sup 2/ at the end of 1984. An increase of 4.6% from the 1,821,966 km/sup 2/ in force at the end of 1983. This increase is due to large awards in the Sudan despite significant relinquishments elsewhere. Seismic surveys conducted during 1984 decreased to about 510.5 crew-months onshore and 29.5 crew-months offshore. However, exploration in and off Egypt was higher compared to 1983. Exploratory drilling was lower, with only 125 wells drilled compared to 179 tests completed in 1983. The main decrease was in Egypt and Sudan, but drilling in Libya resulted in 20 more completions. A significant oil discovery was made in the offshore part of the Sirte basin, off southwest Cyrenaica. The success rate in North America ranged from 19% to 50% (Libya). Development drilling increased during 1984, as higher activity appears to have taken place in 3 countries. Oil production, with an estimated daily rate of 2,952,570 bbl, was 2.8% from 1983 (2,871,460 BOPD). In Egypt, 7 fields located in the Gulf of Suez area went on stream during the year. Political unrest, which prevailed in southern Sudan during most of 1984, will likely delay the start-up of production in several fields. No statistics are available on gas production in North African countries. 9 figures, 27 tables.

  19. Strategic Planning, Design and Development of the Shale Gas Supply Chain Network

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    1 Strategic Planning, Design and Development of the Shale Gas Supply Chain Network Diego C. Cafaro1-term planning of the shale gas supply chain is a relevant problem that has not been addressed before Shale gas, supply chain, strategic planning, MINLP, solution algorithm * Corresponding author. Tel.: +1

  20. Combustion System Development for Medium-Sized Industrial Gas Turbines: Meeting Tight Emission Regulations while Using

    E-Print Network [OSTI]

    Ponce, V. Miguel

    Combustion System Development for Medium-Sized Industrial Gas Turbines: Meeting Tight Emission Turbines Incorporated is a leading manufacturer of industrial gas turbine packages for the power generation- bility for the introduction of new combustion systems for gas turbine products to enhance fuel

  1. Crude Oil and Natural Gas Exploratory and Development Wells

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural Gas Usage Form 2003 Commercial293,845Exploratory

  2. Development of Alaskan gas hydrate resources: Annual report, October 1986--September 1987

    SciTech Connect (OSTI)

    Sharma, G.D.; Kamath, V.A.; Godbole, S.P.; Patil, S.L.; Paranjpe, S.G.; Mutalik, P.N.; Nadem, N.

    1987-10-01

    Solid ice-like mixtures of natural gas and water in the form of natural gas hydrated have been found immobilized in the rocks beneath the permafrost in Arctic basins and in muds under the deep water along the American continental margins, in the North Sea and several other locations around the world. It is estimated that the arctic areas of the United States may contain as much as 500 trillion SCF of natural gas in the form of gas hydrates (Lewin and Associates, 1983). While the US Arctic gas hydrate resources may have enormous potential and represent long term future source of natural gas, the recovery of this resource from reservoir frozen with gas hydrates has not been commercialized yet. Continuing study and research is essential to develop technologies which will enable a detailed characterization and assessment of this alternative natural gas resource, so that development of cost effective extraction technology.

  3. Development of a miniature, continuous measurement, stochastic perturbation gas chromatograph

    E-Print Network [OSTI]

    Paster, Eli (Eli Travis)

    2014-01-01

    Gas chromatography is one of the most widely used analytical chemistry techniques for separating and analyzing chemical compounds. Chromatographic methods are used to identify constituent species within a compound and ...

  4. DOE Showcases Websites for Tight Gas Resource Development

    Broader source: Energy.gov [DOE]

    Two U.S. Department of Energy projects funded by the Office of Fossil Energy's National Energy Technology Laboratory provide quick and easy web-based access to sought after information on tight-gas sandstone plays.

  5. Development of Real-Time, Gas Quality Sensor Technology

    Broader source: Energy.gov [DOE]

    Landfill gas (LFG), composed largely of methane and carbon dioxide, is used in over 645 operational projects in 48 states. These projects convert a large source of greenhouse gases into a fuel that...

  6. Geomechanical Development of Fractured Reservoirs During Gas Production 

    E-Print Network [OSTI]

    Huang, Jian

    2013-04-05

    Within fractured reservoirs, such as tight gas reservoir, coupled processes between matrix deformation and fluid flow are very important for predicting reservoir behavior, pore pressure evolution and fracture closure. To study the coupling between...

  7. Fuel Development For Gas-Cooled Fast Reactors

    SciTech Connect (OSTI)

    M. K. Meyer

    2006-06-01

    The Generation IV Gas-cooled Fast Reactor (GFR) concept is proposed to combine the advantages of high-temperature gas-cooled reactors (such as efficient direct conversion with a gas turbine and the potential for application of high-temperature process heat), with the sustainability advantages that are possible with a fast-spectrum reactor. The latter include the ability to fission all transuranics and the potential for breeding. The GFR is part of a consistent set of gas-cooled reactors that includes a medium-term Pebble Bed Modular Reactor (PBMR)-like concept, or concepts based on the Gas Turbine Modular Helium Reactor (GT-MHR), and specialized concepts such as the Very High Temperature Reactor (VHTR), as well as actinide burning concepts [ ]. To achieve the necessary high power density and the ability to retain fission gas at high temperature, the primary fuel concept proposed for testing in the United States is a dispersion coated fuel particles in a ceramic matrix. Alternative fuel concepts considered in the U.S. and internationally include coated particle beds, ceramic clad fuel pins, and novel ceramic ‘honeycomb’ structures. Both mixed carbide and mixed nitride-based solid solutions are considered as fuel phases.

  8. Development of Alaska North Slope natural gas resources: A historical perspective and future potential

    SciTech Connect (OSTI)

    Lannom, D.A.; Ogbe, D.O.; Lawal, A.S.; Hatzignatiou, D.G. [Univ. of Alaska, Fairbanks, AL (United States)

    1996-12-31

    This paper presents a historical analysis of plans proposed by the private sector to develop and commercialize the natural gas resources found on the North Slope of Alaska. It evaluates current proposals to commercialize North Slope gas and discusses the potential economic benefits to be derived from gas commercialization. First, we describe the natural gas resources of the North Slope. Second, a resource-allocation optimization model is presented to evaluate quantitatively the options available for gas utilization. The model is applied to the North Slope to screen the various gas utilization alternatives and to recommend the economically feasible options. The optimal decision is a major gas (LNG) sale to the Pacific Rim countries. The LNG project involves conditioning natural gas on the North Slope and transporting the gas by pipeline from Prudhoe Bay to a tidewater port where it can be liquefied and shipped by tankers to the Pacific Rim markets.

  9. DEVELOPMENT OF ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    SciTech Connect (OSTI)

    Peter J. Tijrn

    2003-05-31

    This Final Report for Cooperative Agreement No. DE-FC22-95PC93052, the ''Development of Alternative Fuels and Chemicals from Synthesis Gas,'' was prepared by Air Products and Chemicals, Inc. (Air Products), and covers activities from 29 December 1994 through 31 July 2002. The overall objectives of this program were to investigate potential technologies for the conversion of synthesis gas (syngas), a mixture primarily of hydrogen (H{sub 2}) and carbon monoxide (CO), to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at the LaPorte, Texas Alternative Fuels Development Unit (AFDU). Laboratory work was performed by Air Products and a variety of subcontractors, and focused on the study of the kinetics of production of methanol and dimethyl ether (DME) from syngas, the production of DME using the Liquid Phase Dimethyl Ether (LPDME{trademark}) Process, the conversion of DME to fuels and chemicals, and the production of other higher value products from syngas. Four operating campaigns were performed at the AFDU during the performance period. Tests of the Liquid Phase Methanol (LPMEOH{trademark}) Process and the LPDME{trademark} Process were made to confirm results from the laboratory program and to allow for the study of the hydrodynamics of the slurry bubble column reactor (SBCR) at a significant engineering scale. Two campaigns demonstrated the conversion of syngas to hydrocarbon products via the slurry-phase Fischer-Tropsch (F-T) process. Other topics that were studied within this program include the economics of production of methyl tert-butyl ether (MTBE), the identification of trace components in coal-derived syngas and the means to economically remove these species, and the study of systems for separation of wax from catalyst in the F-T process. The work performed under this Cooperative Agreement has continued to promote the development of technologies that use clean syngas produced from any one of a variety of sources (including coal) for the production of a spectrum of alternative fuels (hydrocarbons and oxygenate fuels), octane enhancers, and chemicals and chemical intermediates. In particular, the data from the 1995 LPMEOH{trademark} campaign provided confirmation of assumptions used in the design of the catalyst reduction system at the Kingsport LPMEOH{trademark} Commercial Demonstration Project, and the alternate methanol catalyst has been in use there since late 1998. The kinetic model was also expanded to allow for more accurate prediction of methanol production and carbon dioxide (CO{sub 2}) conversion, and more accurate modeling of by-product formation for the alternate methanol catalyst. The outstanding performance results of the LPMEOH{trademark} Process at Kingsport can be attributed in large part to the body of work performed since 1981 in collaboration between the U.S. Department of Energy (DOE) and Air Products. In addition, a pilot-plant-tested LPDME{trademark} Process has been demonstrated, and the product cost of DME from coal-derived syngas can be competitive in certain locations and applications. The need for liquid fuels will continue to be a critical concern for this nation in the 21st century. Efforts are needed to ensure the development and demonstration of economically competitive, efficient, environmentally responsible technologies that produce clean fuels and chemicals from coal under DOE's Vision 21 concept. These liquids will be a component of the fuel mix that will provide the transition from the current reliance on carbon-based fuels to the ultimate use of H{sub 2} as a means of energy transport. Indirect liquefaction, which converts the syngas (H{sub 2} and CO) produced by the gasification of coal to sulfur- and nitrogen-free liquid products, is a key component of the Vision 21 initiative. The results from this current program provide continued support to the objectives for the conversion of domestic coal to electric power and co-produced clean liquid fuels and chemicals in an environmentally superior manner.

  10. Development of a Liquid to Compressed Natural Gas (LCNG) Fueling Station. Final Report

    SciTech Connect (OSTI)

    Moore, J. A.

    1999-06-30

    The program objective was the development of equipment and processes to produce compressed natural gas (CNG) from liquified natural gas (LNG) for heavy duty vehicular applications. The interest for this technology is a result of the increased use of alternative fuels for the reduction of emissions and dependency of foreign energy. Technology of the type developed under this program is critical for establishing natural gas as an economical alternative fuel.

  11. Population enumeration and the effects of oil and gas development on dune-dwelling lizards 

    E-Print Network [OSTI]

    Smolensky, Nicole Limunga

    2009-05-15

    abundances of dune-dwelling lizards among sites that varied in oil and gas development. I conducted distance line transects and compared those density estimates to densities obtained from total removal plots. I quantified the amount of oil and gas development...

  12. Development of a natural gas stratified charge rotary engine

    SciTech Connect (OSTI)

    Sierens, R.; Verdonck, W.

    1985-01-01

    A water model has been used to determine the positions of separate inlet ports for a natural gas, stratified charge rotary engine. The flow inside the combustion chamber (mainly during the induction period) has been registered by a film camera. From these tests the best locations of the inlet ports have been obtained, a prototype of this engine has been built by Audi NSU and tested in the laboratories of the university of Gent. The results of these tests, for different stratification configurations, are given. These results are comparable with the best results obtained by Audi NSU for a homogeneous natural gas rotary engine.

  13. US10 Capable Prototype Volvo MG11 Natural Gas Engine Development: Final Report, December 16, 2003 - July 31, 2006

    SciTech Connect (OSTI)

    Tai, C.; Reppert, T.; Chiu, J.; Christensen, L.; Knoll, K.; Stewart, J.

    2006-10-01

    The report discusses a project to develop a low-emissions natural gas engine with exhaust gas recirculation (EGR) and a three-way catalyst (TWC).

  14. Natural Gas in the Rocky Mountains: Developing Infrastructure

    Reports and Publications (EIA)

    2007-01-01

    This Supplement to the Energy Information Administration's Short-Term Energy Outlook analyzes current natural gas production, pipeline and storage infrastructure in the Rocky Mountains, as well as prospective pipeline projects in these states. The influence of these factors on regional prices and price volatility is examined.

  15. Ceramic stationary gas turbine development. Final report, Phase 1

    SciTech Connect (OSTI)

    NONE

    1994-09-01

    This report summarizes work performed by Solar Turbines Inc. and its subcontractors during the period September 25, 1992 through April 30, 1993. The objective of the work is to improve the performance of stationary gas turbines in cogeneration through implementation of selected ceramic components.

  16. AIS/DOE Technology Roadmap Program: Strip Casting: Anticipating...

    Office of Scientific and Technical Information (OSTI)

    AISDOE Technology Roadmap Program: Strip Casting: Anticipating New Routes To Steel Sheet Citation Details In-Document Search Title: AISDOE Technology Roadmap Program: Strip...

  17. Engineering Development of Ceramic Membrane Reactor System for Converting Natural Gas to Hydrogen and Synthesis Gas for Liquid Transportation Fuels

    SciTech Connect (OSTI)

    Air Products and Chemicals

    2008-09-30

    An Air Products-led team successfully developed ITM Syngas technology from the concept stage to a stage where a small-scale engineering prototype was about to be built. This technology produces syngas, a gas containing carbon monoxide and hydrogen, by reacting feed gas, primarily methane and steam, with oxygen that is supplied through an ion transport membrane. An ion transport membrane operates at high temperature and oxygen ions are transported through the dense membrane's crystal lattice when an oxygen partial pressure driving force is applied. This development effort solved many significant technical challenges and successfully scaled-up key aspects of the technology to prototype scale. Throughout the project life, the technology showed significant economic benefits over conventional technologies. While there are still on-going technical challenges to overcome, the progress made under the DOE-funded development project proved that the technology was viable and continued development post the DOE agreement would be warranted.

  18. Development Of A Centrifugal Hydrogen Pipeline Gas Compressor

    SciTech Connect (OSTI)

    Di Bella, Francis A.

    2015-04-16

    Concepts NREC (CN) has completed a Department of Energy (DOE) sponsored project to analyze, design, and fabricate a pipeline capacity hydrogen compressor. The pipeline compressor is a critical component in the DOE strategy to provide sufficient quantities of hydrogen to support the expected shift in transportation fuels from liquid and natural gas to hydrogen. The hydrogen would be generated by renewable energy (solar, wind, and perhaps even tidal or ocean), and would be electrolyzed from water. The hydrogen would then be transported to the population centers in the U.S., where fuel-cell vehicles are expected to become popular and necessary to relieve dependency on fossil fuels. The specifications for the required pipeline hydrogen compressor indicates a need for a small package that is efficient, less costly, and more reliable than what is available in the form of a multi-cylinder, reciprocating (positive displacement) compressor for compressing hydrogen in the gas industry.

  19. NATURAL GAS FROM SHALE: Questions and Answers Shale Gas Development Challenges -

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartment of Energy Motionshale gas? Basically, it is naturalAir

  20. NATURAL GAS FROM SHALE: Questions and Answers Shale Gas Development Challenges -

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartment of Energy Motionshale gas? Basically, it is

  1. Development of advanced technology of coke oven gas drainage treatment

    SciTech Connect (OSTI)

    Higashi, Tadayuki; Yamaguchi, Akikazu; Ikai, Kyozou; Kamiyama, Hisarou; Muto, Hiroshi

    1996-12-31

    In April 1994, commercial-scale application of ozone oxidation to ammonia liquor (which is primarily the water condensing from coke oven gas) to reduce its chemical oxygen demand (COD) was started at the Nagoya Works of Nippon Steel Corporation. This paper deals with the results of technical studies on the optimization of process operating conditions and the enlargement of equipment size and the operating purification system.

  2. In-situ conditioning of a strip casting roll

    DOE Patents [OSTI]

    Williams, Robert S. (Fairfield, OH); Campbell, Steven L. (Middletown, OH)

    1997-01-01

    A strip caster (10) for producing a continuous strip (24) has a tundish (12) for containing a melt (14) and a pair of horizontally disposed water cooled casting rolls (22). The casting rolls are juxtaposed relative to one another for forming a pouring basin (18) for receiving the melt through a teeming tube (16) thereby establishing a meniscus (20) between the rolls for forming a strip (24). The melt is protected from the outside air by a non-oxidizing gas passed through a supply line (28) to a sealing chamber (26). Devices (29) for conditioning the outer peripheral chill surfaces of the casting rolls includes grit blasting nozzles (30A, 30B, 30C, 30D), a collection trough (32) for gathering the grit, a line (34) for recycling the grit to a bag house (36), a feeder (38) and a pressurized distributor (40) for delivering the grit to the nozzles. The conditioning nozzles remove dirt, metal oxides and surface imperfections providing a clean surface readily wetted by the melt.

  3. In-situ conditioning of a strip casting roll

    DOE Patents [OSTI]

    Williams, R.S.; Campbell, S.L.

    1997-07-29

    A strip caster (10) for producing a continuous strip (24) has a tundish (12) for containing a melt (14) and a pair of horizontally disposed water cooled casting rolls (22). The casting rolls are juxtaposed relative to one another for forming a pouring basin (18) for receiving the melt through a teeming tube (16) thereby establishing a meniscus (20) between the rolls for forming a strip (24). The melt is protected from the outside air by a non-oxidizing gas passed through a supply line (28) to a sealing chamber (26). Devices (29) for conditioning the outer peripheral chill surfaces of the casting rolls includes grit blasting nozzles (30A, 30B, 30C, 30D), a collection trough (32) for gathering the grit, a line (34) for recycling the grit to a bag house (36), a feeder (38) and a pressurized distributor (40) for delivering the grit to the nozzles. The conditioning nozzles remove dirt, metal oxides and surface imperfections providing a clean surface readily wetted by the melt.

  4. Tin electroplating/stripping evaluation. Topical report

    SciTech Connect (OSTI)

    McHenry, M.R.

    1995-08-01

    An evaluation was conducted to determine possible replacement chemistries for electroplating and stripping of tin-lead. The driver for this project was two-fold. Our first goal dealt with hazardous waste reduction. It was desired to eliminate lead (a heavy metal) from the electroplating process and thiourea (a known carcinogen) from the stripping process. We also sought to reduce the cost of nonconformance (CONC) realized by this process in the form of rough plating, broken paths, poor solderability, and overetching. Three suppliers` tin chemistries were evaluated as replacements for electroplating and stripping of tin-lead. Based on preliminary testing, one chemistry was chosen, evaluated, and approved for production use.

  5. Saving Energy Through Advanced Power Strips (Poster)

    SciTech Connect (OSTI)

    Christensen, D.

    2013-10-01

    Advanced Power Strips (APS) look just like ordinary power strips, except that they have built-in features that are designed to reduce the amount of energy used by many consumer electronics. There are several different types of APSs on the market, but they all operate on the same basic principle of shutting off the supply power to devices that are not in use. By replacing your standard power strip with an APS, you can signifcantly cut the amount of electricity used by your home office and entertainment center devices, and save money on your electric bill. This illustration summarizes the different options.

  6. Möbius Graphene Strip as Topological Insulator

    E-Print Network [OSTI]

    Z. L. Guo; Z. R. Gong; H. Dong; C. P. Sun

    2009-06-12

    We study the electronic properties of M\\"{o}bius graphene strip with a zigzag edge. We show that such graphene strip behaves as a topological insulator with a gapped bulk and a robust metallic surface, which enjoys some features due to its nontrivial topology of the spatial configuration, such as the existence of edge states and the non-Abelian induced gauge field. We predict that the topological properties of the M\\"{o}bius graphene strip can be experimentally displayed by the destructive interference in the transmission spectrum, and the robustness of edge states under certain perturbations.

  7. Shale Gas Development in the Susquehanna River Basin

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988 1.996 2.003 1990-2016November 20001:

  8. Development of a natural gas systems analysis model (GSAM). Annual report, July 1994--June 1995

    SciTech Connect (OSTI)

    NONE

    1995-07-01

    North American natural gas markets have changed dramatically over the past decade. A competitive, cost-conscious production, transportation, and distribution system has emerged from the highly regulated transportation wellhead pricing structure of the 1980`s. Technology advances have played an important role in the evolution of the gas industry, a role likely to expand substantially as alternative fuel price competition and a maturing natural gas resource base force operators to maximize efficiency. Finally, significant changes continue in regional gas demand patterns, industry practices, and infrastructure needs. As the complexity of the gas system grows so does the need to evaluate and plan for alternative future resource, technology, and market scenarios. Traditional gas modeling systems focused solely on the econometric aspects of gas marketing. These systems, developed to assess a regulated industry at a high level of aggregation, rely on simple representation of complex and evolving systems, thereby precluding insight into how the industry will change over time. Credible evaluations of specific policy initiatives and research activities require a different approach. Also, the mounting pressure on energy producers from environmental compliance activities requires development of analysis that incorporates relevant geologic, engineering, and project economic details. The objective of policy, research and development (R&D), and market analysis is to integrate fundamental understanding of natural gas resources, technology, and markets to fully describe the potential of the gas resource under alternative future scenarios. This report summarizes work over the past twelve months on DOE Contract DE-AC21-92MC28138, Development of a Natural Gas Systems Analysis Model (GSAM). The products developed under this project directly support the Morgantown Energy Technology Center (METC) in carrying out its natural gas R&D mission.

  9. Marginal cost of natural gas in developing countries: concepts and applications

    SciTech Connect (OSTI)

    Mashayekhi, A.

    1983-01-01

    Many developing nations are facing complex questions regarding the best strategy for developing their domestic gas reserves. The World Bank has addressed these questions in studies on the cost and prices of gas and its optimal allocation among different markets. Based on the average incremental method, an estimate of the marginal cost of natural gas in 10 developing countries proved to be $0.61-1.79/1000 CF or $3.59-10.54/bbl of oil equivalent, far below the border prices of competing fuels in these nations. Moreover, the cost of gas is not expected to rise in these countries within the next 20 years while the reserves/production ratios remain high. The sample involves a variety of gas compositions and production conditions among the countries of Bangladesh, Cameroon, Egypt, India, Morocco, Nigeria, Pakistan, Tanzania, Thailand, and Tunisia.

  10. Oil and Gas CDT Development of a SUNTANS Baroclinic Model for 3D Oil

    E-Print Network [OSTI]

    Henderson, Gideon

    Oil and Gas CDT Development of a SUNTANS Baroclinic Model for 3D Oil Pollution Tracking Heriot will receive 20 weeks bespoke, residential training of broad relevance to the oil and gas industry: 10 weeks) Key Words Oil Spill, HF Radar, Trajectory Forecasting, Hydrodynamic Modelling, Oil Chemistry Overview

  11. The Design and Development of An Externally Fired Steam Injected Gas Turbine for Cogeneration 

    E-Print Network [OSTI]

    Boyce, M. P.; Meher-Homji, C.; Ford, D.

    1981-01-01

    This paper describes the theoretical background and the design and development of a prototype externally fired steam injected (ECSI) gas turbine which has a potential to utilize lower grade fuels. The system is designed around a 2 shaft 360 HP gas...

  12. Uinta Basin Oil and Gas Development Air Quality Constraints

    E-Print Network [OSTI]

    Utah, University of

    Production EASTERN UTAH BLM Proposed Leasing for Oil Shale and Tar Sands Development "Indian Country" ­ Regulatory Authority Controlled by the Tribes and EPA Oil Shale Leasing Tar Sands Leasing "Indian Country

  13. Development and Demonstration of Mobile, Small Footprint Exploration and Development Well System for Arctic Unconventional Gas Resources (ARCGAS)

    SciTech Connect (OSTI)

    Paul Glavinovich

    2002-11-01

    Traditionally, oil and gas field technology development in Alaska has focused on the high-cost, high-productivity oil and gas fields of the North Slope and Cook Inlet, with little or no attention given to Alaska's numerous shallow, unconventional gas reservoirs (carbonaceous shales, coalbeds, tight gas sands). This is because the high costs associated with utilizing the existing conventional oil and gas infrastructure, combined with the typical remoteness and environmental sensitivity of many of Alaska's unconventional gas plays, renders the cost of exploring for and producing unconventional gas resources prohibitive. To address these operational challenges and promote the development of Alaska's large unconventional gas resource base, new low-cost methods of obtaining critical reservoir parameters prior to drilling and completing more costly production wells are required. Encouragingly, low-cost coring, logging, and in-situ testing technologies have already been developed by the hard rock mining industry in Alaska and worldwide, where an extensive service industry employs highly portable diamond-drilling rigs. From 1998 to 2000, Teck Cominco Alaska employed some of these technologies at their Red Dog Mine site in an effort to quantify a large unconventional gas resource in the vicinity of the mine. However, some of the methods employed were not fully developed and required additional refinement in order to be used in a cost effective manner for rural arctic exploration. In an effort to offset the high cost of developing a new, low-cost exploration methods, the US Department of Energy, National Petroleum Technology Office (DOE-NPTO), partnered with the Nana Regional Corporation and Teck Cominco on a technology development program beginning in 2001. Under this DOE-NPTO project, a team comprised of the NANA Regional Corporation (NANA), Teck Cominco Alaska and Advanced Resources International, Inc. (ARI) have been able to adapt drilling technology developed for the mineral industry for use in the exploration of unconventional gas in rural Alaska. These techniques have included the use of diamond drilling rigs that core small diameter (< 3.0-inch) holes coupled with wireline geophysical logging tools and pressure transient testing units capable of testing in these slimholes.

  14. Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine

    E-Print Network [OSTI]

    Peck, Jhongwoo, 1976-

    2003-01-01

    As part of the MIT micro-gas turbine engine project, the development of a hydrocarbon-fueled catalytic micro-combustion system is presented. A conventionally-machined catalytic flow reactor was built to simulate the ...

  15. New Developments in Closed Loop Combustion Control Using Flue Gas Analysis 

    E-Print Network [OSTI]

    Nelson, R. L.

    1981-01-01

    New developments in closed loop combustion control are causing radical changes in the way combustion control systems are implemented. The recent availability of in line flue gas analyzers and microprocessor technology are teaming up to produce...

  16. Regulation of shale gas development : an argument for state preeminence with federal support

    E-Print Network [OSTI]

    Kansal, Tushar, M.C.P. Massachusetts Institute of Technology

    2012-01-01

    Shale gas development has become big business in the United States during the past decade, introducing drilling to parts of the country that have not seen it in decades and provoking an accelerating shift in the country's ...

  17. Unusual giant anisotropic magnetoresistance in manganite strips

    SciTech Connect (OSTI)

    Chen, Jinjie; Zhang, Kai; Du, Kai; Zhu, Yinyan; Liu, Hao; Yin, Lifeng, E-mail: shenj5494@fudan.edu.cn, E-mail: lifengyin@fudan.edu.cn; Shen, Jian, E-mail: shenj5494@fudan.edu.cn, E-mail: lifengyin@fudan.edu.cn [State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433 (China); Wei, Wengang [State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433 (China); College of Physics Science and Information Engineering, Hebei Normal University, Shijiazhuang 050024 (China)

    2014-06-16

    Manganites have been known to exhibit giant anisotropic magnetoresistance (GAMR) near metal-insulator transition temperatures. Interestingly, we observed a second GAMR peak at lower temperatures in manganite strips fabricated from epitaxial thin films. The second low-temperature GAMR peak is highly sensitive to magnetic field and vanishes quickly upon increasing of magnetic field. We attribute the emergent GAMR behavior to spatial confinement effect on electronic phase separation in manganite strips.

  18. Architecture of a Silicon Strip Beam Position Monitor

    E-Print Network [OSTI]

    R. Angstadt; W. Cooper; M. Demarteau; J. Green; S. Jakubowski; A. Prosser; R. Rivera; M. Turqueti; M. Utes; Xiao Cai

    2010-10-28

    A collaboration between Fermilab and the Institute for High Energy Physics (IHEP), Beijing, has developed a beam position monitor for the IHEP test beam facility. This telescope is based on 5 stations of silicon strip detectors having a pitch of 60 microns. The total active area of each layer of the detector is about 12x10 cm2. Readout of the strips is provided through the use of VA1` ASICs mounted on custom hybrid printed circuit boards and interfaced to Adapter Cards via copper-over-kapton flexible circuits. The Adapter Cards amplify and level-shift the signal for input to the Fermilab CAPTAN data acquisition nodes for data readout and channel configuration. These nodes deliver readout and temperature data from triggered events to an analysis computer over gigabit Ethernet links.

  19. Phase front patterns in shape memory alloy strips

    SciTech Connect (OSTI)

    Lagoudas, D.C.; Howard, S.D. [Texas A& M Univ., TX (United States)

    1995-12-31

    Uniaxial thermomechanical tests of Shape Memory Alloy (SMA) Nitinol strips, below the austenitic start temperature, have shown the formation of multiple phase front patterns forming at approximately 45 degrees angle with respect to the applied load. These phase fronts, that separate self-accommodating martensitic variants from detwinned martensite, propagate along the specimen in the direction of applied load, until fully detwinned martensite is developed. Similar patterns of martensitic-austenitic phase fronts occur when the temperature is raised above austenitic finish, and uniaxial loading is applied to the strip specimens. An experimental study of this phenomenon, together with some preliminary modelling results will be presented. In contrast to the above uniform loading case, experimental results and numerical simulations for the propagation of a phase transformation front, induced by an imposed temperature gradient, will also be presented.

  20. Alternative-fueled truck demonstration natural gas program: Caterpillar G3406LE development and demonstration

    SciTech Connect (OSTI)

    NONE

    1995-06-01

    In 1990, the California Energy Commission, the South Coast Air Quality Management District, and the Southern California Gas Company joined together to sponsor the development and demonstration of compressed natural gas engines for Class 8 heavy-duty line-haul trucking applications. This program became part of an overall Alternative-Fueled Truck Demonstration Program, with the goal of advancing the technological development of alternative-fueled engines. The demonstration showed natural gas to be a technically viable fuel for Class 8 truck engines.

  1. Advancing New 3D Seismic Interpretation Methods for Exploration and Development of Fractured Tight Gas Reservoirs

    SciTech Connect (OSTI)

    James Reeves

    2005-01-31

    In a study funded by the U.S. Department of Energy and GeoSpectrum, Inc., new P-wave 3D seismic interpretation methods to characterize fractured gas reservoirs are developed. A data driven exploratory approach is used to determine empirical relationships for reservoir properties. Fractures are predicted using seismic lineament mapping through a series of horizon and time slices in the reservoir zone. A seismic lineament is a linear feature seen in a slice through the seismic volume that has negligible vertical offset. We interpret that in regions of high seismic lineament density there is a greater likelihood of fractured reservoir. Seismic AVO attributes are developed to map brittle reservoir rock (low clay) and gas content. Brittle rocks are interpreted to be more fractured when seismic lineaments are present. The most important attribute developed in this study is the gas sensitive phase gradient (a new AVO attribute), as reservoir fractures may provide a plumbing system for both water and gas. Success is obtained when economic gas and oil discoveries are found. In a gas field previously plagued with poor drilling results, four new wells were spotted using the new methodology and recently drilled. The wells have estimated best of 12-months production indicators of 2106, 1652, 941, and 227 MCFGPD. The latter well was drilled in a region of swarming seismic lineaments but has poor gas sensitive phase gradient (AVO) and clay volume attributes. GeoSpectrum advised the unit operators that this location did not appear to have significant Lower Dakota gas before the well was drilled. The other three wells are considered good wells in this part of the basin and among the best wells in the area. These new drilling results have nearly doubled the gas production and the value of the field. The interpretation method is ready for commercialization and gas exploration and development. The new technology is adaptable to conventional lower cost 3D seismic surveys.

  2. Roadmap for Development of Natural Gas Vehicle Fueling Infrastructructure and Analysis of Vehicular Natural Gas Consumption by Niche Sector

    SciTech Connect (OSTI)

    Stephen C. Yborra

    2007-04-30

    Vehicular natural gas consumption is on the rise, totaling nearly 200 million GGEs in 2005, despite declines in total NGV inventory in recent years. This may be attributed to greater deployment of higher fuel use medium- and heavy-duty NGVs as compared to the low fuel use of the natural gas-powered LDVs that exited the market through attrition, many of which were bi-fuel. Natural gas station counts are down to about 1100 from their peak of about 1300. Many of the stations that closed were under-utilized or not used at all while most new stations were developed with greater attention to critical business fundamentals such as site selection, projected customer counts, peak and off-peak fueling capacity needs and total station throughput. Essentially, the nation's NGV fueling infrastructure has been--and will continue--going through a 'market correction'. While current economic fundamentals have shortened payback and improved life-cycle savings for investment in NGVs and fueling infrastructure, a combination of grants and other financial incentives will still be needed to overcome general fleet market inertia to maintain status quo. Also imperative to the market's adoption of NGVs and other alternative fueled vehicle and fueling technologies is a clear statement of long-term federal government commitment to diversifying our nation's transportation fuel use portfolio and, more specifically, the role of natural gas in that policy. Based on the current NGV market there, and the continued promulgation of clean air and transportation policies, the Western Region is--and will continue to be--the dominant region for vehicular natural gas use and growth. In other regions, especially the Northeast, Mid-Atlantic states and Texas, increased awareness and attention to air quality and energy security concerns by the public and - more important, elected officials--are spurring policies and programs that facilitate deployment of NGVs and fueling infrastructure. Because of their high per-vehicle fuel use, central fueling and sensitivity to fuel costs, fleets will continue to be the primary target for NGV deployment and station development efforts. The transit sector is projected to continue to account for the greatest vehicular natural gas use and for new volume growth. New tax incentives and improved life-cycle economics also create opportunities to deploy additional vehicles and install related vehicular natural gas fueling infrastructure in the refuse, airport and short-haul sectors. Focusing on fleets generates the highest vehicular natural gas throughout but it doesn't necessarily facilitate public fueling infrastructure because, generally, fleet operators prefer not to allow public access due to liability concerns and revenue and tax administrative burdens. While there are ways to overcome this reluctance, including ''outside the fence'' retail dispensers and/or co-location of public and ''anchor'' fleet dispensing capability at a mutually convenient existing or new retail location, each has challenges that complicate an already complex business transaction. Partnering with independent retail fuel station companies, especially operators of large ''truck stops'' on the major interstates, to include natural gas at their facilities may build public fueling infrastructure and demand enough to entice the major oil companies to once again engage. Garnering national mass media coverage of success in California and Utah where vehicular natural gas fueling infrastructure is more established will help pave the way for similar consumer market growth and inclusion of public accessibility at stations in other regions. There isn't one ''right'' business model for growing the nation's NGV inventory and fueling infrastructure. Different types of station development and ownership-operation strategies will continue to be warranted for different customers in different markets. Factors affecting NGV deployment and station development include: regional air quality compliance status and the state and/or local political climate regarding mandates and/or in

  3. A Critical Review of the Risks to Water Resources from Unconventional Shale Gas Development and Hydraulic Fracturing in

    E-Print Network [OSTI]

    Jackson, Robert B.

    A Critical Review of the Risks to Water Resources from Unconventional Shale Gas Development: The rapid rise of shale gas development through horizontal drilling and high volume hydraulic fracturing has expanded the extraction of hydrocarbon resources in the U.S. The rise of shale gas development has

  4. Regional Variation in Water-Related Impacts of Shale Gas Development and Implications for Emerging International Plays

    E-Print Network [OSTI]

    Alvarez, Pedro J.

    Regional Variation in Water-Related Impacts of Shale Gas Development and Implications for Emerging understanding of the unique regional issues that shale gas development poses. This manuscript highlights the variation in regional water issues associated with shale gas development in the U.S. and the approaches

  5. Strip Velocity Measurements for Gated X-Ray Imagers Using Short Pulse Lasers

    SciTech Connect (OSTI)

    Ross, P. W. [NSTec; Cardenas, M. [NSTec; Griffin, M. [NSTec; Mead, A. [NSTec; Silbernagel, C. T. [NSTec; Bell, P. [LLNL; Haque, S. H. [UNR

    2013-09-01

    Strip velocity measurements of gated X-ray imagers are presented using an ultra-short pulse laser. Obtaining time-resolved X-ray images of inertial confinement fusion shots presents a difficult challenge. One diagnostic developed to address this challenge is the gated X-ray imagers. The gated X-ray detectors (GXDs) developed by Lawrence Livermore National Laboratory and Los Alamos National Laboratory use a microchannel plate (MCP) coated with a gold strip line, which serves as a photocathode. GXDs are used with an array of pinholes, which image onto various parts of the GXD image plane. As the pulse sweeps over the strip lines, it creates a time history of the event with consecutive images. In order to accurately interpret the timing of the images obtained using the GXDs, it is necessary to measure the propagation of the pulse over the strip line. The strip velocity was measured using a short pulse laser with a pulse duration of approximately 1-2 ps. The 200nm light from the laser is used to illuminate the GXD MCP. The laser pulse is split and a retroreflective mirror is used to delay one of the legs. By adjusting the distance to the mirror, one leg is temporally delayed compared to the reference leg. The retroreflective setup is calibrated using a streak camera with a 1 ns full sweep. Resolution of 0.5 mm is accomplished to achieve a temporal resolution of ~5 ps on the GXD strip line.

  6. Bayesian Networks and Geographical Information Systems for Environmental Risk Assessment for Oil and Gas Site Development 

    E-Print Network [OSTI]

    Varela Gonzalez, Patricia Ysolda

    2013-04-03

    of the Environmental Sensibility of Oil and Gas (O&G) developments for a given study area. A Risk index associated with the development of O&G operation activities based on the spatial environmental sensibility was also mapped. To facilitate the Risk assessment...

  7. Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery

    SciTech Connect (OSTI)

    Dandina N. Rao; Subhash C. Ayirala; Madhav M. Kulkarni; Wagirin Ruiz Paidin; Thaer N. N. Mahmoud; Daryl S. Sequeira; Amit P. Sharma

    2006-09-30

    This is the final report describing the evolution of the project ''Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery'' from its conceptual stage in 2002 to the field implementation of the developed technology in 2006. This comprehensive report includes all the experimental research, models developments, analyses of results, salient conclusions and the technology transfer efforts. As planned in the original proposal, the project has been conducted in three separate and concurrent tasks: Task 1 involved a physical model study of the new GAGD process, Task 2 was aimed at further developing the vanishing interfacial tension (VIT) technique for gas-oil miscibility determination, and Task 3 was directed at determining multiphase gas-oil drainage and displacement characteristics in reservoir rocks at realistic pressures and temperatures. The project started with the task of recruiting well-qualified graduate research assistants. After collecting and reviewing the literature on different aspects of the project such gas injection EOR, gravity drainage, miscibility characterization, and gas-oil displacement characteristics in porous media, research plans were developed for the experimental work to be conducted under each of the three tasks. Based on the literature review and dimensional analysis, preliminary criteria were developed for the design of the partially-scaled physical model. Additionally, the need for a separate transparent model for visual observation and verification of the displacement and drainage behavior under gas-assisted gravity drainage was identified. Various materials and methods (ceramic porous material, Stucco, Portland cement, sintered glass beads) were attempted in order to fabricate a satisfactory visual model. In addition to proving the effectiveness of the GAGD process (through measured oil recoveries in the range of 65 to 87% IOIP), the visual models demonstrated three possible multiphase mechanisms at work, namely, Darcy-type displacement until gas breakthrough, gravity drainage after breakthrough and film-drainage in gas-invaded zones throughout the duration of the process. The partially-scaled physical model was used in a series of experiments to study the effects of wettability, gas-oil miscibility, secondary versus tertiary mode gas injection, and the presence of fractures on GAGD oil recovery. In addition to yielding recoveries of up to 80% IOIP, even in the immiscible gas injection mode, the partially-scaled physical model confirmed the positive influence of fractures and oil-wet characteristics in enhancing oil recoveries over those measured in the homogeneous (unfractured) water-wet models. An interesting observation was that a single logarithmic relationship between the oil recovery and the gravity number was obeyed by the physical model, the high-pressure corefloods and the field data.

  8. Development of a gas-fired absorption heat pump

    SciTech Connect (OSTI)

    Ohuchi, Y.

    1985-01-01

    A new absorbent-refrigerant pair suitable for heat pump heating and air-cooled cooling has been developed. Water has been selected as the refrigerant, mainly from the viewpoint of high cycle efficiency and safety, while a 1:1 mixture of lithium bromide (LiBr) and zinc chloride (ZnCl/sub 2/) by weight has been chosen as the absorbent in view of its higher solubility and affinity for water. Based on thermodynamic analysis with experimental data on properties, the new absorbent solution will give a heating COP of 1.57 and a cooling COP of 1.00 as gross values of double-effect absorption cycles, including a boiler efficiency of 80%. As a result of an experimental investigation on corrosiveness and corrosion inhibitors, promising equipment materials and inhibitors have been discovered. Prototypical units of 3.5kw (1-ton) and 35kw (10-ton) have been installed and are undergoing demonstration testing in the laboratory.

  9. 23rd World Gas Conference, Amsterdam 2006 DEVELOPMENT OF THE WORLD'S LARGEST ABOVE-GROUND

    E-Print Network [OSTI]

    Laughlin, Robert B.

    CONTAINMENT LNG STORAGE TANK Young-myung Yang Ji-hoon Kim, Heung-seok Seo, Kangwon Lee, Ihn-soo Yoon Korea Gas-ground full containment LNG storage tank with a gross capacity of 200,000m 3 . The main objective of the development of the large capacity LNG storage tank is to reduce the construction cost and the boil-off gas

  10. Gas rotary engine technology development. Final Report, April-December 1990

    SciTech Connect (OSTI)

    Kuchnicki, T.A.; Goodrich, B.E.; Page, R.A.

    1990-12-01

    The feasibility of developing a small natural gas oil-cooled rotary engine for long life gas heat pump applications was explored. A literature search was conducted, rotary engine manufacturers were contacted and questioned, experts in engine materials and engine lubricants furnished reports, and discussions were held with engineering management and staff engineers to review rotary engine technology and discuss practical ideas for more durable engine designs.

  11. Gas core nuclear thermal rocket engine research and development in the former USSR

    SciTech Connect (OSTI)

    Koehlinger, M.W.; Bennett, R.G.; Motloch, C.G.; Gurfink, M.M.

    1992-09-01

    Beginning in 1957 and continuing into the mid 1970s, the USSR conducted an extensive investigation into the use of both solid and gas core nuclear thermal rocket engines for space missions. During this time the scientific and engineering. problems associated with the development of a solid core engine were resolved. At the same time research was undertaken on a gas core engine, and some of the basic engineering problems associated with the concept were investigated. At the conclusion of the program, the basic principles of the solid core concept were established. However, a prototype solid core engine was not built because no established mission required such an engine. For the gas core concept, some of the basic physical processes involved were studied both theoretically and experimentally. However, no simple method of conducting proof-of-principle tests in a neutron flux was devised. This report focuses primarily on the development of the. gas core concept in the former USSR. A variety of gas core engine system parameters and designs are presented, along with a summary discussion of the basic physical principles and limitations involved in their design. The parallel development of the solid core concept is briefly described to provide an overall perspective of the magnitude of the nuclear thermal propulsion program and a technical comparison with the gas core concept.

  12. Progenitors of ultra-stripped supernovae

    E-Print Network [OSTI]

    Tauris, Thomas; Podsiadlowski, Philipp

    2015-01-01

    The explosion of ultra-stripped stars in close binaries may explain new discoveries of weak and fast optical transients. We have demonstrated that helium star companions to neutron stars (NSs) may evolve into naked metal cores as low as ~1.5 Msun, barely above the Chandrasekhar mass limit, by the time they explode. Here we present a new systematic investigation of the progenitor evolution leading to such ultra-stripped supernovae (SNe), in some cases yielding pre-SN envelopes of less than 0.01 Msun. We discuss the nature of these SNe (electron-capture vs iron core-collapse) and their observational light-curve properties. Ultra-stripped SNe are highly relevant for binary pulsars, as well as gravitational wave detection of merging NSs by LIGO/VIRGO, since these events are expected to produce mainly low-kick NSs in the mass range 1.10-1.80 Msun.

  13. Alternative solvents/technologies for paint stripping

    SciTech Connect (OSTI)

    Tsang, M.N.; Harris, T.L.

    1990-01-01

    Paint stripping is a necessary part of maintenance at US Air Force Air Logistics Centers. The Waste from Air Force paint stripping operations contains toxic chemicals that require special handling and disposal at considerable cost. Solvent emissions of volatile organic compounds (VOCs) into the atmosphere are another source of pollution. These wastes are hazardous to the environment and to operating personnel, and are now regulated by the US Environmental Protection Agency, which can impose fines for discharges that exceed the established limits. This report describes the research project titled Alternative Solvents/Technologies for Paint Stripping being conducted by the Idaho National Engineering Laboratory for the Engineering and Services Center at Tyndall Air Force Base. This report also includes the results obtained in Phase 1. 8 refs., 3 tabs.

  14. Development of the High-Pressure Direct-Injected, Ultra Low-NOx Natural Gas Engine: Final Report

    SciTech Connect (OSTI)

    Duggal, V. K.; Lyford-Pike, E. J.; Wright, J. F.; Dunn, M.; Goudie, D.; Munshi, S.

    2004-05-01

    Subcontractor report details work done by Cummins and Westport Innovations to develop a heavy-duty, low-NOx, high-pressure direct-injection natural gas engine for the Next Generation Natural Gas Vehicle activity.

  15. Hot-gas cleanup system model development. Volume I. Final report

    SciTech Connect (OSTI)

    Ushimaru, K.; Bennett, A.; Bekowies, P.J.

    1982-11-01

    This two-volume report summarizes the state of the art in performance modeling of advanced high-temperature, high-pressure (HTHP) gas cleanup devices. Volume I contains the culmination of the research effort carried over the past 12 months and is a summary of research achievements. Volume II is the user's manual for the computer programs developed under the present research project. In this volume, Section 2 presents background information on pressurized, fluidized-bed combustion concepts, a description of the role of the advanced gas cleanup systems, and a list of advanced gas cleanup systems that are currently in development under DOE sponsorship. Section 3 describes the methodology for the software architecture that forms the basis of the well-disciplined and structured computer programs developed under the present project. Section 4 reviews the fundamental theories that are important in analyzing the cleanup performance of HTHP gas filters. Section 5 discusses the effect of alkali agents in HTHP gas cleanup. Section 6 evaluates the advanced HTHP gas cleanup models based on their mathematical integrity, availability of supporting data, and the likelihood of commercialization. As a result of the evaluation procedure detailed in Section 6, five performance models were chosen to be incorporated into the overall system simulation code, ASPEN. These five models (the electrocyclone, ceramic bag filter, moving granular bed filter, electrostatic granular bed filter, and electrostatic precipitator) are described in Section 7. The method of cost projection for these five models is discussed in Section 8. The supporting data and validation of the computer codes are presented in Section 9, and finally the conclusions and recommendations for the HTHP gas cleanup system model development are given in Section 10. 72 references, 19 figures, 25 tables.

  16. Gas injection as an alternative option for handling associated gas produced from deepwater oil developments in the Gulf of Mexico 

    E-Print Network [OSTI]

    Qian, Yanlin

    2004-09-30

    999 Bcf of associated gas were produced from the Gulf of Mexico, with deepwater associated gas production accounting for 20% of this produced gas. Two important issues are the potential environmental impacts and the economic value of deepwater...

  17. Development of a Small-Scale Natural Gas Liquefier. Final Report

    SciTech Connect (OSTI)

    Kountz, K.; Kriha, K.; Liss, W.; Perry, M.; Richards, M.; Zuckerman, D.

    2003-04-30

    This final report describes the progress during the contract period March 1, 1998 through April 30, 2003, on the design, development, and testing of a novel mixed-refrigerant-based 1000 gal/day natural gas liquefier, together with the associated gas cleanup equipment. Based on the work, it is concluded that a cost-effective 1000 gal/day liquefaction system is technically and economically feasible. A unit based on the same developed technology, with 5000 gal/day capacity, would have much improved economics.

  18. Development of a large area gas photomultiplier with GEM/$?$PIC

    E-Print Network [OSTI]

    H. Sekiya

    2008-10-06

    We are developing a new photon detector with micro pattern gaseous detectors. A semitransparent CsI photocathode is combined with 10cm$\\times$10cm GEM/$\\mu$PIC for the first prototype which is aimed for the large liquid Xe detectors. Using Ar+C$_2$H$_6$ (10%) gas, we achieved the gas gain of $10^5$ which is enough to detect single photoelectron. We, then, irradiated UV photons from a newly developed solid scintillator, LaF$_3$(Nd), to the detector and successfully detected single photoelectron.

  19. Urine Test Strips to Exclude Cerebral Spinal Fluid Blood

    E-Print Network [OSTI]

    Marshall, Robin A; Hejamanowski, Chris

    2011-01-01

    two Pearson Chi-Square tests. The first compared samplesO riginal R esearch Urine Test Strips to Exclude CerebralBayer Multistix ® urine test strips are designed to test

  20. Electromechanical properties of thin strip piezoelectric vibrators at high frequency

    E-Print Network [OSTI]

    Cao, Wenwu

    Electromechanical properties of thin strip piezoelectric vibrators at high frequency Timothy Ritter the electromechanical properties of high frequency 20 MHz piezoelectric strip vibrators. A nonlinear regression backing indicated degraded performance when compared to values predicted from the electromechanical

  1. Some Relationships Between Stripping Machinery Mass and Overburden Volumes 

    E-Print Network [OSTI]

    Rumfelt, Henry F.C

    1960-01-01

    , Shovel Co~putation Sheets Appendix 2, Dragline Computation Sheets Appendix 3, Digital Computer Pi~~ca 32 76 I INTRODUCTION Overcasting 1n earth moving 1s a procedure whereby earth is mechanically moved, without resorting to outside means... types of heavy construction such as chan- nel work. The type mach1nes most commonly used are the stripping dragline and the stripp1ng shovels In addition, a wheel type stripp1ng machine (the wheel excavator) has been developed within the past 17...

  2. Strip edge cracking simulation in cold rolling

    SciTech Connect (OSTI)

    Hubert, C.; Dubar, L.; Dubar, M.; Dubois, A.

    2011-01-17

    This research work focuses on a specific defect which occurs during cold rolling of steel strips: edge-serration. Investigations on the industrial processes have led to the conclusion that this defect is the result of the edge-trimming and cold rolling sequences. The aim of this research work is to analyze the effect of the cutting process and the cold rolling on cracks occurrence, especially on strip edges.This study is performed using an experimental testing stand called Upsetting Rolling Test (URT). It allows to reproduce cold rolling contact parameters such as forward slip, reduction ratio and friction coefficients. Specimens sampled near trimmed industrial strip edges are deformed using the URT stand. Two sets of specimens with different stress states, obtained by annealing, are submitted to two reduction passes with extreme forward slips.Scanning electron microscopy observations added to 3D optical surface profiler topographies show that on one hand, forward slip has a major effect on cracks opening. On the other hand, cracks opening decreases according to high roll strip speed gradient. Concerning the heat-treated specimens, no crack appeared after all reduction passes, showing a large influence of the cutting process and consequently of the local stress state in the vicinity of the burnish and fracture regions.

  3. Method for Centering of Metal Strips

    E-Print Network [OSTI]

    Szmolyan, Peter

    of the belt and automatically manipulate the cooling or heating. Vienna University of Technology | Research. State-of­the-art methods like pinch rolls mounted in a rotating frame, swivel or tilt of guide rolls all. Benefits · The contactless technology is optimally suited for sensitive strips with high-quality surface

  4. A generic study of strip mining impacts on groundwater resources

    E-Print Network [OSTI]

    Hamilton, David Andrew

    1977-01-01

    This report evaluates the influence of strip mining features, commonly found in the Northern Great Plains Coal Region, on ground

  5. Lab Tests Demonstrate Effectiveness of Advanced Power Strips (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-09-01

    NREL engineers evaluate the functionalities of advanced power strips and help consumers choose the right one for their plug loads.

  6. Oil and gas developments in South America, Central America, Caribbean Area, and Mexico in 1982

    SciTech Connect (OSTI)

    Deal, C.S.

    1983-10-01

    Petroleum developments in the region in 1982 had a more varied pattern than in 1981 when all aspects were upbeat with varying degrees of increases. In 1982, Brazil, Mexico, and Guatemala had striking increases in oil production; Bolivia, Chile, and Colombia had moderate increases; and Argentina, Trinidad, and Venezuela reported declines. In exploration, Argentina reported several additional offshore Tierra del Fuego discoveries in the Cretaceous Springhill and 2 more encouraging gas discoveries in the Noroeste basin. Bolivia reported an oil discovery from Silurian rocks more generally considered a gas objective. Brazil extended and confirmed the Western Amazonas gas area with 2 discoveries. Colombia added 2 more spectacular oil discoveries in the Llanos basin to follow up 2 similar finds in 1981. Several countries reported that discoveries have increased the national reserves of hydrocarbons. Considering the social, political, and economic problems in several countries, along with the worldwide depression and petroleum surplus, developments in the region have been on the whole favorable.

  7. High-Rate Capable Floating Strip Micromegas

    E-Print Network [OSTI]

    Jonathan Bortfeldt; Michael Bender; Otmar Biebel; Helge Danger; Bernhard Flierl; Ralf Hertenberger; Philipp Lösel; Samuel Moll; Katia Parodi; Ilaria Rinaldi; Alexander Ruschke; André Zibell

    2015-08-04

    We report on the optimization of discharge insensitive floating strip Micromegas (MICRO-MEsh GASeous) detectors, fit for use in high-energy muon spectrometers. The suitability of these detectors for particle tracking is shown in high-background environments and at very high particle fluxes up to 60MHz/cm$^2$. Measurement and simulation of the microscopic discharge behavior have demonstrated the excellent discharge tolerance. A floating strip Micromegas with an active area of 48cm$\\times$50cm with 1920 copper anode strips exhibits in 120GeV pion beams a spatial resolution of 50$\\mu$m at detection efficiencies above 95%. Pulse height, spatial resolution and detection efficiency are homogeneous over the detector. Reconstruction of particle track inclination in a single detector plane is discussed, optimum angular resolutions below $5^\\circ$ are observed. Systematic deviations of this $\\mu$TPC-method are fully understood. The reconstruction capabilities for minimum ionizing muons are investigated in a 6.4cm$\\times$6.4cm floating strip Micromegas under intense background irradiation of the whole active area with 20MeV protons at a rate of 550kHz. The spatial resolution for muons is not distorted by space charge effects. A 6.4cm$\\times$6.4cm floating strip Micromegas doublet with low material budget is investigated in highly ionizing proton and carbon ion beams at particle rates between 2MHz and 2GHz. Stable operation up to the highest rates is observed, spatial resolution, detection efficiencies, the multi-hit and high-rate capability are discussed.

  8. Development of a control algorithm for a dynamic gas mixing system 

    E-Print Network [OSTI]

    Lovelady, April

    2006-08-16

    An algorithm was developed to control the partial pressures of N2, O2, and CO2 in a gas mixing tank. The gases were premixed before being introduced into the low pressure Mars Dome. As an attempt to reduce the effects of pressure, the number...

  9. Development and Application of Gas Sensing Technologies to Enable Boiler Balancing

    E-Print Network [OSTI]

    Dutta, Prabir K.

    01/2004 Development and Application of Gas Sensing Technologies to Enable Boiler Balancing to monitor total NOx (0-1000 ppm), CO (0-1000 ppm) and O2 (1-15%) within the convective pass of the boiler of such sensor systems will dramatically alter how boilers are operated, since much of the emissions creation

  10. Performance of the first prototype of the CALICE scintillator strip electromagnetic calorimeter

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Francis, K.; Repond, J.; Schlereth, J.; Smith, J.; Xia, L.; Baldolemar, E.; Li, J.; Park, S. T.; Sosebee, M.; White, A. P.; et al

    2014-11-01

    A first prototype of a scintillator strip-based electromagnetic calorimeter was built, consisting of 26 layers of tungsten absorber plates interleaved with planes of 45 × 10 × 3 mm³ plastic scintillator strips. Data were collected using a positron test beam at DESY with momenta between 1 and 6 GeV/c. The prototype's performance is presented in terms of the linearity and resolution of the energy measurement. These results represent an important milestone in the development of highly granular calorimeters using scintillator strip technology. A number of possible design improvements were identified, which should be implemented in a future detector of thismore »type. This technology is being developed for a future linear collider experiment, aiming at the precise measurement of jet energies using particle flow techniques.« less

  11. Summary of the development of open-cycle gas turbine-steam cycles

    SciTech Connect (OSTI)

    Lackey, M.E.; Thompson, A.S.

    1980-09-01

    Combined-cycle plants employing gas turbine cycles superimposed on conventional steam plants are well developed. Nearly 200 units are operating in the US on clean fuels (natural gas or distillate fuel oils) and giving overall thermal efficiencies as high as 42%. Future plants will have to use coal or coal-derived fuels, and this presents problems because gas turbines are very sensitive to particulates and contaminants in the fuel such as sulfur, potassium, lead, etc. If clean liquid or high-Btu gaseous fuels are made from coal, it appears that the conversion efficiency will be no more than 67%. Thus, the overall efficiency of utilization of coal would be less than if it were burned in a conventional steam plant unless the permissible gas turbine inlet temperature can be increased to approx. 1500/sup 0/C (2732/sup 0/F). Coupling a combined-cycle power plant directly to a low-Btu coal gasifier increases the fuel conversion efficiency and permits salvaging waste heat from the gasifier for feedwater heating in the steam cycle. By using a gas turbine inlet temperature of 1315/sup 0/C (2400/sup 0/F), well above the current maximum of approx. 1040/sup 0/C (1904/sup 0/F), an overall efficiency of approx. 40% has been estimated for the integrated plant. However, as discussed in companion reports, it is doubtful that operation with gas turbine inlet temperatures above 1100/sup 0/C (2012/sup 0/F) will prove practicable in base-load plants.

  12. Development of the first demonstration CFB boiler for gas and steam cogeneration

    SciTech Connect (OSTI)

    Fang, M; Luo, Z.; Li, X.; Wang, Q.; Shi, Z.; Ni, M.; Cen, K.

    1997-12-31

    To solve the shortage of gas and steam supply in the small towns of the country, a new gas steam cogeneration system has been developed. On the basis of the fundamental research on the system, a demonstration gas steam cogeneration system has been designed. As the phase 1 of the project, a 75t/h demonstration CFB boiler for gas steam cogeneration has been erected and operated at Yangzhong Thermal Power Plant of China. This paper introduces the first 75t/h demonstration CFB boiler for gas steam cogeneration. Due to the need of gas steam cogeneration process, the boiler has the features of high temperature cyclone separation, high solid recycle ratio, staged combustion and an external heat exchanger adjusting bed temperature and heat load. The operation results show that the boiler has wide fuel adaptability and the heating value of the coal changes from 14MJ/Kg to 25MJ/Kg. The heat load changes from 85t/h to 28t/h while steam parameter is maintained at the normal conditions. The combustion efficiency of the boiler attain 98%. The boiler design and operation experiences may be a guide to the design and operation of larger CFB units in the future.

  13. Development of the Low Swirl Injector for Fuel-Flexible GasTurbines

    SciTech Connect (OSTI)

    Littlejohn, D.; Cheng, R.K.; Nazeer,W.A.; Smith, K.O

    2007-02-14

    Industrial gas turbines are primarily fueled with natural gas. However, changes in fuel cost and availability, and a desire to control carbon dioxide emissions, are creating pressure to utilize other fuels. There is an increased interest in the use of fuels from coal gasification, such as syngas and hydrogen, and renewable fuels, such as biogas and biodiesel. Current turbine fuel injectors have had years of development to optimize their performance with natural gas. The new fuels appearing on the horizon can have combustion properties that differ substantially from natural gas. Factors such as turbulent flame speed, heat content, autoignition characteristics, and range of flammability must be considered when evaluating injector performance. The low swirl injector utilizes a unique flame stabilization mechanism and is under development for gas turbine applications. Its design and mode of operation allow it to operate effectively over a wide range of conditions. Studies conducted at LBNL indicate that the LSI can operate on fuels with a wide range of flame speeds, including hydrogen. It can also utilize low heat content fuels, such as biogas and syngas. We will discuss the low swirl injector operating parameters, and how the LSC performs with various alternative fuels.

  14. Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems

    SciTech Connect (OSTI)

    Sadowski, R.S.; Brown, M.J.; Hester, J.C.; Harriz, J.T.; Ritz, G.J.

    1991-02-01

    The objective of this study is to develop standardized air blown fixed bed gasification hot gas cleanup integrated gasifier combined cycle (IGCC) systems.

  15. Design, Analysis and Development of Micro Gas Turbine for propulsion of Micro UAVs Micro gas turbines or simply micro turbines are very promising technology for propelling micro

    E-Print Network [OSTI]

    Sun, Yu

    Design, Analysis and Development of Micro Gas Turbine for propulsion of Micro UAVs Micro gas turbines or simply micro turbines are very promising technology for propelling micro unmanned aerial vehicles. These micro turbines vary in size and power. They can be hand held producing a fraction

  16. Development and Application of Gas Sensing Technologies to Enable Boiler Balancing

    SciTech Connect (OSTI)

    Dutta, Prabir

    2008-12-31

    Identifying gas species and their quantification is important for optimization of many industrial applications involving high temperatures, including combustion processes. CISM (Center for Industrial Sensors and Measurements) at the Ohio State University has developed CO, O{sub 2}, NO{sub x}, and CO{sub 2} sensors based on TiO{sub 2} semiconducting oxides, zirconia and lithium phosphate based electrochemical sensors and sensor arrays for high-temperature emission control. The underlying theme in our sensor development has been the use of materials science and chemistry to promote high-temperature performance with selectivity. A review article presenting key results of our studies on CO, NO{sub x}, CO{sub 2} and O{sub 2} sensors is described in: Akbar, Sheikh A.; Dutta, Prabir K. Development and Application of Gas Sensing Technologies for Combustion Processes, PowerPlant Chemistry, 9(1) 2006, 28-33.

  17. Development of a natural gas systems analysis model (GSAM). Annual report, July 1996--July 1997

    SciTech Connect (OSTI)

    NONE

    1997-12-31

    The objective of GSAM development is to create a comprehensive, non-proprietary, microcomputer model of the North American natural gas system. GSAM explicitly evaluates the key components of the system, including the resource base, exploration and development practices, extraction technology performance and costs, project economics, transportation costs and restrictions, storage, and end-use. The primary focus is the detailed characterization of the resource base at the reservoir and subreservoir level. This disaggregation allows direct evaluation of alternative extraction technologies based on discretely estimated, individual well productivity, required investments, and associated operating costs. GSAM`s design allows users to evaluate complex interactions of current and alternative future technology and policy initiatives as they directly impact the gas market. GSAM development has been ongoing for the past five years. Key activities completed during the past year are described.

  18. Development of a natural gas systems analysis model (GSAM). Annual report, January 1994--January 1995

    SciTech Connect (OSTI)

    NONE

    1994-07-01

    The objective of GSAM development is to create a comprehensive, non-proprietary, microcomputer model of the North American natural gas system. GSAM explicitly evaluates the key components of the system, including the resource base, exploration and development practices, extraction technology performance and costs, project economics, transportation costs and restrictions, storage, and end-use. The primary focus is the detailed characterization of the resource base at the reservoir and sub-reservoir level. This disaggregation allows direct evaluation of alternative extraction technologies based on discretely estimated, individual well productivity, required investments, and associated operating costs. GSAM`s design allows users to evaluate complex interactions of current and alternative future technology and policy initiatives as they directly impact the gas market. Key activities completed during the past year include: conducted a comparative analysis of commercial reservoir databases; licensed and screened NRG Associates Significant Oil and Gas Fields of the US reservoir database; developed and tested reduced form reservoir model production type curves; fully developed database structures for use in GSAM and linkage to other systems; developed a methodology for the exploration module; collected and updated upstream capital and operating cost parameters; completed initial integration of downstream/demand models; presented research results at METC Contractor Review Meeting; conducted other briefings for METC managers, including initiation of the GSAM Environmental Module; and delivered draft topical reports on technology review, model review, and GSAM methodology.

  19. Hindered amine development and operating experience at Quirk Creek Gas Plant

    SciTech Connect (OSTI)

    Smart, P.; Devenny, I. [Imperial Oil Resources Ltd., Calgary, Alberta (Canada); Rendall, A. [Nalco/Exxon Energy Chemicals, Calgary, Alberta (Canada)

    1997-12-31

    The Imperial Oil Resources Limited Quirk Creek gas plant has a significant natural gas treating challenge. The natural gas feed contains H{sub 2}S, CO{sub 2}, carbonyl sulfide, mercaptans and elemental sulfur. The trace sulfur components are difficult to remove with conventional solvents. Over its 26 year history, three different solvents have been used. The latest solvent, a hybrid of a hindered amine and a physical solvent, has been operating for over two years, with better than expected performance. This high capacity solvent has lowered operating costs by over $500,000/yr by reducing solids formation. The development work, including pilot testing at Quirk Creek, and the operating history will be reviewed.

  20. DEVELOPMENT AND VALIDATION OF A MULTIFIELD MODEL OF CHURN-TURBULENT GAS/LIQUID FLOWS

    SciTech Connect (OSTI)

    Elena A. Tselishcheva; Steven P. Antal; Michael Z. Podowski; Donna Post Guillen

    2009-07-01

    The accuracy of numerical predictions for gas/liquid two-phase flows using Computational Multiphase Fluid Dynamics (CMFD) methods strongly depends on the formulation of models governing the interaction between the continuous liquid field and bubbles of different sizes. The purpose of this paper is to develop, test and validate a multifield model of adiabatic gas/liquid flows at intermediate gas concentrations (e.g., churn-turbulent flow regime), in which multiple-size bubbles are divided into a specified number of groups, each representing a prescribed range of sizes. The proposed modeling concept uses transport equations for the continuous liquid field and for each bubble field. The overall model has been implemented in the NPHASE-CMFD computer code. The results of NPHASE-CMFD simulations have been validated against the experimental data from the TOPFLOW test facility. Also, a parametric analysis on the effect of various modeling assumptions has been performed.

  1. Antenna with distributed strip and integrated electronic components

    DOE Patents [OSTI]

    Rodenbeck, Christopher T. (Albuquerque, NM); Payne, Jason A. (Albuquerque, NM); Ottesen, Cory W. (Albuquerque, NM)

    2008-08-05

    An antenna comprises electrical conductors arranged to form a radiating element including a folded line configuration and a distributed strip configuration, where the radiating element can be in proximity to a ground conductor and/or arranged as a dipole. Embodiments of the antenna include conductor patterns formed on a printed wiring board, having a ground plane, spacedly adjacent to and coplanar with the radiating element. An antenna can comprise a distributed strip patterned on a printed wiring board, integrated with electronic components mounted on top of or below the distributed strip, and substantially within the extents of the distributed strip. Mounting of electronic components on top of or below the distributed strip has little effect on the performance of the antenna, and allows for realizing the combination of the antenna and integrated components in a compact form. An embodiment of the invention comprises an antenna including a distributed strip, integrated with a battery mounted on the distributed strip.

  2. DEVELOPMENT OF A LOW COST INFERENTIAL NATURAL GAS ENERGY FLOW RATE PROTOTYPE RETROFIT MODULE

    SciTech Connect (OSTI)

    E. Kelner; D. George; T. Morrow; T. Owen; M. Nored; R. Burkey; A. Minachi

    2005-05-01

    In 1998, Southwest Research Institute began a multi-year project to develop a working prototype instrument module for natural gas energy measurement. The module will be used to retrofit a natural gas custody transfer flow meter for energy measurement, at a cost an order of magnitude lower than a gas chromatograph. Development and evaluation of the prototype energy meter in 2002-2003 included: (1) refinement of the algorithm used to infer properties of the natural gas stream, such as heating value; (2) evaluation of potential sensing technologies for nitrogen content, improvements in carbon dioxide measurements, and improvements in ultrasonic measurement technology and signal processing for improved speed of sound measurements; (3) design, fabrication and testing of a new prototype energy meter module incorporating these algorithm and sensor refinements; and (4) laboratory and field performance tests of the original and modified energy meter modules. Field tests of the original energy meter module have provided results in close agreement with an onsite gas chromatograph. The original algorithm has also been tested at a field site as a stand-alone application using measurements from in situ instruments, and has demonstrated its usefulness as a diagnostic tool. The algorithm has been revised to use measurement technologies existing in the module to measure the gas stream at multiple states and infer nitrogen content. The instrumentation module has also been modified to incorporate recent improvements in CO{sub 2} and sound speed sensing technology. Laboratory testing of the upgraded module has identified additional testing needed to attain the target accuracy in sound speed measurements and heating value.

  3. Development of a natural Gas Systems Analysis Model (GSAM). Annual report

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    Lacking a detailed characterization of the resource base and a comprehensive borehole-to-burnertip evaluation model of the North American natural gas system, past R&D, tax and regulatory policies have been formulated without a full understanding of their likely direct and indirect impacts on future gas supply and demand. The recent disappearance of the deliverability surplus, pipeline deregulation, and current policy debates about regulatory initiatives in taxation, environmental compliance and leasing make the need for a comprehensive gas evaluation system critical. Traditional econometric or highly aggregated energy models are increasingly regarded as unable to incorporate available geologic detail and explicit technology performance and costing algorithms necessary to evaluate resource-technology-economic interactions in a market context. The objective of this research is to create a comprehensive, non-proprietary, microcomputer model of the North American natural gas system. GSAM explicitly evaluates the key components of the natural gas system, including resource base, exploration and development, extraction technology performance and costs, transportation and storage and end use. The primary focus is the detailed characterization of the resource base at the reservoir and sub-reservoir level and the impact of alternative extraction technologies on well productivity and economics. GSAM evaluates the complex interactions of current and alternative future technology and policy initiatives in the context of the evolving gas markets. Scheduled for completion in 1995, a prototype is planned for early 1994. ICF Resources reviewed relevant natural gas upstream, downstream and market models to identify appropriate analytic capabilities to incorporate into GSAM. We have reviewed extraction technologies to better characterize performance and costs in terms of GSAM parameters.

  4. Development and Validation of a Gas-Fired Residential Heat Pump Water Heater - Final Report

    SciTech Connect (OSTI)

    Michael Garrabrant; Roger Stout; Paul Glanville; Janice Fitzgerald; Chris Keinath

    2013-01-21

    For gas-fired residential water heating, the U.S. and Canada is predominantly supplied by minimum efficiency storage water heaters with Energy Factors (EF) in the range of 0.59 to 0.62. Higher efficiency and higher cost ($700 - $2,000) options serve about 15% of the market, but still have EFs below 1.0, ranging from 0.65 to 0.95. To develop a new class of water heating products that exceeds the traditional limit of thermal efficiency, the project team designed and demonstrated a packaged water heater driven by a gas-fired ammonia-water absorption heat pump. This gas-fired heat pump water heater can achieve EFs of 1.3 or higher, at a consumer cost of $2,000 or less. Led by Stone Mountain Technologies Inc. (SMTI), with support from A.O. Smith, the Gas Technology Institute (GTI), and Georgia Tech, the cross-functional team completed research and development tasks including cycle modeling, breadboard evaluation of two cycles and two heat exchanger classes, heat pump/storage tank integration, compact solution pump development, combustion system specification, and evaluation of packaged prototype GHPWHs. The heat pump system extracts low grade heat from the ambient air and produces high grade heat suitable for heating water in a storage tank for domestic use. Product features that include conventional installation practices, standard footprint and reasonable economic payback, position the technology to gain significant market penetration, resulting in a large reduction of energy use and greenhouse gas emissions from domestic hot water production.

  5. Recent Developments in Kansas Oil and Gas Law (1983-1988)

    E-Print Network [OSTI]

    DeLaTorre, Phillip E.

    1989-01-01

    stream_size 2538 stream_content_type text/plain stream_name Phillip E. DeLaTorre, Recent Developments in Kansas Oil and Gas Law (1983-1988), 37 U. Kan. L. Rev. 907 (1988-1989).pdf.txt stream_source_info Phillip E. DeLaTorre, Recent... Developments in Kansas Oil and Gas Law (1983-1988), 37 U. Kan. L. Rev. 907 (1988-1989).pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 HeinOnline -- 37 U. Kan. L. Rev. 907 1988-1989 HeinOnline -- 37 U. Kan. L. Rev...

  6. Opportunities to change development pathways toward lower greenhouse gas emissions through energy efficiency

    SciTech Connect (OSTI)

    Alterra, Swart; Masanet, Eric; Lecocq, Franck; Najam, Adil; Schaeffer, Robert; Winkler, Harald; Sathaye, Jayant

    2008-07-04

    There is a multiplicity of development pathways in which low energy sector emissions are not necessarily associated with low economic growth. However, changes in development pathways can rarely be imposed from the top. On this basis, examples of energy efficiency opportunities to change development pathways toward lower emissions are presented in this paper. We review opportunities at the sectoral and macro level. The potential for action on nonclimate policies that influence energy use and emissions are presented. Examples are drawn from policies already adopted and implemented in the energy sector. The paper discusses relationships between energy efficiency policies and their synergies and tradeoffs with sustainable development and greenhouse gas emissions. It points to ways that energy efficiency could be mainstreamed into devel?opment choices.

  7. Natural Gas Discovery and Development Impacts on Rio Vista and Its Community

    E-Print Network [OSTI]

    Gbedema, Tometi Koku

    2006-01-01

    60 3. Rio Vista Natural Gas Field: The 193677 4. Calpine Natural Gas Company…………………………………………….82 5.Company [B0120] 4. Calpine Natural Gas, L.P. [C1330] ******

  8. DEVELOPMENT OF A NEW HIGH TEMPERATURE GAS RECEIVER UTILIZING SMALL PARTICLES

    E-Print Network [OSTI]

    Hunt, Arlon J.

    2012-01-01

    for powering a gas turbine or to supply industrial processin conjunetion with a gas turbine system providing severalincluding heating a gas to operate a turbine (4), providing

  9. Development of an Improved Methodology to Assess Potential Unconventional Gas Resources

    SciTech Connect (OSTI)

    Salazar, Jesus; McVay, Duane A. Lee, W. John

    2010-12-15

    Considering the important role played today by unconventional gas resources in North America and their enormous potential for the future around the world, it is vital to both policy makers and industry that the volumes of these resources and the impact of technology on these resources be assessed. To provide for optimal decision making regarding energy policy, research funding, and resource development, it is necessary to reliably quantify the uncertainty in these resource assessments. Since the 1970s, studies to assess potential unconventional gas resources have been conducted by various private and governmental agencies, the most rigorous of which was by the United States Geological Survey (USGS). The USGS employed a cell-based, probabilistic methodology which used analytical equations to calculate distributions of the resources assessed. USGS assessments have generally produced distributions for potential unconventional gas resources that, in our judgment, are unrealistically narrow for what are essentially undiscovered, untested resources. In this article, we present an improved methodology to assess potential unconventional gas resources. Our methodology is a stochastic approach that includes Monte Carlo simulation and correlation between input variables. Application of the improved methodology to the Uinta-Piceance province of Utah and Colorado with USGS data validates the means and standard deviations of resource distributions produced by the USGS methodology, but reveals that these distributions are not right skewed, as expected for a natural resource. Our investigation indicates that the unrealistic shape and width of the gas resource distributions are caused by the use of narrow triangular input parameter distributions. The stochastic methodology proposed here is more versatile and robust than the USGS analytic methodology. Adoption of the methodology, along with a careful examination and revision of input distributions, should allow a more realistic assessment of the uncertainty surrounding potential unconventional gas resources.

  10. Development of natural gas rotary engines. Final report, June 1986-June 1991

    SciTech Connect (OSTI)

    Mack, J.R.

    1991-08-01

    Development of natural gas-fueled rotary engines was pursued on the parallel paths of converted Mazda automotive engines and of establishing technology and demonstration of a test model of a larger John Deere Technologies rotary engine with power capability of 250 HP per power section for future production of multi-rotor engines with power ratings of 250, 500, 1000 HP and upward. Mazda engines were converted to natural gas and were characterized by laboratory test which was followed by nearly 12,000 hours of testing in three different field installations. To develop technology for the larger JDTI engine, laboratory and engine materials testing was accomplished. Extensive combustion analysis computer codes were modified, verified, and utilized to predict engine performance, to guide parameters for actual engine design, and to identify further improvements. A single rotor test engine of 5.8 liter displacement was designed for natural gas operation based on the JDTI 580 engine series. This engine was built and tested. It ran well and essentially achieved predicted performance. Lean combustion and low NOX emission were demonstrated.

  11. Development of the next generation medium-duty natural gas engine

    SciTech Connect (OSTI)

    Podnar, D.J.; Kubesh, J.T.

    2000-02-28

    This report summarizes the work done under this subcontract in the areas of System Design, System Fabrication, and Experimental Program. The report contains the details of the engine development process for achieving throttleless stratified charge spark ignition (SI) engine operation as well as advanced turbocharging strategies. Engine test results showing the potential of the direct-injection stratified charge combustion strategy for increasing part-load engine efficiency on a John Deere 8.1-liter natural gas engine are also included in this report. In addition, steady state and step transient engine data are presented that quantify the performance of a variable geometry turbocharger (VGT) as well as a modified waste-gated turbocharger on the engine. The benefits of the technologies investigated during this project will be realized in the form of increased drive-cycle efficiency to diesel-like levels, while retaining the low emissions characteristics of a lean-burn natural gas engine.

  12. Spray-formed tooling and aluminum strip

    SciTech Connect (OSTI)

    McHugh, K.M.

    1995-11-01

    Spray forming is an advanced materials processing technology that converts a bulk liquid metal to a near-net-shape solid by depositing atomized droplets onto a suitably shaped substrate. By combining rapid solidification processing with product shape control, spray forming can reduce manufacturing costs while improving product quality. De Laval nozzles offer an alternative method to the more conventional spray nozzle designs. Two applications are described: high-volume production of aluminum alloy strip, and the production of specialized tooling, such as injection molds and dies, for rapid prototyping.

  13. Comparison of AEO 2008 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark

    2008-01-01

    late January 2008, extend its natural gas futures strip anComparison of AEO 2008 Natural Gas Price Forecast to NYMEXs reference-case long-term natural gas price forecasts from

  14. STRIPPING OF PROCESS CONDENSATES FROM SOLID FUEL CONVERSION

    E-Print Network [OSTI]

    Hill, Joel David

    2013-01-01

    Water Stripping of Coal Gasification Waste Water", U. S.to completion in a coal gasification process. Water usagecondensate for a typical coal gasification process are shown

  15. STATE OF THE ART AND FUTURE DEVELOPMENTS IN NATURAL GAS ENGINE TECHNOLOGIES

    SciTech Connect (OSTI)

    Dunn, M

    2003-08-24

    Current, state of the art natural gas engines provide the lowest emission commercial technology for use in medium heavy duty vehicles. NOx emission levels are 25 to 50% lower than state of the art diesel engines and PM levels are 90% lower than non-filter equipped diesels. Yet, in common with diesel engines, natural gas engines are challenged to become even cleaner and more efficient to meet environmental and end-user demands. Cummins Westport is developing two streams of technologies to achieve these goals for medium-heavy and heavy-heavy duty applications. For medium-heavy duty applications, lowest possible emissions are sought on SI engines without significant increase in complexity and with improvements in efficiency and BMEP. The selected path builds on the capabilities of the CWI Plus technology and recent diesel engine advances in NOx controls, providing potential to reduce emissions to 2010 values in an accelerated manner and without the use of Selective Catalytic Reduction or NOx Storage and Reduction technology. For heavy-heavy duty applications where high torque and fuel economy are of prime concern, the Westport-Cycle{trademark} technology is in field trial. This technology incorporates High Pressure Direct Injection (HPDI{trademark}) of natural gas with a diesel pilot ignition source. Both fuels are delivered through a single, dual common rail injector. The operating cycle is entirely unthrottled and maintains the high compression ratio of a diesel engine. As a result of burning 95% natural gas rather than diesel fuel, NOx emissions are halved and PM is reduced by around 70%. High levels of EGR can be applied while maintaining high combustion efficiency, resulting in extremely low NOx potential. Some recent studies have indicated that DPF-equipped diesels emit less nanoparticles than some natural gas vehicles [1]. It must be understood that the ultrafine particles emitted from SI natural gas engines are generally accepted to consist predominantly of VOCs [2], and that lubricating oil is a major contributor. Fitting an oxidation catalyst to the natural gas engine leads to a reduction in nanoparticles emissions in comparison to engines without aftertreatment [2,3,4]. In 2001, the Cummins Westport Plus technology was introduced with the C Gas Plus engine, a popular choice for transit bus applications. This incorporates drive by wire, fully integrated, closed loop electronic controls and a standard oxidation catalyst for all applications. The B Gas Plus and the B Propane Plus engines, with application in shuttle and school buses were launched in 2002 and 2003. The gas-specific oxidation catalyst operates in concert with an optimized ring-pack and liner combination to reduce total particulate mass below 0.01g/bhphr, combat ultrafine particles and control VOC emissions.

  16. Design and Development of Gas-Liquid Cylindrical Cyclone Compact Separators for Three-Phase Flow

    SciTech Connect (OSTI)

    Mohan, R.S.; Shoham, O.

    2001-01-10

    The objective of this five-year project (October 1997--September 2002) was to expand the current research activities of Tulsa University Separation Technology Projects (TUSTP) to multiphase oil/water/gas separation. This project was executed in two phases. Phase I (1997--2000) focused on the investigations of the complex multiphase hydrodynamic flow behavior in a three-phase Gas-Liquid Cylindrical Cyclone (GLCC) Separator. The activities of this phase included the development of a mechanistic model, a computational fluid dynamics (CFD) simulator, and detailed experimentation on the three-phase GLCC. The experimental and CFD simulation results will be suitably integrated with the mechanistic model. In Phase II (2000--2002), the developed GLCC separator will be tested under high pressure and real crude conditions. This is crucial for validating the GLCC design for field application and facilitating easy and rapid technology deployment. Design criteria for industrial applications will be developed based on these results and will be incorporated into the mechanistic model by TUSTP.

  17. Design and Development of Gas-Liquid Cylindrical Cyclone Compact Separators for Three-Phase Flow

    SciTech Connect (OSTI)

    Mohan, R.S.; Shoham, O.

    2001-01-18

    The objective of this five-year project (October 1997 - September 2002) was to expand the current research activities of Tulsa University Separation Technology Projects (TUSTP) to multiphase oil/water/gas separation. This project was executed in two phases. Phase I (1997 - 2000) focused on the investigations of the complex multiphase hydrodynamic flow behavior in a three-phase Gas-Liquid Cylindrical Cyclone (GLCC) Separator. The activities of this phase included the development of a mechanistic model, a computational fluid dynamics (CFD) simulator, and detailed experimentation on the three-phase GLCC. The experimental and CFD simulation results will be suitably integrated with the mechanistic model. In Phase II (2000 - 2002), the developed GLCC separator will be tested under high pressure and real crude conditions. This is crucial for validating the GLCC design for field application and facilitating easy and rapid technology deployment. Design criteria for industrial applications will be developed based on these results and will be incorporated into the mechanistic model by TUSTP.

  18. ATLAS strip detector upgrade for the HL-LHC

    E-Print Network [OSTI]

    Liang, Zhijun; The ATLAS collaboration

    2015-01-01

    From 2024, the HL-LHC will provide unprecedented pp luminosities to ATLAS, resulting in an additional integrated luminosity of around 2500 fb?1 over ten years. To withstand the much harsher radiation and occupancy conditions of the HL-LHC necessitates a complete replacement of the present Inner detector. The new all-silicon tracker design is driven by the performance requirements that cannot be met by the present Inner detector. The sensors are of finer granularity than the existing tracker, to meet the challenges of very high pile-up and to be able to reconstruct tracks in the core of multi-TeV jets. In addition, the replacement tracker has to be much more radiation hard and the readout links need to provide much greater bandwidth. Present ideas and solutions for the strip detector and current research and development program will be discussed in this talk.

  19. Advanced manufacturing by spray forming: Aluminum strip and microelectromechanical systems

    SciTech Connect (OSTI)

    McHugh, K.M.

    1994-12-31

    Spray forming is an advanced materials processing technology that converts a bulk liquid metal to a near-net-shape solid by depositing atomized droplets onto a suitably shaped substrate. By combining rapid solidification processing with product shape control, spray forming can reduce manufacturing costs while improving product quality. INEL is developing a unique spray-forming method based on de Laval (converging/diverging) nozzle designs to produce near-net-shape solids and coatings of metals, polymers, and composite materials. Properties of the spray-formed material are tailored by controlling the characteristics of the spray plume and substrate. Two examples are described: high-volume production of aluminum alloy strip, and the replication of micron-scale features in micropatterned polymers during the production of microelectromechanical systems.

  20. TRANSPARENT HELIUM IN STRIPPED ENVELOPE SUPERNOVAE

    SciTech Connect (OSTI)

    Piro, Anthony L.; Morozova, Viktoriya S., E-mail: piro@caltech.edu [Theoretical Astrophysics, California Institute of Technology, 1200 E. California Blvd., M/C 350-17, Pasadena, CA 91125 (United States)

    2014-09-01

    Using simple arguments based on photometric light curves and velocity evolution, we propose that some stripped envelope supernovae (SNe) show signs that a significant fraction of their helium is effectively transparent. The main pieces of evidence are the relatively low velocities with little velocity evolution, as are expected deep inside an exploding star, along with temperatures that are too low to ionize helium. This means that the helium should not contribute to the shaping of the main SN light curve, and thus the total helium mass may be difficult to measure from simple light curve modeling. Conversely, such modeling may be more useful for constraining the mass of the carbon/oxygen core of the SN progenitor. Other stripped envelope SNe show higher velocities and larger velocity gradients, which require an additional opacity source (perhaps the mixing of heavier elements or radioactive nickel) to prevent the helium from being transparent. We discuss ways in which similar analysis can provide insights into the differences and similarities between SNe Ib and Ic, which will lead to a better understanding of their respective formation mechanisms.

  1. DEVELOPMENT AND FIELD IMPLEMENTATION OF AN IMPROVED METHOD FOR HEADSPACE GAS SAMPLING OF TRANSURANIC WASTE DRUMS

    SciTech Connect (OSTI)

    Polley, M.; Ankrom, J.; Wickland, T.; Warren, J.

    2003-02-27

    A fast, safe, and cost-effective method for obtaining headspace gas samples has been developed and implemented at Los Alamos National Laboratory (LANL). A sample port is installed directly into a drum lid using a pneumatic driver, allowing sampling with a side-port needle. Testing has shown that the sample port can be installed with no release of radioactive material. Use of this system at LANL has significantly reduced the time required for sampling, and eliminates the need for many safety precautions previously used. The system has significantly improved productivity and lowered radiation exposure and cost.

  2. Natural Gas Discovery and Development Impacts on Rio Vista and Its Community

    E-Print Network [OSTI]

    Gbedema, Tometi Koku

    2006-01-01

    rich in such resources, like oil and gas, have encounteredDivision of Oil and Gas, Geothermal Resources, Sacramento,and natural resource commission on oil and gas activity

  3. RESEARCH AND DEVELOPMENT OF AN INTEGRAL SEPARATOR FOR A CENTRIFUGAL GAS PROCESSING FACILITY

    SciTech Connect (OSTI)

    LANCE HAYS

    2007-02-27

    A COMPACT GAS PROCESSING DEVICE WAS INVESTIGATED TO INCREASE GAS PRODUCTION FROM REMOTE, PREVIOUSLY UN-ECONOMIC RESOURCES. THE UNIT WAS TESTED ON AIR AND WATER AND WITH NATURAL GAS AND LIQUID. RESULTS ARE REPORTED WITH RECOMMENDATIONS FOR FUTURE WORK.

  4. Development of a Low NOx Medium-Sized Industrial Gas Turbine Operating on Hydrogen-Rich Renewable and Opportunity Fuels

    SciTech Connect (OSTI)

    2009-11-01

    Solar Turbines Inc., in collaboration with Pennsylvania State University and the University of Southern California, will develop injector technologies for gas turbine use of high-hydrogen content renewable and opportunity fuels derived from coal, biomass, industrial process waste, or byproducts. This project will develop low-emission technology for alternate fuels with high-hydrogen content, thereby reducing natural gas requirements and lowering carbon intensity.

  5. The development of a cyclonic combustor for high particulate, low caloric value gas produced by a fluidized bed 

    E-Print Network [OSTI]

    Cardenas, Manuel Moises

    1985-01-01

    THE DEVELOPMENT OF A CYCLONIC COMBUSTOR FOR HIGH PARTICULATE, LOW CALORIC VALUE GAS PRODUCED BY A FLUIDIZED BED A Thesis by MANUEL MOISES CARDENAS JR. Submitted to the Graduate College of Texas ALM University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE December 1985 Major Subject: Mechanical Engineering THE DEVELOPMENT OF A CYCLONIC COMBUSTOR FOR HIGH PARTICULATE, LOW CALORIC VALUE GAS PRODUCED BY A FLUIDIZED BED A Thesis MANUEL MOISES CARDENAS JR...

  6. Overview of advanced Stirling and gas turbine engine development programs and implications for solar thermal electrical applications

    SciTech Connect (OSTI)

    Alger, D.

    1984-03-01

    The DOE automotive advanced engine development projects managed by the NASA Lewis Research Center were described. These included one Stirling cycle engine development and two air Brayton cycle development. Other engine research activities included: (1) an air Brayton engine development sponsored by the Gas Research Institute, and (2) plans for development of a Stirling cycle engine for space use. Current and potential use of these various engines with solar parabolic dishes were discussed.

  7. Mercury Speciation in Coal-Fired Power Plant Flue Gas-Experimental Studies and Model Development

    SciTech Connect (OSTI)

    Radisav Vidic; Joseph Flora; Eric Borguet

    2008-12-31

    The overall goal of the project was to obtain a fundamental understanding of the catalytic reactions that are promoted by solid surfaces present in coal combustion systems and develop a mathematical model that described key phenomena responsible for the fate of mercury in coal-combustion systems. This objective was achieved by carefully combining laboratory studies under realistic process conditions using simulated flue gas with mathematical modeling efforts. Laboratory-scale studies were performed to understand the fundamental aspects of chemical reactions between flue gas constituents and solid surfaces present in the fly ash and their impact on mercury speciation. Process models were developed to account for heterogeneous reactions because of the presence of fly ash as well as the deliberate addition of particles to promote Hg oxidation and adsorption. Quantum modeling was used to obtain estimates of the kinetics of heterogeneous reactions. Based on the initial findings of this study, additional work was performed to ascertain the potential of using inexpensive inorganic sorbents to control mercury emissions from coal-fired power plants without adverse impact on the salability fly ash, which is one of the major drawbacks of current control technologies based on activated carbon.

  8. Human resource needs and development for the gas industry of the future

    SciTech Connect (OSTI)

    Klass, D.L.

    1991-01-01

    The natural gas industry will confront many challenges in the 1990s and beyond, one of which is the development of human resources to meet future needs. An efficient, trained work force in this era of environmental concern, high technology, and alternative fuels is essential for the industry to continue to meet the competition and to safely deliver our product and service to all customers. Unfortunately, during this period there will be an increasing shortfall of technical personnel to replace those lost to attrition and a steady decline in the availability of new employees who are able to read, write, and perform simple math. Technological and government developments that will impact the industry and the skill levels needed by the industry employees are reviewed. In-house and external training of professional and nonprofessional personnel and the benefits and disadvantages of selected advanced training methods are discussed. Recommendations are presented that can help improve the training of gas industry employees to meet future needs. 22 refs.

  9. Original article Tau-fluvalinate content of Apistan® strips

    E-Print Network [OSTI]

    Boyer, Edmond

    Original article Tau-fluvalinate content of Apistan® strips Mark F. Feldlaufer USDA (Received1 July 1998; accepted12 November 1998) Abstract - The tau-fluvalinate content of13 lot numbers in certain areas of the US is due to the tau-fluvalinate content of Apistan® strips. © Inra

  10. STRIP TEMPERATURE IN A METAL COATING LINE ANNEALING FURNACE

    E-Print Network [OSTI]

    McGuinness, Mark

    STRIP TEMPERATURE IN A METAL COATING LINE ANNEALING FURNACE Mark McGuinness1 and Stephen Taylor2 We Zincalume are produced in a range of dimensions, grades and coating weights. The steel strip is annealed prior to being coated, by heating to a predeter- mined temperature for a definite time. Annealing

  11. DESIGN AND DEVELOPMENT OF GAS-LIQUID CYLINDRICAL CYCLONE COMPACT SEPARATORS FOR THREE-PHASE FLOW

    SciTech Connect (OSTI)

    Dr. Ram S. Mohan; Dr. Ovadia Shoham

    2000-04-28

    The objective of this five-year project (October, 1997-September, 2002) is to expand the current research activities of Tulsa University Separation Technology Projects (TUSTP) to multiphase oil/water/gas separation. This project will be executed in two phases. Phase I (1997-2000) will focus on the investigations of the complex multiphase hydrodynamic flow behavior in a three-phase Gas-Liquid Cylindrical Cyclone (GLCC{copyright}) Separator. The activities of this phase will include the development of a mechanistic model, a computational fluid dynamics (CFD) simulator, and detailed experimentation on the three-phase GLCC{copyright}. The experimental and CFD simulation results will be suitably integrated with the mechanistic model. In Phase II (2000-2002), the developed GLCC{copyright} separator will be tested under high pressure and real crudes conditions. This is crucial for validating the GLCC{copyright} design for field application and facilitating easy and rapid technology deployment. Design criteria for industrial applications will be developed based on these results and will be incorporated into the mechanistic model by TUSTP. This report presents a brief overview of the activities and tasks accomplished during the first half year (October 1, 1999-March 31, 2000) of the budget period (October 1, 1999-September 30, 2000). The total tasks of the budget period are given initially, followed by the technical and scientific results achieved till date. The report concludes with a detailed description of the plans for the conduct of the project for the second half year (April 1, 2000-September 30, 2000) of the current budget period.

  12. DESIGN AND DEVELOPMENT OF GAS-LIQUID CYLINDRICAL CYCLONE COMPACT SEPARATORS FOR THREE-PHASE FLOW

    SciTech Connect (OSTI)

    Dr. Ram S. Mohan; Dr. Ovadia Shoham

    2003-06-25

    The U.S. Department of Energy (DOE) has awarded a five-year (1997-2002) grant (Mohan and Shoham, DE-FG26-97BC15024, 1997) to The University of Tulsa, to develop compact multiphase separation components for 3-phase flow. The research activities of this project have been conducted through cost sharing by the member companies of the Tulsa University Separation Technology Projects (TUSTP) research consortium and the Oklahoma Center for the Advancement of Science and Technology (OCAST). As part of this project, several individual compact separation components have been developed for onshore and offshore applications. These include gas-liquid cylindrical cyclones (GLCC{copyright}), liquid-liquid cylindrical cyclones (LLCC{copyright}), and the gas-liquid-liquid cylindrical cyclones (GLLCC{copyright}). A detailed study has also been completed for the liquid-liquid hydrocyclones (LLHC). Appropriate control strategies have been developed for proper operation of the GLCC{copyright} and LLCC{copyright}. Testing of GLCC{copyright} at high pressure and real crude conditions for field applications is also completed. Limited studies have been conducted on flow conditioning devices to be used upstream of the compact separators for performance improvement. This report presents a brief overview of the activities and tasks accomplished during the 5-year project period, October 1, 1997-March 31, 2003 (including the no-cost extended period of 6 months). An executive summary is presented initially followed by the tasks of the 5-year budget periods. Then, detailed description of the experimental and modeling investigations are presented. Subsequently, the technical and scientific results of the activities of this project period are presented with some discussions. The findings of this investigation are summarized in the ''Conclusions'' section, followed by relevant references. The publications resulting from this study in the form of MS Theses, Ph.D. Dissertation, Journal Papers and Conference Presentations are provided at the end of this report.

  13. Application of WLS strips for position determination in Strip PET tomograph based on plastic scintillators

    E-Print Network [OSTI]

    Smyrski, J; Bednarski, T; Bia?as, P; Czerwi?ski, E; Kap?on, ?; Kochanowski, A; Korcyl, G; Kowal, J; Kowalski, P; Kozik, T; Krzemie?, W; Molenda, M; Nied?wiecki, Sz; Pa?ka, M; Pawlik, M; Raczy?ski, L; Rudy, Z; Salabura, P; Sharma, N G; Silarski, M; S?omski, A; Strzelecki, A; Wi?licki, W; Zieli?ski, M; Zo?, N

    2013-01-01

    A method of determination of a gamma quantum absorption point in a plastic scintillator block using a matrix of wavelength-shifting (WLS) strips is proposed. Application of this method for improvement of position resolution in newly proposed PET detectors based on plastic scintillators is presented. The method enables to reduce parallax errors in reconstruction of images which occurs in the presently used Positron Emission Tomography scanners.

  14. Application of WLS strips for position determination in Strip PET tomograph based on plastic scintillators

    E-Print Network [OSTI]

    J. Smyrski; P. Moskal; T. Bednarski; P. Bia?as; E. Czerwi?ski; ?. Kap?on; A. Kochanowski; G. Korcyl; J. Kowal; P. Kowalski; T. Kozik; W. Krzemie?; M. Molenda; Sz. Nied?wiecki; M. Pa?ka; M. Pawlik; L. Raczy?ski; Z. Rudy; P. Salabura; N. G. Sharma; M. Silarski; A. S?omski; A. Strzelecki; W. Wi?licki; M. Zieli?ski; N. Zo?

    2013-11-24

    A method of determination of a gamma quantum absorption point in a plastic scintillator block using a matrix of wavelength-shifting (WLS) strips is proposed. Application of this method for improvement of position resolution in newly proposed PET detectors based on plastic scintillators is presented. The method enables to reduce parallax errors in reconstruction of images which occurs in the presently used Positron Emission Tomography scanners.

  15. Feasibility study for reconstruction of the reheat furnaces for the 2000 Hot Strip Mill (Novolipetsk Steel Works, Lipetsk, Russia): Final report. Export trade information

    SciTech Connect (OSTI)

    1997-05-01

    The objective of this study was to develop a furnace design that would be instrumental in advancing the NLMK 2000 Hot Strip Mill to a level of world class strip mills capable of producing high quality strip with improved energy efficiency and minimal environmental impact. The contents include the following: (1) executive summary; (2) capital cost assessment; (3) project financial analysis; (4) study overview; (5) basic furnace design; (6) silicon design specification; (7) utilities; (8) NOx reduction technologies for reheat furnaces; (9) site investigation and construction schedule; (10) hot connect.

  16. Research and Development of Non-Spectroscopic MEMS-Based Sensor Arrays for Targeted Gas Detection

    SciTech Connect (OSTI)

    Loui, A; McCall, S K

    2011-10-24

    The ability to monitor the integrity of gas volumes is of interest to the stockpile surveillance community. Specifically, the leak detection of noble gases, at relevant concentration ranges and distinguished from other chemical species that may be simultaneously present, is particularly challenging. Aside from the laboratory-based method of gas chromatography-mass spectrometry (GC-MS), where samples may be collected by solid-phase microextraction (SPME) or cryofocusing, the other major approaches for gas-phase detection employ lasers typically operating in the mid-infrared wavelength region. While mass spectrometry can readily detect noble gases - the helium leak detector is an obvious example - laser-based methods such as infrared (IR) or Raman spectroscopy are completely insensitive to them as their monatomic nature precludes a non-zero dipole moment or changes in polarizability upon excitation. Therefore, noble gases can only be detected by one of two methods: (1) atomic emission spectroscopies which require the generation of plasmas through laser-induced breakdown, electrical arcing, or similar means; (2) non-spectroscopic methods which measure one or more physical properties (e.g., mass, thermal conductivity, density). In this report, we present our progress during Fiscal Year 2011 (FY11) in the research and development of a non-spectroscopic method for noble gas detection. During Fiscal Year 2010 (FY10), we demonstrated via proof-of-concept experiments that the combination of thermal conductivity detection (TCD) and coating-free damped resonance detection (CFDRD) using micro-electromechanical systems (MEMS) could provide selective sensing of these inert species. Since the MEMS-based TCD technology was directly adapted from a brassboard prototype commissioned by a previous chemical sensing project, FY11 efforts focused on advancing the state of the newer CFDRD method. This work, guided by observations previously reported in the open literature, has not only resulted in a substantially measureable increase in selectivity but has also revealed a potential method for mitigating or eliminating thermal drift that does not require a secondary reference sensor. The design of an apparatus to test this drift compensation scheme will be described. We will conclude this report with a discussion of planned efforts in Fiscal Year 2012 (FY12).

  17. DEVELOPMENT AND OPTIMIZATION OF GAS-ASSISTED GRAVITY DRAINAGE (GAGD) PROCESS FOR IMPROVED LIGHT OIL RECOVERY

    SciTech Connect (OSTI)

    Dandina N. Rao; Subhash C. Ayirala; Madhav M. Kulkarni; Amit P. Sharma

    2004-10-01

    This report describes the progress of the project ''Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery'' for the duration of the second project year (October 1, 2003--September 30, 2004). There are three main tasks in this research project. Task 1 is scaled physical model study of GAGD process. Task 2 is further development of vanishing interfacial tension (VIT) technique for miscibility determination. Task 3 is determination of multiphase displacement characteristics in reservoir rocks. In Section I, preliminary design of the scaled physical model using the dimensional similarity approach has been presented. Scaled experiments on the current physical model have been designed to investigate the effect of Bond and capillary numbers on GAGD oil recovery. Experimental plan to study the effect of spreading coefficient and reservoir heterogeneity has been presented. Results from the GAGD experiments to study the effect of operating mode, Bond number and capillary number on GAGD oil recovery have been reported. These experiments suggest that the type of the gas does not affect the performance of GAGD in immiscible mode. The cumulative oil recovery has been observed to vary exponentially with Bond and capillary numbers, for the experiments presented in this report. A predictive model using the bundle of capillary tube approach has been developed to predict the performance of free gravity drainage process. In Section II, a mechanistic Parachor model has been proposed for improved prediction of IFT as well as to characterize the mass transfer effects for miscibility development in reservoir crude oil-solvent systems. Sensitivity studies on model results indicate that provision of a single IFT measurement in the proposed model is sufficient for reasonable IFT predictions. An attempt has been made to correlate the exponent (n) in the mechanistic model with normalized solute compositions present in both fluid phases. IFT measurements were carried out in a standard ternary liquid system of benzene, ethanol and water using drop shape analysis and capillary rise techniques. The experimental results indicate strong correlation among the three thermodynamic properties solubility, miscibility and IFT. The miscibility determined from IFT measurements for this ternary liquid system is in good agreement with phase diagram and solubility data, which clearly indicates the sound conceptual basis of VIT technique to determine fluid-fluid miscibility. Model fluid systems have been identified for VIT experimentation at elevated pressures and temperatures. Section III comprises of the experimental study aimed at evaluating the multiphase displacement characteristics of the various gas injection EOR process performances using Berea sandstone cores. During this reporting period, extensive literature review was completed to: (1) study the gravity drainage concepts, (2) identify the various factors influencing gravity stable gas injection processes, (3) identify various multiphase mechanisms and fluid dynamics operative during the GAGD process, and (4) identify important dimensionless groups governing the GAGD process performance. Furthermore, the dimensional analysis of the GAGD process, using Buckingham-Pi theorem to isolate the various dimensionless groups, as well as experimental design based on these dimensionless quantities have been completed in this reporting period. On the experimental front, recommendations from previous WAG and CGI have been used to modify the experimental protocol. This report also includes results from scaled preliminary GAGD displacements as well as the details of the planned GAGD corefloods for the next quarter. The technology transfer activities have mainly consisted of preparing technical papers, progress reports and discussions with industry personnel for possible GAGD field tests.

  18. Advanced coal-fueled industrial cogeneration gas turbine system particle removal system development

    SciTech Connect (OSTI)

    Stephenson, M.

    1994-03-01

    Solar Turbines developed a direct coal-fueled turbine system (DCFT) and tested each component in subscale facilities and the combustion system was tested at full-scale. The combustion system was comprised of a two-stage slagging combustor with an impact separator between the two combustors. Greater than 90 percent of the native ash in the coal was removed as liquid slag with this system. In the first combustor, coal water slurry mixture (CWM) was injected into a combustion chamber which was operated loan to suppress NO{sub x} formation. The slurry was introduced through four fuel injectors that created a toroidal vortex because of the combustor geometry and angle of orientation of the injectors. The liquid slag that was formed was directed downward toward an impaction plate made of a refractory material. Sixty to seventy percent of the coal-borne ash was collected in this fashion. An impact separator was used to remove additional slag that had escaped the primary combustor. The combined particulate collection efficiency from both combustors was above 95 percent. Unfortunately, a great deal of the original sulfur from the coal still remained in the gas stream and needed to be separated. To accomplish this, dolomite or hydrated lime were injected in the secondary combustor to react with the sulfur dioxide and form calcium sulfite and sulfates. This solution for the sulfur problem increased the dust concentrations to as much as 6000 ppmw. A downstream particulate control system was required, and one that could operate at 150 psia, 1850-1900{degrees}F and with low pressure drop. Solar designed and tested a particulate rejection system to remove essentially all particulate from the high temperature, high pressure gas stream. A thorough research and development program was aimed at identifying candidate technologies and testing them with Solar`s coal-fired system. This topical report summarizes these activities over a period beginning in 1987 and ending in 1992.

  19. On-Road Development of John Deere 6081 Natural Gas Engine: Final Technical Report, July 1999 - January 2001

    SciTech Connect (OSTI)

    McCaw, D. L.; Horrell, W. A. (Deere and Company)

    2001-09-24

    Report that discusses John Deere's field development of a heavy-duty natural gas engine. As part of the field development project, Waste Management of Orange County, California refitted four existing trash packers with John Deere's prototype spark ignited 280-hp 8.1 L CNG engines. This report describes the project and also contains information about engine performance, emissions, and driveability.

  20. Laboratory test plan in-well vapor stripping system

    SciTech Connect (OSTI)

    Koegler, K.J

    1994-07-01

    This test plan describes the activities that will be conducted as a part of the laboratory testing of a full-scale mockup of the Stanford in-well vapor stripping system. These tests will be conducted to delineate design parameters for the in-well vapor stripping unit and to identify and quantify variables that are sensitive to the dynamic hydraulic effects induced by operation of the system. No radioactive materials are involved in this test. In-well vapor stripping has been used successfully as an alternative to conventional pump-and-treat technology for remediation of volatile organic compound (VOC) contaminated groundwater in Europe and more recently in the United States. In-well vapor stripping permits in situ remediation of VOC-contaminated groundwater by combining an in-well vapor stripping system with a treatment well is used to extract and discharge groundwater simultaneously, resulting in the establishment of a vertical circulation groundwater flow cell in the aquifer. Groundwater extracted from the aquifer via the lower screened interval is treated for VOCs by in-well vapor stripping within the treatment well. This stripping causes aqueous phase VOCs to partition preferentially into a vapor phase. Treated groundwater is discharged back to the aquifer via the upper screened interval of the treatment well, while the vapor phase VOCs are simultaneously removed from the well bore and contained at the surface with a vacuum extraction system. Groundwater entrained into the vertical circulation flow cell becomes sequentially cleaned of VOC contamination in an efficient manner without the need for surface treatment and handling of contaminated groundwater. An added benefit of in-well vapor stripping is the ability to perform vadose zone vapor extraction concurrently with groundwater remediation. This uses the vacuum extraction capabilities of the in-well vapor stripping configured with the upper screened interval placed into the vadose zone above the water table.

  1. Innovative technology summary report: in situ air stripping using horizontal wells

    SciTech Connect (OSTI)

    NONE

    1995-04-01

    In situ air stripping (ISAS) technology was developed to remediate soils and ground water contaminated with volatile organic compounds (VOCs) both above and below the water table. ISAS employs horizontal wells to inject (sparge) air into the ground water and vacuum extract VOCs from vadose zone soils. The innovation is creation of a system that combines two somewhat innovative technologies, air sparging and horizontal wells, with a baseline technology, soil vapor extraction, to produce a more efficient in situ remediation system.

  2. Reductive stripping process for uranium recovery from organic extracts

    DOE Patents [OSTI]

    Hurst, F.J. Jr.

    1983-06-16

    In the reductive stripping of uranium from an organic extractant in a uranium recovery process, the use of phosphoric acid having a molarity in the range of 8 to 10 increases the efficiency of the reductive stripping and allows the strip step to operate with lower aqueous to organic recycle ratios and shorter retention time in the mixer stages. Under these operating conditions, less solvent is required in the process, and smaller, less expensive process equipment can be utilized. The high strength H/sub 3/PO/sub 4/ is available from the evaporator stage of the process.

  3. Design and fabrication of a data logger for atmospheric pressure, temperature and relative humidity for gas-filled detector development

    E-Print Network [OSTI]

    Sahu, S; Rudra, Sharmili; Biswas, S; Mohanty, B; Sahu, P K

    2015-01-01

    A novel instrument has been developed to monitor and record the ambient pa- rameters such as temperature, atmospheric pressure and relative humidity. These parameters are very essential for understanding the characteristics such as gain of gas filled detectors like Gas Electron Multiplier (GEM) and Multi Wire Propor- tional Counter (MWPC). In this article the details of the design, fabrication and operation processes of the device has been presented.

  4. Reduced Energy Consumption through the Development of Fuel-Flexible Gas Turbines

    Office of Energy Efficiency and Renewable Energy (EERE)

    Gas turbines—heat engines that use high-temperature and high-pressure gas as the combustible fuel—are used extensively throughout U.S. industry to power industrial processes. The majority of...

  5. Natural Gas Discovery and Development Impacts on Rio Vista and Its Community

    E-Print Network [OSTI]

    Gbedema, Tometi Koku

    2006-01-01

    went through for well drilling materials and manpower. TheDrilling and Operating Oil and Gas Wells in California,Drilling Site: Drilling a natural gas well in the Sacramento

  6. Cooperative Research and Development for Advanced Materials in Advanced Industrial Gas Turbines Final Technical Report

    SciTech Connect (OSTI)

    Ramesh Subramanian

    2006-04-19

    Evaluation of the performance of innovative thermal barrier coating systems for applications at high temperatures in advanced industrical gas turbines.

  7. Natural Gas Compressor Stations on the Interstate Pipeline Network: Developments Since 1996

    Reports and Publications (EIA)

    2007-01-01

    This special report looks at the use of natural gas pipeline compressor stations on the interstate natural gas pipeline network that serves the lower 48 states. It examines the compression facilities added over the past 10 years and how the expansions have supported pipeline capacity growth intended to meet the increasing demand for natural gas.

  8. Proceedings of the 17th Central Hardwood Forest Conference GTR-NRS-P-78 (2011) 219 EFFECTS OF NATURAL GAS DEVELOPMENT

    E-Print Network [OSTI]

    2011-01-01

    OF NATURAL GAS DEVELOPMENT ON FOREST ECOSYSTEMS Mary Beth Adams, W. Mark Ford, Thomas M. Schuler, and Melissa-term research. In 2008, a natural gas well was drilled on the Fernow and a pipeline and supporting infrastructure constructed. We describe the impacts of natural gas development on the natural resources

  9. Laboratory testing of the in-well vapor-stripping system

    SciTech Connect (OSTI)

    Gilmore, T.J.; Francois, O.

    1996-03-01

    The Volatile organic Compounds-Arid Integrated Demonstration (VOC-Arid ID) was implemented by the US Department of Energy`s (DOE`s) Office of Technology Development to develop and test new technologies for the remediation of organic chemicals in the subsurface. One of the technologies being tested under the VOC-Arid ID is the in-well vapor-stripping system. The in-well vapor-stripping concept was initially proposed by researchers at Stanford University and is currently under development through a collaboration between workers at Stanford University and DOE`s Pacific Northwest National Laboratory. The project to demonstrate the in-well vapor-stripping technology is divided into three phases: (1) conceptual model and computer simulation, (2) laboratory testing, and (3) field demonstration. This report provides the methods and results of the laboratory testing in which a full-scale replica was constructed and tested above ground in a test facility located at DOE`s Hanford Site, Washington. The system is a remediation technology designed to preferentially extract volatile organic compounds (VOCs) from contaminated groundwater by converting them to a vapor phase.

  10. Oil and gas developments in South America, Central America, Carribbean area, and Mexico in 1981

    SciTech Connect (OSTI)

    Deal, C.S.

    1982-11-01

    Petroleum developments in 1981 continued in the pattern of recent years of increasing exploration and exploitation in response to the second catastrophic surge in crude oil prices thrust on the world economy in 1979. Production of crude oil increased in Argentina, Brazil, Chile, Colombia, Guatemala, and Mexico, whereas Venezuela, Trinidad, Peru, and Bolivia experienced declines. Exploratory surveys, exploratory drilling, and development drilling all increased in most of the countries reporting. Significant successful exploratory drilling is reported for several countries. In Argentina, the producing zone of the Austral basin has been extended farther offshore, and is reportedly productive in what is apparently the upper Malvinas basin. In Brazil, extensions to several producing areas are reported in the Campos basin. Also, the Jurua gas province of western Amazonas reportedly had an encouraging extension. Colombia had several discoveries in the Magdalena basins, but the 2 Llanos discoveries are considered much more significant. For a variety of reasons, several countries have undertaken or are undertaking changes in laws and regulations to attract foreign companies into exploration risk ventures. In some countries, exploitation ventures are also offered.

  11. Biodegradation of paint stripper solvents in a modified gas lift loop bioreactor

    SciTech Connect (OSTI)

    Vanderberg-Twary, L.; Steenhoudt, K.; Travis, B.J.; Hanners, J.L.; Foreman, T.M.; Brainard, J.R.

    1997-07-05

    Paint stripping wastes generated during the decontamination and decommissioning of former nuclear facilities contain paint stripping organics (dichloromethane, 2-propanol, and methanol) and bulk materials containing paint pigments. It is desirable to degrade the organic residues as part of an integrated chemical-biological treatment system. The authors have developed a modified gas lift loop bioreactor employing a defined consortium of Thodococcus rhodochrous strain OFS and Hyphomicrobium sp. DM-2 that degrades paint stripper organics. Mass transfer coefficients and kinetic constants for biodegradation in the system were determined. It was found that transfer of organic substrates from surrogate waste into the air and further into the liquid medium in the bioreactor were rapid processes, occurring within minutes. Monod kinetics was employed to model the biodegradation of paint stripping organics. Analysis of the bioreactor process was accomplished with BIOLAB, a mathematical code that simulates coupled mass transfer and biodegradation processes. This code was used to fit experimental data to monod kinetics and to determine kinetic parameters. The BIOLAB code was also employed to compare activities in the bioreactor of individual microbial cultures to the activities of combined cultures in the bioreactor. This code is of benefit for further optimization and scale-up of the bioreactor for treatment of paint stripping and other volatile organic wastes in bulk materials.

  12. Development of Novel CO2 Adsorbents for Capture of CO2 from Flue Gas

    SciTech Connect (OSTI)

    Fauth, D.J.; Filburn, T.P.; Gray, M.L.; Hedges, S.W.; Hoffman, J.; Pennline, H.W.; Filburn, T.

    2007-06-01

    Capturing CO2 emissions generated from fossil fuel-based power plants has received widespread attention and is considered a vital course of action for CO2 emission abatement. Efforts are underway at the Department of Energy’s National Energy Technology Laboratory to develop viable energy technologies enabling the CO2 capture from large stationary point sources. Solid, immobilized amine sorbents (IAS) formulated by impregnation of liquid amines within porous substrates are reactive towards CO2 and offer an alternative means for cyclic capture of CO2 eliminating, to some degree, inadequacies related to chemical absorption by aqueous alkanolamine solutions. This paper describes synthesis, characterization, and CO2 adsorption properties for IAS materials previously tested to bind and release CO2 and water vapor in a closed loop life support system. Tetraethylenepentamine (TEPA), acrylonitrile-modified tetraethylenepentamine (TEPAN), and a single formulation consisting of TEPAN and N, N’-bis(2-hydroxyethyl)ethylenediamine (BED) were individually supported on a poly (methyl methacrylate) (PMMA) substrate and examined. CO2 adsorption profiles leading to reversible CO2 adsorption capacities were obtained using thermogravimetry. Under 10% CO2 in nitrogen at 25°C and 1 atm, TEPA supported on PMMA over 60 minutes adsorbed ~3.2 mmol/g{sorbent} whereas, TEPAN supported on PMMA along with TEPAN and BED supported on PMMA adsorbed ~1.7 mmol/g{sorbent} and ~2.3 mmol/g{sorbent} respectively. Cyclic experiments with a 1:1 weight ratio of TEPAN and BED supported on poly (methyl methacrylate) beads utilizing a fixed-bed flow system with 9% CO2, 3.5% O2, nitrogen balance with trace gas constituents were studied. CO2 adsorption capacity was ~ 3 mmols CO2/g{sorbent} at 40°C and 1.4 atm. No beneficial effect on IAS performance was found using a moisture-laden flue gas mixture. Tests with 750 ppmv NO in a humidified gas stream revealed negligible NO sorption onto the IAS. A high SO2 concentration resulted in incremental loss in IAS performance and revealed progressive degrees of “staining” upon testing. Adsorption of SO2 by the IAS necessitates upstream removal of SO2 prior to CO2 capture.

  13. DEVELOPMENT OF NOVEL CERAMIC NANOFILM-FIBER INTEGRATED OPTICAL SENSORS FOR RAPID DETECTION OF COAL DERIVED SYNTHESIS GAS

    SciTech Connect (OSTI)

    Junhang Dong; Hai Xiao; Xiling Tang; Hongmin Jiang; Kurtis Remmel; Amardeep Kaur

    2012-09-30

    The overall goal of this project is to conduct fundamental studies on advanced ceramic materials and fiber optic devices for developing new types of high temperature (>500{degree}C) fiber optic chemical sensors (FOCS) for monitoring fossil (mainly coal) and biomass derived gases in power plants. The primary technical objective is to investigate and demonstrate the nanocrystalline doped-ceramic thin film enabled FOCS that possess desired stability, sensitivity and selectivity for in-situ, rapid gas detection in the syngas streams from gasification and combustion flue gases. This report summarizes research works of two integrated parts: (1) development of metal oxide solid thin films as sensing materials for detection and measurement of important gas components relevant to the coal- and biomass-derived syngas and combustion gas streams at high temperatures; and (2) development of fiber optic devices that are potentially useful for constructing FOCS in combination with the solid oxide thin films identified in this program.

  14. Results of Laboratory Testing of Advanced Power Strips: Preprint

    SciTech Connect (OSTI)

    Earle, L.; Sparn, B.

    2012-08-01

    This paper describes the results of a laboratory investigation to evaluate the technical performance of advanced power strip (APS) devices when subjected to a range of home entertainment center and home office usage scenarios.

  15. Minimum weighted clique cover on strip-composed perfect graphs

    E-Print Network [OSTI]

    Bonomo, Flavia

    ] and dates back to 1984. More recently, Chudnovsky and Seymour [3] introduced a composition operation, strip of papers by Chudnovsky and Seymour (for a survey see [3]). The results by Chud- novsky and Seymour

  16. Studies on the stripping of transuranic elements from loaded TRPO by N,N-Dimethyl-3-oxa-glutaramic acid

    SciTech Connect (OSTI)

    Chen, Jing; Wang, Jianchen; Duan, Wuhua

    2008-07-01

    The partitioning and transmutation of long-lived nuclides such as minor actinides from HLW is a method to reduce the long-term radiotoxicity of high-level waste (HLW). The TRPO partitioning process to remove actinides from HLW was developed in China. In the original TRPO process, Am and lanthanides, Pu, and Np are stripped by 5.5 M HNO{sub 3} and 0.6 M oxalic acid from the loaded solvent, respectively. In order to simplify the stripping of transuranic elements, a new compound N,N-dimethyl-3-oxa-glutaramic acid (DOGA) was synthesized. Two pilot tests were carried out in the centrifugal-contactor facility. Nd and Zr were used to simulate Am and Pu, respectively. Stripping of >99.9% Zr and >99.9% Nd was achieved using DOGA from the loaded 30% TRPO-kerosene. (authors)

  17. Reducing Office Plug Loads through Simple and Inexpensive Advanced Power Strips: Preprint

    SciTech Connect (OSTI)

    Metzger, I.; Sheppy, M.; Cutler, D.

    2013-07-01

    This paper documents the process (and results) of applying Advanced Power Strips with various control approaches.

  18. Economics of Mechanical Cotton Stripping on Blackland Farms. 

    E-Print Network [OSTI]

    Rogers, Ralph H.; Bonnen, C. A.

    1960-01-01

    than hir- ing labor crews to pull or snap by hand. An eco- nomical evaluation of machine versus hand harvest- ing covering both "good and "bad years, and years with and without acreage controls. indicates ' that stripping increases the returns... in which machine stripping atively new. 4n unfavorable growing season in 1952 resulted w yieltls on cooperating farms and in the area meral. Record high yielcls were obtained the ~ing year. There were no cotton acreage re- ions in 1952...

  19. In situ soil reclamation by air stripping and sludge uptake 

    E-Print Network [OSTI]

    Carden?osa-Mendoza, Mauricio

    1989-01-01

    IN SITU SOIL RECLAMATION BY AIR STRIPPING AND SLUDGE UPTAKE A Thesis by MAURICIO CARDENOSA-MENDOZA Submitted to the Office of Graduate Studies of Texas A & M University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE August 1989 Major Subject: Civil Engineering IN SITU SOIL RECLAMATION BY AIR STRIPPING AND SLUDGE UPTAKE A Thesis by MAURICIO CARDENOSA-MENDOZA Approved as to style and content by: Robin . Autenrieth (Chair of comittee) James S. Bonner...

  20. DEVELOPMENT OF FINE PARTICULATE EMISSION FACTORS AND SPECIATION PROFILES FOR OIL AND GAS-FIRED COMBUSTION SYSTEMS

    SciTech Connect (OSTI)

    Glenn C. England; Stephanie Wien; Mingchih O. Chang

    2002-08-01

    This report provides results from the first year of this three-year project to develop dilution measurement technology for characterizing PM2.5 (particles with aerodynamic diameter smaller than 2.5 micrometers) and precursor emissions from stationary combustion sources used in oil, gas and power generation operations. Detailed emission rate and chemical speciation test results for a refinery gas-fired process heater and plans for cogeneration gas turbine tests and pilot-scale tests are presented. Tests were performed using a research dilution sampling apparatus and traditional EPA methods to compare PM2.5 mass and chemical speciation. Test plans are presented for a gas turbine facility that will be tested in the fourth quarter of 2002. A preliminary approach for pilot-scale tests is presented that will help define design constraints for a new dilution sampler design that is smaller, lighter, and less costly to use.

  1. An Investigation of Using Isochoric Data Points in the Development of Natural Gas Equation of State 

    E-Print Network [OSTI]

    Khazndar, Aoubai M

    2014-02-27

    gas consumer and will account for 55 percent of total gas use in 2035. This increase of natural gas consumption can be attributed to the big LNG and GTL projects that exist in this region. Qatar more than doubled its LNG liquefaction capacity over... the last 7-years and more than doubled its fuel use in LNG liquefaction plants. [18, 19] In addition to the two GTL facilities (Oryx and Pearl) that are located in Qatar. The Oryx plant consumes 120 billion cubic feet of natural gas per year and produces...

  2. Natural Gas Discovery and Development Impacts on Rio Vista and Its Community

    E-Print Network [OSTI]

    Gbedema, Tometi Koku

    2006-01-01

    went through for well drilling materials and manpower. Theserviced the wells or supplied the drilling operations toDrilling Site: Drilling a natural gas well in the Sacramento

  3. Development of Atmospheric Tracer Methods To Measure Methane Emissions from Natural Gas Facilities and Urban Areas

    E-Print Network [OSTI]

    1995-01-01

    to coal and 30% less compared to fuel oil, switching fromcoal and fuel oil to natural gas has the potential to reducehydrocarbon emissions from an oil refinery wastewater

  4. Natural Gas Residential Pricing Developments During the 1996-97 Winter

    Reports and Publications (EIA)

    1997-01-01

    This article is intended to provide an understanding the reasons behind the sharp rise in residential gas bills during the 1996-97 winter.

  5. Developing effective strategies for complying with the oil and gas MACT

    SciTech Connect (OSTI)

    Bhatt, T.N.; Ebarb, W.

    1996-12-31

    The 1990 Clean Air Act Amendments (CAAA), enacted on November 15, 1990, represent landmark legislation which provides the US Environmental Protection Agency with unprecedented authority to promulgate regulations affecting air pollution. Title 3 of the 1990 CAAA focuses on the emissions of hazardous air pollutants (HAP) from the sources of concern. The HAP affected by Title 3 are identified in Section 112(b) of the Clean Air Act (CAA). The industry specific regulations promulgated for major industrial source categories under Section 112(d) and Section 112(g) of the CAA are referred to as the Maximum Achievable Control Technology (MACT). In order to maximize operational flexibility and optimize costs of compliance, facilities must develop a plan to identify methods to comply with the area source provisions of the regulations by becoming a minor source/synthetic minor source or to comply with the major source requirements of the regulations in the most cost effective manner. Area source requirements are generally less stringent as compared to the major source requirements. This paper outlines the fundamental aspects of Title 3 as they impact the upstream oil and gas industry. The paper provides guidelines to the potentially affected facilities in determining applicability of the MACT rules based on emission inventories, potential to emit (PTE), and latest guidance from the EPA. The paper finally provides strategies to comply with the requirements of the regulations and discusses the advantages and disadvantages associated with using specific strategies.

  6. DEVELOPMENT OF GLASS AND GLASS CERAMIC PROPPANTS FROM GAS SHALE WELL DRILL CUTTINGS

    SciTech Connect (OSTI)

    Johnson, F.; Fox, K.

    2013-10-02

    The objective of this study was to develop a method of converting drill cuttings from gas shale wells into high strength proppants via flame spheroidization and devitrification processing. Conversion of drill cuttings to spherical particles was only possible for small particle sizes (< 53 {micro}m) using a flame former after a homogenizing melting step. This size limitation is likely to be impractical for application as conventional proppants due to particle packing characteristics. In an attempt to overcome the particle size limitation, sodium and calcium were added to the drill cuttings to act as fluxes during the spheroidization process. However, the flame former remained unable to form spheres from the fluxed material at the relatively large diameters (0.5 - 2 mm) targeted for proppants. For future work, the flame former could be modified to operate at higher temperature or longer residence time in order to produce larger, spherical materials. Post spheroidization heat treatments should be investigated to tailor the final phase assemblage for high strength and sufficient chemical durability.

  7. Development of an industrial l-star pulsed gas combustor. Final report, April 1986-December 1989

    SciTech Connect (OSTI)

    Kotidis, P.A.

    1990-08-01

    A pulsed gas combustor has been developed based on the L-Star pulsed combustion principle. This concept is quite different from that of the more conventional acoustic pulsed combustor. In the L-Star system, there is no resonator, and the combustor volume and exhaust orifice area are chosen such that the time for pressure decay is greater than or equal to the time for combustion, in order to achieve high combustion pressures. A bench scale unit was constructed and tested. Maximum average peak pressure and combustion efficiency were realized for stoichiometric fuel/air ratio at 11.7 Hz, combustor volume of 0.2 cu ft, and air flow (steady) of 200 CFM. The combustor at these conditions produced 10 to the 6th power BTU/hr. Two backflow prevention configurations were tested: fluidic-aerodynamic valve and flapper valve. Peak pressures of 25 and 39 psig, respectively, were achieved. CO and combustibles emissions were high for both schemes (1000-3000 ppm); however, NOx emissions were as low as 10 ppm.

  8. High-reliability gas-turbine combined-cycle development program: Phase II, Volume 3. Final report

    SciTech Connect (OSTI)

    Hecht, K.G.; Sanderson, R.A.; Smith, M.J.

    1982-01-01

    This three-volume report presents the results of Phase II of the multiphase EPRI-sponsored High-Reliability Gas Turbine Combined-Cycle Development Program whose goal is to achieve a highly reliable gas turbine combined-cycle power plant, available by the mid-1980s, which would be an economically attractive baseload generation alternative for the electric utility industry. The Phase II program objective was to prepare the preliminary design of this power plant. The power plant was addressed in three areas: (1) the gas turbine, (2) the gas turbine ancillaries, and (3) the balance of plant including the steam turbine generator. To achieve the program goals, a gas turbine was incorporated which combined proven reliability characteristics with improved performance features. This gas turbine, designated the V84.3, is the result of a cooperative effort between Kraftwerk Union AG and United Technologies Corporation. Gas turbines of similar design operating in Europe under baseload conditions have demonstrated mean time between failures in excess of 40,000. The reliability characteristics of the gas turbine ancillaries and balance-of-plant equipment were improved through system simplification and component redundancy and by selection of component with inherent high reliability. A digital control system was included with logic, communications, sensor redundancy, and manual backup. An independent condition monitoring and diagnostic system was also included. Program results provide the preliminary design of a gas turbine combined-cycle baseload power plant. This power plant has a predicted mean time between failure of nearly twice the 3000-h EPRI goal. The cost of added reliability features is offset by improved performance, which results in a comparable specific cost and an 8% lower cost of electricty compared to present market offerings.

  9. Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems

    SciTech Connect (OSTI)

    Blough, E.; Russell, W.; Leach, J.W.

    1990-08-01

    Computer models have been developed for evaluating conceptual designs of integrated coal gasification combined cycle power plants. An overall system model was developed for performing thermodynamic cycle analyses, and detailed models were developed for predicting performance characteristics of fixed bed coal gasifiers and hot gas clean up subsystem components. The overall system model performs mass and energy balances and does chemical equilibrium analyses to determine the effects of changes in operating conditions, or to evaluate proposed design changes. An existing plug flow model for fixed bed gasifiers known as the Wen II model was revised and updated. Also, a spread sheet model of zinc ferrite sulfur sorbent regeneration subsystem was developed. Parametric analyses were performed to determine how performance depends on variables in the system design. The work was done to support CRS Sirrine Incorporated in their study of standardized air blown coal gasifier gas turbine concepts.

  10. Greenhouse Emission Reductions and Natural Gas Vehicles: A Resource Guide on Technology Options and Project Development

    SciTech Connect (OSTI)

    Orestes Anastasia; NAncy Checklick; Vivianne Couts; Julie Doherty; Jette Findsen; Laura Gehlin; Josh Radoff

    2002-09-01

    Accurate and verifiable emission reductions are a function of the degree of transparency and stringency of the protocols employed in documenting project- or program-associated emissions reductions. The purpose of this guide is to provide a background for law and policy makers, urban planners, and project developers working with the many Greenhouse Gas (GHG) emission reduction programs throughout the world to quantify and/or evaluate the GHG impacts of Natural Gas Vehicle (NGVs). In order to evaluate the GHG benefits and/or penalties of NGV projects, it is necessary to first gain a fundamental understanding of the technology employed and the operating characteristics of these vehicles, especially with regard to the manner in which they compare to similar conventional gasoline or diesel vehicles. Therefore, the first two sections of this paper explain the basic technology and functionality of NGVs, but focus on evaluating the models that are currently on the market with their similar conventional counterparts, including characteristics such as cost, performance, efficiency, environmental attributes, and range. Since the increased use of NGVs, along with Alternative Fuel Vehicle (AFVs) in general, represents a public good with many social benefits at the local, national, and global levels, NGVs often receive significant attention in the form of legislative and programmatic support. Some states mandate the use of NGVs, while others provide financial incentives to promote their procurement and use. Furthermore, Federal legislation in the form of tax incentives or procurement requirements can have a significant impact on the NGV market. In order to implement effective legislation or programs, it is vital to have an understanding of the different programs and activities that already exist so that a new project focusing on GHG emission reduction can successfully interact with and build on the experience and lessons learned of those that preceded it. Finally, most programs that deal with passenger vehicles--and with transportation in general--do not address the climate change component explicitly, and thus there are few GHG reduction goals that are included in these programs. Furthermore, there are relatively few protocols that exist for accounting for the GHG emissions reductions that arise from transportation and, specifically, passenger vehicle projects and programs. These accounting procedures and principles gain increased importance when a project developer wishes to document in a credible manner, the GHG reductions that are achieved by a given project or program. Section four of this paper outlined the GHG emissions associated with NGVs, both upstream and downstream, and section five illustrated the methodology, via hypothetical case studies, for measuring these reductions using different types of baselines. Unlike stationary energy combustion, GHG emissions from transportation activities, including NGV projects, come from dispersed sources creating a need for different methodologies for assessing GHG impacts. This resource guide has outlined the necessary context and background for those parties wishing to evaluate projects and develop programs, policies, projects, and legislation aimed at the promotion of NGVs for GHG emission reduction.

  11. The Economic Impact of the Natural Gas Industry and the Marcellus Shale Development in West Virginia in 2009

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Education Policy Commission, or the West Virginia University Board of Governors. #12; 1 Introduction, industries, and electricity producers across the United States. Natural gas is developed from either to produce electricity, steel, glass, paper, clothing, and a variety of other products.1 In the United States

  12. Petrophysical Properties of Unconventional Low-Mobility Reservoirs (Shale Gas and Heavy Oil) by Using Newly Developed Adaptive Testing Approach

    E-Print Network [OSTI]

    Torres-Verdķn, Carlos

    of SPE copyright. Abstract Pressure testing in very-low-mobility reservoirs is challengingSPE 159172 Petrophysical Properties of Unconventional Low-Mobility Reservoirs (Shale Gas and Heavy Oil) by Using Newly Developed Adaptive Testing Approach Hamid Hadibeik, The University of Texas

  13. Solar Thermal Conversion of Biomass to Synthesis Gas: Cooperative Research and Development Final Report, CRADA Number CRD-09-00335

    SciTech Connect (OSTI)

    Netter, J.

    2013-08-01

    The CRADA is established to facilitate the development of solar thermal technology to efficiently and economically convert biomass into useful products (synthesis gas and derivatives) that can replace fossil fuels. NREL's High Flux Solar Furnace will be utilized to validate system modeling, evaluate candidate reactor materials, conduct on-sun testing of the process, and assist in the development of solar process control system. This work is part of a DOE-USDA 3-year, $1M grant.

  14. Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems. Volume 1, Final report

    SciTech Connect (OSTI)

    Sadowski, R.S.; Brown, M.J.; Hester, J.C.; Harriz, J.T.; Ritz, G.J.

    1991-02-01

    The objective of this study is to develop standardized air blown fixed bed gasification hot gas cleanup integrated gasifier combined cycle (IGCC) systems.

  15. Development of a Cummins Westport SI-EGR Natural Gas Engine at 0.2 g/bhp-hr NOx: February 2, 2005 - July 31, 2006

    SciTech Connect (OSTI)

    Kamel, M.

    2006-10-01

    Discusses development and demonstration of advanced vehicle technologies for controlling exhaust emissions in a medium-duty natural gas engine to meet 2010 federal standards.

  16. North America: A better second half for drilling--Maybe. [Oil and gas exploration and development in North America

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    This paper provides data on the exploration, production, and drilling activity of the oil and gas industry in Canada, the US, and Central America. The section on the US discusses trends in drilling activity in both the first and second half of 1993. Statistical information on all oil and gas producing states if provided in a tabular format. Information on exploration and development expenditures is also discussed. Data is also provided drilling and production information for Canada, Mexico, Guatemala, Belize, Nicaragua, and other minor production areas.

  17. Development of Metal-Organic Framework Thin Films and Membranes for Low-Energy Gas Separation 

    E-Print Network [OSTI]

    McCarthy, Michael

    2011-08-08

    facile control over pore size and physical properties, making MOFs attractive materials for application in gas-separating membranes. A wealth of reports exist discussing the synthesis of MOF structures, however relatively few reports exist discussing MOF...

  18. Natural Gas Discovery and Development Impacts on Rio Vista and Its Community

    E-Print Network [OSTI]

    Gbedema, Tometi Koku

    2006-01-01

    The unfortunate experience of oil search in the Rio Vista-58 2. Re-enacting the oil drilling dream……………………………………………60Company [C56 7. Enron Oil & Gas Company [E2915] 8. EOG

  19. Development of a High Temperature Gas-Cooled Reactor TRISO-coated particle fuel chemistry model

    E-Print Network [OSTI]

    Diecker, Jane T

    2005-01-01

    The first portion of this work is a comprehensive analysis of the chemical environment in a High Temperature Gas-Cooled Reactor TRISO fuel particle. Fission product inventory versus burnup is calculated. Based on those ...

  20. Development of the in vitro gas production technique to estimate protein degradation in the rumen 

    E-Print Network [OSTI]

    Palmer, Matthew

    2006-01-01

    The purpose of this thesis was to adapt the in vitro gas production technique (IVGPT) to estimate the rumen degradation profile of feed protein and to investigate the effect of sample preparation on the estimated kinetics ...

  1. The development of a curb valve flow meter for gas theft detection

    E-Print Network [OSTI]

    Fitzgerald, Kevin Francis

    1984-01-01

    As the supply of natural gas continues to dwindle, and government decontrol of pricing progresses, the rising cost of this essential natural resource will drive more individuals to consider various forms of pilferage as a ...

  2. The Development of Dynamic Operational Risk Assessment in Oil/Gas and Chemical Industries 

    E-Print Network [OSTI]

    Yang, Xiaole

    2011-08-08

    In oil/gas and chemical industries, dynamics is one of the most essential characteristics of any process. Time-dependent response is involved in most steps of both the physical/engineering processes and the equipment ...

  3. Corporate bodies and chemical bonds : an STS analysis of natural gas development in the United States

    E-Print Network [OSTI]

    Wylie, Sara Ann

    2011-01-01

    Natural gas extraction in the United States in the early 21st century has transformed social, physical, legal and biological landscapes. The technique of hydraulic fracturing, which entails the high-pressure injection into ...

  4. Development of an improved methodology to assess potential unconventional gas resources in North America 

    E-Print Network [OSTI]

    Salazar Vanegas, Jesus

    2007-09-17

    Since the 1970s, various private and governmental agencies have conducted studies to assess potential unconventional gas resources, particularly those resources contained in tight sands, fractured shales, and coal beds. The US Geological Survey...

  5. Development and assessment of a soot emissions model for aircraft gas turbine engines

    E-Print Network [OSTI]

    Martini, Bastien

    2008-01-01

    Assessing candidate policies designed to address the impact of aviation on the environment requires a simplified method to estimate pollutant emissions for current and future aircraft gas turbine engines under different ...

  6. DEVELOPMENT OF A NEW HIGH TEMPERATURE GAS RECEIVER UTILIZING SMALL PARTICLES

    E-Print Network [OSTI]

    Hunt, Arlon J.

    2012-01-01

    Symposium on Solar Thermal Power and Energy Systems,solar to thermal conversion is accomplished by a dispersion of ultra~fine partlcles suspended in a gas to absorb radlant energy

  7. Multi-wavelength studies of spectacular ram-pressure stripping of a galaxy. II. Star formation in the tail

    SciTech Connect (OSTI)

    Yagi, Masafumi; Gu, Liyi; Nakazawa, Kazuhiro; Makishima, Kazuo; Fujita, Yutaka; Akahori, Takuya; Hattori, Takashi; Yoshida, Michitoshi

    2013-12-01

    With multiband photometric data in public archives, we detected four intracluster star-forming regions in the Virgo Cluster. Two of them were at a projected distance of 35 kpc from NGC 4388 and the other two were 66 kpc away. Our new spectroscopic observations revealed that their recessional velocities were comparable to the ram-pressure-stripped tail of NGC 4388 and confirmed the association. The stellar mass of the star-forming regions ranged from 10{sup 4} to 10{sup 4.5} M {sub ?} except for that of the faintest one, which was <10{sup 3} M {sub ?}. The metallicity was comparable to a solar abundance and the age of the stars was ?10{sup 6.8} yr. Their young stellar age meant that the star formation should have started after the gas was stripped from NGC 4388. This implied in situ condensation of the stripped gas. We also found that two star-forming regions were located near the leading edge of a filamentary dark cloud. The extinction of the filament was smaller than that derived from the Balmer decrement of the star-forming regions, implying that the dust in the filament would be locally dense around the star-forming regions.

  8. Performance studies of the CMS Strip Tracker before installation

    SciTech Connect (OSTI)

    Adam, W.; et al.

    2009-06-01

    In March 2007 the assembly of the Silicon Strip Tracker was completed at the Tracker Integration Facility at CERN. Nearly 15% of the detector was instrumented using cables, fiber optics, power supplies, and electronics intended for the operation at the LHC. A local chiller was used to circulate the coolant for low temperature operation. In order to understand the efficiency and alignment of the strip tracker modules, a cosmic ray trigger was implemented. From March through July 4.5 million triggers were recorded. This period, referred to as the Sector Test, provided practical experience with the operation of the Tracker, especially safety, data acquisition, power, and cooling systems. This paper describes the performance of the strip system during the Sector Test, which consisted of five distinct periods defined by the coolant temperature. Significant emphasis is placed on comparisons between the data and results from Monte Carlo studies.

  9. Compilation and Presentation of Existing Data on Oil and Gas Leasing Development in a Manner Useful to the NEPA Process

    SciTech Connect (OSTI)

    Amy Childers; Dave Cornue

    2008-11-30

    In recognition of our nation's increasing energy needs, the George W. Bush Administration's National Energy Policy Development Group report (May 2001) suggested that one way to increase domestic on-shore production of oil and gas is to increase access to undiscovered resources on federal lands. Also recognized is the need to protect and conserve natural resources, which often are located on and around federal lands. The National Environmental Policy Act (NEPA) was designed to create and maintain conditions under which man and nature can exist in productive harmony. NEPA requires that federal agencies prepare an environmental impact statement (EIS) prior to the approval of any development activities. The NEPA scope is broad, with the process applicable to many situations from the building of highways, barge facilities and water outtake facilities, bridges, and watersheds to other less significant projects. The process often involves cooperation among multiple federal agencies, industry, scientists and consultants, and the surrounding community. The objective of the project, titled Compilation and Presentation of Existing Data on Oil and Gas Leasing and Development in a Manner Useful to the NEPA Process, is to facilitate faster and more comprehensive access to current oil and gas data by land management agencies and operators. This will enable key stakeholders in the NEPA process to make decisions that support access to federal resources while at the same time achieving a legitimate balance between environmental protection and appropriate levels of development.

  10. Integrated vacuum absorption steam cycle gas separation

    DOE Patents [OSTI]

    Chen, Shiaguo (Champaign, IL); Lu, Yonggi (Urbana, IL); Rostam-Abadi, Massoud (Champaign, IL)

    2011-11-22

    Methods and systems for separating a targeted gas from a gas stream emitted from a power plant. The gas stream is brought into contact with an absorption solution to preferentially absorb the targeted gas to be separated from the gas stream so that an absorbed gas is present within the absorption solution. This provides a gas-rich solution, which is introduced into a stripper. Low pressure exhaust steam from a low pressure steam turbine of the power plant is injected into the stripper with the gas-rich solution. The absorbed gas from the gas-rich solution is stripped in the stripper using the injected low pressure steam to provide a gas stream containing the targeted gas. The stripper is at or near vacuum. Water vapor in a gas stream from the stripper is condensed in a condenser operating at a pressure lower than the stripper to concentrate the targeted gas. Condensed water is separated from the concentrated targeted gas.

  11. Nutrient dynamics and nitrogen trace gas flux during ecosystem development in montane rain forest

    SciTech Connect (OSTI)

    Riley, R.H.; Vitousek, P.M.

    1995-01-01

    Patterns of nitrogen trace gas emissions, soil nitrogen flux, and nutrient availability were evaluated at five sites that form a chronosequence in Hawaiian montane rain forest. The estimated age of basaltic parent material from which soils developed at the Kilauea site was 200 yr, 6000 yr at the Puu Makaala site, 185000 yr at the Kohala site, 1.65 x 10{sup 6} yr at the Molokai site, and 4.5 x 10{sup 6} yr at the Kauai site. Peak net N mineralization and nitrification values were found in soils from the 185000-yr-old Kohala site. Nitrogen content of foliage and leaf litter was highest in the intermediate age sites (Puu Makaala and Kohala) and N and P retranslocation was lowest at the Puu Makaala site. Soil cores fertilized with nitrogen had significantly higher rates of root ingrowth than control cores at the two youngest sites (200 and 6000 yr old) but not in older sites (185000 and 4.5 x 10{sup 6}-yr-old sites) and total fine root growth into control cores was greatest at the Kohala site. The highest N{sub 2}O emissions were found at the 185000-yr-old Kohala site, while the highest combined flux of N{sub 2}O + NO was observed at the 4.5 x 10{sup 6}-yr-old Kauai site. While overall N{sub 2}O emission rates were correlated with rates of N transformations, soil water content appeared to influence the magnitude of emissions of N{sub 2}O and the ratios of emissions of NO vs. N{sub 2}O. N{sub 2}O emissions occurred when water-filled pore space (WFPS) values were >40%, with highest emissions in at least two sites observed at WFPS values of 75%. Among sites, high N{sub 2}O emissions were associated with high soil N transformation rates. Large NO fluxes were observed only at the Kauai site when WFPS values were <60%. 50 refs., 8 figs., 4 tabs.

  12. Graded pitch electromagnetic pump for thin strip metal casting systems

    DOE Patents [OSTI]

    Kuznetsov, Stephen B. (Pittsburgh, PA)

    1986-01-01

    A metal strip casing system is provided with an electromagnetic pump which includes a pair of primary blocks having a graded pole pitch, polyphase ac winding and being arranged on opposite sides of a movable heat sink. A nozzle is provided for depositing liquid metal on the heat sink such that the resulting metal strip and heat sink combination is subjected to a longitudinal electromagnetic field which increases in wavelength in the direction of travel of the heat sink, thereby subjecting the metal and heat sink to a longitudinal force having a magnitude which increases in the direction of travel.

  13. Graded pitch electromagnetic pump for thin strip metal casting systems

    DOE Patents [OSTI]

    Kuznetsov, S.B.

    1986-04-01

    A metal strip casing system is provided with an electromagnetic pump which includes a pair of primary blocks having a graded pole pitch, polyphase ac winding and being arranged on opposite sides of a movable heat sink. A nozzle is provided for depositing liquid metal on the heat sink such that the resulting metal strip and heat sink combination is subjected to a longitudinal electromagnetic field which increases in wavelength in the direction of travel of the heat sink, thereby subjecting the metal and heat sink to a longitudinal force having a magnitude which increases in the direction of travel. 4 figs.

  14. In-well vapor stripping drilling and characterization work plan

    SciTech Connect (OSTI)

    Koegler, K.J.

    1994-03-13

    This work plan provides the information necessary for drilling, sampling, and hydrologic testing of wells to be completed in support of a demonstration of the in-well vapor stripping system. The in-well vapor stripping system is a remediation technology designed to preferentially extract volatile organic compounds (VOCs) from contaminated groundwater by converting them to a vapor phase. Air-lift pumping is used to lift and aerate groundwater within the well. The volatiles escaping the aerated water are drawn off by a slight vacuum and treated at the surface while the water is allowed to infiltrate the vadose zone back to the watertable.

  15. Results from the DOE Advanced Gas Reactor Fuel Development and Qualification Program

    SciTech Connect (OSTI)

    David Petti

    2014-06-01

    Modular HTGR designs were developed to provide natural safety, which prevents core damage under all design basis accidents and presently envisioned severe accidents. The principle that guides their design concepts is to passively maintain core temperatures below fission product release thresholds under all accident scenarios. This level of fuel performance and fission product retention reduces the radioactive source term by many orders of magnitude and allows potential elimination of the need for evacuation and sheltering beyond a small exclusion area. This level, however, is predicated on exceptionally high fuel fabrication quality and performance under normal operation and accident conditions. Germany produced and demonstrated high quality fuel for their pebble bed HTGRs in the 1980s, but no U.S. manufactured fuel had exhibited equivalent performance prior to the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. The design goal of the modular HTGRs is to allow elimination of an exclusion zone and an emergency planning zone outside the plant boundary fence, typically interpreted as being about 400 meters from the reactor. To achieve this, the reactor design concepts require a level of fuel integrity that is better than that claimed for all prior US manufactured TRISO fuel, by a few orders of magnitude. The improved performance level is about a factor of three better than qualified for German TRISO fuel in the 1980’s. At the start of the AGR program, without a reactor design concept selected, the AGR fuel program selected to qualify fuel to an operating envelope that would bound both pebble bed and prismatic options. This resulted in needing a fuel form that could survive at peak fuel temperatures of 1250°C on a time-averaged basis and high burnups in the range of 150 to 200 GWd/MTHM (metric tons of heavy metal) or 16.4 to 21.8% fissions per initial metal atom (FIMA). Although Germany has demonstrated excellent performance of TRISO-coated UO2 particle fuel up to about 10% FIMA and 1150°C, UO2 fuel is known to have limitations because of CO formation and kernel migration at the high burnups, power densities, temperatures, and temperature gradients that may be encountered in the prismatic modular HTGRs. With uranium oxycarbide (UCO) fuel, the kernel composition is engineered to prevent CO formation and kernel migration, which are key threats to fuel integrity at higher burnups, temperatures, and temperature gradients. Furthermore, the recent poor fuel performance of UO2 TRISO fuel pebbles measured in Chinese irradiation testing in Russia and in German pebbles irradiated at 1250°C, and historic data on poorer fuel performance in safety testing of German pebbles that experienced burnups in excess of 10% FIMA [1] have each raised concern about the use of UO2 TRISO above 10% FIMA and 1150°C and the degree of margin available in the fuel system. This continues to be an active area of study internationally.

  16. Africa: Unrest and restrictive terms limit abundant potential. [Oil and gas exploration and development in Africa

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    This paper summarizes the drilling and exploration activity of the oil and gas industries of Egypt, Libya, Tunisia, Algeria, Morocco, Nigeria, Cameroon, Gabon, the Congo, Angola, and South Africa. Information is provided on current and predicted trends in well drilling activities (both onshore and offshore), numbers of new wells, footage information, production statistics and what fields accounted for this production, and planned new exploration activities. The paper also describes the current status of government policies and political problems affecting the oil and gas industry.

  17. Development and application of an analysis methodology for interpreting ambiguous historical pressure data in the WIPP gas-generation experiments.

    SciTech Connect (OSTI)

    Felicione, F. S.

    2006-01-23

    The potential for generation of gases in transuranic (TRU) waste by microbial activity, chemical interactions, corrosion, and radiolysis was addressed in the Argonne National Laboratory-West (ANL-West) Gas-Generation Experiments (GGE). Data was collected over several years by simulating the conditions in the Waste Isolation Pilot Plant (WIPP) after the eventual intrusion of brine into the repository. Fourteen test containers with various actual TRU waste immersed in representative brine were inoculated with WIPP-relevant microbes, pressurized with inert gases, and kept in an inert-atmosphere environment for several years to provide estimates of the gas-generation rates that will be used in computer models for future WIPP Performance Assessments. Modest temperature variations occurred during the long-term ANL-West experiments. Although the experiment temperatures always remained well within the experiment specifications, the small temperature variation was observed to affect the test container pressure far more than had been anticipated. In fact, the pressure variations were so large, and seemingly erratic, that it was impossible to discern whether the data was even valid and whether the long-term pressure trend was increasing, decreasing, or constant. The result was that no useful estimates of gas-generation rates could be deduced from the pressure data. Several initial attempts were made to quantify the pressure fluctuations by relating these to the measured temperature variation, but none was successful. The work reported here carefully analyzed the pressure measurements to determine if these were valid or erroneous data. It was found that a thorough consideration of the physical phenomena that were occurring can, in conjunction with suitable gas laws, account quite accurately for the pressure changes that were observed. Failure of the earlier attempts to validate the data was traced to the omission of several phenomena, the most important being the variation in the headspace volume caused by thermal expansion and contraction within the brine and waste. A further effort was directed at recovering useful results from the voluminous archived pressure data. An analytic methodology to do this was developed. This methodology was applied to each archived pressure measurement to nullify temperature and other effects to yield an adjusted pressure, from which gas-generation rates could be calculated. A review of the adjusted-pressure data indicated that generated-gas concentrations among these containers after approximately 3.25 years of test operation ranged from zero to over 17,000 ppm by volume. Four test containers experienced significant gas generation. All test containers that showed evidence of significant gas generation contained carbon-steel in the waste, indicating that corrosion was the predominant source of gas generation.

  18. UBC Social Ecological Economic Development Studies (SEEDS) Student Report An Investigation into Induction versus Gas Stovetops

    E-Print Network [OSTI]

    ...........................................................................Page. 3 2.1 Materials of Construction 2.1.1 Induction Stove Materials 2.1.2 Gas Stove Materials 2.2 Energy Kouwenhoven Kjell Raemdonck #12;ii ABSTRACT The new Student Union Building being constructed at the University of British Columbia will have several new kitchens in order to cook for the growing population of students

  19. Development of a compressor model for gas network simulation Supervisor: Johan Romate (Shell/TUD)

    E-Print Network [OSTI]

    Vuik, Kees

    /TUD) Problem background Oil and gas flowing out of a reservoir enter a production network of pipelines flow is modelled in network simulators. The flow through these network elements can be modelled.g. algebraic pressure drop models for simple approximations, or the one-dimensional Euler equations

  20. SKULL-STRIPPING WITH DEFORMABLE ORGANISMS Gautam Prasad

    E-Print Network [OSTI]

    Thompson, Paul

    , USA ABSTRACT Segmenting brain from non-brain tissue within magnetic resonance (MR) images of the human of Neurology, UCLA School of Medicine, Los Angeles, CA, USA UCLA Computer Science Department, Los Angeles, CA head, also known as skull-stripping, is a critical processing step in the analysis of neuroimaging data

  1. OLA with Transmission Threshold for Strip Aravind Kailas

    E-Print Network [OSTI]

    Ingram, Mary Ann

    OLA with Transmission Threshold for Strip Networks Aravind Kailas School of Electrical and Computer-0250, USA Email: mai@ece.gatech.edu Abstract--The opportunistic large array (OLA) with transmission threshold (OLA-T) is a simple form of co- operative transmission that limits node participation

  2. Results of Laboratory Testing of Advanced Power Strips

    SciTech Connect (OSTI)

    B. Sparn, L. Earle

    2012-08-01

    Presented at the ACEEE Summer Study on Energy Efficiency in Buildings on August 12-17, 2012, this presentation reports on laboratory tests of 20 currently available advanced power strip products, which reduce wasteful electricity use of miscellaneous electric loads in buildings.

  3. Tractability and approximability of maximal strip recovery Laurent Bulteau1

    E-Print Network [OSTI]

    Fertin, Guillaume

    @cc.usu.edu April 2, 2012 Abstract An essential task in comparative genomics is to decompose two or more genomes into synteny blocks that are segments of chromosomes with similar contents. Given a set of d genomic maps each a decomposition of the genomic maps into synteny blocks (strips) of the maximum total length , by deleting

  4. Engineering analyses of large precision cathode strip chambers for GEM

    SciTech Connect (OSTI)

    Horvath, J.A.; Belser, F.C.; Pratuch, S.M.; Wuest, C.R. [Lawrence Livermore National Lab., CA (United States)] [Lawrence Livermore National Lab., CA (United States); Mitselmakher, G. [Superconducting Super Collider Lab., Dallas, TX (United States)] [Superconducting Super Collider Lab., Dallas, TX (United States); Gordeev, A. [Institute of Theoretical and Experimental Physics, Moscow (Russian Federation)] [Institute of Theoretical and Experimental Physics, Moscow (Russian Federation); Johnson, C.V. [Lawrence Livermore National Lab., CA (United States)] [Lawrence Livermore National Lab., CA (United States); [Superconducting Super Collider Lab., Dallas, TX (United States); Polychronakos, V.A. [Brookhaven National Lab., Upton, NY (United States)] [Brookhaven National Lab., Upton, NY (United States); Golutvin, I.A. [Joint Institute for Nuclear Research, Dubna (Russian Federation)] [Joint Institute for Nuclear Research, Dubna (Russian Federation)

    1993-10-21

    Structural analyses of large precision cathode strip chambers performed up to the date of this publication are documented. Mechanical property data for typical chamber materials are included. This information, originally intended to be an appendix to the {open_quotes}CSC Structural Design Bible,{close_quotes} is presented as a guide for future designers of large chambers.

  5. Development of the CD symcap platform to study gas-shell mix in implosions at the National Ignition Facility

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Casey, D. T.; Smalyuk, V. A.; Tipton, R. E.; Pino, J. E.; Grim, G. P.; Remington, B. A.; Rowley, D. P.; Weber, S. V.; Barrios, M.; Benedetti, L. R.; et al

    2014-09-09

    Surrogate implosions play an important role at the National Ignition Facility (NIF) for isolating aspects of the complex physical processes associated with fully integrated ignition experiments. The newly developed CD Symcap platform has been designed to study gas-shell mix in indirectly driven, pure T?-gas filled CH-shell implosions equipped with 4 ?m thick CD layers. This configuration provides a direct nuclear signature of mix as the DT yield (above a characterized D contamination background) is produced by D from the CD layer in the shell, mixing into the T-gas core. The CD layer can be placed at different locations within themore »CH shell to probe the depth and extent of mix. CD layers placed flush with the gas-shell interface and recessed up to 8 ?m have shown that most of the mix occurs at the inner-shell surface. In addition, time-gated x-ray images of the hotspot show large brightly-radiating objects traversing through the hotspot around bang-time, which are likely chunks of CH/CD plastic. This platform is a powerful new capability at the NIF for understanding mix, one of the key performance issues for ignition experiments.« less

  6. Development of the CD symcap platform to study gas-shell mix in implosions at the National Ignition Facility

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Casey, D. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Smalyuk, V. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tipton, R. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pino, J. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Grim, G. P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Remington, B. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rowley, D. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Weber, S. V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Barrios, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Benedetti, L. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bleuel, D. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bond, E. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bradley, D. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Caggiano, J. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Callahan, D. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cerjan, C. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chen, K. C. [General Atomics, San Diego, CA (United States); Edgell, D. H. [Laboratory for Laser Energetics, University of Rochester, Rochester, NY (United States); Edwards, M. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fittinghoff, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Frenje, J. A. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Gatu-Johnson, M. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Glebov, V. Y. [Laboratory for Laser Energetics, University of Rochester, Rochester, NY (United States); Glenn, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Guler, N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Haan, S. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hamza, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hatarik, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Herrmann, H. W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hoover, D. [General Atomics, San Diego, CA (United States); Hsing, W. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Izumi, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kervin, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Khan, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kilkenny, J. D. [General Atomics, San Diego, CA (United States); Kline, J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Knauer, J. [Laboratory for Laser Energetics, University of Rochester, Rochester, NY (United States); Kyrala, G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Landen, O. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ma, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); MacPhee, A. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McNaney, J. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mintz, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Moore, A. [AWE Aldermaston, Reading, Berkshire, (United Kingdom); Nikroo, A. [General Atomics, San Diego, CA (United States); Pak, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Parham, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Petrasso, R. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Rinderknecht, H. G. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States)

    2014-09-01

    Surrogate implosions play an important role at the National Ignition Facility (NIF) for isolating aspects of the complex physical processes associated with fully integrated ignition experiments. The newly developed CD Symcap platform has been designed to study gas-shell mix in indirectly driven, pure T?-gas filled CH-shell implosions equipped with 4 ?m thick CD layers. This configuration provides a direct nuclear signature of mix as the DT yield (above a characterized D contamination background) is produced by D from the CD layer in the shell, mixing into the T-gas core. The CD layer can be placed at different locations within the CH shell to probe the depth and extent of mix. CD layers placed flush with the gas-shell interface and recessed up to 8 ?m have shown that most of the mix occurs at the inner-shell surface. In addition, time-gated x-ray images of the hotspot show large brightly-radiating objects traversing through the hotspot around bang-time, which are likely chunks of CH/CD plastic. This platform is a powerful new capability at the NIF for understanding mix, one of the key performance issues for ignition experiments.

  7. Development of the CD symcap platform to study gas-shell mix in implosions at the National Ignition Facility

    SciTech Connect (OSTI)

    Casey, D. T.; Smalyuk, V. A.; Tipton, R. E.; Pino, J. E.; Grim, G. P.; Remington, B. A.; Rowley, D. P.; Weber, S. V.; Barrios, M.; Benedetti, L. R.; Bleuel, D. L.; Bond, E. J.; Bradley, D. K.; Caggiano, J. A.; Callahan, D. A.; Cerjan, C. J.; Chen, K. C.; Edgell, D. H.; Edwards, M. J.; Fittinghoff, D.; Frenje, J. A.; Gatu-Johnson, M.; Glebov, V. Y.; Glenn, S.; Guler, N.; Haan, S. W.; Hamza, A.; Hatarik, R.; Herrmann, H. W.; Hoover, D.; Hsing, W. W.; Izumi, N.; Kervin, P.; Khan, S.; Kilkenny, J. D.; Kline, J.; Knauer, J.; Kyrala, G.; Landen, O. L.; Ma, T.; MacPhee, A. G.; McNaney, J. M.; Mintz, M.; Moore, A.; Nikroo, A.; Pak, A.; Parham, T.; Petrasso, R.; Rinderknecht, H. G.; Sayre, D. B.; Schneider, M.; Stoeffl, W.; Tommasini, R.; Town, R. P.; Widmann, K.; Wilson, D. C.; Yeamans, C. B.

    2014-09-09

    Surrogate implosions play an important role at the National Ignition Facility (NIF) for isolating aspects of the complex physical processes associated with fully integrated ignition experiments. The newly developed CD Symcap platform has been designed to study gas-shell mix in indirectly driven, pure T?-gas filled CH-shell implosions equipped with 4 ?m thick CD layers. This configuration provides a direct nuclear signature of mix as the DT yield (above a characterized D contamination background) is produced by D from the CD layer in the shell, mixing into the T-gas core. The CD layer can be placed at different locations within the CH shell to probe the depth and extent of mix. CD layers placed flush with the gas-shell interface and recessed up to 8 ?m have shown that most of the mix occurs at the inner-shell surface. In addition, time-gated x-ray images of the hotspot show large brightly-radiating objects traversing through the hotspot around bang-time, which are likely chunks of CH/CD plastic. This platform is a powerful new capability at the NIF for understanding mix, one of the key performance issues for ignition experiments.

  8. Development of the CD Symcap platform to study gas-shell mix in implosions at the National Ignition Facility

    SciTech Connect (OSTI)

    Casey, D. T.; Smalyuk, V. A.; Tipton, R. E.; Pino, J. E.; Remington, B. A.; Rowley, D. P.; Weber, S. V.; Barrios, M.; Benedetti, L. R.; Bleuel, D. L.; Bond, E. J.; Bradley, D. K.; Caggiano, J. A.; Callahan, D. A.; Cerjan, C. J.; Edwards, M. J.; Fittinghoff, D.; Glenn, S.; Haan, S. W.; Hamza, A.; and others

    2014-09-15

    Surrogate implosions play an important role at the National Ignition Facility (NIF) for isolating aspects of the complex physical processes associated with fully integrated ignition experiments. The newly developed CD Symcap platform has been designed to study gas-shell mix in indirectly driven, pure T{sub 2}-gas filled CH-shell implosions equipped with 4 ?m thick CD layers. This configuration provides a direct nuclear signature of mix as the DT yield (above a characterized D contamination background) is produced by D from the CD layer in the shell, mixing into the T-gas core. The CD layer can be placed at different locations within the CH shell to probe the depth and extent of mix. CD layers placed flush with the gas-shell interface and recessed up to 8??m have shown that most of the mix occurs at the inner-shell surface. In addition, time-gated x-ray images of the hotspot show large brightly radiating objects traversing through the hotspot around bang-time, which are likely chunks of CH/CD plastic. This platform is a powerful new capability at the NIF for understanding mix, one of the key performance issues for ignition experiments.

  9. Natural gas powered rotary water chiller development. Phase 1. Final report, September 1991-June 1993

    SciTech Connect (OSTI)

    Sanborn, D.F.; Lakowske, R.L.; Byars, M.

    1993-06-01

    Objectives of the project were to evaluate performance and marketability of a rotary engine driven screw compressor for water chiller applications. Choice of a rotary engine was aimed at rotary compressor. Initial testing done with modified stock 13B rotary engine and experimental open compressor. Engine torque not sufficient for 70 ton compressor. Analysis concluded 50 ton best match for air cooled applications and 60 ton best for water cooled to get highest gas COP. Market analysis covered total water chiller market assuming relative costs of power would lead to gas cooling sales. Allowable cost premium for 3 yr payback determined for areas of country. Premium cost of 100 ton air cooled unit estimated and compared to market allowable premiums. Concluded product acceptance will be primarily in niche markets with high local electric power demand charges.

  10. An investigation of passing operations on a rural, two-lane, two-way highway with centerline rumble strips 

    E-Print Network [OSTI]

    Miles, Jeffrey David

    2005-02-17

    Strip Applications.........................................................................................11 CRS Research.............................................................................................................13 Delaware... Strip Design........................................................................................9 FIGURE 3 ARS Seal Coat Treatment..............................................................................12 FIGURE 4 Delaware and Colorado CRS...

  11. Opportunities to change development pathways toward lower greenhouse gas emissions through energy efficiency

    E-Print Network [OSTI]

    Sathaye, Jayant

    2010-01-01

    C. R. (1998). Using solar cookers and gardens to improveburning cookers and solar cookers in developing countries

  12. Opportunities to change development pathways toward lower greenhouse gas emissions through energy efficiency

    E-Print Network [OSTI]

    Sathaye, Jayant

    2010-01-01

    development of hydroelectric power. Energy, 20(10), 977–981.plants in place of hydroelectric power for instance, but

  13. FLATNESS BASED OPEN LOOP CONTROL FOR THE TWIN ROLL STRIP CASTING

    E-Print Network [OSTI]

    Ollivier, FranƧois

    FLATNESS BASED OPEN LOOP CONTROL FOR THE TWIN ROLL STRIP CASTING PROCESS Ch. Fleck #,1 Th. Paulus, Steinbachstr. 54, DĀ­52074 Aachen, Germany Abstract: Strip casting technology is the most recent innovative steel casting technology that integrates casting and rolling into a single production step. The strip

  14. FLATNESS BASED OPEN LOOP CONTROL FOR THE TWIN ROLL STRIP CASTING

    E-Print Network [OSTI]

    Ollivier, FranƧois

    FLATNESS BASED OPEN LOOP CONTROL FOR THE TWIN ROLL STRIP CASTING PROCESS Ch. Fleck ,1 Th. Paulus ,2, D-52074 Aachen, Germany Abstract: Strip casting technology is the most recent innovative steel casting technology that integrates casting and rolling into a single production step. The strip thickness

  15. Novel Sorbent Development and Evaluation for the Capture of Krypton and Xenon from Nuclear Fuel Reprocessing Off-Gas Streams

    SciTech Connect (OSTI)

    Troy G. Garn; Mitchell R. Greenhalgh; Jack D. Law

    2013-09-01

    The release of volatile radionuclides generated during Used Nuclear Fuel reprocessing in the US will most certainly need to be controlled to meet US regulatory emission limits. A US DOE sponsored Off-Gas Sigma Team has been tasked with a multi-lab collaborative research and development effort to investigate and evaluate emissions and immobilization control technologies for the volatile radioactive species generated from commercial Used Nuclear Fuel (UNF) Reprocessing. Physical Adsorption technology is a simpler and potential economical alternative to cryogenic distillation processes that can be used for the capture of krypton and xenon and has resulted in a novel composite sorbent development procedure using synthesized mordenite as the active material. Utilizing the sorbent development procedure, INL sigma team members have developed two composite sorbents that have been evaluated for krypton and xenon capacities at ambient and 191 K temperature using numerous test gas compositions. Adsorption isotherms have been generated to predict equilibration and maximum capacities enabling modeling to support process equipment scale-up.

  16. Novel Sorbent Development and Evaluation for the Capture of Krypton and Xenon from Nuclear Fuel Reprocessing Off-Gas Streams

    SciTech Connect (OSTI)

    Troy G. Garn; Mitchell R. Greenhalgh; Jack D. Law

    2013-10-01

    The release of volatile radionuclides generated during Used Nuclear Fuel reprocessing in the US will most certainly need to be controlled to meet US regulatory emission limits. A US DOE sponsored Off-Gas Sigma Team has been tasked with a multi-lab collaborative research and development effort to investigate and evaluate emissions and immobilization control technologies for the volatile radioactive species generated from commercial Used Nuclear Fuel (UNF) Reprocessing. Physical Adsorption technology is a simpler and potential economical alternative to cryogenic distillation processes that can be used for the capture of krypton and xenon and has resulted in a novel composite sorbent development procedure using synthesized mordenite as the active material. Utilizing the sorbent development procedure, INL sigma team members have developed two composite sorbents that have been evaluated for krypton and xenon capacities at ambient and 191 K temperature using numerous test gas compositions. Adsorption isotherms have been generated to predict equilibration and maximum capacities enabling modeling to support process equipment scale-up.

  17. Nanodiamond Foils for H- Stripping to Support the Spallation Neutron Source (SNS) and Related Applications

    SciTech Connect (OSTI)

    Vispute, R D; Ermer, Henry K; Sinsky, Phillip; Seiser, Andrew; Shaw, Robert W; Wilson, Leslie L; Harris, Gary; Piazza, Fabrice

    2013-01-01

    Thin diamond foils are needed in many particle accelerator experiments regarding nuclear and atomic physics, as well as in some interdisciplinary research. Particularly, nanodiamond texture is attractive for this purpose as it possesses a unique combination of diamond properties such as high thermal conductivity, mechanical strength and high radiation hardness; therefore, it is a potential material for energetic ion beam stripper foils. At the ORNL Spallation Neutron Source (SNS), the installed set of foils must be able to survive a nominal five-month operation period, without the need for unscheduled costly shutdowns and repairs. Thus, a single nanodiamond foil about the size of a postage stamp is critical to the entire operation of SNS and similar sources in U.S. laboratories and around the world. We are investigating nanocrystalline, polycrystalline and their admixture films fabricated using a hot filament chemical vapor deposition (HFCVD) system for H- stripping to support the SNS at Oak Ridge National Laboratory. Here we discuss optimization of process variables such as substrate temperature, process gas ratio of H2/Ar/CH4, substrate to filament distance, filament temperature, carburization conditions, and filament geometry to achieve high purity diamond foils on patterned silicon substrates with manageable intrinsic and thermal stresses so that they can be released as free standing foils without curling. An in situ laser reflectance interferometry tool (LRI) is used for monitoring the growth characteristics of the diamond thin film materials. The optimization process has yielded free standing foils with no pinholes. The sp3/sp2 bonds are controlled to optimize electrical resistivity to reduce the possibility of surface charging of the foils. The integrated LRI and HFCVD process provides real time information on the growth of films and can quickly illustrate growth features and control over film thickness. The results are discussed in the light of development of nanodiamond foils that will be able to withstand a few MW proton beam and hopefully will be able to be used after possible future upgrades to the SNS to greater than a 3MW beam.

  18. DEVELOPMENT OF A HYDROGEN MORDENITE SORBENT FOR THE CAPTURE OF KRYPTON FROM USED NUCLEAR FUEL REPROCESSING OFF-GAS STREAMS

    SciTech Connect (OSTI)

    Mitchell Greenhalgh; Troy G. Garn; Jack D. Law

    2014-04-01

    A novel new sorbent for the separation of krypton from off-gas streams resulting from the reprocessing of used nuclear fuel has been developed and evaluated. A hydrogen mordenite powder was successfully incorporated into a macroporous polymer binder and formed into spherical beads. The engineered form sorbent retained the characteristic surface area and microporosity indicative of mordenite powder. The sorbent was evaluated for krypton adsorption capacities utilizing thermal swing operations achieving capacities of 100 mmol of krypton per kilogram of sorbent at a temperature of 191 K. A krypton adsorption isotherm was also obtained at 191 K with varying krypton feed gas concentrations. Adsorption/desorption cycling effects were also evaluated with results indicating that the sorbent experienced no decrease in krypton capacity throughout testing.

  19. Development of a direct-injected natural gas engine system for heavy-duty vehicles: Final report phase 2

    SciTech Connect (OSTI)

    Cox, G.B.; DelVecchio, K.A.; Hays, W.J.; Hiltner, J.D.; Nagaraj, R.; Emmer, C.

    2000-03-02

    This report summarizes the results of Phase 2 of this contract. The authors completed four tasks under this phase of the subcontract. (1) They developed a computational fluid dynamics (CFD) model of a 3500 direct injected natural gas (DING) engine gas injection/combustion system and used it to identify DING ignition/combustion system improvements. The results were a 20% improvement in efficiency compared to Phase 1 testing. (2) The authors designed and procured the components for a 3126 DING engine (300 hp) and finished assembling it. During preliminary testing, the engine ran successfully at low loads for approximately 2 hours before injector tip and check failures terminated the test. The problems are solvable; however, this phase of the program was terminated. (3) They developed a Decision & Risk Analysis model to compare DING engine technology with various other engine technologies in a number of commercial applications. The model shows the most likely commercial applications for DING technology and can also be used to identify the sensitivity of variables that impact commercial viability. (4) MVE, Inc., completed a preliminary design concept study that examines the major design issues involved in making a reliable and durable 3,000 psi LNG pump. A primary concern is the life of pump seals and piston rings. Plans for the next phase of this program (Phase 3) have been put on indefinite hold. Caterpillar has decided not to fund further DING work at this time due to limited current market potential for the DING engine. However, based on results from this program, the authors believe that DI natural gas technology is viable for allowing a natural gas-fueled engine to achieve diesel power density and thermal efficiency for both the near and long terms.

  20. A Study on a Tritium Separation Process Using Self-Developing Gas Chromatography with Pd-Pt Alloy

    SciTech Connect (OSTI)

    Kojima, S. [JGC Corporation (Japan); Yokosawa, M. [JGC Corporation (Japan); Matsuyama, M. [Toyama University (Japan); Numata, M. [JGC Corporation (Japan); Kato, T. [JGC Corporation (Japan); Watanabe, K. [Toyama University (Japan)

    2005-07-15

    To study the practical application of a tritium separation process using Self-Developing Gas Chromatography (SDGC) using a Pd-Pt alloy, intermediate scale-up experiments (22 mm ID x 2 m length column) and the development of a computational simulation method have been conducted. In addition, intermediate scale production of Pd-Pt powder has been developed for the scale-up experiments.The following results were obtained: (1) a 50-fold scale-up from 3 mm to 22 mm causes no significant impact on the SDGC process; (2) the Pd-Pt alloy powder is applicable to a large size SDGC process; and (3) the simulation enables preparation of a conceptual design of a SDGC process for tritium separation.

  1. Modern Shale Gas Development in the United States: A Primer | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergy Managing SwimmingMicrosoft Word1 2 - 2 0DepartmentProducts |Energy

  2. Natural Gas Compressor Stations on the Interstate Pipeline Network: Developments Since 1996

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014ProvedYear Jan FebYear Jan Feb Mar Apr MayCompressor

  3. U.S. Underground Natural Gas Storage Developments: 1998-2005

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0Proved ReservesData20092009 2010 2011 20126 Table300 16,478Lower

  4. DEVELOPMENT OF A NEW HIGH TEMPERATURE GAS RECEIVER UTILIZING SMALL PARTICLES

    E-Print Network [OSTI]

    Hunt, Arlon J.

    2012-01-01

    International Symposium on Solar Thermal Power and Energyto develop large scale solar thermal power plants capable ofthe current state of solar thermal conversion is mostly

  5. Opportunities to change development pathways toward lower greenhouse gas emissions through energy efficiency

    E-Print Network [OSTI]

    Sathaye, Jayant

    2010-01-01

    2005). Assessment of small hydropower potential using remoteSustainable development of hydropower and biomass energy inface reduced exports Hydropower plants may displace local

  6. Opportunities to change development pathways toward lower greenhouse gas emissions through energy efficiency

    E-Print Network [OSTI]

    Sathaye, Jayant

    2010-01-01

    Sustainable development of hydroelectric power. Energy, 20(power plants in place of hydroelectric power for instance,example, although hydroelectric plants have the potential of

  7. The roles of ram-pressure stripping and minor mergers in evolution of galaxies

    E-Print Network [OSTI]

    Takashi Okamoto; Masahiro Nagashima

    2004-04-15

    We investigate environmental effects on evolution of bright cluster galaxies in a Lambda-dominated cold dark matter universe using a combination of dissipationless N-body simulations and a semi-analytic galaxy formation model. We incorporate effects of ram-pressure stripping (RPS) and minor merger-induced small starburst (minor burst) into our model. By considering minor burst, observed morphology-radius relation is successfully reproduced. When we do not consider minor burst, the RPS hardly increases the intermediate B/T population. In addition, the RPS and minor burst are not important for colours or star formation rates of galaxies in the cluster core if star formation time-scale is properly chosen, because the star formation is sufficiently suppressed by consumption of the cold gas. We also find that SF in bulge-dominated galaxies is mainly terminated by starburst induced by major mergers in all environments.

  8. Development of an automated high temperature valveless injection system for on-line gas chromatography

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kreisberg, N. M.; Worton, D. R.; Zhao, Y.; Isaacman, G.; Goldstein, A. H.; Hering, S. V.

    2014-07-23

    A reliable method of sample introduction is presented for on-line gas chromatography with a special application to in-situ field portable atmospheric sampling instruments. A traditional multi-port valve is replaced with a controlled pressure switching device that offers the advantage of long term reliability and stable sample transfer efficiency. An engineering design model is presented and tested that allows customizing the interface for other applications. Flow model accuracy is within measurement accuracy (1%) when parameters are tuned for an ambient detector and 15% accurate when applied to a vacuum based detector. Laboratory comparisons made between the two methods of sample introductionmore »using a thermal desorption aerosol gas chromatograph (TAG) show approximately three times greater reproducibility maintained over the equivalent of a week of continuous sampling. Field performance results for two versions of the valveless interface used in the in-situ instrument demonstrate minimal trending and a zero failure rate during field deployments ranging up to four weeks of continuous sampling. Extension of the VLI to dual collection cells is presented with less than 3% cell-to-cell carry-over.« less

  9. Development of an automated high-temperature valveless injection system for online gas chromatography

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kreisberg, N. M.; Worton, D. R.; Zhao, Y.; Isaacman, G.; Goldstein, A. H.; Hering, S. V.

    2014-12-12

    A reliable method of sample introduction is presented for online gas chromatography with a special application to in situ field portable atmospheric sampling instruments. A traditional multi-port valve is replaced with a valveless sample introduction interface that offers the advantage of long-term reliability and stable sample transfer efficiency. An engineering design model is presented and tested that allows customizing this pressure-switching-based device for other applications. Flow model accuracy is within measurement accuracy (1%) when parameters are tuned for an ambient-pressure detector and 15% accurate when applied to a vacuum-based detector. Laboratory comparisons made between the two methods of sample introductionmore »using a thermal desorption aerosol gas chromatograph (TAG) show that the new interface has approximately 3 times greater reproducibility maintained over the equivalent of a week of continuous sampling. Field performance results for two versions of the valveless interface used in the in situ instrument demonstrate typically less than 2% week-1 response trending and a zero failure rate during field deployments ranging up to 4 weeks of continuous sampling. Extension of the valveless interface to dual collection cells is presented with less than 3% cell-to-cell carryover.« less

  10. Pyrolysis Oil Stabilization: Hot-Gas Filtration; Cooperative Research and Development Final Report, CRADA Number CRD-09-333

    SciTech Connect (OSTI)

    Baldwin, R.

    2012-07-01

    The hypothesis that was tested in this task was that separation of char, with its associated mineral matter from pyrolysis vapors before condensation, will lead to improved oil quality and stability with respect to storage and transportation. The metric used to evaluate stability in this case was a 10-fold reduction in the rate of increase of viscosity as determined by ASTM D445 (the accelerated aging test). The primary unit operation that was investigated for this purpose was hot-gas filtration. A custom-built heated candle filter system was fabricated by the Pall Corporation and furnished to NREL for this test campaign. This system consisted of a candle filter element in a containment vessel surrounded by heating elements on the external surface of the vessel. The filter element and housing were interfaced to NREL?s existing 0.5 MTD pyrolysis Process Development Unit (PDU). For these tests the pyrolysis reactor of the PDU was operated in the entrained-flow mode. The HGF test stand was installed on a slipstream from the PDU so that both hot-gas filtered oil and bio-oil that was not hot-gas filtered could be collected for purposes of comparison. Two filter elements from Pall were tested: (1) porous stainless steel (PSS) sintered metal powder; (2) sintered ceramic powder. An extremely sophisticated bio-oil condensation and collection system was designed and fabricated at NREL and interfaced to the filter unit.

  11. Development of Large Area Gas Electron Multiplier Detector and Its Application to a Digital Hadron Calorimeter for Future Collider Experiments

    SciTech Connect (OSTI)

    Yu, Jaehoon; White, Andrew

    2014-09-25

    The UTA High Energy Physics Group conducted generic detector development based on large area, very thin and high sensitivity gas detector using gas electron multiplier (GEM) technology. This is in preparation for a use as a sensitive medium for sampling calorimeters in future collider experiments at the Energy Frontier as well as part of the tracking detector in Intensity Frontier experiments. We also have been monitoring the long term behavior of one of the prototype detectors (30cmx30cm) read out by the SLAC-developed 13-bit KPiX analog chip over three years and have made presentations of results at various APS meetings. While the important next step was the development of large area (1m x 1m) GEM planes, we also have looked into opportunities of applying this technology to precision tracking detectors to significantly improve the performance of the Range Stack detector for CP violation experiments and to provide an amplification layer for the liquid Argon Time Projection Chamber in the LBNE experiment. We have jointly developed 33cmx100cm large GEM foils with the CERN gas detector development group to construct 33cm x100cm unit chambers. Three of these unit chambers will be put together to form a 1m x 1m detector plane. Following characterization of one 33cmx100cm unit chamber prototype, a total of five 1m x 1m planes will be constructed and inserted into an existing 1m3 RPC DHCAL stack to test the performance of the new GEM DHCAL in particle beams. The large area GEM detector we planned to develop in this proposal not only gives an important option to DHCAL for future collider experiments but also the potential to expand its use to Intensity Frontier and Cosmic Frontier experiments as high efficiency, high amplification anode planes for liquid Argon time projection chambers. Finally, thanks to its sensitivity to X-rays and other neutral radiations and its light-weight characteristics, the large area GEM has a great potential for the use in medical imaging and homeland security, as well as satellite based astronomy experiments.

  12. Oil and gas developments in South America, Central America, Caribbean area, and Mexico in 1986

    SciTech Connect (OSTI)

    Wiman, W.D.

    1987-10-01

    Exploration activity in South America, Central America, the Caribbean area, and Mexico in 1986 was considerably reduced compared to 1985. Brazil, Colombia, Ecuador, Guatemala, and Venezuela had increased oil production, with Colombia showing a dramatic 71% increase attributed mainly to bringing on-stream the pipeline connecting Occidental-Shell-Ecopetrol's Cano Limon complex to the port of Covenas. Significant discoveries were reported from Argentina in the Olmedo, Oran, and San Jorge basins; Brazil in the offshore Campos and Amazon basins; Colombia in the Llanos basin; Ecuador in the Oriente basin; Mexico in the Bay of Campeche; Peru in the Ucayali basin; and Venezuela in the Eastern Venezuela basin. Eastern Venezuela's Furrial discovery is reported to have recoverable reserves of more than 1 million bbl of oil, and Shell's Ucayali basin discovery is reported to hold more than 7 tcf of gas. 7 figures, 10 tables.

  13. Development of a transonic front stage of an axial flow compressor for industrial gas turbines

    SciTech Connect (OSTI)

    Katoh, Y.; Ishii, H.; Tsuda, Y.; Yanagida, M. . Mechanical Engineering Research Lab.); Kashiwabara, Y. . Dept. of Mechanical Systems Engineering)

    1994-10-01

    This paper describes the aerodynamic blade design of a highly loaded three-stage compressor, which is a model compressor for the front stage of an industrial gas turbine. Test results are presented that confirm design performance. Some surge and rotating stall measurement results are also discussed. The first stator blade in this test compressor operates in the high subsonic range at the inlet. To reduce the pressure loss due to blade surface shock waves, a shock-free airfoil is designed to replace the first stator blade in an NACA-65 airfoil in a three-stage compressor. Comparison of the performance of both blades shows that the shock-free airfoil blade reduces pressure loss. This paper also presents some experimental results for MCA (multicircular arc) airfoils, which are used for first rotor blades.

  14. Oil and gas developments in Atlantic Coastal Plain and Outer Continental Shelf in 1983

    SciTech Connect (OSTI)

    Giordano, A.C.; Carpenter, G.B.; Amato, R.V.

    1984-10-01

    Exploratory drilling in the Atlantic coastal plain region declined slightly in 1983. Four wells were spudded during the year: 2 in the offshore Baltimore Canyon area and 2 onshore in Lee County, North Carolina. One North Carolina well was drilled, and the other was being tested at year end. In April, 4050 tracts were offered in the mid-Atlantic lease offering (OCS Sale 76), the first area-wide offering of offshore oil and gas leases under the Department of the Interior's new streamlined leasing system. Bids of $86,822,680 were exposed on 40 tracts, and 37 tracts were subsequently leased. In July 3, 082 tracts were offered in the south Atlantic lease offering (OCS Sale 78). Bids of $14,562,040 were exposed on 11 tracts, and all high bids were accepted. Seismic data acquisition decreased 64% below the 1982 level to 13,166 line-mi (21,189 line-km). 3 figures, 2 tables.

  15. State of the Art and Future Developments In Natural Gas Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the Low NO2 ACCRT System for Retrofit Applications Development of ADECS to Meet 2010 Emission Levels: Optimization of NOx, NH3 and Fuel Consumption Using High and Low...

  16. Development of MELCOR Input Techniques for High Temperature Gas-Cooled Reactor Analysis 

    E-Print Network [OSTI]

    Corson, James

    2011-08-08

    and other HTGRs. In the present study, new input techniques have been developed for MELCOR HTGR analysis. These new techniques include methods for modeling radiation heat transfer between solid surfaces in an HTGR, calculating fuel and cladding geometric...

  17. Development of a cold gas propulsion system for the TALARIS hopper

    E-Print Network [OSTI]

    Nothnagel, Sarah L. (Sarah Lynn)

    2011-01-01

    The TALARIS (Terrestrial Artificial Lunar And Reduced gravIty Simulator) hopper is a small prototype flying vehicle developed as an Earth-based testbed for guidance, navigation, and control algorithms that will be used for ...

  18. Method and apparatus for planar drag strip casting

    DOE Patents [OSTI]

    Powell, John C. (Pittsburgh, PA); Campbell, Steven L. (Middletown, OH)

    1991-01-01

    The present invention is directed to an improved process and apparatus for strip casting. The combination of a planar flow casting nozzle positioned back from the top dead center position with an attached nozzle extension, provides an increased level of casting control and quality. The nozzle extension provides a means of containing the molten pool above the rotating substrate to increase the control of molten metal at the edges of the strip and increase the range of coating thicknesses which may be produced. The level of molten metal in the containment means is regulated to be above the level of melt supplying the casting nozzle which produces a condition of planar drag flow with the casting substrate prior to solidification.

  19. Method and apparatus for planar drag strip casting

    DOE Patents [OSTI]

    Powell, J.C.; Campbell, S.L.

    1991-11-12

    The present invention is directed to an improved process and apparatus for strip casting. The combination of a planar flow casting nozzle positioned back from the top dead center position with an attached nozzle extension, provides an increased level of casting control and quality. The nozzle extension provides a means of containing the molten pool above the rotating substrate to increase the control of molten metal at the edges of the strip and increase the range of coating thicknesses which may be produced. The level of molten metal in the containment means is regulated to be above the level of melt supplying the casting nozzle which produces a condition of planar drag flow with the casting substrate prior to solidification. 5 figures.

  20. Stripped-envelope supernova rates and host-galaxy properties

    E-Print Network [OSTI]

    Graur, Or; Modjaz, Maryam; Maoz, Dan; Shivvers, Isaac; Filippenko, Alexei V; Li, Weidong

    2015-01-01

    The progenitors of stripped-envelope supernovae (SNe Ibc) remain to be conclsuively identified, but correlations between SN rates and host-galaxy properties can constrain progenitor models. Here, we present one result from a re-analysis of the rates from the Lick Observatory Supernova Search. Galaxies with stellar masses less than $\\sim 10^{10}~{\\rm M_\\odot}$ are less efficient at producing SNe Ibc than more massive galaxies. Any progenitor scenario must seek to explain this new observation.

  1. Mercantile (Enclosed and Strip Malls) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy Resources Jump to:ElectricCoordinationMenomonie,Enclosed and Strip

  2. Launching a Cornell Examination of the Marcellus System The issues related to the development of the Marcellus Shale unconventional gas resource are

    E-Print Network [OSTI]

    Walter, M.Todd

    of the Marcellus Shale unconventional gas resource are emblematic of a whole family of extremely complicated Energy. The development plans for the Marcellus Shale are unfolding immediately in our backyards and require of different ways of developing the Marcellus Shale and the economics of not developing the Marcellus Shale. We

  3. Development of a Low NOx Medium sized Industrial Gas Turbine Operating on Hydrogen-Rich Renewable and Opportunity Fuels

    SciTech Connect (OSTI)

    Srinivasan, Ram

    2013-07-31

    This report presents the accomplishments at the completion of the DOE sponsored project (Contract # DE-FC26-09NT05873) undertaken by Solar Turbines Incorporated. The objective of this 54-month project was to develop a low NOx combustion system for a medium sized industrial gas turbine engine operating on Hydrogen-rich renewable and opportunity Fuels. The work in this project was focused on development of a combustion system sized for 15MW Titan 130 gas turbine engine based on design analysis and rig test results. Although detailed engine evaluation of the complete system is required prior to commercial application, those tasks were beyond the scope of this DOE sponsored project. The project tasks were organized in three stages, Stages 2 through 4. In Stage 2 of this project, Solar Turbines Incorporated characterized the low emission capability of current Titan 130 SoLoNOx fuel injector while operating on a matrix of fuel blends with varying Hydrogen concentration. The mapping in this phase was performed on a fuel injector designed for natural gas operation. Favorable test results were obtained in this phase on emissions and operability. However, the resulting fuel supply pressure needed to operate the engine with the lower Wobbe Index opportunity fuels would require additional gas compression, resulting in parasitic load and reduced thermal efficiency. In Stage 3, Solar characterized the pressure loss in the fuel injector and developed modifications to the fuel injection system through detailed network analysis. In this modification, only the fuel delivery flowpath was modified and the air-side of the injector and the premixing passages were not altered. The modified injector was fabricated and tested and verified to produce similar operability and emissions as the Stage 2 results. In parallel, Solar also fabricated a dual fuel capable injector with the same air-side flowpath to improve commercialization potential. This injector was also test verified to produce 15-ppm NOx capability on high Hydrogen fuels. In Stage 4, Solar fabricated a complete set of injectors and a combustor liner to test the system capability in a full-scale atmospheric rig. Extensive high-pressure single injector rig test results show that 15-ppm NOx guarantee is achievable from 50% to 100% Load with fuel blends containing up to 65% Hydrogen. Because of safety limitations in Solar Test Facility, the atmospheric rig tests were limited to methane-based fuel blends. Further work to validate the durability and installed engine capability would require long-term engine field test.

  4. Charge Collection Efficiency Simulations of Irradiated Silicon Strip Detectors

    E-Print Network [OSTI]

    T. Peltola

    2014-11-25

    During the scheduled high luminosity upgrade of LHC, the world's largest particle physics accelerator at CERN, the position sensitive silicon detectors installed in the vertex and tracking part of the CMS experiment will face more intense radiation environment than the present system was designed for. Thus, to upgrade the tracker to required performance level, comprehensive measurements and simulations studies have already been carried out. Essential information of the performance of an irradiated silicon detector is obtained by monitoring its charge collection efficiency (CCE). From the evolution of CCE with fluence, it is possible to directly observe the effect of the radiation induced defects to the ability of the detector to collect charge carriers generated by traversing minimum ionizing particles (mip). In this paper the numerically simulated CCE and CCE loss between the strips of irradiated silicon strip detectors are presented. The simulations based on Synopsys Sentaurus TCAD framework were performed before and after irradiation for fluences up to $1.5\\times10^{15}$ $\\textrm{n}_{\\textrm{eq}}$cm$^{-2}$ for the n-on-p sensors. A two level and non-uniform three level defect models were applied for the proton irradiation simulations and two level model for neutrons. The results are presented together with the measurements of strip detectors irradiated by different particles and fluences and show considerable agreement for both CCE and its position dependency.

  5. Technology Cooperation Agreement Pilot Project development-friendly greenhouse gas reduction, May 1999 update

    SciTech Connect (OSTI)

    Benioff, R.

    1999-05-11

    The Technology Cooperation Agreement Pilot Project (TCAPP) was launched by several U.S. Government agencies (USAID, EPA and DOE) in August 1997 to establish a model for climate change technology cooperation with developing and transition countries. TCAPP is currently facilitating voluntary partnerships between the governments of Brazil, China, Kazakhstan, Korea, Mexico, and the Philippines, the private sector, and the donor community on a common set of actions that will advance implementation of clean energy technologies. The six participating countries have been actively engaged in shaping this initiative along with international donors and the private sector. This program helps fulfill the US obligation to support technology transfer to developing countries under Article 4.5 of the United Nations Framework Convention on Climate Change. TCAPP also provides a mechanism to focus resources across international donor programs on the technology cooperation needs of developing and transition countries.

  6. Latent and Manifested Flatness Predictions in Thin Strip Cold Rolling: Comparison of Coupled and non-Coupled FEM Approaches

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    approaches: the stress pattern computed by the strip rolling model are transferred into a buckling (shell

  7. Comparison of AEO 2007 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2006-01-01

    Figure 2 for 5-year price projections), the EIA has, in AEOgenerators to the same price projections from AEO 2001-2006.Strip to AEO 2007 Gas Price Projection Picking the Correct

  8. Improving the Availability and Delivery of Critical Information for Tight Gas Resource Development in the Appalachian Basin

    SciTech Connect (OSTI)

    Mary Behling; Susan Pool; Douglas Patchen; John Harper

    2008-12-31

    To encourage, facilitate and accelerate the development of tight gas reservoirs in the Appalachian basin, the geological surveys in Pennsylvania and West Virginia collected widely dispersed data on five gas plays and formatted these data into a large database that can be accessed by individual well or by play. The database and delivery system that were developed can be applied to any of the 30 gas plays that have been defined in the basin, but for this project, data compilation was restricted to the following: the Mississippian-Devonian Berea/Murrysville sandstone play and the Upper Devonian Venango, Bradford and Elk sandstone plays in Pennsylvania and West Virginia; and the 'Clinton'/Medina sandstone play in northwestern Pennsylvania. In addition, some data were collected on the Tuscarora Sandstone play in West Virginia, which is the lateral equivalent of the Medina Sandstone in Pennsylvania. Modern geophysical logs are the most common and cost-effective tools for evaluating reservoirs. Therefore, all of the well logs in the libraries of the two surveys from wells that had penetrated the key plays were scanned, generating nearly 75,000 scanned e-log files from more than 40,000 wells. A standard file-naming convention for scanned logs was developed, which includes the well API number, log curve type(s) scanned, and the availability of log analyses or half-scale logs. In addition to well logs, other types of documents were scanned, including core data (descriptions, analyses, porosity-permeability cross-plots), figures from relevant chapters of the Atlas of Major Appalachian Gas Plays, selected figures from survey publications, and information from unpublished reports and student theses and dissertations. Monthly and annual production data from 1979 to 2007 for West Virginia wells in these plays are available as well. The final database also includes digitized logs from more than 800 wells, sample descriptions from more than 550 wells, more than 600 digital photos in 1-foot intervals from 11 cores, and approximately 260 references for these plays. A primary objective of the research was to make data and information available free to producers through an on-line data delivery model designed for public access on the Internet. The web-based application that was developed utilizes ESRI's ArcIMS GIS software to deliver both well-based and play-based data that are searchable through user-originated queries, and allows interactive regional geographic and geologic mapping that is play-based. System tools help users develop their customized spatial queries. A link also has been provided to the West Virginia Geological Survey's 'pipeline' system for accessing all available well-specific data for more than 140,000 wells in West Virginia. However, only well-specific queries by API number are permitted at this time. The comprehensive project web site (http://www.wvgs.wvnet.edu/atg) resides on West Virginia Geological Survey's servers and links are provided from the Pennsylvania Geological Survey and Appalachian Oil and Natural Gas Research Consortium web sites.

  9. Integrated production of fuel gas and oxygenated organic compounds from synthesis gas

    DOE Patents [OSTI]

    Moore, Robert B. (Allentown, PA); Hegarty, William P. (State College, PA); Studer, David W. (Wescosville, PA); Tirados, Edward J. (Easton, PA)

    1995-01-01

    An oxygenated organic liquid product and a fuel gas are produced from a portion of synthesis gas comprising hydrogen, carbon monoxide, carbon dioxide, and sulfur-containing compounds in a integrated feed treatment and catalytic reaction system. To prevent catalyst poisoning, the sulfur-containing compounds in the reactor feed are absorbed in a liquid comprising the reactor product, and the resulting sulfur-containing liquid is regenerated by stripping with untreated synthesis gas from the reactor. Stripping offgas is combined with the remaining synthesis gas to provide a fuel gas product. A portion of the regenerated liquid is used as makeup to the absorber and the remainder is withdrawn as a liquid product. The method is particularly useful for integration with a combined cycle coal gasification system utilizing a gas turbine for electric power generation.

  10. Electrochemical Immunoassay of Cotinine in Serum Based on Nanoparticle Probe and Immunochromatographic Strip

    SciTech Connect (OSTI)

    Nian, Hung-Chi; Wang, Jun; Wu, Hong J.; Lo, Jiunn-Guang; Chiu, Kong-Hwa; Pounds, Joel G.; Lin, Yuehe

    2012-02-03

    A disposable sensor for the determination of cotinine in human serum was developed based on immunochromatographic test strip and quantum dot label. In this assay, cotinine modified on quantum dot competes with cotinine in sample to bind to anti-cotinine antibody in the test strip and the quantum dots serve as signal vehicles for electrochemical readout. Some parameters governing the performance of the sensor were optimized. The sensor shows a wide linear range from 1 ng mL-1 to 100 ng mL-1 cotinine with a detection limit of 1.0 ng mL-1. The relative standard deviation (R.S.D.) of the sensor was less than 2% for cotinine. The sensor was validated with spiked human serum samples and it was found that this method was reliable in measuring cotinine in human serum with average recovery of 100.99%. The results demonstrate that this sensor is a rapid, clinically accurate, and less expensive and has the potential for point of care (POC) detection of cotinine and fast screening of tobacco smoke exposure.

  11. Development of a Hydrogasification Process for Co-Production of Substitute Natural Gas (SNG) and Electric Power from Western Coals

    SciTech Connect (OSTI)

    Sun, Xiaolei; Rink, Nancy

    2011-04-30

    This report presents the results of the research and development conducted on an Advanced Hydrogasification Process (AHP) conceived and developed by Arizona Public Service Company (APS) under U.S. Department of Energy (DOE) contract: DE-FC26-06NT42759 for Substitute Natural Gas (SNG) production from western coal. A double-wall (i.e., a hydrogasification contained within a pressure shell) down-flow hydrogasification reactor was designed, engineered, constructed, commissioned and operated by APS, Phoenix, AZ. The reactor is ASME-certified under Section VIII with a rating of 1150 pounds per square inch gage (psig) maximum allowable working pressure at 1950 degrees Fahrenheit ({degrees}F). The reaction zone had a 1.75 inch inner diameter and 13 feet length. The initial testing of a sub-bituminous coal demonstrated ~ 50% carbon conversion and ~10% methane yield in the product gas under 1625{degrees}F, 1000 psig pressure, with a 11 seconds (s) residence time, and 0.4 hydrogen-to-coal mass ratio. Liquid by-products mainly contained Benzene, Toluene, Xylene (BTX) and tar. Char collected from the bottom of the reactor had 9000-British thermal units per pound (Btu/lb) heating value. A three-dimensional (3D) computational fluid dynamic model simulation of the hydrodynamics around the reactor head was utilized to design the nozzles for injecting the hydrogen into the gasifier to optimize gas-solid mixing to achieve improved carbon conversion. The report also presents the evaluation of using algae for carbon dioxide (CO{sub 2}) management and biofuel production. Nannochloropsis, Selenastrum and Scenedesmus were determined to be the best algae strains for the project purpose and were studied in an outdoor system which included a 6-meter (6M) radius cultivator with a total surface area of 113 square meters (m{sup 2}) and a total culture volume between 10,000 to 15,000 liters (L); a CO{sub 2} on-demand feeding system; an on-line data collection system for temperature, pH, Photosynthetically Activate Radiation (PAR) and dissolved oxygen (DO); and a ~2 gallons per minute (gpm) algae culture dewatering system. Among the three algae strains, Scenedesmus showed the most tolerance to temperature and irradiance conditions in Phoenix and the best self-settling characteristics. Experimental findings and operational strategies determined through these tests guided the operation of the algae cultivation system for the scale-up study. Effect of power plant flue gas, especially heavy metals, on algae growth and biomass adsorption were evaluated as well.

  12. Additional Development of a Dedicated Liquefied Petroleum Gas (LPG) Ultra Low Emissions Vehicle (ULEV)

    SciTech Connect (OSTI)

    IMPCO Technologies

    1998-10-28

    This report describes the last in a series of three projects designed to develop a commercially competitive LPG light-duty passenger car that meets California ULEV standards and corporate average fuel economy (CAFE) energy efficiency guidelines for such a vehicle. In this project, IMPCO upgraded the vehicle's LPG vapor fuel injection system and performed emissions testing. The vehicle met the 1998 ULEV standards successfully, demonstrating the feasibility of meeting ULEV standards with a dedicated LPG vehicle.

  13. Development and application of the EPIC model for carbon cycle, greenhouse-gas mitigation, and biofuel studies

    SciTech Connect (OSTI)

    Izaurralde, Roberto C.; Mcgill, William B.; Williams, J.R.

    2012-06-01

    This chapter provides a comprehensive review of the EPIC model in relation to carbon cycle, greenhouse-gas mitigation, and biofuel applications. From its original capabilities and purpose (i.e., quantify the impacts or erosion on soil productivity), the EPIC model has evolved into a comprehensive terrestrial ecosystem model for simulating with more or less process-level detail many ecosystem processes such as weather, hydrology, plant growth and development, carbon cycle (including erosion), nutrient cycling, greenhouse-gas emissions, and the most complete set of manipulations that can be implemented on a parcel of land (e.g. tillage, harvest, fertilization, irrigation, drainage, liming, burning, pesticide application). The chapter also provides details and examples of the latest efforts in model development such as the coupled carbon-nitrogen model, a microbial denitrification model with feedback to the carbon decomposition model, updates on calculation of ecosystem carbon balances, and carbon emissions from fossil fuels. The chapter has included examples of applications of the EPIC model in soil carbon sequestration, net ecosystem carbon balance, and biofuel studies. Finally, the chapter provides the reader with an update on upcoming improvements in EPIC such as the additions of modules for simulating biochar amendments, sorption of soluble C in subsoil horizons, nitrification including the release of N2O, and the formation and consumption of methane in soils. Completion of these model development activities will render an EPIC model with one of the most complete representation of biogeochemical processes and capable of simulating the dynamic feedback of soils to climate and management in terms not only of transient processes (e.g., soil water content, heterotrophic respiration, N2O emissions) but also of fundamental soil properties (e.g. soil depth, soil organic matter, soil bulk density, water limits).

  14. Impacts of Sedimentation from Oil and Gas Development on Stream Macroinvertebrates in Two Adjacent Watersheds of the Allegheny National Forest of Northwestern Pennsylvania

    SciTech Connect (OSTI)

    Fritz, K.; Harris, S.; Edenborn, H.M.; Sams, J.

    2011-01-01

    Fritz, Kelley'*, Steven Harris', Harry Edenborn2, and James Sams2. 'Clarion University of Pennsylvania, Clarion, PA 16214, 2National Energy Technology Laboratory, U.S. Dept. Energy, Pittsburgh, PA 15236. Impacts a/Sedimentation/rom Oil and Gas Development on Stream Macroinvertebrates in Two Adjacent Watersheds a/the Allegheny National Forest a/Northwestern Pennsylvania - The Allegheny National Forest (ANF), located in northwestern Pennsy Ivania, is a multiuse forest combining commercial development with recreational and conservation activities. As such, portions of the ANF have been heavily logged and are now the subject of widespread oil and gas development. This rapid increase in oil and gas development has led to concerns about sediment runoff from the dirt and gravel roads associated with development and the potential impact on the aquatic biota of the receiving streams. We examined and compared the benthic macroinvertebrate communities in two adjacent watersheds of similar size and topography in the ANF; the Hedgehog Run watershed has no oil and gas development, while the adjacent Grunder Run watershed has extensive oil and gas development. In Hedgehog and Grunder Run, we collected monthly kicknet samples from riffles and glides at two sites from April to October 2010. At the same intervals, we measured standard water quality parameters, including conductivity and turbidity. Preliminary results have indicated much higher turbidity in Grunder Run, but little difference in the diversity and abundance of benthic macro invertebrates inhabiting the two streams.

  15. Oil and gas developments in central and southern Africa in 1981

    SciTech Connect (OSTI)

    McGrew, H.J.

    1982-11-01

    Exploratory activity in central and southern Africa continued to grow during 1981. Geophysical operations reached nearly record levels and the number of wells increased markedly. Oil production suffered from the adverse conditions that existed throughout the world and dropped by a significant amount. New Concession acquisitions occurred in several of the countries in northeast Africa. Elsewhere, the operating companies negotiated new concessions and renewed those that were expiring. In several countries where production has been proven, the operators were assigned exploitation concessions. Seismic crews and marine geophysical vessels were active throughout the countries in this area. A total of 365 party-months of work was done to yield 98,035 km of new lines. A moderate amount of 3-D recording was carried out in connection with field development. Some aeromagnetic work was done, principally in northeast Africa and in Mozambique. Forty-four new fields or pools were discovered by drilling 115 new-field wildcat and exploratory wells. These wells accounted for 1,060,254 ft (323,248 m) of hole. Appraisal and development drilling resulted in 321 wells with a total of 2,533,305 ft (772,349 m) of hole drilled. At year end, 25 exploratory wells were under way or resting, and 49 rigs were active in development drilling. Oil production for the year was 691,995,939 bbl, a decrease of nearly 25% from 1980. Nigeria suffered the greatest drop in production; however, increases were achieved in Cameroon, Congo, and Zaire. The cumulative production from this part of Africa passed the 10 billion bbl mark.

  16. Thin silicon strip detectors for beam monitoring in Micro-beam Radiation Therapy

    E-Print Network [OSTI]

    Povoli, Marco; Bravin, Alberto; Cornelius, Iwan; Bräuer-Krisch, Elke; Fournier, Pauline; Hansen, Thor-Erik; Kok, Angela; Lerch, Michael; Monakhov, Edouard; Morse, John; Petasecca, Marco; Requardt, Herwig; Rosenfeld, Anatoly; Röhrich, Dieter; Sandaker, Heidi; Salomé, Murielle; Stugu, Bjarne

    2015-01-01

    Microbeam Radiation Therapy (MRT) is an emerging cancer treatment that is currently being developed at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. This technique uses a highly collimated and fractionated X-ray beam array with extremely high dose rate and very small divergence, to benefit from the dose-volume effect, thus sparing healthy tissue. In case of any beam anomalies and system malfunctions, special safety measures must be installed, such as an emergency safety shutter that requires continuous monitoring of the beam intensity profile. Within the 3DMiMic project, a novel silicon strip detector that can tackle the special features of MRT, such as the extremely high spatial resolution and dose rate, has been developed to be part of the safety shutter system. The first prototypes have been successfully fabricated, and experiments aimed to demonstrate their suitability for this unique application have been performed. Design, fabrication and the experimental results as well as any...

  17. Development of a dynamic simulator for a natural gas combined cycle (NGCC) power plant with post-combustion carbon capture

    SciTech Connect (OSTI)

    Liese, E.; Zitney, S.

    2012-01-01

    The AVESTAR Center located at the U.S. Department of Energy’s National Energy Technology Laboratory and West Virginia University is a world-class research and training environment dedicated to using dynamic process simulation as a tool for advancing the safe, efficient and reliable operation of clean energy plants with CO{sub 2} capture. The AVESTAR Center was launched with a high-fidelity dynamic simulator for an Integrated Gasification Combined Cycle (IGCC) power plant with pre-combustion carbon capture. The IGCC dynamic simulator offers full-scope Operator Training Simulator (OTS) Human Machine Interface (HMI) graphics for realistic, real-time control room operation and is integrated with a 3D virtual Immersive Training Simulator (ITS), thus allowing joint control room and field operator training. The IGCC OTS/ITS solution combines a “gasification with CO{sub 2} capture” process simulator with a “combined cycle” power simulator into a single high-performance dynamic simulation framework. This presentation will describe progress on the development of a natural gas combined cycle (NGCC) dynamic simulator based on the syngas-fired combined cycle portion of AVESTAR’s IGCC dynamic simulator. The 574 MW gross NGCC power plant design consisting of two advanced F-class gas turbines, two heat recovery steam generators (HRSGs), and a steam turbine in a multi-shaft 2x2x1 configuration will be reviewed. Plans for integrating a post-combustion carbon capture system will also be discussed.

  18. Advanced turbine systems program conceptual design and product development task 5 -- market study of the gas fired ATS. Topical report

    SciTech Connect (OSTI)

    1995-05-01

    Solar Turbines Incorporated (Solar), in partnership with the Department of Energy, will develop a family of advanced gas turbine-based power systems (ATS) for widespread commercialization within the domestic and international industrial marketplace, and to the rapidly changing electric power generation industry. The objective of the jointly-funded Program is to introduce an ATS with high efficiency, and markedly reduced emissions levels, in high numbers as rapidly as possible following introduction. This Topical Report is submitted in response to the requirements outlined in Task 5 of the Department of Energy METC Contract on Advanced Combustion Systems, Contract No, DE AC21-93MC30246 (Contract), for a Market Study of the Gas Fired Advanced Turbine System. It presents a market study for the ATS proposed by Solar, and will examine both the economic and siting constraints of the ATS compared with competing systems in the various candidate markets. Also contained within this report is an examination and analysis of Solar`s ATS and its ability to compete in future utility and industrial markets, as well as factors affecting the marketability of the ATS.

  19. Development of Superior Sorbents for Separation of CO2 from Flue Gas at a Wide Temperature range during Coal Combustion

    SciTech Connect (OSTI)

    Panagiotis Smirniotis

    2002-09-17

    A number basic sorbents based on CaO were synthesized, characterized with novel techniques and tested for sorption of CO{sub 2} and selected gas mixtures simulating flue gas from coal fired boilers. Our studies resulted in highly promising sorbents which demonstrated zero affinity for N{sub 2}, O{sub 2}, SO{sub 2}, and NO very low affinity for water, ultrahigh CO{sub 2} sorption capacities, and rapid sorption characteristics, CO{sub 2} sorption at a very wide temperature range, durability, and low synthesis cost. One of the 'key' characteristics of the proposed materials is the fact that we can control very accurately their basicity (optimum number of basic sites of the appropriate strength) which allows for the selective chemisorption of CO{sub 2} at a wide range of temperatures. These unique characteristics of this family of sorbents offer high promise for development of advanced industrial sorbents for the effective CO{sub 2} removal.

  20. Hollow-fiber gas-membrane process for removal of NH{sub 3} from solution of NH{sub 3} and CO{sub 2}

    SciTech Connect (OSTI)

    Qin, Y.; Cabral, J.M.S.; Wang, S.

    1996-07-01

    A hollow-fiber supported gas membrane process for the separation of NH{sub 3} from aqueous solutions containing both NH{sub 3} and CO{sub 2} was investigated theoretically and experimentally. A lumen laminar flow and radial diffusion model was applied to calculate the membrane wall transfer coefficient from the data stripping a single volatile component, NH{sub 3} or CO{sub 2}, from their individual aqueous solutions. Influence of the type of membranes and operating conditions on mass-transfer rate were discussed, especially the influence of the membrane transfer coefficient on the film mass-transfer coefficient in the lumen. Appropriate configurations of the hollow-fiber modules for stripping of a single component were analyzed to optimize mass transfer. To predict the stripping of NH{sub 3} from a solution containing NH{sub 3} and CO{sub 2}, a mathematical model incorporating local chemical equilibria and Nernst-Planck diffusion was developed to describe the mass transport. The models described the experimental data fairly well. The experimental results showed that the supported gas membrane process can be used to remove NH{sub 3} effectively from aqueous media containing NH{sub 3} and CO{sub 2}.

  1. Shale Gas Glossary | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Glossary Shale Gas Glossary Shale Gas Glossary More Documents & Publications Natural Gas from Shale: Questions and Answers Modern Shale Gas Development in the United States: A...

  2. Oil and gas developments in South America, Central America, Caribbean area, and Mexico in 1987

    SciTech Connect (OSTI)

    Wiman, W.D.

    1988-10-01

    Exploration activity in South America, Central America, the Caribbean area, and Mexico in 1987 showed significant increases in seismic acquisition in Belize, Bolivia, Brazil, Costa Rica, Guatemala, Mexico, Paraguay, and Peru, and a decrease in Chile and Venezuela. Exploratory drilling increased in most major producing countries but was accompanied by a decline in development drilling. Most of the increase could be attributed to private companies fulfilling obligations under risk contracts; however, state oil companies in Bolivia, Chile, and Colombia showed significant increased activity, with only Mexico showing a decrease. Colombia again had a dramatic increase in production (29% from 1986). Noteworthy discoveries were made in Bolivia (Villamontes-1); Brazil, in the Solimoes basin (1-RUC-1-AM); Chile (Rio Honda-1); Colombia, in the Llanos basin (Austral-1, La Reforma-1, Libertad Norte-1, Cravo Este-1, and Cano Yarumal-1), in the Upper Magdalena basin (Toldado-1 and Los Mangos-1); Ecuador (Frontera-1, a joint-exploration venture with Colombia); Mexico, in the Chiapas-Tabasco region (Guacho-1 and Iridi-1), in the Frontera Norte area (Huatempo-1); Peru, in the Madre de Dios basin (Armihuari-4X); Trinidad (West East Queen's Beach-1); and Venezuela (Musipan-1X). Brazil's upper Amazon (Solimoes basin) discovery, Colombia's Upper Magdalena basin discoveries Toldado-1 and Los Mangos-1, Mexico's Chiapas-Tabasco discoveries, Peru's confirmation of the giant Cashiriari discovery of 1986, and Venezuela's success in Monagas state were the highlights of 1987. 5 figs., 8 tabs.

  3. Analysis of Stripping to Quasibound Levels in Sc-41 

    E-Print Network [OSTI]

    Youngblood, David H.; Kozub, R. L.; Kenefick, R. A.; Hiebert, John C.

    1970-01-01

    . Percy. W. Hauser and H. Feshbach, Phys. Rev. 87, 366 (1952). B. M. Drisko (unpubliShed. P. H. Stelson and L. Grodzins, Nucl. Data Al, 21 (1965). PHYSICAL REVIEW C VOLUME 2, NUMBER 2 AUGUST 1970 Analysis of Stripping to Quasibound Levels in 4'Sc~ D...) Sc reaction at 40-MeV bombarding energy. Distorted-wave Born-approximation calculations for the proton unstable excited states quasibound by the Coulomb and centrifugal barrier were performed using a form factor corresponding to an unbound...

  4. Fabrication and testing of oxidized porous silicon field emitter strips 

    E-Print Network [OSTI]

    Madduri, Vasanta Bhanu

    1992-01-01

    28 30 15. Reaction Cell for Anodization 32 16. 17. Cross-section of a Porous Silicon Field Emitting Strip Ctoss-section of the Anode Tester 34 36 LIST OF FIGURES (Continued) Figure 18. Testing Set-up for the Diode Arrays 19. I-V Curves... electrolyte in place of HF. In this process of oxide formation the oxide is formed at the bottom of the porous layer. The top PS layer can be recrystallized by high temperature annealing or laser processing. Light Emitting Porous Silicon Attempts to use...

  5. Container lid gasket protective strip for double door transfer system

    DOE Patents [OSTI]

    Allen, Jr., Burgess M

    2013-02-19

    An apparatus and a process for forming a protective barrier seal along a "ring of concern" of a transfer container used with double door systems is provided. A protective substrate is supplied between a "ring of concern" and a safety cover in which an adhesive layer of the substrate engages the "ring of concern". A compressive foam strip along an opposite side of the substrate engages a safety cover such that a compressive force is maintained between the "ring of concern" and the adhesive layer of the substrate.

  6. Laser stripping of hydrogen atoms by direct ionization

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brunetti, E.; Becker, W.; Bryant, H. C.; Jaroszynski, D. A.; Chou, W.

    2015-05-08

    Direct ionization of hydrogen atoms by laser irradiation is investigated as a potential new scheme to generate proton beams without stripping foils. The time-dependent Schrödinger equation describing the atom-radiation interaction is numerically solved obtaining accurate ionization cross-sections for a broad range of laser wavelengths, durations and energies. Parameters are identified where the Doppler frequency up-shift of radiation colliding with relativistic particles can lead to efficient ionization over large volumes and broad bandwidths using currently available lasers.

  7. Oil and gas developments in central and southern Africa in 1983

    SciTech Connect (OSTI)

    McGrew, H.J.

    1984-10-01

    All exploratory activity in central and southern Africa decreased in 1983, reflecting world economic conditions and excess productive capacity. Seismic activity has declined sharply from its peak year of 1981. Land operations suffered the greatest drop in 1983, whereas party-months of marine work increased slightly. 3-D recording continued to be used but at a reduced rate compared with 1982. Large aeromagnetic surveys were made in several countries; however, the coverage was less than in 1982. Gravity continues to be used to supplement other geophysical work, but other exploratory techniques are being used infrequently. Total wells drilled dropped from 464 in 1982 to 387 in 1983. Most of the decline was in exploratory drilling, which dropped from 132 to 86 wells. This was reflected in the number of discoveries, which decreased from 48 to 27 while the success rate continued about the same. Development drilling continued at a high level in Cameroon and Congo, whereas in Nigeria the emphasis shifted to the drilling of appraisal wells. In all, 2,937,708 ft (895,643 m) of hole was drilled, a decrease of about 20% from 1982. Oil production of 673,075,667 bbl in 1983 was an increase of 1.7% over 1982's production, bringing cumulative production to over 12 billion bbl. Marked increases in production were recorded in Cabinda, Ivory Coast, and Congo. Production from Nigerian fields continued to dominate this part of the world as they contributed about 67% of the annual production and 75% of the cumulative production. 44 figures, 15 tables.

  8. Reductive stripping process for the recovery of uranium from wet-process phosphoric acid

    DOE Patents [OSTI]

    Hurst, Fred J. (Oak Ridge, TN); Crouse, David J. (Oak Ridge, TN)

    1984-01-01

    A reductive stripping flow sheet for recovery of uranium from wet-process phosphoric acid is described. Uranium is stripped from a uranium-loaded organic phase by a redox reaction converting the uranyl to uranous ion. The uranous ion is reoxidized to the uranyl oxidation state to form an aqueous feed solution highly concentrated in uranium. Processing of this feed through a second solvent extraction cycle requires far less stripping reagent as compared to a flow sheet which does not include the reductive stripping reaction.

  9. Weatherize Your Home--Caulk and Weather Strip: Energy Efficiency and Renewable Energy Clearinghouse (EREC) Brochure

    SciTech Connect (OSTI)

    Phillips, S.

    2001-04-17

    This fact sheet explains the basics of caulking and weather stripping, and provides a comparison of the types of products available for these two weatherization techniques.

  10. Development and verification of new semi-analytical methods for the analysis and prediction of gas well performance 

    E-Print Network [OSTI]

    Knowles, Robert Stephen

    1999-01-01

    regarding gas properties (i.e., [] = constant, [] = constant, etc.), which eliminates the need for the pseudopressure and pseudotime functions. In particular, these new solutions should lend themselves to use for the analysis of low pressure gas reservoirs...

  11. UBC Social Ecological Economic Development Studies (SEEDS) Student Report An Introduction into Induction and Natural Gas Stoves

    E-Print Network [OSTI]

    into Induction and Natural Gas Stoves: A Triple Bottom Line Analysis for the new Student Union Building Jordan Ho of a project/report". #12;APSC 262 An Introduction Into Induction and Natural Gas Stoves A triple-bottom line, 2011 #12;Page 2 of 21 ABSTRACT This report compares the attributes of induction and natural gas stoves

  12. FPHX: A New Silicon Strip Readout Chip for the PHENIX Experiment at RHIC

    SciTech Connect (OSTI)

    Hoff, James R.; Zimmerman, Tom N.; Yarema, Raymond J.; /Fermilab; Kapustinsky, Jon S.; Brookes, Melynda L.; /LOS ALAMOS

    2009-01-01

    The FPHX chip is a silicon strip readout chip developed at Fermilab for use in the FVTX Detector of the PHENIX experiment at RHIC. Each front end consists of an integrator which is AC coupled to a shaper, followed by a discriminator and a 3-bit analog-to-digital converter. The backend is a novel architecture in two stages that permits dead-timeless operation and high-speed readout with very low latency. A slow controller provides an interface for all on-chip programmable functions. This chip has been fabricated in the 0.25um TSMC process. All functionality including the analog front-end, the digital back-end, and the slow controller has been verified experimentally.

  13. Challenges, uncertainties and issues facing gas production from gas hydrate deposits

    E-Print Network [OSTI]

    Moridis, G.J.

    2011-01-01

    time frame. The unconventional oil and gas hydrocarbonsare currently no unconventional developments, oil or gas, in

  14. Development And Initial Testing Of Off-Gas Recycle Liquid From The WTP Low Activity Waste Vitrification Process - 14333

    SciTech Connect (OSTI)

    McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.; Taylor-Pashow, Kathryn M.; Adamson, Duane J.; Crawford, Charles L.; Morse, Megan M.

    2014-01-07

    The Waste Treatment and Immobilization Plant (WTP) process flow was designed to pre-treat feed from the Hanford tank farms, separate it into a High Level Waste (HLW) and Low Activity Waste (LAW) fraction and vitrify each fraction in separate facilities. Vitrification of the waste generates an aqueous condensate stream from the off-gas processes. This stream originates from two off-gas treatment unit operations, the Submerged Bed Scrubber (SBS) and the Wet Electrospray Precipitator (WESP). Currently, the baseline plan for disposition of the stream from the LAW melter is to recycle it to the Pretreatment facility where it gets evaporated and processed into the LAW melter again. If the Pretreatment facility is not available, the baseline disposition pathway is not viable. Additionally, some components in the stream are volatile at melter temperatures, thereby accumulating to high concentrations in the scrubbed stream. It would be highly beneficial to divert this stream to an alternate disposition path to alleviate the close-coupled operation of the LAW vitrification and Pretreatment facilities, and to improve long-term throughput and efficiency of the WTP system. In order to determine an alternate disposition path for the LAW SBS/WESP Recycle stream, a range of options are being studied. A simulant of the LAW Off-Gas Condensate was developed, based on the projected composition of this stream, and comparison with pilot-scale testing. The primary radionuclide that vaporizes and accumulates in the stream is Tc-99, but small amounts of several other radionuclides are also projected to be present in this stream. The processes being investigated for managing this stream includes evaporation and radionuclide removal via precipitation and adsorption. During evaporation, it is of interest to investigate the formation of insoluble solids to avoid scaling and plugging of equipment. Key parameters for radionuclide removal include identifying effective precipitation or ion adsorption chemicals, solid-liquid separation methods, and achievable decontamination factors. Results of the radionuclide removal testing indicate that the radionuclides, including Tc-99, can be removed with inorganic sorbents and precipitating agents. Evaporation test results indicate that the simulant can be evaporated to fairly high concentration prior to formation of appreciable solids, but corrosion has not yet been examined.

  15. Development of the Cummins L10 engine to operate on natural gas for heavy duty transit bus applications. Final report, August 1988-December 1991

    SciTech Connect (OSTI)

    Welliver, D.R.

    1993-07-01

    This report covers all of the activities of a program undertaken to develop a natural gas fueled engine using the Cummins L10 diesel engine as the base engine. The base diesel engine is a 10 liter turbocharged jacket water aftercooled carcass that develops 270 hp at 2100 rpm. The design goals included developing a natural gas version at 240 hp with 750 lb-ft of peak torque with exhaust emission level demonstration meeting the 1991 EPA Urban Bus Emission Mandate. Additional goals included demonstrating diesel like vehicle performance and diesel like reliability and durability. Two fuel delivery systems were evaluated, one mechanical and the other electronic closed loop. Field and laboratory test engines were utilized to document reliability. Results of this program led to the production release of the gas engine for transit bus applications and California Air Resources Board certification during 1992.

  16. Influence of adaptive mesh refinement and the hydro solver on shear-induced mass stripping in a minor-merger scenario

    E-Print Network [OSTI]

    Schmidt, W; Iapichino, L; Vazza, F; Almgren, A S

    2014-01-01

    We compare two different codes for simulations of cosmological structure formation to investigate the sensitivity of hydrodynamical instabilities to numerics, in particular, the hydro solver and the application of adaptive mesh refinement (AMR). As a simple test problem, we consider an initially spherical gas cloud in a wind, which is an idealized model for the merger of a subcluster or galaxy with a big cluster. Based on an entropy criterion, we calculate the mass stripping from the subcluster as a function of time. Moreover, the turbulent velocity field is analyzed with a multi-scale filtering technique. We find remarkable differences between the commonly used PPM solver with directional splitting in the Enzo code and an unsplit variant of PPM in the Nyx code, which demonstrates that different codes can converge to systematically different solutions even when using uniform grids. For the test case of an unbound cloud, AMR simulations reproduce uniform-grid results for the mass stripping quite well, although...

  17. Fundamental science investigations to develop a 6-MV laser triggered gas switch for ZR: first annual report.

    SciTech Connect (OSTI)

    Warne, Larry Kevin; Van Den Avyle, James A.; Lehr, Jane Marie; Rose, David; Krompholz, Hermann G.; Vela, Russell; Jorgenson, Roy Eberhardt; Timoshkin, Igor (University of Strathclyde, Glasgow, Scotland); Woodworth, Joseph Ray; Prestwich, Kenneth Randel (Voss Scientific, Albuquerque, NM); Krile, John; Given, Martin (University of Strathclyde, Glasgow, Scotland); McKee, G. Randall; Rosenthal, Stephen Edgar; Struve, Kenneth William; Welch, Dale Robert (Voss Scientific, Albuquerque, NM); Benwell, Andrew L. (University of Missouri-Columbia, Columbia, Missouri); Kovaleski, Scott; LeChien, Keith, R.; Johnson, David (Titan Pulse Sciences Division); Fouracre, R.A. (University of Strathclyde, Glasgow, Scotland); Yeckel, Chris (University of Missouri-Columbia, Columbia, Missouri); Wakeland, Peter Eric; Miller, A. R. (Titan Pulse Sciences Division); Hodge, Keith Conquest (Ktech Corporation, Albuquerque, NM); Pasik, Michael Francis; Savage, Mark Edward; Maenchen, John Eric; Curry, Randy D.; Feltz, Greg; Bliss, David Emery; MacGregor, Scott (University of Strathclyde, Glasgow, Scotland); Corley, J. P. (Ktech Corporation, Albuquerque, NM); Anaya, Victor (Ktech Corporation, Albuquerque, NM); Wallace, Zachariah (Ktech Corporation, Albuquerque, NM); Thoma, Carsten (Voss Scientific, Albuquerque, NM); Neuber, Andreas. (Texas Tech University, Lubbock, TX)

    2007-03-01

    In October 2005, an intensive three-year Laser Triggered Gas Switch (LTGS) development program was initiated to investigate and solve observed performance and reliability issues with the LTGS for ZR. The approach taken has been one of mission-focused research: to revisit and reassess the design, to establish a fundamental understanding of LTGS operation and failure modes, and to test evolving operational hypotheses. This effort is aimed toward deploying an initial switch for ZR in 2007, on supporting rolling upgrades to ZR as the technology can be developed, and to prepare with scientific understanding for the even higher voltage switches anticipated needed for future high-yield accelerators. The ZR LTGS was identified as a potential area of concern quite early, but since initial assessments performed on a simplified Switch Test Bed (STB) at 5 MV showed 300-shot lifetimes on multiple switch builds, this component was judged acceptable. When the Z{sub 20} engineering module was brought online in October 2003 frequent flashovers of the plastic switch envelope were observed at the increased stresses required to compensate for the programmatically increased ZR load inductance. As of October 2006, there have been 1423 Z{sub 20} shots assessing a variety of LTGS designs. Numerous incremental and fundamental switch design modifications have been investigated. As we continue to investigate the LTGS, the basic science of plastic surface tracking, laser triggering, cascade breakdown, and optics degradation remain high-priority mission-focused research topics. Significant progress has been made and, while the switch does not yet achieve design requirements, we are on the path to develop successively better switches for rolling upgrade improvements to ZR. This report summarizes the work performed in FY 2006 by the large team. A high-level summary is followed by detailed individual topical reports.

  18. DEVELOPMENT OF FINE PARTICULATE EMISSION FACTORS AND SPECIATION PROFILES FOR OIL AND GAS-FIRED COMBUSTION SYSTEMS

    SciTech Connect (OSTI)

    Glenn C. England

    2004-10-20

    In 1997, the United States Environmental Protection Agency (EPA) promulgated new National Ambient Air Quality Standards (NAAQS) for particulate matter, including for the first time particles with aerodynamic diameter smaller than 2.5 micrometers ({micro}m) referred to as PM2.5. PM2.5 in the atmosphere also contributes to reduced atmospheric visibility, which is the subject of existing rules for siting emission sources near Class 1 areas and new Regional Haze rules. There are few existing data regarding emissions and characteristics of fine aerosols from oil, gas and power generation industry combustion sources, and the information that is available is generally outdated and incomplete. Traditional stationary source air emission sampling methods tend to underestimate or overestimate the contribution of the source to ambient aerosols because they do not properly account for primary aerosol formation, which occurs after the gases leave the stack. Primary aerosol includes both filterable particles that are solid or liquid aerosols at stack temperature plus those that form as the stack gases cool through mixing and dilution processes in the plume downwind of the source. These deficiencies in the current methods can have significant impacts on regulatory decision-making. PM2.5 measurement issues were extensively reviewed by the American Petroleum Institute (API) (England et al., 1998), and it was concluded that dilution sampling techniques are more appropriate for obtaining a representative particulate matter sample from combustion systems for determining PM2.5 emission rate and chemical speciation. Dilution sampling is intended to collect aerosols including those that condense and/or react to form solid or liquid aerosols as the exhaust plume mixes and cools to near-ambient temperature immediately after the stack discharge. These techniques have been widely used in recent research studies. For example, Hildemann et al. (1994) and McDonald et al. (1998) used filtered ambient air to dilute the stack gas sample followed by 80-90 seconds residence time to allow aerosol formation and growth to stabilize prior to sample collection and analysis. More accurate and complete emissions data generated using the methods developed in this program will enable more accurate source-receptor and source apportionment analysis for PM2.5 National Ambient Air Quality Standards (NAAQS) implementation and streamline the environmental assessment of oil, gas and power production facilities. The overall goals of this program were to: (1) Develop improved dilution sampling technology and test methods for PM2.5 mass emissions and speciation measurements, and compare results obtained with dilution and traditional stationary source sampling methods. (2) Develop emission factors and speciation profiles for emissions of fine particulate matter, especially organic aerosols, for use in source-receptor and source apportionment analyses. (3) Identify and characterize PM2.5 precursor compound emissions that can be used in source-receptor and source apportionment analyses.

  19. Magnetic Fe3O4@TiO2 Nanoparticles-based Test Strip Immunosensing Device for Rapid Detection of Phosphorylated Butyrylcholinesterase

    SciTech Connect (OSTI)

    Ge, Xiaoxiao; Zhang, Weiying; Lin, Yuehe; Du, Dan

    2013-12-15

    An integrated magnetic nanoparticles-based test-strip immunosensing device was developed for rapid and sensitive quantification of phosphorylated butyrylcholinesterase (BChE), the biomarker of exposure to organophosphous pesticides (OP), in human plasma. In order to overcome the difficulty in scarce availability of OP-specific antibody, here magnetic Fe3O4@TiO2 nanoparticles were used and adsorbed on the test strip through a small magnet inserted in the device to capture target OP-BChE through selective binding between TiO2 and OP moiety. Further recognition was completed by horseradish peroxidase (HRP) and anti-BChE antibody (Ab) co-immobilized gold nanoparticles (GNPs). Their strong affinities among Fe3O4@TiO2, OP-BChE and HRP/Ab-GNPs were characterized by quartz crystal microbalance (QCM), surface plasmon resonance (SPR) and square wave voltammetry (SWV) measurements. After cutting off from test strip, the resulted immunocomplex (HRP/Ab-GNPs/OP-BChE/Fe3O4@TiO2) was measured by SWV using a screen printed electrode under the test zone. Greatly enhanced sensitivity was achieved by introduction of GNPs to link enzyme and antibody at high ratio, which amplifies electrocatalytic signal significantly. Moreover, the use of test strip for fast immunoreactions reduces analytical time remarkably. Coupling with a portable electrochemical detector, the integrated device with advanced nanotechnology displays great promise for sensitive, rapid and in-filed on-site evaluation of OP poisoning.

  20. SCIPP 05/09 Operation of Short-Strip Silicon Detectors based on p-type

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    SCIPP 05/09 Operation of Short-Strip Silicon Detectors based on p-type Wafers in the ATLAS Upgrade effects in p-type detectors, the expected performance of planned short silicon strip detectors (SSSD), detector thickness (200, 300 Āµm) for both Float Zone (FZ) and Magnetic Czochralski silicon p-type detectors

  1. Strip mining: Hydrology. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    The bibliography contains citations concerning the hydrologic impacts of strip mining. The potential impacts of strip mining on surface and ground water are examined, and techniques for control and monitoring of water pollution are discussed. Site rehabilitation is also considered. (Contains a minimum of 120 citations and includes a subject term index and title list.)

  2. Andor XDI Start Up/Shut Down 1. Turn on power strip against wall.

    E-Print Network [OSTI]

    Goldman, Robert D.

    Andor XDI Start Up/Shut Down Turn On: 1. Turn on power strip against wall. a. Wait until you hear a noise from the spinning disk. 2. (Optional) If you want CO2/Heated chamber turn on the power switch these. 5. Turn off power strip TIPS: 1. If your imaging isn't going well first check that the optical

  3. The shape of a Mobius strip E.L. Starostin1

    E-Print Network [OSTI]

    van der Heijden, Gert

    because bending a piece of paper is energetically much cheaper than stretching it. The strip therefore by taking a rectangular strip of plastic or paper, twisting one end through 180 , and then joining the ends familiar from fabric draping [6] and paper crumpling [28, 17]. This could give new insight into energy

  4. ARTIFIC~L r~rELUOE~CE 189 STRIPS: A New Approach to the

    E-Print Network [OSTI]

    Pratt, Vaughan

    can be proven to be true. STRIPS represents a world n,~del as an arbitrary collection offirst-order, a world model is r~presented by a set of well- formed formulas (wffs) of the first-order predicateARTIFIC~L r~rELUOE~CE 189 STRIPS: A New Approach to the Application of .Theorem Proving to Problem

  5. Gas-cooled reactor programs: high-temperature gas-cooled reactor technology development program. Annual progress report for period ending December 31, 1981

    SciTech Connect (OSTI)

    Not Available

    1982-06-01

    Information is presented concerning HTGR chemistry; fueled graphite development; irradiation services for General Atomic Company; prestressed concrete pressure vessel development; HTGR structural materials; graphite development; high-temperature reactor physics studies; shielding studies; component flow test loop studies; core support performance test; and application and project assessments.

  6. The Development of Warm Gas Cleanup Technologies for the Removal of Sulfur Containing Species from Steam Hydrogasification

    E-Print Network [OSTI]

    Luo, Qian

    2012-01-01

    species, such as carbonyl sulfide (COS), carbon disulfide (the formation of carbonyl sulfide (COS); carbon dioxide (COsmall amounts of gas phase carbonyl sulfide (COS) and carbon

  7. The Development of Warm Gas Cleanup Technologies for the Removal of Sulfur Containing Species from Steam Hydrogasification

    E-Print Network [OSTI]

    Luo, Qian

    2012-01-01

    sulfur was strongly dependent on coal type. Gryglewicz [19]coal) [9] and other factors such as heating rate, time, pressure and velocity of the carrying gas, type

  8. The Development of Warm Gas Cleanup Technologies for the Removal of Sulfur Containing Species from Steam Hydrogasification

    E-Print Network [OSTI]

    Luo, Qian

    2012-01-01

    and problems in biomass gasification sixth annual meetinghydrogen sulfide from biomass gasification gas. Catalysisa Pyrolysis and Gasification of Biomass and waste, Expert

  9. Emission assessment at the Burj Hammoud inactive municipal landfill: Viability of landfill gas recovery under the clean development mechanism

    SciTech Connect (OSTI)

    El-Fadel, Mutasem; Abi-Esber, Layale; Salhab, Samer

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer LFG emissions are measured at an abandoned landfill with highly organic waste. Black-Right-Pointing-Pointer Mean headspace and vent emissions are 0.240 and 0.074 l CH{sub 4}/m{sup 2} hr, respectively. Black-Right-Pointing-Pointer At sites with high food waste content, LFG generation drops rapidly after site closure. Black-Right-Pointing-Pointer The viability of LFG recovery for CDMs in developing countries is doubtful. - Abstract: This paper examines landfill gas (LFG) emissions at a large inactive waste disposal site to evaluate the viability of investment in LFG recovery through the clean development mechanism (CDM) initiative. For this purpose, field measurements of LFG emissions were conducted and the data were processed by geospatial interpolation to estimate an equivalent site emission rate which was used to calibrate and apply two LFG prediction models to forecast LFG emissions at the site. The mean CH{sub 4} flux values calculated through tessellation, inverse distance weighing and kriging were 0.188 {+-} 0.014, 0.224 {+-} 0.012 and 0.237 {+-} 0.008 l CH{sub 4}/m{sup 2} hr, respectively, compared to an arithmetic mean of 0.24 l/m{sup 2} hr. The flux values are within the reported range for closed landfills (0.06-0.89 l/m{sup 2} hr), and lower than the reported range for active landfills (0.42-2.46 l/m{sup 2} hr). Simulation results matched field measurements for low methane generation potential (L{sub 0}) values in the range of 19.8-102.6 m{sup 3}/ton of waste. LFG generation dropped rapidly to half its peak level only 4 yrs after landfill closure limiting the sustainability of LFG recovery systems in similar contexts and raising into doubt promoted CDM initiatives for similar waste.

  10. Studies on the stripping of cerium from the loaded tbp-kerosene solution

    SciTech Connect (OSTI)

    Rizk, S.E.; Abdel Rahman, N.; Daoud, J.A.; Aly, H.F.

    2008-07-01

    The reductive stripping of Ce(IV) from the loaded organic phase (30% TBP in kerosene) was investigated, using two stripping agents, EDTA and H{sub 2}O{sub 2}, in nitric acid. The results are compared to determine the optimum conditions for the reduction of Ce(IV) in the organic phase to Ce(III) in the aqueous phase. For each of the two stripping agents, the effect of different parameters affecting the reduction process was investigated: stripping-agent concentration, nitric acid concentration, phase ratio, shaking time, and temperature. The results are compared and discussed in terms of the conditions required for maximum reductive stripping of Ce(IV). (authors)

  11. Technology Adoption and Regulatory Regimes: Gas Turbines Electricity Generators from 1980 to 2001

    E-Print Network [OSTI]

    Ishii, Jun

    2004-01-01

    operation of gas turbines (especially combustion turbines inthe development of gas turbines, especially combustion gas

  12. Note: Simulation and test of a strip source electron gun

    SciTech Connect (OSTI)

    Iqbal, Munawar; Islam, G. U.; Misbah, I.; Iqbal, O.; Zhou, Z.

    2014-06-15

    We present simulation and test of an indirectly heated strip source electron beam gun assembly using Stanford Linear Accelerator Center (SLAC) electron beam trajectory program. The beam is now sharply focused with 3.04 mm diameter in the post anode region at 15.9 mm. The measured emission current and emission density were 1.12 A and 1.15 A/cm{sup 2}, respectively, that corresponds to power density of 11.5 kW/cm{sup 2}, at 10 kV acceleration potential. The simulated results were compared with then and now experiments and found in agreement. The gun is without any biasing, electrostatic and magnetic fields; hence simple and inexpensive. Moreover, it is now more powerful and is useful for accelerators technology due to high emission and low emittance parameters.

  13. Produce diesel from gas

    SciTech Connect (OSTI)

    Singleton, A.H.; Regier, S.

    1983-05-01

    The Gulf Badger process converts natural gas directly to hydrocarbon liquids by a catalytic chemical route. Fischer-Tropsch process--which is a carbon monoxide polymerization/ hydrogenation process--is used. Because the process is exothermal, heat removal by either tubular fixed bed, fluidized bed, or slurry are considered. A wax build up of high molecular weight material is removed by hydro-stripping two-bed system. The demonstration plant flow diagram shows the process to be: natural gas is compressed, recycled with CO/sub 2/, sulfur is removed in a zinc oxide drum, CO is removed in amine scrubbers, H/sub 2//CO ratio is adjusted to produce a hydrogen rich stream, and stabilization and distribution follow. A monitoring system using computers is part of the demonstration unit.

  14. IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 42, NO. 10, OCTOBER 2014 3245 Development of a Gas-Fed Plasma Source for

    E-Print Network [OSTI]

    Tas, A. Cuneyt

    . Silicon and sapphire samples were exposed to the arc plasma and revealed deposition of electrode and wall plasmas are thermal arcs characterized by very high in-bore pressures (1­10 MPa) with very high inputIEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 42, NO. 10, OCTOBER 2014 3245 Development of a Gas

  15. Challenges, uncertainties and issues facing gas production from gas hydrate deposits

    E-Print Network [OSTI]

    Moridis, G.J.

    2011-01-01

    gas such as tight gas, shale gas, or coal bed methane gas tolocation. Development of shale oil and gas, tar sands, coalGas hydrates will undoubtedly also be present in shales,

  16. Critical point of gas-liquid type phase transition and phase equilibrium functions in developed two-component plasma model

    SciTech Connect (OSTI)

    Butlitsky, M. A.; Zelener, B. V.

    2014-07-14

    A two-component plasma model, which we called a “shelf Coulomb” model has been developed in this work. A Monte Carlo study has been undertaken to calculate equations of state, pair distribution functions, internal energies, and other thermodynamics properties. A canonical NVT ensemble with periodic boundary conditions was used. The motivation behind the model is also discussed in this work. The “shelf Coulomb” model can be compared to classical two-component (electron-proton) model where charges with zero size interact via a classical Coulomb law. With important difference for interaction of opposite charges: electrons and protons interact via the Coulomb law for large distances between particles, while interaction potential is cut off on small distances. The cut off distance is defined by an arbitrary ? parameter, which depends on system temperature. All the thermodynamics properties of the model depend on dimensionless parameters ? and ? = ?e{sup 2}n{sup 1/3} (where ? = 1/k{sub B}T, n is the particle's density, k{sub B} is the Boltzmann constant, and T is the temperature) only. In addition, it has been shown that the virial theorem works in this model. All the calculations were carried over a wide range of dimensionless ? and ? parameters in order to find the phase transition region, critical point, spinodal, and binodal lines of a model system. The system is observed to undergo a first order gas-liquid type phase transition with the critical point being in the vicinity of ?{sub crit}?13(T{sub crit}{sup *}?0.076),?{sub crit}?1.8(v{sub crit}{sup *}?0.17),P{sub crit}{sup *}?0.39, where specific volume v* = 1/?{sup 3} and reduced temperature T{sup *} = ?{sup ?1}.

  17. Characterization of radiolytically generated degradation products in the strip section of a TRUEX flowsheet

    SciTech Connect (OSTI)

    Dean R. Peterman; Lonnie G. Olson; Gary S. Groenewold; Rocklan G. McDowell; Richard D. Tillotson; Jack D. Law

    2013-08-01

    This report presents a summary of the work performed to meet the FCRD level 2 milestone M3FT-13IN0302053, “Identification of TRUEX Strip Degradation.” The INL radiolysis test loop has been used to identify radiolytically generated degradation products in the strip section of the TRUEX flowsheet. These data were used to evaluate impact of the formation of radiolytic degradation products in the strip section upon the efficacy of the TRUEX flowsheet for the recovery of trivalent actinides and lanthanides from acidic solution. The nominal composition of the TRUEX solvent used in this study is 0.2 M CMPO and 1.4 M TBP dissolved in n-dodecane and the nominal composition of the TRUEX strip solution is 1.5 M lactic acid and 0.050 M diethylenetriaminepentaacetic acid. Gamma irradiation of a mixture of TRUEX process solvent and stripping solution in the test loop does not adversely impact flowsheet performance as measured by stripping americium ratios. The observed increase in americium stripping distribution ratios with increasing absorbed dose indicates the radiolytic production of organic soluble degradation compounds.

  18. Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems. Volume 2, Appendix A: Fixed bed gasifier and sulfur sorbent regeneration subsystem computer model development: Final report

    SciTech Connect (OSTI)

    Blough, E.; Russell, W.; Leach, J.W.

    1990-08-01

    Computer models have been developed for evaluating conceptual designs of integrated coal gasification combined cycle power plants. An overall system model was developed for performing thermodynamic cycle analyses, and detailed models were developed for predicting performance characteristics of fixed bed coal gasifiers and hot gas clean up subsystem components. The overall system model performs mass and energy balances and does chemical equilibrium analyses to determine the effects of changes in operating conditions, or to evaluate proposed design changes. An existing plug flow model for fixed bed gasifiers known as the Wen II model was revised and updated. Also, a spread sheet model of zinc ferrite sulfur sorbent regeneration subsystem was developed. Parametric analyses were performed to determine how performance depends on variables in the system design. The work was done to support CRS Sirrine Incorporated in their study of standardized air blown coal gasifier gas turbine concepts.

  19. Ram Pressure Stripping in the Low Luminosity Virgo Cluster Elliptical Galaxy NGC 4476

    E-Print Network [OSTI]

    D. M. Lucero; L. M. Young; J. H. van Gorkom

    2004-10-18

    We present a deep VLA search for HI emission from the low-luminosity Virgo Cluster elliptical galaxy NGC 4476, which contains 1.1 x 10^8 M_sun of molecular gas in an undisturbed disk in regular rotation. No HI was detected. The rms noise in the final image corresponds to a 3 sigma column density sensitivity of 1.2 x 10^20 cm^{-2} at the position of NGC 4476, averaged over the 4 kpc beam. The total HI mass is less than 1.5 x 10^7 M_sun. If we compare our HI upper limit to the H_2 content, we find that NGC 4476 is extremely deficient in HI compared to other galaxies detected in these two species. The H_2/HI mass ratio for NGC 4476 is > 7, whereas typical H_2/HI ratios for elliptical galaxies detected in both HI and H_2 are <~2. Based on this extreme HI deficiency and the intra-cluster medium (ICM) density at the projected distance from M87 we argue that either NGC 4476 has undergone ram-pressure stripping while traveling through the Virgo cluster core or its average molecular gas density is larger and its interstellar UV field is smaller than in typical spiral galaxies. NGC 4476 is located 12' in projection from M87, which causes extreme continuum confusion problems. We also discuss in detail the techniques used for continuum subtraction. The spectral dynamic range of our final image is 50,000 to 1.

  20. Techno-economic analysis of water management options for unconventional natural gas developments in the Marcellus Shale

    E-Print Network [OSTI]

    Karapataki, Christina

    2012-01-01

    The emergence of large-scale hydrocarbon production from shale reservoirs has revolutionized the oil and gas sector, and hydraulic fracturing has been the key enabler of this advancement. As a result, the need for water ...

  1. Development of a high-performance coal-fired power generating system with pyrolysis gas and char-fired high temperature furnace (HITAF). Volume 1, Final report

    SciTech Connect (OSTI)

    NONE

    1996-02-01

    A major objective of the coal-fired high performance power systems (HIPPS) program is to achieve significant increases in the thermodynamic efficiency of coal use for electric power generation. Through increased efficiency, all airborne emissions can be decreased, including emissions of carbon dioxide. High Performance power systems as defined for this program are coal-fired, high efficiency systems where the combustion products from coal do not contact the gas turbine. Typically, this type of a system will involve some indirect heating of gas turbine inlet air and then topping combustion with a cleaner fuel. The topping combustion fuel can be natural gas or another relatively clean fuel. Fuel gas derived from coal is an acceptable fuel for the topping combustion. The ultimate goal for HIPPS is to, have a system that has 95 percent of its heat input from coal. Interim systems that have at least 65 percent heat input from coal are acceptable, but these systems are required to have a clear development path to a system that is 95 percent coal-fired. A three phase program has been planned for the development of HIPPS. Phase 1, reported herein, includes the development of a conceptual design for a commercial plant. Technical and economic feasibility have been analysed for this plant. Preliminary R&D on some aspects of the system were also done in Phase 1, and a Research, Development and Test plan was developed for Phase 2. Work in Phase 2 include s the testing and analysis that is required to develop the technology base for a prototype plant. This work includes pilot plant testing at a scale of around 50 MMBtu/hr heat input. The culmination of the Phase 2 effort will be a site-specific design and test plan for a prototype plant. Phase 3 is the construction and testing of this plant.

  2. Gas hydrates

    SciTech Connect (OSTI)

    Not Available

    1985-04-01

    There is a definite need for the US government to provide leadership for research in gas hydrates and to coordinate its activities with academia, industry, private groups, federal agencies, and their foreign counterparts. In response to this need, the DOE Morgantown Energy Technology Center implemented a gas hydrates R and D program. Understanding the resource will be achieved through: assessment of current technology; characterization of gas hydrate geology and reservoir engineering; and development of diagnostic tools and methods. Research to date has focused on geology. As work progressed, areas where gas hydrates are likely to occur were identified, and specific high potential areas were targeted for future detailed investigation. Initial research activities involved the development of the Geologic Analysis System (GAS); which will provide, through approximately 30 software packages, the capability to manipulate and correlate several types of geologic and petroleum data into maps, graphics, and reports. Preliminary mapping of hydrate prospects for the Alaskan North Slope is underway. Geological research includes physical system characterization which focuses on creating synthetic methane hydrates and developing synthetic hydrate cores using tetrahydrofuran, consolidated rock cores, frost base mixtures, water/ice base mixtures, and water base mixtures. Laboratory work produced measurements of the sonic velocity and electrical resistivity of these synthetic hydrates. During 1983, a sample from a natural hydrate core recovered from the Pacific coast of Guatemala was tested for these properties by METC. More recently, a natural hydrate sample from the Gulf of Mexico was also acquired and testing of this sample is currently underway. In addition to the development of GAS, modeling and systems analysis work focused on the development of conceptual gas hydrate production models. 16 figs., 6 tabs.

  3. Fiber Characteristics and Spinning Performance of Mechanically-Stripped Cotton on the High Plains. 

    E-Print Network [OSTI]

    Paulson, W. E.; Hessler, L. E.; Ward, J. M.

    1953-01-01

    of the 1949 and 1951 crops were on -3 cotton machine-stripped after frost. The samples of the 1 crop also included cotton hand-pulled before frost. All samples of the 1949 crop and 60 percent of those of the crop were from field-stored machine...-stripped seed cotton. samples were obtained at or near the time of ginning n storage stocks. Hand pulling of cotton before frost is more selective and ~nc~udes only the more mature bolls. Stripping after frost is the kind of mechanical harvesting done...

  4. Simulations of stripped core-collapse supernovae in close binaries

    E-Print Network [OSTI]

    Rimoldi, Alex; Rossi, Elena Maria

    2015-01-01

    We perform smoothed-particle hydrodynamical simulations of the explosion of a helium star in a close binary system, and study the effects of the explosion on the companion star as well as the effect of the presence of the companion on the supernova remnant. By simulating the mechanism of the supernova from just after core bounce until the remnant shell passes the stellar companion, we are able to separate the various effects leading to the final system parameters. In the final system, we measure the mass stripping and ablation from, and the velocity kick imparted to, the companion star, as well as the structure of the supernova shell. The presence of the companion star produces a conical cavity in the expanding supernova remnant, and loss of material from the companion causes the supernova remnant to be more metal-rich on one side and more hydrogen-rich (from the companion material) around the cavity. Following the removal of mass from the companion, we study its subsequent evolution and compare it with a sin...

  5. Treatment studies of paint stripping waste from plastic media blasting

    SciTech Connect (OSTI)

    Spence, R.D.

    1995-12-31

    Blasting with plastic media is used to strip paint and decontaminate surfaces. For disposal the plastic media is pulverized into a plastic dust. About 10 wt % of the waste from plastic media blasting is pulverized paint, which makes the waste a characteristically hazardous waste because of the presence of barium, cadmium, chromium and lead in the paint pigments. Four separate treatments of this hazardous waste were studied: (1) density separation to remove the paint, (2) self-encapsulation of the mix of plastic and paint dust into plastic pellets, (3) solidification/stabilization (S/S) into cementitious waste forms, and (4) low-temperature ashing to destroy the large mass of nonhazardous polymer. Two types of plast blasting wastes were studied: a urea formaldehyde thermoset polymer and an acrylic thermoplastic polymer (polymethylmethacrylate). Toxicity Characteristic Leach Procedure (TCLP) extraction concentrations for the treated and untreated wastes are listed. Density separation failed to adequately separate the paint with an aqueous carbonate solution. Self-encapsulation reduced the waste volume by about 50%, but did not meet TCLP criteria. Cementitious solidification gave the lowest TCLP concentrations, but increased the waste volume by about 50%. Low-temperature ashing at 600 C resulted in a mass decrease of 93 to 98% for the wastes; the metals remaining in the ash could be stabilized with cementitious solidification and still result in a volume decrease of 75 to 95 volume percent.

  6. Comprehensive Lifecycle Planning and Management System For Addressing Water Issues Associated With Shale Gas Development In New York, Pennsylvania, And West Virginia

    SciTech Connect (OSTI)

    J. Daniel Arthur

    2012-03-31

    The objective of this project is to develop a modeling system to allow operators and regulators to plan all aspects of water management activities associated with shale gas development in the target project area of New York, Pennsylvania, and West Virginia (ā??target areaā?¯), including water supply, transport, storage, use, recycling, and disposal and which can be used for planning, managing, forecasting, permit tracking, and compliance monitoring. The proposed project is a breakthrough approach to represent the entire shale gas water lifecycle in one comprehensive system with the capability to analyze impacts and options for operational efficiency and regulatory tracking and compliance, and to plan for future water use and disposition. It will address all of the major water-related issues of concern associated with shale gas development in the target area, including water withdrawal, transport, storage, use, treatment, recycling, and disposal. It will analyze the costs, water use, and wastes associated with the available options, and incorporate constraints presented by permit requirements, agreements, local and state regulations, equipment and material availability, etc. By using the system to examine the water lifecycle from withdrawals through disposal, users will be able to perform scenario analysis to answer "what if" questions for various situations. The system will include regulatory requirements of the appropriate state and regional agencies and facilitate reporting and permit applications and tracking. These features will allow operators to plan for more cost effective resource production. Regulators will be able to analyze impacts of development over an entire area. Regulators can then make informed decisions about the protections and practices that should be required as development proceeds. This modeling system will have myriad benefits for industry, government, and the public. For industry, it will allow planning all water management operations for a project or an area as one entity to optimize water use and minimize costs subject to regulatory and other constraints. It will facilitate analysis of options and tradeoffs, and will also simplify permitting and reporting to regulatory agencies. The system will help regulators study cumulative impacts of development, conserve water resources, and manage disposal options across a region. It will also allow them to track permits and monitor compliance. The public will benefit from water conservation, improved environmental performance as better system wide decisions are made, and greater supply of natural gas, with attendant lower prices, as costs are reduced and development is assisted through better planning and scheduling. Altogether, better economics and fewer barriers will facilitate recovery of the more than 300 trillion cubic feet of estimated recoverable natural gas resource in the Marcellus Shale in a manner that protects the environment.

  7. A study of certain trace metals in sea water using anodic stripping voltammetry

    E-Print Network [OSTI]

    Fitzgerald, William Francis, 1926-

    1970-01-01

    Anodic stripping voltammetry utilizing a thin film mercury composite graphite electrode has been evaluated and applied for the direct analysis of the metals, Zn,J Cu, Pb, and Cd in sea water. The electrode was observed to ...

  8. Gamma Irradiation of sLHC Prototype Silicon Strip Detectors and Test Structures of the SMART

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    Gamma Irradiation of sLHC Prototype Silicon Strip Detectors and Test Structures of the SMART funded SMART project. They were irradiated with 60 Co to test total dose (TID) effects, in order to study

  9. Potential for N pollution swapping from riparian buffer strips and an instream wetland 

    E-Print Network [OSTI]

    Boukelia, Willena Esther

    2012-11-29

    Diffuse agricultural pollution is a major contributor to poor water quality in many parts of the world. Consequently agri-environment policy promotes the use of riparian buffer strips and/or denitrifying wetlands to ...

  10. DRAMATIC IMPROVEMENTS IN CAUSTIC-SIDE SOLVENT EXTRACTION OF CESIUM THROUGH MORE EFFICIENT STRIPPING

    SciTech Connect (OSTI)

    Delmau, Laetitia Helene; Bazelaire, Eve; Bonnesen, Peter V; Engle, Nancy L; Gorbunova, Maryna; Haverlock, Tamara; Moyer, Bruce A; Ensor, Dale; Meadors, Viola M; Harmon, Ben; Bartsch, Richard A.; Surowiec, Malgorzata A.; Zhou, Hui

    2008-01-01

    Dramatic potential improvements to the chemistry of the Caustic-Side Solvent Extraction (CSSX) process are presented as related to enhancement of cesium stripping. The current process for removing cesium from the alkaline high-level waste (HLW) at the USDOE Savannah River Site employs acidic scrub and strip stages and shows remarkable extraction and selectivity properties for cesium. It was determined that cesium stripping can be greatly improved with caustic or near-neutral stages using sodium hydroxide and boric acid as scrub and strip solutions, respectively. Improvements can also be achieved by appending pH-sensitive functional groups to the calix[4]arene-crown-6 extractant. Addition of a proton-ionizable group to the calixarene frame leads to a dramatic "pH swing" of up to 6 orders of magnitude change in cesium distribution ratio.

  11. The All-Wavelength Extended Groth Strip International Survey (AEGIS) Data Sets

    E-Print Network [OSTI]

    2006-01-01

    obtained 9501 redshifts in the EGS so far, with thousandsenvironment of ob- jects in EGS, which is a major factorthe Extended Groth Strip (EGS: ?=14 h 17 m , ?=+52 ? 30 ) is

  12. The thermomechanical constitutive experimentation of NiTi shape memory alloy strips and rods 

    E-Print Network [OSTI]

    Howard, Stephen David

    1995-01-01

    The purpose of this thesis was to study the effect of temperature on the thermomechanical constitutive behavior of NiTi shape memory alloy strip and rod specimens. The stress-strain relationship is analyzed for isothermal monotonic tensile testing...

  13. Development of a high-density gas-jet target for nuclear astrophysics and reaction studies with rare isotope beams. Final Report

    SciTech Connect (OSTI)

    Uwe, Greife

    2014-08-12

    The purpose of this project was to develop a high-density gas jet target that will enable a new program of transfer reaction studies with rare isotope beams and targets of hydrogen and helium that is not currently possible and will have an important impact on our understanding of stellar explosions and of the evolution of nuclear shell structure away from stability. This is the final closeout report for the project.

  14. STRIP-PET: a novel detector concept for the TOF-PET scanner

    E-Print Network [OSTI]

    Moskal, P; Bia?as, P; Ciszewska, M; Czerwi?ski, E; Heczko, A; Kajetanowicz, M; Kap?on, ?; Kochanowski, A; Konopka-Cupia?, G; Korcyl, G; Krzemie?, W; ?ojek, K; Majewski, J; Migda?, W; Molenda, M; Nied?wiecki, Sz; Pa?ka, M; Rudy, Z; Salabura, P; Silarski, M; S?omski, A; Smyrski, J; Zdebik, J; Zieli?ski, M

    2013-01-01

    We briefly present a design of a new PET scanner based on strips of polymer scintillators arranged in a barrel constituting a large acceptance detector. The solution proposed is based on the superior timing properties of the polymer scintillators. The position and time of the reaction of the gamma quanta in the detector material will be determined based on the time of arrival of light signals to the edges of the scintillator strips.

  15. Effect of moisture on air stripping of non volatile organic contaminants from soil 

    E-Print Network [OSTI]

    Alvarez, Roberto

    1991-01-01

    of the unsaturated soil zone by organic chemicals has been receiving considerable attention recently since it is the major source of ground water pollution. The main objective of this work was to study the viability of air stripping non volatile organic... in the solid phase. Phenol, an EPA priority pollutant which has been identified in ground water supplies, was the model contaminant. Studies involved stripping the contaminant from a column of Norwood/Westwood soil under several moisture conditions. Removal...

  16. UBC Social Ecological Economic Development Studies (SEEDS) Student Report Climate Action Partnership. Contribution of Food Greenhouse Gas Emissions

    E-Print Network [OSTI]

    similar to the Land and Food Systems (LFS) Orchard Garden, 0.019 tons of Carbon Dioxide (CO2) emissions an external source. This study attempts to quantify the GHG emissions from the transportation of the food Partnership. Contribution of Food Greenhouse Gas Emissions Reductions: Moving UBC Beyond Climate Neutral

  17. Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs

    SciTech Connect (OSTI)

    Bjorn N. P. Paulsson

    2006-09-30

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to perform high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology has been hampered by the lack of acquisition technology necessary to record large volumes of high frequency, high signal-to-noise-ratio borehole seismic data. This project took aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array has removed the technical acquisition barrier for recording the data volumes necessary to do high resolution 3D VSP and 3D cross-well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that promise to take the gas industry to the next level in their quest for higher resolution images of deep and complex oil and gas reservoirs. Today only a fraction of the oil or gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of detailed compartmentalization of oil and gas reservoirs. In this project, we developed a 400 level 3C borehole seismic receiver array that allows for economic use of 3D borehole seismic imaging for reservoir characterization and monitoring. This new array has significantly increased the efficiency of recording large data volumes at sufficiently dense spatial sampling to resolve reservoir complexities. The receiver pods have been fabricated and tested to withstand high temperature (200 C/400 F) and high pressure (25,000 psi), so that they can operate in wells up to 7,620 meters (25,000 feet) deep. The receiver array is deployed on standard production or drill tubing. In combination with 3C surface seismic or 3C borehole seismic sources, the 400 level receiver array can be used to obtain 3D 9C data. These 9C borehole seismic data provide both compressional wave and shear wave information that can be used for quantitative prediction of rock and pore fluid types. The 400-level borehole receiver array has been deployed successfully in a number of oil and gas wells during the course of this project, and each survey has resulted in marked improvements in imaging of geologic features that are critical for oil or gas production but were previously considered to be below the limits of seismic resolution. This added level of reservoir detail has resulted in improved well placement in the oil and gas fields that have been drilled using the Massive 3D VSP{reg_sign} images. In the future, the 400-level downhole seismic receiver array is expected to continue to improve reservoir characterization and drilling success in deep and complex oil and gas reservoirs.

  18. Development of a time projection chamber with micro pixel electrodes

    E-Print Network [OSTI]

    H. Kubo; K. Miuchi; T. Nagayoshi; A. Ochi; R. Orito; A. Takada; T. Tanimori; M. Ueno

    2003-01-09

    A time projection chamber (TPC) based on a gaseous chamber with micro pixel electrodes (micro-PIC) has been developed for measuring three-dimensional tracks of charged particles. The micro-PIC with a detection area of 10 cm square consists of a double-sided printing circuit board. Anode pixels are formed with 0.4 mm pitch on strips aligned perpendicular to the cathode strips in order to obtain a two-dimensional position. In the TPC with drift length of 8 cm, 4 mm wide field cage electrodes are aligned at 1mm spaces and a uniform electric field of about 0.4 kV/cm is produced. For encoding of the three-dimensional position a synchronous readout system has been developed using Field Programmable Gate Arrays with 40 MHz clock. This system enables us to reconstruct the three-dimensional track of the particle at successive points like a cloud chamber even at high event rate. The drift velocity of electrons in the TPC was measured with the tracks of cosmic muons for three days, during which the TPC worked stably with the gas gain of 3000. With a radioisotope of gamma-ray source the three-dimensional track of a Compton scattered electron was taken successfully.

  19. Development, Application and Performance of Venturi Register L. E. A. Burner System for Firing Oil and Gas Fuels 

    E-Print Network [OSTI]

    Cawte, A. D.

    1979-01-01

    as CEA Combustion, Ltd., to develop a more efficient suspended - flame burner. Subsequently, the CEGB (Central Electric Generating Board) in Great Britain developed standards for register type burners installed in fossil fuel fired electric generating...

  20. Reactor User Interface Technology Development Roadmaps for a High Temperature Gas-Cooled Reactor Outlet Temperature of 750 degrees C

    SciTech Connect (OSTI)

    Ian Mckirdy

    2010-12-01

    This report evaluates the technology readiness of the interface components that are required to transfer high-temperature heat from a High Temperature Gas-Cooled Reactor (HTGR) to selected industrial applications. This report assumes that the HTGR operates at a reactor outlet temperature of 750°C and provides electricity and/or process heat at 700°C to conventional process applications, including the production of hydrogen.

  1. Development of novel copper-based sorbents for hot-gas cleanup. Technical report, 1 March--31 May 1994

    SciTech Connect (OSTI)

    Abbasian, J.; Hill, A.H. [Inst. of Gas Technology, Chicago, IL (United States); Flytzani-Stephanopoulos, M.; Li, Z. [Tufts Univ., Medford, MA (United States)

    1994-09-01

    The objective of this investigation is to evaluate two novel copper-based sorbents, namely copper-chromium and copper-cerium, for their effectiveness in removing hydrogen sulfide from fuel gas in the temperature range of 650 to 850 C. Such high temperatures will be required for the new generation of gas turbines (inlet > 750 C) in Integrated Gasification Combined Cycle (IGCC) systems. Results of fixed-bed reactor tests conducted in this quarter, indicate that, at 750 C, pre-reduction with H{sub 2} in the presence of H{sub 2}O does not effect the performance of either sorbent for H{sub 2}S removal. For the pre-reduced CuCr{sub 2}O{sub 4} sorbent, copper utilization before the first H{sub 2}S breakthrough is substantially higher in synthesis feed gas mixture than in feed gas containing 30 Vol% H{sub 2}, and slightly lower than in 10 vol% H{sub 2}. In sulfidation-regeneration testing of copper- and additive-rich sorbents, chromium-rich CuO-3Cr{sub 2}O{sub 4} sorbent demonstrated very high H{sub 2}S removal efficiency and high copper conversion levels (comparable to that of the 1:1 molar composition sorbent). Similar results were obtained with the cerium-rich CuO-3CeO{sub 2} sorbent, but only for the first cycle. The H{sub 2}S removal performance of both copper-rich sorbents was inferior to that of the respective 1:1 molar compositions. CuO-CeO{sub 2} sorbent testing in a TGA indicates no appreciable decrease in the sulfidation rate over 5 1/2 cycles. However, weight changes during regeneration of the CuO-CeO{sub 2} suggest that some copper or cerium sulfates formed.

  2. 11/4/2014 Prof strips the math, makes the cosmos more relatable | thebatt http://www.thebatt.com/news/view.php/853334/Prof-strips-the-math-makes-the-cosmos-mo 1/4

    E-Print Network [OSTI]

    Toback, David

    11/4/2014 Prof strips the math, makes the cosmos more relatable | thebatt http://www.thebatt.com/news/view.php/853334/Prof-strips-the-math-makes-the-cosmos-mo 1/4 Sign Up Log In By Nikita Redkar By Kylee Reid the math, makes the cosmos more relatable Like #12;11/4/2014 Prof strips the math, makes the cosmos more

  3. Development of a fast cyclotron gas stopper for intense rare isotope beams from projectile fragmentation: Study of ion extraction with a radiofrequency carpet

    SciTech Connect (OSTI)

    Bollen, Georg; Morrissey, David

    2011-01-16

    Research and development has been performed in support of the design of a future rare isotope beam facility in the US. An important aspect of plans for earlier RIA (Rare Isotope Accelerator) and a requirement of FRIB (Facility of Rare Isotope Beams) to be built at Michigan State University are the availability of so-called “stopped beams” for research that contributes to answering questions like how elements in the universe are created and to provide better insight into the nature of Fundamental Interactions. In order to create “stopped beams” techniques are required that transform fast rare isotopes beams as they are available directly after addresses questions like the origin of that will allow and High priority is given to the evaluation of intensity limitations and the efficiency of stopping of fast fragment beams in gas cells and to the exploration of options to increase the efficiency and the reduction of space charge effects. Systematic studies performed at MSU as part of the RIA R&D with a linear gas cell under conditions close to those expected at RIA and related simulations confirm that the efficiency of stopping and extracting ions decreases with increasing beam intensity. Similar results have also been observed at RIKEN in Japan. These results indicate the concepts presently under study will not be able to cover the full range of intensities of fast beams expected at RIA without major losses. The development of a more robust concept is therefore critical to the RIA concept. Recent new beam simulation studies performed at the NSCL show that the stopping of heavy ions in a weakly focusing gas-filled magnetic field can overcome the intensity limitation of present systems while simultaneously providing a much faster ion extraction. We propose to design and build such a cyclotron gas stopper and to test it at the NSCL under conditions as close as possible to those found at RIA.

  4. Field Laboratory in the Osage Reservation -- Determination of the Status of Oil and Gas Operations: Task 1. Development of Survey Procedures and Protocols

    SciTech Connect (OSTI)

    Carroll, Herbert B.; Johnson, William I.

    1999-04-27

    Procedures and protocols were developed for the determination of the status of oil, gas, and other mineral operations on the Osage Mineral Reservation Estate. The strategy for surveying Osage County, Oklahoma, was developed and then tested in the field. Two Osage Tribal Council members and two Native American college students (who are members of the Osage Tribe) were trained in the field as a test of the procedures and protocols developed in Task 1. Active and inactive surface mining operations, industrial sites, and hydrocarbon-producing fields were located on maps of the county, which was divided into four more or less equal areas for future investigation. Field testing of the procedures, protocols, and training was successful. No significant damage was found at petroleum production operations in a relatively new production operation and in a mature waterflood operation.

  5. A dynamic process model of a natural gas combined cycle -- Model development with startup and shutdown simulations

    SciTech Connect (OSTI)

    Liese, Eric [U.S. DOE; Zitney, Stephen E. [U.S. DOE

    2013-01-01

    Research in dynamic process simulation for integrated gasification combined cycles (IGCC) with carbon capture has been ongoing at the National Energy Technology Laboratory (NETL), culminating in a full operator training simulator (OTS) and immersive training simulator (ITS) for use in both operator training and research. A derivative work of the IGCC dynamic simulator has been a modification of the combined cycle section to more closely represent a typical natural gas fired combined cycle (NGCC). This paper describes the NGCC dynamic process model and highlights some of the simulator’s current capabilities through a particular startup and shutdown scenario.

  6. Conventional Energy (Oil, Gas, and Coal) Forum & Associated Vertical Business Development Best Practices in Indian Country

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p aDepartmentEnergy comparingDeep January 2012CONVENTIONAL ENERGY

  7. Model documentation natural gas transmission and distribution model (NGTDM) of the national energy modeling system. Volume II: Model developer`s report

    SciTech Connect (OSTI)

    Not Available

    1995-01-03

    To partially fulfill the requirements for {open_quotes}Model Acceptance{close_quotes} as stipulated in EIA Standard 91-01-01 (effective February 3, 1991), the Office of Integrated Analysis and Forecasting has conducted tests of the Natural Gas Transmission and Distribution Model (NGTDM) for the specific purpose of validating the forecasting model. This volume of the model documentation presents the results of {open_quotes}one-at-a-time{close_quotes} sensitivity tests conducted in support of this validation effort. The test results are presented in the following forms: (1) Tables of important model outputs for the years 2000 and 2010 are presented with respect to change in each input from the reference case; (2) Tables of percent changes from base case results for the years 2000 and 2010 are presented for important model outputs; (3) Tables of conditional sensitivities (percent change in output/percent change in input) for the years 2000 and 2010 are presented for important model outputs; (4) Finally, graphs presenting the percent change from base case results for each year of the forecast period are presented for selected key outputs. To conduct the sensitivity tests, two main assumptions are made in order to test the performance characteristics of the model itself and facilitate the understanding of the effects of the changes in the key input variables to the model on the selected key output variables: (1) responses to the amount demanded do not occur since there are no feedbacks of inputs from other NEMS models in the stand-alone NGTDM run. (2) All the export and import quantities from and to Canada and Mexico, and liquefied natural gas (LNG) imports and exports are held fixed (i.e., there are no changes in imports and exports between the reference case and the sensitivity cases) throughout the forecast period.

  8. Extraction of uranium: comparison of stripping with ammonia vs. strong acid

    SciTech Connect (OSTI)

    Moldovan, B.; Grinbaum, B.; Efraim, A.

    2008-07-01

    Following extraction of uranium in the first stage of solvent extraction using a tertiary amine, typically Alamine 336, the stripping of the extracted uranium is accomplished either by use of an aqueous solution of (NH{sub 4}){sub 2}SO{sub 4} /NH{sub 4}OH or by strong-acid stripping using 400-500 g/L H{sub 2}SO{sub 4}. Both processes have their merits and determine the downstream processing. The classical stripping with ammonia is followed by addition of strong base, to precipitate ammonium uranyl sulfate (NH{sub 4}){sub 2}UO{sub 2}(SO{sub 4}){sub 2}, which yields finally the yellow cake. Conversely, stripping with H{sub 2}SO{sub 4}, followed by oxidation with hydrogen peroxide yields uranyl oxide as product. At the Cameco Key Lake operation, both processes were tested on a pilot scale, using a Bateman Pulsed Column (BPC). The BPC proved to be applicable to both processes. It met the process criteria both for extraction and stripping, leaving less than 1 mg/L of U{sub 3}O{sub 8} in the raffinate, and product solution had the required concentration of U{sub 3}O{sub 8} at high flux and reasonable height of transfer unit. In the Key Lake mill, each operation can be carried out in a single column. The main advantages of the strong-acid stripping over ammonia stripping are: (1) 60% higher flux in the extraction, (2) tenfold higher concentration of the uranium in the product solution, and (3) far more robust process, with no need of pH control in the stripping and no need to add acid to the extraction in order to keep the pH above the point of precipitation of iron compounds. The advantages of the ammoniacal process are easier stripping, that is, less stages needed to reach equilibrium and lower concentration of modifier needed to prevent the creation of a third phase. (authors)

  9. 3.2 Silicon Detector Hodoscopes 77 multi-strip

    E-Print Network [OSTI]

    Hörandel, Jörg R.

    a container. The two gas Cherenkov detectors were operated at 1 atm with a mix- ture of 80% N2 and 20%CO2 220, a closed-cell, polyethylene foam with a density of 36 g=l: The results are illustrated in Fig. 10

  10. 3.2 Silicon Detector Hodoscopes 77 multi-strip

    E-Print Network [OSTI]

    Hörandel, Jörg R.

    a container. The two gas Cherenkov detectors were operated at 1 atm with a mix- ture of 80% N2 and 20%CO2 cm block of DOW Ethafoam 220, a closed-cell, polyethylene foam with a density of 36 g=l: The results

  11. Oil and gas development on the outer continental shelf. Hearing before the Committee on Energy and Natural Resources, United States Senate, One Hundred Third Congress, First Session, September 14, 1993

    SciTech Connect (OSTI)

    NONE

    1994-12-31

    The hearing addressed oil and gas development on the outer continental shelf. Testimony is given by Department of Energy officials on the United States oil and gas leasing program. Congressional questions and agency responses are provided. Statements and documents prepared for the record are included.

  12. Hong Kong : city of edges : South East Kowloon development

    E-Print Network [OSTI]

    Chan, Wai-Kuen, 1968-

    1997-01-01

    Many extraordinary cities are developed along the edges of water into different directions. Yet, the city of Hong Kong has been formed along narrow strips of scarce flat-land around the harbor and from reclamations of ...

  13. Renewable Natural Gas (Biomethane)

    E-Print Network [OSTI]

    California at Davis, University of

    to Landfill Owner $6.18 Total Cost Per MMBtu #12;Index Price of Natural Gas NYMEX Natural Gas Futures PricesRenewable Natural Gas (Biomethane) #12;Critical Barriers Impeding RNG as a Transportation Fuel-developer of largest RNG production project in U.S. at McCommas Bluff Landfill in Dallas, Texas · Chairman and co

  14. Natural Gas Hydrates Update 1998-2000

    Reports and Publications (EIA)

    2001-01-01

    Significant events have transpired on the natural gas hydrate research and development front since "Future Supply Potential of Natural Gas Hydrates" appeared in Natural Gas 1998 Issues and Trends and in the Potential Gas Committee's 1998 biennial report.

  15. Papers Based Electrochemical Biosensors: From Test Strips to Paper-Based Microfluidics

    SciTech Connect (OSTI)

    Liu, Bingwen; Du, Dan; Hua, Xin; Yu, Xiao-Ying; Lin, Yuehe

    2014-05-08

    Papers based biosensors such as lateral flow test strips and paper-based microfluidic devices (or paperfluidics) are inexpensive, rapid, flexible, and easy-to-use analytical tools. An apparent trend in their detection is to interpret sensing results from qualitative assessment to quantitative determination. Electrochemical detection plays an important role in quantification. This review focuses on electrochemical (EC) detection enabled biosensors. The first part provides detailed examples in paper test strips. The second part gives an overview of paperfluidics engaging EC detections. The outlook and recommendation of future directions of EC enabled biosensors are discussed in the end.

  16. Dynamic Underground Stripping: In situ steam sweeping and electrical heating to remediate a deep hydrocarbon spill

    SciTech Connect (OSTI)

    Yow, J.L. Jr.; Aines, R.D.; Newmark, R.L.; Udell, K.S.; Ziagos, J.P.

    1994-07-01

    Dynamic Underground Stripping is a combination of in situ steam injection, electrical resistance heating, and fluid extraction for rapid removal and recovery of subsurface contaminants such as solvents or fuels. Underground imaging and other measurement techniques monitor the system in situ for process control. Field tests at a deep gasoline spill at Lawrence Livermore National Laboratory recovered over 7000 gallons of gasoline during several months of field operations. Preliminary analysis of system cost and performance indicate that Dynamic Underground Stripping compares favorably with conventional pump-and-treat and vacuum extraction schemes for removing non-aqueous phase liquids such as gasoline from deep subsurface plumes.

  17. SAMPLE RESULTS FROM THE NEXT GENERATION SOLVENT PROGRAM REAL WASTE EXTRACTION-SCRUB-STRIP TESTING

    SciTech Connect (OSTI)

    Peters, T.; Washington, A.

    2013-06-03

    Savannah River National Laboratory (SRNL) performed multiple Extraction-Scrub-Strip (ESS) testing using real waste solutions, and three Next Generation Solvent (NGS) variations, which included radiologically clean pure NGS, a blend of radiologically clean NGS and radiologically clean BOBCalixC6 (NGS-MCU), and a blend of radiologically clean NGS and radiologically contaminated BOBCalixC6 from the MCU Solvent system. The results from the tests indicate that both the NGS and the NGS-MCU blend exhibit adequate extraction, scrub and strip behavior.

  18. Sample Results From The Next Generation Solvent Program Real Waste Extraction-Scrub-Strip Testing

    SciTech Connect (OSTI)

    Peters, T. B.; Washington, A. L. II

    2013-08-08

    Savannah River National Laboratory (SRNL) performed multiple Extraction-Scrub-Strip (ESS) testing using real waste solutions, and three Next Generation Solvent (NGS) variations, which included radiologically clean pure NGS, a blend of radiologically clean NGS and radiologically clean BOBCalixC6 (NGS-MCU), and a blend of radiologically clean NGS and radiologically contaminated BOBCalixC6 from the MCU Solvent system. The results from the tests indicate that both the NGS and the NGS-MCU blend exhibit adequate extraction, scrub and strip behavior.

  19. Technical, environmental, and economic evaluation of Plastic Media Blasting for paint stripping

    SciTech Connect (OSTI)

    Darvin, C.H.; Wilmoth, R.C.

    1987-01-01

    The U.S. Army Toxic and Hazardous Materials Agency and the U.S. EPA Water Engineering Research Laboratory cooperated to investigate the feasibility of Plastic Media Blasting (PMB) as a paint-removal technique for aluminum military shelters. The PMB process was compared in field tests with sandblasting and with chemical stripping to determine relative cost, effectiveness, efficiency, and environmental consequence. The PMB process was judged superior to the chemical-stripping process and marginally better than sandblasting based upon the evaluation criteria.

  20. Method for separating actinides. [Patent application; stripping of Np from organic extractant

    DOE Patents [OSTI]

    Friedman, H.A.; Toth, L.M.

    1980-11-10

    An organic solution used for processing spent nuclear reactor fuels is contacted with an aqueous nitric acid solution to strip Np(VI), U(VI), and Pu(IV) from the organic solution into the acid solution. The acid solution is exposed to ultraviolet light, which reduces Np(VI) to Np(V) without reducing U(VI) and Pu(IV). Since the solubility of Np(V) in the organic solution is much lower than that of Np(VI), U(VI), and Pu(IV), a major part of the Np is stripped from the organic solution while leaving most of the U and Pu therein.

  1. Dual initiation strip charge apparatus and methods for making and implementing the same

    DOE Patents [OSTI]

    Jakaboski, Juan-Carlos (Albuquerque, NM); Todd,; Steven N. (Rio Rancho, NM); Polisar, Stephen (Albuquerque, NM); Hughs, Chance (Tijeras, NM)

    2011-03-22

    A Dual Initiation Strip Charge (DISC) apparatus is initiated by a single initiation source and detonates a strip of explosive charge at two separate contacts. The reflection of explosively induced stresses meet and create a fracture and breach a target along a generally single fracture contour and produce generally fragment-free scattering and no spallation. Methods for making and implementing a DISC apparatus provide numerous advantages over previous methods of creating explosive charges by utilizing steps for rapid prototyping; by implementing efficient steps and designs for metering consistent, repeatable, and controlled amount of high explosive; and by utilizing readily available materials.

  2. Battery-Powered Electric and Hybrid Electric Vehicle Projects to Reduce Greenhouse Gas Emissions: A Resource for Project Development

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2002-07-31

    The transportation sector accounts for a large and growing share of global greenhouse gas (GHG) emissions. Worldwide, motor vehicles emit well over 900 million metric tons of carbon dioxide (CO2) each year, accounting for more than 15 percent of global fossil fuel-derived CO2 emissions.1 In the industrialized world alone, 20-25 percent of GHG emissions come from the transportation sector. The share of transport-related emissions is growing rapidly due to the continued increase in transportation activity.2 In 1950, there were only 70 million cars, trucks, and buses on the world’s roads. By 1994, there were about nine times that number, or 630 million vehicles. Since the early 1970s, the global fleet has been growing at a rate of 16 million vehicles per year. This expansion has been accompanied by a similar growth in fuel consumption.3 If this kind of linear growth continues, by the year 2025 there will be well over one billion vehicles on the world’s roads.4 In a response to the significant growth in transportation-related GHG emissions, governments and policy makers worldwide are considering methods to reverse this trend. However, due to the particular make-up of the transportation sector, regulating and reducing emissions from this sector poses a significant challenge. Unlike stationary fuel combustion, transportation-related emissions come from dispersed sources. Only a few point-source emitters, such as oil/natural gas wells, refineries, or compressor stations, contribute to emissions from the transportation sector. The majority of transport-related emissions come from the millions of vehicles traveling the world’s roads. As a result, successful GHG mitigation policies must find ways to target all of these small, non-point source emitters, either through regulatory means or through various incentive programs. To increase their effectiveness, policies to control emissions from the transportation sector often utilize indirect means to reduce emissions, such as requiring specific technology improvements or an increase in fuel efficiency. Site-specific project activities can also be undertaken to help decrease GHG emissions, although the use of such measures is less common. Sample activities include switching to less GHG-intensive vehicle options, such as electric vehicles (EVs) or hybrid electric vehicles (HEVs). As emissions from transportation activities continue to rise, it will be necessary to promote both types of abatement activities in order to reverse the current emissions path. This Resource Guide focuses on site- and project-specific transportation activities. .

  3. Development of a Hydrogasification Process for Co-Production of Substitute Natural Gas (SNG) and Electric Power from Western Coals-Phase I

    SciTech Connect (OSTI)

    Raymond Hobbs

    2007-05-31

    The Advanced Hydrogasification Process (AHP)--conversion of coal to methane--is being developed through NETL with a DOE Grant and has successfully completed its first phase of development. The results so far are encouraging and have led to commitment by DOE/NETL to begin a second phase--bench scale reactor vessel testing, expanded engineering analysis and economic perspective review. During the next decade new means of generating electricity, and other forms of energy, will be introduced. The members of the AHP Team envision a need for expanded sources of natural gas or substitutes for natural gas, to fuel power generating plants. The initial work the team has completed on a process to use hydrogen to convert coal to methane (pipeline ready gas) shows promising potential. The Team has intentionally slanted its efforts toward the needs of US electric utilities, particularly on fuels that can be used near urban centers where the greatest need for new electric generation is found. The process, as it has evolved, would produce methane from coal by adding hydrogen. The process appears to be efficient using western coals for conversion to a highly sought after fuel with significantly reduced CO{sub 2} emissions. Utilities have a natural interest in the preservation of their industry, which will require a dramatic reduction in stack emissions and an increase in sustainable technologies. Utilities tend to rank long-term stable supplies of fuel higher than most industries and are willing to trade some ratio of cost for stability. The need for sustainability, stability and environmentally compatible production are key drivers in the formation and progression of the AHP development. In Phase II, the team will add a focus on water conservation to determine how the basic gasification process can be best integrated with all the plant components to minimize water consumption during SNG production. The process allows for several CO{sub 2} reduction options including consumption of the CO{sub 2} in the original process as converted to methane. The process could under another option avoid emissions following the conversion to SNG through an adjunct algae conversion process. The algae would then be converted to fuels or other products. An additional application of the algae process at the end use natural gas fired plant could further reduce emissions. The APS team fully recognizes the competition facing the process from natural gas and imported liquid natural gas. While we expect those resources to set the price for methane in the near-term, the team's work to date indicates that the AHP process can be commercially competitive, with the added benefit of assuring long-term energy supplies from North American resources. Conversion of coal to a more readily transportable fuel that can be employed near load centers with an overall reduction of greenhouses gases is edging closer to reality.

  4. Analysis of roll gap heat transfers in hot steel strip rolling through roll temperature sensors and heat transfer models

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Analysis of roll gap heat transfers in hot steel strip rolling through roll temperature sensors and heat transfer models N. Legrand1,a , N. Labbe1,b D. Weisz-Patrault2,c , A. Ehrlacher2,d , T. Luks3,e heat transfers during pilot hot steel strip rolling. Two types of temperature sensors (drilled and slot

  5. Development and validation of compressible mixture viscous fluid algorithm applied to predict the evolution of inertial fusion energy chamber gas and the impact of gas on direct-drive target survival

    E-Print Network [OSTI]

    Martin, Robert Scott

    2011-01-01

    gas and target byproducts is a much more realistic composition for steady state operation of an IFE powerplant.

  6. Heat-pump-centered Integrated Community Energy Systems: systems development, Consolidated Natural Gas Service Company. Final report

    SciTech Connect (OSTI)

    Baker, N.R.; Donakowski, T.D.; Foster, R.B.; Sala, D.L.; Tison, R.R.; Whaley, T.P.; Yudow, B.D.; Swenson, P.F.

    1980-01-01

    The Heat-Actuated Heat Pump Centered Integrated Community Energy System (HAHP-ICES) utilizes a gas-fired, engine-driven, heat pump and commercial buildings, and offers several advantages over the more conventional equipment it is intended to supplant. The general non-site-specific application assumes a hypothetical community of one 59,000 ft/sup 2/ office building and five 24-unit, low-rise apartment buildings located in a region with a climate similar to Chicago. This community serves as a starting point - the base case - upon which various sensitivity analyses are performed and through which the performance characteristics of the HAHP are explored. The results of these analyses provided the selection criteria for the site-specific application of the HAHP-ICES concept to a real-world community. The site-specific community consists of 42 townhouses; five 120-unit, low-rise apartment buildings; five 104-unit high-rise apartment buildings; one 124,000 ft/sup 2/ office building; and a single 135,000 ft/sup 2/ retail building located in Monroeville, Pa. The base-case analyses confirmed that the HAHP-ICES has significant potentials for reducing the primary energy consumption and pollutant emissions associated with space conditioning when compared with a conventional system. Primary energy consumption was reduced by 30%, while emission reductions ranged from 39 to 77%. The results of the site-specific analysis indicate that reductions in energy consumption of between 15 and 22% are possible when a HAHP-ICES is selected as opposed to conventional HVAC equipment.

  7. Fourier phase-demodulation applied to strip-light 360-degrees profilometry of 3D solids; theoretical principles

    E-Print Network [OSTI]

    Servin, Manuel; Garnica, Guillermo

    2015-01-01

    360-degrees digitalization of three-dimensional (3D) solids using a projected light-strip is a well established technique. These profilometers project a light-strip over the solid under analysis while the solid is rotated a full revolution. Then a computer program typically extracts the centroid of this light-strip, and by triangulation one obtains the shape of the solid. Here instead of using intensity-based strip centroid estimation, we propose to use Fourier phase-demodulation. This 360-degrees profilometer first constructs a carrier-frequency fringe-pattern by closely adding individual light-strip images. Secondly this high-density fringe-pattern is phase-demodulated using the standard Fourier technique.

  8. DEVELOPMENT OF AN ANTIFOAM TRACKING SYSTEM AS AN OPTION TO SUPPORT THE MELTER OFF-GAS FLAMMABILITY CONTROL STRATEGY AT THE DWPF

    SciTech Connect (OSTI)

    Edwards, T.; Lambert, D.

    2014-08-27

    The Savannah River National Laboratory (SRNL) has been working with the Savannah River Remediation (SRR) Defense Waste Processing Facility (DWPF) in the development and implementation of an additional strategy for confidently satisfying the flammability controls for DWPF’s melter operation. An initial strategy for implementing the operational constraints associated with flammability control in DWPF was based upon an analytically determined carbon concentration from antifoam. Due to the conservative error structure associated with the analytical approach, its implementation has significantly reduced the operating window for processing and has led to recurrent Slurry Mix Evaporator (SME) and Melter Feed Tank (MFT) remediation. To address the adverse operating impact of the current implementation strategy, SRR issued a Technical Task Request (TTR) to SRNL requesting the development and documentation of an alternate strategy for evaluating the carbon contribution from antifoam. The proposed strategy presented in this report was developed under the guidance of a Task Technical and Quality Assurance Plan (TTQAP) and involves calculating the carbon concentration from antifoam based upon the actual mass of antifoam added to the process assuming 100% retention. The mass of antifoam in the Additive Mix Feed Tank (AMFT), in the Sludge Receipt and Adjustment Tank (SRAT), and in the SME is tracked by mass balance as part of this strategy. As these quantities are monitored, the random and bias uncertainties affecting their values are also maintained and accounted for. This report documents: 1) the development of an alternate implementation strategy and associated equations describing the carbon concentration from antifoam in each SME batch derived from the actual amount of antifoam introduced into the AMFT, SRAT, and SME during the processing of the batch. 2) the equations and error structure for incorporating the proposed strategy into melter off-gas flammability assessments. Sample calculations of the system are also included in this report. Please note that the system developed and documented in this report is intended as an alternative to the current, analytically-driven system being utilized by DWPF; the proposed system is not intended to eliminate the current system. Also note that the system developed in this report to track antifoam mass in the AMFT, SRAT, and SME will be applicable beyond just Sludge Batch 8. While the model used to determine acceptability of the SME product with respect to melter off-gas flammability controls must be reassessed for each change in sludge batch, the antifoam mass tracking methodology is independent of sludge batch composition and as such will be transferable to future sludge batches.

  9. Hardware assembly and prototype testing for the development of a dedicated liquefied propane gas ultra low emission vehicle

    SciTech Connect (OSTI)

    1995-07-01

    On February 3, 1994, IMPCO Technologies, Inc. started the development of a dedicated LPG Ultra Low Emissions Vehicle (ULEV) under contract to the Midwest Research Institute National Renewable Energy Laboratory Division (NREL). The objective was to develop a dedicated propane vehicle that would meet or exceed the California ULEV emissions standards. The project is broken into four phases to be performed over a two year period. The four phases of the project include: (Phase 1) system design, (Phase 2) prototype hardware assembly and testing, (Phase 3) full-scale systems testing and integration, (Phase 4) vehicle demonstration. This report describes the approach taken for the development of the vehicle and the work performed through the completion of Phase II dynamometer test results. Work was started on Phase 2 (Hardware Assembly and Prototype Testing) in May 1994 prior to completion of Phase 1 to ensure that long lead items would be available in a timely fashion for the Phase 2 work. In addition, the construction and testing of the interim electronic control module (ECM), which was used to test components, was begun prior to the formal start of Phase 2. This was done so that the shortened revised schedule for the project (24 months) could be met. In this report, a brief summary of the activities of each combined Phase 1 and 2 tasks will be presented, as well as project management activities. A technical review of the system is also given, along with test results and analysis. During the course of Phase 2 activities, IMPCO staff also had the opportunity to conduct cold start performance tests of the injectors. The additional test data was most positive and will be briefly summarized in this report.

  10. Conceptual Framework for Developing Resilience Metrics for the Electricity, Oil, and Gas Sectors in the United States

    SciTech Connect (OSTI)

    Watson, Jean-Paul; Guttromson, Ross; Silva-Monroy, Cesar; Jeffers, Robert; Jones, Katherine; Ellison, James; Rath, Charles; Gearhart, Jared; Jones, Dean; Corbet, Tom; Hanley, Charles; Walker, La Tonya

    2014-09-01

    This report has been written for the Department of Energy’s Energy Policy and Systems Analysis Office to inform their writing of the Quadrennial Energy Review in the area of energy resilience. The topics of measuring and increasing energy resilience are addressed, including definitions, means of measuring, and analytic methodologies that can be used to make decisions for policy, infrastructure planning, and operations. A risk-based framework is presented which provides a standard definition of a resilience metric. Additionally, a process is identified which explains how the metrics can be applied. Research and development is articulated that will further accelerate the resilience of energy infrastructures.

  11. STRIPS Planning with Modular Behavior Selection Networks for Smart Home Agents

    E-Print Network [OSTI]

    Cho, Sung-Bae

    at home such as cameras, temperature sensors and light sensors, and generate agent behaviors appropriateSTRIPS Planning with Modular Behavior Selection Networks for Smart Home Agents Kyon-Mo Yang Dept Science Yonsei University Seoul, Korea sbcho@yonsei.ac.kr Abstract--A smart home has highly advanced

  12. Physical processes involved in strip electrode welding using the method of slatted splicing

    SciTech Connect (OSTI)

    Bushma, V. O. [Moscow State Technological University 'Stankin' (Russian Federation)

    2010-12-15

    Physical processes that take place in a strip electrode during welding using the slatted splicing technique are considered. Flowing of the welding current in the electrode is shown to be the key process which determines electrode heating and melting. Technological receipts are proposed that allow obtaining high-quality welds by the method of slatted splicing.

  13. STRENGTHENING OF CONCRETE ROOF USING CFRP STRIPS Emile Shehata, Sami Rizkalla .

    E-Print Network [OSTI]

    STRENGTHENING OF CONCRETE ROOF USING CFRP STRIPS Emile Shehata, Sami Rizkalla . ISIS-Canada NCE and control the deformation of existing roof panels at the North End Winnipeg Pollution Control Center (NEWPCC old concrete roof structure. The use of epoxy-bonded CFRP laminates was selected du

  14. Beam Test of a Large Area nonn Silicon Strip Detector with Fast Binary Readout Electronics

    E-Print Network [OSTI]

    Beam Test of a Large Area n­on­n Silicon Strip Detector with Fast Binary Readout Electronics Y test was carried out for the non­irradiated and the irradiated detector modules. Efficiency, noise occupancy and performance in the edge regions were analyzed using the beam test data. High efficiency

  15. Eddy currents in a gradient coil, modelled as circular loops of strips

    E-Print Network [OSTI]

    Eindhoven, Technische Universiteit

    Eddy currents in a gradient coil, modelled as circular loops of strips J.M.B. Kroot, S.J.L. van. Due to induction eddy currents occur which lead to the so-called edge-effect. The edge- effect depends the gradient coils themselves. Eddy currents occur, causing perturbations on the expected gradient field

  16. Eddy currents in a gradient coil, modeled as circular loops of strips

    E-Print Network [OSTI]

    Eindhoven, Technische Universiteit

    Eddy currents in a gradient coil, modeled as circular loops of strips J.M.B. Kroot, S.J.L. van to induction, eddy currents occur, resulting in a so-called edge-effect. Higher frequencies cause stronger edge by a gradient coil induces eddy currents in the conducting structures. The eddy currents cause perturbations

  17. Beam Test of a Large Area nonn Silicon Strip Detector with Fast Binary Readout Electronics

    E-Print Network [OSTI]

    Beam Test of a Large Area n­on­n Silicon Strip Detector with Fast Binary Readout Electronics Y modules was irradiated with protons to a fluence of 1.2 × 10 14 p/cm 2 . A beam test was carried out in the edge regions were analyzed using the beam test data. High efficiency both for the non

  18. Power Strip Packing of Malleable Demands in Mohammad M. Karbasioun, Gennady Shaikhet, Evangelos Kranakis, Ioannis Lambadaris

    E-Print Network [OSTI]

    Kranakis, Evangelos

    of the main goals of Demand Side Management (DSM) in smart grid is to reduce the peak to average ratio (PAR1 Power Strip Packing of Malleable Demands in Smart Grid Mohammad M. Karbasioun, Gennady Shaikhet of electrical energy which has to be supplied during the time interval [0, 1]. We assume that each demand has

  19. Soap-film Mbius strip changes topology with a twist singularity

    E-Print Network [OSTI]

    Goldstein, Raymond E.

    Soap-film Möbius strip changes topology with a twist singularity Raymond E. Goldsteina , H. Keith. Keith Moffatt, October 26, 2010 (sent for review September 17, 2010) It is well-known that a soap film a transformation to a two-sided film, but the process by which this transformation is achieved has remained unknown

  20. On the optimum shape of thin adhesive strips for various peeling directions

    E-Print Network [OSTI]

    On the optimum shape of thin adhesive strips for various peeling directions Janine C. Mergel, Roger Published2 in The Journal of Adhesion, DOI: 10.1080/00218464.2013.840538 Submitted on 23 July 2013, Revised: computational shape optimization, adhesive tapes, cohesive zone models, peeling angle, gecko adhesion 1

  1. Tilting mirror strips in a linear Fresnel reector Gang Xiao (University of Nice, France)

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Tilting mirror strips in a linear Fresnel reector Gang Xiao (University of Nice, France) February 29, 2012 Abstract When a linear Fresnel reector solar concentrator is installed in a site with high of the linear Fresnel reector. Technical restrictions and diculties of this method are also discussed

  2. CRYSTAL PRECIPITATION AND DISSOLUTION IN A THIN STRIP T.L. VAN NOORDEN

    E-Print Network [OSTI]

    Eindhoven, Technische Universiteit

    CRYSTAL PRECIPITATION AND DISSOLUTION IN A THIN STRIP T.L. VAN NOORDEN Abstract. A two-dimensional micro-scale model for crystal dissolution and precipitation in a porous medium is presented. The local dissolution and precipitation in a porous medium. The microscopic model that serves as the starting point

  3. Economics of Condensing Gas Furnaces and Water Heaters Potential in Residential Single Family Homes

    E-Print Network [OSTI]

    Lekov, Alex

    2011-01-01

    to develop condensing gas storage water heaters to qualifyboth a gas furnace and gas storage water heater. This study

  4. Comparison of AEO 2009 Natural Gas Price Forecast to NYMEX Futures Prices

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan

    2009-01-28

    On December 17, 2008, the reference-case projections from Annual Energy Outlook 2009 (AEO 2009) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have, in the past, compared the EIA's reference-case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables can play in mitigating such risk. As such, we were curious to see how the latest AEO reference-case gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. Note that this memo pertains only to natural gas fuel price risk (i.e., the risk that natural gas prices might differ over the life of a gas-fired generation asset from what was expected when the decision to build the gas-fired unit was made). We do not take into consideration any of the other distinct attributes of gas-fired and renewable generation, such as dispatchability (or lack thereof), differences in capital costs and O&M expenses, or environmental externalities. A comprehensive comparison of different resource types--which is well beyond the scope of this memo--would need to account for differences in all such attributes, including fuel price risk. Furthermore, our analysis focuses solely on natural-gas-fired generation (as opposed to coal-fired or nuclear generation, for example), for several reasons: (1) price volatility has been more of a concern for natural gas than for other fuels used to generate power; (2) for environmental and other reasons, natural gas has, in recent years, been the fuel of choice among power plant developers; and (3) natural gas-fired generators often set the market clearing price in competitive wholesale power markets throughout the United States. That said, a more-complete analysis of how renewables mitigate fuel price risk would also need to consider coal, uranium, and other fuel prices. Finally, we caution readers about drawing inferences or conclusions based solely on this memo in isolation: to place the information contained herein within its proper context, we strongly encourage readers interested in this issue to read through our previous, more-detailed studies, available at http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf.

  5. Comparison of AEO 2008 Natural Gas Price Forecast to NYMEX Futures Prices

    SciTech Connect (OSTI)

    Bolinger, Mark A; Bolinger, Mark; Wiser, Ryan

    2008-01-07

    On December 12, 2007, the reference-case projections from Annual Energy Outlook 2008 (AEO 2008) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have, in the past, compared the EIA's reference-case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables can play in mitigating such risk. As such, we were curious to see how the latest AEO reference-case gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. Note that this memo pertains only to natural gas fuel price risk (i.e., the risk that natural gas prices might differ over the life of a gas-fired generation asset from what was expected when the decision to build the gas-fired unit was made). We do not take into consideration any of the other distinct attributes of gas-fired and renewable generation, such as dispatchability (or lack thereof) or environmental externalities. A comprehensive comparison of different resource types--which is well beyond the scope of this memo--would need to account for differences in all such attributes, including fuel price risk. Furthermore, our analysis focuses solely on natural-gas-fired generation (as opposed to coal-fired generation, for example), for several reasons: (1) price volatility has been more of a concern for natural gas than for other fuels used to generate power; (2) for environmental and other reasons, natural gas has, in recent years, been the fuel of choice among power plant developers (though its appeal has diminished somewhat as prices have increased); and (3) natural gas-fired generators often set the market clearing price in competitive wholesale power markets throughout the United States. That said, a more-complete analysis of how renewables mitigate fuel price risk would also need to consider coal and other fuel prices. Finally, we caution readers about drawing inferences or conclusions based solely on this memo in isolation: to place the information contained herein within its proper context, we strongly encourage readers interested in this issue to read through our previous, more-detailed studies, available at http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf.

  6. Coke oven gas injection to blast furnaces

    SciTech Connect (OSTI)

    Maddalena, F.L.; Terza, R.R.; Sobek, T.F.; Myklebust, K.L. [U.S. Steel, Clairton, PA (United States)

    1995-12-01

    U.S. Steel has three major facilities remaining in Pennsylvania`s Mon Valley near Pittsburgh. The Clairton Coke Works operates 12 batteries which produce 4.7 million tons of coke annually. The Edgar Thomson Works in Braddock is a 2.7 million ton per year steel plant. Irvin Works in Dravosburg has a hot strip mill and a range of finishing facilities. The coke works produces 120 mmscfd of coke oven gas in excess of the battery heating requirements. This surplus gas is used primarily in steel re-heating furnaces and for boiler fuel to produce steam for plant use. In conjunction with blast furnace gas, it is also used for power generation of up to 90 MW. However, matching the consumption with the production of gas has proved to be difficult. Consequently, surplus gas has been flared at rates of up to 50 mmscfd, totaling 400 mmscf in several months. By 1993, several changes in key conditions provided the impetus to install equipment to inject coke oven gas into the blast furnaces. This paper describes the planning and implementation of a project to replace natural gas in the furnaces with coke oven gas. It involved replacement of 7 miles of pipeline between the coking plants and the blast furnaces, equipment capable of compressing coke oven gas from 10 to 50 psig, and installation of electrical and control systems to deliver gas as demanded.

  7. DEVELOPMENT OF LASSA: A LARGE AREA SILICON STRIP ARRAY FOR NUCLEAR REACTION STUDIES AND

    E-Print Network [OSTI]

    de Souza, Romualdo T.

    AND INVESTIGATION OF MID-VELOCITY FRAGMENT EMISSION IN 114 Cd + 92;98 Mo REACTIONS AT E/A = 50 MEV Brian P. Davin WU. In addition, the operations group deserves my deepest gratitude for supplying the multiple beams ARRAY FOR NUCLEAR REACTION STUDIES AND INVESTIGATION OF MID-VELOCITY FRAGMENT EMISSION IN 114 Cd + 92

  8. Development and Testing of the Advanced CHP System Utilizing the Off-Gas from the Innovative Green Coke Calcining Process in Fluidized Bed

    SciTech Connect (OSTI)

    Chudnovsky, Yaroslav; Kozlov, Aleksandr

    2013-08-15

    Green petroleum coke (GPC) is an oil refining byproduct that can be used directly as a solid fuel or as a feedstock for the production of calcined petroleum coke. GPC contains a high amount of volatiles and sulfur. During the calcination process, the GPC is heated to remove the volatiles and sulfur to produce purified calcined coke, which is used in the production of graphite, electrodes, metal carburizers, and other carbon products. Currently, more than 80% of calcined coke is produced in rotary kilns or rotary hearth furnaces. These technologies provide partial heat utilization of the calcined coke to increase efficiency of the calcination process, but they also share some operating disadvantages. However, coke calcination in an electrothermal fluidized bed (EFB) opens up a number of potential benefits for the production enhancement, while reducing the capital and operating costs. The increased usage of heavy crude oil in recent years has resulted in higher sulfur content in green coke produced by oil refinery process, which requires a significant increase in the calcinations temperature and in residence time. The calorific value of the process off-gas is quite substantial and can be effectively utilized as an “opportunity fuel” for combined heat and power (CHP) production to complement the energy demand. Heat recovered from the product cooling can also contribute to the overall economics of the calcination process. Preliminary estimates indicated the decrease in energy consumption by 35-50% as well as a proportional decrease in greenhouse gas emissions. As such, the efficiency improvement of the coke calcinations systems is attracting close attention of the researchers and engineers throughout the world. The developed technology is intended to accomplish the following objectives: - Reduce the energy and carbon intensity of the calcined coke production process. - Increase utilization of opportunity fuels such as industrial waste off-gas from the novel petroleum coke calcination process. - Increase the opportunity of heat (chemical and physical) utilization from process off-gases and solid product. - Develop a design of advanced CHP system utilizing off-gases as an “opportunity fuel” for petroleum coke calcinations and sensible heat of calcined coke. A successful accomplishment of the aforementioned objectives will contribute toward the following U.S. DOE programmatic goals: - Drive a 25% reduction in U. S. industrial energy intensity by 2017 in support of EPAct 2005; - Contribute to an 18% reduction in U.S. carbon intensity by 2012 as established by the Administration’s “National Goal to Reduce Emissions Intensity.” 8

  9. Development of a Conceptual Process for Selective CO{sub 2} Capture from Fuel Gas Streams Using [hmim][Tf2N] Ionic Liquid as a Physical Solvent

    SciTech Connect (OSTI)

    Basha, Omar M.; Keller, Murphy J.; Luebke, David R.; Resnik, Kevin; P Morsi, Badie I.

    2013-07-01

    The Ionic Liquid (IL) [hmim][Tf2N] was used as a physical solvent in an Aspen Plus simulation, employing the Peng-Robinson Equation of State (P-R EOS) with Boston-Mathias (BM) alpha function and standard mixing rules, to develop a conceptual process for CO{sub 2} capture from a shifted warm fuel gas stream produced from Pittsburgh # 8 coal for a 400 MWe power plant. The physical properties of the IL, including density, viscosity, surface tension, vapor pressure and heat capacity were obtained from literature and modeled as a function of temperature. Also, available experimental solubility values for CO{sub 2}, H{sub 2}, H{sub 2}S, CO, and CH{sub 4} in this IL were compiled and their binary interaction parameters ({delta}{sub ij} and l{sub ij}) were optimized and correlated as functions of temperature. The Span-Wager Equation-of-State EOS was also employed to generate CO{sub 2} solubilities in [hmim][Tf2N] at high pressures (up to 10 MPa) and temperatures (up to 510 K). The conceptual process developed consisted of 4 adiabatic absorbers (2.4 m ID, 30 m high) arranged in parallel and packed with Plastic Pall Rings of 0.025 m for CO{sub 2} capture; 3 flash drums arranged in series for solvent (IL) regeneration with the pressure-swing option; and a pressure-intercooling system for separating and pumping CO{sub 2} up to 153 bar to the sequestration sites. The compositions of all process streams, CO{sub 2} capture efficiency, and net power were calculated using Aspen Plus simulator. The results showed that, based on the composition of the inlet gas stream to the absorbers, 95.67 mol% of CO{sub 2} was captured and sent to sequestration sites; 99.5 mol% of H{sub 2} was separated and sent to turbines; the solvent exhibited a minimum loss of 0.31 mol%; and the net power balance of the entire system was 30.81 MW. These results indicated that [hmim][Tf2N] IL could be used as a physical solvent for CO{sub 2} capture from warm shifted fuel gas streams with high efficiency.

  10. Development and validation of compressible mixture viscous fluid algorithm applied to predict the evolution of inertial fusion energy chamber gas and the impact of gas on direct-drive target survival

    E-Print Network [OSTI]

    Martin, Robert Scott

    2011-01-01

    2010 “Prediction of Inertial Confinement Fusion Chamber GasBarodiffusion on the Inertial Confinement Fusion Database. [barodiffusion in inertial-confinement-fusion implosions:

  11. PILOT TESTING: PRETREATMENT OPTIONS TO ALLOW RE-USE OF FRAC FLOWBACK AND PRODUCED BRINE FOR GAS SHALE RESOURCE DEVELOPMENT

    SciTech Connect (OSTI)

    Burnett, David

    2012-12-31

    The goal of the A&M DOE NETL Project No. DE-FE0000847 was to develop a mobile, multifunctional water treatment capability designed specifically for “pre-treatment” of field waste brine. The project consisted of constructing s mobile “field laboratory” incorporating new technology for treating high salinity produced water and using the lab to conduct a side-by-side comparison between this new technology and that already existing in field operations. A series of four field trials were performed utilizing the mobile unit to demonstrate the effectiveness of different technology suitable for use with high salinity flow back brines and produced water. The design of the mobile unit was based on previous and current work at the Texas A&M Separation Sciences Pilot Plant. The several treatment techniques which have been found to be successful in both pilot plant and field tests had been tested to incorporate into a single multifunctional process train. Eight different components were evaluated during the trials, two types of oil and grease removal, one BTEX removal step, three micro-filters, and two different nanofilters. The performance of each technique was measured by its separation efficiency, power consumption, and ability to withstand fouling. The field trials were a success. Four different field brines were evaluated in the first trial in New York. Over 16,000 gallons of brine were processed. Using a power cost of $.10 per kWh, media pretreatment power use averaged $0.004 per barrel, solids removal $.04 per barrel and brine “softening” $.84 per barrel. Total power cost was approximately $1.00 per barrel of fluid treated. In Pennsylvania, brines collected from frac ponds were tested in two additional trials. Each of the brines was converted to an oil-free, solids-free brine with no biological activity. Brines were stable over time and would be good candidates for use as a make-up fluid in a subsequent fracturing fluid design. Reports on all of the field trials and subcontractor research have been summarized in this Final Report. Individual field trial reports and research reports are contained in the companion volume titled “Appendices”

  12. Quantifying the `reverse water gas shift' reaction inside a PEM fuel cell Tao Gu, W.-K. Lee, J.W. Van Zee*

    E-Print Network [OSTI]

    Van Zee, John W.

    22 January 2005 Abstract Reformed gas containing CO2, N2, and H2 may be used in proton exchange the determination of an activation energy. The data are shown to be consistent with a kinetic catalytic model (PEMFC); Reformate; Reverse water gas shift (RWGS) reaction; CO stripping; Pressure and temperature

  13. Water-related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil-Shale Development in the Uinta Basin, Utah

    SciTech Connect (OSTI)

    Michael Vanden Berg; Paul Anderson; Janae Wallace; Craig Morgan; Stephanie Carney

    2012-04-30

    Saline water disposal is one of the most pressing issues with regard to increasing petroleum and natural gas production in the Uinta Basin of northeastern Utah. Conventional oil fields in the basin provide 69 percent of Utah?s total crude oil production and 71 percent of Utah?s total natural gas, the latter of which has increased 208% in the past 10 years. Along with hydrocarbons, wells in the Uinta Basin produce significant quantities of saline water ? nearly 4 million barrels of saline water per month in Uintah County and nearly 2 million barrels per month in Duchesne County. As hydrocarbon production increases, so does saline water production, creating an increased need for economic and environmentally responsible disposal plans. Current water disposal wells are near capacity, and permitting for new wells is being delayed because of a lack of technical data regarding potential disposal aquifers and questions concerning contamination of freshwater sources. Many companies are reluctantly resorting to evaporation ponds as a short-term solution, but these ponds have limited capacity, are prone to leakage, and pose potential risks to birds and other wildlife. Many Uinta Basin operators claim that oil and natural gas production cannot reach its full potential until a suitable, long-term saline water disposal solution is determined. The enclosed project was divided into three parts: 1) re-mapping the base of the moderately saline aquifer in the Uinta Basin, 2) creating a detailed geologic characterization of the Birds Nest aquifer, a potential reservoir for large-scale saline water disposal, and 3) collecting and analyzing water samples from the eastern Uinta Basin to establish baseline water quality. Part 1: Regulators currently stipulate that produced saline water must be disposed of into aquifers that already contain moderately saline water (water that averages at least 10,000 mg/L total dissolved solids). The UGS has re-mapped the moderately saline water boundary in the subsurface of the Uinta Basin using a combination of water chemistry data collected from various sources and by analyzing geophysical well logs. By re-mapping the base of the moderately saline aquifer using more robust data and more sophisticated computer-based mapping techniques, regulators now have the information needed to more expeditiously grant water disposal permits while still protecting freshwater resources. Part 2: Eastern Uinta Basin gas producers have identified the Birds Nest aquifer, located in the Parachute Creek Member of the Green River Formation, as the most promising reservoir suitable for large-volume saline water disposal. This aquifer formed from the dissolution of saline minerals that left behind large open cavities and fractured rock. This new and complete understanding the aquifer?s areal extent, thickness, water chemistry, and relationship to Utah?s vast oil shale resource will help operators and regulators determine safe saline water disposal practices, directly impacting the success of increased hydrocarbon production in the region, while protecting potential future oil shale production. Part 3: In order to establish a baseline of water quality on lands identified by the U.S. Bureau of Land Management as having oil shale development potential in the southeastern Uinta Basin, the UGS collected biannual water samples over a three-year period from near-surface aquifers and surface sites. The near-surface and relatively shallow groundwater quality information will help in the development of environmentally sound water-management solutions for a possible future oil shale and oil sands industry and help assess the sensitivity of the alluvial and near-surface bedrock aquifers. This multifaceted study will provide a better understanding of the aquifers in Utah?s Uinta Basin, giving regulators the tools needed to protect precious freshwater resources while still allowing for increased hydrocarbon production.

  14. EIA - Analysis of Natural Gas Storage

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Prices This presentation provides information about EIA's estimates of working gas peak storage capacity, and the development of the natural gas storage industry....

  15. The Production of High Levels of Renewable Natural Gas from Biomass Using Steam Hydrogasification

    E-Print Network [OSTI]

    Thanmongkhon, Yoothana

    2014-01-01

    shale gas .in the development on US shale gas resources and theHydraulic fracturing from shale gas Shale gas refers to

  16. Method and apparatus for improved melt flow during continuous strip casting

    DOE Patents [OSTI]

    Follstaedt, Donald W. (Middletown, OH); King, Edward L. (Trenton, OH); Schneider, Ken C. (Dayton, OH)

    1991-11-12

    The continuous casting of metal strip using the melt overflow process is improved by controlling the weir conditions in the nozzle to provide a more uniform flow of molten metal across the width of the nozzle and reducing the tendency for freezing of metal along the interface with refractory surfaces. A weir design having a sloped rear wall and tapered sidewalls and critical gap controls beneath the weir has resulted in the drastic reduction in edge tearing and a significant improvement in strip uniformity. The floor of the container vessel is preferably sloped and the gap between the nozzle and the rotating substrate is critically controlled. The resulting flow patterns observed with the improved casting process have reduced thermal gradients in the bath, contained surface slag and eliminated undesirable solidification near the discharge area by increasing the flow rates at those points.

  17. Thicker, more efficient superconducting strip-line detectors for high throughput macromolecules analysis

    SciTech Connect (OSTI)

    Casaburi, A.; Ejrnaes, M.; Cristiano, R.; Zen, N.; Ohkubo, M.; Pagano, S.

    2011-01-10

    Fast detectors with large area are required in time-of-flight mass spectrometers for high throughput analysis of biological molecules. We fabricated and characterized subnanosecond 1x1 mm{sup 2} NbN superconducting strip-line detectors. The influence of the strip-line thickness on the temporal characteristics and efficiency of the detector for the impacts of keV accelerated molecules is investigated. We find that the increase of thickness improves both efficiency and response time. In the thicker sample we achieved a rise time of 380 ps, a fall time of 1.38 ns, and a higher count rate. The physics involved in this behavior is investigated.

  18. Dynamic underground stripping: steam and electric heating for in situ decontamination of soils and groundwater

    DOE Patents [OSTI]

    Daily, William D. (Livermore, CA); Ramirez, Abelardo L. (Pleasanton, CA); Newmark, Robin L. (Pleasanton, CA); Udell, Kent (Berkeley, CA); Buetnner, Harley M. (Livermore, CA); Aines, Roger D. (Livermore, CA)

    1995-01-01

    A dynamic underground stripping process removes localized underground volatile organic compounds from heterogeneous soils and rock in a relatively short time. This method uses steam injection and electrical resistance heating to heat the contaminated underground area to increase the vapor pressure of the contaminants, thus speeding the process of contaminant removal and making the removal more complete. The injected steam passes through the more permeable sediments, distilling the organic contaminants, which are pumped to the surface. Large electrical currents are also applied to the contaminated area, which heat the impermeable subsurface layers that the steam has not penetrated. The condensed and vaporized contaminants are withdrawn by liquid pumping and vacuum extraction. The steam injection and electrical heating steps are repeated as necessary. Geophysical imaging methods can be used to map the boundary between the hot, dry, contamination-free underground zone and the cool, damp surrounding areas to help monitor the dynamic stripping process.

  19. Dynamic underground stripping: steam and electric heating for in situ decontamination of soils and groundwater

    DOE Patents [OSTI]

    Daily, W.D.; Ramirez, A.L.; Newmark, R.L.; Udell, K.; Buetnner, H.M.; Aines, R.D.

    1995-09-12

    A dynamic underground stripping process removes localized underground volatile organic compounds from heterogeneous soils and rock in a relatively short time. This method uses steam injection and electrical resistance heating to heat the contaminated underground area to increase the vapor pressure of the contaminants, thus speeding the process of contaminant removal and making the removal more complete. The injected steam passes through the more permeable sediments, distilling the organic contaminants, which are pumped to the surface. Large electrical currents are also applied to the contaminated area, which heat the impermeable subsurface layers that the steam has not penetrated. The condensed and vaporized contaminants are withdrawn by liquid pumping and vacuum extraction. The steam injection and electrical heating steps are repeated as necessary. Geophysical imaging methods can be used to map the boundary between the hot, dry, contamination-free underground zone and the cool, damp surrounding areas to help monitor the dynamic stripping process. 4 figs.

  20. Method and apparatus for improved melt flow during continuous strip casting

    DOE Patents [OSTI]

    Follstaedt, D.W.; King, E.L.; Schneider, K.C.

    1991-11-12

    The continuous casting of metal strip using the melt overflow process is improved by controlling the weir conditions in the nozzle to provide a more uniform flow of molten metal across the width of the nozzle and reducing the tendency for freezing of metal along the interface with refractory surfaces. A weir design having a sloped rear wall and tapered sidewalls and critical gap controls beneath the weir has resulted in the drastic reduction in edge tearing and a significant improvement in strip uniformity. The floor of the container vessel is preferably sloped and the gap between the nozzle and the rotating substrate is critically controlled. The resulting flow patterns observed with the improved casting process have reduced thermal gradients in the bath, contained surface slag and eliminated undesirable solidification near the discharge area by increasing the flow rates at those points. 8 figures.

  1. Evaluation of Alternate Materials for Coated Particle Fuels for the Gas-Cooled Fast Reactor. Laboratory Directed Research and Development Program FY 2006 Final Report

    SciTech Connect (OSTI)

    Paul A. Demkowicz; Karen Wright; Jian Gan; David Petti; Todd Allen; Jake Blanchard

    2006-09-01

    Candidate ceramic materials were studied to determine their suitability as Gas-Cooled Fast Reactor particle fuel coatings. The ceramics examined in this work were: TiC, TiN, ZrC, ZrN, AlN, and SiC. The studies focused on (i) chemical reactivity of the ceramics with fission products palladium and rhodium, (ii) the thermomechanical stresses that develop in the fuel coatings from a variety of causes during burnup, and (iii) the radiation resiliency of the materials. The chemical reactivity of TiC, TiN, ZrC, and ZrN with Pd and Rh were all found to be much lower than that of SiC. A number of important chemical behaviors were observed at the ceramic-metal interfaces, including the formation of specific intermetallic phases and a variation in reaction rates for the different ceramics investigated. Based on the data collected in this work, the nitride ceramics (TiN and ZrN) exhibit chemical behavior that is characterized by lower reaction rates with Pd and Rh than the carbides TiC and ZrC. The thermomechanical stresses in spherical fuel particle ceramic coatings were modeled using finite element analysis, and included contributions from differential thermal expansion, fission gas pressure, fuel kernel swelling, and thermal creep. In general the tangential stresses in the coatings during full reactor operation are tensile, with ZrC showing the lowest values among TiC, ZrC, and SiC (TiN and ZrN were excluded from the comprehensive calculations due to a lack of available materials data). The work has highlighted the fact that thermal creep plays a critical role in the development of the stress state of the coatings by relaxing many of the stresses at high temperatures. To perform ion irradiations of sample materials, an irradiation beamline and high-temperature sample irradiation stage was constructed at the University of Wisconsin’s 1.7MV Tandem Accelerator Facility. This facility is now capable of irradiating of materials to high dose while controlling sample temperature up to 800ŗC.

  2. Incineration of Residue from Paint Stripping Operations Using Plastic Media Blasting 

    E-Print Network [OSTI]

    Helt, J. E.; Mallya, N.

    1988-01-01

    OF RESIDUE FROH PAINT STRIPPING OPERATIONS USING PLASTIC MEDIA BLASTING J. E. HELT N. MALLYA Group Leader Chemist Chemical Technology Division Chemical Technology Division Argonne National Laboratory Argonne National Laboratory Argonne, Illinois... not only because of the huge potential for reduction in wast products, but also because worker safety is improve since exposure to dangerous solvents and vapors is eliminated. Argonne National Laboratory (ANL) is assisting NEESA by conducting a pilot...

  3. In situ air stripping using horizontal wells. Innovative technology summary report

    SciTech Connect (OSTI)

    NONE

    1995-04-01

    In-situ air stripping employs horizontal wells to inject or sparge air into the ground water and vacuum extract VOC`S from vadose zone soils. The horizontal wells provide better access to the subsurface contamination, and the air sparging eliminates the need for surface ground water treatment systems and treats the subsurface in-situ. A full-scale demonstration was conducted at the Savannah River Plant in an area polluted with trichloroethylene and tetrachloroethylene. Results are described.

  4. Disposable Electrochemical Immunosensor Diagnosis Device Based on Nanoparticle Probe and Immunochromatographic Strip

    SciTech Connect (OSTI)

    Liu, Guodong; Lin, Ying-Ying; Wang, Jun; Wu, Hong; Wai, Chien M.; Lin, Yuehe

    2007-10-15

    We describe a disposable electrochemical immunosensor diagnosis device that is based on the immunochromatographic strip technique and an electrochemical immunoassay based on quantum dot (QD, CdS@ZnS) labels. The device takes advantage of the speed and low-cost of the conventional immunochromatographic strip test and the high-sensitivity of the nanoparticle-based electrochemical immunoassay. A sandwich immunoreaction was performed on the immunochromatographic strip, and the captured QD labels in the test zone were determined by highly sensitive stripping voltammetric measurement of the dissolved metallic component (cadmium) with a disposable-screen-printed electrode, which is embedded underneath the membrane on the test zone. The new device coupled with a portable electrochemical analyzer shows great promise for in-field and point-of-care quantitative testing of disease-related protein biomarkers. The parameters (e.g., voltammetric measurement of QD labels, antibody immobilization, the loading amount of QD-antibody, and the immunoreaction time) that govern the sensitivity and reproducibility of the device were optimized with IgG model analyte. The voltammetric response of the optimized device is highly linear over the range of 0.1 to 10 ng mL-1 IgG, and the limit of detection is estimated to be 30 pg mL-1 in association with a 7-min immunoreaction time. The detection limit was improved to 10 pg mL-1 using a 20-min immunoreaction time. The new disposable electrochemical diagnosis device thus provides a more user-friendly, rapid, clinically accurate, less expensive, and quantitative tool for protein detection.

  5. Detonation wave detection probe including parallel electrodes on a flexible backing strip

    DOE Patents [OSTI]

    Uher, K.J.

    1995-12-19

    A device is disclosed for sensing the occurrence of destructive events and events involving mechanical shock in a non-intrusive manner. A pair of electrodes is disposed in a parallel configuration on a backing strip of flexible film. Electrical circuitry is used to sense the time at which an event causes electrical continuity between the electrodes or, with a sensor configuration where the electrodes are shorted together, to sense the time at which electrical continuity is lost. 4 figs.

  6. Detonation wave detection probe including parallel electrodes on a flexible backing strip

    DOE Patents [OSTI]

    Uher, Kenneth J. (Los Alamos, NM)

    1995-01-01

    A device for sensing the occurrence of destructive events and events involving mechanical shock in a non-intrusive manner. A pair of electrodes is disposed in a parallel configuration on a backing strip of flexible film. Electrical circuitry is used to sense the time at which an event causes electrical continuity between the electrodes or, with a sensor configuration where the electrodes are shorted together, to sense the time at which electrical continuity is lost.

  7. Stripping ethanol from ethanol-blended fuels for use in NO.sub.x SCR

    DOE Patents [OSTI]

    Kass, Michael Delos (Oak Ridge, TN); Graves, Ronald Lee (Knoxville, TN); Storey, John Morse Elliot (Oak Ridge, TN); Lewis, Sr., Samuel Arthur (Andersonville, TN); Sluder, Charles Scott (Knoxville, TN); Thomas, John Foster (Powell, TN)

    2007-08-21

    A method to use diesel fuel alchohol micro emulsions (E-diesel) to provide a source of reductant to lower NO.sub.x emissions using selective catalytic reduction. Ethanol is stripped from the micro emulsion and entered into the exhaust gasses upstream of the reducing catalyst. The method allows diesel (and other lean-burn) engines to meet new, lower emission standards without having to carry separate fuel and reductant tanks.

  8. Predicting the amount of hydrogen stripped by the SN explosion for SN 2002cx-like SNe Ia

    SciTech Connect (OSTI)

    Liu, Zheng-Wei; Chen, X. F.; Wang, B.; Han, Z. W. [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Kromer, M. [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85741 Garching (Germany); Fink, M.; Röpke, F. K. [Institut für Theoretische Physik und Astrophysik, Universität Würzburg, Am Hubland, D-97074 Würzburg (Germany); Pakmor, R., E-mail: zwliu@ynao.ac.cn [Heidelberger Institut für Theoretische Studien, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg (Germany)

    2013-12-01

    The most favored progenitor scenarios for Type Ia supernovae (SNe Ia) involve the single-degenerate (SD) scenario and the double-degenerate scenario. The absence of stripped hydrogen (H) in the nebular spectra of SNe Ia challenges the SD progenitor models. Recently, it was shown that pure deflagration explosion models of Chandrasekhar-mass white dwarfs, ignited off-center, reproduce the characteristic observational features of 2002cx-like SNe Ia very well. In this work we predict, for the first time, the amount of stripped H for the off-center, pure deflagration explosions. We find that their low kinetic energies lead to inefficient H mass stripping (? 0.01 M {sub ?}), indicating that the stripped H may be hidden in (observed) late-time spectra of SN 2002cx-like SNe Ia.

  9. RRT-Plan: a Randomized Algorithm for STRIPS Planning Daniel Burfoot and Joelle Pineau and Gregory Dudek

    E-Print Network [OSTI]

    Dudek, Gregory

    RRT-Plan: a Randomized Algorithm for STRIPS Planning Daniel Burfoot and Joelle Pineau and Gregory & Nilsson 1971) and the concept of relaxed plan heuristic (h+ ) search introduced by (Bonet & Geffner 1999

  10. Performance assessment of the In-Well Vapor-Stripping System

    SciTech Connect (OSTI)

    Gilmore, T.J.; White, M.D.; Spane, F.A. Jr.

    1996-10-01

    In-well vapor stripping is a remediation technology designed to preferentially extract volatile organic compounds dissolved in groundwater by converting them to a vapor phase and then treating the vapor. This vapor-stripping system is distinctly different from the more traditional in situ air-sparging concept. In situ sparging takes place in the aquifer formation; in-well vapor stripping takes place within the well casing. The system was field demonstrated at Edwards Air Force Base, California; the first-time demonstration of this technology in the United States. Installation and testing of the system were completed in late 1995, and the demonstration was operated nearly continuously for 6 months (191 days) between January 16 and July 25, 1996. Postdemonstration hydrochemical sampling continued until September 1996. The demonstration was conducted by collaborating researchers from Pacific Northwest National Laboratory (a) and Stanford University as part of an interim cleanup action at the base. Edwards Air Force Base and its environmental subcontractor, Earth Technology Corporation, as well as EG&G Environmental, holders of the commercial rights to the technology, were also significant contributors to the demonstration.

  11. A Method to Simulate the Observed Surface Properties of Proton Irradiated Silicon Strip Sensors

    E-Print Network [OSTI]

    Timo Peltola; Ashutosh Bhardwaj; Ranjeet Dalal; Robert Eber; Thomas Eichhorn; Kavita Lalwani; Alberto Messineo; Martin Printz; Kirti Ranjan

    2015-03-10

    During the scheduled high luminosity upgrade of LHC, the world's largest particle physics accelerator at CERN, the position sensitive silicon detectors installed in the vertex and tracking part of the CMS experiment will face more intense radiation environment than the present system was designed for. To upgrade the tracker to required performance level, extensive measurements and simulations studies have already been carried out. A defect model of Synopsys Sentaurus TCAD simulation package for the bulk properties of proton irradiated devices has been producing simulations closely matching with measurements of silicon strip detectors. However, the model does not provide expected behavior due to the fluence increased surface damage. The solution requires an approach that does not affect the accurate bulk properties produced by the proton model, but only adds to it the required radiation induced properties close to the surface. These include the observed position dependency of the strip detector's charge collection efficiency (CCE). In this paper a procedure to find a defect model that reproduces the correct CCE loss, along with other surface properties of a strip detector up to a fluence $1.5\\times10^{15}$ 1 MeV n$_{\\textrm{eq}}$ cm$^{-2}$, will be presented. When applied with CCE loss measurements at different fluences, this method may provide means for the parametrization of the accumulation of oxide charge at the SiO2/Si interface as a function of dose.

  12. Use of Mini-Sprinklers to Strip Trichloroethylene and Tetrachloroethylene from Contaminated Ground Water.

    SciTech Connect (OSTI)

    Brerisford, Yvette, C.; Bush, Parshall, B.; Blake, John, I.; Bayer, Cassandra L.

    2003-01-01

    Berisford, Y.C., P.B. Bush, J.I. Blake, and C.L. Bayer. 2003. Use of mini-sprinklers to strip trichloroethylene and tetrachloroethylene from contaminated ground water. J. Env. Qual. 32:801-815. Three low-volume mini-sprinklers were tested for their efficacy to strip trichloroethylene (TCE) and tetrachloroethylene (PCE) from water. Deionized water spiked with TCE and PCE was pumped through a mini-sprinkler supported on top of a 1.8-m-tall. Water was collected in collection vessels at 0.61 and 1.22 m above the ground on support columns that were spaced at 0.61-m intervals from the riser base, and samples were composited per height and distance from the riser. Overall, air-stripping reduced dissolved concentrations of TCE and PCE by 99.1 to 100 and 96.9 to 100%, respectively. Mini-sprinklers offer the advantages of (i) easy setup in series that can be used on practically any terrain; (ii) operation over a long period of time that does not threaten aquifer depletion; (iii) use in small or confined aquifers in which the capacity is too low to support large irrigation or pumping systems; and (iv) use in forests in which the small, low-impact droplets of the mini-sprinklers do not damage bark and in which trees can help manage (via evapotransporation) excess waste water.

  13. Recovery and reuse of MEK from paint stripping operation emissions using specialized adsorbents

    SciTech Connect (OSTI)

    Blystone, P.G.; Goltz, H.R.; Springer, J. Jr.

    1994-12-31

    The reduction of volatile organic compound (VOC) emissions is a significant goal of the 1990 Clean Air Act. Industrial operations relating to surface preparation, surface coating and paint striping operations constitute one of the largest industrial sources of VOC emissions. This paper describes a new emission control system offered by Purus, Inc. which captures and recovers VOCs from paint stripping operations. The system is based on an on-site adsorption-desorption process which utilizes a specialized polymeric resin adsorbent. Adsorbent beds are regenerated through a computer controlled pressure-temperature swing process (PTSA). The adsorbent resin offers significant operational advantages over conventional activated carbon adsorbents with respect to treating air laden with methyl ethyl ketone (MEK) vapors. Treatment of MEK with activated carbon can be problematic due to reactivity (degradation) and high heats of adsorption of ketones with carbon. The Purus process was successfully demonstrated at Tinker Air Force Base in or under the EPA`s Waste Reduction Evaluation at Federal Sites program. MEK emissions from a paint stripping booth vent were controlled at greater than 95% reduction levels. The recovered solvent was returned to depainting process and reused with no loss in paint stripping efficiency.

  14. Avian population densities and species diversity on reclaimed strip-mined land in East-Central Texas 

    E-Print Network [OSTI]

    Cantle, Peter Christopher

    1978-01-01

    km east of Fairfieid, Texas. It is powered by lignite coal strip-mined from deposits in the surrounding countryside. The stripping operation consists of a very large, electrically-powered dragline that removes "overburden" from the subtending coal... near the power plant. At this writing, a third dragline is being assembled at the site of a new operation (L. Garrett, pers. comm. ). Coal reserves surrounding the plant are expected to last ca 35-50 years, depending on future consumption rates (R...

  15. Oil and Gas Exploration

    E-Print Network [OSTI]

    Tingley, Joseph V.

    , oil and gas, and geothermal activities and accomplishments in Nevada: production statistics Products 23. Sloan dolomite quarry 24. Weiser gypsum quarry Oil Fields 1. Blackburn field 2. North WillowMetals Industrial Minerals Oil and Gas Geothermal Exploration Development Mining Processing Nevada

  16. Laboratory and field-based instrumentation developments and noble gas-stable isotope systematics of Rungwe Volcanic Province, Iceland and the Central Indian Ridge

    E-Print Network [OSTI]

    Barry, Peter Hagan; Barry, Peter Hagan

    2012-01-01

    in Icelandic geothermal systems: I. 3 He, gas chemistry, andisotopes in Icelandic geothermal systems: II. Helium–heatfrom Icelandic geothermal systems: geological constraints

  17. Characterization of the geology, geochemistry, hydrology and microbiology of the in-situ air stripping demonstration site at the Savannah River Site

    SciTech Connect (OSTI)

    Eddy, C.A.; Looney, B.B.; Dougherty, J.M.; Hazen, T.C.; Kaback, D.S.

    1991-05-01

    The Savannah River Site is the location of an Integrated Demonstration Project designed to evaluate innovative remediation technologies for environmental restoration at sites contaminated with volatile organic contaminants. This demonstration utilizes directionally drilled horizontal wells to deliver gases and extract contaminants from the subsurface. Phase I of the Integrated Demonstration focused on the application and development of in-situ air stripping technologies to remediate soils and sediments above and below the water table as well as groundwater contaminated with volatile organic contaminants. The objective of this report is to provide baseline information on the geology, geochemistry, hydrology, and microbiology of the demonstration site prior to the test. The distribution of contaminants in soils and sediments in the saturated zone and groundwater is emphasized. These data will be combined with data collected after the demonstration in order to evaluate the effectiveness of in-situ air stripping. New technologies for environmental characterization that were evaluated include depth discrete groundwater sampling (HydroPunch) and three-dimensional modeling of contaminant data.

  18. Fluid Inclusion Gas Analysis

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Dilley, Lorie

    Fluid inclusion gas analysis for wells in various geothermal areas. Analyses used in developing fluid inclusion stratigraphy for wells and defining fluids across the geothermal fields. Each sample has mass spectrum counts for 180 chemical species.

  19. Fluid Inclusion Gas Analysis

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Dilley, Lorie

    2013-01-01

    Fluid inclusion gas analysis for wells in various geothermal areas. Analyses used in developing fluid inclusion stratigraphy for wells and defining fluids across the geothermal fields. Each sample has mass spectrum counts for 180 chemical species.

  20. HD gas analysis with Gas Chromatography and Quadrupole Mass Spectrometer

    E-Print Network [OSTI]

    T. Ohta; S. Bouchigny; J. -P. Didelez; M. Fujiwara; K. Fukuda; H. Kohri; T. Kunimatsu; C. Morisaki; S. Ono; G. Rouille; M. Tanaka; K. Ueda; M. Uraki; M. Utsuro; S. Y. Wang; M. Yosoi

    2011-01-28

    A gas analyzer system has been developed to analyze Hydrogen-Deuteride (HD) gas for producing frozen-spin polarized HD targets, which are used for hadron photoproduction experiments at SPring-8. Small amounts of ortho-H$_{2}$ and para-D$_{2}$ gas mixtures ($\\sim$0.01%) in the purified HD gas are a key to realize a frozen-spin polarized target. In order to obtain reliable concentrations of these gas mixtures in the HD gas, we produced a new gas analyzer system combining two independent measurements with the gas chromatography and the QMS. The para-H$_{2}$, ortho-H$_{2}$, HD, and D$_{2}$ are separated using the retention time of the gas chromatography and the mass/charge. It is found that the new gas analyzer system can measure small concentrations of $\\sim$0.01% for the otho-H$_2$ and D$_2$ with good S/N ratios.