National Library of Energy BETA

Sample records for developing ecological soil

  1. Ecology problems associated with geothermal development in California

    SciTech Connect (OSTI)

    Shinn, J.H.; Ireland, R.R.

    1980-08-04

    Geothermal power plants have the potential for supplying about 5% of the US electrical generating needs by 1985, and are even now supplying about one third of San Francisco's electricity. Investigations have shown that the typical geothermal field, such as the hot water resource of Imperial Valley, can be developed in an environmentally sound manner when proper considerations are made for ecosystem problems. Experimental evidence is presented pro and con for potential impacts due to habitat disturbance, powerline corridors, noise effects, trace element emissions from cooling towers, accidental brine discharges into aquatic or soil systems, competition for water and H/sub 2/S effects on vegetation. A mitigation and control strategy is recommended for each ecological issue and it is shown where effects are likely to be irreversible.

  2. LAND USE AND ECOLOGICAL IMPACTS FROM SHALE DEVELOPMENT IN THE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LAND USE AND ECOLOGICAL IMPACTS FROM SHALE DEVELOPMENT IN THE APPALACHIANS THE NATURE ... Research by The Nature Conservancy (Johnson et al. 2010; Johnson et al. 2011) indicates ...

  3. Selecting indicators of soil, microbial, and plant conditions to understand ecological changes in Georgia pine forests

    SciTech Connect (OSTI)

    Dale, Virginia H; Garten Jr, Charles T; Wolfe, Amy K; Sobek, Edward A

    2008-11-01

    Characterizing how resource use and management activities affect ecological conditions is necessary to document and understand anthropogenic changes in ecological systems. Resource managers on military installations have the delicate task of balancing the training needs of soldiers effectively with the need to maintain a high quality of ecological conditions. This study considers ways that ecological indicators can provide information on impacts that training has on environmental characteristics that occur at different scales and in different sectors of the environment. The characteristics examined include soil chemistry, soil microbes, and vegetation. A discriminant function analysis was conducted to determine whether ecological indicators could differentiate among different levels of military use. A combination of 10 indicators explained 90% of the variation among plots from five different military use levels. Results indicated that an appropriate suite of ecological indicators for military resource managers includes soil, microbial, and vegetation characteristics. Since many of these indicators are related, managers at this location potentially have freedom to choose indicators that are relatively easy to measure, without sacrificing information.

  4. Nano-Scale Secondary Ion Mass Spectrometry - A new analytical tool in biogeochemistry and soil ecology

    SciTech Connect (OSTI)

    Herrmann, A M; Ritz, K; Nunan, N; Clode, P L; Pett-Ridge, J; Kilburn, M R; Murphy, D V; O'Donnell, A G; Stockdale, E A

    2006-10-18

    Soils are structurally heterogeneous across a wide range of spatio-temporal scales. Consequently, external environmental conditions do not have a uniform effect throughout the soil, resulting in a large diversity of micro-habitats. It has been suggested that soil function can be studied without explicit consideration of such fine detail, but recent research has indicated that the micro-scale distribution of organisms may be of importance for a mechanistic understanding of many soil functions. Due to a lack of techniques with adequate sensitivity for data collection at appropriate scales, the question 'How important are various soil processes acting at different scales for ecological function?' is challenging to answer. The nano-scale secondary ion mass spectrometer (NanoSIMS) represents the latest generation of ion microprobes which link high-resolution microscopy with isotopic analysis. The main advantage of NanoSIMS over other secondary ion mass spectrometers is the ability to operate at high mass resolution, whilst maintaining both excellent signal transmission and spatial resolution ({approx}50 nm). NanoSIMS has been used previously in studies focusing on presolar materials from meteorites, in material science, biology, geology and mineralogy. Recently, the potential of NanoSIMS as a new tool in the study of biophysical interfaces in soils has been demonstrated. This paper describes the principles of NanoSIMS and discusses the potential of this tool to contribute to the field of biogeochemistry and soil ecology. Practical considerations (sample size and preparation, simultaneous collection of isotopes, mass resolution, isobaric interference and quantification of the isotopes of interest) are discussed. Adequate sample preparation avoiding biases in the interpretation of NanoSIMS data due to artifacts and identification of regions-of interest are of most concerns in using NanoSIMS as a new tool in biogeochemistry and soil ecology. Finally, we review the areas of

  5. A framework for assessing ecological risks of petroleum-derived materials in soil

    SciTech Connect (OSTI)

    Suter, G.W. II

    1997-05-01

    Ecological risk assessment estimates the nature and likelihood of effects of human actions on nonhuman organisms, populations, and ecosystems. It is intended to be clearer and more rigorous in its approach to estimation of effects and uncertainties than previously employed methods of ecological assessment. Ecological risk assessment is characterized by a standard paradigm that includes problem formulation, analysis of exposure and effects, risk characterization, and communication with a risk manager. This report provides a framework that applies the paradigm to the specific problem of assessing the ecological risks of petroleum in soil. This type of approach requires that assessments be performed in phases: (1) a scoping assessment to determine whether there is a potential route of exposure for potentially significant ecological receptors; (2) a screening assessment to determine whether exposures could potentially reach toxic levels; and (3) a definitive assessment to estimate the nature, magnitude, and extent of risks. The principal technical issue addressed is the chemically complex nature of petroleum--a complexity that may be dealt with by assessing risks on the basis of properties of the whole material, properties of individual chemicals that are representative of chemical classes, distributions of properties of the constituents of chemical classes, properties of chemicals detected in the soil, and properties of indicator chemicals. The advantages and feasibility of these alternatives are discussed. The report concludes with research recommendations for improving each stage in the assessment process.

  6. Research | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Gene Odum forest sampling marked tortoise geochemical sampling quantifying radionuclide absorption collcting microbes microsatellite development R E S E A R C H A R E A S * Aquatic and terrestrial ecology * Biogeochemistry & soil science * Environmental microbiology * Herpetology * Hydrology * Molecular genetics * Physiological ecology * Conservation biology * Radiation ecology * Ecotoxicology and risk assessment * Remediation and restoration SREL scientists pursue a wide variety of

  7. Biological quality of soils containing hydrocarbons and efficacy of ecological risk reduction by bioremediation alternatives

    SciTech Connect (OSTI)

    Stewart, A.J.; Napolitano, G.E.; Sample, B.E.

    1996-06-01

    This project provides technical support to the Petroleum Environmental Research Forum (PERF; a consortium of petroleum companies) on environmentally acceptable endpoints that may be used to help assess the ecological risk of petroleum hydrocarbon residuals in soils. The project, was designed in consultation with PERF representatives and focuses on the relationship between {open_quotes}chemically available{close_quotes} and {open_quotes}biologically available{close_quotes} measurements of petroleum hydrocarbon compounds in soils, a discrepancy of considerable interest to the petroleum industry. Presently, clean-up standards for soils contaminated with total petroleum hydrocarbon (TPH) constituents are based on concentrations of TPH, as measured in solvent extracts of soil samples. Interestingly, TPH includes a complex mixture of compounds which differ from one another in molecular weight and toxicity. Based on various studies with insecticides, herbicides and metals, some compounds apparently can slowly permeate into soil particles. If this situation occurs, the particle-embedded compounds may be extractable by use of organic solvents, and yet be unavailable biologically. This hypothesis serves as the central focus for our study. If this hypothesis is correct, then soil clean-up standards based on solvent-extractable TPH data may be more stringent than necessary to achieve a desired level of environmental risk. The economic significance of this possibility is considerable, because clean-up costs to achieve a low-risk status would, in most cases, be lower than those needed to achieve a standard based on present limits, which are based on measurements of {open_quotes}extractable{close_quotes} TPH.

  8. Unearthing the ecology of soil microorganisms using a high resolution DNA-SIP approach to explore cellulose and xylose metabolism in soil

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pepe-Ranney, Charles; Campbell, Ashley N.; Koechli, Chantal N.; Berthrong, Sean; Buckley, Daniel H.

    2016-05-12

    We explored microbial contributions to decomposition using a sophisticated approach to DNA Stable Isotope Probing (SIP). Our experiment evaluated the dynamics and ecological characteristics of functionally defined microbial groups that metabolize labile and structural C in soils. We added to soil a complex amendment representing plant derived organic matter substituted with either 13C-xylose or 13C-cellulose to represent labile and structural C pools derived from abundant components of plant biomass. We found evidence for 13C-incorporation into DNA from 13C-xylose and 13C-cellulose in 49 and 63 operational taxonomic units (OTUs), respectively. The types of microorganisms that assimilated 13C in the 13C-xylose treatmentmore » changed over time being predominantly Firrnicutes at day 1 followed by Bacteroidetes at day 3 and then Actinobacteria at day 7. These 13C-labeling dynamics suggest labile C traveled through different trophic levels. In contrast, microorganisms generally metabolized cellulose-C after 14 days and did not change to the same extent in phylogenetic composition over time. Furthermore, microorganisms that metabolized cellulose-C belonged to poorly characterized but cosmopolitan soil lineages including Verrucomicrobia, Chlorotlexi, and Planctomycetes.« less

  9. Ecological Screening Values for Surface Water, Sediment, and...

    Office of Scientific and Technical Information (OSTI)

    Ecological Screening Values for Surface Water, Sediment, and Soil Citation Details In-Document Search Title: Ecological Screening Values for Surface Water, Sediment, and Soil ...

  10. Ecological Screening Values for Surface Water, Sediment, and...

    Office of Scientific and Technical Information (OSTI)

    Ecological Screening Values for Surface Water, Sediment, and Soil Friday, G. P. 54 ENVIRONMENTAL SCIENCES; SOILS; SURFACE WATERS; SEDIMENTS; ECOLOGICAL CONCENTRATION; ENVIRONMENTAL...

  11. Technique development for polarized pipe-to-soil potential measurements

    SciTech Connect (OSTI)

    Dabkowski, J.

    1989-12-01

    Research project PR-200-513 was undertaken with the overall objective to develop practical techniques for determining the polarized pipe-to-soil potential of a buried pipeline. The importance of this project rests with the fact that pipe-to-soil potential measurements are the most commonly used means of assessing the level of cathodic protection on buried gas transmission pipelines. In the recent past years there has been a considerable amount of effort devoted to developing methods and instruments to correct measured pipe-to-soil potentials for IR drops that may occur from currents (from the cathodic protection system or stray sources) in the soil to obtain the polarized potential. However, many of the methods or instruments available are either time-consuming, cumbersome to use in the field, applicable to only certain types of cathodic protection systems and under particular circumstances, subject to influences from stray current sources or not fully developed as of yet. Thus, there is a need to develop a practical method of determining the polarized pipe potential free of IR drop errors. Hence, the objectives of the research program conducted were: (1) to test and evaluate comparatively existing polarized potential measurement approaches, and (2) to develop new approaches to determining the polarized potential.

  12. Ecological compensation: From general guidance and expertise to specific proposals for road developments

    SciTech Connect (OSTI)

    Villarroya, Ana; Puig, Jordi

    2014-02-15

    The main scientific bibliography addressing the rationale behind ecological compensation is reviewed in order to examine general guidelines. This contains interesting general guidance on how to implement compensation, and provides the basis for future developments in compensation practice. On this basis, we propose a further step in compensation practice, advancing compensation proposals or rules for specific kinds of projects and contexts, focusing on road projects in the Spanish Environmental Impact Assessment (EIA). Three main residual impacts of roads are identified which usually remain uncompensated for: the loss of natural and semi-natural land use, the increase in emissions resulting from any new road, and the fragmentation, severance or barrier effect on the landscape and its wildlife. To counteract these, four proposals, or “rules”, are advanced: conservation of natural and semi-natural land use area, conservation of dominant plant species physiognomy, compensation for emissions, and the rule of positive defragmentation. -- Highlights: • Ecological compensation theory does not specify guidelines for types of projects. • EIA practitioners lack valuable specific guidance on how to implement compensation. • Specific guidance for road project ecological compensation is proposed. • Compensation proposals should have in mind present-day compensation practice level. • Specific ways to compensate for habitat loss, emissions, and fragmentation are shown.

  13. Multiple soil nutrient competition between plants, microbes, and mineral surfaces: model development, parameterization, and example applications in several tropical forests

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhu, Q.; Riley, W. J.; Tang, J.; Koven, C. D.

    2016-01-18

    Soil is a complex system where biotic (e.g., plant roots, micro-organisms) and abiotic (e.g., mineral surfaces) consumers compete for resources necessary for life (e.g., nitrogen, phosphorus). This competition is ecologically significant, since it regulates the dynamics of soil nutrients and controls aboveground plant productivity. Here we develop, calibrate and test a nutrient competition model that accounts for multiple soil nutrients interacting with multiple biotic and abiotic consumers. As applied here for tropical forests, the Nutrient COMpetition model (N-COM) includes three primary soil nutrients (NH4+, NO3− and POx; representing the sum of PO43−, HPO42− and H2PO4−) and five potential competitors (plantmore » roots, decomposing microbes, nitrifiers, denitrifiers and mineral surfaces). The competition is formulated with a quasi-steady-state chemical equilibrium approximation to account for substrate (multiple substrates share one consumer) and consumer (multiple consumers compete for one substrate) effects. N-COM successfully reproduced observed soil heterotrophic respiration, N2O emissions, free phosphorus, sorbed phosphorus and NH4+ pools at a tropical forest site (Tapajos). The overall model uncertainty was moderately well constrained. Our sensitivity analysis revealed that soil nutrient competition was primarily regulated by consumer–substrate affinity rather than environmental factors such as soil temperature or soil moisture. Our results also imply that under strong nutrient limitation, relative competitiveness depends strongly on the competitor functional traits (affinity and nutrient carrier enzyme abundance). We then applied the N-COM model to analyze field nitrogen and phosphorus perturbation experiments in two tropical forest sites (in Hawaii and Puerto Rico) not used in model development or calibration. Under soil inorganic nitrogen and phosphorus elevated conditions, the model accurately replicated the experimentally observed

  14. Multiple soil nutrient competition between plants, microbes, and mineral surfaces: model development, parameterization, and example applications in several tropical forests

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhu, Q.; Riley, W. J.; Tang, J.; Koven, C. D.

    2015-03-05

    Soil is a complex system where biotic (e.g., plant roots, micro-organisms) and abiotic (e.g., mineral surfaces) consumers compete for resources necessary for life (e.g., nitrogen, phosphorus). This competition is ecologically significant, since it regulates the dynamics of soil nutrients and controls aboveground plant productivity. Here we develop, calibrate, and test a nutrient competition model that accounts for multiple soil nutrients interacting with multiple biotic and abiotic consumers. As applied here for tropical forests, the Nutrient COMpetition model (N-COM) includes three primary soil nutrients (NH4+, NO3?, and POx (representing the sum of PO43?, HPO42?, and H2PO4?)) and five potential competitors (plantmoreroots, decomposing microbes, nitrifiers, denitrifiers, and mineral surfaces). The competition is formulated with a quasi-steady-state chemical equilibrium approximation to account for substrate (multiple substrates share one consumer) and consumer (multiple consumers compete for one substrate) effects. N-COM successfully reproduced observed soil heterotrophic respiration, N2O emissions, free phosphorus, sorbed phosphorus, and free NH4+ at a tropical forest site (Tapajos). The overall model posterior uncertainty was moderately well constrained. Our sensitivity analysis revealed that soil nutrient competition was primarily regulated by consumer-substrate affinity rather than environmental factors such as soil temperature or soil moisture. Our results imply that the competitiveness (from most to least competitive) followed this order: (1) for NH4+, nitrifiers ~ decomposing microbes > plant roots, (2) for NO3?, denitrifiers ~ decomposing microbes > plant roots, (3) for POx, mineral surfaces > decomposing microbes ~ plant roots. Although smaller, plant relative competitiveness is of the same order of magnitude as microbes. We then applied the N-COM model to analyze field nitrogen and phosphorus perturbation experiments in two tropical forest sites (in

  15. SRS ECOLOGY ENVIRONMENTAL INFORMATION DOCUMENT

    SciTech Connect (OSTI)

    Wike, L; Doug Martin, D; Eric Nelson, E; Nancy Halverson, N; John Mayer, J; Michael Paller, M; Rodney Riley, R; Michael Serrato, M

    2006-03-01

    The SRS Ecology Environmental Information Document (EEID) provides a source of information on the ecology of Savannah River Site (SRS). The SRS is a U.S. Department of Energy (DOE)--owned property on the upper Atlantic Coastal Plain of South Carolina, centered approximately 40 kilometers (25 miles) southeast of Augusta, Georgia. The entire site was designated a National Environmental Research Park in 1972 by the Atomic Energy Commission, the predecessor of DOE. This document summarizes and synthesizes ecological research and monitoring conducted on the three main types of ecosystems found at SRS: terrestrial, wetland and aquatic. It also summarizes the available information on the threatened and endangered species found on the Savannah River Site. SRS is located along the Savannah River and encompasses an area of 80,267 hectares (310 square miles) in three South Carolina counties. It contains diverse habitats, flora, and fauna. Habitats include upland terrestrial areas, wetlands, streams, reservoirs, and the adjacent Savannah River. These diverse habitats support a variety of plants and animals, including many commercially or recreationally valuable species and several rare, threatened, or endangered species. Soils are the basic terrestrial resource, influencing the development of terrestrial biological communities. Many different soils exist on the SRS, from hydric to well-drained, and from sand to clay. In general, SRS soils are predominantly well-drained loamy sands.

  16. CHEMICAL SENSOR AND FIELD SCREENING TECHNOLOGY DEVELOPMENT: FUELS IN SOILS FIELD SCREENING METHOD VALIDATION

    SciTech Connect (OSTI)

    Susan S. Sorini; John F. Schabron

    1997-04-01

    A new screening method for fuel contamination in soils was recently developed as American Society for Testing and Materials (ASTM) Method D-583 1-95, Standard Test Method for Screening Fuels in Soils. This method uses low-toxicity chemicals and can be used to screen organic-rich soils. In addition, it is fast, easy, and inexpensive to perform. The screening method calls for extracting a sample of soil with isopropyl alcohol following treatment with calcium oxide. The resulting extract is filtered, and the ultraviolet absorbance of the extract is measured at 254 nm. Depending on the available information concerning the contaminant fuel type and availability of the contaminant fuel for calibration, the method can be used to determine the approximate concentration of fuel contamination, an estimated value of fuel contamination, or an indication of the presence or absence of fuel contamination. Fuels containing aromatic compounds, such as diesel fuel and gasoline, as well as other aromatic-containing hydrocarbon materials, such as motor oil, crude oil, and coal oil, can be determined. The screening method for fuels in soils was evaluated by conducting a collaborative study on the method and by using the method to screen soil samples at an actual field site. In the collaborative study, a sand and an organic soil spiked with various concentrations of diesel fuel were tested. Data from the collaborative study were used to determine the reproducibility (between participants) and repeatability (within participant) precision of the method for screening the test materials. The collaborative study data also provide information on the performance of portable field equipment versus laboratory equipment for performing the screening method and a comparison of diesel concentration values determined using the screening method versus a laboratory method. Data generated using the method to screen soil samples in the field provide information on the performance of the method in

  17. Non-Linear Seismic Soil Structure Interaction (SSI) Method for Developing Non-Linear Seismic SSI Analysis Techniques

    Broader source: Energy.gov [DOE]

    Non-Linear Seismic Soil Structure Interaction (SSI) Method for Developing Non-Linear Seismic SSI Analysis Techniques Justin Coleman, P.E. October 25th, 2011

  18. Development Of Regional Climate Mitigation Baseline For A DominantAgro-Ecological Zone Of Karnataka, India

    SciTech Connect (OSTI)

    Sudha, P.; Shubhashree, D.; Khan, H.; Hedge, G.T.; Murthy, I.K.; Shreedhara, V.; Ravindranath, N.H.

    2007-06-01

    Setting a baseline for carbon stock changes in forest andland use sector mitigation projects is an essential step for assessingadditionality of the project. There are two approaches for settingbaselines namely, project-specific and regional baseline. This paperpresents the methodology adopted for estimating the land available formitigation, for developing a regional baseline, transaction cost involvedand a comparison of project-specific and regional baseline. The studyshowed that it is possible to estimate the potential land and itssuitability for afforestation and reforestation mitigation projects,using existing maps and data, in the dry zone of Karnataka, southernIndia. The study adopted a three-step approach for developing a regionalbaseline, namely: i) identification of likely baseline options for landuse, ii) estimation of baseline rates of land-use change, and iii)quantification of baseline carbon profile over time. The analysis showedthat carbon stock estimates made for wastelands and fallow lands forproject-specific as well as the regional baseline are comparable. Theratio of wasteland Carbon stocks of a project to regional baseline is1.02, and that of fallow lands in the project to regional baseline is0.97. The cost of conducting field studies for determination of regionalbaseline is about a quarter of the cost of developing a project-specificbaseline on a per hectare basis. The study has shown the reliability,feasibility and cost-effectiveness of adopting regional baseline forforestry sectormitigation projects.

  19. Development of site-specific soil cleanup criteria: New Brunswick Laboratory, New Jersey site

    SciTech Connect (OSTI)

    Veluri, V.R.; Moe, H.J.; Robinet, M.J.; Wynveen, R.A.

    1983-03-01

    The potential human exposure which results from the residual soil radioactivity at a decommissioned site is a prime concern during D and D projects. To estimate this exposure, a pathway analysis approach is often used to arrive at the residual soil radioactivity criteria. The development of such a criteria for the decommissioning of the New Brunswick Laboratory, New Jersey site is discussed. Contamination on this site was spotty and located in small soil pockets spread throughout the site area. Less than 1% of the relevant site area was contaminated. The major contaminants encountered at the site were /sup 239/Pu, /sup 241/Am, normal and natural uranium, and natural thorium. During the development of the pathway analysis to determine the site cleanup criteria, corrections for the inhomogeneity of the contamination were made. These correction factors and their effect upon the relevant pathway parameters are presented. Major pathways by which radioactive material may reach an individual are identified and patterns of use are specified (scenario). Each pathway is modeled to estimate the transfer parameters along the given pathway, such as soil to air to man, etc. The transfer parameters are then combined with dose rate conversion factors (ICRP 30 methodology) to obtain soil concentration to dose rate conversion factors (pCi/g/mrem/yr). For an appropriate choice of annual dose equivalent rate, one can then arrive at a value for the residual soil concentration. Pathway modeling, transfer parameters, and dose rate factors for the three major pathways; inhalation, ingestion and external exposure, which are important for the NBL site, are discussed.

  20. Current developments in soil organic matter modeling and the expansion of model applications. A review

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Campbell, Eleanor E.; Paustian, Keith

    2015-12-23

    It is important to note that Soil organic matter (SOM) is a great natural resource. It is fundamental to soil and ecosystem functions across a wide range of scales, from site-specific soil fertility and water holding capacity to global biogeochemical cycling. It is also a highly complex material that is sensitive to direct and indirect human impacts. In our SOM research, simulation models play an important role by providing a mathematical framework to integrate, examine, and test the understanding of SOM dynamics. Simulation models of SOM are also increasingly used in more ‘applied’ settings to evaluate human impacts on ecosystemmore » function, and to manage SOM for greenhouse gas mitigation, improved soil health, and sustainable use as a natural resource. Within this context, there is a need to maintain a robust connection between scientific developments in SOM modeling approaches and SOM model applications. This need forms the basis of this review. In this review we first provide an overview of SOM modeling, focusing on SOM theory, data-model integration, and model development as evidenced by a quantitative review of SOM literature. Second, we present the landscape of SOM model applications, focusing on examples in climate change policy. Finally, we conclude by discussing five areas of recent developments in SOM modeling including: (1) microbial roles in SOM stabilization; (2) modeling SOM saturation kinetics; (3) temperature controls on decomposition; (4)SOM dynamics in deep soil layers; and (5)SOM representation in earth system models. Our aim is to comprehensively connect SOM model development to its applications, revealing knowledge gaps in need of focused interdisciplinary attention and exposing pitfalls that, if avoided, can lead to best use of SOM models to support policy initiatives and sustainable land management solutions.« less

  1. Current developments in soil organic matter modeling and the expansion of model applications. A review

    SciTech Connect (OSTI)

    Campbell, Eleanor E.; Paustian, Keith

    2015-12-23

    It is important to note that Soil organic matter (SOM) is a great natural resource. It is fundamental to soil and ecosystem functions across a wide range of scales, from site-specific soil fertility and water holding capacity to global biogeochemical cycling. It is also a highly complex material that is sensitive to direct and indirect human impacts. In our SOM research, simulation models play an important role by providing a mathematical framework to integrate, examine, and test the understanding of SOM dynamics. Simulation models of SOM are also increasingly used in more ‘applied’ settings to evaluate human impacts on ecosystem function, and to manage SOM for greenhouse gas mitigation, improved soil health, and sustainable use as a natural resource. Within this context, there is a need to maintain a robust connection between scientific developments in SOM modeling approaches and SOM model applications. This need forms the basis of this review. In this review we first provide an overview of SOM modeling, focusing on SOM theory, data-model integration, and model development as evidenced by a quantitative review of SOM literature. Second, we present the landscape of SOM model applications, focusing on examples in climate change policy. Finally, we conclude by discussing five areas of recent developments in SOM modeling including: (1) microbial roles in SOM stabilization; (2) modeling SOM saturation kinetics; (3) temperature controls on decomposition; (4)SOM dynamics in deep soil layers; and (5)SOM representation in earth system models. Our aim is to comprehensively connect SOM model development to its applications, revealing knowledge gaps in need of focused interdisciplinary attention and exposing pitfalls that, if avoided, can lead to best use of SOM models to support policy initiatives and sustainable land management solutions.

  2. Rebecca Sharitz: Publications | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Selected Publications (My full C.V. can be found here.) De Steven, D. and R. R. Sharitz. 2007. Transplanting native dominant plants to facilitate community development in restored Coastal Plain wetlands. Wetlands 27:972-978. Allen, B. P., R. R. Sharitz and P. C. Goebel. 2007. Are lianas increasing in importance in temperate floodplain forests in the southeastern United States? Forest Ecology and Management 242:17-23. Landman, G. B., R. K. Kolka and R. R. Sharitz. 2007. Soil seed bank analysis of

  3. Role and development of soil parameters for seismic responses of buried lifelines

    SciTech Connect (OSTI)

    Wang, L.R.L.

    1983-01-01

    Buried lifelines, e.g. oil, gas, water and sewer pipelines have been damaged heavily in recent earthquakes such as 1971 San Fernando Earthquake, in U.S.A., 1976 Tangshan Earthquake, in China, and 1978 MiyagiKen-Oki Earthquake, in Japan, among others. Researchers on the seismic performance of these buried lifelines have been initiated in the United States and many other countries. Various analytical models have been proposed. However, only limited experimental investigations are available. The sources of earthquake damage to buried lifelines include landslide, tectonic uplift-subsidence, soil liquefaction, fault displacement and ground shaking (effects of wave propagation). This paper is concerned with the behavior of buried lifeline systems subjected to surface faulting and ground shaking. The role and development of soil parameters that significantly influence the seismic responses are discussed. The scope of this paper is to examine analytically the influence of various soil and soilstructure interaction parameters to the seismic responses of buried pipelines, to report the currently available physical data of these and related parameters for immediate applications, and to describe the experiments to obtain additional information on soil resistant characteristics to longitudinal pipe motions.

  4. Session: Bat ecology related to wind development and lessons learned about impacts on bats from wind development

    SciTech Connect (OSTI)

    Johnson, Greg; Kunz, Thomas

    2004-09-01

    This session at the Wind Energy and Birds/Bats workshop consisted of two paper presentations followed by a discussion/question and answer period. It was the first of the sessions to shift the focus to the issue of wind energy development's impacts specifically to bats. The presentations discussed lessons that have been learned regarding direct and indirect impacts on bats and strategies planned to address such issues. Presenters addressed what the existing science demonstrates about land-based wind turbine impacts on bats, including: mortality, avoidance, direct habitat impacts, species and numbers killed, per turbine rates/per MW generated, and impacts on threatened and endangered species. They discussed whether there is sufficient data for wind turbines and bat impacts for projects in the eastern US, especially on ridge tops. Finally, the subject of offshore impacts on bats was briefly addressed, including what lessons have been learned in Europe and how these can be applied in the U S. Paper one, by Greg Johnson, was titled ''A Review of Bat Impacts at Wind Farms in the US''. Paper two, by Thomas Kunz, was titled ''Wind Power: Bats and Wind Turbines''.

  5. Predicting ecological roles in the rhizosphere using metabolome and transportome modeling

    SciTech Connect (OSTI)

    Larsen, Peter E.; Collart, Frank R.; Dai, Yang; Blanchard, Jeffrey L.

    2015-09-02

    The ability to obtain complete genome sequences from bacteria in environmental samples, such as soil samples from the rhizosphere, has highlighted the microbial diversity and complexity of environmental communities. New algorithms to analyze genome sequence information in the context of community structure are needed to enhance our understanding of the specific ecological roles of these organisms in soil environments. We present a machine learning approach using sequenced Pseudomonad genomes coupled with outputs of metabolic and transportomic computational models for identifying the most predictive molecular mechanisms indicative of a Pseudomonad’s ecological role in the rhizosphere: a biofilm, biocontrol agent, promoter of plant growth, or plant pathogen. Computational predictions of ecological niche were highly accurate overall with models trained on transportomic model output being the most accurate (Leave One Out Validation F-scores between 0.82 and 0.89). The strongest predictive molecular mechanism features for rhizosphere ecological niche overlap with many previously reported analyses of Pseudomonad interactions in the rhizosphere, suggesting that this approach successfully informs a system-scale level understanding of how Pseudomonads sense and interact with their environments. The observation that an organism’s transportome is highly predictive of its ecological niche is a novel discovery and may have implications in our understanding microbial ecology. The framework developed here can be generalized to the analysis of any bacteria across a wide range of environments and ecological niches making this approach a powerful tool for providing insights into functional predictions from bacterial genomic data.

  6. Developing custom fire behavior fuel models from ecologically complex fuel structures for upper Atlantic Coastal Plain forests.

    SciTech Connect (OSTI)

    Parresol, Bernard, R.; Scott, Joe, H.; Andreu, Anne; Prichard, Susan; Kurth, Laurie

    2012-01-01

    Currently geospatial fire behavior analyses are performed with an array of fire behavior modeling systems such as FARSITE, FlamMap, and the Large Fire Simulation System. These systems currently require standard or customized surface fire behavior fuel models as inputs that are often assigned through remote sensing information. The ability to handle hundreds or thousands of measured surface fuelbeds representing the fine scale variation in fire behavior on the landscape is constrained in terms of creating compatible custom fire behavior fuel models. In this study, we demonstrate an objective method for taking ecologically complex fuelbeds from inventory observations and converting those into a set of custom fuel models that can be mapped to the original landscape. We use an original set of 629 fuel inventory plots measured on an 80,000 ha contiguous landscape in the upper Atlantic Coastal Plain of the southeastern United States. From models linking stand conditions to component fuel loads, we impute fuelbeds for over 6000 stands. These imputed fuelbeds were then converted to fire behavior parameters under extreme fuel moisture and wind conditions (97th percentile) using the fuel characteristic classification system (FCCS) to estimate surface fire rate of spread, surface fire flame length, shrub layer reaction intensity (heat load), non-woody layer reaction intensity, woody layer reaction intensity, and litter-lichen-moss layer reaction intensity. We performed hierarchical cluster analysis of the stands based on the values of the fire behavior parameters. The resulting 7 clusters were the basis for the development of 7 custom fire behavior fuel models from the cluster centroids that were calibrated against the FCCS point data for wind and fuel moisture. The latter process resulted in calibration against flame length as it was difficult to obtain a simultaneous calibration against both rate of spread and flame length. The clusters based on FCCS fire behavior

  7. Ecology, Microbial

    SciTech Connect (OSTI)

    Konopka, Allan

    2009-05-15

    Microbial ecology is a relatively young discipline within the field of microbiology. Its modern history spans just the past 60 years, and the field is defined by its emphasis on understanding the interactions of microbes with their environment, rather than their behavior under artificial laboratory conditions. Because microbes are ubiquitous, microbial ecologists study a broad diversity of habitats that range from aquatic to terrestrial to plant- or animal-associated. This has made it a challenge to identify unifying principles within the field. One approach is to recognize that although the activity of microbes in nature have effects at the macroscale, they interact with their physical, chemical and biological milieu at a scale of micrometers. At this scale, several different microbial ecosystems can be defined, based upon association with particles, the presence of environmental gradients and the continuous availability of water. Principles applicable to microbial ecology reflect not only their population ecology and physiological ecology, but also their broad versatility and quantitative importance in the biosphere as biogeochemical catalysts and capacity for rapid physiological and evolutionary responses.

  8. Ecology, Microbial

    SciTech Connect (OSTI)

    Konopka, Allan

    2009-03-19

    Microbial ecology is a relatively young discipline within the field of microbiology. Its modern history spans just the past 60 years, and the field is defined by its emphasis on understanding the interactions of microbes with their environment, rather than their behavior under artificial laboratory conditions. Because microbes are ubiquitous, microbial ecologists study a broad diversity of habitats that range from aquatic to terrestrial to plant- or animal-associated. This has made it a challenge to identify unifying principles within the field. One approach is to recognize that although the activity of microbes in nature have effects at the macroscale, they interact with their physical, chemical and biological milieu at a scale of micrometers. At this scale, several different microbial ecosystems can be defined, based upon association with particles, the presence of environmental gradients and the continuous availability of water. Principles applicable to microbial ecology reflect not only their population ecology and physiological ecology, but also their broad versatility and quantitative importance in the biosphere as biogeochemical catalysts and capacity for rapid physiological and evolutionary responses.

  9. Ecological Risk Assessments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ecological Risk Assessments Ecological Risk Assessments Ecological risk assessment is the appraisal of potential adverse effects of exposure to contaminants on plants and animals....

  10. Environmental assessment for the satellite power system-concept development and evaluation program-microwave health and ecological effects

    SciTech Connect (OSTI)

    Not Available

    1980-11-01

    This report is concerned with the potential health and ecological effects of the microwave beam from the microwave power transmission system (MPTS) of the satellite power system (SPS). The report is written in the form of a detailed critical review of selected scientific articles from the published literature on the biological effects of nonionizing electromagnetic radiation, followed by an assessment of the possible effects of the SPS, based on exposure values for the reference system (US DOE and NASA, 1978).

  11. Ecological Communities by Design

    SciTech Connect (OSTI)

    Fredrickson, Jim K.

    2015-06-25

    In synthetic ecology, a nascent offshoot of synthetic biology, scientists aim to design and construct microbial communities with desirable properties. Such mixed populations of microorganisms can simultaneously perform otherwise incompatible functions. Compared with individual organisms, they can also better resist losses in function as a result of environmental perturbation or invasion by other species. Synthetic ecology may thus be a promising approach for developing robust, stable biotechnological processes, such as the conversion of cellulosic biomass to biofuels. However, achieving this will require detailed knowledge of the principles that guide the structure and function of microbial communities.

  12. Development of Site-Specific Soil Design Basis Earthquake (DBE) Parameters for the Integrated Waste Treatment Unit (IWTU)

    SciTech Connect (OSTI)

    Payne, Suzette

    2008-08-01

    Horizontal and vertical PC 3 (2,500 yr) Soil Design Basis Earthquake (DBE) 5% damped spectra, corresponding time histories, and strain-compatible soil properties were developed for the Integrated Waste Treatment Unit (IWTU). The IWTU is located at the Idaho Nuclear Technology and Engineering Center (INTEC) at the Idaho National Laboratory (INL). Mean and 84th percentile horizontal DBE spectra derived from site-specific site response analyses were evaluated for the IWTU. The horizontal and vertical PC 3 (2,500 yr) Soil DBE 5% damped spectra at the 84th percentile were selected for Soil Structure Interaction (SSI) analyses at IWTU. The site response analyses were performed consistent with applicable Department of Energy (DOE) Standards, recommended guidance of the Nuclear Regulatory Commission (NRC), American Society of Civil Engineers (ASCE) Standards, and recommendations of the Blue Ribbon Panel (BRP) and Defense Nuclear Facilities Safety Board (DNFSB).

  13. Valuation of ecological resources

    SciTech Connect (OSTI)

    Scott, M.J.; Bilyard, G.R.; Link, S.O.; Ricci, P.F.; Seely, H.E.; Ulibarri, C.A.; Westerdahl, H.E.

    1995-04-01

    Ecological resources are resources that have functional value to ecosystems. Frequently, these functions are overlooked in terms of the value they provide to humans. Environmental economics is in search of an appropriate analysis framework for such resources. In such a framework, it is essential to distinguish between two related subsets of information: (1) ecological processes that have intrinsic value to natural ecosystems; and (2) ecological functions that are values by humans. The present study addresses these concerns by identifying a habitat that is being displaced by development, and by measuring the human and ecological values associated with the ecological resources in that habitat. It is also essential to determine which functions are mutually exclusive and which are, in effect, complementary or products of joint production. The authors apply several resource valuation tools, including contingent valuation methodology (CVM), travel cost methodology (TCM), and hedonic damage-pricing (HDP). One way to derive upper-limit values for more difficult-to-value functions is through the use of human analogs, because human-engineered systems are relatively inefficient at supplying the desired services when compared with natural systems. Where data on the relative efficiencies of natural systems and human analogs exist, it is possible to adjust the costs of providing the human analog by the relative efficiency of the natural system to obtain a more realistic value of the function under consideration. The authors demonstrate this approach in an environmental economic case study of the environmental services rendered by shrub-steppe habitats of Benton County, Washington State.

  14. Predicting ecological roles in the rhizosphere using metabolome and transportome modeling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Larsen, Peter E.; Collart, Frank R.; Dai, Yang; Blanchard, Jeffrey L.

    2015-09-02

    The ability to obtain complete genome sequences from bacteria in environmental samples, such as soil samples from the rhizosphere, has highlighted the microbial diversity and complexity of environmental communities. New algorithms to analyze genome sequence information in the context of community structure are needed to enhance our understanding of the specific ecological roles of these organisms in soil environments. We present a machine learning approach using sequenced Pseudomonad genomes coupled with outputs of metabolic and transportomic computational models for identifying the most predictive molecular mechanisms indicative of a Pseudomonad’s ecological role in the rhizosphere: a biofilm, biocontrol agent, promoter ofmore » plant growth, or plant pathogen. Computational predictions of ecological niche were highly accurate overall with models trained on transportomic model output being the most accurate (Leave One Out Validation F-scores between 0.82 and 0.89). The strongest predictive molecular mechanism features for rhizosphere ecological niche overlap with many previously reported analyses of Pseudomonad interactions in the rhizosphere, suggesting that this approach successfully informs a system-scale level understanding of how Pseudomonads sense and interact with their environments. The observation that an organism’s transportome is highly predictive of its ecological niche is a novel discovery and may have implications in our understanding microbial ecology. The framework developed here can be generalized to the analysis of any bacteria across a wide range of environments and ecological niches making this approach a powerful tool for providing insights into functional predictions from bacterial genomic data.« less

  15. Environmental assessment for the satellite power system concept development and evaluation program: nonmicrowave health and ecological effects

    SciTech Connect (OSTI)

    White, M R

    1980-11-01

    A Concept Development and Evaluation Program is being carried out for a proposed Satellite Power System (SPS). For purposes of this evaluation, a preliminary reference system has been developed. SPS, as described in the reference system, would collect solar energy on satellites in geosychronous orbit in space. The energy would be converted to microwaves and beamed to an earth-receiving antenna (rectenna). One task in the environmental part of the program is the assessment of the nonmicrowave effects on health and the environment. These effects would result from all phases of SPS development and operation. This report covers the current knowledge regarding these effects, and is based on the reference system. The assessment is summarized as to scope, methodology, impacts of terrestrial development, launch and recovery of spacecraft, space activities (including health effects of the space environment, ionizing radiation, electromagnetic exposure, spacecraft charging and environmental interactions, occupational hazards, etc.) and construction and operation of rectenna (ground receiving station).

  16. Pilot-Scale Testing of In Situ Vitrification of Arnold Engineering Development Center Site 10 Contaminated Soils

    SciTech Connect (OSTI)

    Timmerman, C. L.; Peterson, M. E.

    1990-02-01

    Process verification testing using in situ vitrification (ISV) was successfully performed in a pilot-scale test using soils containing fuel oils and heavy metals from Site 10 Installation Restoration Program (IRP) at the Arnold Engineering Development Center (AEDC) located in the southern portion of middle Tennessee. This effort was directed through the U.S. Department of Energy ' s Hazardous Waste Remedial Action Program (HAZWRAP) Office managed by Martin Marietta Energy Systems. In situ vitrification is a thermal treatment process that converts contaminated soils and wastes into a durable product containing glass and crystalline phases. During processing, heavy metals or other inorganic constituents are retained and immobilized in the glass structure; organic constituents are typically destroyed or removed and captured by the off-gas treatment system. The objective of this test is to verify the applicability of the ISV process for stabilization of the contaminated soil at Site 10 . The pilotscale ISV testing results, reported herein, indicate that the AEDC Site 10 Fire Training Area may be successfully processed by ISV. Site 10 is a fire training pit that is contaminated with fuel oils and heavy metals from fire training exercises. Actual site material was processed by ISV to verify its feasible application to those soils . Initial feasibility bench-scale testing and analyses of the soils determined that a lower-melting, electrically conductive fluxing additive (such as sodium carbonate) is required as an additive to the soil for ISV processing to work effecti vely. The actual Site 10 soils showed a larger degree of compositional variation than the soil used for the bench-scale test . This variation dictates that each vitrification setting should be analyzed to determine the composition as. a function of depth and location . This data will dictate the amount (if any) of fluxing add itives of sodium and calci um to bring the melt composition to the recommended

  17. Effects of Love Canal soil extracts on maternal health and fetal development in rats

    SciTech Connect (OSTI)

    Silkworth, J.B.; Tumasonis, C.; Briggs, R.G.; Narang, A.S.; Narang, R.S.; Rej, R.; Stein, V.; McMartin, D.N.; Kaminsky, L.S.

    1986-10-01

    The effects of a solvent extract of the surface soil of the Love Canal chemical dump site, Niagara Falls, New York, and of a natural extract, or leachate, which is drained from the canal for treatment, on the maternal health and fetal development were determined in rats. The solvent extract, which was contaminated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (2, 3,7,8-TCDD) at 170 ppb and numerous other chlorinated organic compounds with the primary identified components being the isomers of benzenehexachloride (BHC), was dissolved in corn oil and administered by gavage to pregnant rats at 0,25,75, or 150 mg crude extract/kg/day on Days 6-15 of gestation. A 67% mortality was observed at the highest dose. The rats were sacrificed on Day 20. Dose-related increases in relative liver weight accompanied by hepatocyte hypertrophy were observed at all dose levels. Fetal birthweight was decreased at 75 and 150 mg extract/kg/day. No major treatment-related soft tissue or skeletal malformations, except for delayed ossification, were observed. Based on literature values for BHC, all of the observed toxicity could be accounted for by the BHC contaminants of the extract. The crude organic phase of the leachate was administered to pregnant rats at 0,10,100, or 250 mg/kg/day as described above. Maternal weight gain decreased at 100 and 250 mg/kg/day, accompanied by 5 and 14% maternal mortality, and 1 and 3 dead fetuses, respectively. Early resorptions and the percentage of dead implants increased whereas fetal birthweights were decreased at 250 mg/kg/day. No major treatment-related soft tissue or skeletal malformations, except for delayed ossification, were observed. The primary components of the complex leachate by mass were tetrachloroethanes; however, 2,3,7,8-TCDD, which was present at 3 ppm, probably accounted for all the observed toxicity.

  18. Panasonic Ecology Systems formerly Matsushita Ecology Systems...

    Open Energy Info (EERE)

    Ecology Systems Co) Place: Kasugai, Aichi, Japan Zip: 468-8522 Sector: Solar, Wind energy Product: Japanese manufacturer of energy efficient residential and commercial...

  19. Development of clean coal and clean soil technologies using advanced agglomeration techniques

    SciTech Connect (OSTI)

    Ignasiak, B.; Ignasiak, T.; Szymocha, K.

    1990-01-01

    Three major topics are discussed in this report: (1) Upgrading of Low Rank Coals by the Agflotherm Process. Test data, procedures, equipment, etc., are described for co-upgrading of subbituminous coals and heavy oil; (2) Upgrading of Bituminous Coals by the Agflotherm Process. Experimental procedures and data, bench and pilot scale equipments, etc., for beneficiating bituminous coals are described; (3) Soil Clean-up and Hydrocarbon Waste Treatment Process. Batch and pilot plant tests are described for soil contaminated by tar refuse from manufactured gas plant sites. (VC)

  20. Missing links in the root-soil organic matter continuum

    SciTech Connect (OSTI)

    O'Brien, Sarah L.; Iversen, Colleen M

    2009-01-01

    The soil environment remains one of the most complex and poorly understood research frontiers in ecology. Soil organic matter (SOM), which spans a continuum from fresh detritus to highly processed, mineral-associated organic matter, is the foundation of sustainable terrestrial ecosystems. Heterogeneous SOM pools are fueled by inputs from living and dead plants, driven by the activity of micro- and mesofauna, and are shaped by a multitude of abiotic factors. The specialization required to measure unseen processes that occur on a wide range of spatial and temporal scales has led to the partitioning of soil ecology research across several disciplines. In the organized oral session 'Missing links in the root-soil organic matter continuum' at the annual Ecological Society of America meeting in Albuquerque, NM, USA, we joined the call for greater communication and collaboration among ecologists who work at the root-soil interface (e.g. Coleman, 2008). Our goal was to bridge the gap between scientific disciplines and to synthesize disconnected pieces of knowledge from root-centric and soil-centric studies into an integrated understanding of belowground ecosystem processes. We focused this report around three compelling themes that arose from the session: (1) the influence of the rhizosphere on SOM cycling, (2) the role of soil heterotrophs in driving the transformation of root detritus to SOM, and (3) the controlling influence of the soil environment on SOM dynamics. We conclude with a discussion of new approaches for gathering data to bridge gaps in the root-SOM continuum and to inform the next generation of ecosystem models. Although leaf litter has often been considered to be the main source of organic inputs to soil, Ann Russell synthesized a convincing body of work demonstrating that roots, rather than surface residues, control the accumulation of SOM in a variety of ecosystems. Living roots, which are chemically diverse and highly dynamic, also influence a wide

  1. New Ecology | Open Energy Information

    Open Energy Info (EERE)

    New Ecology Jump to: navigation, search Name: New Ecology Place: Boston, MA Website: www.newecology.com References: New Ecology1 Information About Partnership with NREL...

  2. Greg Skupien | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Greg Skupien SREL Graduate Program Odum School of Ecology Greg Skupien Masters Student Odum School of Ecology, UGA Greg Skupien is currently pursuing a Master’s in Conservation Ecology and Sustainable Development in the Odum School of Ecology at the University of Georgia under the advisement of Dr. Kimberly Andrews. Greg graduated from the University of Wisconsin-Madison in 2008 where he received his B.S. in Zoology and a certificate in Environmental Studies. In 2011, Greg began work in the

  3. Development of Enhanced Remedial Techniques for Petroleum Fuel and Related Contaminants in Soil and Groundwater

    SciTech Connect (OSTI)

    Paul Fallgren

    2009-02-10

    Western Research Institute (WRI) in conjunction with Earth Tech and the U.S. Department of Energy (DOE) was to identify proper sites with soils and/or groundwater contaminated by petroleum constituents and MTBE. Biodegradation rates would have been quantitatively assessed in both laboratory and field tests to achieve the optimal destruction of contaminants of concern. WRI and Earth Tech identified a site contaminated with high concentrations of methanol associated with petroleum hydrocarbons. The site was assessed and a remediation project plan was prepared; however, the site was soon acquired by a new company. An agreement between Earth Tech, WRI, and the new site owners could not be reached; therefore, a work was performed to identify a new project site. Task 33 was terminated and the available funding was redeployed to other Tasks after receiving approval from the U.S. DOE task manager.

  4. Seasonal thermal energy storage in unsaturated soils: Model development and field validation

    SciTech Connect (OSTI)

    Doughty, C.; Nir, Aharon, Tsang, Chin-Fu

    1991-06-01

    This report summarizes ten years of activity carried out at the Earth Sciences Division of the Lawrence Berkeley Laboratory (LBI) in the subject of seasonal storage of thermal energy in unsaturated soils. The objectives of the work were to make a conceptual study of this type of storage, to offer guidelines for planning and evaluation of the method, to produce models and simulation for an actual field experiment, to participate in an on-line data analysis of experimental results. and to evaluate the results in terms of the validation of the concept, models and the experimental techniques. The actual field experiments were performed in Beer-Sheva, Israel. Details of engineering and field operations are not included in this report.

  5. John Seaman | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Seaman Curriculum Vitae Faculty & Scientists SREL Home John Seaman Savannah River Ecology Laboratory P O Drawer E, Aiken, SC 29802 (803) 725-0977 office (803) 725-3309 fax seaman(at)uga.edu Dr. Seaman's research interests include a number of active agricultural and environmental research areas: the land application of animal waste and coal combustion by-products; solute and contaminant transport modeling; reclamation of Cr(VI) contaminated aquifers and soils; in situ contaminant

  6. Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assessment of Radionuclide Monitoring in the CSRA Savannah River NERP Research ... Upcoming Seminars The Savannah River Ecology Laboratory is a research unit of the ...

  7. Savannah River Ecology Laboratory, Annual Technical Progress Report of Ecological Research, June 30, 2002

    SciTech Connect (OSTI)

    Paul M. Bertsch,

    2002-06-30

    , which focuses on identifying the sources and fate of environmental contaminants and on identifying historical patterns of environmental change. (3) Dr. Beverly Collins is a coauthor of a report published by the U.S. Army Corps of Engineers on a workshop that was held at SREL in March 2001 on sandhills ecology and ecosystem management. The workshop, sponsored by the Strategic Environmental Research and Development Program (SERDP), brought together scientists and land managers from throughout the Southeast. SREL currently has two SERDP-funded projects, including one that was awarded in 2002. (4) A cooperative, multidisciplinary study was initiated with the U.S. Forest Service and Environmental Restoration in the 488-D ash basin on the SRS. This work involves the use of a vegetative cover and common soil additives to mitigate the high acidity and salinity resulting from the oxidation of pyrite in the coal refuse piles. Coal combustion residues from electrical power facilities constitute a major source of solid waste at many DOE and commercial sites.

  8. Ecology Fact Sheets | Savannah River Ecology Laboratory Environmental...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ecology Fact Sheets General Ecology: Mammals and Birds: An Amphibian's Eye View of Wetlands BioBarrierTm Carnivorous Plants Carolina Bays (HTML) Carolina Bays Deepwater Swamps PIT...

  9. Ecologic Institute | Open Energy Information

    Open Energy Info (EERE)

    Institute Name: Ecologic Institute Address: Pfalzburger Strasse 4344 Place: Berlin, Germany Year Founded: 1995 Phone Number: +49 (30) 86880-0 Website: ecologic.eu...

  10. Soils Soil Series

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Soils Soil Series and Phase DBaC i:JFu IIiiiiIO!:l _PK _TuE _Ud DVeD o o o 1180 Meters o 590 \' Community _ Loblolly Pine D Mixed Pine/Hardwood D Upland Hardwood D Bonomland Hardwood iiiI Bonomland HardwoodlPine N Streams * TES Plants (1) D TES Plants (2) U Monitoring Wells o SRS Bays 6 ~ Utili1y ROW !.! Openwells tit NPDES outfalls ** Areas WI Roads rnOther Set-Asides ~ Hydric Soils Figure 15-1. Plant cOllllllunities and soils associated with the WhippldOH ER Study Site Set-Aside Area. 15-7

  11. Soils Soil Series

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Soils Soil Series and Phase D Fa D LaB _ TrB D TrC _ VeC .Wm '" Vegetation Compartment 28 Community D Mixed Pine/Hardwood D Upland Hardwod D Bottomland Hardwood _Water D Sandhill Scrub oak/Pine D Sandhill Pine/Scrub oak N Streams Roads _Water [2LJ Other Set-Asides DTES Plants (2) llilliJ Hydric Soils Road 8.11 560 Meters Figure 29-1. Plant cOllll1lunities and soils associated with the Scrub Oak Natural Area. 29-5 Set-Aside 29: Scrub Oak Natural Area

  12. Non-linear Seismic Soil Structure Interaction Method for Developing Nonlinear Seismic SSI

    Office of Environmental Management (EM)

    Noise and Vibration Impact Assessment Methodology Noise and Vibration Impact Assessment Methodology This appendix provides detailed information on the methodology DOE used to develop the assessment of potential impacts from noise and vibration described in Sections 4.2.8 and 4.3.8 of the Rail Alignment EIS (DOE/EIS-0639D). Noise and Vibration Impact Assessment Methodology (4.02 MB) More Documents & Publications Final Supplemental Environmental Impact Statement for a Geologic Repository for

  13. (International meetings on ecology)

    SciTech Connect (OSTI)

    DeAngelis, D.L.; Garten, C.T. Jr.; Turner, M.G.

    1990-09-25

    the travelers attended the Fifth International Congress of Ecology (INTECOL) in Yokohama, Japan, and two presented invited papers and chaired symposia. One traveler also attended the OJI International Seminar in Gifu, Japan and the Fukuoka Symposium on Theoretical Ecology in Fukuoka, Japan and presented invited papers. At these scientific gatherings, a large number of symposia and specific presentations were relevant to current research at Oak Ridge National Laboratory (ORNL), especially in the areas of landscape dynamics, plant physiology, and aquatic ecosystems.

  14. Industrial ecology Prosperity Game{trademark}

    SciTech Connect (OSTI)

    Beck, D.; Boyack, K.; Berman, M.

    1998-03-01

    Industrial ecology (IE) is an emerging scientific field that views industrial activities and the environment as an interactive whole. The IE approach simultaneously optimizes activities with respect to cost, performance, and environmental impact. Industrial Ecology provides a dynamic systems-based framework that enables management of human activity on a sustainable basis by: minimizing energy and materials usage; insuring acceptable quality of life for people; minimizing the ecological impact of human activity to levels that natural systems can sustain; and maintaining the economic viability of systems for industry, trade and commerce. Industrial ecology applies systems science to industrial systems, defining the system boundary to incorporate the natural world. Its overall goal is to optimize industrial activities within the constraints imposed by ecological viability, globally and locally. In this context, Industrial systems applies not just to private sector manufacturing and services but also to government operations, including provision of infrastructure. Sandia conducted its seventeenth Prosperity Game{trademark} on May 23--25, 1997, at the Hyatt Dulles Hotel in Herndon, Virginia. The primary sponsors of the event were Sandia National Laboratories and Los Alamos National Laboratory, who were interested in using the format of a Prosperity Game to address some of the issues surrounding Industrial Ecology. Honorary game sponsors were: The National Science Foundation; the Committee on Environmental Improvement, American Chemical Society; the Industrial and Engineering Chemistry Division, American Chemical Society; the US EPA--The Smart Growth Network, Office of Policy Development; and the US DOE-Center of Excellence for Sustainable Development.

  15. Memorandum of Understanding Between the United States Department of Energy and the Washington State Department of Ecology for Development of the Hanford Site Tank Closure and Waste Management EIS ("TC&WM EIS")

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) and Washington State Department of Ecology (Ecology) have mutual responsibilities for accomplishing cleanup of the Hanford Site as well as continuing ongoing...

  16. Optimization of viral resuspension methods for carbon-rich soils along a permafrost thaw gradient

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Trubl, Gareth; Solonenko, Natalie; Chittick, Lauren; Solonenko, Sergei A.; Rich, Virginia I.; Sullivan, Matthew B.

    2016-05-17

    Permafrost stores approximately 50% of global soil carbon (C) in a frozen form; it is thawing rapidly under climate change, and little is known about viral communities in these soils or their roles in C cycling. In permafrost soils, microorganisms contribute significantly to C cycling, and characterizing them has recently been shown to improve prediction of ecosystem function. In other ecosystems, viruses have broad ecosystem and community impacts ranging from host cell mortality and organic matter cycling to horizontal gene transfer and reprogramming of core microbial metabolisms. Here we developed an optimized protocol to extract viruses from three types ofmore » high organic-matter peatland soils across a permafrost thaw gradient (palsa, moss-dominated bog, and sedge-dominated fen). Three separate experiments were used to evaluate the impact of chemical buffers, physical dispersion, storage conditions, and concentration and purification methods on viral yields. The most successful protocol, amended potassium citrate buffer with bead-beating or vortexing and BSA, yielded on average as much as 2-fold more virus-like particles (VLPs) g–1of soil than other methods tested. All method combinations yielded VLPs g–1of soil on the 108order of magnitude across all three soil types. The different storage and concentration methods did not yield significantly more VLPs g–1of soil among the soil types. In conclusion, this research provides much-needed guidelines for resuspending viruses from soils, specifically carbon-rich soils, paving the way for incorporating viruses into soil ecology studies.« less

  17. The EMAP: Ecological indicators of condition

    SciTech Connect (OSTI)

    Austin, H.K.

    1995-12-01

    In 1988, the Science Advisory Board to the EPA recommended a program to monitor ecological status and trends, as well as the development of innovative methods, for anticipating emerging environmental problems before a crisis. The multi-agency Environmental Monitoring And Assessment Program (EMAP) evolved with the following program elements: (1) a focus on environmental values and policy-relevant questions; (2) an activity that monitors indicators of ecological condition rather than individual stressors or pollutants; (3) an assessment-driven approach that provides probability-based, scientific results with known certainty; and (4) an activity that translates results into information useful to environmental policy makers and managers. Establishing baseline environmental conditions has received increasing attention with the growing awareness of impacts on human health and environmental integrity from global atmospheric change, acidic deposition, the loss of wetland habitats, and decreasing biodiversity. Monitoring programs can provide critical, quantitative results for scientific assessments of the complex effects of pollutants and natural changes on ecosystems. The goal of the EPA component of EMAP is to conduct research to develop place-based (e.g., large and small geographic scales) ecological monitoring and assessment. EPA/EMAP conducts research to develop and evaluate indicators of ecological condition and to detect in the long-term changes and trends in indicators and associated stresses and develops monitoring strategies to identify conditions of ecological resources in larger, high priority regions or in smaller, regional studies, such as watersheds. With its focus on long-term monitoring and assessment research and research on indicators of ecological condition, the EPA/EMAP can better determine where environmental programs are working to protect, improve, and maintain the quality of our nation`s ecological resources.

  18. Soiling of building envelope surfaces and its effect on solar reflectance – Part II: Development of an accelerated aging method for roofing materials

    SciTech Connect (OSTI)

    Sleiman, Mohamad; Kirchstetter, Thomas W.; Berdahl, Paul; Gilbert, Haley E.; Quelen, Sarah; Marlot, Lea; Preble, Chelsea V.; Chen, Sharon; Montalbano, Amandine; Rosseler, Olivier; Akbari, Hashem; Levinson, Ronnen; Destaillats, Hugo

    2014-01-09

    Highly reflective roofs can decrease the energy required for building air conditioning, help mitigate the urban heat island effect, and slow global warming. However, these benefits are diminished by soiling and weathering processes that reduce the solar reflectance of most roofing materials. Soiling results from the deposition of atmospheric particulate matter and the growth of microorganisms, each of which absorb sunlight. Weathering of materials occurs with exposure to water, sunlight, and high temperatures. This study developed an accelerated aging method that incorporates features of soiling and weathering. The method sprays a calibrated aqueous soiling mixture of dust minerals, black carbon, humic acid, and salts onto preconditioned coupons of roofing materials, then subjects the soiled coupons to cycles of ultraviolet radiation, heat and water in a commercial weatherometer. Three soiling mixtures were optimized to reproduce the site-specific solar spectral reflectance features of roofing products exposed for 3 years in a hot and humid climate (Miami, Florida); a hot and dry climate (Phoenix, Arizona); and a polluted atmosphere in a temperate climate (Cleveland, Ohio). A fourth mixture was designed to reproduce the three-site average values of solar reflectance and thermal emittance attained after 3 years of natural exposure, which the Cool Roof Rating Council (CRRC) uses to rate roofing products sold in the US. This accelerated aging method was applied to 25 products₋single ply membranes, factory and field applied coatings, tiles, modified bitumen cap sheets, and asphalt shingles₋and reproduced in 3 days the CRRC's 3-year aged values of solar reflectance. In conclusion, this accelerated aging method can be used to speed the evaluation and rating of new cool roofing materials.

  19. Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organic Soils Site The Organic Soils site is an important component of the Set-Aside Program because of the highly organic soils and the riparian habitat characteristic of the broad bottomland hardwood floodplain forest of this region of Upper Three Runs Creek (UTRC). This Set-Aside represents a portion of the UTRC stream continuum, complementing other Set-Asides which are located up and downstream. In addition, this site has been used as a representative black gum-red bay forest. These forests

  20. The ecological highrise

    SciTech Connect (OSTI)

    Harnik, P.

    1982-09-01

    Suggestions are presented for ecological apartment living. These include 1) improvements made in living spaces such as polyethylene storm windows, window-box solar collectors, 2) roof-top technology of solar panels, windmills, or gardens and 3) share projects in which tenants organize to recycle or to share in purchase and upkeep of occasional-use equipment.

  1. Road ecology in environmental impact assessment

    SciTech Connect (OSTI)

    Karlson, Mårten Mörtberg, Ulla Balfors, Berit

    2014-09-15

    Transport infrastructure has a wide array of effects on terrestrial and aquatic ecosystems, and road and railway networks are increasingly being associated with a loss of biodiversity worldwide. Environmental Impact Assessment (EIA) and Strategic Environmental Assessment (SEA) are two legal frameworks that concern physical planning, with the potential to identify, predict, mitigate and/or compensate transport infrastructure effects with negative impacts on biodiversity. The aim of this study was to review the treatment of ecological impacts in environmental assessment of transport infrastructure plans and projects. A literature review on the topic of EIA, SEA, biodiversity and transport infrastructure was conducted, and 17 problem categories on the treatment of biodiversity were formulated by means of a content analysis. A review of environmental impact statements and environmental reports (EIS/ER) produced between 2005 and 2013 in Sweden and the UK was then conducted using the list of problems as a checklist. The results show that the treatment of ecological impacts has improved substantially over the years, but that some impacts remain problematic; the treatment of fragmentation, the absence of quantitative analysis and that the impact assessment study area was in general delimited without consideration for the scales of ecological processes. Actions to improve the treatment of ecological impacts could include improved guidelines for spatial and temporal delimitation, and the establishment of a quantitative framework including tools, methods and threshold values. Additionally, capacity building and further method development of EIA and SEA friendly spatial ecological models can aid in clarifying the costs as well as the benefits in development/biodiversity tradeoffs. - Highlights: • The treatment of ecological impacts in EIA and SEA has improved. • Quantitative methods for ecological impact assessment were rarely used • Fragmentation effects were recognized

  2. Ecology Action: Small Market Advanced Retrofit Transformation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ecology Action: Small Market Advanced Retrofit Transformation Program (SMART) Ecology Action: Small Market Advanced Retrofit Transformation Program (SMART) Ecology Action: Small ...

  3. Savannah River Ecology Laboratory, annual technical progress report of ecological research for the year ending June 30, 1997

    SciTech Connect (OSTI)

    Wein, G.; Rosier, B.

    1997-12-31

    This report provides an overview of the research programs and program components carried out by the Savannah River Ecology Laboratory. Research focused on the following: advanced analytical and spectroscopic techniques for developing novel waste isolation and stabilization technologies as well as cost-effective remediation strategies; ecologically sound management of damaged and remediation of ecological systems; ecotoxicology, remediation, and risk assessment; radioecology, including dose assessments for plants and animals exposed to environmental radiation; and other research support programs.

  4. Big Canyon Creek Ecological Restoration Strategy.

    SciTech Connect (OSTI)

    Rasmussen, Lynn; Richardson, Shannon

    2007-10-01

    He-yey, Nez Perce for steelhead or rainbow trout (Oncorhynchus mykiss), are a culturally and ecologically significant resource within the Big Canyon Creek watershed; they are also part of the federally listed Snake River Basin Steelhead DPS. The majority of the Big Canyon Creek drainage is considered critical habitat for that DPS as well as for the federally listed Snake River fall chinook (Oncorhynchus tshawytscha) ESU. The Nez Perce Soil and Water Conservation District (District) and the Nez Perce Tribe Department of Fisheries Resources Management-Watershed (Tribe), in an effort to support the continued existence of these and other aquatic species, have developed this document to direct funding toward priority restoration projects in priority areas for the Big Canyon Creek watershed. In order to achieve this, the District and the Tribe: (1) Developed a working group and technical team composed of managers from a variety of stakeholders within the basin; (2) Established geographically distinct sub-watershed areas called Assessment Units (AUs); (3) Created a prioritization framework for the AUs and prioritized them; and (4) Developed treatment strategies to utilize within the prioritized AUs. Assessment Units were delineated by significant shifts in sampled juvenile O. mykiss (steelhead/rainbow trout) densities, which were found to fall at fish passage barriers. The prioritization framework considered four aspects critical to determining the relative importance of performing restoration in a certain area: density of critical fish species, physical condition of the AU, water quantity, and water quality. It was established, through vigorous data analysis within these four areas, that the geographic priority areas for restoration within the Big Canyon Creek watershed are Big Canyon Creek from stream km 45.5 to the headwaters, Little Canyon from km 15 to 30, the mainstem corridors of Big Canyon (mouth to 7km) and Little Canyon (mouth to 7km). The District and the Tribe

  5. Surface Soil

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Surface Soil Surface Soil We compare local soil samples with samples collected from northern New Mexico locations that are beyond the range of potential influence from normal Laboratory operations. April 12, 2012 Farm soil sampling Two LANL environmental field team members take soil samples from a farm. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Measurements are compared to samples from the regional sites and

  6. Mass Transport within Soils

    SciTech Connect (OSTI)

    McKone, Thomas E.

    2009-03-01

    with three major horizons, the saturated zone can be further divided into other zones based on hydraulic and geologic conditions. Wetland soils are a special and important class in which near-saturation conditions exist most of the time. When a contaminant is added to or formed in a soil column, there are several mechanisms by which it can be dispersed, transported out of the soil column to other parts of the environment, destroyed, or transformed into some other species. Thus, to evaluate or manage any contaminant introduced to the soil column, one must determine whether and how that substance will (1) remain or accumulate within the soil column, (2) be transported by dispersion or advection within the soil column, (3) be physically, chemically, or biologically transformed within the soil (i.e., by hydrolysis, oxidation, etc.), or (4) be transported out of the soil column to another part of the environment through a cross-media transfer (i.e., volatilization, runoff, ground water infiltration, etc.). These competing processes impact the fate of physical, chemical, or biological contaminants found in soils. In order to capture these mechanisms in mass transfer models, we must develop mass-transfer coefficients (MTCs) specific to soil layers. That is the goal of this chapter. The reader is referred to other chapters in this Handbook that address related transport processes, namely Chapter 13 on bioturbation, Chapter 15 on transport in near-surface geological formations, and Chapter 17 on soil resuspention. This chapter addresses the following issues: the nature of soil pollution, composition of soil, transport processes and transport parameters in soil, transformation processes in soil, mass-balance models, and MTCs in soils. We show that to address vertical heterogeneity in soils in is necessary to define a characteristic scaling depth and use this to establish process-based expressions for soil MTCs. The scaling depth in soil and the corresponding MTCs depend strongly

  7. Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mature Hardwood Forest The Mature Hardwood Forest Set-Aside is an excellent example of a relatively undisturbed, maturing hardwood forest containing both seasonally flooded bottomland and transitional upland habitats associated with a stream floodplain. This Set-Aside contains some of the best examples of stands of maturing hardwoods which represent the range of ecological variation in hardwood forest types on the SRS. While the vegetation on the xeric and mesic slopes of this Set-Aside is

  8. Ecological Research Division, Marine Research Program

    SciTech Connect (OSTI)

    Not Available

    1980-05-01

    This report presents program summaries of the various projects sponsored during 1979 by the Marine Research Program of the Ecological Research Division. Program areas include the effects of petroleum hydrocarbons on the marine environment; a study of the baseline ecology of a proposed OTEC site near Puerto Rico; the environmental impact of offshore geothermal energy development; the movement of radionuclides through the marine environment; the environmental aspects of power plant cooling systems; and studies of the physical and biological oceangraphy of the continental shelves bordering the United States.

  9. Development of Alternate Soil Clean-Up Goals for Hanford Waste Sites Using Fate and Transport Modeling

    SciTech Connect (OSTI)

    Hoover, J.D. [Fluor Hanford, Inc. (United States); McMahon, W.J. [CH2M Hill Hanford Group (United States); Leary, K.D. [DOE/RL (United States)

    2008-07-01

    Remedial Action Goals (RAGs) for soil contaminant levels that are protective of groundwater have been determined for the Removal/Treatment/Disposal (RTD) sites at the 200-UW-1 Operable Unit on the Hanford Site. The RAG values were determined using a methodology involving the back-calculation of soil contaminant levels protective of groundwater (i.e., resulting groundwater concentrations are {<=} MCLs) in conjunction with the fate and transport modeling as a risk-based alternative to the currently prescribed use of background or detection limit default values. This methodology is important for waste management activities at the Hanford Site because it provides risk-based metrics and a technical basis for determining the levels of contamination 'left in place' in the Hanford Site vadose zone that are protective of human health and the environment. The methodology and the use of fate and transport modeling described here comply with federal guidelines for the use of environmental models. This approach is also consistent with one of several allowable methods identified in State guidelines for deriving soil concentrations for ground water protection. Federal and state guidelines recommend the use of site-specific information and data in risk-based assessments of risk and/or protectiveness. The site-specific characteristics of the Hanford Site, which include consideration of the semi-arid climate, an unsaturated zone thickness of over 80 m (262 feet), and associated/other site features and processes, are integral for the risk-based assessments associated with the protection of groundwater pathway. This methodology yields soil cleanup values (RAGs) for the 200-UW-1 OU waste sites selected for the removal/treatment/disposal (RTD) remedy. These proposed RAGs for uranium, nitrate, and technetium-99 are derived from soil concentrations calculated not to cause contamination of groundwater at levels that exceed the ground water MCLs, and are 40 to 200 times greater than

  10. Modifying the Soil and Water Assessment Tool to Simulate Cropland Carbon Flux: Model Development and Initial Evaluation

    SciTech Connect (OSTI)

    Zhang, Xuesong; Izaurralde, Roberto C.; Arnold, Jeffrey; Williams, Jimmy R.; Srinivasan, Raghavan

    2013-10-01

    Climate change is one of the most compelling modern issues and has important implications for almost every aspect of natural and human systems. The Soil and Water Assessment Tool (SWAT) model has been applied worldwide to support sustainable land and water management in a changing climate. However, the inadequacies of the existing carbon algorithm in SWAT limit its application in assessing impacts of human activities on CO2 emission, one important source of greenhouse gases (GHGs) that traps heat in the earth system and results in global warming. In this research, we incorporate a revised version of the CENTURY carbon model into SWAT to describe dynamics of soil organic matter (SOM)- residue and simulate land-atmosphere carbon exchange.

  11. Significance of radon exposures in developing cleanup criteria for radium-contaminated soil at the Weldon Spring Site

    SciTech Connect (OSTI)

    Blunt, D.L.; Peterson, J.M.; Hillman, D.J.

    1993-10-01

    The Weldon Spring site, located in St. Charles County, Missouri, is included on the National Priorities List (NPL) of the US Environmental Protection Agency (EPA), and the US Department of Energy (DOE) is currently conducting cleanup activities at the site. This paper discusses the significance of radon exposures that may result from radium-contaminated soil and the approach currently being taken at the Weldon Spring site to address this issue.

  12. Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12 / Ellenton Bay Ellenton Bay Field 3-412 The Field 3-412/Ellenton Bay Set-Aside Area was one of the areas on the SRS selected for ecological studies in the early 1950's by scientists from the University of Georgia. This Area became well-known as a result of E. P. Odum's research on old-field succession and other studies of energy flow through ecosystems. Field 3-412 was one of the original ten SREL habitat reserve areas that were established on the SRS in the 1960's. This Area originally was

  13. Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Whipple/OHER Study Site This Set-Aside Area is 183.6 acres (74.3 ha) and is found within a fourth order reach segment of Upper Three Runs Creek (UTRC). This Set-Aside represents one of seven long-term vegetation study areas on the SRS. The site was named for its use in the Whipple-Good vegetation studies of the early 1980s, and in SREL's stream ecology studies for the DOE-HQ-Ofiice of Health, Environment, and Research (OHER). This site is representative of black gum-red bay (Nyssa

  14. Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University of Georgia Old Laboratory Site This 113.1-acre (45.8 ha) Set-Aside Area, adjacent to the former location of the Savannah River Ecology Laboratory, is one of the original ten SREL habitat reserves and was selected to complement the old-field habitat/plant succession studies at Field 3-412 (Area #1) and Field 3-409 (Area #28). This relatively disturbed Set-Aside provided field study sites where manipulative research could be carried out on old-fields and radioecology experiments could

  15. Fermilab | Sustainability | Nature/Ecology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fermilab at Work Search Search Go Skip over navigation to main content Sustainability Nature and Ecology Sustainability Tips Electronics Stewardship Energy and Water Conservation...

  16. Employment | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Employment Openings are posted on the UGA Human Resources website. To search for employment opportunities at SREL, select Department #267 (Savannah River Ecology Laboratory). UGA HR

  17. Western oil shale development: a technology assessment. Volume 7: an ecosystem simulation of perturbations applied to shale oil development

    SciTech Connect (OSTI)

    Not Available

    1982-05-01

    Progress is outlined on activities leading toward evaluation of ecological and agricultural impacts of shale oil development in the Piceance Creek Basin region of northwestern Colorado. After preliminary review of the problem, it was decided to use a model-based calculation approach in the evaluation. The general rationale and objectives of this approach are discussed. Previous studies were examined to characterize climate, soils, vegetation, animals, and ecosystem response units. System function was methodically defined by developing a master list of variables and flows, structuring a generalized system flow diagram, constructing a flow-effects matrix, and conceptualizing interactive spatial units through spatial matrices. The process of developing individual mathematical functions representing the flow of matter and energy through the various system variables in different submodels is discussed. The system model diagram identified 10 subsystems which separately account for flow of soil temperatures, soil water, herbaceous plant biomass, shrubby plant biomass, tree cover, litter biomass, shrub numbers, animal biomass, animal numbers, and land area. Among these coupled subsystems there are 45 unique kinds of state variables and 150 intra-subsystem flows. The model is generalizeable and canonical so that it can be expanded, if required, by disaggregating some of the system state variables and allowing for multiple ecological response units. It integrates information on climate, surface water, ecology, land reclamation, air quality, and solid waste as it is being developed by several other task groups.

  18. Science and technology for industrial ecology

    SciTech Connect (OSTI)

    Gilmartin, T.J.; Allenby, B.R.

    1996-07-10

    Scientific and technological communities have a significant role to play and responsibility for the evolution of global sustainability (continuously improving quality of life into the indefinite future). Sustainability is not possible without a substantially improved science and technology basis for industrial ecology. Society needs data and understanding of complex ecological issues to govern itself in a sustainable manner. We should: support and develop multi-disciplinary programs which create the scientific basis for understanding natural and anthropogenic complex systems and for developing environmentally and economically efficient technology; demonstrate a systems-based approach to science and technology issues which is life-cycle comprehensive, integrates environmental considerations, and promotes conservation of natural resources; and encourage development of responsible, technically and scientifically valid, cost-effective environmental laws and practices.

  19. Multiple soil nutrient competition between plants, microbes,...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Multiple soil nutrient competition between plants, microbes, and mineral surfaces: model development, parameterization, and example applications in several...

  20. Microbial food web mapping: linking carbon cycling and community structure in soils through pyrosequencing enabled stable isotope probing

    SciTech Connect (OSTI)

    Buckley, Daniel H.

    2015-03-15

    Soil represents a massive reservoir of active carbon and climate models vary dramatically in predicting how this carbon will respond to climate change over the coming century. A major cause of uncertainty is that we still have a very limited understand the microorganisms that dominate the soil carbon cycle. The vast majority of soil microbes cannot be cultivated in the laboratory and the diversity of organisms and enzymes that participate in the carbon cycle is staggeringly complex. We have developed a new toolbox for exploring the carbon cycle and the metabolic and ecological characteristics of uncultivated microorganisms. The high-resolution nucleic acid stable isotope probing approach that we have developed makes it possible to characterize microbial carbon cycling dynamics in soil. The approach allows us to track multiple 13C-labeled substrates into thousands of microbial taxa over time. Using this approach we have discovered several major lineages of uncultivated microorganisms that participate in cellulose metabolism and are found widely in soils (including Verrucomicrobia and Chloroflexi, which have not previously been implicated as major players in the soil carbon cycle). Furthermore, isotopic labelling of nucleic acids enables community genomics and permits genome fragment binning for a majority of these cellulolytic microorganisms allowing us to explore the metabolic underpinnings of cellulose degradation. This approach has allowed us to describe unexpected dynamics of carbon metabolism with different microbial taxa exhibiting characteristic patterns of carbon substrate incorporation, indicative of distinct ecological strategies. The data we describe allows us to characterize the activity of novel microorganisms as they occur in the environment and these data provide a basis for understanding how the physiological traits of discrete microorganisms sum to govern the complex responses of the soil carbon cycle.

  1. SRS ecology: Environmental information document

    SciTech Connect (OSTI)

    Wike, L.D.; Shipley, R.W.; Bowers, J.A.

    1993-09-01

    The purpose of this Document is to provide a source of ecological information based on the exiting knowledge gained from research conducted at the Savannah River Site. This document provides a summary and synthesis of ecological research in the three main ecosystem types found at SRS and information on the threatened and endangered species residing there.

  2. Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ruth Patrick - Myers Branch Set-Aside Meyers Branch is a second order stream whose watershed encompasses 12,565 acres (5,085 ha), approximately one half of the Steel Creek drainage. The boundaries of this Set-Aside were delineated and marked to include Meyers Branch and its tributaries, their associated 100-year floodplain and hydric soils, the most erodible adjacent slopes (15% or steeper slopes), and all upland hardwood and mixed species stands that are connected to the drainage. As a

  3. Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fire Site The Sandhills Fire Site is a mixed-species sandhills habitat situated on infertile, poor-to- marginally productive soils. This habitat type once was common to this region of the United States as well as to the SRS; however, forest type conversion to longleaf pine plantations has reduced this community type to isolated patches within the SRS landscape. The Sandhills Fire Site was included in the Set-Aside Program because it represents a fire-maintained sandhills community and because of

  4. Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scrub Oak Natural Area This mixed-species sandhills habitat is situated on infertile, poor-to-marginally productive soils, a habitat type that once was common to the Aiken Plateau as well as the SRS. However, forest type conversion to longleaf pine plantations has reduced this community type to isolated patches within the SRS landscape. The Scrub Oak Natural Area was registered in 1968 with the Society of American Foresters (SAF) national system of Natural Areas. It is one of two SAF Natural

  5. Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site This relatively undisturbed 66.2 acre (26.8 ha) Set-Aside is one of the original ten SREL habitat reserves which presently is a forest dominated by turkey oak (Quercus laevis) and longleaf pine (Pinus palustris). This mixed species sandhills habitat is situated on infertile, poor-to-marginally productive soils, a habitat type that once was common to the Aiken Plateau as well as the SRS. However, forest type conversion to longleaf pine plantations has reduced this community type to isolated

  6. Artificial Soiling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Artificial Soiling of Photovoltaic Module Surfaces using Traceable Soil Components Patrick D. Burton and Bruce H. King Sandia National Laboratories Albuquerque NM 87185 USA Email: pdburto@sandia.gov Abstract-Effective evaluation and prediction of photovoltaic performance loss due to soiling requires consistent test methods. Natural grime accumulation is time-consuming and location- specific, and thus does not provide reproducible results across different geographic regions. Therefore, we have

  7. Surface Soil

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    environmental field team members take soil samples from a farm. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505)...

  8. Non-Linear Seismic Soil Structure Interaction (SSI) Method for...

    Office of Environmental Management (EM)

    Non-Linear Seismic Soil Structure Interaction (SSI) Method for Developing Non-Linear Seismic SSI Analysis Techniques Non-Linear Seismic Soil Structure Interaction (SSI) Method for ...

  9. Development testing of the chemical analysis automation polychlorinated biphenyl standard analysis method during surface soils sampling at the David Witherspoon 1630 site

    SciTech Connect (OSTI)

    Hunt, M.A.; Klatt, L.N.; Thompson, D.H.

    1998-02-01

    The Chemical Analysis Automation (CAA) project is developing standardized, software-driven, site-deployable robotic laboratory systems with the objective of lowering the per-sample analysis cost, decreasing sample turnaround time, and minimizing human exposure to hazardous and radioactive materials associated with DOE remediation projects. The first integrated system developed by the CAA project is designed to determine polychlorinated biphenyls (PCB) content in soil matrices. A demonstration and development testing of this system was conducted in conjuction with surface soil characterization activities at the David Witherspoon 1630 Site in Knoxville, Tennessee. The PCB system consists of five hardware standard laboratory modules (SLMs), one software SLM, the task sequence controller (TSC), and the human-computer interface (HCI). Four of the hardware SLMs included a four-channel Soxhlet extractor, a high-volume concentrator, a column cleanup, and a gas chromatograph. These SLMs performed the sample preparation and measurement steps within the total analysis protocol. The fifth hardware module was a robot that transports samples between the SLMs and the required consumable supplies to the SLMs. The software SLM is an automated data interpretation module that receives raw data from the gas chromatograph SLM and analyzes the data to yield the analyte information. The TSC is a software system that provides the scheduling, management of system resources, and the coordination of all SLM activities. The HCI is a graphical user interface that presents the automated laboratory to the analyst in terms of the analytical procedures and methods. Human control of the automated laboratory is accomplished via the HCI. Sample information required for processing by the automated laboratory is entered through the HCI. Information related to the sample and the system status is presented to the analyst via graphical icons.

  10. SRS ECOLOGY ENVIRONMENTAL INFORMATION DOCUMENT -1997 UPDATE

    SciTech Connect (OSTI)

    Halverson, N.V.; Wike, L.D.; Patterson, K.K.; Bowers, J.A.; Bryan, A.L.; Chen, K.F.; Cummins, C.L.; deCarmen, B.R.; Dixon, K.L.; Dunn, D.L.

    1997-12-31

    The purpose of the SRS Ecology: Environmental Information Document is to provide a source of information on the ecology of the Savannah River Site.

  11. Permafrost soils and carbon cycling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ping, C. L.; Jastrow, J. D.; Jorgenson, M. T.; Michaelson, G. J.; Shur, Y. L.

    2015-02-05

    Knowledge of soils in the permafrost region has advanced immensely in recent decades, despite the remoteness and inaccessibility of most of the region and the sampling limitations posed by the severe environment. These efforts significantly increased estimates of the amount of organic carbon stored in permafrost-region soils and improved understanding of how pedogenic processes unique to permafrost environments built enormous organic carbon stocks during the Quaternary. This knowledge has also called attention to the importance of permafrost-affected soils to the global carbon cycle and the potential vulnerability of the region's soil organic carbon (SOC) stocks to changing climatic conditions. Inmore » this review, we briefly introduce the permafrost characteristics, ice structures, and cryopedogenic processes that shape the development of permafrost-affected soils, and discuss their effects on soil structures and on organic matter distributions within the soil profile. We then examine the quantity of organic carbon stored in permafrost-region soils, as well as the characteristics, intrinsic decomposability, and potential vulnerability of this organic carbon to permafrost thaw under a warming climate. Overall, frozen conditions and cryopedogenic processes, such as cryoturbation, have slowed decomposition and enhanced the sequestration of organic carbon in permafrost-affected soils over millennial timescales. Due to the low temperatures, the organic matter in permafrost soils is often less humified than in more temperate soils, making some portion of this stored organic carbon relatively vulnerable to mineralization upon thawing of permafrost.« less

  12. The Gut Microbiota: Ecology and Function

    SciTech Connect (OSTI)

    Willing, B.P.; Jansson, J.K.

    2010-06-01

    The gastrointestinal (GI) tract is teeming with an extremely abundant and diverse microbial community. The members of this community have coevolved along with their hosts over millennia. Until recently, the gut ecosystem was viewed as black box with little knowledge of who or what was there or their specific functions. Over the past decade, however, this ecosystem has become one of fastest growing research areas of focus in microbial ecology and human and animal physiology. This increased interest is largely in response to studies tying microbes in the gut to important diseases afflicting modern society, including obesity, allergies, inflammatory bowel diseases, and diabetes. Although the importance of a resident community of microorganisms in health was first hypothesized by Pasteur over a century ago (Sears, 2005), the multiplicity of physiological changes induced by commensal bacteria has only recently been recognized (Hooper et al., 2001). The term 'ecological development' was recently coined to support the idea that development of the GI tract is a product of the genetics of the host and the host's interactions with resident microbes (Hooper, 2004). The search for new therapeutic targets and disease biomarkers has escalated the need to understand the identities and functions of the microorganisms inhabiting the gut. Recent studies have revealed new insights into the membership of the gut microbial community, interactions within that community, as well as mechanisms of interaction with the host. This chapter focuses on the microbial ecology of the gut, with an emphasis on information gleaned from recent molecular studies.

  13. Women & the Department of Ecology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    30 * This permit will have about a 90-day comment period (closing Sept. 30 with the rest of the permit) * Ecology to offer webinar workshophearing on SST permit * Seeking HAB ...

  14. Ecology WTP Recovery Plan comments ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SSTs are to be retrieved during the coming year from the pool of tanks approved by Ecology (Appendix I, Section 2.1.2) have already been established to maintain and monitor...

  15. Ecology WTP Recovery Plan comments ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and the Hanford Site Integrated Priority List (IPL). Approvals Approved Disapproved Ecology Date Approved Disapproved DOE - ORP Date M-62-04-01 CR 1 Modifications to the M-62-00...

  16. Ecological safety of tidal-power projects

    SciTech Connect (OSTI)

    Fedorov, M. P.; Shilin, M. B.

    2010-07-15

    The operating regime of tidal power plants requires ecological monitoring of their associated water area.

  17. Ecological investigation of a hazardous waste site, Warner Robins, Georgia

    SciTech Connect (OSTI)

    Wade, M.C. ); Billig, P. )

    1993-01-01

    Zone 1, Robins Air Force Base, Georgia, has been designated a National Priorities List Site by the US Environmental Protection Agency. The Remedial Investigation for Zone 1 recommended a quantitative analysis of ecological risk. To accomplish this task a characterization of the bottomland hardwood forest ecosystem present on the base was required. This ecological characterization included the study of hydrology, aquatic and wildlife biology, and wetlands ecology where potential impacts were in question. In addition, a suitable reference area was studied. The hydrologic investigation consisted primarily of the installation of water level recorders and staff gauges, collection of surface water data, installation of piezometers and collection of groundwater data, and the collection of rainfall data. The aquatic biology investigation centered around the sampling of benthic macroinvertebrate communities, bioassay toxicity tests for surface water and sediment, fish sampling, aquatic macrophyte collection, macrophyte collection, and emergent and free-floating plant collection. The wildlife biology investigation focused on a breeding bird survey. The wetlands ecology investigation comprised the collection of soil and vegetation samples and using the Wetland Evaluation Technique (WET) to assess the functions and values of the wetlands present.

  18. Land-Use History and Contemporary Management Inform an Ecological Reference Model for Longleaf Pine Woodland Understory Plant Communities.

    SciTech Connect (OSTI)

    Brudvig, Lars A.; Orrock, John L.; Damschen, Ellen I.; et al, et al

    2014-01-23

    Ecological restoration is frequently guided by reference conditions describing a successfully restored ecosystem; however, the causes and magnitude of ecosystem degradation vary, making simple knowledge of reference conditions insufficient for prioritizing and guiding restoration. Ecological reference models provide further guidance by quantifying reference conditions, as well as conditions at degraded states that deviate from reference conditions. Many reference models remain qualitative, however, limiting their utility. We quantified and evaluated a reference model for southeastern U.S. longleaf pine woodland understory plant communities. We used regression trees to classify 232 longleaf pine woodland sites at three locations along the Atlantic coastal plain based on relationships between understory plant community composition, soils lol(which broadly structure these communities), and factors associated with understory degradation, including fire frequency, agricultural history, and tree basal area. To understand the spatial generality of this model, we classified all sites together. and for each of three study locations separately. Both the regional and location-specific models produced quantifiable degradation gradients–i.e., progressive deviation from conditions at 38 reference sites, based on understory species composition, diversity and total cover, litter depth, and other attributes. Regionally, fire suppression was the most important degrading factor, followed by agricultural history, but at individual locations, agricultural history or tree basal area was most important. At one location, the influence of a degrading factor depended on soil attributes. We suggest that our regional model can help prioritize longleaf pine woodland restoration across our study region; however, due to substantial landscape-to-landscape variation, local management decisions should take into account additional factors (e.g., soil attributes). Our study demonstrates the utility

  19. Baseline ecological risk assessment Salmon Site, Lamar County, Mississippi

    SciTech Connect (OSTI)

    1995-04-01

    The Salmon Site (SS), formerly the Tatum Dome Test Site, located in Mississippi was the site of two nuclear and two gas explosion tests conducted between 1964 and 1970. A consequence of these testing activities is that radionuclides were released into the salt dome, where they are presently contained. During reentry drilling and other site activities, incidental liquid and solid wastes that contained radioactivity were generated, resulting in some soil, ground water and equipment contamination. As part of the remedial investigation effort, a Baseline Ecological Risk Assessment was conducted at the SS. The purpose is to gauge ecological and other environmental impacts attributable to past activities at the former test facility. The results of this facility-specific baseline risk assessment are presented in this document.

  20. Ecological Principles and Guidelines for Managing the Use of Land

    SciTech Connect (OSTI)

    Dale, Virginia H; Brown, Sandra; Haeuber, R A; Hobbs, N T; Huntly, N; Naiman, R J; Riebsame, W E; Turner, M G; Valone, T J

    2014-01-01

    rules of thumb for incorporating ecological principles into land-use decision making. These guidelines suggest that land managers should: (1) examine impacts of local decisions in a regional context, (2) plan for long-term change and unexpected events, (3) preserve rare landscape elements and associated species, (4) avoid land uses that deplete natural resources, (5) retain large contiguous or connected areas that contain critical habitats, (6) minimize the intro- duction and spread of nonnative species, (7) avoid or compensate for the effects of development on ecological processes, and (8) implement land-use and management practices that are compatible with the natural potential of the area. Decision makers and citizens are encouraged to consider these guidelines and to include ecological per- spectives in choices on how land is used and managed. The guidelines suggest actions required to develop the science needed by land managers.

  1. Development of field guidance for assessing feasibility of intrinsic bioremediation to restore petroleum-contaminated soils. Master's thesis

    SciTech Connect (OSTI)

    Enyeart, J.T.

    1994-09-01

    This research evaluated the process of intrinsic bioremediation, also called natural attenuation, and the parameters that affected it. The goal of this study was to use these intrinsic bioremediation parameters to develop a valid prediction of the cleanup duration using this restoration technology. This analysis was limited to a JP-4 release and focused on the remediation of the BTEX constituents to a cleanup level of 10 ppm total BTEX. The review of intrinsic bioremediation found that the BTEX hydrocarbons can aerobically and anaerobically biodegrade. Of the many factors that affect intrinsic bioremediation, those that most influenced its occurrence were the quantities of aerobic and anaerobic electron acceptors used in biodegradation. The electron acceptors considered in this research were oxygen, nitrate, manganese (IV), iron (III), and sulfate. A no-dispersion biodegradation model was developed to determine the prediction of the intrinsic bioremediation duration based on the concentrations of individual electron acceptors. Only the aerobic electron acceptor had a measurable influence on the biodegradation model; hence, the prediction results focused on the aerobic biodegradation and its boundary with the anaerobic portion. The key factors used to characterize this boundary and its movement was the initial quantities of BTEX, dissolved oxygen and the relative velocity of the ground water moving through the retarded plume. A linear regression was performed to relate the three parameters mentioned above to the motion of the aerobic boundary.

  2. Estimating and mapping ecological processes influencing microbial community assembly

    SciTech Connect (OSTI)

    Stegen, James C.; Lin, Xueju; Fredrickson, Jim K.; Konopka, Allan E.

    2015-05-01

    Ecological community assembly is governed by a combination of (i) selection resulting from among-taxa differences in performance; (ii) dispersal resulting from organismal movement; and (iii) ecological drift resulting from stochastic changes in population sizes. The relative importance and nature of these processes can vary across environments. Selection can be homogeneous or variable, and while dispersal is a rate, we conceptualize extreme dispersal rates as two categories; dispersal limitation results from limited exchange of organisms among communities, and homogenizing dispersal results from high levels of organism exchange. To estimate the influence and spatial variation of each process we extend a recently developed statistical framework, use a simulation model to evaluate the accuracy of the extended framework, and use the framework to examine subsurface microbial communities over two geologic formations. For each subsurface community we estimate the degree to which it is influenced by homogeneous selection, variable selection, dispersal limitation, and homogenizing dispersal. Our analyses revealed that the relative influences of these ecological processes vary substantially across communities even within a geologic formation. We further identify environmental and spatial features associated with each ecological process, which allowed mapping of spatial variation in ecological-process-influences. The resulting maps provide a new lens through which ecological systems can be understood; in the subsurface system investigated here they revealed that the influence of variable selection was associated with the rate at which redox conditions change with subsurface depth.

  3. Estimating and mapping ecological processes influencing microbial community assembly

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stegen, James C.; Lin, Xueju; Fredrickson, Jim K.; Konopka, Allan E.

    2015-05-01

    Ecological community assembly is governed by a combination of (i) selection resulting from among-taxa differences in performance; (ii) dispersal resulting from organismal movement; and (iii) ecological drift resulting from stochastic changes in population sizes. The relative importance and nature of these processes can vary across environments. Selection can be homogeneous or variable, and while dispersal is a rate, we conceptualize extreme dispersal rates as two categories; dispersal limitation results from limited exchange of organisms among communities, and homogenizing dispersal results from high levels of organism exchange. To estimate the influence and spatial variation of each process we extend a recentlymore » developed statistical framework, use a simulation model to evaluate the accuracy of the extended framework, and use the framework to examine subsurface microbial communities over two geologic formations. For each subsurface community we estimate the degree to which it is influenced by homogeneous selection, variable selection, dispersal limitation, and homogenizing dispersal. Our analyses revealed that the relative influences of these ecological processes vary substantially across communities even within a geologic formation. We further identify environmental and spatial features associated with each ecological process, which allowed mapping of spatial variation in ecological-process-influences. The resulting maps provide a new lens through which ecological systems can be understood; in the subsurface system investigated here they revealed that the influence of variable selection was associated with the rate at which redox conditions change with subsurface depth.« less

  4. Rhizosphere effect of colonizer plant species on the development of soil microbial community during primary succession on postmining sites

    SciTech Connect (OSTI)

    Elhottova, D.; Kristufek, V.; Maly, S.; Frouz, J.

    2009-07-01

    The impact of pioneer plant species Tussilago farfara on structural, functional, and growth characterization of microbial community colonizing the spoil colliery substrate was studied in a laboratory microcosm experiment. Microcosms consisting of spoil substrate (0.7 dm{sup 3} of tertiary alkaline clay sediment from Sokolov brown-coal mine area) from a pioneer site (without vegetation, 5 years after heaping) were cultivated in a greenhouse with one plant of this species. Plant roots substantially increased microbial diversity and biomass after one season (7 months) of cultivation. Roots influenced the microbial community and had nearly twice the size, higher growth, and metabolic potential in comparison to the control. The development of microbial specialists improves the plant nutrient status. Bacterial nitrogen (N{sub 2}) fixators (Bradyrhizobium japonicum, Rhizobium radiobacter) and arbuscular mycorrhizal fungi were confirmed in the rhizosphere of Tussilago farfara.

  5. APPLICATION OF CHEMICALLY ACCELERATED BIOTREATMENT TO REDUCE RISKIN OIL-IMPACTED SOILS

    SciTech Connect (OSTI)

    J.R. Paterek; W.W.Bogan; V. Trbovic; W. Sullivan

    2003-01-07

    have been based on total contaminant concentrations in soil, as determined by laboratory extraction methods that use vigorous physical and chemical procedures. Numerous data collected from bioavailability studies in this study and others carried out by GTI and other organizations conducted on contaminated soils and sediments continue to show that not all contaminants are available to environmental receptors including man or ecologically forms. In short, there exist fractions of contaminants in soil that cannot be released from the soil matrix by normal means. These sequestered contaminant fractions should not be considered a risk to human health or the environment. This project focused on CAB technology to treat soil contaminants to these acceptable levels. Therefore, the primary objective of this project was to determine what these contaminant levels are and to reach or exceed cleanup standards using CAB. These determinations were demonstrated and verified using toxicity and chemical mobility tests. Based on GTI's experience with a form of CAB for the remediation of soils at Manufactured Gas Plant sites, use of the technology demonstrated in this project could save the oil and gas industry an estimated $200 million to $500 million over the next ten years. The merging of CAB with the use of EAE for calibration and evaluation of treatment effectiveness addressed the following research objectives: (1) Determination of the kinetics of contaminant desorption and bioavailability; (2) Further development of CAB technology for the treatment of hydrocarbon-contaminated soils; (3) Finalization of the methods, procedures and processes needed to apply CAB technology using EAE; and (4) Verification of the applicability of EAE for the remediation of contaminated soils.

  6. Washington State Department of Ecology | Open Energy Information

    Open Energy Info (EERE)

    Ecology Jump to: navigation, search Logo: Washington State Department of Ecology Name: Washington State Department of Ecology Place: Lacey, Washington Zip: 98503 References:...

  7. Mexico National Institute of Ecology and Climate Change (INECC...

    Open Energy Info (EERE)

    Institute of Ecology and Climate Change (INECC) Jump to: navigation, search Logo: Mexico National Institute of Ecology Name: Mexico National Institute of Ecology Address:...

  8. Permafrost soils and carbon cycling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ping, C. L.; Jastrow, J. D.; Jorgenson, M. T.; Michaelson, G. J.; Shur, Y. L.

    2014-10-30

    Knowledge of soils in the permafrost region has advanced immensely in recent decades, despite the remoteness and inaccessibility of most of the region and the sampling limitations posed by the severe environment. These efforts significantly increased estimates of the amount of organic carbon (OC) stored in permafrost-region soils and improved understanding of how pedogenic processes unique to permafrost environments built enormous OC stocks during the Quaternary. This knowledge has also called attention to the importance of permafrost-affected soils to the global C cycle and the potential vulnerability of the region's soil OC stocks to changing climatic conditions. In this review,more » we briefly introduce the permafrost characteristics, ice structures, and cryopedogenic processes that shape the development of permafrost-affected soils and discuss their effects on soil structures and on organic matter distributions within the soil profile. We then examine the quantity of OC stored in permafrost-region soils, as well as the characteristics, intrinsic decomposability, and potential vulnerability of this OC to permafrost thaw under a warming climate.« less

  9. Kimberly Andrews | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Andrews with kingsnake Curriculum Vitae Faculty & Scientists SREL Home SREL Herpetology Kimberly Andrews Savannah River Ecology Laboratory P O Drawer E, Aiken, SC 29802 (803) 725-9793 office (803) 725-3309 fax andrews(at)srel.uga.edu Kimberly received her PhD in Ecology (2010) from the University of Georgia’s Odum School of Ecology through work at the Savannah River Ecology Laboratory (UGA SREL) under the advisement of Dr. Whit Gibbons. Kimberly also holds an M.S. in Conservation Ecology

  10. Soil Series

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Soil Series and Phase D Bae D Da rn Fa D FuB D LuB ~ 09 _ Pk _ TrB _ TuE DUo _ vee D VeD o o * '='1 ~*.1* **..oC'" ~) OJ rI.:) o.Q 600 1200 Soils n O~:-* ilL 10., 1800 O~ c? ~ 0 ~ O~ Community _ Loblolly Pine D Mixed Pine/Hardwood o Upland Hardwood D Bottomland Hardwood _ Water a Bottomland HardwoodlPine o Monitoringwells .._.' *** TES Plants (1) :l!.-.~I ... 0 TES Plants (2) :='.Y-r::.: ~ Streams ){" ~ Rails . :1'\;:'/ Utility ROW ""If WasteSItes III NPDES outfalls CZI

  11. Role of basic ecological knowledge in environmental assessment

    SciTech Connect (OSTI)

    Hildebrand, S.G.; Barnthouse, L.W.; Suter, G.W.

    1984-01-01

    The role of basic ecological knowledge in environmental impact assessment was examined. The focus was primarily on the NEPA process. Experience in population biology and ecosystem studies is discussed, the successes and limits of applicability are highlighted, and implications for long-term research needs are identified. Current attempts to develop a national assessment of acid deposition impacts are reviewed. 48 refs. (ACR)

  12. The Use of Ecological Restoration Principles To Achieve Remedy Protection At the Fernald Preserve and Weldon Spring Sites

    SciTech Connect (OSTI)

    Powell, J.; Johnston, F.; Homer, J.; Deyo, Y.

    2008-07-01

    At both the Fernald Preserve and the Weldon Spring Site, the development of ecological restoration goals and objectives was used to complement and even enhance achievement of selected remedies. Warm-season native grasses and forbs were used for revegetation of remediated areas. The hardiness and ability to establish in low-nutrient conditions make native grasses ideal candidates for reestablishment of vegetation in excavated areas. At the Fernald Preserve, native grasses were used for vegetative cover on an on-site disposal facility as well. Also at the Fernald Preserve, excavation footprints were optimized to increase the quantity and quality of created wetlands. Drainage features in a couple instances provide passive groundwater recharge, potentially accelerating groundwater remediation efforts. In addition, a number of clean materials and structures were beneficially reused as part of ecological restoration designs, including wood-chip mulch and woody debris, clean concrete, and a rail trestle. At the Weldon Spring Site, several methods were used to control erosion for three years after the initial seeding of native species. A field evaluation of soil conditions and general species diversity was performed in 2007 and it was determined that erosion at the site was typical and repairing naturally. These approaches resulted in 'win-win' strategies needed to successfully remediate and restore complex projects such as the Fernald Preserve and Weldon Spring. (authors)

  13. Ecological

    Office of Legacy Management (LM)

    - Consequences of Nuclear Testing Amcl~itka isln,zd has a Iristory of disturbnnce by nroder~r matt, i,rclr~ding US. military operatio~ts on the isla~rd drrring Il'orld ll'nr % n~rterlnthrg the a~tder.qou~rd nuclear tests Nilrow nrrd Cannikin, for which preparation begntr in 1966. nlarry of the. terrestrial distarbnrrces resttlti,tg from ,taclear testing were superimposed o n scars remai~tirrg from the nrilitnry occt~pntiotz. Constrriction, road hirprouement, and the hlilrow an(/ Cnrrnikbt

  14. Uranium soils integrated demonstration: Soil characterization project report

    SciTech Connect (OSTI)

    Cunnane, J.C.; Gill, V.R.; Lee, S.Y.; Morris, D.E.; Nickelson, M.D.; Perry, D.L.; Tidwell, V.C.

    1993-08-01

    An Integrated Demonstration Program, hosted by the Fernald Environmental Management Project (FEMP), has been established for investigating technologies applicable to the characterization and remediation of soils contaminated with uranium. Critical to the design of relevant treatment technologies is detailed information on the chemical and physical characteristics of the uranium waste-form. To address this need a soil sampling and characterization program was initiated which makes use of a variety of standard analytical techniques coupled with state-of-the-art microscopy and spectroscopy techniques. Sample representativeness is evaluated through the development of conceptual models in an effort to identify and understand those geochemical processes governing the behavior of uranium in FEMP soils. Many of the initial results have significant implications for the design of soil treatment technologies for application at the FEMP.

  15. Educational Materials | Savannah River Ecology Laboratory Environmental

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Outreach Program Educational Materials southern hognose snake Ecology Fact Sheets Ready-to-use information on a variety of ecological topics alligator Ecoviews Dr. Whit Gibbons' weekly ecological commentaries Savannah River Site National Environmental Research Park Research Snapshots Information on a variety of research conducted at SREL cottonmouth Wildlife Safety • How to be safe around snakes • How to be safe around alligators

  16. Women & the Department of Ecology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 6, 2013 Hanford Permit Update  Working with EPA Region 10 and Ecology's Hazardous Waste and Toxics Reduction Program on technical evaluation, regulatory interpretation and statewide consistency for the draft permit.  Many of the discussion topics resulted from the public comments that we received during the public comment period. 'New' Ecology Director  Maia Bellon was appointed as Ecology director in mid-February (just days before the announcement of 6 leaking tanks).  Maia has

  17. I. Lehr Brisbin | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brisbin Faculty & Scientists SREL Home I. Lehr Brisbin Savannah River Ecology Laboratory P O Drawer E, Aiken, SC 29802 (803) 725-5668 office (803) 725-3309 fax brisbin(at)uga.edu Research interests: Vertebrate ecology, radioecology, ecotoxicology, and animal behavior, particularly that related to canine olfaction. Current research is investigating ecological cycling processes; analyses of sigmoid curves and their application to studies of contaminant cycling and growth processes; biology of

  18. Larry Bryan | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bryan Curriculum Vitae Faculty & Scientists SREL Home Larry Bryan Savannah River Ecology Laboratory P O Drawer E, Aiken, SC 29802 (803) 725-2907 office (803) 725-3309 fax lbryan(at)srel.uga.edu Research interests: Vertebrate ecology, habitat use, potential threats from contamination, rare species conservation. Current Research: Mycteria americana (endangered wood stork) Tracking large-scale movements via satellite telemetry Foraging ecology, behavior, and trophic position Breeding success

  19. Soils | Open Energy Information

    Open Energy Info (EERE)

    Soils Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleSoils&oldid612253" Feedback Contact needs updating Image needs updating Reference...

  20. Erin Abernethy | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Erin Abernethy SREL Graduate Program Odum School of Ecology Erin Abernethy Masters Student Rhodes Lab Erin joined the Savannah River Ecology Lab in January 2013 as a Master’s student with Dr. Gene Rhodes through the Odum School of Ecology at the University of Georgia. Erin grew up in Aiken, SC, and is currently attending classes in Athens, Ga. She will be studying the scavenging ecology of invasive species in Hawai’i, as well as doing field and lab work at SREL. Before joining SREL, Erin lived

  1. Educational Materials | Savannah River Ecology Laboratory Environmenta...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Snapshots The Savannah River Site National Environmental Research Park The History of Radioecology Research at the Savannah River Ecology Laboratory Gray Foxes of the ...

  2. New Ecology Inc | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: New Ecology Inc Address: 130 Bishop Allen Drive Place: Cambridge, Massachusetts Zip: 02139 Region: Greater Boston Area Sector: Buildings Product:...

  3. Beasley Lab | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Sarah Webster returned to Belarus along with Cara Love to recover wolf GPS transmitters ... with Tom Hinton to conduct research on wolf spatial ecology and carnivore population ...

  4. Rich Biemiller | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    more effectively and efficiently. His primary research interests include aquatic invertebrate ecology, stream disturbance assessment and restoration, and headwater stream hydrology...

  5. STATE OF WASHINGTON DEPARTMENT OF ECOLOGY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    " "'- STATE OF WASHINGTON DEPARTMENT OF ECOLOGY p.o. Box 47600 .Olympja, Washington 98504-7600 (360) 4076000 .TOD Only (Hearing Impaired) (360) 407-6006 ,'""""" .w.--.- ...

  6. Ecology Environment Inc | Open Energy Information

    Open Energy Info (EERE)

    Environment Inc Jump to: navigation, search Name: Ecology & Environment, Inc. Place: Seattle, Washington Zip: 98104 Product: Environmental consulting firm serving corporate and...

  7. Melissa Pilgrim | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    variation impact population level processes. Her research program integrates field ecology, biogeochemistry (e.g., stable isotopes), and ecophysiology. She uses herpetological...

  8. Rebecca Sharitz | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Faculty & Scientists SREL Home UGA Plant Biology Rebecca Sharitz Savannah River Ecology ... We are also conducting studies on the population biology and conservation of rare plants, ...

  9. Thomas G. Hinton | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    human and ecological risk analyses; remediation of radioactively contaminated wetlands; contaminant transport models; the use of radioactive tracers as a tool for...

  10. Michael E. Dorcas | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    as coauthors. He is involved in numerous research projects including studies of invasive Burmese pythons in Florida and the ecology and conservation of diamondback terrapins...

  11. EA-1964: National Ecological Observation Network (NEON)

    Broader source: Energy.gov [DOE]

    The National Science Foundation (NSF) prepared an EA that evaluated potential environmental impacts of the proposed National Ecological Observation Network (NEON), a continental-scale network of...

  12. Thermal properties of soils and soils testing

    SciTech Connect (OSTI)

    Not Available

    1981-02-17

    The thermal properties of soils are reviewed with reference to the use of soils as heat sources, heat sinks, or thermal storage. Specific heat and thermal conductivity are discussed. (ACR)

  13. Packaging and distributing ecological data from multisite studies

    SciTech Connect (OSTI)

    Olson, R.J.; Voorhees, L.D.; Field, J.M.; Gentry, M.J.

    1996-10-01

    Studies of global change and other regional issues depend on ecological data collected at multiple study areas or sites. An information system model is proposed for compiling diverse data from dispersed sources so that the data are consistent, complete, and readily available. The model includes investigators who collect and analyze field measurements, science teams that synthesize data, a project information system that collates data, a data archive center that distributes data to secondary users, and a master data directory that provides broader searching opportunities. Special attention to format consistency is required, such as units of measure, spatial coordinates, dates, and notation for missing values. Often data may need to be enhanced by estimating missing values, aggregating to common temporal units, or adding other related data such as climatic and soils data. Full documentation, an efficient data distribution mechanism, and an equitable way to acknowledge the original source of data are also required.

  14. Environmental audit of the Savannah River Ecology Laboratory (SREL)

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    This report documents the results of the environmental audit conducted at the Savannah River Ecology Laboratory (SREL) at the Savannah River Site (SRS), principally in Aiken and Barnwell Counties, South Carolina. The audit was conducted by the US Department of Energy`s (DOE`s), Office of Environmental Audit (EH-24), beginning September 13, 1993, and ending September 23, 1993. The scope of the audit at SREL was comprehensive, addressing environmental activities in the technical areas of air; surface water/drinking water; groundwater/soil, sediment, and biota; waste management; toxic and chemical materials; inactive Waste sites; radiation; quality assurance; and environmental management. Specifically assessed was the compliance of SREL operations and activities with Federal, state, and local regulations; DOE Orders; and best management practices.

  15. What is microbial community ecology?

    SciTech Connect (OSTI)

    Konopka, Allan

    2009-11-11

    The activities of complex communities of microbes affect biogeochemical transformations in natural, managed and engineered ecosystems. Meaningfully defining what constitutes a community of interacting microbial populations is not trivial, but is important for rigorous progress in the field. Important elements of research in microbial community ecology include the analysis of functional pathways for nutrient resource and energy flows, mechanistic understanding of interactions between microbial populations and their environment, and the emergent properties of the complex community. Some emergent properties mirror those analyzed by community ecologists who study plants and animals: biological diversity, functional redundancy and system stability. However, because microbes possess mechanisms for the horizontal transfer of genetic information, the metagenome may also be considered a community property.

  16. Environmental Resources of Selected Areas of Hawaii: Ecological Resources (DRAFT)

    SciTech Connect (OSTI)

    Trettin, C.C.; Tolbert, V.R.; Jones, A.T.; Smith, C.R.; Kalmijn, A.J.

    1994-06-01

    This report has been prepared to make available and archive the background scientific data and related information collected on ecological resources during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The U.S. Department of Energy (COE) published a notice in the Federal Register on May 17, 1994 (Fed. Regist. 5925638) withdrawing its Notice of Intent (Fed. Regst. 575433) of February 14, 1992, to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. The background scientific data and related information presented in this report focus on several areas of Hawaii County, including the southeastern coast, a potential development corridor along the Saddle Road between Hilo and the North Kohala District on the northwestern coast, and on the southeastern coast of Maui. In this report, reference is made to these areas as study areas rather than as areas where proposed or alternative facilities of the HGP would be located. The resource areas addressed herein include terrestrial ecology, aquatic ecology, and marine ecology. The scientific background data and related information is being made available for future research in these areas. This report describes the environmental resources present in the areas studied (i.e., the affected environment) and does not represent an assessment of environmental impacts.

  17. Hydrological, geochemical, and ecological characterization of Kesterson Reservoir

    SciTech Connect (OSTI)

    Not Available

    1990-06-01

    This report describes Kesterson Reservoir related research activities carried out under a cooperative program between Lawrence Berkeley Laboratory and the Division of Agriculture and Natural Resources at the University of California during FY89. The primary objectives of these investigations are: Predict the extent, probability of the occurrence, and selenium concentrations in surface water of temporary wetland habitat at Kesterson; assess rates and direction of migration of the drainage water plume that seeped into the aquifer under Kesterson; monitor and predict changes in quantity and speciation of selenium in surface soils and vadose zone pore-waters; and develop a comprehensive strategy through soil, water, and vegetation management to safely dissipate the high concentrations of selenium accumulated in Kesterson soils. This report provides an up-date on progress made in each of these areas. Chapter 2 describes results of recent investigations of water table fluctuations and plume migration. Chapter 3 describes results of ongoing monitoring of soil water selenium concentrations and evaporative accumulation of selenium at the soil surface. Chapter 4 describes early results from the soil, water, and vegetation management field trials as well as supporting laboratory and theoretical studies. In Chapter 5, new analytical methods for selenium speciation are described and quality assurance/quality control statistics for selenium and boron are provided. 110 refs., 138 figs., 62 tabs.

  18. Assessing ecological risks within a highly industrialized estuary

    SciTech Connect (OSTI)

    Bonnevie, N.L.; Iannuzzi, T.J.; Harman, C.H.

    1995-12-31

    Ecological assessment (EA) was conducted for a landfill located along an industrialized river within the NY/NJ Harbor Estuary. This estuary has been subjected to intense industrial and urban development throughout the past two centuries, resulting in alterations to the Site and regional ecology. For these reasons, consideration was given to the local and regional setting, and the relatively low quantity and degraded quality of habitats that exist in proximity to the Site. The EA focused on two ecological receptor groups: (1) aquatic receptors (i.e., benthic invertebrates and small forage fish) exposed primarily through direct contact with sediments and surface water; and (2) piscivorous species (i.e., great blue heron) for whom exposure is the result of trophic transfer through dietary intakes. Estimates of accumulation in prey species of the great blue heron were derived using a simplified food web model to predict trophic transfer. The primary chemicals of potential ecological concern (COPEC) included arsenic, selenium, mercury, as well as PCBs. Based on the results of this assessment, risk to piscivorous wildlife are very low; derived hazard quotients (HQ) were below one for all COPEC. HQ greater than one were observed for direct exposures to aquatic receptors, however, the HQ determined for exposures at the Site were generally within the range of those reported for sediments and surface waters throughout the NY/NJ Harbor Estuary. In addition, numerous non-chemical stressors were identified that likely significantly affect the health and abundance of aquatic organisms. For these reasons, the Site was determined not to contribute an increased risk to ecological receptors above a regional level.

  19. The development and testing of technologies for the remediation of mercury-contaminated soils, Task 7.52. Topical report, December 1992--December 1993

    SciTech Connect (OSTI)

    Stepan, D.J.; Fraley, R.H.; Charlton, D.S.

    1994-02-01

    The release of elemental mercury into the environment from manometers that are used in the measurement of natural gas flow through pipelines has created a potentially serious problem for the gas industry. Regulations, particularly the Land Disposal Restrictions (LDR), have had a major impact on gas companies dealing with mercury-contaminated soils. After the May 8, 1993, LDR deadline extension, gas companies were required to treat mercury-contaminated soils by designated methods to specified levels prior to disposal in landfills. In addition, gas companies must comply with various state regulations that are often more stringent than the LDR. The gas industry is concerned that the LDRs do not allow enough viable options for dealing with their mercury-related problems. The US Environmental Protection Agency has specified the Best Demonstrated Available Technology (BDAT) as thermal roasting or retorting. However, the Agency recognizes that treatment of certain wastes to the LDR standards may not always be achievable and that the BDAT used to set the standard may be inappropriate. Therefore, a Treatability Variance Process for remedial actions was established (40 Code of Federal Regulations 268.44) for the evaluation of alternative remedial technologies. This report presents evaluations of demonstrations for three different remedial technologies: a pilot-scale portable thermal treatment process, a pilot-scale physical separation process in conjunction with chemical leaching, and a bench-scale chemical leaching process.

  20. Radio-Ecological Situation in the Area of the Priargun Production Mining and Chemical Association - 13522

    SciTech Connect (OSTI)

    Semenova, M.P.; Seregin, V.A.; Kiselev, S.M.; Titov, A.V.; Zhuravleva, L.A.; Marenny, A.M.

    2013-07-01

    'The Priargun Production Mining and Chemical Association' (hereinafter referred to as PPMCA) is a diversified mining company which, in addition to underground mining of uranium ore, carries out refining of such ores in hydrometallurgical process to produce natural uranium oxide. The PPMCA facilities are sources of radiation and chemical contamination of the environment in the areas of their location. In order to establish the strategy and develop criteria for the site remediation, independent radiation hygienic monitoring is being carried out over some years. In particular, this monitoring includes determination of concentration of the main dose-forming nuclides in the environmental media. The subjects of research include: soil, grass and local foodstuff (milk and potato), as well as media of open ponds (water, bottom sediments, water vegetation). We also measured the radon activity concentration inside surface workshops and auxiliaries. We determined the specific activity of the following natural radionuclides: U-238, Th-232, K-40, Ra-226. The researches performed showed that in soil, vegetation, groundwater and local foods sampled in the vicinity of the uranium mines, there is a significant excess of {sup 226}Ra and {sup 232}Th content compared to areas outside the zone of influence of uranium mining. The ecological and hygienic situation is as follows: - at health protection zone (HPZ) gamma dose rate outdoors varies within 0.11 to 5.4 μSv/h (The mean value in the reference (background) settlement (Soktui-Molozan village) is 0.14 μSv/h); - gamma dose rate in workshops within HPZ varies over the range 0.14 - 4.3 μSv/h. - the specific activity of natural radionuclides in soil at HPZ reaches 12800 Bq/kg and 510 Bq/kg for Ra-226 and Th-232, respectively. - beyond HPZ the elevated values for {sup 226}Ra have been registered near Lantsovo Lake - 430 Bq/kg; - the radon activity concentration in workshops within HPZ varies over the range 22 - 10800 Bq/m{sup 3}. The

  1. The Center for Architecture, Science, and Ecology (CASE) | Open...

    Open Energy Info (EERE)

    Architecture, Science, and Ecology (CASE) Jump to: navigation, search Name: The Center for Architecture, Science, and Ecology Address: 14 Wall Street 24th Floor New York, NY 10005...

  2. Women & the Department of Ecology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    November 1, 2012 Agency Update Hanford Advisory Board Permit path forward Current status  Comment period closed October 22  Ecology working on comment responses Next steps  Permit will be revised, as needed  Ecology will send letter to DOE  Final permit to be issued 30 days later HAB advice  The Board's advice has been incorporated into permit comments  Ecology will respond to advice in the comment response document and in a separate letter to the Board when the

  3. Women & the Department of Ecology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 7, 2013 Agency Update Hanford Advisory Board Hanford Permit update Comments  Ecology received nearly 5,000 comments on the permit during last year's comment period (May 1-October 22). o Public comments: ~1,800 o DOE comments: ~3,000  Ecology staff working on comment responses. Next steps  Ecology estimates about a 2-year effort to: o Modify the permit to address substantial comments and issues. o Reissue draft permit with substantive changes & respond to initial

  4. Enhanced Cover Assessment Project:Soil Manipulation and Revegetation Tests

    SciTech Connect (OSTI)

    Waugh, W. Joseph; Albright, Dr. Bill; Benson, Dr. Craig

    2014-02-01

    The U.S. Department of Energy Office of Legacy Management is evaluating methods to enhance natural changes that are essentially converting conventional disposal cell covers for uranium mill tailings into water balance covers. Conventional covers rely on a layer of compacted clayey soil to limit exhalation of radon gas and percolation of rainwater. Water balance covers rely on a less compacted soil “sponge” to store rainwater, and on soil evaporation and plant transpiration (evapotranspiration) to remove stored water and thereby limit percolation. Over time, natural soil-forming and ecological processes are changing conventional covers by increasing hydraulic conductivity, loosening compaction, and increasing evapotranspiration. The rock armor on conventional covers creates a favorable habitat for vegetation by slowing soil evaporation, increasing soil water storage, and trapping dust and organic matter, thereby providing the water and nutrients needed for plant germination, survival, and sustainable transpiration. Goals and Objectives Our overall goal is to determine if allowing or enhancing these natural changes could improve cover performance and reduce maintenance costs over the long term. This test pad study focuses on cover soil hydrology and ecology. Companion studies are evaluating effects of natural and enhanced changes in covers on radon attenuation, erosion, and biointrusion. We constructed a test cover at the Grand Junction disposal site to evaluate soil manipulation and revegetation methods. The engineering design, construction, and properties of the test cover match the upper three layers of the nearby disposal cell cover: a 1-foot armoring of rock riprap, a 6-inch bedding layer of coarse sand and gravel, and a 2-foot protection layer of compacted fine soil. The test cover does not have a radon barrier—cover enhancement tests leave the radon barrier intact. We tested furrowing and ripping as means for creating depressions parallel to the slope

  5. Nitric oxide emissions from engineered soil systems

    SciTech Connect (OSTI)

    Peirce, J.J.; Aneja, V.P.

    2000-03-01

    Sophisticated laboratory equipment and procedures are developed and used in controlled experiments to measure nitric oxide (NO) emissions ranging from 42 to 75 ng N/m{sup 2}{center_dot}s from sludge-amended soil of concern to environmental engineers because nitric oxide emitted to the troposphere is a precursor to troublesome ozone formation and also of concern to agricultural engineers because valuable nitrogen as fertilizer is lost from the soil. Water-filled pore space is confirmed to be of critical importance to NO flux, and the upper layers of soil are determined to contribute the larger portion of the NO fluxing from the soil to the troposphere. More than 42% of the total NO flux comes from the top 1 cm of soil, with NO contributions decreasing exponentially with soil depth and very little if any tropospheric NO contributed from soil at a depth of 20 cm or greater. The results are discussed in terms of microbiological, chemical, and soil transport processes that influence NO flux from sludge-amended soil.

  6. Soil washing technology evaluation

    SciTech Connect (OSTI)

    Suer, A.

    1995-04-01

    Environmental Restoration Engineering (ERE) continues to review innovative, efficient, and cost effective technologies for SRS soil and/or groundwater remediation. As part of this effort, this technical evaluation provides review and the latest information on the technology for SRS soil remediation. Additional technology evaluation reports will be issued periodically to update these reports. The purpose of this report is to review the soil washing technology and its potential application to SRS soil remediation. To assess whether the Soil Washing technology is a viable option for SRS soil remediation, it is necessary to review the technology/process, technology advantages/limitations, performance, applications, and cost analysis.

  7. Soil Separator and Sampler and Method of Sampling - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Soil Separator and Sampler and Method of Sampling Fluidized Bed system Idaho National Laboratory Contact INL About This Technology Technology Marketing Summary INL has developed a method for sampling soil to determine the presence of extremely fine particles such as asbestos. Description The apparatus uses a fluidized bed for receiving a soil sample, which is connected to a vacuum for drawing air through the bed and suspends particulate matter of the soil sample in the air, and draws

  8. Industrial ecology: A basis for sustainable relations and cooperation

    SciTech Connect (OSTI)

    Blades, K.

    1996-07-19

    The Commission for Environmental Cooperation (CEC) seeks to address, in a cooperative manner, the environmental issues affecting the North American region and understand the linkages between environment and economy. Broadly, the goal of the CEC can be thought of as an attempt to achieve a sustainable economy concomitantly with continued economic, cultural, and technological evolution. The emerging field of industrial ecology provides a useful means for balancing the environmental and economical objectives of NAFTA. As NAFTA stimulates economic cooperation and growth, we must collectively develop mechanisms that enhance the environmental quality of the region. LLNL`s effort in industrial ecology provides the scientific basis and innovative use of technology to reconcile environmental and economic concerns. Nevertheless, these are not issues which can be resolved by a single institution. Efficient use of the linkages established by NAFTA is necessary to nurture our regional partnership which forms the basis for a sustainable environment, economy and relationship.

  9. Robert A. Kennamer | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Curriculum Vitae Faculty & Scientists SREL Home Robert A. Kennamer Savannah River Ecology Laboratory P O Drawer E, Aiken, SC 29802 (803) 725-0387 office (803) 725-3309 fax...

  10. Stacey Lance | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lance Faculty & Scientists SREL Home Stacey Lance Savannah River Ecology Laboratory P O Drawer E, Aiken, SC 29802 (803) 725-0988 office (803) 725-3309 fax lance(at)srel.uga.edu...

  11. Peter Stangel | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Senior Vice President, U.S. Endowment for Forestry and Communities co Savannah River Ecology Laboratory P O Drawer E, Aiken, SC 29802 (404)-915-2763 (803) 725-8158...

  12. Tracey Tuberville | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Faculty & Scientists SREL Home SREL Herpetology Tracey D. Tuberville Savannah River Ecology Laboratory P O Drawer E, Aiken, SC 29802 (803) 725-5757office (803) 725-3309 fax...

  13. David E. Scott | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scott Curriculum Vitae Faculty & Scientists SREL Home David E. Scott Savannah River Ecology Laboratory P O Drawer E, Aiken, SC 29802 (803) 725-5747 office (803) 725-3309 fax...

  14. Rebecca Sharitz: Teaching | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Teaching book cover I co-teach a graduate course in wetlands ecology (PBIO 8150) with Dr. Darold Batzer of the UGA Department of Entomology. The course objective is to describe...

  15. Forest Productivity and Diversity: Using Ecological Theory and Landscape Models to Guide Sustainable Forest Management

    SciTech Connect (OSTI)

    Huston, M.A.

    1998-11-01

    Sustainable forest management requires maintaining or increasing ecosystem productivity, while preserving or restoring natural levels of biodiversity. Application of general concepts from ecological theory, along with use of mechanistic, landscape-based computer models, can contribute to the successful achievement of both of these objectives. Ecological theories based on the energetics and dynamics of populations can be used to predict the general distribution of individual species, the diversity of different types of species, ecosystem process rates and pool sizes, and patterns of spatial and temporal heterogeneity over a broad range of environmental conditions. This approach requires subdivision of total biodiversity into functional types of organisms, primarily because different types of organisms respond very differently to the spatial and temporal variation of environmental conditions on landscapes. The diversity of species of the same functional type (particularly among plants) tends to be highest at relatively low levels of net primary productivity, while the total number of different functional types (particularly among animals) tends to be highest at high levels of productivity (e.g., site index or potential net primary productivity). In general, the diversity of animals at higher trophic levels (e.g., predators) reaches its maximum at much higher levels of productivity than the diversity of lower trophic levels (e.g., plants). This means that a single environment cannot support high diversity of all types of organisms. Within the framework of the general patterns described above, the distributions, population dynamics, and diversity of organisms in specific regions can be predicted more precisely using a combination of computer simulation models and GIS data based on satellite information and ground surveys. Biophysical models that use information on soil properties, climate, and hydrology have been developed to predict how the abundance and spatial

  16. Lasagna{trademark} soil remediation

    SciTech Connect (OSTI)

    1996-04-01

    Lasagna{trademark} is an integrated, in situ remediation technology being developed which remediates soils and soil pore water contaminated with soluble organic compounds. Lasagna{trademark} is especially suited to sites with low permeability soils where electroosmosis can move water faster and more uniformly than hydraulic methods, with very low power consumption. The process uses electrokinetics to move contaminants in soil pore water into treatment zones where the contaminants can be captured and decomposed. Initial focus is on trichloroethylene (TCE), a major contaminant at many DOE and industrial sites. Both vertical and horizontal configurations have been conceptualized, but fieldwork to date is more advanced for the vertical configuration. Major features of the technology are electrodes energized by direct current, which causes water and soluble contaminants to move into or through the treatment layers and also heats the soil; treatment zones containing reagents that decompose the soluble organic contaminants or adsorb contaminants for immobilization or subsequent removal and disposal; and a water management system that recycles the water that accumulates at the cathode (high pH) back to the anode (low pH) for acid-base neutralization. Alternatively, electrode polarity can be reversed periodically to reverse electroosmotic flow and neutralize pH.

  17. Women & the Department of Ecology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 6, 2014 Agency Update Hanford Advisory Board Key News Since Last HAB Meeting * Ecology letter on AY-102 pumping plan * Revised plan expected March 7 * Gov/AG letter requests new proposal on CD * Meeting possible later this month w/Governor & Moniz Key News cont. * Ecology, DOE finalize Agreed Order on CWC/WRAP * Annual TPA Public Involvement Survey conducted * More than 160 responses collected (new record!) Education & Outreach * Hanford email listserv keeps growing! * Subscribers

  18. J. Whitfield Gibbons | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gibbons Curriculum Vitae Faculty & Scientists SREL Home SREL Herpetology J. Whitfield Gibbons Savannah River Ecology Laboratory P O Drawer E, Aiken, SC 29802 (803) 725-5852 / 725-5733 office (803) 725-3309 fax wgibbons(at)uga.edu My research interests focus on the population dynamics and ecology of aquatic and semiaquatic vertebrates and have involved detailed population studies of fish, amphibians, and reptiles, particularly turtles. One objective has been to determine functional

  19. James Beasley | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beasley Curriculum Vitae Faculty & Scientists SREL Home James Beasley Savannah River Ecology Laboratory P O Drawer E, Aiken, SC 29802 (803) 725-5113 office (803) 725-3309 fax beasley(at)srel.uga.edu My research interests address both theoretical and applied questions in wildlife ecology and management. Within this framework, my research focuses on understanding the effects of habitat fragmentation and anthropogenic land use on the movement behavior, interspecific interactions, and population

  20. Judith L. Greene | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Greene Curriculum Vitae Faculty & Scientists SREL Home SREL Herpetology Judith L. Greene Savannah River Ecology Laboratory P O Drawer E, Aiken, SC 29802 (803) 725-7637 office (803) 725-3309 fax jgreene(at)srel.uga.edu My research interests include the population dynamics and ecology and of reptiles and amphibians, particularly turtles. Objectives have included documenting the distribution and abundance patterns of herpetofauna and relating this to conservation issues for herps , as well as

  1. Justin D. Congdon | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Congdon Curriculum Vitae Faculty & Scientists SREL Home SREL Herpetology Justin D. Congdon Savannah River Ecology Laboratory P O Drawer E, Aiken, SC 29802 (803) 725-5341 office (803) 725-3309 fax congdon(at)srel.uga.edu Justin Congdon is a Professor Emeritus at University of Georgia. For many years preceeding 2002 he was a senior research scientist at the Savannah River Ecology Laboratory and still participates in many of the studies being conducted at SREL. Justin earned an associate's

  2. Kurt Buhlmann | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Buhlmann Curriculum Vitae Faculty & Scientists SREL Home SREL Herpetology Kurt A. Buhlmann Savannah River Ecology Laboratory P O Drawer E, Aiken, SC 29802 (803) 725-5293 office (803) 725-3309 fax buhlmann(at)uga.edu Research interests: A major focus of my research has been the life history and evolutionary ecology of amphibians and reptiles, primarily chelonians, with application to conservation and habitat management. Past research has included evaluation of terrestrial habitat requirements

  3. Faculty and Scientists | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Faculty photo of Rhodes RHODES, Olin E. Jr. (Gene) Director, SREL Wildlife ecology and genetics, including the application of genetic tools to issues in wildlife management and conservation; disease ecology; molecular genetics as a tool for examining wildlife behavior and population structure; sustainability of wildlife species in human-dominated landscapes and resolution of human-wildlife conflicts photo of Seaman SEAMAN, John Assistant Director, SREL Research Professor of Biogeochemistry, UGA

  4. Beasley Lab | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Graduate Students EJ with sedated bobcat EJ Borchert is a Masters student in the Warnell School of Forestry and Natural Resources at the University of Georgia. His research interests include furbearer ecology and management, landscape ecology, ecotoxicology, wildlife habitat relationships, and wildlife health. He graduated from the SUNY College of Environmental Science and Forestry (SUNY-ESF) in 2013 with a B.S. in Conservation Biology. Before coming to SREL, he worked on projects focusing on

  5. Data management system for organic soil

    SciTech Connect (OSTI)

    Stinnette, P.

    1999-07-01

    A Data Management System for Organic Soil (DMSOS) has been developed that enables the acquisition, management and analysis of organic soil data as well as the presentation of results to be conducted effectively through a common interface. This development was in response to the data management needs of research investigating the engineering properties of organic soil and its extension to the stabilization of organic soil through dynamic replacement (DR). It is shown how the above functions are implemented efficiently using Windows-based software to perform comprehensive data management and analysis of data gathered from both laboratory and field tests. When the engineering properties of a given organic soil deposit are needed, a build-in Computer Advisor for Organic Soil Projects (CAOSP) predicts the properties from DMSOS based correlations. A unique and useful feature of the CAOSP is its ability to estimate the anticipated ultimate settlement of an organic soil deposit given the loading conditions and the moisture or organic content. Also incorporated in the DMSOS is a quality control system that utilizes computerized data acquisition/data management techniques in order to evaluate the degree of improvement of an organic soil layer at a given stage of treatment using DR.

  6. ARM - Campaign Instrument - soil

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Soil Measurement from the SGP (SOIL) Instrument Categories SurfaceSubsurface Properties Campaigns ...

  7. ARM - Instrument - soil

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Soil Measurement from the SGP (SOIL) Instrument Categories SurfaceSubsurface ...

  8. ARM - Measurement - Soil moisture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    moisture ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Soil moisture The moisture of the soil measured near the surface. This includes soil wetness and soil water potential. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available

  9. ARM - Datastreams - soil

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamssoil Documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : SOIL ABLE: soil temperature, moisture, heat flow, 30-min avg Active Dates 1999.05.23 - 2004.04.01 Originating Instrument Soil Measurement from the SGP (SOIL) Measurements The measurements below provided by this product are those considered scientifically relevant. Measurement Variable Locations Southern

  10. Rocky Flats Environmental Technology Site Ecological Monitoring Program 1995 annual report

    SciTech Connect (OSTI)

    1995-05-31

    The Ecological Monitoring Program (ECMP) was established at the Rocky Flats Environmental Technology Site (Site) in September 1992. At that time, EcMP staff developed a Program Plan that was peer-reviewed by scientists from western universities before submittal to DOE RFFO in January 1993. The intent of the program is to measure several quantitative variables at different ecological scales in order to characterize the Rocky Flats ecosystem. This information is necessary to document ecological conditions at the Site in impacted and nonimpacted areas to determine if Site practices have had ecological impacts, either positive or negative. This information can be used by managers interested in future use scenarios and CERCLA activities. Others interested in impact analysis may also find the information useful. In addition, these measurements are entered into a database which will serve as a long-term information repository that will document long-term trends and potential future changes to the Site, both natural and anthropogenic.

  11. Ecological risk assessment guidance for preparation of remedial investigation/feasibility study work plans

    SciTech Connect (OSTI)

    Pentecost, E.D.; Vinikour, W.S.

    1993-08-01

    This guidance document (1) provides instructions on preparing the components of an ecological work plan to complement the overall site remedial assessment investigation/feasibility study (RI/FS) work plan and (2) directs the user on how to implement ecological tasks identified in the plan. Under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), as amended by the Superfired Amendments and Reauthorization Act of 1986 (SARA), an RI/FS work plan win have to be developed as part of the site-remediation scoping the process. Specific guidance on the RI/FS process and the preparation of work plans has been developed by the US Environmental Protection Agency (EPA 1988a). This document provides guidance to US Department of Energy (DOE) staff and contractor personnel for incorporation of ecological information into environmental remediation planning and decision making at CERCLA sites. An overview analysis of early ecological risk assessment methods (i.e., in the 1980s) at Superfund sites was conducted by the EPA (1989a). That review provided a perspective of attention given to ecological issues in some of the first RI/FS studies. By itself, that reference is of somewhat limited value; it does, however, establish a basis for comparison of past practices in ecological risk with current, more refined methods.

  12. Soil Sampling At Kilauea East Rift Geothermal Area (Cox, 1981...

    Open Energy Info (EERE)

    in the area. Mercury concentrations are dependent on factors such as soil development, ph., ground gasses, and organic content, so linking the measurements with geothermal...

  13. Project Profile: Advanced Anti-Soiling Coatings for CSP Collector...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Profile: Advanced Anti-Soiling Coatings for CSP Collector Mirrors and Heliostats ... the need to further develop self-cleaning reflector coatings for solar collectors. ...

  14. Ecological Characterization Data for the 2004 Composite Analysis

    SciTech Connect (OSTI)

    Downs, Janelle L.; Simmons, Mary A.; Stegen, Jennifer A.; Bunn, Amoret L.; Tiller, Brett L.; Thorsten, Susan L.; Zufelt, Rhett K.

    2004-11-01

    A composite analysis is required by U.S. Department of Energy (DOE) Order 435.1 to ensure public safety through the management of active and planned low-level radioactive waste disposal facilities associated with the Hanford Site. The original Hanford Site Composite Analysis of 1998 must be revised and submitted to DOE Headquarters (DOE-HQ) in 2004 because of revisions to waste site information in the 100, 200, and 300 Areas, updated performance assessments and environmental impact statements (EIS), changes in inventory estimates for key sites and constituents, and a change in the definition of offsite receptors. Beginning in fiscal year (FY) 2003, the DOE Richland Operations Office (DOE-RL) initiated activities, including the development of data packages, to support the 2004 Composite Analysis. This report describes the data compiled in FY 2003 to support ecological site assessment modeling for the 2004 Composite Analysis. This work was conducted as part of the Characterization of Systems Task of the Groundwater Remediation Project (formerly the Groundwater Protection Program) managed by Fluor Hanford, Inc., Richland, Washington. The purpose of this report is to provide summaries of the characterization information and available spatial data on the biological resources and ecological receptors found in the upland, riparian, aquatic, and island habitats on the Hanford Site. These data constitute the reference information used to establish parameters for the ecological risk assessment module of the System Assessment Capability and other assessment activities requiring information on the presence and distribution of biota on the Hanford Site.

  15. Savannah River Ecology Laboratory Annual Technical Progress Report of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ecological Research, June 30, 2001 (Technical Report) | SciTech Connect Savannah River Ecology Laboratory Annual Technical Progress Report of Ecological Research, June 30, 2001 Citation Details In-Document Search Title: Savannah River Ecology Laboratory Annual Technical Progress Report of Ecological Research, June 30, 2001 × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information

  16. Savannah River Ecology Laboratory Annual Technical Progress Report of Ecological Research, June 30, 2001

    SciTech Connect (OSTI)

    Bertsch, Paul M.; Janecek, Laura; Rosier, Brenda

    2001-06-30

    The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA) and has been conducting ecological research on the Savannah River Site (SRS) in South Carolina for 50 years. The overall mission of the Laboratory is to acquire and communicate knowledge of ecological processes and principles. SREL conducts fundamental and applied ecological research, as well as education and outreach programs, under a Cooperative Agreement with the U.S. Department of Energy (DOE) SRS near Aiken, South Carolina. The Laboratory's research mission during the 2001 fiscal year was fulfilled with the publication of one book and 83 journal articles and book chapters by faculty, technical staff, students, and visiting scientists. An additional 77 journal articles have been submitted or are in press. Other noteworthy events took place as faculty members and graduate students received awards. These are described in the section Special Accomplishments of Faculty, Staff, Students, and Administration on page 54. Notable scientific accomplishments include work conducted on contaminant transport, global reptile decline, phytoremediation, and radioecology. Dr. Domy Adriano authored the second edition of his book ''Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability, and Risks of Metals'', which was recently published by Springer-Verlag. The book provides a comprehensive treatment of many important aspects of trace elements in the environment. The first edition of the book, published in 1986, has become a widely acclaimed and cited reference. International attention was focused on the problem of reptile species decline with the publication of an article on this topic in the journal ''Bioscience'' in August, 2000. The article's authors included Dr. Whit Gibbons and a number of other SREL herpetologists who researched the growing worldwide problem of decline of reptile species. Factors related to these declines include habitat loss and

  17. Savannah River Ecology Laboratory annual technical progress report of ecological research for the year ending July 31, 1995

    SciTech Connect (OSTI)

    Smith, M.H.

    1995-07-01

    The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA). The overall mission of the Laboratory is to acquire and communicate knowledge of ecological processes and principles. SREL conducts basic and applied ecological research, as well as education and outreach programs, under a contract with the US Department of Energy (DOE) at the Savannah River Site near Aiken, South Carolina. Significant accomplishments were made during the past year in the areas of research, education and service. Major additions to SREL Facilities were completed that will enhance the Laboratory`s work in the future. Following several years of planning, opening ceremonies were held for the 5000 ft{sup 2} multi-purpose conference center that was funded by the University of Georgia Research Foundation (UGARF). The center is located on 68 acres of land that was provided by the US Department of Energy. This joint effort between DOE and UGARF supports DOE`s new initiative to develop partnerships with the private sector and universities. The facility is being used for scientific meetings and environmental education programs for students, teachers and the general public. A 6000 ft{sup 2} office and library addition to S@s main building officially opened this year, and construction plans are underway on a new animal care facility, laboratory addition, and receiving building.

  18. CONTAMINATED SOIL VOLUME ESTIMATE TRACKING METHODOLOGY

    SciTech Connect (OSTI)

    Durham, L.A.; Johnson, R.L.; Rieman, C.; Kenna, T.; Pilon, R.

    2003-02-27

    The U.S. Army Corps of Engineers (USACE) is conducting a cleanup of radiologically contaminated properties under the Formerly Utilized Sites Remedial Action Program (FUSRAP). The largest cost element for most of the FUSRAP sites is the transportation and disposal of contaminated soil. Project managers and engineers need an estimate of the volume of contaminated soil to determine project costs and schedule. Once excavation activities begin and additional remedial action data are collected, the actual quantity of contaminated soil often deviates from the original estimate, resulting in cost and schedule impacts to the project. The project costs and schedule need to be frequently updated by tracking the actual quantities of excavated soil and contaminated soil remaining during the life of a remedial action project. A soil volume estimate tracking methodology was developed to provide a mechanism for project managers and engineers to create better project controls of costs and schedule. For the FUSRAP Linde site, an estimate of the initial volume of in situ soil above the specified cleanup guidelines was calculated on the basis of discrete soil sample data and other relevant data using indicator geostatistical techniques combined with Bayesian analysis. During the remedial action, updated volume estimates of remaining in situ soils requiring excavation were calculated on a periodic basis. In addition to taking into account the volume of soil that had been excavated, the updated volume estimates incorporated both new gamma walkover surveys and discrete sample data collected as part of the remedial action. A civil survey company provided periodic estimates of actual in situ excavated soil volumes. By using the results from the civil survey of actual in situ volumes excavated and the updated estimate of the remaining volume of contaminated soil requiring excavation, the USACE Buffalo District was able to forecast and update project costs and schedule. The soil volume

  19. Linda Lee | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lee Faculty & Scientists SREL Home Linda Lee Savannah River Ecology Laboratory P O Drawer E, Aiken, SC 29802 (803) 725-5883 office (803) 725-3309 fax lee(at)srel.uga.edu I have a broad range of interests including wetland ecology, habitat management and restoration, and plant conservation. One of my current projects is evaluating the erosion control potential of native grassland vegetation against two commonly-used turf grasses. I am also working with Audubon South Carolina on a new

  20. Conference Center | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    UGA-SREL Conference Center front view UGA-SREL Conference Center large conference room Large conference room small conference room Small conference room The University of Georgia - Savannah River Ecology Laboratory Conference Center is a 5,000-square-foot multi-purpose facility located on the U.S. Department of Energy's Savannah River Site (SRS) near Aiken, S.C. The facility is used by the Savannah River Ecology Laboratory, the Department of Energy, schools, businesses, and other groups, to host

  1. Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incineration facility (East Liverpool, Ohio). Volume 6. Screening ecological risk assessment

    SciTech Connect (OSTI)

    1997-05-01

    The Screening Ecological Risk Assessment (SERA) includes an evaluation of available biotic information from the site vicinity to provide a preliminary description of potential ecological receptors (e.g., rare, threatened and endangered species; migratory birds; and important game species), and important ecological habitats (e.g., wetland areas). A conceptual site model is developed that describe show stressors associated with the WTI facility might affect the ecological components in the surrounding environment through the development and evaluation of specific ecological endpoints. Finally, an estimate of the potential for current and/or future adverse impacts to the biotic component of the environment is provided, based on the integration of potential exposures of ecological receptors to WTI emissions and toxicological threshold values.

  2. Potential Ecological Effects of Contaminants in the Exposed Par Pond Sediments

    SciTech Connect (OSTI)

    Paller, M.H.; Wike, L.D.

    1996-08-01

    Sediment and small mammal samples were collected from the exposed sediments of Par Pond in early 1995, shortly before the reservoir was refilled after a 4-year drawdown. Sampling was confined to elevations between 58 and 61 meters (190 and 200 feet) above mean sea level, which includes the sediments likely to be exposed if the Par Pond water level is permitted to fluctuate naturally. Both soil and small mammal samples were analyzed for a number of radionuclides and metals. Some of the soil samples were also analyzed for organic contaminants. The objective of the study was to determine if contaminant levels in the Par Pond sediments were high enough to cause deleterious ecological effects.

  3. Development of Surface Complexation Models of Cr(VI) Adsorption on Soils, Sediments and Model Mixtures of Kaolinite, Montmorillonite, γ-Alumina, Hydrous Manganese and Ferric Oxides and Goethite

    SciTech Connect (OSTI)

    Koretsky, Carla

    2013-11-29

    Hexavalent chromium is a highly toxic contaminant that has been introduced into aquifers and shallow sediments and soils via many anthropogenic activities. Hexavalent chromium contamination is a problem or potential problem in the shallow subsurface at several DOE sites, including Hanford, Idaho National Laboratory, Los Alamos National Laboratory and the Oak Ridge Reservation (DOE, 2008). To accurately quantify the fate and transport of hexavalent chromium at DOE and other contaminated sites, robust geochemical models, capable of correctly predicting changes in chromium chemical form resulting from chemical reactions occurring in subsurface environments are needed. One important chemical reaction that may greatly impact the bioavailability and mobility of hexavalent chromium in the subsurface is chemical binding to the surfaces of particulates, termed adsorption or surface complexation. Quantitative thermodynamic surface complexation models have been derived that can correctly calculate hexavalent chromium adsorption on well-characterized materials over ranges in subsurface conditions, such pH and salinity. However, models have not yet been developed for hexavalent chromium adsorption on many important constituents of natural soils and sediments, such as clay minerals. Furthermore, most of the existing thermodynamic models have been developed for relatively simple, single solid systems and have rarely been tested for the complex mixtures of solids present in real sediments and soils. In this study, the adsorption of hexavalent chromium was measured as a function of pH (3-10), salinity (0.001 to 0.1 M NaNO3), and partial pressure of carbon dioxide(0-5%) on a suite of naturally-occurring solids including goethite (FeOOH), hydrous manganese oxide (MnOOH), hydrous ferric oxide (Fe(OH)3), γ-alumina (Al2O3), kaolinite (Al2Si2O5(OH)4), and montmorillonite (Na3(Al, Mg)2Si4O10(OH)2-nH2O). The results show that all of these materials can bind substantial quantities of

  4. Ecotoxicology | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Savannah River NERP Research Opportunities Field Sites / Data Research Facilities Low Dose Irradiation Facility Tritium Irrigation Facility Microsatellite Development Education Graduate Undergraduate Radioecology Curriculum Outreach Outreach Program SREL Herpetology Information for Visitors SREL Conference Center Maps and Directions Airports and Lodging Security Requirements Reprints Employment Make a Gift University of Georgia logo University of Georgia search SREL GO powered by Google

  5. Liyun Zhang | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Liyun Zhang SREL Graduate Program UGA Crop & Soil Liyun Zhang Ph.D. Student Seaman Lab Liyun Zhang is a graduate student in Crop and Soil Sciences at the University of Georgia (UGA). After she received her BS in Resources and Environmental Sciences from China Agricultural University, she went to Louisiana State University (LSU) for her MS under Dr. H.M. Selim. She worked on Ag sorption and transport in different soils in the presence of Zn during the two years. She also worked on the

  6. Ecological effects of pipeline construction through deciduous forested wetlands, Midland County, Michigan. Topical report, October 1990--August 1992

    SciTech Connect (OSTI)

    Rastorfer, J.R.; Van Dyke, G.D.; Zellmer, S.D.; Wilkey, P.L.

    1995-04-01

    This study is designed to record vegetational changes induced by the construction of a large-diameter gas pipeline through deciduous forested wetlands. Two second-growth wetland sites mapped Lenawee soils were selected in Midland County, Michigan: Site 1, a younger stand subjected to recent selective logging, and Site 2, a more mature stand. The collection of ecological data to analyze plant succession on the right-of-way (ROW) and the effects of the developing ROW plant communities on adjacent forest communities was initiated in 1989. Cover class estimates were made for understory and ROW plant species on the basis of 1 {times} 1{minus}m quadrats. Individual stem diameters and species counts were recorded for overstory plants in 10{minus}m quadrats. Although long-term studies have not been completed, firm baseline data were established for comparative analyses with future sampling. Current data indicate that vegetation became well-established on the ROW within one year and subsequently increased in coverage. About 65% of the species were wetland indicators, and the dominants included seeded and natural invading species; nevertheless, some elements of the original flora regenerated and persist. The plants of the ecotone understories of both sites changed from their original composition as a result of the installation of the gas pipeline. Although some forest species persist at both sites, the ecotone of Site I was influenced more by the seeded species, whereas the natural invaders were more important at Site 2.

  7. Carbon Sequestration in Reclaimed Mined Soils of Ohio

    SciTech Connect (OSTI)

    K. Lorenz; R. Lal

    2007-12-31

    This research project was aimed at assessing the soil organic carbon (SOC) sequestration potential of reclaimed minesoils (RMS). The experimental sites were characterized by distinct age chronosequences of RMS and were located in Guernsey, Morgan, Noble, and Muskingum Counties of Ohio. Restoration of disturbed land is followed by the application of nutrients to the soil to promote the vegetation development. Reclamation is important both for preserving the environmental quality and increasing agronomic yields. Since reclamation treatments have significant influence on the rate of soil development, a study on subplots was designed with the objectives of assessing the potential of different biosolids on soil organic C (SOC) sequestration rate, soil development, and changes in soil physical and water transmission properties. All sites are owned and maintained by American Electric Power (AEP). These sites were reclaimed by two techniques: (1) with topsoil application, and (2) without topsoil application, and were under continuous grass or forest cover.

  8. Convergence of microbial assimilations of soil carbon, nitrogen, phosphorus, and sulfur in terrestrial ecosystems

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xu, Xiaofeng; Hui, Dafeng; King, Anthony Wayne; Song, Xia; Thornton, Peter E.; Zhang, Lihua

    2015-11-27

    How soil microbes assimilate carbon-C, nitrogen-N, phosphorus-P, and sulfur-S is fundamental for understanding nutrient cycling in terrestrial ecosystems. We compiled a global database of C, N, P, and S concentrations in soils and microbes and developed relationships between them by using a power function model. The C:N:P:S was estimated to be 287:17:1:0.8 for soils, and 42:6:1:0.4 for microbes. We found a convergence of the relationships between elements in soils and in soil microbial biomass across C, N, P, and S. The element concentrations in soil microbial biomass follow a homeostatic regulation curve with soil element concentrations across C, N, Pmore » and S, implying a unifying mechanism of microbial assimilating soil elements. This correlation explains the well-constrained C:N:P:S stoichiometry with a slightly larger variation in soils than in microbial biomass. Meanwhile, it is estimated that the minimum requirements of soil elements for soil microbes are 0.8 mmol C Kg–1 dry soil, 0.1 mmol N Kg–1 dry soil, 0.1 mmol P Kg–1 dry soil, and 0.1 mmol S Kg–1 dry soil, respectively. Lastly, these findings provide a mathematical explanation of element imbalance in soils and soil microbial biomass, and offer insights for incorporating microbial contribution to nutrient cycling into Earth system models.« less

  9. Convergence of microbial assimilations of soil carbon, nitrogen, phosphorus, and sulfur in terrestrial ecosystems

    SciTech Connect (OSTI)

    Xu, Xiaofeng; Hui, Dafeng; King, Anthony Wayne; Song, Xia; Thornton, Peter E.; Zhang, Lihua

    2015-11-27

    How soil microbes assimilate carbon-C, nitrogen-N, phosphorus-P, and sulfur-S is fundamental for understanding nutrient cycling in terrestrial ecosystems. We compiled a global database of C, N, P, and S concentrations in soils and microbes and developed relationships between them by using a power function model. The C:N:P:S was estimated to be 287:17:1:0.8 for soils, and 42:6:1:0.4 for microbes. We found a convergence of the relationships between elements in soils and in soil microbial biomass across C, N, P, and S. The element concentrations in soil microbial biomass follow a homeostatic regulation curve with soil element concentrations across C, N, P and S, implying a unifying mechanism of microbial assimilating soil elements. This correlation explains the well-constrained C:N:P:S stoichiometry with a slightly larger variation in soils than in microbial biomass. Meanwhile, it is estimated that the minimum requirements of soil elements for soil microbes are 0.8 mmol C Kg–1 dry soil, 0.1 mmol N Kg–1 dry soil, 0.1 mmol P Kg–1 dry soil, and 0.1 mmol S Kg–1 dry soil, respectively. Lastly, these findings provide a mathematical explanation of element imbalance in soils and soil microbial biomass, and offer insights for incorporating microbial contribution to nutrient cycling into Earth system models.

  10. Ecological Monitoring and Compliance Program 2007 Report

    SciTech Connect (OSTI)

    Hansen, Dennis; Anderson, David; Derek, Hall; Greger, Paul; Ostler, W. Kent

    2008-03-01

    In accordance with U.S. Department of Energy (DOE) Order 450.1, 'Environmental Protection Program', the Office of the Assistant Manager for Environmental Management of the DOE, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) requires ecological monitoring and biological compliance support for activities and programs conducted at the Nevada Test Site (NTS). National Security Technologies, LLC (NSTec), Ecological Services has implemented the Ecological Monitoring and Compliance (EMAC) Program to provide this support. EMAC is designed to ensure compliance with applicable laws and regulations, delineate and define NTS ecosystems, and provide ecological information that can be used to predict and evaluate the potential impacts of proposed projects and programs on those ecosystems. This report summarizes the EMAC activities conducted by NSTec during calendar year 2007. Monitoring tasks during 2007 included eight program areas: (a) biological surveys, (b) desert tortoise compliance, (c) ecosystem mapping and data management, (d) sensitive plant monitoring, (e) sensitive and protected/regulated animal monitoring, (f) habitat monitoring, (g) habitat restoration monitoring, and (h) biological monitoring at the Nonproliferation Test and Evaluation Complex (NPTEC). The following sections of this report describe work performed under these eight areas.

  11. Make a Gift | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Make a Gift canopy photo photo of graduate student Ecologist for a Day photo photo of analytical facilities photo Contributions can be made online through the Georgia Fund, part of the Arch Foundation for the University of Georgia. Contributions are tax deductible. Give Online Thank you for supporting SREL's mission of ecological research, education, and environmental outreach.

  12. The use of microarrays in microbial ecology

    SciTech Connect (OSTI)

    Andersen, G.L.; He, Z.; DeSantis, T.Z.; Brodie, E.L.; Zhou, J.

    2009-09-15

    Microarrays have proven to be a useful and high-throughput method to provide targeted DNA sequence information for up to many thousands of specific genetic regions in a single test. A microarray consists of multiple DNA oligonucleotide probes that, under high stringency conditions, hybridize only to specific complementary nucleic acid sequences (targets). A fluorescent signal indicates the presence and, in many cases, the abundance of genetic regions of interest. In this chapter we will look at how microarrays are used in microbial ecology, especially with the recent increase in microbial community DNA sequence data. Of particular interest to microbial ecologists, phylogenetic microarrays are used for the analysis of phylotypes in a community and functional gene arrays are used for the analysis of functional genes, and, by inference, phylotypes in environmental samples. A phylogenetic microarray that has been developed by the Andersen laboratory, the PhyloChip, will be discussed as an example of a microarray that targets the known diversity within the 16S rRNA gene to determine microbial community composition. Using multiple, confirmatory probes to increase the confidence of detection and a mismatch probe for every perfect match probe to minimize the effect of cross-hybridization by non-target regions, the PhyloChip is able to simultaneously identify any of thousands of taxa present in an environmental sample. The PhyloChip is shown to reveal greater diversity within a community than rRNA gene sequencing due to the placement of the entire gene product on the microarray compared with the analysis of up to thousands of individual molecules by traditional sequencing methods. A functional gene array that has been developed by the Zhou laboratory, the GeoChip, will be discussed as an example of a microarray that dynamically identifies functional activities of multiple members within a community. The recent version of GeoChip contains more than 24,000 50mer

  13. Microbial Mechanisms Enhancing Soil C Storage

    SciTech Connect (OSTI)

    Zak, Donald

    2015-09-24

    storage. Our preliminary results support the hypothesis that simulated N deposition has down-regulated the transcription of fungal genes encoding lignocellulolytic enzymes, thereby slowing litter decay and substantially increasing soil C storage over a relative short duration. The objective of this study was to understand the molecular mechanisms and metabolic processes by which simulated N deposition has slowed microbial decay of plant detritus, thereby increasing soil C storage in the wide-spread and ecologically important northern forest ecosystem. We addressed our research objective using a combination of transcriptomic and metatranscriptomic approaches in parallel with biogeochemical analyses of soil C cycling. By linking the environmental regulation of microbial genes to biogeochemical processes, we endeavor to understanding the enhanced accumulation of soil C in response to a wide-spread agent of global change.

  14. Microsatellite DNA Development Service | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Buying & Making Electricity » Microhydropower Systems Microhydropower Systems Microhydropower can be one of the most simple and consistent forms or renewable energy on your property. Microhydropower can be one of the most simple and consistent forms or renewable energy on your property. If you have water flowing through your property, you might consider building a small hydropower system to generate electricity. Microhydropower systems usually generate up to 100 kilowatts of electricity.

  15. Incorporating ecological risk assessment into remedial investigation/feasibility study work plans

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    This guidance document (1) provides instructions on preparing the components of an ecological work plan to complement the overall site remedial investigation/feasibility study (RI/FS) work plan and (2) directs the user on how to implement ecological tasks identified in the plan. Under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), as amended by the Superfund Amendments and Reauthorization Act of 1986 (SARA), and RI/FS work plan will have to be developed as part of the site-remediation scoping process. Specific guidance on the RI/FS process and the preparation of work plans has been developed by the US Environmental Protection Agency (EPA 1988a). This document provides guidance to US Department of Energy (DOE) staff and contractor personnel for incorporation of ecological information into environmental remediation planning and decision making at CERCLA sites.

  16. Applicability of 10 CFR 851 to Savannah River Ecology Laboratory

    Broader source: Energy.gov [DOE]

    Letter from Bruce Diamond, Assistant General Counsel for Environment, DOE, dated November 24, 2007 to Mr. Bertsch, Director and Professor, Savannah River Ecology Laboratory, regarding Savannah Riber Ecology Laboratory's Request for Interpretive Ruling under 10 CFR 851.

  17. START HERE 2014 Annual Ecology Report DVD 1.htm

    Office of Legacy Management (LM)

    Annual Ecology Report for the Rocky Flats Site Ecology DVD 1 Click on the links below to access different portions of the electronic annual report. 2014 Annual Report Sections...

  18. EcoCampus, Center for Creative Ecology, Kibbutz Lotan, Israel...

    Open Energy Info (EERE)

    EcoCampus, Center for Creative Ecology, Kibbutz Lotan, Israel Jump to: navigation, search Name EcoCampus, Center for Creative Ecology, Kibbutz Lotan, Israel Facility EcoCampus PV...

  19. START HERE 2013 Annual Ecology Report DVD 1.htm

    Office of Legacy Management (LM)

    3 Annual Ecology Report for the Rocky Flats Site Ecology DVD 1 Click on the links below to access different portions of the electronic annual report. 2013 Annual Report Sections...

  20. Savannah River Ecology Laboratory. Annual technical progress report of ecological research, period ending July 31, 1994

    SciTech Connect (OSTI)

    Not Available

    1994-07-31

    The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA) that is managed in conjunction with the University`s Institute of Ecology. The laboratory`s overall mission is to acquire and communicate knowledge of ecological processes and principles. SREL conducts basic and applied ecological research, as well as education and outreach programs, under an M&O contract with the US Department of Energy at the Savannah River Site. Significant accomplishments were made during the year ending July 31, 1994 in the areas of research, education and service. Reviewed in this document are research projects in the following areas: Environmental Operations Support (impacted wetlands, streams, trace organics, radioecology, database synthesis, wild life studies, zooplankton, safety and quality assurance); wood stork foraging and breeding ecology; defence waste processing facility; environmental risk assessment (endangered species, fish, ash basin studies); ecosystem alteration by chemical pollutants; wetlands systems; biodiversity on the SRS; Environmental toxicology; environmental outreach and education; Par Pond drawdown studies in wildlife and fish and metals; theoretical ecology; DOE-SR National Environmental Research Park; wildlife studies. Summaries of educational programs and publications are also give.

  1. The Unified North American Soil Map and Its Implication on the Soil Organic Carbon Stock in North America

    SciTech Connect (OSTI)

    Liu, Shishi; Wei, Yaxing; Post, Wilfred M; Cook, Robert B; Schaefer, Kevin; Thornton, Michele M

    2013-01-01

    The Unified North American Soil Map (UNASM) was developed to provide more accurate regional soil information for terrestrial biosphere modeling. The UNASM combines information from state-of-the-art U.S. STATSGO2 and Soil Landscape of Canada (SLCs) databases. The area not covered by these datasets is filled with the Harmonized World Soil Database version 1.1 (HWSD1.1). The UNASM contains maximum soil depth derived from the data source as well as seven soil attributes (including sand, silt, and clay content, gravel content, organic carbon content, pH, and bulk density) for the top soil layer (0-30 cm) and the sub soil layer (30-100 cm) respectively, of the spatial resolution of 0.25 degrees in latitude and longitude. There are pronounced differences in the spatial distributions of soil properties and soil organic carbon between UNASM and HWSD, but the UNASM overall provides more detailed and higher-quality information particularly in Alaska and central Canada. To provide more accurate and up-to-date estimate of soil organic carbon stock in North America, we incorporated Northern Circumpolar Soil Carbon Database (NCSCD) into the UNASM. The estimate of total soil organic carbon mass in the upper 100 cm soil profile based on the improved UNASM is 347.70 Pg, of which 24.7% is under trees, 14.2% is under shrubs, and 1.3% is under grasses and 3.8% under crops. This UNASM data will provide a resource for use in land surface and terrestrial biogeochemistry modeling both for input of soil characteristics and for benchmarking model output.

  2. J Vaun McArthur | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    McArthur Faculty & Scientists SREL Home J Vaun McArthur Savannah River Ecology Laboratory P O Drawer E, Aiken, SC 29802 (803) 725-5317 office (803) 725-3309 fax mcarthur(at)srel.uga.edu My research interests focus on aquatic microbial ecology; ecological genetics of microbes; interactions between terrestrial and aquatic ecosystems; stream community metabolism; and macroinvertebrate ecology. Current research projects include: Indirect selection for antibiotic resistance in coastal oceans

  3. Enforcement Letter, Savannah River Ecology Laboratory- June 7, 2000

    Broader source: Energy.gov [DOE]

    Issued to Savannah River Ecology Laboratory related to Radioactive Material Control Deficiencies at the Savannah River Site

  4. Functional Ecological Gene Networks to Reveal the Changes Among...

    Office of Scientific and Technical Information (OSTI)

    indicating the potential importance of network interactions in ecosystem functioning. ... aremore fundamentally important for research in microbial ecology, systems ...

  5. The Use of Ecological Restoration Principles To Achieve Remedy Protection

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at the Fernald Preserve and Weldon Spring Sites | Department of Energy The Use of Ecological Restoration Principles To Achieve Remedy Protection at the Fernald Preserve and Weldon Spring Sites The Use of Ecological Restoration Principles To Achieve Remedy Protection at the Fernald Preserve and Weldon Spring Sites The Use of Ecological Restoration Principles To Achieve Remedy Protection at the Fernald Preserve and Weldon Spring Sites The Use of Ecological Restoration Principles To Achieve

  6. Upscaling of Bio-mediated Soil Improvement

    SciTech Connect (OSTI)

    J. T. DeJong; B. C. Martinez; B. M. Mortensen; D. C. Nelson; J. T. Waller; M. H. Weil; T. R. Ginn; T. Weathers; T. Barkouki; Y. Fujita; G. Redden; C. Hunt; D. Major; B. Tunyu

    2009-10-01

    As demand for soil improvement continues to increase, new, sustainable, and innocuous methods are needed to alter the mechanical properties of soils. Recent research has demonstrated the potential of bio-mediated soil improvement for geotechnical applications (DeJong et al. 2006, Whiffin et al. 2007). Upscaling the bio-mediated treatment process for in situ implementation presents a number of challenges to be addressed, including soil and pore fluid interactions, bioaugmentation versus biostimulation of microbial communities, controlled distribution of mediated calcite precipitation, and permanence of the cementation. Current studies are utilizing large-scale laboratory experiments, non-destructive geophysical measurements, and modeling, to develop an optimized and predictable bio-mediated treatment method.

  7. The industrial ecology of steel

    SciTech Connect (OSTI)

    Considine, Timothy J.; Jablonowski, Christopher; Considine, Donita M.M.; Rao, Prasad G.

    2001-03-26

    This study performs an integrated assessment of new technology adoption in the steel industry. New coke, iron, and steel production technologies are discussed, and their economic and environmental characteristics are compared. Based upon detailed plant level data on cost and physical input-output relations by process, this study develops a simple mathematical optimization model of steel process choice. This model is then expanded to a life cycle context, accounting for environmental emissions generated during the production and transportation of energy and material inputs into steelmaking. This life-cycle optimization model provides a basis for evaluating the environmental impacts of existing and new iron and steel technologies. Five different plant configurations are examined, from conventional integrated steel production to completely scrap-based operations. Two cost criteria are used to evaluate technology choice: private and social cost, with the latter including the environmental damages associated with emissions. While scrap-based technologies clearly generate lower emissions in mass terms, their emissions of sulfur dioxide and nitrogen oxides are significantly higher. Using conventional damage cost estimates reported in the literature suggests that the social costs associated with scrap-based steel production are slightly higher than with integrated steel production. This suggests that adopting a life-cycle viewpoint can substantially affect environmental assessment of new technologies. Finally, this study also examines the impacts of carbon taxes on steel production costs and technology choice.

  8. 2011 Archaea: Ecology, Metabolism, & Molecular Biology

    SciTech Connect (OSTI)

    Keneth Stedman

    2011-08-05

    Archaea, one of three major evolutionary lineages of life, are a fascinating and diverse group of microbes with deep roots overlapping those of eukaryotes. The focus of the 'Archaea: Ecology Metabolism & Molecular Biology' GRC conference expands on a number of emerging topics highlighting new paradigms in archaeal metabolism, genome function and systems biology; information processing; evolution and the tree of life; the ecology and diversity of archaea and their viruses. The strength of this conference lies in its ability to couple a field with a rich history in high quality research with new scientific findings in an atmosphere of stimulating exchange. This conference remains an excellent opportunity for younger scientists to interact with world experts in this field.

  9. 2009 Archaea: Ecology, Metabolism & Molecular Biology GRC

    SciTech Connect (OSTI)

    Dr. Julie Maupin- Furlow

    2009-07-26

    Archaea, one of three major evolutionary lineages of life, are a fascinating and diverse group of microbes with deep roots overlapping those of eukaryotes. The focus of the 'Archaea: Ecology Metabolism & Molecular Biology' GRC conference expands on a number of emerging topics highlighting new paradigms in archaeal metabolism, genome function and systems biology; information processing; evolution and the tree of life; the ecology and diversity of archaea and their viruses; and industrial applications. The strength of this conference lies in its ability to couple a field with a rich history in high quality research with new scientific findings in an atmosphere of stimulating exchange. This conference remains an excellent opportunity for younger scientists to interact with world experts in this field.

  10. Opportunies for Students | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Education catching alligators collecting microbes recording field data PCR coring trees releasing snapping turtle looking for rattlesnakes SREL offers outstanding research opportunities for students, including state-of-the-art laboratory facilities, nealy 300 square miles of habitat for field research, a wide range of faculty specializations under one roof, and more than 60 years of experience in ecological research. Although SREL is operated by the University of Georgia, students from any

  11. Women & the Department of Ecology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    September 5, 2013 Agency Update Hanford Advisory Board Top News for FY2013 * State leadership transitions * Governor Inslee took office in January * Maia Bellon appointed Ecology director in February * Leaking double-shell and single-shell tanks * Sitewide permit to be reissued for public comment * Consent Decree milestones in jeopardy? FY2013 Accomplishments  Reiussed Hanford Air Operating Permit April 1  Permit required to be renewed every 5 years  Nearly finished resolving comments

  12. Women & the Department of Ecology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    September 4, 2014 Agency Update Hanford Advisory Board Nuclear Waste Program News * TPA Public Involvement Calendar updated & posted on Ecology's website * State/DOE discussing path forward on AY-102 * Negotiations on possible amendments to the Consent Decree continuing Comment periods in progress  325 HWTU* Class 3 permit mod to add capacity to the Radiochemical Processing Lab (RPL or 325 building)  Comment period: August 18-October 17  LERF-ETF Class 2 mod to revise liner repair

  13. Women & the Department of Ecology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 4, 2014 Agency Update Hanford Advisory Board Key Events Since Last HAB Meeting * March 21: Ecology issues order to pump AY-102 * Order appealed by DOE * March 31: State/DOE propose amendments to CD * Agencies are in negotiations on proposals * May 1: Hanford Air Operating Permit revised * Added new federal engine emission requirements Sitewide Permit Update (Rev. 9) * Response to Public Comment: Continuing work on completing responses to public comment and identifying associated permit

  14. Tuberville Lab Personnel | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Personnel RESEARCH STAFF Kimberly wih pine snake Kimberly Price is a new research technician in the Tuberville lab. Kimberly graduated in 2015 with her B.S. in Ecology from Augusta University in Augusta, Georgia. While a student working with Dr. Brandon R. Cromer, she focused her undergraduate research on contamination and maternal transfer of mercury in southeastern aquatic turtles using the yellow-bellied slider (Trachemys scripta scripta) and the eastern river cooter (Pseudemys concinna

  15. Gary Mills | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mills Curriculum Vitae Faculty & Scientists SREL Home Gary Mills Savannah River Ecology Laboratory P O Drawer E, Aiken, SC 29802 (803) 725-5368 office (803) 725-3309 fax gmills(at)srel.uga.edu My research interest is in the biogeochemistry of aquatic ecosystems and my projects have included studies on stream, wetland, and estuarine systems as well as geothermal hot springs. My current research is focused on techniques for determining the bioavailable fraction of dissolved metals in wetland

  16. Graduate Program | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Graduate Program catching alligators collecting microbes recording field data PCR coring trees releasing snapping turtle looking for rattlesnakes SREL offers outstanding research opportunities for students, including state-of-the-art laboratory facilities, nearly 300 square miles of habitat for field research, a wide range of faculty specializations under one roof, and more than 60 years of experience in ecological research. Although SREL is operated by the University of Georgia, students from

  17. Undergraduate Program | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Undergraduate Program catching alligators collecting microbes recording field data PCR coring trees releasing snapping turtle looking for rattlesnakes SREL offers outstanding research opportunities for students, including state-of-the-art laboratory facilities, nearly 300 square miles of habitat for field research, a wide range of faculty specializations under one roof, and more than 60 years of experience in ecological research. Although SREL is operated by the University of Georgia, students

  18. Upcoming Seminars | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Upcoming Seminars Seminars are held at the Savannah River Ecology Laboratory, Bldg. 737-A, in the Cypress Room. Snacks are provided 15 minutes prior to the beginning of each seminar. DATE SPEAKER TITLE 3:00 PM Wednesday, July 13, 2016 Dr. William Hopkins, Director, Global Change Center, Dept. of Fish and Wildlife Conservation, Virginia Tech Never Grow Up: Snot Otters, Blood Suckers, and a Smattering of Humble Advice for Aspiring Scientists SREL seminar committee: Dr. Doug Aubrey (chair),

  19. Ecological Interactions Between Metals and Microbes

    SciTech Connect (OSTI)

    Konopka, Allan E.

    2004-06-01

    Analyses of chromium resistant microbes. Culturable xylene-degrading and chromate-resistant microbes were obtained from chronically cocontaminated soil using a microcosm enrichment technique, and shown to correlate to dominant soil populations using culture independent techniques. The soil microbial community proved able to mount a respiratory response to addition of xylene in the presence of chromate. The majority of isolates belonged to the ubiquitous but poorly studied high %G+C Gram positive genus Arthrobacter, and exhibited considerable genotypic and phenotypic variability. Phenotypic assays uncovered a wide variation in the levels of chromate resistance, even between very closely related strains. Primers designed against conserved motifs in the known chrA chromate efflux gene failed to detect similar sequences among the chromate resistant Arthrobacter isolates obtained through enrichment.

  20. Savannah Harris | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Savannah Harris SREL Graduate Program UGA Crop & Soil Savannah Harris Masters Student Seaman Lab Savannah Harris joined SREL as a research technician in John Seaman’s lab in January 2013 after completing her B.S. in biology in December 2012 at the University of South Carolina- Aiken. She also earned a cognate in geology and conducted her senior research project on the effects of geologic substrates and residuum soils on plant communities at Heggies Rock and Burks Mountain in Georgia, which

  1. Savannah River Ecology Laboratory. Annual technical progress report of ecological research

    SciTech Connect (OSTI)

    Smith, M.H.

    1996-07-31

    The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA). The overall mission of the Laboratory is to acquire and communicate knowledge of ecological processes and principles. SREL conducts basic and applied ecological research, as well as education and outreach programs, under a contract with the U.S. Department of Energy (DOE) at the Savannah River Site (SRS) near Aiken, South Carolina. Significant accomplishments were made during the past year in the areas of research, education and service. The Laboratory`s research mission was fulfilled with the publication of two books and 143 journal articles and book chapters by faculty, technical and students, and visiting scientists. An additional three books and about 80 journal articles currently are in press. Faculty, technician and students presented 193 lectures, scientific presentations, and posters to colleges and universities, including minority institutions. Dr. J Vaun McArthur organized and conducted the Third Annual SREL Symposium on the Environment: New Concepts in Strewn Ecology: An Integrative Approach. Dr. Michael Newman conducted a 5-day course titled Quantitative Methods in Ecotoxicology, and Dr. Brian Teppen of The Advanced Analytical Center for Environmental Sciences (AACES) taught a 3-day short course titled Introduction to Molecular Modeling of Environmental Systems. Dr. I. Lehr Brisbin co-hosted a meeting of the Crocodile Special Interest Group. Dr. Rebecca Sharitz attended four symposia in Japan during May and June 1996 and conducted meetings of the Executive Committee and Board of the International Association for Ecology (ENTECOL).

  2. Automated soil gas monitoring chamber

    DOE Patents [OSTI]

    Edwards, Nelson T.; Riggs, Jeffery S.

    2003-07-29

    A chamber for trapping soil gases as they evolve from the soil without disturbance to the soil and to the natural microclimate within the chamber has been invented. The chamber opens between measurements and therefore does not alter the metabolic processes that influence soil gas efflux rates. A multiple chamber system provides for repetitive multi-point sampling, undisturbed metabolic soil processes between sampling, and an essentially airtight sampling chamber operating at ambient pressure.

  3. Women & the Department of Ecology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 7, 2012 Site-wide Permit Update Status:  Comment period began May 1*. Public meetings:  About 40 people attended public workshop May 3 at Ecology office.  Over 300 people total attended hearings May 15-16 in Seattle & Portland.  Spokane & Richland hearings held this week. *Except for Single-Shell Tanks. SST permit is on track to be released for public comment by July 1. River Corridor workshops June 12 - Seattle June 13 - Portland June 14 - Hood River Other comment

  4. The role of plant-soil feedbacks and land-use legacies in restoration of a temperate steppe in northern China

    SciTech Connect (OSTI)

    Jiang, Lili; Han, Xingguo; Zhang, Guangming; Kardol, Paul

    2010-11-01

    Plant soil feedbacks affect plant performance and plant community dynamics; however, little is known about their role in ecological restoration. Here, we studied plant soil feedbacks in restoration of steppe vegetation after agricultural disturbance in northern China. First, we analyzed abiotic and biotic soil properties under mono-dominant plant patches in an old-field restoration site and in a target steppe site. Second, we tested plant soil feedbacks by growing plant species from these two sites on soils from con- and heterospecific origin. Soil properties generally did not differ between the old-field site and steppe site, but there were significant differences among mono-dominant plant patches within the sites. While soil species origin (i.e., the plant species beneath which the soil was collected) affected biomass of individual plant species in the feedback experiment, species-level plant soil feedbacks were neutral . Soil site origin (old-field, steppe) significantly affected biomass of old-field and steppe species. For example, old-field species had higher biomass in old-field soils than in steppe soils, indicating a positive land-use legacy. However, soil site origin effects depended on the plant species beneath which the soils were collected. The predictive value of abiotic and biotic soil properties in explaining plant biomass differed between and within groups of old-field and steppe species. We conclude that the occurrence of positive land-use legacies for old-field species may retard successional replacement of old-field species by steppe species. However, high levels of idiosyncrasy in responses of old-field and steppe plant species to con- and heterospecific soils indicate interspecific variation in the extent to which soil legacies and plant soil feedbacks control successional species replacements in Chinese steppe ecosystems.

  5. Final Report for DOE grant no. DE-FG02-04ER63883: Can soil genomics predict the impact of precipitation on nitrous oxide flux from soil

    SciTech Connect (OSTI)

    Egbert Schwartz

    2008-12-15

    Nitrous oxide is a potent greenhouse gas that is released by microorganisms in soil. However, the production of nitrous oxide in soil is highly variable and difficult to predict. Future climate change may have large impacts on nitrous oxide release through alteration of precipitation patterns. We analyzed DNA extracted from soil in order to uncover relationships between microbial processes, abundance of particular DNA sequences and net nitrous oxide fluxes from soil. Denitrification, a microbial process in which nitrate is used as an electron acceptor, correlated with nitrous oxide flux from soil. The abundance of ammonia oxidizing archaea correlated positively, but weakly, with nitrous oxide production in soil. The abundance of bacterial genes in soil was negatively correlated with gross nitrogen mineralization rates and nitrous oxide release from soil. We suggest that the most important control over nitrous oxide production in soil is the growth and death of microorganisms. When organisms are growing nitrogen is incorporated into their biomass and nitrous oxide flux is low. In contrast, when microorganisms die, due to predation or infection by viruses, inorganic nitrogen is released into the soil resulting in nitrous oxide release. Higher rates of precipitation increase access to microorganisms by predators or viruses through filling large soil pores with water and therefore can lead to large releases of nitrous oxide from soil. We developed a new technique, stable isotope probing with 18O-water, to study growth and mortality of microorganisms in soil.

  6. Savannah River Ecology Laboratory annual technical progress report of ecological research, period ending July 31, 1993

    SciTech Connect (OSTI)

    Vaitkus, M.R.; Wein, G.R.; Johnson, G.

    1993-11-01

    This progress report gives an overview of research programs at the Savannah River Site. Topics include; environmental operations support, wood stork foraging and breeding, defense waste processing, environmental stresses, alterations in the environment due to pollutants, wetland ecology, biodiversity, pond drawdown studies, and environmental toxicology.

  7. Summary of the Nevada Applied Ecology Group and correlative programs. Version 1

    SciTech Connect (OSTI)

    Friesen, H.N.

    1992-10-01

    This summary document presents results in a broad context; it is not limited to findings of the Nevada Applied Ecology Group. This book is organized to present the findings of the Nevada Applied Ecology Group and correlative programs in accordance with the originally stated objectives of the Nevada Applied Ecology Group. This plan, in essence, traces plutonium from its injection into the environment to movement in the ecosystem to development of cleanup techniques. Information on other radionuclides was also obtained and will be presented briefly. Chapter 1 presents a brief description of the ecological setting of the Test Range Complex. The results of investigations for plutonium distribution are presented in Chapter 2 for the area surrounding the Test Range Complex and in Chapter 3 for on-site locations. Chapters 4 and 5 present the results of investigations concerned with concentrations and movement, respectively, of plutonium in the ecosystem of the Test Range Complex, and Chapter 6 summarizes the potential hazard from this plutonium. Development of techniques for cleanup and treatment is presented in Chapter 7, and the inventory of radionuclides other than plutonium is presented briefly in Chapter 8.

  8. Arid Lands Ecology Facility management plan

    SciTech Connect (OSTI)

    None

    1993-02-01

    The Arid Lands Ecology (ALE) facility is a 312-sq-km tract of land that lies on the western side of the Hanford Site in southcentral Washington. The US Atomic Energy Commission officially set aside this land area in 1967 to preserve shrub-steppe habitat and vegetation. The ALE facility is managed by Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE) for ecological research and education purposes. In 1971, the ALE facility was designated the Rattlesnake Hills Research Natural Area (RNA) as a result of an interagency federal cooperative agreement, and remains the largest RNA in Washington. it is also one of the few remaining large tracts of shrub-steppe vegetation in the state retaining a predominant preeuropean settlement character. This management plan provides policy and implementation methods for management of the ALE facilities consistent with both US Department of Energy Headquarters and the Richland Field Office decision (US Congress 1977) to designate and manage ALE lands as an RNA and as a component of the DOE National Environmental Research Park System.

  9. Hygrothermal Simulation of Foundations: Part 1 - Soil Material Properties

    SciTech Connect (OSTI)

    Kehrer, Manfred; Pallin, Simon B

    2012-10-01

    The hygrothermal performance of soils coupled to buildings is a complicated process. A computational approach for heat transfer through the ground has been well defined (EN ISO 13370:2007, 2007), and simplified methods have been developed (Staszczuk, Radon, and Holm 2010). However, these approaches generally ignore the transfer of soil moisture, which is not negligible (Janssen, Carmeliet, and Hens 2004). This study is divided into several parts. The intention of the first part is to gather, comprehend and adapt soil properties from Soil Science. The obtained information must be applicable to related tasks in Building Science and validated with hygrothermal calculation tools. Future parts of this study will focus on the validation aspect of the soil properties to be implemented. Basic changes in the software code may be requested at this time. Different types of basement construction will be created with a hygrothermal calculation tool, WUFI. Simulations from WUFI will be compared with existing or ongoing measurements. The intentions of the first part of this study have been fulfilled. The soil properties of interest in Building Science have been defined for 12 different soil textures. These properties will serve as input parameters when performing hygrothermal calculations of building constructions coupled to soil materials. The reliability of the soil parameters will be further evaluated with measurements in Part 2.

  10. EcoTalks | Savannah River Ecology Laboratory Environmental Outreach...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EcoTalks The Outreach Program at the Savannah River Ecology Laboratory annually presents about 300 talks to school, civic and professional groups. Educators give 45-minute to...

  11. 2006 Annual Ecology Report for the Rocky Flats Site

    Office of Legacy Management (LM)

    Ecology Report for the Rocky Flats Site Click on the links below to access different portions of the electronic annual report. 2006 Annual Report Sections Diffuse Knapweed...

  12. DOE Research Set-Aside Program | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program Overview Set-Asides provide baseline information on ecological processes in SRS natural communities, ... to 1951, when the Atomic Energy Commission invited the ...

  13. Enforcement Letter, Safety and Ecology Corporation- NEL-2011-04

    Broader source: Energy.gov [DOE]

    Issued to Safety and Ecology Corporation related to Two Radiological Contamination Events at the Separations Process Research Unit at the Knolls Atomic Power Laboratory

  14. Innovative vitrification for soil remediation

    SciTech Connect (OSTI)

    Jetta, N.W.; Patten, J.S.; Hnat, J.G. [Vortec Corp., Collegeville, PA (United States)] [and others

    1996-03-01

    The objective of this DOE demonstration program is to validate the performance and operation of the Vortec Cyclone Melting System (CMS{trademark}) for the processing of LLW contaminated soils found at DOE sites. This DOE vitrification demonstration project has successfully progressed through the first two phases. Phase 1 consisted of pilot scale testing with surrogate wastes and the conceptual design of a process plant operating at a generic DOE site. The objective of Phase 2, which is scheduled to be completed the end of FY 95, is to develop a definitive process plant design for the treatment of wastes at a specific DOE facility. During Phase 2, a site specific design was developed for the processing of LLW soils and muds containing TSCA organics and RCRA metal contaminants. Phase 3 will consist of a full scale demonstration at the DOE gaseous diffusion plant located in Paducah, KY. Several DOE sites were evaluated for potential application of the technology. Paducah was selected for the demonstration program because of their urgent waste remediation needs as well as their strong management and cost sharing financial support for the project.

  15. Innovative vitrification for soil remediation

    SciTech Connect (OSTI)

    Jetta, N.W.; Patten, J.S.; Hnat, J.G.

    1995-10-01

    The objective of this DOE demonstration program is to validate the performance and operation of the Vortec Cyclone Melting System (CMS{trademark}) for the processing of LLW contaminated soils found at DOE sites. This DOE vitrification demonstration project has successfully progressed through the first two phases. Phase I consisted of pilot scale testing with surrogate wastes and the conceptual design of a process plant operating at a generic DOE site. The objective of Phase 2, which is scheduled to be completed the end of FY 95, is to develop a definitive process plant design for the treatment of wastes at a specific DOE facility. During Phase 2, a site specific design was developed for the processing of LLW soils and muds containing TSCA organics and RCRA metal contaminants. Phase 3 will consist of a full scale demonstration at the DOE gaseous diffusion plant located in Paducah, KY. Several DOE sites were evaluated for potential application of the technology. Paducah was selected for the demonstration program because of their urgent waste remediation needs as well as their strong management and cost sharing financial support for the project.

  16. Validation of Noah-simulated Soil Temperature in the North American Land Data Assimilation System Phase 2

    SciTech Connect (OSTI)

    Xia, Youlong; Ek, Michael; Sheffield, Justin; Livneh, Ben; Huang, Maoyi; Wei, Helin; Song, Feng; Luo, Lifeng; Meng, Jesse; Wood, Eric

    2013-02-25

    Soil temperature can exhibit considerable memory from weather and climate signals and is among the most important initial conditions in numerical weather and climate models. Consequently, a more accurate long-term land surface soil temperature dataset is needed to improve weather and climate simulation and prediction, and is also important for the simulation of agricultural crop yield and ecological processes. The North-American Land Data Assimilation (NLDAS) Phase 2 (NLDAS-2) has generated 31-years (1979-2009) of simulated hourly soil temperature data with a spatial resolution of 1/8o. This dataset has not been comprehensively evaluated to date. Thus, the ultimate purpose of the present work is to assess Noah-simulated soil temperature for different soil depths and timescales. We used long-term (1979-2001) observed monthly mean soil temperatures from 137 cooperative stations over the United States to evaluate simulated soil temperature for three soil layers (0-10 cm, 10-40 cm, 40-100 cm) for annual and monthly timescales. We used short-term (1997-1999) observed soil temperature from 72 Oklahoma Mesonet stations to validate simulated soil temperatures for three soil layers and for daily and hourly timescales. The results showed that the Noah land surface model (Noah LSM) generally matches observed soil temperature well for different soil layers and timescales. At greater depths, the simulation skill (anomaly correlation) decreased for all time scales. The monthly mean diurnal cycle difference between simulated and observed soil temperature revealed large midnight biases in the cold season due to small downward longwave radiation and issues related to model parameters.

  17. Ecological Monitoring and Compliance Program Fiscal Year 2002 Report

    SciTech Connect (OSTI)

    C. A. Wills

    2002-12-01

    The Ecological Monitoring and Compliance program, funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office, monitors the ecosystem of the Nevada Test Site (NTS) and ensures compliance with laws and regulations pertaining to NTS biota. This report summarizes the program's activities conducted by Bechtel Nevada (BN) during fiscal year 2002. Program activities included: (1) biological surveys at proposed construction sites, (2) desert tortoise compliance, (3) ecosystem mapping and data management, (4) sensitive species and unique habitat monitoring, and (5) biological monitoring at the HAZMAT Spill Center. Biological surveys for the presence of sensitive species and important biological resources were conducted for 26 NTS projects. These projects have the potential to disturb a total of 374 acres. Thirteen of the projects were in desert tortoise habitat, and 13.38 acres of desert tortoise habitat were disturbed. No tortoises were found in or displaced from project areas, and no tortoises were accidentally injured or killed at project areas or along paved roads. Compilation of historical wildlife data continued this year in efforts to develop faunal distribution maps for the NTS. Photographs associated with the NTS ecological landform units sampled to create the NTS vegetation maps were cataloged for future retrieval and analysis. The list of sensitive plant species for which long-term population monitoring is scheduled was revised. Six vascular plants and five mosses were added to the list. Plant density estimates from ten populations of Astragalus beatleyae were collected, and eight known populations of Eriogonum concinnum were visited to assess plant and habitat status. Minimal field monitoring of western burrowing owl burrows occurred. A report relating to the ecology of the western burrowing owl on the Nevada Test Site was prepared which summarizes four years of data collected on this species' distribution

  18. Strontium Sorption onto SRP Soils

    SciTech Connect (OSTI)

    Hoeffner, S.L.

    2001-07-02

    This report discusses the effect of water and soil quality variables on the sorption of strontium onto SRP soils. The variables cover the range of conditions observed in the low-level waste burial ground.

  19. Chemical-Specific Representation of Air-Soil Exchange and Soil Penetration in Regional Multimedia Models

    SciTech Connect (OSTI)

    McKone, T.E.; Bennett, D.H.

    2002-08-01

    In multimedia mass-balance models, the soil compartment is an important sink as well as a conduit for transfers to vegetation and shallow groundwater. Here a novel approach for constructing soil transport algorithms for multimedia fate models is developed and evaluated. The resulting algorithms account for diffusion in gas and liquid components; advection in gas, liquid, or solid phases; and multiple transformation processes. They also provide an explicit quantification of the characteristic soil penetration depth. We construct a compartment model using three and four soil layers to replicate with high reliability the flux and mass distribution obtained from the exact analytical solution describing the transient dispersion, advection, and transformation of chemicals in soil with fixed properties and boundary conditions. Unlike the analytical solution, which requires fixed boundary conditions, the soil compartment algorithms can be dynamically linked to other compartments (air, vegetation, ground water, surface water) in multimedia fate models. We demonstrate and evaluate the performance of the algorithms in a model with applications to benzene, benzo(a)pyrene, MTBE, TCDD, and tritium.

  20. A Theoretical Reassessment of Microbial Maintenance and Implications for Microbial Ecology Modeling

    SciTech Connect (OSTI)

    Wang, Gangsheng; Post, Wilfred M

    2012-01-01

    We attempted to reconcile three microbial maintenance models (Herbert, Pirt, and Compromise) through a critical reassessment. We provided a rigorous proof that the true growth yield coefficient (YG) is the ratio of the specific maintenance rate (a in Herbert) to the maintenance coefficient (m in Pirt). Other findings from this study include: (1) the Compromise model is identical to the Herbert for computing microbial growth and substrate consumption, but it expresses the dependence of maintenance on both microbial biomass and substrate; (2) the maximum specific growth rate in the Herbert ( max,H) is higher than those in the other two models ( max,P and max,C), and the difference is the physiological maintenance factor (mq = a); and (3) the overall maintenance coefficient (mT) is more sensitive to mq than to the specific growth rate ( G) and YG. Our critical reassessment of microbial maintenance provides a new approach for quantifying some important components in soil microbial ecology models.

  1. P-AREA WETLAND STUDIES SOILS AND BIOTA Final Project Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P-AREA WETLAND STUDIES SOILS AND BIOTA Final Project Report Savannah River Ecology Laboratory University of Georgia Drawer E Aiken, SC 29802 June 2012 SREL Contacts: Stacey L. Lance (lance@srel.edu) John C. Seaman (seaman@srel.edu) David E. Scott (scott@srel.edu) A. Lawrence Bryan, Jr. (lbryan@srel.edu) Julian H. Singer (singer@srel.edu) ii TABLE OF CONTENTS LIST OF ACRONYMS AND ABBREVIATIONS ................................................................................... III EXECUTIVE

  2. Ecological Monitoring and Compliance Program 2012 Report

    SciTech Connect (OSTI)

    Hall, Derek B.; Anderson, David C.; Greger, Paul D.; Ostler, W. Kent; Hansen, Dennis J.

    2013-07-03

    The Ecological Monitoring and Compliance Program (EMAC), funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO, formerly Nevada Site Office), monitors the ecosystem of the Nevada National Security Site (NNSS) and ensures compliance with laws and regulations pertaining to NNSS biota. This report summarizes the program’s activities conducted by National Security Technologies, LLC (NSTec), during calendar year 2012. Program activities included (a) biological surveys at proposed construction sites, (b) desert tortoise compliance, (c) ecosystem monitoring, (d) sensitive plant species monitoring, (e) sensitive and protected/regulated animal monitoring, (f) habitat restoration monitoring, and (g) monitoring of the Nonproliferation Test and Evaluation Complex (NPTEC). During 2012, all applicable laws, regulations, and permit requirements were met, enabling EMAC to achieve its intended goals and objectives.

  3. Ecological Monitoring and Compliance Program 2009 Report

    SciTech Connect (OSTI)

    Hansen, J. Dennis; Anderson, David C.; Hall, Derek B.; Greger, Paul D.; Ostler, W. Kent

    2010-07-13

    The Ecological Monitoring and Compliance Program (EMAC), funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, monitors the ecosystem of the Nevada Test Site and ensures compliance with laws and regulations pertaining to NTS biota. This report summarizes the program’s activities conducted by National Security Technologies, LLC, during calendar year 2009. Program activities included (a) biological surveys at proposed construction sites, (b) desert tortoise compliance, (c) ecosystem mapping and data management, (d) sensitive plant species monitoring, (e) sensitive and protected/regulated animal monitoring, (f) habitat monitoring, (g) habitat restoration monitoring, and (h) monitoring of the Nonproliferation Test and Evaluation Complex. During 2009, all applicable laws, regulations, and permit requirements were met, enabling EMAC to achieve its intended goals and objectives.

  4. Ecological Monitoring and Compliance Program 2011 Report

    SciTech Connect (OSTI)

    Hansen, D. J.; Anderson, D. C.; Hall, D. B.; Greger, P. D.; Ostler, W. K.

    2012-06-13

    The Ecological Monitoring and Compliance (EMAC) Program, funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, monitors the ecosystem of the Nevada National Security Site and ensures compliance with laws and regulations pertaining to NNSS biota. This report summarizes the program's activities conducted by National Security Technologies, LLC, during calendar year 2011. Program activities included (a) biological surveys at proposed construction sites, (b) desert tortoise compliance, (c) ecosystem monitoring, (d) sensitive plant species monitoring, (e) sensitive and protected/regulated animal monitoring, (f) habitat restoration monitoring, and (g) monitoring of the Nonproliferation Test and Evaluation Complex. During 2011, all applicable laws, regulations, and permit requirements were met, enabling EMAC to achieve its intended goals and objectives.

  5. Ecological Monitoring and Compliance Program 2008 Report

    SciTech Connect (OSTI)

    Hansen, Dennis J.; Anderson, David C.; Hall, Derek B.; Greger, Paul D.; Ostler, W. Kent

    2009-04-30

    The Ecological Monitoring and Compliance Program, funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO), monitors the ecosystem of the Nevada Test Site (NTS) and ensures compliance with laws and regulations pertaining to NTS biota. This report summarizes the program’s activities conducted by National Security Technologies, LLC (NSTec), during calendar year 2008. Program activities included (a) biological surveys at proposed construction sites, (b) desert tortoise compliance, (c) ecosystem mapping and data management, (d) sensitive plant species monitoring, (e) sensitive and protected/regulated animal monitoring, (f) habitat monitoring, (g) habitat restoration monitoring, and (h) monitoring of the Nonproliferation Test and Evaluation Complex (NPTEC).

  6. Ecological Monitoring and Compliance Program 2010 Report

    SciTech Connect (OSTI)

    Hansen, D.J.; Anderson, D.C.; Hall, D.B.; Greger, P.D.; Ostler, W.K.

    2011-07-01

    The Ecological Monitoring and Compliance (EMAC) Program, funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO), monitors the ecosystem of the Nevada National Security Site (NNSS) and ensures compliance with laws and regulations pertaining to NNSS biota. This report summarizes the programs activities conducted by National Security Technologies, LLC (NSTec), during calendar year 2010. Program activities included (a) biological surveys at proposed construction sites, (b) desert tortoise compliance, (c) ecosystem monitoring, (d) sensitive plant species monitoring, (e) sensitive and protected/regulated animal monitoring, (f) habitat restoration monitoring, and (g) monitoring of the Nonproliferation Test and Evaluation Complex (NPTEC). During 2010, all applicable laws, regulations, and permit requirements were met, enabling EMAC to achieve its intended goals and objectives.

  7. Ecological Monitoring and Compliance Program 2013 Report

    SciTech Connect (OSTI)

    Hall, Derek B.; Anderson, David C.; Greger, Paul D.

    2014-06-05

    The Ecological Monitoring and Compliance Program (EMAC), funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO, formerly Nevada Site Office), monitors the ecosystem of the Nevada National Security Site (NNSS) and ensures compliance with laws and regulations pertaining to NNSS biota. This report summarizes the program’s activities conducted by National Security Technologies, LLC (NSTec), during calendar year 2013. Program activities included (a) biological surveys at proposed activity sites, (b) desert tortoise compliance, (c) ecosystem monitoring, (d) sensitive plant species monitoring, (e) sensitive and protected/regulated animal monitoring, and (f) habitat restoration monitoring. During 2013, all applicable laws, regulations, and permit requirements were met, enabling EMAC to achieve its intended goals and objectives.

  8. Soil metagenomics and carbon cycling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Services » Soil and Groundwater Soil and Groundwater Soil and Groundwater Legacy soil and groundwater remediation activities at Los Alamos National Laboratory (LANL) are conducted in accordance with regulatory requirements, DOE regulations, and other applicable environmental laws. The scope of work requires investigation and remediation of contaminated sites known as solid waste management units (SWMUs) or areas of concern (AOCs). The protection of surface water and groundwater is also within

  9. Fernald Environmental Management Project Archived Soil & Groundwater...

    Office of Environmental Management (EM)

    Fernald Environmental Management Project Archived Soil & Groundwater Master Reports Fernald Environmental Management Project Archived Soil & Groundwater Master Reports Fernald ...

  10. Miamisburg Environmental Management Project Archived Soil & Groundwate...

    Office of Environmental Management (EM)

    Miamisburg Environmental Management Project Archived Soil & Groundwater Master Reports Miamisburg Environmental Management Project Archived Soil & Groundwater Master Reports ...

  11. A proposal to improve ecological compensation practice in road and railway projects in Spain

    SciTech Connect (OSTI)

    Villarroya, Ana Puig, Jordi

    2013-09-15

    To reduce ecological impacts caused by development projects, avoidance, minimization and compensation techniques have to be taken together into consideration along Environmental Impact Assessment (EIA) procedures. This paper explores the particular role that ecological compensation has had in recent road and railway EIA procedures in Spain, as seen through the review of a set of recent EIA Records of Decision (RODs) that confirms precedent findings. Noticing that residual impacts are not paid much attention, and that there is no evidence of a solid public participation in ecological impact evaluation, it proposes to increase the awareness on residual impacts, as a way to make easier public access to the allegedly most sensitive moment of EIA implementation: (residual) impact evaluation. -- Highlights: ► Ecological compensation practice in Spain is much lower than avoidance or mitigation. ► Residual impacts are overlooked in EIA processes and public participation is low. ► An increased awareness of residual impacts may also promote public participation. ► Current context needs these small steps to move towards better compensation practice.

  12. A Strategic Project Appraisal framework for ecologically sustainable urban infrastructure

    SciTech Connect (OSTI)

    Morrissey, John; Iyer-Raniga, Usha; McLaughlin, Patricia; Mills, Anthony

    2012-02-15

    Actors in the built environment are progressively considering environmental and social issues alongside functional and economic aspects of development projects. Infrastructure projects represent major investment and construction initiatives with attendant environmental, economic and societal impacts across multiple scales. To date, while sustainability strategies and frameworks have focused on wider national aspirations and strategic objectives, they are noticeably weak in addressing micro-level integrated decision making in the built environment, particularly for infrastructure projects. The proposed approach of this paper is based on the principal that early intervention is the most cost-effective and efficient means of mitigating the environmental effects of development projects, particularly macro infrastructure developments. A strategic overview of the various project alternatives, taking account for stakeholder and expert input, could effectively reduce project impacts/risks at low cost to the project developers but provide significant benefit to wider communities, including communities of future stakeholders. This paper is the first exploratory step in developing a more systematic framework for evaluating strategic alternatives for major metropolitan infrastructure projects, based on key sustainability principles. The developed Strategic Project Appraisal (SPA) framework, grounded in the theory of Strategic Environmental Assessment (SEA), provides a means of practically appraising project impacts and alternatives in terms of quantified ecological limits; addresses the neglected topic of metropolitan infrastructure as a means of delivering sustainability outcomes in the urban context and more broadly, seeks to open a debate on the potential for SEA methodology to be more extensively applied to address sustainability challenges in the built environment. Practically applied and timed appropriately, the SPA framework can enable better decision-making and more

  13. Industrial ecology at Lawrence Livermore National Laboratory summary statement

    SciTech Connect (OSTI)

    Gilmartin, T.J.

    1996-06-04

    At Livermore our hope and our intention is to make important contributions to global sustainability by basing both our scientific and technological research and our business practices on the principles of industrial ecology. Current efforts in the following fields are documented: global security, global ecology, energy for transportation, fusion energy, materials sciences, environmental technology, and bioscience.

  14. Microbial ecology and genomics: A crossroads of opportunity

    SciTech Connect (OSTI)

    Stahl, David A.; Tiedje, James M.

    2002-08-30

    Microbes have dominated life on Earth for most of its 4.5 billionyear history. They are the foundation of the biosphere, controlling the biogeochemical cycles and affecting geology, hydrology, and local and global climates. All life is completely dependent upon them. Humans cannot survive without the rich diversity of microbes, but most microbial species can survive without humans. Extraordinary advances in molecular technology have fostered an explosion of information in microbial biology. It is now known that microbial species in culture poorly represent their natural diversity—which dwarfs conventions established for the visible world. This was revealed over the last decade using newer molecular tools to explore environmental diversity and has sparked an explosive growth in microbial ecology and technologies that may profit from the bounty of natural biochemical diversity. Several colloquia and meetings have helped formulate policy recommendations to enable sustained research programs in these areas. One such colloquium organized by the American Academy of Microbiology (“The Microbial World: Foundation of the Biosphere,” 1997) made two key recommendations: (1) develop a more complete inventory of living organisms and the interagency cooperation needed to accomplish this goal, and (2) develop strategies to harvest this remarkable biological diversity for the benefit of science, technology, and society. Complete genome sequence information was identified as an essential part of strategy development, and the recommendation was made to sequence the genome of at least one species of each of the major divisions of microbial life.

  15. Data Archive of the Harvard Forest, a Long Term Ecological Research (LTER) Site

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Since 1907 research and education have been the mission of the Harvard Forest is one of the oldest and most intensively studied forests in North America. Located in Petersham, Massachusetts, its 3000 acres of land have been a center of research and education since 1907. The Long Term Ecological Research (LTER) program, established in 1988 and funded by the National Science Foundation, provides a framework for much of this activity. An understanding of forest responses to natural and human disturbance and environmental change over broad spatial and temporal scales pulls together research topics including biodiversity studies, the effects of invasive organisms, large experiments and permanent plot studies, historical and retrospective studies, soil nutrient dynamics, and plant population and community ecological interactions. Major research in forest-atmosphere exchange, hydrology, and regional studies places the work in regional and global context, aided by modeling tools. Conservation and management research and linkages to policy have been part of the Forest since its beginning, and the approaches used in New England can often apply to international studies. [Copied from http://harvardforest.fas.harvard.edu/research.html] In addition to more than 150 datasets, the Visual Information Access system at Harvard University Library makes nearly 900 images pertaining to Harvard Forest research available online to the public.

  16. Ecological risks of DOE`s programmatic environmental restoration alternatives

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    This report assesses the ecological risks of the Department of Energy`s (DOE) Environmental Restoration Program. The assessment is programmatic in that it is directed at evaluation of the broad programmatic alternatives outlined in the DOE Implementation Plan. It attempts to (1) characterize the ecological resources present on DOE facilities, (2) describe the occurrence and importance of ecologically significant contamination at major DOE facilities, (3) evaluate the adverse ecological impacts of habitat disturbance caused by remedial activities, and (4) determine whether one or another of the programmatic alternatives is clearly ecologically superior to the others. The assessment focuses on six representative facilities: the Idaho National Engineering Laboratory (INEL); the Fernald Environmental Management Project (FEMP); the Oak Ridge Reservation (ORR), including the Oak Ridge National Laboratory (ORNL), Y-12 plant, and K-25 plant; the Rocky Flats Plant; the Hanford Reservation; and the Portsmouth Gaseous Diffusion Plant.

  17. Ecological Monitoring and Compliance Program Fiscal Year 2000 Report

    SciTech Connect (OSTI)

    Wills, C.A.

    2000-12-01

    The Ecological Monitoring and Compliance program, funded through the U.S. Department of Energy, Nevada Operations Office, monitors the ecosystem of he Nevada Test Site (NTS) and ensures compliance with laws and regulations pertaining to NTS biota. This report summarizes the program's activities conducted by Bechtel Nevada during fiscal year 2000. Program activities included: (1) biological surveys at proposed construction sites, (2) desert tortoise compliance,(3) ecosystem mapping, (4) sensitive species and unique habitat monitoring, and (5) biological monitoring at the HAZMAT Spill Center. Biological surveys for the presence of sensitive species were conducted for 24 NTS projects. Seventeen sites were in desert tortoise habitat, and six acres of tortoise habitat were documented as being disturbed this year. No tortoises were found in or displaced from project areas, and no tortoises were accidentally injured or killed. A topical report describing the classification of habitat types o n the NTS was completed. The report is the culmination of three years of field vegetation mapping and the analysis of vegetation data from over 1,500 ecological landform units. A long-term monitoring plan for important plant species that occur on the NTS was completed. Sitewide inventories were conducted for the western burrowing owl, bat species of concern, wild horses, raptor nests, and mule deer. Fifty-nine of 69 known owl burrows were monitored. Forty-four of the known burrows are in disturbed habitat. As in previous years, some owls were present year round on the NTS. An overall decrease in active owl burrows was observed within all three ecoregions (Mojave Desert, Transition, Great Basin Desert) from October through January. An increase in active owl burrows was observed from mid-March to early April. A total of 45 juvenile owls was detected from eight breeding pairs. One nest burrow was detected in the Mojave Desert,one in the Great Basin Desert, and six in the Transition

  18. Innovative vitrification for soil remediation

    SciTech Connect (OSTI)

    Jetta, N.W.; Patten, J.S.; Hart, J.G.

    1995-12-01

    The objective of this DOE demonstration program is to validate the performance and operation of the Vortec Cyclone Melting System (CMS{trademark}) for the processing of LLW contaminated soils found at DOE sites. This DOE vitrification demonstration project has successfully progressed through the first two phases. Phase 1 consisted of pilot scale testing with surrogate wastes and the conceptual design of a process plant operating at a generic DOE site. The objective of Phase 2, which is scheduled to be completed the end of FY 95, is to develop a definitive process plant design for the treatment of wastes at a specific DOE facility. During Phase 2, a site specific design was developed for the processing of LLW soils and muds containing TSCA organics and RCRA metal contaminants. Phase 3 will consist of a full scale demonstration at the DOE gaseous diffusion plant located in Paducah, KY. Several DOE sites were evaluated for potential application of the technology. Paducah was selected for the demonstration program because of their urgent waste remediation needs as well as their strong management and cost sharing financial support for the project. During Phase 2, the basic nitrification process design was modified to meet the specific needs of the new waste streams available at Paducah. The system design developed for Paducah has significantly enhanced the processing capabilities of the Vortec vitrification process. The overall system design now includes the capability to shred entire drums and drum packs containing mud, concrete, plastics and PCB`s as well as bulk waste materials. This enhanced processing capability will substantially expand the total DOE waste remediation applications of the technology.

  19. Percolation behavior of tritiated water into a soil packed bed

    SciTech Connect (OSTI)

    Honda, T.; Katayama, K.; Uehara, K.; Fukada, S.; Takeishi, T.

    2015-03-15

    A large amount of cooling water is used in a D-T fusion reactor. The cooling water will contain tritium with high concentration because tritium can permeate metal walls at high temperature easily. A development of tritium handling technology for confining tritiated water in the fusion facility is an important issue. In addition, it is also important to understand tritium behavior in environment assuming severe accidents. In this study, percolation experiments of tritiated water in soil packed bed were carried out and tritium behavior in soil was discussed. Six soil samples were collected in Hakozaki campus of Kyushu University. These particle densities were of the same degree as that of general soils and moisture contents were related to BET surface area. For two soil samples used in the percolation experiment of tritiated water, saturated hydraulic conductivity agreed well with the estimating value by Creager. Tritium retention ratio in the soil packed bed was larger than water retention. This is considered to be due to an effect of tritium sorption on the surface of soil particles. The isotope exchange capacity estimated by assuming that H/T ratio of supplied tritiated water and H/T ratio of surface water of soil particle was equal was comparable to that on cement paste and mortar which were obtained by exposure of tritiated water vapor. (authors)

  20. Soil treatment to remove uranium and related mixed radioactive contaminants. Final report September 1992--October 1995

    SciTech Connect (OSTI)

    1996-07-01

    A research and development project to remove uranium and related radioactive contaminants from soil by an ultrasonically-aided chemical leaching process began in 1993. The project objective was to develop and design, on the basis of bench-scale and pilot-scale experimental studies, a cost-effective soil decontamination process to produce a treated soil containing less than 35 pCi/g. The project, to cover a period of about thirty months, was designed to include bench-scale and pilot-scale studies to remove primarily uranium from the Incinerator Area soil, at Fernald, Ohio, as well as strontium-90, cobalt-60 and cesium-137 from a Chalk River soil, at the Chalk River Laboratories, Ontario. The project goal was to develop, design and cost estimate, on the basis of bench-scale and pilot-scale ex-situ soil treatment studies, a process to remove radionuclides form the soils to a residual level of 35 pCi/g of soil or less, and to provide a dischargeable water effluent as a result of soil leaching and a concentrate that can be recovered for reuse or solidified as a waste for disposal. In addition, a supplementary goal was to test the effectiveness of in-situ soil treatment through a field study using the Chalk River soil.

  1. Bioremediation of Petroleum Hydrocarbon-Contaminated Soils, Comprehensive Report

    SciTech Connect (OSTI)

    Altman, D.J.

    2001-01-12

    The US Department of Energy and the Institute for Ecology of Industrial Areas, Katowice, Poland have been cooperating in the development and implementation of innovative environmental remediation technologies since 1995. U.S. experts worked in tandem with counterparts from the IETU and CZOR throughout this project to characterize, assess and subsequently, design, implement and monitor a bioremediation system.

  2. RAPID SEPARATION METHOD FOR 237NP AND PU ISOTOPES IN LARGE SOIL SAMPLES

    SciTech Connect (OSTI)

    Maxwell, S.; Culligan, B.; Noyes, G.

    2010-07-26

    A new rapid method for the determination of {sup 237}Np and Pu isotopes in soil and sediment samples has been developed at the Savannah River Site Environmental Lab (Aiken, SC, USA) that can be used for large soil samples. The new soil method utilizes an acid leaching method, iron/titanium hydroxide precipitation, a lanthanum fluoride soil matrix removal step, and a rapid column separation process with TEVA Resin. The large soil matrix is removed easily and rapidly using this two simple precipitations with high chemical recoveries and effective removal of interferences. Vacuum box technology and rapid flow rates are used to reduce analytical time.

  3. Pneumatic soil removal tool

    DOE Patents [OSTI]

    Neuhaus, J.E.

    1992-10-13

    A soil removal tool is provided for removing radioactive soil, rock and other debris from the bottom of an excavation, while permitting the operator to be located outside of a containment for that excavation. The tool includes a fixed jaw, secured to one end of an elongate pipe, which cooperates with a movable jaw pivotably mounted on the pipe. Movement of the movable jaw is controlled by a pneumatic cylinder mounted on the pipe. The actuator rod of the pneumatic cylinder is connected to a collar which is slidably mounted on the pipe and forms part of the pivotable mounting assembly for the movable jaw. Air is supplied to the pneumatic cylinder through a handle connected to the pipe, under the control of an actuator valve mounted on the handle, to provide movement of the movable jaw. 3 figs.

  4. Pneumatic soil removal tool

    DOE Patents [OSTI]

    Neuhaus, John E.

    1992-01-01

    A soil removal tool is provided for removing radioactive soil, rock and other debris from the bottom of an excavation, while permitting the operator to be located outside of a containment for that excavation. The tool includes a fixed jaw, secured to one end of an elongate pipe, which cooperates with a movable jaw pivotably mounted on the pipe. Movement of the movable jaw is controlled by a pneumatic cylinder mounted on the pipe. The actuator rod of the pneumatic cylinder is connected to a collar which is slidably mounted on the pipe and forms part of the pivotable mounting assembly for the movable jaw. Air is supplied to the pneumatic cylinder through a handle connected to the pipe, under the control of an actuator valve mounted on the handle, to provide movement of the movable jaw.

  5. ARM - Measurement - Soil characteristics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    characteristics ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Soil characteristics Includes available water capacity, bulk density, permeability, porosity, rock fragment classification, rock fragment volume, percent clay, percent sand, and texture classification Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer

  6. Agencies Decide to Dig Up Contaminated Soil at Hanford Site- Federal and state agencies determine cleanup plans for four areas near central Hanford

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. –The Department of Energy (DOE) and the U.S. Environmental Protection Agency (EPA), in coordination with the Washington Department of Ecology, have made plans for remediating contaminated soil at four locations in the center of the Hanford Site.

  7. Soil quality in the Lomellina area using in vitro models and ecotoxicological assays

    SciTech Connect (OSTI)

    Baderna, Diego; Colombo, Andrea; Romeo, Margherita; Cambria, Felice; Teoldi, Federico; Lodi, Marco; Diomede, Luisa; Benfenati, Emilio

    2014-08-15

    proposed. • Organic extracts from investigated soils inhibited HepG2 cell proliferation. • The carcinogenic potential of extracts was evaluated by cell transformation assay. • Potential alerts were estimated after ingestion of soils. • Caenorhabditis elegans and phytotest were used to evaluate ecological effects.

  8. A correlation between soil descriptions and {sup 226}Ra concentrations in Florida soils

    SciTech Connect (OSTI)

    Harrison, D.P.

    1992-12-31

    The soil radium content in Florida is highly variable. The range in radium concentrations, where the samples involved in this study are concerned, is from 0.1 pCi/g to 18.5 pCi/g. Low {sup 226}Ra concentrations (0.1 to 5 pCi/g) are evidenced in sands, moderate concentrations (5 to 11 pCi/g) are found in silt and gravel, and high {sup 226}Ra concentrations (>11 pCi/g) are found in soil horizons with shell, clay, and strata with phosphate. Strata containing phosphate yields a high concentration of {sup 226}Ra. The information obtained in this study, soil descriptions with their corresponding {sup 226}Ra concentrations, comes from geological cores drilled by geotechnical consultants with gamma spectrometry analysis performed by high resolution gamma spectroscopy. Concentration; of {sup 226}Ra generally increase with depth. These cores are usually terminated at 20 feet deep, with some cores being shallower than this due to hitting bedrock or encountering the water table. These frequency distributions give the core-logging geologist an approximate concentration of {sup 226}Ra based on the description of the soil. Since the correlation of {sup 226}Ra and soil descriptions can be used as a tool in assigning indoor radon potential, this study is of importance to land managers, contractors, developers, and regulating agencies who are attempting to place standards on tracts of land with {sup 226}Ra concentration used as a criterion.

  9. Geochemical and physical properties of wetland soils at the Savannah River site

    SciTech Connect (OSTI)

    Dixon, K.L; Rogers, V.A.; Conner, S.P.; Cummings, C.L.; Gladden, J.B.; Weber, J.M.

    1996-05-01

    The Savannah River Site (SRS), located in Aiken, Allendale, and Barnwell Counties, South Carolina, is a nuclear production facility operated for the U.S. Department of Energy (DOE) by Westinghouse Savannah River Company (WSRC). To facilitate future human health and ecological risk assessments, treatability studies, remedial investigations, and feasibility studies for its wetland areas, SRS needs a database of background geochemical and physical properties of wetland soils. These data are needed for comparison to data collected from wetland soils that may have been affected by SRS operations. SRS contains 36,000 acres of wetlands and an additional 5,000 acres of bottom land soils subject to flooding. Recent studies of wetland soils near various waste units at SRS show that some wetlands have been impacted by releases of contaminants resulting from SRS operations (WSRC, 1992). Waste waters originating from the operations facilities typically have been discharged into seepage basins located in upland soils, direct discharge of waste water to wetland areas has been minimal. This suggests that impacted wetland areas have been affected indirectly as a result of transport mechanisms such as surface runoff, groundwater seeps, fluvial or sediment transport, and leaching. Looney et al. (1990) conducted a study to characterize the geochemical and physical properties of upland soils and shallow sediments on the SRS. A primary objective of the upland study was to collect the data needed to assess the qualitative and quantitative impacts of SRS operations on the environment. By comparing the upland soils data to data collected from waste units located in similar soils, SRS impacts could be assessed. The data were also intended to aid in selection of remediation alternatives. Because waste units at SRS have historically been located in upland areas, wetland soils were not sampled. (Abstract Truncated)

  10. Produced water discharges to the Gulf of Mexico: Background information for ecological risk assessments

    SciTech Connect (OSTI)

    Meinhold, A.F.; Holtzman, S.; DePhillips, M.P.

    1996-06-01

    This report reviews ecological risk assessment concepts and methods; describes important biological resources in the Gulf of Mexico of potential concern for produced water impacts; and summarizes data available to estimate exposure and effects of produced water discharges. The emphasis is on data relating to produced water discharges in the central and western Gulf of Mexico, especially in Louisiana. Much of the summarized data and cited literature are relevant to assessments of impacts in other regions. Data describing effects on marine and estuarine fishes, mollusks, crustaceans and benthic invertebrates are emphasized. This review is part of a series of studies of the health and ecological risks from discharges of produced water to the Gulf of Mexico. These assessments will provide input to regulators in the development of guidelines and permits, and to industry in the use of appropriate discharge practices.

  11. Baseline ecological footprint of Sandia National Laboratories, New Mexico.

    SciTech Connect (OSTI)

    Coplen, Amy K.; Mizner, Jack Harry,; Ubechel, Norion M.

    2009-01-01

    The Ecological Footprint Model is a mechanism for measuring the environmental effects of operations at Sandia National Laboratories in Albuquerque, New Mexico (SNL/NM). This analysis quantifies environmental impact associated with energy use, transportation, waste, land use, and water consumption at SNL/NM for fiscal year 2005 (FY05). Since SNL/NM's total ecological footprint (96,434 gha) is greater than the waste absorption capacity of its landholdings (338 gha), it created an ecological deficit of 96,096 gha. This deficit is equal to 886,470lha, or about 3,423 square miles of Pinyon-Juniper woodlands and desert grassland. 89% of the ecological footprint can be attributed to energy use, indicating that in order to mitigate environmental impact, efforts should be focused on energy efficiency, energy reduction, and the incorporation of additional renewable energy alternatives at SNL/NM.

  12. Savannah River Ecology Laboratory FY2006 Annual Technical Progress Report

    SciTech Connect (OSTI)

    Paul M. Bertsch

    2006-10-23

    FY2006 annual report of research conducted by the Savannah River Ecology Laboratory, a research unit of the University of Georgia operating on the Savannah River Site in Aiken, County, SC.

  13. The Importance of Traditional Ecological Knowledge in Adaptation Planning

    Broader source: Energy.gov [DOE]

    The National Adaptation Forum is hosting a webinar to focus on the importance and role of traditional ecological knowledge in adaptation planning at the local, regional, and national level.

  14. Long-Term Ecological Monitoring Field Sampling Plan for 2007

    SciTech Connect (OSTI)

    T. Haney R. VanHorn

    2007-07-31

    This field sampling plan describes the field investigations planned for the Long-Term Ecological Monitoring Project at the Idaho National Laboratory Site in 2007. This plan and the Quality Assurance Project Plan for Waste Area Groups 1, 2, 3, 4, 5, 6, 7, 10, and Removal Actions constitute the sampling and analysis plan supporting long-term ecological monitoring sampling in 2007. The data collected under this plan will become part of the long-term ecological monitoring data set that is being collected annually. The data will be used t determine the requirements for the subsequent long-term ecological monitoring. This plan guides the 2007 investigations, including sampling, quality assurance, quality control, analytical procedures, and data management. As such, this plan will help to ensure that the resulting monitoring data will be scientifically valid, defensible, and of known and acceptable quality.

  15. Savannah River Ecology Laboratory 2005 Annual Technical Progress Report

    SciTech Connect (OSTI)

    Paul M. Bertsch

    2005-07-19

    2005 annual report of research conducted by the Savannah River Ecology Laboratory, a research unit of The University of Georgia operating on the Savannah River Site, Aiken, South Carolina

  16. Savannah River Ecology Laboratory 2004 Annual Technical Progress Report

    SciTech Connect (OSTI)

    Paul M. Bertsch

    2004-07-29

    2004 annual report of research conducted by the Savannah River Ecology Laboratory, a research unit of The University of Georgia operating on the Savannah River Site in Aiken, South Carolina

  17. Washington State Department of Ecology: Replacement Wells Requiring...

    Open Energy Info (EERE)

    Ecology: Replacement Wells Requiring a Water Right Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: Washington State Department of...

  18. O. E. Rhodes, Jr. | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Curriculum Vitae Faculty & Scientists SREL Home Olin E. Rhodes, Jr. Savannah River Ecology Laboratory P O Drawer E, Aiken, SC 29802 (803) 725-8191 office (803) 725-3309 fax...

  19. Ecology Action: Small Market Advanced Retrofit Transformation Program (SMART)

    Broader source: Energy.gov [DOE]

    Lead Performer: Ecology Action – Santa Cruz, CA Partners: - New Buildings Institute – Portland, OR - Electric and Gas Industries Association (EGIA) – Sacramento, CA - Pacific Gas and Electric – San Francisco, CA - Sacramento Municipal Utility District – Sacramento, CA

  20. Preliminary Notice of Violation, Safety and Ecology Corporation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ecology Corporation related to a 10 CFR Part 708 Violation at the Portsmouth Gaseous Diffusion Project On June 14, 2005, the U.S. Department of Energy issued a Preliminary Notice...

  1. COLLOQUIUM: Ocean Acoustic Ecology: Great Whales, Ocean Scales...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 23, 2016, 4:15pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM: Ocean Acoustic Ecology: Great Whales, Ocean Scales, Big Data Dr. Christopher Clark Cornell University ...

  2. Project plan for the background soils project for the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect (OSTI)

    1995-09-01

    The Background Soils Project for the Paducah Gaseous Diffusion Plant (BSPP) will determine the background concentration levels of selected naturally occurring metals, other inorganics, and radionuclides in soils from uncontaminated areas in proximity to the Paducah Gaseous Diffusion Plant (PGDP) in Paducah, Kentucky. The data will be used for comparison with characterization and compliance data for soils, with significant differences being indicative of contamination. All data collected as part of this project will be in addition to other background databases established for the PGDP. The BSPP will address the variability of surface and near-surface concentration levels with respect to (1) soil taxonomical types (series) and (2) soil sampling depths within a specific soil profile. The BSPP will also address the variability of concentration levels in deeper geologic formations by collecting samples of geologic materials. The BSPP will establish a database, with recommendations on how to use the data for contaminated site assessment, and provide data to estimate the potential human and health and ecological risk associated with background level concentrations of potentially hazardous constituents. BSPP data will be used or applied as follows.

  3. Is the “ecological and economic approach for the restoration of collapsed gullies” in Southern China really economic?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Chengchao; Zhang, Yaoqi; Xu, Yecheng; Yang, Qichun

    2015-07-31

    Collapsed gully erosion constantly plagues the sustainability of rural areas in China. To control collapsed gully erosion, an ecological and economic approach, which uses tree plantation to gain economic benefits and control soil erosion, has been widely applied by local governments in Southern China. However, little is known about the economic feasibility of this new method. The objective of this study was to determine the effectiveness and economic benefits of the new method. Based on a case study in Changting County, Southeast China, two farms were selected to represent a timber tree plantation and a fruit tree plantation, respectively. Themore » Annual Capital Capitalization Method and Return on Investment (ROI) were selected to conduct cost-benefit analysis. In contrast to previous studies, we found that the new approach was far from economic. The value of the newly-built forestland in Sanzhou Village and Tufang Village is 2738 RMB ha-1 and 5477 RMB ha-1, respectively, which are extremely lower than the costs of ecological restoration. Meanwhile, the annual ROI is –3.60% and –8.90%, respectively, which is negative and also far poorer than the average value of forestry in China. The costs of conservation were substantially over the related economic benefits, and the investors would suffer from greater loss if they invested more in the conservation. Low-cost terraces with timber trees had less economic loss compared with the costly terraces with fruit tree plantation. Moreover, the cost efficiency of the new approaches in soil conservation was also greatly poorer than the conventional method. The costs of conserving one ton soil per year for conventional method, new method for planting timber trees, and planting fruit trees were 164 RMB, 696 RMB, and 11,664 RMB, respectively. Therefore, the new collapsed gully erosion control methods are uneconomic and unsuitable to be widely carried out in China in the near future.« less

  4. Is the “ecological and economic approach for the restoration of collapsed gullies” in Southern China really economic?

    SciTech Connect (OSTI)

    Wang, Chengchao; Zhang, Yaoqi; Xu, Yecheng; Yang, Qichun

    2015-07-31

    Collapsed gully erosion constantly plagues the sustainability of rural areas in China. To control collapsed gully erosion, an ecological and economic approach, which uses tree plantation to gain economic benefits and control soil erosion, has been widely applied by local governments in Southern China. However, little is known about the economic feasibility of this new method. The objective of this study was to determine the effectiveness and economic benefits of the new method. Based on a case study in Changting County, Southeast China, two farms were selected to represent a timber tree plantation and a fruit tree plantation, respectively. The Annual Capital Capitalization Method and Return on Investment (ROI) were selected to conduct cost-benefit analysis. In contrast to previous studies, we found that the new approach was far from economic. The value of the newly-built forestland in Sanzhou Village and Tufang Village is 2738 RMB ha-1 and 5477 RMB ha-1, respectively, which are extremely lower than the costs of ecological restoration. Meanwhile, the annual ROI is –3.60% and –8.90%, respectively, which is negative and also far poorer than the average value of forestry in China. The costs of conservation were substantially over the related economic benefits, and the investors would suffer from greater loss if they invested more in the conservation. Low-cost terraces with timber trees had less economic loss compared with the costly terraces with fruit tree plantation. Moreover, the cost efficiency of the new approaches in soil conservation was also greatly poorer than the conventional method. The costs of conserving one ton soil per year for conventional method, new method for planting timber trees, and planting fruit trees were 164 RMB, 696 RMB, and 11,664 RMB, respectively. Therefore, the new collapsed gully erosion control methods are uneconomic and unsuitable to be widely carried out in China in the near future.

  5. Ecological function and resilience: Neglected criteria for environmental impact assessment and ecological risk analysis

    SciTech Connect (OSTI)

    Cairns, J. Jr.; Niederlehner, B.R. . Univ. Center for Environmental and Hazardous Materials Studies)

    1993-01-01

    The importance of establishing methods for determining ecological function and resilience transcends scientific interest; these methods are important to sustained societal use of ecosystems and long-term productivity. Essential services that ecosystems provide to human society include water purification, oxygen production, carbon storage, climate regulation, and production of food, wood, and medicinal drugs. Although man is dependent upon these services, human understanding of the dynamics of ecosystem function is limited. Man can detect gross impairment of ecosystem function or resilience after the fact. However, protecting ecosystem health necessitates detecting adverse trends in ecological function, rather than reacting when the system collapses. The information to date is inadequate for predicting subtle changes or incremental trends. Once ecosystems are damaged and therefore providing diminished services, it is important to determine when they will be restored to an approximation of their predisturbance condition. For those ecosystems unlikely to recover on their own, management techniques may enhance recovery processes. Information about response of ecosystem function to human actions and relative resilience of alternative ecosystems can facilitate decision-making under the National Environmental Policy Act (NEPA).

  6. Ecological perspectives of land use history: The Arid Lands Ecology (ALE) Reserve

    SciTech Connect (OSTI)

    Hinds, N R; Rogers, L E

    1991-07-01

    The objective of this study was to gather information on the land use history of the Arid Land Ecology (ALE) Reserve so that current ecological research could be placed within a historical perspective. The data were gathered in the early 1980s by interviewing former users of the land and from previously published research (where available). Interviews with former land users of the ALE Reserve in Benton County, Washington, revealed that major land uses from 1880 to 1940 were homesteading, grazing, oil/gas production, and road building. Land use practices associated with grazing and homesteading have left the greatest impact on the landscape. Disturbed sites where succession is characterized by non-native species, plots where sagebrush was railed away, and sheep trails are major indications today of past land uses. Recent estimates of annual bunchgrass production do ALE do not support the widespread belief that bunchgrass were more productive during the homesteading era, though the invasion of cheatgrass (Bromus tectorum), Jim Hill mustard (Sisymbrium altissium), and other European alien plant species has altered pre-settlement succession patterns. 15 refs., 6 figs., 1 tab.

  7. START HERE 2013 Annual Ecology Report DVD 1.htm

    Office of Legacy Management (LM)

    3 Annual Ecology Report for the Rocky Flats Site Ecology DVD 1 Click on the links below to access different portions of the electronic annual report. 2013 Annual Report Sections Revegetation Monitoring Report Vegetation Survey Report Wildlife Survey Report Wetland Mitigation Monitoring Report Rocky Flats Vascular Flora List (2013) 2013 Photopoint Monitoring Closure Revegetation Locations Post-Closure Revegetation Locations Wetland Mitigation Locations 2013 Wildlife Videos

  8. START HERE 2014 Annual Ecology Report DVD 1.htm

    Office of Legacy Management (LM)

    Annual Ecology Report for the Rocky Flats Site Ecology DVD 1 Click on the links below to access different portions of the electronic annual report. 2014 Annual Report Sections Revegetation Monitoring Report Vegetation Survey Report Wildlife Survey Report COU Vegetation Map 2014 Wetland Mitigation Monitoring Report Rocky Flats Vascular Flora List (2014) 2014 Photopoint Monitoring Closure Revegetation Locations Post-Closure Revegetation Locations Wetland Mitigation Locations

  9. In-situ vitrification of soil

    DOE Patents [OSTI]

    Brouns, Richard A.; Buelt, James L.; Bonner, William F.

    1983-01-01

    A method of vitrifying soil at or below a soil surface location. Two or more conductive electrodes are inserted into the soil for heating of the soil mass between them to a temperature above its melting temperature. Materials in the soil, such as buried waste, can thereby be effectively immobilized.

  10. Ecological compensation and Environmental Impact Assessment in Spain

    SciTech Connect (OSTI)

    Villarroya, Ana; Puig, Jordi

    2010-11-15

    To achieve meaningful sustainable development, Environmental Impact Assessment (EIA) should avoid the net losses in the environment resource base. But EIA practice does not always avoid the losses caused by the implementation of the projects under EIA regulation. Some environmental impacts are, simply, admitted, even without enforcing any form of compensation. When applied, compensation is sometimes just a monetary payment to offset the environmental loss. This paper looks for evidence on the role that compensation is given at present in EIA practice in Spain, and for some of its conceptual and regulatory roots. Specifically, it explores how compensation is addressed in 1302 records of decision (RODs) on those projects subject to the Spanish EIA regulation published during the years 2006 and 2007, to know how far Spain is from preserving the environmental resource base managed through this particular aspect of EIA practice. As a result, it is concluded that the practice of ecological compensation in EIA in Spain is much lower than it could be expected in a theoretical sustainability context committed to avoid net losses in the environment resource base, mainly due to an EIA practice focused on on-site mitigation that allows these net losses.

  11. Weathering controls on mechanisms of carbon storage in grassland soils

    SciTech Connect (OSTI)

    Masiello, C.A.; Chadwick, O.A.; Southon, J.; Torn, M.S.; Harden, J.W.

    2004-09-01

    On a sequence of soils developed under similar vegetation, temperature, and precipitation conditions, but with variations in mineralogical properties, we use organic carbon and 14C inventories to examine mineral protection of soil organic carbon. In these soils, 14C data indicate that the creation of slow-cycling carbon can be modeled as occurring through reaction of organic ligands with Al3+ and Fe3+ cations in the upper horizons, followed by sorption to amorphous inorganic Al compounds at depth. Only one of these processes, the chelation of Al3+ and Fe3+ by organic ligands, is linked to large carbon stocks. Organic ligands stabilized by this process traverse the soil column as dissolved organic carbon (both from surface horizons and root exudates). At our moist grassland site, this chelation and transport process is very strongly correlated with the storage and long-term stabilization of soil organic carbon. Our 14C results show that the mechanisms of organic carbon transport and storage at this site follow a classic model previously believed to only be significant in a single soil order (Spodosols), and closely related to the presence of forests. The presence of this process in the grassland Alfisol, Inceptisol, and Mollisol soils of this chronosequence suggests that this process is a more significant control on organic carbon storage than previously thought.

  12. Nondestructive and automated testing for soil and rock properties. ASTM special technical publication 1350

    SciTech Connect (OSTI)

    Marr, W.A.; Fairhurst, C.E.

    1999-07-01

    The purpose of the symposium was to highlight recent developments in nondestructive and automated testing for soil and rock properties. Speakers present results of recent research in these areas that have practical application for the rapid and economical testing of soil and rock. Authors were encouraged to identify which testing equipment and methods have sufficient practical application to warrant standards development.

  13. Successful Implementation of Soil Segregation Technology at the Painesville FUSRAP Site - 12281

    SciTech Connect (OSTI)

    Buechi, Stephen P.; Andrews, Shawn M.; Lombardo, Andrew J.; Lively, Jeffrey W.

    2012-07-01

    Typically the highest cost component of the radiological soils remediation of Formerly Utilized Sites Remedial Action Program (FUSRAP) sites is the cost to transport and dispose of the excavated soils, typically contaminated with naturally occurring isotopes of uranium, thorium and radium, at an appropriately permitted off-site disposal facility. The heterogeneous nature of the contamination encountered at these sites makes it difficult to accurately delineate the extent of contaminated soil using the limited, discrete sampling data collected during the investigation phases; and difficult to precisely excavate only the contaminated soil that is above the established cleanup limits using standard in-field scanning and guiding methodologies. This usually results in a conservative guided excavation to ensure cleanup criteria are met, with the attendant transportation and disposal costs for the larger volumes of soil excavated. To address this issue during the remediation of the Painesville FUSRAP Site, located in Painesville, Ohio, the Buffalo District of the U.S. Army Corps of Engineers, and its contractor, Safety and Ecology Corporation (SEC), employed automatic soil segregation technology provided by MACTEC (now AMEC) to reduce the potential for transportation and disposal of soils that met the cleanup limits. This waste minimization technology utilized gamma spectroscopy of conveyor-fed soils to automatically segregate the material into above and below criteria discharge piles. Use of the soil segregation system resulted in cost savings through the significant reduction of the volume of excavated soil that required off-site transportation and disposal, and the reduction of the amount of imported clean backfill required via reuse of 'below criteria' segregated soil as place back material in restoring the excavations. Measurements taken by the soil segregation system, as well as results of quality control sampling of segregated soils, confirmed that soils segregated

  14. Monticello Mill Tailings Site Operable Unit III Ecological Risk

    Office of Legacy Management (LM)

    ... in sodium and other trace elements (Robbins 1993). Soil ingestion rate values are rare in the literature. ... Radium-226, as an alkaline earth series radionuclide, is ...

  15. Ecological Interactions Between Metals and Microbes That Impact Bioremediation

    SciTech Connect (OSTI)

    Konopka, Allan E.

    1998-06-01

    Samples have been obtained from (a) soil highly contaminated with Cr (tannery site) and (b) soils contaminated with petroleum, Cr, and Pb (Seymour, IN). Microcosm experiments with the tannery site soil indicated that microbial biomass (assayed as phospholipid-phosphate) and activity (assayed as carbon dioxide evolution) were primarily determined by organic carbon availability, but not total Cr concentration. The toxicity of metals to the indigenous microbial populations of the Seymour soils was determined by measuring microbial activity (incorporation of tritiated leucine into protein) of cells extracted from soil particles in solutions of increasing metal concentration. Although total Cr concentration varied 100-fold in these soils, the inhibition constant for Cr toxicity varied < 3-fold. Of additional interest in one soil was the dose-response function; the response suggests the soil contains a complex mixture of microbes with different Cr resistance levels. Cr and Pb resistant bacteria have been isolated from these soil samples. In Arthrobacter sp. Cr15, Cr resistance was spontaneously lost at a frequency of ca. 0.5% after growth for 20 generations in non-selective medium. The wild-type contained a 60 kb plasmid. In two Cr sensitive strains, restriction fragment analysis has shown that 15 kb of the plasmid have been lost. Matings between the wild type and cured strains result in transfer of the Cr resistance phenotype at a frequency of 1%.

  16. Tuberville Lab Opportunities | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    However, I will depend on the lab members, particularly students, to do the necessary literature review and to take a lead role in both project development and execution....

  17. Beasley Lab | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    vultures on transmission tower Black (Coragyps atratus) and turkey vultures (Cathartes aura) are scavengers commonly associated with areas of human development. Because vultures...

  18. The ecological relevance of transport in waste disposal systems in Western Europe

    SciTech Connect (OSTI)

    Salhofer, Stefan Schneider, Felicitas; Obersteiner, Gudrun

    2007-07-01

    With the development of modern waste management systems in Western Europe, a remarkable increase in the distances for waste transportation has been observed. The question thus arises whether recycling with longer transport distances is ecologically advantageous or whether disposal without recycling is to be preferred. This situation was analysed using selected product and waste streams. This included refrigerators, paper, polyethylene films and expanded polystyrene. For each of these streams, a life cycle analysis was conducted with an emphasis on waste transport. The system boundaries were set in terms of the generation of waste to recycling or landfilling. The comparison included several scenarios with recycling and different transport distances. Landfilling was used as the reference scenario. The results obtained demonstrated how transport distances influence the ecological benefit of recycling. In the case of expanded polystyrene, the ecological boundaries are reached in practical situations, while with other materials these boundaries are far from being attained. In these cases, more complex and elaborate collection schemes, such as kerbside collection, which is economically convenient and shows the highest collection rates, can also be recommended.

  19. Contrasting soil microbial community functional structures in...

    Office of Scientific and Technical Information (OSTI)

    Contrasting soil microbial community functional structures in two major landscapes of the Tibetan alpine meadow Prev Next Title: Contrasting soil microbial community...

  20. Dynamics and transformations of radionuclides in soils and ecosystem health

    SciTech Connect (OSTI)

    Fellows, Robert J. ); Ainsworth, Calvin C. ); Driver, Crystal J. ); Cataldo, Dominic A. )

    1998-12-01

    The chemical behavior of radionuclides can vary widely in soil and sediment environments. Equally important, for a given radionuclide the physico-chemical properties of the solids and aqueous phase can greatly influence a radionuclides behavior. Radionuclides can conceivably occur in soils as soluble-free, inorganic-soluble-complexed, organic-soluble, complexed, adsorbed, precipitated, coprecipitated, or solid structural species. While it is clear that an assessment of a radionuclide?s soil chemistry and potential shifts in speciation will yield a considerable understanding of its behavior in the natural environment, it does not directly translate to bioavailability or its impact on ecosystems health. The soil chemical factors have to be linked to food chain considerations and other ecological parameters that directly tie to an analysis of ecosystem health. In general, the movement of radionuclides from lower to higher trophic levels diminishes with each trophic level in both aqua tic and terrestrial systems. In some cases, transfer is limited because of low absorption/assimilation by successive trophic organisms (Pu, U); for other radionuclides (Tc, H) assimilation may be high but rapid metabolic turnover and low retention greatly reduce tissue concentrations available to predator species. Still others are chemical analogs of essential elements whose concentrations are maintained under strict metabolic control in tissues (Cs) or are stored in tissues seldom consumed by other organisms (Sr storage in exoskeleton, shells, and bone). Therefore, the organisms that receive the greatest ingestion exposures are those in lower trophic positions or are in higher trophic levels but within simple, short food chains. Food source, behavior, and habitat influence the accumulation of radionuclides in animals.

  1. Bioremediation of petroleum hydrocarbo-contaminated soils, comprehensive report, December 1999

    SciTech Connect (OSTI)

    Hazen, Terry

    2000-04-01

    The US Department of Energy and the Institute for Ecology of Industrial Areas (IETU), Katowice, Poland have been cooperating in the development and implementation of innovative environmental remediation technologies since 1995. A major focus of this program has been the demonstration of bioremediation techniques to cleanup the soil and sediment associated with a waste lagoon at the Czechowice Oil Refinery (CZOR) in southern Poland. After an expedited site characterization (ESC), treatability study, and risk assessment study, a remediation system was designed that took advantage of local materials to minimize cost and maximize treatment efficiency. U.S. experts worked in tandem with counterparts from the IETU and CZOR throughout this project to characterize, assess and subsequently, design, implement and monitor a bioremediation system. The CZOR, our industrial partner for this project, was chosen because of their foresight and commitment to the use of new approaches for environmental restoration. This program sets a precedent for Poland in which a portion of the funds necessary to complete the project were provided by the company responsible for the problem. The CZOR was named by PIOS (State Environmental Protection Inspectorate of Poland) as one of the top 80 biggest polluters in Poland. The history of the CZOR dates back more than 100 years to its establishment by the Vacuum Oil Company (a U.S. company and forerunner of Standard Oil). More than a century of continuous use of a sulfuric acid-based oil refining method by the CZOR has produced an estimated 120,000 tons of acidic, highly weathered, petroleum sludge. This waste has been deposited into three open, unlined process waste lagoons, 3 meters deep, now covering 3.8 hectares. Initial analysis indicated that the sludge was composed mainly of high molecular weight paraffinic and polynuclear aromatic hydrocarbons (PAHs). The overall objective of this full-scale demonstration project was to characterize, assess

  2. Clay slurry and engineered soils as containment technologies for remediation of contaminated sites

    SciTech Connect (OSTI)

    Williams, J.R.; Dudka, S.; Miller, W.P.; Johnson, D.O.

    1997-12-31

    Clay Slurry and Engineered Soils are containment technologies for remediation of waste disposal sites where leaching, groundwater plumes and surface runoff of contaminants are serious ecological hazards to adjacent environments. This technology is a patent-pending process which involves the use of conditioned clay materials mixed with sand and water to form a readily pourable suspension, a clay slurry, which is either placed into a trench barrier system or allowed to de-water to create Engineered Soils. The Engineered Soil forms a layer impervious to water and air, therefore by inhibiting both water and oxygen from penetrating through the soil the material. This material can be installed in layers and as a vertical barrier to create a surface barrier containment system. The clay percentage in the clay slurry and Engineered Soils varies depending on site characteristics and desired performance standards. For example Engineered Soils with 1-2% of clay (dry wt.) had a hydraulic conductivity (K) of 10{sup -8} to 10{sup -1} cm/sec. Tests of tailing materials from a kyanite and pyrite mine showed that the clay slurry was effective not only in reducing the permeability of the treated tailings, but also in decreasing their acidity due to the inherent alkalinity of the clay. The untreated tailings had pH values in the range of 2.4 - 3.1; whereas, the effluent from clay and tailings mixtures had pH values in a slightly alkaline range (7.7-7.9). Pug-mills and high volume slurry pumps can be readily adapted for use in constructing and placing caps and creating Engineered Soils. Moreover, material on site or from a local sand supply can be used to create clay slurries and engineered soils. Clay materials used in cap construction are likewise readily available commercially. As a result, the clay slurry system is very cost effective compared to other capping systems, including the commonly used High Density Polyethylene (HDPE) liner systems.

  3. Revegetation Plan for Areas of the Fitzner-Eberhardt Arid Lands Ecology Reserve Affected by Decommissioning of Buildings and Infrastructure and Debris Clean-up Actions

    SciTech Connect (OSTI)

    Downs, Janelle L.; Durham, Robin E.; Larson, Kyle B.

    2011-01-01

    The U.S. Department of Energy (DOE), Richland Operations Office is working to remove a number of facilities on the Fitzner Eberhardt Arid Lands Ecology Reserve (ALE), which is part of the Hanford Reach National Monument. Decommissioning and removal of buildings and debris on ALE will leave bare soils and excavated areas that need to be revegetated to prevent erosion and weed invasion. Four main areas within ALE are affected by these activities (DOE 2009;DOE/EA-1660F): 1) facilities along the ridgeline of Rattlesnake Mountain, 2) the former Nike missile base and ALE HQ laboratory buildings, 3) the aquatic research laboratory at Rattlesnake Springs area, and 4) a number of small sites across ALE where various types of debris remain from previous uses. This revegetation plan addresses the revegetation and restoration of those land areas disturbed by decommissioning and removal of buildings, facilities and associated infrastructure or debris removal. The primary objective of the revegetation efforts on ALE is to establish native vegetation at each of the sites that will enhance and accelerate the recovery of the native plant community that naturally persists at that location. Revegetation is intended to meet the direction specified by the Environmental Assessment (DOE 2009; DOE/EA-1660F) and by Stipulation C.7 of the Memorandum of Agreement (MOA) for the Rattlesnake Mountain Combined Community Communication Facility and InfrastructureCleanup on the Fitzner/Eberhardt Arid Lands Ecology Reserve, Hanford Site, Richland Washington(DOE 2009; Appendix B). Pacific Northwest National Laboratory (PNNL) under contract with CH2M Hill Plateau Remediation Company (CPRC) and in consultation with the tribes and DOE-RL developed a site-specific strategy for each of the revegetation units identified within this document. The strategy and implementation approach for each revegetation unit identifies an appropriate native species mix and outlines the necessary site preparation activities

  4. The Impact of Soil Sampling Errors on Variable Rate Fertilization

    SciTech Connect (OSTI)

    R. L. Hoskinson; R C. Rope; L G. Blackwood; R D. Lee; R K. Fink

    2004-07-01

    Variable rate fertilization of an agricultural field is done taking into account spatial variability in the soils characteristics. Most often, spatial variability in the soils fertility is the primary characteristic used to determine the differences in fertilizers applied from one point to the next. For several years the Idaho National Engineering and Environmental Laboratory (INEEL) has been developing a Decision Support System for Agriculture (DSS4Ag) to determine the economically optimum recipe of various fertilizers to apply at each site in a field, based on existing soil fertility at the site, predicted yield of the crop that would result (and a predicted harvest-time market price), and the current costs and compositions of the fertilizers to be applied. Typically, soil is sampled at selected points within a field, the soil samples are analyzed in a lab, and the lab-measured soil fertility of the point samples is used for spatial interpolation, in some statistical manner, to determine the soil fertility at all other points in the field. Then a decision tool determines the fertilizers to apply at each point. Our research was conducted to measure the impact on the variable rate fertilization recipe caused by variability in the measurement of the soils fertility at the sampling points. The variability could be laboratory analytical errors or errors from variation in the sample collection method. The results show that for many of the fertility parameters, laboratory measurement error variance exceeds the estimated variability of the fertility measure across grid locations. These errors resulted in DSS4Ag fertilizer recipe recommended application rates that differed by up to 138 pounds of urea per acre, with half the field differing by more than 57 pounds of urea per acre. For potash the difference in application rate was up to 895 pounds per acre and over half the field differed by more than 242 pounds of potash per acre. Urea and potash differences accounted

  5. Ecological Monitoring and Compliance Program 2006 Report

    SciTech Connect (OSTI)

    David C. Anderson; Paul D. Greger; Derek B. Hall; Dennis J. Hansen; William K. Ostler

    2007-03-01

    The Ecological Monitoring and Compliance program (EMAC), funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO), monitors the ecosystem of the Nevada Test Site (NTS) and ensures compliance with laws and regulations pertaining to NTS biota. This report summarizes the program's activities conducted by National Security Technologies LLC (NSTec) during the Calendar Year 2006. Program activities included: (a) biological surveys at proposed construction sites, (b) desert tortoise compliance, (c) ecosystem mapping and data management, (d) sensitive plant species monitoring, (e) sensitive and protected/regulated animal monitoring, (f) habitat monitoring, (g) habitat restoration monitoring, and (h) monitoring of the Nonproliferation Test and Evaluation Complex (NPTEC). Sensitive and protected/regulated species of the NTS include 44 plants, 1 mollusk, 2 reptiles, over 250 birds, and 26 mammals protected, managed, or considered sensitive as per state or federal regulations and natural resource agencies and organizations. The threatened desert tortoise (Gopherus agassizii) is the only species on the NTS protected under the Endangered Species Act. Biological surveys for the presence of sensitive and protected/regulated species and important biological resources on which they depend were conducted for 34 projects. A total of 342.1 hectares (ha) (845.37 acres [ac]) was surveyed for these projects. Sensitive and protected/regulated species and important biological resources found included: 2 inactive tortoise burrows, 2 western burrowing owls (Athene cunicularia hypugaea), several horses (Equus caballus), 2 active predator burrows, mature Joshua trees (Yucca brevifolia), yuccas and cacti; and also 1 bird nest (2 eggs), 1 barn owl (Tyto alba) and 2 great-horned owls (Bubo virginianus). NSTec provided a written summary report of all survey findings and mitigation recommendations, where applicable. All flagged burrows were

  6. Ecological Monitoring and Compliance Program 2006 Report

    SciTech Connect (OSTI)

    David C. Anderson; Paul D. Greger; Derek B. Hall; Dennis J. Hansen; William K. Ostler

    2007-03-01

    The Ecological Monitoring and Compliance program (EMAC), funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO), monitors the ecosystem of the Nevada Test Site (NTS) and ensures compliance with laws and regulations pertaining to NTS biota. This report summarizes the program's activities conducted by National Security Technologies LLC (NSTec) during the Calendar Year 2006. Program activities included: (a) biological surveys at proposed construction sites, (b) desert tortoise compliance, (c) ecosystem mapping and data management, (d) sensitive plant species monitoring, (e) sensitive and protected/regulated animal monitoring, (f) habitat monitoring, (g) habitat restoration monitoring, and (h) monitoring of the Nonproliferation Test and Evaluation Complex (NPTEC). Sensitive and protected/regulated species of the NTS include 44 plants, 1 mollusk, 2 reptiles, over 250 birds, and 26 mammals protected, managed, or considered sensitive as per state or federal regulations and natural resource agencies and organizations. The threatened desert tortoise (Gopherus agassizii) is the only species on the NTS protected under the Endangered Species Act. Biological surveys for the presence of sensitive and protected/regulated species and important biological resources on which they depend were conducted for 34 projects. A total of 342.1 hectares (ha) (845.37 acres [ac]) was surveyed for these projects. Sensitive and protected/regulated species and important biological resources found included: 2 inactive tortoise burrows, 2 western burrowing owls (Athene cunicularia hypugaea), several horses (Equus caballus), 2 active predator burrows, mature Joshua trees (Yucca brevifolia), yuccas and cacti; and also 1 bird nest (2 eggs), 1 barn owl (Tyto alba) and 2 great-horned owls (Bubo virginianus). NSTec provided a written summary report of all survey findings and mitigation recommendations, where applicable. All flagged burrows were

  7. Ecological Interactions Between Metals and Microbes

    SciTech Connect (OSTI)

    Konopka, Allan E.

    2005-06-01

    Analysis of Lead Resistant Arthrobacter sp. SI-1 Arthrobacter sp. SI-1 was isolated from contaminated soils at the Seymour site, and was found to be resistant to Pb at concentrations near its solubility limit (150 micromolar). The genetic region that confers lead resistance is located on a plasmid (PSI-1)has been cloned. We have continued to analyze the sub-clones from the pSI-1 region. Initially we had predicted that ORF1-ORF5 were involved in lead resistance because their organization suggest a potential operon. In addition these same five genes have been found in a similar organization on a plasmid from Arthrobacter FB24, while the pAA1 plasmid from A. aurescens TC1 contains three of the five genes. In order to determine the minimum genes required for lead resistance a series of deletion mutants were constructed from the 14.7 kb clone pKJ60. Deletion of ORFs 3-5 did not have any measurable effect on the ability of the cloned fragment to rescue the lead resistance phenotype in a lead sensitive strain of E. coli (RW3110). The construct pKJ65 was generated by removing approximately 200 bp from the center region of ORF2, which codes for the P-Type ATPase; as expected this deletion resulted in a lead sensitive phenotype. While the genes downstream of ORF 2 do not appear to play a significant role in lead resistance the same cannot be said for ORF1 which is upstream. Based on amino acid sequence homology a BLAST search indicates ORF1 is likely a regulatory protein from the ArsR family. When ORF1 is removed (pKJ64, pKJ67), a lead sensitive phenotype occurs. Approximately 100 bp from the sequence of ORF1 was deleted (pKJ70) in order to test if ORF1 is required for lead resistance, or if the cells require something in the upstream non-coding region (binding site, promoter). Cells with pKJ70 show some limited growth in the presence lead, but it is generally much slower than the lead resistant constructs where ORF1 is present. These results suggest that ORF1 has a positive

  8. Flow Partitioning in Fully Saturated Soil Aggregates

    SciTech Connect (OSTI)

    Yang, Xiaofan; Richmond, Marshall C.; Scheibe, Timothy D.; Perkins, William A.; Resat, Haluk

    2014-03-30

    Microbes play an important role in facilitating organic matter decomposition in soils, which is a major component of the global carbon cycle. Microbial dynamics are intimately coupled to environmental transport processes, which control access to labile organic matter and other nutrients that are needed for the growth and maintenance of microorganisms. Transport of soluble nutrients in the soil system is arguably most strongly impacted by preferential flow pathways in the soil. Since the physical structure of soils can be characterized as being formed from constituent micro aggregates which contain internal porosity, one pressing question is the partitioning of the flow among the inter-aggregate and intra-aggregate pores and how this may impact overall solute transport within heterogeneous soil structures. The answer to this question is particularly important in evaluating assumptions to be used in developing upscaled simulations based on highly-resolved mechanistic models. We constructed a number of diverse multi-aggregate structures with different packing ratios by stacking micro-aggregates containing internal pores and varying the size and shape of inter-aggregate pore spacing between them. We then performed pore-scale flow simulations using computational fluid dynamics methods to determine the flow patterns in these aggregate-of-aggregates structures and computed the partitioning of the flow through intra- and inter-aggregate pores as a function of the spacing between the aggregates. The results of these numerical experiments demonstrate that soluble nutrients are largely transported via flows through inter-aggregate pores. Although this result is consistent with intuition, we have also been able to quantify the relative flow capacity of the two domains under various conditions. For example, in our simulations, the flow capacity through the aggregates (intra-aggregate flow) was less than 2% of the total flow when the spacing between the aggregates was larger

  9. Soil-structure interaction. Volume 3. Influence of ground water

    SciTech Connect (OSTI)

    Costantino, C.J.

    1986-04-01

    This report, Volume 3 of the report, presents a summary of the first year's effort on the subject of the influence of foundation ground water on the SSI phenomenon. A finite element computer program was developed for the two-phased formulation of the combined soil-water problem. This formulation is based on the Biot dynamic equations of motion for both the solid and fluid phases of a typical soil. Frequency dependent interaction coefficients were generated for the two-dimensional plane problem of a rigid surface footing moving against a saturated linear soil. The results indicate that interaction coefficients are significantly modified as compared to the comparable values for a dry soil, particularly for the rocking mode of response. Calculations were made to study the impact of the modified interaction coefficients on the response of a typical nuclear reactor building. The amplification factors for a stick model placed atop a dry and saturated soil were computed. It was found that pore water caused the rocking response to decrease and translatinal response to increase over the frequency range of interest, as compared to the response on dry soil. 56 refs., 31 figs.

  10. Relationship between Anisotropy in Soil Hydraulic Conductivity and Saturation

    SciTech Connect (OSTI)

    Zhang, Z. Fred

    2014-01-01

    Anisotropy in unsaturated hydraulic conductivity is saturation-dependent. Accurate characterization of soil anisotropy is very important in simulating flow and contaminant (e.g., radioactive nuclides in Hanford) transport. A recently developed tensorial connectivity-tortuosity (TCT) concept describes the hydraulic conductivity tensor of the unsaturated anisotropic soils as the product of a scalar variable, the symmetric connectivity tortuosity tensor, and the hydraulic conductivity tensor at saturation. In this study, the TCT model is used to quantify soil anisotropy in unsaturated hydraulic conductivity. The TCT model can describe different types of soil anisotropy; e.g., the anisotropy coefficient, C, can be monotonically increase or decrease with saturation and can vary from greater than unity to less than unity and vice versa. Soil anisotropy is independent of soil water retention properties and can be characterized by the ratio of the saturated hydraulic conductivities and the difference of the tortuosity-connectivity coefficients in two directions. ln(C) is linearly proportional to ln(Se) with Se being the effective saturation. The log-linear relationship between C and Se allows the saturation-dependent anisotropy to be determined using linear regression with the measurements of the directional hydraulic conductivities at a minimum of two water content levels, of which one may be at full saturation. The model was tested using measurements of directional hydraulic conductivities.

  11. Ecological Monitoring and Compliance Program Fiscal Year 1998 Report

    SciTech Connect (OSTI)

    Bechtel Nevada Ecological Services

    1998-10-01

    The Ecological Monitoring and Compliance program, funded through the U. S. Department of Energy/Nevada Operations Office, monitors the ecosystem of the Nevada Test Site and ensures compliance with laws and regulations pertaining to NTS biota. This report summarizes the program's activities conducted by Bechtel Nevada during fiscal year 1998. Twenty-one sites for seven projects were surveyed for the presence of state or federally protected species. Three projects were in or near habitat of the threatened desert tortoise and required special clearance and transect surveys. All geospatial data collected were entered into Bechtel Nevada's Ecological Geographic Information system for use in ongoing ecosystem management of the NTS.

  12. Soil & Groundwater Home - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Soil & Groundwater Home Soil & Groundwater Home Annual Reports Environmental Data Access Administrative Record Soil & Groundwater Home Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size Soil & Groundwater Home Annual Reports Environmental Data Access Administrative Record Share on Last Updated 08/28/2016 4:15

  13. Worldwide organic soil carbon and nitrogen data

    SciTech Connect (OSTI)

    Zinke, P.J.; Stangenberger, A.G.; Post, W.M.; Emanual, W.R.; Olson, J.S.

    1986-09-01

    The objective of the research presented in this package was to identify data that could be used to estimate the size of the soil organic carbon pool under relatively undisturbed soil conditions. A subset of the data can be used to estimate amounts of soil carbon storage at equilibrium with natural soil-forming factors. The magnitude of soil properties so defined is a resulting nonequilibrium values for carbon storage. Variation in these values is due to differences in local and geographic soil-forming factors. Therefore, information is included on location, soil nitrogen content, climate, and vegetation along with carbon density and variation.

  14. Demonstration of the Military Ecological Risk Assessment Framework (MERAF): Apache Longbow - Hell Missile Test at Yuma Proving Ground

    SciTech Connect (OSTI)

    Efroymson, R.A.

    2002-05-09

    This ecological risk assessment for a testing program at Yuma Proving Ground, Arizona, is a demonstration of the Military Ecological Risk Assessment Framework (MERAF; Suter et al. 2001). The demonstration is intended to illustrate how risk assessment guidance concerning-generic military training and testing activities and guidance concerning a specific type of activity (e.g., low-altitude aircraft overflights) may be implemented at a military installation. MERAF was developed with funding from the Strategic Research and Development Program (SERDP) of the Department of Defense. Novel aspects of MERAF include: (1) the assessment of risks from physical stressors using an ecological risk assessment framework, (2) the consideration of contingent or indirect effects of stressors (e.g., population-level effects that are derived from habitat or hydrological changes), (3) the integration of risks associated with different component activities or stressors, (4) the emphasis on quantitative risk estimates and estimates of uncertainty, and (5) the modularity of design, permitting components of the framework to be used in various military risk assessments that include similar activities. The particular subject of this report is the assessment of ecological risks associated with a testing program at Cibola Range of Yuma Proving Ground, Arizona. The program involves an Apache Longbow helicopter firing Hellfire missiles at moving targets, i.e., M60-A1 tanks. Thus, the three component activities of the Apache-Hellfire test were: (1) helicopter overflight, (2) missile firing, and (3) tracked vehicle movement. The demonstration was limited, to two ecological endpoint entities (i.e., potentially susceptible and valued populations or communities): woody desert wash communities and mule deer populations. The core assessment area is composed of about 126 km{sup 2} between the Chocolate and Middle Mountains. The core time of the program is a three-week period, including fourteen days of

  15. Ecological Monitoring and Compliance Program 2014 Report

    SciTech Connect (OSTI)

    Hall, Derek B.; Anderson, David C.; Greger, Paul D.; Ostler, W. Kent

    2015-05-12

    The Ecological Monitoring and Compliance Program (EMAC), funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO, formerly Nevada Site Office), monitors the ecosystem of the Nevada National Security Site (NNSS) and ensures compliance with laws and regulations pertaining to NNSS biota. This report summarizes the program’s activities conducted by National Security Technologies, LLC (NSTec), during calendar year 2014. Program activities included (a) biological surveys at proposed activity sites, (b) desert tortoise compliance, (c) ecosystem monitoring, (d) sensitive plant species monitoring, (e) sensitive and protected/regulated animal monitoring, and (f) habitat restoration monitoring. During 2014, all applicable laws, regulations, and permit requirements were met, enabling EMAC to achieve its intended goals and objectives. Sensitive and protected/regulated species of the NNSS include 42 plants, 1 mollusk, 2 reptiles, 236 birds, and 27 mammals. These species are protected, regulated, or considered sensitive according to state or federal regulations and natural resource agencies and organizations. The desert tortoise (Gopherus agassizii) and the western yellow-billed cuckoo (Coccyzus americanus) are the only species on the NNSS protected under the Endangered Species Act, both listed as threatened. However, only one record of the cuckoo has ever been documented on the NNSS, and there is no good habitat for this species on the NNSS. It is considered a rare migrant. Biological surveys for the presence of sensitive and protected/regulated species and important biological resources on which they depend were conducted for 18 projects. A total of 199.18 hectares (ha) was surveyed for these projects. Sensitive and protected/regulated species and important biological resources found during these surveys included a predator burrow, one sidewinder rattlesnake (Crotalus cerastes), two mating speckled rattlesnakes

  16. Perennial grasses for energy and conservation: Evaluating some ecological agricultural, and economic issues

    SciTech Connect (OSTI)

    Downing, M.; Walsh, M.; McLaughlin, S.

    1995-11-01

    Perennial prairie grasses offer many advantages to the developing biofuels industry. High yielding varieties of native prairie grasses such as switchgrass, which combine lower levels of nutrient demand, diverse geographical growing range, high net energy yields and high soil and water conservation potential indicate that these grasses could and should supplement annual row crops such as corn in developing alternative fuels markets. Favorable net energy returns, increased soil erosion prevention, and a geographically diverse land base that can incorporate energy grasses into conventional farm practices will provide direct benefits to local and regional farm economies and lead to accelerated commercialization of conversion technologies. Displacement of row crops with perennial grasses will have major agricultural, economic, sociologic and cross-market implications. Thus, perennial grass production for biofuels offers significant economic advantages to a national energy strategy which considers both agricultural and environmental issues.

  17. ARM - Measurement - Soil moisture flux

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    moisture flux ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Soil moisture flux A quantity measured according to the formula B = {lambda}(dq/dz), where {lambda} is the conductivity of the soil that the moisture is moving through. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file

  18. ARM - Measurement - Soil surface temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    surface temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Soil surface temperature The temperature of the soil measured near the surface. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those

  19. Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation to a humic-rich ecological niche

    SciTech Connect (OSTI)

    Morin, Emmanuelle; Kohler, Annegret; Baker, Adam R.; Foulongne-Oriol, Marie; Lombard, Vincent; Nagy, Laszlo G.; Ohm, Robin A.; Patyshakuliyeva, Aleksandrina; Brun, Annick; Aerts, Andrea L.; Bailey, Andrew M.; Billette, Christophe; Coutinho, Pedro M.; Deakin, Greg; Doddapaneni, Harshavardhan; Floudas, Dimitrios; Grimwood, Jane; Hilden, Kristiina; Kues, Ursula; LaButti, Kurt M.; Lapidus, Alla; Lindquist, Erika A.; Lucas, Susan M.; Murat, Claude; Riley, Robert W.; Salamov, Asaf A.; Schmutz, Jeremy; Subramanian, Venkataramanan; Wosten, Han A. B.; Xu, Jianping; Eastwood, Daniel C.; Foster, Gary D.; Sonnenberg, Anton S. M.; Cullen, Dan; de Vries, Ronald P.; Lundell, Taina; Hibbett, David S.; Henrissat, Bernard; Burton, Kerry S.; Kerrigan, Richard W.; Challen, Michael P.; Grigoriev, Igor V.; Martin, Francis

    2012-04-27

    Agaricus bisporus is the model fungus for the adaptation, persistence, and growth in the humic-rich leaf-litter environment. Aside from its ecological role, A. bisporus has been an important component of the human diet for over 200 y and worldwide cultivation of the button mushroom forms a multibillion dollar industry. We present two A. bisporus genomes, their gene repertoires and transcript profiles on compost and during mushroom formation. The genomes encode a full repertoire of polysaccharide-degrading enzymes similar to that of wood-decayers. Comparative transcriptomics of mycelium grown on defined medium, casing-soil, and compost revealed genes encoding enzymes involved in xylan, cellulose, pectin, and protein degradation are more highly expressed in compost. The striking expansion of heme-thiolate peroxidases and etherases is distinctive from Agaricomycotina wood-decayers and suggests a broad attack on decaying lignin and related metabolites found in humic acid-rich environment. Similarly, up-regulation of these genes together with a lignolytic manganese peroxidase, multiple copper radical oxidases, and cytochrome P450s is consistent with challenges posed by complex humic-rich substrates. The gene repertoire and expression of hydrolytic enzymes in A. bisporus is substantially different from the taxonomically related ectomycorrhizal symbiont Laccaria bicolor. A common promoter motif was also identified in genes very highly expressed in humic-rich substrates. These observations reveal genetic and enzymatic mechanisms governing adaptation to the humic-rich ecological niche formed during plant degradation, further defining the critical role such fungi contribute to soil structure and carbon sequestration in terrestrial ecosystems. Genome sequence will expedite mushroom breeding for improved agronomic characteristics.

  20. Soil Moisture Sensor - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Soil & Groundwater Remediation Soil & Groundwater Remediation Soil & Groundwater Remediation The U.S. Department of Energy (DOE) manages one of the largest groundwater and soil remediation efforts in the world. The inventory at the DOE sites includes 6.5 trillion liters of contaminated groundwater, an amount equal to about four times the daily U.S. water consumption, and 40 million cubic meters of soil and debris contaminated with radionuclides, metals, and organics. The Office of

  1. Nuclear forensics: Soil content

    SciTech Connect (OSTI)

    Beebe, Merilyn Amy

    2015-08-31

    Nuclear Forensics is a growing field that is concerned with all stages of the process of creating and detonating a nuclear weapon. The main goal is to prevent nuclear attack by locating and securing nuclear material before it can be used in an aggressive manner. This stage of the process is mostly paperwork; laws, regulations, treaties, and declarations made by individual countries or by the UN Security Council. There is some preliminary leg work done in the form of field testing detection equipment and tracking down orphan materials; however, none of these have yielded any spectacular or useful results. In the event of a nuclear attack, the first step is to analyze the post detonation debris to aid in the identification of the responsible party. This aspect of the nuclear forensics process, while reactive in nature, is more scientific. A rock sample taken from the detonation site can be dissolved into liquid form and analyzed to determine its chemical composition. The chemical analysis of spent nuclear material can provide valuable information if properly processed and analyzed. In order to accurately evaluate the results, scientists require information on the natural occurring elements in the detonation zone. From this information, scientists can determine what percentage of the element originated in the bomb itself rather than the environment. To this end, element concentrations in soils from sixty-nine different cities are given, along with activity concentrations for uranium, thorium, potassium, and radium in various building materials. These data are used in the analysis program Python.

  2. Environmental resources of selected areas of Hawaii: Ecological resources

    SciTech Connect (OSTI)

    Trettin, C.C.; Tolbert, V.R.; Jones, A.T.; Smith, C.R.; Kalmijn, A.J.

    1995-03-01

    This report has been prepared to make available and archive the background scientific data and related information collected on ecological resources during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. The background scientific data and related information presented in this report focus on several areas of Hawaii County. In this report, reference is made to these areas as study areas rather than as areas where proposed or alternative facilities of the HGP would be located. The resource areas addressed herein include terrestrial ecology, aquatic ecology, and marine ecology. The scientific background data and related information that were obtained from review of the (1) scientific literature, (2) government and private sector reports, (3) studies done under DOE interagency agreements with the US Fish and Wildlife Service (FWS) and with the US Army Corps of Engineers (COE), and (4) observations made during site visits are being made available for future research in these areas.

  3. Ecological Monitoring and Compliance Program Fiscal Year 2003 Report

    SciTech Connect (OSTI)

    Bechtel Nevada

    2003-12-01

    The Ecological Monitoring and Compliance program, funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, monitors the ecosystem of the Nevada Test Site and ensures compliance with laws and regulations pertaining to Nevada Test Site biota. This report summarizes the program's activities conducted by Bechtel Nevada during fiscal year 2003.

  4. Impacts of an oil well blowout near Trecate, Italy on ecological resources

    SciTech Connect (OSTI)

    Brandt, C.; Becker, J.; Dauble, D.

    1995-12-31

    An ecological risk assessment (ERA) was conducted after the February 1995 blowout of an oil well near Trecate, Italy to quantify injuries to terrestrial and aquatic biological resources from effects of oil and habitat changes. Avian surveys were conducted on a surrogate area near Varallino to estimate species and numbers potentially exposed to oil and displaced by habitat alteration in the affected area. Of the 43 avian species observed, 20 are considered protected by European Community laws. The most abundant species were passero domestico, fringuello, cornacchia grigia, rondine, piccione torraiolo, and cardellino. These species likely suffered the greatest losses due to inhalation of volatile aromatics, dermal loading of oil, and/or habitat loss in the affected area. Based on CHARM model outputs, inhalation exposures to volatile aromatics and oil aerosols occurred above LOELs for all receptors within 2 km of the blowout. The most significant exposure pathway to large birds was dermal loading, which likely exceeded LC50 levels within 900m of the well. Terrestrial insects seldom contained detectable levels of PAHs, consistent with their shorter life span and residence time in the contaminated area. The highest concentrations of PAHs were found in dike vegetation, frogs, and benthic invertebrates. Ingestion exposures of woodmice to PAHs exceeded toxic reference levels at one site and mice had EHQ = >1 at soil PAH concentrations >4.2 mg/kg. Based on known body burdens causing narcotic response, neither fish nor benthic invertebrates experienced toxic consequences from exposure to PAHs in irrigation canal sediments.

  5. Evaluate and characterize mechanisms controlling transport, fate, and effects of army smokes in the aerosol wind tunnel: Transport, transformations, fate, and terrestrial ecological effects of hexachloroethane obscurant smokes

    SciTech Connect (OSTI)

    Cataldo, D.A.; Ligotke, M.W.; Bolton, H. Jr.; Fellows, R.J.; Van Voris, P.; McVeety, B.D.; Li, Shu-mei W.; McFadden, K.M.

    1989-09-01

    The terrestrial transport, chemical fate, and ecological effects of hexachloroethane (HC) smoke were evaluated under controlled wind tunnel conditions. The primary objectives of this research program are to characterize and assess the impacts of smoke and obscurants on: (1) natural vegetation characteristic of US Army training sites in the United States; (2) physical and chemical properties of soils representative of these training sites; and (3) soil microbiological and invertebrate communities. Impacts and dose/responses were evaluated based on exposure scenarios, including exposure duration, exposure rate, and sequential cumulative dosing. Key to understanding the environmental impacts of HC smoke/obscurants is establishing the importance of environmental parameters such as relative humidity and wind speed on airborne aerosol characteristics and deposition to receptor surfaces. Direct and indirect biotic effects were evaluated using five plant species and two soil types. HC aerosols were generated in a controlled atmosphere wind tunnel by combustion of hexachloroethane mixtures prepared to simulate normal pot burn rates and conditions. The aerosol was characterized and used to expose plant, soil, and other test systems. Particle sizes of airborne HC ranged from 1.3 to 2.1 {mu}m mass median aerodynamic diameter (MMAD), and particle size was affected by relative humidity over a range of 20% to 85%. Air concentrations employed ranged from 130 to 680 mg/m{sup 3}, depending on exposure scenario. Chlorocarbon concentrations within smokes, deposition rates for plant and soil surfaces, and persistence were determined. The fate of principal inorganic species (Zn, Al, and Cl) in a range of soils was assessed.

  6. Evaluate and characterize mechanisms controlling transport, fate and effects of army smokes in an aerosol wind tunnel: Transport, transformations, fate and terrestrial ecological effects of fog oil obscurant smokes: Final report

    SciTech Connect (OSTI)

    Cataldo, D.A.; Van Voris, P.; Ligotke, M.W.; Fellows, R.J.; McVeety, B.D.; Li, Shu-mei W.; Bolton, H. Jr.; Fredrickson, J.K.

    1989-01-01

    The terrestrial transport, chemical fate, and ecological effects of fog oil (FO) smoke obscurants were evaluated under controlled wind tunnel conditions. The primary objectives of this research program are to characterize and assess the impacts of smoke and obscurants on: (1) natural vegetation characteristic of US Army training sites in the United States; (2) physical and chemical properties of soils representative of these training sites; and (3) soil microbiological and invertebrate communities. Impacts and dose/responses were evaluated based on an exposure scenario, including exposure duration, exposure rate, and sequential cumulative dosing. Key to understanding the environmental impacts of fog oil smoke/obscurants is establishing the importance of environmental parameters, such as relative humidity and wind speed on airborne aerosol characteristics and deposition to receptor surfaces. Direct and indirect biotic effects were evaluated using five plant species and three soil types. 29 refs., 35 figs., 32 tabs.

  7. Category:Soil Gas Sampling | Open Energy Information

    Open Energy Info (EERE)

    Soil Gas Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Soil Gas Sampling page? For detailed information on Soil Gas...

  8. Preliminary Notice of Violation, Safety and Ecology Corporation- EA-2005-03

    Broader source: Energy.gov [DOE]

    Issued to Safety and Ecology Corporation related to a 10 CFR Part 708 Violation at the Portsmouth Gaseous Diffusion Project

  9. Ecological distribution and population physiology defined by proteomics in a natural microbial community

    SciTech Connect (OSTI)

    Muller, R; Denef, Vincent; Kalnejals, Linda; Suttle, K Blake; Thomas, Brian; Wilmes, P; Smith, Richard L.; Nordstrom, D Kirk; McCleskey, R Blaine; Shah, Manesh B; Verberkmoes, Nathan C; Hettich, Robert {Bob} L; Banfield, Jillian F.

    2010-01-01

    An important challenge in microbial ecology is developing methods that simultaneously examine the physiology of organisms at the molecular level and their ecosystem level interactions in complex natural systems.We integrated extensive proteomic, geochemical, and biological information from 28 microbial communities collected from an acid mine drainage environment and representing a range of biofilm development stages and geochemical conditions to evaluate how the physiologies of the dominant and less abundant organisms change along environmental gradients. The initial colonist dominates across all environments, but its proteome changes between two stable states as communities diversify, implying that interspecies interactions affect this organism s metabolism. Its overall physiology is robust to abiotic environmental factors, but strong correlations exist between these factors and certain subsets of proteins, possibly accounting for its wide environmental distribution. Lower abundance populations are patchier in their distribution, and proteomic data indicate that their environmental niches may be constrained by specific sets of abiotic environmental factors. This research establishes an effective strategy to investigate ecological relationships between microbial physiology and the environment for whole communities in situ

  10. Final Progress Report on Model-Based Diagnosis of Soil Limitations to Forest Productivity

    SciTech Connect (OSTI)

    Luxmoore, R.J.

    2004-08-30

    This project was undertaken in support of the forest industry to link modeling of nutrients and productivity with field research to identify methods for enhancing soil quality and forest productivity and for alleviating soil limitations to sustainable forest productivity. The project consisted of a series of related tasks, including (1) simulation of changes in biomass and soil carbon with nitrogen fertilization, (2) development of spreadsheet modeling tools for soil nutrient availability and tree nutrient requirements, (3) additional modeling studies, and (4) evaluation of factors involved in the establishment and productivity of southern pine plantations in seasonally wet soils. This report also describes the two Web sites that were developed from the research to assist forest managers with nutrient management of Douglas-fir and loblolly pine plantations.

  11. Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 6: Appendix G -- Baseline ecological risk assessment report

    SciTech Connect (OSTI)

    1996-09-01

    This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV. Appendix G contains ecological risks for fish, benthic invertebrates, soil invertebrates, plants, small mammals, deer, and predator/scavengers (hawks and fox). This risk assessment identified significant ecological risks from chemicals in water, sediment, soil, and shallow ground water. Metals and PCBs are the primary contaminants of concern.

  12. Blind shaft development

    SciTech Connect (OSTI)

    Fiscor, S.

    2009-02-15

    The article discusses how Shaft Drillers International (SDI) is breaking new ground in shaft development and ground stabilization. Techniques of blind shaft drilling and raise bore shaft development developed by SDI are briefly explained. An associated company, Coastal Drilling East, deals with all types of ground improvement such as pre-grouting work for shafts, grouting of poor soil and water leaks into the mine. 3 photos.

  13. Treatment of radionuclide contaminated soils

    SciTech Connect (OSTI)

    Pettis, S.A.; Kallas, A.J.; Kochen, R.L.; McGlochlin, S.C.

    1988-06-01

    Rockwell, International, Rocky Flats Plants, is committed to remediating within the scope of RCRA/CERCLA, Solid Waste Managements Units (SWMUs) at Rocky Flats found to be contaminated with hazardous substances. SWMUs fund to have radionuclide (uranium, plutonium, and/or americium) concentrations in the soils and/or groundwater that exceed background levels or regulatory limits will also be included in this remediation effort. This paper briefly summarizes past and present efforts by Rockwell International, Rocky Flats Plant, to identify treatment technologies appropriate for remediating actinide contaminated soils. Many of the promising soil treatments evaluated in Rocky Flats' laboratories during the late 1970's and early 1980's are currently being revisited. These technologies are generally directed toward substantially reducing the volume of contaminated soils, with the subsequent intention of disposing of a small remaining concentrated fraction of contaminated soil in a facility approved to receive radioactive wastes. Treatment processes currently will be treated to remove actinides, and recycled back to the process. Past investigations have included evaluations of dry screening, wet screening, scrubbing, ultrasonics, chemical oxidation, calcination, desliming, flotation, and heavy-liquid density separation. 8 refs., 2 figs.

  14. Detection of explosives in soils

    DOE Patents [OSTI]

    Chambers, William B.; Rodacy, Philip J.; Phelan, James M.; Woodfin, Ronald L.

    2002-01-01

    An apparatus and method for detecting explosive-indicating compounds in subsurface soil. The apparatus has a probe with an adsorbent material on some portion of its surface that can be placed into soil beneath the ground surface, where the adsorbent material can adsorb at least one explosive-indicating compound. The apparatus additional has the capability to desorb the explosive-indicating compound through heating or solvent extraction. A diagnostic instrument attached to the probe detects the desorbed explosive-indicating compound. In the method for detecting explosive-indicating compounds in soil, the sampling probe with an adsorbent material on at least some portion of a surface of the sampling probe is inserted into the soil to contact the adsorbent material with the soil. The explosive-indicating compounds are then desorbed and transferred as either a liquid or gas sample to a diagnostic tool for analysis. The resulting gas or liquid sample is analyzed using at least one diagnostic tool selected from the group consisting of an ion-mobility spectrometer, a gas chromatograph, a high performance liquid chromatograph, a capillary electrophoresis chromatograph, a mass spectrometer, a Fourier-transform infrared spectrometer and a Raman spectrometer to detect the presence of explosive-indicating compounds.

  15. Preliminary assessment of the ecological risks to wide-ranging wildlife species on the Oak Ridge Reservation. 1996 update

    SciTech Connect (OSTI)

    Sample, B.E.; Hinzman, R.L.; Jackson, B.L.; Baron, L.

    1996-09-01

    More than approximately 50 years of operations, storage, and disposal of wastes generated by the three facilities on the Oak Ridge Reservation (ORR) (the Oak Ridge K-25 Site, Oak Ridge National Laboratory, and the Oak Ridge Y-12 Plant) has resulted in a mosaic of uncontaminated property and lands that are contaminated to varying degrees. This contaminated property includes source areas and the terrestrial and aquatic habitats down gradient from these source areas. Although the integrator OUs generally contain considerable habitat for biota, the source OUs provide little or no suitable habitat. Historically, ecological risk assessment at Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) sites has focused on species that may be definitively associated with a contaminated area or source OU. Endpoints considered in source OUs include plants, soil/litter invertebrates and processes, aquatic biota found in on-OU sediments and surface waters, and small herbivorous, omnivorous, and vermivorous (i.e., feeding on ground, litter, or soil invertebrates) wildlife. All of these endpoints have limited spatial distributions or home ranges such that numerous individuals or a distinct population can be expected to reside within the boundaries of the source OU. Most analyses are not adequate for large sites with multiple, spatially separated contaminated areas such as the ORR that provide habitat for wide-ranging wildlife species. This report is a preliminary response to a plan for assessing risks to wide-ranging species.

  16. Survey of Revegetated Areas on the Fitzner/Eberhardt Arid Lands Ecology Reserve: Status and Initial Monitoring Results

    SciTech Connect (OSTI)

    Downs, Janelle L.; Link, Steven O.; Rozeboom, Latricia L.; Durham, Robin E.; Cruz, Rico O.; Mckee, Sadie A.

    2011-09-01

    During 2010, the U.S. Department of Energy (DOE), Richland Operations Office removed a number of facilities and debris from the Fitzner/Eberhardt Arid Lands Ecology Reserve (ALE), which is part of the Hanford Reach National Monument (HRNM). Revegetation of disturbed sites is necessary to stabilize the soil, reduce invasion of these areas by exotic weeds, and to accelerate re-establishment of native plant communities. Seven revegetation units were identified on ALE based on soils and potential native plant communities at the site. Native seed mixes and plant material were identified for each area based on the desired plant community. Revegetation of locations affected by decommissioning of buildings and debris removal was undertaken during the winter and early spring of 2010 and 2011, respectively. This report describes both the details of planting and seeding for each of the units, describes the sampling design for monitoring, and summarizes the data collected during the first year of monitoring. In general, the revegetation efforts were successful in establishing native bunchgrasses and shrubs on most of the sites within the 7 revegetation units. Invasion of the revegetation areas by exotic annual species was minimal for most sites, but was above initial criteria in 3 areas: the Hodges Well subunit of Unit 2, and Units 6 and 7.

  17. Review and model-based analysis of factors influencing soil carbon sequestration beneath switchgrass (Panicum virgatum)

    SciTech Connect (OSTI)

    Garten Jr, Charles T [ORNL

    2012-01-01

    Abstract. A simple, multi-compartment model was developed to predict soil carbon sequestration beneath switchgrass (Panicum virgatum) plantations in the southeastern United States. Soil carbon sequestration is an important component of sustainable switchgrass production for bioenergy because soil organic matter promotes water retention, nutrient supply, and soil properties that minimize erosion. A literature review was included for the purpose of model parameterization and five model-based experiments were conducted to predict how changes in environment (temperature) or crop management (cultivar, fertilization, and harvest efficiency) might affect soil carbon storage and nitrogen losses. Predictions of soil carbon sequestration were most sensitive to changes in annual biomass production, the ratio of belowground to aboveground biomass production, and temperature. Predictions of ecosystem nitrogen loss were most sensitive to changes in annual biomass production, the soil C/N ratio, and nitrogen remobilization efficiency (i.e., nitrogen cycling within the plant). Model-based experiments indicated that 1) soil carbon sequestration can be highly site specific depending on initial soil carbon stocks, temperature, and the amount of annual nitrogen fertilization, 2) response curves describing switchgrass yield as a function of annual nitrogen fertilization were important to model predictions, 3) plant improvements leading to greater belowground partitioning of biomass could increase soil carbon sequestration, 4) improvements in harvest efficiency have no indicated effects on soil carbon and nitrogen, but improve cumulative biomass yield, and 5) plant improvements that reduce organic matter decomposition rates could also increase soil carbon sequestration, even though the latter may not be consistent with desired improvements in plant tissue chemistry to maximize yields of cellulosic ethanol.

  18. Implementation of basic studies in the ecological restoration of surface-mined land

    SciTech Connect (OSTI)

    Tischew, S.; Kirmer, A.

    2007-06-15

    This paper focuses on attempts to encourage a new state of the art in the ecological restoration of surface-mined land in Germany. On most of these sites, the application of traditional recultivation methods often destroys valuable ecological potential by leveling of the surface, ameliorating of nutrient-poor substrates, and seeding or planting of species not suited to the present habitat conditions. Many studies have shown that even highly disturbed ecosystems, such as large mining areas, can regenerate spontaneously over long-term periods. Colonization processes were influenced by the availability of diaspore sources as well as the suitability of sites for establishment. The predictability of succession could be improved by the identification of switch points in successional pathways depending on age and conditions of the sites. Based on the developmental potential, orientation by nature and biodiversity are selected as main targets for priority areas for nature conservation in mining sites. On priority areas restoration measures must be restricted to the use of near-natural methods (e.g., application of fresh, diaspore-rich plant clipping material, dumping of overburden with seed bank and vegetative propagules, seeding of site-specific, local seed mixtures) that are very successful in preventing erosion and accelerating vegetation development. Despite the success of these methods, the transfer of knowledge between scientists, practitioners, and administrative organizations has proved to be insufficient. Therefore, one of the main tasks in ecological restoration must be the inclusion of all stakeholders involved in decision-making processes and the establishment of a network of excellence to enhance the exchange of knowledge.

  19. Exploratory Research - Using Volatile Organic Compounds to Separate Heterotrophic and Autotrophic Forest Soil Respiration

    SciTech Connect (OSTI)

    Roberts, Scott D; Hatten, Jeffrey A

    2015-02-09

    The initial focus of this project was to develop a method to partition soil respiration into its components (autotrophic, heterotrophic etc.) using the fingerprint of volatile organic compounds (VOCs) from soils. We were able to identify 63 different VOCs in our study; however, due to technical difficulties we were unable to take reliable measurements in order to test our hypotheses and develop this method. In the end, we changed the objectives of the project. Our new objectives were to characterize the effects of species and soil moisture regime on the composition of soil organic matter. We utilized the soils from the greenhouse experiment we had established for the soil VOC study and determined the lignin biomarker profiles of each of the treatments. We found that moisture had a significant effect on the carbon content of the soils with the low moisture treatments having higher carbon content than the high moisture treatments. We found that the relative yield of syringyl phenols (SP), ligin (Lig), and substituted fatty acids (SFA) were elevated in deciduous planted pots and reduced in conifer planted pots relative to plant-free treatments. Our results suggest nuttall oak preserved lignin and SFA, while loblolly pine lost lignin and SFA similarly to the plant free treatments. Since we did not find that the carbon concentrations of the soils were different between the species, nuttall oak probably replaced more native soil carbon than loblolly pine. This suggests that relative to loblolly pine, nuttall oak is a priming species. Since priming may impact soil carbon pools more than temperature or moisture, determining which species are priming species may facilitate an understanding of the interaction that land use and climate change may have on soil carbon pools.

  20. Biosurfactant-enhanced soil bioremediation

    SciTech Connect (OSTI)

    Kosaric, N.; Lu, G.; Velikonja, J.

    1995-12-01

    Bioremediation of soil contaminated with organic chemicals is a viable alternative method for clean-up and remedy of hazardous waste sites. The final objective in this approach is to convert the parent toxicant into a readily biodegradable product which is harmless to human health and/or the environment. Biodegradation of hydrocarbons in soil can also efficiently be enhanced by addition or in-situ production of biosufactants. It was generally observed that the degradation time was shortened and particularly the adaptation time for the microbes. More data from our laboratories showed that chlorinated aromatic compounds, such as 2,4-dichlorophenol, a herbicide Metolachlor, as well as naphthalene are degraded faster and more completely when selected biosurfactants are added to the soil. More recent data demonstrated an enhanced biodegradation of heavy hydrocarbons in petrochemical sludges, and in contaminated oil when biosurfactants were present or were added prior to the biodegradation process.

  1. RAPID SEPARATION METHOD FOR ACTINIDES IN EMERGENCY SOIL SAMPLES

    SciTech Connect (OSTI)

    Maxwell, S.; Culligan, B.; Noyes, G.

    2009-11-09

    A new rapid method for the determination of actinides in soil and sediment samples has been developed at the Savannah River Site Environmental Lab (Aiken, SC, USA) that can be used for samples up to 2 grams in emergency response situations. The actinides in soil method utilizes a rapid sodium hydroxide fusion method, a lanthanum fluoride soil matrix removal step, and a streamlined column separation process with stacked TEVA, TRU and DGA Resin cartridges. Lanthanum was separated rapidly and effectively from Am and Cm on DGA Resin. Vacuum box technology and rapid flow rates are used to reduce analytical time. Alpha sources are prepared using cerium fluoride microprecipitation for counting by alpha spectrometry. The method showed high chemical recoveries and effective removal of interferences. This new procedure was applied to emergency soil samples received in the NRIP Emergency Response exercise administered by the National Institute for Standards and Technology (NIST) in April, 2009. The actinides in soil results were reported within 4-5 hours with excellent quality.

  2. Storage and turnover of organic matter in soil

    SciTech Connect (OSTI)

    Torn, M.S.; Swanston, C.W.; Castanha, C.; Trumbore, S.E.

    2008-07-15

    Historically, attention on soil organic matter (SOM) has focused on the central role that it plays in ecosystem fertility and soil properties, but in the past two decades the role of soil organic carbon in moderating atmospheric CO{sub 2} concentrations has emerged as a critical research area. This chapter will focus on the storage and turnover of natural organic matter in soil (SOM), in the context of the global carbon cycle. Organic matter in soils is the largest carbon reservoir in rapid exchange with atmospheric CO{sub 2}, and is thus important as a potential source and sink of greenhouse gases over time scales of human concern (Fischlin and Gyalistras 1997). SOM is also an important human resource under active management in agricultural and range lands worldwide. Questions driving present research on the soil C cycle include: Are soils now acting as a net source or sink of carbon to the atmosphere? What role will soils play as a natural modulator or amplifier of climatic warming? How is C stabilized and sequestered, and what are effective management techniques to foster these processes? Answering these questions will require a mechanistic understanding of how and where C is stored in soils. The quantity and composition of organic matter in soil reflect the long-term balance between plant carbon inputs and microbial decomposition, as well as other loss processes such as fire, erosion, and leaching. The processes driving soil carbon storage and turnover are complex and involve influences at molecular to global scales. Moreover, the relative importance of these processes varies according to the temporal and spatial scales being considered; a process that is important at the regional scale may not be critical at the pedon scale. At the regional scale, SOM cycling is influenced by factors such as climate and parent material, which affect plant productivity and soil development. More locally, factors such as plant tissue quality and soil mineralogy affect

  3. ARM - Measurement - Soil heat flux

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    heat flux ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Soil heat flux A quantity measured according to the formula B = {lambda}(dT/dz), where {lambda} is the conductivity of the soil that the heat is moving through. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each

  4. Isolation of a significant fraction of non-phototroph diversity from a desert Biological Soil Crust

    SciTech Connect (OSTI)

    Nunes da Rocha, Ulisses; Cadillo-Quiroz, Hinsby; Karaoz, Ulas; Rajeev, Lara; Klitgord, Niels; Dunn, Sean; Truong, Viet; Buenrostro, Mayra; Bowen, Benjamin P.; Garcia-Pichel, Ferran; Mukhopadhyay, Aindrila; Northen, Trent R.; Brodie, Eoin L.

    2015-04-14

    Biological Soil Crusts (BSCs) are organosedimentary assemblages comprised of microbes and minerals in topsoil of terrestrial environments. BSCs strongly impact soil quality in dryland ecosystems (e.g., soil structure and nutrient yields) due to pioneer species such as Microcoleus vaginatus; phototrophs that produce filaments that bind the soil together, and support an array of heterotrophic microorganisms. These microorganisms in turn contribute to soil stability and biogeochemistry of BSCs. Non-cyanobacterial populations of BSCs are less well known than cyanobacterial populations. Therefore, we attempted to isolate a broad range of numerically significant and phylogenetically representative BSC aerobic heterotrophs. Combining simple pre-treatments (hydration of BSCs under dark and light) and isolation strategies (media with varying nutrient availability and protection from oxidative stress) we recovered 402 bacterial and one fungal isolate in axenic culture, which comprised 116 phylotypes (at 97% 16S rRNA gene sequence homology), 115 bacterial and one fungal. Each medium enriched a mostly distinct subset of phylotypes, and cultivated phylotypes varied due to the BSC pre-treatment. The fraction of the total phylotype diversity isolated, weighted by relative abundance in the community, was determined by the overlap between isolate sequences and OTUs reconstructed from metagenome or metatranscriptome reads. Together, more than 8% of relative abundance of OTUs in the metagenome was represented by our isolates, a cultivation efficiency much larger than typically expected from most soils. We conclude that simple cultivation procedures combined with specific pre-treatment of samples afford a significant reduction in the culturability gap, enabling physiological and metabolic assays that rely on ecologically relevant axenic cultures.

  5. Isolation of a significant fraction of non-phototroph diversity from a desert Biological Soil Crust

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nunes da Rocha, Ulisses; Cadillo-Quiroz, Hinsby; Karaoz, Ulas; Rajeev, Lara; Klitgord, Niels; Dunn, Sean; Truong, Viet; Buenrostro, Mayra; Bowen, Benjamin P.; Garcia-Pichel, Ferran; et al

    2015-04-14

    Biological Soil Crusts (BSCs) are organosedimentary assemblages comprised of microbes and minerals in topsoil of terrestrial environments. BSCs strongly impact soil quality in dryland ecosystems (e.g., soil structure and nutrient yields) due to pioneer species such as Microcoleus vaginatus; phototrophs that produce filaments that bind the soil together, and support an array of heterotrophic microorganisms. These microorganisms in turn contribute to soil stability and biogeochemistry of BSCs. Non-cyanobacterial populations of BSCs are less well known than cyanobacterial populations. Therefore, we attempted to isolate a broad range of numerically significant and phylogenetically representative BSC aerobic heterotrophs. Combining simple pre-treatments (hydration ofmore » BSCs under dark and light) and isolation strategies (media with varying nutrient availability and protection from oxidative stress) we recovered 402 bacterial and one fungal isolate in axenic culture, which comprised 116 phylotypes (at 97% 16S rRNA gene sequence homology), 115 bacterial and one fungal. Each medium enriched a mostly distinct subset of phylotypes, and cultivated phylotypes varied due to the BSC pre-treatment. The fraction of the total phylotype diversity isolated, weighted by relative abundance in the community, was determined by the overlap between isolate sequences and OTUs reconstructed from metagenome or metatranscriptome reads. Together, more than 8% of relative abundance of OTUs in the metagenome was represented by our isolates, a cultivation efficiency much larger than typically expected from most soils. We conclude that simple cultivation procedures combined with specific pre-treatment of samples afford a significant reduction in the culturability gap, enabling physiological and metabolic assays that rely on ecologically relevant axenic cultures.« less

  6. Exhibits | Savannah River Ecology Laboratory Environmental Outreach Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Exhibits The SREL Outreach Program presents displays at many local and regional events to promote awareness of our extraordinary ecosystem to large numbers of people from many diverse backgrounds. The exhibits use live animals and plants to demonstrate the biodiversity of local ecosystems. If you are interested in having the Savannah River Ecology Laboratory participate in your event with a live animal and plant exhibit, you need to make your request well in advance. Exhibits are often scheduled

  7. ORNUTM-13249 DRAFT AN ECOLOGICAL INVESTIGATION OF A VANADIUM

    Office of Legacy Management (LM)

    ORNUTM-13249 DRAFT AN ECOLOGICAL INVESTIGATION OF A VANADIUM AND URANIUM MILL TAILINGS SITE 1. G. Smith, M. J. Peterson, and M. G. Ryon Biological Monitoring and Abatement Program Environmental Sciences Division Oak RidgeNational Laboratory Oak Ridge, Tennessee May 1996 Prepared for Gretchen A. Pierce Healthand Safety Research Division Environmental Technology Section Oak RidgeNational Laboratory GrandJunction, Colorado Prepared by the Environmental Sciences Division Oak RidgeNational Laboratory

  8. 2006 Annual Ecology Report for the Rocky Flats Site

    Office of Legacy Management (LM)

    Ecology Report for the Rocky Flats Site Click on the links below to access different portions of the electronic annual report. 2006 Annual Report Sections Diffuse Knapweed Biocontrol Monitoring Report Dalmatian Toadflax Monitoring Report High-Value Vegetation Monitoring Report Revegetation Monitoring Report Present and Original Landfill Revegetation Monitoring Report Frog Vocalization Monitoring Report Appendix A (Files below comprise Appendix A for the above listed reports.) Rocky Flats Flora

  9. START HERE 2015 Annual Ecology Report DVD 1.htm

    Office of Legacy Management (LM)

    Annual Ecology Report for the Rocky Flats Site DSCF8864resized Click on the links below to access different portions of the electronic annual report. 2015 Annual Report Sections Revegetation Monitoring Report Vegetation Survey Report Wildlife Survey Report Wetland Mitigation Monitoring Report Rocky Flats Vascular Flora List (2015) 2015 Photopoint Monitoring Closure Revegetation Locations Post-Closure Revegetation Locations Wetland Mitigation Locations Game Camera Video Bull Elk Video

  10. Ecological investigation of a hazardous waste site, Warner Robins, Georgia

    SciTech Connect (OSTI)

    Wade, M.; Billig, P.

    1993-05-01

    Landfill No. 4 and the sludge lagoon at Robins Air Force Base, Warner Robins, Georgia, were added to the United States Environmental Protection Agency (EPA) National Priorities List in 1987 because of highpotential for contaminant migration. Warner Robins is located approximately 90 miles southeast of Atlanta. In 1990 CH2M HILL conducted a Remedial Investigation at the base that recommended that further ecological assessment investigations be conducted (CH2M HILL 1990). The subject paper is the result of this recommendation. The ecological study was carried out by the Hazardous Waste Remedial Actions Program (HAZWRAP)Division of Martin Marietta Energy Systems, Inc., working jointly with its subcontractor CDM (CDM 1992a). The primary area of investigation (Zone 1) included the sludge lagoon, Landfill No. 4, the wetland area east of the landfill and west of Hannah Road (including two sewage treatment ponds), and the area between Hannah Road and Horse Creek (Fig. 1). The bottomland forest wetlands of Zone 1 extend from the landfill east to Horse Creek. Surface water and groundwater flow across Zone 1 is generally in an easterly direction toward Horse Creek. Horse Creek is a south-flowing tributary of the Ocmulgee River Floodplain. The objective of the study was to perform a quantitative analysis of ecological risk associated with the ecosystems present in Zone 1. This investigation was unique because the assessment was to be based upon many measurement endpoints resulting in both location-specific data and data that would assess the condition of the overall ecosystem. The study was segregated into five distinct field investigations: hydrology, surface water and sediment, aquatic biology, wetlands ecology, and wildlife biology.

  11. Automated soil gas monitoring chamber (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Title: Automated soil gas monitoring chamber A chamber for trapping soil gases as they evolve from the soil without disturbance to the soil and to the natural microclimate within ...

  12. Preliminary systems engineering evaluations for the National Ecological Observatory Network.

    SciTech Connect (OSTI)

    Robertson, Perry J.; Kottenstette, Richard Joseph; Crouch, Shannon M.; Brocato, Robert Wesley; Zak, Bernard Daniel; Osborn, Thor D.; Ivey, Mark D.; Gass, Karl Leslie; Heller, Edwin J.; Dishman, James Larry; Schubert, William Kent; Zirzow, Jeffrey A.

    2008-11-01

    The National Ecological Observatory Network (NEON) is an ambitious National Science Foundation sponsored project intended to accumulate and disseminate ecologically informative sensor data from sites among 20 distinct biomes found within the United States and Puerto Rico over a period of at least 30 years. These data are expected to provide valuable insights into the ecological impacts of climate change, land-use change, and invasive species in these various biomes, and thereby provide a scientific foundation for the decisions of future national, regional, and local policy makers. NEON's objectives are of substantial national and international importance, yet they must be achieved with limited resources. Sandia National Laboratories was therefore contracted to examine four areas of significant systems engineering concern; specifically, alternatives to commercial electrical utility power for remote operations, approaches to data acquisition and local data handling, protocols for secure long-distance data transmission, and processes and procedures for the introduction of new instruments and continuous improvement of the sensor network. The results of these preliminary systems engineering evaluations are presented, with a series of recommendations intended to optimize the efficiency and probability of long-term success for the NEON enterprise.

  13. Soil Gas Sampling | Open Energy Information

    Open Energy Info (EERE)

    "normal" background soil gas contents of a particular geothermal area. References Toxic Substances Hydrology Program 2.0 2.1 The Application of Soil-Gas Technique to...

  14. Chemotactic selection of pollutant degrading soil bacteria (Patent...

    Office of Scientific and Technical Information (OSTI)

    RADIATION SOURCES; BACTERIA; EVALUATION; POLLUTANTS; BIODEGRADATION; SOILS; NUTRIENTS; COLONY FORMATION; INVENTIONS; SOIL CHEMISTRY; MINERALIZATION; LAND POLLUTION 540120; 053003; ...

  15. Ecological Forecasting in Chesapeake Bay: Using a Mechanistic-Empirical Modelling Approach

    SciTech Connect (OSTI)

    Brown, C. W.; Hood, Raleigh R.; Long, Wen; Jacobs, John M.; Ramers, D. L.; Wazniak, C.; Wiggert, J. D.; Wood, R.; Xu, J.

    2013-09-01

    The Chesapeake Bay Ecological Prediction System (CBEPS) automatically generates daily nowcasts and three-day forecasts of several environmental variables, such as sea-surface temperature and salinity, the concentrations of chlorophyll, nitrate, and dissolved oxygen, and the likelihood of encountering several noxious species, including harmful algal blooms and water-borne pathogens, for the purpose of monitoring the Bay's ecosystem. While the physical and biogeochemical variables are forecast mechanistically using the Regional Ocean Modeling System configured for the Chesapeake Bay, the species predictions are generated using a novel mechanistic empirical approach, whereby real-time output from the coupled physical biogeochemical model drives multivariate empirical habitat models of the target species. The predictions, in the form of digital images, are available via the World Wide Web to interested groups to guide recreational, management, and research activities. Though full validation of the integrated forecasts for all species is still a work in progress, we argue that the mechanisticempirical approach can be used to generate a wide variety of short-term ecological forecasts, and that it can be applied in any marine system where sufficient data exist to develop empirical habitat models. This paper provides an overview of this system, its predictions, and the approach taken.

  16. Intergrating Magnetotellurics, Soil Gas Geochemistry and Structural

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis to Identify Hidden, High Enthalpy, Extensional Geothermal Systems | Department of Energy Intergrating Magnetotellurics, Soil Gas Geochemistry and Structural Analysis to Identify Hidden, High Enthalpy, Extensional Geothermal Systems Intergrating Magnetotellurics, Soil Gas Geochemistry and Structural Analysis to Identify Hidden, High Enthalpy, Extensional Geothermal Systems Intergrating Magnetotellurics, Soil Gas Geochemistry and Structural Analysis to Identify Hidden, High Enthalpy,

  17. Shiprock Archived Soil & Groundwater Master Reports | Department of Energy

    Office of Environmental Management (EM)

    Shiprock Archived Soil & Groundwater Master Reports Shiprock Archived Soil & Groundwater Master Reports Shiprock Archived Soil & Groundwater Master Reports Shiprock - Shiprock (19.31 KB) More Documents & Publications Slick Rock Archived Soil & Groundwater Master Reports Tuba City Archived Soil & Groundwater Master Reports Spook Archived Soil & Groundwater Master Reports

  18. Spook Archived Soil & Groundwater Master Reports | Department of Energy

    Office of Environmental Management (EM)

    Spook Archived Soil & Groundwater Master Reports Spook Archived Soil & Groundwater Master Reports Spook Archived Soil & Groundwater Master Reports Spook - Spook (17.91 KB) More Documents & Publications Tuba City Archived Soil & Groundwater Master Reports Slick Rock Archived Soil & Groundwater Master Reports Weldon Spring Site Archived Soil & Groundwater Master Reports

  19. Risk Reduction and Soil Ecosystem Restoration in an Active Oil Producing Area in an Ecologically Sensitive Setting

    SciTech Connect (OSTI)

    Kerry L. Sublette; Greg Thoma; Kathleen Duncan

    2006-01-01

    The empowerment of small independent oil and gas producers to solve their own remediation problems will result in greater environmental compliance and more effective protection of the environment as well as making small producers more self-reliant. In Chapter 1 we report on the effectiveness of a low-cost method of remediation of a combined spill of crude oil and brine in the Tallgrass Prairie Preserve in Osage County, OK. Specifically, we have used hay and fertilizer as amendments for remediation of both the oil and the brine. No gypsum was used. Three spills of crude oil plus produced water brine were treated with combinations of ripping, fertilizers and hay, and a downslope interception trench in an effort to demonstrate an inexpensive, easily implemented, and effective remediation plan. There was no statistically significant effect of treatment on the biodegradation of crude oil. However, TPH reduction clearly proceeded in the presence of brine contamination. The average TPH half-life considering all impacted sites was 267 days. The combination of hay addition, ripping, and a downslope interception trench was superior to hay addition with ripping, or ripping plus an interception trench in terms of rates of sodium and chloride leaching from the impacted sites. Reductions in salt inventories (36 months) were 73% in the site with hay addition, ripping and an interception trench, 40% in the site with hay addition and ripping only, and < 3% in the site with ripping and an interception trench.

  20. Ecological Interactions Between Metals and Microbes That Impact Bioremediation

    SciTech Connect (OSTI)

    Konopka, Allan E.

    2003-06-01

    Previous work showed the correlation between bacterial biomass, population structure and the amount of lead, chromium and aromatic compounds present along a 21.6 m transect in which the concentrations of both heavy metals (Pb and Cr) and aromatic compounds varied 2-3 orders of magnitude. This work suggested that (a) biomass level was better correlated to the level of biodegradable organic C than the level of heavy metals, (b) microbial community composition differed between highly contaminated soils and uncontaminated ones, and (c) substantial microbial activity was found even in the highly contaminated soils. One confounding factor in these analyses was that the contaminated soils contained Pb, Cr, and aromatic hydrocarbons. Therefore, it was difficult to determine which factors were most important in the shifts of microbial community composition. Therefore, experiments were conducted in microcosms in which individual factors could be systematically varied. In this case, soils were used from the Seymour, IN site which had low levels of contamination, and the microbial community had little chance to adapt to heavy metals or aromatic compounds.

  1. Influence of ground water on soil-structure interaction

    SciTech Connect (OSTI)

    Costantino, C.J.; Philippacopoulos, A.J.

    1987-12-01

    This report presents a summary of the second year's effort on the subject of the influence of foundation ground water on the SSI phenomenon. A finite element computer program, developed during the first year's effort, was used to study the impact of depth to the ground water surface on the SSI problem. The formulation used therein is based on the Biot dynamic equations of motion for both the solid and fluid phases of a typical soil. Frequency dependent interaction coefficients were then generated for the two-dimensional plane problem of a rigid surface footing moving against a linear soil. The soil is considered dry above the GWT and fully saturated below. The results indicate that interaction coefficients are significantly modified as compared to the comparable values for a dry soil, particularly for the rocking mode of response, if the GWT is close to the foundation. As the GWT moves away from the foundation, these effects decrease in a relatively orderly fashion for both the horizontal and rocking modes of response. For the vertical interaction coefficients, the rate of convergence to the dry solution is frequency dependent. Calculations were made to study the impact of the modified interaction coefficients on the response of a typical nuclear reactor building. The amplification factors for a stick model placed atop a dry and saturated soil were computed. It was found that pore water caused the rocking response to decrease and translational response to increase over the frequency range of interest, as compared to the response on dry soil. 30 refs., 31 figs.

  2. Pacific Northwest Laboratory annual report for 1979 to the DOE Assistant Secretary for Environment. Part 2. Ecological sciences

    SciTech Connect (OSTI)

    Vaughan, B.E.

    1980-02-01

    Research in Environment, Health, and Safety conducted during fiscal year 1979 is reported. This volume consists of project reports from the Ecological Sciences research department. The reports are grouped under the following subject areas: National Environmental Research Park and land use; Alaskan resource research; shale oil; synfuels; nuclear waste; fission; marine research programs; statistical development of field research; nuclear fusion; pumped storage and hydroelectric development; pathways modelling, assessment and Hanford project support; electric field and microwave research; and energy research for other agencies. (ACR)

  3. Modeled Impacts of Cover Crops and Vegetative Barriers on Corn Stover Availability and Soil Quality

    SciTech Connect (OSTI)

    Ian J. Bonner; David J. Muth Jr.; Joshua B. Koch; Douglas L. Karlen

    2014-06-01

    Environmentally benign, economically viable, and socially acceptable agronomic strategies are needed to launch a sustainable lignocellulosic biofuel industry. Our objective was to demonstrate a landscape planning process that can ensure adequate supplies of corn (Zea mays L.) stover feedstock while protecting and improving soil quality. The Landscape Environmental Assessment Framework (LEAF) was used to develop land use strategies that were then scaled up for five U.S. Corn Belt states (Nebraska, Iowa, Illinois, Indiana, and Minnesota) to illustrate the impact that could be achieved. Our results show an annual sustainable stover supply of 194 million Mg without exceeding soil erosion T values or depleting soil organic carbon [i.e., soil conditioning index (SCI)?>?0] when no-till, winter cover crop, and vegetative barriers were incorporated into the landscape. A second, more rigorous conservation target was set to enhance soil quality while sustainably harvesting stover. By requiring erosion to be <1/2 T and the SCI-organic matter (OM) subfactor to be >?0, the annual sustainable quantity of harvestable stover dropped to148 million Mg. Examining removal rates by state and soil resource showed that soil capability class and slope generally determined the effectiveness of the three conservation practices and the resulting sustainable harvest rate. This emphasizes that sustainable biomass harvest must be based on subfield management decisions to ensure soil resources are conserved or enhanced, while providing sufficient biomass feedstock to support the economic growth of bioenergy enterprises.

  4. Pattern Effects of Soil on Photovoltaic Surfaces

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Burton, Patrick D.; Hendrickson, Alex; Ulibarri, Stephen Seth; Riley, Daniel; Boyson, William E.; King, Bruce H.

    2016-06-06

    The texture or patterning of soil on PV surfaces may influence light capture at various angles of incidence (AOI). Accumulated soil can be considered a microshading element, which changes with respect to AOI. Laboratory deposition of simulated soil was used to prepare test coupons for simultaneous AOI and soiling loss experiments. A mixed solvent deposition technique was used to consistently deposit patterned test soils onto glass slides. Transmission decreased as soil loading and AOI increased. Dense aggregates significantly decreased transmission. But, highly dispersed particles are less prone to secondary scattering, improving overall light collection. In order to test AOI losses on relevant systems, uniform simulated soil coatings were applied to split reference cells to further examine this effect. Finally, the measured optical transmission and area coverage correlated closely to the observedmore » $$I_{{rm SC}}$$. Angular losses were significant at angles as low as 25°.« less

  5. Ecological Risk Assessment Framework for Low-Altitude Overflights by Fixed-Wing and Rotary-Wing Military Aircraft

    SciTech Connect (OSTI)

    Efroymson, R.A.

    2001-01-12

    This is a companion report to the risk assessment framework proposed by Suter et al. (1998): ''A Framework for Assessment of Risks of Military Training and Testing to Natural Resources,'' hereafter referred to as the ''generic framework.'' The generic framework is an ecological risk assessment methodology for use in environmental assessments on Department of Defense (DoD) installations. In the generic framework, the ecological risk assessment framework of the US Environmental Protection Agency (EPA 1998) is modified for use in the context of (1) multiple and diverse stressors and activities at a military installation and (2) risks resulting from causal chains, e.g., effects on habitat that indirectly impact wildlife. Both modifications are important if the EPA framework is to be used on military installations. In order for the generic risk assessment framework to be useful to DoD environmental staff and contractors, the framework must be applied to specific training and testing activities. Three activity-specific ecological risk assessment frameworks have been written (1) to aid environmental staff in conducting risk assessments that involve these activities and (2) to guide staff in the development of analogous frameworks for other DoD activities. The three activities are: (1) low-altitude overflights by fixed-wing and rotary-wing aircraft (this volume), (2) firing at targets on land, and (3) ocean explosions. The activities were selected as priority training and testing activities by the advisory committee for this project.

  6. Kenneth W. McLeod | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    McLeod Faculty & Scientists SREL Home Kenneth W. McLeod Savannah River Ecology Laboratory P O Drawer E, Aiken, SC 29802 (803) 725-5309 office (803) 725-3309 fax kwmcleod(at)srel.uga.edu As a plant ecophysiologist, I am interested in the unique mechanisms that allow plant species to inhabit marginal habitats and which contributes to their individual distribution patterns, from large-scale continental patterns to patterns of individual trees in a forest. The elucidation of these mechanisms has

  7. Savannah River Ecology Laboratory - Touch An Animal Day 2016

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Return to Photo Album Savannah River Ecology Laboratory's 8th Annual "Touch An Animal Day!" August 20, 2016 Once again a fun day was had by all! Click on an image for a larger view. Special thanks to the following individuals for their help with this event: Matt Baker Dr. I. Lehr Brisbin Dr. Kurt Buhlmann Joseph Colbert Zoë Cooper Fanny Coutelot Mackenzie Dix Carol Eldridge Larry Eldridge Dean Fletcher Wes Flynn Dr. Whit Gibbons Judy Greene-McLeod Matt Hamilton David Keiter Linda Lee

  8. ECOLOGICAL MONITORING AND COMPLIANCE PROGRAM CALENDAR YEAR 2005 REPORT

    SciTech Connect (OSTI)

    BECHTEL NEVADA ECOLOGICAL SERVICES

    2006-03-01

    The Ecological Monitoring and Compliance program (EMAC), funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO), monitors the ecosystem of the Nevada Test Site (NTS) and ensures compliance with laws and regulations pertaining to NTS biota. This report summarizes the program’s activities conducted by Bechtel Nevada (BN) during the Calendar Year 2005. Program activities included: (1) biological surveys at proposed construction sites, (2) desert tortoise compliance, (3) ecosystem mapping and data management, (4) sensitive and protected/regulated species and unique habitat monitoring, (5) habitat restoration monitoring, and (6) biological monitoring at the Non-Proliferation Test and Evaluation Complex (NPTEC).

  9. Population and community ecology of the rare plant amsinckia grandiflora

    SciTech Connect (OSTI)

    Carlsen, T.M.

    1996-11-01

    Research was conducted between the fall of 1992 and the spring on the population and community ecology of the rare annual plant, Amsinckia glandiflora (Gray) Kleeb. ex Greene (Boraginaceae). The research goal was to investigate the causes of the species rarity, data useful to restorative efforts. The work focused on the examination of competitive suppression by exotic annual grasses; comparisons with common, weedy congener; and the role of litter cover and seed germination and seedling establishment. Annual exotic grasses reduced A. grandiflora reproductive output to a greater extent than did the native perennial bunch grass.

  10. Soil sampling. Technical engineering and design guides as adapted from the U.S. Army Corps of Engineers, No. 30

    SciTech Connect (OSTI)

    2000-07-01

    This manual provides both technical guidance for conducting soil sampling operations, and the best methods for handling and storage of samples obtained in support of geotechnical investigations. The principles, equipment, procedures, and limitations for obtaining, handling, and preserving soil samples are discussed. Since the highest quality samples are often obtained at the least cost by using a variety of equipment and techniques, this manual surveys the different devices and techniques that have been developed for drilling and sampling geotechnical materials ranging from soil to rocks. The manual further suggests the various types of sampling devices best suited to obtain samples of various soil types encountered during geotechnical investigations.

  11. Soil microbial responses to nitrogen addition in arid ecosystems

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sinsabaugh, Robert L.; Belnap, Jayne; Rudgers, Jennifer; Kuske, Cheryl R.; Martinez, Noelle; Sandquist, Darren

    2015-08-14

    The N cycle of arid ecosystems is influenced by low soil organic matter, high soil pH, and extremes in water potential and temperature that lead to open canopies and development of biological soil crusts (biocrusts). We investigated the effects of N amendment on soil microbial dynamics in a Larrea tridentata-Ambrosia dumosa shrubland site in southern Nevada USA. Sites were fertilized with a NO3-NH4 mix at 0, 7, and 15 kg N ha-1 y-1 from March 2012 to March 2013. In March 2013, biocrust (0–0.5 cm) and bulk soils (0–10 cm) were collected beneath Ambrosia canopies and in the interspaces betweenmore » plants. Biomass responses were assessed as bacterial and fungal SSU rRNA gene copy number and chlorophyll a concentration. Metabolic responses were measured by five ecoenzyme activities and rates of N transformation. With most measures, nutrient availability, microbial biomass, and process rates were greater in soils beneath the shrub canopy compared to the interspace between plants, and greater in the surface biocrust horizon compared to the deeper 10 cm soil profile. Most measures responded positively to experimental N addition. Effect sizes were generally greater for bulk soil than biocrust. Results were incorporated into a meta-analysis of arid ecosystem responses to N amendment that included data from 14 other studies. Effect sizes were calculated for biomass and metabolic responses. Regressions of effect sizes, calculated for biomass, and metabolic responses, showed similar trends in relation to N application rate and N load (rate × duration). The critical points separating positive from negative treatment effects were 88 kg ha-1 y-1 and 159 kg ha-1, respectively, for biomass, and 70 kg ha-1 y-1 and 114 kg ha-1, respectively, for metabolism. These critical values are comparable to those for microbial biomass, decomposition rates and respiration reported in broader meta-analyses of N amendment effects in mesic ecosystems. The large effect sizes at low N

  12. Soil microbial responses to nitrogen addition in arid ecosystems

    SciTech Connect (OSTI)

    Sinsabaugh, Robert L.; Belnap, Jayne; Rudgers, Jennifer; Kuske, Cheryl R.; Martinez, Noelle; Sandquist, Darren

    2015-08-14

    The N cycle of arid ecosystems is influenced by low soil organic matter, high soil pH, and extremes in water potential and temperature that lead to open canopies and development of biological soil crusts (biocrusts). We investigated the effects of N amendment on soil microbial dynamics in a Larrea tridentata-Ambrosia dumosa shrubland site in southern Nevada USA. Sites were fertilized with a NO3-NH4 mix at 0, 7, and 15 kg N ha-1 y-1 from March 2012 to March 2013. In March 2013, biocrust (0–0.5 cm) and bulk soils (0–10 cm) were collected beneath Ambrosia canopies and in the interspaces between plants. Biomass responses were assessed as bacterial and fungal SSU rRNA gene copy number and chlorophyll a concentration. Metabolic responses were measured by five ecoenzyme activities and rates of N transformation. With most measures, nutrient availability, microbial biomass, and process rates were greater in soils beneath the shrub canopy compared to the interspace between plants, and greater in the surface biocrust horizon compared to the deeper 10 cm soil profile. Most measures responded positively to experimental N addition. Effect sizes were generally greater for bulk soil than biocrust. Results were incorporated into a meta-analysis of arid ecosystem responses to N amendment that included data from 14 other studies. Effect sizes were calculated for biomass and metabolic responses. Regressions of effect sizes, calculated for biomass, and metabolic responses, showed similar trends in relation to N application rate and N load (rate × duration). The critical points separating positive from negative treatment effects were 88 kg ha-1 y-1 and 159 kg ha-1, respectively, for biomass, and 70 kg ha-1 y-1 and 114 kg ha-1, respectively, for metabolism. These critical values are comparable to those for microbial biomass, decomposition rates and respiration

  13. NNSS Soils Monitoring: Plutonium Valley (CAU366) FY2012

    SciTech Connect (OSTI)

    Miller, Julianne J.; Mizell, Steve A.; Nikolich, George; McCurdy, Greg; Campbell, Scott

    2013-01-01

    soil from areas of surface contamination offers the most efficient means to confirm that surface runoff may transport radioactive contamination as a result of ambient precipitation/runoff events. Closure plans being developed for the CAUs on the NNSS may include post-closure monitoring for possible release of radioactive contaminants. Determining the potential for transport of radionuclide-contaminated soils under ambient meteorological conditions will facilitate an appropriate closure design and post-closure monitoring program.

  14. Wind-induced contaminant transport in near-surface soils with application to radon entry into buildings

    SciTech Connect (OSTI)

    Riley, W J

    1996-05-01

    Indoor air exposures to gaseous contaminants originating in soil can cause large human health risks. To predict and control these exposures, the mechanisms that affect vapor transport in near-surface soils need to be understood. In particular, radon exposure is a concern since average indoor radon concentrations lead to much higher risks than are generally accepted for exposure to other environmental contaminants. This dissertation examines an important component of the indoor radon problem: the impacts of wind on soil-gas and radon transport and entry into buildings. The research includes experimental and modeling studies of wind`s interactions with a building`s superstructure and the resulting soil-gas and radon flows in the surrounding soil. In addition to exploring the effects of steady winds, a novel modeling technique is developed to examine the impacts of fluctuating winds on soil-gas and radon transport.

  15. Innovative Vitrification for Soil Remediation

    SciTech Connect (OSTI)

    Hnat, James G.; Patten, John S.; Jetta, Norman W.

    1996-12-31

    Vortec has successfully completed Phases 1 and 2 of a technology demonstration program for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation.'' The principal objective of the program is to demonstrate the ability of a Vortec Cyclone Melting System (CMS) to remediate DOE contaminated soils and other waste forms containing TM RCRA hazardous materials, low levels of radionuclides and TSCA (PCB) containing wastes. The demonstration program will verify the ability of this vitrification process to produce a chemically stable glass final waste form which passes both TCLP and PCT quality control requirements, while meeting all federal and state emission control regulations. The demonstration system is designed to process 36 ton/day of as-received drummed or bulk wastes. The processing capacity equates to approximately 160 barrels/day of waste materials containing 30% moisture at an average weight of 450 lbs./barrel.

  16. A comparison of simulation models for predicting soil water dynamics in bare and vegetated lysimeters

    SciTech Connect (OSTI)

    Link, S.O.; Kickert, R.N.; Fayer, M.J.; Gee, G.W.

    1993-06-01

    This report describes the results of simulation models used to predict soil water storage dynamics at the Field Lysimeter Test Facility (FLTF) weighing lysimeters. The objectives of this research is to develop the capability to predict soil water storage dynamics with plants in support of water infiltration control studies for the Hanford Permanent Isolation Barrier Development Program. It is important to gain confidence in one`s ability to simulate soil water dynamics over long time periods to assess the barrier`s ability to prevent drainage. Two models were compared for their ability to simulate soil water storage dynamics with and without plants in weighing lysimeters, the soil water infiltration and movement (SWIM) and the simulation of production and utilization of rangelands (SPUR-91) models. These models adequately simulated soil water storage dynamics for the weighing lysimeters. The range of root mean square error values for the two models was 7.0 to 19.8. This compares well with the range reported by Fayer et al. (1992) for the bare soil data sets of 8.1 to 22.1. Future research will test the predictive capability of these models for longer term lysimeter data sets and for historical data sets collected in various plant community types.

  17. Extended abstracts for an international conference on the development of the North and problems of recultivation

    SciTech Connect (OSTI)

    Everett, K.R.

    1994-12-31

    Ecological problems in many regions on Earth are the result of increasing technological pressure on the environment. These problems concern many of us and cause mankind to unite in order to search for means to protect the environment. Scientists, especially are responsible for the protection of the biosphere. The objective of this conference was to discuss the results of studies on the present condition of the environment in the Far North where the industrial pressure is increasing. The participants of this conference also offered and suggested various necessary measures for the protection of the region and restoration of its disturbed sites. The specific structural characteristics of the environment of the Far North, tundra and northern taiga, cause its fragility and vulnerability to anthropogenic impact. The destruction of the thin, weak layer of soil and vegetation cover changes the thermal balance and thus causes the development of erosion process, which in their turn increase the zone of the direct technogenous destruction. Self restoration processes in this harsh climate usually are slow. The preservation of the ecological integrity in the Far North is essential for the stability of the biosphere of the planet. The specifics of the natural conditions must be taken into account so that man will be able to develop the means of intensive agro-technology that can speed up the process of restoration of the biocenosis in the damaged areas. The extended abstracts of the conference reports that constitute this volume contain both theoretical discussions of problems of recultivation as well as accounts of experimental studies and applied explorations.

  18. Interannual Variability in Global Soil Respiration on a 0.5 Degree Grid Cell Basis (1980-1994)

    SciTech Connect (OSTI)

    Raich, J.W.

    2003-09-15

    We used a climate-driven regression model to develop spatially resolved estimates of soil-CO{sub 2} emissions from the terrestrial land surface for each month from January 1980 to December 1994, to evaluate the effects of interannual variations in climate on global soil-to-atmosphere CO{sub 2} fluxes. The mean annual global soil-CO{sub 2} flux over this 15-y period was estimated to be 80.4 (range 79.3-81.8) Pg C. Monthly variations in global soil-CO{sub 2} emissions followed closely the mean temperature cycle of the Northern Hemisphere. Globally, soil-CO{sub 2} emissions reached their minima in February and peaked in July and August. Tropical and subtropical evergreen broad-leaved forests contributed more soil-derived CO{sub 2} to the atmosphere than did any other vegetation type ({approx}30% of the total) and exhibited a biannual cycle in their emissions. Soil-CO{sub 2} emissions in other biomes exhibited a single annual cycle that paralleled the seasonal temperature cycle. Interannual variability in estimated global soil-CO{sub 2} production is substantially less than is variability in net carbon uptake by plants (i.e., net primary productivity). Thus, soils appear to buffer atmospheric CO{sub 2} concentrations against far more dramatic seasonal and interannual differences in plant growth. Within seasonally dry biomes (savannas, bushlands, and deserts), interannual variability in soil-CO{sub 2} emissions correlated significantly with interannual differences in precipitation. At the global scale, however, annual soil-CO{sub 2} fluxes correlated with mean annual temperature, with a slope of 3.3 PgCY{sup -1} per degree Celsius. Although the distribution of precipitation influences seasonal and spatial patterns of soil-CO{sub 2} emissions, global warming is likely to stimulate CO{sub 2} emissions from soils.

  19. Black Warrior: Sub-soil gas and fluid inclusion exploration and slim well drilling

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project Objectives: Discover a blind, low-moderate temperature resource: Apply a combination of detailed sub-soil gas, hydrocarbon, and isotope data to define possible upflow areas; Calibrate the sub-soil chemistry with down-hole fluid inclusion stratigraphy and fluid analyses to define a follow-up exploration drilling target; Create short term jobs and long term employment through resource exploration, development and power plant operation; Extend and adapt the DOE sub-soil 2 meter probe technology to gas sampling.

  20. Application of Chemically Accelerated Biotreatment to Reduce Risk in Oil-Impacted Soils

    SciTech Connect (OSTI)

    Paterek, J.R.; Bogan, W.W.; Lahner, L.M.; Trbovic, V.

    2003-03-06

    Conducted research in the following major focus areas: (1) Development of mild extraction approaches to estimate bioavailable fraction of crude oil residues in contaminated soils; (2) Application of these methods to understand decreases in toxicity and increases in sequestration of hydrocarbons over time, as well as the influence of soil properties on these processes; (3) Measurements of the abilities of various bacteria (PAH-degraders and others more representative of typical soil bacteria) to withstand oxidative treatments (i.e. Fenton's reaction) which would occur in CBT; and (4) Experiments into the biochemical/genetic inducibility of PAH degradation by compounds formed by the chemical oxidation of PAH.

  1. Substrate and environmental controls on microbial assimilation of soil organic carbon: a framework for Earth System Models

    SciTech Connect (OSTI)

    Xu, Xiaofeng; Schimel, Joshua; Thornton, Peter E; Song, Xia; Yuan, Fengming; Goswami, Santonu

    2014-01-01

    Microbial assimilation of soil organic carbon is one of the fundamental processes of global carbon cycling and it determines the magnitude of microbial biomass in soils. Mechanistic understanding of microbial assimilation of soil organic carbon and its controls is important for to improve Earth system models ability to simulate carbon-climate feedbacks. Although microbial assimilation of soil organic carbon is broadly considered to be an important parameter, it really comprises two separate physiological processes: one-time assimilation efficiency and time-dependent microbial maintenance energy. Representing of these two mechanisms is crucial to more accurately simulate carbon cycling in soils. In this study, a simple modeling framework was developed to evaluate the substrate and environmental controls on microbial assimilation of soil organic carbon using a new term: microbial annual active period (the length of microbes remaining active in one year). Substrate quality has a positive effect on microbial assimilation of soil organic carbon: higher substrate quality (lower C:N ratio) leads to higher ratio of microbial carbon to soil organic carbon and vice versa. Increases in microbial annual active period from zero stimulate microbial assimilation of soil organic carbon; however, when microbial annual active period is longer than an optimal threshold, increasing this period decreases microbial biomass. The simulated ratios of soil microbial biomass to soil organic carbon are reasonably consistent with a recently compiled global dataset at the biome-level. The modeling framework of microbial assimilation of soil organic carbon and its controls developed in this study offers an applicable ways to incorporate microbial contributions to the carbon cycling into Earth system models for simulating carbon-climate feedbacks and to explain global patterns of microbial biomass.

  2. PART FOUR INTEGRATION OF EPA AND ECOLOGY RESPONSIBILITIES ARTICLE XXIII. RCRA/CERCLA INTERFACE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    49- PART FOUR INTEGRATION OF EPA AND ECOLOGY RESPONSIBILITIES ARTICLE XXIII. RCRA/CERCLA INTERFACE 86. Part Two of this Agreement requires DOE to carry out RCRA TSD work under the direction and authority of Ecology. Part Three of this Agreement requires DOE to carry out investigations and cleanup of past- practice units through the CERCLA process under the authority of EPA, or through the RCRA Corrective Action process under the authority of Ecology. This Part Four establishes the framework for

  3. DOE Cites Safety and Ecology Corp. for Violating Nuclear Safety Rules |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Safety and Ecology Corp. for Violating Nuclear Safety Rules DOE Cites Safety and Ecology Corp. for Violating Nuclear Safety Rules June 14, 2005 - 4:53pm Addthis WASHINGTON, D.C. -- The Department of Energy (DOE) today notified Safety and Ecology Corporation, the contractor responsible for radiological safety at the Portsmouth Gaseous Diffusion Project in Portsmouth, Ohio, that it will fine the company $55,000 for violating the department's regulations prohibiting

  4. Microsoft PowerPoint - Ecology update for HAB 2-5-2015.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 5, 2015 Jane Hedges Manager, Nuclear Waste Program National Remedy Review Board * Ecology and Yakama Nation presented to board Jan. 27 on 100 D/H Proposed Plan * NRRB is EPA board, but Ecology is lead regulatory agency on this project * NRRB comments expected in about 6 weeks * Ecology will review comments & determine potential impacts to proposed plan * Public comment period on proposed plan could be ready to start June 2015 * Copies on back table * Posted on ECY website Updated

  5. Guidance Manual for Conducting Screening Level Ecological Risk Assessments at the INEL

    SciTech Connect (OSTI)

    R. L. VanHorn; N. L. Hampton; R. C. Morris

    1995-06-01

    This document presents reference material for conducting screening level ecological risk assessments (SLERAs)for the waste area groups (WAGs) at the Idaho National Engineering Laboratory. Included in this document are discussions of the objectives of and processes for conducting SLERAs. The Environmental Protection Agency ecological risk assessment framework is closely followed. Guidance for site characterization, stressor characterization, ecological effects, pathways of contaminant migration, the conceptual site model, assessment endpoints, measurement endpoints, analysis guidance, and risk characterization are included.

  6. Assessing Fossil and New Carbon in Reclaimed Mined Soils

    SciTech Connect (OSTI)

    Rattan Lal; David Ussiri

    2008-09-30

    Soil organic carbon (SOC) pool in the reclaimed minesoils (RMS) is the mixture of coal C originating from mining and reclamation activities and recent plant-derived organic carbon (OC). Accurate estimates of OC pools and sequestration rates in the RMS are limited by lack of standard and cost-effective method for determination of coal-C concentration. The main objective of this project was to develop and test analytical procedures for quantifying pool sizes of coal-derived C in RMS and to partition organic C in RMS into coal-derived and newly deposited SOC fractions. Analysis of soil and coal artificial mixtures indicated that the {Delta}{sup 13}C method developed was very effective in estimating coal C added in the mixtures, especially soils under C4 plants. However, most of the reclaimed sites in Ohio are under C3 plants with range of {Delta}{sup 13}C signal falling within ranges of coal. The wide range of {Delta}{sup 13}C signal observed in minesoils, (i.e. -26 to -30 for plants and -23 to -26 for coal) limits the ability of this approach to be used for southeast Ohio minesoils. This method is applicable for reclaimed prime farm land under long term corn or corn soybean rotation. Chemi-thermal method was very effective in quantifying coal-C fraction in both soil-coal artificial mixtures and minesoils. The recovery of coal-C from the mixture ranged from 93 to 100% of coal. Cross-validation of chemi-thermal method with radiocarbon analysis revealed that chemi-thermal method was as effective as radiocarbon analysis in quantifying coal-C in RMS. Coal C determined after chemi-thermal treatment of samples was highly correlated with coal C concentration calculated by radiocarbon activity (r{sup 2} = 0.95, P < 0.01). Therefore, both radiocarbon activity and chemi-thermal method were effective in estimating coal carbon concentration in reclaimed minesoils of southeast Ohio. Overall, both coal-C and recent OC fraction exhibited high spatial and depth variation, suggesting

  7. Natural mercury isotope variation in coal deposits and organic soils

    SciTech Connect (OSTI)

    Abir, Biswas; Joel D. Blum; Bridget A. Bergquist; Gerald J. Keeler; Zhouqing Xie

    2008-11-15

    There is a need to distinguish among sources of Hg to the atmosphere in order to more fully understand global Hg pollution. In this study we investigate whether coal deposits within the United States, China, and Russia-Kazakhstan, which are three of the five greatest coal-producing regions, have diagnostic Hg isotopic fingerprints that can be used to discriminate among Hg sources. We also investigate the Hg isotopic composition of modern organic soil horizons developed in areas distant from point sources of Hg in North America. Mercury stored in coal deposits displays a wide range of both mass dependent fractionation and mass independent fractionation. {delta}{sup 202}Hg varies in coals by 3{per_thousand} and {Delta}{sup 201}Hg varies by 0.9{per_thousand}. Combining these two Hg isotope signals results in what may be a unique isotopic 'fingerprint' for many coal deposits. Mass independent fractionation of mercury has been demonstrated to occur during photochemical reactions of mercury. This suggests that Hg found in most coal deposits was subjected to photochemical reduction near the Earth's surface prior to deposition. The similarity in MDF and MIF of modern organic soils and coals from North America suggests that Hg deposition from coal may have imprinted an isotopic signature on soils. This research offers a new tool for characterizing mercury inputs from natural and anthropogenic sources to the atmosphere and provides new insights into the geochemistry of mercury in coal and soils. 35 refs., 2 figs., 1 tab.

  8. Rapid Determination Of Radiostrontium In Large Soil Samples

    SciTech Connect (OSTI)

    Maxwell, Sherrod L.; Culligan, Brian K.; Shaw, Patrick J.

    2012-05-24

    A new method for the determination of radiostrontium in large soil samples has been developed at the Savannah River Environmental Laboratory (Aiken, SC, USA) that allows rapid preconcentration and separation of strontium in large soil samples for the measurement of strontium isotopes by gas flow proportional counting. The need for rapid analyses in the event of a Radiological Dispersive Device (RDD) or Improvised Nuclear Device (IND) event is well-known. In addition, the recent accident at Fukushima Nuclear Power Plant in March, 2011 reinforces the need to have rapid analyses for radionuclides in environmental samples in the event of a nuclear accident. The method employs a novel pre-concentration step that utilizes an iron hydroxide precipitation (enhanced with calcium phosphate) followed by a final calcium fluoride precipitation to remove silicates and other matrix components. The pre-concentration steps, in combination with a rapid Sr Resin separation using vacuum box technology, allow very large soil samples to be analyzed for {sup 89,90}Sr using gas flow proportional counting with a lower method detection limit. The calcium fluoride precipitation eliminates column flow problems typically associated with large amounts of silicates in large soil samples.

  9. Advanced Assay Systems for Radionuclide Contamination in Soils

    SciTech Connect (OSTI)

    J. R. Giles; L. G. Roybal; M. V. Carpenter; C. P. Oertel; J. A. Roach

    2008-02-01

    Through the support of the Department of Energy (DOE) Office of Environmental Management (EM) Technical Assistance Program, the Idaho National Laboratory (INL) has developed and deployed a suite of systems that rapidly scan, characterize, and analyze surface soil contamination. The INL systems integrate detector systems with data acquisition and synthesis software and with global positioning technology to provide a real-time, user-friendly field deployable turn-key system. INL real-time systems are designed to characterize surface soil contamination using methodologies set forth in the Multi-Agency Radiation Surveys and Site Investigation Manual (MARSSIM). MARSSIM provides guidance for planning, implementing, and evaluating environmental and facility radiological surveys conducted to demonstrate compliance with a dose or risk-based regulation and provides real-time information that is immediately available to field technicians and project management personnel. This paper discusses the history of the development of these systems and describes some of the more recent examples and their applications.

  10. The United States Regional Association of the International Association for Landscape Ecology

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    Abstracts are presented from a meeting on landscape ecology. Topics include: conservation, climatic change, forest management, aquatic, wetland, rural and urban landscapes, land use, and biodiversity.

  11. The United States Regional Association of the International Association for Landscape Ecology

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    Abstracts are presented from a meeting on landscape ecology. Topics include: conservation, climatic change, forest management, aquatic, wetland, rural and urban landscapes, land use, and biodiversity.

  12. Ethnic differences in ecological concerns: Spanish-speaking Hispanics are more concerned than others

    SciTech Connect (OSTI)

    Burger, Joanna . E-mail: burger@biology.rutgers.edu; Greenberg, Michael

    2006-09-15

    We postulated that environmental concern encompasses a wide range of different issues, often lumping pollution with habitat loss (or land use) and ecological resources (fish and wildlife). In this paper, we compare perceptions about a range of environmental and ecological resource issues, and explore ethnic/racial differences. We surveyed 1513 residents of New Jersey about 'environmental concerns', using both general environmental questions (two questions: How serious are environmental problems in New Jersey? Are you concerned about the loss of open space?) and ecological resource questions (12 questions: e.g., how important is planting trees in your neighborhood, how concerned are you about loss of breeding and feeding habitat for fish and birds?) in New Jersey. Not all concerns were rated equally. For the ecological questions, there were no ethnic differences in concerns over preserving areas around water supplies, loss of places to hunt and fish, and loss of places for quiet walks and cycling, but there were for the other 9 ecological concerns. For eight of these nine concerns, Spanish-speaking Hispanics were more concerned than others (including English-speaking Hispanics). We divided the ecological resources into three categories: ecological services (clean water and safety), ecological resources (fish and wildlife), and recreational services. The strongest correlates of people's association with enlarging and enhancing recreational services were Spanish-speaking Hispanics, who are supportive of regulations and believe local government is not doing enough for environmental problems. People concerned about the loss of ecological resources and open space believe the federal government and the state are not doing enough for the environment, were non-Hispanic White, want continued environmental regulations, were longer-term residents, were high school graduates, and were older (45-54 years). People interested in ecological services were college-educated, non

  13. DEPARTMENT OF ENERGY SOIL AND GROUNDWATER SCIENCE AND TECHNOLOGY NEEDS, PLANS AND INITIATIVES

    SciTech Connect (OSTI)

    Aylward, B; V. ADAMS, V; G. M. CHAMBERLAIN, G; T. L. STEWART, T

    2007-12-12

    This paper presents the process used by the Department of Energy (DOE) Environmental Management (EM) Program to collect and prioritize DOE soil and groundwater site science and technology needs, develop and document strategic plans within the EM Engineering and Technology Roadmap, and establish specific program and project initiatives for inclusion in the EM Multi-Year Program Plan. The paper also presents brief summaries of the goals and objectives for the established soil and groundwater initiatives.

  14. The Soils and Groundwater – EM-20 S&T Roadmap Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2008-02-11

    The Soils and Groundwater – EM-20 Science and Technology Roadmap Project is a U.S. Department of Energy, Office of Environmental Management-funded initiative designed to develop new methods, strategies and technology for characterizing, modeling, remediating, and monitoring soils and groundwater contaminated with metals, radionuclides, and chlorinated organics. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by EM-20 Roadmap Project staff.

  15. ALTERNATIVE FIELD METHODS TO TREAT MERCURY IN SOIL

    SciTech Connect (OSTI)

    Ernest F. Stine Jr; Steven T. Downey

    2002-08-14

    contamination and to increase the TCLP mercury values. IT/NFS investigated ambient temperature amalgamation/stabilization/fixation of mercury-contaminated soils to meet these objectives. Treatment ranged in size from a few ounces to 10 pounds. The treatability study philosophy was to develop working envelops of formulations where reasonable minimum and maximum amounts of each reagent that would successfully treat the contaminated soil were determined. The dosages investigated were based on ratios of stoichiometric reactions and applications of standard sets of formulations. The approach purposely identified formulations that failed short or longer cure-time performance criteria to define the limits of the envelope. Reagent envelops successfully met the project requirements one day after treatment and after greater than 30-day cures. The use of multiple levels of spikes allowed the establishment of reagent dosages that were successful across a broad range of mercury values, e.g., 50 to 6000 mg/kg mercury. The treatment products were damp to slightly wet material. Enough drying reagent, e.g., Portland cement or lime by-product, were added to some formulations to control the leachability of uranium and other hazardous metals and to ensure the product passed the paint filter test. Cost analyzes and conceptual designs for four alternatives for full-scale treatments were prepared. The alternatives included two in-situ treatments and two ex-situ treatments. The cost estimates were based on the results from the bench-scale study. All four alternatives treatment costs were well below the baseline costs.

  16. Formation of soluble mercury oxide coatings: Transformation of elemental mercury in soils

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Miller, Carrie L.; Watson, David B.; Lester, Brian P.; Howe, Jane Y.; Phillips, Debra H.; He, Feng; Liang, Liyuan; Pierce, Eric M.

    2015-09-21

    In this study, the impact of mercury (Hg) on human and ecological health has been known for decades. Although a treaty signed in 2013 by 147 nations regulates future large-scale mercury emissions, legacy Hg contamination exists worldwide and small-scale releases will continue. The fate of elemental mercury, Hg(0), lost to the subsurface and its potential chemical transformation that can lead to changes in speciation and mobility are poorly understood. Here, we show that Hg(0) beads interact with soil or manganese oxide solids and X-ray spectroscopic analysis indicates that the soluble mercury coatings are HgO. Dissolution studies show that, after reactingmore » with a composite soil, >20 times more Hg is released into water from the coated beads than from a pure liquid mercury bead. An even larger, >700 times, release occurs from coated Hg(0) beads that have been reacted with manganese oxide, suggesting that manganese oxides are involved in the transformation of the Hg(0) beads and creation of the soluble mercury coatings. Although the coatings may inhibit Hg(0) evaporation, the high solubility of the coatings can enhance Hg(II) migration away from the Hg(0)-spill site and result in potential changes in mercury speciation in the soil and increased mercury mobility.« less

  17. Giving Back: Collaborations with Others in Ecological Studies on the Nevada National Security Site

    SciTech Connect (OSTI)

    Scott A. Wade; Kathryn S. Knapp; Cathy A. Wills

    2013-02-24

    Formerly named the Nevada Test Site, the Nevada National Security Site (NNSS) was the historical site for nuclear weapons testing from the 1950s to the early 1990s. The site was renamed in 2010 to reflect the diversity of nuclear, energy, and homeland security activities now conducted at the site. Biological and ecological programs and research have been conducted on the site for decades to address the impacts of radiation and to take advantage of the relatively undisturbed and isolated lands for gathering basic information on the occurrence and distribution of native plants and animals. Currently, the Office of the Assistant Manager for Environmental Management of the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) oversees the radiological biota monitoring and ecological compliance programs on the NNSS. The top priority of these programs are compliance with federal and state regulations. They focus on performing radiological dose assessments for the public who reside near the NNSS and for populations of plants and animals on the NNSS and in protecting important species and habitat from direct impacts of mission activities. The NNSS serves as an invaluable outdoor laboratory. The geographic and ecological diversity of the site offers researchers many opportunities to study human influences on ecosystems. NNSA/NSO has pursued collaborations with outside agencies and organizations to be able to conduct programs and studies that enhance radiological biota monitoring and ecosystem preservation when budgets are restrictive, as well as to provide valuable scientific information to the human health and natural resource communities at large. NNSA/NSO is using one current collaborative study to better assess the potential dose to the off-site public from the ingestion of game animals, the most realistic pathway for off-site public exposure at this time from radionuclide contamination on the NNSS. A second

  18. Meta-analysis of high-latitude nitrogen-addition and warming studies implies ecological mechanisms overlooked by land models

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bouskill, N. J.; Riley, W. J.; Tang, J. Y.

    2014-12-11

    Accurate representation of ecosystem processes in land models is crucial for reducing predictive uncertainty in energy and greenhouse gas feedbacks with the climate. Here we describe an observational and modeling meta-analysis approach to benchmark land models, and apply the method to the land model CLM4.5 with two versions of belowground biogeochemistry. We focused our analysis on the aboveground and belowground responses to warming and nitrogen addition in high-latitude ecosystems, and identified absent or poorly parameterized mechanisms in CLM4.5. While the two model versions predicted similar soil carbon stock trajectories following both warming and nitrogen addition, other predicted variables (e.g., belowgroundmore » respiration) differed from observations in both magnitude and direction, indicating that CLM4.5 has inadequate underlying mechanisms for representing high-latitude ecosystems. On the basis of observational synthesis, we attribute the model–observation differences to missing representations of microbial dynamics, aboveground and belowground coupling, and nutrient cycling, and we use the observational meta-analysis to discuss potential approaches to improving the current models. However, we also urge caution concerning the selection of data sets and experiments for meta-analysis. For example, the concentrations of nitrogen applied in the synthesized field experiments (average = 72 kg ha-1 yr-1) are many times higher than projected soil nitrogen concentrations (from nitrogen deposition and release during mineralization), which precludes a rigorous evaluation of the model responses to likely nitrogen perturbations. Overall, we demonstrate that elucidating ecological mechanisms via meta-analysis can identify deficiencies in ecosystem models and empirical experiments.« less

  19. Meta-analysis of high-latitude nitrogen-addition and warming studies imply ecological mechanisms overlooked by land models

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bouskill, N. J.; Riley, W. J.; Tang, J.

    2014-08-18

    Accurate representation of ecosystem processes in land models is crucial for reducing predictive uncertainty in energy and greenhouse gas feedbacks with the atmosphere. Here we describe an observational and modeling meta-analysis approach to benchmark land models, and apply the method to the land model CLM4.5 with two versions of belowground biogeochemistry. We focused our analysis on the above and belowground high-latitude ecosystem responses to warming and nitrogen addition, and identified mechanisms absent, or poorly parameterized in CLM4.5. While the two model versions predicted similar trajectories for soil carbon stocks following both types of perturbation, other variables (e.g., belowground respiration) differedmore » from the observations in both magnitude and direction, indicating the underlying mechanisms are inadequate for representing high-latitude ecosystems. The observational synthesis attribute these differences to missing representations of microbial dynamics, characterization of above and belowground functional processes, and nutrient competition. We use the observational meta-analyses to discuss potential approaches to improving the current models (e.g., the inclusion of dynamic vegetation or different microbial functional guilds), however, we also raise a cautionary note on the selection of data sets and experiments to be included in a meta-analysis. For example, the concentrations of nitrogen applied in the synthesized field experiments (average =72 kg ha-1 yr-1) are many times higher than projected soil nitrogen concentrations (from nitrogen deposition and release during mineralization), which preclude a rigorous evaluation of the model responses to nitrogen perturbation. Overall, we demonstrate here that elucidating ecological mechanisms via meta-analysis can identify deficiencies in both ecosystem models and empirical experiments.« less

  20. 100-K Target Analyte List Development for Soil

    SciTech Connect (OSTI)

    Ovink, R.

    2012-09-18

    This report documents the process used to identify source area target analytes in support of the 100-K Area remedial investigation/feasibility study (RI/FS) addendum to the Integrated 100 Area Remedial Investigation/Feasibility Study Work Plan (DOE/RL-2008-46, Rev. 0).

  1. 100-F Target Analyte List Development for Soil

    SciTech Connect (OSTI)

    Ovink, R.

    2012-09-18

    This report documents the process used to identify source area target analytes in support of the 100-F Area remedial investigation/feasibility study (RI/FS) addendum to the Integrated 100 Area Remedial Investigation/Feasibility Study Work Plan (DOE/RL-2008-46, Rev. 0).

  2. Non-linear Seismic Soil Structure Interaction Method for Developing...

    Office of Environmental Management (EM)

    Non-Linearity in Seismic SSI Analysis Commercial Software Elements Commercial Software Non-Linear Constitutive Models Non-Linear Seismic SSI Damping ...

  3. 100-B/C Target Analyte List Development for Soil

    SciTech Connect (OSTI)

    R.W. Ovink

    2010-03-18

    This report documents the process used to identify source area target analytes in support of the 100-B/C remedial investigation/feasibility study addendum to DOE/RL-2008-46. This report also establishes the analyte exclusion criteria applicable for 100-B/C use and the analytical methods needed to analyze the target analytes.

  4. Development Of 2-Meter Soil Temperature Probes And Results Of...

    Open Energy Info (EERE)

    obtains accurate temperatures within an hour of emplacing hollow steel probes into the ground, making it possible to map results on a daily basis so that temperature surveys can...

  5. Soil Machine Dynamics Ltd | Open Energy Information

    Open Energy Info (EERE)

    Machine Dynamics Ltd Jump to: navigation, search Name: Soil Machine Dynamics Ltd Region: United Kingdom Sector: Marine and Hydrokinetic Website: http: This company is listed in the...

  6. Performance evaluation soil samples utilizing encapsulation technology

    DOE Patents [OSTI]

    Dahlgran, James R.

    1999-01-01

    Performance evaluation soil samples and method of their preparation using encapsulation technology to encapsulate analytes which are introduced into a soil matrix for analysis and evaluation by analytical laboratories. Target analytes are mixed in an appropriate solvent at predetermined concentrations. The mixture is emulsified in a solution of polymeric film forming material. The emulsified solution is polymerized to form microcapsules. The microcapsules are recovered, quantitated and introduced into a soil matrix in a predetermined ratio to form soil samples with the desired analyte concentration.

  7. Performance evaluation soil samples utilizing encapsulation technology

    DOE Patents [OSTI]

    Dahlgran, J.R.

    1999-08-17

    Performance evaluation soil samples and method of their preparation uses encapsulation technology to encapsulate analytes which are introduced into a soil matrix for analysis and evaluation by analytical laboratories. Target analytes are mixed in an appropriate solvent at predetermined concentrations. The mixture is emulsified in a solution of polymeric film forming material. The emulsified solution is polymerized to form microcapsules. The microcapsules are recovered, quantitated and introduced into a soil matrix in a predetermined ratio to form soil samples with the desired analyte concentration. 1 fig.

  8. Intergrating Magnetotellurics, Soil Gas Geochemistry and Structural...

    Broader source: Energy.gov (indexed) [DOE]

    Intergrating Magnetotellurics, Soil Gas Geochemistry and Structural Analysis to Identify Hidden, High Enthalpy, Extensional Geothermal Systems presentation at the April 2013 peer ...

  9. Enhanced durability transparent superhydrophobic anti-soiling...

    Office of Scientific and Technical Information (OSTI)

    Title: Enhanced durability transparent superhydrophobic anti-soiling coatings for CSP applications Authors: Polyzos, Georgios 1 ; Schaeffer, Daniel A 1 ; Smith, Barton Barton ...

  10. Contrasting soil microbial community functional structures in...

    Office of Scientific and Technical Information (OSTI)

    two major landscapes of the Tibetan alpine meadow Prev Next Title: Contrasting soil microbial community functional structures in two major landscapes of the Tibetan alpine...

  11. Twenty-Five Years of Ecological Recovery of East Fork Poplar Creek: Review of Environmental Problems and Remedial Actions

    SciTech Connect (OSTI)

    Smith, John G; Loar, James M; Stewart, Arthur J

    2011-01-01

    In May 1985, a National Pollutant Discharge Elimination System permit was issued for the Department of Energy s Y-12 National Security Complex (Y-12 Complex) in Oak Ridge, Tennessee, USA, allowing discharge of effluents to East Fork Poplar Creek (EFPC). The effluents ranged from large volumes of chlorinated oncethrough cooling water and cooling tower blow-down to smaller discharges of treated and untreated process wastewaters, which contained a mixture of heavy metals, organics, and nutrients, especially nitrates. As a condition of the permit, a Biological Monitoring and Abatement Program (BMAP) was developed to meet two major objectives: demonstrate that the established effluent limitations were protecting the classified uses of EFPC, and document the ecological effects resulting from implementing a Water Pollution Control Program at the Y-12 Complex. The second objective is the primary focus of the other papers in this special series. This paper provides a history of pollution and the remedial actions that were implemented; describes the geographic setting of the study area; and characterizes the physicochemical attributes of the sampling sites, including changes in stream flow and temperature that occurred during implementation of the BMAP. Most of the actions taken under the Water Pollution Control Program were completed between 1986 and 1998, with as many as four years elapsing between some of the most significant actions. The Water Pollution Control Program included constructing nine new wastewater treatment facilities and implementation of several other pollution-reducing measures, such as a best management practices plan; area-source pollution control management; and various spill-prevention projects. Many of the major actions had readily discernable effects on the chemical and physical conditions of EFPC. As controls on effluents entering the stream were implemented, pollutant concentrations generally declined and, at least initially, the volume of water

  12. Ecological and biomedical effects of effluents from near-term electric vehicle storage battery cycles

    SciTech Connect (OSTI)

    Not Available

    1980-05-01

    An assessment of the ecological and biomedical effects due to commercialization of storage batteries for electric and hybrid vehicles is given. It deals only with the near-term batteries, namely Pb/acid, Ni/Zn, and Ni/Fe, but the complete battery cycle is considered, i.e., mining and milling of raw materials, manufacture of the batteries, cases and covers; use of the batteries in electric vehicles, including the charge-discharge cycles; recycling of spent batteries; and disposal of nonrecyclable components. The gaseous, liquid, and solid emissions from various phases of the battery cycle are identified. The effluent dispersal in the environment is modeled and ecological effects are assessed in terms of biogeochemical cycles. The metabolic and toxic responses by humans and laboratory animals to constituents of the effluents are discussed. Pertinent environmental and health regulations related to the battery industry are summarized and regulatory implications for large-scale storage battery commercialization are discussed. Each of the seven sections were abstracted and indexed individually for EDB/ERA. Additional information is presented in the seven appendixes entitled; growth rate scenario for lead/acid battery development; changes in battery composition during discharge; dispersion of stack and fugitive emissions from battery-related operations; methodology for estimating population exposure to total suspended particulates and SO/sub 2/ resulting from central power station emissions for the daily battery charging demand of 10,000 electric vehicles; determination of As air emissions from Zn smelting; health effects: research related to EV battery technologies. (JGB)

  13. 100 Area soil washing: Bench scale tests on 116-F-4 pluto crib soil

    SciTech Connect (OSTI)

    Field, J.G.

    1994-06-10

    The Pacific Northwest Laboratory conducted a bench-scale treatability study on a pluto crib soil sample from 100 Area of the Hanford Site. The objective of this study was to evaluate the use of physical separation (wet sieving), treatment processes (attrition scrubbing, and autogenous surface grinding), and chemical extraction methods as a means of separating radioactively-contaminated soil fractions from uncontaminated soil fractions. The soil washing treatability study was conducted on a soil sample from the 116-F-4 Pluto Crib that had been dug up as part of an excavation treatability study. Trace element analyses of this soil showed no elevated concentrations above typically uncontaminated soil background levels. Data on the distribution of radionuclide in various size fractions indicated that the soil-washing tests should be focused on the gravel and sand fractions of the 116-F-4 soil. The radionuclide data also showed that {sup 137}Cs was the only contaminant in this soil that exceeded the test performance goal (TPG). Therefore, the effectiveness of subsequent soil-washing tests for 116-F-4 soil was evaluated on the basis of activity attenuation of {sup 137}Cs in the gravel- and sand-size fractions.

  14. Hawaii Energy Resource Overviews. Volume 3. Hawaiian ecosystem and its environmental determinants with particular emphasis on promising areas for geothermal development

    SciTech Connect (OSTI)

    Siegel, S.M.

    1980-06-01

    A brief geobiological history of the Hawaiian Islands is presented. Climatology, physiography, and environmental degradation are discussed. Soil types and associations, land use patterns and ratings, and vegetation ecology are covered. The fauna discussed include: ancient and recent vertebrate life, land mollusca, marine fauma, and insect fauna. (MHR)

  15. Contrasting diversity patterns of soil mites and nematodes in secondary succession

    SciTech Connect (OSTI)

    Kardol, Paul; Newton, Jeffrey S.; Bezemer, T Martijn; Maraun, Mark; van der Putten, Wim H.

    2009-01-01

    Soil biodiversity has been recognized as a key feature of ecosystem functioning and stability. However, soil biodiversity is strongly impaired by agriculture and relatively little is known on how and at what spatial and temporal scales soil biodiversity is restored after the human disturbances have come to an end. Here, a multi-scale approach was used to compare diversity patterns of soil mites and nematodes at four stages (early, mid, late, reference site) along a secondary succession chronosequence from abandoned arable land to heath land. In each field four soil samples were taken during four successive seasons. We determined soil diversity within samples ({alpha}-diversity), between samples ({beta}-diversity) and within field sites ({gamma}-diversity). The patterns of {alpha}- and {gamma}-diversity developed similarly along the chronosequence for oribatid mites, but not for nematodes. Nematode {alpha}-diversity was highest in mid- and late-successional sites, while {gamma}-diversity was constant along the chronosequence. Oribatid mite {beta}-diversity was initially high, but decreased thereafter, whereas nematode {beta}-diversity increased when succession proceeded; indicating that patterns of within-site heterogeneity diverged for oribatid mites and nematodes. The spatio-temporal diversity patterns after land abandonment suggest that oribatid mite community development depends predominantly on colonization of new taxa, whereas nematode community development depends on shifts in dominance patterns. This would imply that at old fields diversity patterns of oribatid mites are mainly controlled by dispersal, whereas diversity patterns of nematodes are mainly controlled by changing abiotic or biotic soil conditions. Our study shows that the restoration of soil biodiversity along secondary successional gradients can be both scale- and phylum-dependent.

  16. Savannah River Site Vegetation Map | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Set-Aside Program SREL HOME Savannah River Site Vegetation Map swatch 1. Industrial swatch 2. Open water swatch 3. Bare soil / bare surface swatch 4. Sparse herbaceous vegetation swatch 5. Grasses and forbs swatch 6. Shrubs, grasses, and forbs swatch 7. Disturbed and revegetated in 1997 swatch 8. Marsh / aquatic macrophytes swatch 9. Young, open-canopy loblolly pine swatch 10. Open-canopy loblolly pine swatch 11. Young, dense-canopy loblolly pine swatch 12. Dense-canopy loblolly pine swatch 13.

  17. Convergence of microbial assimilations of soil carbon, nitrogen...

    Office of Scientific and Technical Information (OSTI)

    We found a convergence of the relationships between elements in soils and in soil microbial biomass across C, N, P, and S. The element concentrations in soil microbial biomass ...

  18. Heterotrophic Soil Respiration in Warming Experiments: Using Microbial Indicators to Partition Contributions from Labile and Recalcitrant Soil Organic Carbon. Final Report

    SciTech Connect (OSTI)

    Bradford, M A; Melillo, J M; Reynolds, J F; Treseder, K K; Wallenstein, M D

    2010-06-10

    The central objective of the proposed work was to develop a genomic approach (nucleic acid-based) that elucidates the mechanistic basis for the observed impacts of experimental soil warming on forest soil respiration. The need to understand the mechanistic basis arises from the importance of such information for developing effective adaptation strategies for dealing with projected climate change. Specifically, robust predictions of future climate will permit the tailoring of the most effective adaptation efforts. And one of the greatest uncertainties in current global climate models is whether there will be a net loss of carbon from soils to the atmosphere as climate warms. Given that soils contain approximately 2.5 times as much carbon as the atmosphere, a net loss could lead to runaway climate warming. Indeed, most ecosystem models predict that climate warming will stimulate microbial decomposition of soil carbon, producing such a positive feedback to rising global temperatures. Yet the IPCC highlights the uncertainty regarding this projected feedback. The uncertainty arises because although warming-experiments document an initial increase in the loss of carbon from soils, the increase in respiration is short-lived, declining to control levels in a few years. This attenuation could result from changes in microbial physiology with temperature. We explored possible microbial responses to warming using experiments and modeling. Our work advances our understanding of how soil microbial communities and their activities are structured, generating insight into how soil carbon might respond to warming. We show the importance of resource partitioning in structuring microbial communities. Specifically, we quantified the relative abundance of fungal taxa that proliferated following the addition of organic substrates to soil. We added glycine, sucrose, cellulose, lignin, or tannin-protein to soils in conjunction with 3-bromo-deoxyuridine (BrdU), a nucleotide analog. Active

  19. Soil and variety effects on energy use and carbon emissions associated with switchgrass-based ethanol production in Mississippi

    SciTech Connect (OSTI)

    Woli, Prem; Paz, Joel O.; Baldwin, Brian S.; Lang, David J.; Kiniry, James R.

    2012-06-29

    High biomass production potential, wide adaptability, low input requirement, and low environmental risk make switchgrass an economically and ecologically viable energy crop.The inherent variablity in switchgrass productivity due to variations in soil and variety could affect the sustainability and eco-friendliness of switchgrass-based ethanol production. This study examined the soil and variety effects on these variables. Three locations in Mississippi were selected based on latitude and potential acreage. Using ALMANAC, switchgrass biomass yields were simulated for several scenarios of soils and varities. The simulated yields were fed to IBSAL to compute energy use and CO2 emissions in various operations in the biomass supply From the energy and emissions values, the sustainability and eco-friendliness of ethanol production were determined using net energy value (NEV) and carbon credit balance (CCB) as indicators, respectively. Soil and variety effects on NEV and CCB were analyzed using the Kruskal-Wallis test. Results showed significant differences in NEV and CCB across soils and varieties. Both NEV and CCB increased in the direction of heavier to lighter soils and on the order of north-upland , south-upland, north-lowland, and south-lowland varieties. Only north-upland and south-lowland varieties were significantly significantly different because they were different in both cytotype and ecotype. Gaps between lowland and upland varieties were smaller in a dry year than in a wet year. The NEV and CCB increased in the direction of dry to wet year. From south to north, they decreased for lowland cytotypes but increased for upland cytotypes. Thus, the differences among varieties decreased northwards.

  20. Analysis of large soil samples for actinides

    DOE Patents [OSTI]

    Maxwell, III; Sherrod L.

    2009-03-24

    A method of analyzing relatively large soil samples for actinides by employing a separation process that includes cerium fluoride precipitation for removing the soil matrix and precipitates plutonium, americium, and curium with cerium and hydrofluoric acid followed by separating these actinides using chromatography cartridges.

  1. Soil washing enhancement with solid sorbents

    SciTech Connect (OSTI)

    El-Shoubary, Y.M.; Woodmansee, D.E.

    1996-12-31

    Soil washing is a dynamic, physical process that remediates contaminated soil through two mechanisms: particle size separation and transfer of the contaminant into the (mostly) liquid stream. The performance of different sorbents and additives to remove motor oil from sea sand was tested. Hydrocyclone, attrition scrubber, and froth flotation equipment were used for the decontamination study. Sorbents and additives were mixed with soils in the attrition scrubber prior to flotation. Sorbents used were granular activated carbon, powder activated carbon, and rubber tires. Chemical additives used were calcium hydroxide, sodium carbonate, Alconox{reg_sign}, Triton{reg_sign} X-100 and Triton{reg_sign} X-114. When a froth flotation run was performed using no additive, washed soils {open_quotes}tails{close_quotes} contained 4000 ppm of total oil and grease (TOG). However, when carbon or rubber (6% by weight) was added to the contaminated soils the washed soils {open_quotes}tails{close_quotes} contained 4000 ppm of total oil and grease (TOG). The addition of sodium carbonate or calcium hydroxide (6% by weight) had same effects as sorbents. In both cases washed soil {open_quotes}tails{close_quotes} contained total oil and grease of less than 1000 ppm. The use of these non-hazardous additives or sorbent can enhance the soil washing process and consequently saves on time (residence time in equipment design) required to achieve the target clean up levels. 18 refs., 12 figs.

  2. NNSS Soils Monitoring: Plutonium Valley (CAU366)

    SciTech Connect (OSTI)

    Miller, Julianne J.; Mizell, Steve A.; Nikolich, George; Campbell, Scott

    2012-02-01

    The U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Nevada Site Office (NSO), Environmental Restoration Soils Activity has authorized the Desert Research Institute (DRI) to conduct field assessments of potential sediment transport of contaminated soil from Corrective Action Unit (CAU) 366, Area 11 Plutonium Valley Dispersion Sites Contamination Area (CA) during precipitation runoff events.

  3. Process for removing polychlorinated biphenyls from soil

    DOE Patents [OSTI]

    Hancher, C.W.; Saunders, M.B.; Googin, J.M.

    1984-11-16

    The present invention relates to a method of removing polychlorinated biphenyls from soil. The polychlorinated biphenyls are extracted from the soil by employing a liquid organic solvent dispersed in water in the ratio of about 1:3 to 3:1. The organic solvent includes such materials as short-chain hydrocarbons including kerosene or gasoline which are immiscible with water and are nonpolar. The organic solvent has a greater affinity for the PCB's than the soil so as to extract the PCB's from the soil upon contact. The organic solvent phase is separated from the suspended soil and water phase and distilled for permitting the recycle of the organic solvent phase and the concentration of the PCB's in the remaining organic phase. The present process can be satisfactorily practiced with soil containing 10 to 20% petroleum-based oils and organic fluids such as used in transformers and cutting fluids, coolants and the like which contain PCB's. The subject method provides for the removal of a sufficient concentration of PCB's from the soil to provide the soil with a level of PCB's within the guidelines of the Environmental Protection Agency.

  4. Effect of Dead Algae on Soil Permeability

    SciTech Connect (OSTI)

    Harvey, R.S.

    2003-02-21

    Since existing basins support heavy growths of unicellular green algae which may be killed by temperature variation or by inadvertent pH changes in waste and then deposited on the basin floor, information on the effects of dead algae on soil permeability was needed. This study was designed to show the effects of successive algal kills on the permeability of laboratory soil columns.

  5. Large-scale soil bioremediation using white-rot fungi

    SciTech Connect (OSTI)

    Holroyd, M.L.; Caunt, P.

    1995-12-31

    Some organic pollutant compounds are considered resistant to conventional bioremediation because of their structure or behavior in soil. This phenomenon, together with the increasing need to reach lower target levels in shorter time periods, has shown the need for improved or alternative biological processes. It has been known for some time that the white-rot fungi, particularly the species Phanerochaete chrysosporium, have potentially useful abilities to rapidly degrade pollutant molecules. The use of white-rot fungi at the field scale presents a number of challenges, and this paper outlines the use of a process incorporating Phanerochaete to successfully bioremediate over 6,000 m{sup 3} of chlorophenol-contaminated soil at a site in Finland. Moreover, the method developed is very cost-effective and proved capable of reaching the very low target levels within the contracted time span.

  6. Clean soil at Eniwetok and Johnston Atolls

    SciTech Connect (OSTI)

    Bramlitt, E.T.

    1990-01-01

    The Defense Nuclear Agency has managed two large-scale soil cleanups (landmass decontaminations) of plutonium contamination. Both are at Pacific Ocean atolls formerly used for nuclear weapons tests. The Eniwetok Atoll (EA) cleanup between 1977 and 1980 evaluated 390 ha of contaminated land and cleaned 50 ha by removing 80,000 m[sup 3] of contaminated soil. The Johnston Atoll (JA) cleanup is in process. It has checked 270 ha, will clean 15 ha, and plans for removal of 80,000 m[sup 3] of soil. The cleanups are similar in other respects including carbonate-based soil, in situ radiation surveys, contamination characteristics, soil excavation methods, safety, and weather. The two cleanups are in contrast relative to planning time, agencies involved, funding, documentation, environmental considerations, cleanup workforce, site beneficiaries, waste characterization, regulatory permits, management, and project duration. The most noteworthy differences are the rationale for cleanup, the cleanup process, the definition of clean, and the cost.

  7. Measuring spatial variability in soil characteristics

    DOE Patents [OSTI]

    Hoskinson, Reed L.; Svoboda, John M.; Sawyer, J. Wayne; Hess, John R.; Hess, J. Richard

    2002-01-01

    The present invention provides systems and methods for measuring a load force associated with pulling a farm implement through soil that is used to generate a spatially variable map that represents the spatial variability of the physical characteristics of the soil. An instrumented hitch pin configured to measure a load force is provided that measures the load force generated by a farm implement when the farm implement is connected with a tractor and pulled through or across soil. Each time a load force is measured, a global positioning system identifies the location of the measurement. This data is stored and analyzed to generate a spatially variable map of the soil. This map is representative of the physical characteristics of the soil, which are inferred from the magnitude of the load force.

  8. System for Analysis of Soil-Structure Interaction (SASSI) Verification...

    Broader source: Energy.gov (indexed) [DOE]

    the System for Analysis of Soil-Structure Interaction, a computer code for performing finite element analyses of soil-structure interaction during seismic ground motions. It was...

  9. Plant stimulation of soil microbial community succession: how...

    Office of Scientific and Technical Information (OSTI)

    Plant stimulation of soil microbial community succession: how sequential expression mediates soil carbon stabilization and turnover Citation Details In-Document Search Title: Plant...

  10. Soil carbon sequestration and land use change associated with...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Soil carbon sequestration and land use change associated with biofuel production: empirical evidence Title Soil carbon sequestration and land use change associated with biofuel...

  11. EM Soil and Groundwater Database Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EM Soil and Groundwater Database Reports EM Soil and Groundwater Database Reports Brookhaven National Laboratory - HFBR Tritium Groundwater Database Report - Brookhaven National ...

  12. Final Report Limited Soil Investigation of Project Chariot Test...

    Office of Legacy Management (LM)

    Limited Soil Investigation of Project Chariot Test Holes Cape Thompson, Alaska December ... Soil Investigation of Project Chariot Test Holes, Cape Thompson, Alaska Fairbanks ...

  13. South Valley Archived Soil & Groundwater Master Reports | Department...

    Broader source: Energy.gov (indexed) [DOE]

    South Valley Archived Soil & Groundwater Master Reports South Valley - South Valley Plume (16.5 KB) More Documents & Publications Slick Rock Archived Soil & Groundwater Master ...

  14. Rocky Flats Environmental Technology Site Archived Soil & Groundwater...

    Office of Environmental Management (EM)

    Rocky Flats Environmental Technology Site Archived Soil & Groundwater Master Reports Rocky Flats Environmental Technology Site Archived Soil & Groundwater Master Reports Rocky ...

  15. Fate of Isolated Spills on Savannah River Site Soils

    SciTech Connect (OSTI)

    Denham, M.

    1998-01-26

    Spills of acids and bases onto Savannah River Site soils will generally be neutralized to acceptable pH levels by passage through the soils.

  16. Bacteria increase arid-land soil surface temperature through...

    Office of Scientific and Technical Information (OSTI)

    Bacteria increase arid-land soil surface temperature through the production of sunscreens Prev Next Title: Bacteria increase arid-land soil surface temperature through the ...

  17. Soil Sampling At Yellowstone Region (Hellman & Ramsey, 2004)...

    Open Energy Info (EERE)

    Soil Sampling At Yellowstone Region (Hellman & Ramsey, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Soil Sampling At Yellowstone Region...

  18. Evaluation of the Mercury Soil Mapping Geothermal Exploration...

    Open Energy Info (EERE)

    the Mercury Soil Mapping Geothermal Exploration Techniques Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Evaluation of the Mercury Soil...

  19. Mapping Soil Carbon from Cradle to Grave: Identifying the Microbial...

    Office of Scientific and Technical Information (OSTI)

    Conference: Mapping Soil Carbon from Cradle to Grave: Identifying the Microbial Blueprint for Root-carbon Transformations in Soil Citation Details In-Document Search Title: Mapping...

  20. Mapping Soil Carbon from Cradle to Grave: Identifying the Microbial...

    Office of Scientific and Technical Information (OSTI)

    In-Document Search Title: Mapping Soil Carbon from Cradle to Grave: Identifying the Microbial Blueprint for Root-carbon Transformations in Soil Erin Nuccio, Lawrence...

  1. After More Than 20 Years Operating, Hanford's Soil Vapor Extraction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wise, Juan Aguilar, Doug Rybarski, and Christina Agular. The soil vapor extraction trailer is shown near Hanfords Plutonium Finishing Plant. The soil vapor extraction...

  2. Worldwide organic soil carbon and nitrogen data (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Worldwide organic soil carbon and nitrogen data Citation Details In-Document Search Title: Worldwide organic soil carbon and nitrogen data You are accessing a document from the ...

  3. Contents of risk assessments to support the retrieval and closure of tanks for the Washington State Department of Ecology

    SciTech Connect (OSTI)

    MANN, F.M.

    2003-03-21

    Before the Integrated Mission Acceleration Plan can be performed, risk assessments of various options must be performed for ORP, DOE Headquarters, and the Washington State Dept. of Ecology. This document focuses on the risk assessments for Ecology.

  4. Toxicity Bioassays for Ecological Risk Assessment in Arid and Semiarid Ecosystems. Reviews Environmental Contamination and Toxicology 168:43-98.

    SciTech Connect (OSTI)

    Markwiese, J.T.; Ryti, R.T.; Hooten, M.M.; Michael, D.I.; Hlohowskyj, I.

    2001-02-01

    This paper discusses current limitations for performing ecological risk assessments in dry environments (i.e., ecosystems that are characteristic of many DOE Facilities) and presents novel approaches to addressing ecological risk in such systems.

  5. Effects of climate change, land-use change, and invasive species on the ecology of the Cumberland forests

    SciTech Connect (OSTI)

    Dale, Virginia H; Lannom, Karen O.; Hodges, Donald G.; Tharp, M Lynn; Fogel, Jonah

    2009-02-01

    Effects of climate change, land-use change, and invasive species on the ecology of the Cumberland forests

  6. Fine-scale ecological and genetic population structure of two whitefish (Coregoninae) species in the vicinity of industrial thermal emissions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Graham, Carly F.; Eberts, Rebecca L.; Morgan, Thomas D.; Boreham, Douglas R.; Lance, Stacey L.; Manzon, Richard G.; Martino, Jessica A.; Rogers, Sean M.; Wilson, Joanna Y.; Somers, Christopher M.; et al

    2016-01-25

    Thermal pollution from industrial processes can have negative impacts on the spawning and development of cold-water fish. Point sources of thermal effluent may need to be managed to avoid affecting discrete populations. Correspondingly, we examined fine-scale ecological and genetic population structure of two whitefish species (Coregonus clupeaformis and Prosopium cylindraceum) on Lake Huron, Canada, in the immediate vicinity of thermal effluent from nuclear power generation. Niche metrics using δ13C and δ15N stable isotopes showed high levels of overlap (48.6 to 94.5%) in resource use by adult fish captured in areas affected by thermal effluent compared to nearby reference locations. Isotopicmore » niche size, a metric of resource use diversity, was 1.3- to 2.8-fold higher than reference values in some thermally affected areas, indicative of fish mixing. Microsatellite analyses of genetic population structure (Fst, STRUCTURE and DAPC) indicated that fish captured at all locations in the vicinity of the power plant were part of a larger population extending beyond the study area. In concert, ecological and genetic markers do not support the presence of an evolutionarily significant unit in the vicinity of the power plant. Furthermore, future research should focus on the potential impacts of thermal emissions on development and recruitment.« less

  7. Determination of the potential for release of mercury from combustion product amended soils: Part 1 - Simulations of beneficial use

    SciTech Connect (OSTI)

    Mae Sexauer Gustin; Jody Ericksen; George C. Fernandez

    2008-05-15

    This paper describes a project that assessed the potential for mercury (Hg) release to air and water from soil amended with combustion products to simulate beneficial use. Combustion products (ash) derived from wood, sewage sludge, subbituminous coal, and a subbituminous coal-petroleum coke mixture were added to soil as agricultural supplements, soil stabilizers, and to develop low permeability surfaces. Hg release was measured from the latter when intact and after it was broken up and mixed into the soil. Air-substrate Hg exchange was measured for all materials six times over 24 hr, providing data that reflected winter, spring, summer, and fall meteorological conditions. Dry deposition of atmospheric Hg and emission of Hg to the atmosphere were both found to be important fluxes. Measured differences in seasonal and diel (24 hr) fluxes demonstrated that to establish an annual estimate of air-substrate flux from these materials data on both of these time steps should be collected. Air-substrate exchange was highly correlated with soil and air temperature, as well as incident light. Hg releases to the atmosphere from coal and wood combustion product-amended soils to simulate an agricultural application were similar to that measured for the unamended soil, whereas releases to the air for the sludge-amended materials were higher. Hg released to soil solutions during the Synthetic Precipitation Leaching Procedure for ashamended materials was higher than that released from soil alone. On the basis of estimates of annual releases of Hg to the air from the materials used, emissions from coal and wood ash-amended soil to simulate an agricultural application could simply be re-emission of Hg deposited by wet processes from the atmosphere; however, releases from sludge-amended materials and those generated to simulate soil stabilization and disturbed low-permeability pads include Hg indigenous to the material. 37 refs., 5 figs., 4 tabs.

  8. Effect of soiling in CPV systems

    SciTech Connect (OSTI)

    Vivar, M.; Herrero, R.; Anton, I.; Martinez-Moreno, F.; Moreton, R.; Sala, G.

    2010-07-15

    The effect of soiling in flat PV modules has been already studied, causing a reduction of the electrical output of 4% on average. For CPV's, as far as soiling produces light scattering at the optical collector surface, the scattered rays should be definitively lost because they cannot be focused onto the receivers again. While the theoretical study becomes difficult because soiling is variable at different sites, it becomes easier to begin the monitoring of the real field performance of concentrators and then raise the following question: how much does the soiling affect to PV concentrators in comparison with flat panels?' The answers allow to predict the PV concentrator electrical performance and to establish a pattern of cleaning frequency. Some experiments have been conducted at the IES-UPM and CSES-ANU sites, consisting in linear reflective concentration systems, a point focus refractive concentrator and a flat module. All the systems have been measured when soiled and then after cleaning, achieving different increases of I{sub SC}. In general, results show that CPV systems are more sensitive to soiling than flat panels, accumulating losses in I{sub SC} of about 14% on average in three different tests conducted at IES-UPM and CSES-ANU test sites in Madrid (Spain) and Canberra (Australia). Some concentrators can reach losses up to 26% when the system is soiled for 4 months of exposure. (author)

  9. CRADA with the Belhaven group and Pacific Northwest National Laboratory (PNL-081): Automated soil moisture measuring systems. Final project report

    SciTech Connect (OSTI)

    Ramesh, K.S.

    1996-08-01

    The objectives of this project were to (1) develop an improved, full- scale, inexpensive, soil moisture sensor, using innovative porous ceramic materials as the moisture wicking component and (2) demonstrate the performance of the sensor in the laboratory and in field to determine its reliability and accuracy. The opportunity for this project arose as a result of an inquiry from Belhaven to whom the soil moisture sensor developed at PNNL by John Cary was licensed. The existing Cary sensor needed research and development effort in order to create the type of soil moisture sensor envisioned by the Belhaven for use in an integrated soil moisture systems in the field. PNNL was identified as being uniquely qualified to participate in this Collaborative project.

  10. Volume Reduction Research and Development Project (VORRP): Utilizing the TRUclean process: (Technical paper), September 2, 1986-September 30, 1987

    SciTech Connect (OSTI)

    Sunderland, N.R.

    1987-09-30

    This research was undertaken to determine if the AWC TRUclean process could remove radioactive contamination from differing soil matrices that were submitted by participating sites from around the nation. The TRUclean process removed plutonium from coral derived soil. Interest developed in applying the process to other radioactive contaminants and soil types. Soils from the Nevada Test Site (NTS); Rocky Flats Plant (RFP) in Colorado; FUSRAP site at Hazelwood, Missouri; Monsanto-Mound site in Ohio, and the Ft. Dix site in New Jersey were tested. The TRUclean process was able to effectively decontaminate soils and concentrate the contamination into a substantially smaller volume than the original soil. 14 refs., 6 figs.

  11. Ecological interactions between metals and microbes that impact bioremediation

    SciTech Connect (OSTI)

    Allan Konopka; Cindy Nakatsu

    2004-03-17

    Distinct microbial communities had been found in contaminated soils that varied in their concentrations of Pb, Cr and aromatic compounds. It is difficult to distinguish between their effects as their presence is highly correlated. Microcosms were constructed in which either Pb{sup +2} or CrO{sub 4}{sup -2} was added at levels that produced acute modest or severe acute effects (50 or 90% reduction). We previously reported on changes in microbial activity and broad patterns of Bacterial community composition. These results showed that addition of an organic energy source selected for a relatively small number of phylotypes and the addition of Pb or Cr(VI) modulated the community response. We sequenced dominant phylotypes from microcosms amended with xylene and Cr(VI) and from those with the simple addition of glucose only. In both cases, the dominant selected phylotypes were diverse. We found a number of distinct Arthrobacter strains, as well as several Pseudomonas spp. In addition, the high GC-content bands belonged to members of the genera Nocardioides and Rhodococcus. The focus of amended microcosm work has now shifted to anaerobic processes. The reduction of Cr(VI) to Cr(III) as a detoxification mechanism is of greater interest, as is the specific role of particular physiological groups of anaerobes in mediating Cr(VI) detoxification. The correlation between microbial activity, community structure, and metal level has been analyzed on 150 mg of soil collected at spatial scales <1, 5, 15 and 50 cm. There was no correlation between metal content and activity level. Soils <1 cm apart could differ in activity 10-fold and extractable Pb and Cr 7-fold. Therefore, we turned to geostatistical analysis. There was spatial periodicity which is likely to reflect the heterogeneous distribution of active microbes and metal contaminants. Variograms indicated that the range of spatial dependence was up to 20 cm. To visualize the spatial relationships between the primary variate

  12. Integrating ecological and engineering concepts of resilience in microbial communities

    SciTech Connect (OSTI)

    Song, Hyun -Seob; Renslow, Ryan S.; Fredrickson, Jim K.; Lindemann, Stephen R.

    2015-12-01

    We note that many definitions of resilience have been proffered for natural and engineered ecosystems, but a conceptual consensus on resilience in microbial communities is still lacking. Here, we argue that the disconnect largely results from the wide variance in microbial community complexity, which range from simple synthetic consortia to complex natural communities, and divergence between the typical practical outcomes emphasized by ecologists and engineers. Viewing microbial communities as elasto-plastic systems, we argue that this gap between the engineering and ecological definitions of resilience stems from their respective emphases on elastic and plastic deformation, respectively. We propose that the two concepts may be fundamentally united around the resilience of function rather than state in microbial communities and the regularity in the relationship between environmental variation and a community’s functional response. Furthermore, we posit that functional resilience is an intrinsic property of microbial communities, suggesting that state changes in response to environmental variation may be a key mechanism driving resilience in microbial communities.

  13. Integrating ecological and engineering concepts of resilience in microbial communities

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Song, Hyun -Seob; Renslow, Ryan S.; Fredrickson, Jim K.; Lindemann, Stephen R.

    2015-12-01

    We note that many definitions of resilience have been proffered for natural and engineered ecosystems, but a conceptual consensus on resilience in microbial communities is still lacking. Here, we argue that the disconnect largely results from the wide variance in microbial community complexity, which range from simple synthetic consortia to complex natural communities, and divergence between the typical practical outcomes emphasized by ecologists and engineers. Viewing microbial communities as elasto-plastic systems, we argue that this gap between the engineering and ecological definitions of resilience stems from their respective emphases on elastic and plastic deformation, respectively. We propose that the twomore » concepts may be fundamentally united around the resilience of function rather than state in microbial communities and the regularity in the relationship between environmental variation and a community’s functional response. Furthermore, we posit that functional resilience is an intrinsic property of microbial communities, suggesting that state changes in response to environmental variation may be a key mechanism driving resilience in microbial communities.« less

  14. Ecological measures for converter steelmaking emphasizing process integration

    SciTech Connect (OSTI)

    Wiesinger, H.A.; Patuzzi, A.A.; Gara, S.P. )

    1994-09-01

    Integrated technological and environmental solutions have become a key challenge, particularly for the iron and steel industry. End of pipe thinking, or the approach to solve all emission-related problems solely by exp-process cleaning systems is neither a long-term economic solution nor a satisfactory environmental answer. In addition, dealing with the problem of emissions must be redirected to the source. Optimized technologies and systems must be increasingly employed which not only maximizes production and product quality, but also minimizes the overall environmental impact for converter steelmaking. This presentation focuses on state of the art technologies emphasizing process integration. Various technological alternatives for converter steelmaking are discussed in terms of best available solutions for minimized overall environmental impact. Effective implementation of ecological measures for converter steelmaking are to be achieved through total view strategies which take into account the entire production process route from raw material preparation to steelmaking, including by-product management up to the final and safe disposal of waste. Future-oriented technologies include: Airfine for integrated gas cleaning and waste management for sinter plants; Corex featuring the lowest rate of environmental emissions for the production of hot metal; LT (Lurgi-Thyssen) steel gas process for emission control, energy recovery and dust recycling in BOF vessels.

  15. Effect of soil erosion on the long-term stability of FUSRAP near-surface waste-burial sites

    SciTech Connect (OSTI)

    Knight, M.J.

    1983-04-01

    Decontamination of FUSRAP sites could result in the generation of large volumes (in excess of 400,000 m/sup 3/) of low-activity radioactive wastes (primarily contaminated soil and building materials) requiring subsequent disposal. It is likely that near-surface burial will be seriously considered as an option for disposal of these materials. A number of factors - including soil erosion - could adversely affect the long-term stability of a near-surface waste-burial site. The majority of FUSRAP sites are located in the humid eastern United States, where the principal cause of erosion is the action of water. This report examines the effect of soil erosion by water on burial-site stability based on analysis of four hypothetical near-surface burial sites. The Universal Soil Loss Equation was employed to estimate average annual soil loss from burial sites and the 1000-year effects of soil loss on the soil barrier (burial trench cap) placed over low-activity wastes. Results suggest that the land use of the burial site and the slope gradient of the burial trench cap significantly affect the rate of soil erosion. The development of measures limiting the potential land use of a burial site (e.g., mixing large rocks into the burial trench cap) may be required to preserve the integrity of a burial trench for long periods of time.

  16. Diagnosis & Correction of Soil Nutrient Limitations in Intensively managed southern pine forests

    SciTech Connect (OSTI)

    University of Florida

    2002-10-25

    Forest productivity is one manner to sequester carbon and it is a renewable energy source. Likewise, efficient use of fertilization can be a significant energy savings. To date, site-specific use of fertilization for the purpose of maximizing forest productivity has not been well developed. Site evaluation of nutrient deficiencies is primarily based on empirical approaches to soil testing and plot fertilizer tests with little consideration for soil water regimes and contributing site factors. This project uses mass flow diffusion theory in a modeling context, combined with process level knowledge of soil chemistry, to evaluate nutrient bioavailability to fast-growing juvenile forest stands growing on coastal plain Spodosols of the southeastern U.S. The model is not soil or site specific and should be useful for a wide range of soil management/nutrient management conditions. In order to use the model, field data of fast-growing southern pine needed to be measured and used in the validation of the model. The field aspect of the study was mainly to provide data that could be used to verify the model. However, we learned much about the growth and development of fast growing loblolly. Carbon allocation patterns, root shoot relationships and leaf area root relationships proved to be new, important information. The Project Objectives were to: (1) Develop a mechanistic nutrient management model based on the COMP8 uptake model. (2) Collect field data that could be used to verify and test the model. (3) Model testing.

  17. Changes in soil respiration components and their specific respiration along three successional forests in the subtropics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Han, Tianfeng; Liu, Juxiu; Wang, Gangsheng; Huang, Wenjuan; Zhou, Guoyi

    2016-01-16

    1.Understanding how soil respiration components change with forest succession is critical for modelling and predicting soil carbon (C) processes and its sequestration below-ground. The specific respiration (a ratio of respiration to biomass) is increasingly being used as an indicator of forest succession conceptually based on Odum's theory of ecosystem development. However, the hypothesis that specific soil respiration declines with forest succession remains largely untested. 2.We used a trenching method to partition soil respiration into heterotrophic respiration and autotrophic respiration (RH and RA) and then evaluated the specific RH and specific RA in three successional forests in subtropical China. 3.Our resultsmore » showed a clear seasonality in the influence of forest succession on RH, with no significant differences among the three forests in the dry season but a higher value in the old-growth forest than the other two forests in the wet season. RA in the old-growth forest tended to be the highest among the three forests. Both the specific RH and specific RA decreased with the progressive maturity of three forests. 4.Lastly, our results highlight the importance of forest succession in determining the variation of RH in different seasons. With forest succession, soil microbes and plant roots become more efficient to conserve C resources, which would result in a greater proportion of C retained in soils.« less

  18. Sequential extraction evaluation of heavy-metal-contaminated soil: How clean is clean?

    SciTech Connect (OSTI)

    Li, Wen; Peters, R.W.; Brewster, M.D.; Miller, G.A.

    1995-07-01

    As a result of industrial and military operations, large amounts of land have become contaminated with heavy metals. A growing public awareness of metal toxicity in soils and water has forced increased treatment and improved remediation techniques. To develop an adequate knowledge base to definitively judge the usefulness of the remediation technology requires some basic research in how the contaminants are bound in the soil. In this study, the classic five-step sequential extractions were performed on heavy-metal-contaminated soil from Aberdeen Proving Ground to determine the speciation of the metal forms. This technique speciates the heavy metal distribution into an easily extractable (exchangeable) form, carbonates, reducible oxides, organically-bound forms, and residual forms. In order to compare the results of these fractionations with the amount of heavy metals extracted by chelating agents, multi-stage extractions with EDTA were also performed. The results were used to determine the feasibility of using soil washing and soil flushing techniques for remediating the Aberdeen metals-contaminated soils.

  19. Rapid fusion method for the determination of Pu, Np, and Am in large soil samples

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Maxwell, Sherrod L.; Culligan, Brian; Hutchison, Jay B.; McAlister, Daniel R.

    2015-02-14

    A new rapid sodium hydroxide fusion method for the preparation of 10-20 g soil samples has been developed by the Savannah River National Laboratory (SRNL). The method enables lower detection limits for plutonium, neptunium, and americium in environmental soil samples. The method also significantly reduces sample processing time and acid fume generation compared to traditional soil digestion techniques using hydrofluoric acid. Ten gram soil aliquots can be ashed and fused using the new method in 1-2 hours, completely dissolving samples, including refractory particles. Pu, Np and Am are separated using stacked 2mL cartridges of TEVA and DGA Resin and measuredmore » using alpha spectrometry. The method can be adapted for measurement by inductively-coupled plasma mass spectrometry (ICP-MS). Two 10 g soil aliquots of fused soil may be combined prior to chromatographic separations to further improve detection limits. Total sample preparation time, including chromatographic separations and alpha spectrometry source preparation, is less than 8 hours.« less

  20. Rapid fusion method for the determination of Pu, Np, and Am in large soil samples

    SciTech Connect (OSTI)

    Maxwell, Sherrod L.; Culligan, Brian; Hutchison, Jay B.; McAlister, Daniel R.

    2015-02-14

    A new rapid sodium hydroxide fusion method for the preparation of 10-20 g soil samples has been developed by the Savannah River National Laboratory (SRNL). The method enables lower detection limits for plutonium, neptunium, and americium in environmental soil samples. The method also significantly reduces sample processing time and acid fume generation compared to traditional soil digestion techniques using hydrofluoric acid. Ten gram soil aliquots can be ashed and fused using the new method in 1-2 hours, completely dissolving samples, including refractory particles. Pu, Np and Am are separated using stacked 2mL cartridges of TEVA and DGA Resin and measured using alpha spectrometry. The method can be adapted for measurement by inductively-coupled plasma mass spectrometry (ICP-MS). Two 10 g soil aliquots of fused soil may be combined prior to chromatographic separations to further improve detection limits. Total sample preparation time, including chromatographic separations and alpha spectrometry source preparation, is less than 8 hours.

  1. Compaction comparison testing using a modified impact soil tester and nuclear density gauge

    SciTech Connect (OSTI)

    Erchul, R.A.

    1999-07-01

    The purpose of this paper is to compare test results of a modified Impact Soil Tester (IST) on compacted soil with data obtained from the same soil using a nuclear density gauge at the US Army Corp of Engineer's Buena Vista Flood Wall project in Buena Vista, Virginia. The tests were run during construction of the earth flood wall during the summer of 1996. This comparison testing demonstrated the credibility of the procedure developed for the IST as a compacting testing device. The comparison data was obtained on a variety of soils ranging from silty sands to clays. The Flood Wall comparison compaction data for 90% Standard Proctor shows that the results of the IST as modified are consistent with the nuclear density gauge 89% of the time for all types of soil tested. However, if the soils are more cohesive than the results are consistent with the nuclear density gauge 97% of the time. In addition these comparison tests are in general agreement with comparison compaction testing using the same testing techniques and methods of compacted backfill in utility trenches conducted earlier for the Public Works Department, Chesterfield County, Virginia.

  2. Soil washing as a potential remediation technology for contaminated DOE sites

    SciTech Connect (OSTI)

    Devgun, J.S.; Beskid, N.J. ); Natsis, M.E. ); Walker, J.S. )

    1993-01-01

    Frequently detected contaminants at US Department of Energy (DOE) sites include radionuclides, heavy metals, and chlorinated hydrocarbons. Remediation of these sites requires application of several technologies used in concert with each other, because no single technology is universally applicable. Special situations, such as mixed waste, generally require innovative technology development. This paper, however, focuses on contaminated soils, for which soil washing and vitrification technologies appear to have wide ranging application potential. Because the volumes of contaminated soils around the DOE complex are so large, soil washing can offer a potentially inexpensive way to effect remediation or to attain waste volume reduction. As costs for disposal of low-level and mixed wastes continue to rise, it is likely that volume-reduction techniques and in-situ containment techniques will become increasingly important. This paper reviews the status of the soil washing technology, examines the systems that are currently available, and discusses the potential application of this technology to some DOE sites, with a focus on radionuclide contamination and, primarily, uranium-contaminated soils

  3. Soil washing as a potential remediation technology for contaminated DOE sites

    SciTech Connect (OSTI)

    Devgun, J.S.; Beskid, N.J.; Natsis, M.E.; Walker, J.S.

    1993-03-01

    Frequently detected contaminants at US Department of Energy (DOE) sites include radionuclides, heavy metals, and chlorinated hydrocarbons. Remediation of these sites requires application of several technologies used in concert with each other, because no single technology is universally applicable. Special situations, such as mixed waste, generally require innovative technology development. This paper, however, focuses on contaminated soils, for which soil washing and vitrification technologies appear to have wide ranging application potential. Because the volumes of contaminated soils around the DOE complex are so large, soil washing can offer a potentially inexpensive way to effect remediation or to attain waste volume reduction. As costs for disposal of low-level and mixed wastes continue to rise, it is likely that volume-reduction techniques and in-situ containment techniques will become increasingly important. This paper reviews the status of the soil washing technology, examines the systems that are currently available, and discusses the potential application of this technology to some DOE sites, with a focus on radionuclide contamination and, primarily, uranium-contaminated soils

  4. Method for treatment of soils contaminated with organic pollutants

    DOE Patents [OSTI]

    Wickramanayake, Godage B.

    1993-01-01

    A method for treating soil contaminated by organic compounds wherein an ozone containing gas is treated with acid to increase the stability of the ozone in the soil environment and the treated ozone applied to the contaminated soil to decompose the organic compounds. The soil may be treated in situ or may be removed for treatment and refilled.

  5. Climate-change effects on soils: Accelerated weathering, soil carbon and elemental cycling

    SciTech Connect (OSTI)

    Qafoku, Nikolla

    2015-04-01

    Climate change [i.e., high atmospheric carbon dioxide (CO2) concentrations (≥400 ppm); increasing air temperatures (2-4°C or greater); significant and/or abrupt changes in daily, seasonal, and inter-annual temperature; changes in the wet/dry cycles; intensive rainfall and/or heavy storms; extended periods of drought; extreme frost; heat waves and increased fire frequency] is and will significantly affect soil properties and fertility, water resources, food quantity and quality, and environmental quality. Biotic processes that consume atmospheric CO2, and create organic carbon (C) that is either reprocessed to CO2 or stored in soils are the subject of active current investigations, with great concern over the influence of climate change. In addition, abiotic C cycling and its influence on the inorganic C pool in soils is a fundamental global process in which acidic atmospheric CO2 participates in the weathering of carbonate and silicate minerals, ultimately delivering bicarbonate and Ca2+ or other cations that precipitate in the form of carbonates in soils or are transported to the rivers, lakes, and oceans. Soil responses to climate change will be complex, and there are many uncertainties and unresolved issues. The objective of the review is to initiate and further stimulate a discussion about some important and challenging aspects of climate-change effects on soils, such as accelerated weathering of soil minerals and resulting C and elemental fluxes in and out of soils, soil/geo-engineering methods used to increase C sequestration in soils, soil organic matter (SOM) protection, transformation and mineralization, and SOM temperature sensitivity. This review reports recent discoveries, identifies key research needs, and highlights opportunities offered by the climate-change effects on soils.

  6. Soil temperature, soil moisture and thaw depth, Barrow, Alaska, Ver. 1

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sloan, V.L.; J.A. Liebig; M.S. Hahn; J.B. Curtis; J.D. Brooks; A. Rogers; C.M. Iversen; R.J. Norby

    This dataset consists of field measurements of soil properties made during 2012 and 2013 in areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Included are i) weekly measurements of thaw depth, soil moisture, presence and depth of standing water, and soil temperature made during the 2012 and 2013 growing seasons (June - September) and ii) half-hourly measurements of soil temperature logged continuously during the period June 2012 to September 2013.

  7. Soil temperature, soil moisture and thaw depth, Barrow, Alaska, Ver. 1

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sloan, V.L.; J.A. Liebig; M.S. Hahn; J.B. Curtis; J.D. Brooks; A. Rogers; C.M. Iversen; R.J. Norby

    2014-01-10

    This dataset consists of field measurements of soil properties made during 2012 and 2013 in areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Included are i) weekly measurements of thaw depth, soil moisture, presence and depth of standing water, and soil temperature made during the 2012 and 2013 growing seasons (June - September) and ii) half-hourly measurements of soil temperature logged continuously during the period June 2012 to September 2013.

  8. Exometabolite niche partitioning among sympatric soil bacteria

    SciTech Connect (OSTI)

    Baran, Richard; Brodie, Eoin L.; Mayberry-Lewis, Jazmine; Hummel, Eric; Da Rocha, Ulisses Nunes; Chakraborty, Romy; Bowen, Benjamin P.; Karaoz, Ulas; Cadillo-Quiroz, Hinsby; Garcia-Pichel, Ferran; Northen, Trent R.

    2015-09-22

    Soils are arguably the most microbially diverse ecosystems. Physicochemical properties have been associated with the maintenance of this diversity. Yet, the role of microbial substrate specialization is largely unexplored since substrate utilization studies have focused on simple substrates, not the complex mixtures representative of the soil environment. Here we examine the exometabolite composition of desert biological soil crusts (biocrusts) and the substrate preferences of seven biocrust isolates. The biocrust's main primary producer releases a diverse array of metabolites, and isolates of physically associated taxa use unique subsets of the complex metabolite pool. Individual isolates use only 13-26% of available metabolites, with only 2 out of 470 used by all and 40% not used by any. An extension of this approach to a mesophilic soil environment also reveals high levels of microbial substrate specialization. In conclusion, these results suggest that exometabolite niche partitioning may be an important factor in the maintenance of microbial diversity.

  9. Exometabolite niche partitioning among sympatric soil bacteria

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Baran, Richard; Brodie, Eoin L.; Mayberry-Lewis, Jazmine; Hummel, Eric; Da Rocha, Ulisses Nunes; Chakraborty, Romy; Bowen, Benjamin P.; Karaoz, Ulas; Cadillo-Quiroz, Hinsby; Garcia-Pichel, Ferran; et al

    2015-09-22

    Soils are arguably the most microbially diverse ecosystems. Physicochemical properties have been associated with the maintenance of this diversity. Yet, the role of microbial substrate specialization is largely unexplored since substrate utilization studies have focused on simple substrates, not the complex mixtures representative of the soil environment. Here we examine the exometabolite composition of desert biological soil crusts (biocrusts) and the substrate preferences of seven biocrust isolates. The biocrust's main primary producer releases a diverse array of metabolites, and isolates of physically associated taxa use unique subsets of the complex metabolite pool. Individual isolates use only 13-26% of available metabolites,more » with only 2 out of 470 used by all and 40% not used by any. An extension of this approach to a mesophilic soil environment also reveals high levels of microbial substrate specialization. In conclusion, these results suggest that exometabolite niche partitioning may be an important factor in the maintenance of microbial diversity.« less

  10. Soil erosion rates from mixed soil and gravel surfaces in a wind tunnel

    SciTech Connect (OSTI)

    Ligotke, M.W.; Klopfer, D.C.

    1990-08-01

    Protective barriers have been identified as integral components of plans to isolate defense waste on the Hanford Site. The use of natural materials to construct protective barriers over waste site is being considered. Design requirements for protective barriers include preventing exposure of buried waste, and restricting penetration or percolation of surface waters through the waste zone. Studies were initiated to evaluate the effects of wind erosion on candidate protective barrier surfaces. A wind tunnel was used to provide controlled erosive stresses and to investigate the erosive effects of wind forces on proposed surface layers for protective barriers. Mixed soil and gravel surfaces were prepared and tested for resistance to wind erosion at the Pacific Northwest Laboratory Aerosol Wind Tunnel Research Facility. These tests were performed to investigate surface deflation caused by suspension of soil from various surface layer configurations and to provide a comparison of the relative resistance of the different surfaces to wind erosion. Planning, testing, and analyzing phases of this wind erosion project were coordinated with other tasks supporting the development of protective barriers. These tasks include climate-change predictions, field studies and modeling efforts. This report provides results of measurements of deflation caused by wind forces over level surfaces. Section 2.0 reviews surface layer characteristics and previous relevant studies on wind erosion, describes effects of erosion, and discusses wind tunnel modeling. Materials and methods of the wind tunnel tests are discussed in Section 3.0. Results and discussion are presented in Section 4.0, and conclusions and recommendations Section 5.0. 53 refs., 29 figs., 7 tabs.

  11. From Fjords to Open Seas: Ecological Genomics of Expanding Oxygen Minimum Zones (2010 JGI User Meeting)

    ScienceCinema (OSTI)

    Hallam, Steven

    2011-04-26

    Steven Hallam of the University of British Columbia talks "From Fjords to Open Seas: Ecological Genomics of Expanding Oxygen Minimum Zones" on March 24, 2010 at the 5th Annual DOE JGI User Meeting

  12. Ecological Monitoring and Compliance Program Fiscal Year 2001

    SciTech Connect (OSTI)

    C. A. Wills

    2001-12-01

    The Ecological Monitoring and Compliance program, funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office, monitors the ecosystem of the Nevada Test Site (NTS) and ensures compliance with laws and regulations pertaining to NTS biota. This report summarizes the program's activities conducted by Bechtel Nevada during fiscal year 2001. Program activities included: (1) biological surveys at proposed construction sites, (2) desert tortoise compliance, (3) ecosystem mapping and data management, (4) sensitive species and unique habitat monitoring, and (5) biological monitoring at the HAZMAT Spill Center. Biological surveys for the presence of sensitive species were conducted for 23 NTS projects. Eleven sites were in desert tortoise habitat. These projects have the potential to disturb a total of 588 acres, where 568 acres of disturbance would be off-road driving. No tortoises were found in or displaced from project areas, and no tortoise s were accidentally injured or killed at project areas. One tortoise was crushed by a vehicle on a paved road. A topical report describing the classification of habitat types on the NTS was completed and distributed. The report is the culmination of three years of field vegetation mapping and the analysis of vegetation data from over 1,500 ecological landform units. Compilation of historical wildlife data was initiated. A long-term monitoring plan for important plant species that occur on the NTS was completed. Site-wide monitoring was conducted for the western burrowing owl, bat species of concern, wild horses, and raptor nests. Sixty-nine of 77 known owl burrows were monitored. As in previous years, some owls were present year round on the NTS. An overall decrease in active owl burrows was observed within all three ecoregions (Mojave Desert, Transition, Great Basin Desert) from October through January. An increase in active owl burrows was observed from mid March to early April. A

  13. Bescorp soil washing system for lead battery site treatment. Applications analysis report. Project report

    SciTech Connect (OSTI)

    Gaire, R.J.

    1995-01-01

    The Brice Environmental Services Corporation (BESCORP) Soil Washing System (BSWS) and its applicability in remediating lead-contaminated soil at lead battery sites was evaluated. The report presents performance and economic data, developed from the U.S. Environmental Protection Agency Superfund Innovative Technology Evaluation (SITE) demonstration (three test runs) and additional data provided by the developer. The demonstration took place at the Alaskan Battery Enterprises (ABE) site in Fairbanks, Alaska. Economic data for a commercial 20-tph unit processing wastes similar to those treated in the SITE Demonstration, including disposal of waste effluents, project operating costs to be about $165/ton of soil (dry basis) containing 6.6 wt percent moisture. This figure does not reflect any revenue from recycling of metallic lead or cashing chips.

  14. LM Conducts Groundwater and Soil Investigation at Riverton, Wyoming, in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Response to 2010 Flood | Department of Energy Conducts Groundwater and Soil Investigation at Riverton, Wyoming, in Response to 2010 Flood LM Conducts Groundwater and Soil Investigation at Riverton, Wyoming, in Response to 2010 Flood October 16, 2012 - 10:50am Addthis LM Conducts Groundwater and Soil Investigation at Riverton, Wyoming, in Response to 2010 Flood LM Conducts Groundwater and Soil Investigation at Riverton, Wyoming, in Response to 2010 Flood LM Conducts Groundwater and Soil

  15. Tri Party Agreement Administrative Record Presentation for Dennis A. Faulk, EPA Jane A. Hedges, Ecology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TPA) and Milestone Tutorial John Price, Ecology What is it? Hanford Federal Facility Agreement and Consent Order (HFFACO) * Legal Agreement, Parts One - Five - Federal Facility Agreement between US Department of Energy and US Environmental Protection Agency (US DOE and US EPA) - Consent Order between US DOE and Washington Department of Ecology - A 3-party agreement [TPA] on how to integrate the Federal Facility Agreement with the Consent Order Why is there an EPA-DOE Federal Facility Agreement?

  16. Determine metrics and set targets for soil quality on agriculture residue and energy crop pathways

    SciTech Connect (OSTI)

    Ian Bonner; David Muth

    2013-09-01

    There are three objectives for this project: 1) support OBP in meeting MYPP stated performance goals for the Sustainability Platform, 2) develop integrated feedstock production system designs that increase total productivity of the land, decrease delivered feedstock cost to the conversion facilities, and increase environmental performance of the production system, and 3) deliver to the bioenergy community robust datasets and flexible analysis tools for establishing sustainable and viable use of agricultural residues and dedicated energy crops. The key project outcome to date has been the development and deployment of a sustainable agricultural residue removal decision support framework. The modeling framework has been used to produce a revised national assessment of sustainable residue removal potential. The national assessment datasets are being used to update national resource assessment supply curves using POLYSIS. The residue removal modeling framework has also been enhanced to support high fidelity sub-field scale sustainable removal analyses. The framework has been deployed through a web application and a mobile application. The mobile application is being used extensively in the field with industry, research, and USDA NRCS partners to support and validate sustainable residue removal decisions. The results detailed in this report have set targets for increasing soil sustainability by focusing on primary soil quality indicators (total organic carbon and erosion) in two agricultural residue management pathways and a dedicated energy crop pathway. The two residue pathway targets were set to, 1) increase residue removal by 50% while maintaining soil quality, and 2) increase soil quality by 5% as measured by Soil Management Assessment Framework indicators. The energy crop pathway was set to increase soil quality by 10% using these same indicators. To demonstrate the feasibility and impact of each of these targets, seven case studies spanning the US are presented

  17. Code System Calculate One-Dimensional Vertical Transport Unsaturated Soil Zone

    Energy Science and Technology Software Center (OSTI)

    1989-03-01

    SESOIL, as an integrated screening-level soil compartment model, is designed to simultaneously model water transport, sediment transport, and pollutant fate. SESOIL is a one-dimensional vertical transport model for the unsaturated soil zone. Only one compound at a time can be considered. The model is based on mass balance and equilibrium partitioning of the chemical between different phases (dissolved, sorbed, vapor, and pure). The SESOIL model was designed to perform long-term simulations of chemical transport andmore » transformations in the soil and uses theoretically derived equations to represent water transport, sediment transport on the land surface, pollutant transformation, and migration of the pollutant to the atmosphere and groundwater. Climatic data, compartment geometry, and soil and chemical property data are the major components used in the equations. SESOIL was developed as a screening-level model, utilizing less soil, chemical, and meteorological values as input than most other similar models. Output of SESOIL includes time-varying pollutant concentrations at various soil depths and pollutant loss from the unsaturated zone in terms of surface runoff, percolation to the groundwater, volatilization, and degradation. The February 1995 release corrects an error that caused the code to fail when average monthly air temperature was -10C and includes an improved iteration procedure for the mass balance equations in the model. PLEASE NOTE: The RISKPRO information management software (see OTHER PROG/OPER SYS INFO) was used by the developers of the New SESOIL User''s Guide in their study and revisions of SESOIL. Using RISKPRO in conjunction with SESOIL is an option, and it may provide the easiest way to use SESOIL. The other option, use of SESOIL in stand-alone mode, has been tested and used. The stand-alone option is covered in ''Instructions for Running Stand-Alone SESOIL Code'', and in ''A Seasonal Soil Compartment Model''.« less

  18. Ecological succession and viability of human-associated microbiota on restroom surfaces

    SciTech Connect (OSTI)

    Gibbons, Sean M.; Schwartz, Tara; Fouquier, Jennifer; Mitchell, Michelle; Sangwan, Naseer; Gilbert, Jack A.; Kelley, Scott T.; Elkins, C. A.

    2014-11-14

    Human-associated bacteria dominate the built environment (BE). Following decontamination of floors, toilet seats, and soap dispensers in four public restrooms, in situ bacterial communities were characterized hourly, daily, and weekly to determine their successional ecology. The viability of cultivable bacteria, following the removal of dispersal agents (humans), was also assessed hourly. A late-successional community developed within 5 to 8 h on restroom floors and showed remarkable stability over weeks to months. Despite late-successional dominance by skin- and outdoor-associated bacteria, the most ubiquitous organisms were predominantly gut-associated taxa, which persisted following exclusion of humans. Staphylococcus represented the majority of the cultivable community, even after several hours of human exclusion. Methicillin-resistant Staphylococcus aureus (MRSA)-associated virulence genes were found on floors but were not present in assembled Staphylococcus pan-genomes. Viral abundances, which were predominantly enterophages, human papilloma virus, and herpesviruses, were significantly correlated with bacterial abundances and showed an unexpectedly low virus-to-bacterium ratio in surface-associated samples, suggesting that bacterial hosts are mostly dormant on BE surfaces.

  19. Ecological succession and viability of human-associated microbiota on restroom surfaces

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gibbons, Sean M.; Schwartz, Tara; Fouquier, Jennifer; Mitchell, Michelle; Sangwan, Naseer; Gilbert, Jack A.; Kelley, Scott T.; Elkins, C. A.

    2014-11-14

    Human-associated bacteria dominate the built environment (BE). Following decontamination of floors, toilet seats, and soap dispensers in four public restrooms, in situ bacterial communities were characterized hourly, daily, and weekly to determine their successional ecology. The viability of cultivable bacteria, following the removal of dispersal agents (humans), was also assessed hourly. A late-successional community developed within 5 to 8 h on restroom floors and showed remarkable stability over weeks to months. Despite late-successional dominance by skin- and outdoor-associated bacteria, the most ubiquitous organisms were predominantly gut-associated taxa, which persisted following exclusion of humans. Staphylococcus represented the majority of the cultivablemore » community, even after several hours of human exclusion. Methicillin-resistant Staphylococcus aureus (MRSA)-associated virulence genes were found on floors but were not present in assembled Staphylococcus pan-genomes. Viral abundances, which were predominantly enterophages, human papilloma virus, and herpesviruses, were significantly correlated with bacterial abundances and showed an unexpectedly low virus-to-bacterium ratio in surface-associated samples, suggesting that bacterial hosts are mostly dormant on BE surfaces.« less

  20. Hydrology and ecology of pinyon-juniper woodlands: Conceptual framework and field studies

    SciTech Connect (OSTI)

    Wilcox, B.P.; Breshears, D.D.

    1994-09-01

    Pinyon-juniper woodlands represent an important ecosystem in the semiarid western United States. Concern over the sustainability of, and management approaches for, these woodlands is increasing. As in other semiarid environments, water dynamics and vegetation patterns in pinyon-juniper woodlands are highly interrelated. An understanding of these relationships can aid in evaluating various management strategies. In this paper we describe a conceptual framework designed to increase our understanding of water and vegetation in pinyon-juniper woodlands. The framework comprises five different scales, at each of which the landscape is divided into {open_quotes}functional units{close_quotes} on the basis of hydrologic characteristics. The hydrologic behavior of each unit and the connections between units are being evaluated using an extensive network of hydrological and ecological field studies on the Pajarito Plateau in northern New Mexico. Data from these studies, coupled with application of the conceptual model, have led to the development of a number of hypotheses concerning the interrelationships of water and vegetation in pinyon-juniper woodlands.

  1. Soil washing: A preliminary assessment of its applicability to Hanford

    SciTech Connect (OSTI)

    Gerber, M A; Freeman, H D; Baker, E G; Riemath, W F

    1991-09-01

    Soil washing is being considered for treating soils at the US Department of Energy's (DOE) Hanford Site. As a result of over 50 years of operations to produce plutonium for the US Department of Defense and research for DOE, soils in areas within the Site are contaminated with hazardous wastes and radionuclides. In the soil washing process, contaminated soil is mixed with a liquid and then physically and/or chemically treated to dissolve the contaminants into solution and/or concentrate them in a small fraction of the soil. The purpose of this procedure is to separate the contaminants from the bulk of the soil. The key to successful application is to match the types of contaminants and soil characteristics with physical-chemical methods that perform well under the existing conditions. The applicability of soil washing to Hanford Site contaminated soils must take into account both the characteristics of the oil and the type of contamination. Hanford soils typically contain up to 90% sand, gravel, and cobbles, which generally are favorable characteristics for soil washing. For example, in soil samples from the north pond in the 300 Area, 80% to 90% of the soil particles were larger than 250 {mu}m. The principal contaminants in the soil are radionuclides, heavy metals, and nitrate and sulfate salts. For most of the sites, organic contaminants are either not present or are found in very low concentration. 28 refs., 5 figs., 10 tabs.

  2. Soil respiration and bacterial structure and function after 17 years of a reciprocal soil transplant experiment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bond-Lamberty, Benjamin; Bolton, Harvey; Fansler, Sarah J.; Heredia-Langner, Alejandro; Liu, Chongxuan; McCue, Lee Ann; Smith, Jeff L.; Bailey, Vanessa L.

    2016-03-02

    The effects of climate change on soil organic matter—its structure, microbial community, carbon storage, and respiration response—remain uncertain and widely debated. In addition, the effects of climate changes on ecosystem structure and function are often modulated or delayed, meaning that short-term experiments are not sufficient to characterize ecosystem responses. This study capitalized on a long-term reciprocal soil transplant experiment to examine the response of dryland soils to climate change. The two transplant sites were separated by 500 m of elevation on the same mountain slope in eastern Washington state, USA, and had similar plant species and soil types. We resampledmore » the original 1994 soil transplants and controls, measuring CO2 production, temperature response, enzyme activity, and bacterial community structure after 17 years. Over a laboratory incubation of 100 days, reciprocally transplanted soils respired roughly equal cumulative amounts of carbon as non-transplanted controls from the same site. Soils transplanted from the hot, dry, lower site to the cooler and wetter (difference of -5 °C monthly maximum air temperature, +50 mm yr-1precipitation) upper site exhibited almost no respiratory response to temperature (Q10 of 1.1), but soils originally from the upper, cooler site had generally higher respiration rates. The bacterial community structure of transplants did not differ significantly from that of untransplanted controls, however. Slight differences in local climate between the upper and lower Rattlesnake locations, simulated with environmental control chambers during the incubation, thus prompted significant differences in microbial activity, with no observed change to bacterial structure. Lastly, these results support the idea that environmental shifts can influence soil C through metabolic changes, and suggest that microbial populations responsible for soil heterotrophic respiration may be constrained in surprising ways, even

  3. Investigation of transient, two-dimensional coupled heat and moisture flow in soils

    SciTech Connect (OSTI)

    Shen, L.S.W.

    1986-01-01

    A two-dimensional finite difference numerical model has been developed to study coupled heat and moisture flow in the soil surrounding an earth-sheltered construction. The model is based on a mechanistic approach formulated by Milly and developed from the work of Philip and deVries. Using soil temperatures and matric potentials as the dependent variables, the model is capable of simulating unsaturated/saturated flow conditions in heterogeneous soil domains. The model is a fully implicit, integrated finite difference approach based on the Patankar Spalding method. The numerical modeling of the governing heat and moisture equations was validated against a number of analytical and quasi-analytical solutions. An axisymmetric, two-dimensional experiment was then defined to which the numerical model could be compared. The experimental apparatus was composed of a cylinder filled with a dredged Mississippi River sand. A series of one and two dimensional heat and moisture flow experiments were run, using boundary conditions consistent with those that occur in the soil surrounding a building. Soil properties used in the model were either calculated from theoretical models or measured experimentally. Agreement between the model and experiments were good, with an error of 10-15% obtained for the two-dimensional coupled heat and moisture flow experiment.

  4. The impact of the oil industry on the indigenous population in the oil-producing areas of Nigeria: As measured by ecological factors

    SciTech Connect (OSTI)

    Ikein, A.A.

    1988-01-01

    Exploration and exploitation of the petroleum resource has created some of the largest fortunes and has helped to achieve some of the most impressive economic growth and development, yet little or no attention has been directed to its impact on the producing areas, particularly in developing countries. Therefore, the purpose of this study was to measure the impact of the oil industry on the inhabitants of the oil-producing areas as measured by certain ecological factors. The factors considered were education, health, housing, power, roads, water, and pollution. The selected socio-economic factors are thought to influence the social well being of the inhabitants.

  5. Vegetation study in support of the design and optimization of vegetative soil covers, Sandia National Laboratories, Albuquerque, New Mexico.

    SciTech Connect (OSTI)

    Peace, Gerald L.; Goering, Timothy James (GRAM inc., Albuquerque, NM); Knight, Paul J. (Marron and Associates, Albuquerque, NM); Ashton, Thomas S. (Marron and Associates, Albuquerque, NM)

    2004-11-01

    A vegetation study was conducted in Technical Area 3 at Sandia National Laboratories, Albuquerque, New Mexico in 2003 to assist in the design and optimization of vegetative soil covers for hazardous, radioactive, and mixed waste landfills at Sandia National Laboratories/New Mexico and Kirtland Air Force Base. The objective of the study was to obtain site-specific, vegetative input parameters for the one-dimensional code UNSAT-H and to identify suitable, diverse native plant species for use on vegetative soil covers that will persist indefinitely as a climax ecological community with little or no maintenance. The identification and selection of appropriate native plant species is critical to the proper design and long-term performance of vegetative soil covers. Major emphasis was placed on the acquisition of representative, site-specific vegetation data. Vegetative input parameters measured in the field during this study include root depth, root length density, and percent bare area. Site-specific leaf area index was not obtained in the area because there was no suitable platform to measure leaf area during the 2003 growing season due to severe drought that has persisted in New Mexico since 1999. Regional LAI data was obtained from two unique desert biomes in New Mexico, Sevilletta Wildlife Refuge and Jornada Research Station.

  6. Heavy metal movement in metal-contaminated soil profiles

    SciTech Connect (OSTI)

    Li, Zhenbin; Shuman, L.M.

    1996-10-01

    Heavy metal movement in soil profiles is a major environmental concern because even slow transport through the soil may eventually lead to deterioration of groundwater quality. In this study, three metal-contaminated soil (Fuquay, Dothan, and Clarendon) were selected from cropland were a high-metal flue dust had been applied annually for 6 years to raise soil pH, with application ending 4 years before sampling. One uncontaminated soil (Tifton) from the same physiographic area was also sampled as a control. Soil samples were collected in 15-cm increments from the surface to 105 cm in depth. Total contents of Zn, Cd, and Pb in the soils samples were determined. To better understand metal movement in relation to metal fractions in the soil profile, soil samples were also extracted sequentially for exchangeable (EXC), organic matter (OM), Mn oxide (MNO), amorphous Fe oxide (AFEO), crystalline Fe oxide (CFEO), and residual (RES) fractions. 35 refs., 6 figs., 2 tabs.

  7. Electrokinetic electrode system for extraction of soil contaminants from unsaturated soils

    DOE Patents [OSTI]

    Lindgren, Eric R.; Mattson, Earl D.

    1995-01-01

    There is presented an electrokinetic electrode assembly for use in extraction of soil contaminants from unsaturated soil in situ. The assembly includes a housing for retaining a liquid comprising an electrolyte solution, pure water, and soil water, the housing being in part of porous material capable of holding a vacuum. An electrode is mounted in the housing. The housing is provided with a vacuum orifice for effecting a vacuum within the housing selectively to control flow of soil water through the housing into the chamber and to control outflow of the liquid from the chamber. The assembly further includes conduit means for removing the liquid from the housing and returning the electrolyte solution to the housing, and a conduit for admitting pure water to the housing. There is further presented an electrode system and method for extraction of soil contaminants, the system and method utilizing at least two electrode assemblies as described above.

  8. Electrokinetic electrode system for extraction of soil contaminants from unsaturated soils

    DOE Patents [OSTI]

    Lindgren, E.R.; Mattson, E.D.

    1995-07-25

    An electrokinetic electrode assembly is described for use in extraction of soil contaminants from unsaturated soil in situ. The assembly includes a housing for retaining a liquid comprising an electrolyte solution, pure water, and soil water, the housing being in part of porous material capable of holding a vacuum. An electrode is mounted in the housing. The housing is provided with a vacuum orifice for effecting a vacuum within the housing selectively to control flow of soil water through the housing into the chamber and to control outflow of the liquid from the chamber. The assembly further includes conduit means for removing the liquid from the housing and returning the electrolyte solution to the housing, and a conduit for admitting pure water to the housing. An electrode system and method are also revealed for extraction of soil contaminants. The system and method utilize at least two electrode assemblies as described above. 5 figs.

  9. Comparison of Laboratory and Field Methods for Determining the Quasi-Saturated Hydraulic Conductivity of Soils

    SciTech Connect (OSTI)

    Faybishenko, Boris

    1997-08-01

    Laboratory and field ponded infiltration tests in quasi-saturated soils (containing entrapped air) exhibit the same three-stage temporal variability for the flow rate and hydraulic conductivity. However, the values for the hydraulic conductivity may differ by as much as two orders of magnitude due to differences in the geometry and physics of flow when different laboratory and field methods are applied. The purpose of this paper is to investigate this variability using a comparison of results of ponded infiltration tests conducted under laboratory conditions using confined cores, with results of field tests conducted using partially isolated cores and double-ring infiltrometers. Under laboratory conditions in confined cores, during the firs stage, the water flux decreases over time because entrapped air plugs the largest pores in the soils; during the second stage, the quasi-saturated hydraulic conductivity increases by one to two orders of magnitude, essentially reaching the saturated hydraulic conductivity, when entrapped air is discharged from the soils; during the third stage, the hydraulic conductivity decreases to minimum values due to sealing of the soil surface and the effect of biofilms sealing the pores within the wetted zone. Under field conditions, the second stage is only partially developed, and when the surface sealing process begins, the hydraulic pressure drops below the air entry value, thereby causing atmospheric air to enter the soils. As a result, the soils become unsaturated with a low hydraulic conductivity, and the infiltration rate consequently decreases. Contrary to the laboratory experiments in confined cores, the saturated hydraulic conductivity cannot be reached under field conditions. In computations of infiltration one has to take into account the variations in the quasi-saturated and unsaturated hydraulic conductivities, moisture and entrapped air content, and the hydraulic gradient in the quasi-saturated or unsaturated soils.

  10. Recovery of Depleted Uranium Fragments from Soil

    SciTech Connect (OSTI)

    Farr, C.P.; Alecksen, T.J.; Heronimus, R.S.; Simonds, M.H.; Farrar, D.R.; Baker, K.R.; Miller, M.L.

    2008-07-01

    A cost-effective method was demonstrated for recovering depleted uranium (DU) fragments from soil. A compacted clean soil pad was prepared adjacent to a pile of soil containing DU fragments. Soil from the contaminated pile was placed on the pad in three-inch lifts using conventional construction equipment. Each lift was scanned with an automatic scanning system consisting of an array of radiation detectors coupled to a detector positioning system. The data were downloaded into ArcGIS for data presentation. Areas of the pad exhibiting scaler counts above the decision level were identified as likely locations of DU fragments. The coordinates of these locations were downloaded into a PDA that was wirelessly connected to the positioning system. The PDA guided technicians to the locations where hand-held trowels and shovels were used to remove the fragments. After DU removal, the affected areas were re-scanned and the new data patched into the data base to replace the original data. This new data set along with soil sample results served as final status survey data. (authors)

  11. Soil remediation interim measures/interim remedial action (IM/IRA) for Rocky Flats Plant

    SciTech Connect (OSTI)

    Bulgar, L.; Law, J.; Buddy, M.

    1994-12-31

    The accelerated Cleanup Program for Rocky Flats Plant includes a number of subprograms which are being implemented to expedite remediation at the facility. One of these is the Soil Remediation IM/IRA. This paper discusses the objectives, scope, and approach for the Soil Remediation IM/IRA program. The major features of this program are addressed, along with a discussion of its potential benefits relative to the conventional RCRA/CERCLA remediation process. The paper also provides information on the problems encountered and decisions made during the planning and development of this program, its current status, and future plans.

  12. Project Profile: Advanced Anti-Soiling Coatings for CSP Collector Mirrors

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Heliostats (SuNLaMP) | Department of Energy Project Profile: Advanced Anti-Soiling Coatings for CSP Collector Mirrors and Heliostats (SuNLaMP) Project Profile: Advanced Anti-Soiling Coatings for CSP Collector Mirrors and Heliostats (SuNLaMP) Funding Program: SuNLaMP SunShot Subprogram: CSP Location: Oak Ridge National Laboratory, Oak Ridge, TN SunShot Award Amount: $2,800,000 This project addresses the need to further develop self-cleaning reflector coatings for solar collectors. When

  13. Mapping the footsteps of the green anole: A template for publishing ecological data on the World Wide Web

    SciTech Connect (OSTI)

    Carnes, E.T.; Truett, D.F.; Truett, L.F.

    1996-10-01

    In the handful of years since the World Wide Web (WWW or Web) came into being, Web sites have developed at an astonishing rate. With the influx of Web pages comes a disparity of site types, including personal homepages, commercial sales sites, and educational data. The variety of sites and the deluge of information contained on the Web exemplify the individual nature of the WWW. Whereas some people argue that it is this eclecticism which gives the Web its charm, we propose that sites which are repositories of technical data would benefit from standardization. This paper proffers a methodology for publishing ecological research on the Web. The template we describe uses capabilities of HTML (the HyperText Markup Language) to enhance the value of the traditional scientific paper.

  14. Framework for integration of urban planning, strategic environmental assessment and ecological planning for urban sustainability within the context of China

    SciTech Connect (OSTI)

    He Jia; Bao Cunkuan; Shu Tingfei; Yun Xiaoxue; Jiang Dahe; Brwon, Lex

    2011-11-15

    Sustainable development or sustainability has been highlighted as an essential principle in urban master planning, with increasing recognition that uncontrollable urbanization may well give rise to various issues such as overexploitation of natural resources, ecosystem destruction, environmental pollution and large-scale climate change. Thus, it is deemed necessary to modify the existing urban and regional administrative system so as to cope with the challenges urban planning is being confronted with and realize the purpose of urban sustainability. This paper contributed to proposing a mechanism which helps to make urban planning with full consideration of issues with respect to sustainable development. We suggested that the integration of urban planning, SEA and ecological planning be a multi-win strategy to offset deficiency of each mentioned political tool being individually applied. We also proposed a framework where SEA and ecological planning are fully incorporated into urban planning, which forms a two-way constraint mechanism to ascertain environmental quality of urban planning, although in practice, planning and SEA processes may conditionally be unified. Moreover, as shown in the case study, the integration of the three political tools may be constrained due to slow changes in the contextual factors, in particular the political and cultural dimensions. Currently within the context of China, there may be three major elements which facilitate integration of the three political tools, which are (1) regulatory requirement of PEIA on urban planning, (2) the promotion or strong administrative support from government on eco-district building, and (3) the willingness of urban planners to collaborate with SEA experts or ecologists.

  15. Chemotactic selection of pollutant degrading soil bacteria

    DOE Patents [OSTI]

    Hazen, T.C.

    1991-03-04

    A method is described for identifying soil microbial strains which may be bacterial degraders of pollutants. This method includes: Placing a concentration of a pollutant in a substantially closed container; placing the container in a sample of soil for a period of time ranging from one minute to several hours; retrieving the container and collecting its contents; microscopically determining the identity of the bacteria present. Different concentrations of the pollutant can be used to determine which bacteria respond to each concentration. The method can be used for characterizing a polluted site or for looking for naturally occurring biological degraders of the pollutant. Then bacteria identified as degraders of the pollutant and as chemotactically attracted to the pollutant are used to innoculate contaminated soil. To enhance the effect of the bacteria on the pollutant, nutrients are cyclicly provided to the bacteria then withheld to alternately build up the size of the bacterial colony or community and then allow it to degrade the pollutant.

  16. Comparative Analysis for Polluted Agricultural Soils with Arsenic, Lead, and Mercury in Mexico

    SciTech Connect (OSTI)

    Yarto-Ramirez, Mario; Santos-Santos, Elvira; Gavilan-Garcia, Arturo; Castro-Diaz, Jose; Gavilan-Garcia, Irma Cruz; Rosiles, Rene; Suarez, Sara

    2004-03-31

    The use of mercury in Mexico has been associated with the mining industry of Zacatecas. This activity has polluted several areas currently used for agriculture. The main objective of this study was to investigate the heavy metal concentration (Hg, As and Pb) in soil of Guadalupe Zacatecas in order to justify a further environmental risk assessment in the site. A 2X3 km grid was used for the sampling process and 20 soil samples were taken. The analysis was developed using EPA SW 846: 3050B/6010B method for arsenic and metals and EPA SW 846: 7471A for total mercury. It was concluded that there are heavy metals in agricultural soils used for corn and bean farming. For this it is required to make an environmental risk assessment and a bioavailability study in order to determine if there's a risk for heavy metals bioaccumulation in animals or human beings or metal lixiviation to aquifers.

  17. Rapid fusion method for the determination of refractory thorium and uranium isotopes in soil samples

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Maxwell, Sherrod L.; Hutchison, Jay B.; McAlister, Daniel R.

    2015-02-14

    Recently, approximately 80% of participating laboratories failed to accurately determine uranium isotopes in soil samples in the U.S Department of Energy Mixed Analyte Performance Evaluation Program (MAPEP) Session 30, due to incomplete dissolution of refractory particles in the samples. Failing laboratories employed acid dissolution methods, including hydrofluoric acid, to recover uranium from the soil matrix. The failures illustrate the importance of rugged soil dissolution methods for the accurate measurement of analytes in the sample matrix. A new rapid fusion method has been developed by the Savannah River National Laboratory (SRNL) to prepare 1-2 g soil sample aliquots very quickly, withmore » total dissolution of refractory particles. Soil samples are fused with sodium hydroxide at 600 ºC in zirconium crucibles to enable complete dissolution of the sample. Uranium and thorium are separated on stacked TEVA and TRU extraction chromatographic resin cartridges, prior to isotopic measurements by alpha spectrometry on cerium fluoride microprecipitation sources. Plutonium can also be separated and measured using this method. Batches of 12 samples can be prepared for measurement in <5 hours.« less

  18. Rapid fusion method for the determination of refractory thorium and uranium isotopes in soil samples

    SciTech Connect (OSTI)

    Maxwell, Sherrod L.; Hutchison, Jay B.; McAlister, Daniel R.

    2015-02-14

    Recently, approximately 80% of participating laboratories failed to accurately determine uranium isotopes in soil samples in the U.S Department of Energy Mixed Analyte Performance Evaluation Program (MAPEP) Session 30, due to incomplete dissolution of refractory particles in the samples. Failing laboratories employed acid dissolution methods, including hydrofluoric acid, to recover uranium from the soil matrix. The failures illustrate the importance of rugged soil dissolution methods for the accurate measurement of analytes in the sample matrix. A new rapid fusion method has been developed by the Savannah River National Laboratory (SRNL) to prepare 1-2 g soil sample aliquots very quickly, with total dissolution of refractory particles. Soil samples are fused with sodium hydroxide at 600 ºC in zirconium crucibles to enable complete dissolution of the sample. Uranium and thorium are separated on stacked TEVA and TRU extraction chromatographic resin cartridges, prior to isotopic measurements by alpha spectrometry on cerium fluoride microprecipitation sources. Plutonium can also be separated and measured using this method. Batches of 12 samples can be prepared for measurement in <5 hours.

  19. Evaluation of a standard test method for screening fuels in soils

    SciTech Connect (OSTI)

    Sorini, S.S.; Schabron, J.F.

    1996-12-31

    A new screening method for fuel contamination in soils was recently developed as American Society for Testing and Materials (ASTM) Method D-5831-95, Standard Test Method for Screening Fuels in Soils. This method uses low-toxicity chemicals and can be sued to screen organic- rich soils, as well as being fast, easy, and inexpensive to perform. Fuels containing aromatic compounds, such as diesel fuel and gasoline, as well as other aromatic-containing hydrocarbon materials, such as motor oil, crude oil, and cola oil, can be determined. The screening method for fuels in soils was evaluated by conducting a Collaborative study on the method. In the Collaborative study, a sand and an organic soil spiked with various concentrations of diesel fuel were tested. Data from the Collaborative study were used to determine the reproducibility (between participants) and repeatability (within participants) precision of the method for screening the test materials. The Collaborative study data also provide information on the performance of portable field equipment (patent pending) versus laboratory equipment for performing the screening method and a comparison of diesel concentration values determined using the screening method versus a laboratory method.

  20. Rapid fusion method for the determination of refractory thorium and uranium isotopes in soil samples

    SciTech Connect (OSTI)

    Maxwell, Sherrod L.; Hutchison, Jay B.; McAlister, Daniel R.

    2015-02-14

    Recently, approximately 80% of participating laboratories failed to accurately determine uranium isotopes in soil samples in the U.S Department of Energy Mixed Analyte Performance Evaluation Program (MAPEP) Session 30, due to incomplete dissolution of refractory particles in the samples. Failing laboratories employed acid dissolution methods, including hydrofluoric acid, to recover uranium from the soil matrix. The failures illustrate the importance of rugged soil dissolution methods for the accurate measurement of analytes in the sample matrix. A new rapid fusion method has been developed by the Savannah River National Laboratory (SRNL) to prepare 1-2 g soil sample aliquots very quickly, with total dissolution of refractory particles. Soil samples are fused with sodium hydroxide at 600 C in zirconium crucibles to enable complete dissolution of the sample. Uranium and thorium are separated on stacked TEVA and TRU extraction chromatographic resin cartridges, prior to isotopic measurements by alpha spectrometry on cerium fluoride microprecipitation sources. Plutonium can also be separated and measured using this method. Batches of 12 samples can be prepared for measurement in <5 hours.