Powered by Deep Web Technologies
Note: This page contains sample records for the topic "developing advanced energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Tribal Renewable Energy Advanced Course: Project Development...  

Broader source: Energy.gov (indexed) [DOE]

Development and Financing Essentials Tribal Renewable Energy Advanced Course: Project Development and Financing Essentials Watch the DOE Office of Indian Energy advanced course...

2

Tribal Renewable Energy Advanced Course: Project Development...  

Broader source: Energy.gov (indexed) [DOE]

Concepts Tribal Renewable Energy Advanced Course: Project Development Concepts Watch the DOE Office of Indian Energy renewable energy course entitled "Tribal Renewable Energy...

3

Tribal Renewable Energy Advanced Course: Project Development...  

Broader source: Energy.gov (indexed) [DOE]

Process Tribal Renewable Energy Advanced Course: Project Development Process Watch the DOE Office of Indian Energy renewable energy course entitled "Tribal Renewable Energy Project...

4

Global Nuclear Energy Partnership Fact Sheet - Develop Advanced...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Burner Reactors Global Nuclear Energy Partnership Fact Sheet - Develop Advanced Burner Reactors GNEP will develop and demonstrate Advanced Burner Reactors (ABRs) that...

5

Advanced Energy Industries, Inc. SEGIS developments.  

SciTech Connect (OSTI)

The Solar Energy Grid Integration Systems (SEGIS) initiative is a three-year, three-stage project that includes conceptual design and market analysis (Stage 1), prototype development/testing (Stage 2), and commercialization (Stage 3). Projects focus on system development of solar technologies, expansion of intelligent renewable energy applications, and connecting large-scale photovoltaic (PV) installations into the electric grid. As documented in this report, Advanced Energy Industries, Inc. (AE), its partners, and Sandia National Laboratories (SNL) successfully collaborated to complete the final stage of the SEGIS initiative, which has guided new technology development and development of methodologies for unification of PV and smart-grid technologies. The combined team met all deliverables throughout the three-year program and commercialized a broad set of the developed technologies.

Scharf, Mesa P. (Advanced Energy Industries, Inc., Bend, OR); Bower, Ward Isaac; Mills-Price, Michael A. (Advanced Energy Industries, Inc., Bend, OR); Sena-Henderson, Lisa; David, Carolyn; Akhil, Abbas Ali; Kuszmaul, Scott S.; Gonzalez, Sigifredo

2012-03-01T23:59:59.000Z

6

Advanced Material Development, Processing and Characterization - Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation Portal Advanced Material Development,

7

Renewable Energy Project Development: Advanced Concept Topics  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergy 0611__Joint_DOE_GoJ_AMS_Data_v3.pptx MoreNovember 21,Regional U.S. Catalog ofCommunityConcept

8

Renewable Energy Project Development: Advanced Process Topics  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergy 0611__Joint_DOE_GoJ_AMS_Data_v3.pptx MoreNovember 21,Regional U.S. Catalog

9

Fossil Energy Advanced Research and Technology Development Materials Program  

SciTech Connect (OSTI)

Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

Cole, N.C.; Judkins, R.R. (comps.)

1992-12-01T23:59:59.000Z

10

Renewable Energy Laboratory Development for Biofuels Advanced Combustion Studies  

SciTech Connect (OSTI)

The research advanced fundamental science and applied engineering for increasing the efficiency of internal combustion engines and meeting emissions regulations with biofuels. The project developed a laboratory with new experiments and allowed investigation of new fuels and their combustion and emissions. This project supports a sustainable domestic biofuels and automotive industry creating economic opportunities across the nation, reducing the dependence on foreign oil, and enhancing U.S. energy security. The one year period of research developed fundamental knowledge and applied technology in advanced combustion, emissions and biofuels formulation to increase vehicle's efficiency. Biofuelsâ?? combustion was investigated in a Compression Ignition Direct Injection (DI) to develop idling strategies with biofuels and an Indirect Diesel Injection (IDI) intended for auxiliary power unit.

Soloiu, Valentin

2012-03-31T23:59:59.000Z

11

Renewable Energy Project Development and Finance: Advanced Development Concepts  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergy 0611__Joint_DOE_GoJ_AMS_Data_v3.pptx MoreNovember 21,Regional U.S. Catalog of Services

12

Mickey Leland Energy Fellowship Report: Development of Advanced Window Coatings  

SciTech Connect (OSTI)

Advanced fenestration technologies for light and thermal management in building applications are of great recent research interest for improvements in energy efficiency. Of these technologies, there is specific interest in advanced window coating technologies that have tailored control over the visible and infrared (IR) scattering into a room for both static and dynamic applications. Recently, PNNL has investigated novel subwavelength nanostructured coatings for both daylighting, and IR thermal management applications. Such coatings rese still in the early stages and additional research is needed in terms of scalable manufacturing. This project investigates aspects of a potential new methodology for low-cost scalable manufacture of said subwavelength coatings.

Bolton, Ladena A.; Alvine, Kyle J.; Schemer-Kohrn, Alan L.

2014-08-05T23:59:59.000Z

13

Energy Department Announces $7 Million to Develop Advanced Logistics...  

Office of Environmental Management (EM)

Examples of bioenergy feedstocks include corn stover, switchgrass, and woody biomass. By investing in this type of research, development, and demonstration, the Energy...

14

Advancing Energy Development in Indian Country (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet provides information on the Strategic Technical Assistance Response Team (START) Program, a U.S. Department of Energy Office of Indian Energy Policy and Programs (DOE-IE) initiative to provide technical expertise to support the development of next-generation energy projects in Indian Country.

Not Available

2013-03-01T23:59:59.000Z

15

GNEP Element:Develop Advanced Burner Reactors | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department of Energy FreeportEnergy Issues Related toDevelop

16

Development of the Advanced Energy Design Guide for K-12 Schools -- 50% Energy Savings  

SciTech Connect (OSTI)

This Technical Support Document (TSD) describes the process and methodology for the development of the Advanced Energy Design Guide for K-12 School Buildings: Achieving 50% Energy Savings Toward a Net Zero Energy Building (AEDG-K12) (ASHRAE et al. 2011a). The AEDG-K12 provides recommendations for achieving 50% whole-building energy savings in K-12 schools over levels achieved by following ANSI/ASHRAE/IESNA Standard 90.1-2004, Energy Standard for Buildings Except Low-Rise Residential Buildings (Standard 90.1-2004) (ASHRAE 2004b). The AEDG-K12 was developed in collaboration with the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of North America (IES), the U.S. Green Building Council (USGBC), and the U.S. Department of Energy (DOE).

Bonnema, E.; Leach, M.; Pless, S.; Torcellini, P.

2013-02-01T23:59:59.000Z

17

Tribal Renewable Energy Advanced Course: Facility Scale Project Development  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment7 thFuel27,Development | Department of|

18

Tribal Renewable Energy Advanced Course: Project Development Concepts |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment7 thFuel27,Development | Department

19

Tribal Renewable Energy Advanced Course: Project Development Process |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment7 thFuel27,Development | DepartmentDepartment

20

Tribal Renewable Energy Advanced Course: Project Development and Financing  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment7 thFuel27,Development |

Note: This page contains sample records for the topic "developing advanced energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Department of Energy Funds Six Companies to Develop Advanced Drivetrain  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealing WithDevelopment of New Hampshire'sGraniteFutureGen 2.0

22

Technical Support Document: Development of the Advanced Energy Design Guide for Large Hospitals - 50% Energy Savings  

SciTech Connect (OSTI)

This Technical Support Document describes the process and methodology for the development of the Advanced Energy Design Guide for Large Hospitals: Achieving 50% Energy Savings Toward a Net Zero Energy Building (AEDG-LH) ASHRAE et al. (2011b). The AEDG-LH is intended to provide recommendations for achieving 50% whole-building energy savings in large hospitals over levels achieved by following Standard 90.1-2004. The AEDG-LH was created for a 'standard' mid- to large-size hospital, typically at least 100,000 ft2, but the strategies apply to all sizes and classifications of new construction hospital buildings. Its primary focus is new construction, but recommendations may be applicable to facilities undergoing total renovation, and in part to many other hospital renovation, addition, remodeling, and modernization projects (including changes to one or more systems in existing buildings).

Bonnema, E.; Leach, M.; Pless, S.

2013-06-01T23:59:59.000Z

23

Energy Department Announces $20 Million to Develop Advanced Components...  

Office of Environmental Management (EM)

and increase U.S. manufacturing competitiveness across the board by boosting energy productivity and leveraging low-cost domestic energy resources and feedstocks. Addthis Related...

24

Advanced Application Development Program Information | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3-- ------------------------------Chapter 39.208-006 Advance PatentApplication

25

Energy Department Announces $8 Million to Develop Advanced Components...  

Energy Savers [EERE]

(MHK) control and component technologies. In the United States, waves, tides, and ocean currents represent a largely untapped renewable energy resource that could provide...

26

ADVANCED FUSION TECHNOLOGY RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE US DEPARTMENT OF ENERGY  

SciTech Connect (OSTI)

OAK A271 ADVANCED FUSION TECHNOLOGY RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE US DEPARTMENT OF ENERGY. The General Atomics (GA) Advanced Fusion Technology Program seeks to advance the knowledge base needed for next-generation fusion experiments, and ultimately for an economical and environmentally attractive fusion energy source. To achieve this objective, they carry out fusion systems design studies to evaluate the technologies needed for next-step experiments and power plants, and they conduct research to develop basic and applied knowledge about these technologies. GA's Advanced Fusion Technology program derives from, and draws on, the physics and engineering expertise built up by many years of experience in designing, building, and operating plasma physics experiments. The technology development activities take full advantage of the GA DIII-D program, the DIII-D facility and the Inertial Confinement Fusion (ICF) program and the ICF Target Fabrication facility.

PROJECT STAFF

2001-09-01T23:59:59.000Z

27

Energy Department Announces $7 Million to Develop Advanced Logistics for  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 & 6, 2012 MEETING OFCaliforniaNextBioenergy Feedstocks |

28

Energy Department Announces $20 Million to Develop Advanced Components for  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombined Heat & PowerEnergy Blog Energy Blog RSS April 17,Next

29

Advanced Technology Development Center ATDC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitecAWS Ocean EnergyAdirondackBioenergyProducts

30

Energy Department Announces New Innovative Projects to Develop Advanced  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit| Department ofNon-RoadDepartment ofFederalEnergyRefrigerators

31

Technology Development Advances EM Cleanup | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Energy Technical EvaluationTechnology Deployment

32

Global Nuclear Energy Partnership Fact Sheet - Develop Advanced Burner  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember U.S.FinancialofFuelDepartmentGeothermalGlen

33

Biofuel Advanced Research and Development LLC BARD | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: Energy ResourcesJersey:form View source HistoryBarriers andInformation LLC

34

Nanostructured material for advanced energy storage : magnesium battery cathode development.  

SciTech Connect (OSTI)

Magnesium batteries are alternatives to the use of lithium ion and nickel metal hydride secondary batteries due to magnesium's abundance, safety of operation, and lower toxicity of disposal. The divalency of the magnesium ion and its chemistry poses some difficulties for its general and industrial use. This work developed a continuous and fibrous nanoscale network of the cathode material through the use of electrospinning with the goal of enhancing performance and reactivity of the battery. The system was characterized and preliminary tests were performed on the constructed battery cells. We were successful in building and testing a series of electrochemical systems that demonstrated good cyclability maintaining 60-70% of discharge capacity after more than 50 charge-discharge cycles.

Sigmund, Wolfgang M. (University of Florida, Gainesville, FL); Woan, Karran V. (University of Florida, Gainesville, FL); Bell, Nelson Simmons

2010-11-01T23:59:59.000Z

35

Project Information Form Project Title Advanced Energy Management Strategy Development for Plug-in Hybrid  

E-Print Network [OSTI]

,365 Total Project Cost $58,365 Agency ID or Contract Number DTRT13-G-UTC29 Start and End Dates April 1, 2014Project Information Form Project Title Advanced Energy Management Strategy Development for Plug ­ September 30, 2015 Brief Description of Research Project Plug-in hybrid vehicles (PHEVs) have great

California at Davis, University of

36

Technical Support Document: The Development of the Advanced Energy Design Guide for Small Retail Buildings  

SciTech Connect (OSTI)

The Advanced Energy Design Guide for Small Retail Buildings (AEDG-SR) was developed by a partnership of organizations, including the American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of North America (IESNA), the United States Green Buildings Council (USGBC), and the Department of Energy (DOE). The guide is intended to offer recommendations to achieve 30% energy savings and thus to encourage steady progress towards net-zero energy buildings. The baseline level energy use was set at buildings built at the turn of the millennium, which are assumed to be based on ANSI/ASHRAE/IESNA Standard 90.1-1999, Energy Standard for Buildings Except Low-Rise Residential Buildings (refer to as the ?Standard? in this report). ASHRAE and its partners are engaged in the development of a series of guides for small commercial buildings, with the AEDG-SR being the second in the series. Previously the partnership developed the Advanced Energy Design Guide for Small Office Buildings: Achieving 30% Energy Savings Over ANSI/ASHRAE/IESNA Standard 90.1-1999, which was published in late 2004. The technical support document prepared by PNNL details how the energy analysis performed in support of the Guide and documents development of recommendation criteria.

Liu, Bing; Jarnagin, Ronald E.; Winiarski, David W.; Jiang, Wei; McBride, Merle F.; Crall, C.

2006-09-30T23:59:59.000Z

37

Energy Department Announces New Awards for Advanced Nuclear Energy...  

Energy Savers [EERE]

Announces New Awards for Advanced Nuclear Energy Development Energy Department Announces New Awards for Advanced Nuclear Energy Development April 16, 2015 - 12:46pm Addthis NEWS...

38

Technical Support Document: The Development of the Advanced Energy Design Guide for Highway Lodging Buildings  

SciTech Connect (OSTI)

This Technical Support Document (TSD) describes the process and methodology for development of the Advanced Energy Design Guide for Highway Lodgings (AEDG-HL or the Guide), a design guidance document intended to provide recommendations for achieving 30% energy savings in highway lodging properties over levels contained in ANSI/ASHRAE/IESNA Standard 90.1-1999, Energy Standard for Buildings Except Low-Rise Residential Buildings. The AEDG-HL is the fifth in a series of guides being developed by a partnership of organizations, including the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of North America (IESNA), the United States Green Buildings Council (USGBC), and the U.S. Department of Energy (DOE).

Jiang, Wei; Jarnagin, Ronald E.; Gowri, Krishnan; McBride, M.; Liu, Bing

2008-09-30T23:59:59.000Z

39

Technical Support Document: Development of the Advanced Energy Design Guide for Small Office Buildings  

SciTech Connect (OSTI)

This Technical Support Document (TSD) describes the process and methodology for the development of the Advanced Energy Design Guide for Small Office Buildings (AEDG-SO), a design guidance document intended to provide recommendations for achieving 30% energy savings in small office buildings over levels contained in ANSI/ASHRAE/IESNA Standard 90.1-1999, Energy Standard for Buildings Except Low-Rise Residential Buildings. The AEDG-SO is the first in a series of guides being developed by a partnership of organizations, including the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of North America (IESNA), the New Buildings Institute (NBI), and the U.S. Department of Energy (DOE). Each of the guides in the AEDG series will provide recommendations and user-friendly design assistance to designers, developers and owners of small commercial buildings that will encourage steady progress towards net-zero energy buildings. The guides will provide prescriptive recommendation packages that are capable of reaching the energy savings target for each climate zone in order to ease the burden of the design and construction of energy-efficient small commercial buildings The AEDG-SO was developed by an ASHRAE Special Project committee (SP-102) made up of representatives of each of the partner organizations in eight months. This TSD describes the charge given to the committee in developing the office guide and outlines the schedule of the development effort. The project committee developed two prototype office buildings (5,000 ft2 frame building and 20,000 ft2 two-story mass building) to represent the class of small office buildings and performed an energy simulation scoping study to determine the preliminary levels of efficiency necessary to meet the energy savings target. The simulation approach used by the project committee is documented in this TSD along with the characteristics of the prototype buildings. The prototype buildings were simulated in the same climate zones used by the prevailing energy codes and standards to evaluate energy savings. Prescriptive packages of recommendations presented in the guide by climate zone include enhanced envelope technologies, lighting and day lighting technologies and HVAC and SWH technologies. The report also documents the modeling assumptions used in the simulations for both the baseline and advanced buildings. Final efficiency recommendations for each climate zone are included, along with the results of the energy simulations indicating an average energy savings over all buildings and climates of approximately 38%.

Jarnagin, Ronald E.; Liu, Bing; Winiarski, David W.; McBride, Merle F.; Suharli, L.; Walden, D.

2006-11-30T23:59:59.000Z

40

Technical Support Document: Development of the Advanced Energy Design Guide for Grocery Stores--50% Energy Savings  

SciTech Connect (OSTI)

This report provides recommendations that architects, designers, contractors, developers, owners, and lessees of grocery store buildings can use to achieve whole-building energy savings of at least 50% over ASHRAE Standard 90.1-2004.

Hale, E. T.; Macumber, D. L.; Long, N. L.; Griffith, B. T.; Benne, K. S.; Pless, S. D.; Torcellini, P. A.

2008-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "developing advanced energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Technical Support Document: Development of the Advanced Energy Design Guide for Medium to Big Box Retail Buildings - 50% Energy Savings  

SciTech Connect (OSTI)

This Technical Support Document describes the process and methodology for the development of the Advanced Energy Design Guide for Medium to Big Box Retail Buildings: Achieving 50% Energy Savings Toward a Net Zero Energy Building (AEDG-MBBR) ASHRAE et al. (2011b). The AEDG-MBBR is intended to provide recommendations for achieving 50% whole-building energy savings in retail stores over levels achieved by following ANSI/ASHRAE/IESNA Standard 90.1-2004, Energy Standard for Buildings Except Low-Rise Residential Buildings (Standard 90.1-2004) (ASHRAE 2004b). The AEDG-MBBR was developed in collaboration with the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of North America (IES), the U.S. Green Building Council (USGBC), and the U.S. Department of Energy.

Bonnema, E.; Leach, M.; Pless, S.

2013-06-01T23:59:59.000Z

42

Advanced Energy Design Guides | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Advanced Energy Design Guides Advanced Energy Design Guides EERE Building Technologies Program - This fact sheet discusses the Advanced Energy Design Guides (AEDGs) and how they...

43

United States and Italy Sign Agreements to Advance Developments...  

Broader source: Energy.gov (indexed) [DOE]

Italy Sign Agreements to Advance Developments in Nuclear Energy United States and Italy Sign Agreements to Advance Developments in Nuclear Energy September 30, 2009 - 12:00am...

44

Ohio Advanced Energy Manufacturing Center  

SciTech Connect (OSTI)

The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing and implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote overall industry health. To aid the overall advanced energy industry, EWI developed and launched an Ohio chapter of the non-profit Advanced Energy Economy. In this venture, Ohio joins with six other states including Colorado, Connecticut, Illinois, Maine, Massachusetts, New Hampshire, Rhode Island and Vermont to help promote technologies that deliver energy that is affordable, abundant and secure. In a more specific arena, EWI's advanced energy group collaborated with the EWI-run Nuclear Fabrication Consortium to promote the nuclear supply chain. Through this project EWI has helped bring the supply chain up to date for the upcoming period of construction, and assisted them in understanding the demands for the next generation of facilities now being designed. In a more targeted manner, EWI worked with 115 individual advanced energy companies that are attempting to bring new technology to market. First, these interactions helped EWI develop an awareness of issues common to companies in different advanced energy sectors. By identifying and addressing common issues, EWI helps companies bring technology to market sooner and at a lower cost. These visits also helped EWI develop a picture of industry capability. This helped EWI provide companies with contacts that can supply commercial solutions to their new product development challenges. By providing assistance in developing supply chain partnerships, EWI helped companies bring their technology to market faster and at a lower cost than they might have been able to do by themselves. Finally, at the most granular level EWI performed dedicated research and development on new manufacturing processes for advanced energy. During discussions with companies participating in advanced energy markets, several technology issues that cut across market segments were identified. To address some of these issues, three crosscutting technology development projects were initiated and completed with Center support. This included reversible welds for batteries and high temperature heat exchangers. It also included a novel advanced weld trainer that EWI

Kimberly Gibson; Mark Norfolk

2012-07-30T23:59:59.000Z

45

Tribal Renewable Energy Advanced Course: Commercial Scale Project...  

Broader source: Energy.gov (indexed) [DOE]

Commercial Scale Project Development Tribal Renewable Energy Advanced Course: Commercial Scale Project Development Watch the DOE Office of Indian Energy advanced course...

46

DOE Office of Indian Energy Renewable Energy Project Development: Advanced Financing Concepts  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSof Energy DOEDOE LessonsDepartment ofDepartment3

47

Draft Advanced Nuclear Energy Projects Solicitation | Department...  

Broader source: Energy.gov (indexed) [DOE]

Draft Advanced Nuclear Energy Projects Solicitation Draft Advanced Nuclear Energy Projects Solicitation INFORMATIONAL MATERIALS DRAFT ADVANCED NUCLEAR ENERGY PROJECTS SOLICITATION...

48

Fossil Energy Advanced Research and Technology Development Materials Program. Semiannual progress report for the period ending September 30, 1992  

SciTech Connect (OSTI)

Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

Cole, N.C.; Judkins, R.R. [comps.

1992-12-01T23:59:59.000Z

49

Herty Advanced Materials Development Center  

Broader source: Energy.gov [DOE]

Session 1-B: Advancing Alternative Fuels for the Military and Aviation Sector Breakout Session 1: New Developments and Hot Topics Jill Stuckey, Acting Director, Herty Advanced Materials Development Center

50

Advanced research and technology development fossil energy materials program. Quarterly progress report for the period ending September 30, 1981  

SciTech Connect (OSTI)

This is the fourth combined quarterly progress report for those projects that are part of the Advanced Research and Technology Development Fossil Energy Materials Program. The objective is to conduct a program of research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. Work performed on the program generally falls into the Applied Research and Exploratory Development categories as defined in the DOE Technology Base Review, although basic research and engineering development are also conducted. A substantial portion of the work on the AR and TD Fossil Energy Materials Program is performed by participating cntractor organizations. All subcontractor work is monitored by Program staff members at ORNL and Argonne National Laboratory. This report is organized in accordance with a work breakdown structure defined in the AR and TD Fossil Energy Materials Program Plan for FY 1981 in which projects are organized according to fossil energy technologies. We hope this series of AR and TD Fossil Energy Materials Program quarterly progress reports will aid in the dissemination of information developed on the program.

Bradley, R.A. (comp.) [comp.

1981-12-01T23:59:59.000Z

51

Fossil Energy Advanced Research and Technology Development (AR&TD) Materials Program semiannual progress report for the period ending September 30, 1991. Fossil Energy Program  

SciTech Connect (OSTI)

The objective of the Fossil Energy Advanced Research and Technology Development Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The Program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. Research is outlined in four areas: Ceramics, New Alloys, Corrosion and Erosion Research, and Technology Development and Transfer. (VC)

Judkins, R.R.; Cole, N.C. [comps.

1992-04-01T23:59:59.000Z

52

Fact Sheet: Energy Storage Technology Advancement Partnership...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technology Advancement Partnership (October 2012) Fact Sheet: Energy Storage Technology Advancement Partnership (October 2012) The Energy Storage Technology Advancement Partnership...

53

Advanced fossil energy utilization  

SciTech Connect (OSTI)

This special issue of Fuel is a selection of papers presented at the symposium ‘Advanced Fossil Energy Utilization’ co-sponsored by the Fuels and Petrochemicals Division and Research and New Technology Committee in the 2009 American Institute of Chemical Engineers (AIChE) Spring National Meeting Tampa, FL, on April 26–30, 2009.

Shekhawat, D.; Berry, D.; Spivey, J.; Pennline, H.; Granite, E.

2010-01-01T23:59:59.000Z

54

Advanced Power Electronic Interfaces for Distributed Energy Systems, Part 2: Modeling, Development, and Experimental Evaluation of Advanced Control Functions for Single-Phase Utility-Connected Inverter  

SciTech Connect (OSTI)

Integrating renewable energy and distributed generations into the Smart Grid architecture requires power electronic (PE) for energy conversion. The key to reaching successful Smart Grid implementation is to develop interoperable, intelligent, and advanced PE technology that improves and accelerates the use of distributed energy resource systems. This report describes the simulation, design, and testing of a single-phase DC-to-AC inverter developed to operate in both islanded and utility-connected mode. It provides results on both the simulations and the experiments conducted, demonstrating the ability of the inverter to provide advanced control functions such as power flow and VAR/voltage regulation. This report also analyzes two different techniques used for digital signal processor (DSP) code generation. Initially, the DSP code was written in C programming language using Texas Instrument's Code Composer Studio. In a later stage of the research, the Simulink DSP toolbox was used to self-generate code for the DSP. The successful tests using Simulink self-generated DSP codes show promise for fast prototyping of PE controls.

Chakraborty, S.; Kroposki, B.; Kramer, W.

2008-11-01T23:59:59.000Z

55

Advanced Critical Advanced Energy Retrofit Education and Training...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Critical Advanced Energy Retrofit Education and Training and Credentialing - 2014 BTO Peer Review Advanced Critical Advanced Energy Retrofit Education and Training and...

56

Tribal Renewable Energy Advanced Course: Community Scale Project...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Community Scale Project Development Tribal Renewable Energy Advanced Course: Community Scale Project Development Watch the DOE Office of Indian Energy renewable energy course...

57

Tribal Renewable Energy Advanced Course: Facility Scale Project...  

Broader source: Energy.gov (indexed) [DOE]

Facility Scale Project Development Tribal Renewable Energy Advanced Course: Facility Scale Project Development Watch the DOE Office of Indian Energy renewable energy course...

58

Advanced Hydrogen Turbine Development  

SciTech Connect (OSTI)

Siemens has developed a roadmap to achieve the DOE goals for efficiency, cost reduction, and emissions through innovative approaches and novel technologies which build upon worldwide IGCC operational experience, platform technology, and extensive experience in G-class operating conditions. In Phase 1, the technologies and concepts necessary to achieve the program goals were identified for the gas turbine components and supporting technology areas and testing plans were developed to mitigate identified risks. Multiple studies were conducted to evaluate the impact in plant performance of different gas turbine and plant technologies. 2015 gas turbine technologies showed a significant improvement in IGCC plant efficiency, however, a severe performance penalty was calculated for high carbon capture cases. Thermodynamic calculations showed that the DOE 2010 and 2015 efficiency targets can be met with a two step approach. A risk management process was instituted in Phase 1 to identify risk and develop mitigation plans. For the risks identified, testing and development programs are in place and the risks will be revisited periodically to determine if changes to the plan are necessary. A compressor performance prediction has shown that the design of the compressor for the engine can be achieved with additional stages added to the rear of the compressor. Tip clearance effects were studied as well as a range of flow and pressure ratios to evaluate the impacts to both performance and stability. Considerable data was obtained on the four candidate combustion systems: diffusion, catalytic, premix, and distributed combustion. Based on the results of Phase 1, the premixed combustion system and the distributed combustion system were chosen as having the most potential and will be the focus of Phase 2 of the program. Significant progress was also made in obtaining combustion kinetics data for high hydrogen fuels. The Phase 1 turbine studies indicate initial feasibility of the advanced hydrogen turbine that meets the aggressive targets set forth for the advanced hydrogen turbine, including increased rotor inlet temperature (RIT), lower total cooling and leakage air (TCLA) flow, higher pressure ratio, and higher mass flow through the turbine compared to the baseline. Maintaining efficiency with high mass flow Syngas combustion is achieved using a large high AN2 blade 4, which has been identified as a significant advancement beyond the current state-of-the-art. Preliminary results showed feasibility of a rotor system capable of increased power output and operating conditions above the baseline. In addition, several concepts were developed for casing components to address higher operating conditions. Rare earth modified bond coat for the purpose of reducing oxidation and TBC spallation demonstrated an increase in TBC spallation life of almost 40%. The results from Phase 1 identified two TBC compositions which satisfy the thermal conductivity requirements and have demonstrated phase stability up to temperatures of 1850 C. The potential to join alloys using a bonding process has been demonstrated and initial HVOF spray deposition trials were promising. The qualitative ranking of alloys and coatings in environmental conditions was also performed using isothermal tests where significant variations in alloy degradation were observed as a function of gas composition. Initial basic system configuration schematics and working system descriptions have been produced to define key boundary data and support estimation of costs. Review of existing materials in use for hydrogen transportation show benefits or tradeoffs for materials that could be used in this type of applications. Hydrogen safety will become a larger risk than when using natural gas fuel as the work done to date in other areas has shown direct implications for this type of use. Studies were conducted which showed reduced CO{sub 2} and NOx emissions with increased plant efficiency. An approach to maximize plant output is needed in order to address the DOE turbine goal for 20-30% reduction o

Joesph Fadok

2008-01-01T23:59:59.000Z

59

Advanced Energy | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORT Americium/Curium Vitrification ProjectAVANTI Logo: Advanced Energy

60

Advances in the development of energy efficient technologies: Sea Water Air Conditioning (SWAC)  

SciTech Connect (OSTI)

Sea water air conditioning (SWAC) is a cost effective and environmentally friendly alternative to and/or enhancement of air conditioning from mechanical chillers. SWAC pumps cold sea water from the appropriate ocean depths (50 to 3,000 feet depending on the climate and local characteristics) to the shore where it replaces (by direct cooling) or enhances (through use as condenser water) large mechanical chillers found in coastal facilities. SWAC direct cooling uses less than twenty per cent of the electricity of a mechanical chiller and uses no refrigerants whatsoever. Indirect cooling also offers substantial energy savings. Both systems dispense with the need for a cooling tower. Technical advances over the last twenty years in corrosion resistant alloys (titanium or aluminum), bio-fouling deterrence, and deep ocean pipeline deployment allow SWAC installations to use reliable, off-the-shelf technology. SWAC works in a variety of climates (existing installations are in Hawaii and Halifax, Nova Scotia), giving it significant domestic and international potential. Economy-of-scale advantages make it attractive to district cooling schemes.

Coony, J.E. [Boston Pacific Co., Inc., Washington, DC (United States)

1996-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "developing advanced energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Development Requirements for Advanced Industrial Heat Pumps  

E-Print Network [OSTI]

DOE is attempting to advance the use of heat pumps to save energy in industrial processes. The approach has emphasized developing better heat pump technology and transferring that technology to the private sector. DOE requires that heat pump...

Chappell, R. N.; Priebe, S. J.; Bliem, C. J.; Mills, J. I.

62

Publications of the Fossil Energy Advanced Research and Technology Development Materials Program, April 1, 1991--March 31, 1993  

SciTech Connect (OSTI)

Objective of DOE`s Fossil Energy Advanced Research and Technology Development Materials Program is to conduct research and development on materials for fossil energy applications, with focus on longer-term needs. The Program includes research aimed at a better understanding of materials behavior in fossil energy environments and on the development of new materials capable of substantial improvement in plant operations and reliability. Scope of the program addresses materials requirements for all fossil energy systems, including materials for coal preparation, coal liquefaction, coal gasification, heat engines and heat recovery, combustion systems, and fuel cells. Work on the Program is conducted at national and government laboratories, universities, and industrial research facilities. Research conducted on the Program is divided among the following areas: (1) ceramics, (2) new alloys, (3) corrosion research, and (4) program development and technology transfer. This bibliography covers the period of April 1, 1992, through March 31, 1993, and is a supplement to previous bibliographies in this series. The publications listed are limited to topical reports, open literature publications in refereed journals, full-length papers in published proceedings of conferences, full-length papers in unrefereed journals, and books and book articles.

Carlson, P.T. [comp.

1993-05-01T23:59:59.000Z

63

Publications of the Fossil Energy Advanced Research and Technology Development Materials Program, April 1, 1991--March 31, 1993  

SciTech Connect (OSTI)

Objective of DOE's Fossil Energy Advanced Research and Technology Development Materials Program is to conduct research and development on materials for fossil energy applications, with focus on longer-term needs. The Program includes research aimed at a better understanding of materials behavior in fossil energy environments and on the development of new materials capable of substantial improvement in plant operations and reliability. Scope of the program addresses materials requirements for all fossil energy systems, including materials for coal preparation, coal liquefaction, coal gasification, heat engines and heat recovery, combustion systems, and fuel cells. Work on the Program is conducted at national and government laboratories, universities, and industrial research facilities. Research conducted on the Program is divided among the following areas: (1) ceramics, (2) new alloys, (3) corrosion research, and (4) program development and technology transfer. This bibliography covers the period of April 1, 1992, through March 31, 1993, and is a supplement to previous bibliographies in this series. The publications listed are limited to topical reports, open literature publications in refereed journals, full-length papers in published proceedings of conferences, full-length papers in unrefereed journals, and books and book articles.

Carlson, P.T. (comp.)

1993-01-01T23:59:59.000Z

64

An advanced thermionic theory for development of high performance thermionic energy conversion diodes  

SciTech Connect (OSTI)

Methods for improving the performance of thermionic energy conversion diodes have been studied and successfully applied. However, puzzling anomalies and inaccurate predictions have impeded the development of high performance thermionic energy converters. An inconsistency was recently found in the conventional approach for predicting net thermionic currents in energy conversion diodes; the observed inconsistency may be a primary source of predictive inaccuracies. The conventional method for predicting net currents in vacuum energy conversion diodes can be expressed by J = J{sub E} {minus} J{sub C} . Here J is the net currently density, and J{sub E} and J{sub C} are the emitter and collector emission current densities, respectively. The parameters J{sub E} and J{sub C} are obtained using the basic form of the Richardson-Dushman equation. This review found that the conventional method can conflict with the second law of thermodynamics for some operational conditions. The conflict was traced to an inconsistency in the treatment of electron reflection at the electrode surface. Quantum symmetry rules require that surfaces reflecting internal electrons (from within the electrode) must also reflect external electrons (from the opposite electrode). However, the standard method accounts only for internal electron reflection. The error caused by this inconsistency can be important because significant electron reflection has been reported for electrode materials in the energy range important for thermionic energy conversion. A simple derivation has yielded a revised formulation that properly accounts for electron reflection. The revised equation is given by, J = {tau}(J{sub E} {minus} {Gamma}J{sub C}). Several alternative formulations have been developed to compute the values of {tau} and {Gamma}. The parameters {tau} and {Gamma} can be computed using average reflection (or transmission) parameters for both electrodes, or the parameters can be computed using the energy and angle dependent scattering kernels for both electrodes. Operating temperatures and voltages are also used in the computation of {tau} and {Gamma}. The revised formulations show that even a cold collector can significantly impact net current, and when reflection is absent for both electrodes, the revised equation reduces to the original equation. Predictions using the revised equation were compared to predictions using the conventional approach and to predictions using an alternative (incorrect) method. For the alternative method, all reflection effects are included as an adjustment to the work function. The results of this comparison suggest that large errors are possible when the revised equations are not used. Discrepancies due to improper treatment of reflection are most likely to be observed when reflection effects are large and comparisons with measurements are made for conditions basically different from those used to fit equation parameters. In conclusion, conventional methods for predicting net thermionic current densities do not correctly account for electron reflection. The improper treatment of reflection may cause significant predictive errors. A revised formulation has been developed for vacuum energy conversion diodes to properly account for electron reflection. Future plans include validation experiments, an extension of the theory to include other types of diodes, and investigations of reflection mechanisms.

Marshall, A.C.

1998-07-01T23:59:59.000Z

65

Publications of the Fossil Energy Advanced Research and Technology Development Materials Program: April 1, 1993--March 31, 1995  

SciTech Connect (OSTI)

The objective of the Fossil Energy Advanced Research and Technology Development (AR and TD) Materials Program is to conduct research and development on materials for fossil energy applications, with a focus on the longer-term needs for materials with general applicability to the various fossil fuel technologies. The Program includes research aimed at a better understanding of materials behavior in fossil energy environments and on the development of new materials capable of substantial improvement in plant operations and reliability. The scope of the Program addresses materials requirements for all fossil energy systems, including materials for coal preparation, coal liquefaction, coal gasification, heat engines and heat recovery, combustion systems, and fuel cells. Work on the Program is conducted at national and government laboratories, universities, and industrial research facilities. This bibliography covers the period of April 1, 1993, through March 31, 1995, and is a supplement to previous bibliographies in this series. It is the intent of this series of bibliographies to list only those publications that can be conveniently obtained by a researcher through relatively normal channels. The publications listed in this document have been limited to topical reports, open literature publications in refereed journals, full-length papers in published proceedings of conferences, full-length papers in unrefereed journals, and books and book articles. 159 refs.

Carlson, P.T. [comp.

1995-04-01T23:59:59.000Z

66

Nuclear Energy Advanced Modeling and Simulation (NEAMS) Waste Integrated Performance and Safety Codes (IPSC) : FY10 development and integration.  

SciTech Connect (OSTI)

This report describes the progress in fiscal year 2010 in developing the Waste Integrated Performance and Safety Codes (IPSC) in support of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The goal of the Waste IPSC is to develop an integrated suite of computational modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs, and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with robust verification, validation, and software quality requirements. Waste IPSC activities in fiscal year 2010 focused on specifying a challenge problem to demonstrate proof of concept, developing a verification and validation plan, and performing an initial gap analyses to identify candidate codes and tools to support the development and integration of the Waste IPSC. The current Waste IPSC strategy is to acquire and integrate the necessary Waste IPSC capabilities wherever feasible, and develop only those capabilities that cannot be acquired or suitably integrated, verified, or validated. This year-end progress report documents the FY10 status of acquisition, development, and integration of thermal-hydrologic-chemical-mechanical (THCM) code capabilities, frameworks, and enabling tools and infrastructure.

Criscenti, Louise Jacqueline; Sassani, David Carl; Arguello, Jose Guadalupe, Jr.; Dewers, Thomas A.; Bouchard, Julie F.; Edwards, Harold Carter; Freeze, Geoffrey A.; Wang, Yifeng; Schultz, Peter Andrew

2011-02-01T23:59:59.000Z

67

Advanced Modular Inverter Technology Development  

SciTech Connect (OSTI)

Electric and hybrid-electric vehicle systems require an inverter to convert the direct current (DC) output of the energy generation/storage system (engine, fuel cells, or batteries) to the alternating current (AC) that vehicle propulsion motors use. Vehicle support systems, such as lights and air conditioning, also use the inverter AC output. Distributed energy systems require an inverter to provide the high quality AC output that energy system customers demand. Today's inverters are expensive due to the cost of the power electronics components, and system designers must also tailor the inverter for individual applications. Thus, the benefits of mass production are not available, resulting in high initial procurement costs as well as high inverter maintenance and repair costs. Electricore, Inc. (www.electricore.org) a public good 501 (c) (3) not-for-profit advanced technology development consortium assembled a highly qualified team consisting of AeroVironment Inc. (www.aerovironment.com) and Delphi Automotive Systems LLC (Delphi), (www.delphi.com), as equal tiered technical leads, to develop an advanced, modular construction, inverter packaging technology that will offer a 30% cost reduction over conventional designs adding to the development of energy conversion technologies for crosscutting applications in the building, industry, transportation, and utility sectors. The proposed inverter allows for a reduction of weight and size of power electronics in the above-mentioned sectors and is scalable over the range of 15 to 500kW. The main objective of this program was to optimize existing AeroVironment inverter technology to improve power density, reliability and producibility as well as develop new topology to reduce line filter size. The newly developed inverter design will be used in automotive and distribution generation applications. In the first part of this program the high-density power stages were redesigned, optimized and fabricated. One of the main tasks was to design and validate new gate drive circuits to provide the capability of high temp operation. The new power stages and controls were later validated through extensive performance, durability and environmental tests. To further validate the design, two power stages and controls were integrated into a grid-tied load bank test fixture, a real application for field-testing. This fixture was designed to test motor drives with PWM output up to 50kW. In the second part of this program the new control topology based on sub-phases control and interphase transformer technology was successfully developed and validated. The main advantage of this technology is to reduce magnetic mass, loss and current ripple. This report summarizes the results of the advanced modular inverter technology development and details: (1) Power stage development and fabrication (2) Power stage validation testing (3) Grid-tied test fixture fabrication and initial testing (4) Interphase transformer technology development

Adam Szczepanek

2006-02-04T23:59:59.000Z

68

Advanced Cathode Material Development for PHEV Lithium Ion Batteries...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Advanced Cathode Material Development for PHEV Lithium Ion Batteries High Energy Novel Cathode Alloy Automotive Cell Develop & evaluate...

69

US India Joint Center for Building Energy Research and Development (CBERD): Advanced HVAC Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New Energyof Energy8,November 2012U.S.Department2USUS

70

Nanoscale Advances in Catalysis and Energy Applications  

SciTech Connect (OSTI)

In this perspective, we present an overview of nanoscience applications in catalysis, energy conversion, and energy conservation technologies. We discuss how novel physical and chemical properties of nanomaterials can be applied and engineered to meet the advanced material requirements in the new generation of chemical and energy conversion devices. We highlight some of the latest advances in these nanotechnologies and provide an outlook at the major challenges for further developments.

Li, Yimin; Somorjai, Gabor A.

2010-05-12T23:59:59.000Z

71

Energy Department Announces $13.4 Million to Develop Advanced Biofuels and  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department of EnergyStakeholders | DepartmentSystemsand

72

Advanced Interconnect Development  

SciTech Connect (OSTI)

The objectives of this project are to develop cost-effective, optimized materials for intermediate temperature SOFC interconnect and interconnect/electrode interface applications and identify and understand degradation processes in interconnects and at their interfaces with electrodes.

Yang, Z.G.; Maupin, G.; Simner, S.; Singh, P.; Stevenson, J.; Xia, G.

2005-01-27T23:59:59.000Z

73

Four new publications help advance renewable energy development | OpenEI  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpen EnergyBoard" form. To create a page with

74

Development of High-Temperature Ferritic Alloys and Performance Prediction Methods for Advanced Fission Energy Systems  

SciTech Connect (OSTI)

Reports the results of a comprehensive development and analysis of a database on irradiation hardening and embrittlement of tempered martensitic steels (TMS). Alloy specific quantitative semi-empirical models were derived for the dpa dose, irradiation temperature (ti) and test (Tt) temperature of yield stress hardening (or softening) .

G. RObert Odette; Takuya Yamamoto

2009-08-14T23:59:59.000Z

75

Advancing Energy Systems through Integration | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advancing Energy Systems through Integration Advancing Energy Systems through Integration This presentation was given by Ever-Green Energy's Ken Smith as part of the November 20,...

76

ADVANCED SORBENT DEVELOPMENT PROGRAM  

SciTech Connect (OSTI)

The overall objective of this program was to develop regenerable sorbents for use in the temperature range of 343 to 538 C (650 to 1000 F) to remove hydrogen sulfide (H{sub 2}S) from coal-derived fuel gases in a fluidized-bed reactor. The goal was to develop sorbents that are capable of reducing the H{sub 2}S level in the fuel gas to less than 20 ppmv in the specified temperature range and pressures in the range of 1 to 20 atmospheres, with chemical characteristics that permit cyclic regeneration over many cycles without a drastic loss of activity, as well as physical characteristics that are compatible with the fluidized bed application.

Unknown

1998-06-16T23:59:59.000Z

77

Advanced Dewatering Systems Development  

SciTech Connect (OSTI)

A new fine coal dewatering technology has been developed and tested in the present work. The work was funded by the Solid Fuels and Feedstocks Grand Challenge PRDA. The objective of this program was to 'develop innovative technical approaches to ensure a continued supply of environmentally sound solid fuels for existing and future combustion systems with minimal incremental fuel cost.' Specifically, this solicitation is aimed at developing technologies that can (i) improve the efficiency or economics of the recovery of carbon when beneficiating fine coal from both current production and existing coal slurry impoundments and (ii) assist in the greater utilization of coal fines by improving the handling characteristics of fine coal via dewatering and/or reconstitution. The results of the test work conducted during Phase I of the current project demonstrated that the new dewatering technologies can substantially reduce the moisture from fine coal, while the test work conducted during Phase II successfully demonstrated the commercial viability of this technology. It is believed that availability of such efficient and affordable dewatering technology is essential to meeting the DOE's objectives.

R.H. Yoon; G.H. Luttrell

2008-07-31T23:59:59.000Z

78

Technical Support Document: Development of the Advanced Energy Design Guide for Medium Box Retail -- 50% Energy Savings  

SciTech Connect (OSTI)

This report provides recommendations that architects, designers, contractors, developers, owners, and lessees of medium box retail buildings can use to achieve whole-building energy savings of at least 50% over ASHRAE Standard 90.1-2004. The recommendations are given by climate zone and address building envelope, fenestration, lighting systems, HVAC systems, building automation and controls, outside air treatment, service water heating, plug loads, and photovoltaic systems. The report presents several paths to 50% savings, which correspond to different levels of integrated design. These are recommendations only, and are not part of a code or standard. The recommendations are not exhaustive, but we do try to emphasize the benefits of integrated building design, that is, a design approach that analyzes a building as a whole system, rather than as a disconnected collection of individually engineered subsystems.

Hale, E. T.; Macumber, D. L.; Long, N. L.; Griffith, B. T.; Benne, K. S.; Pless, S. D.; Torcellini, P. A.

2008-09-01T23:59:59.000Z

79

Fossil Energy Advanced Research and Technology Development (AR TD) Materials Program semiannual progress report for the period ending September 30, 1991  

SciTech Connect (OSTI)

The objective of the Fossil Energy Advanced Research and Technology Development Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The Program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. Research is outlined in four areas: Ceramics, New Alloys, Corrosion and Erosion Research, and Technology Development and Transfer. (VC)

Judkins, R.R.; Cole, N.C. (comps.)

1992-04-01T23:59:59.000Z

80

Advanced Engine Development | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Engine Development High-performance computing accelerates advanced engine development July 11, 2014 Oak Ridge National Laboratory's (ORNL's) Dean Edwards and a...

Note: This page contains sample records for the topic "developing advanced energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Advanced Diesel Engine and Aftertreatment Technology Development...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Diesel Engine and Aftertreatment Technology Development for Tier 2 Emissions Advanced Diesel Engine and Aftertreatment Technology Development for Tier 2 Emissions 2003...

82

Energy Department Announces up to $4 Million to Advance Hydrogen...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hydrogen Delivery Technology Development Energy Department Announces up to 4 Million to Advance Hydrogen Delivery Technology Development November 15, 2013 - 12:00am Addthis The...

83

Advanced Cathode Material Development for PHEV Lithium Ion Batteries...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Advanced Cathode Material Development for PHEV Lithium Ion Batteries Vehicle Technologies Office Merit Review 2014: High Energy Novel...

84

Energy Department to Help Tribes Advance Clean Energy Projects...  

Office of Environmental Management (EM)

Energy Department to Help Tribes Advance Clean Energy Projects and Increase Resiliency Energy Department to Help Tribes Advance Clean Energy Projects and Increase Resiliency...

85

Rural Development Energy Audit & Renewable Energy Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Rural Development Energy Audit & Renewable Energy Development Assistance Webinar Rural Development Energy Audit & Renewable Energy Development Assistance Webinar January 21, 2015...

86

Advances in understanding solar energy collection materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Understanding solar energy collection materials Advances in understanding solar energy collection materials A LANL team and collaborators have made advances in the understanding of...

87

Center for Advanced Energy Studies Program Plan  

SciTech Connect (OSTI)

The world is facing critical energy-related challenges regarding world and national energy demands, advanced science and energy technology delivery, nuclear engineering educational shortfalls, and adequately trained technical staff. Resolution of these issues is important for the United States to ensure a secure and affordable energy supply, which is essential for maintaining U.S. national security, continued economic prosperity, and future sustainable development. One way that the U.S. Department of Energy (DOE) is addressing these challenges is by tasking the Battelle Energy Alliance, LLC (BEA) with developing the Center for Advanced Energy Studies (CAES) at the Idaho National Laboratory (INL). By 2015, CAES will be a self-sustaining, world-class, academic and research institution where the INL; DOE; Idaho, regional, and other national universities; and the international community will cooperate to conduct critical energy-related research, classroom instruction, technical training, policy conceptualization, public dialogue, and other events.

Kevin Kostelnik

2005-09-01T23:59:59.000Z

88

Advancing Energy Codes  

E-Print Network [OSTI]

Environmental Defense Fund’s Investor Confidence Project Delivering Investment Quality Energy Efficiency to Market ESL-KT-13-12-28 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 Investor Confidence Project... • Our Mission is to enable a market for investment in quality energy efficiency projects by reducing transaction costs and engineering overhead, while increasing the reliability and consistency of savings. • History – EDF focus on barriers to capital...

Zerrener, K. R.

2013-01-01T23:59:59.000Z

89

50% Advanced Energy Design Guides: Preprint  

SciTech Connect (OSTI)

This paper presents the process, methodology, and assumptions for the development of the 50% Energy Savings Advanced Energy Design Guides (AEDGs), a design guidance document that provides specific recommendations for achieving 50% energy savings above the requirements of ANSI/ASHRAE/IESNA Standard 90.1-2004 in four building types: (1) Small to medium office buildings, (2) K-12 school buildings, (3) Medium to big box retail buildings, (4) Large hospital buildings.

Bonnema, E.; Leach, M.; Pless, S.; Liu, B.; Wang, W.; Thornton, B.; Williams, J.

2012-07-01T23:59:59.000Z

90

Gills Onions Advanced Energy  

E-Print Network [OSTI]

Biogas from UASB Remove Sulfur and Moisture for Cattle Feed 3 Convert Methane to Power Fuel Cells 4 of biogas per cell 15 psi 15 psi Requires highly purified water (RO) #12;Energy NG RO W tRO Water miiniimum 75% bi75% biogas on annuall basis #12;Industry Recognition - Grand Conceptor Award The highest

91

Draft Advanced Nuclear Energy Solicitation Public Meeting Presentation...  

Office of Environmental Management (EM)

Draft Advanced Nuclear Energy Solicitation Public Meeting Presentation Draft Advanced Nuclear Energy Solicitation Public Meeting Presentation Draft Advanced Nuclear Solicitation...

92

Advanced Energy Projects FY 1996 research summaries  

SciTech Connect (OSTI)

The mission of the Advanced Energy Projects Division (AEP) is to explore the scientific feasibility of novel energy-related concepts. These concepts are typically at an early stage of scientific development and, therefore, are premature for consideration by applied research or technology development programs. The portfolio of projects is dynamic, but reflects the broad role of the Department in supporting research and development for improving the Nation`s energy posture. Topical areas presently receiving support include: alternative energy sources; innovative concepts for energy conversion and storage; alternate pathways to energy efficiency; exploring uses of new scientific discoveries; biologically-based energy concepts; renewable and biodegradable materials; novel materials for energy technology; and innovative approaches to waste treatment and reduction. Summaries of the 70 projects currently being supported are presented. Appendices contain budget information and investigator and institutional indices.

NONE

1996-09-01T23:59:59.000Z

93

Advanced Researech and Technology Development fossil energy materials program: Semiannual progress report for the period ending September 30, 1988  

SciTech Connect (OSTI)

The objective of the ARandTD Fossil Energy Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. The ORNL Fossil Energy Materials Program Office compiles and issues this combined semiannual progress report from camera-ready copies submitted by each of the participating subcontractor organizations. This report of activities on the program is organized in accordance with a work breakdown structure in which projects are organized according to materials research thrust areas. These areas are (1) Structural Ceramics, (2) Alloy Development and Mechanical Properties, (3) Corrosion and Erosion of Alloys, and (4) Assessments and Technology Transfer. Individual projects are processed separately for the data bases.

Not Available

1989-01-01T23:59:59.000Z

94

Advanced Energy Design Guides  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2 DOE Hydrogen and Fueland Outreachofof way

95

Advanced Energy Guides  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2 DOE Hydrogen and Fueland Outreachofof

96

Advanced Combustion Technologies | Department of Energy  

Energy Savers [EERE]

Science & Innovation Clean Coal Advanced Combustion Technologies Advanced Combustion Technologies Joe Yip, a researcher at FE's National Energy Technology Laboratory, uses...

97

Partnering with Industry to Develop Advanced Biofuels  

Broader source: Energy.gov [DOE]

Breakout Session IA—Conversion Technologies I: Industrial Perspectives on Pathways to Advanced Biofuels Partnering with Industry to Develop Advanced Biofuels David C. Carroll, President and Chief Executive Officer, Gas Technology Institute

98

Report on Advanced Detector Development  

SciTech Connect (OSTI)

Neutron, gamma and charged particle detection improvements are key to supporting many of the foreseen measurements and systems envisioned in the R&D programs and the future fuel cycle requirements, such as basic nuclear physics and data, modeling and simulation, reactor instrumentation, criticality safety, materials management and safeguards. This task will focus on the developmental needs of the FCR&D experimental programs, such as elastic/inelastic scattering, total cross sections and fission neutron spectra measurements, and will leverage a number of existing neutron detector development efforts and programs, such as those at LANL, PNNL, INL, and IAC as well as those at many universities, some of whom are funded under NE grants and contracts. Novel materials and fabrication processes combined with state-of-the-art electronics and computing provide new opportunities for revolutionary detector systems that will be able to meet the high precision needs of the program. This work will be closely coordinated with the Nuclear Data Crosscut. The Advanced Detector Development effort is a broadly-focused activity that supports the development of improved nuclear data measurements and improved detection of nuclear reactions and reactor conditions. This work supports the design and construction of large-scale, multiple component detectors to provide nuclear reaction data of unprecedented quality and precision. Examples include the Time Projection Chamber (TPC) and the DANCE detector at LANL. This work also supports the fabrication and end-user application of novel scintillator materials detection and monitoring.

James K. Jewell

2012-09-01T23:59:59.000Z

99

Advanced Energy Guides | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3-- ------------------------------Chapter 39.208-006Energy Guides Advanced Energy

100

Advanced Manufacturing | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEF HISTORY OFEnergyAdvanced Manufacturing

Note: This page contains sample records for the topic "developing advanced energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Advanced Integrated Systems Technology Development  

E-Print Network [OSTI]

conditioning in buildings featuring integrated design withconditioning in buildings featuring integrated design withof a building with advanced integrated design involving one

2013-01-01T23:59:59.000Z

102

Advanced, High Power, Next Scale, Wave Energy Conversion Device...  

Broader source: Energy.gov (indexed) [DOE]

Advanced, High Power, Next Scale, Wave Energy Conversion Device Advanced, High Power, Next Scale, Wave Energy Conversion Device Advanced, High Power, Next Scale, Wave Energy...

103

48C Qualifying Advanced Energy Project Credit Questions | Department...  

Broader source: Energy.gov (indexed) [DOE]

48C Qualifying Advanced Energy Project Credit Questions 48C Qualifying Advanced Energy Project Credit Questions 48C Qualifying Advanced Energy Project Credit Questions More...

104

Portfolio evaluation of advanced coal technology : research, development, and demonstration  

E-Print Network [OSTI]

This paper evaluates the advanced coal technology research, development and demonstration programs at the U.S. Department of Energy since the 1970s. The evaluation is conducted from a portfolio point of view and derives ...

Naga-Jones, Ayaka

2005-01-01T23:59:59.000Z

105

ADVANCED HOT GAS FILTER DEVELOPMENT  

SciTech Connect (OSTI)

DuPont Lanxide Composites, Inc. undertook a sixty-month program, under DOE Contract DEAC21-94MC31214, in order to develop hot gas candle filters from a patented material technology know as PRD-66. The goal of this program was to extend the development of this material as a filter element and fully assess the capability of this technology to meet the needs of Pressurized Fluidized Bed Combustion (PFBC) and Integrated Gasification Combined Cycle (IGCC) power generation systems at commercial scale. The principal objective of Task 3 was to build on the initial PRD-66 filter development, optimize its structure, and evaluate basic material properties relevant to the hot gas filter application. Initially, this consisted of an evaluation of an advanced filament-wound core structure that had been designed to produce an effective bulk filter underneath the barrier filter formed by the outer membrane. The basic material properties to be evaluated (as established by the DOE/METC materials working group) would include mechanical, thermal, and fracture toughness parameters for both new and used material, for the purpose of building a material database consistent with what is being done for the alternative candle filter systems. Task 3 was later expanded to include analysis of PRD-66 candle filters, which had been exposed to actual PFBC conditions, development of an improved membrane, and installation of equipment necessary for the processing of a modified composition. Task 4 would address essential technical issues involving the scale-up of PRD-66 candle filter manufacturing from prototype production to commercial scale manufacturing. The focus would be on capacity (as it affects the ability to deliver commercial order quantities), process specification (as it affects yields, quality, and costs), and manufacturing systems (e.g. QA/QC, materials handling, parts flow, and cost data acquisition). Any filters fabricated during this task would be used for product qualification tests being conducted by Westinghouse at Foster-Wheeler's Pressurized Circulating Fluidized Bed (PCFBC) test facility in Karhula, Finland. Task 5 was designed to demonstrate the improvements implemented in Task 4 by fabricating fifty 1.5-meter hot gas filters. These filters were to be made available for DOE-sponsored field trials at the Power Systems Development Facility (PSDF), operated by Southern Company Services in Wilsonville, Alabama.

E.S. Connolly; G.D. Forsythe

2000-09-30T23:59:59.000Z

106

Advanced Energy Retrofit Guides | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3-- ------------------------------Chapter 39.208-006Energy Guides Advanced

107

Advanced energy projects FY 1994 research summaries  

SciTech Connect (OSTI)

The Division of Advanced Energy Projects (AEP) provides support to explore the feasibility of novel, energy-related concepts that evolve from advances in basic research. These concepts are typically at an early stage of scientific definition and, therefore, are premature for consideration by applied research or technology development programs. The AEP also supports high-risk, exploratory concepts that do not readily fit into a program area but could have several applications that may span scientific disciplines or technical areas. Projects supported by the Division arise from unsolicited ideas and concepts submitted by researchers. The portfolio of projects is dynamic and reflects the broad role of the Department in supporting research and development for improving the Nation`s energy outlook. FY 1994 projects include the following topical areas: novel materials for energy technology; renewable and biodegradable materials; exploring uses of new scientific discoveries; alternate pathways to energy efficiency; alternative energy sources; and innovative approaches to waste treatment and reduction. Summaries are given for 66 projects.

Not Available

1994-09-01T23:59:59.000Z

108

Advanced Electric Traction System Technology Development  

SciTech Connect (OSTI)

As a subcontractor to General Motors (GM), Ames Laboratory provided the technical expertise and supplied experimental materials needed to assess the technology of high energy bonded permanent magnets that are injection or compression molded for use in the Advanced Electric Traction System motor. This support was a sustained (Phase 1: 6/07 to 3/08) engineering effort that builds on the research achievements of the primary FreedomCAR project at Ames Laboratory on development of high temperature magnet alloy particulate in both flake and spherical powder forms. Ames Lab also provide guidance and direction in selection of magnet materials and supported the fabrication of experimental magnet materials for development of injection molding and magnetization processes by Arnold Magnetics, another project partner. The work with Arnold Magnetics involved a close collaboration on particulate material design and processing to achieve enhanced particulate properties and magnetic performance in the resulting bonded magnets. The overall project direction was provided by GM Program Management and two design reviews were held at GM-ATC in Torrance, CA. Ames Lab utilized current expertise in magnet powder alloy design and processing, along with on-going research advances being achieved under the existing FreedomCAR Program project to help guide and direct work during Phase 1 for the Advanced Electric Traction System Technology Development Program. The technical tasks included review of previous GM and Arnold Magnets work and identification of improvements to the benchmark magnet material, Magnequench MQP-14-12. Other benchmark characteristics of the desired magnet material include 64% volumetric loading with PPS polymer and a recommended maximum use temperature of 200C. A collaborative relationship was maintained with Arnold Magnets on the specification and processing of the bonded magnet material required by GM-ATC.

Anderson, Iver

2011-01-14T23:59:59.000Z

109

Advanced Energy Company | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasil Jump to:Iowa ASHRAEAddis, LA)Adobe SolarAdvanced Energy

110

Energy Department Announces $5 Million to Develop Clean Energy...  

Broader source: Energy.gov (indexed) [DOE]

5 million in funding for nine projects that will advance the development of combined heat and power (CHP) and renewable energy technologies at facilities across the federal...

111

Advances in Energy Reduction in Methanol Plant Design  

E-Print Network [OSTI]

which are still under development are outlined. In particular, the paper presents Davy McKee's version of the next generation of synthesis reactor. The paper also examines the economic justification of the energy saving steps. To complement advances...

Huggins, P. J.; Griffiths, G. W.

1982-01-01T23:59:59.000Z

112

Energy Department Releases Draft Advanced Fossil Energy Solicitation...  

Broader source: Energy.gov (indexed) [DOE]

fossil energy projects and facilities that substantially reduce greenhouse gas and other air pollution. The Advanced Fossil Energy Projects solicitation, authorized by Title XVII...

113

Developing a Lower Cost and Higher Energy Density Alternative...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for Advanced Batteries ADVANCED MANUFACTURING OFFICE Developing a Lower Cost and Higher Energy Density Alternative to Lithium-Ion Batteries Introduction As the world moves toward...

114

Advanced energy projects FY 1997 research summaries  

SciTech Connect (OSTI)

The mission of the Advanced Energy Projects (AEP) program is to explore the scientific feasibility of novel energy-related concepts that are high risk, in terms of scientific feasibility, yet have a realistic potential for a high technological payoff. The concepts supported by the AEP are typically at an early stage of scientific development. They often arise from advances in basic research and are premature for consideration by applied research or technology development programs. Some are based on discoveries of new scientific phenomena or involve exploratory ideas that span multiple scientific and technical disciplines which do not fit into an existing DOE program area. In all cases, the objective is to support evaluation of the scientific or technical feasibility of the novel concepts involved. Following AEP support, it is expected that each concept will be sufficiently developed to attract further funding from other sources to realize its full potential. Projects that involve evolutionary research or technology development and demonstration are not supported by AEP. Furthermore, research projects more appropriate for another existing DOE research program are not encouraged. There were 65 projects in the AEP research portfolio during Fiscal Year 1997. Eigheen projects were initiated during that fiscal year. This document consists of short summaries of projects active in FY 1997. Further information of a specific project may be obtained by contacting the principal investigator.

NONE

1997-09-01T23:59:59.000Z

115

Qualifying Advanced Energy Manufacturing Investment Tax Credit  

Broader source: Energy.gov [DOE]

2013 Update: Phase II of the Qualifying Advanced Energy Project is open. Required concept papers are due to the U.S. Department of Energy (DOE) by April 9, 2013. The U.S. DOE will review concept...

116

Sandia National Laboratories: Advanced Research & Development  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0Energy Advanced Nuclear Energy The Advanced Nuclear

117

Advanced LWR Nuclear Fuel Development  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

- Radiation (Part I) - Alkali-AggregateSilica Reaction (Part II) - Creepcreep-fracture interaction (Roadmap to be developed) Part I- Irradiated Concrete Research results...

118

Advanced photovoltaic-trough development  

SciTech Connect (OSTI)

The scope of the work on photvoltaic troughs includes analytical studies, hardware development, and component testing. Various aspects of the system have been optimized and improvements have been realized, particularly in the receiver and reflecting surface designs. An empirical system performance model has been developed that closely agrees with measured system performance. This in-depth study of single-axis reflecting linear focus photovoltaic concentrators will be very beneficial in the development of improved models for similar systems as well as other phtovoltaic concentrator designs.

Spencer, R.; Yasuda, K.; Merson, B.

1982-04-01T23:59:59.000Z

119

Tribal Renewable Energy Advanced Course: Project Financing Concepts...  

Broader source: Energy.gov (indexed) [DOE]

Concepts Tribal Renewable Energy Advanced Course: Project Financing Concepts Watch the DOE Office of Indian Energy's advanced renewable energy course entitled "Tribal Renewable...

120

Department of Energy Awards More Than $11 Million to Advance...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1 Million to Advance Innovative Geothermal Energy Technologies Department of Energy Awards More Than 11 Million to Advance Innovative Geothermal Energy Technologies June 23, 2011...

Note: This page contains sample records for the topic "developing advanced energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Department of Energy Awards More Than $11 Million to Advance...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Awards More Than 11 Million to Advance Innovative Geothermal Energy Technologies Department of Energy Awards More Than 11 Million to Advance Innovative Geothermal Energy...

122

Advanced Emissions Control Development Program  

SciTech Connect (OSTI)

Babcock & Wilcox (B&W) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using B&W?s new Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and the inorganic species hydrogen chloride and hydrogen fluoride.

A. P. Evans

1998-12-03T23:59:59.000Z

123

Advanced Emission Control Development Program.  

SciTech Connect (OSTI)

Babcock & Wilcox (B&W) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using B&W`s new Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and the inorganic species hydrogen chloride and hydrogen fluoride.

Evans, A.P.

1997-12-31T23:59:59.000Z

124

Advanced Emissions Control Development Program  

SciTech Connect (OSTI)

McDermott Technology, Inc. (MTI) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using the Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and the inorganic species, hydrogen chloride and hydrogen fluoride.

A. P. Evans

1998-12-03T23:59:59.000Z

125

Advanced Emissions Control Development Program  

SciTech Connect (OSTI)

McDermott Technology, Inc. (MTI) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using the Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and hydrogen chloride and hydrogen fluoride.

M. J. Holmes

1998-12-03T23:59:59.000Z

126

NREL Advances Feedforward Control in Turbines (Fact Sheet), NREL Highlights in Research & Development, NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National Nuclearover two yearsNP User FacilitiesSRS:

127

Lab Tests Demonstrate Effectiveness of Advanced Power Strips (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs space control NewsUW Madison PhysicsNREL

128

Center For Advanced Energy Studies Overview  

ScienceCinema (OSTI)

A collaboration between Idaho National Laboratory, Boise State University, Idaho State University and the University of Idaho. Conducts research in nuclear energy, advanced materials, carbon management, bioenergy, energy policy, modeling and simulation, and energy efficiency. Educates next generation of energy workforce. Visit us at www.caesenergy.org.

Blackman, Harold

2013-05-28T23:59:59.000Z

129

Advanced Energy Retrofit Guide Retail Buildings  

SciTech Connect (OSTI)

The Advanced Energy Retrofit Guide for Retail Buildings is a component of the Department of Energy’s Advanced Energy Retrofit Guides for Existing Buildings series. The aim of the guides is to facilitate a rapid escalation in the number of energy efficiency projects in existing buildings and to enhance the quality and depth of those projects. By presenting general project planning guidance as well as financial payback metrics for the most common energy efficiency measures, these guides provide a practical roadmap to effectively planning and implementing performance improvements for existing buildings.

Liu, Guopeng; Liu, Bing; Zhang, Jian; Wang, Weimin; Athalye, Rahul A.; Moser, Dave; Crowe, Eliot; Bengtson, Nick; Effinger, Mark; Webster, Lia; Hatten, Mike

2011-09-19T23:59:59.000Z

130

Advanced Energy Retrofit Guide Office Buildings  

SciTech Connect (OSTI)

The Advanced Energy Retrofit Guide for Office Buildings is a component of the Department of Energy’s Advanced Energy Retrofit Guides for Existing Buildings series. The aim of the guides is to facilitate a rapid escalation in the number of energy efficiency projects in existing buildings and to enhance the quality and depth of those projects. By presenting general project planning guidance as well as financial payback metrics for the most common energy efficiency measures, these guides provide a practical roadmap to effectively planning and implementing performance improvements for existing buildings.

Liu, Guopeng; Liu, Bing; Wang, Weimin; Zhang, Jian; Athalye, Rahul A.; Moser, Dave; Crowe, Eliot; Bengtson, Nick; Effinger, Mark; Webster, Lia; Hatten, Mike

2011-09-27T23:59:59.000Z

131

ADVANCED HOT GAS FILTER DEVELOPMENT  

SciTech Connect (OSTI)

Iron aluminide hot gas filters have been developed using powder metallurgy techniques to form seamless cylinders. Three alloys were short-term corrosion tested in simulated IGCC atmospheres with temperatures between 925 F and 1200 F with hydrogen sulfide concentrations ranging from 783 ppm{sub v} to 78,300 ppm{sub v}. Long-term testing was conducted for 1500 hours at 925 F with 78,300 ppm{sub v}. The FAS and FAL alloys were found to be corrosion resistant in the simulated environments. The FAS alloy has been commercialized.

Matthew R. June; John L. Hurley; Mark W. Johnson

1999-04-01T23:59:59.000Z

132

Advancing Development and Greenhouse Gas Reductions in Vietnam's Wind Sector  

SciTech Connect (OSTI)

Clean energy development is a key component of Vietnam's Green Growth Strategy, which establishes a target to reduce greenhouse gas (GHG) emissions from domestic energy activities by 20-30 percent by 2030 relative to a business-as-usual scenario. Vietnam has significant wind energy resources, which, if developed, could help the country reach this target while providing ancillary economic, social, and environmental benefits. Given Vietnam's ambitious clean energy goals and the relatively nascent state of wind energy development in the country, this paper seeks to fulfill two primary objectives: to distill timely and useful information to provincial-level planners, analysts, and project developers as they evaluate opportunities to develop local wind resources; and, to provide insights to policymakers on how coordinated efforts may help advance large-scale wind development, deliver near-term GHG emission reductions, and promote national objectives in the context of a low emission development framework.

Bilello, D.; Katz, J.; Esterly, S.; Ogonowski, M.

2014-09-01T23:59:59.000Z

133

Advanced Energy Efficient Roof System  

SciTech Connect (OSTI)

Energy consumption in buildings represents 40 percent of primary U.S. energy consumption, split almost equally between residential (22%) and commercial (18%) buildings.1 Space heating (31%) and cooling (12%) account for approximately 9 quadrillion Btu. Improvements in the building envelope can have a significant impact on reducing energy consumption. Thermal losses (or gains) from the roof make up 14 percent of the building component energy load. Infiltration through the building envelope, including the roof, accounts for an additional 28 percent of the heating loads and 16 percent of the cooling loads. These figures provide a strong incentive to develop and implement more energy efficient roof systems. The roof is perhaps the most challenging component of the building envelope to change for many reasons. The engineered roof truss, which has been around since 1956, is relatively low cost and is the industry standard. The roof has multiple functions. A typical wood frame home lasts a long time. Building codes vary across the country. Customer and trade acceptance of new building products and materials may impede market penetration. The energy savings of a new roof system must be balanced with other requirements such as first and life-cycle costs, durability, appearance, and ease of construction. Conventional residential roof construction utilizes closely spaced roof trusses supporting a layer of sheathing and roofing materials. Gypsum board is typically attached to the lower chord of the trusses forming the finished ceiling for the occupied space. Often in warmer climates, the HVAC system and ducts are placed in the unconditioned and otherwise unusable attic. High temperature differentials and leaky ducts result in thermal losses. Penetrations through the ceilings are notoriously difficult to seal and lead to moisture and air infiltration. These issues all contribute to greater energy use and have led builders to consider construction of a conditioned attic. The options considered to date are not ideal. One approach is to insulate between the trusses at the roof plane. The construction process is time consuming and costs more than conventional attic construction. Moreover, the problems of air infiltration and thermal bridges across the insulation remain. Another approach is to use structurally insulated panels (SIPs), but conventional SIPs are unlikely to be the ultimate solution because an additional underlying support structure is required except for short spans. In addition, wood spline and metal locking joints can result in thermal bridges and gaps in the foam. This study undertook a more innovative approach to roof construction. The goal was to design and evaluate a modular energy efficient panelized roof system with the following attributes: (1) a conditioned and clear attic space for HVAC equipment and additional finished area in the attic; (2) manufactured panels that provide structure, insulation, and accommodate a variety of roofing materials; (3) panels that require support only at the ends; (4) optimal energy performance by minimizing thermal bridging and air infiltration; (5) minimal risk of moisture problems; (6) minimum 50-year life; (7) applicable to a range of house styles, climates and conditions; (8) easy erection in the field; (9) the option to incorporate factory-installed solar systems into the panel; and (10) lowest possible cost. A nationwide market study shows there is a defined market opportunity for such a panelized roof system with production and semi-custom builders in the United States. Senior personnel at top builders expressed interest in the performance attributes and indicate long-term opportunity exists if the system can deliver a clear value proposition. Specifically, builders are interested in (1) reducing construction cycle time (cost) and (2) offering increased energy efficiency to the homebuyer. Additional living space under the roof panels is another low-cost asset identified as part of the study. The market potential is enhanced through construction activity levels in target marke

Jane Davidson

2008-09-30T23:59:59.000Z

134

Rational Catalyst Design Applied to Development of Advanced Oxidation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Catalyst Design Applied to Development of Advanced Oxidation Catalysts for Diesel Emission Control Rational Catalyst Design Applied to Development of Advanced Oxidation...

135

Development of a Low Cost Ultra Specular Advanced Polymer Film...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Development of a Low Cost Ultra Specular Advanced Polymer Film Solar Reflector Development of a Low Cost Ultra Specular Advanced Polymer Film Solar Reflector This presentation was...

136

USABC Development of Advanced High-Performance Batteries for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

USABC Development of Advanced High-Performance Batteries for EV Applications USABC Development of Advanced High-Performance Batteries for EV Applications 2012 DOE Hydrogen and Fuel...

137

Development of Polymer Electrolytes for Advanced Lithium Batteries...  

Broader source: Energy.gov (indexed) [DOE]

Development of Polymer Electrolytes for Advanced Lithium Batteries Development of Polymer Electrolytes for Advanced Lithium Batteries 2013 DOE Hydrogen and Fuel Cells Program and...

138

Development of Advanced Diesel Particulate Filtration (DPF) Systems...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Filters Development of Advanced Diesel Particulate Filtration (DPF) Systems Development of Advanced Diesel Particulate Filtration (DPF) Systems (ANLCorningCaterpillar CRADA)...

139

Development of Advanced Diesel Particulate Filtration (DPF) Systems...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Advanced Diesel Particulate Filtration (DPF) Systems (ANLCorningCaterpillar CRADA) Development of Advanced Diesel Particulate Filtration (DPF) Systems Development of...

140

Development of Advanced Diesel Particulate Filtration (DPF) Systems...  

Broader source: Energy.gov (indexed) [DOE]

Particulate Filtration (DPF) Systems Development of Advanced Diesel Particulate Filtration (DPF) Systems (ANLCorningCaterpillar CRADA) Development of Advanced Particulate Filters...

Note: This page contains sample records for the topic "developing advanced energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Development of Advanced Thermal-Hydrological-Mechanical-Chemical...  

Broader source: Energy.gov (indexed) [DOE]

Development of Advanced Thermal-Hydrological-Mechanical-Chemical (THMC) Modeling Capabilities for Enhanced Geothermal Systems Development of Advanced Thermal-Hydrological-Mechanica...

142

Ten Years of Development Experience with Advanced Light Truck...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ten Years of Development Experience with Advanced Light Truck Diesel Engines Ten Years of Development Experience with Advanced Light Truck Diesel Engines 2004 Diesel Engine...

143

MATERIALS AND COMPONENT DEVELOPMENT FOR ADVANCED TURBINE SYSTEMS ? PROJECT SUMMARY  

SciTech Connect (OSTI)

Future hydrogen-fired or oxy-fuel turbines will likely experience an enormous level of thermal and mechanical loading, as turbine inlet temperatures (TIT) approach ?1425-1760?C (?2600-3200?F) with pressures of ?300-625 psig, respectively. Maintaining the structural integrity of future turbine components under these extreme conditions will require (1) durable thermal barrier coatings (TBCs), (2) high temperature creep resistant metal substrates, and (3) effective cooling techniques. While advances in substrate materials have been limited for the past decades, thermal protection of turbine airfoils in future hydrogen-fired and oxy-fuel turbines will rely primarily on collective advances in the TBCs and aerothermal cooling. To support the advanced turbine technology development, the Office of Research and Development (ORD) at National Energy Technology Laboratory (NETL) has continued its collaborative research efforts with the University of Pittsburgh and West Virginia University, while working in conjunction with commercial material and coating suppliers. This paper presents the technical accomplishments that were made during FY09 in the initial areas of advanced materials, aerothermal heat transfer and non-destructive evaluation techniques for use in advanced land-based turbine applications in the Materials and Component Development for Advanced Turbine Systems project, and introduces three new technology areas ? high temperature overlayer coating development, diffusion barrier coating development, and oxide dispersion strengthened (ODS) alloy development that are being conducted in this effort.

M. A. Alvin

2010-06-18T23:59:59.000Z

144

ADVANCED HOT GAS FILTER DEVELOPMENT  

SciTech Connect (OSTI)

This report describes the fabrication and testing of continuous fiber ceramic composite (CFCC) based hot gas filters. The fabrication approach utilized a modified filament winding method that combined both continuous and chopped fibers into a novel microstructure. The work was divided into five primary tasks. In the first task, a preliminary set of compositions was fabricated in the form of open end tubes and characterized. The results of this task were used to identify the most promising compositions for sub-scale filter element fabrication and testing. In addition to laboratory measurements of permeability and strength, exposure testing in a coal combustion environment was performed to asses the thermo-chemical stability of the CFCC materials. Four candidate compositions were fabricated into sub-scale filter elements with integral flange and a closed end. Following the 250 hour exposure test in a circulating fluid bed combustor, the retained strength ranged from 70 t 145 percent of the as-fabricated strength. The post-test samples exhibited non-catastrophic failure behavior in contrast to the brittle failure exhibited by monolithic materials. Filter fabrication development continued in a filter improvement and cost reduction task that resulted in an improved fiber architecture, the production of a net shape flange, and an improved low cost bond. These modifications were incorporated into the process and used to fabricate 50 full-sized filter elements for testing in demonstration facilities in Karhula, Finland and at the Power Systems Development Facility (PSDF) in Wilsonville, AL. After 581 hours of testing in the Karhula facility, the elements retained approximately 87 percent of their as-fabricated strength. In addition, mechanical response testing at Virginia Tech provided a further demonstration of the high level of strain tolerance of the vacuum wound filter elements. Additional testing in the M. W. Kellogg unit at the PSDF has accumulated over 1800 hours of coal firing at temperatures of 760 °C including a severe thermal upset that resulted in the failure of several monolithic oxide elements. No failures of any kind have been reported for the MTI CFCC elements in either of these test campaigns. Additional testing is planned at the M. W. Kellogg unit and Foster Wheeler unit at the PSDF over the next year in order to qualify for consideration for the Lakeland PCFB. Process scale-up issues have been identified and manufacturing plans are being evaluated to meet the needs of future demand.

RICHARD A. WAGNER

1998-09-04T23:59:59.000Z

145

DOE/NREL Advanced Wind Turbine Development Program  

SciTech Connect (OSTI)

The development of technologically advanced, high-efficiency wind turbines continues to be a high-priority activity of the US wind industry. The National Renewable Energy Laboratory (formerly the Solar Energy Research Institute), sponsored by the US Department of Energy (DOE), has initiated the Advanced Wind Turbine Program to assist the wind industry in the development of a new class of advanced wind turbines. The initial phase of the program focused on developing conceptual designs for near-term and advanced turbines. The goal of the second phase of this program is to use the experience gained over the last decade of turbine design and operation combined with the latest existing design tools to develop a turbine that will produce energy at $0.05 per kilowatt-hour (kWh) in a 5.8-m/s (13-mph) wind site. Three contracts have been awarded, and two more are under negotiation in the second phase. The third phase of the program will use new innovations and state-of-the-art wind turbine design technology to produce a turbine that will generate energy at $0.04/kWh in a 5.8-m/s wind site. Details of the third phase will be announced in early 1993.

Butterfield, C.P.; Smith, B.; Laxson, A.; Thresher, B. [National Renewable Energy Lab., Golden, CO (United States)] [National Renewable Energy Lab., Golden, CO (United States); Goldman, P. [USDOE Assistant Secretary for Conservation and Renewable Energy, Washington, DC (United States). Wind/Hydro/Ocean Technologies Div.] [USDOE Assistant Secretary for Conservation and Renewable Energy, Washington, DC (United States). Wind/Hydro/Ocean Technologies Div.

1993-05-01T23:59:59.000Z

146

Development of an Advanced Deshaling Technology to Improve the Energy Efficiency of Coal Handling, Processing, and Utilization Operations  

SciTech Connect (OSTI)

The concept of using a dry, density-based separator to achieve efficient, near-face rock removal, commonly referred to as deshaling, was evaluated in several applications across the U.S.. Varying amounts of high-density rock exist in most run-of-mine feed. In the central Appalachian coalfields, a rock content exceeding 50% in the feed to a preparation plant is commonplace due to high amounts of out-of-seam dilution made necessary by extracting coal from thin seams. In the western U.S, an increase in out-of-seam dilution and environmental regulations associated with combustion emissions have resulted in a need to clean low rank coals and dry cleaning may be the only option. A 5 ton/hr mobile deshaling unit incorporating a density-based, air-table technology commercially known as the FGX Separator has been evaluated at mine sites located within the states of Utah, Wyoming, Texas, West Virginia, Virginia, Pennsylvania and Kentucky. The FGX technology utilizes table riffling principles with air as the medium. Air enters through the table and creates a fluidized bed of particles comprised of mostly fine, high density particles. The high density particle bed lifts the low-density coal particles to the top of the bed. The low-density coal moves toward the front of the table due to mass action and the downward slope of the table. The high-density particles settle through the fluidized particle bed and, upon making contact with the table, moves toward the back of the table with the assistance of table vibration. As a result, the low-density coal particles exit the front of the table closest to the feed whereas the high-density, high-ash content particles leave on the side and front of the table located at the farthest from the feed entry. At each test site, the run-of-mine feed was either directly fed to the FGX unit or pre-screened to remove the majority of the -6mm material. The surface moisture of the feed must be maintained below 9%. Pre-screening is required when the surface moisture of the feed coal exceeds the maximum limit. However, the content of -6mm in the feed to the FGX separator should be maintained between 10% and 20% to ensure an adequate fluidized bed. A parametric evaluation was conducted using a 3-level experimental design at each test site to identify the optimum separation performance and parameter values. The test data was used to develop empirical expressions that describe the response variables (i.e., mass yield and product ash content) as a function of the operating parameter values. From this process, it was established that table frequency and longitudinal slope are the most critical factors in controlling both mass yield and clean coal ash while the cross table slope was the least significant. Fan blower frequency is a critical parameter that controls mass yield. Although the splitter positions between product and middling streams and the middling and tailing streams were held constant during the tests, a separate evaluation indicated that performance is sensitive to splitter position within certain lengths of the table and insensitive in others. For a Utah bituminous coal, the FGX separator provided clean coal ash contents that ranged from a low of 8.57% to a high of 12.48% from a feed coal containing around 17% ash. From the 29 tests involved in the statistically designed test program, the average clean coal ash content was 10.76% while the tailings ash content averaged around 72%. One of the best separation performances achieved an ash reduction from 17.36% to 10.67% while recovering 85.9% of the total feed mass, which equated to an ash rejection value of around 47%. The total sulfur content was typically decreased from 1.61% to 1.49%. These performances were quantified by blending the middlings stream with the clean coal product. At a second Utah site, coal sources from three different bituminous coal seams were treated by the FGX deshaling unit. Three parameter values were varied based on the results obtained from Site No. 1 to obtain the optimum results shown in Table E-1. Approximately 9 tests w

Rick Honaker; Gerald Luttrell

2007-09-30T23:59:59.000Z

147

ADVANCED RESEARCH PROJECTS AGENCY - ENERGY ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the Storage and Management of Elemental Mercury (DOEEIS-0423-S1) 11. Hanford Natural Gas Pipeline EIS, Richland, WA (DOEEIS-0467) FOSSIL ENERGY 12. Hydrogen Energy California's...

148

Advancing Energy Systems through Integration  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and reliability Community Scale Heating and Cooling 4 ever-greenenergy.com Ever-Green Energy Integrated Energy System flexible & renewable fuel sources reliable and...

149

NDE (nondestructive examination) development for ceramics for advanced heat engines  

SciTech Connect (OSTI)

The Department of Energy (DOE) Ceramic Technology for Advanced Heat Engines (CTAHE) project was initiated in 1983 to meet the ceramic technology needs of DOE's advanced heat engines programs (i.e., advanced gas turbines and low heat rejection diesels). The objective is to establish an industrial ceramic technology base for reliable and cost-effective high-temperature components. Reliability of ceramics was recognized as the major technology need. To increase the material reliability of current and new ceramics, advances were needed in component design methodology, materials processing technology, and data base/life prediction. Nondestructive examination (NDE) was identified as one of the key elements in the approach to high-reliability components. An assessment was made of the current status of NDE for structural ceramics, and a report was prepared containing the results and recommendations for needed development. Based on these recommendations, a long-range NDE development program has been established in the CTAHE project to address these needs.

McClung, R.W. (McClung (R.W.), Powell, TN (USA)); Johnson, D.R. (Oak Ridge National Lab., TN (USA))

1991-01-01T23:59:59.000Z

150

Diversity in Science and Technology Advances National Clean Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Diversity in Science and Technology Advances National Clean Energy in Solar Diversity in Science and Technology Advances National Clean Energy in Solar The SunShot Diversity in...

151

ITP Metal Casting: Advanced Melting Technologies: Energy Saving...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Melting Technologies: Energy Saving Concepts and Opportunities for the Metal Casting Industry ITP Metal Casting: Advanced Melting Technologies: Energy Saving Concepts and...

152

Oregon: Advancing Technology Readiness: Wave Energy Testing and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Oregon: Advancing Technology Readiness: Wave Energy Testing and Demonstration Oregon: Advancing Technology Readiness: Wave Energy Testing and Demonstration March 6, 2014 - 1:23pm...

153

Advanced, Energy-Efficient Hybrid Membrane System for Industrial...  

Broader source: Energy.gov (indexed) [DOE]

Advanced, Energy-Efficient Hybrid Membrane System for Industrial Water Reuse Advanced, Energy-Efficient Hybrid Membrane System for Industrial Water Reuse hybridmembranesystemsfa...

154

Advanced Systems of Efficient Use of Electrical Energy SURE ...  

Open Energy Info (EERE)

Advanced Systems of Efficient Use of Electrical Energy SURE (Smart Grid Project) Jump to: navigation, search Project Name Advanced Systems of Efficient Use of Electrical Energy...

155

Advanced Power Plant Development and Analysis Methodologies  

SciTech Connect (OSTI)

Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into advanced power plant systems with goals of achieving high efficiency and minimized environmental impact while using fossil fuels. These power plant concepts include 'Zero Emission' power plants and the 'FutureGen' H2 co-production facilities. The study is broken down into three phases. Phase 1 of this study consisted of utilizing advanced technologies that are expected to be available in the 'Vision 21' time frame such as mega scale fuel cell based hybrids. Phase 2 includes current state-of-the-art technologies and those expected to be deployed in the nearer term such as advanced gas turbines and high temperature membranes for separating gas species and advanced gasifier concepts. Phase 3 includes identification of gas turbine based cycles and engine configurations suitable to coal-based gasification applications and the conceptualization of the balance of plant technology, heat integration, and the bottoming cycle for analysis in a future study. Also included in Phase 3 is the task of acquiring/providing turbo-machinery in order to gather turbo-charger performance data that may be used to verify simulation models as well as establishing system design constraints. The results of these various investigations will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

A.D. Rao; G.S. Samuelsen; F.L. Robson; B. Washom; S.G. Berenyi

2006-06-30T23:59:59.000Z

156

Advanced Power Plant Development and Analyses Methodologies  

SciTech Connect (OSTI)

Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into advanced power plant systems with goals of achieving high efficiency and minimized environmental impact while using fossil fuels. These power plant concepts include ''Zero Emission'' power plants and the ''FutureGen'' H{sub 2} co-production facilities. The study is broken down into three phases. Phase 1 of this study consisted of utilizing advanced technologies that are expected to be available in the ''Vision 21'' time frame such as mega scale fuel cell based hybrids. Phase 2 includes current state-of-the-art technologies and those expected to be deployed in the nearer term such as advanced gas turbines and high temperature membranes for separating gas species and advanced gasifier concepts. Phase 3 includes identification of gas turbine based cycles and engine configurations suitable to coal-based gasification applications and the conceptualization of the balance of plant technology, heat integration, and the bottoming cycle for analysis in a future study. Also included in Phase 3 is the task of acquiring/providing turbo-machinery in order to gather turbo-charger performance data that may be used to verify simulation models as well as establishing system design constraints. The results of these various investigations will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

G.S. Samuelsen; A.D. Rao

2006-02-06T23:59:59.000Z

157

Sandia National Laboratories: Advanced Nuclear Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0Energy Advanced Nuclear Energy The Advanced Nuclear Energy

158

Sandia National Laboratories: Advanced Nuclear Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0Energy Advanced Nuclear Energy The Advanced Nuclear EnergyNuclear

159

Advancement of DOE's EnergyPlus Building Energy Simulation Payment  

SciTech Connect (OSTI)

EnergyPlus{sup TM} is a new generation computer software analysis tool that has been developed, tested, and commercialized to support DOEâ??s Building Technologies (BT) Program in terms of whole-building, component, and systems R&D (http://www.energyplus.gov). It is also being used to support evaluation and decision making of zero energy building (ZEB) energy efficiency and supply technologies during new building design and existing building retrofits. The 5-year project was managed by the National Energy Technology Laboratory and was divided into 5 budget period between 2006 and 2011. During the project period, 11 versions of EnergyPlus were released. This report summarizes work performed by an EnergyPlus development team led by the University of Central Floridaâ??s Florida Solar Energy Center (UCF/FSEC). The team members consist of DHL Consulting, C. O. Pedersen Associates, University of Illinois at Urbana-Champaign, Oklahoma State University, GARD Analytics, Inc., and WrightSoft Corporation. The project tasks involved new feature development, testing and validation, user support and training, and general EnergyPlus support. The team developed 146 new features during the 5-year period to advance the EnergyPlus capabilities. Annual contributions of new features are 7 in budget period 1, 19 in period 2, 36 in period 3, 41 in period 4, and 43 in period 5, respectively. The testing and validation task focused on running test suite and publishing report, developing new IEA test suite cases, testing and validating new source code, addressing change requests, and creating and testing installation package. The user support and training task provided support for users and interface developers, and organized and taught workshops. The general support task involved upgrading StarTeam (team sharing) software and updating existing utility software. The project met the DOE objectives and completed all tasks successfully. Although the EnergyPlus software was enhanced significantly under this project, more enhancements are needed for further improvement to ensure that EnergyPlus is able to simulate the latest technologies and perform desired HAVC system operations for the development of next generation HVAC systems. Additional development will be performed under a new 5-year project managed by the National Renewable Energy Laboratory.

Lixing Gu; Don Shirey; Richard Raustad; Bereket Nigusse; Chandan Sharma; Linda Lawrie; Rich Strand; Curt Pedersen; Dan Fisher; Edwin Lee; Mike Witte; Jason Glazer; Chip Barnaby

2011-03-31T23:59:59.000Z

160

Advanced Manufacturing | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Better Buildings, Better Plants Clean Energy Manufacturing Initiative Combined Heat and Power Innovative Manufacturing Initiative National Network for Manufacturing Innovation...

Note: This page contains sample records for the topic "developing advanced energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

ADVANCED RESEARCH PROJECTS AGENCY - ENERGY ...  

Office of Environmental Management (EM)

EIS (DOEEIS-0481) ELECTRICITY DELIVERY AND ENERGY RELIABILITY 2. Presidential Permit Application, Northern Pass Transmission LLC, NH (DOEEIS-0463) 3. Plains and Eastern...

162

Microsoft Word - START Renewable Energy Project Development Assistance...  

Energy Savers [EERE]

foster tribal energy self-sufficiency and self-determination, promote community economic development and job creation, and advance tribal visions for a sustainable energy future....

163

Development and Deployment of Advanced Emission Controls for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Deployment of Advanced Emission Controls for the Retrofit Market Development and Deployment of Advanced Emission Controls for the Retrofit Market 2003 DEER Conference Presentation:...

164

Development of Cost-Competitive Advanced Thermoelectric Generators...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advanced Thermoelectric Generators for Direct Conversion of Vehicle Waste Heat into Useful Electrical Power Development of Cost-Competitive Advanced Thermoelectric...

165

Development of an Advanced Combined Heat and Power (CHP) System...  

Broader source: Energy.gov (indexed) [DOE]

an Advanced Combined Heat and Power (CHP) System Utilizing Off-Gas from Coke Calcination - Fact Sheet, 2011 Development of an Advanced Combined Heat and Power (CHP) System...

166

Development of 3rd Generation Advanced High Strength Steels ...  

Broader source: Energy.gov (indexed) [DOE]

3rd Generation Advanced High Strength Steels (AHSS) with an Integrated Experimental and Simulation Approach Development of 3rd Generation Advanced High Strength Steels (AHSS) with...

167

Process Development and Scale up of Advanced Electrolyte Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Scale up of Advanced Electrolyte Materials Process Development and Scale up of Advanced Electrolyte Materials 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies...

168

Nuclear Energy Advanced Modeling and Simulation (NEAMS) waste Integrated Performance and Safety Codes (IPSC) : gap analysis for high fidelity and performance assessment code development.  

SciTech Connect (OSTI)

This report describes a gap analysis performed in the process of developing the Waste Integrated Performance and Safety Codes (IPSC) in support of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The goal of the Waste IPSC is to develop an integrated suite of computational modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs, and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with rigorous verification, validation, and software quality requirements. The gap analyses documented in this report were are performed during an initial gap analysis to identify candidate codes and tools to support the development and integration of the Waste IPSC, and during follow-on activities that delved into more detailed assessments of the various codes that were acquired, studied, and tested. The current Waste IPSC strategy is to acquire and integrate the necessary Waste IPSC capabilities wherever feasible, and develop only those capabilities that cannot be acquired or suitably integrated, verified, or validated. The gap analysis indicates that significant capabilities may already exist in the existing THC codes although there is no single code able to fully account for all physical and chemical processes involved in a waste disposal system. Large gaps exist in modeling chemical processes and their couplings with other processes. The coupling of chemical processes with flow transport and mechanical deformation remains challenging. The data for extreme environments (e.g., for elevated temperature and high ionic strength media) that are needed for repository modeling are severely lacking. In addition, most of existing reactive transport codes were developed for non-radioactive contaminants, and they need to be adapted to account for radionuclide decay and in-growth. The accessibility to the source codes is generally limited. Because the problems of interest for the Waste IPSC are likely to result in relatively large computational models, a compact memory-usage footprint and a fast/robust solution procedure will be needed. A robust massively parallel processing (MPP) capability will also be required to provide reasonable turnaround times on the analyses that will be performed with the code. A performance assessment (PA) calculation for a waste disposal system generally requires a large number (hundreds to thousands) of model simulations to quantify the effect of model parameter uncertainties on the predicted repository performance. A set of codes for a PA calculation must be sufficiently robust and fast in terms of code execution. A PA system as a whole must be able to provide multiple alternative models for a specific set of physical/chemical processes, so that the users can choose various levels of modeling complexity based on their modeling needs. This requires PA codes, preferably, to be highly modularized. Most of the existing codes have difficulties meeting these requirements. Based on the gap analysis results, we have made the following recommendations for the code selection and code development for the NEAMS waste IPSC: (1) build fully coupled high-fidelity THCMBR codes using the existing SIERRA codes (e.g., ARIA and ADAGIO) and platform, (2) use DAKOTA to build an enhanced performance assessment system (EPAS), and build a modular code architecture and key code modules for performance assessments. The key chemical calculation modules will be built by expanding the existing CANTERA capabilities as well as by extracting useful components from other existing codes.

Lee, Joon H.; Siegel, Malcolm Dean; Arguello, Jose Guadalupe, Jr.; Webb, Stephen Walter; Dewers, Thomas A.; Mariner, Paul E.; Edwards, Harold Carter; Fuller, Timothy J.; Freeze, Geoffrey A.; Jove-Colon, Carlos F.; Wang, Yifeng

2011-03-01T23:59:59.000Z

169

Center for Advanced Energy Studies homepage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in the September issue of Energy Research & Social Science as Support for Solar Energy: Examining Sense of Place and Utility-scale Development in California. The authors will...

170

Advanced Energy Solutions | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORT Americium/Curium Vitrification ProjectAVANTI JumpPvtWindAdvanced

171

Advanced Electrolyte Model - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the Building TechnologiesS1!4TCombustion AdvancedAdvancedDataEnergy

172

MATERIALS AND COMPONENT DEVELOPMENT FOR ADVANCED TURBINE SYSTEMS  

SciTech Connect (OSTI)

Future hydrogen-fired or oxy-fuel turbines will likely experience an enormous level of thermal and mechanical loading, as turbine inlet temperatures (TIT) approach 1425-1760șC with pressures of 300-625 psig, respectively. Maintaining the structural integrity of future turbine components under these extreme conditions will require durable thermal barrier coatings (TBCs), high temperature creep resistant metal substrates, and effective cooling techniques. While advances in substrate materials have been limited for the past decades, thermal protection of turbine airfoils in future hydrogen-fired and oxy-fuel turbines will rely primarily on collective advances in TBCs and aerothermal cooling. To support the advanced turbine technology development, the National Energy Technology Laboratory (NETL) at the Office of Research and Development (ORD) has initiated a research project effort in collaboration with the University of Pittsburgh (UPitt), and West Virginia University (WVU), working in conjunction with commercial material and coating suppliers, to develop advanced materials, aerothermal configurations, as well as non-destructive evaluation techniques for use in advanced land-based gas turbine applications. This paper reviews technical accomplishments recently achieved in each of these areas.

M. A. Alvin

2009-06-12T23:59:59.000Z

173

Anco Advance | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT Biomass Facility Jump to:OperationsAnchorage Municipal Light

174

Materials and Component Development for Advanced Turbine Systems  

SciTech Connect (OSTI)

In order to meet the 2010-2020 DOE Fossil Energy goals for Advanced Power Systems, future oxy-fuel and hydrogen-fired turbines will need to be operated at higher temperatures for extended periods of time, in environments that contain substantially higher moisture concentrations in comparison to current commercial natural gas-fired turbines. Development of modified or advanced material systems, combined with aerothermal concepts are currently being addressed in order to achieve successful operation of these land-based engines. To support the advanced turbine technology development, the National Energy Technology Laboratory (NETL) has initiated a research program effort in collaboration with the University of Pittsburgh (UPitt), and West Virginia University (WVU), working in conjunction with commercial material and coating suppliers as Howmet International and Coatings for Industry (CFI), and test facilities as Westinghouse Plasma Corporation (WPC) and Praxair, to develop advanced material and aerothermal technologies for use in future oxy-fuel and hydrogen-fired turbine applications. Our program efforts and recent results are presented.

Alvin, M.A.; Pettit, F.; Meier, G.; Yanar, N.; Chyu, M.; Mazzotta, D.; Slaughter, W.; Karaivanov, V.; Kang, B.; Feng, C.; Chen, R.; Fu, T-C.

2008-10-01T23:59:59.000Z

175

Advance Electronics | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskeyEnergyAd-VentaAddison is aAdenaAdrian is a

176

Advanced Leds | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskeyEnergyAd-VentaAddison is aAdenaAdrian isLead

177

Department of Energy Advances Geothermal Science through Collegiate...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advances Geothermal Science through Collegiate Competition Department of Energy Advances Geothermal Science through Collegiate Competition February 25, 2013 - 2:33pm Addthis...

178

Energy Department Announces $11 Million to Advance Renewable...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1 Million to Advance Renewable Carbon Fiber Production from Biomass Energy Department Announces 11 Million to Advance Renewable Carbon Fiber Production from Biomass July 30, 2014...

179

Department of Energy to Invest $50 Million to Advance Domestic...  

Office of Environmental Management (EM)

to Advance Domestic Solar Manufacturing Market, Achieve SunShot Goal Department of Energy to Invest 50 Million to Advance Domestic Solar Manufacturing Market, Achieve SunShot...

180

Energy Department Announces New Investments in Advanced Nuclear...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Announces New Investments in Advanced Nuclear Power Reactors Energy Department Announces New Investments in Advanced Nuclear Power Reactors October 31, 2014 - 12:20pm Addthis NEWS...

Note: This page contains sample records for the topic "developing advanced energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Department of Energy Awards Nearly $7 Million to Advance Fuel...  

Energy Savers [EERE]

Million to Advance Fuel Cell and Hydrogen Storage Systems Research Department of Energy Awards Nearly 7 Million to Advance Fuel Cell and Hydrogen Storage Systems Research August...

182

Advanced Benchmarking: Benchmark Building Energy Use Quickly and Accurately Using EPA's ENERGY STAR Portfolio Manager  

Broader source: Energy.gov [DOE]

Advanced Benchmarking: Benchmark Building Energy Use Quickly and Accurately Using EPA's ENERGY STAR Portfolio Manager Webinar.

183

Northwest Energy Innovations (TRL 5 6 System)- WETNZ MtiMode Wave Energy Converter Advancement Project  

Broader source: Energy.gov [DOE]

Northwest Energy Innovations (TRL 5 6 System) - WETNZ MtiMode Wave Energy Converter Advancement Project

184

Advanced RenewableEnergy Company ARC Energy | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasil Jump to:Iowa ASHRAEAddis,Advanced RenewableEnergy Company

185

Veterans Advancing Clean Energy and Climate  

ScienceCinema (OSTI)

The Champions of Change series highlights ordinary Americans who are doing extraordinary things in their communities to out-innovate, out-educate and out-build the rest of the world. On November 5, 2013, the White House honored 12 veterans and leaders who are using the skills they learned in the armed services to advance the clean energy economy.

Kopser, Joseph; Marr, Andrea; Perez-Halperin, Elizabeth; Eckstein, Robin; Moniz, Ernest

2014-01-07T23:59:59.000Z

186

Advanced Manufacturing: Using Composites for Clean Energy  

Broader source: Energy.gov [DOE]

Advanced fiber-reinforced polymer composites, which combine strong fibers with tough plastics, are lighter and stronger than steel. These materials could lower overall production costs in U.S. manufacturing and ultimately drive the adoption of a new clean energy way of life.

187

Veterans Advancing Clean Energy and Climate  

SciTech Connect (OSTI)

The Champions of Change series highlights ordinary Americans who are doing extraordinary things in their communities to out-innovate, out-educate and out-build the rest of the world. On November 5, 2013, the White House honored 12 veterans and leaders who are using the skills they learned in the armed services to advance the clean energy economy.

Kopser, Joseph; Marr, Andrea; Perez-Halperin, Elizabeth; Eckstein, Robin; Moniz, Ernest

2013-11-11T23:59:59.000Z

188

Advanced Vehicle Technologies Awardees | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Ownedof EnergyAdvanced Biofuels | Department ofAmerica |InWHO WE ARE

189

Advanced energy design and operation technologies  

SciTech Connect (OSTI)

Current practice in design of commercial buildings does not adequately consider the relationships between design decisions and energy performance. Estimates indicate that if energy criteria were integral to the design process, more than 15% of the energy used in new buildings could be conserved. This could be done using readily available energy-efficient design knowledge, without any increase in first costs. Furthermore, building design necessarily involves assumptions concerning use and operation of the building once it is built. Currently, operations practices intended by the designer are not adequately transferred during commissioning to building operators for use as guides during operation. Advanced technologies for overcoming these problems are described in this paper. The advanced energy design and operations technologies will consist of an intelligent automated design advisor that utilizes artificial intelligence and other advanced computer technologies to provide assistance to and encourage interaction among all participants in the design process. Assistance will be provided at all points in the building design process, especially in the early phases of design (e.g., during building programming) where decisions can have particularly significant impacts on energy consumption. The technology used for the design advisor will facilitate transfer of critical operation guidance to building operators and, coupled with monitoring technology, provide feedback on performance to the design process. 4 refs., 1 fig.

Brambley, M.R.; Crawley, D.B.

1988-09-01T23:59:59.000Z

190

Distributed Sensor Coordination for Advanced Energy Systems  

SciTech Connect (OSTI)

The ability to collect key system level information is critical to the safe, efficient and reli- able operation of advanced energy systems. With recent advances in sensor development, it is now possible to push some level of decision making directly to computationally sophisticated sensors, rather than wait for data to arrive to a massive centralized location before a decision is made. This type of approach relies on networked sensors (called “agents” from here on) to actively collect and process data, and provide key control deci- sions to significantly improve both the quality/relevance of the collected data and the as- sociating decision making. The technological bottlenecks for such sensor networks stem from a lack of mathematics and algorithms to manage the systems, rather than difficulties associated with building and deploying them. Indeed, traditional sensor coordination strategies do not provide adequate solutions for this problem. Passive data collection methods (e.g., large sensor webs) can scale to large systems, but are generally not suited to highly dynamic environments, such as ad- vanced energy systems, where crucial decisions may need to be reached quickly and lo- cally. Approaches based on local decisions on the other hand cannot guarantee that each agent performing its task (maximize an agent objective) will lead to good network wide solution (maximize a network objective) without invoking cumbersome coordination rou- tines. There is currently a lack of algorithms that will enable self-organization and blend the efficiency of local decision making with the system level guarantees of global decision making, particularly when the systems operate in dynamic and stochastic environments. In this work we addressed this critical gap and provided a comprehensive solution to the problem of sensor coordination to ensure the safe, reliable, and robust operation of advanced energy systems. The differentiating aspect of the proposed work is in shift- ing the focus towards “what to observe” rather than “how to observe” in large sensor networks, allowing the agents to actively determine both the structure of the network and the relevance of the information they are seeking to collect. In addition to providing an implicit coordination mechanism, this approach allows the system to be reconfigured in response to changing needs (e.g., sudden external events requiring new responses) or changing sensor network characteristics (e.g., sudden changes to plant condition). Outcome Summary: All milestones associated with this project have been completed. In particular, private sensor objective functions were developed which are aligned with the global objective function, sensor effectiveness has been improved by using “sensor teams,” system efficiency has been improved by 30% using difference evaluation func- tions, we have demonstrated system reconfigurability for 20% changes in system con- ditions, we have demonstrated extreme scalability of our proposed algorithm, we have demonstrated that sensor networks can overcome disruptions of up to 20% in network conditions, and have demonstrated system reconfigurability to 20% changes in system conditions in hardware-based simulations. This final report summarizes how each of these milestones was achieved, and gives insight into future research possibilities past the work which has been completed. The following publications support these milestones [6, 8, 9, 10, 16, 18, 19].

Tumer, Kagan

2013-07-31T23:59:59.000Z

191

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network [OSTI]

Energy Research and Development Division FINAL PROJECT REPORT NATURAL GAS OPTIMIZED ADVANCED HEAVY · Environmentally Preferred Advanced Generation · Industrial/Agricultural/Water End-Use Energy Efficiency · Renewable Energy Technologies · Transportation Natural Gas-optimized Advanced Heavy-duty Engine is the final

192

Geothermal Technology Advancement for Rapid Development of Resources...  

Energy Savers [EERE]

Geothermal Technology Advancement for Rapid Development of Resources in the U.S. Webinar, 6-23-2011 Geothermal Technology Advancement for Rapid Development of Resources in the U.S....

193

Tribal Renewable Energy Advanced Course: Project Financing Process...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Process and Structures Tribal Renewable Energy Advanced Course: Project Financing Process and Structures Watch the DOE Office of Indian Energy renewable energy course entitled...

194

Advanced Blade Manufacturing | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South ValleyASGovLtr.pdfAboutSheet, April 20142-021 Advance PatentBlade

195

Advanced Conversion Roadmap Workshop | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South ValleyASGovLtr.pdfAboutSheet, April 20142-021 AdvanceConversion Roadmap

196

Advanced Drivetrain Manufacturing | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South ValleyASGovLtr.pdfAboutSheet, April 20142-021 AdvanceConversion

197

Advanced Patent Waivers | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South ValleyASGovLtr.pdfAboutSheet, AprilEdward Lyford-Pike, CumminsAdvanced

198

Advances in Transportation Technologies | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartment of EnergyAbout UsAdvanced Modeling2

199

Advanced Energy Fund | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe Office ofReporting (Connecticut)41Adam Garber -ADM-1byIn

200

Ohio Advanced Energy | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocus AreaDataBusPFAN)Change Assessment ModelElectricEnergy Jump

Note: This page contains sample records for the topic "developing advanced energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Advance, Indiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskeyEnergyAd-VentaAddison is aAdenaAdrian is aBoone County,

202

Advance, Missouri: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskeyEnergyAd-VentaAddison is aAdenaAdrian is aBoone

203

Advanced Energy Products | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskeyEnergyAd-VentaAddison is aAdenaAdrian is

204

Advanced Renewable Energy | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskeyEnergyAd-VentaAddison is aAdenaAdrianItaly Sector:

205

Advanced Boost System Development for Diesel HCCI/LTC Application...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Boost System Development for Diesel HCCILTC Application Advanced Boost System Development for Diesel HCCILTC Application Optimization of a turbocharger for high EGR applications...

206

Development of Advanced Small Hydrogen Engines  

SciTech Connect (OSTI)

The main objective of the project is to develop advanced, low cost conversions of small (< 25 hp) gasoline internal combustion engines (ICEs) to run on hydrogen fuel while maintaining the same performance and durability. This final technical report summarizes the results of i) the details of the conversion of several small gasoline ICEs to run on hydrogen, ii) the durability test of a converted hydrogen engine and iii) the demonstration of a prototype bundled canister solid hydrogen storage system. Peak power of the hydrogen engine achieves 60% of the power output of the gasoline counterpart. The efforts to boost the engine power with various options including installing the over-sized turbocharger, retrofit of custom-made pistons with high compression ratio, an advanced ignition system, and various types of fuel injection systems are not realized. A converted Honda GC160 engine with ACS system to run with hydrogen fuel is successful. Total accumulative runtime is 785 hours. A prototype bundled canister solid hydrogen storage system having nominal capacity of 1.2 kg is designed, constructed and demonstrated. It is capable of supporting a wide range of output load of a hydrogen generator.

Krishna Sapru; Zhaosheng Tan; Ben Chao

2010-09-30T23:59:59.000Z

207

Advanced Manufacturing Office | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEF HISTORY OFEnergyAdvanced Manufacturing Office

208

Advanced Modeling & Simulation | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEF HISTORY OFEnergyAdvanced

209

Advanced Reactor Technologies | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEF HISTORY OFEnergyAdvancedNuclear Reactor

210

Advanced Sensors and Instrumentation | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEF HISTORY OFEnergyAdvancedNuclear

211

Advanced Grid Integration (AGI) | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombinedDepartment2015 InformationAGuideforAdvanced Fossil Energy

212

Advanced Materials Success Stories - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAre theAdministrator ReferencesalkaliAdvanced

213

Advanced Materials Technologies - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAre theAdministrator ReferencesalkaliAdvancedTechnology Marketing

214

2012 Advanced Applications Research & Development Peer Review...  

Broader source: Energy.gov (indexed) [DOE]

EPG 2012 Advanced Applications R&D Peer Review - Spectral Analysis of Power Grid PMU Data - Ning Zhou, PNNL 2012 Advanced Applications R&D Peer Review - IEEE-IEC...

215

Alternative Energy Development and China's Energy Future  

SciTech Connect (OSTI)

In addition to promoting energy efficiency, China has actively pursued alternative energy development as a strategy to reduce its energy demand and carbon emissions. One area of particular focus has been to raise the share of alternative energy in China’s rapidly growing electricity generation with a 2020 target of 15% share of total primary energy. Over the last ten years, China has established several major renewable energy regulations along with programs and subsidies to encourage the growth of non-fossil alternative energy including solar, wind, nuclear, hydro, geothermal and biomass power as well as biofuels and coal alternatives. This study thus seeks to examine China’s alternative energy in terms of what has and will continue to drive alternative energy development in China as well as analyze in depth the growth potential and challenges facing each specific technology. This study found that despite recent policies enabling extraordinary capacity and investment growth, alternative energy technologies face constraints and barriers to growth. For relatively new technologies that have not achieved commercialization such as concentrated solar thermal, geothermal and biomass power, China faces technological limitations to expanding the scale of installed capacity. While some alternative technologies such as hydropower and coal alternatives have been slowed by uneven and often changing market and policy support, others such as wind and solar PV have encountered physical and institutional barriers to grid integration. Lastly, all alternative energy technologies face constraints in human resources and raw material resources including land and water, with some facing supply limitations in critical elements such as uranium for nuclear, neodymium for wind and rare earth metals for advanced solar PV. In light of China’s potential for and barriers to growth, the resource and energy requirement for alternative energy technologies were modeled and scenario analysis used to evaluate the energy and emission impact of two pathways of alternative energy development. The results show that China can only meets its 2015 and 2020 targets for non-fossil penetration if it successfully achieves all of its capacity targets for 2020 with continued expansion through 2030. To achieve this level of alternative generation, significant amounts of raw materials including 235 Mt of concrete, 54 Mt of steel, 5 Mt of copper along with 3 billion tons of water and 64 thousand square kilometers of land are needed. China’s alternative energy supply will likely have relatively high average energy output to fossil fuel input ratio of 42 declining to 26 over time, but this ratio is largely skewed by nuclear and hydropower capacity. With successful alternative energy development, 32% of China’s electricity and 21% of its total primary energy will be supplied by alternative energy by 2030. Compared to the counterfactual baseline in which alternative energy development stumbles and China does not meet its capacity targets until 2030, alternative energy development can displace 175 Mtce of coal inputs per year and 2080 Mtce cumulatively from power generation by 2030. In carbon terms, this translates into 5520 Mt of displaced CO{sub 2} emissions over the twenty year period, with more than half coming from expanded nuclear and wind power generation. These results illustrate the critical role that alternative energy development can play alongside energy efficiency in reducing China’s energy-related carbon emissions.

Zheng, Nina; Fridley, David

2011-06-15T23:59:59.000Z

216

Advanced Manufacturing Office Overview | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe Office ofReporting (Connecticut)41AdamEnergyAdvanced DOE

217

Alternative Energy Development and China's Energy Future  

E-Print Network [OSTI]

by Alternative Energy Technology . 75Figure 25. Range in Alternative Energy EROEIs in Existingof Energy Output for Alternative Energy Development, 2010-

Zheng, Nina

2012-01-01T23:59:59.000Z

218

Projects Selected to Advance Innovative Materials for Fossil Energy Power Systems  

Broader source: Energy.gov [DOE]

Four projects that will develop capabilities for designing sophisticated materials that can withstand the harsh environments of advanced fossil energy power systems have been selected by the U.S. Department of Energy.

219

Energy Department Announces New Investments in Advanced Nuclear...  

Broader source: Energy.gov (indexed) [DOE]

said Energy Secretary Ernest Moniz. With support from the Energy Department, private industry and the Department's national laboratories have achieved significant advances that...

220

U.S. Advanced Manufacturing and Clean Energy Technology Challenges  

Broader source: Energy.gov (indexed) [DOE]

Manufacturing and Clean Energy Technology Challenges May 6, 2014 AMO Peer Review Mark Johnson Director Advanced Manufacturing Office www.manufacturing.energy.gov This presentation...

Note: This page contains sample records for the topic "developing advanced energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Generation IV Advanced Nuclear Energy Systems By Jacques Bouchard...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generation IV Advanced Nuclear Energy Systems By Jacques Bouchard, French Commissariat a l'Energie Atomique, France and Ralph Bennett, Idaho National Laboratory. Generation IV...

222

News Letter Institute of Advanced Energy, Kyoto University  

E-Print Network [OSTI]

. Abstract definition of energy consists of two parts: Energy = Exergy +Anergy Exergy is a part of energyNews Letter Institute of Advanced Energy, Kyoto University ISSN 1342-3193 IAE-NL-2014 No.54 http -- 2,709 2013 2013 Institute of Advanced Energy, Kyoto University #12; 25 25 11 20

Takada, Shoji

223

Development of Advanced Combustion Technologies for Increased...  

Broader source: Energy.gov (indexed) [DOE]

Investigation of fuel effects on low-temperature combustion, particularly HCCI PCCI combustion deer09gehrke.pdf More Documents & Publications The Role of Advanced Combustion in...

224

Energy Research, Development and Demonstration  

E-Print Network [OSTI]

80-L-l i I Study of low Btu fixed-bed gasification of li~nite pellets. SPI NUMBER 80-L-2 Research and/or development of advattced technologies for the use of lignite as an industrial fU~l. SPI NUMBER 80-L-3 I Demonstration of advanced... Nelson, (July, 1979, EDF-017 Demonstration of Solar Ener Conversion of A ricultural or Industrial Wastes of Fuels, Dow Chemical Co., May, 1979, Project #B-0-2 EDF-018 Alternative Energy Sources for Agricultural Applications Including Gasification...

Ray, R. R., Jr.

1980-01-01T23:59:59.000Z

225

Advanced House Framing | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles » Alternative FuelNewsWashington Auto ShowAtoActiveAdvanced House

226

Advanced Computing Tech Team | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEF HISTORY OFEnergy AddingAdministrativeAdvanced

227

Advanced Methods for Manufacturing | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEF HISTORY OFEnergyAdvanced ManufacturingMethods

228

Advanced AMR Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitecAWS Ocean EnergyAdirondack NorthAdvanced AMR

229

Advanced Battery Factory | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitecAWS Ocean EnergyAdirondack NorthAdvanced

230

Porvair Advanced Materials | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug Power Inc JumpPortage, NewOR) Jump to:Porvair Advanced

231

Advanced Solar Photonics | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasil Jump to:Iowa ASHRAEAddis,Advanced RenewableEnergyInc

232

Advanced Solar Power ASP | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasil Jump to:Iowa ASHRAEAddis,Advanced RenewableEnergyIncASP

233

Major advances in battery and energy storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fund Las ConchasTrail5,722,326 Site advances in battery and

234

Advanced Nuclear Reactors | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation Portal AdvancedMethods

235

Saving Energy Through Advanced Power Strips (Poster)  

SciTech Connect (OSTI)

Advanced Power Strips (APS) look just like ordinary power strips, except that they have built-in features that are designed to reduce the amount of energy used by many consumer electronics. There are several different types of APSs on the market, but they all operate on the same basic principle of shutting off the supply power to devices that are not in use. By replacing your standard power strip with an APS, you can signifcantly cut the amount of electricity used by your home office and entertainment center devices, and save money on your electric bill. This illustration summarizes the different options.

Christensen, D.

2013-10-01T23:59:59.000Z

236

BNL ACTIVITIES IN ADVANCED NEUTRON SOURCE DEVELOPMENT: PAST AND PRESENT  

SciTech Connect (OSTI)

Brookhaven National Laboratory has been involved in advanced neutron sources almost from its inception in 1947. These efforts have mainly focused on steady state reactors beginning with the construction of the first research reactor for neutron beams, the Brookhaven Graphite Research Reactor. This was followed by the High Flux Beam Reactor that has served as the design standard for all the subsequent high flux reactors constructed worldwide. In parallel with the reactor developments BNL has focused on the construction and use of high energy proton accelerators. The first machine to operate over 1 GeV in the world was the Cosmotron. The machine that followed this, the AGS, is still operating and is the highest intensity proton machine in the world and has nucleated an international collaboration investigating liquid metal targets for next generation pulsed spallation sources. Early work using the Cosmotron focused on spallation product studies for both light and heavy elements into the several GeV proton energy region. These original studies are still important today. In the sections below the authors discuss the facilities and activities at BNL focused on advanced neutron sources. BNL is involved in the proton source for the Spallation Neutron source, spectrometer development at LANSCE, target studies using the AGS and state-of-the-art neutron detector development.

HASTINGS,J.B.; LUDEWIG,H.; MONTANEZ,P.; TODOSOW,M.; SMITH,G.C.; LARESE,J.Z.

1998-06-14T23:59:59.000Z

237

BNL Activities in Advanced Neutron Source Development: Past and Present  

SciTech Connect (OSTI)

Brookhaven National Laboratory has been involved in advanced neutron sources almost from its inception in 1947. These efforts have mainly focused on steady state reactors beginning with the construction of the first research reactor for neutron beams, the Brookhaven Graphite Research Reactor. This was followed by the High Flux Beam Reactor that has served as the design standard for all the subsequent high flux reactors constructed worldwide. In parallel with the reactor developments BNL has focused on the construction and use of high energy proton accelerators. The first machine to operate over 1 GeV in the world was the Cosmotron. The machine that followed this, the AGS, is still operating and is the highest intensity proton machine in the world and has nucleated an international collaboration investigating liquid metal targets for next generation pulsed spallation sources. Early work using the Cosmotron focused on spallation product studies for both light and heavy elements into the several GeV proton energy region. These original studies are still important today. In this report we discuss the facilities and activities at BNL focused on advanced neutron sources. BNL is involved in the proton source for the Spallation Neutron source, spectrometer development at LANSCE, target studies using the AGS and state-of-the-art neutron detector development.

Hastings, J.B.; Ludewig, H.; Montanez, P.; Todosow, M.; Smith, G.C.; Larese, J.Z.

1998-06-14T23:59:59.000Z

238

CALIFORNIA ENERGY Advanced Variable Air Volume  

E-Print Network [OSTI]

on VAV airside system design. Total large office building energy savings of up to 12% are achievable and controls for commercial buildings and in performing peer reviews of mechanical designs of commercial was developed as part of the Integrated Energy Systems -- Productivity and Building Science project, a Public

239

Advanced Energy Retrofit Guide: Practical Ways to Improve Energy Performance; Grocery Stores (Revised) (Book)  

SciTech Connect (OSTI)

The U.S. Department of Energy developed the Advanced Energy Retrofit Guides (AERGs) to provide specific methodologies, information, and guidance to help energy managers and other stakeholders successfully plan and execute energy efficiency improvements. Detailed technical discussion is fairly limited in these guides. Instead, we emphasize actionable information, practical methodologies, diverse case studies, and unbiased evaluations of the most promising retrofit measures for each building type. A series of AERGs is under development, addressing key segments of the commercial building stock. Grocery stores were selected as one of the highest priority sectors, because they represent one of the most energy-intensive market segments.

Hendron, B.

2013-07-01T23:59:59.000Z

240

Energy Efficiency Project Development  

SciTech Connect (OSTI)

The International Utility Efficiency Partnerships, Inc. (IUEP) has been a leader among the industry groups that have supported voluntary initiatives to promote international energy efficiency projects and address global climate change. The IUEP maintains its leadership by both supporting international greenhouse gas (GHG) reduction projects under the auspices of the U.S. Department of Energy (DOE) and by partnering with U.S. and international organizations to develop and implement strategies and specific energy efficiency projects. The goals of the IUEP program are to (1) provide a way for U.S. industry to maintain a leadership role in international energy efficiency infrastructure projects; (2) identify international energy project development opportunities to continue its leadership in supporting voluntary market-based mechanisms to reduce GHG emissions; and (3) demonstrate private sector commitment to voluntary approaches to global climate issues. The IUEP is dedicated to identifying, promoting, managing, and assisting in the registration of international energy efficiency projects that result in demonstrated voluntary reductions of GHG emissions. This Final Technical Report summarizes the IUEP's work in identifying, promoting, managing, and assisting in development of these projects and IUEP's effort in creating international cooperative partnerships to support project development activities that develop and deploy technologies that (1) increase efficiency in the production, delivery and use of energy; (2) increase the use of cleaner, low-carbon fuels in processing products; and (3) capture/sequester carbon gases from energy systems. Through international cooperative efforts, the IUEP intends to strengthen partnerships for energy technology innovation and demonstration projects capable of providing cleaner energy in a cost-effective manner. As detailed in this report, the IUEP met program objectives and goals during the reporting period January 1, 2001 through December 31, 2002. At the request of the DOE, we have also included in this report additional activities during the reporting period January, 1999 through January, 2001. This additional information had been reported earlier in the Final Technical Reports that summarized activities undertaken in those earlier periods.

IUEP

2004-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "developing advanced energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Advanced Manufacturing for a U.S. Clean Energy Economy (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet is an overview of the U.S. Department of Energy's Advanced Manufacturing Office. Manufacturing is central to our economy, culture, and history. The industrial sector produces 11% of U.S. gross domestic product (GDP), employs 12 million people, and generates 57% of U.S. export value. However, U.S. industry consumes about one-third of all energy produced in the United States, and significant cost-effective energy efficiency and advanced manufacturing opportunities remain unexploited. As a critical component of the National Innovation Policy for Advanced Manufacturing, the U.S. Department of Energy's (DOE's) Advanced Manufacturing Office (AMO) is focused on creating a fertile environment for advanced manufacturing innovation, enabling vigorous domestic development of transformative manufacturing technologies, promoting coordinated public and private investment in precompetitive advanced manufacturing technology infrastructure, and facilitating the rapid scale-up and market penetration of advanced manufacturing technologies.

Not Available

2012-03-01T23:59:59.000Z

242

Characterization and Development of Advanced Heat Transfer Technologies (Presentation)  

SciTech Connect (OSTI)

This presentation gives an overview of the status and FY09 accomplishments for the NREL thermal management research project 'Characterization and Development of Advanced Heat Transfer Technologies'.

Kelly, K.

2009-05-01T23:59:59.000Z

243

Advanced Boost System Development for Diesel HCCI/LTC Application...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ace037sun2011o.pdf More Documents & Publications Advanced Boost System Development for Diesel...

244

Development of Advanced Diesel Particulate Filtration (DPF) Systems...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

(ANLCorningCaterpillar CRADA) Development of Advanced Diesel Particulate Filtration (DPF) Systems (ANLCorningCaterpillar CRADA) ace22lee.pdf More Documents & Publications...

245

Development of Advanced High Temperature Fuel Cell Membranes  

Broader source: Energy.gov [DOE]

Presentation on Development of Advanced High Temperature Fuel Cell Membranes to the High Temperature Membrane Working Group Meeting held in Arlington, Virginia, May 26,2005.

246

Development and Validation of an Advanced Stimulation Prediction...  

Open Energy Info (EERE)

of created fractures." State Colorado Objectives Develop and validate an advanced computer model that can be used in the planning and design of stimulation techniques to create...

247

Advanced Boost System Development for Diesel HCCI/LTC Application...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ace037sun2012o.pdf More Documents & Publications Advanced Boost System Development for Diesel...

248

Alternative Energy Development and China's Energy Future  

E-Print Network [OSTI]

to 2005 Renewable Energy Law The unprecedented growth ofhighlights that growth in renewable energy development inthe fastest growth of 106% in renewable energy capacity from

Zheng, Nina

2012-01-01T23:59:59.000Z

249

Energy Department Announces $35 Million to Advance Fuel Cell...  

Energy Savers [EERE]

5 Million to Advance Fuel Cell and Hydrogen Technologies Energy Department Announces 35 Million to Advance Fuel Cell and Hydrogen Technologies March 3, 2015 - 11:30am Addthis The...

250

Department of Energy to Invest Nearly $18 Million for Advanced...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Nearly 18 Million for Advanced Biofuels User Facility Department of Energy to Invest Nearly 18 Million for Advanced Biofuels User Facility March 31, 2010 - 12:00am Addthis...

251

Advanced energy projects; FY 1995 research summaries  

SciTech Connect (OSTI)

The AEP Division supports projects to explore novel energy-related concepts which are typically at an early stage of scientific development, and high-risk, exploratory concepts. Topical areas presently receiving support are: novel materials for energy technology, renewable and biodegradable materials, exploring uses of new scientific discoveries, alternate pathways to energy efficiency, alternative energy sources, and innovative approaches to waste treatment and reduction. There were 46 research projects during FY 1995; ten were initiated during that fiscal year. The summaries are separated into grant and laboratory programs, and small business innovation research programs.

NONE

1995-09-01T23:59:59.000Z

252

(Pittsburgh Energy Technology Center): Quarterly technical progress report for the period ending June 30, 1987. [Advanced Coal Research and Technology Development Programs  

SciTech Connect (OSTI)

Research programs on coal and coal liquefaction are presented. Topics discussed are: coal science, combustion, kinetics, surface science; advanced technology projects in liquefaction; two stage liquefaction and direct liquefaction; catalysts of liquefaction; Fischer-Tropsch synthesis and thermodynamics; alternative fuels utilization; coal preparation; biodegradation; advanced combustion technology; flue gas cleanup; environmental coordination, and technology transfer. Individual projects are processed separately for the data base. (CBS)

None

1988-02-01T23:59:59.000Z

253

Alternative Energy Development and China's Energy Future  

E-Print Network [OSTI]

development and transmission planning between the State Council, State Electricity Regulatory Council, grid companies, renewable energy developers and local

Zheng, Nina

2012-01-01T23:59:59.000Z

254

Advanced concepts for controlling energy surety microgrids.  

SciTech Connect (OSTI)

Today, researchers, engineers, and policy makers are seeking ways to meet the world's growing demand for energy while addressing critical issues such as energy security, reliability, and sustainability. Many believe that distributed generators operating within a microgrid have the potential to address most of these issues. Sandia National Laboratories has developed a concept called energy surety in which five of these 'surety elements' are simultaneously considered: energy security, reliability, sustainability, safety, and cost-effectiveness. The surety methodology leads to a new microgrid design that we call an energy surety microgrid (ESM). This paper discusses the unique control requirement needed to produce a microgrid system that has high levels of surety, describes the control system from the most fundamental level through a real-world example, and discusses our ideas and concepts for a complete system.

Menicucci, David F.; Ortiz-Moyet, Juan

2011-05-01T23:59:59.000Z

255

Advanced Research Projects Agency - Energy | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombinedDepartment2015Services » Advanced Research Projects Agency - Energy

256

Development and Deployment of an Advanced Wind Forecasting Technique  

E-Print Network [OSTI]

findings. Part 2 addresses how operators of wind power plants and power systems can incorporate advanced the output of advanced wind energy forecasts into decision support models for wind power plant and power and applications of power market simulation models around the world. Argonne's software tools are used extensively

Kemner, Ken

257

Advanced Energy Retrofit Guide: Practical Ways to Improve Energy Performance, K-12 Schools (Book)  

SciTech Connect (OSTI)

The U.S. Department of Energy developed the K-12 Advanced Energy Retrofit Guide to provide specific methodologies, information, and guidance to help energy managers and other stakeholders plan and execute energy efficiency improvements. We emphasize actionable information, practical methodologies, diverse case studies, and unbiased evaluation of the most promising retrofit measure for each building type. K-12 schools were selected as one of the highest priority building sectors, because schools affect the lives of most Americans. They also represent approximately 8% of the energy use and 10% of the floor area in commercial buildings.

Not Available

2013-02-01T23:59:59.000Z

258

Renewable Energy Economic Development  

E-Print Network [OSTI]

Renewable Energy Economic Development Dick Sheehy & Nate Monosoff, CH2M HILL March, 2010 #12;Contents 1. Who is CH2M HILL? 2. Why Do We Need Renewables? 3. Where Is The Wind Blowing? 4. Where Is The Sun Shining? 5. How To Catch Some Rays? 6. Renewable Related 2 Proprietary & Confidential #12;Where

259

Advanced Lighting Program Development (BG9702800) Final Report  

SciTech Connect (OSTI)

The report presents a long-range plan for a broad-based, coordinated research, development and market transformation program for reducing the lighting energy intensities in commercial and residential buildings in California without compromising lighting quality. An effective program to advance lighting energy efficiency in California must be based on an understanding that lighting is a mature field and the lighting industry has developed many specialized products that meet a wide variety of light needs for different building types. Above all else, the lighting field is diverse and there are applications for a wide range of lighting products, systems, and strategies. Given the range of existing lighting solutions, an effective energy efficient lighting research portfolio must be broad-based and diverse to match the diversity of the lighting market itself. The belief that there is one solution--a magic bullet, such as a better lamp, for example--that will propel lighting efficiency across all uses to new heights is, in the authors' opinion, an illusion. A multi-path program is the only effective means to raising lighting efficiency across all lighting applications in all building types. This report presents a list of 27 lighting technologies and concepts (key activities) that could form the basis of a coordinated research and market transformation plan for significantly reducing lighting energy intensities in California buildings. The total 27 key activities into seven broad classes as follows: Light sources; Ballasts; Luminaires; Lighting Controls; Lighting Systems in Buildings; Human Factors and Education. Each of the above technology classes is discussed in terms of background, key activities, and the energy savings potential for the state. The report concludes that there are many possibilities for targeted research, development, and market transformation activities across all sectors of the building lighting industry. A concerted investment by the state to foster efficiency improvements in lighting systems in commercial and residential buildings would have a major positive impact on energy use and environmental quality in California.

Rubinstein, Francis; Johnson, Steve

1998-02-01T23:59:59.000Z

260

Department of Energy Announces Fellows Program for Advance Research...  

Broader source: Energy.gov (indexed) [DOE]

and entrepreneurs as we continue to look for creative and inventive approaches to transform the global energy landscape while advancing America's technology leadership." The...

Note: This page contains sample records for the topic "developing advanced energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Energy Secretary Moniz Unveils More Than $55 Million to Advance...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to make plug-in electric vehicles as affordable to own and operate as today's gasoline-powered vehicles by 2022. "Energy Department investments in advanced vehicle technologies...

262

Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software...  

Broader source: Energy.gov (indexed) [DOE]

Software Verification and Validation (V&V) Plan Requirements Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software Verification and Validation (V&V) Plan Requirements...

263

adVancing frontiers in energy and  

E-Print Network [OSTI]

new supplies of clean water and electricity. Ultimately, these and other energy and environment's electricity infrastructure operations center helps researchers develop and test new knowledge and tools with other national laboratories, private industry, and universities to deliver the most effective solutions

264

Wireless Sensor Network for Advanced Energy Management Solutions  

SciTech Connect (OSTI)

Eaton has developed an advanced energy management solution that has been deployed to several Industries of the Future (IoF) sites. This demonstrated energy savings and reduced unscheduled downtime through an improved means for performing predictive diagnostics and energy efficiency estimation. Eaton has developed a suite of online, continuous, and inferential algorithms that utilize motor current signature analysis (MCSA) and motor power signature analysis (MPSA) techniques to detect and predict the health condition and energy usage condition of motors and their connect loads. Eaton has also developed a hardware and software platform that provided a means to develop and test these advanced algorithms in the field. Results from lab validation and field trials have demonstrated that the developed advanced algorithms are able to detect motor and load inefficiency and performance degradation. Eaton investigated the performance of Wireless Sensor Networks (WSN) within various industrial facilities to understand concerns about topology and environmental conditions that have precluded broad adoption by the industry to date. A Wireless Link Assessment System (WLAS), was used to validate wireless performance under a variety of conditions. Results demonstrated that wireless networks can provide adequate performance in most facilities when properly specified and deployed. Customers from various IoF expressed interest in applying wireless more broadly for selected applications, but continue to prefer utilizing existing, wired field bus networks for most sensor based applications that will tie into their existing Computerized Motor Maintenance Systems (CMMS). As a result, wireless technology was de-emphasized within the project, and a greater focus placed on energy efficiency/predictive diagnostics. Commercially available wireless networks were only utilized in field test sites to facilitate collection of motor wellness information, and no wireless sensor network products were developed under this project. As an outgrowth of this program, Eaton developed a patented energy-optimizing drive control technology that is complementary to a traditional variable frequency drives (VFD) to enable significant energy savings for motors with variable torque applications, such as fans, pumps, and compressors. This technology provides an estimated energy saving of 2%-10% depending on the loading condition, in addition to the savings obtained from a traditional VFD. The combination of a VFD with the enhanced energy-optimizing controls will provide significant energy savings (10% to 70% depending on the load and duty cycle) for motors that are presently connected with across the line starters. It will also provide a more favorable return on investment (ROI), thus encouraging industries to adopt VFDs for more motors within their facilities. The patented technology is based on nonintrusive algorithms that estimate the instantaneous operating efficiency and motor speed and provide active energy-optimizing control of a motor, using only existing voltage and current sensors. This technology is currently being commercialized by Eaton’s Industrial Controls Division in their next generation motor control products. Due to the common nonintrusive and inferential nature of various algorithms, this same product can also include motor and equipment condition monitoring features, providing the facility owner additional information to improve process uptime and the associated energy savings. Calculations estimated potential energy savings of 261,397GWh/Yr ($15.7B/yr), through retrofitting energy-optimizing VFDs into existing facilities, and incorporating the solution into building equipment sold by original equipment manufacturers (OEMs) and installed by mechanical and electrical contractors. Utilizing MCSA and MPSA for predictive maintenance (PM) of motors and connected equipment reduces process downtime cost and the cost of wasted energy associated with shutting down and restarting the processes. Estimated savings vary depending on the industry segment and equi

Peter J. Theisen; Bin Lu, Charles J. Luebke

2009-09-23T23:59:59.000Z

265

Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program Implementation  

SciTech Connect (OSTI)

The goal of this activity was to carry out program implementation and technical projects in support of the ARRA-funded Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program of the DOE Advanced Manufacturing Office (AMO) (formerly the Industrial Technologies Program (ITP)). The work was organized into eight projects in four materials areas: strategic materials, structural materials, energy storage and production materials, and advanced/field/transient processing. Strategic materials included work on titanium, magnesium and carbon fiber. Structural materials included work on alumina forming austentic (AFA) and CF8C-Plus steels. The advanced batteries and production materials projects included work on advanced batteries and photovoltaic devices. Advanced/field/transient processing included work on magnetic field processing. Details of the work in the eight projects are available in the project final reports which have been previously submitted.

Liby, Alan L [ORNL; Rogers, Hiram [ORNL

2013-10-01T23:59:59.000Z

266

Advanced Critical Advanced Energy Retrofit Education and Training and  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EERE Blog Posts1-034 Advance Patent WaiverLeslie Pezzullo Office of

267

Advanced Diesel Engine and Aftertreatment Technology Development...  

Broader source: Energy.gov (indexed) [DOE]

Improvement DEER August 24 - 28, 2003 3 System Development Methodology Control model Engine model Simulation Urea Injector SCR Catalyst CSF Steady State Modal Development...

268

Sandia National Laboratories: advanced energy generation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia, NREL Release Wave EnergyLinksZparts of thecontrols Advancedenergy

269

Cooperative Research and Development for Advanced Microturbines Program on Advanced Integrated Microturbine System  

SciTech Connect (OSTI)

The Advanced Integrated Microturbine Systems (AIMS) project was kicked off in October of 2000 to develop the next generation microturbine system. The overall objective of the project was to develop a design for a 40% electrical efficiency microturbine system and demonstrate many of the enabling technologies. The project was initiated as a collaborative effort between several units of GE, Elliott Energy Systems, Turbo Genset, Oak Ridge National Lab and Kyocera. Since the inception of the project the partners have changed but the overall direction of the project has stayed consistent. The project began as a systems study to identify design options to achieve the ultimate goal of 40% electrical efficiency. Once the optimized analytical design was identified for the 40% system, it was determined that a 35% efficient machine would be capable of demonstrating many of the advanced technologies within the given budget and timeframe. The items that would not be experimentally demonstrated were fully produced ceramic parts. However, to understand the requirements of these ceramics, an effort was included in the project to experimentally evaluate candidate materials in representative conditions. The results from this effort would clearly identify the challenges and improvement required of these materials for the full design. Following the analytical effort, the project was dedicated to component development and testing. Each component and subsystem was designed with the overall system requirements in mind and each tested to the fullest extent possible prior to being integrated together. This method of component development and evaluation helps to minimize the technical risk of the project. Once all of the components were completed, they were assembled into the full system and experimentally evaluated.

Michael J. Bowman

2007-05-30T23:59:59.000Z

270

Advanced turbine systems phase II - conceptual design and product development. Final report, August 1993--July 1996  

SciTech Connect (OSTI)

The National Energy Strategy (NES) calls for a balanced program of greater energy efficiency, use of alternative fuels, and the environmentally responsible development of all U.S. energy resources. Consistent with the NES, a Department of Energy (DOE) program has been created to develop Advanced Turbine Systems (ATS). The technical ATS requirements are based upon two workshops held in Greenville, SC that were sponsored by DOE and hosted by Clemson University. The objective of this 8-year program, managed jointly by DOE`s Office of Fossil Energy, and, Office of Conservation and Renewable Energy, is to develop natural-gas-fired base load power plants that will have cycle efficiencies greater than 60%, lower heating value (LHV), be environmentally superior to current technology, and also be cost competitive. The program will include work to transfer advanced technology to the coal- and biomass-fueled systems being developed in other DOE programs.

NONE

1996-10-01T23:59:59.000Z

271

Sandia National Laboratories: Advanced Research & Development  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generator Modeling Radar Friendly Blades Special Programs Techno-Economic Modeling, Analysis, and Support Analysis, Modeling, Cost of Energy, and Policy Impact: Wind Vision 2014...

272

Energy and Development Gordon Mackenzie  

E-Print Network [OSTI]

Energy and Development Gordon Mackenzie Energy Programme Coordinator UNEP RisÞ Centre #12;Energy · Nordic Arctic energy network #12;African Rural Energy Enterprise Development - AREED ENDA MFC KITE TaTEDO CEEEZ E+Co Africa E+Co NJ UNEP Paris URC UN Foundation Sida Others Demonstrating that needed energy

273

advanced energy design: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

advanced energy design First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Advances in Energy Reduction in...

274

advanced energy transport: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

advanced energy transport First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Energy Conversion Advanced...

275

Advanced Energy Conversion LLC AEC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasil Jump to:Iowa ASHRAEAddis, LA)Adobe SolarAdvanced EnergyLLC

276

Advanced Carbon Aerogels for Energy Applications - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the Building TechnologiesS1!4T opAddress:Adolphus L.ProgramAdvanced

277

Alternative Energy Development and China's Energy Future  

E-Print Network [OSTI]

for Geothermal Power Development energy development. Geothermal Power Technology OverviewChina, the binary cycle geothermal power plant is assumed to

Zheng, Nina

2012-01-01T23:59:59.000Z

278

Advanced Combustion and Fuels | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Combustion and Fuels Advanced Combustion and Fuels 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting...

279

Characterization and Development of Advanced Heat Transfer Technologie...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. ape11kelly.pdf More Documents & Publications Characterization and Development of Advanced Heat...

280

PPPL lends General Electric a hand in developing an advanced...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

lends General Electric a hand in developing an advanced power switch By John Greenwald August 28, 2014 Tweet Widget Google Plus One Share on Facebook Laboratory test of a...

Note: This page contains sample records for the topic "developing advanced energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Advanced boost system development for diesel HCCI/LTC applications...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. ace36sun.pdf More Documents & Publications Advanced boost system development for diesel HCCILTC...

282

SURVEY OF ADVANCED HEAT PUMP DEVELOPMENTS FOR SPACE CONDITIONING* Phillip D. Fairchild  

E-Print Network [OSTI]

#12;SURVEY OF ADVANCED HEAT PUMP DEVELOPMENTS FOR SPACE CONDITIONING* Phillip D. Fairchild Energy Division Oak Ridge National Laboratory it*~~ ~Oak Ridge, Tennessee ABSTRACT Because of the heat pump energy research organiza- tions. This paper presents a survey of heat pump RD&D projects with special

Oak Ridge National Laboratory

283

Technology Readiness Levels for Advanced Nuclear Fuels and Materials Development  

SciTech Connect (OSTI)

The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. The TRL process has been developed and successfully used by the Department of Defense (DOD) for development and deployment of new technology and systems for defense applications. In addition, NASA has also successfully used the TRL process to develop and deploy new systems for space applications. Advanced nuclear fuels and materials development is a critical technology needed for closing the nuclear fuel cycle. Because the deployment of a new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management and tracking tool. This report provides definition of the technology readiness level assessment process as defined for use in assessing nuclear fuel technology development for the Advanced Fuel Campaign (AFC).

Jon Carmack

2014-01-01T23:59:59.000Z

284

Department of Energy Issues Final $12.5 Billion Advanced Nuclear...  

Energy Savers [EERE]

Final 12.5 Billion Advanced Nuclear Energy Loan Guarantee Solicitation Department of Energy Issues Final 12.5 Billion Advanced Nuclear Energy Loan Guarantee Solicitation December...

285

Advanced Power Electronics Interfaces for Distributed Energy Workshop Summary: August 24, 2006, Sacramento, California  

SciTech Connect (OSTI)

The Advanced Power Electronics Interfaces for Distributed Energy Workshop, sponsored by the California Energy Commission Public Interest Energy Research program and organized by the National Renewable Energy Laboratory, was held Aug. 24, 2006, in Sacramento, Calif. The workshop provided a forum for industry stakeholders to share their knowledge and experience about technologies, manufacturing approaches, markets, and issues in power electronics for a range of distributed energy resources. It focused on the development of advanced power electronic interfaces for distributed energy applications and included discussions of modular power electronics, component manufacturing, and power electronic applications.

Treanton, B.; Palomo, J.; Kroposki, B.; Thomas, H.

2006-10-01T23:59:59.000Z

286

Advanced Technology Development and Mitigation | National Nuclear...  

National Nuclear Security Administration (NNSA)

Technology Development and Mitigation This sub-program includes laboratory code and computer engineering and science projects that pursue long-term simulation and computing goals...

287

Funding Opportunity: Technology Advancement for Rapid Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

an opportunity for potential applicants to begin developing partnerships and begin the process of gathering data to prepare their application. GTP's goal is to address the high...

288

INITIAL IRRADIATION OF THE FIRST ADVANCED GAS REACTOR FUEL DEVELOPMENT AND QUALIFICATION EXPERIMENT IN THE ADVANCED TEST REACTOR  

SciTech Connect (OSTI)

The United States Department of Energy’s Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating eight separate tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These AGR fuel experiments will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The experiments, which will each consist of six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control for each capsule. The swept gas will also have on-line fission product monitoring to track performance of the fuel in each individual capsule during irradiation.

S. Blaine Grover; David A. Petti

2007-09-01T23:59:59.000Z

289

The Joint BioEnergy Institute (JBEI): Developing New Biofuels by Overcoming Biomass Recalcitrance  

E-Print Network [OSTI]

Bioenerg. Res. (010-9086-2 The Joint BioEnergy Institute (JBEI): DevelopingThe mission of the Joint BioEnergy Institute is to advance

Scheller, Henrik Vibe; Singh, Seema; Blanch, Harvey; Keasling, Jay D.

2010-01-01T23:59:59.000Z

290

Advanced Materials for Sustainable, Clean Energy Future  

SciTech Connect (OSTI)

The current annual worldwide energy consumption stands at about 15 terawatts (TW, x1012 watts). Approximately 80% of it is supplied from fossil fuels: oil (34 %), coal (25 %), and natural gas (21 %). Biomass makes up 8% of the energy supply, nuclear energy accounts for 6.5 %, hydropower has a 2% share and other technologies such as wind and solar make up the rest. Even with aggressive conservation and new higher efficiency technology development, worldwide energy demand is predicted to double to 30 TW by 2050 and triple to 46 TW by the end of the century. Meanwhile oil and natural gas production is predicted to peak over the next few decades. Abundant coal reserves may maintain the current consumption level for longer period of time than the oil and gas. However, burning the fossil fuels leads to a serious environmental consequence by emitting gigantic amount of green house gases, particularly CO2 emissions which are widely considered as the primary contributor to global warming. Because of the concerns over the greenhouse gas emission, many countries, and even some states and cities in the US, have adopted regulations for limiting CO2 emissions. Along with increased CO2 regulations, is an emerging trend toward carbon “trading,” giving benefits to low “carbon footprint” industries, while making higher emitting industries purchase carbon “allowances”. There have been an increasing number of countries and states adopting the trade and cap systems.

Yang, Zhenguo

2009-04-01T23:59:59.000Z

291

Developments and advances in nonlinear terahertz spectroscopy  

E-Print Network [OSTI]

Nonlinear terahertz (THz) spectroscopy is a rapidly developing field, which is concerned with driving and observing nonlinear material responses in the THz range of the electromagnetic spectrum. In this thesis, I present ...

Brandt, Nathaniel Curran

2014-01-01T23:59:59.000Z

292

Advanced Redox Flow Batteries for Stationary Electrical Energy Storage  

SciTech Connect (OSTI)

This report describes the status of the advanced redox flow battery research being performed at Pacific Northwest National Laboratories for the U.S. Department of Energy’s Energy Storage Systems Program. The Quarter 1 of FY2012 Milestone was completed on time. The milestone entails completion of evaluation and optimization of single cell components for the two advanced redox flow battery electrolyte chemistries recently developed at the lab, the all vanadium (V) mixed acid and V-Fe mixed acid solutions. All the single cell components to be used in future kW-scale stacks have been identified and optimized in this quarter, which include solution electrolyte, membrane or separator; carbon felt electrode and bi-polar plate. Varied electrochemical, chemical and physical evaluations were carried out to assist the component screening and optimization. The mechanisms of the battery capacity fading behavior for the all vanadium redox flow and the Fe/V battery were discovered, which allowed us to optimize the related cell operation parameters and continuously operate the system for more than three months without any capacity decay.

Li, Liyu; Kim, Soowhan; Xia, Guanguang; Wang, Wei; Yang, Zhenguo

2012-03-19T23:59:59.000Z

293

Advanced Engine Development | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the Building TechnologiesS1!4TCombustion

294

Bringing Advanced Computational Techniques to Energy Research  

SciTech Connect (OSTI)

Please find attached our final technical report for the BACTER Institute award. BACTER was created as a graduate and postdoctoral training program for the advancement of computational biology applied to questions of relevance to bioenergy research.

Mitchell, Julie C

2012-11-17T23:59:59.000Z

295

Advanced Photon Source Upgrade Project - Energy  

ScienceCinema (OSTI)

An upgrade to the Advanced Photon Source (announced by DOE - http://go.usa.gov/ivZ) will help scientists better understand complex environments such as in catalytic reactions.

Gibson, Murray; Chamberlain, Jeff; Young, Linda

2013-04-19T23:59:59.000Z

296

Advanced energy system program. Final report, June 1986-April 1990  

SciTech Connect (OSTI)

The objectives of this program are to design, develop and demonstrate a natural-gas-fueled, highly recuperated, 50 kW Brayton-cycle cogeneration system for commercial, institutional, and multifamily residential applications. Marketing studies have shown that this Advanced Energy System (AES), with its many unique and cost-effective features, has the potential to offer significant reductions in annual electrical and thermal energy costs to the consumer. Specific advantages of the system that result in low cost of ownership are high electrical efficiency (30%, HHV), low maintenance, high reliability and long life (20 years). Significant technical features include: (1) an integral turbogenerator with shaft-speed permanent magnet generator; (2) a rotating assembly supported by compliant foil air bearings; (3) a formed-tubesheet plate/fin recuperator with 91% effectiveness; and (4) a bi-directional power conditioner to utilize the generator for system startup. The planned introduction of catalytic combustion will further enhance the economic and ecological attractiveness.

Trester, K.

1990-12-01T23:59:59.000Z

297

Sandia National Laboratories: Advanced Bit Development  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 ResourceAwardsSafeguardsEngineersSandia/New

298

NREL and Industry Advance Low-Cost Solar Water Heating R&D (Fact Sheet), NREL Highlights in Research & Development, NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National Nuclearover two yearsNPResults giveSimulatorand Rhotech

299

An Advanced Platform for Development and Evaluation of Grid Interconnection Systems Using Hardware-in-the-Loop (Poster), NREL (National Renewable Energy Laboratory)  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: Crystal structureComposite JC-118794Argonne NationalAUTHORSAlgal

300

Development of an Advanced Fine Coal Suspension Dewatering Process  

SciTech Connect (OSTI)

With the advancement in fine coal cleaning technology, recovery of fine coal (minus 28 mesh) has become an attractive route for the U.S. coal industry. The clean coal recovered using the advanced flotation technology i.e. column flotation, contains on average 20% solids and 80% water, with an average particle size of 35 microns. Fine coal slurry is usually dewatered using a vacuum dewatering technique, providing a material with about 25 to 30 percent moisture. The process developed in this project will improve dewatering of fine (0.6mm) coal slurry to less than 20 percent moisture. Thus, thermal drying of dewatered wet coal will be eliminated. This will provide significant energy savings for the coal industry along with some environmental benefits. A 1% increase in recovery of coal and producing a filter cake material of less than 20 % moisture will amount to energy savings of 1900 trillion Btu/yr/unit. In terms of the amount of coal it will be about 0.8% of the total coal being used in the USA for electric power generation. It is difficult to dewater the fine clean coal slurry to about 20% moisture level using the conventional dewatering techniques. The finer the particle, the larger the surface area and thus, it retains large amounts of moisture on the surface. The coal industry has shown some reluctance in using the advanced coal recovery techniques, because of unavailability of an economical dewatering technique which can provide a product containing less than 20% moisture. The U.S.DOE and Industry has identified the dewatering of coal fines as a high priority problem. The goal of the proposed program is to develop and evaluate a novel two stage dewatering process developed at the University of Kentucky, which involves utilization of two forces, namely, vacuum and pressure for dewatering of fine coal slurries. It has been observed that a fine coal filter cake formed under vacuum has a porous structure with water trapped in the capillaries. When this porous cake is subjected to pressure for a short time, the free water present is released from the filter cake. Laboratory studies have shown that depending on the coal type a filter cake containing about 15% moisture could be obtained using the two-stage filtration technique. It was also noted that applying intermittent breaks in vacuum force during cake formation, which disturbed the cake structure, helped in removing moisture from the filter cakes. In this project a novel approach of cleaning coal using column flotation was also developed. With this approach the feed capacity of the column is increased significantly, and the column was also able to recover coarser size coal which usually gets lost in the process. The outcome of the research benefits the coal industry, utility industry, and indirectly the general public. The benefits can be counted in terms of clean energy, cleaner environment, and lower cost power.

B. K. Parekh; D. P. Patil

2008-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "developing advanced energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network [OSTI]

Energy Research and Development Division FINAL PROJECT REPORT ADVANCED CHARACTERIZATION OF WIND RESOURCES IN SELECTED FOCUS AREAS OF CALIFORNIA Prepared for: California Energy Commission Prepared by: AWS-06-024 Prepared for: California Energy Commission Mike Kane Contract Manager Linda Spiegel Office Manager Energy

302

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network [OSTI]

Energy Research and Development Division FINAL PROJECT REPORT DEMONSTRATION OF ADVANCED-2013-147 Prepared for: California Energy Commission Prepared by: Electric Power Group, LLC #12;PREPARED BY: Primary: California Energy Commission Jamie Patterson Contract Manager Fernando Pina Office Manager Energy Systems

303

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network [OSTI]

Energy Research and Development Division FINAL PROJECT REPORT ADVANCED POWER ELECTRONICS INTERFACE-2014-006 Prepared for: California Energy Commission Prepared by: National Renewable Energy Laboratory #12;PREPARED Harrison National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 Contract Number

304

ADVANCED TURBINE SYSTEM CONCEPTUAL DESIGN AND PRODUCT DEVELOPMENT - Final Report  

SciTech Connect (OSTI)

Asea Brown Boveri (ABB) has completed its technology based program. The results developed under Work Breakdown Structure (WBS) 8, concentrated on technology development and demonstration have been partially implemented in newer turbine designs. A significant improvement in heat rate and power output has been demonstrated. ABB will use the knowledge gained to further improve the efficiency of its Advanced Cycle System, which has been developed and introduced into the marked out side ABB's Advanced Turbine System (ATS) activities. The technology will lead to a power plant design that meets the ATS performance goals of over 60% plant efficiency, decreased electricity costs to consumers and lowest emissions.

Albrecht H. Mayer

2000-07-15T23:59:59.000Z

305

Department of Energy Announces Fellows Program for Advance Research Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA - U.S.Development Projects | Department ofDepartmentSouth

306

GEOTHERMAL ENERGY DEVELOPMENT Paul Kruger  

E-Print Network [OSTI]

SGP-TR 9 * GEOTHERMAL ENERGY DEVELOPMENT Paul Kruger C i v i l Engineering Department Stanford on an aggressive program t o develop its indigenous resources of geothermal energy. For more than a decade, geothermal energy has been heralded as one of the more promising forms of energy a l t e r n a t e t o o i l

Stanford University

307

Advanced Condenser Boosts Geothermal Power Plant Output (Fact Sheet), The Spectrum of Clean Energy Innovation  

SciTech Connect (OSTI)

When power production at The Geysers geothermal power complex began to falter, the National Renewable Energy Laboratory (NREL) stepped in, developing advanced condensing technology that dramatically boosted production efficiency - and making a major contribution to the effective use of geothermal power. NREL developed advanced direct-contact condenser (ADCC) technology to condense spent steam more effectively, improving power production efficiency in Unit 11 by 5%.

Not Available

2010-12-01T23:59:59.000Z

308

Advanced Turbo-Charging Research and Development  

SciTech Connect (OSTI)

The objective of this project is to conduct analysis, design, procurement and test of a high pressure ratio, wide flow range, and high EGR system with two stages of turbocharging. The system needs to meet the stringent 2010MY emissions regulations at 20% + better fuel economy than its nearest gasoline competitor while allowing equivalent vehicle launch characteristics and higher torque capability than its nearest gasoline competitor. The system will also need to meet light truck/ SUV life requirements, which will require validation or development of components traditionally used only in passenger car applications. The conceived system is termed 'seriessequential turbocharger' because the turbocharger system operates in series at appropriate times and also sequentially when required. This is accomplished using intelligent design and control of flow passages and valves. Components of the seriessequential system will also be applicable to parallel-sequential systems which are also expected to be in use for future light truck/SUV applications.

None

2008-02-27T23:59:59.000Z

309

Vortex Hydro Energy (TRL 5 6 System) - Advanced Integration of...  

Broader source: Energy.gov (indexed) [DOE]

- PB500, 500 kW Utility-Scale PowerBuoy Project WaveBob (TRL 5 6 System) - Advanced Wave Energy Conversion Project Water Power Program About the Program Research &...

310

Advanced Offshore Wind Tech: Accelerating New Opportunities for Clean Energy  

Office of Energy Efficiency and Renewable Energy (EERE)

The Energy Department today announced the selection of three projects that aim to advance the offshore wind industry and lower the cost of offshore wind technologies. Learn more about these technological innovations.

311

Sandia National Laboratories: Advanced Controls of Wave Energy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New Facility Tool at SWiFT Makes Rotor Work More Efficient Advanced Controls of Wave Energy Converters May Increase Power Capture Up to 330% On January 21, 2014, in...

312

FACT SHEET: Draft Advanced Fossil Energy Solicitation to Support...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Fossil Energy Solicitation to Support Reductions in Greenhouse Gas and Other Pollution July 2, 2013 - 12:16pm Addthis What are the key facts? This solicitation will...

313

Live Webcast on Recent Wind Energy Technology Advances  

Broader source: Energy.gov [DOE]

The Energy Department will present a live webcast titled “Recent Wind Technology Advances” on April 16, 2014, from 3:00 to 4:00 p.m. Eastern Standard Time.

314

Advanced Financing Models Webinar | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccess to OUO Access to OUO DOE MMeeting10-006 AdvanceAdvanced

315

Cardiff University Distinguished Lecture Symposium Advances in Solar Energy  

E-Print Network [OSTI]

Cardiff University Distinguished Lecture Symposium Advances in Solar Energy Thursday 22nd March prospects for inorganic thin film photovoltaic solar cells for large scale energy generation 2:55 Dr Emyr:50 Professor James Durrant (Imperial College London, England) Photochemical approaches to solar energy

Martin, Ralph R.

316

Advanced Materials Development Program: Ceramic Technology for Advanced Heat Engines program plan, 1983--1993  

SciTech Connect (OSTI)

The purpose of the Ceramic Technology for Advanced Heat Engines (CTAHE) Project is the development of an industrial technology base capable of providing reliable and cost-effective high temperature ceramic components for application in advanced heat engines. There is a deliberate emphasis on industrial'' in the purpose statement. The project is intended to support the US ceramic and engine industries by providing the needed ceramic materials technology. The heat engine programs have goals of component development and proof-of-concept. The CTAHE Project is aimed at developing generic basic ceramic technology and does not involve specific engine designs and components. The materials research and development efforts in the CTAHE Project are focused on the needs and general requirements of the advanced gas turbine and low heat rejection diesel engines. The CTAHE Project supports the DOE Office of Transportation Systems' heat engine programs, Advanced Turbine Technology Applications (ATTAP) and Heavy Duty Transport (HDT) by providing the basic technology required for development of reliable and cost-effective ceramic components. The heat engine programs provide the iterative component design, fabrication, and test development logic. 103 refs., 18 figs., 11 tabs.

Not Available

1990-07-01T23:59:59.000Z

317

Advanced Turbine Systems (ATS) program conceptual design and product development  

SciTech Connect (OSTI)

Achieving the Advanced Turbine Systems (ATS) goals of 60% efficiency, single-digit NO{sub x}, and 10% electric power cost reduction imposes competing characteristics on the gas turbine system. Two basic technical issues arise from this. The turbine inlet temperature of the gas turbine must increase to achieve both efficiency and cost goals. However, higher temperatures move in the direction of increased NO{sub x} emission. Improved coatings and materials technologies along with creative combustor design can result in solutions to achieve the ultimate goal. GE`s view of the market, in conjunction with the industrial and utility objectives, requires the development of Advanced Gas Turbine Systems which encompass two potential products: a new aeroderivative combined-cycle system for the industrial market, and a combined-cycle system for the utility sector that is based on an advanced frame machine. The GE Advanced Gas Turbine Development program is focused on two specific products: (1) a 70 MW class industrial gas turbine based on the GE90 core technology utilizing an innovative air cooling methodology; (2) a 200 MW class utility gas turbine based on an advanced Ge heavy-duty machine utilizing advanced cooling and enhancement in component efficiency. Both of these activities required the identification and resolution of technical issues critical to achieving ATS goals. The emphasis for the industrial ATS was placed upon innovative cycle design and low emission combustion. The emphasis for the utility ATS was placed on developing a technology base for advanced turbine cooling, while utilizing demonstrated and planned improvements in low emission combustion. Significant overlap in the development programs will allow common technologies to be applied to both products. GE Power Systems is solely responsible for offering GE products for the industrial and utility markets.

NONE

1996-08-31T23:59:59.000Z

318

Energy Theft in the Advanced Metering Infrastructure  

E-Print Network [OSTI]

of the smart grid is an advanced metering infrastructure (AMI). AMI replaces the analog meters, but that current AMI devices introduce a myriad of new vectors for achieving it. Key words: AMI, Smart meter currently deployed smart-meters, and attempt to identify root causes of existing vulnerabilities. Theft

McDaniel, Patrick Drew

319

The Role of Microgrids in Helping to Advance the Nation's Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Smart Grid The Role of Microgrids in Helping to Advance the Nation's Energy System The Role of Microgrids in Helping to Advance the Nation's Energy System Microgrids are...

320

Completing the Design of the Advanced Gas Reactor Fuel Development and Qualification Experiments for Irradiation in the Advanced Test Reactor  

SciTech Connect (OSTI)

The United States Department of Energy’s Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating eight separate low enriched uranium (LEU) oxycarbide (UCO) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the newly formed Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These AGR fuel experiments will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control for each capsule. The swept gas will also have on-line fission product monitoring to track performance of the fuel in each individual capsule during irradiation.

S. Blaine Grover

2006-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "developing advanced energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Advanced, High Power, Next Scale, Wave Energy Conversion Device  

SciTech Connect (OSTI)

The project conducted under DOE contract DE?EE0002649 is defined as the Advanced, High Power, Next Scale, Wave Energy Converter. The overall project is split into a seven?stage, gated development program. The work conducted under the DOE contract is OPT Stage Gate III work and a portion of Stage Gate IV work of the seven stage product development process. The project effort includes Full Concept Design & Prototype Assembly Testing building on our existing PowerBuoy? technology to deliver a device with much increased power delivery. Scaling?up from 150kW to 500kW power generating capacity required changes in the PowerBuoy design that addressed cost reduction and mass manufacturing by implementing a Design for Manufacturing (DFM) approach. The design changes also focused on reducing PowerBuoy Installation, Operation and Maintenance (IO&M) costs which are essential to reducing the overall cost of energy. In this design, changes to the core PowerBuoy technology were implemented to increase capability and reduce both CAPEX and OPEX costs. OPT conceptually envisaged moving from a floating structure to a seabed structure. The design change from a floating structure to seabed structure would provide the implementation of stroke? unlimited Power Take?Off (PTO) which has a potential to provide significant power delivery improvement and transform the wave energy industry if proven feasible.

Mekhiche, Mike [Principal Investigator] [Principal Investigator; Dufera, Hiz [Project Manager] [Project Manager; Montagna, Deb [Business Point of Contact] [Business Point of Contact

2012-10-29T23:59:59.000Z

322

Under Secretary of Energy Highlights Advanced Energy Technologies to  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research Petroleum ReserveDepartment of EnergyDepartmentSankarDevelopmentSustain

323

International Energy Agency Programme of Research and Development on  

E-Print Network [OSTI]

.2.3. Waste Heat Driven Systems 4-6 4.3. Compression Systems 4-7 4.3.1. Electric Motor Driven Systems 4-10 4#12;International Energy Agency Programme of Research and Development on Advanced Heat Pump Systems Annex I: Common Study on Advanced Heat Pump Systems Final Report Volume I1: Technology Survey July 1980

Oak Ridge National Laboratory

324

Advanced Thermal Control | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3-- ------------------------------ChapterJuly 20142 U.S.AdvancedThermal Control

325

Draft Advanced Fossil Solicitation | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit ServicesMirant Potomac River Compliance PlanMEMORANDUMDraft Advanced Fossil

326

Advanced Solar Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORT Americium/Curium Vitrification ProjectAVANTI Logo: Advanced

327

Advanced Energy Projects: FY 1993, Research summaries  

SciTech Connect (OSTI)

AEP has been supporting research on novel materials for energy technology, renewable and biodegradable materials, new uses for scientific discoveries, alternate pathways to energy efficiency, alternative energy sources, innovative approaches to waste treatment and reduction, etc. The summaries are grouped according to projects active in FY 1993, Phase I SBIR projects, and Phase II SBIR projects. Investigator and institutional indexes are included.

Not Available

1993-09-01T23:59:59.000Z

328

Nanoscience and Nanotechnology: From Energy Applications to Advanced Medical Therapies  

ScienceCinema (OSTI)

Dr. Rajh will present a general talk on nanotechnology ? an overview of why nanotechnology is important and how it is useful in various fields. The specific focus will be on Solar energy conversion, environmental applications and advanced medical therapies. She has broad expertise in synthesis and characterization of nanomaterials that are used in nanotechnology including novel hybrid systems connecting semiconductors to biological molecules like DNA and antibodies. This technology could lead to new gene therapy procedures, cancer treatments and other medical applications. She will also discuss technologies made possible by organizing small semiconductor particles called quantum dots, materials that exhibit a rich variety of phenomena that are size and shape dependent. Development of these new materials that harnesses the unique properties of materials at the 1-100 nanometer scale resulted in the new field of nanotechnology that currently affects many applications in technological and medical fields.

Tijana Rajh

2010-01-08T23:59:59.000Z

329

Development of advanced strain diagnostic techniques for reactor environments.  

SciTech Connect (OSTI)

The following research is operated as a Laboratory Directed Research and Development (LDRD) initiative at Sandia National Laboratories. The long-term goals of the program include sophisticated diagnostics of advanced fuels testing for nuclear reactors for the Department of Energy (DOE) Gen IV program, with the future capability to provide real-time measurement of strain in fuel rod cladding during operation in situ at any research or power reactor in the United States. By quantifying the stress and strain in fuel rods, it is possible to significantly improve fuel rod design, and consequently, to improve the performance and lifetime of the cladding. During the past year of this program, two sets of experiments were performed: small-scale tests to ensure reliability of the gages, and reactor pulse experiments involving the most viable samples in the Annulated Core Research Reactor (ACRR), located onsite at Sandia. Strain measurement techniques that can provide useful data in the extreme environment of a nuclear reactor core are needed to characterize nuclear fuel rods. This report documents the progression of solutions to this issue that were explored for feasibility in FY12 at Sandia National Laboratories, Albuquerque, NM.

Fleming, Darryn D.; Holschuh, Thomas Vernon,; Miller, Timothy J.; Hall, Aaron Christopher; Urrea, David Anthony,; Parma, Edward J.,

2013-02-01T23:59:59.000Z

330

Renewable Energy Project Development: Advanced Concept Topics  

Broader source: Energy.gov (indexed) [DOE]

Stacy Buchanan, Karlynn Cory, Jason Coughlin, Elizabeth Doris, Mike Elchinger, Sara Farrar-Nagy, Bill Gillies, Travis Lowder, Anirudh Paduru, Paul Schwabe, Bob Springer, Blaise...

331

Engineering development of advanced froth flotation. Volume 2, Final report  

SciTech Connect (OSTI)

This report is an account of findings related to the Engineering and Development of Advanced Froth Flotation project. The results from benchscale and proof-of-concept (POC) level testing are presented and the important results from this testing are used to refine a conceptual design and cost estimate for a 20 TPH Semi-Works Facility incorporating the final proposed technology.

Ferris, D.D.; Bencho, J.R.; Torak, E.R. [ICF Kaiser Engineers, Inc., Pittsburgh, PA (United States)

1995-03-01T23:59:59.000Z

332

CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES  

SciTech Connect (OSTI)

This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

Christopher E. Hull

2005-11-04T23:59:59.000Z

333

CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES  

SciTech Connect (OSTI)

This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

Christopher E. Hull

2006-05-15T23:59:59.000Z

334

Crosscutting Technology Development at the Center for Advanced Separation Technologies  

SciTech Connect (OSTI)

This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

Christopher E. Hull

2006-09-30T23:59:59.000Z

335

Developing Tutorials for Advanced Physics Students: Processes and Lessons Learned  

E-Print Network [OSTI]

Developing Tutorials for Advanced Physics Students: Processes and Lessons Learned Charles Baily electrodynamics, active learning, course transformation. PACS: 01.40.Fk, 01.40.gb INTRODUCTION A common theme in physics education research (PER) is that students will learn more when they are active participants

Colorado at Boulder, University of

336

Advanced proton-exchange materials for energy efficient fuel cells.  

SciTech Connect (OSTI)

The ''Advanced Proton-Exchange Materials for Energy Efficient Fuel Cells'' Laboratory Directed Research and Development (LDRD) project began in October 2002 and ended in September 2005. This LDRD was funded by the Energy Efficiency and Renewable Energy strategic business unit. The purpose of this LDRD was to initiate the fundamental research necessary for the development of a novel proton-exchange membranes (PEM) to overcome the material and performance limitations of the ''state of the art'' Nafion that is used in both hydrogen and methanol fuel cells. An atomistic modeling effort was added to this LDRD in order to establish a frame work between predicted morphology and observed PEM morphology in order to relate it to fuel cell performance. Significant progress was made in the area of PEM material design, development, and demonstration during this LDRD. A fundamental understanding involving the role of the structure of the PEM material as a function of sulfonic acid content, polymer topology, chemical composition, molecular weight, and electrode electrolyte ink development was demonstrated during this LDRD. PEM materials based upon random and block polyimides, polybenzimidazoles, and polyphenylenes were created and evaluated for improvements in proton conductivity, reduced swelling, reduced O{sub 2} and H{sub 2} permeability, and increased thermal stability. Results from this work reveal that the family of polyphenylenes potentially solves several technical challenges associated with obtaining a high temperature PEM membrane. Fuel cell relevant properties such as high proton conductivity (>120 mS/cm), good thermal stability, and mechanical robustness were demonstrated during this LDRD. This report summarizes the technical accomplishments and results of this LDRD.

Fujimoto, Cy H.; Grest, Gary Stephen; Hickner, Michael A.; Cornelius, Christopher James; Staiger, Chad Lynn; Hibbs, Michael R.

2005-12-01T23:59:59.000Z

337

Irradiation of the First Advanced Gas Reactor Fuel Development and Qualification Experiment in the Advanced Test Reactor  

SciTech Connect (OSTI)

The United States Department of Energy’s Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating eight separate tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the United States Department of Energy’s lead laboratory for nuclear energy development. These AGR fuel experiments will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The experiments, which will each consist of six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control for each capsule. The swept gas will also have on-line fission product monitoring to track performance of the fuel in each individual capsule during irradiation. The design of the first experiment (designated AGR-1) was completed in 2005, and the fabrication and assembly of the test train as well as the support systems and fission product monitoring system that monitor and control the experiment during irradiation were completed in September 2006. The experiment was inserted in the ATR in December 2006, and is serving as a shakedown test of the multi-capsule experiment design that will be used in the subsequent irradiations as well as a test of the early variants of the fuel produced under this program. The experiment test train as well as the monitoring, control, and data collection systems are discussed and the status of the experiment is provided.

S. Blaine Grover; David A. Petti

2008-10-01T23:59:59.000Z

338

California Baseline Energy Demands to 2050 for Advanced Energy Pathways  

E-Print Network [OSTI]

that energy efficiency or energy intensity for a particularbased upon trends in energy intensity parameters which areBuilding type (12) Energy intensity Industrial Shipments

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

339

Energy Efficiency, Renewables, Advanced Transmission and Distribution  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQBusinessin Jamaica, N.Y.Energy Efficiency Energy

340

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network [OSTI]

Energy Research and Development Division FINAL PROJECT REPORT ADVANCED EPI TOOLS Energy Commission Prepared by: Applied Materials, Inc. #12; Prepared by: Primary Author(s): Nag-563-5224 Contract Number: PIR-10-055 Prepared for: California Energy Commission Dustin Davis Contract Manager

Note: This page contains sample records for the topic "developing advanced energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Advanced Combustion Technologies | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccess to OUO Access to OUO DOE MMeeting10-006 Advance

342

Advance Power Co | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasil Jump to:Iowa ASHRAEAddis, LA)Adobe Solar JumpAdvance Power

343

Advanced Hydro Solutions | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasil Jump to:Iowa ASHRAEAddis, LA)AdobeFuel Cell SystemsAdvanced

344

Advancing Global Nuclear Security | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

OF THE NUCLEAR ENERGY AND NUCLEAR SECURITY WORKING GROUP OF THE BILATERAL U.S. - RUSSIA PRESIDENTIAL COMMISSION Secretary Moniz's Remarks at the 2014 IAEA General Conference...

345

Energy Department Requests Proposals for Advanced Scientific...  

Energy Savers [EERE]

27, 2005 - 4:55pm Addthis WASHINGTON, DC - The Department of Energy's Office of Science and the National Nuclear Security Administration (NNSA) have issued a joint Request...

346

Advanced Fossil Energy Projects Solicitation | Department of...  

Office of Environmental Management (EM)

download our presentation. 12313 - Sustainable Schools CoalitionU.S. Department of Education Click here to view or download our presentation. 12913 - U.S. Energy Association...

347

Functional Materials for Energy | Advanced Materials | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Storage Fuel Cells Thermoelectrics Separations Materials Catalysis Sensor Materials Polymers and Composites Carbon Fiber Related Research Chemistry and Physics at...

348

Enhancing Transportation Energy Security through Advanced Combustion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Initiative - NPBF The FreedomCAR & Vehicle Technologies Health Impacts Program - The Collaborative Lubricating Oil Study on Emissions (CLOSE) Project The Pathway to Energy Security...

349

Advanced Fossil Energy Projects Loan Guarantee Solicitation  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South ValleyASGovLtr.pdfAboutSheet, April 20142-021Fossil Energy Projects Loan

350

Sandia National Laboratories: Advanced Research Projects Agency-Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0Energy Advanced Nuclear Energy The Advanced NuclearResearch

351

Advanced Energy Retrofit Guide (AERG): Practical Ways to Improve Energy Performance; Healthcare Facilities (Book)  

SciTech Connect (OSTI)

The Advanced Energy Retrofit Guide for Healthcare Facilities is part of a series of retrofit guides commissioned by the U.S. Department of Energy. By presenting general project planning guidance as well as detailed descriptions and financial payback metrics for the most important and relevant energy efficiency measures (EEMs), the guides provide a practical roadmap for effectively planning and implementing performance improvements in existing buildings. The Advanced Energy Retrofit Guides (AERGs) are intended to address key segments of the U.S. commercial building stock: retail stores, office buildings, K-12 schools, grocery stores, and healthcare facilities. The guides' general project planning considerations are applicable nationwide; the energy and cost savings estimates for recommended EEMs were developed based on energy simulations and cost estimates for an example hospital tailored to five distinct climate regions. These results can be extrapolated to other U.S. climate zones. Analysis is presented for individual EEMs, and for packages of recommended EEMs for two project types: existing building commissioning projects that apply low-cost and no-cost measures, and whole-building retrofits involving more capital-intensive measures.

Hendron, R.; Leach, M.; Bonnema, E.; Shekhar, D.; Pless, S.

2013-09-01T23:59:59.000Z

352

Advanced Turbine Systems Program: Conceptual design and product development  

SciTech Connect (OSTI)

Objective is to provide the conceptual design and product development plant for an ultra high efficiency, environmentally superior, and cost competitive industrial gas turbine system to be commercialized by the year 2000 (secondary objective is to begin early development of technologies critical to the success of ATS). This report addresses the remaining 7 of the 9 subtasks in Task 8, Design and Test of Critical Components: catalytic combustion, recuperator, high- temperature turbine disc, advanced control system, and ceramic materials.

NONE

1996-12-31T23:59:59.000Z

353

Eurotherm Seminar #99 Advances in Thermal Energy Storage  

E-Print Network [OSTI]

Eurotherm Seminar #99 Advances in Thermal Energy Storage 1 EUROTHERM99-01-103 Convection Energy Storage 2 Nussel number. This study shows that an increase in the convection coefficient leads in this paper consists in horizontal PCM plates separated by an air flow. This is a storage system dedicated

Boyer, Edmond

354

advanced energy systems: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

energy systems First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Energy storage systems for advanced...

355

advanced energy storage: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

energy storage First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Energy storage systems for advanced...

356

advanced energy efficient: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

advanced energy efficient First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Energy Efficiency & Renewable...

357

WaveBob (TRL 5 6 System) - Advanced Wave Energy Conversion Project...  

Broader source: Energy.gov (indexed) [DOE]

WaveBob (TRL 5 6 System) - Advanced Wave Energy Conversion Project WaveBob (TRL 5 6 System) - Advanced Wave Energy Conversion Project WaveBob (TRL 5 6 System) - Advanced Wave...

358

NASA advanced refrigerator/freezer technology development project overview  

SciTech Connect (OSTI)

NASA Lewis Research Center (LeRC) has recently initiated a three-year project to develop the advanced refrigerator/freezer (R/F) technologies needed to support future life and biomedical sciences space experiments. Refrigerator/freezer laboratory equipment, most of which needs to be developed, is enabling to about 75 percent of the planned space station life and biomedical science experiments. These experiments will require five different classes of equipment; three storage freezers operating at -20 C, -70 C and less than 183 C, a -70 C freeze-dryer, and a cryogenic (less than 183 C) quick/snap freezer. This project is in response to a survey of cooling system technologies, performed by a team of NASA scientists and engineers. The team found that the technologies required for future R/F systems to support life and biomedical sciences spaceflight experiments, do not exist at an adequate state of development and concluded that a program to develop the advanced R/F technologies is needed. Limitations on spaceflight system size, mass, and power consumption present a significant challenge in developing these systems. This paper presents some background and a description of the Advanced R/F Technology Development Project, project approach and schedule, general description of the R/F systems, and a review of the major R/F equipment requirements.

Cairelli, J.E.

1995-03-01T23:59:59.000Z

359

Clean Energy Development Fund (CEDF)  

Broader source: Energy.gov [DOE]

NOTE: The Vermont Clean Energy Development Fund has issued its [http://publicservicedept.vermont.gov/sites/psd/files/Topics/Renewable_En... Five Year Strategic Plan]. See the [http:/...

360

Workforce Development | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

and development initiative provides building upgrade professionals with integrated energy efficiency tools, case studies, and best practices designed to dramatically reduce...

Note: This page contains sample records for the topic "developing advanced energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Development of Polymer Electrolytes for Advanced Lithium Batteries  

Broader source: Energy.gov (indexed) [DOE]

* Barriers: (1) Energy density (2) Safety (3) Low cycle life * Partners: * ANL, ALS (at LBNL) and NCEM (at LBNL) Objectives * A) Develop cost-effective method for creating...

362

advanced pubertal development: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

save energy in industrial processes. The approach has emphasized developing better heat pump technology and transferring that technology to the private sector. DOE requires that...

363

Energy Department Advances Market Access for U.S. Firms in Chinese...  

Office of Environmental Management (EM)

Energy Department Advances Market Access for U.S. Firms in Chinese Energy Efficiency Sector Energy Department Advances Market Access for U.S. Firms in Chinese Energy Efficiency...

364

Advanced Energy Retrofit Guide: Practical Ways to Improve Energy Performance, K-12 Schools (Book)  

SciTech Connect (OSTI)

The U.S. Department of Energy developed the Advanced Energy Retrofit Guides (AERGs) to provide specific methodologies, information, and guidance to help energy managers and other stakeholders plan and execute energy efficiency improvements. Detailed technical discussion is fairly limited. Instead, we emphasize actionable information, practical methodologies, diverse case studies, and unbiased evaluations of the most promising retrofit energy efficiency measures for each building type. A series of AERGs is under development, addressing key segments of the commercial building stock. K-12 schools were selected as one of the highest priority building sectors, because schools affect the lives of most Americans. They also represent approximately 8% of the energy use and 10% of the floor area in commercial buildings nationwide. U.S. K-12 school districts spend more than $8 billion each year on energy - more than they spend on computers and textbooks combined. Most occupy older buildings that often have poor operational performance - more than 30% of schools were built before 1960. The average age of a school is about 42 years - which is nearly the expected serviceable lifespan of the building. K-12 schools offer unique opportunities for deep, cost-effective energy efficiency improvements, and this guide provides convenient and practical guidance for exploiting these opportunities in the context of public, private, and parochial schools.

Not Available

2013-12-01T23:59:59.000Z

365

Developing Tutorials for Advanced Physics Students: Processes and Lessons Learned  

E-Print Network [OSTI]

When education researchers describe newly developed curricular materials, they typically concentrate on the research base behind their design, and the efficacy of the final products, but do not highlight the initial stages of creating the actual materials. With the aim of providing useful information for faculty engaged in similar projects, we describe here our development of a set of in-class tutorials for advanced undergraduate electrodynamics students, and discuss factors that influenced their initial design and refinement. Among the obstacles to be overcome was the investigation of student difficulties within the short time frame of our project, and devising ways for students to engage in meaningful activities on advanced-level topics within a single 50-minute class period. We argue for a process that leverages faculty experience and classroom observations, and present several guidelines for tutorial development and implementation in upper-division physics classrooms.

Baily, Charles; Pollock, Steven J

2013-01-01T23:59:59.000Z

366

Advanced Manufacturing Partnership | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

and cost-shared R&D projects, supporting manufacturing infrastructure, and facilitating job creation. These actions save energy and provide benefits to U.S. industry and the...

367

Advanced HVAC Systems | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3-- ------------------------------Chapter 39.208-006EnergyFossil EnergyDepartment

368

Foundational development of an advanced nuclear reactor integrated safety code.  

SciTech Connect (OSTI)

This report describes the activities and results of a Sandia LDRD project whose objective was to develop and demonstrate foundational aspects of a next-generation nuclear reactor safety code that leverages advanced computational technology. The project scope was directed towards the systems-level modeling and simulation of an advanced, sodium cooled fast reactor, but the approach developed has a more general applicability. The major accomplishments of the LDRD are centered around the following two activities. (1) The development and testing of LIME, a Lightweight Integrating Multi-physics Environment for coupling codes that is designed to enable both 'legacy' and 'new' physics codes to be combined and strongly coupled using advanced nonlinear solution methods. (2) The development and initial demonstration of BRISC, a prototype next-generation nuclear reactor integrated safety code. BRISC leverages LIME to tightly couple the physics models in several different codes (written in a variety of languages) into one integrated package for simulating accident scenarios in a liquid sodium cooled 'burner' nuclear reactor. Other activities and accomplishments of the LDRD include (a) further development, application and demonstration of the 'non-linear elimination' strategy to enable physics codes that do not provide residuals to be incorporated into LIME, (b) significant extensions of the RIO CFD code capabilities, (c) complex 3D solid modeling and meshing of major fast reactor components and regions, and (d) an approach for multi-physics coupling across non-conformal mesh interfaces.

Clarno, Kevin (Oak Ridge National Laboratory, Oak Ridge, TN); Lorber, Alfred Abraham; Pryor, Richard J.; Spotz, William F.; Schmidt, Rodney Cannon; Belcourt, Kenneth (Ktech Corporation, Albuquerque, NM); Hooper, Russell Warren; Humphries, Larry LaRon

2010-02-01T23:59:59.000Z

369

E-Print Network 3.0 - advanced development note Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

note Search Powered by Explorit Topic List Advanced Search Sample search results for: advanced development note Page: << < 1 2 3 4 5 > >> 1 Academic Support & Information Literacy...

370

Apparatus for advancing a wellbore using high power laser energy  

DOE Patents [OSTI]

Delivering high power laser energy to form a borehole deep into the earth using laser energy. Down hole laser tools, laser systems and laser delivery techniques for advancement, workover and completion activities. A laser bottom hole assembly (LBHA) for the delivery of high power laser energy to the surfaces of a borehole, which assembly may have laser optics, a fluid path for debris removal and a mechanical means to remove earth.

Zediker, Mark S.; Land, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Koblick, Yeshaya; Moxley, Joel F.

2014-09-02T23:59:59.000Z

371

Advanced Reactor Research and Development Funding Opportunity Announcement  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe Office ofReporting (Connecticut)41AdamEnergyAdvancedDepartment||1

372

DKRW Advanced Fuels LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003)CrowleyEnergyMasse) Jump to:DEXA Jump to:DI Semicon Co

373

Center for Advanced Energy Studies homepage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosion Monitoring:Home| Visitors| Education|About NationalEnergyWhyUser

374

Functional Materials for Energy | Advanced Materials | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky Learning Fun with Big Sky Learning WHEN: Mar 21, 2015 Energy

375

Advanced Cathode Catalysts | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative RecordsBiofuels CostEnergy ThisPart of

376

Advanced Cathode Catalysts | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative RecordsBiofuels CostEnergy ThisPart

377

Advanced Propulsion Technology Strategy | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2| Department of Energy 2 DOEPropulsion

378

Advanced Rotating Heat Exchangers | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2| Department of Energy 2|Rotating Heat

379

Advanced Vehicle Electrification | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2| DepartmentEnergy 2Waste| Department|2

380

Advanced Vehicle Electrification | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2| DepartmentEnergy 2Waste|

Note: This page contains sample records for the topic "developing advanced energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Advanced Vehicle Electrification | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2| DepartmentEnergy 2Waste|0 DOE Vehicle

382

Guiding SSL Technology Advances | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietip sheetK-4 SubjectFieldEnergy AgriculturalGuiding

383

Nanoscale Advances in Catalysis and Energy Applications  

E-Print Network [OSTI]

State  Dye-­‐Sensitized  Solar  Cells.   Chemsuschem, in  dye-­‐sensitized  solar  cells  with  energy by  dye-­‐sensitized  photovoltaic  cells.  

Li, Yimin

2011-01-01T23:59:59.000Z

384

Progress to Develop an Advanced Solar-Selective Coating  

SciTech Connect (OSTI)

The progress to develop a durable advanced solar-selective coating will be described. Experimental work has focused on modeling high-temperature, solar-selective coatings; depositing the individual layers and modeled coatings; measuring the optical, thermal, morphology, and compositional properties and using the data to validate the modeled and deposited properties; re-optimizing the coating; and testing the coating performance and durability.

Kennedy, C. E.

2008-03-01T23:59:59.000Z

385

Advanced Boost System Developing for High EGR Applications  

SciTech Connect (OSTI)

To support industry efforts of clean and efficient internal combustion engine development for passenger and commercial applications • This program focuses on turbocharger improvement for medium and light duty diesel applications, from complete system optimization percepective to enable commercialization of advanced diesel combustion technologies, such as HCCI/LTC. • Improve combined turbocharger efficiency up to 10% or fuel economy by 3% on FTP cycle at Tier II Bin 5 emission level.

Sun, Harold

2012-09-30T23:59:59.000Z

386

Advanced Lighting Systems | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitecAWS Ocean EnergyAdirondackBioenergy LLC

387

Advanced Plasma Power APP | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitecAWS Ocean EnergyAdirondackBioenergy LLCPlasma

388

Advanced Renewables LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitecAWS Ocean EnergyAdirondackBioenergy

389

Butamax Advanced Biofuels LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis a city in Chittenden County, Vermont. ItTool

390

Advanced Reactor Technology Documents | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccess to OUO Access to OUO DOENuclear Energy Projects

391

Advances in understanding solar energy collection materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAre theAdministratorCFM LEAP Aircraft EnginesofTime

392

Developer | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor, New York: EnergyEnergyguaGet involved as a

393

Xcel Energy - Renewable Development Fund Grants | Department...  

Broader source: Energy.gov (indexed) [DOE]

Xcel Energy - Renewable Development Fund Grants Xcel Energy - Renewable Development Fund Grants < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional...

394

Advanced Thermal Energy Storage: Novel Tuning of Critical Fluctuations for Advanced Thermal Energy Storage  

SciTech Connect (OSTI)

HEATS Project: NAVITASMAX is developing a novel thermal energy storage solution. This innovative technology is based on simple and complex supercritical fluids— substances where distinct liquid and gas phases do not exist, and tuning the properties of these fluid systems to increase their ability to store more heat. In solar thermal storage systems, heat can be stored in NAVITASMAX’s system during the day and released at night—when the sun is not shining—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in NAVITASMAX’s system at night and released to produce electricity during daytime peak-demand hours.

None

2011-12-01T23:59:59.000Z

395

Revolutionizing Clean Energy Technology with Advanced Composites |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter ResourcesReviews and

396

Advanced Bioenergy LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitecAWS Ocean EnergyAdirondackBioenergy LLC Jump to:

397

Advanced Capacitor Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitecAWS Ocean EnergyAdirondackBioenergy LLC Jump

398

Advanced Solar Products | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitecAWS Ocean EnergyAdirondackBioenergyProducts Jump

399

Advanced Feedstock Supply System | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe Office ofReporting (Connecticut)41Adam GarberStart Date 7/1/2009ThisThis

400

Advanced Collaborative Emissions Study | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative RecordsBiofuelseffort toACES is2 DOE1Study

Note: This page contains sample records for the topic "developing advanced energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Advanced Electric Drive Vehicles | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2 DOE Hydrogen and Fuel CellsDepartment of2

402

Advanced Electric Drive Vehicles | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2 DOE Hydrogen and Fuel CellsDepartment of21

403

Advanced Electric Drive Vehicles | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2 DOE Hydrogen and Fuel CellsDepartment

404

Property:AdvancedEconomy | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformationInyo County, California | Open Energy Information onASHRAEAdditionalRef Jump

405

Advanced Distributed Generation LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskeyEnergyAd-VentaAddison is aAdenaAdrian is aBooneADECOS

406

Advanced Plant Pharmaceuticals Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskeyEnergyAd-VentaAddison is aAdenaAdrian

407

Advanced Chlorophyll Fluorometer - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the Building TechnologiesS1!4T opAddress:Adolphus

408

California Baseline Energy Demands to 2050 for Advanced Energy Pathways  

E-Print Network [OSTI]

ED2, September. CEC (2005b) Energy demand forecast methodsCalifornia Baseline Energy Demands to 2050 for Advancedof a baseline scenario for energy demand in California for a

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

409

Department of Energy Announces $8.5 Million to Advance Solar...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

8.5 Million to Advance Solar Energy Grid Integration Systems Department of Energy Announces 8.5 Million to Advance Solar Energy Grid Integration Systems September 7, 2010 -...

410

Advanced Fossil Energy Projects Solicitation FAQ | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccess to OUO Access to OUO DOE MMeeting10-006 AdvanceAdvancedFossil

411

News Letter Institute of Advanced Energy, Kyoto University  

E-Print Network [OSTI]

Materials Science Workshop" Institute of Advanced Energy, Kyoto University #12; 25 1 22 ASEAN 5 ASEANNational University of SingaporeChulalongkorn UniversityASEAN University Network AUN Nantana Gajaseni Institut Teknologi Bandung Akhmaloka Gajaseni "Student Mobility and ASEAN Credit Transfer System" Agreement

Takada, Shoji

412

Department of Advanced Energy Nuclear Fusion Research Education Program  

E-Print Network [OSTI]

23 Department of Advanced Energy Nuclear Fusion Research Education Program 22 8 24) (1) (2) (3) (4) (5) (6) (7) (8) #12;- 7 - 23 Guide to Nuclear Fusion Research Education@criepi.denken.or.jp tel: 046-856-2121 12 http://www. k.u-tokyo.ac.jp/fusion-pro/ #12;- 3 - (1) TOEFL TOEIC

Yamamoto, Hirosuke

413

Department of Advanced Energy Nuclear Fusion Research Education Program  

E-Print Network [OSTI]

24 Department of Advanced Energy Nuclear Fusion Research Education Program 23 8 23 to Nuclear Fusion Research Education Program 277-8561 5-1-5 1 04-7136-4092 http://www.k.u-tokyo.ac.jp/fusion: nemoto@criepi.denken.or.jp tel: 046-856-2121 12 http://www. k.u-tokyo.ac.jp/fusion-pro/ #12

Yamamoto, Hirosuke

414

Department of Advanced Energy Nuclear Fusion Research Education Program  

E-Print Network [OSTI]

25 Department of Advanced Energy Nuclear Fusion Research Education Program 24 8 21.Yasuhiro@jaxa.jp tel: 050-336-27836 mail: sakai@isas.jaxa.jp tel: 050-3362-5919 12 http://www. k.u-tokyo.ac.jp/fusion 15 (1) (2) (1) (2) (3) (4) (5) (6) (7) (8) (9) #12;- 8 - 25 Guide to Nuclear

Yamamoto, Hirosuke

415

Department of Advanced Energy Nuclear Fusion Research Education Program  

E-Print Network [OSTI]

26 Department of Advanced Energy Nuclear Fusion Research Education Program 25 8 20) #12; 26 Guide to Nuclear Fusion Research Education Program 03-5841-6563 E-mail : ae: 050-336-27836 mail: sakai@isas.jaxa.jp tel: 050-3362-5919 , 7 12 http://www. k.u-tokyo.ac.jp/fusion

Yamamoto, Hirosuke

416

advanced energy management: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

energy management First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Graduate Catalog 2013-2014 Advanced...

417

2011 Grants for Advanced Hydropower Technologies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Ownedof Energy ThePrivacy ActVeteranWindDay 12: DriveGrants for Advanced

418

Weldability and joining techniques for advanced fossil energy system alloys  

SciTech Connect (OSTI)

The efforts represent the concerns for the basic understanding of the weldability and fabricability of the advanced high temperature alloys so necessary to affect increases in the efficiency of the next generation Fossil Energy Power Plants. The effort was divided into three tasks with the first effort dealing with the welding and fabrication behavior of 310HCbN (HR3C), the second task details the studies aimed at understanding the weldability of a newly developed 310TaN high temperature stainless (a modification of 310 stainless) and Task 3 addressed the cladding of austenitic tubing with Iron-Aluminide using the GTAW process. Task 1 consisted of microstructural studies on 310HCbN and the development of a Tube Weldability test which has applications to production welding techniques as well as laboratory weldability assessments. In addition, the evaluation of ex-service 310HCbN which showed fireside erosion and cracking at the attachment weld locations was conducted. Task 2 addressed the behavior of the newly developed 310 TaN modification of standard 310 stainless steel and showed that the weldability was excellent and that the sensitization potential was minimal for normal welding and fabrication conditions. The microstructural evolution during elevated temperature testing was characterized and the second phase particles evolved upon aging were identified. Task 3 details the investigation undertaken to clad 310HCbN tubing with Iron Aluminide and developed welding conditions necessary to provide a crack free cladding. The work showed that both a preheat and a post-heat was necessary for crack free deposits and the effect of a third element on the cracking potential was defined together with the effect of the aluminum level for optimum weldability.

Lundin, C.D.; Qiao, C.Y.P.; Liu, W.; Yang, D.; Zhou, G.; Morrison, M. [Univ. of Tennessee, Knoxville, TN (United States)

1998-05-01T23:59:59.000Z

419

Grangemouth Advanced CO2 Capture Project GRACE | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio: Energy ResourcesGordon, Alabama:5812144°Grangemouth Advanced CO2

420

Energy Development Opportunities for Wyoming  

SciTech Connect (OSTI)

The Wyoming Business Council, representing the state’s interests, is participating in a collaborative evaluation of energy development opportunities with the NGNP Industry Alliance (an industry consortium), the University of Wyoming, and the US Department of Energy’s Idaho National Laboratory. Three important energy-related goals are being pursued by the State of Wyoming: Ensuring continued reliable and affordable sources of energy for Wyoming’s industries and people Restructuring the coal economy in Wyoming Restructuring the natural gas economy in Wyoming

Larry Demick

2012-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "developing advanced energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network [OSTI]

that use natural gas water heaters could see their annual natural gas water heating consumption drop by 35Energy Research and Development Division FINAL PROJECT REPORT WATER HEATING DESIGN GUIDE DECEMBER · Environmentally Preferred Advanced Generation · Industrial/Agricultural/Water End-Use Energy Efficiency

422

Advanced Wear-resistant Nanocomposites for Increased Energy Efficiency  

SciTech Connect (OSTI)

This report summarizes the work performed by an Ames-led project team under a 4-year DOE-ITP sponsored project titled, 'Advanced Wear-resistant Nanocomposites for Increased Energy Efficiency.' The Report serves as the project deliverable for the CPS agreement number 15015. The purpose of this project was to develop and commercialize a family of lightweight, bulk composite materials that are highly resistant to degradation by erosive and abrasive wear. These materials, based on AlMgB{sub 14}, are projected to save over 30 TBtu of energy per year when fully implemented in industrial applications, with the associated environmental benefits of eliminating the burning of 1.5 M tons/yr of coal and averting the release of 4.2 M tons/yr of CO{sub 2} into the air. This program targeted applications in the mining, drilling, machining, and dry erosion applications as key platforms for initial commercialization, which includes some of the most severe wear conditions in industry. Production-scale manufacturing of this technology has begun through a start-up company, NewTech Ceramics (NTC). This project included providing technical support to NTC in order to facilitate cost-effective mass production of the wear-resistant boride components. Resolution of issues related to processing scale-up, reduction in energy intensity during processing, and improving the quality and performance of the composites, without adding to the cost of processing were among the primary technical focus areas of this program. Compositional refinements were also investigated in order to achieve the maximum wear resistance. In addition, synthesis of large-scale, single-phase AlMgB{sub 14} powder was conducted for use as PVD sputtering targets for nanocoating applications.

Cook, B. A.; Harringa, J. L.; Russel, A. M.

2012-12-01T23:59:59.000Z

423

Legislative Developments in Solar Energy during 1980  

E-Print Network [OSTI]

is apparent that many solar and energy conservation programsL. REP. 267 (1979). SOLAR ENERGY DEVELOPMENTS kilowattsto -103 (Supp. 1979). SOLAR ENERGY DEVELOPMENTS vegetation

Krueger, Robert B.; Hoffman, Peter C.

1981-01-01T23:59:59.000Z

424

Geo energy research and development: technology transfer  

SciTech Connect (OSTI)

Sandia Geo Energy Programs related to geothermal, coal, oil and gas, and synfuel resources have provided a useful mechanism for transferring laboratory technologies to private industry. Significant transfer of hardware, computer programs, diagnostics and instrumentation, advanced materials, and in situ process understanding has occurred through US/DOE supported programs in the past five years. The text briefly reviews the technology transfer procedures and summarizes 32 items that have been transferred and another 20 technologies that are now being considered for possible transfer to industry. A major factor in successful transfer has been personal interactions between Sandia engineers and the technical staff from private industry during all aspects of the technology development.

Traeger, R.K.

1982-03-01T23:59:59.000Z

425

Advanced Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2 DOE Hydrogen andEnzymeAdvancedDepartment

426

NREL: Jobs and Economic Development Impact (JEDI) Models - Advanced Users  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz TorresSolectriaProjectsInternalWorkingAdvanced

427

ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION  

Office of Legacy Management (LM)

.' :h I : ' ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION WASHINGTON, D.C. 20545 October 24, 1975 :.. ,. Memo to Piles' CARNEGIE-MELLON SC&RCCYCLOTRON On October 23, 1975, W....

428

Energy Department Helps Advance Island Clean Energy Goals (Fact Sheet)  

SciTech Connect (OSTI)

This U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) fact sheet highlights a June 2012 solar power purchase agreement between the Virgin Islands Water and Power Authority and three corporations. The fact sheet describes how financial support from DOE and technical assistance from DOE's National Renewable Energy Laboratory enabled the U.S. Virgin Islands to realistically assess its clean energy resources and identify the most viable and cost-effective solutions to its energy challenges--resulting in a $65 million investment in solar energy in the territory.

Not Available

2012-10-01T23:59:59.000Z

429

Development of environmentally advanced hydropower turbine system design concepts  

SciTech Connect (OSTI)

A team worked together on the development of environmentally advanced hydro turbine design concepts to reduce hydropower`s impact on the environment, and to improve the understanding of the technical and environmental issues involved, in particular, with fish survival as a result of their passage through hydro power sites. This approach brought together a turbine design and manufacturing company, biologists, a utility, a consulting engineering firm and a university research facility, in order to benefit from the synergy of diverse disciplines. Through a combination of advanced technology and engineering analyses, innovative design concepts adaptable to both new and existing hydro facilities were developed and are presented. The project was divided into 4 tasks. Task 1 investigated a broad range of environmental issues and how the issues differed throughout the country. Task 2 addressed fish physiology and turbine physics. Task 3 investigated individual design elements needed for the refinement of the three concept families defined in Task 1. Advanced numerical tools for flow simulation in turbines are used to quantify characteristics of flow and pressure fields within turbine water passageways. The issues associated with dissolved oxygen enhancement using turbine aeration are presented. The state of the art and recent advancements of this technology are reviewed. Key elements for applying turbine aeration to improve aquatic habitat are discussed and a review of the procedures for testing of aerating turbines is presented. In Task 4, the results of the Tasks were assembled into three families of design concepts to address the most significant issues defined in Task 1. The results of the work conclude that significant improvements in fish passage survival are achievable.

Franke, G.F.; Webb, D.R.; Fisher, R.K. Jr. [Voith Hydro, Inc. (United States)] [and others

1997-08-01T23:59:59.000Z

430

ENERGY, ENVIRONMENT AND SUSTAINABLE DEVELOPMENT  

E-Print Network [OSTI]

ENERGY, ENVIRONMENT AND SUSTAINABLE DEVELOPMENT E u r o p e a n C o m m i s s i o n Community Research P r o j e c t s y n o p s e s EUR 19359 Vol. I: Marine processes, ecosystems and interactions Eur - Energy, environment and sustainable development Contact: Mr. Klaus - GĂŒnther BARTHEL - rue de la Loi, 200

Döös, Kristofer

431

Cambrian Energy Development LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahan Divide Wind EnergyEnergy Development LLC Place:

432

CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES  

SciTech Connect (OSTI)

This Technical Progress Report describes progress made on the seventeen subprojects awarded in the first year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices. Due to the time taken up by the solicitation/selection process, these cover the initial 6-month period of project activity only. The U.S. is the largest producer of mining products in the world. In 1999, U.S. mining operations produced $66.7 billion worth of raw materials that contributed a total of $533 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, this endeavor has been expanded into a seven-university consortium--Virginia Tech, West Virginia University, University of Kentucky, University of Utah, Montana Tech, New Mexico Tech and University of Nevada, Reno--that is supported through U.S. DOE Cooperative Agreement No. DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation (2) Solid-liquid separation (3) Chemical/Biological Extraction (4) Modeling and Control, and (5) Environmental Control.

Hugh W. Rimmer

2004-05-12T23:59:59.000Z

433

Project Sponsors: California Energy CommissionADVANCED POWER & ENERGY www.apep.uci.edu  

E-Print Network [OSTI]

Project Sponsors: California Energy CommissionADVANCED POWER & ENERGY PROGRAM www coincident time period (i.e., hourly resolution of 2005). Wind, solar, geothermal, and hydroelectric The Renewable Energy Secure Community (RESCO) project is a program sponsored by the California Energy Commission

Mease, Kenneth D.

434

Advanced Credentialing for Trusted Networks - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the Building TechnologiesS1!4TCombustion AdvancedAdvanced

435

Industrial Advanced Turbine Systems: Development and Demonstration. Annual report, September 14, 1995--September 30, 1996  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) has initiated a program for advanced turbine systems (ATS) that will serve industrial power generation markets. The objective of the cooperative agreements granted under the program is to join the DOE with industry in research and development that will lead to commercial offerings in the private sector. The ATS will provide ultra-high efficiency, environmental superiority, and cost competitiveness. The ATS will foster (1) early market penetration that enhances the global competitiveness of U.S. industry, (2) public health benefits resulting from reduced exhaust gas emissions of target pollutants, (3) reduced cost of power used in the energy-intensive industrial marketplace and (4) the retention and expansion of the skilled U.S. technology base required for the design, development and maintenance of state-of-the-art advanced turbine products. The Industrial ATS Development and Demonstration program is a multi-phased effort. Solar Turbines Incorporated (Solar) has participated in Phases 1 and 2 of the program. On September 14, 1995 Solar was awarded a Cooperative Agreement for Phases 3 and 4 of the program (DE-FC21-95MC31173) by the DOE`s Office of Energy Efficiency and Renewable Energy (EE). Technical administration of the Cooperative Agreement will be provided from EE`s Chicago Operations Office. Contract administration of the Cooperative Agreement will be provided from DOE`s Office of Fossil Energy, Morgantown Energy Technology Center (METC).

NONE

1998-12-31T23:59:59.000Z

436

Wind Energy Career Development Program  

SciTech Connect (OSTI)

Saint Francis University has developed curriculum in engineering and in business that is meeting the needs of students and employers (Task 1) as well as integrating wind energy throughout the curriculum. Through a variety of approaches, the University engaged in public outreach and education that reached over 2,000 people annually (Task 2). We have demonstrated, through the success of these programs, that students are eager to prepare for emerging jobs in alternative energy, that employers are willing to assist in developing employees who understand the broader business and policy context of the industry, and that people want to learn about wind energy.

Gwen Andersen

2012-03-29T23:59:59.000Z

437

Advanced Gas Turbine (AGT) technology development project. Annual report, July 1984-June 1985  

SciTech Connect (OSTI)

This report is the tenth in a series of Technical Summary reports for the Advanced Gas Turbine (AGT) Technology Development Project, authorized under NASA Contract DEN3-167, and sponsored by the Department of Energy (DOE). This report was prepared by Garrett Turbine Engine Company, A Division of the Garrett Corporation, and includes information provided by Ford Motor Company, the Carborundum Company, and AiResearch Casting Company.

Not Available

1986-07-01T23:59:59.000Z

438

Advanced Research Projects Agency - Energy | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3-- ------------------------------ChapterJuly 20142 U.S. DepartmentThisAdvanced

439

Draft Advanced Nuclear Energy Projects Solicitation | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit ServicesMirant Potomac River Compliance PlanMEMORANDUMDraft Advanced

440

The Consortium of Advanced Residential Buildings (CARB) - A Building America Energy Efficient Housing Partnership  

SciTech Connect (OSTI)

This final report summarizes the work conducted by the Consortium of Advanced Residential Buildings (CARB) (http://www.carb-swa.com/), one of the 'Building America Energy Efficient Housing Partnership' Industry Teams, for the period January 1, 2008 to December 31, 2010. The Building America Program (BAP) is part of the Department of Energy (DOE), Energy Efficiency and Renewable Energy, Building Technologies Program (BTP). The long term goal of the BAP is to develop cost effective, production ready systems in five major climate zones that will result in zero energy homes (ZEH) that produce as much energy as they use on an annual basis by 2020. CARB is led by Steven Winter Associates, Inc. with Davis Energy Group, Inc. (DEG), MaGrann Associates, and Johnson Research, LLC as team members. In partnership with our numerous builders and industry partners, work was performed in three primary areas - advanced systems research, prototype home development, and technical support for communities of high performance homes. Our advanced systems research work focuses on developing a better understanding of the installed performance of advanced technology systems when integrated in a whole-house scenario. Technology systems researched included: - High-R Wall Assemblies - Non-Ducted Air-Source Heat Pumps - Low-Load HVAC Systems - Solar Thermal Water Heating - Ventilation Systems - Cold-Climate Ground and Air Source Heat Pumps - Hot/Dry Climate Air-to-Water Heat Pump - Condensing Boilers - Evaporative condensers - Water Heating CARB continued to support several prototype home projects in the design and specification phase. These projects are located in all five program climate regions and most are targeting greater than 50% source energy savings over the Building America Benchmark home. CARB provided technical support and developed builder project case studies to be included in near-term Joule Milestone reports for the following community scale projects: - SBER Overlook at Clipper Mill (mixed, humid climate) - William Ryan Homes - Tampa (hot, humid climate).

Robb Aldrich; Lois Arena; Dianne Griffiths; Srikanth Puttagunta; David Springer

2010-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "developing advanced energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Advanced Manufacturing Office Update, January 2015 | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South ValleyASGovLtr.pdfAboutSheet, April 20142-021FossilJanuary 2015 Advanced

442

Advances  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation PortalScienceScripting forAdvances in

443

Science based integrated approach to advanced nuclear fuel development - vision, approach, and overview  

SciTech Connect (OSTI)

Advancing the performance of Light Water Reactors, Advanced Nuclear Fuel Cycles, and Advanced Rcactors, such as the Next Generation Nuclear Power Plants, requires enhancing our fundamental understanding of fuel and materials behavior under irradiation. The capability to accurately model the nuclear fuel systems is critical. In order to understand specific aspects of the nuclear fuel, fully coupled fuel simulation codes are required to achieve licensing of specific nuclear fuel designs for operation. The backbone of these codes, models, and simulations is a fundamental understanding and predictive capability for simulating the phase and microstructural behavior of the nuclear fuel system materials and matrices. The purpose of this paper is to identify the modeling and simulation approach in order to deliver predictive tools for advanced fuels development. The coordination between experimental nuclear fuel design, development technical experts, and computational fuel modeling and simulation technical experts is a critical aspect of the approach and naturally leads to an integrated, goal-oriented science-based R & D approach and strengthens both the experimental and computational efforts. The Advanced Fuels Campaign (AFC) and Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Integrated Performance and Safety Code (IPSC) are working together to determine experimental data and modeling needs. The primary objective of the NEAMS fuels IPSC project is to deliver a coupled, three-dimensional, predictive computational platform for modeling the fabrication and both normal and abnormal operation of nuclear fuel pins and assemblies, applicable to both existing and future reactor fuel designs. The science based program is pursuing the development of an integrated multi-scale and multi-physics modeling and simulation platform for nuclear fuels. This overview paper discusses the vision, goals and approaches how to develop and implement the new approach.

Unal, Cetin [Los Alamos National Laboratory; Pasamehmetoglu, Kemal [IDAHO NATIONAL LAB; Carmack, Jon [IDAHO NATIONAL LAB

2010-01-01T23:59:59.000Z

444

Developing Government Renewable Energy Projects  

SciTech Connect (OSTI)

The US Army Corps of Engineers has retained Idaho National Laboratory (INL) to conduct a study of past INL experiences and complete a report that identifies the processes that are needed for the development of renewable energy projects on government properties. The INL has always maintained expertise in power systems and applied engineering and INL’s renewable energy experiences date back to the 1980’s when our engineers began performing US Air Force wind energy feasibility studies and development projects. Over the last 20+ years of working with Department of Defense and other government agencies to study, design, and build government renewable projects, INL has experienced the do’s and don’ts for being successful with a project. These compiled guidelines for government renewable energy projects could include wind, hydro, geothermal, solar, biomass, or a variety of hybrid systems; however, for the purpose of narrowing the focus of this report, wind projects are the main topic discussed throughout this report. It is our thought that a lot of what is discussed could be applied, possibly with some modifications, to other areas of renewable energy. It is also important to note that individual projects (regardless the type) vary to some degree depending on location, size, and need but in general these concepts and directions can be carried over to the majority of government renewable energy projects. This report focuses on the initial development that needs to occur for any project to be a successful government renewable energy project.

Kurt S. Myers; Thomas L. Baldwin; Jason W. Bush; Jake P. Gentle

2012-07-01T23:59:59.000Z

445

Advanced, Integrated Control for Building Operations to Achieve 40% Energy Saving  

SciTech Connect (OSTI)

we developed and demonstrated a software based integrated advanced building control platform called Smart Energy Box (SEB), which can coordinate building subsystem controls, integrate variety of energy optimization algorithms and provide proactive and collaborative energy management and control for building operations using weather and occupancy information. The integrated control system is a low cost solution and also features: Scalable component based architecture allows to build a solution for different building control system configurations with needed components; Open Architecture with a central data repository for data exchange among runtime components; Extendible to accommodate variety of communication protocols. Optimal building control for central loads, distributed loads and onsite energy resource Uses web server as a loosely coupled way to engage both building operators and building occupants in collaboration for energy conservation. Based on the open platform of SEB, we have investigated and evaluated a variety of operation and energy saving control strategies on Carnegie Mellon University Intelligent Work place which is equipped with alternative cooling/heating/ventilation/lighting methods, including radiant mullions, radiant cooling/heating ceiling panels, cool waves, dedicated ventilation unit, motorized window and blinds, and external louvers. Based on the validation results of these control strategies, they were integrated in SEB in a collaborative and dynamic way. This advanced control system was programmed and computer tested with a model of the Intelligent Workplaceâ??s northern section (IWn). The advanced control program was then installed in the IWn control system; the performance were measured and compared with that of the state of the art control system to verify the overall energy savings great than 40%. In addition advanced human machine interfaces (HMI's) were developed to communicate both with building occupants and the building operator. Lifecycle cost analyses of the advanced building control were performed, and a Building Control System Guide was prepared and published to inform owners, architects, and engineers dealing with new construction or renovation of buildings.

Dr. Zhen Song, Prof. Vivian Loftness, Dr. Kun Ji, Dr. Sam Zheng, Mr. Bertrand Lasternas, Ms. Flore Marion, Mr. Yuebin Yu

2012-10-15T23:59:59.000Z

446

Advanced Reactors Thermal Energy Transport for Process Industries  

SciTech Connect (OSTI)

The operation temperature of advanced nuclear reactors is generally higher than commercial light water reactors and thermal energy from advanced nuclear reactor can be used for various purposes such as liquid fuel production, district heating, desalination, hydrogen production, and other process heat applications, etc. Some of the major technology challenges that must be overcome before the advanced reactors could be licensed on the reactor side are qualification of next generation of nuclear fuel, materials that can withstand higher temperature, improvement in power cycle thermal efficiency by going to combined cycles, SCO2 cycles, successful demonstration of advanced compact heat exchangers in the prototypical conditions, and from the process side application the challenge is to transport the thermal energy from the reactor to the process plant with maximum efficiency (i.e., with minimum temperature drop). The main focus of this study is on doing a parametric study of efficient heat transport system, with different coolants (mainly, water, He, and molten salts) to determine maximum possible distance that can be achieved.

P. Sabharwall; S.J. Yoon; M.G. McKellar; C. Stoots; George Griffith

2014-07-01T23:59:59.000Z

447

Energy Efficiency, Renewable Energy and Advanced Transmission and  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQBusinessin Jamaica, N.Y.Energy Efficiency Energy Efficiency

448

Advanced Energy Products Corp AEP | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasil Jump to:Iowa ASHRAEAddis, LA)Adobe SolarAdvanced

449

Advanced Wind Energy Systems AWES | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasil Jump to:Iowa ASHRAEAddis,AdvancedInformation

450

Advanced Energy Design Guides Fact Sheet | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EERE Blog Posts1-034 Advance Patent WaiverLeslie PezzulloDesign Guides

451

Energy Department Updates Home Energy Scoring Tool for Advancing...  

Broader source: Energy.gov (indexed) [DOE]

Department's Building Technologies Office and Lawrence Berkeley National Laboratory (LBNL). The Home Energy Score allows homebuyers to compare homes on an "apples to apples"...

452

Under Secretary of Energy Highlights Advanced Energy Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Demonstration Project. The demonstration project is a unique collaboration of automobile and energy industry partners and the federal government to assess hydrogen fuel cell...

453

Game-Changing Advancements in Solar Energy | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel Cell Vehicle BasicsWashers | DepartmentGabrial Boeckman

454

Advanced Metering Plan for Monitoring Energy and Potable Water Use in PNNL EMS4 Buildings  

SciTech Connect (OSTI)

This updated Advanced Metering Plan for monitoring whole building energy use in Pacific Northwest National Laboratory (PNNL) EMS4 buildings on the PNNL campus has been prepared in accordance with the requirements of the Energy Policy Act of 2005 (EPAct 2005), Section 103, U.S. Department of Energy (DOE) Order 430.2B, and Metering Best Practices, A Guide to Achieving Utility Resource Efficiency, Federal Energy Management Program, October 2007 (Sullivan et al. 2007). The initial PNNL plan was developed in July 2007 (Olson 2007), updated in September 2008 (Olson et al. 2008), updated in September 2009 (Olson et al. 2009), and updated again in August 2010 (Olson et al. 2010).

Pope, Jason E.; Olson, Norman J.; Berman, Marc J.; Schielke, Dale R.

2011-08-17T23:59:59.000Z

455

Energy Secretary Bodman Showcases Advanced Clean Diesel and Hybrid...  

Energy Savers [EERE]

to Develop Clean Diesel Technology WASHINGTON, D.C. - Highlighting the promise of alternative fuel trucks and buses, Secretary of Energy Samuel W. Bodman today opened an...

456

Advancing Technology Readiness: Wave Energy Testing and Demonstration...  

Energy Savers [EERE]

proposed wave park off the coast of Oregon. | Photo courtesy of Ocean Power Technologies. Ocean Energy Projects Developing On and Off America's Shores Establishing a Testing Center...

457

CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES  

SciTech Connect (OSTI)

The U.S. is the largest producer of mining products in the world. In 2003, U.S. mining operations produced $57 billion worth of raw materials that contributed a total of $564 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation; (2) Solid-liquid separation; (3) Chemical/Biological Extraction; (4) Modeling and Control; and (5) Environmental Control.

Christopher E. Hull

2005-01-20T23:59:59.000Z

458

16 Projects To Advance Hydropower Technology | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless or Demand-TypeWelcome6 Projects To Advance Hydropower

459

Advanced Bioeconomy Leadership Conference 2015 | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombinedDepartment2015 InformationAGuidefor theEnergy Advanced

460

Advanced Modeling Grid Research Program | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3-- ------------------------------ChapterJuly 2014 AdvancedEnergyServices »

Note: This page contains sample records for the topic "developing advanced energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Property:RenewableFuelStandard/AdvancedBiofuel | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: EnergyPotentialUrbanUtilityScalePVCapacity Jump to: navigation,Website PropertyRegulationsAdvancedBiofuel Jump

462

Process Systems Engineering R&D for Advanced Fossil Energy Systems  

SciTech Connect (OSTI)

This presentation will examine process systems engineering R&D needs for application to advanced fossil energy (FE) systems and highlight ongoing research activities at the National Energy Technology Laboratory (NETL) under the auspices of a recently launched Collaboratory for Process & Dynamic Systems Research. The three current technology focus areas include: 1) High-fidelity systems with NETL's award-winning Advanced Process Engineering Co-Simulator (APECS) technology for integrating process simulation with computational fluid dynamics (CFD) and virtual engineering concepts, 2) Dynamic systems with R&D on plant-wide IGCC dynamic simulation, control, and real-time training applications, and 3) Systems optimization including large-scale process optimization, stochastic simulation for risk/uncertainty analysis, and cost estimation. Continued R&D aimed at these and other key process systems engineering models, methods, and tools will accelerate the development of advanced gasification-based FE systems and produce increasingly valuable outcomes for DOE and the Nation.

Zitney, S.E.

2007-09-11T23:59:59.000Z

463

Fossil Energy Advanced Technologies (2008 - 2009) | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdfattachment.pdf6.pdf5.pdfFluorescentDepartment ofSummaryofFossil Energy

464

Advancing Clean Energy in Indian Country | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South ValleyASGovLtr.pdfAboutSheet, AprilEdwardDepartment ofLora Toy

465

Energy Department Helps Advance Island Clean Energy Goals | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQBusiness Competition |StorageAbengoa BioenergyEnergyEnergy

466

Advancing Women in Clean Energy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe House CommitteeAdditional Resources Energynewsletter will|Energyof

467

California Baseline Energy Demands to 2050 for Advanced Energy Pathways  

E-Print Network [OSTI]

these trends lead to declining natural gas consumption byNatural gas demand has been rising in California and this trendnatural gas demands regionally, to account for variability in energy usage trends

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

468

Women Empowerment in South Asia – Advancing access to Clean Energy:  

E-Print Network [OSTI]

Almost a third of the total energy consumed in South Asia is managed or administered by women. Yet there are no institutional arrangements available to prepare women for this task and there are few instances where women are given the training, information, knowledge, and skills to plan and manage the efficient utilization of energy, including the use of renewable energy sources in their daily lives. Women in Sustainable Energy Research (WISER) is set up to fulfill this need through the development of application oriented energy management programs and their dissemination to the women of South Asia. WISER will work in close partnership with the South Asia Women in Energy (SAWIE) network. WISER will be the training hub for SAWIE, showcasing clean energy technologies and incubating energy efficiency and renewable energy systems for women entrepreneurs in South Asia (SA). Through capacity building programs offered by WISER, women will be empowered, adopt sustainable development life styles and measures, and contribute to economic growth.

Mercy K. Thomas

469

Advanced turbine systems program--conceptual design and product development. Quarterly report, November 1994--January 1995  

SciTech Connect (OSTI)

Research continued in the design and development of advanced gas turbine systems. This report presents progress towards turbine blade development, diffuser development, combustion noise investigations,catalytic combustion development, and diagnostic probe development.

NONE

1995-02-01T23:59:59.000Z

470

Energy Department Invests $67 Million to Advanced Nuclear Technology |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQBusiness CompetitionDepartment of Energy 7 Million to Advanced

471

Development and application of a probabilistic evaluation method for advanced process technologies  

SciTech Connect (OSTI)

The objective of this work is to develop and apply a method for research planning for advanced process technologies. To satisfy requirements for research planning, it is necessary to: (1) identify robust solutions to process design questions in the face of uncertainty to eliminate inferior design options; (2) identify key problem areas in a technology that should be the focus of further research to reduce the risk of technology failure; (3) compare competing technologies on a consistent basis to determine the risks associated with adopting a new technology; and (4) evaluate the effects that additional research might have on comparisons with conventional technology. An important class of process technologies are electric power plants. In particular, advanced clean coal technologies are expected to play a key role in the energy and environmental future of the US, as well as in other countries. Research planning for advanced clean coal technology development is an important part of energy and environmental policy. Thus, the research planning method developed here is applied to case studies focusing on a specific clean coal technology. The purpose of the case studies is both to demonstrate the research planning method and to obtain technology-specific conclusions regarding research strategies.

Frey, H.C.; Rubin, E.S.

1991-04-01T23:59:59.000Z

472

Development and application of a probabilistic evaluation method for advanced process technologies. Final report  

SciTech Connect (OSTI)

The objective of this work is to develop and apply a method for research planning for advanced process technologies. To satisfy requirements for research planning, it is necessary to: (1) identify robust solutions to process design questions in the face of uncertainty to eliminate inferior design options; (2) identify key problem areas in a technology that should be the focus of further research to reduce the risk of technology failure; (3) compare competing technologies on a consistent basis to determine the risks associated with adopting a new technology; and (4) evaluate the effects that additional research might have on comparisons with conventional technology. An important class of process technologies are electric power plants. In particular, advanced clean coal technologies are expected to play a key role in the energy and environmental future of the US, as well as in other countries. Research planning for advanced clean coal technology development is an important part of energy and environmental policy. Thus, the research planning method developed here is applied to case studies focusing on a specific clean coal technology. The purpose of the case studies is both to demonstrate the research planning method and to obtain technology-specific conclusions regarding research strategies.

Frey, H.C.; Rubin, E.S.

1991-04-01T23:59:59.000Z

473

Tribal Energy Project Development Through ESCOs  

Broader source: Energy.gov [DOE]

Download presentation slides below for the Tribal Energy Project Development through Energy Service Companies (ESCOs) webinar on April 21, 2010.

474

Crosscutting Technology Development at the Center for Advanced Separation Technologies  

SciTech Connect (OSTI)

The U.S. is the largest producer of mining products in the world. In 2003, U.S. mining operations produced $57 billion worth of raw materials that contributed a total of $564 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, this endeavor has been expanded into a seven-university consortium -- Virginia Tech, West Virginia University, University of Kentucky, University of Utah, Montana Tech, New Mexico Tech and University of Nevada, Reno - that is supported through U.S. DOE Cooperative Agreement No. DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation; (2) Solid-liquid separation; (3) Chemical/biological extraction; (4) Modeling and control; and (5) Environmental control. Distribution of funds is handled via competitive solicitation of research proposals through Site Coordinators at the seven member universities. These were first reviewed and ranked by a group of technical reviewers (selected primarily from industry). Based on these reviews, and an assessment of overall program requirements, the CAST Technical Committee made an initial selection/ranking of proposals and forwarded these to the DOE/NETL Project Officer for final review and approval. The successful projects are listed by category, along with brief abstracts of their aims and objectives.

Christopher Hull

2009-10-31T23:59:59.000Z

475

Energy and Water Development and Related Agencies Appropriations Act of 2010  

Broader source: Energy.gov [DOE]

Section 312 of the Energy and Water Development and Related Agencies Appropriations Act of 2010 amends Section 136 of the Energy Independence and Security Act to include ultra-efficient vehicles within the definition of advanced technology vehicles.

476

The Advanced Research Projects Agency-Energy (ARPA-E)  

E-Print Network [OSTI]

.2 Million #12;HEATS THERMAL ENERGY STORAGE Goals · Enable non-intermittent solar power plants and peak-power nuclear power plants · Create transportable fuels from sunlight · Modular thermal energy storage for EVs low cost molten glass as heat transfer and thermal storage for CSP · MIT ­ Developing energy storage

Magee, Joseph W.

477

Advancing Next-Generation Energy in Indian Country (Fact Sheet)  

SciTech Connect (OSTI)

This fact provides information on the Strategic Technical Assistance Response Team (START) Program, a U.S. Department of Energy Office of Indian Energy Policy and Programs (DOE-IE) initiative to provide technical expertise to support the development of next-generation energy projects in Indian Country.

Not Available

2012-08-01T23:59:59.000Z

478

Energy Department Announces New Awards for Advanced Nuclear Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember 2011 EMABDevelopment | Department of Energy

479

The Advanced Research Projects Agency-Energy (ARPA-E) has awarded engineers at Case Western Reserve University $1,508,000 in a second round of funding to continue the development of their iron flow  

E-Print Network [OSTI]

efficiency and reliability with storage increases, while decreasing hazardous effects of energy generation University $1,508,000 in a second round of funding to continue the development of their iron flow battery which drives down costs and expands battery applications. ARPA-E is a division of the U.S. Department

Rollins, Andrew M.

480

Tanzania Traditional Energy Development and Environment Organization...  

Open Energy Info (EERE)

Traditional Energy Development and Environment Organization (TaTEDO) Jump to: navigation, search Name: Tanzania Traditional Energy Development and Environment Organization (TaTEDO)...

Note: This page contains sample records for the topic "developing advanced energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Testimony Before Senate Energy & Water Development Committee...  

Energy Savers [EERE]

Reports Testimony Testimony Before Senate Energy & Water Development Committee Testimony Before Senate Energy & Water Development Committee March 21, 2012 Fiscal Year 2013...

482

Sustainably Priced Energy Enterprise Development (SPEED) Goals  

Broader source: Energy.gov [DOE]

Vermont's Sustainably Priced Energy Enterprise Development (SPEED) Program was created by legislation in 2005 to promote renewable energy development. The SPEED program itself is not a renewable...

483

Predictive Technology Development and Crash Energy Management...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. lm09kia.pdf More Documents & Publications ACC100 Crash Energy Management Advanced...

484

Development of a system model for advanced small modular reactors.  

SciTech Connect (OSTI)

This report describes a system model that can be used to analyze three advance small modular reactor (SMR) designs through their lifetime. Neutronics of these reactor designs were evaluated using Monte Carlo N-Particle eXtended (MCNPX/6). The system models were developed in Matlab and Simulink. A major thrust of this research was the initial scoping analysis of Sandia's concept of a long-life fast reactor (LLFR). The inherent characteristic of this conceptual design is to minimize the change in reactivity over the lifetime of the reactor. This allows the reactor to operate substantially longer at full power than traditional light water reactors (LWRs) or other SMR designs (e.g. high temperature gas reactor (HTGR)). The system model has subroutines for lifetime reactor feedback and operation calculations, thermal hydraulic effects, load demand changes and a simplified SCO2 Brayton cycle for power conversion.

Lewis, Tom Goslee,; Holschuh, Thomas Vernon,

2014-01-01T23:59:59.000Z

485

A Novel Approach to Material Development for Advanced Reactor Systems  

SciTech Connect (OSTI)

OAK B188 A Novel Approach to Material Development for Advanced Reactor Systems. Year one of this project had three major goals. First, to specify, order and install a new high current ion source for more rapid and stable proton irradiation. Second, to assess the use of low temperature irradiation and chromium pre-enrichment in an effort to isolate a radiation damage microstructure in stainless steel without the effects of RIS. Third, to initiate irradiation of reactor pressure vessel steel and Zircaloy. In year 1 quarter 3, the project goal was to complete irradiation of model alloys of RPV steels for a range of doses and begin sample characterization. We also planned to prepare samples for microstructure isolation in stainless steels, and to identify sources of Zircaloy for irradiation and characterization.

Was, G.S.; Atzmon, M.; Wang, L.

2000-06-27T23:59:59.000Z

486

E-Print Network 3.0 - advanced flywheel energy Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced power electronics interface BESS Battery energy storage system CAES Compressed air energy storage... system ERCOT Electric ... Source: Renewal Resource Data Center,...

487

E-Print Network 3.0 - advanced energy projects Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

solutions that reduce energy... , advanced energy storage, SmartGrid technology, biogas digester, biomethane upgrade system, and biofuels... West Village Renewable-Based...

488

Advanced turbine systems program conceptual design and product development. Quarterly report, August--October 1995  

SciTech Connect (OSTI)

This report describes the tasks completed for the advanced turbine systems program. The topics of the report include last row turbine blade development, single crystal blade casting development, ceramic materials development, combustion cylinder flow mapping, shroud film cooling, directional solidified valve development, shrouded blade cooling, closed-loop steam cooling, active tip clearance control, flow visualization tests, combustion noise investigation, TBC field testing, catalytic combustion development, optical diagnostics probe development, serpentine channel cooling tests, brush seal development, high efficiency compressor design, advanced air sealing development, advanced coating development, single crystal blade development, Ni-based disc forging development, and steam cooling effects on materials.

NONE

1996-01-01T23:59:59.000Z

489

First Steps Toward Developing Renewable Energy and Energy Efficiency...  

Broader source: Energy.gov (indexed) [DOE]

This is a table on proposed DOE funds regarding the first steps toward developing renewable energy and energy efficiency on Tribal Lands. First Steps Toward Developing Renewable...

490

First Steps Toward Developing Renewable Energy and Energy Efficiency...  

Broader source: Energy.gov (indexed) [DOE]

DOE funds, and proposed cost share for the tribes participating in developing renewable energy and energy efficiency on tribal lands. First Steps Toward Developing...

491

Topping combustor application to the Wilsonville Advanced Power Systems Development Facility  

SciTech Connect (OSTI)

The Advanced Power Systems Development Facility (PSDF) located at Wilsonville Alabama is a Department of Energy (DOE) and Industry cost-shared facility which will be operated by Southern Company Services. This facility is designed to provide long-term hot gas cleanup and process testing for an Advanced Pressurized Fluidized Bed Combustion (PFBC) and Gasification System. It incorporates carbonization with a circulating fluidized bed and topping combustion system. The plant will produce 4 MW of electricity. It is being designed by Foster Wheeler and is scheduled to commence operation in 1998. As in any new technology or project there is usually a number of critical components whose successful development form the foundation for the overall success of the concept. In the development of advanced (PFBC) power generation plants, one of those critical components is the topping combustion system. This paper presents the criteria for the Westinghouse developed Topping Combustor that will fire a coal derived high temperature, ammonia-rich syngas into a high temperature vitiated air stream to drive an Allison Model 501-KM gas turbine.

Domeracki, W.F. [Westinghouse Electric Corp., Orlando, FL (United States); Bachovchin, D.M. [Westinghouse Electric Corp., Pittsburgh, PA (United States); Crumm, C.J. [Foster Wheeler USA Corp., Clinton, NJ (United States); Morton, F.C. [Southern Co. Services, Wilsonville, AL (United States)

1997-12-31T23:59:59.000Z

492

Process/equipment co-simulation for designe and analysis of advanced energy systems  

SciTech Connect (OSTI)

b s t r a c t The grand challenge facing the power and energy industries is the development of efficient, environmentally friendly, and affordable technologies for next-generation energy systems. To provide solutions for energy and the environment, the U.S. Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) and its research partners in industry and academia are relying increasingly on the use of sophisticated computer-aided process design and optimization tools. In this paper, we describe recent progress toward developing an Advanced Process Engineering Co-Simulator (APECS) for the high-fidelity design, analysis, and optimization of energy plants. The APECS software system combines steady-state process simulation with multiphysics-based equipment simulations, such as those based on computational fluid dynamics (CFD). These co-simulation capabilities enable design engineers to optimize overall process performance with respect to complex thermal and fluid flow phenomena arising in key plant equipment items, such as combustors, gasifiers, turbines, and carbon capture devices. In this paper we review several applications of the APECS co-simulation technology to advanced energy systems, including coal-fired energy plants with carbon capture. This paper also discusses ongoing co-simulation R&D activities and challenges in areas such as CFD-based reduced-order modeling, knowledge management, advanced analysis and optimization, and virtual plant co-simulation. Continued progress in co-simulation technology – through improved integration, solution, and deployment – will have profound positive impacts on the design and optimization of high-efficiency, near-zero emission fossil energy systems.

Zitney, S.

2010-01-01T23:59:59.000Z

493

Advanced Fossil Energy Projects Solicitation | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEF HISTORY OFEnergy

494

MIT - Center for Advanced Nuclear Energy Systems | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories on climateJunoMedanos EnergyM Communications Smart GridMCMHKMHKMIT

495

Energy Department Releases Draft Advanced Fossil Energy Solicitation to  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQBusiness CompetitionDepartmentand ReduceObama's

496

Advanced Nuclear Energy Projects Solicitation | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccess to OUO Access to OUO DOENuclear Energy Projects Solicitation

497

Arctic Energy Technology Development Laboratory  

SciTech Connect (OSTI)

The Arctic Energy Technology Development Laboratory was created by the University of Alaska Fairbanks in response to a congressionally mandated funding opportunity through the U.S. Department of Energy (DOE), specifically to encourage research partnerships between the university, the Alaskan energy industry, and the DOE. The enabling legislation permitted research in a broad variety of topics particularly of interest to Alaska, including providing more efficient and economical electrical power generation in rural villages, as well as research in coal, oil, and gas. The contract was managed as a cooperative research agreement, with active project monitoring and management from the DOE. In the eight years of this partnership, approximately 30 projects were funded and completed. These projects, which were selected using an industry panel of Alaskan energy industry engineers and managers, cover a wide range of topics, such as diesel engine efficiency, fuel cells, coal combustion, methane gas hydrates, heavy oil recovery, and water issues associated with ice road construction in the oil fields of the North Slope. Each project was managed as a separate DOE contract, and the final technical report for each completed project is included with this final report. The intent of this process was to address the energy research needs of Alaska and to develop research capability at the university. As such, the intent from the beginning of this process was to encourage development of partnerships and skills that would permit a transition to direct competitive funding opportunities managed from funding sources. This project has succeeded at both the individual project level and at the institutional development level, as many of the researchers at the university are currently submitting proposals to funding agencies, with some success.

Sukumar Bandopadhyay; Charles Chamberlin; Robert Chaney; Gang Chen; Godwin Chukwu; James Clough; Steve Colt; Anthony Covescek; Robert Crosby; Abhijit Dandekar; Paul Decker; Brandon Galloway; Rajive Ganguli; Catherine Hanks; Rich Haut; Kristie Hilton; Larry Hinzman; Gwen Holdman; Kristie Holland; Robert Hunter; Ron Johnson; Thomas Johnson; Doug Kame; Mikhail Kaneveskly; Tristan Kenny; Santanu Khataniar; Abhijeet Kulkami; Peter Lehman; Mary Beth Leigh; Jenn-Tai Liang; Michael Lilly; Chuen-Sen Lin; Paul Martin; Pete McGrail; Dan Miller; Debasmita Misra; Nagendra Nagabhushana; David Ogbe; Amanda Osborne; Antoinette Owen; Sharish Patil; Rocky Reifenstuhl; Doug Reynolds; Eric Robertson; Todd Schaef; Jack Schmid; Yuri Shur; Arion Tussing; Jack Walker; Katey Walter; Shannon Watson; Daniel White; Gregory White; Mark White; Richard Wies; Tom Williams; Dennis Witmer; Craig Wollard; Tao Zhu

2008-12-31T23:59:59.000Z

498

Fabrication development for the Advanced Neutron Source Reactor  

SciTech Connect (OSTI)

This report presents the fuel fabrication development for the Advanced Neutron Source (ANS) reactor. The fuel element is similar to that successfully fabricated and used in the High Flux Isotope Reactor (HFIR) for many years, but there are two significant differences that require some development. The fuel compound is U{sub 3}Si{sub 2} rather than U{sub 3}O{sub 8}, and the fuel is graded in the axial as well as the radial direction. Both of these changes can be accomplished with a straightforward extension of the HFIR technology. The ANS also requires some improvements in inspection technology and somewhat more stringent acceptance criteria. Early indications were that the fuel fabrication and inspection technology would produce a reactor core meeting the requirements of the ANS for the low volume fraction loadings needed for the highly enriched uranium design (up to 1.7 Mg U/m{sup 3}). Near the end of the development work, higher volume fractions were fabricated that would be required for a lower- enrichment uranium core. Again, results look encouraging for loadings up to {approx}3.5 Mg U/m{sup 3}; however, much less evaluation was done for the higher loadings.

Pace, B.W. [Babcock and Wilcox, Lynchburg, VA (United States); Copeland, G.L. [Oak Ridge National Lab., TN (United States)

1995-08-01T23:59:59.000Z

499

Advanced tangential low NOx systems - development and results  

SciTech Connect (OSTI)

The development of low NO{sub x} combustion systems has identified the near burner flame conditions as critical in determining the eventual NO{sub x} emission levels. In this paper the development of this criterion, in respect of tangentially coal ({open_quote}T{close_quote}) fired power generation boilers, is discussed together with their commercial application. The potential ultra low NO{sub x} performance of these techniques requires a deeper understanding of coal characteristics in addition to the standard properties involving volatile release rates, the behaviour of particulate clouds and their burning velocities. Aerodynamic properties including fuel air mixing, velocity and particulate distribution are all of fundamental importance and can be studied by means of isothermal physical modelling and computational fluid dynamics (CFD). Amalgamation of these various aspects into burner and combustion system design can be considered as NO{sub x} control by flame management and can be applied to conventional systems as well as to the development of advanced low NO{sub x} burner technology. Low NO{sub x} equipment based on this technology is known as the EnviroNO{sub x}{trademark} system.

Allen, J.W.; Beal, P.R. [Rolls-Royce Industrial Power Group, Derby (United Kingdom)

1996-01-01T23:59:59.000Z

500

Renewable Energy Project Development and Finance: Advanced Development...  

Broader source: Energy.gov (indexed) [DOE]

Most costly for Tribedeveloper to acquire long-term ownership of project (large cash infusion year 10) * Tribedeveloper operates the project * Requires largest equity...